

Water Resources Data California Water Year 1987

Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CA-87-1 Prepared in cooperation with the California Department of Water Resources and with other agencies

CALENDAR FOR WATER YEAR 1987

				····																			
											198	6											
		OCI	ЮВІ	ER						поч	VEMI	3ER						DE	CEM	BER			
S	M	Т	W	Т	F	S		S	М	Т	W	Т	F	s		S	М	T	W	Т	F	. S	
5 12 1 19 2 26 2	20	21	22	16 23	17 24	18	1	6 3	17	18	5 12 19 26	20	21	22		21	22		17 24	18	5 12 19 26	13 20	
								•••			198	37	, I	•									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		JA	NUA	ARY						FI	EBRU	JAR	ľ					Ŋ	1AR	СН			
S	M	Т	W	T	F	S		S	M	T	W	Т	F	S		S	М	Т	W	Т	F	s	
	۱9	20	21	22	2 9 16 23 30	24	1			17	4 11 18 25	19	20	7 14 21 28	:	22	2 9 16 23 30	24	4 11 18 25		6 13 20 27	21	
		A	PR	ΙL							MA	Z							JUN	E			
S	M	T	W	Т	F	S	;	3	М	Т	W	Т	F	s		S	M	T	W	Т	F	S	
5 12 1 19 2 26 2	13	14 21	15 22	16 23	10 17	18	1 1	7 4	11 18	12 19	20	14 21	15 22	16 23		14 21	15 22	16 23	17	18	5 12 19 26	20	
		J	ULY	ľ						ΑŪ	JGUS	ST					5	SEPI	[EM]	BER			
S	M	Т	W	Т	F	S	;	3	M	Т	W	Т	F	S		S	M	Т	W	T	F	S	
12 1	L 3 20	14 21	15 22	9 16 23	17 24	11 18 25	1 2	9	10 17	11 18	12 19	13 20	14 21	15 22		13 20	14 21	8 15 22	9 16 23	10 17	4 11 18 25	12 19	

30 31

Water Resources Data California Water Year 1987

Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

by J.C. Bowers, C.E. McConaughy, K.G. Polinoski and G.B. Smith

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CA-87-1 Prepared in cooperation with the California Department of Water Resources and with other agencies

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in California write to
District Chief, Water Resources Division
U.S. Geological Survey
Room W-2234, Federal Building
2800 Cottage Way
Sacramento, California 95825

PREFACE

This volume of the annual hydrologic data report of California is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for California are contained in five volumes:

- Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River
- Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley
- Volume 3. Southern Central Valley Basins and The Great Basin from Walker River to Truckee River
- Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line
- Volume 5. Ground-water data for California

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, the individuals contributing significantly to the collection, processing, and tabulation of the data are given on page V.

This report was prepared in cooperation with the California Department of Water Resources and with other agencies, under the general supervision of John M. Klein, District Chief, California.

50272 -101

REPORT DOCUMENTATION	L. REPORT NO.	2.	3. Recipient's Accession No.
PAGE	USGS/WRD/HD-89/206		
4. Title and Subtitle Water Re	sources Data for Californi	a, Water Year 1987	5. Report Date
Volume 1. Southern	Great Basin from Mexican E	Border to Mono Lake	October 1988
Basin, an Santa Mar	d Pacific Slope Basins fro	m Tijuana River to	6.
7. Author(s)			8. Performing Organization Rept. No.
J.C. Bowers, C.E. McC	onaughy, K.G. Polinoski, a	nd G.B. Smith	USGS-WDR-CA-87-1
9. Performing Organization Name 2			10. Project/Task/Work Unit No.
U.S. Geological Surve	y, Water Resources Divisio	on	
California District			11. Contract(C) or Grant(G) No.
2800 Cottage Way, Roo	m W-2234		(C)
Sacramento, CA 95825			
			(G)
12. Sponsoring Organization Name	and Address		13. Type of Report & Period Covered
U.S. Geological Surve	y, Water Resources Divisio	on	AnnualOct. 1, 1986 to
California District			Sept. 30, 1987
2800 Cottage Way, Roo	m W-2234		14.
Sacramento, CA 95825			

15. Supplementary Notes

Prepared in cooperation with the California Department of Water Resources and with other agencies.

16. Abstrect (Limit: 200 words)

Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 16 lakes and reservoirs; and water quality for 16 streams. Also included are 10 crest-stage partial-record stations, 3 miscellaneous measurement sites, and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

17. Document Analysis. a. Descriptors

*California, *Hydrologic data, *Surface water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediment, Water temperatures, Sampling sites, Water analyses

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement No restriction on distribution	19. Security Class (This Report)	21. No. of Pages
This report may be purchased from	Unclassified	314
National Technical Information Service	20. Security Class (This Page)	22. Price
Springfield, VA 22161	Unclassified	

WATER RESOURCES DIVISION

E. Jerre McClelland, Assistant District Chief for Hydrologic Data Kenneth W. Lee, Chief of Operations Ronald P. Fogelman, Hydrologist

Jeffrey Agajanian, Hydrologic Technician
Joy L. Anderson, Technical Publications Editor
Louis A. Caldwell, Hydrologic Technician
Frank A. Carson, Hydrologic Technician
Joanna M. Combs, Hydrologic Clerk
Michael J. De Grand, Hydrologic Technician
Daniel J. Downing, Hydrologic Technician
James F. Durkin, Hydrologic Technician
Ronald G. Fay, Hydrologic Technician
Thomas F. Field, Hydrologic Technician
Debra A. Grillo, Editorial Assistant
John J. Janssen, Hydrologic Technician
Randy J. Jensen, Hydrologic Technician
Floyd H. Lee, Hydrologic Technician
Bradley E. Mayo, Hydrologic Technician
Bradley E. Mayo, Hydrologic Technician
Pat McBride, Clerk Typist
Michael C. McFadden, Hydrologist
M. Kathy Shay, Computer Technician
David W. Sheets, Hydrologic Technician
John M. Smith, Hydrologic Technician
Teresa M. Templin, Publications Clerk
Linda Thurston, Clerk Typist
John T. Van Den Bergh, Hydrologic Technician
Scott B. Vincent, Hydrologic Technician
Michael L. Wulfeck, Hydrologic Technician
David K. Yancey, Hydrologic Technician

Stuart H. Hoffard, Hydrologist Richard A. Hunrichs, Hydrologist Rick T. Iwatsubo, Biologist James. M. Knott, Hydrologist Robert W. Meyer, Hydrologist Robert G. Simpson, Hydrologist

	ja:		,	

CONTENTS

		Page III
List of surface-water and water-quality stations, in		VIII
		1
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2
Summary of hydrologic conditions		2
		2
		5
		6 6
		6
		6
		6
		7
		8
		8 9
		10
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10
		11
		11
		11
		11
		11 12
		12
		12
		12
	,	13
		13
		14
	igations	14 21
	igations	23
		23
Gaging Station and water-quality records		37
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneou	ıs sites	37 261 263
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneou Analyses of samples collected at water-quality partia	ıs sitesal-record stations	37 261 263 265
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneou Analyses of samples collected at water-quality partia	ıs sites	37 261 263
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneou Analyses of samples collected at water-quality partia	ıs sitesal-record stations	37 261 263 265
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneou Analyses of samples collected at water-quality partia	ıs sitesal-record stations	37 261 263 265
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial and the samples collected at water-quality part	us sites. al-record stations.	37 261 263 265
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial and the samples collected at water-quality part	ıs sitesal-record stations	37 261 263 265
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial and the samples collected at water-quality part	us sites. al-record stations.	37 261 263 265
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial and the samples collected at water-quality part	us sites. al-record stations	37 261 263 265 301
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous and miscell	us sites. al-record stations.	37 261 263 265
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous analyses of samples collected at water-quality partial and stations	us sites. al-record stations	37 261 263 265 301
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous analyses of samples collected at water-quality partial and stations Index	LLUSTRATIONS ent of median, for the 1987 water year.	37 261 263 265 301
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous analyses of samples collected at water-quality partial findex	LUSTRATIONS ent of median, for the 1987 water year. ling water year 1987 with long-term discharge statistics ing stations	37 261 263 265 301 Page 3
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous analyses of samples collected at water-quality partial findex	LLUSTRATIONS ent of median, for the 1987 water year	37 261 263 265 301 Page 3
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous and miscellaneous and miscellaneous and miscellaneous and miscellaneous and miscellaneous and rainfall of four representative gag: 3. Graph showing comparison of monthly mean water year 1987 with long-term dissolved 4. System for numbering miscellaneous sites	LLUSTRATIONS ent of median, for the 1987 water year	37 261 263 265 301 Page 3
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous analyses of samples collected at water-quality partial index	LLUSTRATIONS ent of median, for the 1987 water year. ing water year 1987 with long-term discharge statistics ing stations	37 261 263 265 301 Page 3 4 5 7
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial Index Figure 1. Map of California showing runoff, in percord and rainfall of four representative gag: 3. Graph showing comparison of monthly mean water year 1987 with long-term dissolved 4. System for numbering miscellaneous sites of the state of the s	LUSTRATIONS ent of median, for the 1987 water year. ling water year 1987 with long-term discharge statistics ing stations. dissolved-solids concentration during discharge stations. (latitude and longitude)	37 261 263 265 301 Page 3 4 5 7
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous analyses of samples collected at water-quality partial index Figure 1. Map of California showing runoff, in percord and rainfall of four representative gags. 3. Graph showing comparison of discharge during and rainfall of four representative gags. 4. System for numbering miscellaneous sites and the state of the state o	LLUSTRATIONS ent of median, for the 1987 water year. Ing water year 1987 with long-term discharge statistics ing stations. Itissolved-solids concentration during i-solids concentration of two selected stations. (latitude and longitude). ter-quality stations:	37 261 263 265 301 Page 3 4 5 7
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial index	LUSTRATIONS ent of median, for the 1987 water year. ling water year 1987 with long-term discharge statistics ing stations. dissolved-solids concentration during discharge stations. (latitude and longitude)	37 261 263 265 301 Page 3 4 5 7
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial findex	LUSTRATIONS ent of median, for the 1987 water year	37 261 263 301 Page 3 4 5 7 24 25 26 27 28
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial Index Figure 1. Map of California showing runoff, in percomposed to the partial comparison of discharge durand rainfall of four representative gags. 3. Graph showing comparison of monthly mean of water year 1987 with long-term dissolved. 4. System for numbering miscellaneous sites of the partial county	LUSTRATIONS ent of median, for the 1987 water year. ing water year 1987 with long-term discharge statistics ing stations. itssolved-solids concentration during i-solids concentration of two selected stations. (latitude and longitude). ter-quality stations:	37 261 263 265 301 Page 3 4 5 7 24 25 26 27 28 29
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial index Figure 1. Map of California showing runoff, in percord and rainfall of four representative gag: 3. Graph showing comparison of discharge during and rainfall of four representative gag: 4. System for numbering miscellaneous sites and the state of t	LLUSTRATIONS ent of median, for the 1987 water year	37 261 263 265 301 Page 3 4 5 7 7 24 25 26 27 28 30 30
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial index Figure 1. Map of California showing runoff, in perce 2. Graph showing comparison of discharge durand rainfall of four representative gag: 3. Graph showing comparison of monthly mean water year 1987 with long-term dissolved 4. System for numbering miscellaneous sites 5-16. Maps showing location of discharge and water year 1987 with long-term dissolved 5. Imperial County	LUSTRATIONS ent of median, for the 1987 water year. ing water year 1987 with long-term discharge statistics ing stations. dissolved-solids concentration during insolids concentration of two selected stations. (latitude and longitude). ter-quality stations:	37 261 263 301 Page 3 4 57 7 24 25 26 27 28 29 31
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous analyses of samples collected at water-quality partial index Figure 1. Map of California showing runoff, in percord and rainfall of four representative gag: 3. Graph showing comparison of discharge durand rainfall of four representative gag: 3. Graph showing comparison of monthly mean of water year 1987 with long-term dissolved 4. System for numbering miscellaneous sites 5-16. Maps showing location of discharge and water year 1987 with long-term dissolved 5. Imperial County 6. Inyo County 7. Kern County 8. Los Angeles County 9. Mono County 10. Orange County 11. Riverside County 12. San Bernardino County 13. San Diego County	LUSTRATIONS ent of median, for the 1987 water year. ing water year 1987 with long-term discharge statistics ing stations. dissolved-solids concentration during discharge statistics (latitude and longitude). ter-quality stations:	37 261 263 301 Page 3 4 5 7 24 25 26 26 27 28 29 30 30 30 30 30 30 30 30 40 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial Index Figure 1. Map of California showing runoff, in percomposed and rainfall of four representative gag. 3. Graph showing comparison of monthly mean of water year 1987 with long-term dissolved. 4. System for numbering miscellaneous sites of the showing location of discharge and water year 1987 with long-term dissolved. 5-16. Maps showing location of discharge and water year 1987 with long-term dissolved. 5. Imperial County	LUSTRATIONS ent of median, for the 1987 water year. ling water year 1987 with long-term discharge statistics ing stations. dissolved-solids concentration during i-solids concentration of two selected stations. (latitude and longitude). ter-quality stations:	37 261 263 301 Page 3 4 5 7 7 24 25 26 27 28 29 301
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial Index Figure 1. Map of California showing runoff, in percord stations and rainfall of four representative gag: 3. Graph showing comparison of discharge during and rainfall of four representative gag: 4. System for numbering miscellaneous sites and water year 1987 with long-term dissolved. 4. System for numbering miscellaneous sites and water year 1987 with long-term dissolved. 5. Imperial County	LUSTRATIONS ent of median, for the 1987 water year. ing water year 1987 with long-term discharge statistics ing stations. dissolved-solids concentration during discharge statistics (latitude and longitude). ter-quality stations:	37 261 263 301 Page 3 4 5 7 24 25 26 27 28 29 30 31 31 32 33
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial Index Figure 1. Map of California showing runoff, in percomposition of discharge durant and rainfall of four representative gag: 3. Graph showing comparison of monthly mean of water year 1987 with long-term dissolved 4. System for numbering miscellaneous sites 5-16. Maps showing location of discharge and water year 1987 with long-term dissolved 5. Imperial County	LUSTRATIONS ant of median, for the 1987 water year. ing water year 1987 with long-term discharge statistics ing stations. dissolved-solids concentration during discharge statistics (latitude and longitude). ter-quality stations:	37 261 263 301 Page 3 4 5 7 24 25 26 26 27 28 29 30 31 32 33 33 34 35 35 36 30 30 30 30 30 30 30 30 30 30 30 30 30
Discharge at crest-stage partial-record stations Discharge at partial-record stations and miscellaneous Analyses of samples collected at water-quality partial Index Figure 1. Map of California showing runoff, in percomposed to the control of the control	LLUSTRATIONS ent of median, for the 1987 water year	37 261 263 301 Page 3 4 5 7 24 25 26 27 28 30 31 32 33 33 34

SURFACE-WATER AND WATER-QUALITY STATIONS IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

[Letters after station name designate type of data: (d), discharge; (1), lake contents; (c), chemical; (b), biological; (t), water temperature; and (s), sediment]

	Page
THE GREAT BASIN	
PANAMINT VALLEY Darwin Creek near Darwin (d)	37
DEATH VALLEY	
Salt Creek near Stovepipe Wells (d) BRISTOL LAKE BASIN	38
Caruthers Creek near Ivanpah (d)	39
Salton Sea near Westmorland (1)	40
Inflow to Salton Sea (d)	41
Salt Creek near Mecca (d)	42 43
Alamo River near Niland (d)	43
New River at International Boundary, at Calexico (d)	47
New River near Westmorland (d)	48
Coyote Creek below Box Canyon, near Borrego Springs (d)	49
Borrego Palm Creek near Borrego Springs (d)	50
San Felipe Creek near Westmorland (d)	51
Whitewater River at White Water cutoff, at White Water (dc)	52
Snow Creek near White Water (dc)	54
Whitewater River at Windy Point, near White Water (d)	56
Mission Creek near Desert Hot Springs (d)	57 58
Chino Canyon Creek below Tramway, near Palm Springs (dc)	56
Moringo Wash:	
Tahquitz Creek near Palm Springs (d)	60
Palm Canyon Creek near Palm Springs (d).	61
Andreas Creek near Palm Springs (d)	62
Deep Creek near Palm Desert (d)	63
Whitewater River at Indio (d)	64
Whitewater River near Mecca (d)	65
Deep Creek (head of Mojave River) near Hesperia (d)	66
Houston Creek above Lake Gregory, at Crestline (d)	67
Abondigas Creek above Lake Gregory, at Crestline (d)	68
Lake Gregory at Crestline (1)	69
Houston Creek below Lake Gregory, at Crestline (d)	70
West Fork Mojave River near Hesperia (d)	71
Mojave River below Forks Reservoir, near Hesperia (d)	72
Mojave River at lower narrows, near Victorville (d)	73 74
Mojave River at Barstow (d).	75
Mojave River at Afton (d)	76
ANTELOPE VALLEY	
Big Rock Creek near Valyermo (d)	77
OWENS LAKE BASIN	
Bishop Creek below powerplant No. 6, near Bishop (d)	78
Mono Lake near Mono Lake (1)	79
Mill Creek below Lundy Lake, near Mono Lake (d).	80
Rush Creek below Agnew Lake, near June Lake (d)	81
PACIFIC SLOPE BASINS IN CALIFORNIA	
TIJUANA RIVER BASIN	
Barrett Lake near Dulzura (1)	82
Cottonwood Creek (head of Tijuana River) above Tecate Creek, near Dulzura (d)	83
Tecate Creek: Campo Creek near Campo (d)	84
Tijuana River near Dulzura (d)	85
Rodriguez Reservoir at Rodriguez Dam, Baja California, Mexico (1).	86
OTAY RIVER BASIN	00
Jamul Creek at Lee Valley, near Jamul (d)	87
Jamul Creek near Jamul (d)	88
Lower Otay Lake near Chula Vista (1)	89
SWEETWATER RIVER BASIN	
Sweetwater River near Descanso (d)	90
SAN DIEGO RIVER BASIN	
El Capitan Lake near Lakeside (1)	91
San Vicente Reservoir near Lakeside (1)	92
Los Coches Creek near Lakeside (d)	93 94
San Diego River at Mast Road, near Santee (d)	95
San Diego River at Fashion Valley, at San Diego (d)	96

SURFACE-WATER AND WATER-QUALITY STATIONS IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

	Page
PACIFIC SLOPE BASINS IN CALIFORNIA Continued LOS PENASQUITOS CREEK BASIN	
Poway Creek (head of Los Penasquitos Creek) near Poway (d)	97
Rattlesnake Creek at Poway (d)	98
Beeler Creek at Pomerado Road, near Poway (d)	99
Los Penasquitos Creek below Poway Creek, near Poway (d)	
Los Penasquitos Creek near Poway (d)	101
SAN DIEGUITO RIVER BASIN Santa Ysabel Creek (head of San Dieguito River) near Ramona (d)	102
Santa Maria Creek near Ramona (d)	
Lake Hodges near Escondido (1)	
San Dieguito Creek near Del Mar (ds)	
ESCONDIDO CREEK BASIN	
Lake Wohlford near Escondido (1)	107
SAN LUIS REY RIVER BASIN San Luis Rey River:	
Agua Caliente Creek near Warner Springs (d)	108
San Luis Rey River at Couser Canyon Bridge, near Pala (d)	109
San Luis Rey River at Oceanside (dcts)	110
SANTA MARGARITA RIVER BASIN	
Temecula Creek (head of Santa Margarita River) near Aguanga (d)	
Santa Margarita River near Temecula (d)	
Santa Margarita River at Ysidora (d).	
san juan čreek basin	
San Juan Creek at La Novia Street Bridge, at San Juan Capistrano (dts)	118
Arroyo Trabuco at San Juan Capistrano (ds)	124
ALISO CREEK BASIN Aliso Creek at South Laguna (d)	126
SAN DIEGO CREEK BASIN	120
San Diego Creek at Campus Drive, near Irvine (ts)	127
SANTA ANA RIVER BASIN	
Santa Ana River:	
Bear Creek: Big Bear Lake near Big Bear Lake (1)	140
Santa Ana River near Mentone (dts)	140
Plunge Creek near East Highlands (d)	
Warm Creek:	
City Creek near Highland (d)	148
San Timoteo Creek: San Timoteo Creek near Loma Linda (d)	140
Warm Creek:	149
East Twin Creek near Arrowhead Springs (d)	150
Santa Ana River at E Street, near San Bernardino (d)	151
Warm Creek near San Bernardino (d)	152
Lytle Creek near Fontana (d)	153
Cajon Creek: Lone Pine Creek near Keenbrook (d)	155
Cajon Creek below Lone Pine Creek, near Keenbrook (d)	156
Devil Canyon Creek near San Bernardino (d)	157
Lytle Creek at Colton (d)	158
Santa Ana River at MWD Crossing, near Arlington (dc)	159
San Jacinto River: San Jacinto River near San Jacinto (d)	161
Bautista Creek at Valle Vista (d)	163
San Jacinto River near Elsinore (d)	164
Temescal Creek above Main Street, at Corona (d)	165
Chino Creek:	
Chino Creek at Schaefer Avenue, near Chino (d)	166
Cucamonga Creek near Mira Loma (d)	167 168
Carbon Creek below Carbon Canyon Dam (d).	176
Santa Ana River at Ball Road, at Anaheim (d)	177
Santiago Creek at Modjeska (d)	178
Santiago Creek at Santa Ana (d)	179
Santa Ana River at Santa Ana (dts)SAN GABRIEL RIVER BASIN	180
San Gabriel River below Santa Fe Dam, near Baldwin Park (d)	190
San Gabriel River above Whittier Narrows Dam (d)	191
Brea Creek below Brea Dam, near Fullerton (d)	192
Fullerton Creek below Fullerton Dam, near Brea (d)	193
LOS ANGELES RIVER BASIN	101
Big Tujunga Creek below Hansen Dam (d)	194 195
Rio Hondo above Whittier Narrows Dam (d)	196
Rio Hondo below Whittier Narrows Dam (d)	197
Los Angeles River at Long Beach (cs)	199

SURFACE-WATER AND WATER-QUALITY STATIONS IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

	Page
PACIFIC SLOPE BASINS IN CALIFORNIAContinued	
SANTA CLARA RIVER BASIN	
Santa Clara River at Los Angeles-Ventura County line (dcs)	202
Lockwood Creek: Piru Creek above Lake Piru (d)	205
• • • • • • • • • • • • • • • • • • • •	205
Lake Piru near Piru (1)Piru Creek below Santa Felicia Dam (d)	207
Sespe Creek near Wheeler Springs (d)	208
Santa Paula Creek near Santa Paula (d)	209
Sationy Diversion near Sationy (dot)	210
Santa Clara River at Montalvo (d)	215
VENTURA RIVER BASIN	
Matilija Reservoir at Matilija Hot Springs (1)	216
Matilija Creek at Matilija Hot Springs (d)	217
Ventura River near Meiners Oaks (d)	218
Coyote Creek near Oak View (d)	219
Santa Ana Creek near Oak View (d)	220
Lake Casitas near Casitas Springs (1)	221
Ventura River near Ventura (ds)	222
CARPINTERIA CREEK BASIN	005
Carpinteria Creek near Carpinteria (dc)	225
ARROYO BURRO CREEK BASIN Arroyo Burro Creek at Santa Barbara (d)	227
	22/
ATASCADERO CREEK BASIN Maria Ygnacio Creek at University Drive, near Goleta (d)	228
Atascadero Creek near Goleta (d)	229
SAN JOSE CREEK BASIN	223
San Jose Creek (tributary to Pacific Ocean) near Goleta (dc)	230
San Jose Creek at Goleta (d)	232
SANTA YNEZ RIVER BASIN	
Santa Ynez River at Jameson Lake, near Montecito (d),	233
Santa Ynez River above Gibraltar Dam, near Santa Barbara (d)	234
Santa Ynsz River below Gibraltar Dam, near Santa Barbara (d)	235
Santa Ynez River below Los Laureles Canyon, near Santa Ynez (d)	236
Santa Cruz Creek near Santa Ynez (d)	237
Lake Cachuma near Santa Ynez (1)	238
Alisal Reservoir near Solvang (1)	239
Santa Ynez River at Solvang (d)	240
Salsipuedes Creek near Lompoc (dc)	241
Santa Ynez River at narrows, near Lompoc (dc)	243
SAN ANTONIO CREEK BASIN San Antonio Creek at Los Alamos (d)	245
San Antonio Creek at Los Alamos (d)	245
San Antonio Creek near Casmalia (dc)	248
SANTA MARIA RIVER BASIN	240
Cuyama River (head of Santa Maria River):	
Cuyama River below Buckhorn Canyon, near Santa Maria (dc)	251
Sisquoc River near Sisquoc (dc)	253
Tepusquet Creek near Sisquoc (d)	255
Sisquoc River near Garey (d).	256
Bradley ditch near Donovan Road, at Santa Maria (d)	257
Santa Maria River at Guadalupe (d)	258
Orcutt Creek near Orcutt (dc)	259

WATER RESOURCES DATA -- CALIFORNIA, WATER YEAR 1987

VOLUME 1--SOUTHERN GREAT BASIN FROM MEXICAN BORDER TO MONO LAKE BASIN,
AND PACIFIC SLOPE BASINS FROM TIJUANA RIVER TO SANTA MARIA RIVER

By J.C. Bowers, C.E. McConaughy, K.G. Polinoski, and G.B. Smith

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of California each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled "Water Resources Data - California."

This volume of the report includes records on surface water in the State. Specifically, it contains (1) Discharge records for 134 streamflow-gaging stations and 10 crest-stage partial-record streamflow stations; (2) stage and contents records for 16 lakes and reservoirs; and (3) water-quality records for 16 streamflow-gaging stations and 10 water-quality partial-record stations. Records included for stream stages are only a small fraction of those obtained during the water year.

The series of annual reports for California began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format changed to one volume, including data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1985 water year, a separate volume for ground-water levels and quality was published for California.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for California were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 10 and 11." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." These Water-Supply Papers may be consulted in public libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Building 810, Box 25425, Denver, CO 80225.

Publications similar to this report are published annually by the U.S. Geological Survey for all States. Each report has an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report CA-87-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (916) 978-4668.

COOPERATION

The U.S. Geological Survey and organizations of the State of California have had cooperative agreements for the systematic collection of records since 1903. Organizations that supplied data are acknowledged in station descriptions. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Antelope Valley-East Kern Water Agency, Wallace G. Spinarski, General Manager. California Department of Boating and Water Ways, Marty Mercado, Director.
California Department of Water Resources, David N. Kennedy, Director.
Carpinteria County Water District, Robert R. Lieberknecht, General Manager/Secretary.
Casitas Municipal Water District, Robert N. McKinney, General Manager and Chief Engineer. Coachella Valley Water District, Lowell O. Weeks, General Manager-Chief Engineer. Crestline-Lake Arrowhead Water Agency, Roxanne M. Holmes, Assistant General Manager. Desert Water Agency, Paul G. Payne, General Manager.
East Valley Water District, Larry W. Rowe, General Manager. Goleta Water District, Lloyd C. Fowler, General Manager and Chief Engineer. Imperial County Department of Public Works, David E. Pierson, Director. Imperial Irrigation District, Donald A. Twogood, General Manager. Indian Wells Valley Water District, James H. Stramler, General Manager. Inyo County Department of Water, Gregory L. James, Director. Los Angeles Department of Water and Power, Leval Lund, Engineer, Aqueduct Division. Mojave Water Agency, Jon D. Edson, General Manager. Montecito Water District, Charles C. Evans, General Manager and Chief Engineer. Newport Beach, City of, John Wolter, Senior Civil Engineer. Orange County Environmental Management Agency, Murray I. Storm, Director.
Orange County Water District, Neil M. Cline, Secretary-Manager. Rancho California Water District, Stan Mills, General Manager.
Riverside County Flood Control and Water Conservation District, Kenneth L. Edwards, Chief Engineer. San Bernardino Valley Municipal Water District, G. Louis Fletcher, General Manager. San Diego, City of, R.W. King, Water Utilities Director. San Diego County Department of Sanitation and Flood Control, R.J. Massman, Director. Santa Barbara, City of, Robert W. Puddicombe, Director. Santa Barbara County Flood Control and Water Conservation District, James M. Stubchaer, Flood Control Engineer. Santa Barbara County Water Agency, James M. Stubchaer, Engineer-Manager. Santa Maria Valley Water Conservation District, Maurice F. Twitchell, Secretary. United Water Conservation District, G.I. Wilde, General Manager and Chief Engineer. Ventura County Flood Control District, Arthur Goulet, Director. Western Municipal Water District, Howard A. Hicks, General Manager.

Assistance in the form of funds or services was given by the Vandenberg Air Force Base, U.S. Air Force; Corps of Engineers, U.S. Army; Bureau of Indian Affairs, Bureau of Land Management, Bureau of Reclamation, and National Park Service, U.S. Department of the Interior; Marine Corps, U.S. Navy; and Naval Weapons Center, U.S. Navy.

The following organizations aided in collecting records: California Department of Water Resources, Southern California Edison Co., and United Water Conservation District.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

As is common in California, streamflow varied greatly in the 1987 water year-month by month and regionally. The variations are related to differences in precipitation, temperature, topography, and geology. Runoff during the 1987 water year in the area covered by this volume was 58 percent of the 1951-80 median (based on seven representative streamflow records). Total runoff in percent of median, at selected sites in California is shown in figure 1. Runoff ranged from 317 percent of median at Borrego Palm Creek near Borrego Springs to 18 percent at Santa Cruz Creek near Santa Ynez. In figure 2, monthly mean runoff in the 1987 water year at four index stations is compared to the 1951-80 maximum, minimum, and median monthly mean runoff. Few streams exceeded the peak discharge bases, none had peaks of record.

There were no significant storms during this water year. Precipitation was generally less than normal throughout the area covered by this volume. Precipitation (based on nine representative precipitation gages) was 71 percent of the long-term average and ranged from 137 percent of the long-term mean at Daggett, to 38 percent at Los Angeles airport.

FIGURE 1. - Runoff, in percent of median, for the 1987 water year.

...

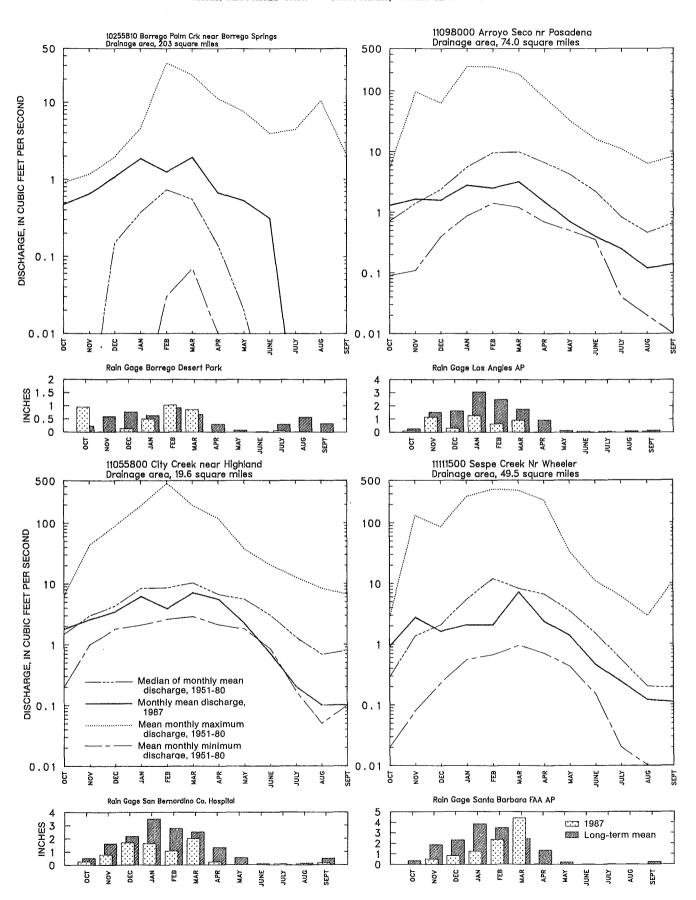


FIGURE 2. - Comparison of discharge during water year 1987 with long-term discharge statistics and rainfall of four representative gaging stations.

Water Quality

Water samples collected at five NASQAN stations reported in this volume were analyzed for water-quality constituents during the 1987 water year. Specific conductance varied from 840 microsiemens at Los Angeles River at Long Beach to 4,380 microsiemens at Alamo River at Drop 3, near Calipatria. Specific-conductance values were slightly lower than those reported in the previous year. Median dissolved-solids concentrations for samples collected from these stations also were slightly lower than the 1986 water year values. The monthly mean dissolved-solids concentrations during water year 1987 are compared in figure 3 with long-term mean dissolved-solids concentrations at two selected stations.

Two NASQAN stations indicated increasing fecal-coliform and fecal-streptococci bacterial densities from the 1986 water year. The largest densities of fecal-coliform bacteria (24,000 colonies per 100 milliliters) and fecal-streptococci bacteria (51,000 colonies per 100 milliliters) were found in water samples from Alamo River at Drop 3, near Calipatria.

Chemical-constituent concentrations in excess of U.S. Environmental Protection Agency criteria were detected in water samples collected from three NASQAN stations for manganese and sulfate and at two NASQAN stations for chloride and mercury.

Water samples also were collected from other locations covered in this volume. Samples from those stations that had concentrations of constituents that exceeded U.S. Environmental Protection Agency criteria are listed below:

STATION

Malibu Creek at Cornell
Malibu Creek at Crater Camp,
near Calabasas
Orcutt Creek near Orcutt
San Antonio Creek near Casmalia
Topanga Creek near Topanga Beach

CONSTITUENT EXCEEDING EPA CRITERIA

Sulfate

Sulfate Boron, manganese Boron, manganese Sulfate

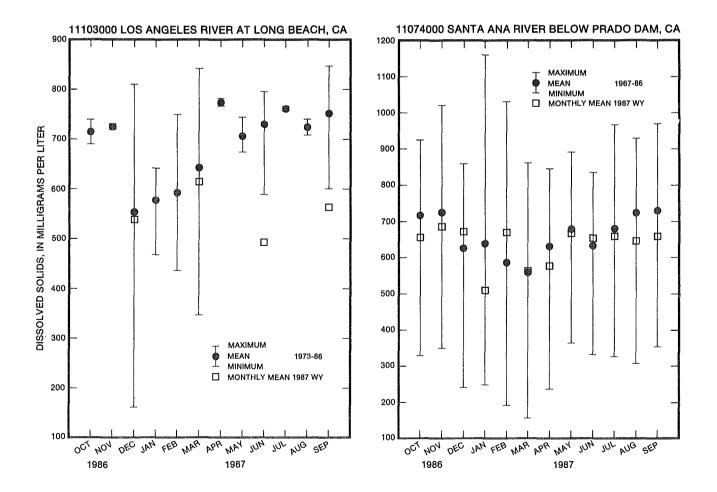


FIGURE 3. - Comparison of monthly mean dissolved-solids concentration during water year 1987 with long-term dissolved-solids concentration of two selected stations

Sediment

Suspended-sediment discharge and concentration were monitored daily at three stations and total sediment discharge and concentration were monitored daily at two stations in the area included in this volume. Periodic sediment data were collected at nine other stations during the water year. The variation in storm patterns and basin characteristics in southern California resulted in significant differences in sediment discharge rates and concentrations at the sampled streams.

Sediment discharge was significantly less than normal during the 1987 water year, with the majority of sediment transported during storms in the months of November and January. Annual sediment discharge ranged from 0.2 percent of the 1971-86 mean for San Juan Creek at San Juan Capistrano to 11 percent for Santa Ana River at Santa Ana.

Annual sediment discharge at the three daily stations ranged from 247 tons for Santa Ana River near Mentone to 46,300 tons for Santa Ana River at Santa Ana. Annual sediment discharge per square mile of drainage area ranged from a minimum of 1.2 tons per square mile for Santa Ana River near Mentone to a maximum of 27 tons per square mile for Santa Ana River at Santa Ana.

Monthly and annual bedload discharge are published for two of the daily stations. The percentage of annual bedload discharge to total sediment discharge (suspended plus bedload) ranged from 2.6 percent for San Juan Creek at San Juan Capistrano to 12 percent for Santa Ana River at Santa Ana.

SPECIAL NETWORKS AND PROGRAMS

<u>Hydrologic Bench-Mark Network</u> is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide. The data provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>Mational Stream Quality Accounting Network</u> (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting that the data may be used for; (2) to describe the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs; (3) to detect changes or trends with time in the pattern of occurrence of water-quality characteristics; and (4) to provide a nationally consistent data base useful for water-quality assessment and hydrologic research.

EXPLANATION OF THE RECORDS

The surface-water records published in this report are for the 1987 water year that began October 1, 1986, and ended September 30, 1987. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and contents data for lakes and reservoirs, and water-quality data for surface water. The locations of the stations where the data were collected are shown in figures 5 through 16. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each streamsite data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for surface-water stations in California where only miscellaneous measurements are made.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports has been in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indentation in the "List of Stations" in the front of this report. Each indentation represents one rank. This downstream order and system of indentation show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station such as 11078000, which appears just to the left of the station name, includes the two-digit part number "11" plus the six-digit downstream-order number "078000." The part number designates the major river basin; for example, part "11" is the Pacific Slope Basins in California.

Latitude-Longitude System

The identification numbers for miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude; the next seven digits denote degrees, minutes, and seconds of longitude; and the last two digits (assigned sequentially) identify the other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description (fig. 4).

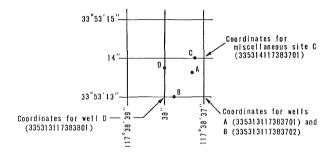


FIGURE 4. -- System for numbering miscellaneous sites (latitude and longitude).

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake and reservoir contents, similarly, are those for which stage or contents may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all completerecord and crest-stage partial-record stations for which data are given in this report are shown, by county, in figures 5 through 16.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake contents. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the U.S. Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in U.S. Geological Survey Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations (TWRI), Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge are prepared for any stage within the range of the measurements. If it is necessary to define extremes of discharge outside the range of current-meter measurements, the curves are extended using (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dam or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes or observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available surveys, curves, or tables defining the relationship of stage and contents. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. When this is done, the contents computed may become increasingly in error as time increases since the last survey. Discharges over lake or reservoir spillways are computed from stage-discharge relationships, in the same manner as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation.

The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA. --Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD. -- This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS. -- Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see Definition of Terms), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station, and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified.

AVERAGE DISCHARGE.—The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD. --Extremes may include maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Included is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--Extremes given are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS. -- If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possible, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office to determine if the published records were revised after the station was discontinued. If the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton storage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MMAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing the table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundradth of a cubic foot per second (ft³/s) for values less than 1 ft /s, to the nearest tenth between 1.0 and 10 ft /s, to whole numbers between 10 and 1,000 ft³/s, and to three significant figures for more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of sites as well as an index of records of discharge collected by other agencies but not published by the U.S. Geological Survey. Information on records at specific sites can be obtained from that office upon request.

Information used in the preparation of the records in this publication, such as discharge measurement notes, gage-height records, temperature measurements, and rating tables are on file in the California District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figures 5 through 16.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurements and Sample Collection

In obtaining water-quality data, a major concern is the assurance that the data obtained represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, are made onsite when samples are taken. To assure that measurements made in the laboratory also represent the insitu water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in "Techniques of Water-Resources Investigations," Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4. All these references are listed on p. 21 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the California District office.

One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative value available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values for each constituent measured and are based on hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the District office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Cross-Sectional Data

Cross-sectional surveys of water temperature, pH, specific conductance, dissolved oxygen, and suspended sediment are done at all NASQAN and Hydrologic Bench-mark stations during various seasons and surface-water discharges. Documentation of cross-section variation of water quality is essential in order to determine how many samples in a cross section are necessary to ensure a representative composite sample.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S Geological Survey's National Water-Quality Laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in Techniques of Water-Resources Investigations, Book 5, Chapter C1; methods used by the laboratories are given in Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and other data obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION .-- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD. --This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the individual parameters.

INSTRUMENTATION. -- Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION. -- Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to ensure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
К	Results based on colony count outside the acceptable range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant
*	Instantaneous streamflow at the time of
1	cross-sectional measurements Laboratory value

ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's District offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, VA 22092

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report are defined below. See the table for converting inch-pound units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

 $\underline{\text{Algae}}$ are mostly aquatic single-celled, colonial, or multicelled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by a well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease; others perform an essential role in nature in the recycling of materials, for example, decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35 $^{\circ}$ C. For the membrane filter method these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 $^{\circ}$ C \pm 0.5 $^{\circ}$ C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milligrams per liter of sample.

Fecal-coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. For the membrane filter method they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5 $^{\circ}$ C $^{+}$ 0.2 $^{\circ}$ C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milligrams per liter of sample.

<u>Fecal-streptococcal bacteria</u> are bacteria found in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. For the membrane filter method they are defined as all the organisms which produce red or pink colonies within 48 hours at 35 $^{\circ}$ C $_{\odot}$ 0 on KF streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milligrams per liter of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Benthic organisms (invertebrates) are the group of animals living in or on the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m^3) and periphyton and benthic organisms in grams per square meter (g/m^2) .

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105 °C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cell volume determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell numbers of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μ m³) is determined by obtaining critical cell measurements on cell dimensions (that is, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (that is, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$.

From cell volume, total algal biomass expressed as biovolume (πm^3) mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species.

Cells per volume (cells/volume) refers to the number of cells of any organism that are counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually in milliliters (mL) or liters (L).

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Color unit</u> is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

<u>Cubic foot per second</u> (ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Cubic foot per second-day</u> (cfs.d) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,445 cubic meters.

Discharge is the volume of water (or more broadly, total fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate. It is recognized that certain kinds of samples cannot be filtered; to provide for this, procedures that are considered equivalent to filtering through a 0.45-micrometer membrane filter will be identified and announced at a later date.

<u>Dissolved-solids concentration</u> of water is determined either analytically or by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = \sum_{i=1}^{s} \frac{n_i}{n} \log^2 \frac{n_i}{n},$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the samples are the same; to some positive number, when some or all the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the Earth that is occupied by a drainage system, which consists of a surface stream or body of impounded surface water, together with all tributary surface streams and bodies of impounded surface water.

Gage datum is the elevation of the zero point of the reference gage from which gage height is determined as compared to the National Geodetic Vertical Datum of 1929. This elevation is established by a system of levels from known bench marks or by approximation from topographic maps.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap that is required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

<u>Light-attenuation coefficient</u>, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation

$$I = I_o e^{-\lambda L}$$
,

where I is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o}.$$

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This development process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-pupa-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called Sea Level Datum of 1929 or mean sea level in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 408 sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting that the data may be used for, (2) to describe the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) to detect changes in trends with time in the pattern occurrence of water-quality characteristics, and (4) to provide a nationally consistent data base useful for water-quality assessment and hydrologic research.

Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per unit area of the habitat, usually square meter (m2), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter</u> code is a five-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record</u> station is a site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024-0.004	Sedimentation
Silt	0.004-0.062	Sedimentation
Sand	0.062-2.0	Sedimentation or sieve
Gravel	2.0-64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

<u>Percent composition or percent of total</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, or volume.

<u>Periphyton</u> is the assemblage of micro-organisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, the periphyton also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> are suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> compose the plant part of the plankton. They are usually microscopic, and their movement is subject to water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials into the surrounding water, the phytoplankton have a profound effect on the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae.

Blue-green algae are phytoplankton organisms having a blue pigment in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms, chiefly green plants. The rate of primary production is estimated by measuring the amount of carbon assimilated by plants (carbon method) or the amount of oxygen released (oxygen method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2.time)$] for periphyton and macrophytes and [mg $C/(m^2.time)$] for phytoplankton are the units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity that the oxygen light—and dark-bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $O_2/(m^2.time)$] for periphyton and macrophytes and [mg $O_2/(m^3.time)$] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light- and dark-bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical Program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment; thus, the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bedload is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bedload is considered to consist of particles in transit within 0.25 ft (0.075 m) of the streambed.

Bedload discharge (tons per day) is the quantity of sediment, as measured by dry weight, that moves past a section as bedload in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour period.

Suspended-sediment discharge (tons per day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day by multiplying discharge times milligrams per liter times 0.0027.

<u>Suspended-sediment load</u> (tons per day) is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Total-sediment discharge or total-sediment load (tons per day) is the sum of suspended-sediment discharge and the bedload discharge. It is the total quantity of sediment, as measured by dry mass, that passes a section in a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions with soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content in water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and the volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff." Streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic-organism collection and plexiglass strips for periphyton collection.

Surface area of a lake is the area, in square miles or acres, outlined on the latest U.S. Geological Survey topographic map as the boundary of the lake and measured by a planimeter. In localities not covered by topographic maps, the areas are computed from the best maps available. Areas shown are for the lake stage at the time the map was made.

<u>Surficial bed material</u> is the part (upper 0.1 to 0.2 ft or 0.03 to 0.06 m) of the bed material that is sampled by using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment; thus, the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

 Kingdom
 Animal

 Phylum
 Arthropoda

 Class
 Insecta

 Order
 Ephemeroptera

 Family
 Ephemeridae

 Genus
 Hexagenia

 Species
 Hexagenia

Thermograph is a thermometer that continuously and automatically records, on a chart, the water temperature of a stream. "Temperature recorder" is the term used to indicate the presence of a thermograph or a digital mechanism that records water temperature in a digital format on punched paper tape.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0,00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total load (tons) is the total amount of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the milligrams per liter of the constituent, times the factor 0.0027, times the number of days.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment; thus, the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses, because different digestion procedures are likely to produce different analytical results.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in the dissolved and suspended phases of the sample. A knowledge of the expected form is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all the constituent in the sample.)

Turbidity of a sample is the reduction of transparency due to the presence of particulate matter. In this report it is expressed in Nephelometric turbidity units (NTU), obtained from the Nephelometric method for turbidity determination which measures the intensity of light scattered by suspended particles at 90° from the path of incident light source.

Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1987, is called the "1987 water year."

 $\underline{\mathtt{WDR}}$ is used as an abbreviation for "Water-Data Reports" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Building 810, Denver, CO 80225. Prepayment is required. Remittance should be sent by check or money order payable to U.S. Geological Survey, Department of the Interior. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys, and L.M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by slope-area method, by Tate Dalrymple and M.A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E.F. Hubbard, F.A. Kilpatrick, L.A. Martens, and J.F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. Discharge ratings at gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. Measurement of discharge by moving-boat method, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.

- 3-C3. Computation of fluvial sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS--TWRI Book 4, Chapter A1, 1968, 39 pages.
- 4-A2. Frequency curves, by H.C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1, Low-flow investigations by H.C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS--TWRI Book 4, Chapter D1, 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, edited by M.W. Skougstad and others: USGS--TWRI Book 5, Chapter A1. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D.F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P.E. Greeson, T.A. Ehlke, G.A. Irwin, B.W. Lium, and K.V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 322 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: UGSG--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman, and D.E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R.W. Shaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages.

DISCONTINUED GAGING STATIONS

The following continuous-record streamflow stations reported in this volume have been discontinued as of the 1987 water year. Daily streamflow or stage records were collected and published for the period of record shown for each station.

Station No.	Station name	Drainage area (mi ²)	Period of record
11023250	Poway Creek near Poway	7.92	1970-77,
11031500	Agua Caliente Creek near Warner Springs	19.0	1978-87 1961-87
11047700	Aliso Creek at South Laguna	34.4	1983-87
11113900	Saticoy diversion near Saticoy		1969-87
11136050	San Antonio Creek above Barka Slough, near Orcutt	114	1985-87
11139500	Tepusquet Creek near Sisquoc	28.7	1944-87
11141000	Santa Maria River at Guadalupe	1,741	1941-87

DISCONTINUED WATER-QUALITY STATIONS

The following water-quality stations reported in this volume have been discontinued as of the 1987 water year. Continuous daily records of water temperature and sediment were collected and published for the period of record shown.

Station No.	Station name	Drainage area (mi²)	Type of record	Period of record
11048555	San Diego Creek at Campus Drive, near Irvine	105	T,S	1983-85
11113900	Saticoy diversion near Saticoy		C,T	1982-87
11136050	San Antonio Creek above Barka Slough, near Orcutt	114	Ć	1985-87

Type of record: T (water temperature); S (sediment); and C (water quality).

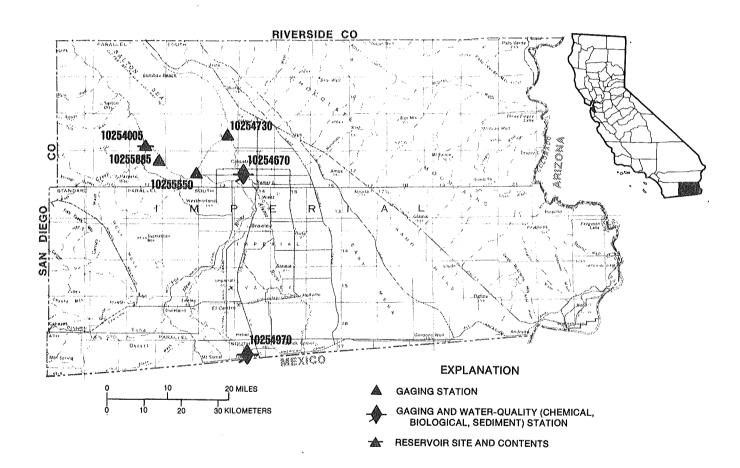


FIGURE 5. - Location of discharge and water-quality stations in Imperial County.

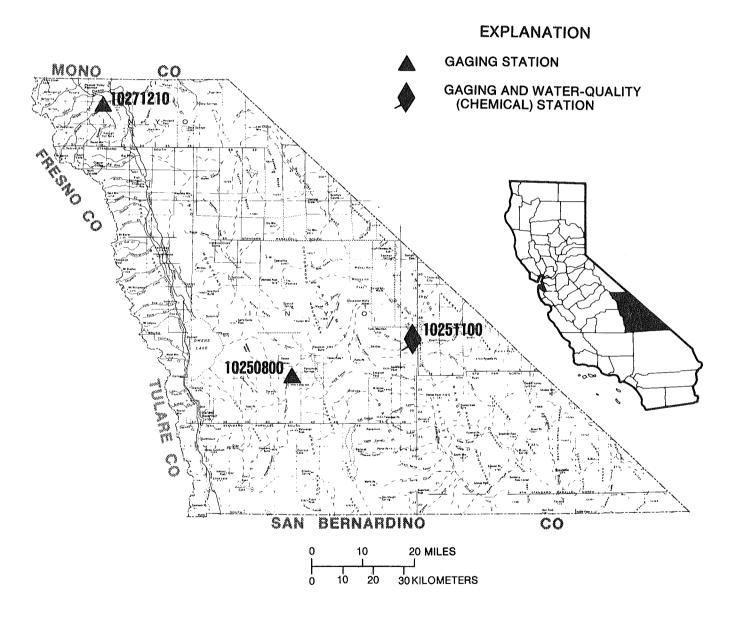
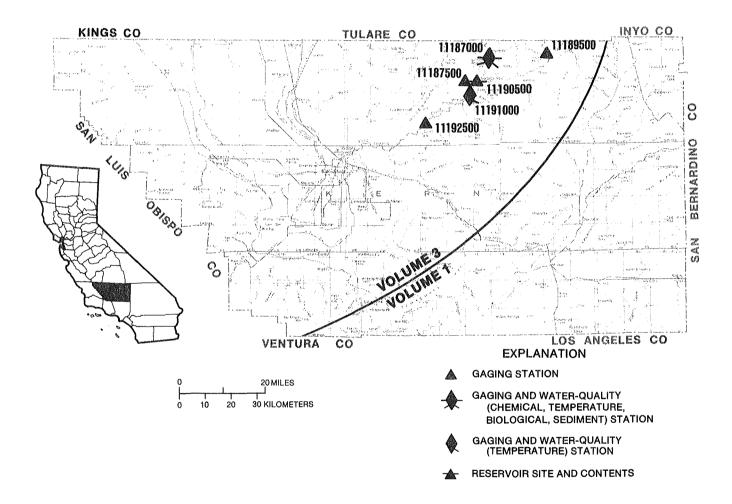



FIGURE 6. - Location of discharge and water-quality stations in Inyo County.

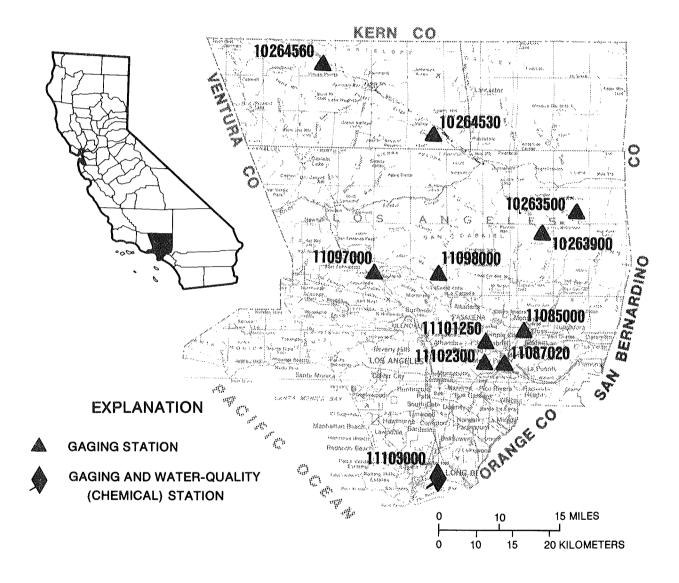
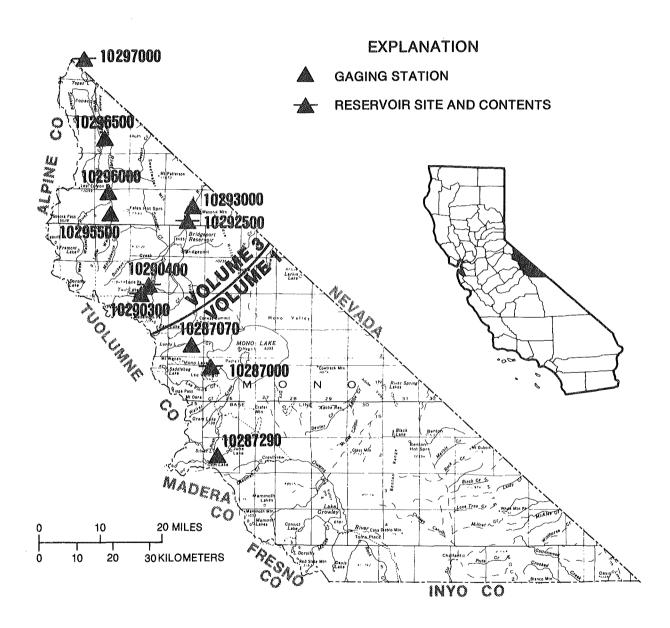



FIGURE 8. - Location of discharge and water-quality stations in Los Angeles County.

EXPLANATION

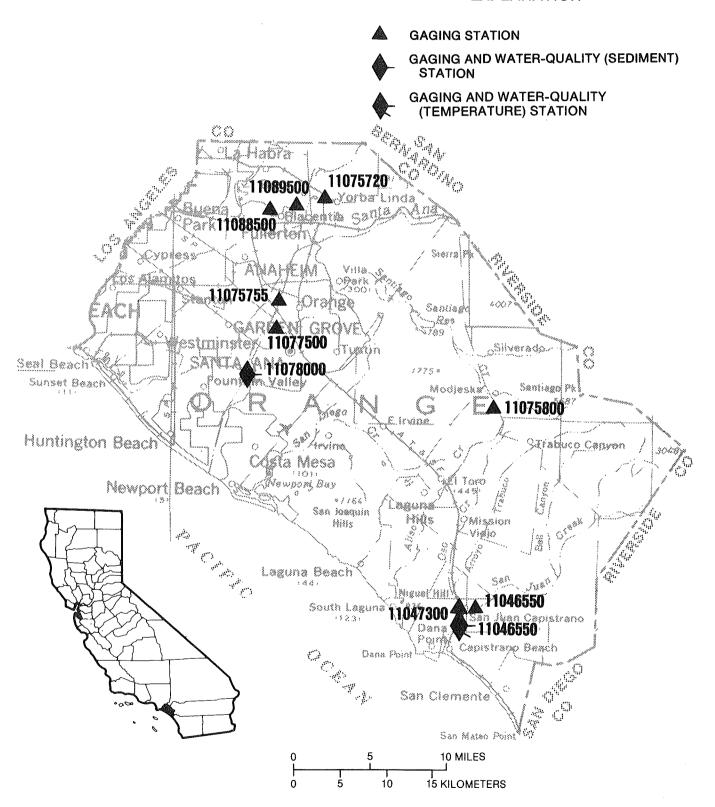


FIGURE 10. - Location of discharge and water-quality stations in Orange County.

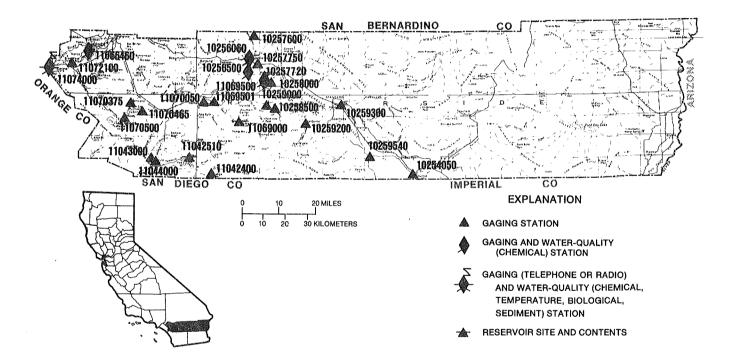


FIGURE 11. - Location of discharge and water-quality stations in Riverside County.

EXPLANATION GAGING STATION GAGING AND WATER-QUALITY (SEDIMENT) STATION INYO CO RESERVOIR SITE AND CONTENTS 10252550 10263000 10262500 10262000 10260640 10260620 10260630 11062000 11063680 11058500 11049000 11055800 11051500 RIVERSIDE CO 10 20 MILES 10 20 30 KILOMETERS 11055500 11073360 11073495 11065000 [/] 11059300 -11060400

FIGURE 12. - Location of discharge and water-quality stations in San Bernardino County.

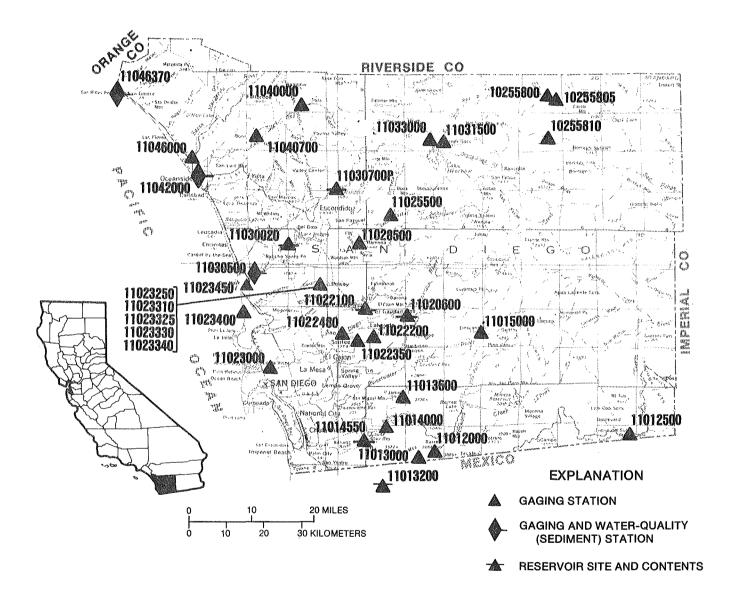
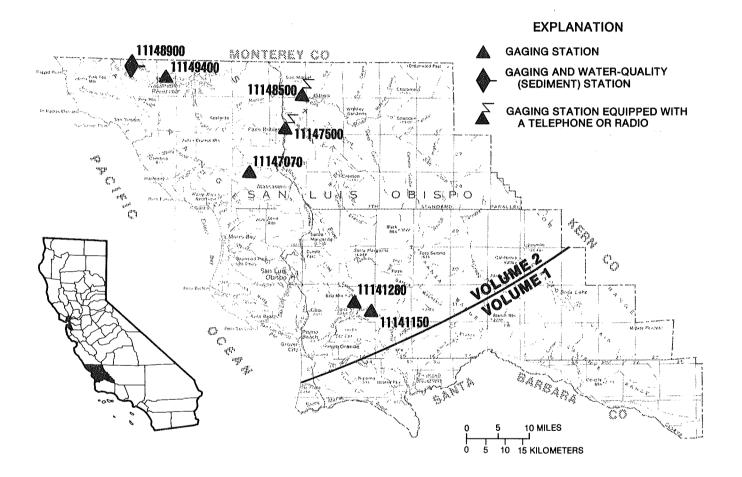



FIGURE 13. - Location of discharge and water-quality stations in San Diego County.

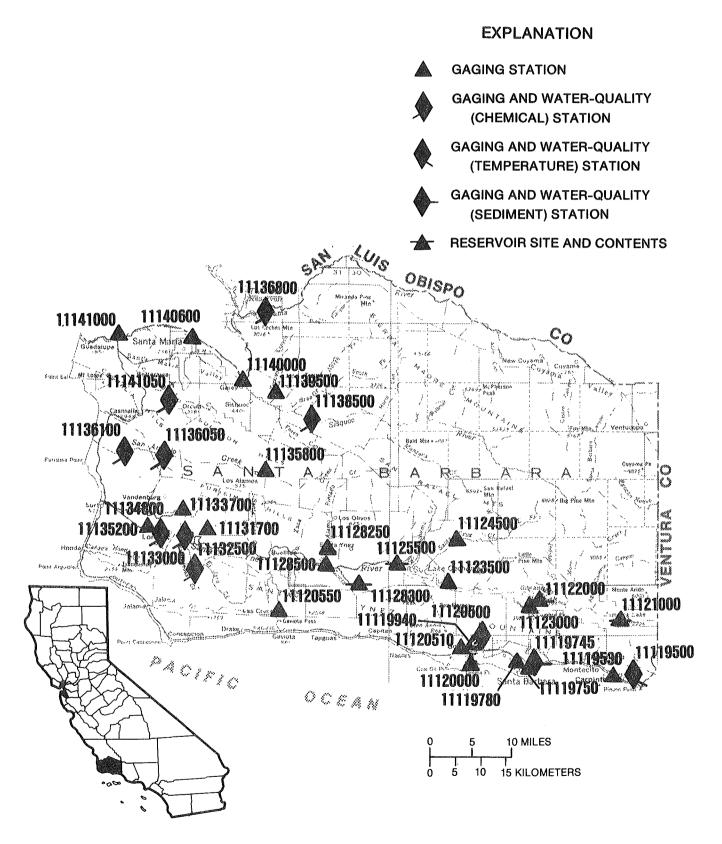


FIGURE 15. - Location of discharge and water-quality stations in Santa Barbara County.

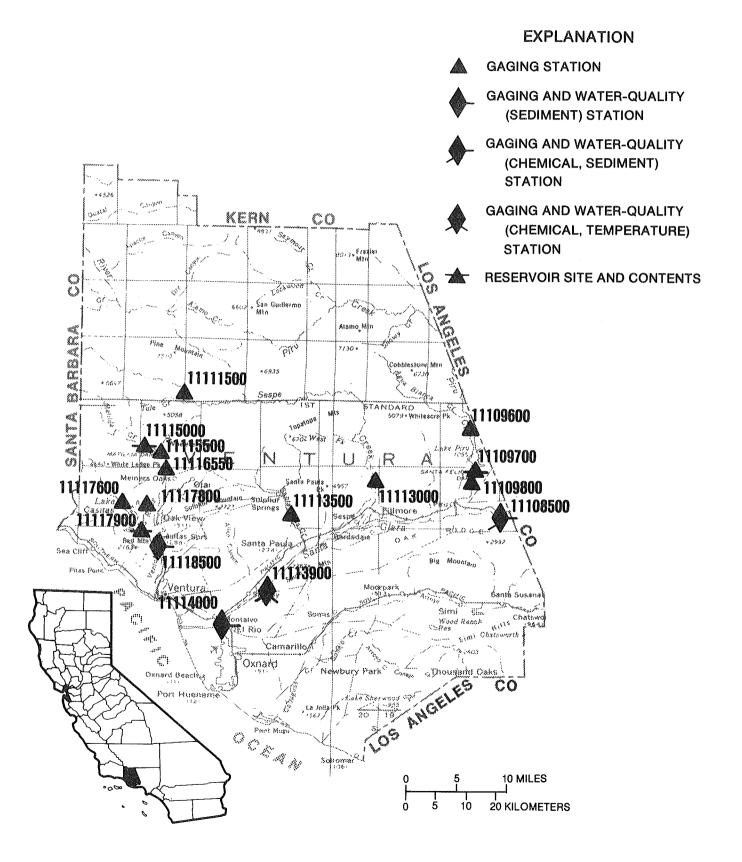


FIGURE 16. - Location of discharge and water-quality stations in Ventura County.

37

THE GREAT BASIN

PANAMINT VALLEY

10250800 DARWIN CREEK NEAR DARWIN, CA

LOCATION.--Lat 36°19'14", long 117°31'23", in SE 1/4 SW 1/4 sec.34, T.18 S., R.41 E., Inyo County, Hydrologic Unit 18090204, on left bank 510 ft downstream from Darwin Falls, 1.6 mi upstream from unnamed tributary, and 5.2 mi northeast of Darwin.

DRAINAGE AREA, -- 173 mi².

PERIOD OF RECORD, -- October 1962 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,640 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 5, 1970, at site 190 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Nov. 13 to Dec. 30, July 9 to Aug. 26, and Aug. 27 to Sept. 30. Records poor. No regulation above station. Town of Darwin pumps water above station for municipal supply.

AVERAGE DISCHARGE. -- 25 years, 0.39 ft 3/s, 283 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,400 ft³/s, Jan. 25, 1969, gage height, 8.40 ft, at site then in use, from floodmarks, on basis of slope-conveyance study of peak flow; minimum daily, 0.05 ft³/s, Aug. 30 to Sept. 4, 1969, Sept. 10-12, 15, 17, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage, 20.42 ft, present site, from floodmarks, date and discharge unknown.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 10 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 8	1845	*3.4	*4.57				

Minimum daily, 0.13 ft³/s, Apr. 23, 24, 27, and May 5.

		DISCHARGE,	IN CUE	SIC FEET		D, WATER MEAN VALU		ER 1986	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.34	.22	.30	.34	.30	.45	.39	.26	.19	.22	.24	. 23
2	.45	. 26	.30	.34	.30	.39	.34	. 22	.16	.25	. 24	, 23
3	.34	.26	.30	.34	.30	.39	, 51	, 19	.16	.26	.24	. 23
4	.34	. 26	.30	.48	.30	.39	, 51	.16	.16	.26	. 24	. 23
5	.30	.30	.30	.39	.30	. 83	.45	, 13	. 16	.26	.24	.23
6	.34	.30	.34	.34	.30	1.3	. 44	, 16	.46	.26	.24	,23
7	.34	.34	.48	.34	.30	.66	.45	.16	.33	.26	.24	.23
8	.34	.30	.34	.30	.26	.45	.45	. 55	.30	.26	.24	.23
9	.30	.34	.34	.30	. 26	.39	.39	.51	. 22	, 26	.24	.23
10	.30	.34	.34	.34	.34	.34	.39	.39	.19	.26	.24	.23
11	.30	.34	.34	.30	.34	.34	.34	.34	.19	.26	, 23	.23
12	.34	.30	.34	.30	.30	.30	.30	. 26	,16	.26	,23	.23
13	.34	.30	.34	.30	.30	.34	.34	. 26	.16	.26	.23	.23
14	.39	.30	.34	.30	.30	.30	.30	. 22	.16	, 25	.23	, 23
15	.34	.30	.34	.30	.26	.64	.26	.26	. 19	.25	.23	.23
16	.34	.30	.34	.30	.26	.39	.22	.39	. 19	.25	. 23	. 23
17	.39	.34	,34	.30	,26	.39	,19	.39	.22	.25	.23	.23
18	.39	.48	.34	.30	.26	.39	.19	.30	.22	.25	.23	. 23
19	.45	.34	.34	.30	.30	.39	.34	.30	.23	.25	.23	.23
20	.45	.30	.42	.30	.34	.39	.26	.45	.26	.25	. 23	. 23
21	.39	.30	.34	.32	.34	. 45	.22	.39	, 22	.25	, 23	. 23
22	.39	.30	.34	,30	.34	,51	.16	.39	. 26	, 25	.23	.23
23	.34	.30	.34	,30	.34	.58	,13	,26	.22	, 25	.23	.31
24	.34	.30	.34	.31	.34	.58	.13	.30	.22	.25	.23	.32
25	.34	.30	.34	.30	.45	,51	,16	.35	.22	.25	.23	.28
26	20	20	2.4	2.4	, ,	, ,	10	20	0.0	0.5	0.0	0.6
	.30	.30	.34	.34	. 45	. 45	.19	.39	. 26	.25	.23	.26
27	.16	.30	.34	.30	. 45	,39	. 13	.39	. 22	. 25	. 22	. 26
28	.16	.30	.34	.34	.45	,34	.16	.34	. 26	. 24	.22	.25
29	.19	.30	.34	.33		.34	. 44	.34	. 22	.24	. 26	. 25
30	. 19	.30	.34	.30		.39	. 22	.22	. 22	. 24	. 25	. 25
31	. 22		.34	.30		.39		. 22		. 24	. 23	
TOTAL	10.14		10.56	9,95	9.04	14.39	9,00	9.49	6,63	7.79	7,26	7.24
MEAN	.33	,31	.34	.32	.32	.46	.30	.31	. 22	.25	. 23	. 24
MAX	. 45	.48	, 48	.48	. 45	1.3	. 51	. 55	. 46	, 26	. 26	.32
MIN	. 16	. 22	.30	.30	.26	.30	.13	. 13	. 16	.22	. 22	. 23
AC-FT	20	18	21	20	18	29	18	19	13	15	14	14

CAL YR 1986 TOTAL 102.19 MEAN .28 MAX .52 MIN .16 AC-FT 203 WTR YR 1987 TOTAL 110.71 MEAN .30 MAX 1.3 MIN .13 AC-FT 220

DEATH VALLEY

10251100 SALT CREEK NEAR STOVEPIPE WELLS. CA

LOCATION.--Lat 36°35'58", long 117°00'46", in NE 1/4 sec.6, T.16 S., R.46 E., Inyo County, Hydrologic Unit 18090203, Death Valley National Monument, on left bank 3.0 mi southeast of intersection of State Highway 190 and Stovepipe Wells Road and 7.4 mi southeast of Stovepipe Wells Hotel.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD.--February 1974 to current year.

CHEMICAL DATA: Water years 1975-76, 1978-85, 1986 to current year (even-numbered years only).

GAGE.--Water-stage recorder, Parshall flume, and flashboard weir. Flashboard weir installed Feb. 2, 1984. Elevation of gage is 180 ft below National Geodetic Vertical Datum of 1929, from topographic map.

AVERAGE DISCHARGE .-- 13 years (water years 1975-87), 0.334 ft 3/s, 242 acre-ft/yr.

REMARKS.--Estimated daily discharges: Dec. 25-30. Records good except those for estimated daily discharges, which are poor. No regulation or diversion above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 363 ft³/s, Feb. 9, 1976, gage height, 4.81 ft, based on slope-conveyance study of peak flow; maximum gage height, 4.87 ft, July 22, 1984 (flashboard weir installed); minimum daily, 0.05 ft³/s, July 14, 19, Aug. 4-6, 8, 1979, and several days during August 1987.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5.0 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	D Time	ischarge (ft ³ /s)	Gage height (ft)
Mar. 15	1130	*1.6	*1.86				

Minimum daily, 0.05 ft³/s, Aug. 5-7, 11-14, 21.

		DISCHARGE	, IN CUBIC	FEET		, WATER YE EAN VALUES		1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	, 13	. 14	.20	.35	.48	. 53	.48	.29	. 14	.07	.07	.07
2	.15	.13	.20	.35	.49	. 53	.48	.29	.14	.07	.06	.08
3	. 14	. 14	.20	.37	.49	. 53	. 47	.28	.13	.06	.06	.08
4	.13	. 14	.20	.44	. 47	, 53	. 47	.28	.12	.07	.06	.08
5	. 13	. 15	. 20	.51	. 47	.61	.48	.27	. 12	.07	.05	.08
6	. 13	. 14	, 23	. 43	.48	. 87	. 48	. 26	.18	.07	.05	.08
7	. 13	.15	.36	. 45	.49	.86	. 47	.25	, 16	.07	.05	.09
8	. 12	.15	.25	. 40	.51	.68	.46	.24	, 13	.06	.06	.09
9	.13	. 15	.24	.39	. 52	.61	.45	.23	.12	.07	.06	.09
10	. 14	. 15	. 24	. 40	. 52	. 59	. 44	. 22	. 12	.06	.06	.09
11	. 12	.15	.25	.41	.51	. 57	. 43	.21	.11	.07	.05	.09
12	. 12	.16	.26	. 42	.51	. 55	.40	.20	.11	.07	.05	.09
13	.13	. 17	.27	. 43	. 53	. 53	. 40	.20	.10	.07	.05	.10
14	. 14	. 17	.28	.42	.49	. 51	.41	.18	.09	.07	.05	.10
15	. 14	. 17	.28	.41	. 50	. 96	.41	.17	.09	.07	.06	.10
16	. 14	. 17	.28	.38	. 44	.70	.39	.20	.09	. 07	.06	,10
17	. 14	.18	. 29	.40	. 47	. 59	.39	.20	.09	.06	.06	.10
18	.15	.23	.30	.43	.48	. 58	.33	.20	.09	.08	.06	.10
19	. 15	.20	.31	. 43	. 46	.50	.32	.16	.09	.08	.06	.10
20	.15	.19	.41	.41	.46	.51	.34	.16	.09	.09	.06	.10
21	. 15	,19	.35	. 43	.48	. 52	. 36	. 17	.08	.09	. 05	.10
22	. 15	.18	.34	. 45	.49	.51	.35	. 17	.08	.09	.06	.10
23	.15	.18	. 34	. 47	. 53	.50	.35	.17	.09	.09	.06	.11
24	.15	.19	.34	.45	.51	. 50	, 34	,16	.09	.09	.06	.11
25	.15	.19	.34	.46	.55	.48	.33	.16	.09	.08	.07	,11
26	.15	.19	.34	. 47	. 53	.49	.32	. 17	.09	.08	.07	.11
27	. 14	.19	.34	.49	,51	. 47	.31	.17	.08	.08	,07	.11
28	.15	.20	. 34	. 48	, 52	. 46	.29	,16	.08	.08	.07	.11
29	. 14	.19	.34	. 46		. 45	.31	.16	.08	.07	.07	.11
30	.15	.19	.35	. 47		.46	.30	.16	.07	.07	,07	.10
31	. 14		.35	. 47		.48		.15		.07	.07	
TOTAL	4.33	5.12	9.02	13.33	13.89	17.66	11.76	6,29	3.14	2.29	1.86	2.88
MEAN	.14	. 17	.29	.43	. 50	.57	.39	.20	.10	.074	.060	.096
MAX	.15	.23	.41	.51	. 55	.96	.48	.29	.18	.09	.07	.11
MIN	.12	.13	.20	.35	. 44	.45	.29	.15	.07	.06	.05	.07
AC-FT	8.6	10	18	26	28	35	23	12	6.2	4.5	3.7	5.7
CAL YR	1986 TOTA	AL 96.10	MEAN .26	MAX	12	MIN .06	AC-FT 19	1				

CAL YR 1986 TOTAL 96.10 MEAN .26 MAX 12 MIN .06 AC-FT 191 WTR YR 1987 TOTAL 91.57 MEAN .25 MAX .96 MIN .05 AC-FT 182

AUG

SEP

BRISTOL LAKE BASIN

10252550 CARUTHERS CREEK NEAR IVANPAH, CA

LOCATION, -- Lat 35°14'33", long 115°17'58", in NW 1/4 NE 1/4 sec.6, T.13 N., R.16 E., San Bernardino County, Hydrologic Unit 15030102, on left bank 6.6 mi south of Ivanpah.

DRAINAGE AREA. -- 1.13 mi².

PERIOD OF RECORD. -- October 1963 to September 1981, May 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,640 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records fair. No regulation or diversion above station.

AVERAGE DISCHARGE.--23 years (water years 1964-81, 1983-87), 0.115 ft3/s, 83 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 814 ft³/s, Aug. 12, 1979, gage height, 5.75 ft, from rating curve extended above 2.5 ft³/s on basis of slope-conveyance studies; no flow most of each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 10 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 29	1245	*3.7	*1.17				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow most of year.

					ME	EAN VALUES	3			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL
1			0	0	0	.02	0			
9			Λ.	^	^	۸۵.	Λ			

1 2 3 4 5			0 0 0 0	0 0 0 0 .08	0 0 0 0	.02 .04 .04 .04 .04	0 0 0 .03 .01				0 0 0 0	
6 7 8 9			.02 .89 .62 .44	.04 .08 .08 .04	0 0 0 0	.06 .14 .21 .11	0 0 0 0				0 0 .32 .21 .01	
11 12 13 14 15			.21 .21 .21 .21	0 0 0 0	0 0 0 0	.04 .02 .01 .01	0 0 0 0				0 0 0 0	
16 17 18 19 20			.14 .08 .02 .01	0 0 0 0	0 0 0 0	.02 .02 .01 .01	0 0 0 0				0 0 0 0	
21 22 23 24 25			.01 0 0 0	0 0 0 0	0 0 0 0	0 .06 .04 .06 .06	0 0 0 0				0 0 0 0	
26 27 28 29 30 31			0 0 0 0 0	0 0 0 0 0	.01 .02 .02 	.04 .02 .01 .01 .01	0 0 0 .11				0 0 0 0 0	
TOTAL MEAN MAX MIN AC-FT	0 0 0 0	0 0 0 0	3.60 .12 .89 0 7.1	.33 .011 .08 .0	.05 .002 .02 .0 .10	1.23 .040 .21 0 2.4	.15 .005 .11 0	0 0 0 0	0 0 0 0	0 0 0 0	.54 .017 .32 0	0 0 0 0

CAL YR 1986 TOTAL 7.52 MEAN .021 MAX .89 MIN 0 AC-FT 15 WTR YR 1987 TOTAL 5.90 MEAN .016 MAX .89 MIN 0 AC-FT 12

10254005 SALTON SEA NEAR WESTMORLAND, CA

LOCATION (REVISED).--Lat 33°11'33", long 115°49'59", in SE 1/4 SW 1/4 sec. 21, T.11 S., R.11 E., Imperial County, Hydrologic Unit 18100200, on western shore at Sandy Beach and 15.5 mi northwest of Westmorland.

DRAINAGE AREA. -- 8,360 mi², approximately.

PERIOD OF RECORD, -- November 1904 to current year. Records prior to 1932 are published in WSP 735.

GAGE, --Water-stage recorder. Datum of gage is 233.46 ft below National Geodetic Vertical Datum of 1929; gage readings have been reduced to elevations below NGVD. See WSP 1734 for history of changes prior to Mar. 2, 1956.

REMARKS. -- Bottom of sea is 277.7 ft below NGVD. See WSP 300, 735, and 918 for condensed history of Salton Sea.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 195.9 ft below NGVD, in February and March 1907; minimum since 1906, 251.6 ft below NGVD in November 1924.

EXTREMES FOR CURRENT YEAR.--Maximum daily elevation, 227.1 ft below NGVD, May 4-18; minimum, 228.3 ft below NGVD, Sept. 27-30.

MEAN DAILY MONTHEND ELEVATIONS, IN FEET BELOW NGVD, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	Date	Elevation (feet)		Date	Elevation (feet)
Oct. Nov. Dec. Jan. Feb.	30	228.1 227.9 227.9 227.8 227.6 227.5 227.3	May June July Aug.	30	227.2 227.3 227.5 227.8 228.0 228.3

INFLOW TO SALTON SEA

Salton Sea, located near the northwest corner of Imperial County, is a closed basin consisting of approximately 8,360 mi². The following table shows monthly and annual inflow to the Salton Sea from the Imperial and Coachella Valleys, in acre-feet, for the water year October 1986 to September 1987 and the annual inflow for the calendar year January to December 1986. Inflow from Imperial Valley is the sum of flows in Alamo River (station 10254730), New River (station 10255550), San Felipe Creek (station 10255885), and 36 drains. Drain inflow provided by Imperial Irrigation District. Inflow from Coachella Valley is the sum of flows in Salt Creek (station 10254050), Whitewater River (station 10259540), and 24 drains. Drain inflow provided by Coachella Valley County Water District. Ungaged drains and natural runoff are not included in totals.

by Coachella Vall	ey County	Water	District.	Ungag	ed drain	s and na	itural ru	noff are	not inc	Luded in	totals.	
	Oct.	Nov.	Dec.	Jan.	Feb.	. Mar,	Apr.	May	June	July	Aug.	Sept.
Inflow from	100000	00110	77000	01100	00010	00110	100000	404000	00500	00000	01100	05000
Imperial Valley	106630	83140	77880	81180	83940	98110	108900	104880	83580	86080	94180	95660
Coachella Valley	9340	8170	8820	10110	9520	10510	10620	10420	8560	8600	9310	8620
TOTAL CAL YR 1 TOTAL WTR YR 1	•	5,000 a										
REVISIONS The Conshown in the form											s 1980-8	5, as
	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
Inflow from												
Imperial Valley	104100	83630	81070	78200	76440	113600	137500	109800	92510	102200	113900	112200
Coachella Valley		10500	11100	17050	31260	13610	14510	17010	12820	12700	14010	
Concherra varrey	11290	10500	11100	1/030	31200	13010	14210	1/010	12020	12/00	14010	13260

Imperial Valley 104300 Coachella Valley

TOTAL CAL YR 1980 1,392,000 ac-ft TOTAL WTR YR 1981 1,339,000 ac-ft

Imperial Valley Coachella Valley

TOTAL CAL YR 1981 1,297,000 ac-ft TOTAL WTR YR 1982 1,195,000 ac-ft

Imperial Valley 74180 117490 Coachella Valley

TOTAL CAL YR 1982 1,236,000 ac-ft TOTAL WTR YR 1983 1,354,000 ac-ft

Imperial Valley Coachella Valley

TOTAL CAL YR 1983 1,361,000 ac-ft TOTAL WTR YR 1984 1,352,000 ac-ft

Imperial Valley Coachella Valley

TOTAL CAL YR 1984 1,334,000 ac-ft TOTAL WTR YR 1985 1,238,000 ac-ft

The following table lists the monthly and annual flows, in acre-feet, of the Alamo River and New River (station 10254970) at the United States-Mexico international boundary. Data for Alamo River provided by Imperial Irrigation District.

FLOW FROM MEXICO AT INTERNATIONAL BOUNDARY

	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
Alamo River New River	125 20960	138 19380	146 23020	171 22470	172 20850	186 23550	196 22110	204 22310	163 16930	148 19660	165 22130	122 20930
CAL YR 1986: CAL YR 1986:	Alamo R: New Rive		1,920 264,100	ac-ft		YR 1987: YR 1987:		1,940 ac				

10254050 SALT CREEK NEAR MECCA, CA

LOCATION.--Lat 33°26'49", long 115°50'33", in SE 1/4 SW 1/4 sec.28, T.8 S., R.11 E., Riverside County, Hydrologic Unit 18100200, on pier of Southern Pacific railroad bridge, 0.3 mi upstream from mouth, and 16 mi southeast of Mecca.

DRAINAGE AREA. -- 269 mi².

PERIOD OF RECORD, -- January 1961 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 230 ft below National Geodetic Vertical Datum of 1929, from topographic map. Prior to Dec. 21, 1984, at same site, at datum 2.50 ft lower.

REMARKS .-- No estimated daily discharges. Records fair. No regulation or diversion upstream from station.

AVERAGE DISCHARGE. -- 26 years, 7.40 ft 3/s, 5,360 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 9,900 ft³/s, Sept. 24, 1976, gage height, 16.8 ft, present datum, from floodmarks, from rating curve extended above 20 ft³/s on basis of contracted-opening measurement of peak flow; maximum gage height, 19.4 ft, present datum, Mar. 2, 1983 (backwater from Salton Sea and channel vegetation); minimum daily, 0.06 ft³/s, Nov. 1, 4, 5, 9, 1979.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 31 ft³/s, Oct. 10, gage height, 6.18 ft, from rating curve extended above 10 ft³/s on basis of estimated peak flow; minimum daily, 0.65 ft³/s, July 3.

		DISCHARGE,	IN CUBIC	FEET	PER SECONI	O, WATER YEAR MEAN VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.6	3.0	3.8	4.8	6.0	4.7	3.1	2.0	1.5	.69	.67	1.4
2	1.6	2.6	3.9	5,3	5.7	4.7	2.9	1.9	1.5	.66	,69	1.3
3	1.6	2.7	4.2	5.4	5.9	4.6	2.8	1.9	1.4	,65	.86	1.2
4	1.6	3.1	4.2	5.5	5.8	4.3	2.8	1.9	1.3	.66	.92	1.3
5	1.6											1.3
3	1,0	3.1	4.6	6.4	5.3	4.3	2.8	1.6	1.5	. 66	,91	1.4
6	1.6	3.2	5.1	6.9	4.8	4.8	3.0	1.5	1.5	.70	.92	1.5
7	1.8	3.2	5.2	5.9	4.6	5.2	3.3	1.6	1,3	.81	.88	1.5
8	1.8	3.1	5.8	5.7	4,8	4.9	3.2	1.6	1.3	.86	.82	1.5
9	1,9	3,2	5.3	5.5	6,6	4.8	3.1	1.5	1.2	.85	.88	1.5
10	12	3.3	5.4	5.3	7.2	4.5	3.1	1.5	1.1	.74	.91	1,5
11	9.6	3.5	5.7	5.5	5.1	4.4	3.0	1.4	1.1	.71	. 98	1.5
12	3.6	3.5	5.4	5.4	4.5	4.4	2.8	1.8	1.2	.70	.98	1.6
13	3.0											
		3.6	5.0	5.5	4.2	4.2	2.6	1.6	1.1	.70	.93	1.7
14	3.0	3,5	4.6	5,4	3,9	4.1	2.3	1.5	1.1	.70	.88	1.7
15	3.1	3.5	5.4	5.3	3.7	4.3	2.4	1.4	1.0	.69	. 87	1.8
16	3.2	3.5	5.6	5.2	3,6	4.3	2.6	1.6	.96	.68	, 99	1.8
17	3,1	3.8	5.1	4.9	3,4	4.7	2.7	1.6	.91	.69	1.0	1.8
18	3,1	4.3	5.1	5.2	3.3	4.8	2.7	1.4	.95	.70	1,1	1.9
19	3.2	5.0	5.2	5.5	3.3	4.6	2.8	1.3	.95	.67	1.1	1.8
20	3.1	4.3	5.4	5.8	3,5	4.6	2.4	1.4	.97	.67	1.1	1.8
20	0,1	7.5	3.4	3.0	3.5	4.0	2.4	1.4	. 97	.07	1.1	1,0
21	3,0	4.0	5.4	5.8	3.7	4.4	2.0	1.3	1.0	. 83	1.0	1.9
22	3.0	3.9	5,1	5.7	4.2	4.6	2.0	1.3	.96	. 87	1.0	2.0
23	3.0	3.4	4.8	6.2	4.3	4.5	2.0	1.4	.96	.86	1.1	2,3
24	3.0	3.2	4.9	6.4	4.4	4.6	2,2	1.5	1.0	.82	1.1	1.9
25	3.1	3.4	4.9	5.9	4.5	4.6	2.3	1.5	.95	,89	1.1	1.8
	0,1	0.4	1.0	5.0	4.5	4.0	2.0	1.5	.55	.03	1.1	1.0
26	3,2	3,6	4.9	5.9	4.8	4.2	2.4	1.5	.89	.88	1.1	1.7
27	3,2	3,6	5.2	6.1	4.9	3.9	2.4	1.6	. 84	.82	1.1	1.9
28	3,2	3,6	5.4	6.3	4.8	4.0	2.7	1.7	. 82	. 87	1,1	2.0
29	3.2	4.0	5.4	6.3		3.8	1.9	1.8	.82	.92	1,2	1.9
30	3.2	4,1	5.3	6,2		3.8	2.0	1.7	.77	.94	1.3	1.8
31	3,3		4.5	6,2		3.7		1,6				
51	3.3		4.5	0,2		3.7		1.0		.78	1.3	
TOTAL	99,7	105.8	155,8	177.4	130.8	137.3	78.3	48.9	32.85	23.67	30.79	50.7
MEAN	3.22	3,53	5.03	5.72	4.67		2.61	1.58	1.10	.76	, 99	1.69
MAX	12	5.0	5.8	6,9	7,2	5,2	3.3	2.0	1.5	.94	1.3	2.3
MIN	1.6	2,6	3.8	4.8	3.3	3.7	1.9	1.3	.77	.65	.67	
AC-FT	198	210	309	352	259	3.7 272						1.2
AC-PI	720	210	309	332	239	414	155	97	65	47	61	101

CAL YR 1986 TOTAL 1822.01 MEAN 4.99 MAX 445 MIN .81 AC-FT 3610 WTR YR 1987 TOTAL 1072.01 MEAN 2.94 MAX 12 MIN .65 AC-FT 2130

10254670 ALAMO RIVER AT DROP NO. 3, NEAR CALIPATRIA, CA (National stream-quality accounting network station)

LOCATION.--Lat 33°06'16", long 115°32'39", on line between secs.19 and 20, T.12 S., R.14 E., Imperial County, Hydrologic Unit 18100200, on right bank 2.2 mi southeast of Calipatria.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1979 to current year. Records prior to October 1979 in files of the Imperial Irrigation District.

GAGE. --Water-stage recorder and broad-crested weir. Elevation of gage is 185 ft below National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 10-12, 14. Records excellent except those for period of backwater, Oct. 10-12, 14, which are fair. Flow is mainly return from irrigated areas.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,940 ft³/s, Mar. 3, 1983, gage height, 5.95 ft, from rating curve extended above 1,000 ft³/s; maximum gage height, 7.06 ft, Oct. 10, 1986 (backwater from debris); minimum daily, 259 ft³/s, Jan. 2, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,400 ft³/s, estimated, Oct. 10, gage height, 7.06 ft (backwater from debris); minimum daily, 340 ft³/s, Dec. 26.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND,	WATER YE	AR OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	767	629	504	539	566	497	941	877	658	574	674	646
2	758	630	487	430	495	453	870	814	707	560	706	670
3	774	688	540	495	513	466	937	867	648	596	725	704
4	787	693	599	552		504	930	840	662	600	661	706
5	776	661	590	506	601	580	971	828	652	555	655	700
6	815	650	598	423	634	650	860	881	692	560	656	670
7	796	679	573	435		712	830	918	701	596	678	649
8	758	675	537	441		616	885	899	672	603	685	644
9	850	686	538	453		554	919	923	604	599	726	653
10	3590	613	554	477	628	566	956	898	627	639	696	682
11	2020	595	567	493	641	598	867	867	634	620	653	735
12	1070	661	569	452		702	819	827	635	625	655	724
13	753	664	582	477	652	737	764	825	652	613	661	764
14	650	671	628	547	652	744	823	866	665	579	659	762
15	547	672	464	573	656	720	846	875	649	619	686	749
16	515	671	412	596	578	694	912	870	634	642	741	743
17	561	675	392	595	598	692	906	816	678	619	711	794
18	547	760	387	571		707	885	715	651	660	671	787
19	547	652	394	508	648	730	851	721	621	651	722	784
20	528	572	427	466	685	752	756	746	567	617	774	792
21	557	530	513	496	676	805	708	749	555	628	743	774
22	583	546	529	561		829	718	768	522	619	709	804
23	602	530	544	573	628	757	815	721	530	631	684	870
24	657	484	552	581	607	765	858	737	535	660	675	916
25	660	492	440	557	662	798	879	707	579	693	663	862
26	689	502	340	511	641	834	867	676	619	672	688	836
27	654	493	386	530		822	871	675	612	644	674	832
28	638	449	497	599	562	824	847	662	607	668	667	818
29	682	502	498	588		832	862	647	588	695	676	854
30	684	532	543	594		820	870	660	590	723	669	811
31	655		605	601		850		660		685	643	
TOTAL	25470	18257	15789	16220	17512	21610	25823	24535	18746	19445	21286	22735
MEAN	822	609	509	523	625	697	861	791	625	627	687	758
MAX	3590	760	628	601		850	971	923	707	723	774	916
MIN	515	449	340	423		453	708	647	522	555	643	644
AC-FT	50520			32170	34740	42860		48670		38570	42220	45090

CAL YR 1986 TOTAL 236065 MEAN 647 MAX 3590 MIN 340 AC-FT 468200 WTR YR 1987 TOTAL 247428 MEAN 678 MAX 3590 MIN 340 AC-FT 490800

10254670 ALAMO RIVER AT DROP NO. 3, NEAR CALIPATRIA, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water years 1969-70, 1975 to current year. CHEMICAL DATA: Water years 1969-70, 1975-77, 1979 to current year.

ENDLOGICAL DATA: Water years 1909-70, 1973-77, 1979 to current year.

SPECIFIC CONDUCTANCE: Water years 1969-70, 1975-77, 1979 to current year.

WATER TEMPERATURE: Water years 1969-70, 1975-77, 1979 to current year.

SEDIMENT DATA: Water years 1979 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: March 1981 to September 1984. WATER TEMPERATURE: March 1981 to September 1984,

INSTRUMENTATION, -- Water-quality monitor from 1981 to September 1984.

REMARKS. -- Data for the 1975 and 1976 water years published with 1977 water year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
DEC 17	1030	374	4380	8.1	13.0	765	86	10.2	98	6100	4300	910
MAR 11	0930	574	3460	8.0	17.5	770		8.8	92	22000	51000	770
JUN												
30 SEP	0700	588	2970	8.0	25.5	760		6.9	85	K7000	2100	700
16	0845	715	3120	8.0	25.0	760	87	7.5	92	2400	6100	720
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	BONATE WATER	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
DEC 17 MAR	670	180	110	650	61	10	10	295	242	241	970	800
11	560	160	90	450	56	7	10	256	210	210	800	560
JUN 30	500	150	79	380	54	6	10	247	202	202	660	480
SEP 16	520	150	83	410	55	7	11	249	204	204	770	450
DAT	SOL	DE, DIS SS- SOI VED (MG S/L AS	S- AT : .VED DEC .VL DI .S SOI	IDUÉ SUM 180 CON 3. C TUE IS- D LVED SO	STI- DI NTS, SOI IS- (TO LVED PI	IDS, G IS- NIT LVED D DNS SO ER (M	EN, G RITE NO2 IS- D LVED SO G/L (N	2+nó3 gi DIS- AMM DLVED TO:	IRO- GE EN, AMMO ONIA DI IAL SOL G/L (MO	EN, GEN, DNIA MONI ES- ORGA VED TOT G/L (MG	A + PHO NIC PHOR AL TOT G/L (MG	US, AL }/L
DEC 17	d),60 1	.2 :	3050	2900	4.1 0	,560 8	3,4 0	.710 0.	700 3	3.0 0.	240
MAR 11	C	.50 1	.0 2	2330	2200 ;	3.2 0	,480	1	.3 1.	3 3	3.6 0.	920
JUN 30	c),60 1	.8	1960	1900	2.7 0	.540 3	3,9 0	.760 0.	760 2	2.7 0.	770
SEP 16	d),60 1	.3 2	2110	2000 2	2.9 0	.410 4	.8 0	.150 0.	150 2	2.1 0.	270

See footnote at end of table.

10254670 ALAMO RIVER AT DROP NO. 3, NEAR CALIPATRIA, CA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
DEC 17	0.240	0.170	<10	3	100	<10	<1	<1	<1	3	60
MAR	0.240	0,170	~10	J	100	~10	~1	~1	-1	3	00
11 JUN	0.500		<10	6	<100	<10	<1	<1	<1	3	10
30	0.220	0.180	<10	5	<100	<10	2	<1	<1	1	20
SEP 16	0.260	0.220	<10	4	100	<10	<1	<1	1	4	20
			-					*			
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
DEC											
17	<5	210	70	<0.1	16	<1	10	<1	3900	8	20
MAR 11	<5	170	30	<0.1	10	2	9	<1	2800	<55	10
JUN	-3	170	30	70.1	10	4	9	71	2000	-33	10
30	<5	140	10	<0.1	8	2	6	1	2700	<10	<10
SEP 16	<5	160	<10	0,3	12	1	9	<1	4100	10	<10
	hased on										

K Results based on colony count outside the acceptable range (non-ideal colony count). < Actual value is known to be less than the value shown.

CROSS-SECTIONAL DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Da	ATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	SEDI- MENT, SUS- PENDED (MG/L)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MAR											
11.	*	1215	11.0	3410	8.0	18,5	770	8.7	93	575	98
11.	*	1230	23.0	3460	8.0	18,5	770	8,8	94	671	89
11.	*	1245	34.0	3460	8.0	18,5	770	8,8	94	700	96
11.	*	1300	43.0	3430	8.0	18.5	770	8.8	94	796	93
11.	*	1315	55.0	3250	8.0	18.5	770	8.7	93	786	97
SEP											
16.	*	1300	12,0	3220	7.9	26.0	760	7.8	97	486	92
16.	*	1305	25.0	3210	7.9	26.0	760	7.7	96	630	76
16.	*	1310	35.0	3230	7.9	25.5	760	7.7	95	629	75
16.	*	1315	44.0	3220	7.9	25.5	760	7.7	95	745	64
16.		1320	55.0	3200	8.0	26.0	760	7.7	96	552	87
*			streamflow ft 3/s.	at the	time of	cross-secti	lonal mea	surements	: Mar. 11	1, 608 ft	³/s;

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM
DEC						
17	1030	374	13.0	281	284	98
MAR						
11	0930	574	17.5	586	908	96
11	1240	608	18,5	706	1160	95
JUN						
30	0700	588	25.5	443	703	93
SEP						
16	0845	715	25.0	532	1030	80
16	1308	753	26.0	608	1240	79

10254730 ALAMO RIVER NEAR NILAND, CA

LOCATION.--Lat 33°11'56", long 115°35'46", in SW 1/4 NW 1/4 sec.23, T.11 S., R.13 E., Imperial County, Hydrologic Unit 18100200, on left bank 1.0 mi upstream from mouth and 4.5 mi southwest of Niland.

PERIOD OF RECORD. -- January 1943 to September 1960 (monthly discharge only, published in WSP 1743), October 1960 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 220 ft below National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1986, at site 0.4 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 10-12, Feb. 23, Mar. 14, 15, 18, 19, 21-23, Apr. 3, 11, 18, May 1, 20, 25, June 3, 4, 14, 15, July 17. Discharge mainly represents seepage and return flow from irrigated areas.

COOPERATION. -- Records were provided by Imperial Irrigation District; five discharge measurements were made, and records were reviewed by the U.S. Geological Survey.

EXTREMES FOR PERIOD OF RECORD. --Maximum daily discharge, 4,500 ft³/s, Aug. 17, 1977, estimated by Imperial Irrigation District; minimum daily, 288 ft³/s, Jan 2, 1966, Dec. 15, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 1,900 ft³/s, Oct. 11; minimum daily, 392 ft³/s, Dec. 26.

		DISCHARGE,	, IN CUE	BIC FEET P	ER SECON	ID, WATER YEAR MEAN VALUES	OCTOBE	R 1986	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	850	719	532	599	613	552	933	900	697	647	704	641
2	825	704	525	506	558	500	915	899	771	634	733	682
3	841	748	558	532	545	500	950	882	700	654	733	697
4	874	741	641	586	654	538	924	850	725	661	690	704
5	858	711	647	592	661	627	882	817	697	620	682	733
•			• • • • • • • • • • • • • • • • • • • •				40-					
6	841	719	654	474	697	711	779	858	711	620	697	726
7	866	756	627	474	748	756	866	866	726	654	704	675
8	741	733	579	480	726	668	891	882	711	647	726	675
9	763	733	552	468	634	592	933	891	668	634	741	682
10	1840	647	579	493	641	620	975	899	647	647	682	726
11	1900	620	586	519	682	627	900	841	647	647	661	810
12	1100	675	592	500	719	711	874	841	634	634	675	858
13	771	704	606	532	748	810	810	810	668	634	697	891
14	741	726	647	579	726	800	802	825	675	586	711	817
15	606	711	487	647	763	800	825	841	650	599	690	787
16	525	711	417	675	697	756	874	850	690	599	704	779
17	565	711	398	620	634	735	933	833	711	625	704	841
18	586	817	417	552	704	745	900	771	682	627	682	825
19	558	711	430	487	741	755	891	779	661	613	719	833
20	532	606	468	480	711	763	794	800	641	599	779	858
20	302	000	400	400	,11	700	734	000	041	399	,,,	030
21	552	558	552	468	675	765	741	779	572	641	763	825
22	606	592	579	558	711	765	726	802	512	634	733	825
23	634	586	599	627	700	765	802	779	512	647	711	915
24	682	500	579	627	675	825	850	787	558	675	697	958
25	719	506	487	592	741	858	866	750	606	704	675	915
26	748	525	392	572	794	899	874	771	661	668	704	874
	733			599				654	661			
27		512	430		741	891	907		711	647	704	882
28 29	668 719	480 538	538 538	704 675	606	882 850	882	647	711 668	654 704	711 711	858
							882	647				891
30	733	572 	572	668		833	967	682	690	763	697	882
31	726		668	697		866		704		741	661	
TOTAL	24703	19572	16876	17582	19245	22765 2	6148	24937	19913	20059	21881	24065
MEAN	797	652	544	567	687	734	872	804	664	647	706	802
MAX	1900	817	668	704	794	899	975	900	771	763	779	958
MIN	525	480	392	468	545	500	726	647	512	586	661	641
AC-FT	49000	38820	33470	34870	38170		1860	49460	39500	39790	43400	47730
	4000				4000							

CAL YR 1986 TOTAL 251588 MEAN 689 MAX 1900 MIN 361 AC-FT 499000 WTR YR 1987 TOTAL 257746 MEAN 706 MAX 1900 MIN 392 AC-FT 511200

10254970 NEW RIVER AT INTERNATIONAL BOUNDARY, AT CALEXICO, CA

LOCATION.--Lat 32°39'57", long 115°30'08", in SW 1/4 SE 1/4 sec.14, T.17 S., R.14 E., Imperial County, Hydrologic Unit 18100200, on left bank 200 ft downstream from bridge on Second Street, 0.2 mi downstream from International Boundary in Calexico.

PERIOD OF RECORD. -- October 1979 to current year. October 1945 to September 1979, in files of Imperial Irrigation District.

GAGE. --Water-stage recorder. Elevation of gage is 35 ft below National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records excellent. Discharge represents seepage and return flow from irrigated areas.

AVERAGE DISCHARGE. -- 8 years (water years 1980-87), 296 ft 3/s, 214,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 833 ft³/s, Dec. 9, 1982, gage height, 14.73 ft; minimum daily, 130 ft³/s, Nov. 29, 1982.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 713 ft³/s, Oct. 10, gage height, 13.60 ft; minimum daily, 257 ft³/s, June 12.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND), WATER YEA MEAN VALUES	AR OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	317	303	337	365	353	457	361	354	315,	303	320	405
2	311	288	344	395	373	428	366	375	322	293	319	406
3	299	300	383	399	406	427	363	384	322	278	322	378
4	294	331	389	372	399	425	351	394	298	278	347	352
5	291	350	374	346	381	395	368	405	297	281	368	322
,	201	030	0,4	040	501	003	000	405	207	201	000	022
6	291	355	369	336	380	360	388	400	281	292	353	304
7	295	338	401	353	350	360	391	404	259	292	339	310
8	303	328	428	338	336	365	376	411	259	311	372	311
9	354	336	435	331	330	400	364	408	270	326	370	307
10	587	339	409	317	344	452	360	409	268	317	367	310
		• • •										
11	417	325	372	322	345	450	370	418	263	323	360	320
12	381	320	331	353	360	411	357	408	257	323	355	318
13	351	304	318	398	388	383	353	407	265	340	345	307
14	328	312	331	388	372	357	363	396	275	335	328	307
15	329	317	364	357	348	344	357	377	282	341	336	323
16	353	342	377	357	340	348	346	337	277	336	333	350
17	369	349	357	351	344	368	346	347	276	329	363	375
18	368	349	327	373	362	360	358	349	268	325	369	394
19	361	345	315	398	367	344	380	364	275	341	355	397
20	351	358	320	413	339	327	415	362	270	342	341	383
21	357	342	338	391	332	315	430	339	279	340	357	355
22	342	346	366	355	331	330	407	316	288	336	362	357
23	325	343	393	350	332	341	392	303	300	332	368	369
24	322	324	419	351	372	378	367	292	302	322	393	375
25	316	312	432	345	431	399	349	299	301	327	419	384
26	315	293	451	357	471	405	358	324	294	325	441	379
27	318	296	471	369	510	397	364	339	284	314	424	384
28	325	307	422	381	517	402	382	340	287	321	368	365
29	343	301	356	395		405	394	338	303	331	343	343
30	334	316	334	402		379	373	331	299	336	346	362
31	321		344	373		363		317		323	372	
~ -			•	0.0						023	٠. ٥	
TOTAL	10568	9769	11607	11331	10513	11875	11149	11247	8536	9913	11155	10552
MEAN	341	326	374	366	375	383	372	363	285	320	360	352
MAX	587	358	471	413	517	457	430	418	322	342	441	406
MIN	291	288	315	317	330	315	346	292	257	278	319	304
AC-FT	20960		23020	22480	20850	23550		22310		19660	22130	20930
		20000										

CAL YR 1986 TOTAL 133149 MEAN 365 MAX 587 MIN 284 AC-FT 264100 WTR YR 1987 TOTAL 128215 MEAN 351 MAX 587 MIN 257 AC-FT 254300

10255550 NEW RIVER NEAR WESTMORLAND, CA

LOCATION.--Lat 33°06'17", long 115°39'49", in SW 1/4 SW 1/4 sec.19, T.12 S., R.13 E., Imperial County, Hydrologic Unit 18100200, on right bank 3.5 mi upstream from mouth and 5.2 mi northwest of Westmorland.

PERIOD OF RECORD. -- January 1943 to September 1960 (monthly discharge only, published in WSP 1734), October 1960 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 220 ft below National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 9, 10, Mar. 23, Sept. 2. Discharge mainly represents seepage and return flow from irrigated areas.

COOPERATION. -- Records were provided by Imperial Irrigation District; two discharge measurements were made, and records were reviewed by the U.S. Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 3,000 ft³/s, Aug. 17, 18, 1977, estimated by Imperial Irrigation District; minimum daily, 293 ft³/s, Jan. 6, 1967.

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 1,480 ft³/s, Oct. 10; minimum daily, 528 ft³/s, July 5.

		DISCHARGE,	IN CUI	BIC FEET	PER SECON	ID, WATER YE MEAN VALUES	EAR OCTO	BER 1986	то ѕертемвен	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	677	692	579	613	725	736	878	835	645	585	658	673
ž	677	677	609	597	671	742	848	795	671	583	660	700
3	681	645	650	615	673	706	795	808	648	571	692	706
4	690	631	660	648	702	704	830	813	641	542	700	702
5	690	643	683	631	725	744	804	830	637	528	654	669
,	080	040	000	001	/23	744	004	030	037	320	034	009
6	652	681	664	595	704	771	793	830	643	547	675	619
7	690	681	662	571	717	738	826	824	652	563	706	625
8	789	681	650	595	715	687	811	828	623	583	681	599
ğ	883	675	658	597	669	671	826	808	627	617	681	605
10	1480	670	664	581	685	683	813	824	613	609	664	615
10	2400	070	004	301	005	000	013	024	013	009	004	013
11	1470	652	656	587	664	709	791	828	603	605	660	629
12	1150	635	635	577	679	738	813	844	631	627	656	641
13	822	621	603	627	677	778	780	846	627	652	658	664
14	658	627	601	656	696	771	769	846	615	645	658	639
15	625	631	583	692	702	736	786	806	603	648	645	650
4.6		004					221	~~.				
16	611	631	599	698	656	696	804	784	609	648	641	667
17	625	627	617	660	687	729	822	753	605	673	621	669
18	652	683	631	589	671	746	826	696	597	643	617	671
19	656	648	625	563	681	776	808	681	597	639	671	704
20	643	607	597	585	692	757	748	700	611	637	675	717
21	643	635	579	639	696	753	771	748	593	656	685	692
22	648	643	591	675	683	717	795	755	557	648	685	698
23	671	623	607	671	667	719	853	721	567	650	700	683
24	650	627	633	639	673	725	871	673	573	652	713	690
25	683	619	627	641	702	744	846	641	615	645	711	751
21.0	000	018	027	041	702	/44	040	041	613	643	/11	/31
26	671	601	621	625	767	795	813	627	587	631	738	736
27	637	583	645	645	774	833	822	656	611	637	763	725
28	667	547	679	681	744	869	806	698	625	656	748	721
29	650	597	683	692		862	844	725	599	633	713	721
30	683	609	675	721		873	841	700	595	635	685	709
31	709		635	734		873		679		643	679	
TOTAL	23133	19122	19601	19640	19497	23381	24433	23602	18420	19231	21093	20290
MEAN	746	637	632	634	696	754	814	761	614		680	
MAX	1480	692	683	734	774	734 873	878	846		620		676
MIN	611	547	579	563	656	671	748		671	673	763	751
AC-FT	45880		38880	38960				627	557	528	617	599
VC_LI	43000	3/830	30000	20800	38670	46380	48460	46810	36540	38140	41840	40250
CAL YR	1986 707	AT. 258305	MEAN	708 MA	Y 1480	MTN 547	ልሮ-ፑፕ	512300				

CAL YR 1986 TOTAL 258305 MEAN 708 MAX 1480 MIN 547 AC-FT 512300 WTR YR 1987 TOTAL 251443 MEAN 689 MAX 1480 MIN 528 AC-FT 498700

10255805 COYOTE CREEK BELOW BOX CANYON, NEAR BORREGO SPRINGS, CA

LOCATION.--Lat 33°21'54", long 116°24'57", in SW 1/4 NW 1/4 sec.25, T.9 S., R.5 E., San Diego County, Hydrologic Unit 18100200, in Anza-Borrego Desert State Park, on right bank 0.9 mi downstream from Box Canyon, 1.4 mi northwest of Rancho De Anza, and 7.8 mi northwest of Borrego Springs.

DRAINAGE AREA. -- 154 mi².

PERIOD OF RECORD. --October 1983 to current year. Records prior to October 1983 published as Coyote Creek near Borrego Springs (station 10255800) are not equivalent because of difference in drainage areas.

GAGE.--Water-stage recorder. Elevation of gage is 1,100 ft above National Geodetic Vertical Datum of 1929, from topographic map. Since Sept. 30, 1983, at present site and datum. Apr. 19, 1978, to Sept. 30, 1983, at site 0.9 mi upstream at different datum. Mar. 24, 1967, to Apr. 18, 1978, at site 0.5 mi upstream at different datum. Prior to Mar. 24, 1967, at site 1.0 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 10 to Nov. 6, Nov. 19, Dec. 28 to Feb. 1. Records poor. No regulation or diversion upstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 400 ft³/s, estimated, Mar. 1, 1983, gage height, 2.91 ft, from floodmarks; minimum daily, 1.2 ft³/s, July 14, 22, 23, 1987.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 9	2000	*27	*2.53				

Minimum daily, 1.2 ft³/s, July 14, 22, 23.

WTR YR 1987 TOTAL 1050.9 MEAN 2.88

MAX

DAY OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG SEP			DISCHARGE,	IN CUBI	C FEET I		WATER YEAR	R OCTOBER	1986 T	O SEPTEMBI	ER 1987		
2 2 2,3 3,2 3,7 2,5 4,0 5,1 3,8 3,3 1,7 1,6 1,6 1,4 1,6 4 2,2 3,2 3,2 3,8 2,5 4,0 5,2 4,0 2,5 1,7 1,6 1,3 1,6 5 2,2 3,2 3,8 2,8 4,0 5,3 4,0 2,5 1,7 1,6 1,3 1,6 1,5 1,6 1,3 1,6 5 2,2 3,3 3,7 5,0 4,1 5,3 3,7 2,5 1,9 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 2 2,3 3,2 3,7 2,5 4,0 5,1 3,8 3,3 1,7 1,6 1,6 1,4 1,6 4 2,2 3,2 3,2 3,8 2,5 4,0 5,2 4,0 2,5 1,7 1,5 1,6 1,3 1,6 5 2,2 3,3 3,8 2,5 4,0 5,2 4,0 2,5 1,7 1,6 1,3 1,6 1,5 1,6 1,3 1,6 5 2,2 3,3 3,7 5,0 4,1 5,3 3,7 2,5 1,9 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,5 1,6 1,3 1,6 6 2,2 3,3 3,4 9,0 4,3 6,8 3,5 2,3 1,8 1,5 1,5 1,5 1,7 8 2,2 3,4 3,0 7,0 4,3 5,3 3,2 2,3 1,7 1,4 1,4 1,3 1,7 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	1	2.4	3.1	3.9	2.4	4.0	5.1	4.0	3.3	2.0	1.6	1.4	1.7
3 2.2 3.2 3.8 2.5 4.0 5.2 4.1 2.7 1.5 1.6 1.3 1.6 5 2.2 3.2 3.8 2.8 4.0 5.3 4.0 2.5 1.7 1.6 1.3 1.6 6 2.2 3.3 3.8 8.8 4.1 6.4 3.6 2.4 1.9 1.5 1.9 1.6 7 2.2 3.3 3.4 9.0 4.3 6.8 3.5 2.3 1.8 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.4 1.3 1.6 1.6 1.4 1.3 1.6 1.6 1.4 1.3 1.6 1.6 1.4 1.3 1.7 1.4 1.3 1.7 1.4 1.3 1.7 1.4 1.3 1.7 1.4 1.3 1.7 1.6 1.4 1.3 1.7 1.6 1.4 1.3 1.7 1.6 1.4 1.3													
4 2.2 3.2 3.8 2.8 4.0 5.3 4.0 2.5 1.7 1.6 1.3 1.6 6 5 2.2 3.3 3 3.7 5.0 4.1 5.3 3.7 2.5 1.9 1.6 1.5 1.6 1.5 1.6 6 2.2 3.3 3 3.8 8.2 4.1 6.4 3.6 2.4 1.9 1.5 1.9 1.6 1.5 1.6 7 2.2 3.3 3 3.4 9.0 4.3 6.8 3.5 2.3 1.8 1.5 1.5 1.5 1.7 8 2.2 3.3 4.3 0.7 0.4 4.3 6.8 3.5 2.3 1.8 1.5 1.5 1.5 1.7 9 4.7 3.3 2.7 6.2 4.3 4.7 3.1 2.4 1.6 1.4 1.3 1.7 1.4 1.3 1.7 1.4 1.3 1.7 1.4 1.3 1.7 1.4 1.3 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5													
5 2,2 3,3 3,7 5,0 4,1 5,3 3,7 2,5 1,9 1,6 1,5 1,6 6 2,2 3,3 3,8 8,2 4,1 6,4 3,6 2,4 1,9 1,5 1,9 1,6 7 2,2 3,3 3,4 9,0 4,3 5,3 3,2 2,3 1,8 1,5 1,5 1,5 1,7 8 2,2 3,4 3,0 7,0 4,3 5,3 3,2 2,3 1,7 1,4 1,3 1,6 10 3,0 3,5 2,4 5,5 4,2 4,4 3,1 2,4 1,6 1,4 1,3 1,7 11 2,7 3,5 2,3 4,7 4,4 4,2 2,9 2,5 1,6 1,4 1,3 1,7 12 2,5 3,3 2,4 4,4 4,4 4,2 2,9 2,5 1,6 1,3 1,3 1,8													
6 2.2 3.3 3.8 8.2 4.1 6.4 3.6 2.4 1.9 1.5 1.9 1.5 1.7 7 2.2 3.3 3.4 9.0 4.3 6.8 3.5 2.3 1.8 1.5 1.5 1.7 1.7 8 2.2 3.4 3.0 7.0 4.3 5.3 3.2 2.3 1.7 1.4 1.3 1.5 1.7 9 4.7 3.3 2.7 6.2 4.3 4.7 3.1 2.4 1.6 1.4 1.3 1.6 1.0 3.0 3.5 2.4 5.5 4.2 4.4 3.1 2.4 1.6 1.4 1.3 1.6 1.0 3.0 3.5 2.4 5.5 4.2 4.4 3.1 2.4 1.6 1.4 1.3 1.7 1.1 1.7 1.1 2.7 3.5 2.3 4.7 4.4 4.2 2.8 2.9 2.5 1.6 1.4 1.3 1.3 1.7 1.2 1.5 1.3 1.7 1.4 1.3 1.6 1.4 1.3 1.6 1.4 1.3 1.6 1.4 1.3 1.6 1.4 1.3 1.6 1.4 1.3 1.7 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5													
7 2.2 3.3 3.4 9.0 4.3 6.8 3.5 2.3 1.8 1.5 1.5 1.7 9 4.7 3.3 2.2 4.3 4.7 3.1 2.4 1.6 1.4 1.3 1.7 9 4.7 3.3 2.7 6.2 4.3 4.7 3.1 2.4 1.6 1.4 1.3 1.6 10 3.0 3.5 2.4 5.5 4.2 4.4 3.1 2.4 1.6 1.4 1.3 1.6 1.7 11 2.7 3.5 2.3 4.7 4.4 4.2 2.9 2.5 1.6 1.4 1.3 1.7 12 2.5 3.3 2.4 4.4 4.4 4.2 2.8 2.3 1.6 1.3 1.3 1.8 13 2.4 3.2 2.4 4.2 4.5 4.5 4.5 2.6 2.2 1.5 1.3 1.4 2.0 14 2.4 3.3 2.4 4.1 4.3 4.4 2.4 2.8 2.3 1.6 1.3 1.3 1.8 13 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 15 2.1 15 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 16 2.5 3.4 2.2 4.0 4.4 4.0 2.1 2.3 1.6 1.3 1.3 1.5 2.1 16 2.5 3.4 2.2 4.0 4.6 4.0 2.3 2.4 1.6 1.3 1.5 2.2 17 2.5 3.4 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.2 19 2.5 3.4 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 19 2.5 4.8 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 19 2.5 4.8 2.2 4.0 4.6 4.0 2.3 2.4 2.8 1.5 1.3 1.5 2.6 20 2.6 4.3 2.3 4.0 4.6 4.0 2.3 2.4 2.8 1.5 1.3 1.5 2.6 20 2.6 4.3 2.3 4.0 4.6 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 20 2.6 4.3 2.3 4.0 4.6 4.7 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 2.7 2.2 2.8 3.8 2.3 4.0 4.6 4.0 2.3 2.7 1.5 1.2 1.5 1.3 1.5 2.6 2.2 2.8 3.8 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 2.7 2.2 2.8 3.8 2.3 3.6 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 2.7 2.5 3.8 2.3 4.0 4.6 4.7 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 2.7 2.5 3.3 2.9 3.6 2.4 4.0 4.6 4.2 2.2 2.8 1.5 1.3 1.5 1.5 1.5 2.6 2.7 2.9 3.6 2.4 3.9 6.7 4.4 2.2 2.2 2.8 1.5 1.5 1.3 1.5 2.6 2.7 2.2 2.8 3.8 2.3 4.0 4.0 4.7 4.1 2.4 2.8 1.5 1.5 1.4 1.6 3.0 2.6 2.7 2.9 3.6 2.4 3.9 6.7 4.4 2.2 2.2 2.8 1.5 1.5 1.5 1.5 1.5 3.1 2.5 2.6 2.2 2.8 3.8 2.3 3.8 4.3 3.0 4.0 4.7 4.1 2.4 2.2 2.8 1.5 1.5 1.4 1.6 3.0 2.8 2.9 3.8 2.3 3.8 4.5 4.5 4.5 2.9 2.8 1.6 1.5 1.4 1.6 2.9 2.9 3.8 2.9 3.8 2.3 3.8 4.5 4.5 4.2 2.9 2.8 1.6 1.5 1.4 1.6 2.9 3.0 3.0 4.0 2.3 4.0 4.1 3.2 2.2 2.8 1.5 1.6 1.3 1.5 2.5 2.9 3.0 3.0 4.0 2.3 4.0 4.1 3.2 2.2 2.5 1.6 1.6 1.4 1.6 2.9 3.0 3.0 3.0 4.0 2.4 4.1 4.1 3.2 2.2 2.5 1.6 1.6 1.4 1.6 2.9 3.0 3.0 3.0 4.0 2.3 4.0 4.1 3.2 2.2 2.5 1.6 1.6 1.4 1.6 2.9 3.3 3.4 4.0 4.0 2.1 2.2 2.5 1.5 1.6 1.3 1.5 2.2 1.3 1.6 4.0 4.4 4.0 4.0 2.1 2.2 2.5 1.5 1	J	2.2	3.5	3.7	5.0	4.1	3,3	3.7	2.5	1.5	1.0	1.5	1.0
8 2.2 3,4 3.0 7.0 4.3 5.3 3.2 2.3 1.7 1.4 1.3 1.7 9 4.7 3.3 2.7 6.2 4.3 4.7 3.1 2.4 1.6 1.4 1.3 1.6 10 3.0 3.5 2.4 5.5 4.2 4.4 3.1 2.4 1.6 1.4 1.3 1.6 1.7 1.7 11 2.7 3.5 2.3 4.7 4.4 4.2 2.9 2.5 1.6 1.4 1.3 1.3 1.7 1.2 2.5 3.3 2.4 4.4 4.4 4.4 4.2 2.8 2.3 1.6 1.3 1.3 1.8 1.3 1.2 2.4 1.4 2.4 3.3 1.4 2.0 1.4 2.4 3.3 2.4 4.1 4.2 4.5 4.5 2.6 2.2 1.5 1.3 1.4 2.0 1.4 2.4 3.3 2.4 4.1 4.3 4.4 2.4 2.3 1.5 1.2 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.5 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.1 1.5 2.4 1.8 2.6 6.5 2.2 4.0 4.6 4.0 2.1 2.3 1.6 1.3 1.5 2.5 1.9 2.5 4.8 2.2 4.0 4.6 4.0 2.1 2.3 1.6 1.4 1.5 2.4 1.8 2.6 6.5 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 1.9 2.5 4.8 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 1.9 2.5 4.8 2.2 4.0 4.6 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 1.0 2.6 2.6 4.3 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.5 1.3 1.5 2.5 1.0 2.6 4.3 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.5 1.3 1.5 2.5 1.0 2.6 4.3 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.5 1.5 1.3 1.5 2.5 1.5 1.3 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	6	2.2	3.3	3.8	8.2	4.1	6.4	3.6	2.4	1.9	1.5	1.9	
9 4.7 3.3 2.7 6.2 4.3 4.7 3.1 2.4 1.6 1.4 1.3 1.6 10 3.0 3.5 2.4 5.5 4.2 4.4 3.1 2.4 1.6 1.4 1.3 1.7 11 2.7 3.5 2.3 4.7 4.4 4.2 2.8 2.9 2.5 1.6 1.4 1.3 1.3 1.8 1.3 2.4 3.2 2.4 4.4 4.4 4.4 4.2 2.8 2.9 2.5 1.6 1.4 1.3 1.3 1.8 1.3 2.4 3.2 2.4 4.2 4.5 4.5 2.6 2.2 1.5 1.5 1.3 1.4 2.0 1.4 2.4 3.3 2.4 4.1 4.3 4.4 2.2 8.2 2.3 1.5 1.5 1.2 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.5 3.4 2.2 4.0 4.6 4.0 2.3 2.4 1.6 1.3 1.5 2.5 1.9 2.5 3.4 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 1.9 2.5 4.8 2.2 4.0 4.6 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.5 1.9 2.5 4.8 2.2 4.0 4.6 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.5 1.9 2.5 4.8 2.2 4.0 4.6 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.5 1.0 1.5 2.1 1.5 1.3 1.5 2.5 1.5 1.3 1.5 2.5 1.5 1.3 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	7	2.2	3,3	3.4	9.0	4.3	6.8	3.5	2.3	1.8	1.5	1.5	1.7
9 4.7 3.3 2.7 6.2 4.3 4.7 3.1 2.4 1.6 1.4 1.3 1.6 10 3.0 3.5 2.4 5.5 4.2 4.4 3.1 2.4 1.6 1.4 1.3 1.7 11 2.7 3.5 2.3 4.7 4.4 4.2 2.8 2.9 2.5 1.6 1.4 1.3 1.3 1.8 1.3 2.4 3.2 2.4 4.4 4.4 4.4 4.2 2.8 2.9 2.5 1.6 1.4 1.3 1.3 1.8 1.3 2.4 3.2 2.4 4.2 4.5 4.5 2.6 2.2 1.5 1.5 1.3 1.4 2.0 1.4 2.4 3.3 2.4 4.1 4.3 4.4 2.2 4.5 4.5 2.6 2.2 1.5 1.3 1.4 2.0 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.1 1.5 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 1.5 2.5 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	8	2.2	3.4	3.0	7.0	4.3	5.3	3.2	2.3	1.7	1.4	1.3	1.7
10 3.0 3.5 2.4 5.5 4.2 4.4 3.1 2.4 1.6 1.4 1.3 1.7 11 2.7 3.5 2.3 4.7 4.4 4.2 2.9 2.5 1.6 1.4 1.3 1.7 12 2.5 3.3 2.4 4.4 4.4 4.2 2.8 2.3 1.6 1.3 1.3 1.8 13 2.4 3.2 2.4 4.2 4.5 4.5 2.6 2.2 1.5 1.3 1.4 2.0 14 2.4 3.3 2.4 4.1 4.3 4.4 2.4 2.3 1.5 1.2 1.5 2.1 15 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 16 2.5 3.3 2.3 4.0 4.5 4.3 2.1 2.4 1.6 1.3 1.5 2.1 16 2.5 3.4 2.2 4.0 4.6 4.0 2.1 2.3 1.6 1.4 1.5 2.4 18 2.6 6.5 2.2 4.0 4.6 4.0 2.1 2.3 1.6 1.4 1.5 2.4 18 2.6 6.5 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.5 1.3 1.5 2.5 20 2.6 4.3 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.5 20 2.6 4.3 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 21 2.7 3.9 2.3 4.1 4.8 4.2 2.2 2.8 1.5 1.3 1.5 2.6 22 2.8 3.8 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 22 2.8 3.8 2.3 4.3 5.0 4.6 2.2 2.7 1.5 1.3 1.5 2.6 22 2.8 3.8 2.3 4.3 5.0 4.6 2.2 2.7 1.5 1.3 1.5 2.6 24 2.9 3.5 2.4 3.9 6.7 4.4 2.2 2.8 1.5 1.4 1.6 2.7 23 2.9 3.6 2.4 3.9 6.7 4.4 2.3 2.7 1.5 1.5 1.2 1.5 2.9 24 2.9 3.5 2.4 3.9 6.7 4.4 2.3 2.7 1.5 1.5 1.5 1.5 3.1 26 2.9 3.3 2.4 3.7 4.5 4.3 2.3 2.7 1.5 1.5 1.5 3.1 26 2.9 3.8 2.3 3.8 4.0 4.0 2.8 2.6 1.6 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.4 1.6 3.0 28 2.9 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.5 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.5 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.5 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.5 1.4 1.6 2.9 31 3.1 2.4 4.1 4.1 3.2 2.5 1.6 1.6 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.5 1.2 1.5 2.9 31 3.1 2.4 4.1 4.1 3.2 2.5 1.6 1.6 1.4 1.6 3.0 28 2.9 3.0 4.0 2.3 4.0 4.0 2.8 2.6 1.6 1.6 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.6 1.4 1.6 2.9 31 3.1 2.4 4.1 4.1 3.2 2.5 1.6 1.6 1.9 1.4 1.6 2.9 31 3.1 2.4 4.1 4.1 3.2 2.5 1.5 1.6 1.9 1.5 1.4 1.6 2.9 32 3.1 2.2 3.1 2.2 2.4	9	4.7	3.3	2.7		4.3	4.7	3.1	2.4	1.6	1.4	1.3	1.6
12 2.5 3.3 2.4 4.4 4.4 4.2 2.8 2.3 1.6 1.3 1.3 1.8 13 2.4 3.2 2.4 4.2 4.5 4.5 2.6 2.2 1.5 1.3 1.4 2.0 14 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 15 2.4 3.3 2.3 4.0 4.5 4.3 2.1 2.4 1.6 1.3 1.5 2.1 16 2.5 3.3 2.3 4.0 4.5 4.3 2.1 2.4 1.6 1.3 1.5 2.1 17 2.5 3.4 2.2 4.0 4.6 4.0 2.1 2.3 1.6 1.4 1.5 2.2 17 2.5 4.8 2.2 4.0 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>													
12 2.5 3.3 2.4 4.4 4.4 4.2 2.8 2.3 1.6 1.3 1.3 1.8 13 2.4 3.2 2.4 4.2 4.5 4.5 2.6 2.2 1.5 1.3 1.4 2.0 14 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 15 2.4 3.3 2.3 4.0 4.5 4.3 2.1 2.4 1.6 1.3 1.5 2.1 16 2.5 3.3 2.3 4.0 4.5 4.3 2.1 2.4 1.6 1.3 1.5 2.1 17 2.5 3.4 2.2 4.0 4.6 4.0 2.1 2.3 1.6 1.4 1.5 2.2 17 2.5 4.8 2.2 4.0 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.5 <tr< td=""><td>4.4</td><td></td><td>۰.</td><td></td><td>, ,</td><td></td><td></td><td>0.0</td><td></td><td>1.0</td><td></td><td>1.0</td><td></td></tr<>	4.4		۰.		, ,			0.0		1.0		1.0	
13													
14 2.4 3.3 2.4 4.1 4.3 4.4 2.4 2.3 1.5 1.2 1.5 2.1 15 2.4 3.3 2.3 4.0 4.2 4.6 2.3 2.4 1.6 1.3 1.5 2.1 16 2.5 3.3 2.3 4.0 4.5 4.3 2.1 2.4 1.6 1.3 1.5 2.2 17 2.5 3.4 2.2 4.0 4.4 4.0 2.1 2.3 1.6 1.4 1.5 2.4 18 2.6 6.5 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 19 2.5 4.8 2.2 4.0 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.6 21 2.7 3.9 2.3 4.1 4.8 4.4 2.2 2.8 1.5 1.3 1.5 2.6 21 2.7 3.9 2.3 4.1 4.8 4.4 2.2 2.8													
15													
16 2.5 3.3 2.3 4.0 4.5 4.3 2.1 2.4 1.6 1.3 1.5 2.2 17 2.5 3.4 2.2 4.0 4.4 4.0 2.1 2.3 1.6 1.4 1.5 2.4 18 2.6 6.5 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 19 2.5 4.8 2.2 4.0 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.6 20 2.6 4.3 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 21 2.7 3.9 2.3 4.1 4.8 4.4 2.2 2.8 1.5 1.3 1.5 2.6 22' 2.8 3.8 2.3 4.3 5.0 4.6 2.2 2.8 1.5 1.3 1.5 2.6 22' 2.8 3.5 2.4 3.9 6.7 4.4 2.2 2.8 <td></td>													
17	15	2.4	3.3	2.3	4.0	4.2	4.6	2.3	2.4	1,6	1.3	1.5	2.1
17	16	2.5	3.3	2.3	4.0	4.5	4.3	2.1	2.4	1.6	1.3	1.5	2.2
18 2.6 6.5 2.2 4.0 4.6 4.0 2.3 2.4 1.5 1.3 1.5 2.5 19 2.5 4.8 2.2 4.0 4.6 4.2 2.4 2.8 1.5 1.3 1.5 2.6 20 2.6 4.3 2.3 4.0 4.7 4.1 2.4 2.8 1.5 1.3 1.5 2.6 21 2.7 3.9 2.3 4.1 4.8 4.4 2.2 2.8 1.5 1.3 1.5 2.6 22' 2.8 3.8 2.3 4.3 5.0 4.6 2.2 2.7 1.5 1.2 1.6 2.7 23 2.9 3.6 2.4 4.0 5.1 4.2 2.2 2.6 1.5 1.2 1.5 2.9 24 2.9 3.5 2.4 3.9 6.7 4.4 2.3 2.7 1.5 1.5 1.5 1.5 3.1 25 2.9 3.3 2.4 3.7 5.3 4.7 2.1													
19													
20													
21													
22' 2.8 3.8 2.3 4.3 5.0 4.6 2.2 2.7 1.5 1.2 1.6 2.7 23 2.9 3.6 2.4 4.0 5.1 4.2 2.2 2.6 1.5 1.2 1.5 2.9 24 2.9 3.5 2.4 3.9 6.7 4.4 2.3 2.7 1.5 1.5 1.5 3.1 25 2.9 3.3 2.4 3.7 5.3 4.7 2.1 2.8 1.6 1.4 1.6 3.3 26 2.9 3.3 2.4 3.6 5.2 4.5 2.1 3.0 1.5 1.4 1.6 3.0 27 2.9 3.6 2.4 3.7 4.5 4.3 2.3 2.9 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.6 2.9 30 3.0 4.0 2.3 4.0 4.0 2.8 2.6	20	2.0	4.0	2.0	4.0	4.7	7.4	2.7	2.0	1.5	1,7	1.0	2.0
23 2.9 3.6 2.4 4.0 5.1 4.2 2.2 2.6 1.5 1.2 1.5 2.9 24 2.9 3.5 2.4 3.9 6.7 4.4 2.3 2.7 1.5 1.5 1.5 3.1 25 2.9 3.3 2.4 3.7 5.3 4.7 2.1 2.8 1.6 1.4 1.6 3.3 26 2.9 3.3 2.4 3.6 5.2 4.5 2.1 3.0 1.5 1.4 1.6 3.0 27 2.9 3.6 2.4 3.7 4.5 4.3 2.3 2.9 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.6 2.9 29 3.0 4.0 2.3 4.0 4.0 2.8 2.6 1.6 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5					4.1								
24 2.9 3.5 2.4 3.9 6.7 4.4 2.3 2.7 1.5 1.5 1.5 3.1 25 2.9 3.3 2.4 3.7 5.3 4.7 2.1 2.8 1.6 1.4 1.6 3.3 26 2.9 3.3 2.4 3.6 5.2 4.5 2.1 3.0 1.5 1.4 1.6 3.0 27 2.9 3.6 2.4 3.7 4.5 4.3 2.3 2.9 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.6 2.9 29 3.0 4.0 2.3 4.0 4.0 2.8 2.6 1.6 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.3 1.5 2.9 31 3.1 2.4 4.1 4.1 2.2	22'	2.8	3.8	2.3	4.3	5.0	4.6	2.2	2.7	1.5	1.2	1.6	2.7
25	23	2.9	3.6	2.4	4.0	5.1	4.2	2.2	2.6	1.5	1.2	1.5	2.9
26	24	2.9	3.5	2.4	3.9	6.7	4.4	2,3	2.7	1.5	1.5	1.5	3.1
27 2.9 3.6 2.4 3.7 4.5 4.3 2.3 2.9 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.6 2.9 29 3.0 4.0 2.3 4.0 4.0 2.8 2.6 1.6 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.3 1.5 2.9 31 3.1 2.4 4.1 4.1 2.2 1.3 1.5 2.9 TOTAL 82.7 108.5 83.2 135.8 127.0 143.6 84.7 80.1 48.3 43.3 46.0 67.7 MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8	25	2.9	3,3	2.4	3.7	5.3	4.7	2.1	2.8	1.6	1.4	1.6	3.3
27 2.9 3.6 2.4 3.7 4.5 4.3 2.3 2.9 1.5 1.4 1.6 3.0 28 2.9 3.8 2.3 3.8 4.5 4.2 2.9 2.8 1.6 1.5 1.6 2.9 29 3.0 4.0 2.3 4.0 4.0 2.8 2.6 1.6 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.3 1.5 2.9 31 3.1 2.4 4.1 4.1 2.2 1.3 1.5 2.9 TOTAL 82.7 108.5 83.2 135.8 127.0 143.6 84.7 80.1 48.3 43.3 46.0 67.7 MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8	26	2 0	2 2	2 4	3 6	5 2	4 5	2 1	3.0	1.5	1 4	1.6	3 0
28													
29 3.0 4.0 2.3 4.0 4.0 2.8 2.6 1.6 1.4 1.6 2.9 30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.3 1.5 2.9 31 3.1 2.4 4.1 4.1 2.2 1.3 1.6 TOTAL 82.7 108.5 83.2 135.8 127.0 143.6 84.7 80.1 48.3 43.3 46.0 67.7 MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8 4.1 3.3 2.0 1.6 1.9 3.3 MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285													
30 3.0 4.0 2.4 4.1 4.1 3.2 2.5 1.6 1.3 1.5 2.9 31 3.1 2.4 4.1 4.1 2.2 1.3 1.6 TOTAL 82.7 108.5 83.2 135.8 127.0 143.6 84.7 80.1 48.3 43.3 46.0 67.7 MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8 4.1 3.3 2.0 1.6 1.9 3.3 MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285 168 159 96 86 91 134													
31 3.1 2.4 4.1 4.1 2.2 1.3 1.6 TOTAL 82.7 108.5 83.2 135.8 127.0 143.6 84.7 80.1 48.3 43.3 46.0 67.7 MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8 4.1 3.3 2.0 1.6 1.9 3.3 MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285 168 159 96 86 91 134													
TOTAL 82.7 108.5 83.2 135.8 127.0 143.6 84.7 80.1 48.3 43.3 46.0 67.7 MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8 4.1 3.3 2.0 1.6 1.9 3.3 MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285 168 159 96 86 91 134													
MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8 4.1 3.3 2.0 1.6 1.9 3.3 MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285 168 159 96 86 91 134	31	3.1		2,4	4.1		4.1		2.2		1.3	1.6	
MEAN 2.67 3.62 2.68 4.38 4.54 4.63 2.82 2.58 1.61 1.40 1.48 2.26 MAX 4.7 6.5 3.9 9.0 6.7 6.8 4.1 3.3 2.0 1.6 1.9 3.3 MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285 168 159 96 86 91 134	TOTAL	82.7	108.5	83.2	135.8	127.0	143.6	84.7	80.1	48.3	43.3	46.0	67.7
MAX 4.7 6.5 3.9 9.0 6.7 6.8 4.1 3.3 2.0 1.6 1.9 3.3 MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285 168 159 96 86 91 134	MEAN	2.67	3,62	2.68	4.38		4.63	2.82	2.58	1.61	1.40		2.26
MIN 2.2 3.1 2.2 2.4 4.0 4.0 2.1 2.2 1.5 1.2 1.3 1.6 AC-FT 164 215 165 269 252 285 168 159 96 86 91 134													
AC-FT 164 215 165 269 252 285 168 159 96 86 91 134													
CAL YR 1986 TOTAL 1097.7 MEAN 3.01 MAX 21 MIN 1.6 AC-FT 2180													
	CAL YR	1986 TOT	AL 1097.7	MEAN 3	.01 MA	X 21	MIN 1.6	AC-FT	2180				

9.0 MIN 1.2 AC-FT 2080

10255810 BORREGO PALM CREEK NEAR BORREGO SPRINGS, CA

LOCATION.--Lat 33°16'44", long 116°25'45", in Anza-Borrego Desert State Park, San Diego County, Hydrologic Unit 18100200, on left bank 3.3 mi northwest of Borrego Springs.

DRAINAGE AREA, -- 21.8 mi².

PERIOD OF RECORD, --October 1950 to current year. Prior to October 1960, published as Palm Canyon Creek near Borrego Springs. Monthly discharge only for October to November 1950, published in WSP 1734.

REVISED RECORD .-- WSP 2128: Drainage area.

GAGE .-- Water-stage recorder. Elevation of gage is 1,200 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- No estimated daily discharges. Records good. No regulation or diversion above station.

AVERAGE DISCHARGE, -- 37 years, 0.98 ft 3/s, 710 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,640 ft³/s, Aug. 16, 1979, gage height, 9.8 ft, from floodmarks, on basis of slope-area measurement of peak flow; no flow for several months in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 15 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 10	0015	*11	*3.18	Jan. 5	0230	*11	*3.18

No flow many days.

		DISCHARGE	, IN CUBIC	C FEET PE		WATER YEA	R OCTOBER	1986 1	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	0	. 43	.72	1,5	1.3	2.5	, 85	.51	,86			
2	.10	.44	.74	1.5	1.2	2.8	. 88	.55	.82			
3	.18	. 47	.75	1,5	1.2	2.6	1.1	.46	.81			
4	.17	. 46	.75	1.9	1.2	2.4	1.6	.39	.89			
5	.18	.51	.75	5.5	1.1	2.2	1.1	.34	.89			
•	. 20		.,,	0.0	~, ~	2.2	2.2					
6	.18	. 52	.89	2.6	1.0	4.7	. 97	.30	.75			
7	.19	, 56	2.0	4.5	1.0	4.6	. 87	.26	, 69			
8	.21	. 59	1.2	2.8	1.1	2.4	.78	.24	, 63			
9	.51	. 59	.95	2.1	1.1	1.8	.70	.25	, 59			
10	4.0	, 59	.93	1.8	1.0	1.4	.65	.24	.52			
	7.0		0.0	4.0	0.5		67		, ,			
11	.76	. 58	. 93	1.6	.95	1.2	.67	.30	.45			
12	.50	. 57	.93	1.6	.94	1.1	.73	.27	.38			
13	.43	. 56	. 93	1.6	. 93	.99	.68	, 26	.29			
14	.38	. 57	. 94	1.6	. 90	.99	.65	,33	. 22			
15	,39	. 58	.96	1.6	.83	2.8	.59	.31	.18			
16	.38	,62	. 97	1.7	.84	2.1	. 54	.34	,12			
1.7	.38	.66	.98	1.5	.81	1.6	.51	.32	,06			
18	.42	1.4	1.0	1.6	.83	1.2	.54	.31	.04			
19	. 42	.90	1.1	1.6	.83	1.2	.64	.35	.02			
20	.42	.79	1.2	1.5	.82	1.1	.61	, 53	.01			
20	.72	.,,	* . 6	1.5	.02	1.1	.01	.50	.01			
21	.42	.74	1.2	1.5	.81	1.7	, 56	,66	.01			
22	. 42	.72	1.1	1.6	.80	3.8	. 52	. 63	.01			
23	. 40	.70	1.1	1.6	1.1	3.0	.48	. 59	0			
24	.39	.72	1.2	1.6	2.9	2.3	. 46	.60	0			
25	.39	.74	1.2	1.5	2.5	1.7	.42	.73	0			
									_			
26	.39	. 72	1.3	1.5	2.6	1.2	.39	1.1	0			
27	.39	. 73	1.3	1.5	2.0	1.1	.37	1.2	0			
28	. 40	. 75	1.4	1.4	2.3	.99	.36	1.1	0			
29	.41	.72	1.4	1.4		, 93	.37	1.0	0			
30	.41	.68	1.4	1.4		.90	. 42	1.0	0			
31	.42		1.4	1.5		.85		.91				
TOTAL	14.64	19.61	33.62	58,1	34.89	60,15	20.01	16.38	9.24	0	0	0
MEAN	.47	,65	1.08	1,87	1.25	1.94	.67	.53	.31	Ö	Ö	Ö
MAX	4.0	1.4	2,0	5.5	2.9	4.7	1.6	1.2	.89	ő	0	Ö
MIN	7.0	.43	.72	1.4	.80	.85	.36	.24	.09	0	Ö	0
AC-FT	29	39	67	115	69	119	40	32	18	0	0	0
AC FI	20	0.5	0,	117	Uð	113	40	92	10	U	U	U
CAL YR	1986 TOT	AL 398,50	MEAN 1.0	9 MAX	24	MIN 0	AC-FT 790					
WTR YR		AL 266,64	MEAN .		5,5		AC-FT 529					
					5,5							

10255885 SAN FELIPE CREEK NEAR WESTMORLAND, CA

LOCATION.--Lat 33°07'26", long 115°51'08", in NW 1/4 SW 1/4 sec.17, T.12 S., R.11 E., Imperial County, Hydrologic Unit 18100200, on left bank 320 ft downstream from bridge on State Highway 86, 14.6 mi northwest of Westmorland, and 4.2 mi upstream from mouth.

DRAINAGE AREA, -- 1,693 mi².

PERIOD OF RECORD .-- December 1960 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 190 ft below National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 10, 1976, at site on left bank 320 ft downstream from bridge on State Highway 86 at different datum.

REMARKS.--Estimated daily discharges: All daily discharges were estimated except Oct. 9-13 and Aug. 6, 7.
Records poor. No regulation above station. Diversion and pumping for domestic use and irrigation in Borrego Valley 25 mi upstream.

AVERAGE DISCHARGE, -- 26 years (water years 1962-87), 7.62 ft 3/s, 5.520 acre-ft/yr,

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 100,000 ft³/s, Sept. 10, 1976, gage height, 19.0 ft, site and datum then in use, from rating curve extended above 500 ft³/s on basis of contracted-opening and flow-over-road measurement of peak flow; no flow for months most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft³/s and maximum (*), from rating curve extended above 10 ft³/s on basis of discharge measurement at gage height 14.53 ft:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 10	0330	*3,060	*12.44	Aug. 6	2100	336	6.59

Minimum daily, 0.80 ft³/s, many days.

		DISCHARGE,	IN CUBI	C FEET		WATER Y		1986	TO SEPTEMBER	1987		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	1.0	1.1	1,5	3.2	2.7	2,3	1.7	1.1	.80	.90	. 90
2	1.1	1.0	1.1	1.5	3.2	2.7	2.3	1.7	1.1	.80	.90	.90
3	1.1	1.0	1.1	1.5	3,2	2.7	2.3	1.6	1,1	.80	,90	.90
4	1.1	1.0	1.1	1.5	3.2	2.7	2.3	1.6	1.0	.80	.90	.90
5	1.1	1.0	1.1	70	3.1	2.7	2.3	1.6	1.0	.80	.90	. 90
3	1.1	1.0	1.1	70	5.1	4.7	2.5	1.0	1.0	.00	.90	. 50
6	1.1	1.0	1.1	10	3,1	4.0	2.3	1.6	1.0	.80	28	.90
7	1.1	1.0	1.1	6.0	3,1	2.7	2.2	1.6	1,0	.80	9.0	. 90
8	1.1	1.0	3.0	4.0	3.0	2.7.	2.2	1.5	1.0	.80	2,0	.80
9	102	1.0	1.5	4.0	3.0	2.7	2.1	1.5	1.0	,80	1.1	.80
10	1230	1.0	1.5	3,9	3,0	2.7	2.1	1.5	1.0	.80	1.0	.80
	1200	1.0	1.5	0,0	0,0	2.,,	2.1	1.5	1.0	.00	1.0	.00
11	150	1.1	1.5	3.9	2.9	2.7	2.0	1.5	1.0	, 90	1.0	.80
12	20	1.1	1.5	3,9	2.9	2.7	2.0	1.5	.90	.90	1.0	.80
13	5.0	1.1	1.5	3.8	2.9	2.7	1.9	1.4	.90	.90	. 90	.80
14	2.0	1.1	1.5	3.8	2,9	2.7	1.8	1.4	, 90	. 90	. 90	. 80
15	1.5	1.1	1.5	3.8	2.8	5.0	1.8	1.4	.90	.90	.90	. 80
16	1.3	1.1	1.5	3.7	2.8	2.7	1.8	1.4	.90	. 90	. 90	.80
17	1.2	1.1	1.5	3.7	2.8	2.7	1.8	1.4	. 90	, 90	, 90	.80
18	1.0	2.0	1.5	3.7	2.8	2.7	1.8	1.3	, 80	. 90	. 90	, 80
19	1.0	1.5	1.5	3.6	2.8	2.7	1.8	1.3	, 80	. 90	.90	.80
20	1.0	1.2	1.5	3.6	2.8	2.7	1.8	1.3	. 80	.90	.90	.80
21	1.0	1.1	1,5	3.6	2.7	2.9	1.8	1.3	. 80	.90	.90	.80
22	1.0	1.1	1.5	3.5	2.7	5.5	1.8	1.3	.80	.90	.90	.80
23	1.0	1.1	1.5	3.5	5.0	3.5	1.8	1,2	.80	.90	.90	.80
24	1.0	1.1	1.5	3.5	2.7	2.7	1.7	1.2	.80	.90	.90	.80
25	1.0	1.1	1.5	3.4	2.7	2.6	1.7	1.2	.80	.90	.90	.80
23	1.0	1,1	1.5	3.4	2.7	2.0	1.7	1.2	. 80	. 90	. 90	. 60
26	1.0	1.1	1.5	3.4	2.7	2.5	1.7	1.2	. 80	. 90	. 90	.80
27	1,0	1.1	1.5	3.4	2.7	2.5	1.7	1.2	.80	.90	.90	.80
28	1.0	1.1	1.5	3,3	2,7	2.5	1.7	1.1	.80	. 90	. 90	.80
29	1.0	1.1	1.5	3.3		2.4	1.7	1.1	. 80	.90	, 90	.80
30	1.0	1.1	1.5	3.3		2.4	1.7	1.1	.80	.90	. 90	.80
31	1.0		1.5	3.2		2.3		1.1		, 90	.90	
TOTAL	1535.8	33.4	45.2	178.8	83.4	89.4	58.2	42.8		26,90	64.70	24.70
MEAN	49.5	1.11	1.46	5.77	2.98	2.88	1.94	1.38	. 90	. 87	2.09	. 82
MAX	1230	2.0	3.0	70	5.0	5.5	2.3	1.7	1.1	.90	28	. 90
MIN	1.0	1.0	1,1	1.5	2.7	2.3	1.7	1.1	, 80	, 80	. 90	.80
AC-FT	3050	66	90	355	165	177	115	85	54	53	128	49
CAT VD	1986 ፕርፕ	AT 383/ 20	MEAN	10 5	MAY 1230	MTN	30 ልሮ−ፑሞ	7610				

CAL YR 1986 TOTAL 3834.20 MEAN 10.5 MAX 1230 MIN .30 AC-FT 7610 WTR YR 1987 TOTAL 2210,40 MEAN 6.06 MAX 1230 MIN . 80 AC-FT 4380

10256060 WHITEWATER RIVER AT WHITE WATER CUTOFF, AT WHITE WATER, CA

LOCATION.--Lat 33°55'31", long 116°38'07", in NE 1/4 SE 1/4 sec.11, T.3 S., R.3 E., Riverside County, Hydrologic Unit 18100200, on center pier of White Water Cutoff (old Highway 99) bridge, 0.1 mi east of White Water, 0.75 mi downstream from Metropolitan Water District's Colorado River Aqueduct turnout, and 2.0 mi upstream from San Gorgonio River.

DRAINAGE AREA, -- 59, 1 mi²,

CAL YR 1986 TOTAL

WTR YR 1987 TOTAL 117777.00

160297.00

MEAN 439

MEAN 323

MAX 960

MAX 846

MIN O

MIN 0

AC-FT 317900

AC-FT 233600

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1984 to September 1985 (discharge measurements only), October 1985 to current year.

GAGE, --Water-stage recorder and concrete rectangular weir. Elevation of gage is 1,360 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 3-5, Nov. 27 to Dec. 28, Jan. 6-26, Feb. 22-28, and Apr. 14 to Sept. 30. Records fair except those for periods of estimated daily discharges, which are poor. Imported water is released to the Whitewater River from the Colorado River Aqueduct at a point 0.75 mi upstream. Water is diverted out of the basin 16.5 mi upstream to powerplants in the San Gorgonio River basin and then to an area north of Banning for irrigation. For records of releases and diversions see Whitewater River at Windy Point, near White Water (station 10257550).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,020 ft³/s, Feb. 15, 1986, gage height, 11.97 ft, from rating curve extended above 900 ft³/s; no flow for many days in some years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 846 ft³/s, Nov. 22, gage height, 10.51 ft; no flow Nov. 19, 27-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC FEB SEP MAR APR THIN. JIII. JAN. MAY AHG 770 750 1 804 824 623 523 488 6.0 2.5 .50 .50 4.0 2 778 779 750 825 621 523 435 6,0 1.0 .50 , 50 4.0 3 840 769 750 828 623 516 496 6.0 1,0 .50 . 50 4.0 840 750 794 780 627 492 6.0 1.0 4.0 5 840 789 750 756 626 476 491 6.0 .50 .50 4.0 .50 6 839 785 750 760 624 423 487 6.0 .50 .50 .50 4.0 834 776 750 760 623 444 487 6.0 .50 .50 4.0 . 50 8 .50 750 700 6.0 .50 4.0 832 541 621 457 485 . 50 9 807 602 750 620 623 460 347 6.0 . 50 .50 . 50 4.0 10 557 791 750 620 628 460 122 6.0 .50 .50 2.0 4.0 . 50 11 540 791 750 620 633 448 42 6.0 . 50 2.0 3.0 750 12 501 790 620 635 478 44 6.0 .50 .50 2.0 3.0 13 556 782 750 660 634 476 26 6.0 .50 .50 2.0 3.0 14 708 785 750 660 634 489 10 6.0 . 50 .50 2.0 3.0 773 15 799 750 660 631 488 10 6.0 .50 .50 2.0 3.0 16 656 769 750 660 631 485 9.0 5.0 . 50 .50 2.5 2.5 17 493 774 750 660 628 482 . 50 . 50 9.0 5.0 2.5 2.5 18 499 248 750 675 625 482 9.0 5,0 . 50 . 50 2.5 2.5 19 531 n 750 666 627 479 5.0 . 50 .50 2.5 9.0 20 533 455 750 632 625 476 2.5 9.0 5.0 .50 .50 21 693 821 750 660 627 479 8.0 4.0 . 50 .50 3,5 2.0 22 791 846 750 660 624 382 8.0 4.0 . 50 .50 3.5 2.0 23 791 846 750 655 600 470 4.0 . 50 8.0 .50 2.0 3.5 24 792 720 1.0 . 50 659 600 499 8.0 4.0 . 50 3.5 2.0 767 25 658 580 482 793 1.0 8.0 4.0 .50 .50 3.5 2.0 7.0 3.0 26 780 667 1.0 656 560 485 . 50 .50 2.0 27 750 0 1.0 653 540 486 7.0 3.0 .50 . 50 2.0 3.5 28 748 0 660 521 465 7.0 1.0 3,0 .50 .50 3,5 2.0 29 773 0 437 ___ 664 493 7.0 3.0 . 50 . 50 3.5 2.0 787 0 826 646 ---490 7.0 3,0 .50 .50 3.5 2.0 802 673 623 489 3.0 . 50 3.5 TOTAL 22287 18230 19191.0 21180 17194 14771 4582.0 18.50 153.0 15.50 67.50 87.5 MEAN 719 608 619 683 476 614 153 4.94 .62 . 50 2.18 2.92 .50 MAX 840 846 826 828 635 523 496 6.0 2.5 3.5 4.0 MIN 493 n 1.0 620 521 382 7.0 3.0 .50 . 50 . 50 2.0 AC-FT 44210 36160 38070 42010 34100 29300 9090 303 37 31 134 174

10256060 WHITEWATER RIVER AT WHITE WATER CUTOFF, AT WHITE WATER, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972-76, 1978 to current year. CHEMICAL DATA: Water years 1972-76, 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 30 APR	1100	891	848	8.4	20.5	260	130	63	25	72
22	1200	7.8	360	8.9	19.5	170	12	48	12	12
DATE	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 30 APR	37	2	3.7	161	0	133	132	220	60	0.30
22	13	0.4	3.8	190	1	157	157	30	3.2	0.80
DAT	SILI DIS SOL (MG TE AS SIO	- AT 18 VED DEG. /L DIS SOLV	DUÉ SUM C 30 CONST . C TUENT S- DIS VED SOLV	OF SOLI TI- DI TS, SOL S- (TO VED PE	DS, GE S- NO2+ VED DI NS SOL R (MG	N, PHO NO3 OR S- DI VED SOL	S- D: VED SOI /L (U	LVED SOL G/L (UG	ON, NES IS- DI LVED SOI B/L (UG	S- VED
OCT 30 APR 22							.010 .030	110 10	9 11	<1 2

< Actual value is known to be less than the value shown.

10256500 SNOW CREEK NEAR WHITE WATER. CA

LOCATION.--Lat 33°52'14", long 116°40'49", in NW 1/4 NW 1/4 sec.33, T.3 S., R.3 E., Riverside County, Hydrologic Unit 18100200, on left bank 10 ft upstream from Desert Water Agency diversion dam, 0.1 mi downstream from East Fork, and 4.4 mi southwest of White Water. DRAINAGE AREA.--10.8 mi

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- July to December 1921, May 1922 to February 1927, December 1927 to September 1931, October 1959 to current year. Yearly discharge only for 1930, published in WSP 1314.

GAGE.--Water-stage recorder on creek; water-stage recorder and Parshall flume on diversion. Elevation of both gages is 2,000 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to September 1931, at various sites within 500 ft of present site at different datums. October 1959 to Oct. 6, 1970, at site 40 ft upstream at present datum. Oct. 6, 1970, to Oct. 25, 1978, at site 290 ft upstream above diversion at present datum. Gage moved to present site 10 ft downstream from diversion and 10 ft upstream from concrete diversion dam Oct. 25, 1978.

REMARKS.--Estimated daily discharges: Oct. 1 to Mar. 16, Mar. 25-31, Apr. 4, 5, and Aug. 1 to Sept. 30. Records fair. No regulation above station. Desert Water Agency diverts 10 ft upstream, generally taking most of the base flow. Total flow is computed by combining discharge records for the diversion and the creek. Discharge records for Snow Creek diversion beginning October 1978 available in files of the U.S. Geological Survey. AVERAGE DISCHARGE. -- Combined creek and diversion: 35 years (water years 1923-26, 1929-31, 1960-87), 9.78 ft³/s, 7,090 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft³/s, Jan. 25, 1969, gage height, 13.8 ft, from floodmarks, site and datum then in use, from rating curve extended above 55 ft³/s on basis of slope-area measurement of peak flow; minimum daily, 2.1 ft³/s, June 23-27, Sept. 5-11, 1961.

EXTREMES FOR CURRENT YEAR.--Combined creek and diversion: Peak discharges greater than base discharge of 100 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	1330	*40	*3.05				

Minimum daily, 4.0 ft3/s, Sept. 1-30,

	COM	BINED DIS	CHARGE,	IN CUBIC	FEET PER	SECOND, MEAN VAL		R OCTOBER	1986 TO	SEPTEMBER	1987	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	7.3 7.3 7.3 7.3 7.3	7.4 7.5 7.7 8.0 13	8.2	9.9 9.3 8.6 8.4 8.3		5.1 5.0 5.0	4.5 4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0
6 7 8 9 10	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.9 6.1 6.3 6.6 7.3	7.3 7.3 7.3 7.3 7.3	24 13 11 9.6 9.0		8.3 8.5 9.6 8.9 8.4	6.4 6.5 6.4 6.1	5.0 5.0 5.1	4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0
11 12 13 14 15	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	7.3 7.3 7.3 7.3 7.3	7.3 7.3 7.3 7.3 7.3		11 11 3 10	8.3 8.4 8.4 8.5	5.8 5.8	5.0 4.9 4.3	4.5 4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0
16 17 18 19 20	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	7.3 7.3 7.3 7.3 7.3	7.3 7.3 7.3 7.3 7.3		10 10 9.6	8.4 8.0 7.8 7.7		5.0 5.0 4.9	4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0
21 22 23 24 25	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	7.3 7.3 7.3 7.3 7.3	7.3 7.3 7.3 7.3 7.3	7.6 7.6 7.6 8.2 8.2	8.4 8.5 8.8	7.7 7.3 7.3 7.2 7.1		5.0 4.9 4.9	4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0
26 27 28 29 30 31	5.7 5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.7 5.7 5.7 5.7	7.3 7.3 7.3 7.3 7.3 7.3	7.3 7.3 7.3 	8.2 8.2 8.2 8.2 8.2	11 12 11 11	7.0 7.2 7.1 7.0 6.7 6.6	5.1 5.1	5.1 5.5 5.2 5.0	4.5 4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0
TOTAL MEAN MAX MIN AC-FT	176.7 5.70 5.7 5.7 350	171.0 5.70 5.7 5.7 339	176.7 5.70 5.7 5.7 350	214.0 6.90 7.3 5.7 424	204.4 7.30 7.3 7.3 405	277.0 8.94 24 7.4 549	9.41 12 8.0	248.1 8.00 9.9 6.6 492	5.77 6.5 5.1	5.00 5.5 4.3	139.5 4.50 4.5 4.5 277	120.0 4.00 4.0 4.0 238

YR 1986 TOTAL 3299.6 MEAN 9.04 MAX 152 MIN 5.1 AC-FT 6540 YR 1987 TOTAL 2337.7 MEAN 6.40 MAX 24 MIN 4.0 AC-FT 4640

10256500 SNOW CREEK NEAR WHITE WATER, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water years 1972-76, 1978 to current year. CHEMICAL DATA: Water years 1972-76, 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS O CACO3	DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 29 APR	1115	5.7	110	8.0	14.5	34	0	12	1.1	9.2
23	1330	7.9	97	8.0	15.5	33	L 0	11	0.96	7.7
DATE	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY CARBON- ATE IT-FLD (MG/L CACO3)		SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 29 APR	35	0.7	2.1	65	0	53	3 55	2.3	1.5	<0.10
23	33	0.6	1.8	57	0-	47	49	1.7	1.6	<0.10
DAT	SILIO DIS SOL' (MG E AS SIO:	- AT 18 VED DEG. /L DIS SOLV	OUÉ SUM O CONS C TUEN O DI VED SOL	OF SOLI TI- DI TS, SOL S- (TO VED PE	DS, GE S- NO24 VED DI NS SOI R (MC	EN, PHO FNO3 OF IS- DI VED SOI F/L (MC	IS- D LVED SO B/L (U	RON, IRO IS- DI LVED SOL G/L (UG B) AS	S- DI VED SOL	E, S- VED /L
OCT 29 APR			81 67				0.050	10 <10	9	<1
23	1.	ь	07	72 0	.09 <0.	. 100 <(0.010	~10	0	1

< Actual value is known to be less than the value shown.

10257550 WHITEWATER RIVER AT WINDY POINT, NEAR WHITE WATER, CA

LOCATION .-- Lat 33°53'56", long 116°37'13", in SW 1/4 NE 1/4 sec.24, T.3 S., R.3 E., Riverside County, Hydrologic Unit 18100200, on right bank 200 ft north of Highway 111, 2.0 mi southeast of White Water, and 3.8 mi east of the junction of Highway 111 and Interstate 10.

DRAINAGE AREA, -- 263 mi².

PERIOD OF RECORD. -- October 1984 to current year. Discharge measurements only, July 1982 to September 1984.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 1,040 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- Estimated daily discharges: Dec. 3-22, 24-28, Apr. 2-10. Records fair except those for periods of estimated discharge, which are poor. Imported water is released to the Whitewater River from the Colorado River Aqueduct at a point 2.75 mi upstream for ground-water recharge in the upper Coachella Valley. Water is diverted out of the basin 18.5 mi upstream to powerplants in the San Gorgonio River basin and then to an area north of Banning for irrigation.

COOPERATION. -- Records of diversion out of basin were provided by Southern California Edison Co. Records of Colorado River Aqueduct releases were provided by Coachella Valley Water District (from Metropolitan Water District's monthly reports).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,190 ft3/s, Nov. 22, 1986, gage height, 4.33 ft; no flow for several days in most years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 1,190 ft 3/s, Nov. 22, gage height, 4.33 ft; no flow for many days.

		DISCHARGE	, IN CUB	IC FEET), WATER YE EAN VALUES	EAR OCTOBER	R 1986 TO	о ѕертемве	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	560	637	227	435	702	565	406			0		0
2	563	663	669	557	670	558	250			0		0
3	615	660	640	636	629	548	250			0		0
4	654	615	640	726	608	491	250			0		0
5	578	598	640	802	589	455	250			0		0
6	578	556	640	824	580	562	250			0		0
7	565	522	640	738	594	535	250			0		0
8	655	689	640	737	591	493	250			0		0
9	597	624	640	739	591	517	250			0		0
10	693	668	640	736	590	500	50			0		0
11	625	711	640	747	595	413	0			0		0
12	668	678	640	650	626	436	0			0		0
13	718	619	640	616	582	383	0			0		0
14	634	592	640	664	595	378	0			0		0
15	545	653	640	603	583	412	0			0		0
16	679	682	640	545	639	412	0			0		0
17	683	209	640	518	599	411	0			0		0
18	672	41	640	486	608	393	0			0		0
19	707	8.2	640	488	624	3,94	0			0		0
20	722	283	640	520	637	397	0			0		0
21	633	716	640	529	597	364	0			.62		0
22	661	882	640	508	547	353	0			.05		0
23	640	778	194	439	546	341	0			0		0
24	547	683	0	490	614	417	0			0		.06
25	512	712	0	477	380	451	0			0		0
26	419	498	0	476	594	436	0			0		0
27	509	0	0	508	572	436	0			0		0
28	429	0	0	538	579	431	0			0		0
29	439	0	217	590		448	0			0		0
30	469	0	295	568		435	0			0		0
31	520		383	661		421				0		
TOTAL	18489	14977.2	14785	18551	16661	13786	2456	0	0	.67	0	.06
MEAN	596	499	477	598	595	445	81.9	0	0	.022	0	.002
MAX	722	882	669	824	702	565	406	0	0	.62	0	.06
MIN	419	0	0	435	380	341	0	0	0	0	0	0
AC-FT	36670	29710	29330	36800	33050	27340	4870	0	0	1.3	0	. 1
a.	38450	30130	35430	38470	30960	26140	8040	0	0	0	0	0
b	184	143	166	148	95	94	144	164	131	115	104	124

CAL YR 1986 TOTAL 135631.20 WTR YR 1987 TOTAL 99705.93 MEAN 372 MAX 923 MIN 0 AC-FT 269000 MEAN 273 MAX 882 MIN 0 AC-FT

a Discharge, in acre-feet, of imported water released to river 2.75 mi upstream. b Discharge, in acre-feet, diverted out of basin 18.5 mi upstream.

10257600 MISSION CREEK NEAR DESERT HOT SPRINGS, CA

LOCATION.--Lat 34°00'40", long 116°37'38", in NE 1/4 SW 1/4 sec.12, T.2 S., R.3 E., Riverside County, Hydrologic Unit 18100200, in Mission Creek Indian Reservation, 0.6 mi downstream from West Fork, and 6.8 mi northwest of Desert Hot Springs.

DRAINAGE AREA. -- 35.7 mi².

PERIOD OF RECORD, -- October 1967 to current year,

GAGE.--Water-stage recorder. Elevation of gage is 2,400 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 7, Nov. 18 to Feb. 4, Apr. 26, and May 31 to June 10.

Records fair except those for periods of estimated record, which are poor. Slight regulation of low flow by two small dams with a combined capacity of about 3 acre-ft, 2 mi above station.

AVERAGE DISCHARGE. -- 20 years, 3.73 ft 3/s, 2,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,750 ft³/s, Aug. 17, 1983, gage height, 3.33 ft, on basis of slope-conveyance study of peak flow; maximum gage height, 6.40 ft, Jan. 25, 1969; no flow for long periods in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan, 5	Unknown	a*10	*1.19				

a Estimated

No flow for many days.

CAL YR 1986 TOTAL 385.38

WTR YR 1987 TOTAL 190.61

MEAN 1.06

MEAN .52

MAX

MAX

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER YEAR N VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.4	.90	1.0	.80	.40	.67	. 67	. 50	.10			
2	1.3	.90	1.0	.80	.40	.67	.80	. 50	.10			
3	1.3	2.0	1.0	.80	.40	.58	.80	. 43	.10			
4	1.3	1.0	1.0	.80	.40	.58	.80	. 43	.10			
5	1.3	.90	1.0	5.0	. 43	.50	.80	. 28	.10			
6	1.2	.90	3.5	2.0	, 43	.67	. 80	. 28	.05			
7	1.2	.90	1.4	2.5	. 43	.67	.67	.28	.05			
8	1.2	.80	1.2	1.5	. 43	.58	.67	, 28	.05			
9	1.2	.94	1.0	1.0	. 43	.58	.67	. 24	.05			
10	1,2	.94	1.0	.90	.43	.58	,67	. 24	.05			
10	1,4		1.0	. 50	.40	, 50	.07	. 24	.03			
11	1.2	1.1	1.0	.80	.43	. 58	. 67	. 20	0			
12	1.2	.94	1.0	.80	.43	.50	. 67	. 24	0			
13	1.2	.94	1.0	.80	.43	.50	. 67	.19	0			
14	1,2	1.1	1.0	.80	.43	, 50	. 67	.15	0			
15	1.1	1.1	1.0	.80	.50	. 58	. 67	.28	0			
16	1,1	.94	. 90	.70	.50	.50	. 58	.21	0			
17	1.1	1.1	.90	.70	.50	.50	.58	.16	ŏ			
18	1.1	3.0	.90	.70	.50	.50	.67	.16	Ö			
19	1.1	1.1	.90	.70	.50	.67	.67	.20	0			
20'	1.1	1.0	.90	.70	.50	.67	.67	.24	0			
20	1,1	1.0	.50	.70	.50	.67	.07	. 24	U			
21	1.1	1.0	.90	.60	.50	. 94	. 67	.24	0			
22	1.1	1.0	.90	.60	. 50	.94	. 58	, 16	0			
23	1.1	1.0	.90	.60	.58	.80	.67	. 13	0			
24	1,1	1.0	.90	.60	.80	.80	. 58	. 13	0			
25	1.1	1.0	.90	.60	.80	.80	. 58	. 20	0			
26	1.0	1.0	. 80	. 50	. 67	. 67	. 40	. 24	0			
27	1.0	1.0	.80	. 50	.67	.67	.50	.20	0			
28	1.0	1.0	.80	. 50	.67	.67	. 43	.16	Ō			
29	1.0	1.0	.80	. 50		.67	. 43	. 13	Ö			
30	1.0	1.0	.80	.50		.67	. 43	. 10	Ö			
31	.95		.80	.50		.67		.12				
TOTAL	35,45	32,50	31.90	29.60	14.09	19.88 19	9.14	7,30	.75	0	0	0
MEAN	1.14		1.03	.95	.50					0	0	
	1.14					. 64	. 64	. 24	.025	-		0
MAX		3.0	3.5	5.0	. 80	. 94	. 80	. 50	.10	0	0	0
MIN	.95	.80	. 80	. 50	. 40	. 50	. 40	. 10	0	0	0	0
AC-FT	70	64	63	59	28	39	38	14	1.5	0	0	0
a	4000 MOM											

MIN 0

MIN 0

19

5.0

AC-FT 764

AC-FT 378

10257720 CHINO CANYON CREEK BELOW TRAMWAY, NEAR PALM SPRINGS, CA

LOCATION.--Lat 35°50'39", long 116°36'16", in NW 1/4 NE 1/4 sec.7, T.4 S., R.4 E., Riverside County, Hydrologic Unit 18100200, on left bank 0.5 mi downstream from tram building, 3.5 mi west of Highway 111 on road leading to Palm Springs aerial tramway, and 5.5 mi west of Palm Springs.

DRAINAGE AREA, --4,71 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- October 1986 to September 1987.

GAGE.--Water-stage recorder. Elevation of gage is 2,100 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 8, 19, Dec. 2, 4, 6-8, Dec. 26 to Jan. 23, Feb. 20-27, Mar. 19, 20, Apr. 5, 25-29, and May 10 to June 3. Records good except those for periods of estimated record, which are poor. Two small diversions 2 mi upstream, one for city of Palm Springs and one for Palm Springs aerial tramway. New gage not equivalent to prior station 10257710 Chino Canyon Creek near Palm Springs, due to increase in drainage area.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 19, 1985, at station 10257710 Chino Canyon Creek near Palm Springs 1.5 mi upstream was a debris flow as a result of intense thunderstorm activity less than 2 weeks after a brushfire denuded over 75 percent of the drainage basin. The maximum stage for this flood exceeded gage height 20.7 ft, completely filling the existing channel with boulders and mud and altering the entire canyon floor at the gage. The peak discharge for this flood is unknown.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14 ft³/s, Nov. 18, gage height, 9.03 ft; minimum daily, 0.10 ft³/s, Sept. 16.

		DISCHARGE,	IN CUBIC	FEET		, WATER Y EAN VALUE		1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.79	1.0	1.2	1.3	1.1	1.1	. 93	.71	.40	.21	.15	.16
2	. 93	1.1	1.1	1.3	1.1	1.1	, 93	,75	. 40	.21	.14	.14
3	. 96	1.1	1.1	1.3	1.1	1.1	.93	.70	.40	.21	, 13	.13
4	.82	1.4	1.1	1.3	.91	1.1	.93	,63	.41	.20	.13	.15
5	.79	1.2	1.1	1.5	1.2	1.2	.76	,60	.38	.20	. 13	
,	./8	1.2	1.1	1.5	1.2	1.2	.76	.60	. 30	. 21	. 13	.15
6	.79	1.1	1.1	1.5	1.4	2.1	.76	. 55	.45	.18	. 13	.14
7	.81	1.2	1.1	1.5	1.4	1.2	.79	. 56	.31	.16	. 11	.14
8	.76	1.1	1.1	1.5	1.4	1,3	.79	. 53	. 50	. 17	.12	.14
9	1.6	1.1	1.0	1.5	1.4	1.4	.79	. 57	.61	,17	.13	.15
10	1.6	1.1	.98	1.5	1,3	1.4	.79	.56	.49	.16	.12	.14
	2.0			1.5	1.0		,,,	.50	.40	.10	, 12	. 14
11	1.1	1,1	. 80	1.4	1.1	1.1	.85	. 56	.46	.18	.12	.15
12	.88	1.1	. 86	1.2	1.1	1,1	.87	.56	.36	.18	. 11	.14
13	.94	1.1	1.1	1.2	1.1	1.1	1.1	,56	.31	.15	. 14	,11
14	.93	1.5	1.5	1.2	1.0	1.1	.88	.56				.14
15									.31	.69	. 14	
13	. 93	1.3	2.3	1.2	1.2	1.3	. 87	. 56	.31	1.7	.11	.15
16	. 93	1.1	1.3	1.2	1.1	1.1	.79	. 50	.32	1.3	. 14	.10
17	. 97	2.0	1.4	1,2	1.0	.88	.79	. 50	.31	. 17	. 13	.15
18	. 92	3.2	2.2	1.2	1.2	. 93	.79	. 50	.30	.15	. 14	.13
19	1.1	2.2	1.3	1.2	.89	.92	.72	.50	.29	.17	. 12	, 15
20	1.1	1.3	.83	1.2	.90	.92	,83	.50	.30	.18	. 13	. 14
20		1.0	.00	1.4	,50	. 52	.00	. 50	.50	.10	. 10	. 14
21	1.1	1.3	. 93	1.2	.90	.91	.93	.45	. 26	.15	. 13	.14
22	1.1	1.3	. 93	1.2	1.1	1.2	.93	. 45	.32	. 14	.15	.16
23	1.1	1.4	1.2	1.2	.90	1.1	.81	. 45	.26	.13	.12	.16
24	1.1	1.4	1.6	. 93	1,5	1.1	.67	.45	.25	.15	.15	.16
25	1.1	1.3	.90	.93	1.3	1.1	.72	.45	.25	.13	.15	.16
23	*. *	1.5	. 30	. 55	1.0	1.1	.72	.45	.23	. 13	.13	, 10
26	1.1	1.1	1.3	1.0	1.1	, 93	.72	.40	.21	. 15	. 14	.18
27	. 93	1.1	1.3	1.1	1.1	, 93	.72	.40	. 24	, 27	.13	.16
28	. 93	1.1	1.3	1.3	1.1	. 94	.72	.40	.21	. 34	.12	.16
29	.93	1.1	1.3	1,3		1.1	.76	.40	.20	.21	.13	.16
30 .	.93	1.1	1.3	1.2		.97	.85	.40	.23	.15	.12	.17
31	.93		1.3	1.1		.89			.23			.17
31	. 50		1.3	1.1		.09		.40		.14	.15	
TOTAL	30.90	39.5	37.83	38.86	31.90	34.62	24,72	16.11	10.05	8.71	4.06	4.41
MEAN	1,00	1,32	1.22	1.25	1.14	1.12	. 82	. 52	.34	. 28	, 13	.15
MAX	1.6	3.2	2,3	1.5	1.5	2.1	1.1	.75	.61	1.7	.15	.18
MIN	.76	1.0	.80	.93	.89	.88	.67	.40	.20	.13	.13	.10
AC-FT	61	78	75	77	63	69	49	32	20			
NO FI	01	/ 0	15	"	03	69	49	34	20	17	8.1	8.7

WTR YR 1987 TOTAL 281.67 MEAN .77 MAX 3.2 MIN .10 AC-FT 559

10257720 CHINO CANYON CREEK BELOW TRAMWAY, NEAR PALM SPRINGS, CA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. --October 1986 to September 1987. CHEMICAL DATA: October 1986 to September 1987.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD~ NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 29 APR	1430	0.93	211	8.5	19.0	79	0	27	2.7	10
23	1030	0,93	203	8.6	18.0	78	0	27	2.6	9.8
DATE	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	SIUM, DIS- SOLVED	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CACO3)		SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 29 APR	20	0.5	5.5	120	2	102	103	6.9	2.7	<0.10
23	20	0.5	5.2	111	3	96	99	6.1	2.7	<0.10
DA	SILI DIS SOLV (MG TE AS	- AT 18 ED DEG. /L DIS SOLV	DUÉ SUM C BO CONST C TUENTS B- DIS VED SOLV	OF SOLI TI- DI S, SOLV S- (TO VED PE	DS, GES- NO2+ ED DI DNS SOL ER (MG	N, PHO NO3 OR S- DI VED SOL	S- DI VED SOI /L (U	RON, IRO IS- DI LVED SOL G/L (UG B) AS	S- DI VED SOL /L (UG	E, S- VED
OCT 29 APR 23		•					.010	20	11	<1 2

< Actual value is known to be less than the value shown.

10258000 TAHOUITZ CREEK NEAR PALM SPRINGS. CA

LOCATION.--Lat 33°48'18", long 116°33'30", in SW 1/4 SW 1/4 sec.22, T.4 S., R.4 E., Riverside County, Hydrologic Unit 18100200, 2.2 mi southwest of Palm Springs and 7 mi upstream from mouth.

DRAINAGE AREA, -- 16.8 mi²,

PERIOD OF RECORD. -- October 1947 to September 1982, October 1983 to current year.

GAGE, --Water-stage recorder, Elevation of gage is 762.5 ft above National Geodetic Vertical Datum of 1929 (levels by Riverside County Flood Control District). Prior to Aug. 25, 1970, at datum 2.00 ft higher.

REMARKS.--Estimated daily discharges: Oct. 8 to Nov. 5, Nov. 9 to Dec. 4, and Mar. 17 to Apr. 6. Records fair except those for periods of estimated daily discharges, which are poor. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 39 years (water years 1948-82, 1984-87), 5.28 ft3/s, 3,820 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,900 ft³/s, Nov. 22, 1965, Jan. 25, 1969, gage height, 12,34 ft, from rating curve extended above 70 ft³/s on basis of slope-area measurements at gage heights 10.45 and 12.34 ft; maximum gage height, 15.78 ft, Sept. 7, 1981, from debris wave produced by thunderstorm following a brushfire; no flow for parts of most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 85 ft 3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 18	1130	*5.3	*4.11				

No flow Aug. 23 to Sept. 16.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEAR EAN VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	1.5	1.6	1.6	1.9	2.0	3.0	4.2	1.4	.08	.08	0
2	1,2	1.5	1.6	1.5	1.9	2.0	3.0	3.9	1.2	.08	.10	0
3	1,4	1.5	1.6	1.5	1.9	2.1	3.0	3.6	1.1	.07	.07	0
4	1.3	1.5	1.6	1.7	1.9	2.1	3.0	3.3	1.1	.07	.04	0
5	1.3	1,5	1.6	3.1	1.8	2.1	3.0	3.1	1.1	.09	.05	0
6	1.3	1.5	2.1	2.0	1.8	3.3	3.0	2.9	1.2	.10	.05	0
7	1.3	1.5	3.3	2.6	1.7	3.7	3.1	2,8	1.3	.10	.11	0
8	1.3	1,4	2.5	2.1	1.7	3,4	3.2	2.8	1.2	.09	.13	0
9	1.3	1.5	2.2	1.9	1.7	3.1	3.4	2.8	1.2	. 10	. 14	0
10	1.5	1,5	2.0	1.8	1.8	2.9	3.8	2.8	1.1	, 13	.12	0
11	1.5	1.5	1.9	1.8	1.9	2.7	4.0	2.7	1.0	.14	.08	0
12	1.5	1.5	1.9	1.8	1.9	2.6	4.1	2.6	.94	.11	.05	0
13	1.5	1.5	1.9	1.7	1.9	2.7	4.1	2.5	.84	.09	.02	0
14	1.5	1.5	1.9	1.7	1.9	2.6	4.4	2.8	.73	.06	.02	0
15	1.5	1,5	1.9	1.7	2.0	2.8	4.5	2.9	.67	.06	. 04	0
16	1.5	1.5	1.8	1.7	2.0	2,8	4.6	2.9	.65	.09	.03	0
17	1.5	1.5	1.8	1.6	1.8	2.8	4.7	2.5	.61	.18	.07	.01
18	1.5	2.5	1,7	1.7	1.8	2.8	4.8	2.4	, 50	.18	.07	.06
19	1.5	2.0	1.7	1.7	1.8	2.8	4.4	2.3	.33	.18	, 06	.07
20	1.5	1.6	1.7	1.6	1.7	2.8	4.2	2.3	.32	. 17	.04	.08
21	1.5	1.6	1.7	1.7	1.7	3.0	4.0	2.2	.30	.19	.02	.08
22	1.5	1.6	1.6	1.7	1.7	3,0	3.8	2.1	. 28	.16	.01	.08
23	1.5	1,6	1.7	1.7	1.7	3.0	3,8	2.0	. 23	.10	0	.09
24	1,5	1.6	1.7	1.6	2.4	3.0	3.9	2.0	. 21	.04	0	.15
25	1.5	1.6	1.7	1.6	2.1	3.0	4.0	1.8	.19	.03	0	.23
26	1.5	1.6	1.6	1,6	2.2	3.0	4.2	1.7	.15	.04	0	.24
27	1.5	1.6	1,6	1.6	2.1	3.0	4.2	1.8	.11	.05	0	, 25
28	1.5	1.6	1.6	2.4	2.1	3.0	4.3	1.7	. 12	.06	0	.25
29	1.5	1.6	1.6	2.5		3.0	4.4	1.6	. 13	.13	0	. 27
30	1.5	1.6	1.5	2.1		3.0	4.3	1.7	. 11	.10	0	.23
31	1.5		1.6	2.0		3.0		1.5		.08	0	
TOTAL	44.7	47.5	56.2	57.3	52.8	87.1 1	16.2	78.2	20.32	3,15	1.40	2.09
MEAN	1.44	1.58	1.81	1.85	1.89		3.87	2,52	.68	.10	.045	.070
MAX	1.5	2.5	3.3	3.1	2.4	3.7	4.8	4.2	1.4	.19	.14	. 27
MIN	1.2	1.4	1.5	1.5	1.7	2.0	3.0	1.5	.11	.03	0	0
AC-FT	89	94	111	114	105	173	230	155	40	6.2	2.8	4.1

CAL YR 1986 TOTAL 2438.10 MEAN 6.68 MAX 228 MIN .50 AC-FT 4840 WTR YR 1987 TOTAL 566.96 MEAN 1.55 MAX 4.8 MIN 0 AC-FT 1120

10258500 PALM CANYON CREEK NEAR PALM SPRINGS, CA

LOCATION.--Lat 33°44'42", long 116°32'05", in SW 1/4 SE 1/4 sec.11, T.5 S., R.4 E., Riverside County, Hydrologic Unit 18100200, on right bank 0.8 mi upstream from Murray Canyon Creek and 6 mi south of Palm Springs.

DRAINAGE AREA. -- 93.3 mi².

PERIOD OF RECORD .-- January 1930 to January 1942, October 1947 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 700 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Jan. 14, 1942, at datum 0.2 ft higher.

REMARKS. -- No estimated daily discharges. Records fair. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 51 years (water years 1931-41, 1948-87), 5.31 ft3/s, 3,850 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 7,000 ft³/s, Feb. 21, 1980, gage height, 7.29 ft, from rating curve extended above 650 ft³/s on basis of slope-area measurement at gage height 6.38 ft; no flow for several months in most years.

EXTREMES FOR CURRENT YEAR, -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan, 5	0800	*7.7	*2.36				

No flow for many days,

		DISCHARGE,	IN CUBIC	C FEET	PER S		WATER Y		OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN		FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1 2	0	0 0	.91 .97	1.1 .91		.63 .56	1.3 1.3		.49 .39					
3	0	0	. 87	.84		. 55	1.3		.49					
4	0	0	. 94	1.3		.48	1.3		.60					
5	0	0	. 97	4.3		.36	1.4		. 52					
6	0	0	1.8	2.2		.26	3.1		.43					
7	0	0	3.3	3.4		.18	3.8		.34					
8	0 .94	0 0	3.2	2.7		.14	2.5		.26					
9 10	4.3	0	2.5 2.1	1.9 1.6		.25 .33	1,9 1.6		.19 .14					
10	4.0	V	2.1	1.0		.00	1.0		. 17					
11	2.2	0	2.0	1.3		.30	1.3		.12					
12 13	1.5	0 0	1.9	1.2		.27	1.1		.17					
13 14	1.2 .92	0	1.8 1.7	.99 .97		.25 .35	. 92 . 87		.10 .08					
15	.74	ő	1.6	1.1		,36	2.0		.03					
1.0	4.0	0	1.0	• •		20								
16 17	.48 .16	.81	1.6 1.5	$\frac{1.3}{1.1}$.39 .36	1.6 1.1	0						
18	.12	4.9	1.5	.95		.48	.92	C						
19	.23	2.9	1.5	.94		.55	.82	Č						
20	.16	2.1	1.6	. 87		.61	.80	C)					
21	.16	1.8	1.5	.84		. 56	1,1	c)					
22	.16	1.5	1.5	.83		. 55	2.2	C)					
23	0	1.2	1.5	.82		.70	1.5	C						
24	0	1.1	1.5	.79		2.2	1.2	C						
25	0	1.2	1.4	.75		2,2	1.0	C)					
26	0	1.1	1.4	.75		1.5	. 89	C)					
27	0	. 99	1.3	. 77		1.3	.78	C						
28	0	1.0	1.3	.77		1.2	.75	0						
29 30	0 0	1.0 .89	1.1 1.1	.78 .72			.75 .67	0						
31	0	.05	1.1	.70			.57							
mom 4 t	10 07	22 / 2			4.	7 07			2.5	0	•	•	•	•
TOTAL MEAN	13.27 .43	22.49 .75	48.96 1.58	39.49 1.27	1.	7.87 .64	42.34 1.37	4	.35 .15	0 0	0 0	0	0	0 0
MAX	4.3	4.9	3.3	4.3		2.2	3.8		.60	ő	0	0	0	0
MIN	0	0	.87	.70		.14	. 57		0	ő	ő	ŏ	ŏ	ő
AC-FT	26	45	97	78		35	84		8.6	0	0	0	Ó	0
								_						

CAL YR 1986 TOTAL 2839.19 MEAN 7.78 MAX 1050 MIN 0 AC-FT 5630 WTR YR 1987 TOTAL 188.77 MEAN .52 MAX 4.9 MIN 0 AC-FT 374

10259000 ANDREAS CREEK NEAR PALM SPRINGS, CA

LOCATION.--Lat 33°45'36", long 116°32'57", in SE 1/4 SE 1/4 sec.3, T.5 S., R.4 E., Riverside County, Hydrologic Unit 18100200, on left bank at U.S. Bureau of Indian Affairs diversion dam, 1.1 mi above mouth, and 5.1 mi south of Palm Springs.

DRAINAGE AREA, --8,61 mi².

PERIOD OF RECORD. -- October 1948 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 800 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Mar. 25, 1949, reference point at same site at different datum.

REMARKS.--No estimated daily discharges. Records fair. No regulation above station. One small diversion for domestic use about 1 mi above station.

AVERAGE DISCHARGE. -- 39 years, 3.04 ft 3/s, 2,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 1,960 ft³/s, Aug. 31, 1954, gage height, 7.11 ft, from rating curve extended above 80 ft³/s on basis of slope-area measurement of peak flow; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date Tim	Discharge e (ft ³ /s)	Gage height (ft)
Jan. 5	0215	*9.0	*2.80			

Minimum daily, 0.86 ft3/s, Sept. 21.

		DISCHARGE,	IN CUBIC	FEET		WATER YEAR CAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 3.3 3.4 3.4 3.4	2.9 3.1 3.1 3.1 3.1	3.1 3.1 3.1 3.1 3.2	3.0 2.9 3.0 3.8 5.5	2.9 2.9 2.9 2.9 2.8	3.5 3.5 3.5 3.5 3.6	3.3 3.3 3.5 3.4 3.4	2.6 2.6 2.5 2.3 2.3	2.0 1.9 1.8 1.8 2.0	1.4 1.3 1.3 1.3	1.3 1.3 1.1 1.1	1.2 1.1 1.1 1.1
6 7 8 9 10	3.4 3.4 3.6 3.7	3.1 3.2 3.2 3.2 3.0	3.7 3.8 3.5 3.4 3.3	3.8 4.6 3.8 3.7 3.7	2.8 2.9 3.1 3.3 3.3	6.7 4.9 4.0 3.9 3.7	3.3 3.2 3.2 3.2 3.2	2.2 2.3 2.4 2.3 2.2	2.0 1.9 1.8 1.8	1.4 1.3 1.4 1.5	1.5 1.4 1.2 1.0 1.1	1.1 1.0 .98 .98 1.0
11 12 13 14 15	3.6 3.5 3.5 3.5 3.5	3.1 3.1 3.1 3.1 3.1	3.3 3.3 3.3 3.3 3.3	3.6 3.6 3.6 3.6 3.6	3.3 3.3 3.2 3.2 3.4	3.6 3.6 3.5 3.5	3.2 3.1 3.0 2.9	2.3 2.1 2.5 2.7 2.8	1.7 1.7 1.6 1.5	1.3 1.3 1.2 1.1	1.2 1.1 1.0 1.2	1.0 1.1 1.2 1.3 1.3
16 17 18 19 20	3.5 3.3 2.9 2.9 2.9	3.1 3.2 5.0 3.6 3.4	3.3 3.3 3.3 3.3 3.3	3.6 3.6 3.7 3.7 3.6	3.4 3.1 3.2 3.1 3.1	3.6 3.5 3.5 3.4 3.4	2.9 2.9 2.9 2.9 2.8	2.5 2.3 2.2 2.3 2.3	1.6 1.5 1.5 1.5	1.5 1.4 1.4 1.3	1.1 1.0 1.0 1.0	1.2 1.2 1.2 1.2 1.1
21 22 23 24 25	2.9 2.9 2.9 2.9 2.8	3.3 3.2 3.2 3.2 3.3	3.2 3.1 3.1 3.1 3.1	3.6 3.6 3.7 3.6 3.3	3.1 3.3 4.1 3.8	4.2 3.9 3.7 3.6 3.5	2.8 2.7 2.7 2.7 2.6	2.3 2.3 2.2 2.2 2.3	1.6 1.6 1.6 1.6	1.3 1.3 1.2 1.1	.99 1.1 1.1 .94 .95	.86 1.4 1.5 1.5
26 27 28 29 30 31	2.9 2.9 2.9 2.9 3.0 2.9	3.2 3.2 3.1 3.0	3.1 3.1 3.0 2.9 2.9 2.9	2.9 2.9 3.1 3.1 3.0 2.9	3.6 3.5 3.5 	3.5 3.5 3.5 3.5 3.4 3.3	2.6 2.6 2.7 2.6 2.6	2.4 2.4 2.3 2.2 2.1 2.0	1.4 1.3 1.3 1.3	1.1 1.4 1.8 1.4 1.1	.97 .97 .97 .93 .90	1.3 1.3 1.3 1.3
TOTAL MEAN MAX MIN AC-FT	99.1 3.20 3.7 2.8 197	96.7 3.22 5.0 2.9 192	99.8 3.22 3.8 2.9 198	109.7 3.54 5.5 2.9 218	90.1 3.22 4.1 2.8 179		89.4 2.98 3.5 2.6 177	72.4 2.34 2.8 2.0 144	49.0 1.63 2.0 1.3 97	40.9 1.32 1.8 1.1 81	34.42 1.11 1.5 .90 68	35.52 1.18 1.5 .86 70

CAL YR 1986 TOTAL 1528.70 MEAN 4.19 MAX 95 MIN 1.8 AC-FT 3030 WTR YR 1987 TOTAL 933.04 MEAN 2.56 MAX 6.7 MIN .86 AC-FT 1850

10259200 DEEP CREEK NEAR PALM DESERT, CA

LOCATION.--Lat 33°37'52", long 116°23'29", in NE 1/4 SE 1/4 sec.19, T.6 S., R.6 E., Riverside County, Hydrologic Unit 18100200, on left bank 500 ft downstream from unnamed tributary and 6.3 mi south of Palm Desert.

DRAINAGE AREA. -- 30.6 mi².

PERIOD OF RECORD, -- May 1962 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,440 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- No estimated daily discharges. Records fair. No regulation or diversion upstream from station.

AVERAGE DISCHARGE. -- 25 years, 2.31 ft 3/s, 1,670 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 7,100 ft³/s, Sept. 10, 1976, gage height, 7.84 ft, from rating curve extended above 40 ft³/s on basis of slope-area measurements at gage heights 2.68, 5.15, and 7.84 ft; maximum gage height, 10.27 ft, Aug. 14, 1984 (backwater from debris); no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 20 ft³/s and maximum (*), from rating curve extended above 10 ft³/s on basis of slope-area measurements at gage heights 2.68, 5.15, and 7.84 ft:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6 July 16	1800 2045	*41 26	*2.58 2.43	Aug. 2	1815	36	2.55

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow many days.

			-,		M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.01	0	.34	,28	. 44	.26	.41	.10	.01	.02	0	.01
2	,01	0	.31	, 26	. 43	.41	.37	.09	.01	, 02	3.8	.01
3	.02	Ö	.34	.25	. 43	. 54	.41	.08	.01	.02	.07	.01
4	.02	Ö	.37	.34	. 42	.36	. 43	.08	.01	.02	.01	.01
5	.02	Ō	.26	1.6	.41	.45	.45	.08	.01	.02	.01	.01
6	.02	.01	.35	.41	.39	20	. 47	.07	.02	.02	.02	.01
7	.02	.07	.42	. 50	.38	18	. 43	.05	,02	.02	.02	.01
8	.02	.11	.51	.60	.37	7.6	.41	.05	.02	.02	.02	.01
9	.03	.12	.41	, 53	.37	4.1	.37	.05	.02	.02	.02	.01
10	.02	.12	.35	. 47	.40	2,5	.34	.05	.03	.02	.02	.01
11	.01	.13	.28	.41	.43	1.7	.30	.04	.03	.02	.02	.01
12	.01	.13	.28	.40	.46	. 84	.30	.04	.03	.02	.01	.01
13	.01	. 14	. 28	,38	.42	. 22	.34	.04	.03	.02	.01	.01
14	.01	. 14	.28	,39	.40	.34	.31	.04	.03	.02	.01	,01
15	.01	.20	.28	, 50	.39	1.3	.23	.04	.03	.02	.01	.01
16	0	.31	.28	. 54	.36	. 44	.20	.03	.03	1.7	.01	.01
17	0	.36	.28	.40	.35	.65	.16	.02	.03	. 20	.01	.01
18	0	2.9	.28	.37	.35	. 59	.12	.02	.03	.02	.01	.01
19	0	1.0	.30	.39	.34	. 55	.12	.02	.03	.02	.01	.01
20	0	.31	.33	.37	.36	. 53	. 14	.02	.03	.02	.01	.01
21	0	,66	.34	.37	.34	.65	.13	.02	,03	.02	.01	.01
22	0	. 54	.28	.37	.33	.74	.13	.02	.03	.02	.01	.01
23	0	. 47	.28	.34	.41	, 62	. 12	.02	.03	.01	.01	.01
24	0	.42	.28	.36	2.4	. 58	.11	.01	.03	.01	.01	.01
25	0	.41	.28	.35	. 76	.55	.10	.01	.03	.01	.01	.01
26	0	.37	.28	.43	1.4	. 52	, 10	.01	.03	.01	.01	.01
27	0	.35	.28	, 43	.48	. 47	.10	.01	, 03	.01	.01	.01
28	0	.36	.28	.42	. 20	.46	. 11	.01	.03	.01	.01	.01
29	0	.33	.28	. 47		. 50	.10	.01	.03	0	.01	.01
30	0	.33	.28	. 50		. 47	.10	.01	.03	0	.01	.01
31	0		.28	. 48		.46		.01		0	.01	
TOTAL	.24	10.29	9.67	13.91	14.22	67.40	7.41	1.15	.76	2.36	4.21	.30
MEAN	.008	.34	.31	. 45	.51	2.17	.25	.037	.025	.076	. 14	.010
MAX	,03	2,9	.51	1.6	2.4	20	, 47	.10	.03	1.7	3.8	.01
MIN	0	0	. 26	. 25	.20	, 22	.10	.01	.01	0	Ō	.01
AC-FT	. 5	20	19	28	28	134	15	2.3	1.5	4.7	8.4	.6

CAL YR 1986 TOTAL 855,34 MEAN 2,34 MAX 355 MIN 0 AC-FT 1700 WTR YR 1987 TOTAL 131,92 MEAN .36 MAX 20 MIN 0 AC-FT 262

10259300 WHITEWATER RIVER AT INDIO, CA

LOCATION.--Lat 33°44'14", long 116°14'07", in SE 1/4 NE 1/4 sec.15, T.5 S., R.7 E., Riverside County, Hydrologic Unit 18100200, on right bank of concrete drop structure, 1,000 ft upstream from Monroe Street bridge, and 1.7 mi northwest of Indio.

DRAINAGE AREA, -- 1,073 mi².

PERIOD OF RECORD, -- March 1966 to current year,

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Oct. 1, 1979. Elevation of gage is 0 ft National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1979, water-stage recorder at site 0.5 mi upstream at different datum. Oct. 1, 1979, to Feb. 17, 1983, at datum 1.03 ft lower.

REMARKS.--No flow since July 23, 1986. No regulation upstream from station. Water diverted from tributary streams for municipal supply in vicinity of Palm Springs.

AVERAGE DISCHARGE. -- 21 years, 3.27 ft 3/s, 2,370 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 11,400 ft³/s, Jan. 25, 1969, gage height, 14.41 ft, site and datum then in use, from rating curve extended above 1,300 ft³/s on basis of slope-area measurement at gage height 15.3 ft for flood of Nov. 22, 1965; no flow all or most of each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of March 2 or 3, 1938, reached a discharge of 29,000 ft³/s on basis of slope-area measurement, at site 5.0 mi upstream. Flood of November 22, 1965, reached a stage of 15.3 ft, from floodmark, at site and datum used prior to Oct. 1, 1979, discharge 14,100 ft³/s on basis of slope-area measurement of peak flow.

EXTREMES FOR CURRENT YEAR .-- No flow during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	CT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4												
3												
4												
5												
6												
6 7 8 9												
8												
10												
11												
11 12 13 14 15												
14												
15												
16												
17												
18												
16 17 18 19 20												
20												
21												
22												
23												
21 22 23 24 25												
26 27 28												
27												
28												
30												
29 30 31												
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0
MEAN	0	ō	Ö	0	Ŏ	Ŏ	Ö	Ö	0	Ö	ő	ŏ
MAX	0	0	0	0	0	0	0	0	0	0	0	0
MIN	0	0	0	0	0	0	0 0	0	0 0	0	0	0
AC-FT	0	0	0	0	0	0	0	0	0	0	0	0
CAL YR 1986	TOTAL 3	48.82 N	ÆAN .96	MAX	326 N	IN O AC	C-FT 692					
WTR YR 1987	TOTAL	0.00 N	TEAN .000	MAX	.00	AIN O AC	C-FT 0					

10259540 WHITEWATER RIVER NEAR MECCA. CA

LOCATION.--Lat 33°31'29", long 116°04'36", in NW 1/4 NW 1/4 sec.32, T.7 S., R.9 E., Riverside County, Hydrologic Unit 18100200, on left bank 1.6 mi upstream from mouth at Salton Sea and 3.3 mi south of Mecca.

DRAINAGE AREA. -- 1,495 mi².

PERIOD OF RECORD, -- October 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 221.00 ft below National Geodetic Vertical Datum of 1929 (levels by Coachella County Water District). Oct. 1, 1960, to Mar. 22, 1967, at site 1.3 mi downstream and Mar. 23, 1967, to July 22, 1970, at site 0.7 mi downstream at different datums.

REMARKS.--Estimated daily discharges: Feb. 5-11, July 16 to Aug. 10. Records fair. Most flow represents seepage and return flow from irrigated areas.

COOPERATION, -- Seventeen discharge measurements were provided by Coachella Valley Water District.

EXTREMES FOR PERIOD OF RECORD. --Maximum daily discharge, 2,500 ft³/s, Jan. 25, 1969, estimated; minimum daily, 37 ft³/s, Nov. 25-29, 1960.

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 127 ft 3/s, Jan. 18; minimum daily, 41 ft 3/s, July 5, 6.

		DISCHARGE,	IN CUBIC	FEET	PER SECO	ND, WATER MEAN VALI		CTOBER	1986	TO SEPTEMBER	1987		
						HEAN VALU	Gal						
DAY	OCT	NOA	DEC	JAN	FEB	MAR	AF	PR	MAY	JUN	JUL	AUG	SEP
1	85	80	67	69	98	94	9	90	97	83	42	84	69
2	88	94	67	68	102	95	8	35	94	71	45	86	72
3	89	121	67	69	99	95	8	36	96	68	42	88	87
4	90	102	67	73	94	96	8	32	96	74	42	90	95
5	98	91	69	70	92	97		32	93	74	41	94	106
6	96	91	71	70	91	86		39	95	81	41	96	93
7	89	89	75	69	90	86		94	94	78	42	98	69
8	95	86	73	71	89	87	7	9	98	73	44	101	71
9	103	88	70	68	87	86	8	31	98	73	49	96	78
10	108	96	73	66	86	83	8	39	95	70	50	92	79
11	93	89	75	75	84	89		37	92	73	59	88	95
12	85	83	74	89	85	82		93	84	77	47	85	82
13	82	85	71	87	86	84		88	82	71	43	97	107
14	83	84	74	89	86	86		90	88	72	42	86	90
15	85	83	74	94	87	82	9	91	90	72	44	88	80
16	87	90	76	94	87	78		94	90	64	46	89	88
17	86	84	78	89	88	78	10		84	64	49	89	88
18	86	70	74	127	88	90		3	84	66	52	83	83
19	92	69	73	96	89	85		10	88	65	58	75	78
20	89	66	72	98	89	85	8	88	74	73	62	79	76
21	87	69	73	96	89	89	9	3	84	65	66	71	73
22	87	71	74	90	90	90		15	85	59	70	70	78
23	81	71	73	96	90	87	10	4	84	62	74	68	87
24	82	76	70	105	92	84	10	3	83	63	75	66	82
25	93	76	76	93	92	82	10	13	84	61	76	70	74
26	88	66	71	101	93	85	10		81	55	77	65	101
27	94	67	67	107	93	88		14	78	51	78	68	108
28	90	68	70	108	94	79		19	83	54	79	62	76
29	89	66	72	94		85	9	91	78	53	80	81	85
30	89	67	69	90		88	8	88	80	42	82	90	76
31	88		70	93		91		-	82		83	93	
TOTAL	2777	2438	2225	2704	2530	2692	273		2714	2007	1780	2588	2526
MEAN	89,6	81.3	71.8	87.2	90.4	86.8	91.		87.5	66.9	57.4	83.5	84.2
MAX	108	121	78	127	102	97	10		98	83	83	101	108
MIN	81	66	67	66	84	78	7	9	74	42	41	62	69
AC-FT	5510	4840	4410	5360	5020	5340	543	0	5380	3980	3530	5130	5010

CAL YR 1986 TOTAL 36439 MEAN 99.8 MAX 1250 MIN 63 AC-FT 72280 WTR YR 1987 TOTAL 29717 MEAN 81.4 MAX 127 MIN 41 AC-FT 58940

10260500 DEEP CREEK NEAR HESPERIA, CA

LOCATION.--Lat 34°20'28", long 117°13'39", in NE 1/4 SE 1/4 sec.18, T.3 N., R.3 W., San Bernardino County, Hydrologic Unit 18090208, on right bank 0.5 mi upstream from confluence with West Fork Mojave River at Mojave Forks Dam, 7 mi southeast of Hesperia, and 11 mi downstream from Lake Arrowhead.

DRAINAGE AREA, -- 134 mi².

PERIOD OF RECORD. --October 1904 to September 1922, October 1929 to current year. Prior to January 1930, monthly discharge only, published in WSP 1314.

GAGE.--Water-stage recorder. Broad-crested weir since December 1938. Elevation of gage is 3,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1314 for history of changes prior to Dec. 10, 1938.

REMARKS.--Estimated daily discharges: June 28 to July 16 and Aug. 4-6, 24, 30. Records fair except those for estimated daily discharges, which are poor. Slight regulation by Lake Arrowhead, capacity, 48,000 acre-ft, used principally for recreation.

AVERAGE DISCHARGE. -- 76 years, 70.6 ft 3/s, 51,150 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,600 ft³/s, Mar. 2, 1938, gage height unknown, based on slope-area measurement of peak flow; maximum gage height, 23.81 ft, Feb. 10, 1978 (backwater from Mojave Forks Reservoir); no flow July 17, 18, 1961.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 400 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar, 6	0915	*1,640	*4.03				

Minimum daily, 0.34 ft³/s, Aug. 10.

		DISCHARGE,	IN CUI	BIC FEET		, WATER YEAR EAN VALUES	OCTOBER	1986 TC	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.0	5.4	6.6	7.3	15	12	31	12	5.4	.78	. 62	.86
2	3.8	5.4	6.6	7.3	13	13	31	11	4.8	,75	.61	,92
3	3.8	5.4	6.6	7.1	13	15	33	11	4.2	.73	. 59	.89
4	4.5	5.4	6.6	30	12	17	57	9.5	3.9	.71	. 55	.86
5	4.2	5.4	6.5	100	12	27	62	8.4	3.8	,69	. 51	.74
6	3.9	5.4	7.2	36	11	796	74	7.9	4.2	.68	. 47	.79
7	4.0	5.4	22	24	11	252	72	9.1	4.2	.67	. 43	.77
8	4.1	5.4	23	20	10	123	64	12	4.2	.66	. 42	.78
9	4.4	5.6	15	16	10	86	57	18	4.1	.65	.37	.79
10	5.8	5.7	12	14	10	63	52	13	3.6	.64	.34	. 82
11	5.8	5.8	10	13	11	50	48	11	3.1	.63	.38	.83
12	5.4	5.8	9.1	12	12	41	44	11	2.8	. 62	.40	, 90
13	5.1	5.8	8.5	14	13	37	39	10	2.8	.60	.41	. 94
14	4.9	5.8	8,2	14	12	33	35	9.2	2.8	, 57	.45	.96
15	4.9	5.9	8.1	12	13	37	32	8,8	2.5	. 55	.51	. 93
16	4.9	5.8	8.0	10	12	34	29	8.3	2.1	. 54	. 54	.90
17	4.9	5.9	7.9	9.5	11	31	26	7.6	2.0	. 53	.46	.88
18	4.9	21	7.8	11	10	31	24	6.8	1.9	. 57	.46	.88
19	4.9	36	7.8	11	10	32	22	6.4	1.7	. 59	.42	1.0
20	4.9	16	7.8	9.4	9.6	34	21	6,4	1.8	.60	.41	. 95
21	4.9	11	8.2	8.7	9.3	31	19	6.6	1.8	. 68	.43	1.0
22	5,0	9.0	8.1	10	9.3	32	17	6,9	1.7	.65	. 44	1.0
23	5.2	8.0	7.8	11	9.8	34	16	6,9	1.9	. 59	. 44	2.9
24	5.2	7.4	7.8	9.8	11	34	15	6.6	1.7	. 57	. 47	6.1
25	5.2	7.1	7,6	9.7	11	33	14	6.6	1.5	.89	.49	2,2
26	5.2	6.9	7.5	10	13	33	14	6.7	1.2	. 93	. 48	1.6
27	5.2	6.7	7.4	11	12	38	14	7.2	. 97	.77	.65	1.3
28	5.2	6.7	7.3	14	12	44	16	7.3	. 90	.69	1.0	1.3
29	5.2	6.6	7.3	32		39	14	6.8	.85	.63	. 96	1.2
30	5.2	6,6	7.3	23		34	13	6.3	.81	. 56	.91	1.3
31	5,3		7.2	18		32		6.0		. 56	.87	
TOTAL	149,9		278.8	534.8	318.0	2148	1005	271.3	79.23	20,28	16,49	37,29
MEAN	4.84	8.14	8.99	17.3	11.4	69.3	33,5	8,75	2,64	.65	. 53	1.24
MAX	5.8	36	23	100	15	796	74	18	5.4	. 93	1.0	6.1
MIN	3.8	5.4	6.5	7.1	9.3	12	13	6.0	.81	, 53	.34	.74
AC-FT	297	485	553	1060	631	4260	1990	538	157	40	33	74

CAL YR 1986 TOTAL 15424.74 MEAN 42.3 MAX 3060 MIN .60 AC-FT 30590 WTR YR 1987 TOTAL 5103.39 MEAN 14.0 MAX 796 MIN .34 AC-FT 10120

10260620 HOUSTON CREEK ABOVE LAKE GREGORY, AT CRESTLINE, CA

LOCATION.--Lat 34°14'33", long 117°16'48", in NE 1/4 SE 1/4 sec.22, T.2 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, on left bank 0.1 mi east of Wildrose Road, 0.1 mi southeast of intersection of Lake Gregory Road and Wildrose Road, and 0.3 mi east of Crestline.

DRAINAGE AREA, --0,35 mi².

PERIOD OF RECORD .-- March 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,540 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- No estimated daily discharges. Records fair. No regulation above station.

AVERAGE DISCHARGE. -- 8 years, 0.75 ft3/s, 543 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 295 ft³/s, Feb. 19, 1980, gage height, 7.40 ft, from rating curve extended above 70 ft³/s on basis of slope-conveyance study at gage height 7.40 ft; no flow many days in some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	1645	*68	*6.24				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow for many days.

		DISCHARG	E, IN COE	OIC FEEL F.		EAN VALUE	S COLOB	EK 1900 10) SEPTEMB	LK 1907		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	0	0	.10	0	.06	.36	.12	.11	.06	.01	.01	0
2	0	0	. 12	0	.06	.51	.12	. 11	.05	.01	.01	.01
3	0	0	.10	0	.07	.45	5.7	.10	.04	.02	.01	0
4	0	0	.08	10	.07	.43	1.9	.09	.05	.01	.01	0
5	0	0	.11	.80	.06	1.4	.73	.07	.05	.01	.01	0
6	.02	.01	2.8	.34	.06	3.5	.51	.05	.05	.01	.01	0
7	.02	.01	.62	.72	.06	. 59	.36	.06	. 04	.01	.01	0
8	.02	. 02	.08	. 22	.07	.48	.29	.23	.04	.02	.01	0
9	.04	.02	.06	.15	.07	. 27	.26	.09	.04	.03	.01	0
10	.18	.03	.04	, 14	.05	.19	.25	.08	.04	.03	.01	0
11	0	.02	.04	.11	.05	.16	.26	.08	.03	.03	.01	0
12	0	.04	.04	.10	.06	. 14	.19	.07	.02	.03	.02	0
13	0	.04	.04	.10	.18	. 12	. 17	.06	.02	.04	.01	0
14	0	.05	.04	.09	.07	.25	.16	.06	.01	.02	.08	0
15	0	.04	.04	.09	.06	.74	.14	.05	.02	.03	.01	0
16	0	.05	.04	.08	.06	.19	.14	.05	.02	.03	.01	0
17	0	1.1	.04	.09	.05	. 16	. 13	.05	.03	. 14	0	0
18	0	4.1	.04	.09	.05	.14	.12	.05	.02	.01	0	0
19	0	.03	.04	.09	.05	,61	.10	.07	. 02	.01	0	0
20	0	.03	.60	.11	.06	.17	.10	.07	. 02	. 03	0	0
21	0	.03	0	. 12	.06	. 17	.10	.07	.03	.01	0	0
22	0	.03	0	. 12	.06	.86	.10	.06	. 04	.01	0	.01
23	0	.04	0	. 12	.10	.43	.09	.06	.03	.01	0	.33
24	0	.06	0	.12	. 13	.34	.08	.08	.03	.01	0	0
25	0	.06	0	.13	.15	. 23	.07	. 07	.03	.01	0	0
26	0	.06	0	.08	,21	.20	.07	.08	. 03	.01	0	0
27	0	.07	0	.10	.33	.18	.07	.07	.03	.01	0	0
28	0	.08	0	.11	.41	.17	.07	.07	. 03	.01	0	0
29	0	.08	0	.07		.15	.08	.07	.01	0	0	0
30	0	.09	0	.06		. 14	, 12	.06	.01	.01	0	0
31	0		0	.06		.14		.05		.01	0	
TOTAL	.28	6.19	5.07	14.41	2.77	13.87	12,60	2.34	. 94	.63	. 24	.35
MEAN	.009	.21	.16	. 46	.099	.45	. 42	.076	.031	.020	.008	.012
MAX	.18	4.1	2.8	10	.41	3.5	5.7	. 23	.06	. 14	.08	.33
MIN	0	0	0	0	.05	.12	.07	.05	.01	0	0	0
AC-FT	.6	12	10	29	5.5	28	25	4.6	1.9	1.2	. 5	.7

CAL YR 1986 TOTAL 191.72 MEAN .53 MAX 22 MIN 0 AC-FT 380 WTR YR 1987 TOTAL 59.69 MEAN .16 MAX 10 MIN 0 AC-FT 118

10260630 ABONDIGAS CREEK ABOVE LAKE GREGORY, AT CRESTLINE, CA

LOCATION. -- Lat 34°14'16", long 117°15'51", in SW 1/4 SE 1/4 sec.23, T.2 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, on right bank 400 ft south of east gate for San Moritz Park and 1.4 mi east of Crestline.

DRAINAGE AREA, -- 1.15 mi².

PERIOD OF RECORD . -- March 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,555 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1983, at site 200 ft upstream at datum 5.78 ft higher.

REMARKS.--Estimated daily discharges: Oct. 20-27, Nov. 18-24, Jan. 8-22, Mar. 7 to Apr. 2, Apr. 6, 9-14, 30, and May 1-5. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE. -- 8 years, 1.34 ft3/s, 971 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 580 ft³/s, Feb. 27, 1983, gage height, 6.32 ft, site and datum then in use, from rating curve extended above 94 ft³/s on basis of field estimate of peak flow; no flow at times in some years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 40 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	1700	*56	*7.58				

No flow June 13 to Sept. 30.

		DISCHARGE,	IN CUBI	C FEET		WATER		1986	TO SEPTEMBER	1987		
					PI	WH AWE	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.02	.02	.05	.08	. 14	. 10	.36	. 22	.02			
2	.03	.01	.05	.07	.14	.12	.34	.18	.01			
3	.03	.01	.05	.07	.14	.15	2.9	.16	.01			
4	.02	.02	.05	7.7	. 14	.26	2.4	. 14	.01			
5	.02	.02	.05	1.3	.13	.78	2.1	.10	.01			
6	.02	.02	1.1	. 53	.12	2.7	.99	.07	.01			
7	,01	.03	.30	. 56	.12	1.2	.75	.08	.01			
8	.01	.04	.18	. 45	.12	1.0	.62	.09	.01			
9	.02	.03	,15	. 43	.13	.65	.60	.07	.01			
10	.07	.03	.12	.40	.14	.65	.55	.06	.01			
								.00				
11	.04	.03	.10	.37	. 13	. 55	. 50	.06	.01			
12	.03	.03	.10	.35	. 12	. 46	.46	.05	.01			
13	.02	.03	. 10	. 33	. 14	.46	.46	.05	0			
14	.02	.03	.09	.30	.13	. 55	. 42	.05	0			
15	.02	.04	.09	. 29	.12	.65	.37	.05	0			
16	.01	.04	.09	.29	.12	.50	.34	.05	0			
17	.02	.09	.09	.25	.12	.46	.34	.05	ŏ			
18	.02	1.7	.09	. 23	.10	. 46	.34	.05	ő			
19	.02	.14	.09	,21	.10	. 55	.32	.06	Ö			
20	.02	.11	.18	.20	.10	.46	,28	.07	0			
20	.02	.11	.10	.20	.10	.40	.20	.07	U			
21	.02	.12	.13	. 22	.10	. 50	.26	.07	0			
22	.02	.09	.11	.18	.10	. 55	,25	.05	Ó			
23	.02	.08	.10	.15	.12	. 55	.24	.06	Ō			
24	.02	.07	.09	. 14	.12	. 55	,23	.05	Ö			
25	.02	.06	.09	.14	.09	.50	.22	.04	Ö			
						.50	, 22		Ü			
26	.02	.06	.09	. 14	.09	. 46	.24	.04	0			
27	.02	.05	.09	.16	.08	. 42	.25	.04	0			
28	.02	.05	.08	. 18	.09	. 42	.25	.03	0			
29	.01	.04	.07	.16		.38	.26	.02	0			
30	.02	.04	.07	.16		.38	.25	.02	0			
31	.02		.07	. 15		.36		.02				
TOTAL	.68	3.13	4.11	16.19	3,29	17.78	17.89	2.15	.13	0	0	0
MEAN	.022	.10	,13	.52	.12	.57	,60	.069	.004	0	0	0
MAX	.022	1.7	1.1	7.7	.14	2.7						
MIN	.07						2.9	. 22	.02	0	0	0
		.01	.05	.07	.08	. 10	.22	.02	0	0	0	0
AC-FT	1.3	6.2	8,2	32	6.5	35	35	4.3	.3	0	0	0
CAL YR	1986 TOTA	AL 250,17	MEAN .6	9 MAX	K 21	MIN 0	AC-FT 496					
WTR YR		AL 65.35	MEAN .1			MIN O	AC-FT 130					
211	200, 101,	00,00		o inn	. ,.,	MITTER O	WC-LI 120					

10260640 LAKE GREGORY AT CRESTLINE, CA

LOCATION.--Lat 34°14'35", long 117°16'22", in NW 1/4 SW 1/4 sec.23, T.2 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, in boathouse on north side of Lake Gregory, 0.8 mi east of Lake Gregory Drive, and 0.9 mi east of Crestline.

DRAINAGE AREA, -- 2.66 mi².

PERIOD OF RECORD. -- August 1978 to current year. Records for September 1966 through November 1971 in files of California Department of Water Resources.

GAGE.--Water-stage recorder. Datum of gage is 0.00 ft, based on map from land survey of 1892 (see REMARKS paragraph); approximately 7.0 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Lake is formed by earth-type dam. Dam was completed to a height of 90 ft in 1938. Capacity table developed from land survey dated 1892 (provided by California Department of Water Resources). Capacity is 2,070 acre-ft below spillway elevation, 4,517.0 ft. Water is released from lake to Houston Creek for eventual water supply and recreational use in Silverwood Lake, 4.5 mi downstream. Spillway elevation is raised by addition of flashboards to accommodate summer recreational use.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents recorded, 2,360 acre-ft, Jan. 29, 1980, elevation, 4,520.33 ft; minimum, 1,920 acre-ft, Nov. 7, 1984, elevation, 4,515.22 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents recorded, 2,180 acre-ft, Apr. 18, 30, May 11, 12, elevation, 4,518.26 ft; minimum, 1,980 acre-ft, Sept. 22, 23, 30, elevation, 4,515.95 ft.

MONTHEND ELEVATION, 1892 DATUM, AND CONTENTS, AT 0800 HRS, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	4,517.54	2,120	
Oct. 31	4,517.09	2,080	-40
Nov. 30	4,517.22	2,090	+10
Dec. 31	4,517.25	2,090	0
CAL YR 1986			-10
Jan. 31	4,517.21	2,090	0
Feb. 28	4,517.29	2,100	+10
Mar. 31	4,517.24	2,090	-10
Apr. 30	4,518.22	2,180	+90
May 31	4,518.10	2,170	-10
June 30	4,517.58	2,120	-50
July 31	4,516.99	2,070	-50
Aug. 31	4,516.34	2,020	-50
Sept. 30	4,515.96	1,980	-40
WTR YR 1987			-140

10260650 HOUSTON CREEK BELOW LAKE GREGORY, AT CRESTLINE, CA

LOCATION. --Lat 34°14'54", long 117°16'05", in NE 1/4 NW 1/4 sec.23, T.2 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, on left bank of channel on Camp Switzerland campgrounds, 0.2 mi downstream from Lake Gregory spillway, 0.5 mi east of the intersection of Lake Gregory Road and Lake Gregory Drive, and 1.2 mi northeast of Crestline.

DRAINAGE AREA, -- 2.68 mi².

PERIOD OF RECORD. -- March 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,440 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Lake Gregory (station 10260640) 0.2 mi upstream, usable capacity, 2,070 acre-ft.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 570 ft³/s, Jan. 29, 1980, gage height, 7.31 ft, from rating curve extended above 180 ft³/s on basis of velocity-area study of peak flow; no flow for several days in most years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 69 ft³/s, Jan. 4, gage height, 6.31 ft; minimum daily, 0.01 ft³/s, for several days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	MÉAN VALUES AY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	4.2	.08	.09	. 29	.55	1.2	. 45	.07	.05	.05	.03	.03		
2	1.8	.08	.08	.26	. 65	1.2	.10	.06	.05	.04	.03	.03		
3	1.0	.07	.08	.32	. 47	1.3	. 40	.06	.05	.04	.03	.03		
4	. 64	.07	.07	21	.45	1.4	.18	.06	.05	.04	.02	.03		
5	.41	.06	.08	27	.39	2.6	. 12	.06	.05	.05	.03	.03		
6	.28	.06	1.1	8.3	.33	10	.12	.06	.06	.05	.03	.03		
7	.18	.06	4.1	5.7	.29	7.1	, 11	.06	.05	.05	.03	.03		
8	.15	.06	3.1	3,6	.25	4.6	.10	.09	.05	.06	.03	.02		
9	. 17	.05	2.0	2.3	.33	3.1	.09	.06	.05	.06	.02	.02		
10	. 52	.05	1.5	1.7	.42	2,3	.09	.06	.04	.06	.01	.03		
11	. 57	.05	1.2	1.4	.51	1,8	.08	.06	.04	.06	.02	.03		
12	.39	.05	.88	1.2	. 52	1.6	.12	.06	.04	.05	.02	.05		
13	.33	.04	.76	1.1	.64	1.3	.11	.06	.04	.05	.04	.06		
14	.27	.04	.67	.97	.66	1.5	.08	.06	.04	.05	.03	.05		
15	.26	.04	. 55	.88	.72	2.5	.07	.06	.04	.04	.03	.04		
16	.24	.04	. 43	.69	.51	2.0	.07	.06	.05	.05	.03	.04		
17	. 20	.07	.38	. 59	.42	1.6	.07	.06	.04	.06	.03	.05		
18	. 22	1.8	.39	. 57	.37	1.5	.07	.06	.04	.06	.02	,05		
19	.21	1.5	.35	. 55	.37	1.8	.07	.06	.04	.05	.02	.05		
20	.20	1.2	.78	.39	.34	1.7	. 07	.06	.04	.06	.02	.05		
21	, 19	. 59	1.1	. 44	. 45	2.3	.07	.06	.05	.06	.02	.06		
22	. 17	.40	.86	. 50	.28	2.4	.07	.06	.04	.05	.01	.07		
23	. 17	.30	.73	.61	.91	2.3	.06	.06	. 04	.04	.01	.12		
24	, 12	.17	.65	,49	1.6	1.9	,07	.07	.04	.04	.01	.02		
25	.12	.16	. 56	.45	2.0	1.7	.07	.07	.04	.04	.02	.01		
26	.12	.12	.49	. 44	1.9	1.5	.06	.06	. 04	.04	.02	.01		
27	.10	.10	. 44	. 59	1.5	1.3	.06	.06	.05	.03	.01	.01		
28	.10	.10	.40	1.0	1.3	1.1	.06	.06	.05	.04	.02	.01		
29	.09	.11	.34	.76		. 97	,06	.06	.05	.04	.02	.01		
30	.10	.09	,31	.70		.88	.07	.06	.05	.04	,03	,01		
31	.08		.30	. 54		.83		,06		.03	.03			
TOTAL	13.60	7.61	24,77	85.33	19.13	69,28	3.22	1.92	1.36	1,48	.72	1,08		
MEAN	. 44	.25	.80	2.75	.68	2.23	.11	.062	.045	.048	. 023	.036		
MAX	4.2	1.8	4.1	27	2.0	10	.45	.09	.06	.06	.04	.12		
MIN	.08	.04	.07	.26	.25	. 83	.06	.06	.04	.03	,01	.01		
AC-FT	27	15	49	169	38	137	6.4	3.8	2.7	2.9	1.4	2.1		

CAL YR 1986 TOTAL 698.39 MEAN 1.91 MAX 60 MIN .03 AC-FT 1390 WTR YR 1987 TOTAL 229.50 MEAN .63 MAX 27 MIN .01 AC-FT 455

10261000 WEST FORK MOJAVE RIVER NEAR HESPERIA, CA

LOCATION.--Lat 34°20'20", long 117°15'25", in NW 1/4 NW 1/4 sec.24, T.3 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, on left bank on upstream wingwall of concrete double box culvert on Arrowhead Lake Road, 0.1 mi northeast of junction with Highway 174, 4.5 mi downstream from Cedar Springs Dam, and 6.5 mi southeast of Hesperia.

DRAINAGE AREA, -- 70.3 mi².

PERIOD OF RECORD. --October 1904 to September 1922, October 1929'to September 1971, October 1974 to current year.

REVISED RECORDS. -- WDR CA-84-1: 1983.

GAGE.--Water-stage recorder. Elevation of gage is 3,040 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 30, 1922, nonrecording gage or water-stage recorder 1.6 mi downstream at different datum. June 30, 1922, to September 1971, water-stage recorder 1.5 mi downstream at different datum. June 30, 1942, to Apr. 14, 1966, at datum 2.00 ft higher than datum then in use.

REMARKS.--Estimated daily discharges: Jan. 5, 6, 8, 9, 11, 12, Mar. 11-16, and May 3-5. Records good except those for estimated daily discharges, which are poor. Since 1972 regulated by Cedar Springs Dam (holding basin for imported water), total capacity, 78,000 acre-ft, 4.5 mi upstream.

AVERAGE DISCHARGE. -- 60 years (water years 1905-22, 1930-71), 39.4 ft 3/s, 28,550 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 26,100 ft³/s, Mar. 2, 1938, gage height unknown, on basis of slope-area measurement of peak flow; no flow for several months in most years.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 82 ft 3/s, Mar. 6, gage height, 0.92 ft; no flow most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					7	MEAN VALU	F2					
DAY C	CT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5				0 0 0 9.7	4.7 4.7 4.7 4.7 4.2	2.3 1.7 1.4 1.4 3.1						
6 7 8 9 10				3.1 2.6 1.6 2.0 3.8	3.8 3.8 4.2 4.2 4.2	45 17 6.2 4.2 3.3						
11 12 13 14 15				3.6 3.5 3.0 3.0 3.3	3.8 3.8 3.8 4.2	1.5 .60 .25 .10 .50						
16 17 18 19 20				3.0 3.3 3.2 3.0 4.1	4.2 3.8 3.8 3.0 2.6	0 0 0 0 0						
21 22 23 24 25				4.7 5.7 5.7 5.1 5.1	2.6 2.3 3.3 3.3 3.0	.14 .63 .18 0						
26 27 28 29 30 31				5.1 7.4 12 13 6.8 4.7	3.8 3.3 2.6 	0 0 0 0						
TOTAL MEAN MAX MIN AC-FT	0 0 0 0	0 0 0 0	0 0 0 0	149.1 4.81 18 0 296	104.2 3.72 4.7 2.3 207	89.69 2.89 45 0 178	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
CAL YR 1986 WTR YR 1987	TOTAL TOTAL	6345.90 342.99	MEAN MEAN	17.4 .94	MAX 331 MAX 45	MIN 0 MIN 0	AC-FT 12590 AC-FT 680			~ n		511%

37.35 = [1%] 343 = [1%]

10261100 MOJAVE RIVER BELOW FORKS RESERVOIR, NEAR HESPERIA, CA

LOCATION.--Lat 34°21'17", long 117°14'40", in NE 1/4 NE 1/4 sec.13, T.3 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, on left bank 0.8 mi downstream from Mojave Forks Reservoir, 6.2 mi downstream from Silverwood Lake on West Fork Mojave River, 6.5 mi southeast of Hesperia, and 12.2 mi downstream from Lake Arrowhead on Deep Creek (East Fork Mojave River).

DRAINAGE AREA. -- 211 mi².

PERIOD OF RECORD. --October 1971 to September 1974, October 1980 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,000 ft above National Geodetic Vertical Datum of 1929, from topographic map. October 1971 to September 1974, water-stage recorder at site 0.8 mi upstream on reservoir outlet channel at different datum.

REMARKS.--No estimated daily discharges. Records good. Flow partially regulated by Lake Arrowhead, capacity, 48,000 acre-ft, used principally for recreation; Silverwood Lake, capacity, 78,000 acre-ft, used for the storage and distribution of imported water and recreation; and Mojave Forks Reservoir, capacity, 89,700 acre-ft, used for flood control. Silverwood Reservoir releases all natural inflow to the West Fork Mojave River as soon as possible after a storm. Sewage effluent from Lake Arrowhead area is released above gage at times.

AVERAGE DISCHARGE.--10 years (water years 1972-74, 1981-87), 76.3 ft3/s, 55,280 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum daily discharge, 11,700 ft³/s, Mar. 2, 1983, on basis of flood routing; no flow for many days in some years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 840 ft³/s, Mar. 6, gage height, 2.80 ft; no flow for many days.

DISCHARGE. IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MEAN VALUES DAY OCT NOV FEB DEC .TAN MAR APR MAY JUN THE. AHG SEP .31 1 0 3.8 5.3 14 12 34 11 3.5 2 0 .39 3.8 5.3 14 12 33 10 3.0 3 0 .47 3.9 5.3 13 13 32 10 2.5 0 .45 3.8 12 12 14 55 9.4 2.1 5 0 .53 3.8 95 11 19 58 7.9 1.7 6 0 .63 4.3 38 11 488 6.5 75 2.0 .64 7 0 11 23 10 303 71 7.4 1.9 .71 A 0 22 16 10 163 70 10 2.0 а 0 .82 12 12 11 92 67 16 1.9 10 0 1.0 8.2 10 11 56 59 13 1.5 11 O 1.1 6,5 9.8 48 .99 0 12 1.2 5.7 10 12 43 52 8.7 .69 5.5 13 0 1.4 10 13 35 46 8.1 .34 5.5 14 0 1.5 13 31 40 0 11 7.3 15 0 1.4 5.5 12 33 6.8 12 36 0 0 1.5 16 5.8 13 11 36 32 6.3 0 0 5.9 9.9 17 1.5 15 27 28 5.7 0 18 0 9.3 5.8 18 9.2 24 26 5.2 0 19 0 43 5,8 11 8.7 27 23 20 0 14 5.8 8,6 8.6 34 20 0 21 0 7.9 6.1 8.4 8.0 34 18 4.7 0 22 0 5.7 6.8 8.8 8.0 38 17 4.8 n 23 0 4.9 7.8 8,4 6.4 41 15 4.8 n 0 4.2 6.2 7.4 24 11 45 14 4.8 0 25 0 3.8 5.8 7.0 11 44 4.4 0 26 0 3.6 5.8 14 39 13 0 27 0 7.7 3.8 5.8 13 41 4.8 14 0 28 0 3.8 5.6 12 11 45 15 4.9 n 0 29 3.7 5,3 29 ---43 15 4.7 n ___ 30 .07 3.6 5,3 26 37 12 4.6 0 31 . 25 5.3 ---17 35 4.3 ___ TOTAL . 32 126.85 198,8 478.8 309.8 1952 1059 219.9 24.12 MEAN .010 4,23 6.41 15.4 11.1 63.0 35,3 7.09 0 .80 0 0 MAX .25 43 22 95 14 488 75 3.5 16 0 0 0 8.0 MIN 0 .31 3.8 5.3 12 12 4.3 0 0 0 0 AC-FT 252 950 .6 394 614 3870 2100 436 48 n n n

CAL YR 1986 TOTAL 19881.51 MEAN 54.5 MAX 2700 MIN 0 AC-FT 39430 WTR YR 1987 TOTAL 4369.59 MEAN 12.0 MAX 488 MIN 0 AC-FT 8670

10261500 MOJAVE RIVER AT LOWER NARROWS, NEAR VICTORVILLE, CA

LOCATION.--Lat 34°34'23", long 117°19'11", in SW 1/4 SE 1/4 sec.29, T.6 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, on left bank 650 ft upstream from bridge on county road (formerly U.S. Highway 66), 0.6 mi downstream from Atchison, Topeka, & Santa Fe Railway bridge, 3 mi northwest of Victorville, 17.8 mi downstream from Mojave Forks Reservoir, 24 mi downstream from Silverwood Lake on the West Fork Mojave River, and 30 mi downstream from Lake Arrowhead on Deep Creek (East Fork Mojave River).

DRAINAGE AREA. -- 513 mi².

PERIOD OF RECORD, --February 1899 to September 1906, October 1930 to current year. Monthly discharge only for January to September 1906, October, November 1930, published in WSP 1314. Prior to October 1936, published as "at Victorville" and as "near Victorville" in 1937.

GAGE.--Water-stage recorder. Datum of gage is 2,643.01 ft above National Geodetic Vertical Datum of 1929. See WSP 1314 for history of gage changes prior to Mar. 28, 1938. Mar. 28, 1938, to Apr. 14, 1966, at site 350 ft upstream at datum 5.00 ft higher; Apr. 15, 1966, to July 17, 1969, at site 350 ft upstream at datum 3.00 ft higher.

REMARKS.--Estimated daily discharges: Sept. 12-19, 25-30. Records fair, except those for Aug. 19 to Sept. 30, which are poor. Regulation by Lake Arrowhead, capacity, 48,000 acre-ft used principally for recreation; Silverwood Lake, capacity, 78,000 acre-ft used for storage and distribution of imported water and recreation; and Mojave Forks Reservoir, capacity, 89,700 acre-ft. Diversions and pumping for irrigation of about 5,000 acres and Mojave State Fish Hatchery above station. During the year no imported water was released from Silverwood Lake into the West Fork Mojave River, only natural inflow.

AVERAGE DISCHARGE. --64 years (water years 1900-06, 1931-87), 77.9 ft3/s, 56,440 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 70,600 ft³/s, Mar. 2, 1938, gage height, 23.7 ft, present datum, from rating curve extended above 10,000 ft³/s on basis of slope-area measurement of peak flow; minimum daily, 3.4 ft³/s, July 25, 1975.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 608 ft³/s, Jan. 4, gage height, 5.17 ft; minimum daily, 7.1 ft.³/s, Aug. 23.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	·	DISCHARGE	S, IN CUB.	IC FEE1	PER SECOND	EAN VALUE		FK 1900 I	O SEPIEME	EK 1907		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	19	22	28	29	29	27	21	13	13	8.6	8.0
2	12	18	23	26	28	30	. 31	20	14	13	8.0	8.3
3	13	20	22	27	30	31	35	19	15	13	7.9	9.3
4	14	20	23	120	28	29	23	19	15	13	8.8	8.3
5	16	19	24	58	27	26	22	19	14	14	9.2	9.7
6	16	18	30	37	32	30	21	18	14	12	8.4	10
7	15	19	58	33	29	35	22	20	14	10	8.4	9.0
8	16	19	25	33	26	29	22	21	15	11	7.6	9.0
9	18	18	25	28	29	30	22	21	13	11	7.5	9.0
10	18	20	24	31	26	31	21	21	15	11	7.6	9.5
11	18	21	23	29	29	29	21	20	15	9.7	8.5	11
12	18	21	23	29	34	28	22	20	15	9,1	9.6	10
13	17	20	24	27	33	29	21	20	15	8.8	11	10
14	15	20	25	32	32	29	21	19	15	8.2	11	10
15	17	21	24	31	32	30	22	18	14	9.0	16	10
16	16	22	25	30	29	28	21	20	14	10	12	10
17	17	21	23	30	29	29	22	18	12	10	7.3	11
18	18	37	23	29	27	29	21	17	12	9.5	7,3	11
19 (19	22	23	30	27	29	20	19	12	8.9	7.4	11
20	19	21	26	28	30	28	21	20	14	9.4	7.4	11
21	18	20	23	28	33	27	20	22	13	9.6	8.0	11
22	17	21	26	28	31	26	21	21	12	9.5	7.4	12
23	16	21	26	27	31	25	21	20	13	10	7.1	19
24	16	22	25	25	30	25	22	20	12	10	. 7.7	14
25	17	23	24	29	30	26	22	18	12	11	7.7	13
26	17	22	26	29	31	27	25	18	9.8	9.5	7.7	12
27	16	22	27	34	33	32	23	18	10	9.4	7.7	12
28	17	22	25	36	30	30	20	18	11	9.4	8.0	11
29	19	22	27	32		31	21	19	11	8.3	8.0	11
30	17	23	32	31		28	22	16	12	8.8	7.7	11
31	17		31	29		28		14		9.4	7.7	
TOTAL	511	634	807	1044	835	893	675	594	395.8	318.5	264.2	321.1
MEAN	16,5	21.1	26.0	33.7	29.8	28.8	22.5	19.2	13,2	10.3	8.52	10.7
MAX	19	37	58	120	34	35	35	22	15	14	16	19
MIN	12	18	22	25	26	25	20	14	9.8	8.2	7.1	8.0
AC-FT	1010	1260	1600	2070	1660	1770	1340	1180	785	632	524	637

CAL YR 1986 TOTAL 7939.9 MEAN 21.8 MAX 349 MIN 3.6 AC-FT 15750 WTR YR 1987 TOTAL 7292.6 MEAN 20.0 MAX 120 MIN 7.1 AC-FT 14460

10262000 MOJAVE RIVER NEAR HODGE, CA

LOCATION.--Lat 34°50'09", long 117°11'27", in SE 1/4 SE 1/4 sec.28, T.9 N., R.3 W., San Bernardino County, Hydrologic Unit 18090208, at county bridge 1.5 mi north of Hodge, 10.9 mi southwest of Barstow, 42 mi downstream from Mojave Forks Reservoir, 48 mi downstream from Silverwood Lake on West Fork Mojave River, and 54 mi downstream from Lake Arrowhead on Deep Creek (East Fork Mojave River).

DRAINAGE AREA. -- 1,091 mi 2.

PERIOD OF RECORD .-- October 1930 to September 1932, October 1970 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 2,260 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1970, at different datum.

REMARKS.--No estimated daily discharge. Regulation by Lake Arrowhead, capacity 48,000 acre-ft, used principally for recreation; Silverwood Lake, capacity, 78,000 acre-ft, used for storage and distribution of imported water and recreation; and Mojave Forks Reservoir, capacity 89,700 acre-ft. Diversion and pumping for irrigation of about 12,000 acres above station.

AVERAGE DISCHARGE. -- 19 years (water years 1931-32, 1971-87), 42.0 ft³/s, 30,430 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 12,700 ft³/s, Feb. 10, 1978, gage height, 8.80 ft on basis of slope-area measurement of peak flow; no flow all or most of each year.

EXTREMES FOR CURRENT YEAR .-- No flow entire year.

WTR YR 1987 TOTAL 0.00 MEAN .0000

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					LIDAM A	MIOND						
DAY	CT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5												
6 7 8 9 10												
11 12 13 14 15												
16 17 18 19 20												
21 22 23 24 25												
26 27 28 29 30 31												
TOTAL MEAN MAX MIN AC-FT	0 0 0 0											
CAL YR 1986	TOTAL	1.30 ME.	AN .0040	MAX 1,3	MIN 0	AC-FT	2.6					

MAX .00

MIN 0

AC-FT .0

10262500 MOJAVE RIVER AT BARSTOW, CA

LOCATION.--Lat 34°54'25", long 117°01'19", in SW 1/4 SW 1/4 sec.31, T.10 N., R.1 W., San Bernardino County, Hydrologic Unit 18090208, on left bank 75 ft upstream from bridge on U.S. Highway 91 at Barstow, 54 mi downstream from Mojave Forks Reservoir, 60 mi downstream from Silverwood Lake on West Fork Mojave River, and 66 mi downstream from Lake Arrowhead on Deep Creek (East Fork Mojave River).

DRAINAGE AREA. -- 1,291 mi².

PERIOD OF RECORD. -- October 1930 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 2,089.34 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharge: May 12. Records good. Regulation by Lake Arrowhead, capacity, 48,000 acre-ft, used principally for recreation; Silverwood Lake, capacity, 78,000 acre-ft, used for storage and distribution of imported water and recreation; and Mojave Forks Reservoir, capacity, 89,700 acre-ft. Diversions and pumping for irrigation of about 15,000 acres above station.

AVERAGE DISCHARGE. -- 57 years, 24.8 ft 3/s, 17,970 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 64,300 ft³/s, Mar. 3, 1938, gage height, 8.60 ft on basis of slope-area measurement of peak flow; no flow for all or most of each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 0.25 ft3/s, May 12, gage height unknown; no flow most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					Lunn	VALUED						
DAY	CT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5								0 0 0 0				
6 7 8 9 10								0 0 0 0				
11 12 13 14 15								0 .01 0 0				
16 17 18 19 20								0 0 0 0				
21 22 23 24 25								0 0 0 0				
26 27 28 29 30 31								0 0 0 0 0				
TOTAL MEAN MAX MIN AC-FT	0 0 0 0	.01 .0003 .01 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0						
CAT VD 1006	TOTAL (O O ME	ANT O MAY	7 00 M	TN O AC	- TOTO O						

CAL YR 1986 TOTAL 0.00 MEAN 0 MAX .00 MIN 0 AC-FT 0 WTR YR 1987 TOTAL 0.01 MEAN 0 MAX .01 MIN 0 AC-FT .02

10263000 MOJAVE RIVER AT AFTON, CA

LOCATION.--Lat 35°02'14", long 116°23'00", in NW 1/4 SE 1/4 sec.18, T.11 N., R.6 E., San Bernardino County, Hydrologic Unit 18090208, on downstream end of right pier of Union Pacific Railroad bridge, 0.3 mi west of Afton, and 63 mi east of Barstow.

DRAINAGE AREA. -- 2,121 mi².

PERIOD OF RECORD. --October 1929 to September 1932, October 1952 to current year. Records for water year 1930 incomplete, yearly estimate published in WSP 1314. Records for water years 1979 and 1980 incomplete; discharge measurements only were published at that time.

GAGE.--Water-stage recorder. Datum of gage is 1,398.15 ft above National Geodetic Vertical Datum of 1929.

Dec. 21, 1929, to Sept. 30, 1932, at site 1.7 mi downstream at different datum; October 1952 to May 1978, at datum 2 ft higher.

REMARKS.--No estimated daily discharges. Records fair. Natural flow affected by ground-water withdrawals, diversions, municipal use, and storage in upstream reservoirs 100 mi upstream. For description of upstream reservoirs see Mojave River at Barstow (station 10262500).

AVERAGE DISCHARGE.--36 years (water years 1930-32, 1953-78, 1981-87), 6.54 ft³/s, 4,740 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 18,000 ft³/s, Jan. 26, 1969, gage height, 12.40 ft (present datum), from rating curve extended above 3,200 ft³/s on basis of slope-area measurement of peak flow; no flow at times many years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
July 27	1645	*122	*2.46				

Minimum daily, 0.11 ft³/s, Aug. 13, 14.

		DISCHARGE,	IN CUBIC	FEET), WATER MEAN VALU		1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	, 62	1,0	1,2	1.2	1,2	1,2	1,2	.62	.24	.24	.33	, 12
2	.70	.89	1.2	1.2	1,2	1.3	1.1	, 62	.24	.24	.24	.12
3	.70	1.0	1.1	1.2	1.2	1.3	1.2	.62	.24	.24	.24	.14
3 4	.70	1.0	1.2	1.3	1.2	1.2	1.1	.62	.28	.19	.19	. 12
5	.62	1.0	1.2	1.2	1.2	1.3	1.1	.62	. 24	.19	.16	. 14
6	.65	.89	1.2	1.2	1.2	1.4	1.1	, 50	1.3	.19	.16	.14
7	.70	.89	1.6	1.2	1.2	1.2	1.1	. 50	3.2	.19	.16	. 16
8	.70	.89	1.3	1.2	1.2	1.1	1.1	.62	.70	.19	, 16	.19
9	1.1	.89	1.2	1.2	1.2	1.1	1.1	.62	.62	.19	.14	.24
10	1.0	. 89	1.2	1.2	1.2	1.0	1.1	. 50	, 50	.19	.14	.24
11	.79	.89	1.2	1.2	1.2	1.0	1.1	.41	.41	.19	, 12	. 24
12	.70	.89	1.2	1.3	1.2	1.0	1.0	.41	.41	.19	.12	.33
13	.79	. 89	1.2	1.3	1.2	1.1	1.0	.41	.33	.19	.11	.33
14	.79	. 89	1.2	1.3	1.2	1.1	1.1	.33	,33	,19	.11	.41
15	.70	.89	1.1	1.3	1.2	1.1	1.0	.41	.33	.16	. 12	.41
16	.79	.89	1.1	1.3	1.2	1.1	1.0	. 50	.33	,19	.12	.33
17	.70	.89	1.1	1.3	1.2	1.1	.89	.41	.33	.16	.12	.33
18	.70	1.2	1.1	1.3	1.2	1.1	.79	.33	.33	.19	. 12	.41
19	.89	1.2	1.1	1.3	1.2	1.1	.70	.33	.33	,19	.12	.41
20	.79	1.2	1.1	1.3	1.2	1.1	.70	. 33	.33	.19	. 12	.41
21	.89	1.2	1.1	1.3	1.2	1.1	.70	.33	.33	.24	.12	, 33
22	1.0	1.2	1.1	1.2	1.2	1.1	.70	.33	.33	.33	. 12	.41
23	1.0	1.2	1.2	1.2	1.2	1.1	.70	.33	.41	.41	.12	.41
24	1.0	1.2	1.2	1.2	1.3	1.1	.70	.33	.33	.41	. 12	. 50
25	1.0	1.2	1.2	1.2	1.3	1.1	.79	.33	.33	.33	.12	. 50
26	.89	1.2	1.2	1.2	1.3	1.1	.79	.33	.24	.41	.14	.41
27	.89	1.2	1.2	1.2	1.2	1.1	. 70	.33	.24	3.7	. 12	. 50
28	1.0	1.2	1.2	1.2	1.3	1.1	. 62	.33	. 24	2.0	. 14	. 50
29	1.0	1.2	1.2	1.2		1.1	, 62	.33	. 24	.62	.12	.50
30	1.0	1.2	1.2	1,2		1.1	, 62	.33	. 24	. 50	. 14	.50
31	1.0		1.2	1.2		1.2		.33		.33	. 12	
TOTAL	25,80	31.17	36.8	38.3	34.0	35.1		13.34		13,17	4.48	9.78
MEAN	. 83	1.04	1.19	1.24	1.21	1.13	.91	.43	. 47	.42	. 14	.33
MAX	1.1	1.2	1.6	1.3	1.3	1.4	1.2	.62	3.2	3.7	.33	, 50
MIN	. 62	.89	1.1	1.2	1.2	1.0	. 62	.33	. 24	.16	.11	.12
AC-FT	51	62	73	76	67	70	54	26	28	26	8.9	19

CAL YR 1986 TOTAL 276.44 MEAN .76 MAX 7.5 MIN .15 AC-FT 548 WTR YR 1987 TOTAL 283.31 MEAN .78 MAX 3.7 MIN .11 AC-FT 562

ANTELOPE VALLEY

10263500 BIG ROCK CREEK NEAR VALYERMO, CA

LOCATION.--Lat 34°25'15", long 117°50'19", in SE 1/4 NE 1/4 sec.20, T.4 N., R.9 W., Los Angeles County, Hydrologic Unit 18090206, on left bank 0.1 mi upstream from Punchbowl Canyon and 1.9 mi southeast of Valyermo.

DRAINAGE AREA. -- 22.9 mi².

PERIOD OF RECORD.--January 1923 to current year. Monthly discharge only for October 1937 to January 1939, published in WSP 1314. Prior to October 1954, published as Rock Creek near Valyermo.

GAGE.--Water-stage recorder. Elevation of gage is 4,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to May 4, 1938, at same site at different datums. May 4, 1938, to Jan. 26, 1939, at site 0.2 mi downstream (below Punchbowl Canyon) at different datum.

REMARKS .-- Estimated daily discharge: May 17. Records fair. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 64 years (water years 1924-87), 17.6 ft3/s, 12.750 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,300 ft³/s, Mar. 2, 1938, gage height unknown, on basis of slope-area measurement of peak flow; minimum daily, 0.70 ft³/s, Nov. 5, 1951.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar, 6	0515	*60	*2.40				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 1.7 ft³/s, Aug. 19 and Sept. 30.

			,		M	ÉAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.9 5.9 5.9 5.9	5.2 5.3 5.4 5.2 5.1	5.7 5.7 5.8 6.2 6.1	5.9 5.9 5.9 11 8.7	5.4 5.4 5.4 5.4 5.4	4.9 4.7 4.7 4.7 6.9	7.8 7.4 7.6 7.7 7.7	6.9 6.9 6.3 6.2 5.9	3.9 3.9 4.2 4.1 3.6	3.7 3.7 3.5 2.9 2.9	2.0 2.0 2.1 2.1 2.2	2.3 3.3 2.7 2.4 2.3
6 7 8 9 10	5.9 5.9 5.8 5.7 5.6	5.0 4.9 4.9 4.9 5.0	5.9 6.3 6.1 6.0 6.0	7.1 6.8 6.7 6.8 6.6	5.5 5.4 5.4 5.4 5.4	47 30 21 16 13	7.6 7.5 7.4 7.4 7.6	5.7 5.4 5.4 5.2	4.7 4.2 3.9 3.8 3.6	2.8 2.8 2.9 3.1 2.9	2.1 2.0 2.1 2.1 2.1	2.4 2.1 1.9 1.9
11 12 13 14 15	5.5 5.4 5.5 5.2 5.3	5.0 4.9 5.0 5.1 5.1	6.0 6.0 5.9 6.0 6.2	6.6 6.6 6.6 6.5	5.4 5.4 5.3 5.1 5.1	12 11 10 10	7.7 7.9 8.1 8.0 7.8	5.1 5.1 5.0 5.0 5.0	3.4 3.2 4.1 3.9 3.6	2.8 3.0 3.3 2.8 3.3	2.0 2.0 2.0 2.1 2.1	1.9 1.9 2.0 2.0 1.9
16 17 18 19 20	5.2 5.3 5.3 5.3 5.4	5.1 5.1 7.8 5.3 5.4	6.2 6.2 6.2 6.0	6.3 6.4 6.2 6.1 6.0	5,1 5,3 5,4 5,4 5,2	9.8 9.3 8.9 8.7 8.6	7.8 7.8 7.6 7.7 7.5	5.1 4.7 4.4 4.7 4.6	3.6 3.4 3.4 3.4	3.1 3.2 3.2 3.1 3.1	2.1 2.1 2.1 1.7 1.8	1.9 1.9 1.9 1.9
21 22 23 24 25	5.4 5.2 5.1 5.0 5.1	5.5 5.7 5.7 5.8 5.9	6.0 5.9 5.9 5.9 5.9	5.9 5.9 6.2 6.3 6.3	5.3 5.4 5.3 4.9 5.0	8.9 8.6 8.4 8.5 8.2	7.1 6.7 6.8 7.0 6.8	4.6 4.4 4.6 4.8	3.4 3.4 3.3 3.3 3.4	2.9 2.9 2.9 2.8 2.7	1.9 2.1 2.0 2.2 2.2	1.9 2.0 2.7 2.6 2.3
26 27 28 29 30 31	5.0 4.8 4.9 5.1 5.4 5.1	5.8 5.7 5.7 5.7 5.7	5.9 5.9 5.9 5.9 5.9	6.3 6.1 5.2 5.2 5.4 5.4	5.1 4.9 4.9 	8.1 7.9 8.0 8.2 8.2 8.0	6.6 7.9 8.0 7.4 6.8	4.5 4.4 4.3 4.1 4.2 3.8	3.3 3.3 3.6 3.4 3.7	2.5 2.3 2.3 2.3 2.3 2.1	2.2 2.2 2.1 2.2 2.0 2.1	2.1 1.9 1.8 1.8
TOTAL MEAN MAX MIN AC-FT	167.9 5.42 5.9 4.8 333	161.9 5.40 7.8 4.9 321	185.7 5.99 6.3 5.7 368	199.5 6.44 11 5.2 396	147.6 5.27 5.5 4.9 293	343.2 11.1 47 4.7 681	224.7 7.49 8.1 6.6 446	156.1 5.04 6.9 3.8 310	109.4 3.65 4.7 3.2 217	90.1 2.91 3.7 2.1 179	64.0 2.06 2.2 1.7 127	63.2 2.11 3.3 1.7 125

CAL YR 1986 TOTAL 6396.3 MEAN 17.5 MAX 251 MIN 4.8 AC-FT 12690 WTR YR 1987 TOTAL 1913.3 MEAN 5.24 MAX 47 MIN 1.7 AC-FT 3800

OWENS LAKE BASIN

10271210 BISHOP CREEK BELOW POWERPLANT NO. 6. NEAR BISHOP. CA

LOCATION.--Lat 37°20'59", long 118°27'41", in SE 1/4 SE 1/4 sec.9, T.7 S., R.32 E., Inyo County, Hydrologic Unit 18090102, below powerplant No. 6 tailrace and 3.6 mi west of Bishop.

DRAINAGE AREA. -- 104 mi², natural flow.

PERIOD OF RECORD. --October 1936 to current year. Monthly and yearly mean discharge prior to October 1969, published in WSP 2127.

GAGE .-- Water-stage recorder on creek, and venturi meter on powerplant conduit.

REMARKS.--Flow regulated for power development by South Lake, Lake Sabrina, and Intake No. 2 Reservoir, combined capacity, 20,660 acre-ft, and many powerplants. Records for "ACTUAL FLOW" include Bishop Creek above powerplant No. 6 tailrace and Bishop Creek powerplant No. 6 conduit. Records for "NATURAL FLOW" include "ACTUAL FLOW" of Bishop Creek below powerplant No. 6, Abelour ditch near Bishop, minus Birch-McGee diversion to Bishop Creek powerplant near Bishop, and the change in contents and evaporation for South Lake, Lake Sabrina, and Intake No. 2 Reservoir.

COOPERATION, -- Records were provided by Southern California Edison Co. and reviewed by U.S. Geological Survey, in connection with a Federal Energy Regulatory Commission Project.

AVERAGE DISCHARGE (ACTUAL FLOW).--52 years, 104 $\rm ft^3/s$, 75,350 acre-ft/yr. (NATURAL FLOW).--52 years, 108 $\rm ft^3/s$, 78,250 acre-ft/yr.

EXTREMES (ACTUAL FLOW) FOR PERIOD OF RECORD (SINCE 1970).--Maximum daily discharge, 1,070 ft³/s, Sept. 26, 1982; minimum daily, 32 ft³/s, Dec. 19, 1977.

DISCHARGE (ACTUAL FLOW), IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MEAN VALÚES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP Ω ឥន ___ ---------TOTAL MEAN 77.3 87.2 68.5 66.4 92.6 80.7 MAX MIN AC-FT

CAL YR 1986 TOTAL 58051 MEAN 159 MAX 444 MIN 54 AC-FT 115100 a 10589 WTR YR 1987 TOTAL 35065 MEAN 96.1 MAX 144 MIN 54 AC-FT 69550 a 63630

a Computed "NATURAL FLOW", in acre-feet.

MONO LAKE BASIN

10287000 MONO LAKE NEAR MONO LAKE, CA

LOCATION.--Lat 37°58'46", long 119°08'11", in NW 1/4 sec.5, T.2 N., R.26 E., Mono County, Hydrologic Unit 18090101, on west bank 1 mi south of town of Mono Lake.

DRAINAGE AREA. -- 785 mi².

PERIOD OF RECORD. -- June 1912 to current year. Records prior to September 1934, published in WSP 765.

GAGE, --Nonrecording gage or reference point read once a week. Gage readings have been reduced to elevations to National Geodetic Vertical Datum of 1929. Gage heights prior to October 1944 are converted to elevations to NGVD in WSP 1314.

REMARKS. -- Since 1941 water diverted to Owens Lake basin via Mono tunnel, capacity, 200 ft³/s. No elevation readings were provided for January and February; lake frozen at gages.

COOPERATION .-- Records were provided by city of Los Angeles, Department of Water and Power.

EXTREMES FOR PERIOD OF RECORD, --Maximum elevation observed, 6,428.1 ft, July 18, 1919, present datum; minimum observed, 6,372.00 ft, Dec. 17, 30, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation	Date	Elevation	Date	Elevation	Date	Elevation
Oct. 1	6,380,2	Dec. 10	6.380.0	May 22	6,380.3	July 29	6,379.6
8	6,380.2	Mar. 19	6,380.4	27	6,380.3	Aug. 5	6,379.6
15	6,380,2	25	6,380.4	June 3	6,380,3	12	6,379.5
22	6,380.2	Apr. 1	6,380.4	10	6,380.3	19	6,379.4
29	6,380.2	- 8	6,380.5	17	6,380.2	27	6,379.2
Nov. 5	6,380.1	15	6,380.4	24	6,380.1	Sept. 2	6,379.2
12	6,380.0	22	6,380,4	July 1	6,380.1	10	6,379.1
19	6,380.1	29	6,380.4	8	6,380.0	16	6,379.1
26	6,380.0	May 6	6.380.4	15	6,379.9	23	6,379.0
Dec. 3	6,380.0	13	6,380.3	22	6,379.7	30	6,379.0

MONO LAKE BASIN

10287070 MILL CREEK BELOW LUNDY LAKE, NEAR MONO LAKE, CA

LOCATION.--Lat 38°01'58", long 119°12'53", in SE 1/4 NE 1/4 sec.16, T.2 N., R.25 E., Mono County, Hydrologic Unit 18090101, Inyo National Forest, at road crossing 1,500 ft downstream from Lundy Lake Dam and 4.9 mi northwest of Mono Lake Post Office.

DRAINAGE AREA. -- 18.1 mi².

PERIOD OF RECORD. --October 1942 to current year. Monthly and yearly mean discharges prior to October 1969, published in WSP 2127.

GAGE.--Water-stage recorder and Parshall flume on creek. Elevation of gage is 7,760 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Flow regulated for power development by Lundy Lake, capacity, 3,820 acre-ft. Records for "ACTUAL FLOW" include Mill Creek, Lundy powerplant tailrace, and Upper Conway ditch. Records for "NATURAL FLOW" are computed as the "ACTUAL FLOW" plus change in contents and evaporation of Lundy Lake.

COOPERATION. -- Records were provided by Southern California Edison Co. and reviewed by the U.S. Geological Survey, in connection with a Federal Energy Regulatory Commission Project.

AVERAGE DISCHARGE (ACTUAL FLOW).--46 years, 29.6 ft³/s, 21,450 acre-ft/yr. (NATURAL FLOW).--46 years, 30.9 ft³/s, 22,390 acre-ft/yr.

EXTREMES (ACTUAL FLOW) FOR PERIOD OF RECORD (SINCE 1970).--Maximum daily discharge, 229 ft³/s, June 22, 1983; no flow for many days in 1971 and 1974.

DISCHARGE (ACTUAL FLOW), IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MEAN VALUES NOV DEC FEB JUN JUL SEP DAY OCT JAN MAR APR MAY AUG 1 17 18 16 11 8.0 7.5 6.8 15 66 22 22 12 16 8.6 66 7.9 7.5 15 22 22 10 2. 17 18 6.8 7.5 7.3 15 8.6 16 7.8 22 22 3 19 18 7.1 44 7.5 30 19 18 16 7.8 7.4 7.3 17 22 22 8.6 5 19 18 16 7.6 7.7 7.3 7.3 20 30 2.2 22 8.6 6 19 18 16 7.5 7.7 7.3 7.5 20 30 22 22 8.6 19 18 16 7.4 7.7 7.2 7.4 20 30 22 22 8.6 8 19 18 16 7.4 7.7 7.1 7.5 26 30 23 22 8.6 18 16 7.3 7.7 7.1 7.3 21 Ω 19 31 31 22 8.6 21 10 19 18 16 7.3 7.7 7.2 7.3 30 31 23 8.4 18 16 7.7 38 31 22 8,4 19 7.3 7.2 7.3 23 11 7.7 7.3 7.2 7.3 12 19 18 16 45 31 22 21 8.4 13 19 18 16 7.3 7.7 7.1 7.3 43 31 22 2.1 8.4 7.1 14 19 18 16 7.3 7.7 7.3 45 31 23 21 8.4 15 19 18 16 7.2 7.7 7.3 7.3 40 31 22 21 8.4 7.3 16 18 18 16 7.7 7.2 32 31 22 21 16 7.5 17 18 18 7.6 7.6 7.3 33 30 22 21 8.4 7.5 18 18 18 16 7.6 7.7 7,2 30 30 22 22 8.6 7.6 19 18 18 14 7.5 7.8 30 30 22 8.6 7.3 22 7.5 7.6 20 18 17 12 7.7 7.2 30 30 22 22 8.6 17 21 12 7.5 7.6 7.7 7.5 30 30 18 22 22 8.6 7.5 7.5 22 18 17 12 7.7 7.6 7.6 30 30 22 22 8,6 23 17 12 7.7 7.6 7.7 30 25 22 8.6 18 23 7.6 18 17 12 7.7 7.7 7,6 30 20 22 22 25 18 16 12 7.7 7.5 6.6 7.5 30 21 22 19 8.4 7.7 7.9 26 16 12 7.5 30 21 18 6.5 7.7 22 17 8.4 7.5 2.7 12 18 16 6.4 7.5 32 21 22 16 8:4 2.8 18 16 12 7.9 7.5 6.0 11 32 21 22 14 8.4 29 18 16 12 7.9 ---6.3 15 42 21 22 12 8.4 12 7.9 ---66 30 18 16 6.3 15 21 22 12 8.7 31 12 8.0 ---6.6 18 66 22 12 TOTAL 569 523 446 238.4 214.7 222.6 238,7 993 925 687 622 260,1 MEAN 18.4 17,4 14,4 7,69 7.67 7.18 7.96 32.0 30.8 22.2 20.1 8.67 7.8 MAX 19 18 16 11 8.0 15 66 66 23 2.2 12 7.2 MIN 17 16 12 7.5 6.0 6.8 15 22 8.4 20 12 AC-FT 1040 885 473 426 1830 1130 442 473 1970 1360 1230 516 885 628 551 445 380 442 837 2480 2140 1090 684 509

CAL YR 1986 TOTAL 15997.0 MEAN 43.8 MAX 216 MIN 12 AC-FT 31730 a 32050 WTR YR 1987 TOTAL 5939.5 MEAN 16.3 6.0 AC-FT 11780 MAX 66 MIN a 11070

a Computed "NATURAL FLOW", in acre-feet.

MONO LAKE BASIN

10287290 RUSH CREEK BELOW AGNEW LAKE, NEAR JUNE LAKE, CA

LOCATION.--Lat 37°45'32", long 119°07'47", in NE 1/4 SW 1/4 sec.20, T.2 S., R.26 E., Mono County, Hydrologic Unit 18090101, Inyo National Forest, 500 ft downstream from Agnew Lake Dam and 3.4 mi southwest of town of June Lake.

DRAINAGE AREA, -- 23, 3 mi 2.

PERIOD OF RECORD. --October 1951 to current year. Monthly and yearly mean discharges prior to October 1969, published in WSP 2127.

GAGE.--Water-stage recorder and Parshall flume on creek. Elevation of gage is 8,480 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Flow regulated for power development by Waugh, Gem, and Agnew Lakes, combined capacity, 23,420 acre-ft, and Rush Creek powerplant. "ACTUAL FLOW" is total flow of Rush Creek below Agnew Lake and Rush Creek powerplant tailrace. "NATURAL FLOW" is the sum of "ACTUAL FLOW," change in contents, and evaporation for Waugh, Gem, and Agnew Lakes.

COOPERATION.--Records were provided by Southern California Edison Co., and reviewed by the U.S. Geological Survey, in connection with a Federal Energy Regulatory Commission Project.

AVERAGE DISCHARGE (ACTUAL FLOW).--36 years, 57.2 ft³/s, 41,440 acre-ft/yr. (NATURAL FLOW).--36 years, 61.5 ft³/s, 44,560 acre-ft/yr.

EXTREMES (ACTUAL FLOW) FOR PERIOD OF RECORD (SINCE 1970).--Maximum daily discharge, 421 ft³/s, July 15, 1978; minimum daily, 0.90 ft³/s, Aug. 31 to Sept. 2, 1976.

DISCHARGE (ACTUAL FLOW), IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	140	78	63	36	16	11	11	21	31	33	34	33
2	139	73	59	36	12	10	11	23	38	33	33	33
3	139	69	60	36	12	10	11	22	38	33	33	35
4	138	68	60	36	14	11	11	22	37	33	33	34
5	138	67	60	34	12	13	11	14	32	33	33	34
6	65	68	60	33	12	13	11	5.8	29	33	33	34
7	51	68	61	36	12	13	11	18	29	33	33	34
8	51	68	61	39	12	13	11	28	32	33	33	34
9	49	68	60	37	12	13	11	21	33	32	33	34
10	48	68	60	36	12	11	11	21	33	32	33	34
11	48	68	59	36	12	11	11	21	33	32	33	34
12	48	68	59	35	12	12	11	21	33	32	33	34
13	48	68	59	37	13	12	10	21	33	32	33	34
14	48	68	59	36	14	12	11	24	33	32	33	34
15		68	59	36	14	12	11	23	33	32	33	34
13	47	00	39	36	14	12	11	23	33	32	33	34
16	37	68	59	39	14	11	11	23	33	33	32	33
17	23	68	59	38	14	12	11	24	33	33	34	33
18	12	68	59	38	14	13	15	22	33	32	33	33
19	12	68	51	38	14	13	17	20	33	32	33	33
20	27	68	36	37	14	12	17	20	33	32	33	33
21	37	68	37	37	15	12	18	20	33	32	33	33
22	37	67	36	36	13	12	19	22	32	32	33	33
23	37	67	36	36	12	11	20	22	33	32	33	33
24	37	66	36	36	12	12	19	22	33	32	33	32
25	37	65	36	36	12	12	20	22	33	32	33	32
0.0			2.0		4.5	4.0						0.0
26	37	66	36	34	12	12	20	22	33	32	33	32
27	39	65	36	31	12	11	20	20	33	32	33	32
28	61	65	36	30	11	10	20	21	33	31	33	32
29	59	66	36	27		10	20	22	33	33	33	33
30	62	67	36	22		11	20	22	33	33	34	34
31	79		36	20		11		22		33	34	
TOTAL	1830	2037	1560	1074	360	362	431	651.8	991	1004	1026	1000
MEAN	59.0	67.9	50.3	34.6	12.9	11.7	14.4	21.0	33.0	32.4	33.1	33.3
MAX	140	78	63	39	16	13	20	28	38	33	34	35
MIN	12	65	36	20	11	10	10	5.8	29	31	32	32
AC-FT	3630	4040	3090	2130	714	718	855	1290	1970	1990	2040	1980
a	710	0	19	208	295	374	4020	9130	4470	1360	939	85
•	, 10	•		200	200	٠,٦	7020	0100	7770	1000	000	00

CAL YR 1986 TOTAL 27131.3 MEAN 74.3 MAX 324 MIN 9.3 AC-FT 53810 a 57910 WTR YR 1987 TOTAL 12326.8 MEAN 33.8 MAX 140 MIN 5.8 AC-FT 24450 a 21610

a Computed "NATURAL FLOW", in acre-feet. When "ACTUAL FLOW" was small and other quantities were large, negative figures of flow may appear. This arises primarily from the difficulty of computing "NATURAL FLOW" as the residual of several larger quantities, which are not conducive to precise measurement. When this occurs, adjustments are made to produce non-negative flows.

PACIFIC SLOPE BASINS IN CALIFORNIA

TIJUANA RIVER BASIN

11011000 BARRETT LAKE NEAR DULZURA, CA

LOCATION.--Lat 32°30'46", long 116°40'11", in NW 1/4 NW 1/4 sec.22, T.17 S., R.3 E., San Diego County, Hydrologic Unit 18070305, on Barrett Dam outlet tower, 7.2 mi downstream from Morena Reservoir, and 7.0 mi northeast of Dulzura.

DRAINAGE AREA, -- 245 mi².

PERIOD OF RECORD. --October 1960 to September 1966 (monthend contents only, published in WSP 1928), published as Cottonwood Creek at Barrett Dam. October 1986 to September 1987.

REVISED RECORDS, -- WDR CA-66-1: Drainage area.

GAGE. -- Nonrecording gage. Datum of gage is 1,446.12 ft above National Geodetic Vertical Datum of 1929 (levels by city of San Diego); gage readings have been reduced to NGVD.

REMARKS.--Reservoir is formed by gravity-concrete and masonry dam built in 1922. Area-capacity table for reservoir is based on a resurvey made in 1948, 1951, and 1955. Capacity from U.S. Geological Survey table dated Mar. 27, 1956. Maximum capacity at top of flash gates on spillway, 44,760 acre-ft, elevation, 1,615.00 ft. Capacity at permanent spillway level, 37,950 acre-ft, elevation, 1,607.00 ft. Dead storage below lowest outlet, 719 acre-ft, elevation, 1,505.00 ft. Water drawn from Barrett Reservoir is diverted out of drainage basin to Lower Otay Reservoir by Dulzura conduit for municipal use.

COOPERATION .-- Gage-heights were provided by city of San Diego, Utilities Engineering Division.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 22,110 acre-ft, Oct. 1, 1986, elevation, 1,584.38 ft; minimum observed, 14,140 acre-ft, Sept. 30, 1987, elevation, 1,568.85 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 22,110 acre-ft, Oct. 1, elevation, 1,584.38 ft; minimum observed, 14,140 acre-ft, Sept. 30, elevation, 1,568.85 ft.

MONTHEND ELEVATION NGVD AND CONTENTS AT 0800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	1,584.42	22,140	an ma
Oct. 31	1,583.08	21,350	-790
Nov. 30	1,581.60	20,510	-840
Dec. 31	1,580.22	19,740	-770
CAL YR 1986			-4,710
Jan. 31	1,579.06	19,100	-640
Feb. 28	1,578.96	19,050	-50
Mar. 31	1,579.18	19,170	+120
Apr. 30	1,578.10	18,590	-580
May 31	1,576.14	17,580	-1,010
June 30	1,574,83	16,920	-660
July 31	1,573.56	16,300	-620
Aug. 31	1,571.42	15,290	-1,010
Sept. 30	1,568.85	14,140	-1,150
WTR YR 1987			-8,000

TIJUANA RIVER BASIN

11012000 COTTONWOOD CREEK ABOVE TECATE CREEK, NEAR DULZURA, CA

LOCATION.--Lat 32°34'30", long 116°45'11", in NW 1/4 SW 1/4 sec.26, T.18 S., R.2 E., San Diego County, Hydrologic Unit 18070305, on right bank 0.8 mi upstream from confluence with Tecate Creek, 5.1 mi south of Dulzura, and 11.3 mi downstream from Barrett Lake.

DRAINAGE AREA. -- 310 mi².

PERIOD OF RECORD. -- October 1936 to current year.

WTR YR 1987 TOTAL 101.81 MEAN .28

MAX

GAGE.--Water-stage recorder. Datum of gage is 569.40 ft above National Geodetic Vertical Datum of 1929 (levels by International Boundary and Water Commission).

REMARKS.--Estimated daily discharges: Nov. 8-26. Records fair. Flow regulated by Morena Reservoir, capacity, 50,120 acre-ft, and Barrett Reservoir, capacity, 44,760 acre-ft. Water diverted from Barrett Reservoir through San Diego and Dulzura conduits to Lower Otay Reservoir.

AVERAGE DISCHARGE. -- 51 years, 14.7 ft3/s, 10,650 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 11,700 ft³/s, Feb. 21, 1980, gage height, 11.15 ft, from rating curve extended above 8,700 ft³/s; no flow for part of each year.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 6.5 ft3/s, Jan. 5, gage height, 3.30 ft; no flow many days.

		DISCHARGE	, IN CU	BIC FEE	r per seco	OND, WATER MEAN VAL	YEAR OCT	OBER 1986	5 TO :	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAI	N FEI	B MAR	APR	MAY	č	JUN	JUL	AUG	SEP
1	0	0	.02	. 47	7 .22	2 2,2	.50	. 16	3				
2	Ö	ŏ	.02	. 50			.48						
3	ŏ	ŏ	.02	.50			.62						
4	ŏ	ŏ	.02	1.4			1.5	.08					
5	ŏ	ő	.02	3.6	.19		1.4	.05					
•		-		• • • •	, _ ,								
6	0	0	.02	.70			1.1	0					
7	0	.01	. 17	. 83	3 .13	1.5	.91	0					
8	0	.01	.74	. 5	5 .19	5 1.4	.74	0					
9	0	.01	. 42	, 4	7 .20	1.1	, 62	.06	3				
10	0	.01	.35	. 42			. 53	.05	5				
		•											
11	0	.01	.30	. 40									
12	.02	.01	. 27	. 3:					Z				
13	.01	.01	. 25	. 32									
14	0	.01	. 22	. 33									
15	0	.01	. 22	.34	.25	1.8	. 27	0					
16	0	.01	. 22	.3:	L .24	2.2	.23	0					
17	ŏ	.01	.22	, 29			.21						
18	ŏ	.02	. 23	.20			. 23						
19	Ŏ	.02	.27	.30			.23						
20	Ö	.02	1.3	.20									
20	Ū	.02	1.0	. 20		, 90	, 10	U					
21	0	.02	. 98	. 20	3 .17	1.1	.13	0					
22	0	.02	. 52	.20	, 19	2.3	.11	0					
23	0	.02	.45	.27			.09	0					
24	0	.02	.45	, 20		1.8	.09	0					
25	0	.02	. 43	.25		1.5	.09	0					
••				_									
26	0	.02	.40	. 24		1.2	, 11						
27	0	.02	, 42	. 23		1.0	. 13						
28	0	.02	. 43	. 2	5 2.7	. 89							
29	0	.02	. 42	. 2	5	.76							
30	0	.02	. 42	.24		.61		.08					
31	0		.45	. 24		. 53		.01	l				
TOTAL	.03	.37	10.67	15.39	3 20,28	41,21	12,59	1,27	,	0	0	0	0
MEAN	.001	.012	.34	.50						Ŏ	ő	ŏ	ŏ
MAX	.02	.02	1.3	3.0						Ŏ	Ö	ŏ	ŏ
MIN	.02	0	.02	. 23						0	Ö	Ö	0
AC-FT	.06	.7	21	33						0	0	ő	0
		• •		٠.	- "	. 02	2.5	2,3	-	•	٠	J	v
CAL YR	1986 TOT	AL 572.06	MEAN	1.57 N	1AX	61 MIN	O AC-FT	1130					

4.6 MIN 0

AC-FT

202

TIJUANA RIVER BASIN

11012500 CAMPO CREEK NEAR CAMPO, CA

LOCATION.--Lat 32°35'28", long 116°31'29", in NE 1/4 SE 1/4 sec.24, T.18 S., R.4 E., San Diego County, Hydrologic Unit 18070305, on left bank just upstream from bridge on State Highway 94 and 3.5 mi southwest of Campo.

DRAINAGE AREA, --85.0 mi², of which 3 mi² are in Mexico.

PERIOD OF RECORD, -- October 1936 to current year.

GAGE.--Water-stage recorder and broad-crested weir. Broad-crested weir was buried by sand Mar. 25, 1982, to Sept. 30, 1985, and was ineffective as a control. Datum of gage is 2,178.92 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 1, 1954, at datum 1 ft higher.

REMARKS.--No estimated daily discharges. Records fair. Peaks are attenuated by small conservation reservoir 1 mi upstream since August 1956. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 51 years, 3.29 ft3/s, 2,380 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 895 ft³/s, Mar. 24, 1983, gage height, 5.39 ft, from rating curve extended above 340 ft³/s; no flow for part of most years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 27 ft³/s, Jan. 5, gage height, 2.05 ft; minimum daily, 0.02 ft³/s, Sept. 9.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG SEP			DIBOIMIC	л, .1N ООБ	IO FEEL I		ÆAN VALUE		JLK 1900 I	O BELLEM	LK 1307		
3	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3	1	.22	. 23	.18	1.9	2.2	5.0	1.8	. 54	. 23	. 17	.08	.04
3	2	.24	.23	. 18	1.5	2.2	4.3	1.7	, 52	.21	. 17	.11	.03
4	3	.24	.23		1.9		3.8	1.9	. 47		.16		
5 .22 .22 .19 15 1,9 3,1 3,0 .41 .19 .12 .27 .05 6 .22 .23 .27 8,3 1,7 3,9 2,2 .37 .22 .14 .18 .04 7 .22 .23 .43 6,5 1,5 4,9 2,2 .37 .22 .14 .18 .04 8 .22 .22 .72 5,2 1,4 4,3 2,0 .35 .22 .14 .15 .03 9 .50 .21 1,0 3,8 1,7 4,1 1,7 .37 .21 .13 .14 .02 10 .70 .20 .96 3,1 2,8 3,3 1,5 .35 .19 .12 .13 .13 .03 11 .34 .20 .90 3,1 2,8 3,3 1,5 .35 .19 .12 .13 .06													
7													
8 .22 .22 .72 5.2 1.4 4.3 2.0 .35 .22 .14 .15 .03 9 .50 .21 1.0 3.8 1.7 4.1 1.7 .37 .21 .13 .14 .02 10 .70 .20 .96 3.0 2.6 3.8 1.6 .37 .19 .13 .14 .02 11 .34 .20 .90 3.1 2.8 3.3 1.5 .35 .19 .12 .13 .06 12 .28 .21 .89 2.5 2.6 3.1 1.5 .31 .19 .10 .12 .10 13 .25 .21 .89 2.5 2.6 3.1 1.5 .31 .19 .10 .12 .10 14 .23 .21 .81 2.2 2.7 2.8 1.1 .30 .18 .06 .18 .10 15 .23 .21 .91 .22 .7 7.2 .98 .32		.22	.23	.27	8,3	1.7	3.9	2.4	.39	.21	.13	. 22	.04
8 .22 .22 .72 5.2 1.4 4.3 2.0 .35 .22 .14 .15 .03 10 .70 .20 .96 3.0 2.6 3.8 1.6 .37 .19 .13 .14 .02 11 .34 .20 .90 3.1 2.8 3.3 1.5 .35 .19 .12 .13 .06 12 .28 .21 .89 2.5 2.6 3.1 1.5 .35 .19 .12 .13 .06 13 .25 .21 .89 2.5 2.6 3.1 1.5 .31 .19 .10 .12 .10 13 .25 .21 .87 2.1 2.6 2.8 1.3 .29 .18 .07 .14 .12 14 .23 .21 .91 2.2 2.7 7.2 .98 .32 .19 .13 .15 .08 15 .23 .21 .71 2.3 2.9 10 .92 .33	7	.22	. 23	. 43	6.5	1.5	4.9	2.2	.37	.22	. 14	.18	.04
9	8	.22	.22		5.2	1.4	4.3	2.0	.35	.22	. 14	. 15	.03
10		. 50	.21	1.0	3.8	1.7			.37				
12 .28 .21 .89 2.5 2.6 3.1 1.5 .31 .19 .10 .12 .10 13 .25 .21 .87 2.1 2.6 2.8 1.3 .29 .18 .07 .14 .12 14 .23 .21 .86 2.2 2.7 7.2 .98 .32 .19 .10 .17 .08 15 .23 .21 .71 2.3 2.9 10 .92 .33 .19 .13 .15 .08 16 .23 .21 .71 2.3 2.9 10 .92 .33 .19 .13 .15 .08 17 .24 .24 .65 2.1 2.6 6.0 .86 .33 .18 .15 .14 .08 18 .24 .26 .59 2.0 2.5 4.5 .89 .32 .18 .13 .13 .07 19 .24 .20 .58 2.1 2.6 4.0 .84 .33	10												
13		.34	.20	, 90	3.1	2.8	3.3	1.5	.35	.19	. 12	.13	.06
14 .23 .21 .91 2.2 2.7 2.8 1.1 .30 .18 .06 .18 .10 15 .23 .21 .86 2.2 2.7 7.2 .98 .32 .19 .10 .17 .08 16 .23 .21 .71 2.3 2.9 10 .92 .33 .19 .13 .15 .08 17 .24 .24 .65 2.1 2.6 6.0 .86 .33 .18 .15 .14 .08 18 .24 .26 .59 2.0 2.5 4.5 .89 .32 .18 .13 .13 .07 19 .24 .20 .58 2.1 2.6 4.0 .84 .33 .18 .11 .11 .06 20 .23 .19 1.2 1.7 2.3 3.6 .68 .34 .19 .12 .07 .07 22 .23 .19 1.2 1.7 2.3 3.6 .68 .34	12	.28	.21	. 89	2.5	2.6	3.1	1.5	.31	.19	.10	.12	.10
15	13	.25	.21	. 87	2.1	2.6	2.8	1.3	.29	.18	.07	.14	.12
15	14	.23	.21	.91	2.2	2.7	2.8	1.1	.30	.18	.06	. 18	.10
17	15	.23	.21	.86	2.2	2.7	7.2	.98	.32	, 19			.08
18 .24 .26 .59 2.0 2.5 4.5 .89 .32 .18 .13 .13 .07 19 .24 .20 .58 2.1 2.6 4.0 .84 .33 .18 .11 .11 .06 20 .23 .19 .65 2.0 2.5 3.6 .72 .34 .19 .10 .09 .06 21 .23 .19 1.2 1.7 2.3 3.6 .68 .34 .19 .12 .07 .07 22 .23 .19 1.3 1.9 2.4 13 .67 .33 .19 .11 .07 .20 23 .25 .18 1.4 2.0 3.0 7.4 .65 .31 .18 .09 .07 .16 24 .24 .18 1.6 2.0 11 5.2 .65 .31 .17 .08 .07 .13 25 .23 .18 1.6 1.9 16 6.4 .66 .32		.23	.21		2.3	2,9	10	. 92	.33	.19	. 13	.15	.08
18 .24 .26 .59 2.0 2.5 4.5 .89 .32 .18 .13 .13 .07 19 .24 .20 .58 2.1 2.6 4.0 .84 .33 .18 .11 .11 .06 20 .23 .19 .65 2.0 2.5 3.6 .72 .34 .19 .10 .09 .06 21 .23 .19 1.2 1.7 2.3 3.6 .68 .34 .19 .12 .07 .07 22 .23 .19 1.3 1.9 2.4 13 .67 .33 .19 .11 .07 .20 23 .25 .18 1.4 2.0 3.0 7.4 .65 .31 .18 .09 .07 .16 24 .24 .18 1.6 2.0 11 5.2 .65 .31 .17 .08 .07 .13 25 .23 .18 1.6 1.8 13 4.6 .69 .36	17	. 24	. 24	.65	2.1	2,6	6.0	.86	. 33	.18	. 15	. 14	.08
19	18	. 24	. 26	. 59	2.0	2.5	4.5	.89	.32	.18	. 13	. 13	.07
20	19	.24	.20	. 58	2.1	2.6	4.0	.84	. 33	.18	. 11	.11	.06
22 .23 .19 1.3 1.9 2.4 13 .67 .33 .19 .11 .07 .20 23 .25 .18 1.4 2.0 3.0 7.4 .65 .31 .18 .09 .07 .16 24 .24 .18 1.6 2.0 11 5.2 .65 .31 .17 .08 .07 .13 25 .23 .18 1.6 1.9 16 6.4 .66 .32 .15 .06 .07 .12 26 .23 .18 1.6 1.8 13 4.6 .69 .36 .14 .05 .08 .12 27 .23 .18 1.7 1.9 9.1 3.6 .71 .33 .14 .04 .07 .11 28 .22 .18 1.8 2.2 6.1 3.2 .67 .32 .14 .04 .05 .10 29 .23 .18 1.6 2.2 2.7 .61 .30	20	.23	.19	.65									
23	21	.23	.19	1.2	1.7	2.3	3.6	.68	.34	.19	.12	.07	.07
23	22	.23	.19	1.3	1.9	2,4	13	.67	.33	.19	.11	.07	.20
24 .24 .18 1.6 2.0 11 5.2 .65 .31 .17 .08 .07 .13 25 .23 .18 1.6 1.9 16 6.4 .66 .32 .15 .06 .07 .12 26 .23 .18 1.6 1.8 13 4.6 .69 .36 .14 .05 .08 .12 27 .23 .18 1.7 1.9 9.1 3.6 .71 .33 .14 .04 .07 .11 28 .22 .18 1.8 2.2 6.1 3.2 .67 .32 .14 .04 .05 .10 29 .23 .18 1.6 2.2 2.7 .61 .30 .14 .07 .04 .09 30 .23 .18 1.5 2.1 2.2 .54 .27 .16 .08 .06 .07 31 .24 1.6 2.2 1.9 .25	23	. 25	.18	1.4	2.0	3.0	7.4	.65	.31				
25													
27													
27	26	.23	.18	1.6	1.8	13	4.6	.69	.36	. 14	.05	.08	.12
28	27	.23	. 18	1.7	1.9	9.1	3.6	.71	.33	. 14			
29 .23 .18 1.6 2.2 2.7 .61 .30 .14 .07 .04 .09 30 .23 .18 1.5 2.1 2.2 .54 .27 .16 .08 .06 .07 31 .24 1.6 2.2 1.9 .25 .06 .03 TOTAL 8.07 6.18 28.82 94.8 109.0 141.5 38.84 10.89 5.52 3.29 3.52 2.34 MEAN .26 .21 .93 3.06 3.89 4.56 1.29 .35 .18 .11 .11 .078 MAX .70 .26 1.8 15 16 13 3.4 .54 .23 .17 .27 .20 MIN .22 .18 .18 1.5 1.4 1.9 .54 .25 .14 .04 .03 .02													
30													
31 .24 1.6 2.2 1.92506 .03 TOTAL 8.07 6.18 28.82 94.8 109.0 141.5 38.84 10.89 5.52 3.29 3.52 2.34 MEAN .26 .21 .93 3.06 3.89 4.56 1.29 .35 .18 .11 .11 .078 MAX .70 .26 1.8 15 16 13 3.4 .54 .23 .17 .27 .20 MIN .22 .18 .18 1.5 1.4 1.9 .54 .25 .14 .04 .03 .02													
MEAN .26 .21 .93 3.06 3.89 4.56 1.29 .35 .18 .11 .11 .078 MAX .70 .26 1.8 15 16 13 3.4 .54 .23 .17 .27 .20 MIN .22 .18 .18 1.5 1.4 1.9 .54 .25 .14 .04 .03 .02													
MEAN .26 .21 .93 3.06 3.89 4.56 1.29 .35 .18 .11 .11 .078 MAX .70 .26 1.8 15 16 13 3.4 .54 .23 .17 .27 .20 MIN .22 .18 .18 1.5 1.4 1.9 .54 .25 .14 .04 .03 .02	TOTAL	8.07	6.18	28,82	94.8	109.0	141.5	38.84	10.89	5.52	3.29	3.52	2.34
MAX .70 .26 1.8 15 16 13 3.4 .54 .23 .17 .27 .20 MIN .22 .18 .18 1.5 1.4 1.9 .54 .25 .14 .04 .03 .02													
MIN .22 .18 .18 1.5 1.4 1.9 .54 .25 .14 .04 .03 .02													

TOTAL 1127.62 MAX 198 CAL YR 1986 MEAN 3.09 MTN .03 AC-FT 2240 WTR YR 1987 TOTAL 452.77 MEAN 1,24 MAX 16 MIN .02 AC-FT

TIJUANA RIVER BASIN

11013000 TIJUANA RIVER NEAR DULZURA, CA

LOCATION.--Lat 32°33'56", long 116°46'27", in E 1/2 sec.33, T.18 S., R.2 E., San Diego County, Hydrologic Unit 18070305, on left bank 0.5 mi downstream from confluence of Cottonwood and Tecate Creeks, 5.5 mi south of Dulzura, and 12.8 mi downstream from Barrett Reservoir.

DRAINAGE AREA.--481 \min^2 , of which 70 \min^2 are in Mexico.

PERIOD OF RECORD. --October 1936 to current year.

GAGE.--Water-stage recorder. Datum of gage is 542.42 ft above National Geodetic Vertical Datum of 1929 (levels by International Boundary and Water Commission). Prior to Sept. 19, 1939, at datum 2.00 ft higher.

REMARKS.--No estimated daily discharges. Records poor. Flow regulated by Morena Reservoir, capacity, 50,210 acre-ft and Barrett Reservoir, capacity, 44,760 acre-ft. Water diverted from Barrett Reservoir through San Diego and Dulzura conduits to Lower Otay Reservoir.

AVERAGE DISCHARGE, -- 51 years, 25.0 ft 3/s, 18,110 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,600 ft³/s, Mar. 3, 1983, gage height, 7.03 ft, from rating curve extended above 3,500 ft³/s; maximum gage height, 11.19 ft, Feb. 18, 1980; no flow for part of most years

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 101 ft³/s, Oct. 10, gage height, 2.67 ft; minimum daily, 0.21 ft³/s, June 19.

		DIDOMINO	, IN OOL	10 1221 1		ÆAN VALUE		,ER 1000 1	O BELLEVIE	ILK 1007		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	2.6	3.2	6.8	4.0	8.4	3.6	1.7	.74	. 58	. 59	.40
2	1.5	2.8	3.8	7.2	3.7	7.2	3.4	1.6	. 67	.60	.41	.40
3	1.8	2.8	4.4	7.5	4.1	7.1	3.5	1.5	.72	. 63	.31	.40
4	2.1	2.9	4.3	10	4.3	7.0	5,9	1.4	.73	. 64	.31	.40
5	2.2	3.0	4.4	23	3.9	7.2	3.9	1.3	.72	.65	.31	.42
6	1.7	3.2	5.3	15	3.6	8.3	3,3	1.2	.72	,61	.35	.40
7	1.5	3.7	6.5	15	3.2	8.2	3.1	1.4	.71	.67	.36	. 40
8	1.7	4.0	6,8	9.1	3.2	7.5	2.9	1.5	.68	.63	.39	.40
9	2.3	3,5	6.4	5,8	3.3	6.9	2.5	1.5	.69	.65	.38	.40
10	51	2.6	6.0	5.2	3.7	7.0	2.3	1.5	. 70	.71	. 22	.40
11	18	2.1	5.7	4.9	3.7	6.6	2.1	1.3	.69	.75	. 23	.45
12	5.7	2.2	4.9	5.0	3.6	6.4	2.0	1.4	.73	,66	.31	.50
13	2.5	2.3	4.7	5.1	3.7	6.5	1.6	1.4	. 63	. 59	.42	. 55
14	2.1	2.5	4.6	4.9	3.7	6.3	1.9	1.5	. 48	. 63	.42	. 50
15	2.3	2.6	3.8	4.4	3.6	9.4	2.0	1.5	.34	.71	.39	.45
16	2.9	2.8	3.7	4.2	3.4	15	1.8	1,4	.36	.76	.36	.45
17	3.6	2.5	3.8	4.3	3.3	7.9	1.8	1.3	.34	.80	.37	. 45
18	4.2	2.6	3.3	4,1	3,3	6.7	1.9	1.3	. 25	. 67	.36	. 45
19	4.5	2.7	3,3	4.1	3,2	5.9	1.9	1.4	.21	. 57	.37	. 45
20	3.3	2,6	11	4.0	3.7	5.4	1.3	1.5	. 26	. 54	.40	.45
21	5.0	2,4	9.5	3.8	3.2	5.4	1.3	1.6	. 26	. 58	, 40	. 45
22	6.2	2.4	7.5	4.0	3.0	17	1.3	1,5	.31	.60	. 42	.65
23	4.4	2.0	6.8	4.0	3.4	7.7	1.4	1.5	.35	. 55	.46	, 60
24	3.6	1.7	6.6	4.0	7.9	6.2	1.6	1.5	. 43	. 59	. 47	.60
25	3.2	2.0	6.3	3.8	16	4.8	1.6	1.5	. 48	. 58	. 48	.55
26	3.1	2.3	6.0	3.7	28	4.3	1.7	1.5	. 49	. 57	. 46	. 55
27	2,8	2.2	6,2	4.1	14	4.3	1.6	1.5	. 48	. 50	.45	, 55
28	2.9	2,9	6,2	4.3	10	4.0	1,7	1.5	. 47	. 53	. 42	, 55
29	3.0	4.0	6.2	4.1		3.7	1.8	1.3	.41	.60	. 40	,70
30	3.1	3,9	6,2	4.2		3,5	1.8	1.3	. 48	. 64	. 45	1,1
31	2.9		6.6	4.3		3.4		.99		. 63	.40	
TOTAL	156.2	81.8	174.0	193.9	157.7	215.2	68.5	44.29	15.53	19.42	12.07	15.02
MEAN	5.04	2.73	5.61	6,25	5,63	6.94	2.28	1.43	, 52	. 63	.39	. 50
MAX	51	4.0	11	23	28	17	5.9	1,7	.74	. 80	. 59	1.1
MIN	1.1	1.7	3.2	3.7	3.0	3.4	1.3	. 99	.21	, 50	. 22	.40
AC-FT	310	162	345	385	313	427	136	88	31	39	24	30

CAL YR 1986 TOTAL 2558.65 MEAN 7.01 MAX 309 MIN 0 AC-FT 5080 WTR YR 1987 TOTAL 1153.63 MEAN 3.16 MAX 51 MIN .21 AC-FT 2290

TIJIJANA RIVER BASIN

11013200 RODRIGUEZ RESERVOIR AT RODRIGUEZ DAM, BAJA CALIFORNIA, MEXICO

- LOCATION.--Lat 32°26'40", long 116°54'25", Baja California, Mexico, Hydrologic Unit 18070305, at Rodriguez Dam on Rio de las Palmas, 0.2 mi upstream from Arroyo Matanuco, and 10 mi southeast of Tijuana.
- DRAINAGE AREA. -- 977 mi², of which 10 mi² are in the United States.
- PERIOD OF RECORD. --April 1937 to current year. Published with Tijuana River near Nestor (station 11013500), October 1953 to September 1957. Monthend contents for April 1937 to September 1950 published in WSP 1315-B and for October 1950 to September 1960 in WSP 1735.
- REVISED RECORDS. -- WDR CA-66-1: Drainage area.
- GAGE. -- Nonrecording gage read once a day. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by National Irrigation Commission, Mexico).
- REMARKS.--Reservoir is formed by thin-shell concrete-arch dam completed in 1936; storage began in 1937. Capacity table is based on surveys made in 1927. Maximum storage at crest of spillway gates, elevation, 410.10 ft, 111,070 acre-ft; at spillway lip, elevation, 380.08 ft, 74,580 acre-ft; dead storage below outlet, elevation, 267.39 ft, 1,650 acre-ft included in contents. Reservoir stores water for irrigation of 3,000 acres on both banks 0.5 to 5.5 mi downstream and municipal supply for city of Tijuana. Since August 1972, Colorado River water diverted through Otay aqueduct into the reservoir for Tijuana emergency use; this year none was imported.
- EXTREMES FOR PERIOD OF RECORD, --Reservoir spilled during March 1938, September 1940, February to May 1941, March 1942, February and March 1944, January to July 1980, April 1983; reservoir dry Apr. 2, 1964, to Apr. 9, 1965, Aug. 21 to Nov. 22, 1965.
- EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 34,390 acre-ft, Oct. 1; minimum observed, 14,510 acre-ft, Sept. 30.

MONTHEND CONTENTS, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	34,450	
Oct. 31	32,730	-1,720
Nov. 30	31,050	-1,680
Dec. 31	29,450	-1,600
CAL YR 1986		-15,470
Jan. 31	27,940	-1,510
Feb. 28	26,620	-1,320
Mar. 31	24,920	-1,700
Apr. 30	23,270	-1,650
May 31	21,580	-1,690
June 30	19,860	-1,720
July 31	18,080	-1,780
Aug. 31	15,240	-2,840
Sept. 30	14,510	-730
WTR YR 1987		-19,940

OTAY RIVER BASIN

11013600 JAMUL CREEK AT LEE VALLEY, NEAR JAMUL, CA

LOCATION.--Lat 32°42'39", long 116°48'52", in SE 1/4 NW 1/4 sec.7, T.17 S., R.2 E., San Diego County, Hydrologic Unit 18070304, on right bank 3.5 mi southeast of Jamul.

DRAINAGE AREA. -- 2.26 mi².

PERIOD OF RECORD. -- October 1983 to April 1985, October 1986 to September 1987.

GAGE.--Water-stage recorder. Elevation of gage is 1,560 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: All or part of most days during periods of flow. Records poor. No regulation or diversion upstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 182 ft³/s, July 14, 1984, gage height, 2.72 ft, from rating curve extended above 1.0 ft³/s; no flow for much of each year.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 10 ft³/s and maximum (*), from rating curve extended above 0.70 ft³/s:

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date		Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan.	5	0445	*13.0	*1.25				

No flow many days most months.

		DIBOIMIOE,	, IN COD.	C FEET 1.		AN VALUES	LAK OCTOD	LK 1900 10	, SELTERIDE	.K 1507		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	0		0	0	.02	.02	.03	.02				
2	0		0	0	.02	.02	.03	.02				
3	0		0	0	.02	.02	.30	.01				
4	0		0	.81	.02	.02	. 22	.01				
5	0		0	1.3	.02	.02	.03	0				
6	0		.10	.04	.02	.03	.03	0				
7	0		. 50	.26	.02	.03	.03	0				
8	0		0	.02	.02	.03	.03	0				
9	. 07		Ö	.02	.02	.03	.03	Ō				
10	.41		Ö	.02	.02	.03	.03	,01				
11	0		0	.02	.02	.03	.03	.01				
12	0		0	.02	.02	.03	.03	0				
13	0		0	.02	.02	.03	.03	0				
14	0		0	.02	.02	.03	.03	0				
15	0		.09	.02	.02	.61	.02	0				
16	0		0	.02	.01	.03	.02	0				
17	0		0	.02	.01	.03	.03	0				
18	0		0	.02	.01	.03	.02	0				
19	0		0	.02	.01	.03	.02	0				
20	0		.36	.02	.01	.03	.02	0				
21	0		0	.02	.01	.74	.02	0				
22	0		0	.02	.01	.04	.02	0				
23	0		0	.02	.01	.03	.02	Ō				
24	Ō		ō	.02	.40	.03	.01	Ō				
25	Ō		ō	.02	.41	.03	.01	0				
26	0		0	.02	, 63	.03	.01	.01				
27	Ö		Ō	.03	.03	.03	.02	.01				
28	0		Ō	.02	.03	.03	.02	.01				
29	Ö		Ö	.02		.03	.02	0				
30	ŏ		Ö	.02		.03	.02	ŏ				
31	Ö		ŏ	.02		.03		Ö				
TOTAL	. 48	0	1,05	2.90	1.88	2,18	1,18	. 11	0	0	0	0
MEAN	.016	ŏ	.034	.094	.067	,070	.039	. 004	ŏ	ŏ	ŏ	ŏ
MAX	.41	ŏ	.50	1.3	,63	.74	.30	.02	0	Ŏ	ő	ő
MIN		ő	. 0	0	.01	.02	.01	0	Ö	ő	ő	ő
AC-FT	1.0	ŏ	2.1	5.8	3.7	4.3	2.3	.ž	Ö	ŏ	ő	Ö
		•			-,.			. –	•	~	-	~

WTR YR 1987 TOTAL 9.78 MEAN .027 MAX 1.3 MIN 0 AC-FT 19

OTAY RIVER BASIN

11014000 JAMUL CREEK NEAR JAMUL, CA

LOCATION.--Lat 32°38'15", long 116°53'00", in NW 1/4 NE 1/4 sec.4, T.18 S., R.1 E., San Diego County, Hydrologic Unit 18070304, on right bank 300 ft upstream from Otay Road crossing at upper end of Lower Otay Reservoir, 1.4 mi downstream from Dulzura Creek, and 5.5 mi south of Jamul.

DRAINAGE AREA, -- 70.2 mi².

PERIOD OF RECORD . -- April 1940 to September 1978, October 1985 to current year.

REVISED RECORDS. -- WDR CA-73-1: Drainage area.

GAGE.--Water-stage recorder and broad-crested weir control with low-water venturi-type flume. Datum of gage is 511.64 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1951, at datum 1.00 ft higher.

REMARKS.--No estimated daily discharges. Records good. No regulation upstream from station. Water diverted from Cottonwood Creek at Barrett Reservoir via San Diego and Dulzura conduit into Dulzura Creek, a tributary to Jamul Creek, and is included in discharge for this station.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 4,000 ft³/s, Dec. 1, 1947, gage height, 6.42 ft, present datum, from rating curve extended above 1,200 ft³/s; no flow at times in some years.

EXTREMES FOR CURRENT YEAR, -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage Height (ft)	Date	Time	Discharge (ft ³ /s)	Gage Height (ft)
Sept. 22	1900	*93	*2.94				

Minimum daily, 1.40 ft³/s, Mar. 10.

		DISCHARGE,	IN CUBIC	FEET	PER SEC		WATER AN VALU		CTOBER	1986	TO SI	EPTEMBEF	1987		
DAY	OCT	NOV	DEC	JAN	FF	ЕВ	MAR	A.	PR	MAY		JUN	JUL	AUG	SEP
1	20	20	20	19	20		7,6	16		14		13	2,5	15	16
2	20	20	20	19	20		3.6	16		14		13	2.5	14	16
3	20	20	20	19	20		2.7	17		14		13	2.4	13	16
2 3 4	20	20	20	21	20		2.0	19		14		13	2.1	14	17
5	20	20	20	32	20		1.8	17		1.4		3	1,9	14	16
6	20	20	21	20	20		1.9	17		14		13	1,9	14	16
7	20	20	24	23	8.		1.8	17		14		13	1.9	14	15
8	20	20	21	21	4.		1.6	17		14		L3	2.0	14	15
9	21	20	21	21	4.	0	1.5	16		14		13	2.0	14	15
10	30	20	20	21	3.	. 4	1.4	16		14		13	2.1	14	15
11	22	20	20	21	3.	1	2.4	16		14	:	13	2.2	13	16
12	21	20	20	21	2.	8	4.7	16		14		13	2.2	13	16
13	20	20	20	21	2.	7	8.1	16		14		L3	2.2	14	16
14	20	20	20	21	2.	. 5	14	15		14		L3	2.3	14	16
15	20	20	20	21	2.	2	18	15		14	:	13	2.4	14	16
16	20	20	20	21	2.		17	15		14	:	L3.	2.5	13	16
17	20	21	20	21	1.		16	15		14		7.4	2.7	13	16
18	20	22	20	21	1.		16	15		14		3,5	2.7	13	16
19	20	21	20	21	2.	6	16	15		14		2.6	2.4	13	16
20	20	21	23	21	7.	6	17	14		14		2,2	6.6	13	16
21	20	21	21	21	8.		18	14		14		2.5	8.3	13	16
22	20	20	20	21	9.		20	14		14		2,5	12	12	23
23	20	20	20	21	9,	.6	17	4	. 9	13		2.5	13	12	17
24	20	20	19	21	16		17	2	, 8	14		2.5	14	12	16
25	20	20	19	21	16		17	2	. 2	14		2.5	14	12	16
26	20	20	19	20	25		17	1	. 8	14		2,5	14	12	16
27	20	20	19	20	15		17	6	. 4	14		2.4	14	12	15
28	20	20	19	20	15		17	8	. 1	14		2.3	14	12	15
29	20	20	19	20			17	8	. 9	14		2,2	14	8.4	15
30	20	20	19	21			17	13		13		2.3	14	16	15
31	20		19	20		-	17	-		. 13			15	16	
TOTAL	634	606	623	652	284.	2	346,1	396	. 1	431	2	7.9	195.8	410.4	481
MEAN	20.5	20.2	20.1	21.0	10.		11.2	13		13.9		3.26	6.32	13.2	16.0
MAX	30	22	24	32		25	20		19	14		13	15	16	23
MIN	20	20	19	19	1.		1.4	1	. 8	13		2.2	1.9	8.4	15
AC-FT	1260	1200	1240	1290	56		686		86	855		492	388	814	954

CAL YR 1986 TOTAL 8227.4 MEAN 22.5 MAX 243 MIN 2.7 AC-FT 16320 WTR YR 1987 TOTAL 5307.5 MEAN 14.5 MAX 32 MIN 1.4 AC-FT 10530

OTAY RIVER BASIN

11014550 LOWER OTAY LAKE NEAR CHULA VISTA. CA

LOCATION.--Lat 32°36'33", long 116°55'45", in NE 1/4 NE 1/4 sec.13, T.18 S., R.1 E., San Diego County, Hydrologic Unit 18070304, on outlet tower near right bank, 1,000 ft west of right end of Savage Dam on Otay River, and 9.0 mi east of Chula Vista.

DRAINAGE AREA. -- 99.0 mi².

PERIOD OF RECORD. --October 1945 to September 1959 (published with Otay River at Savage Dam, station 11014500), October 1972 to current year. Monthend gage heights October 1936 to September 1945, in files of San Diego County Department of Sanitation and Flood Control,

REVISED RECORD. -- WDR-73-1: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 347.20 ft above National Geodetic Vertical Datum of 1929 (levels by county of San Diego); gage readings have been reduced to NGVD. October 1972 to current year, supplementary water-stage recorder for flood warning only, on right bank 30 ft upstream from dam at datum 50.0 ft higher.

REMARKS.--Reservoir is formed by gravity section concrete and masonry dam, built in 1919. Capacity table from U.S. Geological Survey, dated Apr. 3, 1956. Maximum capacity at top of spillway gates, 56,520 acre-ft, elevation, 490.70 ft. Capacity at permanent spillway level, 49,510 acre-ft, elevation, 484.70 ft. Dead storage below lowest outlet, 1,150 acre-ft, elevation, 395.05 ft. Dulzura conduit carries water from Barrett Reservoir on Cottonwood Creek to Dulzura Creek, where water is carried to the reservoir by Jamul Creek (station 11014000). Reservoir storage includes supplemental Colorado River water. Small diversions for local use near reservoir. Water used for municipal supply by city of San Diego.

COOPERATION .-- Gage heights were provided by city of San Diego, Utilities Engineering Division.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 51,860 acre-ft, spilling, Mar. 3, 1983, elevation, 486.78 ft; minimum observed, 3,160 acre-ft, Dec. 31, 1951, elevation, 407.56 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 46,240 acre-ft, Apr. 7, elevation, 481.68 ft; minimum observed, 41,230 acre-ft, Sept. 30, elevation, 476.70 ft.

MONTHEND ELEVATION NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 3	0	481.12	45,650	
Oct. 3	1	480.92	45,450	-200
	0	480.68	45,200	-250
	1	481.07	45,600	+400
CAL Y	R 1986			+2,680
Jan. 3	1	481.52	46,080	+480
Feb. 2	8	481.22	45,760	-320
	1	481.57	46,130	+370
Apr. 3	0	481.18	45,720	-410
	1	480,58	45,100	-620
	0.,,,,,	479,48	43,970	-1,130
July 3	1	478.18	42,670	-1,300
	1	477,28	41,790	-880
	0	476.70	41,230	-560
WTR Y	R 1987			-4,420

SWEETWATER RIVER BASIN

11015000 SWEETWATER RIVER NEAR DESCANSO, CA

LOCATION.--Lat 32°50'05", long 116°37'20", in NW 1/4 SE 1/4 sec.25, T.15 S., R.3 E., San Diego County, Hydrologic Unit 18070304, near right bank at Los Terrenitos Road bridge, 0.7 mi downstream from unnamed tributary, and 1.3 mi south of Descanso.

DRAINAGE AREA, -- 45.4 mi².

PERIOD OF RECORD. --October 1905 to September 1927 (monthly discharge only, published in WSP 1315-B), October 1956 to current year. Prior to September 1927, records unadjusted for diversion. Records adjusted for diversion, October 1956 to November 1976. No diversion since November 1976.

GAGE.--Water-stage recorder. Datum of gage is 3,269.24 ft above National Geodetic Vertical Datum of 1929. Prior to June 25, 1927, nonrecording gages at several sites and datums, upstream about 0.1 mi. Diversion gage at site 0.3 mi upstream, October 1956 to September 1984, at different datum.

REMARKS .-- No estimated daily discharges. Records good. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 53 years (water years 1906-27, 1957-87), 11.8 ft³/s, 8,550 acre-ft/yr, unadjusted for diversion.

EXTREMES FOR PERIOD OF RECORD. --River only: Maximum discharge, 11,200 ft³/s, Feb. 16, 1927, gage height, 13.2 ft, from floodmarks, site and datum then in use, on basis of slope-area measurement of peak flow; no flow many days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 21	2115	*24	*4.84				

No flow June 27 to Sept. 30.

	•	DISCHA	RGE, IN C	UBIC FEET		ND, WATER AN VALUES		OBER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.16	.22	.42	. 52	1,3	3.7	3.9	1,7	.62			
2	.18	, 22	. 45	. 48	1.3	4.0	3.7	1,5	.46			
3	.17	. 22	.56	.45	1.3	3.9	5.3	1.5	.35			
4	.15	. 22	.58	1.2	1.3	3.8	8.7	1.3	, 50			
5	.15	. 22	.65	13	1.3	3.8	6,6	1.2	. 43			
3	. 13	. 22	.05	13	1.5	3.0	0.0	1.2	.43			
6	.15	, 25	1.2	5.6	1.4	4.4	5,3	1.1	.37			
7	. 17	. 27	1.8	5.5	1.4	5.3	4.6	.97	. 29			
8	. 17	.27	1.3	4.2	1,3	5.1	4.1	,93	.25			
9	.48	. 23	.95	3.1	1.4	4.7	3.7	.92	.21			
10	2.4	. 22	.81	2.7	1.6	4.2	3.4	.90	.19			
20	4,4		.01	2.,,	2.0	7.4	0.7	.00				
11	.46	. 22	.70	2.4	1.7	3.9	3.3	1.1	, 16			
12	.36	. 22	.64	2.2	1.7	3.7	3,1	.91	. 14			
13	.30	. 22	.63	2.0	1.7	3.6	2.8	.76	.11			
14	.25	. 24	.58	2.0	1.8	3.5	2.7	,66	.11			
15	.25	.43	. 57	1.9	1.8	9.6	2,6	.59	.11			
20	, 23	. 10		1.0	2,0	0.0	2,0	,50				
16	.21	. 47	.68	1.9	1.9	9.8	2,6	,61	.09			
17	.20	. 43	.81	1.8	1.7	5.9	2,5	.66	.08			
18	.21	1.1	. 84	1.6	1.8	5.4	2,5	, 65	.07			
19	. 19	.61	.85	1,6	1.8	6.2	2.4	. 66	.06			
20	.18	. 48	1.2	1.6	1.7	5.5	2.2	.96	.07			
				1.0		5.5	2.2	.00				
21	.16	. 43	.81	1.6	1.9	8.1	2.0	1.2	,07			
22	.16	. 43	.67	1.4	1.9	15	2.0	1.2	.06			
23	.16	.43	.65	1.4	2.3	9.6	2.0	1.0	.04			
24	.16	.41	.60	1.5	3.8	10	1.9	1.0	.03			
25	.16	. 42	. 57	1.4	4.0	11	1.9	1,2	.02			
			• • •		,,,		2.0		.02			
26	. 16	.43	. 54	1.3	3.9	8.5	1.8	1.6	.01			
27	.16	.43	.50	1.3	3,4	6.9	1.7	1.8	0			
28	.16	. 43	.50	1.3	3.6	5.8	1.7	1.6	0			
29	.18	. 43	. 47	1.3		4.9	1.6	1.4	0			
30	. 21	.42	. 43	1.3		4.2	1.6	1.1	Ō			
31	. 22		. 45	1.3		3.9		.91				
TOTAL	8.68	11.02	22.41	70,85	56.0	187.9	94.2	33,59	4.90	0	0	0
MEAN	.28	.37	.72	2.29	2.00	6.06	3.14	1.08	.16	0	0	0
MAX	2.4	1.1	1.8	13	4.0	15	8.7	1.8	.62	0	0	0
MIN	. 15	. 22	.42	.45	1.3	3.5	1.6	. 59	0	0	0	0
AC-FT	17	22	44	141	111	373	187	67	9.7	0	0	0

CAL YR 1986 TOTAL 2216.81 MEAN 6.07 MAX 234 MIN 0 AC-FT 4400 WTR YR 1987 TOTAL 489.55 MEAN 1.34 MAX 15 MIN 0 AC-FT 971

11020600 EL CAPITAN LAKE NEAR LAKESIDE, CA

LOCATION.--Lat 32°53'00", long 116°48'25", in SE 1/4 NE 1/4 sec.7, T.15 S., R.2 E., San Diego County, Hydrologic Unit 18070304, on outlet tower 100 ft upstream of El Capitan Dam on San Diego River and 7.0 mi east of Lakeside.

DRAINAGE AREA, -- 188 mi².

PERIOD OF RECORD. --October 1936 to September 1966 (published with San Diego River at El Capitan Dam, station 11020500), October 1972 to current year. October 1936 to September 1945, published in WSP 1315-B, not equivalent owing to exclusion of greater part of flow released from Cuyamaca Reservoir.

GAGE. --Nonrecording gage. Datum of gage is 553.0 ft above National Geodetic Vertical Datum of 1929 (levels by city of San Diego); gage readings have been reduced to NGVD. October 1972 to current year, supplementary water-stage recorder used for flood warning only, on left side of outlet tower at datum 110.0 ft higher.

REMARKS.--Reservoir is formed by hydraulic fill-rock embankment, completed in 1935. Capacity from U.S. Geological Survey table dated Mar. 29, 1956. Capacity of reservoir at spillway level, 112,810 acre-ft, elevation, 750.00 ft. Dead storage below lowest outlet, 59.2 acre-ft, elevation, 574.00 ft. Reservoir storage includes supplemental Colorado River water. No significant diversion above reservoir. Flow partly regulated by Cuyamaca Reservoir. Water is released as required for municipal use and irrigation.

COOPERATION .-- Gage heights were provided by city of San Diego, Utilities Engineering Division.

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents observed, 114,500 acre-ft, spilling, Mar. 7, 1980, elevation, 751.09 ft; minimum observed, 2,252 acre-ft, May 1, 1957, elevation, 606.28 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 32,150 acre-ft, Apr. 16, elevation, 677.82 ft; minimum observed, 23,890 acre-ft, Sept. 30, elevation, 665.57 ft.

MONTHEND ELEVATION NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		Elevation	Contents	Change in contents
	Date	(feet)	(acre-feet)	(acre-feet)
Sept.	30	677.14	31,660	
Oct.		675.93	30,780	-880
Nov.		673,89	29,330	-1,450
Dec.		674.02	29,420	90
CAL	YR 1986			14,220
Jan.	31	674.76	29,940	520
Feb.	28	675.34	30,350	410
Mar.	31	677.29	31,760	1,410
Apr.	30	677.41	31,850	90
May	31	672.30	28,230	-3,620
June	30	670.54	27,050	-1,180
July	31	667.86	25,310	-1,740
Aug.	31	666,76	24,620	-690
	30	665.57	23,890	-730
WTR	YR 1987			-7,770

11022100 SAN VICENTE RESERVOIR NEAR LAKESIDE, CA

LOCATION.--Lat 32°54'45", long 116°55'25", in SW 1/4 NW 1/4 sec.31, T.14 S., R.1 E., San Diego County, Hydrologic Unit 18070304, at outlet tower near center of upstream face of San Vicente Dam on San Vicente Creek and 3.6 mi north of Lakeside.

DRAINAGE AREA. -- 74.2 mi².

PERIOD OF RECORD. --October 1946 to September 1961 (published with San Vicente Creek at San Vicente Dam, at Foster, station 11022000), October 1972 to current year.

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE. --Nonrecording gage. Datum of gage is 460.0 ft above National Geodetic Vertical Datum of 1929 (levels by county of San Diego); gage readings have been reduced to NGVD. October 1972 to current year, supplementary water-stage recorder used for flood warning only, at same site at datum 100 ft higher.

REMARKS.--Reservoir is formed by concrete-gravity dam, constructed in 1941-43 by city of San Diego; storage began during construction period. Capacity table from city of San Diego, Utilities Engineering Division, dated Feb. 18, 1944. Capacity of reservoir at spillway level, 90,230 acre-ft, elevation, 650 ft. Dead storage below lowest outlet, 350 acre-ft, elevation, 493.0 ft. Reservoir storage includes supplemental water from the San Diego River, Santa Ysabel Creek, and Colorado River basins. No diversion above reservoir. Water is released as required for municipal use.

COOPERATION .-- Gage heights were provided by city of San Diego, Utilities Engineering Division.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents observed, 94,200 acre-ft, spilling, Feb. 21, 1980, elevation, 653.54 ft; minimum observed, 12,390 acre-ft, Nov. 1, 1947, elevation, 549.22 ft.

EXTREMES FOR CURRENT YEAR. -- Maximum contents observed, 78,280 acre-ft, Nov. 25, elevation, 638.51 ft; minimum observed, 70,560 acre-ft, Mar. 27, elevation, 630.67 ft.

MONTHEND ELEVATION NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	 633.81	73,610	
Oct. 31	635,23	75,010	+1,400
Nov. 30	637.82	77,590	+2,580
Dec. 31	636.03	75,800	-1,790
CAL YR 1986	 		+4,120
Jan. 31	 634.14	73,930	-1,870
Feb. 28	 632.51	72,340	-1,590
Mar. 31	630.90	70,780	-1.560
Apr. 30	631.77	71,620	+840
May 31	635,91	75,680	+4.060
June 30	636.10	75,870	+190
July 31	636,66	76,430	+560
Aug. 31	634.81	74,590	-1,840
Sept. 30	634.43	74,220	-370
WTR YR 1987	 		+610

11022200 LOS COCHES CREEK NEAR LAKESIDE, CA

LOCATION.--Lat 32°50'10", long 116°53'58", in Mission San Diego Grant, San Diego County, Hydrologic Unit 18070304, on upstream right bank side of bridge on Old Highway 8, 2.7 mi upstream from mouth, and 1.9 mi southeast of Lakeside.

DRAINAGE AREA, -- 12.2 mi².

PERIOD OF RECORD. --October 1983 to current year.

REVISED RECORDS, -- WDR CA-86-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 560 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Jan. 13-17. Records good. No regulation or diversion upstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 470 ft³/s, Dec. 18, 1984, gage height, 7.20 ft, from floodmarks; minimum daily, 0.07 ft³/s, July 11, 12, 1984.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 40 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 24 Feb. 26	0330 0230	48 45	3.84 3.78	Mar. 21	1930	*54	*3.95

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 0.19 ft³/s, Sept. 7-10.

MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 54	.72	.77	.80	, 87	1.3	.93	, 62	.37	.30	. 22	.33
2	. 57	.68	.76	.80	.91	1.2	, 92	.61	.34	.30	.22	.26
3	. 52	.66	.77	.80	.92	1.2	1.6	, 57	.34	.30	.20	.22
4	.58	.65	.81	7.3	.93	1.1	1.8	.51	. 34	.29	.20	, 22
5	.79	.62	.79	13	.91	1.1	1.1	.49	.34	.29	.21	.21
3	./5	.02	.75	10	, 51	1.1	1,1	,45	, 04	.25	, 21	,21
6	.69	, 69	4.3	1.8	.86	3.3	.98	.48	.35	.28	.21	.20
7	, 55	. 72	2.1	4.8	.85	1.6	.91	.48	.39	.29	.21	.19
8	, 54	.74	1.1	1.3	.85	1.3	.86	.46	.41	.33	.21	, 19
9	2.4	.70	.84	1.0	.88	1.2	.82	. 44	.38	,35	.21	, 19
10	4.7	.68	.80	.93	. 92	1.2	.78	.46	.37	.35	. 22	.19
11	, 82	,66	. 80	. 93	.90	1,1	.78	.45	. 40	.31	. 24	.20
12	.75	. 66	.80	.89	.87	1.1	.78	.42	.40	.28	. 26	.21
13	.70	, 66	.80	.88	1.0	1,1	.80	, 45	.38	.27	.32	.21
14	. 64	.67	.80	.88	1.2	1.1	.67	.45	.39	.26	.45	,23
15	.62	.70	.80	.90	1.2	6.5	,62	.46	.37	.27	.34	.22
			.00	. 30	1,2	0,5	.02	.40	.07		.04	, 24
16	,61	.71	.80	. 92	1.1	1.4	.61	. 50	.36	. 28	. 28	.22
17	. 62	1,5	.80	. 92	.97	1,2	.65	. 47	.39	.33	. 29	. 23
18	. 63	3.7	.80	.94	.95	1.1	.66	. 42	.38	.32	. 29	.23
19	. 62	.79	. 80	. 92	. 97	1.1	.62	.43	.39	.28	. 29	. 24
20	.62	.76	6.0	.90	.92	1.1	.60	.46	.38	.28	.31	.23
21	.62	.79	1.1	. 91	. 92	9.0	. 55	. 46	.37	.29	.31	.24
22	.62	.76	.84	.92	.92	5.2	, 52	.43	.37	, 29	.32	.75
23	.67	.73	.80	. 92	1.8	1.6	.51	, 43	.36	.29	.32	.71
24	.70	.80	.80	. 92	16	1.5	.53	.43	.34	.26	.36	.35
25	.69	.78		. 92	4.6	1.2	.55					
23	.09	.70	.80	. 92	4.0	1.2	. 55	. 49	.37	. 26	.36	.33
26	.62	.75	.80	. 92	10	1.1	. 59	. 55	.32	.28	.38	.31
27	.62	.75	.80	.93	1.6	1.1	. 58	. 53	.33	.28	.37	.30
28	.64	.76	.80	.92	1.4	1.1	.60	.51	.33	.31	. 42	.28
29	.67	.78	.80	. 93		1.0	. 64	.49	.31	.33	. 29	. 26
30	.70	.78	.80	. 87		.98	.65	. 47	.31	. 25	.21	.25
31	.73		.80	. 87		. 97		.41		. 23	.21	
TOTAL	25.79	25.35	35.38	51.64	56.22	56.05	23.21	14.88	10.88	9.03	8.73	8.20
MEAN	. 83	. 85	1.14	1,67	2.01	1.81	.77	. 48	.36	. 29	. 28	, 27
MAX	4.7	3.7	6.0	13	16	9.0	1.8	.62	.41	.35	. 45	.75
MIN	, 52	.62	.76	.80	.85	. 97	,51	,41	.31	. 23	.20	, 19
AC-FT	51	50	70	102	112	111	46	30	22	18	17	16

CAL YR 1986 TOTAL 669.83 MEAN 1.84 MAX 60 MIN .21 AC-FT 1330 WTR YR 1987 TOTAL 325.36 MEAN .89 MAX 16 MIN .19 AC-FT 645

11022350 FORESTER CREEK AT EL CAJON, CA

LOCATION.--Lat 32°49'16", long 116°58'32", in Mission San Diego Grant, San Diego County, Hydrologic Unit 18070304, on right bank at downstream side of bridge on Billy Mitchell Drive, 0.8 mi upstream from unnamed tributary, and 3.6 mi upstream from mouth.

DRAINAGE AREA. -- 21.3 mi².

PERIOD OF RECORD, -- October 1983 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 370 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records good. No regulation or diversion above station.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 3,800 ft³/s, Feb. 15, 1986, gage height, 9.25 ft, from rating curve extended above 600 ft³/s; minimum daily, 0.60 ft³/s, Nov. 3, 1985.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 900 ft 3/s (revised) and maximum (*), from rating curve extended above 900 ft 3/s on basis of runoff comparisons with nearby stations:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 10 Jan. 4	0445 1745	1,260 *1.420	7.81 *8.08	Mar. 21	1800	911	7.10

Minimum daily, 1.00 ft³/s, Aug. 22, 29, 30.

		DISCHA	RGE, IN	CUBIC FEET		ND, WATER AN VALUES		OBER 1986	TO SEPTEM	MBER 1987		_
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP
1 2 3 4 5	1.3 1.4 1.3 1.5 1.4	1.2 1.2 1.2 1.2 1.3	1.4 1.4 1.3 2.0	1.2 1.3 1.2 144 65	1.6 1.6 1.5 1.5	1.7 1.7 1.7 1.8 2.0	2.0 1.8 27 24 2.0	2.2 1.5 1.5 1.5	1.6 1.7 1.9 1.8 1.9	2.1 2.1 1.9 1.4 1.4	1.5 1.4 1.5 1.2 1.3	26 1.8 1.4 1.4
6 7 8 9 10	1.3 1.4 1.4 81 187	1.2 1.3 1.3 1.1	98 44 2.3 1.6 1.6	6.1 24 1.9 1.6 1.8	1.4 1.5 1.5 1.7 1.7	48 3.2 3.1 2.0 1.9	1.9 1.7 1.8 1.8 1.9	1.6 1.6 1.7 1.4	1.9 1.8 2.1 2.0 2.0	1.5 1.6 1.7 1.9	1.3 1.5 1.2 1.2 1.3	1.3 1.2 1.2 1.3
11 12 13 14 15	1.7 1.4 1.3 1.3	1.2 1.2 1.2 1.2 1.2	1.4 1.3 1.4 1.3	1.5 1.6 1.5 1.6 1.6	1.4 1.4 4.6 5.5 7.2	1.9 1.8 1.9 1.9	1.7 1.6 1.7 1.7 1.8	1.6 1.6 1.7 1.8 1.7	1.8 1.9 2.0 1.9 2.0	1.6 1.6 1.7 1.8 2.1	1.2 1.3 1.5 2.8 1.2	1.4 1.3 1.3 1.4
16 17 18 19 20	1.3 1.3 1.3 1.3	1.2 51 48 1.8 1.4	1.4 1.3 1.3 1.5	1.6 1.5 1.6 1.5	2.4 1.5 1.6 1.5	3.7 1.8 1.7 1.8 1.6	1.8 1.9 1.8 1.7	1.5 1.5 1.6 1.6	1.9 2.0 1.9 2.1 2.1	2.1 2.0 1.7 1.5 1.8	1.1 1.1 1.1 1.1	1.7 1.5 1.6 1.6
21 22 23 24 25	1.3 1.3 1.3 1.3	1.4 1.3 1.3 1.3	1.7 1.4 1.4 1.2	1.5 1.5 1.5 1.5	1.5 1.6 29 101 35	8.6 2.5 2.4 1.8	1.8 1.9 1.8 2.1	1.7 1.7 1.6 1.6	2.1 2.2 2.1 2.3 2.3	1.5 1.4 1.5 1.5	1.1 1.0 1.1 1.2 1.1	1.7 52 9.1 1.4 1.3
26 27 28 29 30 31	1.2 1.2 1.2 1.2 1.3	1.3 1.3 1.3 1.3	1.2 1.3 1.3 1.2 1.3	1.5 1.5 1.5 1.5 1.5	2.1 1.9 	1.8 1.9 1.9 1.8 1.9 2.0	1.5 1.6 1.7 1.7	2.6 1.5 1.5 1.5 1.5	2.1 2.0 1.9 1.9 2.1	1.3 1.4 1.4 1.5 1.5	1.2 1.2 1.1 1.0 1.0	2.1 1.3 1.5 1.7 1.3
TOTAL MEAN MAX MIN AC-FT	306.2 9.88 187 1.2 607	134.7 4.49 51 1.1 267	244.2 7.88 98 1.2 484	280.0 9.03 144 1.2 555	270.1 9.65 101 1.4 536	215.9 6.96 64 1.6 428	100.8 3.36 27 1.5 200	50.7 1.64 2.6 1.4 101	59.3 1.98 2.3 1.6 118	51.1 1.65 2.1 1.3 101	39.0 1.26 2.8 1.0 77	126.6 4.22 52 1.2 251

CAL YR 1986 TOTAL 3136.3 MEAN 8.59 MAX 645 MIN 1.1 AC-FT 6220 WTR YR 1987 TOTAL 1878.6 MEAN 5.15 MAX 187 MIN 1.0 AC-FT 3730

11022480 SAN DIEGO RIVER AT MAST ROAD, NEAR SANTEE, CA

LOCATION. -- Lat 32°49'29", long 117°03'17", in Mission San Diego Grant, San Diego County, Hydrologic Unit 18070304, near left bank at Mast Road bridge, 1.1 mi upstream from Old Mission Damsite, 2.8 mi west of Santee, and 14.2 mi downstream from El Capitan Lake.

DRAINAGE AREA. -- 368 mi².

PERIOD OF RECORD. -- May 1912 to December 1915 (monthly discharge only for some periods and yearly estimates only for 1924-25, published in WSP 1315-B), March 1916 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 300 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 10, 1920, nonrecording gage at site 1.5 mi upstream at different datum. Nov. 10, 1920, to Jan. 19, 1982, at site 2.6 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Cuyamaca Reservoir, capacity, 11,540 acre-ft, El Capitan Lake (station 11020600), and San Vicente Reservoir (station 11022100). Diversions by city of San Diego for municipal supply and by Helix Irrigation District. AVERAGE DISCHARGE represents flow to ocean during period of record, regardless of upstream development.

AVERAGE DISCHARGE. -- 74 years (water years 1913-15, 1917-87), 25.4 ft³/s, 18,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 45,400 ft³/s, Feb. 16, 1927, on basis of slope-area measurement of peak flow, gage height, 18.1 ft, from floodmarks; no flow for many days some years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum discharge, 70,200 ft³/s, Jan. 27, 1916, based on slope-conveyance computation of peak flow, gage height, 25.1 ft, from floodmarks, site and datum then in use; no flow at times in some years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 654 ft³/s, Oct. 10, gage height, 8.47 ft, from rating curve extended above 400 ft³/s; minimum daily, 2.1 ft³/s June 26, July 2.

MEAN VALUES DAY OCT NOV DEC JAN FER MAR APR MAY JIIN. JUL AUG SEP 1 7.7 6.4 5.8 8.3 9.1 16 10 7.3 3.6 2.2 2.3 22 2 7.5 5.9 5.8 8.3 8.9 14 10 6.6 3,2 2.1 2.3 8.9 5.6 3 7.1 5.6 8.4 8.9 13 22 3.1 2.4 2.2 3.6 6.7 106 2.6 2.4 6.9 5.6 5.9 51 3.0 8.8 12 6.2 3.4 143 5 5.3 6.4 6.7 8.5 12 13 6.0 3.1 3.2 2.3 2.5 6 6.6 5.7 95 46 8.3 62 12 5.9 3.0 3.1 2.4 2.5 7 6.5 5.4 81 77 8.4 20 11 6.0 3.3 2.7 2.5 2.4 8 6.4 5.4 29 29 8,1 16 10 5,8 3.4 2.8 2.7 2.3 9 52 5.3 21 23 8.1 15 9.7 5.8 3.1 2.9 2.5 2.3 10 218 18 9.0 6.0 3.0 5.2 11 13 8.7 13 6.0 2.6 25 9.1 12 5.1 15 8.4 2.7 2.6 2.5 11 13 5.2 2.6 17 13 4.8 10 5.3 2.8 2.4 2.3 14 8.6 13 8.6 2.7 14 14 4.8 9 4 13 16 12 8.4 5.4 2.9 2.2 3.9 2.3 15 11 4.9 8.9 12 13 51 8.0 5.2 2.8 2.3 3.6 2.4 16 9.9 5.0 8.3 12 17 8,2 5.5 2.7 2.4 2.4 13 2.6 9.5 17 8.7 24 8,3 11 15 8.5 5.2 2.5 2.5 2.5 2.4 18 8.0 96 7.8 9.3 15 9.0 4.9 2.5 2.4 2.6 2.3 11 19 7.5 15 8.0 11 9.2 14 9.0 4.4 2.6 2.3 2.6 4.1 2.0 7.1 14 59 10 8.7 13 8.9 4.3 2.8 2.7 2.6 6.9 21 6.7 12 18 10 8.6 67 7.7 2.6 2.7 2.5 6.8 22 6.4 10 16 10 8.7 36 7.5 4.1 2.7 2.4 2.5 46 23 8.8 9.9 27 6.2 15 21 6.9 4.2 2.5 2.3 2.4 35 24 7.6 13 9.8 6.0 124 20 7.0 4.6 2.5 2.4 2.4 6.4 5.9 7.1 9.8 16 2,3 2.3 2.5 5.0 11 49 7.1 4.8 9.8 7.1 26 5.8 6.6 9.8 86 5.9 2.1 2.3 2.5 5.2 27 8.9 5.7 6.4 10 2.4 13 7.3 5.2 2.3 2.5 2.6 4.4 5.7 6.3 9.8 28 8.6 20 12 6.9 4.9 2.6 2.4 2.6 4.0 ---29 6.1 6.1 8.3 9,6 7.0 5.1 2.7 2,2 3.9 12 2.5 30 6.5 8.3 9.3 ___ 6.8 4.4 2.3 2.2 2.5 5.9 11 3.6 ___ 31 6.6 8.6 9.2 3.9 2.7 TOTAL 538.2 540.7 316.4 311.5 700.2 537.8 603 165.3 83.9 77.6 80.1 202.3 MEAN 17.4 10.4 17.4 22.6 19.5 2.80 2.50 6.74 19.2 10.5 5.33 2.58 7.3 MAX 218 96 95 143 124 67 51 3.6 3.2 3.9 46 5.6 2.3 MTN 5.7 4.8 8.3 8.1 11 6.8 3.9 2.1 2.1 2.2 AC-FT 1070 1070 618 1390 1070 1200 628 328 166 159 401

CAL YR 1986 TOTAL 7556.3 MEAN 20.7 MAX 679 MIN 3.0 AC-FT 14990 WTR YR 1987 TOTAL 4157.0 MEAN 11.4 MAX 218 MIN 2.1 AC-FT 8250

11023000 SAN DIEGO RIVER AT FASHION VALLEY, AT SAN DIEGO, CA

LOCATION.--Lat 32°45'54", long 117°10'04", in Mission San Diego Grant, San Diego County, Hydrologic Unit 18070304, on left bank 2.6 mi upstream from mouth, 500 ft upstream from Fashion Valley road crossing, 0.4 mi downstream from unnamed tributary, and 26,4 mi downstream from El Capitan Lake.

DRAINAGE AREA. -- 429 mi².

CAL YR 1986 TOTAL 14588.70

WTR YR 1987 TOTAL 7798.39

MEAN 40.0

MEAN 21.4

MAX 1600

556

MAX

PERIOD OF RECORD, --October 1912 to January 1916 published as San Diego River at San Diego (monthly discharge only, published in WSP 1315-B), January 1982 to current year. Records published October 1912 to January 1916, not equivalent because of construction of El Capitan and San Vicente Reservoirs completed in 1934 and 1943.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1315-B for history of changes for period October 1912 to January 1916.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Cuyamaca Reservoir, capacity 11,540 acre-ft; El Capitan Lake (station 11020500), and San Vicente Reservoir (station 11022100). Diversions by city of San Diego for municipal supply and by Helix Irrigation District.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 75,000 ft³/s, Jan. 27, 1916, gage height, 19.3 ft, estimated on basis of upstream station, San Diego River near Santee; no flow many days during most years. Maximum discharge recorded since storage began in El Capitan Lake and San Vicente Reservoir, 8,280 ft³/s, Mar. 2, 1983, gage height, 13.11 ft, from rating curve extended above 5,800 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 881 ft³/s, Jan. 4, gage height, 7.51 ft; minimum daily, 0.53 ft³/s, Aug. 4.

		DISCHARGE	, IN CUBI	C FEET		WATER Y		1986 1	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	8.0	8.4	12	14	37	15	7.6	4.9	1.5	1.0	5.0
2	10	8.5	7.4	11	12	28	13	8.2	4.1	1.3	,86	4.5
3	9.8	7.7	7.8	12	12	22	40	8,2	4.0	1.7	.70	3,5
4	9.7	6.5	8.1	172	11	18	123	7.6	4.0	1.8	.53	3.2
5	9.4	6.4	8.3	556	12	17	62	6.6	3.6	2.0	.91	3.7
6	8.3	5.9	109	172	11	62	29	6.3	3.6	1.8	, 69	4.0
7	7.7	6.6	200	202	11	86	19	6.8	4.0	1.3	1.1	5.4
8	8.2	7.4	114	95	12	55	15	6.5	4.0	1.2	1.2	5.7
9	17	7.9	57	54	11	32	14	6.5	3.2	1.1	1.4	6.0
10	355	7.6	36	43	11	23	13	6.8	3.2	.96	1.5	6.4
11	184	7.0	28	36	12	19	12	6.7	3.4	.98	2.3	5.0
12	62	5.8	21	28	12	18	12	5.8	3.4	1.3	2.9	4.1
13	43	6.2	19	26	16	17	11	5.5	3,3	1.3	3,3	3.8
14	32	5.9	18	22	40	18	8.1	5.8	3.6	.89	3.6	3.9
15	23	6.6	14	21	27	65	8.8	5.6	3.4	1.5	3.1	4.9
16	18	7.1	13	18	40	65	8.4	6.9	2.7	1.2	4.0	5.5
17	17	62	12	18	24	40	8.9	7.2	2.6	1.2	3.2	4,8
18	16	301	12	17	18	28	9.8	6.0	2.4	1.5	2.9	3,5
19	14	93	11	18	14	24	9.7	5.3	2.3	2.0	2,7	4.4
20	12	36	48	15	14	21	8.8	5.4	2.5	1.8	2.8	5.8
21	11	26	69	14	13	72	7.9	5.1	3.0	1.3	3.0	4.9
22	10	23	42	14	13	156	7.8	4.9	2.8	1.1	2.7	8.7
23	9.4	19	27	13	20	69	8.6	4.9	2.0	1.1	2.9	8.7
24	8.7	15	22	13	169	43	8.5	5.5	1.9	.99	2.7	17
25	9.7	11	22	14	204	36	8.5	5.5	1.8	.85	3.2	23
26	9,9	11	17	13	167	27	8,9	5.2	1.8	.90	3.8	22
27	8.3	12	14	13	92	23	8.4	4.5	1.9	.91	4.0	12
28	7.8	11	15	12	46	20	7.2	4.2	2.3	. 87	3.5	8.2
29	7.9	10	13	12		19	7.5	4.5	2.2	.80	2.7	8.2
30	7.9	9.6	12	1.2		17	7.5	5.3	1.6	.76	1.8	7.7
31	7.6		11	14		15		5.6		.99	2.7	
TOTAL	966.3		1016.0	1692	1058	1192		186.5		38.90	73.69	213.5
MEAN	31,2	25.0	32.8	54.6	37.8	38,5	17.4	6.02	2.98	1.25	2.38	7.12
MAX	355	301	200	556	204	156	123	8.2	4.9	2.0	4.0	23
MIN	7.6	5.8	7.4	11	11	15	7.2	4.2	1.6	.76	. 53	3,2
AC-FT	1920	1490	2020	3360	2100	2360	1030	370	178	77	146	423

MIN 1.7

MIN .53

AC-FT 28940 AC-FT 15470

LOS PENASQUITOS CREEK BASIN

11023250 POWAY CREEK NEAR POWAY, CA

LOCATION.--Lat 32°57'13", long 117°00'50", in NE 1/4 SE 1/4 sec.18, T.14 S., R.1 W., San Diego County, Hydrologic Unit 18070304, on right bank 100 ft downstream from unnamed tributary, 1,000 ft upstream from bridge on Standish Drive, and 1.4 mi southeast of Poway Post Office.

DRAINAGE AREA. -- 7.92 mi².

PERIOD OF RECORD. --October 1969 to September 1977 (gage heights and discharge measurements only), October 1977 to September 1987 (discontinued).

GAGE. --Water-stage recorder. Elevation of gage is 540 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records poor. Flow partly regulated by small conservation reservoirs.

AVERAGE DISCHARGE, -- 10 years, 1.48 ft3/s, 1,070 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 755 ft³/s, Feb. 21, 1980, gage height, 7.26 ft, on basis of rating extended above 40 ft³/s, based on a step-backwater analysis up to gage height 8.3 ft; no flow many months each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 10 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	1915	*6.1	*4.45				

No flow many days.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987
					ME	AN VALU	JES					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 .86 .29	0 0 0 0	0 0 0 0	0 0 .09 .05					
6 7 8 9 10	0 0 0 .15 .03	0 0 0 0	.21 .40 0 0	.01 .11 0 0	0 0 0 0	.20 .01 0 0	0 0 0 0					
11 12 13 14 15	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 .07	0 0 0 0					
16 17 18 19 20	0 0 0 0	0 .24 .31 0	0 0 0 0 .15	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0					
21 22 23 24 25	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 .01 .07 .03	.12 .15 0 0	0 0 0 0					
26 27 28 29 30 31	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	.19 0 0 	0 0 0 0 0	0 0 0 0					
TOTAL MEAN MAX MIN AC-FT	.18 .006 .15 0	.55 .018 .31 0	.76 .025 .40 0	1.27 .041 .86 0 2.5	.30 .011 .19 0 .6	.55 .018 .20 0	.14 .005 .09 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
CAL YR	1986 TOTA	L 155.71	MEAN .43	3 MAX	26	MIN 0	AC-FT 309					

WTR YR 1987 TOTAL 3.75 MEAN .010 MAX .86 MIN 0 AC-FT 7

LOS PENASOUITOS CREEK BASIN

11023310 RATTLESNAKE CREEK AT POWAY, CA

LOCATION.--Lat 32°57'07", long 117°02'56", in SE 1/4 SE 1/4 sec.14, T.14 S., R.2 W., San Diego County, Hydrologic Unit 18070304, on right bank 400 ft above mouth and 1.0 mi southwest of Poway Post Office.

DRAINAGE AREA. -- 8.13 mi².

PERIOD OF RECORD. --October 1969 to September 1977 (gage heights and discharge measurements only), October 1977 to current year.

GAGE.--Water-stage recorder. Concrete control since Aug. 17, 1982. Elevation of gage is 457 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- No estimated daily discharges. Records fair. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 10 years, 2.59 ft 3/s, 1,880 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,430 ft³/s, Feb. 21, 1980, gage height, 2.88 ft, from rating curve extended above 100 ft³/s on basis of stepback-water computations and slope-conveyence study at gage height 1.20 ft; no flow for much of each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge c. 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	1930	*100	*1.18				

DISCUADED IN CURIC PERT DED SECOND WATER VEAD OCTORED 1006 TO SERTEMBER 1007

No flow Aug. 3.

		DISCHARGE,	IN CU	BIC FEET		D, WATER MEAN VALI	YEAR OCTOB	ER 1986	TO SEPTEME	ER 1987		
						LIENN AND	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.13	.07	.26	. 40	.29	.37	, 54	.24	.37	.06	.01	.05
2	. 17	.07	.28	.40	.32	.29	. 56	.20	.28	.07	.01	.05
3	.07	.08	.28	.40	. 42	.29	2.9	.26	.31	.05	0	.07
4	.06	.21	.33	17	.29	.29	1.8	.21	.28	.06	.01	.05
5	.06	.21	.34	18	, 26	. 42	. 55	.20	.31	.05	.02	.05
6	.06	.21	9.0	2.2	,30	5.3	. 52	.10	.25	.05	.02	.05
7	.10		14	3.9	.34	.85	.51	.20	.25	.05	.08	.05
8	.08	.21	. 93	1.1	.32	. 55	. 47	.20	.27	.07	.11	.05
9	4.1	. 10	. 40	.72	.35	. 50	. 43	.20	.31	.06	.11	.06
10	1.7	.10	.29	.61	.31	. 54	.43	.21	.29	.06	.13	.08
11	.26	.10	.29	. 52	. 27	. 52	. 49	.19	.28	.06	.09	.09
12	.21	.11	.28	.48	. 23	. 56		.18	.31	.05	.08	.10
13	.20	.10	. 23	.49	.58	.60	.41	.18	. 22	.05	.09	. 57
14	.19	.11	.10	.37	1.1	.60	. 46	.20	. 22	.05	. 16	.40
15	. 20	.11	. 20	. 47	.38	4.4	.29	. 22	. 14	.03	. 12	. 56
16	.16	.15	.22	.45	.22	1.0	.29	.27	.22	.04	.10	.51
17	. 15	5.9	.38	, 40	,21	. 65	. 29	.30	.19	.05	.10	.45
18	. 15	7.5	. 42	.40	,16	. 66	.29	. 23	.19	.04	.09	. 50
19	. 14	.30	. 45	. 40	. 18	. 65	.28	. 29	.13	.08	.09	.39
20	. 12	.21	2.7	.39	. 17	. 64	.25	. 34	.08	. 16	. 10	.20
21	. 13	.21	.33	.49	.20	4.8	, 27	.31	.07	.15	.08	.20
22	, 13	. 20	. 44	.49	.20	5.2	. 24	.29	.07	.06	.10	.26
23	.11	.20	. 40	.45	,81	.82	.26	. 29	.07	.04	. 07	.38
24	.10	. 20	. 52	.42	5.7	. 90	. 24	. 40	.05	.04	.06	.10
25	. 11	.20	.40	.30	4.2	.65	. 26	.40	.02	.02	.03	.10
26	.09	.20	.40	.35	6.5	. 62	.23	.67	.01	.01	.03	.09
27	,09	. 20	.40	.32	. 57	.71	. 22	. 50	.02	.01	.04	.10
28	.11	. 23	.41	.37	. 43	. 60	.28	. 44	.01	.01	.04	.09
29	. 12	.21	.40	.29		. 55	.20	.38	.03	.01	.05	.08
30	.10	.21	.48	.29		. 55	.21	.40	.05	.01	.05	.06
31	. 10		.48	.29		.55		,38		.01	.05	
TOTAL	9.50		36.04	53.16	25.31	35.63	14.66	8.88	5.30	1.56	2.12	5,79
MEAN	.31	.60	1.16	1.71	.90	1.15	.49	.29	.18	.050	.068	.19
MAX	4.1	7.5	14	18	6.5	5.3	2.9	.67	.37	.16	. 16	. 57
MIN	.06	. 07	.10	.29	.16	.29	.20	.10	,01	.01	0	.05
AC-FT	19	36	71	105	50	71	29	18	11	3.1	4.2	11

CAL YR 1986 TOTAL 418.33 MEAN 1.15 MAX 53 MIN .04 AC-FT 830 WTR YR 1987 TOTAL 216.04 MEAN .59 MAX 18 MIN 0 AC-FT 429

LOS PENASQUITOS CREEK BASIN

11023325 BEELER CREEK AT POMERADO ROAD, NEAR POWAY, CA

LOCATION.--Lat 32°56'23", long 117°03'57", in NW 1/4 SW 1/4 sec.23, T.14 S., R.2 W., San Diego County, Hydrologic Unit 18070304, on right downstream wingwall of bridge on Pomerado Road, 0.8 mi upstream from Poway Creek, and 1.7 mi southwest of Poway Post Office.

DRAINAGE AREA, -- 5.46 mi².

PERIOD OF RECORD. -- November 1969 to September 1977 (gage heights and discharge measurements only), October 1977 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 465 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records fair. Flow partially regulated by several conservation reservoirs above station.

AVERAGE DISCHARGE. -- 11 years, 1.77 ft 3/s, 1,280 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 1,410 ft³/s, Jan. 29, 1980, gage height, 9.20 ft, from rating curve extended above 80 ft³/s on basis of slope-area measurement at gage height 8.79 ft; no flow for much of each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Dec. 7	1515	*0.61	*4.51				

DISCHARGE IN CURIC FEET PER SECOND WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow many days.

WTR YR 1987 TOTAL 9.06 MEAN .025

MAX

		DISCHARGE,	IN CORIC	FEET PE		WATER YEAR AN VALUES	OCTOBER	1986 TO	SEPTEMBER	198/		
DAY C	CT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		0	.01	.02	.06	.03	.07	.01				
2		0	0	.02	.06	. 04	.07	.01				
2 3		0	0	.02	.06	.03	.08	.01				
4		0	0	.07	.06	.03	.08	0				
5		0	0	.05	.04	.03	.07	0				
6		0	.02	,03	.04	.04	.07	0				
7		0	.05	. 10	.04	.04	.07	0				
8		0	.02	. 11	.04	.04	.07	0				
9		0	.01	. 23	.03	.04	.07	0				
10		0	.02	. 24	.03	.07	.07	0				
11		0	.02	.21	.04	.07	.07	0				
12		0	.02	.20	.03	.07	, 07	0				
13		0	.02	.18	.03	.07	.06	0				
14		0	.02	. 18	.04	.06	.06	0				
15		0	.02	.19	.04	.07	.05	0				
16		0	.02	.20	.04	.07	.04	0				
17		0	.02	. 21	.04	.06	.02	0				
18		.02	.01	.21	.02	.07	.02	0				
19		0	.01	. 19	.02	.07	.02	0				
20		Ō	.03	.17	.02	.06	.02	Ō				
21		0	.02	. 16	.02	.07	.02	0				
22		Ö	.02	,16	.02	.07	.02	ō				
23		.01	.02	,15	.02	.06	.02	ŏ				
24		.01	.02	.15	.03	.06	.02	0				
25		.01	.02	.14	.04		.02	0				
						.08	.02	U				
26		.01	.02	.13	.04	.08	.01	0				
27		.01	.02	. 12	.02	.08	.01	0				
28		.01	.02	. 11	. 03	.08	.01	0				
29		.01	.02	.11		.07	.02	0				
30		.01	.02	.10		.07	.01	0				
31			.02	.07		.07		0				
TOTAL	0	.10	. 54	4.23	1.00	1.85	1.31	.03	0	0	0	0
MEAN	0	.003	.017	. 14	.036		.044	.001	Ö	Ö	0	Ö
MAX	Ô	.02	.05	.24	.06	.08	.08	.01	Õ	Ö	Ö	ŏ
MIN	Ö	0	0	.02	.02	.03	.01	0	ő	Ö	Ö	ŏ
AC-FT	Ŏ	.2	1.1	8.4	2.0	3.7	2.6	.06	0	0	0	0
CAL YR 1986	TOTA	L 428.29	MEAN 1.1	7 MAX	59	MIN 0 A	C-FT 850					
110D 10D 1007	MOMA!		100111 000									

.24 MIN 0 AC-FT 18

LOS PENASOUITOS CREEK BASIN

11023330 LOS PENASQUITOS CREEK BELOW POWAY CREEK, NEAR POWAY, CA

LOCATION.--Lat 32°56'58", long 117°04'08", in NE 1/4 NE 1/4 sec.22, T.14 S., R.2 W., San Diego County, Hydrologic Unit 18070304, on right bank 10 ft upstream from concrete ford on Cobblestone Creek Road, 0.2 mi downstream from confluence of Poway and Pomerado Creeks, and 2.0 mi southwest of Poway.

DRAINAGE AREA, -- 31, 2 mi².

PERIOD OF RECORD . -- October 1970 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 415 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 26 to Nov. 4. Records fair. Flow partly regulated by small conservation reservoirs.

AVERAGE DISCHARGE. -- 17 years, 6.45 ft3/s, 4,670 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,990 ft³/s, Feb. 21, 1980, gage height, 11.11 ft, from rating curve extended above 300 ft³/s on basis of slope-area measurements at gage heights 9.58 and 11.11 ft; no flow at times during some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft 3/s and maximum (*), from rating curve extended as explained above:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 17	2145	242	5.41	Jan. 4	2130	*383	*5.86

Minimum daily, 0.09 ft3/s, June 21.

		DISCHARG	E, IN CUE	IC FEET		, WATER EAN VALU	YEAR OCTOBE ES	R 1986 T	O SEPTEMBE	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.33	. 48	. 48	1.1	. 58	1.1	1.5	1.0	.38	.16	.15	.26
2	.94	. 43	.45	.93	.64	1.2	1.2	.73	.41	.25	.15	.21
3	.39	.41	, 55	. 55	. 95	1.1	12	.37	.43	.18	.20	.23
4	.41	. 43	. 42	57	1.0	1.1	11	. 56	. 48	.19	. 25	.28
5	.44	. 47	. 54	58	. 97	2,2	2.1	1.2	. 54	.19	.20	.21
6 7	.45	. 46	29	13	1.1	18	1.2	1.6	. 46	.21	,23	.18
7	.33	. 42	38	19	1.1	5.3	1.6	1.3	. 43	.28	.34	. 22
8	.24	. 40	7.2	5.5	1.2	2.1	1.4	1.0	.37	. 43	, 22	.27
9	9.7	.34	3.1	4.0	1.2	1.7	1.0	1.0	,28	,39	.24	.24
10	15	.39	1.5	4.0	1.4	1.7	1.2	. 57	.22	.46	.26	.25
11	1.9	.35	1.1	2.3	1.4	1.5	1.7	. 46	.24	.39	.32	. 41
12	.69	.29	1.1	1.8	1.7	1.8	1.4	.70	.24	.32	.35	. 47
13	.41	. 28	. 93	1.8	3.1	2,2	1.4	.38	.22	.38	.37	2.1
14	.30	. 28	, 53	1.4	9.4	2.0	1.6	.25	.14	.37	. 40	.45
15	.27	. 25	.73	1.6	4.2	15	1.3	.25	.10	.37	.34	.39
16	. 47	.25	1.0	1.5	3.3	5.0	1.8	. 26	.14	. 41	.30	.39
17	.38	27	1.3	1.1	2.0	3.7	.45	. 19	.11	.36	.26	. 42
18	.68	44	1.4	1,1	1.8	3.7	.65	.20	.14	.30	.27	.43
19	.69	3.9	1.4	1.1	1.5	3.8	.53	. 23	.12	.26	. 40	.40
20	.75	1.5	15	1.1	1.6	3.3	.39	.35	.16	.33	.32	.33
21	.79	1.1	3.5	1.0	1.3	15	.37	.37	.09	.28	.34	.30
22	.63	. 54	1.8	1.2	1.1	18	.32	.25	.12	.26	. 29	.41
23	.55	. 43	2.0	1.1	5.3	4.9	.40	.32	.17	.28	, 26	1.5
24	. 42	1.5	1.7	.77	24	4.5	.39	.33	.11	,29	.29	,53
25	.50	.72	1.6	.41	16	4.0	.39	.38	.19	.32	.29	.49
26	. 49	. 40	1.3	. 59	21	4.3	.41	1.6	.10	.16	.30	.37
27	.46	.41	1,1	.99	2.5	3.6	. 40	, 55	.11	.36	.26	.33
28	.44	.38	1.2	1.3	1.3	2.0	.40	.55	.18	.36	.31	,26
29	.45	.41	1.2	1.3		1.7	,60	,49	. 46	.36	.37	.29
30	.46	.39	1.2	1.2		1.3	.78	.36	.15	.27	.32	.23
31	.47		1.2	.70		1.4		.31		.22	,32	
TOTAL	40.43	88,61	123.53	188.44	112.64	138.2	49.88	18.11	7.29	9.39	8.93	12.83
MEAN	1.30	2.95	3,98	6,08	4,02	4.46	1.66	.58	.24	.30	.29	.43
MAX	1.55	44	38	58	24	18	12	1.6	. 54	.46	.40	2.1
MIN	.24	.25	. 42	.41	. 58	1.1	.32	.19	.09	.16	.15	
AC-FT	80	176	245	374	223	274	99	36	.09 14	19	18	.18 25

CAL YR 1986 TOTAL 2114.34 MEAN 5.79 MAX 320 MIN .19 AC-FT 4190 WTR YR 1987 TOTAL 798.28 MEAN 2.19 MAX 58 MIN .09 AC-FT 1580

LOS PENASQUITOS CREEK BASIN

11023340 LOS PENASQUITOS CREEK NEAR POWAY, CA

LOCATION.--Lat 32°56'35", long 117°07'15", in Los Penasquitos Grant, San Diego County, Hydrologic Unit 18070304, on left bank 1.0 mi downstream from Cypress Creek and 5.5 mi southwest of Poway.

DRAINAGE AREA. -- 42.1 mi².

PERIOD OF RECORD, -- October 1964 to current year.

GAGE. -- Water-stage recorder and crest-stage gage. Elevation of gage is 260 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 24 to Dec. 14. Records fair. Flow partly regulated by several conservation reservoirs above station. Pumping from wells along stream for irrigation. Flow augmented by reclaimed water from Poway area.

AVERAGE DISCHARGE. -- 23 years, 8.31 ft 3/s, 6,020 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 4,750 ft³/s, Feb. 21, 1980, gage height, 10.26 ft, from rating curve extended above 1,400 ft³/s; no flow at times in 1968, 1972, and 1977.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 18 Dec. 7	0030 Unknown	520 472	4.73 4.58	Jan. 4	2245	*675	*5.17

Minimum daily, 0.55 ft³/s, June 14, 16.

WTR YR 1987 TOTAL 1430.47

		DISCHARGE,	IN CUB	IC FEET		, WATER YEA EAN VALUES	AR OCTOBE	R 1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 93	.99	1.2	1.8	2.2	3.0	1.7	2.0	.77	.67	.70	.67
2	1.4	.88	1.4	1.8	2.1	2.7	1.7	2.2	.67	.64	.67	.68
3	1.3	.86	1.3	1.8	2.0	2.6	9.1	1.5	.62	.71	.67	.71
4	.89	.90	1.1	101	2,2	2.5	16	1.0	.63	.65	.74	.97
5	.83	1.0	3.0	138	2.0	2.7	3,6	1.3	.64	, 59	.71	1.1
•	.00	1.0	0.0	100	2.0	,	0,0	1.0	.01	,50		
6	.77	1.0	75	13	1.9	21	2.5	1.5	.76	. 57	,79	.97
7	. 82	1.1	100	27	2.2	10	2.2	1.6	.76	. 59	. 83	.89
8	.88	1,1	15	6,3	2.2	3.8	1.9	1.2	.74	.61	.81	.92
9	6.9	1.0	7.0	4.5	2.1	3.0	1.8	1.3	.72	. 84	.79	.89
10	44	.90	3.8	4.3	2.2	2.2	1.6	1.3	.60	.73	.77	. 87
11	4.8	. 94	2.7	3.5	2.0	2,2	1.7	1.1	. 56	, 65	.79	. 86
12	2.5	1.0	2.3	3.0	2.0	1.9	1.6	1.1	.56	.60	.92	1.1
13	1.7	1.0	2.2	3.1	2.8	1.8	1.6	1.1	.58	.61	1.0	3.1
14	1.3	1.0	2.1	3.0	12	2,6	1.5	1.1	.55	.67	1.3	1.5
15	1.1	1.1		2.7	3.9	16	1.5	1.1	.68	.75	.98	1.0
13	1.1	1.1	2.1	4.7	3.9	10	1.5	1.1	.00	./3	. 90	1.0
16	1.2	1.0	2.1	2.7	4.0	4.8	1.7	1.2	. 55	.73	.76	1.0
17	1.3	15	2.0	2.5	2.0	2.6	1.6	1.0	. 59	. 82	.73	.95
18	1.3	131	2.0	2.3	1.8	2,2	1.5	.70	.69	. 92	.74	.84
19	1.2	6.0	1.9	2.3	1.8	2,2	1.7	.68	.61	.69	. 73	. 87
20	1.2	3.1	21	2.3	1.7	2.1	1.6	. 87	.66	.73	.74	. 87
21	1.3	2.6	5.9	2.2	1.6	15	1.8	1.1	.60	.81	.79	. 87
22	1.1	2.3	2.4	2.2	1.5	26	1.8	.99	.59	.75	.69	1.0
23	1.2	1.9	2.4	2.3	4.3	4.5	1.5			.80		1.3
24	1.1	1.7	2.1	2.3	30	4.1	1.5	.81 .89	.64 .71	.74	. 66	1.3
											.77	
25	1.1	1.3	2.1	2.1	21	2.7	1.1	1.1	.69	.74	.83	1.2
26	1.1	1.1	1.9	2.0	41	2.8	1.1	1.4	.69	.68	. 84	1.1
27	.96	,98	1.8	2.2	4.5	3.6	1.3	1.8	.77	,68	.86	.87
28	.94	. 95	1.8	2.8	3.4	2.6	1.5	1.2	.70	.69	.84	.81
29	.98	.96	1.8	2.8		2.1	1.7	1.0	,68	.72	. 87	.87
30	.98	1.0	1.8	2,6		1.9	2.0	.96	.71	.75	.79	, 84
31	1.1		1.8	2.4		1.8		.86		.69	.70	
TOTAL	88.18	185,66	274.8	352.8	162.4	159,0	73.4	36.96	19.72	21.82	24.81	30.92
MEAN	2.84	6.19	8.86	11.4	5.80	5,13	2.45	1.19	.66	.70	.80	1.03
MAX	44	131	100	138	41	26	16	2.2	.77	.92	1.3	3.1
MIN	.77	.86	1.1	1.8	1.5	1.8	1.1	.68	.55	.57	.66	.67
AC-FT	175	368	545	700	322	315	146	. 00 73	.33 39	43	. 66 49	61
AC-F1	1/3	300	243	700	324	313	140	/3	38	43	49	01
CAL YR	1986 TO	TAL 3627,64	MEAN	9.94	MAX 609 1	MIN .57	AC-FT 7	200				
מע מתו		TAT 1620 67				ATM EE		040				

MIN .55

AC-FT 2840

MEAN 3.92 MAX 138

11025500 SANTA YSABEL CREEK NEAR RAMONA, CA

LOCATION.--Lat 33°06'25", long 116°51'55", in NW 1/4 NE 1/4 sec.27, T.12 S., R.1 E., San Diego County, Hydrologic Unit 18070304, on left bank 1.6 mi downstream from Temescal Creek, 4.5 mi north of Ramona, and 5.0 mi downstream from Sutherland Reservoir.

DRAINAGE AREA, -- 112 mi².

PERIOD OF RECORD. --February 1912 to February 1923 (monthly discharge only for February 1912, published in WSP 1315-B), October 1943 to current year.

REVISED RECORD, -- WDR CA-63-1: Drainage area.

GAGE.--Water-stage recorder and concrete cutoff wall. Datum of gage is 847.88 ft above National Geodetic Vertical Datum of 1929 (levels by city of San Diego Water Department). See WSP 1315-B for history of changes prior to Feb. 3, 1923.

REMARKS.--Estimated daily discharges: May 10-13, June 9-17, Sept. 19-30. Records fair. Flow regulated by Sutherland Reservoir (station 11024000) 5 mi upstream since July 1954. Some small diversions above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,400 ft³/s, Jan. 27, 1916, gage height, 14.0 ft, datum then in use, from rating curve extended above 1,500 ft³/s on basis of slope-conveyance study of peak flow; no flow at times in some years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 22 ft3/s, Jan. 5, gage height, 2.43 ft; no flow Aug. 1, 2.

		DISCHA	INGE, IN C	ODIC PEEL		AN VALUES		OBER 1900	IO SEPIE	MDER 1907		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	, 55	.64	.75	1,5	1.7	3.8	2.1	, 86	. 25	.09	0	.07
2	.61	.69	.78	1,6	1.6	3.5	2.2	,78	.24	.09	0	.09
3	.60	. 82	.78	1.6	1.6	3.1	2.7	.78	. 23	.10	.01	.10
4	.55	. 83	.85	2.5	1.6	2.7	4.7	.66	. 23	.09	.01	.09
5	,50	.84	.88	15	1.5	2.5	4.5	. 57	. 22	.09	.03	.07
6	. 52	. 94	1.6	9.2	1.3	3.6	3.4	. 53	.24	.08	.04	.09
7	. 55	1.0	3.8	9.1	1.7	6.1	2.9	. 53	.23	.07	.02	.06
8 ,	. 57	.97	4.1	9.3	2.0	5.8	2.6	. 47	. 24	.07	.02	.08
9	.67	.90	2.7	5.3	2.1	4.3	2.2	, 45	. 24	.09	.02	.10
10	.86	, 83	2.0	4.0	2.3	3.6	2.1	. 44	. 22	.09	.03	.09
11	.73	.79	1.7	3.3	2.4	3.1	2.0	.43	.20	.08	,03	.09
12	. 63	.80	1.6	2.8	1.8	2.8	2.0	.42	.18	.07	.04	.09
13	, 56	.82	1.6	2.6	1.3	2.6	1.8	.40	.16	.06	.05	.10
14	, 52	. 89	1.5	2.4	1.7	2.5	1.6	.38		.07	.06	.10
15	.50	. 92	1.5	2.3	1.8	3.2	1.4	, 38	. 12	.08	.05	.09
16	.52	, 98	1.5	2.1	1.9	3.0	1.4	,39	.10	.06	.07	.10
17	. 55	1.1	1.4	2.1	1.7	2.8	1.4	.35	.09	.07	. 07	. 11
18	.56	1.5	1.4	2.0	1.7	2.5	1.3	.32	.09	.06	. 07	.10
19	. 58	1.1	1.5	2.0	1.7	2.5	1.3	, 33	.09	.04	.06	.10
20	.61	.99	1.8	1.9	1.5	2.6	1.1	.41	.09	.05	. 04	.10
21	.61	. 93	2.0	1.8	1.4	3.0	1.0	. 43	.09	.06	.03	.10
22	,62	. 84	1.8	1.8	1.4	6.3	.90	.37	.08	.05	.03	.10
23	,68	. 81	1.6	1.8	2.0	6.5	.86	.35	.08	.04	,03	.10
24	.71	, 82	1.6	1.8	5.1	5.3	,82	.37	.08	.05	.02	.10
25	.66	.85	1.6	1.8	7.4	4.9	.80	.40	.07	.03	.07	.10
26	. 54	. 84	1.5	1.7	7.8	4.4	.81	. 45	. 07	.04	.08	. 10
27	.48	, 83	1,5	1.8	5.3	3.6	.79	. 46	.07	.05	.08	.10
28	.49	.81	1.5	1.8	4.1	3.2	.79	. 45	.07	.06	,08	,10
29	.51	. 87	1.5	1.8		2.9	.86	.38	.07	.05	.08	.10
30	, 53	. 83	1,5	1.8		2.4	,92	, 33	.08	.06	.08	. 10
31	.62		1.5	1.8		2.3		.30		.04	.07	
TOTAL	18,19	26.78	51,34	102.3	69.4	111.4	53,25	14.17	4.36	2.03	1.37	2,82
MEAN	.59	.89	1.66	3,30	2.48	3.59	1.78	. 46	.15	.066	.044	.094
MAX	.86	1.5	4.1	15	7.8	6.5	4.7	.86	.25	.10	.08	.11
MIN	.48	.64	.75	1.5	1.3	2.3	.79	,30	.07	.03	.00	.06
AC-FT	36	53	102	203	138	221	106	28	8.6	4.0	2.7	5.6
11	00	50	102	200	100	241	100	20	0,0	4.0	4./	5.0

CAL YR 1986 TOTAL 2977.19 MEAN 8.16 MAX 654 MIN .01 AC-FT 5910 WTR YR 1987 TOTAL 457.41 MEAN 1.25 MAX 15 MIN 0 AC-FT 907

11028500 SANTA MARIA CREEK NEAR RAMONA, CA

LOCATION.--Lat 33°03'08", long 116°56'41", in SE 1/4 SE 1/4 sec.11, T.13 S., R.1 W., San Diego County, Hydrologic Unit 18070304, on left bank 3.8 mi northwest of Ramona, 3.1 mi northwest of Jensens, and 4.6 mi upstream from mouth.

DRAINAGE AREA. -- 57.6 mi².

PERIOD OF RECORD. -- December 1912 to September 1920, October 1946 to current year.

REVISED RECORDS. -- WDR CA-63-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since October 1946. Datum of gage is 1,294.44 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1946, at same site, but at datum 1.78 ft lower.

REMARKS .-- No estimated daily discharges. Records fair. No regulation upstream from station.

AVERAGE DISCHARGE .- 48 years (water years 1914-20, 1947-87), 6.09 ft3/s, 4,410 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 15,200 ft³/s, Feb. 21, 1980, gage height, 14.39 ft, from rating curve extended above 130 ft³/s on basis of slope-area measurement at gage height 4.56 ft and slope-conveyance study at gage height 14.39 ft; no flow for many days in most years.

EXTREMES FOR CURRENT YEAR, -- Peak discharges greater than base discharge of 250 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 15	2245	*20	*1.74				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow several days in August and September.

			_,		ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.31	.25	.35	1,0	1.2	1.1	1.1	. 47	.63	, 50	0	.03
2	.38	. 14	.41	. 85	1.2	. 83	1.2	.25	.59	.65	0	.02
3	.34	.12	. 45	. 92	1.4	.66	2.9	.18	.61	.67	Ō	.06
4	.30	,25	. 53	3.6	1,2	. 58	3.8	.14	.49	.59	Ŏ	.19
5	.29	.14	.60	8.8	1.0	1.1	2.3	.14	.42	.42	. 04	.07
_												
6	.34	.21	1.7	3.7	. 93	5.2	1.8	. 36	.19	. 44	. 42	.10
7	.40	.41	1.9	5.3	.98	4.1	1.5	.51	.10	.54	.71	.33
8	. 44	.51	, 69	2.5	1.0	2.1	1.2	.49	.09	. 22	.77	. 46
9	. 95	.39	.39	1.4	1.4	1.3	1.1	.18	.08	.23	,79	.11
10	1.3	.38	.33	1.1	1.7	1.2	.81	.09	.07	.11	.78	.12
11	.38	.36	. 29	. 96	1,6	1.3	.86	. 07	.07	.04	,78	.30
12	.43	.37	.60	.90	1.7	1.0	.97	.31	.10	.04	.75	.11
13	.14	,41	.37	1,1	1.7	1.1	.79	. 54	.21	.10	.79	.08
14	.08	.19	.37	1.1	1,9	1.2	.76	.66	.30	.14	.85	.06
15	.34	. 59	.37	1.4	1.5	6.4	.76	.76	.29	.21	.16	.36
15	. 34	.58	.3/	1.4	1.5	0.4	.76	.76	, 29	. 41	. 10	.30
16	.45	. 52	.35	1.3	.91	11	.66	. 82	.14	.26	,19	.22
17	. 55	1.1	.35	.91	.64	3.9	.68	. 83	.05	.36	, 29	.19
18	. 63	2,9	.37	1.3	. 56	2.6	.77	. 62	.10	.35	.32	. 25
19	. 58	. 62	.34	, 69	, 52	2.1	.69	, 43	.39	.34	.32	.10
20	. 58	, 63	.68	.61	.46	1.9	. 56	.64	.48	.31	.31	.06
21	, 64	.33	. 47	.61	.78	4.0	. 28	. 59	. 55	. 24	.12	.06
22	.52	.50	.38	1.2	1.4	9.1	.23	.58	.60	.04	.08	.30
23	.48	. 44	.38	1.4	1.6	4.4	.22	.77	.64	.16	.03	.15
24	.60	.41	.51	.74	3.9	3.5	.24	.65	.61	.11	,03	.06
25	.49	.31	.37	1.2	7.1	2.8			.56	.24	.35	.06
23	.49	.31	.37	1.2	7.1	2.0	. 26	.71	. 36	. 44	. 55	.00
26	.43	.21	.35	1.0	7.0	1.9	.24	.75	.61	.08	.28	.05
27	. 47	. 27	.49	1.0	2.4	1.9	. 22	. 83	.62	.34	. 58	.04
28	.49	.32	1.1	1.3	1.4	1.7	.30	.88	.65	.29	.60	.02
29	. 23	.41	. 97	1.4		1.5	.41	, 79	.60	.07	.07	0
30	.16	. 43	, 63	1.5		1.1	.39	.75	, 46	.06	.04	0
31	. 17		.76	1.2		.94		.70		.03	.03	
TOTAL	13.89	14.12	17.85	51.99	49.08	83,51	28.00	16.49	11.30	8,18	10.48	3.96
MEAN	.45	. 47	.58	1.68	1.75	2.69	.93	.53	.38	.26	.34	.13
MAX	1.3	2.9	1.9	8.8	7.1	11	3.8		.65	. 20 . 67	.85	. 46
								.88				
MIN	.08	. 12	. 29	.61	. 46	. 58	. 22	.07	.05	.03	0	7 0
AC-FT	28	28	35	103	97	166	56	33	22	16	21	7.9

CAL YR 1986 TOTAL 2187.43 MEAN 5.99 MAX 418 MIN 0 AC-FT 4340 WTR YR 1987 TOTAL 308.85 MEAN .85 MAX 11 MIN 0 AC-FT 613

11030020 LAKE HODGES NEAR ESCONDIDO, CA

LOCATION.--Lat 33°02'46", long 117°07'39", in SE 1/4 NW 1/4 sec.18, T.13 S., R.2 W., San Diego County, Hydrologic Unit 18070304, 300 ft upstream from right upstream end of Hodges Dam on San Dieguito River, 6.4 mi southwest of Escondido, and 20 mi southwest of Sutherland Reservoir.

DRAINAGE AREA. -- 303 mi².

PERIOD OF RECORD.--October 1945 to September 1968 (published with San Dieguito River at Lake Hodges, station 11030000), October 1972 to current year. Monthend gage heights February 1919 to September 1945, in files of San Diego County Department of Sanitation and Flood Control.

GAGE.--Nonrecording gage. Datum of gage is 200.0 ft above National Geodetic Vertical Datum of 1929 (levels by county of San Diego); gage readings have been reduced to NGVD. Prior to Oct. 1, 1972, nonrecording gage at site 800 ft upstream on right bank at same datum. October 1972 to current year, supplementary water-stage recorder used for flood warning only, on left upstream face of dam at same datum.

REMARKS.--Reservoir is formed by multiple-arch reinforced concrete dam, constructed in 1917-19. Storage began in February 1919. Capacity table from city of San Diego, Utilities Engineering Division dated July 1, 1953. Table based on U.S. Geological Survey table dated Sept. 18, 1951, from a 1948 survey. Capacity of reservoir at spillway level, 33,550 acre-ft, elevation, 315.0 ft. Dead storage below lowest outlet, 1,160 acre-ft, elevation 254.0 ft, included in these records. Reservoir can be drawn down to 207 acre-ft, elevation, 240.0 ft by pumping. Water drawn from Lake Hodges passes through a conduit to San Dieguito re-regulating reservoir, from which it is released as required for municipal use. Flow regulated since July 1954 by Sutherland Reservoir (station 11024000). Diversions for irrigation above Lake Hodges.

COOPERATION .-- Gage-heights were provided by city of San Diego, Utilities Engineering Division.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 41,620 acre-ft, spilling, Feb. 21, 1980, elevation, 321.50 ft; minimum observed, 114 acre-ft, Oct. 31, 1965, elevation, 235.80 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 28,670 acre-ft, Mar. 23, elevation, 310.82 ft; minimum observed, 21,610 acre-ft, Sept. 30, elevation, 303.70 ft.

MONTHEND ELEVATION NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	Elevation	Contents	Change in contents
Date	(feet)	(acre-feet)	(acre-feet)
Sept. 30	309.69	27,450	
Oct. 31	309.01	26,730	-720
Nov. 30	308.61	26,320	-410
Dec. 31	308,90	26,620	+300
CAL YR 1986			4,450
Jan. 31	310.02	27,800	1,180
Feb. 28	310.34	28,150	350
Mar. 31	310.68	28,520	370
Apr. 30	310.00	27,780	-740
May 31	308.76	26,470	-1,310
June 30	307.50	25,190	-1,280
July 31	306.20	23,910	-1,280
Aug. 31	304.80	22,600	-1,310
Sept. 30	303.70	21,610	-990
WTR YR 1987	PRO 440		-5,840

11030500 SAN DIEGUITO RIVER NEAR DEL MAR. CA

LOCATION.--Lat 32°54'23", long 117°12'45", in SE 1/4 SW 1/4, sec.6, T.14 S., R.3 W., San Diego County, Hydrologic Unit 18070304, on downstream side of second pier from right bank of El Camino Real bridge, 0.3 mi south of intersection of El Camino Real and Via Del La Valle, and 2.6 mi upstream from mouth.

DRAINAGE AREA. -- 338 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1984 to current year. Prior to October 1986, published as San Dieguito Creek near Del Mar.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Sutherland Reservoir, capacity 29,680 acre-ft, since July 1954 and Lake Hodges (station 11030020), capacity 33,550 acre-ft, since 1919. Diversions and pumping from wells in San Pasqual Valley and lower San Dieguito Valley.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,160 ft³/s, Mar. 17, 1986, gage height, 10.69 ft; no flow many days most years.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 212 ft3/s, Jan. 5, gage height, 8.56 ft; no flow many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUL AUG SEP .46 .29 .61 . 89 .20 .15 .50 .41 .23 . 25 .64 .61 .65 .20 .22 2 .43 .42 .18 3 . 27 .24 . 52 .57 .44 . 52 .35 .16 .16 .18 . 26 .45 1.0 .43 . 47 . 51 .20 . 19 5 .15 .30 .47 19 .36 .48 .34 .22 .24 6 . 12 1.3 41 .32 .83 .31 .18 .24 .55 .11 .47 6.9 11 .32 .84 .25 .14 .26 8 .36 6.6 .36 .80 .19 .19 , 29 .10 11 . 29 7.8 .41 .75 .16 9 .16 2.4 .26 .43 .93 . 27 . 59 10 .84 4.4 .72 .15 . 26 .42 .72 . 57 .45 11 . 24 .75 2.4 . 56 .19 . 27 1.4 12 .63 . 22 . 55 .63 .51 .24 .32 .34 . 92 . 53 13 .34 . 25 .68 .44 .20 .32 .13 14 .23 .26 .62 .76 .73 .40 .17 .38 .09 15 .18 .24 .64 .68 .63 .06 16 .19 .25 .72 .61 .17 .38 .03 .41 .49 .43 .30 .03 .17 .80 .46 .18 17 3.1 .71 .48 .44 .22 18 .36 .43 . 17 .23 67 . 39 . 53 . 42 19 4.2 37 . 14 . 43 .12 2.0 . 47 1.3 .89 .46 .31 .32 . 17 .32 .07 21 . 27 .73 1.7 .44 .30 , 50 .19 .19 .05 .48 22 .22 .61 1.2 .33 .88 .07 .14 .03 .72 .51 23 .21 . 54 .46 .87 .05 .12 .05 . 54 1.1 .22 .49 1.1 .06 .05 24 . 49 .14 .48 .07 2.5 .23 . 47 . 46 1.3 1.5 .15 .06 26 . 24 . 44 . 48 .46 1.1 .90 .09 .13 .05 27 .26 .40 . 47 .49 1.0 .68 .14 .07 .05 28 .26 .48 .47 .50 1,1 .60 .20 .04 .14 29 .26 . 52 . 50 .46 .46 .25 .19 .02 ___ 30 .51 . 55 .46 .28 .26 .19 .01 31 .30 .61 .44 . 22 .18 TOTAL 9.54 18.95 35.02 110.88 16.21 19.54 5.81 7.04 4.51 0 0 0 MEAN .31 .63 3.58 .63 0 0 1.13 .58 ,19 .23 .15 0 . 84 4.2 41 .51 MAX 6.9 1.3 1.5 .43 .45 0 0 0 MIN . 10 .22 .39 44 .30 . 22 .05 .07 .01 0 0 0 AC-FT 19 38 69 220 32 39 12 8.9 0

4674.86 CAL YR 1986 TOTAL MEAN 12.8 MAX 1010 MIN 0 AC-FT 9270 WTR YR 1987 TOTAL 227.50 MEAN . 62 MAX 41 MIN 0 AC-FT 451

11030500 SAN DIEGUITO RIVER NEAR DEL MAR, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

SEDIMENT DATA: Water years 1982 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: January to September 1984.
SUSPENDED-SEDIMENT DISCHARGE: January to September 1984.

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT					
08	1030	0.09		27	0.01
NOV					
04	1240	0.26	22.0	58	0.04
DEC					
03	0945	0.39	12.5	100	0.11
JAN					
05	0745	9.7	11.0	214	5,6
FEB	0010	0.45	10.5		0.10
04	0910	0.45	10.5	81	0.10
MAR	1115	0 51	17.0	200	0 10
04 APR	1145	0.51	17.0	306	0.42
06	1030	0.34	17.5	36	0.03
16	0900	0.11	18.5	70	0.03
MAY	0300	0.11	10.3	, 0	0.02
06	1020	0.18	23.0	4	0.00
JUN	1010	2,20	20.0	•	2,30
03	1130	0.18		58	0.03
29	1030	0.03	23.5	71	0.01
		- •			

PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

					BED							
			NUMBER		MAT.							
			OF	STREAM-	SIEVE							
		TEMPER-	SAM-	FLOW.	DIAM.							
		ATURE	PLING	INSTAN-	% FINER							
DATE	TIME	WATER	POINTS	TANEOUS	THAN							
		(DEG C)		(CFS)	.062 MM	.125 MM	.250 MM	.500 MM	1.00 MM	2.00 MM	4.00 MM	8,00 MM
FEB												
		40.5			_							
04	1100	10.5	1	0.45	6	22	63	90	98	100		
04	1105		1		15	21	30	41	55	75	98	100
04	1110		1		10	58	90	93	95	98	100	
04	1115		1		28	34	42	53	68	92	100	
APR												
16	0900	18.5	1	0.11	6	15	55	89	100			
16	0905		1		20	45	55	63	74	90	99	100
16	0910		1		19	58	90	94	97	100		
16	0915		1		24	35	47	64	88	100		

ESCONDIDO CREEK BASIN

11030700 LAKE WOHLFORD NEAR ESCONDIDO, CA

LOCATION.--Lat 33°10'00", long 117°00'14", in NW 1/4 NE 1/4 sec.5, T.12 S., R.1 W., San Diego County, Hydrologic Unit 18070303, on face of Lake Wohlford Dam, 330 ft left of spillway, 3.9 mi southeast of Valley Center Post Office, and 5.7 mi northeast of Escondido.

DRAINAGE AREA, -- 7.96 mi².

PERIOD OF RECORD. --October 1972 to current year. October 1933 to September 1972 in files of San Diego County Department of Sanitation and Flood Control.

GAGE.--Nonrecording gage. Datum of gage is 1,385.0 ft above National Geodetic Vertical Datum of 1929 (levels by city of Escondido Engineering Department); gage readings have been reduced to NGVD. Since October 1972, supplementary water-stage recorder for flood warning only, at same site at datum 15.0 ft higher.

REMARKS. -- Reservoir is formed by earthfill dam riprapped upstream and downstream, with concrete spillway anchored to natural rock. Dam was completed in 1932. Capacity table from city of Escondido Engineering Department, dated March 1955. Capacity at spillway level, 6,940 acre-ft, elevation, 1,480.0 ft. Dead storage below lowest outlet, 131 acre-ft, elevation, 1,420 ft. Reservoir storage includes supplemental water diverted from the San Luis Rey River via Escondido Mutual Water Co.'s canal to Lake Wohlford Reservoir. Stored water is released for municipal use by Vista Irrigation District and city of Escondido.

COOPERATION . -- Gage heights were provided by Escondido Mutual Water Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 7,140 acre-ft, Feb. 21, 1980, elevation, 1,480.9 ft; minimum, 809 acre-ft, Dec. 1, 1953, elevation, 1,437.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 6,680 acre-ft, June 23, 24, elevation, 1,478.8 ft; minimum observed, 2,360 acre-ft, Dec. 24-26, elevation, 1,453.8 ft.

MONTHEND ELEVATION, IN FEET NGVD, AND CONTENTS AT 0700, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	1,472,1	5,300	
Oct. 31	1,471.2	5,130	-170
Nov. 30	1,460.0	3,220	-1,910
Dec. 31	1,454.3	2,420	-800
CAL YR 1986			-610
Jan. 31	1,461.2	3,400	+980
Feb. 28	1,463.3	3,740	+340
Mar. 31	1,466.0	4,190	+450
Apr. 30	1,467.7	4,480	+290
May 31	1,472.3	5,340	+860
June 30	1,478.1	6,530	+1,190
July 31	1,475.0	5,880	-650
Aug. 31	1,471.6	5,200	-680
Sept. 30	1,471.3	5,150	-50
WTR YR 1987			-150

11031500 AGUA CALIENTE CREEK NEAR WARNER SPRINGS, CA

LOCATION.--Lat 33°17'19", long 116°39'11", in San Jose del Valle Grant, San Diego County, Hydrologic Unit 18070303, on left bank 60 ft upstream from bridge on Highway 79, 1.2 mi upstream from Canada Verde Creek, and 1.2 mi northwest of Warner Springs.

DRAINAGE AREA. -- 19.0 mi².

PERIOD OF RECORD. -- February 1961 to September 1987 (discontinued). Discharge measurements only, published in WSP 447, made at about same site from Feb. 5, 1913, to November 1915.

GAGE.--Water-stage recorder. Elevation of gage is 2,950 ft above National Geodetic Vertical Datum of 1929, from topographic map. Jan. 30, 1966, to Nov. 5, 1982, at site 60 ft downstream at datum 2.40 ft lower.

REMARKS .-- No estimated daily discharges. Records fair. No regulation or diversion upstream from station.

AVERAGE DISCHARGE. -- 26 years, 2.71 ft 3/s, 1,960 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,440 ft³/s, Feb. 21, 1980, gage height, 4.80 ft, site and datum then in use, from rating curve extended above 110 ft³/s on basis of slope-area measurement of peak flow; maximum gage height, 5.36 ft, Nov. 30, 1982; no flow for many days some years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 50 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 7	0015	*18	*4.02				

Minimum daily, 0.02 ft³/s, Sept. 9.

		DISCHARGE,	IN CUBIC	FEET	PER	SECOND,	WATER N VALUE	YEAR	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN		FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
DAI	0.1	NOV	DEC	OMM		C.D	MAK		Ark	tan I	JUN	JOL	AUG	SEF
1	.07	.10	.07	. 12		.25	1.6		.89	.35	.37	.16	.10	.04
2	.08	.10	.07	.12		, 25	2.2		. 82	.34	.35	.16	.09	.03
3	.08	.10	.08	.13		.25	2.7		. 93	.32	.35	.13	.08	.03
4	.07	.11	.08	.18		.25	3.4	1	L.5	.30	.35	.13	.08	.03
5	.07	.12	.08	.71		.25	3.4		1,1	. 27	.43	.14	.13	.03
6	.08	. 12	. 12	. 50		.25	8.8	1	1.0	. 20	.34	.21	.15	.03
7	.08	.12	.12	4.4		. 25	12		.83	. 22	.33	.20	.15	.03
8	.08	.07	.10	1.9		, 29	5.6		.71	. 22	.34	.17	.12	.03
9	.10	.05	.10	.48		.31	3.4		.61	. 27	.29	.16	.10	.02
10	.41	.05	.10	. 17		.31	2.5		. 54	.25	.27	.18	.10	.03
11	.09	.05	.10	. 14		.31	1.9		. 52	.25	.24	.16	.10	.03
12	.08	.07	.10	. 14		.31	1.5		.51	.24	.22	.18	.11	.05
13	.07	.07	. 10	.14		.29	1,2		. 43	.23	.21	. 16	.11	.06
14	.07	.07	. 12	. 14		.25	1,1		.35	. 22	.20	.16	.16	.06
15	.07	.07	.12	.14		.25	2.2		.28	. 22	.21	.14	. 14	.06
16	.06	.56	. 12	. 14		, 25	2.0		. 24	.24	.21	.16	.12	.06
17	.07	.07	. 12	. 14		. 23	1.4		.21	. 26	. 20	.21	.10	,06
18	.07	.07	.11	. 14		.20	1.1		, 26	. 29	.21	. 22	.09	.05
19	.07	.05	.11	.14		. 17	1.0		.30	.33	.20	.18	.09	.04
20	.08	.05	. 12	. 14		.16	.90		.31	, 36	.18	.16	.07	.04
21	.08	.06	. 12	. 14		. 17	1.0		.31	.37	.20	.18	. 07	.03
22	.08	.06	. 12	. 14		. 17	3.2		.29	.37	.21	.17	.07	.04
23	.09	.07	.12	. 17		.21	4.0		.29	. 37	.19	.15	.07	.06
24	.09	.07	. 12	. 17		.30	4.0		, 29	.36	.19	.14	.06	.07
25	.08	.07	. 12	. 17		.49	4.0		. 28	.37	.17	.13	.06	.07
26	.08	.07	. 12	.19		. 58	2.6		. 28	.40	.13	, 12	.06	.06
27	.08	.07	. 12	.20		. 56	2.2		.32	.39	.13	.13	.05	.06
28	.08	.07	. 12	.21		. 90	1.8		.32	.36	. 13	. 14	.04	.04
29	, 09	.06	. 13	.21			1.4		, 34	.36	. 14	. 13	.03	.03
30	, 10	.06	. 14	. 24			1.1		.34	.34	. 15	.11	.03	.03
31	. 10		. 13	. 25			. 99			.35		.10	.04	
TOTAL	2.80	2.73		12.20		8.46	86.19	15	5.40	9.42	7.14	4.87	2.77	1.30
MEAN	.090	.091	.11	.39		.30	2.78		. 51	.30	. 24	.16	.089	.043
MAX	.41	. 56	. 14	4.4		.90	12		1.5	.40	. 43	. 22	.16	.07
MIN	.06	.05	.07	. 12		. 16	.90		.21	.20	.13	.10	.03	.02
AC-FT	5.6	5.4	6.7	24		17	171		31	19	14	9.7	5.5	2.6

CAL YR 1986 TOTAL 933,93 MEAN 2.56 MAX 331 MIN .05 AC-FT 1850 WTR YR 1987 TOTAL 156.68 MEAN .43 MAX 12 MIN .02 AC-FT 311

11039800 SAN LUIS REY RIVER AT COUSER CANYON BRIDGE. NEAR PALA. CA

LOCATION.--Lat 33°20'26", long 117°07'50", in NW 1/4 NE 1/4 sec.6, T.10 S., R.2 W., in San Diego County, Hydrologic Unit 18070303, on left bank 10 ft upstream from bridge on Couser Canyon Road, 6.5 mi northeast of Bonsall, and 27 mi downstream from Lake Henshaw.

DRAINAGE AREA. -- 364 mi².

PERIOD OF RECORD. -- October 1986 to September 1987.

GAGE.--Water-stage recorder. Elevation of gage is 280 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1 to Jan. 23, Apr. 18, 19. Records good except those for period of no gage-height record Oct. 1 to Jan. 23, which are poor.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 27 ft³/s, Apr. 8, 1987, gage height, 1.46 ft, from rating curve extended above 6.0 ft³/s; no flow many days most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 27 ft³/s, Apr. 8, gage height, 1.46 ft, from rating curve extended above 6.0 ft³/s; no flow many days.

		DISCHARGE,	IN CUBIC	FEET		WATER YEAR N VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	0	0	.35	1.5	2.7	4.0	5.7	2.6	. 42	.06		
2	0	0	.35	1.5	2.4	3.8	5.6	2.2	. 44	.06		
3	Õ	Ō	.35	1.5	2.2	3.3	5.8	1.4	, 43	.05		
4	Ŏ	Ô	.35	3.0	2.2	3.3	5.1	1.3	.31	.07		
5	Ö	.20	.35	6.0	1.9	2.8	6.5	.97	.32	.11		
6	0	. 40	3.0	5.5	1.8	3.3	6.5	.78	. 29	.06		
7	Ö	.40	3.0	5.0	1.9	5.1	5.3	.65	.40	.03		
8	Ö	.40	2.5	5.0	2.1	6.5	5.2	.58	,33	,03		
9	Ö	. 40	2.5	4.0	2.1	6.8	5.0	.50	.05	.05		
10	Ö	.40	2.5	4.0	2.1	6.2	4.3	. 58	.13	.07		
11	, 40	. 40	2.0	4.0	1.9	6.0	4.5	.71	.21	.07		
12	.40	.40	2.0	3.5	1.9	5.6	5.1	.71	.27	.04		
13	.35	.40	2.0	3.5	1.8	5,5	5.2	.63	,35	.03		
14	.35	.40	2.0	3.5	1.8	5,3	4.6	1.0	.33	.01		
15	.30	.40	1.5	3.0	2.7	6.3	4.9	.79	.18	0		
16	.30	. 40	1.5	3.0	2.4	6.4	4.6	. 56	. 24	.02		
17	.30	. 40	1.5	3.0	1.9	6.4	3.1	.66	. 18	.04		
18	.25		1.5		1.7	6.0	1.4	.71	.24	.06		
		.80		3.0								
19	.20	. 80	1.5	3.0	2.1	5.3	2.4	.75	.21	.07		
20	.15	. 70	2.0	3.0	2.2	5.5	5.3	.76	.21	.06		
21	.10	.70	2.0	2.8	1.9	5.7	5.0	.70	.24	.05		
22	.10	.65	1.5	2.7	1.7	6.5	3.4	. 65	, 16	.02		
23	, 10	.60	1.5	2.7	2.2	6,6	2.5	.63	. 15	0		
24	.05	. 55	1.5	2,2	2.9	6.0	2.1	. 54	, 22	0		
25	.05	. 50	1.5	2.1	3.2	7.8	1.6	. 54	.18	0		
26	0	. 45	1.5	2.3	3.8	8.7	1.9	. 52	. 13	0		
27	0	. 40	1.5	2.4	3.9	8.1	2.2	. 53	.13	0		
28	Ō	.40	1.5	2.3	3,8	7.6	1.9	.61	.16	0		
29	Ö	.35	1.5	2.4		7.4	2.2	. 53	.10	Ō		
30	Ŏ	,35	1,5	2,5		7.2	3.1	.49	,05	Ö		
31	ő		1.5	3.1		6.4		. 53		ŏ		
TOTAL	3,40	12.25	49.75	97.0	65.2	181,4 1	22.0	25.11	7.06	1.06	0	0
MEAN	.11	.41	1,60	3,13	2.33		4.07	.81	.24	.034	ŏ	ŏ
MAX	.40	.80	3.0	6.0	3.9	8.7	6.5	2.6	. 44	,11	ŏ	ŏ
MIN	.40	.00	.35	1.5	1.7	2.8	1.4	.49	.05	. 11	ő	ő
AC-FT	6.7	24	99	192	129	360	242	50	14	2.1	Ö	Ö
110 L.T	0.7	47	00	102	120	000	11 TH	50	T-4	2.1	•	•

WTR YR 1987 TOTAL 564.23 MEAN 1.55 MAX 8.7 MIN 0 AC-FT 1120

11042000 SAN LUIS REY RIVER AT OCEANSIDE, CA (National stream-quality accounting network station)

LOCATION.--Lat 33°13'05", long 117°22'34", in SE 1/4 SW 1/4 sec.13, T.11 S., R.5 W., San Diego County, Hydrologic Unit 18070303, on right bank 1.9 mi upstream from bridge on Interstate Highway 5, 2.4 mi upstream from mouth, and 1.9 mi northeast of Oceanside.

DRAINAGE AREA, -- 557 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --April 1912 to September 1914 (published as "near Oceanside"), January 1916, October 1929 to January 1942. October 1946 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. April 1912 to September 1914, nonrecording gage at site 0.4 mi downstream at different datum. January 1916, nonrecording gage 1.4 mi downstream at different datum. Prior to Oct. 1, 1978, at datum 10.00 ft lower. Prior to Nov. 9, 1981, at site 0.8 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Lake Henshaw, capacity, 194,300 acre-ft since 1923. Several diversions for irrigation and domestic use above station. AVERAGE DISCHARGE represents flow to ocean during period of record regardless of upstream development.

AVERAGE DISCHARGE.--55 years (water years 1913-14, 1930-41, 1947-87), 35.3 ft³/s, 25,570 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 95,600 ft³/s, Jan. 27, 1916, from hydrograph based on discharge measurements; no flow for several months in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 195 ft³/s, Jan. 8, gage height, 13.40 ft; minimum daily, 3.8 ft³/s, Sept. 20-22.

		DISCHA	RGE, IN	CUBIC FEET	PER SECON	ND, WATER AN VALUES	YEAR OCTO	OBER 1986	TO SEPTE	MBER 1987		
					PIEF	W AWTOED						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	23	17	26	36	40	53	39	22	17	9.9	5.7	6.0
2	22	17	26	36	41	51	36	22	16	9.5	5.4	5.6
3	21	18	25	36	41	48	35	22	15	9.9	5.4	5.0
4	21	17	25	42	41	46	42	21	15	10	5.2	4.8
5	20	16	24	79	41	45	39	20	16	10	5.3	4.7
6	20	17	37	93	40	50	37	19	16	11	5.2	4.7
7	19	16	81	145	39	53	35	19	16	10	5.3	4.7
8	19	16	77	146	39	53	34	19	16	11	6.5	4.7
9	19	17	62	95	37	51	33	19	16	11	6.5	4.7
10	29	18	55	79	36	48	31	19	16	9.4	6.4	4.7
11	29	18	50	71	37	48	31	19	16	9.4	6.1	4.6
12	29	17	48	65	36	47	31	20	16	9.4	5.8	4.4
13	27	17	47	62	36	46	30	20	14	9,4	5.7	4.5
14	25	17	46	59	43	46	29	20	14	9.1	5.9	4.6
15	24	17	45	56	41	51	29	20	14	9.4	5.6	5.0
16	23	17	43	55	38	54	28	20	13	9.4	5.4	4.4
17	23	21	42	53	35	52	27	20	13	11	5.4	4.2
18	23	86	41	53	35	49	26	20	13	11	5.4	4.2
19	23	83	41	50	34	48	26	19	12	10	5.4	3.9
20	23	63	51	48	34	47	26	19	13	10	5.2	3.8
21	23	51	49	48	35	49	25	19	13	10	4.4	3.8
22	22	44	44	48	35	58	23	18	13	9.0	4.3	3.8
23	21	39	41	47	35	58	23	17	12	7.6	4.0	4.0
24	20	35	41	46	48	56	22	17	12	6.6	4.5	4.0
25	20	33	41	45	60	55	21	18	11	6.9	5.0	4.0
26	22	30	40	44	66	53	21	18	11	7.5	5.1	4.0
27	21	29	40	42	63	50	22	18	11	8.0	5.3	4.0
28	20	28	39	41	55	48	21	17	11	7.5	5.8	4.1
29	19	27	37	40		45	21	17	11	7.7	6.0	4.3
30	19	27	36	41		43	21	17	10	7.3	6.0	4.6
31	17		36	41		41		17		6.6	6.0	
TOTAL	686	868	1336	1842	1161	1542	864	592	412	284.5	169.2	133.8
MEAN	22.1	28.9	43.1	59.4	41.5	49.7	28,8	19.1	13.7	9.18	5.46	4.46
MAX	29	86	81	146	66	58	42	22	17	11	6,5	6.0
MIN	17	16	24	36	34	41	21	17	10	6.6	4.0	3.8
AC-FT	1360	1720	2650	3650	2300	3060	1710	1170	817	564	336	265

CAL YR 1986 TOTAL 20703.6 MEAN 56.7 MAX 1360 MIN 6.8 AC-FT 41070 WTR YR 1987 TOTAL 9890.5 MEAN 27.1 MAX 146 MIN 3.8 AC-FT 19620

11042000 SAN LUIS REY RIVER AT OCEANSIDE, CA--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. --Water years 1969 to current year.
CHEMICAL DATA: Water years 1978 to current year.
BIOLOGICAL DATA: Water years 1978-81.
SPECIFIC CONDUCTANCE: Water years 1978 to current year.
WATER TEMPERATURE: Water years 1971 to current year.
SEDIMENT DATA: Water years 1969 to current year.

PERIOD OF DAILY RECORD.-SUSPENDED-SEDIMENT DISCHARGE: October 1968 to September 1978, December 1983 to September 1984.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, (,	PADO		, 10 22212	OVVCEN	COLT	CEDE	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
NOV	1130	31	2110	8,1	13.0	760	1,6	11 0	105	310	110	650
26 JAN								11.0			110	650
29 MAR	1330	42	2130	8.2	16.5	760	3.5	11.6	120	140		680
24 MAY	1200	57	2020	8.3	19,0	755	5.5	12.4	136	120	200	650
28 JUL	1100	17	2150	8.2	20.0	760	1,5	12.9	143	83	250	720
29 SEP	1100	7.7	2250	8.0	22,5	755		9,8	115	K49	370	680
29	1200	4.3	2560	8.0	22.0	760	0,90	9.5	110	87	270	700
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV 26	410	140	72	200	40	4	7.3	287	235	234	400	340
JAN 29	440	150	74	180	36	3	6.2	288	236	235	410	320
MAR				180								
24 MAY	420	140	72		37	3	6.1	279	229	229	370	310
28 JUL	510	160	77	190	36	3	6.9	255	209	209	450	360
29 SEP	510	150	75	210	40	4	8.3	213	175	176	420.	390
29	440	160	72	260	44	4	13	307	252	252	440	400
DATI	FLU RID DI SOL E (MG AS	E, DIS S- SOL VED (MG /L AS	- AT 1 VED DEG /L DI SOL	DUÉ SUM 80 CONS 6. C TUEN S- DI VED SOL	OF SOLI	DS, GE S- NITR VED DI NS SOL R (MG	CN, GE LITE NO2+ CS- DI LVED SOL C/L (MG	-NO3 GE S- AMMO VED TOT S/L (MG	NÍA DI AL SOL /L (MG	N, GEN, NIA MONI S- ORGA VED TOT /L (MG	AM- A + PHOR NIC PHOR AL TOTA /L (MG	US, AL /L
NOV 26	0	.40 2	4 1	.410 1	.300 1	.9 0.	020 1.	9 0.	070 0.	070 0	.50 0.	130
JAN 29	0	.40 2	6 1	370 1	300 1	.9 0.	020 2.	5 0.	060 0.	050 0	.80 0.:	110
MAR 24	. 0	.40 2	5 1	.340 1	200 1	.8 0.	040 1.					130
MAY 28		.40 1										050
JUL 29		.40 1										130
SEP 29		.40 1					010 1.					200

See footnotes at end of table.

11042000 SAN LUIS REY RIVER AT OCEANSIDE, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
NOV											
26	0.100	0.100	<10	1	100	<10	<1	<1	<1	<1	10
JAN 29	0.090	0.090									
MAR 24	0.090	0.080	<10	<1	81	<0.5	8	1	<1	1	7
MAY 28	0,030	0.030	<10	1	200	<10	<1	<1	<1	2	20
JUL 29	0.100	0.090									
SEP 29	0.170	0.140	<10	2	100	<10	1	<1	4	2	20
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
NOV	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
NOV 26 JAN	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
NOV 26	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
NOV 26 JAN 29 MAR 24	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
NOV 26 JAN 29 MAR 24 MAY 28	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
NOV 26 JAN 29 MAR 24 MAY	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI) 10 16	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG) <0.1	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG) <1	TIUM, DIS- SOLVED (UG/L AS SR) 720 640	DIUM, DIS- SOLVED (UC/L AS V)	DIS- SOLVED (UG/L AS ZN) <10

K Results based on colony count outside the acceptable range (non-ideal colony count). < Actual value is known to be less than the value shown.

CROSS-SECTIONAL DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	SEDI- MENT, SUS- PENDED (MG/L)	SED. SUSP. SIEVE DIAM. 7 FINER THAN .062 MM
MAR										
24	1420	10,0	1990	8.4	20.0	760	11.7	130	106	48
24	1425	42.0	2000	8.4	20.0	760	11.7	130	117	46
24	1430	96.0	1990	8.4	20.0	760	11.8	131	90	65
24	1435	160	1980	8.4	20.0	760	11.7	130	158	67
24,	1440	170	1990	8.4	20.0	760	11.7	130	55	60
SEP										
29	1530	2.00	2560	8.0	22.5	755	9.9	116	17	66
29	1535	4.00	2560	8.0	22.5	755	9.8	115	11	69
29	1540	6.00	2570	8.0	22,5	755	9.8	115	26	61

^{*} Instantaneous streamflow at the time of cross-sectional measurements: Mar. 24, 57 ${\rm ft}^3/{\rm s}$; Sept. 29, 4.3 ${\rm ft}^3/{\rm s}$.

11042000 SAN LUIS REY RIVER AT OCEANSIDE, CA--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT						
07	1400	19	21.0	2	0.10	
NOV	1400	10	21.0	-	0.10	
04	1100	17	16.0	10	0.46	
26	1130	31	13.0	9	0.75	54
DEC			•			
02,	1230	26	15.5	15	1.1	
JAN						
05	1000	70	13.5	26	4.9	
07	1200	139	14.0	95	36	
29	1330	42	16.5	31	3.5	70
FEB						
02	1030	41	16.0	35	3.9	
MAR	•					
02	1115	49	16.0	22	2.9	
24	1200	57	19.0	74	11	67
24	1428	57	20.0	105	16	57
APR						
06	1315	36	21.0	33	3.2	
16	1015	27	20,0	39	2.8	
MAY	4400					
04	1130	21	22.0	11	0.62	
28	1100	17	20.0	20	0.92	42
JUN	1115	1.5	00.5	0.4	0.07	
04 30	1115 1200	15 10	23.5 23.0	24 26	0.97 0.70	
JUL	1200	10	23.0	20	0.70	
29	1100	7.7	22,5	13	0.27	41
AUG	1100	/./	22.5	10	0.27	41
03	1150	5,2	24.0	. 12	0.17	
SEP	1100	5.2	24,0	12	3.17	
08	1045	4.5	20.0	10	0.12	
29	1200	4.3	22.0	15	0.17	66
29	1534	4.3	22.5	18	0.21	65
			20,0		,,	

PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	TEMPER- ATURE WATER (DEG C)	NUMBER OF SAM- PLING POINTS (COUNT)	STREAM- FLOW, INSTAN- TANEOUS (CFS)	BED MAT. SIEVE DIAM. Z FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN .250 MM
FEB							
02	1050	16.0	5	41	5	9	26
APR 16	1000	20.0	4	27	5	12	34
10	1000	20,0	••	2/	,	12	34
DATE	BED MAT. SIEVE DIAM. % FINER THAN .500 MM	BED MAT. SIEVE DIAM. Z FINER THAN 1.00 MM	BED MAT. SIEVE DIAM. Z FINER THAN 2.00 MM	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM	BED MAT. SIEVE DIAM. X FINER THAN 8.00 MM	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM
FEB 02	57	73	81	87	93	97	100
APR	٠, د	/3	01	67	93	57	100
16	62	71	77	85	91	96	100

11042400 TEMECULA CREEK NEAR AGUANGA, CA

LOCATION.--Lat 33°27'33", long 116°55'22", in SW 1/4 SW 1/4 sec.19, T.8 S., R.1 E., Riverside County, Hydrologic Unit 18070302, on right bank 1.6 mi downstream from Long Canyon and 3.5 mi northwest of Aguanga.

DRAINAGE AREA. -- 131 mi².

PERIOD OF RECORD. -- August 1957 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 1,590 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. No regulation upstream from station. Pumping upstream from staton for irrigation of less than 1,000 acres.

AVERAGE DISCHARGE. -- 30 years, 7.09 ft 3/s, 5,140 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 3,540 ft³/s, Apr. 3, 1958, gage height, 6.57 ft, from rating curve extended above 1,200 ft³/s; maximum gage height, 12.0 ft, from floodmarks, Feb. 21, 1980; no flow at times in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 7	1500	*15	*1.52				

Minimum daily, 0.57 ft³/s, Aug. 4.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEAR AN VALUES	OCTOBER	1986	IO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	2.0 2.1	2.9 2.8	2,5 2,5	2.9 3.1	3.3 3.4	4.6 4.7	4.6 4.3	3.0 2.8	1.5 1.4	.97 1.0	,58 ,61	. 84 . 87
3 4 5	2.0 2.0 1.9	2.7 2.6 2.6	2.7 2.8 2.7	3.0 3.6 11	3.4 3.4 3.3	4.7 4.9 5.3	4.6 5.2 4.7	2.7 2.3 2.1	1.3 1.3 1.8	.91 .89 .88	. 58 . 57 . 60	.90 .90 .88
6 7	1.9 1.8	2.7 2.8	3.7 5.0	7.2 12	3.3 3.2	8.5 11	4.5 4.3	2.0	2.0 1.7	.90	.68 .70	. 80 . 83
8 9 10	1.9 2.4 2.5	2.9 2.9 2.5	4.4 4.1 3.7	8.7 6.4 5.5	3.2 3.2 3.5	7.3 5.7 5.4	4.1 3.9 3.7	2.1 2.0 2.0	1.6 2.0 1.8	.95 1.0 1.1	.69 .76 .77	.83 .79
11 12	2.3 2.2	2.5 2.5 2,5	2.8	4.8 4.1	3.8 3.9	5.2 4.9	3.5	2.0	1.7	.99	.77	. 92
13 14 15	2.1 2.1 2.1	2.6 2.6 2.8	2.9 2.8 2.9	4.1 4.0 3.9	3.4 3.3 3.3	4.9 4.7 4.6 6.3	3.5 3.2 3.0 2.9	1.8 1.7 1.8	1.6 1.4 1.2 1.1	.91 .85 .80 .82	.79 .96 1.4 1.3	1.0 1.3 1.3 1.1
16 17	2.1 2.2	2.8 2.8	2.8	3.8 3.6	3.3 3.2	5.6 5.6	2.7	1.8	1.1	.88 .92	1.3	1.2 1.3
18 19 20	2.2 2.3 2.4	4.7 3.3 2.9	3.1 3.1 3.3	3.8 3.7 3.6	3.3 3.2 3.3	5.5 4.7 4.7	3.7 3.2 2.8	1.8 1.8 2.4	.97 .96 1.0	.92 .88	1.3 1.6 1.5	1.1 1.0 1.1
21 22 23	2.4 2.4 2.5	2.8 2.7 2.5	3,2 3,1 3,3	3,9 3,9 3,5	3.2 3.3 3.9	5.1 10 7.5	2.7 2.9 2.7	2.5 2.1 1.9	1.0 1.1 1.6	.91 .89 .88	1.2 1.1 .89	1.1 1.2 1.5
24 25	2.6 2.6	2.5 2.7	3.3 3.2	3.4 3.4	7.3 7.4	7.2 7.0	2.6 2.6	2.0 2.1	1.3 .89	.81 .82	.76 .88	2.5 1.2
26 27 28 29 30 31	2.6 2.7 2.8 2.7 2.9	3.1 3.0 2.7 2.7 2.5	2.8 2.8 2.9 3.0 3.0	3.2 3.3 3.4 3.5 3.6 3.5	6.2 5.2 4.7 	6.3 5.9 5.4 5.2 5.0 4.9	2.9 3.1 3.1 3.5 3.2	2.1 2.2 2.2 2.1 1.9 1.7	.86 .87 .85 .91 .98	.94 .87 .70 .65 .61	.87 .85 .86 .84 .82	1.1 1.2 1.2 1.3 1.6
TOTAL MEAN MAX MIN AC-FT	71.3 2.30 2.9 1.8 141	84.1 2.80 4.7 2.5 167	97.1 3.13 5.0 2.5 193	141.4 4.56 12 2.9 280	108.4 3.87 7.4 3.2 215		04.5 3.48 5.2 2.6 207	64.6 2.08 3.0 1.7 128	38.79 1.29 2.0 .85 77	27.07 .87 1.1 .60 54	28.52 .92 1.6 .57	33.67 1.12 2.5 .79 67

CAL YR 1986 TOTAL 2673.10 MEAN 7.32 MAX 457 MIN 1.2 AC-FT 5300 WTR YR 1987 TOTAL 982.85 MEAN 2.69 MAX 12 MIN .57 AC-FT 1950

11043000 MURRIETA CREEK AT TEMECULA, CA

LOCATION.--Lat 33°28'47", long 117°08'35", in Temecula Grant, Riverside County, Hydrologic Unit 18070302, on right bank 0.4 mi upstream from confluence with Temecula Creek, 1.0 mi south of Temecula, and 12 mi downstream from Skinner Reservoir on Tucalota Creek.

DRAINAGE AREA. -- 222 mi².

PERIOD OF RECORD. -- October 1924 to current year. Prior to September 1930 monthly discharges only, published in WSP 1315-B.

GAGE.--Water-stage recorder. Concrete control since Aug. 30, 1981. Elevation of gage is 970 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1735 for history of changes prior to Dec. 16, 1938.

REMARKS.--No estimated daily discharges. Records fair except those for Apr. 24 to Sept. 30, which are poor. Flow partly regulated since 1974 by Skinner Reservoir. Pumping above station for irrigation of about 2,500 acres. Rancho California Water District can discharge into creek, approximately 0.10 mi upstream, to supplement low flow.

AVERAGE DISCHARGE. -- 63 years, 11.0 ft3/s, 8,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 21,800 ft³/s, Feb. 21, 1980, gage height, 13.70 ft, on basis of slope-area measurement of peak flow; minimum daily, 0.02 ft³/s at times in 1969, no flow Dec. 11, 1976 (upstream channel work).

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	2330	*113	*3.42				

Minimum daily, 0.03 ft³/s, Oct. 13, Nov. 8-16, Aug. 20.

		DISCHARGE,	IN CUB	IC FEET		, WATER EAN VALU	YEAR OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN		MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.7	,06	. 10	.10	.15	.35	.19	.37	. 93	2.0	.74	. 57
2	3.7	.05	.10	.14	.18	.26	.19	.32	. 82	1.0	.65	. 56
3 4	.19	. 05	.10	.10	.17	. 24	. 86	.49	.77	. 94	.62	. 56
	.13	.04	.10	13	.15	.20	2.6	.80	.75	. 92	. 46	.61
5	.11	.09	.11	43	.14	.23	.65	1.1	. 77	. 92	.45	. 54
6	.13	.32	.46	3.6	.13	5.6	.35	1.2	.85	1.0	.37	.91
7	1,6	.07	2.3	24	.16	3,8	.26	1.4	. 84	1.1	. 22	1.3
8	4.1	.03	.33	2.8	.17	.70	.22	1.4	.85	1.1	.21	1.3
9	4.5	.03	. 17	.97	.18	. 43	.21	1.2	. 85	1.2	. 19	1.3
10	2.7	.03	. 14	. 50	.18	.35	.20	1.2	. 92	1.2	. 44	1.3
11	.08	.03	. 12	.35	.18	.28	.22	1.3	1.0	1.2	. 63	1.0
12	.05	,03	.12	.27	.17	.25	.20	1.5	1.1	1.2	. 64	.21
13	.03	, 03	.12	.23	.17	. 22	.17	1.5	1.5	1.2	.64	1.2
14	.04	.03	.12	.22		, 22	.57	1.5	1.1	1.2	, 53	1,1
15	.05	.03	. 11	.22	.18	1.2	3.0	1.4	. 84	1.2	. 53	.78
16	. 07	.03	. 11	.19	.14	.73	.71	1.3	. 98	1.2	. 58	.11
17	2.3	. 45	.11	.19	.16	.39	.34	1.5	. 82	1.2	.54	.58
18	4.1	33	.09	.20		.28	.24	1.6	.76	1.2	.19	1.1
19	4.3	3.3	.11	. 54	.15	.24	,22	1.3	. 84	1.1	.08	1.1
20	4.3	,35	. 43	.43	.14	.21	.18	1.1	.75	1.1	,03	1.1
21	4.3	.19	, 12	.26	.16	1.6	.16	1.1	.75	1.1	.28	1.2
22	4.4	.14	. 10	.22		3.4	4.3	1.2	.75	1.0	.59	1.2
23	4.3	.12	.23	.21		.60	.53	1.1	.81	1.1	.58	1.2
24	4.5	.09	.11	,19	1.8	.53	.24	1.1	.86	1.1	.60	1.2
25	4.5	.09	.09	.17	16	2.5	.18	1.1	. 92	1.0	. 56	1.2
26	4.6	.09	. 10	.18	4.5	4.6	.20	1.1	1.0	. 92	, 56	1.2
27	4.5	.10	.11	.18	.98	4.5	.20	1.0	.94	.94	.58	1.3
28	4.5	.09	.10	.18	.50	4.5	.20	.93	.98	.92	.58	1.3
29	4.7	,12	.10	.18		4.5	.27	.79	.99	.95	.60	1.3
30	2.2	.09	.10	.18		4.6	.36	.77	2.1	.90	.57	1.3
31	.07		.10	.16		1.8		.83		.84	. 56	
TOTAL	79,75	39,17	6.61	93,16	27.60	49.31	18.22	34.50	28.14	33.95	14.80	29.63
MEAN	2,57	1.31	.21	3.01	.99	1.59	.61	1,11	.94	1,10	.48	.99
MAX	4.7	33	2.3	43	16	5.6	4.3	1.6	2.1	2.0	.74	1.3
MIN	,03	.03	.09	,10	,13	.20	.16	.32	.75	.84	.03	,11
AC-FT	158	78	13	185	55	98	36	68	56	67	29	59
	200	, 0		100	55	50	00		50	٠,	20	20

CAL YR 1986 TOTAL 1220.81 MEAN 3.34 MAX 243 MIN .03 AC-FT 2420 WTR YR 1987 TOTAL 454.84 MEAN 1.25 MAX 43 MIN .03 AC-FT 902

11044000 SANTA MARGARITA RIVER NEAR TEMECULA. CA

LOCATION.--Lat 33°28'26", long 117°08'29", in Temecula Grant, Riverside County, Hydrologic Unit 18070302, on left bank at upper end of Temecula Canyon, 0.1 mi downstream from confluence of Murrieta and Temecula Creeks, 1.4 mi south of Temecula, 10 mi downstream from Vail Dam, and about 12 mi downstream from Skinner Reservoir.

DRAINAGE AREA. -- 588 mi².

PERIOD OF RECORD. -- January 1923 to current year. Prior to October 1952, published as Temecula Creek at Railroad Canyon, near Temecula.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Nov. 3, 1966; buried by sand Nov. 19, 1985, to Sept. 30, 1987, and was ineffective as a low-water control. Elevation of gage is 950 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 3, 1966, at site 100 ft downstream at same datum.

REMARKS.--No estimated daily discharges. Records fair. Flow partly regulated since November 1948 by Vail Dam (station 11042510) on Temecula Creek, and since 1974 by Skinner Reservoir on Tucalota Creek which is tributary to Murrieta Creek. Rancho California Water District can discharge into Murrieta Creek, approximately 0.6 mi upstream, to supplement low flow.

AVERAGE DISCHARGE.--25 years (water years 1924-48), unregulated, 28.2 ft³/s, 20,420 acre-ft/yr; 39 years (water years 1949-87), 15.3 ft³/s, 11,080 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 25,000 ft³/s, Feb. 16, 1927, gage height, 14.6 ft, at site then in use, from rating curve extended above 10,000 ft³/s; minimum daily, 0.30 ft³/s, Aug. 18-22, 1965 (during period of upstream construction).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 270 ft³/s, Jan. 4, gage height, 4.94 ft, from rating curve extended above 42 ft³/s; minimum daily, 0.41 ft³/s, Aug. 8.

MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.0	. 63	.76	.72	1.1	1.4	. 84	.77	1,6	3.4	1.1	1.6
2	5.5	.71	.76	.82	1.1	1.3	.84	.80	1.5	1.5	1.1	1.4
3	1.0	. 98	.76	.70	1.0	1.1	2.1	.89	1.4	1.2	1.2	1.6
4	.71	.96	.76	26	1.0	. 92	3.5	1,1	1.4	.96	. 96	.95
5	.64	. 96	.76	57	1.0	. 92	1.6	1.9	1.3	1.0	1.2	.85
6	.65	1.1	1.8	8.2	1.0	9,9	1.0	1.6	1.3	.88	.75	.96
7	2.0	1.2	2.8	46	1.1	9.2	.97	1.6	1.3	. 90	. 75	1.2
7	5.5	1.2	1.1	4.6	1.1	3.5	1.1	1.6	1.2	.81	. 41	1.2
9	6.7	1.2	. 93	4.6	1.1	3,0	.94	1,5	1.2	.78	. 43	1.3
10	6.0	1.2	. 84	2.3	1.1	2.7	.92	1.5	1.2	.84	.84	1.2
11	.88	1,2	.78	1.5	.90	2.6	. 92	1.4	1,2	1.1	1.6	1.2
12	.72	1.2	.76	.69	.80	2.5	. 97	1.4	1.1	1.2	1.5	. 87
13	.72	1.3	.72	.79	.90	2.5	1.1	1,5	1,5	.81	1.5	1.4
14	.64	1.4	.69	.79	. 90	2.4	1.1	1.5	2.1	.86	1.2	1.4
15	.66	1.4	.76	.79	1.0	4.2	2.7	1.5	1.1	. 90	. 95	1.1
16	.69	1.4	.65	.79	1.1	3.0	1.5	1,6	1.5	.96	.98	1.0
17	2.0	1.6	, 69	.79	1.1	2.6	1.4	1.5	1.3	1.1	. 87	.98
18	4.2	46	.77	.79	1.1	2.4	1.4	1.5	1.4	1.3	1.1	1.4
19	4.1	4.8	. 84	1.0	1.1	2.4	1.3	1,5	1.3	1.1	.64	1.4
20	4.5	1.5	1.2	1.0	1.2	2.3	1.4	1.5	1.3	1.1	. 53	1.5
21	4.3	1.3	.86	1.0	1.3	5,1	1.5	1.6	1.1	1.1	.74	1.5
22	4.7	1.3	.77	1.0	1.4	6.6	3.8	1.7	1.3	. 99	1.4	1.5
23	4.6	1.1	. 95	1.0	1.4	2.3	1.2	1.6	1.2	1.1	1.4	1.5
24	4.7	1.1	. 84	1.0	2.3	2.1	. 84	1.8	1.2	1.1	1.5	1.8
25	5.0	1.0	. 84	.90	21	4.0	1.0	1.6	1.3	1.2	1.4	1.6
26	5.5	1.0	.81	.90	7.9	5.8	.76	1.6	1.3	1.2	1.4	1.4
27	4.8	. 93	. 84	. 90	1.9	5.1	.62	1.7	1.3	1.2	1.5	1.4
28	5.6	. 93	.84	1.0	1.4	4.9	.74	1.7	1.3	1.2	1.6	1.5
29	5.6	. 94	. 84	1.1		4.8	. 77	1.8	1.3	1.2	1.6	1.6
30	5.6	.81	.74	1.1		4.6	,69	1.8	2.9	1.3	1.5	1.6
31	. 95		.76	1.1		2.6		1.7		1.3	1.6	
TOTAL	104.16	82.35	28.22	170,87	59.30	108.74	39.52	46.76	41.4	35.59	35.25	39.91
MEAN	3.36	2.75	.91	5.51	2.12	3.51	1.32	1.51	1.38	1.15	1.14	1.33
MAX	6.7	46	2.8	57	21.	9.9	3.8	1.9	2.9	3.4	1.6	1.8
MIN	.64	. 63	.65	.69	.80	. 92	. 62	.77	1.1	.78	.41	.85
AC-FT	207	163	56	339	118	216	78	93	82	71	70	79

MIN .59

MIN ,41

AC-FT 4870

AC-FT 1570

MEAN 6,73

MEAN 2.17

MAX 511

MAX 57

CAL YR 1986 TOTAL 2456.84

792,07

WTR YR 1987 TOTAL

11046000 SANTA MARGARITA RIVER AT YSIDORA, CA

LOCATION.--Lat 33°18'40", long 117°20'47", in NW 1/4 NW 1/4 sec.18, T.10 S., R.4 W., San Diego County, Hydrologic Unit 18070302, on Camp Joseph H. Pendleton Naval Reservation, on right bank upstream end of Basilone Road Bridge, 7.9 mi upstream from mouth, and 5.2 mi upstream from Ysidora.

DRAINAGE AREA. -- 723 mi² (revised).

PERIOD OF RECORD.--February 1923 to current year. Low-flow records not equivalent prior to Dec. 10, 1980, due to installation of conservation pends above downstream site.

GAGE.--Water-stage recorder. Elevation of gage is 75 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1735 for history of changes prior to Nov. 27, 1935. Nov. 27, 1935, to Feb. 25, 1970, at site 5.4 mi downstream at different datum. Feb. 25, 1970, to Dec. 10, 1980, at site 6.2 mi downstream, at different datum.

REMARKS. -- No estimated daily discharges. Records poor. Flow partly regulated by Vail Lake (station 11042510) since November 1948. Diversions for irrigation on Rancho California (formerly Santa Margarita Ranch and Pauba Ranch).

AVERAGE DISCHARGE. -- 64 years, 34.6 ft 3/s, 25,070 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 33,600 ft 3/s, Feb. 16, 1927, gage height, 18.00 ft, site and datum then in use, on basis of slope-area measurement of peak flow; maximum gage height, 18.80 ft, Feb. 18, 1980, site and datum then in use, possibly affected by tide; no flow for all or part of most years.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR, -- Maximum discharge, 243 ft 3/s Jan, 5, gage height, 5,38 ft; no flow many days.

		DISCHARG	E, IN CUB.	IC FEET P		EAN VALUE	EAR OCTOB	EK 1986 I	O SEPTEMBE	r 1887		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.2	7.8	22	12	13	10	2.0	5.1	1.2			
2	7.4	7.8	22	12	13	8.2	2.1	4.3	. 92			
3	7.5	8.0	21	12	13	7.0	2.5	3.4	.62			
4	7.4	8.6	21	12	13	6.3	2.8	3.9	.33			
5	6.8	14	20	107	13	5.2	2.7	2.5	.11			
6	6.1	15	20	84	13	5.3	3.8	2.1	0			
7	5.6	13	20	76	13	6.0	3.4	1.5	0			
8	5.5	11	26	74	13	8.2	3.5	1.2	0			
9	5.5	10	36	29	13	4.8	4.0	1.1	0			
10	7.6	10	27	18	13	3.8	5.2	1.4	0			
11	11	10	21	17	12	3.1	5.9	1.6	0			
12	9.3	11	18	16	12	3.0	6.2	1.4	0			
13	6.8	11	16	16	12	2.6	6.2	1.1	0			
14	5.8	12	15	16	12	2.3	4.8	1.0	0			
15	5.2	13	15	16	12	3.3	4.3	1.0	0			
16	5.0	14	14	16	12	2.9	4.4	1.2	0			
17	5.0	16	14	18	12	2.9	4.5	1.4	0			
18	5.0	17	14	20	12	2.7	4.4	1.5	0			
19	5.0	49	14	22	11	2.3	5.4	2.0	0			
20	5.0	28	15	18	10	1.9	5.4	2.0	0			
21	4.8	25	17	16	11	2.2	3.6	1.8	0			
22	4.6	23	15	16	11	3.6	2,9	1.6	0			
23	5.1	24	14	15	10	4.3	2,6	1.5	0			
24	6.0	22	14	15	11	2.8	3,2	1.6	0			
25	6.8	22	14	15	. 22	2.3	3.7	1.5	0			
26	7.3	21	13	15	114	2.0	5.5	1.3	0			
27	7.2	22	13	14	67	1.8	6.8	1.2	. 0			
28	7.4	22	13	14	18	1.8	5.6	3.0	0			
29	7.6	22	12	14		2.2	5.3	1.4	0			
30	7.6	22	12	14		2.2	5.5	1.4	0			
31	7.9		12	14		2.3		1.1				
TOTAL	202,0	511,2	540	773	511	119.3	128.2	58,1	3.18	0	0	0
MEAN	6.52	17.0	17.4	24.9	18.3	3.85	4.27	1.87	. 11	0	0	0
MAX	11	49	36	107	114	10	6,8	5.1	1.2	0	0	0
MIN	4.6	7.8	12	12	10	1.8	2.0	1.0	0	0	0	0
AC-FT	401	1010	1070	1530	1010	237	254	115	6.3	0	0	0

CAL YR 1986 TOTAL 11593.58 MEAN 31.8 MAX 1250 MIN 0 AC-FT 23000 WTR YR 1987 TOTAL 2845.98 MEAN 7.80 MAX 114 MIN 0 AC-FT 5640

SAN JUAN CREEK BASIN

11046530 SAN JUAN CREEK AT LA NOVIA STREET BRIDGE, AT SAN JUAN CAPISTRANO, CA

LOCATION.--Lat 33°30'08", long 117°38'50", in NW 1/4 SE 1/4 sec.6, T.8 S., R.8 W., Orange County, Hydrologic Unit 18070301, on right bank 20 ft downstream from La Novia Street bridge, 1.3 mi upstream from Arroyo Trabuco Creek, and 0.8 mi east of San Juan Capistrano.

DRAINAGE AREA, -- 109 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, --October 1985 to current year. October 1985 to September 1986, published as 11046550 San Juan Creek at San Juan Capistrano.

GAGE. -- Water-stage recorder. Elevation of gage is 100 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 29 to Jan. 4. Records fair. No regulation above station.

Capistrano Water Co. diverts 2.0 mi upstream. Various amounts of diverted water reach station as irrigation return flow and rising ground water.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 680 ft³/s, Apr. 6, 1986, gage height, 12.30 ft; maximum gage height, 12.68 ft, Jan. 4, 1987; no flow many days most years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Feb. 25, 1969, reached a discharge of 22,400 ft 3/s, at site 1.9 mi upstream.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 162 ft 3/s, Jan. 4, gage height, 12.68 ft; no flow many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MEAN VALUES

					TY.	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			0	1.0	1.7	3.2	1,2					
2			Ö	1.1	1.9	2.1	.60					
3			Ö	1.3	1.2	1.8	1.8					
3 4			Ō	15	1.3	.89	1.2					
5			Ö	27	1.4	.77	,63					
6			0	10	2.5	2.8	. 87					
7 8			12	15	2.1	3.1	1.5					
8			1.6	6.8	1.0	1.2	2.4					
9			.39	5,9	. 67	.77	1.1					
10			.32	5.3	2.4	.61	1.0					
11			.37	5.4	2.0	.80	.77					
12			.25	4.8	1,6	.64	.71					
13			.15	5.0	3,1	.58	.79					
14			.16	5.4	5.0	.47	.46					
15			.17	5.1	3.8	. 93	.38					
16			.10	4.6	3.2	.93	.27					
17			.10	4.0	3.0	,94	.26					
18			.13	4.7	2.9	.60	.33					
19			.28	4.2	2.9	.46	.38					
20			1.1	3.9	2.3	.34	.34					
21			1.7	3.9	1.6	3.7	, 37					
22			.65	4.1	2.1	6.1	.36					
23			.81	3.9	2.8	4.2	.11					
24			1.9	3.9	4.3	4.3	. 14					
25			2.8	3.3	8.0	4.1	.13					
26			2,5	3.5	4.8	3.2	0					
27			2.0	3,1	3.6	2.3	Ö					
28			1.0	2.1	3.3	1.6	ŏ					
29			1.0	1.8		1.1	ŏ					
30			1.0	2.1		1.6	ŏ					
31			1.0	1.5		1.6						
· ·			2.0	1.5		2.0						
TOTAL	0	0	33.48	168.7	76.47	57.73	18.10	0	0	0	0	0
MEAN	0	0	1.08	5.44	2.73	1.86	.60	Ō	Ō	Ö	ō	Ō
MAX	0	0	12	27	8.0	6.1	2.4	Ö	Ō	Ŏ	ō	Ŏ
MIN	0	0	0	1.0	. 67	.34	0	Ō	Ō	Ō	ō	Ō
AC-FT	0	0	66	335	152	115	36	ō	Ö	ŏ	ŏ	ō
					_			-	-	-	-	-

CAL YR 1986 TOTAL 2478.84 MEAN 6.79 MAX 359 MIN 0 AC-FT 4920 WTR YR 1987 TOTAL 354.48 MEAN .97 MAX 27 MIN 0 AC-FT 703

SAN JUAN CREEK BASIN

11046530 SAN JUAN CREEK AT LA NOVIA STREET BRIDGE, AT SAN JUAN CAPISTRANO, CA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971 to current year (prior to water year 1987 published as 11046550 San Juan Creek at San Juan Capistrano).

WATER TEMPERATURE: Water years 1971 to current year. SEDIMENT DATA: Water years 1971 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: October 1970 to current year.
SUSPENDED-SEDIMENT DISCHARGE: October 1970 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SEDIMENT CONCENTRATION: Maximum daily mean, 22,000 mg/L, Feb. 18, 1980; minimum daily mean, no flow at times in most years.

SEDIMENT LOAD: Maximum daily, 331,000 tons, Mar. 4, 1978; minimum daily, 0 ton many days during most years.

EXTREMES FOR CURRENT YEAR. --

SEDIMENT CONCENTRATION: Maximum daily mean, 798 mg/L, Jan. 5; minimum daily mean, no flow for many days. SEDIMENT LOAD: Maximum daily, 99 tons, Jan. 5; minimum daily, 0 ton many days.

REVISIONS .-- Suspended-sediment discharge for the 1986 water year has been revised as follows:

	SUSPENDED- SEDIMENT DISCHARGE		SUSPENDED- SEDIMENT DISCHARGE
DATE	(TONS/DAY)	DATE	(TONS/DAY)
NOV		FEB	
29	52	15	2,280
30	14	19	2.4
JAN		MAR	
30	0.50	80	12
31	8.1	10	106
FEB		11	68
01	1.8	12	39
07	0.67	15	45
08	1.1	16	433
13	5.0	17	162
14	75	APR	
		06	660

SUMMARY OF WATER AND SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

MONTH	WATER DISCHARGE	SUSPENDED SEDIMENT DISCHARGE	BEDLOAD DISCHARGE	TOTAL SEDIMENT DISCHARGE
	CFS-DAYS	TONS	TONS	TONS
OCTOBER 1985	6,35	1.19	0	1
NOVEMBER	117.82	67.85	20	88
DECEMBER	103,77	5,24	0	5
JANUARY 1986	114,20	9.87	2	12
FEBRUARY	805.80	2454.31	439	2890
MARCH	1205.38	976.09	420	1400
APRIL	301.62	687.12	88	775
MAY	18.36	0.18	0	0
JUNE	0.00	0.00	0	0
JULY	0.00	0.00	0	0
AUGUST	0.00	0.00	0	0
SEPTEMBER	0.00	0.00	0	0
TOTAL	2673.30	4201.85	969	5170

SAN JUAN CREEK BASIN

11046530 SAN JUAN CREEK AT LA NOVIA STREET BRIDGE, AT SAN JUAN CAPISTRANO, CA--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 ONCE-DAILY

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					16.0		21.5					
2					16.5		21.0					
3					17.5		21.5					
,				13.5	17.5		21.5					
2 3 4 5				13.5	16.5		20,0					
,				10,5	10,5		20.0					
6				13,5	17,5	16.0	22.5					
6 7			15,5	14,0	17,0	18.0						
8			15.5	13.0	17.5	17.5						
9			14.5	13.0	16,0	18,5						
10			15.0	14.0	16.5	19.0						
11			15,5	13.5		19.5						
12			15.5	14.0	18.5	18,0						
13			16.0	14.0	19.0	17.5						
14			16,5	14.0	17.0							
15			17.5	10.5	17.5	15.5						
16			17.5	9.5	18.5	20,0						
17			17.0	13.5		17.5						
18			16.5	14.0	15.5	17.0						
19			15.5	14.0	15.0	19.0						
20			15.5	13,0	16.0	18.5						
				,-								
21			16.0	13,0	15.5	14.5						
22			13.0	14.0		18.0						
23			15.5	13.5	14.0	19.5						
24			15.0	14.0	14.0	20,0						
25				14.0	9.0	19.5						
26				13.5	14.0	20.0						
27			14.5	12.5	16.0	18.0						
28			15.5	18.0	15.0	21.0						
29			13.0	16,5		21.0						
30			14.5	14.5		20.5						
31			13.5	13,5		21.0						

SAN JUAN CREEK BASIN

11046530 SAN JUAN CREEK AT LA NOVIA STREET BRIDGE, AT SAN JUAN CAPISTRANO, CA--Continued SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) OCTOBER	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCENTRATION (MG/L) NOVEMBER	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCENTRATION (MG/L) DECEMBER	SEDIMENT DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9							.00 .00 .00 .00 .00 .00 12 1.6 .39 .32	0 0 0 0 0 0 653 87 6 4	.00 .00 .00 .00 .00 .00 68 .38 .01
11 12 13 14 15 16 17 18 19 20							.37 .25 .15 .16 .17 .10 .10 .13 .28	2 3 3 5 2 6 4 6 4	.00 .00 .00 .00 .00 .00 .00 .00
21 22 23 24 25 26 27 28 29 30 31						ı	1.7 .65. .81 1.9 2.8 2.5 2.0 1.0 1.0	4 3 2 4 6 8 2 2 3	.02 .01 .00 .01 .03 .04 .04 .01
TOTAL	0.00		0.00	0.00		0.00	33,48		68,59
		JANUARY		-	FEBRUARY			MARCH	
1 2 3 4 5 6 7 8 9	1.0 1.1 1.3 15 27 10 15 6.8 5.9 5.3	4 5 5 644 798 165 164 195 23 10	.01 .02 80 99 7.7 7.2 3.6 .37 .14	1.7 1.9 1.2 1.3 1.4 2.5 2.1 1.0 .67 2.4	2 2 3 2 2 2 4 3 20	.01 .01 .01 .01 .01 .01 .01 .01	3.2 2.1 1.8 .89 .77 2.8 3.1 1.2 .77	6 6 6 6 10 11 6 6	.05 .03 .03 .01 .01 .08 .09 .02 .01
11 12 13 14 15 16 17 18 19 20	5.4 4.8 5.0 5.4 5.1 4.6 4.0 4.7 4.2 3.9	8 8 8 6 8 6 6 6	.12 .10 .11 .12 .08 .10 .06 .08	2.0 1.6 3.1 5.0 3.8 3.2 3.0 2.9 2.9 2.8	3 2 23 11 9 10 6 4 4	.02 .01 .49 .15 .09 .09 .05 .03	.80 .64 .58 .47 .93 .93 .94 .60 .46	4 5 3 4 6 6 2 4 6 12	.01 .00 .01 .02 .02 .01 .01
21 22 23 24 25 26 27 28 29 30 31	3.9 4.1 3.9 3.9 3.3 3.5 3.1 2.1 1.8 2.1	6 18 24 8 2 2 2 2 3 5 6 5	.06 .20 .25 .08 .02 .02 .02 .02 .02 .03	1.6 2.1 2.8 4.3 8.0 4.8 3.6 3.3	8 8 30 84 30 8 8 	.03 .05 .06 .46 2.5 .39 .08	3.7 6.1 4.2 4.3 4.1 3.2 2.3 1.6 1.1 1.6	78 35 6 6 6 6 5 3 2 2	2.1 .58 .07 .07 .07 .05 .04 .02 .01
TOTAL	168.7		199,67	76.47		4.92	57.73		3.48

SAN JUAN CREEK BASIN

11046530 SAN JUAN CREEK AT LA NOVIA STREET BRIDGE, AT SAN JUAN CAPISTRANO, CA--Continued SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4	1.2 .60 1.8 1.2	2 3 2 1	.01 .00 .01 .00						
5 6 7 8 9	.63 .87 1.5 2.4 1.1	1 2 3 4 5	.00 .00 .01 .03 .01						
10	1.0	5	.01						
11 12 13 14	.77 .71 .79 .46	4 5 6 6	.01 .01 .01						
15 16 17	.38 .27 .26	5 4 4	.01 .00 .00						
18 19 20	.33 .38 .34	5 6 5	.00 .01 .00						
21 22 23 24	.37 .36 .11	4 5 4 3	.00 .00 .00						
25 26 27 28	.13 .00 .00	2 0 0 0	.00 .00 .00						
29 30 31	.00 .00 	0 0 	.00 .00 						
TOTAL	18.10		0.14	0.00		0.00	0.00		0.00

JULY AUGUST SEPTEMBER 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 TOTAL 0.00 0.00 0,00 0.00 0.00 0.00 YEAR 354.48 276,80

SAN JUAN CREEK BASIN

11046530 SAN JUAN CREEK AT LA NOVIA STREET BRIDGE, AT SAN JUAN CAPISTRANO, CA--Continued SUMMARY OF WATER AND SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

монтн	WATER DISCHARGE CFS-DAYS	SUSPENDED SEDIMENT DISCHARGE TONS	BEDLOAD DISCHARGE TONS	TOTAL SEDIMENT DISCHARGE TONS
OCTOBER 1986	0.00	0.00	0	0
NOVEMBER	0.00	0.00	. 0	0
DECEMBER	33.48	68.59	2	71
JANUARY 1987	168.70	199.67	5	2057
FEBRUARY	76.47	4.92	0	5
MARCH	57.73	3,48	0	3
APRIL	18.10	0.14	0	0
MAY	0.00	0.00	0	0
JUNE	0.00	0.00	0	0
JULY	0.00	0.00	0	0
AUGUST	0.00	0.00	0	0
SEPTEMBER	0.00	0.00	0	0
TOTAL	354.48	276,80	7	2136

PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			BED		BED		BE		ED
		NUMBER			AT.	MAT	-		AT.
		OF	SIE		EVE	SIEV	-		EVE
		SAM-	DIA		AM.	DIAM			
DATE	TIME	PLING POINTS	% FI TH		'INER 'HAN	% FIN			INER HAN
DAIL	TIME	POINTS	.062		DAN 5 MM	. 250			
			.002	Mri . 12	J MM	. 250	.500	AP 1.00) Mim
SEP									
04	1245	1		14	23		43	61	68
04	1250	1		3	4		7	14	22
04	1255	1		3	4		7	15	22
04	1300	1			0		3	34	86
04	1305	1		3	7		15	27	42
	DE	·n	DED	DED	Dr	·n	BBB	DED	
	BE		BED MAT.	BED MAT.	BE	ΔT.	BED MAT.	BED MAT.	
	SIE		IEVE	SIEVE	SIE		SIEVE	SIEVE	
	DIA		OIAM.	DIAM.	DIA		DIAM.	DIAM.	
	% FI		FINER	% FINER			Z FINER	7 FINER	
DATE		IAN	THAN	THAN		IAN	THAN	THAN	
DAIL	2.00		00 MM	8.00 MM			32.0 MM	64.0 MM	
	2.00			0.00 12			02.0 .11	04.0 121	
SEP									
04		76	85	92		96	100		
04		26	31	37		56	88	100	
04		28	34	42		59	88	100	
04		99	100						
04		55	65	75		90	100		

SAN JUAN CREEK BASIN

11047300 ARROYO TRABUCO AT SAN JUAN CAPISTRANO, CA

LOCATION.--Lat 33°29'54", long 117°39'54", on line between secs.1 and 12, T.8 S., R.8 W., Orange County, Hydrologic Unit 18070301, on left bank 30 ft downstream from bridge on Del Obispo Street in San Juan Capistrano.

DRAINAGE AREA, -- 54,1 mi²,

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1972 to September 1977, October 1983 to current year. Records prior to October 1963, in files of Orange County Environmental Management Agency.

GAGE.--Water-stage recorder. Elevation of gage is 80 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges: Records fair. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 9 years (water years 1973-77, 1984-87), 6.90 ft3/s, 5,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,020 ft³/s, Feb. 15, 1986, gage height, 15.35 ft, from rating curve extended above 220 ft³/s; no flow at times in some years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (*), from rating curve extended above 220 ft³/s.

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 18	0115	*583	*13.65				

No flow many days.

		DISCHARGE,	IN CUB	IC FEET		, WATER YEA AN VALUES	R OCTOBER	1986 1	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.6 5.5 5.5 3.2 2.7	1.7 1.2 .99 1.4 1.8	3.8 4.1 4.7 4.4 4.4	2.0 2.0 1.9 113 68	2.8 2.2 2.1 2.3 2.2	1.7 1.5 1.5 1.3	2.1 2.5 7.6 3.5 2.4	1.9 1.7 1.5 1.1 1.6	2.8 3.1 3.0 2.7 2.3	1.0 1.1 1.2 .82 .37	0 0 0 0	0 .39 2.0 1.6 1.5
6 7 8 9 10	2.9 3.3 2.9 3.4 19	1.8 1.9 2.1 2.2 2.2	74 57 6.8 4.3 3.2	34 19 2.4 2.0 1.9	2.2 1.9 1.9 3.2 35	22 4.5 2.8 1.9 1.7	2.1 2.1 2.2 2.1 1.6	1.5 1.3 1.8 1.5	1.3 2.0 2.9 3.1 2.9	.47 .68 .70 .72 .82	0 0 0 0	1.2 1.7 2.1 1.7
11 12 13 14 15	7.3 6.3 3.9 4.4 2.6	2.0 2.1 2.7 2.4 4.1	3.0 2.5 2.4 2.3 2.0	2.5 2.9 1.6 1.5	4.2 2.5 44 25 3.0	1.6 1.7 1.6 1.6	1.4 1.4 1.7 1.7	1.8 1.8 2.0 3.3 3.0	1.4 1.2 1.0 .87 1.4	1.5 .79 .68 .39	0 0 0 1.9 1.5	1.7 .04 1.1 2.0 2.2
16 17 18 19 20	1.3 .94 .93 .58	4.8 24 95 6.1 4.6	2.0 2.0 2.0 2.0	1.7 1.7 1.9 2.2 2.6	2.5 2.4 2.2 2.1 2.0	2.2 1.9 1.7 1.7	1.7 1.7 1.6 1.6	3.3 3.7 3.4 2.8 3.0	.94 .87 .81 .90 .72	.68 5.0 1.8 1.1	.83 1.3 1.6 1.5	.36 0 0 0 0
21 22 23 24 25	1.0 1.4 1.0 2.6 3.2	4.1 3.7 3.4 3.6 3.7	2.0 1.9 1.9 1.9	3.4 4.0 3.2 3.8 2.4	2.1 5.3 15 53 17	50 6.3 2.9 27 7.4	1.6 1.5 1.4 1.4	3.4 3.5 3.0 3.1 3.9	.87 1.0 .84 .86 1.1	1.0 .68 .85 1.3 .21	1.3 1.1 1.1 1.5 .43	0 .53 2.6 2.7 2.1
26 27 28 29 30 31	2.0 2.6 3.3 1.8	3.6 3.4 4.0 3.8 3.4	1.8 1.8 1.8 1.8 1.9	2.6 2.9 7.3 4.7 4.3 3.9	4.1 2.3 1.8 	2.7 2.2 2.2 2.1 2.0 2.1	1.3 1.4 1.8 1.7 1.9	3.3 2.4 2.4 2.7 2.6 2.4	.98 .94 .67 .89 1.0	0 .02 .01 0 0	0 0 0 0 0	.60 .21 .45 .07
TOTAL MEAN MAX MIN AC-FT	105.80 3.41 19 .58 210	201.79 6.73 95 .99 400	218.6 7.05 74 1.8 434	309.0 9.97 113 1.5 613	246.3 8.80 53 1.8 489	179.3 5.78 50 1.3 356	59.9 2.00 7.6 1.3 119	76.1 2.45 3.9 1.1 151	45.36 1.51 3.1 .67 90	25.64 .83 5.0 0 51	15.66 .51 1.9 0 31	30.70 1.02 2.7 0 61

CAL YR 1986 TOTAL 4598.05 MEAN 12.6 MAX 556 MIN .16 AC-FT 9120 WTR YR 1987 TOTAL 1514.15 MEAN 4.15 MAX 113 MIN 0 AC-FT 3000

SAN JUAN CREEK BASIN

11047300 ARROYO TRABUCO AT SAN JUAN CAPISTRANO, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971-78, December 1983 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1970 to September 1977, December 1983 to September 1984.
SUSPENDED-SEDIMENT DISCHARGE: October 1970 to September 1977, December 1983 to September 1984.

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM
OCT						
10	0930	26	19.5	1310	92	
10	1315	22	20.0	1090	65	
NOV						
17	1200	8.9	18.5	454	11	
17	1630	17	18.5	421	19	
18	1205	19	19.5	710	36	
18 DEC	1415	15	18.5	505	20	
06	1230	327	15.5	14500	12800	
06	1330	266	16.0	9580	6880	
06	1500	173	16.0	6010	2810	
07	1330	22	16.0	622	37	
07	1700	63	15.0	7530	1280	
08	1100	6.8	17.0	134	2.5	
JAN						
04	1130	14	13.5	5420	205	
04	1230	95	13.5	7760	1990	
05	0930	67	13.5	1930	349	
05	1400	26	13.5	589	41	
05	1630	18	13.0	476	23	
06	1530	4.8	13.0	95	1.2	
06	1700	9.8	13.0	379	10	
07	1130	14	13.5	563	21	
07	1500	8.2	14.0	292	6.5	
08	1215	2.3	14.5	29	0.18	
FEB	10/5	10	15 5	400	00	
10	1245	19	15.5	422	22	
10 11	1730 1145	9.8 3.4	15.0 15.5	183 350	4.8 3.2	
13	1715	13	14.5	737	26	
14	1000	13	15.0	309	11	
14	1100	12	15.0	248	8.0	
16	1330	2.8	17.5	193	1.5	
16	1730	2.8	16.5	50	0.38	
23,	1600	46	13.5	3180	395	
24	1100	38	11.5	1530	157	
24	1130	33	14.0	1360	121	
24	1215	16	14.0	1220	53	
24	1530	122	11.5	9690	3190	
24	1800	112	10.5	3990	1210	
26	1830	4.0	12.0	23	0.25	
MAR			<u>.</u>			
06	1200	28	14.5	1010	76	
06	1350	24	16.5	582	38	88
06	1400	22	15.0	570	34	
07	1500	3.4	21.5	37	0.34	
21	1430	87	14.0	3040	714	

ALISO CREEK BASIN

11047700 ALISO CREEK AT SOUTH LAGUNA, CA

LOCATION.--Lat 33°30'43", long 117°44'49", in NE 1/4 NE 1/4 sec.6, T.8 S., R.8 W., Orange County, Hydrologic Unit 18070301, on right bank 0.35 mi upstream from Pacific Coast Highway.

DRAINAGE AREA, -- 34.4 mi².

PERIOD OF RECORD, -- October 1982 to September 1987 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 20 to Dec. 4, Jan. 9-13, 19-22, Feb. 15-22, Mar. 26 to Apr. 2.

Records poor. Most runoff is storm produced. Low flows affected by sewage-treatment plant outfalls 1.0 and 5.0 mi upstream. About half of the drainage area is residential and commercial development.

AVERAGE DISCHARGE. -- 5 years, 16.8 ft 3/s, 12,170 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,400 $\rm ft^3/s$, Mar. 1, 1983, gage height, 11.30 $\rm ft$; minimum daily, 1.5 $\rm ft^3/s$, Nov. 4, 5, 1982.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft 3/s, revised, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 18	0145	*1,840	*7.18	Mar. 21	1545	944	5.98
Jan. 4	1745	1,440	6.64	Mar. 24	2030	676	5.60
Feb. 24	1530	721	5,67				

Minimum daily, 1.7 ft³/s, Oct. 15.

		DISCHARGE,	IN CUB	IC FEET		ID, WATER YE MEAN VALUES	CAR OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3,5	3.0	5,0	7.8	10	4.5	5.0	5.4	4.4	4.7	3.8	3.6
2	3.8	2.7	5.5	8.5	11	5.1	6.0	5.3	3.9	4.5	3.3	3.4
3	3.2	2.9	6.0	7.6	9,9	4.8	12	5.0	3,9	5.3	3.8	3.5
4	3.0	3.1	5.8	375	11	5.2	8.4	5.0	4.2	5.1	5.6	3.7
5	2.7	3.4	5.7	101	9.6	6.6	5.0	5.5	4.4	4.3	6.9	2.7
6	2.9	3,6	95	41	9.0	117	4.8	5.5	4.6	4.8	4.6	2.6
7	3,3	3.5	76	47	9.0	30	4.8	5.9	3.9	5.6	4.9	3.6
8	3.4	3.4	19	8.5	9.0	4.7	4.4	5.5	4.2	6.0	4.1	3.4
9	3.6	3.5	8.3	8.2	10	4.2	4.5	5.7	3.9	5.4	3.9	2.8
10	51	3.4	5.7	8.0	55	3,9	3.9	5.5	4.2	5.5	4.3	2.5
11	9.7	3.9	5.3	7.8	11	4.2	4.6	5.5	4.2	5.7	4.3	2.7
12	4.3	4.2	6.2	7.8	9.4	4.4	4.5	5.8	3.9	4.5	3.8	3.0
13	2.3	4.4	5.9	7.7	83	4.3	4.6	6.0	3.5	4.8	5.4	4.2
14	1.8	4.6	6.0	7.7	35	5,1	4.9	6.1	3.4	5.7	8.4	3.7
15	1.7	4.8	6.3	8.3	15	17	4.4	6.0	3.1	6.2	7.0	2.3
16	1.9	4.9	6.5	7.0	6.0	6.1	4.5	6.3	3,2	6.3	4.7	2.5
17	1.8	25	6.1	8.2	5.0	5.1	5.3	5.8	2.7	15	4.5	2.5
18	1.9	277	6.4	8.2	4.5	5.4	5.0	5.2	3.3	8.7	4.7	1.9
19	1.9	10	7.4	8.2	4.5	5.8	5.3	5.3	3.4	5.5	4.5	4.0
20	2.1	6.0	44	8.5	4.5	5.6	4.3	5.8	3.5	5.6	4.7	2.7
21	2.0	5,5	8.4	8.8	5.0	152	4.5	5.5	3.3	5.7	4.3	3.8
22	2.0	5.0	7.2	9.0	6.0	45	4.5	5.8	3.6	4.7	3,9	2.3
23	2.0	4.5	7.3	9.2	15	9.2	4.3	5.1	4.0	4.6	`3.2	2.6
24	2.0	4.8	7.9	10	167	102	4.8	4.4	4.7	4.4	3.6	2.7
25	2.2	4.8	6.8	11	68	42	5,2	4.2	4.2	5.2	4.0	3.8
26	2.3	4.5	7.2	12	12	7.0	5.1	4.9	4.0	4.6	4.0	2.8
27	2.3	4.5	6,5	12	5.0	6.0	5.3	4.5	4,2	5.2	4.3	2.5
28	2.9	5.0	6.9	15	4.6	5.0	5.1	4.7	3.7	5.4	4.5	2.3
29	3.0	5.0	7.3	12		4.5	5.5	4.8	4.1	4.9	4.4	2.2
30	3.2	4.8	7.2	9.7		4.5	5.3	4.8	4.2	5.8	5.2	2.0
31	3.2		7.2	9.2		4.5		4.3		4.9	3.8	
TOTAL	136.9	425.7	412.0	809.9	604.0	630.7	155.8	165.1	115.8	174.6	142.4	88.3
MEAN	4.42	14.2	13.3	26.1	21.6	20.3	5.19	5.33	3.86	5.63	4.59	2.94
MAX	51	277	95	375	167	152	12	6.3	4.7	15	8.4	4.2
MIN	1.7	2.7	5.0	7.0	4.5	3.9	3.9	4.2	2.7	4.3	3.2	1.9
AC-FT	272	844	817	1610	1200	1250	309	327	230	346	282	175
~								_				

CAL YR 1986 TOTAL 6213.9 MEAN 17.0 MAX 790 MIN 1.7 AC-FT 12330 WTR YR 1987 TOTAL 3861.2 MEAN 10.6 MAX 375 MIN 1.7 AC-FT 7660

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA

WATER-QUALITY RECORDS

LOCATION.--Lat 33°39'20", long 117°50'41", in NE 1/4 SE 1/4 sec.58, T.6 S., R.9 W., in San Joaquin Grant, Orange County, Hydrologic Unit 18070204, on right bank downstream abutment of Campus Drive bridge, 450 ft northwest of University Drive, and 1 mi east of MacArthur Boulevard.

DRAINAGE AREA. -- 105 mi².

PERIOD OF RECORD. --October 1982 to April 1985. WATER TEMPERATURE: October 1982 to March 1985. SEDIMENT DATA: October 1982 to April 1985.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: October 1982 to March 1985.

SUSPENDED-SEDIMENT DISCHARGE: October 1982 to April 1985.

REMARKS.--Sediment samples were collected on most days where a water temperature is published. Sediment-discharge values were estimated from a daily transport curve for those days that have daily concentration values. Previously unpublished records for the 1983, 1984, and 1985 water years are presented here.

EXTREMES FOR 1983 WATER YEAR (NOT PREVIOUSLY PUBLISHED).-SEDIMENT CONCENTRATION: Maximum daily mean, 7,610 mg/L, Mar. 2, 1983; minimum daily mean, 13 mg/L, Dec. 21, 1982.
SEDIMENT LOAD: Maximum daily, 233,000 tons, Mar. 1, 1983; minimum daily, 0.53 ton, Dec. 14 and 21, 1982.

EXTREMES FOR 1984 WATER YEAR (NOT PREVIOUSLY PUBLISHED).-SEDIMENT CONCENTRATION: Maximum daily mean, 3,600 mg/L, Oct. 1, 1983; minimum daily mean, 90 mg/L, Apr. 26,
May 5 and 6, 1984.
SEDIMENT LOAD: Maximum daily, 32,800 tons, Oct. 1, 1983; minimum daily, 5.3 tons, Apr. 26, 1984.

EXTREMES FOR 1985 WATER YEAR (NOT PREVIOUSLY PUBLISHED).-SEDIMENT CONCENTRATION: Maximum daily mean, 2,050 mg/L, Dec. 19, 1984; minimum daily mean, 24 mg/L, Mar. 8, 1985.
SEDIMENT LOAD: Maximum daily, 6,570 tons, Dec. 27, 1984; minimum daily, 2.1 tons, Mar. 12, 1985.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 ONCE-DAILY (NOT PREVIOUSLY PUBLISHED)

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22.0	18.0	10.5		18.0	14.0	17.0	20.0		29.0	32.5	28.0
2		18.5	14.5		12.0	15.5		16.5				32.0
3		13.5	10.5	15.5	13.5	13.5	20.5	23.5				33.0
4		17.5		10.5	18.0	13.5	16,0	19.0				22.0
5		14.0	17.5	13.0	16.0	18.5	18.0					27.5
6			17.0	14.5			17.0	17.5				30.0
7	20.0	15.0		13,0	17.5	22.0						28.0
8	18.0	15.5			16.5	18.5	18.0					21.0
9	17.0	14.5	13.0		17.0			22.0	27.5			
10		12.5	11.5	16.0	18.0	19.5	17.5					
11	18.5	13.0			15.0	18.5	15.5	21.5				22.5
12	18,5	15.0		11.0			20.0	23.0			29.0	33.0
13			14.0	14.0		17.5	17,0	18.5				22.0
14	19,0		10.5	12.0	17.5	18.0						23.0
15			10.0		19.0	18.5	17,5				28,0	32.0
16	20.0	19.0	10.5		17.0			27.0			28.0	23.0
17	20.0	15.5	9.0	19.5	19.5	19.0		29.5				29.0
18		19.0	17.0	19.0	19.0	13.0	16.0	18.0			26.5	28,5
19	20.0	11.5		14.5			22.0	26.5			26.0	30.0
20	20.5			17.5		13.5	15,5	24.5			27.0	27.0
21	23,0	16.5	13.0			17.0					22.0	30.0
22	17.5	13.0	15.0	14.5	19.5	20.0	17.5	~~~	26.0		27.0	24.0
23	24.0	11.5	13.5	14.5	17.0			24.0	30.0		28.0	23.0
24	19.5	13.0		16.0	15.0	14.5	19.0		23.0		26.0	22.0
25				15.5	15.0		16.0	22.0			28.5	27.5
26	21.0	17.5			16.0	18.5	15.0	24.0	19.0		30.0	21.0
27			11.0	13.0	15.5		16.5	20.5	27.5		31.5	20.5
28	19.0	17.5		14.5	18.0	19,0		19.0			31.0	19.0
29	14.0	16.0	12.0			22,0	15.0			32.0	23.5	20.0
30	18.5	15.0	8,0	16.0		19.0					29.0	20.0
31			11.0	18.0				20.0			29.0	
MONTH												25.5

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 ONCE-DAILY (NOT PREVIOUSLY PUBLISHED)

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18,0	21.0				20.0	17.0		24.5	27.0		
2	19.0	24.0				21.5	17.5	23.0		31.0		
3	19.0	25.0				21.0		24.5	24.0	26.5		
4	19.0	24.0				19.5			22.5			
5	21.0	24.0	17.0	17,5		19.0			23.0	29.0		
6	20.0	24.0				18.5	17.5	23.5	24.5	26,0		
7	22.0	22.0				17.5	20.0	24.5	24.5			
8	23.0				21.5	17.5		23.5		31,5		
9	21.0	22.0				20.5	19.5	24.5		27.0		
10	20.0	21.0						27.0	22.5			28.5
11	19.0					19.5		26.5	23.0	29.0		24.0
12	18.0	19.0				19.0	28.0	28.0	20.0	33.0		
13	26.5	23.0				23.0	21.0	30.0	23.5	31.0		
14	25.5	15.5				19.0	22.0	22.5	21.0			30.0
15	23.5	14.0					24.0	25.0	21.5	28.5	30.0	
16	26.5	14.0				19.5	21.0	22.5	22.5		33,0	
17	24.5	18.0				18.0	21.5		25.5	27,5		
18		16.0				19,0		27,5	25.5	26.0	27.5	
19		22.0				21.0	23.0	27.0	25.0			
20		18,0				22.0		28.0	23.5			
21	26.5						23.0	27.0				
22	26.0	17.5				20.5		24.5	28.0	27.0		
23	25.5					19.5	24.0	26.0	26.0	28.5		
24						20.5	21.0	29.0				
25	24.5	13.0						22.5	25.0			
26	17.0					19.5	19.0	26.0	28.5			
27	17.5					19.5		30.5	25.5			
28	26,5							33.0	26.0			
29	19.0							25.0	26.5			
30	26.5					20.0		28.0				
31	19.5											
MONTH					400 000 000							

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1984 TO MARCH 1985 ONCE-DAILY (NOT PREVIOUSLY PUBLISHED)

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												
2												
1 2 3		21,0	15.0									
4	23.0	21.5										
5	23.5	20.5										
6	26.0											
7			15.5									
8		18.0										
9	24.0	18.0		16.0								
10												
11												
12					14.5							
13		16.5		22.0								
14												
15	22.5											
16						24.5						
17												
18	16.0		13.0									
19			14.0									
20			14.0									
21												
22												
23	~ ~ ~											
24	14.0											
25	15,0											
26	15.0											
27												
28												
29												
30												
31												

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 (NOT PREVIOUSLY PUBLISHED)

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5 6 7 8 9	17 17 17 17 17 18 19 21 23 25	46 46 45 44 43 42 41 59 108 33	2.1 2.1 2.0 2.0 2.0 2.1 3.3 6.7 2.2	20 18 22 24 22 21 20 20 340 541	31 39 43 31 42 41 40 36 1310 2290	1.7 1.9 2.6 2.0 2.5 2.3 2.2 1.9 2680 5330	37 21 18 17 17 16 15 17 18	145 54 35 26 22 22 24 25 29 32	14 3.1 1.7 1.2 1.0 .95 .97 1.1 1.4
11 12 13 14 15 16 17 18 19 20	27 27 23 24 22 20 19 19 19	37 36 37 38 32 26 32 33 34	2.7 2.6 2.3 2.5 1.9 1.4 1.6 1.7	53 21 20 19 19 20 20 19 73	468 50 45 39 34 30 25 23 113 27	96 2.8 2.4 2.0 1.7 1.6 1.4 1.2 28	17 15 15 14 15 14 15 16 16	29 25 15 14 20 15 15 15 14	1.3 1.0 .61 .53 .81 .57 .61 .65
21 22 23 24 25 26 27 28 29 30 31	25 24 24 23 22 33 21 20 22 22 22	35 37 32 31 30 51 32 26 34 38 39	2.4 2.4 2.1 1.9 1.8 4.9 1.8 1.4 2.0 2.3 2.6	18 18 17 17 18 18 19 20 46 1240	20 19 18 20 21 21 22 22 63 3550	.97 .92 .83 .92 1.0 1.0 1.1 1.2 12 21100	15 302 196 17 15 16 15 18 18 18	13 1260 923 30 27 32 33 31 29 49	.53 2530 1460 1.4 1.1 1.4 1.3 1.5 1.4 2.4
TOTAL	672		72.8	2762		29285,54	995		4037.23
DAY		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5 6 7 8 9	18 20 20 20 20 19 20 19 20	31 21 14 20 19 14 21 23 24	1.5 1.1 .76 1.1 1.0 .72 1.1 1.2 1.3	32 202 69 34 54 45 60 145 33	68 898 264 114 292 297 115 950 150	5.9 1080 79 11 91 49 29 687 13	4140 3100 2070 100 80 105 64 60 54	7580 7610 4590 1300 1900 1500 600 700 1000	233000 80600 43300 350 410 420 100 110 150 260
11 12 13 14 15 16 17 18 19	21 26 29 27 22 24 21 49 20	27 34 37 40 37 30 22 19 69	1.5 2.4 2.9 2.9 2.2 1.9 1.4 1.1	34 33 40 29 29 29 30 30 28 29	116 111 106 94 97 65 55 54	11 9.9 12 7.4 7.4 6.8 5.3 4.5 4.1	47 45 47 94 44 41 197 659 335 50	1000 920 830 838 575 520 1110 2640 2760 1800	127 112 105 296 68 58 959 5830 3750 243
21 22 23 24 25 26 27 28 29 30 31	19 20 409 145 41 21 1200 72 640 66 50	46 52 1570 805 295 50 3150 451 2150 155 110	2.4 2.9 4910 852 54 2.8 22200 133 8140 28 16	30 31 35 135 39 588 1150 470 	57 58 56 844 740 2050 3180 1880	4.6 4.9 5.3 720 78 12000 31200 4320	310 138 128 608 74 64 53 52 42 40 34	2300 1060 2400 4250 1220 890 590 691 900 950 910	3630 795 893 10500 244 154 84 99 102 103 84
TOTAL	3141		36381.68	3493		50462.4	12925		386936

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

SUSPENDED-SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983
(NOT PREVIOUSLY PUBLISHED)

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5 6 7 8 9	35 35 34 36 33 35 35 35	975 980 995 720 420 480 495 560 595 640	92 93 89 66 41 43 47 53 56	259 42 38 35 32 32 30 31 35 33	2390 1850 1880 1950 1790 1350 370 370 400 375	2130 220 198 190 159 120 31 32 39	28 28 27 27 28 28 27 27 28 29	508 538 560 590 595 640 670 698 720 728	38 41 41 43 45 48 49 51 54
11 12 13 14 15 16 17 18 19	36 35 32 32 32 31 41 227 40 602	575 675 648 650 650 650 710 1600 867 3490	56 64 56 56 56 54 88 1670 95	31 35 37 36 36 31 28 29 29	500 400 384 372 370 388 372 435 430	45 38 38 36 36 32 28 34 34 37	28 29 28 28 28 29 29 29 29	720 720 710 700 704 702 710 710 712	54 56 54 53 53 55 56 56 58 55
21 22 23 24 25 26 27 28 29 30 31	130 .44 .45 .44 .38 .36 .36 .41 .629 .199	1860 1010 800 840 795 910 920 974 3730 2790	904 112 89 91 75 81 79 112 8530 1790	32 36 33 29 29 29 29 28 28 28 28	445 458 340 338 378 360 400 415 436 468 480	38 45 30 26 30 28 31 31 33 35	28 29 29 31 30 30 29 30 30	694 690 738 796 780 735 658 645 655 642	52 54 58 67 63 60 52 52 52 53
TOTAL	2696		21958	1010			000		1500
			21930	1218		3874	860	45 44 15	1580
DAY		JULY	21930	1216	AUGUST	38/4	880	SEPTEMBER	1280
DAY 1 2 3 4 5 6 7 8 9 10	30 31 31 30 30 31 32 30 30 31	JULY 661 622 620 608 616 600 595 590 592 592	54 52 52 52 49 50 50 51 48 48 50	30 31 31 32 31 33 31 32 33 33 36		38/4 41 42 45 48 50 57 53 54 63 124	30 31 31 31 29 29 30 29 29 28		43 38 30 31 29 28 30 27 27
1 2 3 4 5 6 7 8	30 31 31 30 30 31 32 30 30	661 622 620 608 616 600 595 590 592	54 52 52 49 50 50 51 48 48	30 31 31 32 31 33 31 32 33	AUGUST 506 502 536 558 595 637 630 630 712	41 42 45 48 50 57 53 54 63	30 31 31 31 29 29 30 29 29	SEPTEMBER 528 456 355 365 370 352 372 352 352 358	43 38 30 31 29 28 30 27 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	30 31 31 30 30 31 32 30 31 31 32 31 30 32 30 31 32 31 30 31 31 32 31 31 32 31 31 32 30 31 31 31 31 31 31 31 31 31 31 31 31 31	661 622 620 608 616 600 595 590 592 592 595 600 593 599 598 604 592 590	54 52 52 52 49 50 51 48 48 50 51 50 51 52 48 52 48 51 48	30 31 31 32 31 33 31 32 33 36 49 55 58 60 131 75 47 29 35	AUGUST 506 502 536 558 595 637 630 630 712 1280 1280 1290 1450 1830 2350 2040 916 750 815	41 42 45 48 50 57 53 54 63 124 169 192 227 296 874 444 162 59 77	30 31 31 31 29 29 30 29 28 28 27 28 29 29 29 29 29 29	SEPTEMBER 528 456 355 365 370 352 372 352 358 360 492 520 522 563 608 468 420 338 290	43 38 30 31 29 28 30 27 27 27 36 38 39 44 48 35 32 25 20

YEAR 32135.0 543442.4

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 (NOT PREVIOUSLY PUBLISHED)

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)		MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5 6 7 8 9	1170 51 36 37 57 35 48 34 33	3600 570 520 410 415 240 340 220 225 240	32800 78 51 41 78 23 44 20 20	34 39 28 28 28 28 28 28 29	180 205 145 145 145 130 135 150 160 180	17 25 11 11 11 9.8 10 11 13	28 21 133 27 18 18 19 19	350 250 715 240 140 150 150 360 220	26 14 668 17 6.8 6.8 7.7 7.7 98
11 12 13 14 15 16 17 18 19 20	33 34 36 35 33 33 33 33 35	230 190 160 160 150 140 135 135	20 17 16 15 14 13 12 12 13	96 402 37 24 23 23 22 27 22 178	427 1370 420 180 150 115 110 310 100	367 2140 42 12 9.3 7.1 6.5 25 5.9	20 27 29 25 25 25 24 24 28 34	150 150 150 110 105 105 105 105 130 250	8.1 11 12 7.4 7.1 7.1 6.8 6.8 9.8 23
21 22 23 24 25 26 27 28 29 30 31	31 33 32 33 35 36 35 33 34 34	130 125 125 120 120 125 120 110 130 115	11 11 11 11 11 12 11 9.8 12	298 21 20 347 298 25 24 22 21 20	600 440 420 1270 1010 260 210 240 260 280	483 25 23 5850 2690 18 14 14 15	33 33 33 255 443 75 100 30 26 26 27	200 170 150 775 1430 390 525 350 220 220	18 15 13 1860 2500 79 198 28 15 15
TOTAL	2240		33443.8	2251		12955.6	1697		5720.1
DAY		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5 6 7 8 9	27 27 25 25 23 23 23 22 23 22	200 190 190 200 200 220 250 220 210 200	15 14 13 13 12 14 16 13 13	27 27 28 30 35 35 34 35 33	100 110 110 110 110 105 105 105 110	7.3 8.0 8.3 8.9 10 9.9 9.6 9.9 9.8	26 26 25 25 25 27 27 25 25 26 25	240 230 235 220 220 205 250 200 210 250	17 16 16 15 15 17 13 15
11 12 13 14 15 16 17 18 19 20	23 25 28 27 27 46 30 26 27	200 230 210 185 175 342 215 190 230	12 16 16 13 13 63 17 13 17	28 28 28 28 28 28 28 28 26	110 120 120 120 140 140 150 160	8.3 9.1 9.1 9.1 11 11 11 11 12	23 25 25 50 23 22 23 27 26 28	290 205 210 1150 300 240 240 210 225 205	18 14 14 255 19 14 15 15
21 22 23 24 25 26 27 28 29 30 31	29 28 30 32 32 33 37 39 42 27	230 230 220 210 200 220 240 240 240 200	18 17 18 18 17 20 24 25 27 18 7.3	27 27 25 26 27 25 26 26 27 	160 180 180 200 200 200 220 220	12 13 12 13 15 13 14 15 16	29 28 26 25 26 29 29 32 30 34 32	195 185 195 240 225 215 160 180 140 105 125	15 14 14 16 16 17 13 16 11
TOTAL	888		540.3	828		316.5	847		703.6

YEAR

13843

57556.0

SAN DIEGO CREEK BASIN

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	(NOT PREVIOUSLY PUBLISHED)								
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5 6 7 8 9	31 31 28 35 33 64 30 29 26 24	140 130 130 140 140 300 150 135 120	12 11 9.8 13 12 66 12 11 8.4 9.1	25 23 24 25 27 27 27 26 29 30	120 120 100 100 90 90 210 170 130	8.1 7.5 6.5 6.8 6.6 6.6 15 12 10	30 31 31 30 30 31 34 25 25	350 370 370 370 370 340 355 240 235	28 31 31 30 30 28 40 16 16
11 12 13 14 15 16 17 18 19 20	23 23 23 25 24 25 28 109 23	180 185 225 230 150 115 125 135 662 350	11 11 14 14 10 7.5 8.4 10 376 22	31 32 35 34 33 30 29 33 31	150 170 190 210 195 195 195 195 220 290	13 15 18 19 17 16 15 17 18	26 26 26 27 27 26 26 24 24	225 185 185 185 175 175 170 175 160	16 13 13 13 13 12 12 12 11 10 9.4
21 22 23 24 25 26 27 28 29 30 31	22 23 22 23 23 22 58 32 28 25	320 260 150 110 100 90 255 250 190	19 16 8.9 6.8 6.2 5.3 80 22 14 9.5	31 31 30 30 30 30 29 27 28 27 30	390 430 460 440 440 400 290 250 250	33 36 37 36 36 32 31 21 19 18 26	26 27 29 29 29 27 27 28 26 24	125 125 150 150 195 150 150 150 140	8.8 9.1 12 12 15 11 11 9.8 8.4
TOTAL	935		835,9	905		587.1	821		496.5
DAY		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5 6 7 8 9	24 24 22 23 23 25 24 27 23 25	120 120 120 125 130 120 120 125 175 150	7.8 7.8 7.1 7.8 8.1 7.8 9.1 11	26 28 27 28 27 27 27 29 29 28 30	290 300 290 290 290 290 290 290 290	20 23 21 22 21 21 23 23 23 22 24	25 24 24 24 26 28 27 27 29	295 295 295 290 290 290 290 290 290	20 19 19 19 20 22 22 21 21 23
11 12 13 14 15 16 17 18 19 20	25 25 24 25 23 24 26 26 25	150 185 235 245 255 280 320 335 350 400	10 12 15 17 16 18 22 24 24 27	30 29 27 31 72 25 25 25 25	300 290 290 300 360 310 300 295 295	24 23 21 25 85 21 20 20 20	41 27 24 24 26 25 25 24 26 28	435 400 400 400 400 400 400 400 400	57 29 26 26 28 27 27 26 28 30
21 22 23 24 25 26 27 28 29 30 31	25 26 26 25 26 26 26 26 26 25 25 25	425 450 295 280 290 290 290 290 290 280 280	29 32 21 19 20 20 20 20 20 19	26 26 25 27 27 25 25 26 26 26 24	295 295 290 300 300 295 295 295 295 295 295	21 21 20 22 22 20 20 21 21 21 19	28 29 25 25 23 26 24 23 24 25 	350 350 350 350 350 350 300 250 220 200	26 27 24 24 22 25 19 15 14 14
_	, -						- •		

SAN DIEGO CREEK BASIN

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1984 TO APRIL 1985 (NOT PREVIOUSLY PUBLISHED)

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
	(322,	OCTOBER	(====,	,,	NOVEMBER	, , , , , , , , , , , , , , , , , , , ,	,	DECEMBER	,
1 2 3 4 5 6 7 8 9	27 26 26 28 26 27 29 28 26 25	200 200 200 250 220 190 200 200 180 200	15 14 14 19 15 14 16 15 13	21 23 22 22 22 22 22 32 36 20 19	200 200 180 175 180 240 219 185	11 12 11 10 11 11 22 22 22 10 9.2	15 15 31 18 15 14 15 254 25 22	110 100 153 130 110 100 820 280 250	4.5 4.1 14 6.3 4.5 3.8 4.1 1300 19
11 12 13 14 15 16 17 18 19 20	27 26 27 28 24 24 44 24 23 25	200 200 200 200 200 200 300 250 230 210	15 14 15 15 13 13 41 16 14	19 19 161 22 18 19 17 17 16 16	160 150 1170 360 250 240 230 220 200	8.2 7.7 1100 21 12 12 11 10 8.6 8.6	23 19 18 18 21 137 26 371 781	240 230 220 200 190 981 370 870 2050	15 12 11 9.7 11 522 26 1730 5870 244
21 22 23 24 25 26 27 28 29 30 31	26 25 24 26 27 26 28 26 24 23 22	200 200 200 200 200 200 200 200 200 200	14 13 13 14 15 14 15 14 13 12 12	22 16 16 459 100 18 17 17 15	250 150 130 1090 539 250 200 150 130	15 6.5 5.6 1350 397 12 9.2 6.9 5.3 4.9	42 40 38 37 35 190 883 136 45 41 38	280 260 240 220 210 490 1800 520 182 150	32 28 25 22 20 600 6570 191 22 17
TOTAL	817		467	1258		3140.7	3494		17366.0
DAY 1 2 3 4 5 6 7 8 9 10	36 34 30 27 32 32 44 95 42	JANUARY 125 120 159 150 140 130 230 380 200 180	12 11 13 11 12 11 30 140 23 20	27 229 32 41 43 35 29 33 771 46	180 776 310 300 250 200 200 200 1680 450	13 1050 27 33 29 19 16 18 6480 56	34 46 39 31 34 37 42 46 43 42	MARCH 45 70 69 45 40 35 30 24 25	4.1 8.7 7.3 3.8 3.7 3.5 3.4 3.0 2.9 4.5
11 12 13 14 15 16 17 18 19 20	40 42 45 46 44 39 37 37 39	170 160 150 160 170 160 150 140 130	18 18 20 20 17 15 14 14	39 35 30 33 34 35 36 38 40 36	280 190 146 130 120 100 90 80 80	29 18 12 12 11 9.5 8.7 8.2 8.6 6.8	32 27 29 30 37 42 41 89 32 28	35 29 30 30 40 30 25 142 130 80	3.0 2.1 2.3 2.4 4.0 3.4 2.8 59 11 6.0
21 22 23 24 25 26 27 28 29 30 31	39 40 37 39 39 39 135 58 34	120 120 120 120 120 120 120 420 360 220 200	13 12 13 13 13 13 13 350 56 20	49 52 42 35 39 49 55 52 	100 90 80 70 60 50 40 50	13 13 9.1 6.6 6.3 6.6 5.9 7.0	30 30 31 32 34 35 114 49 30 26 26	70 60 50 45 40 35 193 110 55 45	5.7 4.9 4.2 3.9 3.7 3.3 82 15 4.5 3.2 2.8
TOTAL	1352		983	2015		7932.3	1218		274.1

SAN DIEGO CREEK BASIN

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1984 TO APRIL 1985 (NOT PREVIOUSLY PUBLISHED)

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL	
1	28	50	3.8
2	33	45	4.0
3	36	40	3.9
4	35	50	4.7
5	32	45	3.9
6	32	40	3.5
7	30	40	3.2
8	38	50	5.1
9	41	50	5.5
10	47	50	6.3
11	43	50	5.8
12	37	40	4.0
13	36	40	3.9
14	35	40	3.8
15	33	40	3.6
16	29	42	3.3
17	26	40	2.8
18	34	50	4.6
19	30	. 40	3.2
20	31	40	3.3
21	30	40	3.2
22	31	35	2.9
23	32	35	3.0
24	36	35	3.4
25	39	40	4.2
26	38	40	4.1
27	33	35	3.1
28	33	35	3.1
29	33	40	3.6
30	30	40	3.2
31			
TOTAL	1021		116.0
PERIO	D 11175		30279.1

SAN DIEGO CREEK BASIN

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	TEMPER- ATURE (DEG C)	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. Z FINER THAN .002 MM	SED. SUSP. FALL DIAM. Z FINER THAN .004 MM	SED. SUSP. FALL DIAM. 7 FINER THAN .008 MM
OCT								
01	1535	22.0	23	46	2.8			
20 NOV	1440	20.5	23	47	2.9			
09	1615	13.0	1220	3660	12100		62	65
10	1420	14.5	460	1040	1290			
30	1315	15.5	1180		12900		68	73
30	1520	15.0	640	2600	4490			
DEC								
03	1105	12.5	17	68	3.1			
JAN	1400	10 5	10	1.5	0.77			
04	1400	16.5	19	15	0.77			
19	1225	17.0	66	96	17			
27 FEB	1630	14.5	1230	3//0	12500		60	64
04	1400	18.0	29	94	. 7.4			
26	1420	15.0	1100	5020	14900		60	65
27	1530	14.5	5100	9960	137000			
MAR								
02	1415	15.5	5810	9860	155000		41	42
02	1745		6540	9040	160000			
03	1625	16.0	770	2540	5280			
08	1245	23.0	100	760	205	28	30	33
18	1200	16.5	600	1450	2350			
19	1015		116	2370	742			
21 APR	1200	17.0	230	1430	888			
29	1725	21.5	80	2820	609			
JUN			•	2020	000			
09	1510	27.5	28	733	55	52	61	67
JUL								•
01	1535	29.0	30	997	81			
29	1535	32.0	24	514	33			
AUG								
01	1420	32.5	27	422	31			
06	1330		40	710	77			
12	1400	29.0	67	1280	232			
SEP								
08	0950	21.0	30	345	28			
28	1245	22.5	86	948	220			
30	1340	20.0	488	2660	3500	65	74	85

SAN DIEGO CREEK BASIN

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT. WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 (NOT PREVIOUSLY PUBLISHED)

DATE	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .031 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .250 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .500 MM	SED. SUSP. SIEVE DIAM. % FINER THAN 1.00 MM
OCT							
01			86				
20			95	98	100		
NOV							
09	77	88	94	97	100		
10			99				
30	85	95	99	100			
30			98				
DEC							
03			89				
JAN							
04			95				
19	73		99				
27 FEB	/3	86	95	100			
04			86				
26	77	87	95	99	100		
27			80	55	100		
MAR			60				
02	52	60	72	88	98	100	
02			49				
03			82				
08	35	38	41	51	84	97	100
18			88				
19			65				
21			81				
APR							
29			32				
JUN						-	
09	75	79	82	91	98	100	
JUL							
01			91				
29			73				
AUG							
01			83				
06			92				
12			46				
SEP							
08			78				
28			97	100			
30	94	98	99	100			

SAN DIEGO CREEK BASIN

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	TEMPER- ATURE (DEG C)	STREAM FLOW, INSTAN TANEOU (CFS)	MENT, - SUS- S PENDE	CHAR SU D PEN	IT, S IS- F IGE, I IS- % F IDED T	INER %	SED. SUSP. FALL DIAM. FINER THAN 04 MM	SED. SUSP. FALL DIAM. % FINER THAN .008 MM
OCT 05	1325	25.5	39	28	0 29	1			
05	1515	25.5	37	29					
NOV 10 DEC	1155	21.0	32	19	7 17	,	71	79	86
05	1535	17.0	18	13	2 6	5.4			
JAN 05	1430	17.5	24	16	3 11	L			
16	1640		69	47	5 88	3	43	49	55
FEB 08 MAR	1415	21.5	33	10	4 9	. 4			
13	1505	23.0	26	20					
14 APR	1905	19.0	43	154	0 179	,		65	77
06	0945	17.5	110	52			60 	69	76
12 19	1425 1325	28.0 23.0	24 52	15 54			58	 67	 76
MAY 10	1320	27,0	33	12					
JUN 12	1020	20.0	30	18					
JUL 12	1500	33.0	24	10	7 6	5.8			
AUG 15	1550	30.0	86	33	6 78	3			
DATE	FA	SP. SU LL FA AM. DI NER % FI AN TH	SP. LL S AM. NER Z AN	SUSP. IEVE S DIAM. FINER % THAN	SED. SUSP. IEVE DIAM. FINER THAN 25 MM	SED. SUSP. SIEVE DIAM. Z FINER THAN .250 MM	SED. SUSP. SIEVE DIAM. Z FINER THAN .500 MM	SIEV DIA Z FIN THA	SP. VE NM. VER NN
DATE	SU: FAI DIA % FII THA	SP. SU LL FA AM. DI NER % FI AN TH	SP. LL S AM. NER Z AN	SUSP. IEVE S DIAM. FINER % THAN	SUSP. IEVE DIAM. FINER THAN	SUSP. SIEVE DIAM. Z FINER THAN	SUSP. SIEVE DIAM. Z FINER THAN	SUS SIEV DIA Z FIN THA	SP. VE NM. VER NN
OCT 05	SU: FAI DIA % FII THA	SP. SU LL FA AM. DI NER % FI AN TH	SP. LL S AM. NER Z AN	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1	SUSP. IEVE DIAM. FINER THAN	SUSP. SIEVE DIAM. Z FINER THAN	SUSP. SIEVE DIAM. Z FINER THAN	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
ост	SU: FAI DIA % FII THA	SP. SU LL FA AM. DI NER Z FI AN TH MM .031	SP. LL S AM. NER Z AN MM .0	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1	SUSP. IEVE DIAM. FINER THAN 25 MM	SUSP. SIEVE DIAM. % FINER THAN .250 MM	SUSP. SIEVE DIAM. Z FINER THAN .500 MM	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
OCT 05 05 NOV 10 DEC 05	SU: FAI DIA % FII THA	SP. SU LL FA AM. DI NER % FI AN TH MM .031	SP. LL S AM. NER Z AN MM .0	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1	SUSP. IEVE DIAM. FINER THAN 25 MM	SUSP. SIEVE DIAM. % FINER THAN .250 MM	SUSP. SIEVE DIAM. % FINER THAN .500 MM	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
OCT 05 05 NOV 10 DEC 05 JAN	SU: FAI DIA % FII THA	SP. SULL FA AM. DI NER Z FI AN TH MM .031	SP. LL S AM. NER Z AN MM .0	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1 89 89 92 65	SUSP. IEVE DIAM. FINER THAN 25 MM	SUSP. SIEVE DIAM. Z FINER THAN .250 MM	SUSP. SIEVE DIAM. % FINER THAN .500 MM	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
OCT 05 05 NOV 10 DEC 05 JAN 05	SU: FAI DIA % FII THA	SP. SULL FA AM. DI NER % FI AN TH MM .031	SP. LL S AM. NER Z AN MM .0	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1 89 89 92	SUSP. IEVE DIAM. FINER THAN 25 MM	SUSP. SIEVE DIAM. Z FINER THAN. .250 MM	SUSP. SIEVE DIAM. % FINER THAN .500 MM	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
OCT 05 05 NOV 10 DEC 05 JAN 05 16 FEB 08	SU: FAI DIA % FII THA	SP. SULL FA AM. DI AM. TH AM .031 89	SP. LL S AM. NER Z AN MM .0	SUSP. IEVE S DIAM. FINER % THAN 62 MM .1 89 89 92 65 63	SUSP. IEVE DIAM. THAN 25 MM	SUSP. SIEVE DIAM. 7 FINER THAN .250 MM	SUSP. SIEVE DIAM. Z FINER THAN .500 MM	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
OCT	SU: FAI DIA % FII THA	SP. SULL FA AM. DI AM. TH AM031 89 61	SP. LL S AM. NER Z AN	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1 89 89 92 65 63 72 63 70	SUSP. IEVE DIAM. 25 MM 95 79	SUSP. SIEVE DIAM. 7 FINER THAN .250 MM	SUSP. SIEVE DIAM. Z FINER THAN .500 MM	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
OCT 05 05 NOV 10 DEC 05 JAN 05 16 FEB 08	SU: FAI DIA % FII THA	SP. SULL FA AM. DII NER % FI AN TH MM .031 89 61	SP. LL S AM. NER Z AN MM .0 90 67	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1 89 89 92 65 63 72 63	SUSP. IEVE DIAM. THAN 25 MM	SUSP. SIEVE DIAM. 7 FINER THAN .250 MM	SUSP. SIEVE DIAM. Z FINER THAN .500 MM	SUS SIEV DIA Z FIN THA I 1.00	SP. VE NM. VER NN
OCT 05 05 NOV 10 DEC 05 JAN 05 16 FEB 08 MAR 13 14 AFR 06	SU: FAI DIA % FII THA	SP. SULL FA AM. DI NER 7 FI AN TH MM .031 89 61 89 85	SP. LL S AM. NER Z AN .00 90 67 96 89	SUSP. IEVE S DIAM. FINER 7. THAN 62 MM .1 89 89 92 65 63 72 63 70 100 90	SUSP. IEVE DIAM. FINER THAN 25 MM 95 79 92	SUSP. SIEVE DIAM. 7 FINER THAN.250 MM	SUSP. SIEVE DIAM. FINER THAN .500 MM	SUS SIEV DIA THA 1 1.00	SP. VE NM. VER NN
OCT	SU: FAI DIA % FII THA	SP. SULL FA AM. DI NER 7 FI AN TH MM .031	SP. LL S AM. NER Z AN .00 90 67 96	SUSP. IEVE S DIAM. FINER 7. THAN 62 MM .1 89 89 92 65 63 72 63 70 100	SUSP. IEVE DIAM. FINER THAN 25 MM 95 79	SUSP. SIEVE DIAM. Z FINER THAN .250 MM	SUSP. SIEVE DIAM. FINER THAN .500 MM	SUS SIEV DIA THA 1 1.00	SP. VE MM, HER LIN MM
OCT 05 05 NOV 10 DEC 05 JAN 05 16 FEB 08 MAR 13 14 APR 06 12 19 MAY	SU: FAI DIA % FII THA	SP. SULL FA AM. DI NER % FI AN TH MM .031 89 61 89 85	SP. LL S AM. NER Z AN MM .0 90 67 96 89	SUSP. IEVE S DIAM. FINER % THAN 62 MM .1 89 89 92 65 63 72 63 70 100 90 63	SUSP. IEVE DIAM. THAN 25 MM 95 79 92	SUSP. SIEVE DIAM. X FINER THAN.250 MM	SUSP. SIEVE DIAM. Z FINER THAN .500 MM	SUS SIEV SIEV SIEV SIEV SIEV SIEV SIEV SIE	SP. VE MM, HER LIN MM
OCT	SU: FAI DIA % FII THA	SP. SULL FA AM. DI NER % FI AN TH MM .031 89 61 89 85	SP. LL S AM NER Z AN NO .0 90 67 96 89 91	SUSP. IEVE S DIAM. FINER % THAN 62 MM .1 89 89 92 65 63 72 63 70 100 90 63 94	SUSPIEVE DIAM. FINER THAN 25 MM 95 79 92 96	SUSP. SIEVE DIAM. Z FINER THAN. .250 MM	SUSP. SIEVE DIAM. FINER THAN .500 MM	SUS SIEV SIEV SIEV SIEV SIEV SIEV SIEV SIE	SP. VE MM, HER LIN MM
OCT	SU: FAI DIA % FII THA	SP. SULL FA AM. DI NER % FI AN TH MM .031 89 61 89 85	SP. LL S AM NER Z AN NO .0 90 67 96 89 91	SUSP. IEVE S DIAM. FINER Z THAN 62 MM .1 89 89 92 65 63 72 63 70 100 90 63 94 82	SUSPIEVE DIAMTHAN 25 MM 7970	SUSP. SIEVE DIAM. 2 FINER THAN250 MM	SUSP. SIEVE DIAM. FINER THAN .500 MM	SUS SIEV SIEV SIEV SIEV SIEV SIEV SIEV SIE	SP. VE MM, HER LIN MM

SAN DIEGO CREEK BASIN

11048555 SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE, CA--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1984 TO APRIL 1985 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SED. SUSP. FALL DIAM. Z FINER THAN ,002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM	SED. SUSP. FALL DIAM. Z FINER THAN .008 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. Z FINER THAN .031 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM	SED. SUSP. SIEVE DIAM. Z FINER THAN .250 MM
NOV 08 13	1140 1345	80 253	18.0 16.0	298 2610	 72	 84	 92	 97	 99	88 99	 99	100

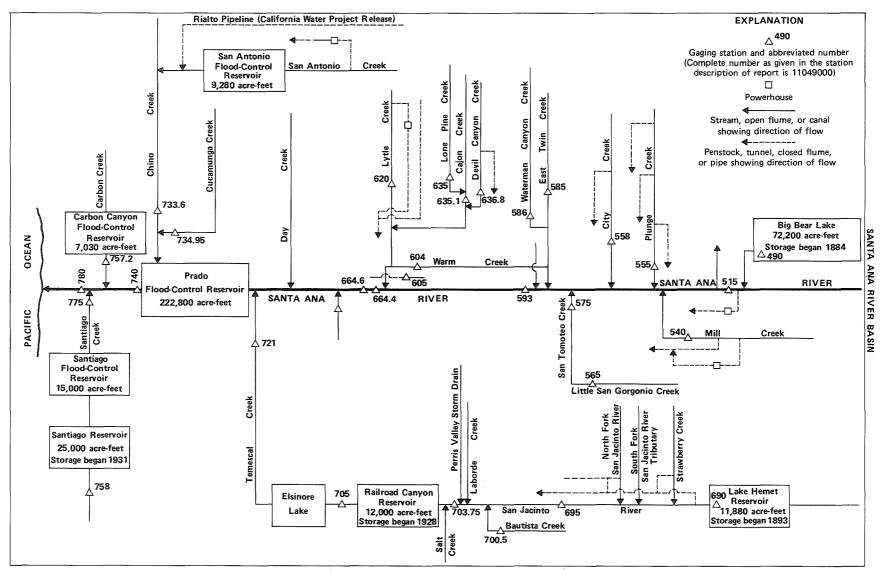


FIGURE 17. - Schematic diagram showing diversions and storage in Santa Ana River basin.

11049000 BIG BEAR LAKE NEAR BIG BEAR LAKE, CA

LOCATION.--Lat 34°14'33", long 116°58'33", in SW 1/4 sec.22, T.2 N., R.1 W., San Bernardino County, Hydrologic Unit 18070203, at Big Bear Lake Dam on Bear Creek, 4 mi west of town of Big Bear Lake, and 7.5 mi upstream from mouth.

DRAINAGE AREA. -- 38.9 mi², excludes Baldwin Lake drainage included in reports prior to 1983.

PERIOD OF RECORD. --October 1950 to current year in reports of U.S. Geological Survey. February 1884 to September 1950 in files of Bear Valley Mutual Water Co.

REVISED RECORDS. -- WDR CA-83-1: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 6,670.9 ft above National Geodetic Vertical Datum of 1929 (levels by Bear Valley Mutual Water Co.). Prior to 1912 at old dam 200 ft upstream at same datum; spillway at gage height, 52.4 ft.

REMARKS.--Lake is formed by multiple-arch concrete dam, completed in 1912, replacing existing lower dam built in 1884; storage began in spring of 1884. Capacity (based on July 1977 resurvey; new capacity table put into use August 1977), 73,320 acre-ft at elevation 6,743.3 ft, top of dam. No dead storage. Water used for irrigation only. See schematic diagram of Santa Ana River basin.

COOPERATION, -- Record of contents was provided by Big Bear Municipal Water District.

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents unknown, lake spilled in 1916, 1917, 1922, 1923, 1938, 1939, 1969, 1970, 1980, 1983; lake dry October, November 1898, August to November 1899, October, November 1904.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 60,230 acre-ft, Apr. 17; minimum contents observed, 53,750 acre-ft, Sept. 30.

MONTHEND CONTENTS, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	Date	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	59,540	
	31	58,310	-1,230
	30	57,490	-820
	31	57,360	-130
CAL	YR 1986		+810
Jan,	31	57,360	0
Feb.	28	55,740	-1,620
Mar.	31	59,130	+3,390
Apr.	30	60,090	+960
	31	59,270	-820
June	30	59,030	-240
July	31	56,550	-2,480
	31	54,940	-1,610
	30	53,750	-1,190
WTR	YR 1987		-5,790

11051500 SANTA ANA RIVER NEAR MENTONE, CA

LOCATION.--Lat 34°06'30", long 117°05'59", in SW 1/4 SW 1/4 sec.4, T.1 S., R.2 W., San Bernardino County, Hydrologic Unit 18070203, on right bank near mouth of canyon, 1.6 mi upstream from Mill Creek, 3.2 mi northeast of Mentone, and 16 mi downstream from Big Bear Lake.

DRAINAGE AREA.--210 mi², including area tributary to Baldwin Lake at head of Bear Valley.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1896 to current year. Prior to October 1914, records for river only not equivalent owing to Greenspot pipeline diversion between sites and exclusion of discharge from Warm Springs Canyon. Monthly

discharge only for January 1910, January and February 1916 published in WSP 1315-B.

GAGE.—Three water-stage recorders. Main gage on right bank of river, canal gage on powerhouse diversion, and since 1970 supplementary gage on left bank of river. Elevation of the main and supplementary gages is 1,950 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 2, 1917, nonrecording gages at several sites within 1.5 mi upstream at various datums. Sept. 3, 1917, to May 27, 1969, water-stage recorder at site 0.2 mi upstream at different datum. Canal gage at different datum. REMARKS.--Estimated daily discharges: Nov. 18-21. Records good. Flow partly regulated by Big Bear Lake

(station 11049000). For records of combined discharge of Santa Ana River and Southern California Edison Co.'s canal below powerplant No. 2, which diverts above station, see following page. Prior to Oct. 1, 1952, and since Apr. 26, 1976, Bear Valley Mutual Water Co. pumps water into channel above canal gage. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE.—River only: 73 years (water years 1915-87), 36.5 ft³/s, 26,440 acre-ft/yr.

Combined river and canal: 91 years, 83.4 ft³/s, 60,420 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—River only: Maximum discharge, 52,300 ft³/s, Mar. 2, 1938, gage height, 14.3 ft, site and datum then in use, on basis of slope-area measurement of peak flow; no flow at times in some years.

Combined river and canal: Maximum discharge, 52,300 ft³/s, Mar. 2, 1938; minimum daily, 7.4 ft³/s, Sept. 21, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Combined river and canal: Flood of Feb. 23, 1891, 53,700 ft3/s, from notes furnished by F. C. Finkle, consulting engineer, Los Angeles.

EXTREMES FOR CURRENT YEAR.--River only: Maximum discharge, 168 ft³/s, Nov. 18, gage height, 7.26 ft; no flow for

many days,

Combined river and canal: Maximum discharge, 171 ft 3 /s, Nov. 18; minimum daily, 17 ft 3 /s, for several days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.66	0	0	0	1.7	2.8	3.4	.67	.01			
2 3	. 47	0	0	0	1.5	2.8	3.2	.61	0			
3	. 19	0	0	0	1.3	2.7	4.4	.55	Ō			
4	.10	0	0	12	.79	2.7	6.6	. 52	0			
5	.04	0	0	48	.64	2.7	4.3	.48	0			
6 7	.01	0	12	13	,60	50	4.0	. 46	0			
	0	0	20	11	, 53	67	3.5	.51	0			
8	0	0	9.8	7.3	. 59	40	3.0	.51	0			
9	0	0	. 82	4.5	. 64	11	2.9	.49	0			
10	0	0	. 12	3.4	.73	5.4	2.7	.47	0			
11	0	0	0	2.8	.87	4.6	2.7	.38	0			
12	0	0	0	2.4	.74	4.1	2.6	.33	0			
13	0	0	0	2.2	.81	3.8	2.4	.31	0			
14	0	0	0	2.2	. 96	3.7	2.3	.30	0			
15	0	0	0	2.0	.87	11	2.0	.31	0			
16	0	0	0	1.9	.94	9.5	1.9	.27	0			
17	0	0	0	2.7	.87	6.5	1.8	.23	0			
18	0	63	0	3.0	.90	5.0	1.9	.18	0			
19	0	33	0	2.3	. 96	6.1	1.8	. 17	0			
20	0	5.8	0	.88	. 85	6.1	1.7	. 17	0			
21	0	.05	0	1.2	.85	6.9	1.6	.15	0			
22	0	0	0	1.3	.87	10	1.2	.09	0			
23	0	0	0	1.2	1.3	9.8	1.0	.08	0			
24	0	0	0	1.3	2.3	7.2	. 90	.07	0			
25	0	0	0	1.1	2.5	6.1	.88	.08	0			
26	0	0	0	. 95	2.3	5.3	.79	.09	0			
27	0	0	0	.94	2.2	4.8	.74	.08	0			
28	0	0	0	13	2.6	4.5	. 68	.05	0			
29	0	0	0	11		4,1	.70	.03	0			
30	0	0	0	2.0		4.0	.74	.03	0			
31	0		0	1.7	****	3.7		.01				
TOTAL	1.47	101.85	42.74	157.27	32.71	313.9	68.33	8,68	.01	0	0	0
MEAN	.047	3.40	1.38	5.07	1.17	10,1	2,28	.28	.0003	0	0	0
MAX	.66	63	20	48	2.6	67	6.6	.67	.01	0	0	0
MIN	0	0	0	0	. 53	2.7	.68	.01	0	0	0	0
AC-FT	2.9	202	85	312	65	623	136	17	.02	0	0	0

CAL YR 1986 TOTAL 5848.78 MEAN 16.0 MAX 665 MIN 0 AC-FT 11600 AC-FT 1440 WTR YR 1987 726,96 TOTAL MEAN 1.99 MAX 67 MIN 0

SANTA ANA RIVER BASIN

11051501 SANTA ANA RIVER NEAR MENTONE, CA--Continued

COMBINED DISCHARGE, IN CUBIC FEET PER SECOND, OF SANTA ANA RIVER AND SOUTHERN CALIFORNIA EDISON CO.'S CANAL NEAR MENTONE, CA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	41	49	36	33	40	42	50	44	30	21	17	17
2	43	50	38	33	39	42	50	43	28	21	17	18
2 3	40	50	40	33	41	43	60	41	28	20	17	19
4	40	49	40	47	42	43	66	39	28	20	17	19
5	40	48	42	78	41	49	58	37	28	20	20	19
6 7	40	48	57	54	38	87	58	36	30	20	27	19
7	44	45	63	64	35	72	57	39	27	20	24	19
8	45	45	50	50	34	71	55	40	25	20	22	18
9	46	45	43	44	35	65	55	40	24	20	20	18
10	50	44	39	41	35	58	55	39	25	21	20	18
11	48	42	38	42	36	55	55	39	25	20	20	19
12	47	43	37	41	35	52	54	38	24	19	19	20
13	44	44	37	41	35	51	52	38	24	19	20	21
14	43	42	36	40	36	50	51	40	24	18	22	21
15	43	41	36	39	35	64	50	40	24	18	22	19
16	40	39	35	33	35	58	49	38	24	19	20	19
17	40	41	35	31	34	55	49	36	24	21	19	19
18	37	78	35	36	34	54	48	36	23	21	19	19
19	36	47	35	40	34	59	47	37	25	20	19	18
20	34	45	37	37	34	56	44	37	25	24	18	18
21	36	40	35	35	33	61	45	37	25	26	18	18
22	36	41	34	36	34	67	46	36	24	22	18	18
23	36	39	34	36	36	67	45	35	23	21	18	21
24	36	37	34	35	35	63	44	35	22	20	18	21
25	36	35	34	35	39	60	44	37	22	18	18	20
26	42	34	34	35	38	57	44	41	22	18	18	20
27	43	33	34	35	38	55	45	39	21	18	17	19
28	43	34	33	52	42	55	46	36	21	20	17	19
29	43	34	33	53		52	44	35	21	19	17	18
30	47	33	33	45		51	45	33	21	18	17	18
31	49		33	42		50		32		17	17	
TOTAL	1288	1295	1180	1296	1023	1764	1511	1173	737	619	592	569
MEAN	41.5	43.2	38.1	41.8	36.5	56.9	50.4	37.8	24.6	20.0	19.1	19.0
MAX	50	78	63	78	42	87	66	44	30	26	27	21
MIN	34	33	33	31	33	42	44	32	21	17	17	17
AC-FT	2550	2570	2340	2570	2030	3500	3000	2330	1460	1230	1170	1130

CAL YR 1986 TOTAL 21729 MEAN 59.5 MAX 666 MIN 30 AC-FT 43100 WTR YR 1987 TOTAL 13047 MEAN 35.7 MAX 87 MIN 17 AC-FT 25880

11051500 SANTA ANA RIVER NEAR MENTONE. CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1982 to current year. WATER TEMPERATURE: Water years 1982 to current year. SEDIMENT DATA: Water years 1982 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: January 1982 to current year.

SUSPENDED-SEDIMENT DISCHARGE: January 1982 to current year.

REMARKS, -- Sediment-discharge values were estimated for those days that have no daily concentration values.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SEDIMENT CONCENTRATION: Maximum daily mean, 10,100 mg/L, Mar. 1, 2, 1983; minimum daily mean, no flow at times in some years.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

SEDIMENT LOAD: Maximum daily discharge, 49,300 tons, Mar. 1, 1983; minimum daily, 0 ton many days each year.

EXTREMES FOR CURRENT YEAR. --

MONTH

SEDIMENT CONCENTRATION: Maximum daily mean, 426 mg/L, Nov. 18; minimum daily mean, no flow on many days. SEDIMENT LOAD: Maximum daily, 129 tons, Nov. 18; minimum daily, 0 ton on many days.

ONCE-DAILY DAY OCT NOV DEC APR JUN JUL SEP FEB MAR MAY AUG JAN 18.0 21.5 16.0 ___ 2 18.0 ___ 17.0 18.0 ---3 23.0 ___ ---11.5 18.5 15.5 ---10.5 25.0 18.0 10.5 5 ___ ___ 6.5 9.5 15.5 19.5 28,5 6 19.0 7.0 ___ ---14.0 17.5 ---___ 9.0 ___ 7 ---9.5 ---22.0 ___ ___ ___ 8 5.5 10.5 ___ q ------7.5 16.0 15.5 24.5 10 ___ ---12.0 19.5 24.0 19.0 11 ___ ---___ ___ ---13.5 18.0 ---___ 8.0 ---___ 12 15,5 26.0 ---___ ___ 18.0 13 9.0 ___ 25.5 14 9.0 18,0 16.0 15 25.0 8.5 10.0 16 4.5 15.0 17.0 25.0 ___ ------17 ___ 17.5 18.5 ---___ ---15.0 ---18 17.0 ___ 19 ---15.0 ---___ 20 ___ 12.0 5.5 11.0 19.0 ___ ---6.5 ___ 21 14.0 14,0 22.0 22 ---5.5 13.0 17.0 26.5 21.5 ------23 14.5 ---18.0 ---16.0 ___ ___ ___ ___ 24 15.0 15.0 20.5 ---___ 25 12.5 19.0 14.5 19.5 26 ---___ 10.0 ---14.0 15.0 18.0 ---___ ---27 12.5 15.5 19.0 ------12,0 ---28 14.5 9.0 29 ------10.5 ---11.0 ---------16.5 30 10.5 21.5 ------___ ---31 ---14.0

11051500 SANTA ANA RIVER NEAR MENTONE, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5 6 7 8 9	.66 .47 .19 .10 .04 .01 .00 .00	4 4 3 3 2 2 0 0 0	.01 .01 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 12 20 9.8 .82 .12	0 0 0 0 0 32 43 17 8 7	.00 .00 .00 .00 .00 2.9 2.3 .45 .02
11 12 13 14 15 16 17 18 19 20	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 63 33 5.8	0 0 0 0 0 0 0 426 8	.00 .00 .00 .00 .00 .00 .00 .129	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00
21 22 23 24 25 26 27 28 29 30 31	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	.05 .00 .00 .00 .00 .00 .00	1 0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00 .00
TOTAL	1.47		0.02	101.85		129.26	42.74		5.67
DAY 1 2 3 4 5 6 7 8 9 10	.00 .00 .00 12 48 13 11 7.3 4.5 3.4	JANUARY 0 0 0 69 161 23 88 8 4	.00 .00 .00 16 29 .81 2.6 .16 .05	1.7 1.5 1.3 .79 .64 .60 .53 .59 .64	FEBRUARY 2 2 2 1 1 2 2 2 2 2 2 2 2	.01 .01 .01 .00 .00 .00 .00	2.8 2.8 2.7 2.7 2.7 50 67 40 11 5.4	MARCH 2 3 4 2 2 2 203 108 60 8 4	.02 .02 .03 .01 .01 27 20 6.5 .24
11 12 13 14 15 16 17 18 19 20	2.8 2.4 2.2 2.2 2.0 1.9 2.7 3.0 2.3	2 1 1 1 1 3 4 3 3	.02 .01 .01 .01 .01 .02 .03 .02	. 87 . 74 . 81 . 96 . 87 . 94 . 87 . 90 . 96 . 85	3 3 3 4 4 3 3 3 2	.01 .01 .01 .01 .01 .01 .01 .01	4.6 4.1 3.8 3.7 11 9.5 6.5 5.0 6.1 6.1	4 3 3 94 16 6 4 4 3	.05 .03 .03 .03 2.8 .41 .11 .05 .07
21 22 23 24 25 26 27 28 29 30 31	1.2 1.3 1.2 1.3 1.1 .95 .94 13 11 2.0 1.7	1 1 2 1 1 1 1 90 18 2 2	.00 .00 .01 .00 .00 .00 .00 3.2 .53 .01	.85 .87 1.3 2.3 2.5 2.3 2.2 2.6 	2 2 3 3 3 3 2 	.00 .00 .01 .02 .02 .02 .02 .01	6.9 10 9.8 7.2 6.1 5.3 4.8 4.5 4.1 4.0 3.7	5 10 10 5 4 3 3 2 2 2 2	.09 .27 .26 .10 .07 .04 .02 .02 .02 .02

11051500 SANTA ANA RIVER NEAR MENTONE, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) APRIL	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) MAY	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L) JUNE	SEDIMENT DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9	3.4 3.2 4.4 6.6 4.3 4.0 3.5 3.0 2.9 2.7	1 1 6 16 3 2 2 2 2 2 2	.01 .08 .34 .03 .02 .02 .02	.67 .61 .55 .52 .48 .46 .51 .51	1 1 1 2 2 2 3 2 2 2 2 2	.00 .00 .00 .00 .00 .00 .00	.01 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00
11 12 13 14 15 16 17 18 19 20	2.7 2.6 2.4 2.3 2.0 1.9 1.8 1.9 1.8	4 1 1 1 1 1 1 1 1	.03 .01 .01 .01 .01 .01 .00 .01	.38 .33 .31 .30 .31 .27 .23 .18 .17	2 2 4 4 5 5 5 5 5	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00
21 22 23 24 25 26 27 28 29 30 31	1.6 1.2 1.0 .90 .88 .79 .74 .68 .70	1 2 2 2 2 2 1 1 1 1 1	.00 .01 .01 .00 .00 .00 .00 .00	.15 .09 .08 .07 .08 .09 .08 .05 .03	5 5 4 4 4 4 4 4	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00 .00
TOTAL DAY	68.33	 JULY	0.67	8.68	ATTOTTOM	0.00	0.01		0.00
1 2 3 4 5 6 7 8 9		JULI			AUGUST			SEPTEMBER	
11 12 13 14 15 16 17 18 19 20									
21 22 23 24 25 26 27 28 29 30 31									
TOTAL	0.00		0.00	0.00		0.00	0.00		0.00
YEAR	726,96		246.87						

11055500 PLUNGE CREEK NEAR EAST HIGHLANDS, CA

LOCATION .-- Lat 34°07'06", long 117°08'27", in NE 1/4 NE 1/4 sec.1, T.1 S., R.3 W., San Bernardino County, Hydrologic Unit 18070203, on left bank at mouth of canyon at crossing of North Fork ditch siphon, 1.8 mi northeast of East Highlands. DRAINAGE AREA. -- 16.9 mi².

PERIOD OF RECORD, -- January 1919 to current year; combined records of creek and diversions, March 1951 to current vear.

GAGE,--Water-stage recorder on creek. Since March 1951 water-stage recorder and weir on upper diversion; water-stage recorder and concrete-lined canal on middle diversion; crest-stage gage and sharp-crested weir on lower diversion. Elevation of creek gage is 1,590 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1969, creek gage at datum 4.00 ft higher. Diversions all at different datums.

REMARKS. -- Estimated daily discharges: Oct. 1-6. Records fair. No regulation above station. Diversion from Alder Creek to Upper Plunge Creek area was active 1904-67. Diversions for irrigation are made at sites 0.5, 1.0, and 2.5 mi above station. Water has been diverted above station for irrigation during entire period of record. Combined discharge of Plunge Creek and upper, middle, and lower diversions is given on following page. No flow in lower diversions since May 29, 1966. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE.—Creek only: 68 years, 6.80 ft 3/s, 4,930 acre-ft/yr.

Combined creek and diversions: 36 years, 8.88 ft 3/s, 6,430 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—Creek only: Maximum discharge, 5,340 ft 3/s, Mar. 2, 1938 on basis of slope-area

measurement of peak flow; no flow at times in some years.

Combined creek and diversions: Maximum discharge, 4,770 ft³/s, Dec. 6, 1966; no flow Nov. 12, 1964,

Sept. 29, 1965, Aug. 4, 1987. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft³/s and maximum (*):

Creek only Combined creek and diversions Discharge (ft3/s) Gage height Discharge (ft 3/s) Date Time (ft)

Jan. 4 *67 *3 79 *69 2015 Creek only: No flow for many days, June through September.

Combined creek and diversions: No flow Aug. 4.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					1.	MAN AVEOR	,D					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.49	. 54	1.2	.81	3,3	4.3	5.5	.32	.05	.02		
2	.75	. 59	1.3	.81	3.3	4.3	5.2	.30	.03	.01		
3	1.2	.86	1.3	.74	3.1	4.3	11	.29	.01	0		
4	1.1	.86	1.3	10	3.0	4.0	12	.25	0	Ö		
5	.58	.85	1.3	19	1.6	4.0	10	. 25	.24	Ö		
									. 24	U		
6	.67	. 87	6.9	8.7	.49	20	9.7	. 22	. 51	0		
7	, 59	.99	11	10	.49	12	7.2	.24	. 14	0		
8	.63	1.0	5.3	8.1	.45	8.8	3.9	.30	. 17	0		
9	.71	.92	3.9	6.5	.41	7.5	2.0	.29	.06	0		
10	1.0	.88	3.3	5,6	.42	6.2	1.6	.35	.01	0		
11	1.1	.91	3.0	5.1	. 47	5.6	1.4	.34	.01	0		
12	1.0	.89	2.8	4.4	.49	5.6	1.3	.28	.01	Ö		
13	.82	.88	2.8	4.2	.54	5.2	1.1	.24	.01	Ö		
14	.76	.88	2.6	3.9	.58	4.9	.89	.25	.01	ŏ		
15	.71	.92	2.6	3.8	.62	8.3	.66	.24	.01	Ö		
	• * *		2.0		.02	0.0	.00	. 24	.01	U		
16	.71	. 95	2.6	3.7	.61	6.4	.65	.25	.01	0		
17	.83	. 93	2.6	3.6	.58	6.3	.62	.21	.01	0		
18	1.0	8.8	2.6	3.7	. 53	6.1	.68	.20	0	0		
19	1.1	2.4	2.6	2.1	.49	7.8	.63	.18	.01	0		
20	, 99	1.6	3.6	1.6	.49	7.2	. 59	.24	0	0		
21	.93	1.4	3.0	1.5	.49	8.1	, 52	. 25	0	0		
22	.93	1.3	2.8	.33	.49	9.7	.49	.21	0	Ö		
23	.99	1.4	2.8	.29	.59	9.2	.50	.17	.02	Ö		
24	1.0	1.2	2.8	.29	2.5	8.9	.45	.19	.02	0		
25	.90	1.2	2.8	.29								
23	.90	1.2	2.0	. 29	4.6	8.4	. 44	.16	.02	0		
26	.81	1.1	2.9	.31	4.6	8.1	. 44	. 17	.02	0		
27	.79	1.2	3,1	.35	4.3	8.0	.38	.21	.03	0		
28	.76	1.2	3.2	. 53	4.3	7.6	.34	.19	.03	0		
29	1.4	1.2	3.0	2.0		7.0	.29	.11	.04	0		
30	1,5	1.2	2.0	3.9		6.8	.34	. 14	.06	0		
31	1.1		.80	3.6		6.1		.09		0		
TOTAL	27.85	39,92	93.80	119.75	43.83	226.7	80.81	7.13	1.54	.03	0	0
MEAN	.90	1.33	3.03	3.86	1.57	7.31	2.69	.23	.051	.001	ŏ	ŏ
MAX	1,5	8.8	11	19	4.6	20	12	.35	.51	.02	0	0
MIN	.49	. 54	.80	.29	.41	4.0	.29	.09	. 51	.02	0	0
AC-FT	55	79	186	238	87	450	160	14	3.1	.06	0	0
.10 . 1		, 3	100	200	0,	450	100	74	3.1	.00	U	U

MEAN 5,69 AC-FT 4120 AC-FT 1270 CAL YR 1986 TOTAL 2077.63 MAX 270 MIN 0 WTR YR 1987 TOTAL 641.36 MEAN 1.76 MAX 20 MIN 0

COMBINED DISCHARGE, IN CUBIC FEET PER SECOND, OF PLUNGE CREEK AND DIVERSIONS NEAR EAST HIGHLANDS, CA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

11055501 PLUNGE CREEK NEAR EAST HIGHLANDS, CA--Continued

					•		_					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.2	1.5	2.1	1.9	3.3	4.3	5.5	3.3	1.4	. 96	.61	.57
2	1,6	1.5	2.2	3.2	3.3	4.3	5.2	3.2	1.3	.92	.65	.56
			2.2	3.2	3.3	4.3	11		1.2			
3	2.0	1.6						2.8		. 86	.37	. 50
4	1.8	1.6	2.2	11	3.0	4.0	12	2.6	1.1	. 86	0	. 52
5	1,2	1.7	2.2	19	2.4	4.0	10	2.4	1.7	. 87	.41	. 52
6	1.3	1.7	7.6	8.7	1,8	20	9.7	2.1	1.9	.90	.71	. 54
7	1.3	1.8	11	10	3.0	12	9.1	2.1	1.4	.88	.70	. 57
8	1.3	1.8	5,3	8.1	3.0	8.8	7.5	2.5	1.4	.89	.68	. 57
9	1.4	1.7	3.9	6.5	2.9	7.5	6.2	2.4	1.3	. 92	.65	. 57
10	1.7	1.7	3.3	5,6	2.9	6.2	5.9	2.2	1.1	.95	.67	.58
10	1.,		0.0	3,0	2.5			2.2	1.1	. 65		
11	1.9	1.7	3.0	5.1	3.1	5.6	5,5	2.1	1.0	.91	.68	. 59
12	1.8	1.7	2.8	4.4	3,0	5.6	5.4	2.1	. 95	.85	.72	.67
13	1.6	1.7	2.8	4.2	3.1	5.2	5.0	1.9	. 93	.83	.80	.73
14	1.5	1.7	2.6	3.9	3.3	4.9	5.0	1.9	. 95	.80	,80	.71
15	1.4	1.7	2.6	3.8	3.1	8.3	4.7	2.0	. 97	.78	.80	.64
16	1.4	1.7	2,6	3.7	3.0	6.4	4.6	2.1	. 95	. 87	.80	.61
17	1,5	1.7	2.6	3.6	2.9	6.3	4.3	2,0	, 87	1.0	.80	. 59
18	1.8	9.9	2.6	3.7	2.8	6.1	4.5	1.9	. 84	.99	. 83	. 57
19	1.9	3.8	2.6	3.6	2.8	7.8	4.2	2,1	, 85	.90	.79	.52
20	1.8	2.5	3.6	4.0	2.8	7.2	4.0	2.2	. 93	1.0	.78	.49
20	1.0	2.3	3.0	4.0	2.0	7.2	4.0	2.2	. 93	1.0	.70	.45
21	1.7	2.3	3.0	4.3	2.8	8.1	3.6	2.4	1.0	1.0	.74	.50
22	1.7	2.7	2.8	3.0	2.9	9.7	3.5	2.2	. 96	. 95	.71	. 53
23	1.7	2.8	2,8	3.0	3.4	9.2	3.3	2.1	. 85	.88	.70	. 54
24	1.7	2.0	2.8	3.1	6.3	8.9	3.3	2.1	.78	. 84	.69	.58
25	1,6	2.1	2.8	3.2	6.0	8.4	3.1	2.1	.73	.78	.61	.65
23	1,0	2.1	2.0	3,2	6.0	0.4	3,1	2.1	./3	.70	.01	.03
26	1.6	2.0	2.9	3.2	4.6	8.1	3.1	2.3	.70	.71	.61	. 64
27	1.6	2.1	3.1	3,3	4.3	8.0	3.3	2.4	. 69	.71	. 63	. 63
28	1,6	2.1	3.2	3,5	4.3	7.6	3.3	2.1	, 65	.69	. 63	.61
29	1.4	2.1	3.0	3.6		7.0	3.2	1.9	.76	.68	.61	.59
30	1.5	2.1	2.3	3.9		6,8	3,5	1.9	. 96	. 67	.61	, 56
31	1.8		1.8	3,6		6.1		1.6		, 65	.60	
TOTAL	49.3	67.0	100.3	154.7	93.2	226.7	162.5	69.0	31.12	26,50	20.39	17.45
MEAN	1.59	2.23	3.24	4.99	3.33	7.31	5.42	2.23	1.04	.85	.66	. 58
MAX	2.0	9.9	11	19	6,3	20	12	3,3	1.9	1.0	. 83	.73
MIN	1.2	1.5	1.8	1.9	1.8	4.0	3.1	1.6	.65	.65	.00	.49
AC-FT	98	133	199	307	185	450	322	137	62	53	40	35
AC-FI	90	100	199	307	102	430	322	13/	02	23	40	33

CAL YR 1986 TOTAL 2515.62 MEAN 6.89 MAX 271 MIN .17 AC-FT 4990 WTR YR 1987 TOTAL 1018.16 MEAN 2.79 MAX 20 MIN 0 AC-FT 2020

11055800 CITY CREEK NEAR HIGHLAND, CA

LOCATION.--Lat 34°08'38", long 117°11'16", in SW 1/4 NW 1/4 sec.27, T.1 N., R.3 W., San Bernardino County, Hydrologic Unit 18070203, on right bank 0.6 mi upstream from Highland Avenue and 1.5 mi northeast of Highland.

DRAINAGE AREA, -- 19,6 mi²,

PERIOD OF RECORD. -- October 1919 to current year; combined records of creek and canal, June 1924 to September 1986.

GAGE.--Water-stage recorder on creek. Elevation of creek gage is 1,580 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Mar. 1, 1939, at site 0.2 mi downstream at different datum. Canal gage at different datum.

REMARKS.--Estimated daily discharges: Apr. 15 to May 3. Records fair except for estimated daily discharges, which are poor. No regulation above station. City Creek Water Co.'s canal diverted from a site 0.5 mi above station for irrigation throughout period of record until Sept. 30, 1986. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE.--Creek only: 68 years, 9.69 ft³/s, 7,020 acre-ft/yr. Combined creek and canal: 62 years, 11.4 ft³/s, 8,260 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Creek only; Maximum discharge, 7,000 ft³/s, Feb. 25, 1969, gage height, 9.39 ft, from rating curve extended above 580 ft³/s on basis of slope-area measurement at gage height 8.82 ft; no flow for several months in some years.

Combined creek and canal: Maximum discharge, 7,000 ft³/s, Feb. 25, 1969; no flow at times in some years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 150 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	2400	*108	*4,57				

Minimum daily, 0.12 ft³/s, Aug. 2-4.

		DISCHARGE,	IN CUBIC	FEET		WATER	YEAR OCTOBER JES	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.8 2.7 2.2 1.8 1.5	1.4 1.7 1.7 1.7	2.7 2.7 2.8 2.9 2.9	3.5 3.4 3.3 19 31	3.8 3.8 3.8 3.7 3.4	5.1 5.4 5.1 5.2 5.4	4.4 4.3 13 25 13	2.6 2.5 2.1 2.0 1.9	1.5 1.2 1.0 .81	.40 .45 .41 .36 .35	.13 .12 .12 .12 .13	.13 .14 .15 .15
6 7 8 9 10	1.6 1.5 1.7 1.8 2.6	2.0 2.3 2.3 2.1 2.0	9.5 8.4 4.1 3.5 3.1	11 13 8.9 6.5 5.3	3.4 3.4 3.4 3.6	20 11 8.9 7.4 6.6	11 8.5 7.0 6.1 5.5	1.8 1.9 2.2 2.2 2.0	.75 .95 1.0 1.1	.38 .42 .42 .45 .57	.14 .14 .14 .13	.14 .14 .13 .13
11 12 13 14 15	2.8 2.6 1.8 1.7 1.6	1.8 1.8 1.8 2.0	2.9 2.9 2.9 2.8 2.7	4.6 4.2 4.0 3.9 3.8	3.7 3.7 3.8 4.0 3.8	5.8 5.5 5.1 5.1 8.4	5.3 5.1 4.6 4.2 4.0	2.0 2.1 1.9 1.9 2.0	.93 .86 .75 .74 .80	.52 .26 .21 .17 .17	.14 .14 .15 .22 .19	.14 .17 .17 .17
16 17 18 19 20	1.6 1.9 2.1 2.1 1.9	2.2 2.3 11 4.1 3.2	2.7 2.7 2.7 2.8 4.0	3.6 3.5 3.5 3.5 4.4	3.7 3.5 3.5 3.5 3.4	5.9 5.5 5.2 8.6 7.3	3.7 3.6 3.9 3.4 3.1	2.1 2.0 2.0 2.2 2.5	.80 .67 .58 .59	.18 .22 .38 .30 .27	.17 .16 .17 .16 .16	.16 .17 .16 .16
21 22 23 24 25	1.7 1.6 1.7 1.7	3.1 2.9 2.8 2.8 2.8	3.7 3.4 3.3 3.3 3.3	4.8 4.6 4.5 4.6 4.4	3.5 3.5 4.4 5.5 5.6	8.6 11 8.8 8.2 7.5	2.8 2.6 2.6 2.5 2.3	2.7 2.5 2.3 2.4 2.5	.88 .82 .54 .43 .36	.49 .42 .32 .25	.15 .15 .15 .15	.16 .16 .18 .19
26 27 28 29 30 31	1.3 1.3 1.2 1.3	2.7 2.7 2.7 2.7 2.6	3.3 3.3 3.4 3.4 3.4	4.1 3.9 4.4 3.9 4.0 3.9	5.1 4.8 5.1 	6.7 6.2 5.7 5.3 4.9 4.6	2.3 2.5 2.5 2.3 2.6	3.0 3.0 2.8 2.4 2.1	.32 .30 .29 .30 .33	.17 .16 .15 .14 .14	.16 .15 .14 .14 .14	.21 .22 .20 .19 .17
TOTAL MEAN MAX MIN AC-FT	55.3 1.78 2.8 1.2 110	78.8 2.63 11 1.4 156	108.8 3.51 9.5 2.7 216	191.0 6.16 31 3.3 379	109.8 3.92 5.6 3.4 218	220.0 7.10 20 4.6 436	163.7 5.46 25 2.3 325	69.3 2.24 3.0 1.7 137	21.86 .73 1.5 .29	9.47 .31 .57 .13 19	4.58 .15 .22 .12 9.1	4.86 .16 .22 .13 9.6

CAL YR 1986 TOTAL 2778.33 MEAN 7.61 MAX 250 MIN .19 AC-FT 5510 WTR YR 1987 TOTAL 1037.47 MEAN 2.84 MAX 31 MIN .12 AC-FT 2060

11057500 SAN TIMOTEO CREEK NEAR LOMA LINDA, CA

LOCATION.--Lat 34°03'46", long 117°16'16", in NE 1/4 NW 1/4 sec.26, T.1 S., R.4 W., San Bernardino County, Hydrologic Unit 18070203, on left bank 200 ft upstream from Redlands Boulevard bridge and 0.6 mi northwest of Loma Linda.

DRAINAGE AREA, -- 125 mi².

PERIOD OF RECORD. --October 1954 to September 1965, February 1968 to October 1973, April 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,030 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to April 1979, water-stage recorders at site 0.2 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Feb. 22 to May 9 and Aug. 30 to Sept. 30. Records poor. No regulation above station. Natural flow affected by pumping and return flow from irrigated areas.

AVERAGE DISCHARGE.--24 years (1955-65, 1969-73, 1980-87), 2.74 ft³/s, 1,980 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,000 ft³/s, Feb. 25, 1969, gage height, 8.2 ft, from floodmark, from rating curve extended above 2,100 ft³/s on basis of slope-conveyance study of peak flow, at site and datum then in use; no flow for many days each year.

EXTREMES FOR CURRENT YEAR, -- Peak discharges greater than base discharge of 150 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 5	1745	*99	*3.38				

DISCUADED IN CHRIC PERT DED SECOND. WATER VEAD OCTOBER 1086 TO SEPTEMBER 1087

No flow for many days.

		DISCHARGE,	, IN CUE	SIC FEET	PER SECOND	, WATER EAN VALU	YEAR OCTOBER IES	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
_		_				•	_					_
1	.02	0	. 15	.21	.03	0	0	.16	1.5	1.4	1.7	0
2	.02	.07	. 41	. 47	0	0	0	.10		1.2	.90	2.0
3	.01	0	0	. 57	Ō	0	.20	.06	.31	. 91	.09	1.3
4	.12	0	0	16	0	0	0	.50	0	.26	. 53	. 90
5	.07	0	, 29	19	.04	0	1.2	2.8	.06	.28	.04	.70
6	. 50	.83	11	3.3	.02	2.0	.60	2.3	.23	. 68	.50	.40
7	.60	.80	4.6	3.5	.09	. 50	.35	1.7	.18	.11	. 22	.20
8	.09	. 59	, 66	.03	.01	.02	0	1.0	0	.03	0	0
9	. 55	. 59	.37	0	, 54	.03	0	.11	0	0	.32	0
10	4.2	.36	. 24	Ó	. 47	.04	Ö	.06	Ö	.03	. 14	1.4
			•		• • •	• • •	-		-	•••		
11	.11	.88	.18	0	. 12	. 04	2.0	.35	.31	0	3.0	.80
12	.74	.79	. 14	ō	,09	.03	1.0	.15	1.4	. 13	.96	. 45
13	1.2	1.4	.14	ŏ	1.9	.02	.25	3.2	3.4	.75	2.1	,35
14	.90	1.0	.16	.15	,33	0	,15	1.4	2.7	.41	1.7	.28
15	.37	.73	,16	.24	.02	.10	.20	.80	.46	0	2.2	,25
13	,37	.73	,10	. 24	.02	.10	,20	.00	.40	U	2,2	.23
16	.01	.03	.07	.03	0	.04	.60	. 87	. 43	0	4.5	.37
17	.38	.20	.01	0	0	0	3.0	.90	. 29	.07	.75	.29
18	.33	4.4	.02	0	0	0	3.5	. 50	, 27	.06	1.1	. 22
19	0	. 24	.01	.02	.10	0	1.5	.72	.07	0	. 24	.04
20	.03	.45	.03	. 0	0	0	.80	.16	.33	0	1.0	0
21	.20	. 61	.08	.01	0	0	. 50	1.1	3.0	. 12	. 92	0
22	. 59	1.2	.06	.02	.01	.40	.14	3.0	4.0	.78	.31	Ö
23	.60	.60	0	.22	.05	.25	0	3.9	2.4	1.3	1.9	6.0
24	1.1	.65	.08	.03	1.5	.20	Ö	1.6	.51	1.8	5.7	1.5
25	.69	.70	0	.03	7.5	.15	2.5	1.8	.28	.94	6.4	.30
23	.03	.70	U	.03	7.5	.13	2.5	1.0	. 20	, 94	0.4	.30
26	.31	, 62	0	.02	4.0	. 10	1.0	. 98	.01	.61	1.7	.20
27	0	. 07	0	0	1.5	.15	,35	.01	0	.07	.29	.10
28	.02	.03	0	. 53	0	.25	.25	.04	.89	.67	.10	.04
29	.13	. 25	Õ	0		0	.02	. 49	2.3	,36	. 11	.02
30	.13	.08	ō	ŏ		Ŏ	.25	.92	.70	.18	0 . 11	0
31	.01		, 14	Õ		Ö	.25	1.2		.59	ŏ	
				v		U		1,2		. 58	v	
TOTAL	14.03		19.00	44.38	18.32	4.32	20.36	32.88	26.59	13.74	39.42	18.11
MEAN	.45	.61	.61	1.43	.65	.14	.68	1.06	. 89	. 44	1.27	.60
MAX	4.2	4.4	11	19	7.5	2.0	3.5	3,9	4.0	1.8	6.4	6.0
MIN	0	0	0	0	0	0	0	.01	0	0	0	0
AC-FT	28	36	38	88	36	8.6	40	65	53	27	78	36

CAL YR 1986 TOTAL 715,38 MEAN 1.96 MAX 168 MIN 0 AC-FT 1420 WTR YR 1987 TOTAL 269.32 MEAN .74 MAX 19 MIN 0 AC-FT 534

11058500 EAST TWIN CREEK NEAR ARROWHEAD SPRINGS, CA

LOCATION.--Lat 34°10'45", long 117°15'53", in NE 1/4 NE 1/4 sec.14, T.1 N., R.4 W., San Bernardino County, Hydrologic Unit 18070203, on right bank 1,000 ft upstream from Del Rosa Water Co.'s diversion, 0.5 mi south of Arrowhead Springs, and 1.0 mi downstream from Strawberry Creek.

DRAINAGE AREA. -- 8.80 mi².

PERIOD OF RECORD. -- December 1919 to current year. Prior to October 1952, published as Strawberry Creek near Arrowhead Springs.

GAGE.--Water-stage recorder. Elevation of gage is 1,590 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Jan. 9 to Mar. 5 and Mar. 9. Records fair except those for estimated daily discharges, which are poor. No regulation above station. One small diversion for domestic use above station. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE. -- 67 years (water years 1921-87), 4.90 ft³/s, 3.550 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,710 ft³/s, Jan. 29, 1980, gage height, 8.35 ft on basis of slope-area measurement of peak flow; no flow at times in 1929, 1931-35.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 40 ft³/s and maximum (*), from rating curve extended above 120 ft³/s on basis of slope-area measurement at gage height 8.35 ft:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	1815	*211	*3.76	Apr. 3	2230	46	2.61

Minimum daily, 0.35 ft³/s, Aug. 5.

		DISCHARGE,	IN CUBIC	FEET		WATER Y AN VALU	YEAR OCTOBER	1986	TO SEPTEMBER	1987		
					PIE	AM VALUI	25					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.99	1.1	1.9	1.8	1,9	1.5	2.0	1.8	1.1	.49	,50	. 44
2	1.3	1.3	2.0	1.7	1.9	1.4	2.0	1.7	.96	.48	.46	.40
3	1.3	1.3	1.8	1.8	1.9	1.4	9.9	1.5	.93	. 50	.45	.41
4	1.0	1.3	1.8	26	1.8	1.4	11	1.4	.87	.50	,39	.39
5	. 95	1.3	1.8	14	1.8	1.7	4.4	1.2	.69	. 50	.35	.42
6	.91	1.3	4.6	3.0	1.8	6.7	3.1	1.2	. 54	. 50	.45	.41
7	.85	1,5	3.2	4.0	1.7	2.5	2.5	1.3	. 56	.51	.46	.40
8	.91	1.6	2.5	2.7	2.0	2.1	2.2	1.3	.78	. 47	.45	.40
9	.96	1.5	2.1	2.4	1.7	2.0	2.0	1.3	.75	. 54	.48	. 43
10	1.5	1.4	1.6	2.3	1.7	2.8	1.8	1.4	.67	. 54	.41	. 44
11	1.4	1.2	1.7	2.3	1.6	2,4	1.8	1,5	. 57	. 52	.42	.51
12	1.3	1.2	1.6	2.2	1.6	2.2	1.8	1.3	. 54	.47	. 42	. 58
13	.98	1.3	1.8	2.2	1.6	2.2	1.6	1.3	.51	.40	.43	.64
14	,86	1.3	1.7	2.1	1.5	2.2	1,6	1.4	,61	.40	,58	.67
15	. 93	1.4	1.7	2.1	1.5	3.4	1.5	1.5	.71	.39	. 53	. 59
16	1.0	1.6	1.7	2.1	1.5	2.3	1.4	1.5	.66	. 42	.51	.58
17	1.3	1.7	1,6	2.0	1.5	2.2	1.4	1.5	. 53	.72	. 52	. 56
18	1.3	6.1	1.6	2.0	1.4	2.1	1,6	1.4	. 50	. 59	.58	. 56
19	1.4	2.3	1.6	2.0	1.4	2.9	1.5	1.6	. 40	. 54	.50	. 50
20	1.2	1.8	1.9	2.3	1.3	2.3	1.4	1.7	. 47	. 63	. 47	. 59
21	1.1	1.7	1.8	2.4	1.3	3.1	1.3	1.7	. 52	.70	. 45	.58
22	1.0	1.8	1.7	2.1	1.3	3.3	1.3	1.6	. 53	.69	. 50	. 55
23	1.2	1.8	1.7	2.0	1.7	2.9	1.3	1.6	. 44	.63	.48	. 57
24	1.1	1,9	1.6	1.9	2,3	2.5	1.4	1.6	. 44	. 58	. 47	. 52
25	1.0	1.8	1.8	1.8	1.8	2.3	1.4	1.7	. 40	. 57	. 44	. 55
26	.99	1.7	1.7	1.8	1.7	2.2	1.4	1.9	.41	. 55	.48	.61
27	. 97	1.9	1.9	2.1	1,6	2.1	1.5	1.9	.40	. 52	.46	.67
28	. 97	1.9	1.8	2.2	1.5	2.1	1.4	1.7	. 40	. 50	.42	.60
29	1.0	1.9	1.7	2.1		2.0	1.7	1.5	.41	. 53	.48	, 57
30	1.2	1.8	1.7	2.0		1.9	1.9	1.4	. 46	.49	.41	. 53
31	1.3		1.7	2.0		2.0		1.3		. 43	. 42	
TOTAL	34.17	51.7		103.4	46.3	74.1		46.7		16.30	14.37	15.67
MEAN	1.10	1.72	1.91	3,34	1.65	2.39		1.51	. 59	. 53	.46	. 52
MAX	1.5	6.1	4.6	26	2.3	6.7	11	1.9	1.1	.72	. 58	. 67
MIN	.85	1.1	1.6	1,7	1.3	1.4	1.3	1.2	. 40	.39	.35	.39
AC-FT	68	103	118	205	92	147	141	93	35	32	29	31

CAL YR 1986 TOTAL 1818.60 MEAN 4.98 MAX 171 MIN .62 AC-FT 3610 WTR YR 1987 TOTAL 550.87 MEAN 1.51 MAX 26 MIN .35 AC-FT 1090

11059300 SANTA ANA RIVER AT E STREET, NEAR SAN BERNARDINO, CA

LOCATION .-- Lat 34°03'54", long 117°17'58", in San Bernardino Grant, San Bernardino County, Hydrologic Unit 18070203, 0.4 mi downstream from E Street bridge, 1.2 mi downstream from San Timoteo Creek, 0.4 mi upstream from Warm Creek, 2.8 mi south of San Bernardino, and 26 mi downstream from Big Bear Lake. DRAINAGE AREA.--541 mi².

PERIOD OF RECORD. -- March 1939 to September 1954, October 1966 to current year. GAGE. -- Water-stage recorder. Elevation of gage is 940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 10, 1950, water-stage recorder on right bank 0.4 mi upstream at datum 964.50 ft above NGVD. Nov. 11, 1950, to Sept. 30, 1954, water-stage recorder on both banks 0.4 mi upstream at datum 964.50 ft above NGVD. Oct. 1, 1966, to Sept. 30, 1976, water-stage recorder on right bank 0.4 mi upstream at datum 954.50 ft above NGVD. Oct. 1, 1976, to Sept. 30, 1977, gage was removed for channel construction. Oct. 1, 1977, to Jan. 28, 1981, water-stage recorder on right bank 0.5 mi upstream at elevation 950 ft above NGVD, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1 to Dec. 16, Jan. 4-9, and Mar. 31 to June 5. Records fair except those for estimated discharges, which are poor. Flow partly regulated by Big Bear Lake (station 11049000). Natural flow of stream affected by ground-water withdrawals and diversion for domestic use and irrigation above station. Effluent from sewage reclamation plant 1.0 mi upstream has caused sustained flow past gage

since 1967. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE.--15 years (water years 1940-54), 12.5 ft³/s, 9,050 acre-ft/yr; 21 years (water years 1967-87), 98.3 ft³/s, 71,220 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,000 ft³/s, Feb. 25, 1969, gage height, 11.9 ft, site and datum then in use; maximum gage height, 16.50 ft, Jan. 23, 1943, site and datum then in use, discharge uncertain, but was probably less than 8,000 ft³/s; no flow many days prior to 1967, minimum daily since 1967, 7.0 ft³/s, Mar. 29, 1971.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 5	0015	*1,000	*5.44				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 23 ft3/s, May 15.

		DISCHARGE	, IN COD	.C FEEL 1	l EK BECOM	MEAN VALUE	S COLOR	EK 1900 1	O BELLEVIO	LK 1907		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	40	52	35	46	50	51	34	40	37	38	36
2	45	42	52	36	47	49	52	33	32	37	38	36
3	44	43	52	36	42	49	69	32	42	36	39	37
4	43	44	52	113	40	51	55	31	36	36	37	38
5	43	43	60	500	38	51	48	31	45	36	36	39
6	42	43	220	145	37	164	45	30	43	39	37	40
7	43	43	280	180	36	105	44	30	40	40	38	40
7 8	45	43	70	90	34	82	43	32	40	41	36	38
9	50	43	70	48	35	67	42	34	40	44	35	37
10	120	43	54	50	36	61	40	33	40	40	37	37
11	50	43	95	51	35	60	40	30	40	43	39	37
12	42	43	45	52	35	57	41	31	39	41	37	37
13	41	44	50	52	46	55	41	28	39	41	39	38
14	41	45	50	51	48	54	41	35	39	39	39	38
15	41	45	45	51	42	102	40	23	38	38	40	36
16	42	45	40	52	42	64	38	36	38	38	37	38
17	42	100	38	52	41	58	37	26	37	39	38	37
18	41	340	37	53	41	55	36	30	38	39	39	36
19	41	100	37	49	43	59	36	33	38	39	39	35
20	41	70	42	48	42	66	35	35	37	40	40	36
21	40	50	37	55	42	100	36	37	38	42	39	37
22	40	49	37	55	44	75	36	40	41	39	38	36
23	39	41	36	53	57	57	36	33	40	40	37	41
24	40	43	37	50	102	50	34	33	38	40	41	38
25	40	45	34	53	129	52	32	33	38	38	40	37
26	41	45	35	50	62	52	30	36	37	37	39	35
27	42	50	36	47	57	51	30	42	36	39	39	34
28	41	60	36	58	58	52	32	36	35	39	38	36
29	40	52	37	50		53	31	44	37	39	38	37
30	39	58	36	52		53	33	37	37	39	36	35
31	39		36	47		53		34		39	36	
TOTAL	1380	1795	1838	2314	1357	2007	1204	1032	1158	1214	1179	1112
MEAN	44.5	59.8	59.3	74.6	48.5	64.7	40.1	33.3	38,6	39.2	38.0	37.1
MAX	120	340	280	500	129	164	69	44	45	44	41	41
MIN	39	40	34	°35	34	49	30	23	32	36	35	34
AC-FT	2740	3560	3650	4590	2690	3980	2390	2050	2300	2410	2340	2210

CAL YR 1986 TOTAL 28441 WTR YR 1987 TOTAL 17590 AC-FT 56410 AC-FT 34890 MEAN 77.9 MAX 2500 MIN 33 MEAN 48.2 MAX 500 MIN 23

11060400 WARM CREEK NEAR SAN BERNARDINO, CA

LOCATION.--Lat 34°04'42", long 117°17'58", in San Bernardino Grant, San Bernardino County, Hydrologic Unit 18070203, on left bank 0.2 mi downstream from Interstate Highway 215 bridge and 2.0 mi southwest of San Bernardino.

DRAINAGE AREA. -- 11.0 mi².

CAL YR 1986 TOTAL 9374.2 WTR YR 1987 TOTAL 7116.0 MEAN 25.7

MEAN 19.5

MAX 164

MAX 111

MTN

MIN

PERIOD OF RECORD. -- February 1964 to September 1972, October 1974 to current year.

REVISED RECORDS. -- WDR CA-83-1: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 960 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1974, at site 0.1 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Apr. 15 to May 27. Records good except those for estimated period, which are poor. Natural channel prior to September 1972; concrete-lined channel October 1974 to current year. Possible regulation at high flows by flood-control gates on Warm Creek Floodway, 3.0 mi upstream. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE.--8 years (water years 1965-72), 1.61 ft³/s, 1,170 acre-ft/yr; 13 years (water years 1975-87), 19.5 ft³/s, 14,130 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,000 ft³/s, estimated, Mar. 1, 1978, gage height unknown; no flow at times in some years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR..--Maximum discharge, 882 ft³/s, Jan. 4, gage height, 2.34 ft, from rating curve extended above 420 ft³/s on basis of step-backwater analysis; minimum daily, 10.0 ft³/s, Sept. 26-28.

			_,			MEAN VALUE	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	24	20	23	24	19	24	16	16	13	15	12
1 2	17	23	21	23	25	20	24	16	16	13	15	13
3	17	25	21	23	24	21	40	16	16	13	15	13
4	17	23	21	111	23	21	24	16	16	13	15	13
5	17	21	22	51	23	34	24	16	16	12	15	12
6	17	21	71	29	23	80	24	16	15	13	15	12
7	16	20	58	37	23	23	24	16	16	13	15	12
8	17	19	19	19	23	22	23	16	16	13	15	12
9	19	19	19	19	23	23	22	16	16	13	14	12
10	31	18	19	20	23	23	21	16	17	13	13	12
11	18	18	20	21	22	24	20	16	17	13	13	12
12	18	18	21	22	22	24	19	16	17	13	13	13
13	19	17	21	23	44	24	19	15	17	13	13	12
14	19	18	21	24	19	26	18	15	17	13	14	12
15	19	18	22	24	19	58	17	15	17	13	12	12
16	21	18	21	24	18	25	17	15	16	13	12	12
17	21	22	22	25	19	25	17	15	16	13	12	12
18	22	61	23	26	19	26	17	15	15	13	12	12
19	23	11	23	26	19	45	17	15	15	13	12	11
20	23	11	24	24	18	25	17	15	15	14	12	11
21	23	12	23	25	19	64	17	15	15	14	12	12
22	23	12	23	26	19	23	17	15	15	14	12	12
23	23	12	23	26	22	23	17	15	14	14	12	12
24	23	12	23	26	56	23	17	15	13	15	12	11
25	24	12	23	24	60	23	17	15	13	15	12	11
26	23	13	23	24	18	23	17	15	13	15	11	10
27	23	14	23	24	17	23	17	15	13	15	11	10
28	23	16	23	30	18	23	17	15	13	15	11	10
29	23	19	23	23		24	16	15	13	15	11	11
30	25	19	23	24		24	16	15	13	15	12	11
31	25		23	24		24		16		15	12	
TOTAL	646	566	762	870	682	885	596	478	457	422	400	352
MEAN	20.8	18.9	24.6	28.1	24.4	28.5	19.9	15.4	15.2	13.6	12.9	11.7
MAX	31	61	71	111	60	80	40	16	17	15	15	13
MIN	16	11	19	19	17	19	16	15	13	12	11	10
AC-FT	1280	1120	1510	1730	1350	1760	1180	948	906	837	793	698

AC-FT 18590 AC-FT 14110

6.2

10

11062000 LYTLE CREEK NEAR FONTANA, CA

LOCATION.--Lat 34°12'44", long 117°27'26", in NW 1/4 SE 1/4 sec.36, T.2 N., R.6 W., San Bernardino County, Hydrologic Unit 18070203, on right bank 75 ft upstream from highway culvert crossing, 0.7 mi upstream from right tributary, 2.3 mi downstream from Lytle Creek conduit, and 8 mi north of Fontana. DRAINAGE AREA.--46.6 mi².

PERIOD OF RECORD. --October 1918 to current year. Combined records of Lytle Creek and diversions, October 1898 to December 1899, October 1904 to current year (published as "at mouth of canyon near Rialto" 1898-99, as "near San Bernardino" 1904-18, and as Lytle Creek and Fontana pipeline near Fontana 1919-31). Monthly discharge only for some periods published in WSP 1315-B.

REVISED RECORDS. -- WDR CA-83-1: Drainage area.

GAGE .-- Water-stage recorder on creek. Dual arch-culvert control since 1964. Water-stage recorders and sharp-GAGE. --Water-stage recorder on creek. Dual arch-culvert control since 1964. Water-stage recorders and sharp-crested weirs on conduit since June 3, 1949, and infiltration line since Oct. 1, 1971. Elevation of creek gage is 2,380 ft above National Geodetic Vertical Datum of 1929, from topographic map. October 1918 to Mar. 21, 1938, at site 1 mi downstream at different datum. Mar. 22, 1938, to Nov. 20, 1963, at site 75 ft downstream at datum 4.58 ft lower. Sharp-crested weirs at different datum.

REMARKS.--Estimated daily discharges: Nov. 29 to Dec. 2, Feb. 6-13, 16-23, Apr. 12-17, and Apr. 29 to May 4. Records: Creek only, fair, except those for periods of estimated daily discharges, which are poor; combined creek and diversion fair. No regulation shows station. Southern California Edison Co.'s Lutle Creek conduit

creek and diversion, fair. No regulation above station. Southern California Edison Co.'s Lytle Creek conduit diverts 2.3 mi upstream for power development and Fontana Union Water Co. collects water from an infiltration line upstream for irrigation and domestic use. See schematic diagram of Santa Ana River basin. For records

of combined discharge of Lytle Creek and diversions, see following page.

AVERAGE DISCHARGE.—Creek only: 69 years, 18.3 ft³/s, 13,260 acre-ft/yr.

Combined creek and diversions: 84 years (water years 1899, 1905-87), 45.3 ft³/s, 32,820 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—Creek only: Maximum discharge, 35,900 ft³/s, Jan. 25, 1969, gage height, 15.0 ft, from floodmark, from rating curve extended above 570 ft³/s on basis of slope-area measurements at gage heights 10.78 and 15.0 ft; no flow at times most years.

Combined creek and diversions: Maximum discharge, 35,900 ft³/s, Jan. 25, 1969; minimum daily, 0.12 ft³/s,

June 21, 22, 1976,

EXTREMES FOR CURRENT YEAR. -- Creek only: Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Combined creek and diversions Creek only Discharge (ft³/s) Discharge (ft 3/s) Gage height Date Time (ft)

1700 *242 *4,45 *243 Jan. Minimum daily, Creek only: No flow for many days; combined creek and diversions, 9.4 ft3/s, Aug. 25.

> DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	5.1	4.4	1.7	1.1	.70	.43	.09				
2	14	5.1	4.4	1.6	. 93	.34	.32	.06				
3	13	5.1	4.4	1.5	. 85	. 22	5.1	.04				
4	11	5.0	3.7	91	.74	.13	12	.02				
5	9.2	5.0	3.4	32	. 63	14	1.3	.01				
6	8.7	5.2	4.8	3.7	.51	47	.76	0				
7	8.6	5.3	3.8	4.0	. 52	26	. 57	0				
8	8.4	5.2	3.3	2.7	. 50	11	. 42	0				
9	8.2	5.1	3.3	2.8	.60	8.4	.21	0				
10	9.9	4.9	3,2	3.2	.81	6.4	.20	0				
11	8.8	4.8	3,1	3.5	. 43	5.3	. 17	0				
12	7.3	4.6	2.9	4.1	.36	4.4	.11	0				
13	6.9	4.2	2.8	4.2	. 86	3.8	. 12	0				
14	7.0	4.5	3.0	4.7	.69	3.6	. 12	0				
15	7.4	4.2	2.8	7.8	. 47	4.4	.09	0				
16	7.3	4.5	2.7	27	.36	2.9	.07	0				
17	7.8	4.7	3.0	27	.41	2.4	.06	0				
18	7.6	55	2.5	7.8	.38	2.1	. 11	0				
19	7.4	14	2.7	6.7	. 17	2.0	. 12	0				
20	6.8	5.0	3.2	11	.18	1.8	. 14	0				
21	6.4	4.5	2.4	10	.19	3.8	.12	0				
22	6.3	4.2	2.4	7.6	. 14	2.6	.07	0				
23	6.6	4.1	2.3	6.4	.75	1.9	.07	0				
24	6.4	4.4	2.1	6.9	1,9	1.5	.05	0				
25	5.8	4.6	2.1	4.8	1.9	1.2	.02	0				
26	5.4	4.5	2.1	2.2	1.1	1.0	.01	0				
27	4.9	4.8	2.1	2.0	. 93	.85	0	0				
28	4.9	4.6	2.0	3.4	.75	.72	. 62	0				
29	4.8	4.6	2.0	1.7		.71	. 14	0				
30	5.2	4.6	1.9	1.7		.63	.11	0				
31	5.6		1.8	1.4		. 52		0				
TOTAL	241,6	201.4	90.6	296.1	19.16	162.32	23.63	.22	0	0	0	0
MEAN	7.79	6.71	2.92	9.55	.68	5,24	.79	.007	0	0	0	0
MAX	14	55	4.8	91	1.9	47	12	.09	0	0	0	0
MIN	4.8	4.1	1.8	1.4	. 14	.13	0	0	0	0	0	0
AC-FT	479	399	180	587	38	322	47	. 4	0	0	0	0

MEAN 15.9 CAL YR 1986 TOTAL 5802.67 MAX 203 MIN 0 AC-FT WTR YR 1987 TOTAL 1035.03 MEAN 2.84 MAX 91 MIN 0 AC-FT 2050

11062001 LYTLE CREEK NEAR FONTANA, CA--Continued

COMBINED DISCHARGE, IN CUBIC FEET PER SECOND, OF LYTLE CREEK, SOUTHERN CALIFORNIA EDISON CO.'S LYTLE CREEK CONDUIT, AND FONTANA UNION WATER CO.'S INFILTRATION LINE DIVERSIONS, NEAR FONTANA, CA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	37	28	26	24	22	22	20	16	15	13	11	9.8
2	37	28	26	24	22	21	20	16	14	12	10	9.9
	36	28	26	24	22	21	23	17	15	12	10	9.9
3 4	34	28	26	102	22	21	22	17	15	13	10	10
5	32	28	25	43	22	33	22	16	13	13	10	9.8
6	32	28	27	27	22	50	22	16	14	13	10	10
7	32	28	26	27	22	37	22	16	14	12	10	10
8	31	28	25	26	22	33	20	16	14	12	10	9,9
9	31	28	25	25	22	30	20	18	13	12	10	9.8
10	33	28	25	25	22	28	20	17	13	12	10	9.8
11	32	28	25	26	21	27	20	16	13	12	10	9.8
12	30	28	25	26	21	26	20	16	13	12	10	10
13	30	28 27			22			15				10
			25	26		26	19		14	12	10	
14	30	28	25	27	22	26	19	15	14	11	11	11
15	30	27	25	30	21	26	19	15	15	11	11	10
16	30	28	25	48	21	24	18	16	14	12	11	10
17	31	. 28	25	48	21	24	18	16	14	12	10	10
18	31	62	25	29	21	24	19	16	13	12	10	10
19	30	23	25	28	21	24	19	16	13	12	10	10
20	30	28	25	32	21	24	19	16	13	11	10	10
21	29	28	24	31	21	26	18	16	13	12	10	9.9
22	29	27	24	29	21	25	19	16	13	12	10	10
23	30	27	24	27	22	24	19	16	13	11	10	10
24	29	27	24	28	23	24	18	16	13	11	10	11
25	29	28	24	26	23	23	18	17	12	11	9.4	11
26	28	28	24	23	22	23	18	17	12	11	10	11
27	28	28	24	23	22	23	19	16	12	11	10	9.9
28	28	27	24	24	22	23	20	16	12	11	10	9.8
29	28	28	24	23		22	16	16	13	11	9.9	9.7
30	28	28	24	23		22	16	15	13	11	9,9	9.6
31	29		24	22		22		16		11	10	
mom A T	054	063	771	016	600	001	500	400	400	201	010 0	201 6
TOTAL	954	863	771	946	608	804	582	499	402	364	313.2	301.6
MEAN	30.8	28.8	24.9	30.5	21.7	25.9	19.4	16.1	13.4	11.7	10.1	10.1
MAX	37	62	27	102	23	50	23	18	15	13	11	11
MIN	28	23	24	22	21	21	16	15	12	11	9.4	9.6
AC-FT	1890	1710	1530	1880	1210	1590	1150	990	797	722	621	598

CAL YR 1986 TOTAL 13535.0 MEAN 37.1 MAX 203 MIN 20 AC-FT 26850 WTR YR 1987 TOTAL 7407.8 MEAN 20.3 MAX 102 MIN 9.4 AC-FT 14690

11063500 LONE PINE CREEK NEAR KEENBROOK, CA

LOCATION.--Lat 34°15'59", long 117°27'47", in SE 1/4 SW 1/4 sec.12, T.2 N., R.6 W., San Bernardino County, Hydrologic Unit 18070203, on right bank 50 ft upstream from the Atchison, Topeka, & Santa Fe Railway Co. bridge, 150 ft upstream from confluence with Cajon Creek, and 1.1 mi north of Keenbrook.

DRAINAGE AREA, -- 15.1 mi².

PERIOD OF RECORD .-- December 1919 to September 1938, June 1949 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,605.92 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 2, 1938, water-stage recorder (destroyed by flood), and Mar. 2 to Sept. 30, 1938, nonrecording gage at same site at datum 0.98 ft higher.

REMARKS.--Estimated daily discharges: June 20-22. Records fair except those for estimated daily discharges, which are poor. No regulation or diversion above station. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE. -- 56 years (water years 1921-38, 1950-87), 1.87 ft3/s, 1,350 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 6,180 ft³/s, Mar. 2, 1938, gage height unknown, on basis of slope-area measurement of peak flow; no flow Aug. 6-8, Sept. 29, 30, 1965.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 80 ft3/s and maximum (*):

Date	Time	Disc (ft	harge (3/s)	Gage h			D	ate	Time	Disch (ft		Gage h (f	
Jan. 4	1545		*18	*1.6	9								
Minimum	daily	, 0.41 ft ³ /	s, Sept.	30.									
		DISCHARGE,	IN CUBIC	FEET PER		WATER I		OCTOBER	1986	TO SEPTEMBER	1987		
DAY	ост	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL.	AUG	SEI

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 97	.77	.95	. 95	.92	.86	.77	. 65	.65	.76	.65	, 48
2	1.0	.77	.95	. 95	.86	, 87	.77	. 65	. 69	.75	.64	.48
3	.92	.77	, 95	,95	.87	.86	.80	. 63	.73	.74	.61	.49
4	.86	.77	, 97	4.0	.86	,86	.77	.69	.72	.73	,62	. 54
5	.94	.77	.95	1.2	.86	.94	.77	.69	.74	.71	.66	.52
•	,	• • • •					• • •		• • •			, 0.2
6	.86	.77	. 97	1.0	.86	1.1	.77	.69	.75	. 67	.66	.48
7	.86	.78	.95	1.1	. 89	.90	.77	.69	.75	.67	.66	. 50
8	. 82	.88	.95	. 95	. 90	. 87	.70	.69	.77	.66	.65	.49
9	.83	.86	.95	.96	. 94	. 86	.69	.69	.78	.65	.61	. 53
10	.87	.86	, 95	. 98	.88	.86	. 69	.71	. 74	. 67	.61	.50
11	. 87	. 86	.95	.96	.86	.86	.69	.76	.73	. 64	. 63	.48
12	. 84	.86	.95	.95	, 86	.86	. 69	.75	. 73	, 64	, 63	.48
13	.86	.86	.95	.95	.90	.86	.68	.75	.72	.72	. 55	.48
14	. 87	.86	.95	.95	.86	.86	.68	.73	.71	.63	, 55	.48
15	.85	.86	. 95	1.0	.86	. 87	. 63	. 69	.75	. 63	. 55	. 48
16	.86	.86	.95	1.0	.86	.86	.65	.69	.72	.62	.54	.48
17	. 86	. 89	. 95	1.0	.86	, 86	. 63	.69	.72	.69	. 54	.48
18	. 86	1.1	. 95	1.0	.86	. 86	.69	.69	.71	.76	. 54	.48
19	.86	. 95	. 95	1.0	.86	. 84	.69	.69	. 73	.75	. 55	.48
20	. 86	. 95	1.2	1.0	. 86	.77	, 69	. 67	. 75	. 76	. 54	.48
21	.86	.94	1.0	.95	.86	.82	.69	.65	.75	.76	. 54	.48
22	. 86	. 92	. 95	. 94	, 86	.77	. 69	. 62	. 76	.75	. 54	.48
23	.86	.95	.95	.95	.88	.77	. 64	, 65	.76	.74	. 54	.51
24	. 86	. 95	.95	. 95	. 92	. 77	.64	. 64	. 73	.73	. 54	.45
25	.86	. 95	.95	. 92	.96	.77	.61	. 70	.72	. 72	. 54	.45
26	.83	.95	.95	.93	.92	.77	.61	.69	.70	. 70	. 54	.44
27	. 77	. 95	. 95	.89	.86	.77	.61	.73	.73	. 62	. 50	. 44
28	.77	. 95	, 95	. 95	. 86	.77	. 62	.72	.76	.65	. 47	.42
29	.77	. 95	.95	, 95		.77	. 64	.72	.75	, 65	.48	. 42
30	.77	. 95	.95	, 95		.77	.64	.70	.76	.66	.48	.41
31	.77		. 95	. 95		.77		.68		. 65	. 48	
TOTAL	26,50	26.51	29.79	33,18	24.60	26,00	20.61	21.39	22.01	21.48	17.64	14.31
MEAN	, 85	. 88	. 96	1.07	.88	. 84	.69	. 69	. 73	. 69	. 57	.48
MAX	1.0	1.1	1.2	4.0	.96	1.1	. 80	.76	. 78	. 76	,66	. 54
MIN	.77	. 77	.95	.89	.86	.77	.61	. 62	. 65	.62	. 47	.41
AC-FT	53	53	59	66	49	52	41	42	44	43	35	28

CAL YR 1986 TOTAL 535.17 MEAN 1.47 MAX 25 MIN .77 AC-FT 1060 WTR YR 1987 TOTAL 284.02 MEAN .78 MAX 4.0 MIN .41 AC-FT 563

11063510 CAJON CREEK BELOW LONE PINE CREEK, NEAR KEENBROOK, CA

LOCATION.--Lat 34°16'04", long 117°27'58", in NW 1/4 NW 1/4 sec.13, T.2 N., R.6 W., San Bernardino County, Hydrologic Unit 18070203, on left bank 0.25 mi downstream from Lone Pine Creek and 0.95 mi north of Keenbrook.

DRAINAGE AREA. -- 56.5 mi².

PERIOD OF RECORD. --October 1971 to September 1977, October 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,600 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1971, to Sept. 30, 1977, at site 0.25 mi upstream at diversion dam at different datum.

REMARKS.--Estimated daily discharges: Oct. 1-4, 29-31, Nov. 6-14, 19-22, Jan. 5, 11, 12, 14-21, Mar. 14, 22, July 13-15, 28, 29, Aug. 3, 4, Sept. 1-5, 28-30. Records poor. No regulation or diversion above station. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE.--10 years (water years 1972-77, 1984-87), 8.15 ft3/s, 5,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,780 ft³/s, Feb. 11, 1973, gage height, 13.50 ft, site and datum then in use; minimum daily, 2.2 ft³/s, Dec. 16, 1975.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 250 ft³/s and maximum (*), from rating curve extended above 43 ft³/s on basis of slope-area measurement of peak flow at gage height 5.40 ft:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	1345	*133	*4.24				

DICCHARGE IN CURIC FEET DED CECOND LIABED VEAD OCTOBED 1000 TO CEDTEMBED 1007

Minimum daily, 3.8 ft³/s, June 2, 3, July 24, Aug. 5, 6, 27-29.

		DISCHARGE,	, IN CUB	IC FEET		ID, WATER MEAN VAL		OBER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APF	R MAY	JUN	JUL	AUG	SEP
1	5.5	4.8	4.4	5.1	6.3	5.8	6.9			4.5	4.5	4.1
2	5.4	5.2	4,4	5,2	6.4	6.4	6.0	5.8	3,8	4,5	4.4	4.1
3	5,3	5,1	4.4	5,1	5.8	5.8	6.1			4.7	4.0	4.1
4	5.3	5.4	4.5	54	5.5	5.8	5.2	5.3	4.0	4.6	3.9	4.3
5	5.1	5.4	4.9	15	5,5	12	5.8	5.0	4.1	4.0	3.8	4.2
6	5.1	5.4	6.0	8.5		19	5,8			3.9	3,8	4.2
7	4.7	5.4	5.6	7.3		8.8	5.5			4.2	3.9	3.9
8	4.5	5.6	5.1	6.8	6.0	7.1	4.9			4.2	3,9	3.9
9	4.6	5.4	5.1	7.1	6.8	6.0	4.8			4.3	4,3	3.9
10	6.0	5.2	5.1	7.5	6,9	6,2	4.9	5,3	4.2	4.5	4.3	3.9
11	5,3	5.1	4.8	7.0	6.5	7.1	5.0	4.9	3.9	3.9	4.3	3.9
12	5.0	5.1	4.8	6.8	6.1	5.6	5.3	4.6	4.0	3,9	4.3	4.0
13	5.1	5.1	5.0	7.0	6.3	5.0	5.4	4.7	4.7	4.2	4.4	4.2
14	5.1	5.1	5.1	6.8	6.1	5.3	5.2	4.5	4.8	4.1	4,9	4.1
15	5.0	6.4	5.1	7.0	5.8	5.4	4.6	4.9	4.9	4.0	5.4	3.9
16	5.2	5.2	5.2	6.9	5.9	5.9	4.8	3 4.9	4.8	4.1	5.5	3.9
17	4.7	5.0	5.2	6,9	5.9	5.7	5.0	5.1	4.7	4.4	4.1	4.2
18	4.5	9.8	5.1	6.9	5.8	5,6	4.9			4.1	4.1	4.3
19	4.3	5,8	5.3	6.8	5,3	5.5	4.6			3.9	3.9	4.2
20	4.2	5.5	7.1	6.8	5.6	5.4	4.9			3,9	4.0	3.9
21	4.2	5.2	6.9	6.8	5.7	6.2	5.2	5.1	4.8	4.1	4.1	3.9
22	4.3	5.2	6.4	6,2	5.5	7.4	5,1			4.0	3.9	4.4
23	4.6	5.1	6.1	5.9	5.5	6.9	5,2			4.0	4.1	5,0
24	4.8	5.6	5.9	6.7	5.4	6.7	4.7			3.8	3.9	4.5
25	4.6	6.0	6.2	6.2	6.7	6.9	4.9			4.2	4.0	4.1
26	4.4	5.9	5.8	5,8	6.3	6.5	5.0	4.5	4.8	4.5	4.0	4.4
27	4.8	5.6	5.8	6.2	6.1	6.8	5.1			3.9	3.8	4.1
28	4.7	5.5	5.4	6,6	5.9	6.4	5.1			4.0	3.8	4.0
29	4.7	5.3	5.5	5.8		5.9	5,1			4.0	3.8	3.9
30	4.7	5.2	5.7	6.2		6.2	5.1			4.0	4.1	3.9
31	4.8		5.2	5.9		6.2				4.5	4.1	
TOTAL	150.5	165.6	167.1	258.8	166.9	211.5	156,1	153.7	134.2	128,9	129.3	123.4
MEAN	4.85	5,52	5.39	8,35	5.96	6.82	5.20			4,16	4.17	4.11
MAX	6.0	9.8	7.1	54	6.9	19	6.9			4.10	5.5	5.0
MIN	4.2	4.8	4.4	5.1	5,3	5.0						
AC-FT	299	328	331	513	331		4.6			3.8	3.8	3.9
WC_LT	288	340	SST	313	331	420	310	305	266	256	256	245
CAL YR	1986 TOT	AT. 3656.7	MEAN	10 O	MAX 191	MTN 4 2	AC-FT	7250				

CAL YR 1986 TOTAL 3656.7 MEAN 10.0 MAX 191 MIN 4.2 AC-FT 7250 WTR YR 1987 TOTAL 1946.0 MEAN 5.33 MAX 54 MIN 3.8 AC-FT 3860

11063680 DEVIL CANYON CREEK NEAR SAN BERNARDINO, CA

LOCATION .-- Lat 34°12'30", long 117°19'50", in Muscupiabe Grant, San Bernardino County, Hydrologic Unit 18070203, on left bank 0.6 mi downstream from confluence of East and West Forks and 7.5 mi northwest of San Bernardino. DRAINAGE AREA. --5.49 mi².

PERIOD OF RECORD. -- November 1911 to September 1912, October 1913 to September 1914, December 1919 to current year. Monthly figures only for January 1914, published in WSP 1315-B.

GAGE.-Water-stage recorder on creek; flowmeter on diversion. Elevation of gage is 2,080 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to December 1919, nonrecording gage at site 0.5 mi downstream at different datum. December 1919 to July 1969, at site 0.4 mi downstream at different datum. July 1969 to September 1972, present gage used as supplementary gage. Oct. 1, 1973, to Feb. 25, 1974, supplementary gage at site 0.5 mi downstream at different datum.

REMARKS, -- No estimated daily discharges. Records good. No regulation above station. City of San Bernardino diverts above station for municipal supply. See schematic diagram of Santa Ana River basin. Records given below are for creek only unless otherwise indicated.

COOPERATION.--Records of diversion were provided by city of San Bernardino.

COOPERATION. --Records of diversion were provided by city of San Bernardino.

AVERAGE DISCHARGE. --Creek only: 68 years (water years 1914, 1921-87), 2.29 ft³/s, 1,660 acre-ft/yr.

Combined creek and diversion: 54 years (water years 1914, 1935-87), 4.27 ft³/s, 3,090 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD (1913-14 AND SINCE 1919). --Maximum discharge, 3,720 ft³/s, Jan. 25, 1969, gage height, 5.40 ft, site and datum then in use, on basis of slope-area measurement of peak flow; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan, 4	1745	*31	*5.61				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow for many days.

		DISCHARGE	s, IN CUI	DIC FEET FE		AN VALUE		1 00EL NAG	O SEPIEMB	EK 1907		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	.07 .15	0 0 0	0 0 0	1.2 0 1.7	0 0 0	.26 .22 .21	1.9 1.5 2.7	.95 .95 .80	.17 .09 .03	0 0 0	0 0 0	0 0 0
3 4 5	.19 .93	0	0	7.3 6.0	0	.21 .20 .81	3.7 3.1	. 29 . 27	.03 .03 0	0	0	0
6	0 .	0	.91	4.0	0	4.3	2.0	.26	0	0	0	0
7 8 9	0 0 .44	0 0 0	2.7 2.5 1.5	4.2 2.1 .73	0 0 0	4.1 3.9 3.8	1.5 1.5 1.5	. 26 . 22 . 19	0 0 0	0 0 0	0 0 0	0 0 0
10	1.6	, 12	1.3	.38	0	2.0	1.5	.19	0	0	Ō	0
11 12 13	1.2 2.1 0	.61 0 0	.01 0 0	.65 1.2 1.5	0 0 .08	.88 .95 .95	1.5 1.5 1.4	.18 .18 .18	0 0 0	0 0 0	0 0 0	0 0 0
14 15	0	0 0	0 0	.45 .38	0	.54 1.7	.95 .90	.23 .19	0 0	0 0	.08	0 0
16 17 18	0 0 0	0 0 3.4	.06 .88 .01	.34 .32 .28	0 0 0	2.4 1.0 .30	.81 .69 .52	.18 .18 .18	0 0 0	0 .07 0	0 0 0	0 0 0
19 20	0	1.0	.19	.28	0	1.6 1.8	.95 .95	.18	0	0	0	0
21 22	0 0	0 0	0 0	.06 0	0 0	1.7 3.7	1.1 1.1	.18 .18	0 0	0 0	.06 0	0 0
23 24 25	0 0 0	.31 .70 0	0 0 0	0 0 0	.64 2.2 2.4	2.2 .66 .65	1.0 .81 .81	.18 .23 .19	0 0 0	0 0 0	0 0 0	.18 .08 0
26 27	0	0	0	0 .37	2.4 .71	1.1 1.5	.81 .81	.51 .91	0	0	0	0
28 29	0	0	0	0	.36	1.5 1.5	.73 .72	.81 .61	0	0	0	0
30 31	0 0	0	0 .59	0 0		1.5 1.5	1.1	.23 .21	0	0 0	0 0	0
TOTAL MEAN MAX MIN	6.68 .22 2.1 0	6.14 .20 3.4 0	10.65 .34 2.7 0	33.67 1.09 7.3 0	8.79 .31 2.4 0	49.43 1.59 4.3 .20	40.06 1.34 3.7 .52	10.48 .34 .95 .18	.32 .011 .17 0	.07 .002 .07 0	.14 .005 .08 0	.26 .009 .18
AC-FT a	13 136	12 151	21 154	67 239	17 184	98 220	79 198	21 163	.6 130	.1 119	.3 100	.5 96
CAL YR WTR YR		AL 780.90 AL 166.69	MEAN 2 MEAN		37 7.3	MIN 0 MIN 0	AC-FT AC-FT	1550 a 2 331 a 1	962 890			

a Combined discharge, in acre-feet, of Devil Canyon Creek and city of San Bernardino diversion.

11065000 LYTLE CREEK AT COLTON, CA

LOCATION.--Lat 34°04'44", long 117°18'17", in San Bernardino Grant, San Bernardino County, Hydrologic Unit 18070203, on right bank 400 ft downstream from Colton Avenue, 1,930 ft upstream from outlet end of channel, and 1.3 mi northeast of Colton.

DRAINAGE AREA, -- 186 mi².

REVISED RECORDS. -- WDR CA-83-1: Drainage area.

PERIOD OF RECORD . -- October 1957 to September 1983, October 1984 to current year.

GAGE.--Water-stage recorder. Datum of gage is 974.67 ft above National Geodetic Vertical Datum of 1929, U.S. Army Corps of Engineers datum.

REMARKS.--No estimated daily discharges. Records fair. Flow partly regulated by Lytle Creek spreading grounds 3.2 mi upstream. Diversions above station for irrigation, power development, domestic use, and ground-water replenishment. See schematic diagram of Santa Ana River basin.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 17,500 ft³/s, Mar. 4, 1978, gage height, 14.8 ft, from rating curve extended above 4,200 ft³/s on basis of discharge for design flood at gage height 21.4 ft; no flow many days most years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 572 ft3/s, Jan. 4, gage height, 2.46 ft; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DIDOIMA	л, тк со.	DIO PEEL I	A DECOME	ÆAN VALUE	S COTODE	M 1300 10	, ori i ribi	IX 1307		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	0	0	0	0	0	, 03	0				0	
2	0	0	0	0	0	0	0				0	
1 2 3	0	0	0	0	0	0	7.5				0	
4	0	0	0	72	0	0	. 24				0	
5	0	0	0	81	0	1.1	.14				. 22	
6 7	0	0	19	1.9	0	24	.09				.16	
7	0	0	32	15	0	.49	.05				.09	
8	0	0	1.7	.36	0	.13	.05				.05	
9	0	0	.60	.10	0	.06	.03				.05	
10	2.2	0	. 28	.03	0	.05	0				.03	
11	.32	0 .	. 14	0	0	0	0				0	
12	.12	0	.07	0	0	0	0				0	
13	.09	0	.05	0	12	0	0				0	
14	.05	0	.02	0	.72	0	0				0	
15	.05	0	0	0	.14	17	0				0	
16	.01	0	0	0	.06	. 24	0				0	
17	0	1.2	0	0	0	.18	0				0	
18	0	25	0	0	0	.18	0				0	
19	0	.98	0	0	0	3.8	0				0	
20	0	. 43	0	0	0	.24	0				0	
21	0	.21	0	0	0	31	0				0	
22	0	. 11	0	0	0	10	0				0	
23	0	.05	0	0	. 25	.31	0				0	
24	0	0	0	0	9.9	. 14	0				0	
25	0	0	0	0	22	.09	0				0	
26	0	0	0	0	2.5	.04	0				0	
27	0	0	0	0	. 15	0	0				0	
28	0	0	0	1.1	.06	0	0				0	
29	0	0	0	.18		0	0				Ō	
30	Ö	Ō	Ö	.07		ō	Õ				ŏ	
31	Ö		Ö.	.05		ō					Ö	
TOTAL	2.84	27.98	53.86	171.79	47,78	89.08	8.10	0 .	0	0	.60	0
MEAN	.092	.93	1.74	5.54	1.71	2.87	.27	ŏ	ŏ	Ŏ	.019	ő
MAX	2.2	25	32	81	22	31	7.5	ŏ	Ö	ő	.22	ő
MIN	- 0	0	0	Õ	0	ő	,.5	ŏ	ő	Ö	. 22	ŏ
AC-FT	5.6	55	107	341	95	177	16	ŏ	ŏ	Ö	1.2	0

CAL YR 1986 TOTAL 2350.08 MEAN 6.44 MAX 508 MIN 0 AC-FT 4660 WTR YR 1987 TOTAL 402.03 MEAN 1.10 MAX 81 MIN 0 AC-FT 797

11066460 SANTA ANA RIVER AT MWD CROSSING, NEAR ARLINGTON, CA

LOCATION.--Lat 33°58'07", long 117°26'51", in NE 1/4 SW 1/4 sec.30, T.2 S., R.5 W., Riverside County, Hydrologic Unit 18070203, on right bank at MWD pipeline crossing, 0.8 mi downstream from Union Pacific Railroad bridge, 1.1 mi upstream from bridge on Van Buren Boulevard, and 3.3 mi north of Arlington. DRAINAGE AREA. --852 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- March 1970 to current year.

REVISED RECORDS.--WDR CA-83-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 685 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to October 1984 water-stage recorder at site 300 ft upstream on left bank at different datum.

REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 14, Dec. 20 to Jan. 6, and Apr. 2 to May 2. Records poor. Flow partly regulated by Big Bear Lake (station 11049000). Natural streamflow affected by ground-water withdrawals, diversions for irrigation, and return flows from irrigated areas. The records at this station are equivalent to those collected at Santa Ana River at Riverside Narrows, near Arlington minus the flow at

are equivalent to those collected at Santa Ana River at Riverside Narrows, near Arlington minus the flow at Riverside Water Quality Control Plant at Riverside Narrows, near Arlington.

AVERAGE DISCHARGE.--17 years (water years 1971-87), 116 ft³/s, 84,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26,200 ft³/s, Mar. 2, 1983, gage height, 15.38 ft, site and datum then in use, from rating curve extended above 5,100 ft³/s on basis of area-velocity study; maximum gage height, 20.23 ft, Mar. 4, 1978; minimum daily, 15 ft³/s, Sept. 7, 8, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1927, 100,000 ft³/s, Mar. 2, 1938, on basis of slope-area measurement at site 1.1 mi downstream. Flood of Jan. 22, 1862, 320,000 ft³/s, by slope-conveyance study at site 8.2 mi upstream. Stage at that site was 5 ft higher than Mar. 2, 1938.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 4	Unknown	*1,680	*9.40				

Minimum daily, 41 ft³/s, Aug. 23.

		DISCHA	RGE, IN	CUBIC FEET		ND, WATER		OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	80	77	96	82	130	119	126	78	85	64	52	57
2	70	78	77	84	140	120	133	78	69	70	44	63
3	66	80	73	90	135	126	210	76	86	62	48	65
4	66	82	75	1200	140	119	140	78	77	65	45	60
5	66	84	80	470	118	154	120	78	91	60	51	71
6	66	86	350	200	128	615	115	76	86	56	48	54
7	68	86	471	311	96	395	115	76	90	75	44	62
8	69	86	120	140	102	200	110	80	84	87	58	52
9	80	85	98	151	128	164	105	84	93	77	68	79
10	200	85	86	168	131	155	100	82	89	87	72	68
11	90	86	71	167	124	135	100	75	100	96	73	75
12	72	86	66	159	122	169	100	78	87	80	45	61
13	68	90	68	175	188	139	100	71	89	81	54	55
14	72	95	81	133	202	133	100	85	92	83	66	68
15	72	89	84	170	121	357	96	60	87	77	73	79
16	74	96	90	160	106	148	94	86	100	63	80	91
17	74	86	79	165	109	103	92	66	97	76	63	75
18	76	562	89	174	99	105	89	76	104	77	56	83
19	75	145	71	150	98	130	88	81	81	61	53	87
20	74	102	77	149	88	139	87	84	85	69	59	67
21	74	77	76	184	98	311	88	89	82	89	54	68
22	75	78	76	170	96	292	88	96	80	76	52	84
23	75	66	76	200	147	157	88	81	90	73	41	146
24	75	61	76	178	263	176	84	81	77	75	48	133
25	76	70	76	190	414	217	80	82	80	60	55	86
26	76	72	76	160	202	275	78	80	79	58	75	72
27	78	68	76	162	142	204	78	100	70	65	62	57
28	80	99	76	198	140	172	80	87	61	68	66	66
29	78	79	80	153		142	78	103	67	73	73	91
30	76	89	78	159		165	78	78	54	60	81	95
31	76		81	153		153		73		66	72	
TOTAL	2417	3025	3149	6405	4007	5989	3040	2498	2512	2229	1831	2270
MEAN	78.0	101	102	207	143	193	101	80.6	83.7	71.9	59.1	75.7
MAX	200	562	471	1200	414	615	210	103	104	96	81	146
MIN	66	61	66	82	88	103	78	60	54	56	41	52
AC-FT	4790	6000	6250	12700	7950	11880	6030	4950	4980	4420	3630	4500

CAL YR 1986 TOTAL 47113 WTR YR 1987 TOTAL 39372 AC-FT 93450 AC-FT 78090 MIN 61 MEAN 129 MAX 2820 MEAN 108 MAX 1200 MIN 41

11066460 SANTA ANA RIVER AT MWD CROSSING, NEAR ARLINGTON, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970 to current year. CHEMICAL DATA: Water years 1970 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: October 1969 to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT					
03	1100	60	1000	18.0	618
NOV					
06	1030	82	940	16.5	607
14	1000	84	950	14.0	597
DEC					
02	0945	81	950	13.0	602
JAN				•	
05	1245	474	460	14.0	527
25	1100	108	875	16.0	615
FEB					
05	1220	84	940	17.0	612
MAR					
03	1230	101	935	19.0	582
16	0845	106	880	13.0	528
APR					
02	1245	115	932	22.5	611
16	1100	79	991	24.0	611
MAY					
07	0845	75	980	19.5	608
18	1255	57	958	25.0	595
JUN					
17	1000	70	952	20.5	610
JUL					
02	0950	81	973	20.0	602
16	1050	67	957	22.0	591
AUG	4.000				
07	1030	57	951	26.0	606
SEP	1120	00	022	05.0	
03	1130	82	930	25.0	E00
25	1400	78	943	24.5	582

11069500 SAN JACINTO RIVER NEAR SAN JACINTO, CA

LOCATION.--Lat 33°44'10", long 116°49'26", in NE 1/4 SE 1/4 sec.13, T.5 S., R.1 E., Riverside County, Hydrologic Unit 18070202, on right bank 350 ft upstream from bridge on State Highway 74, 1 mi downstream from North Fork San Jacinto River, 8.3 mi southeast of San Jacinto, and 9 mi downstream from Lake Hemet. DRAINAGE AREA.--141 mi².

PERIOD OF RECORD. --October 1920 to February 1927, March 1927 to current year. Records for Oct. 1, 1969, to Sept. 30, 1980, equivalent to prior records if lower diversion is deducted from flow past station. Records for the 1981 water year are from the auxiliary gage below the lower diversion and are equivalent to records for March 1927 to Sept. 30, 1969. Combined records of river and diversion, October 1948 to current year. Monthly discharge only for October 1920 and July to September 1926, published in WSP 1315-B. REVISED RECORDS. -- WDR CA-63-1: Drainage area.

GAGE, --Water-stage recorder on river; water-stage recorder on upper canal. Datum of river gage is 1,982.75 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). See WSP 1735 for history of changes prior to Jan. 23, 1948. Oct. 1, 1969, to Sept. 30, 1980, at site 350 ft upstream at same datum, Canal gage at different datum,

REMARKS.--Estimated daily discharges: Dec. 16 to Jan. 4, Jan. 30 to Mar. 3. Records poor. Flow partly regulated by Lake Hemet (station 11069000). Lake Hemet Municipal Water District's upper canal diverts 4.0 mi upstream from station. One small diversion for domestic use above station. Diversion above station began prior to 1920. Records of lower diversion are available at Lake Hemet Municipal Water District. See

prior to 1920. Records of lower diversion are available at Lake Hemet Municipal Water District. See schematic diagram of Santa Ana River basin. Combined records are equivalent for period of record. For records of combined daily discharge of San Jacinto River and diversion, see following page.

AVERAGE DISCHARGE.—River only: 55 years (water years 1921-26, 1928-69, 1981-87), 19.0 ft³/s, 13,770 acre-ft/yr; 11 years (water years 1970-80), 29.0 ft³/s, 21,010 acre-ft/yr. Combined river and diversion: 38 years (water years 1949-80, 1982-87), 25.9 ft³/s, 18,760 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—River only: Maximum discharge, 45,000 ft³/s, Feb. 16, 1927 on basis of slope-area measurement of peak flow; no flow for several months in some years. Combined river and diversion: Maximum discharge, 17,300 ft³/s, Feb. 21, 1980; no flow at times in 1951, 1952, 1957, 1976.

EXTREMES FOR CURRENT YEAR.—Combined river and diversion: Peak discharges greater than base discharge of 500 ft³/s and maximum(*), from rating curve extended above 1,220 ft³/s:

Date	Time	Discharge (ft ³ /s)	Gage Height (ft)	Date	Time	Discharge (ft ³ /s)	Gage Height (ft)
Mar. 7	0830	*219	*3.81				

No flow many days in many months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	, 40	0	.04	.20	.32	. 58	9,2	.19	.07			
$\bar{\mathbf{z}}$.64	Õ	.04	.20	. 40	.55	4.3	.13	.07			
2 3	3.0	Ö	.06	.20	.35	.50	4.0	.09	.08			
4	0	0	.34	.25	.33	1.7	6.5	.06	.06			
5	Ö	Ó	.70	5.7	.36	1.4	7.0	.04	.05			
5 6	0	0	10	6.1	.60	39	7,2	.01	.40			
7	0	0	19	13	.48	166	7.9	0	.32			
8	0	0	6.8	16	. 40	131	5.3	.01	, 12			
9	0	0	5.0	6.6	.39	62	5.0	.02	.07			
10	0	0	1.9	4.5	. 42	25	4.2	.04	.03			
11	0	0	1.5	3,6	. 45	21	.83	.08	.09			
12	0	0	1.5	3.1	.36	17	1.3	.04	.08			
13	0	0	1.4	2.7	.48	16	2.8	.04	0			
14	0	0	1,3	2.5	.35	15	1.5	.04	0			
15	0	0	1.1	2,6	.30	15	. 47	.04	0			
16	0	0	. 95	2.3	.35	14	.25	. 12	0			
17	0	0	.80	1.7	.38	13	.21	.09	0			
18	0	10	.66	1.7	.40	13	.21	.09	0			
19	0	5.5	.58	1.9	. 40	12	.18	.05	0			
20	0	2.8	.50	2.4	. 42	8.5	.17	.05	0			
21	0	1.1	.42	3.6	. 44	8.4	.15	.05	0			
22	0	1.2	.36	2.3	. 42	17	. 14	.04	0			
23	0	1.2	.30	1.2	. 36	13	.15	.01	0			
24	0	1.8	. 24	.72	.30	8.0	. 14	.14	0			
25	0	1.0	. 22	.39	. 42	8.0	.13	.11	0			
26	0	.09	.20	.33	.60	6.7	.13	.14	0			
27	0	.06	.20	. 27	.60	6.4	.11	. 14	0			
28	0	.05	.20	. 27	.60	5.0	.13	.14	0			
29	0	.04	.20	, 23	~	9.1	.14	.15	0			
30	0	.04	, 20	. 26		11	.20	.09	0			
31	0		.20	.28		12		.07				
TOTAL	4.04	24.88	56,91	87.10	11.68	676.83	69,94	2.31	1.44	0	0	0
MEAN	.13	. 83	1.84	2,81	.42	21.8	2.33	.075	.048	0	0	0
MAX	3.0	10	19	16	.60	166	9.2	.19	.40	0	0	0
MIN	0	0	.04	.20	.30	, 50	.11	0	0	0	0	0 0
AC-FT	8.0	49	113	173	23	1340	139	4.6	2,9	0	0	0

CAL YR 1986 TOTAL 5163.28 MEAN 14.1 MAX 688 MIN 0 AC-FT 10240 WTR YR 1987 TOTAL 935.13 MEAN 2.56 MAX 166 MIN 0 AC-FT 1850

4.5

4.5

6.0

6.4

6.4

6.0

4.3

3.1

4.5

6.0

6.0

5.7

6.1

160.3

5.17

TOTAL

19

20

21

22

23

24

25

26

27

28

29

30

31

TOTAL

MEAN

WTR YR 1987

9.5

5.9

3.0

2.7

2.5

2.9

2.2

2.6

2.6

2.3

2.2

2.3

157.5

5,25

2354.3

2.1

2.1

2,2

2.2

3.5

3.3

3.3

2.7

3.1

3,1

2.5

3.1

3.0

146.7

4.73

MEAN 6.45

4.1

3.0

3.6

4.6

4.5

4.7

4.3

4.3

4.6

5,9

6,6

5.7

5.4

172.1

5,55

SANTA ANA RIVER BASIN

11069501 SAN JACINTO RIVER NEAR SAN JACINTO, CA--Continued

COMBINED DISCHARGE, IN CUBIC FEET PER SECOND, OF SAN JACINTO RIVER AND LAKE HEMET WATER CO.'S UPPER CANAL, NEAR SAN JACINTO, CA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 5.9 2.6 3,8 4.6 1.5 3.1 5.1 2.4 12 8.6 3.9 4.4 2 5.8 5.7 3.9 3.8 3.3 12 3.3 3.0 6.4 3.8 4.3 2.7 6.7 2.5 3 5.5 2.9 4.8 14 5.4 3.3 3.6 12 3.1 4.3 5.9 5,9 4.6 4.2 3.0 4 7.0 3.5 2.8 13 4.5 3.3 3.8 5.0 6.7 5 4.1 9.4 4.3 5.4 10 6.2 5.6 3.3 3.0 3.5 6 3.8 5.9 16 6.1 2.9 46 9.7 6.9 8.8 4.5 3.7 3.5 3.6 6.1 23 13 4.1 170 9.5 4.7 6.6 4.3 4.8 3.3 8 3.9 6.5 8.4 18 4.0 134 9.7 5.2 5.3 4.2 5.0 3.3 9 4.8 6.1 6.6 9.4 67 7.2 5.3 3.2 4.1 8.3 4.6 2,7 7.1 3.5 10 5.3 4.9 7.8 33 7,2 7.3 4.8 4.4 2.2 3.6 11 5.8 6.0 4.5 6.6 4.6 25 8.6 3.9 3.0 6.6 4.8 4.6 3.5 4.0 12 6,2 4.5 4.3 22 8.3 4.2 3.3 3.3 6.8 3.8 13 3.6 6.0 3.7 4.0 3.4 8.0 3.9 4.6 3.5 20 7.1 2.5 14 5.7 4.6 3.3 3.5 5.4 17 5.6 6.6 4.3 2.1 2,9 3.6 15 4.2 6.0 3.0 3.4 4.6 18 4.0 7.9 4.5 1.9 3,8 3,2 3.1 16 4.5 5.7 2.6 2.9 4.5 17 8.5 4.0 3.0 3.3 17 4.6 6.3 2.5 4.0 4.0 16 3.0 4.1 7.4 4.1 4.4 3,1 18 4.4 17 2.2 5.7 3,9 14 4.0 6.6 4.2 4.1 3.8 3.2

13

12

14

17

14

11

9.3

7.9

8,2

7.5

9.6

12

12

763.5

24.6

MIN 1.3

2.9

2.7

2.3

1.8

1.3

3.0

4.7

5.8

6.1

6.6

6.5

7.4

197.7

AC-FT

6,59

3.3

5.6

5.7

5.7

5.5

5.6

5.6

5.9

6,2

5.8

5.6

4.9

4.6

195.1

4670

6.29

3.7

4.0

5.0

4.9

4.5

4.5

4.5

4.9

4.9

5.3

4.5

4.4

141.0

4.70

4.0

4.1

4.6

4.3

4.1

2.1

2.0

2.1

1.9

2.0

1.9

1.6

1.6

104.4

3.37

3.8

2.8

3.3

3,3

3.7

3.6

3.4

3.5

3.5

3.4

3.3

3.4

3.5

105.1

3.39

5.0

2.2

208

3.1

3.1

3.0

3,2

3.5

3.8

3.4

3.0

2.9

2.9

3.1

2.9

98.9

3,30

3.8

2.9

196

MAX 12 17 23 18 5.4 170 14 8,6 8.8 4.6 MIN 3.1 2.2 1.5 2.9 2.3 2.4 1.3 3,3 3.3 1.6 AC-FT 318 312 291 222 341 387 1510 392 280 207 6304.1 MEAN 17.3 CAL YR 1986 TOTAL MAX 690 MIN 1.5 AC-FT 12500

MAX 170

4.0

3.8

3.8

3.8

4.3

5.3

4.1

2.4

2,3

2.3

112.0

4.00

11070050 BAUTISTA CREEK AT VALLE VISTA, CA

LOCATION.--Lat 33°44'04", long 116°53'33", in NE 1/4 SE 1/4 sec.17, T.5 S., R.1 E., Riverside County, Hydrologic Unit 18070202, on left levee of flood channel, 1.0 mi south of Valle Vista.

DRAINAGE AREA, --47.2 mi².

PERIOD OF RECORD, -- October 1969 to current year.

REVISED RECORDS. -- WDR CA-83-1: 1980(M).

GAGE.--Water-stage recorder. Elevation of gage is 1,835 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records poor. No regulation upstream from station. Detention dam, 2.2 mi upstream, will cause peak attenuation and some infiltration. Minor diversion for irrigation upstream from station.

AVERAGE DISCHARGE. -- 18 years, 2.34 ft 3/s, 1,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD 3-Maximum discharge, 8,320 ft³/s, Feb. 21, 1980, gage height, 6.40 ft, from rating curve extended above 80 ft³/s on basis of slope-conveyance study of peak flow; no flow for many days each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 22	1730	*22	*1.75				

No flow many days.

		DISCHARGE,	IN CUBIC	FEET		WATER T	YEAR OCTOBER ES	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	.03 .32 0	0 .15 .13	0 0 .46	.39 .80 1.4	.75 1.8 .96	1.5 .08 0	2.4 3.2 2.9	0 .33 .11	0.01	0 0	.02 .11 0	0 0 .05
4 5	.40 .12	0.07	.60 .17	2.8 1.1	1,5 .56	0 06	2.0 2.6	.31 .24	0 0	0	0 .17	0
6 7 8 9 10	.05 0 0 .36 .16	.28 0 .07 .05 .18	2.6 2.5 .41 .14 .09	.34 .62 0 0	.01 .02 .52 .32	1.0 .11 .13 .04	1.9 .27 .21 0 .50	.06 .32 .05 .09	.11 0 0 0 0	.02 0 0 0	0 0 0 0	0 .03 .12 .03
11 12 13 14 15	.36 .06 0 0	0 0 0 0	.03 0 0 0	0 0 0 .02 .05	0 .57 .98 .01	.05 0 0 0 .42	.08 0 .27 .04 .03	.28 0 0 .03	0 0 .07 0	.22 0 0 0 0	.19 0 .08 .08	.02 0 0 0 0
16 17 18 19 20	.62 .03 .15 .10	.10 .75 2.5 .06	0 0 0 0	.03 0 0 0	.19 2.4 2.3 2.2 2.6	0 0 0 0	.08 .08 .61 .15	.31 0 .03 .08	.01 0 0 0	.02	0 0 0 .06	0 0 .14 0
21 22 23 24 25	.07 .04 0 .64	0 0 0 .17 .51	0 0 0 1.3 2.6	0 2.2 1.4 .09	2.8 1.3 .82 .87 .64	.36 .11 .72 1.9 1.8	.04 0 0 0	0 0 .04 .09	0 1.4 .63 0	0 0 .18 0	0 0 0 0	0 0 .04 0
26 27 28 29 30 31	0 .13 .43 0 0	.57 1.5 2.2 .62 .03	.99 .04 .01 0 .08	0 0 .01 .88 .28 .33	.69 1.1 .68 	1.2 2.5 1.2 2.5 2.7 2.5	0 0 0 .13 .04	.17 0 .24 0 .04	.03 .01 .04 0	0 0 0 .01 .04 .17	0 .14 0 0 0	0 0 0 0 0
TOTAL MEAN MAX MIN AC-FT	4.23 .14 .64 0 8.4	9.97 .33 2.5 0 20	12.29 .40 2.6 0 24	12.74 .41 2.8 0 25	26.59 .95 2.8 0 53	20.88 .67 2.7 0 41	17.90 .60 3.2 0 36	4.42 .14 1.6 0 8.8	2.31 .077 1.4 0 4.6	.70 .023 .22 0 1.4	.87 .028 .19 0	.43 .014 .14 0

CAL YR 1986 TOTAL 480.74 MEAN 1.32 MAX 160 MIN 0 AC-FT 954 WTR YR 1987 TOTAL 113.33 MEAN .31 MAX 3.2 MIN 0 AC-FT 225

11070500 SAN JACINTO RIVER NEAR ELSINORE, CA

LOCATION.--Lat 33°39'51", long 117°17'35", in SE 1/4 NE 1/4 sec.9, T.6 S., R.4 W., Riverside County, Hydrologic Unit 18070203, on right bank 2 mi east of Elsinore, 2.1 mi downstream from Railroad Canyon Dam, and 36 mi downstream from Lake Hemet.

DRAINAGE AREA. -- 723 mi².

PERIOD OF RECORD.--January 1916 to current year. Monthly figures 1927-50, adjusted for diversion, published in WSP 1315-B.

REVISED RECORDS, -- WDR CA-72-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 1,270 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Feb. 13, 1916, nonrecording gage at site 0.7 mi downstream at different datum. Feb. 13, 1916, to Oct. 27, 1921, nonrecording gage at present site, but at different datum.

REMARKS.--No estimated daily discharges. Records fair. Flow partly regulated by Lake Hemet (station 11069000) and regulated since 1928 by Railroad Canyon Reservoir, capacity, 12,000 acre-ft, 2.1 mi upstream from station. Diversions for irrigation and domestic use upstream from Railroad Canyon Reservoir. Temescal Water Co. diverted 894 acre-ft during current year from Railroad Canyon Reservoir for irrigation.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 16,000 ft³/s, Feb. 17, 1927, gage height, 11.8 ft, from rating curve extended above 2,000 ft³/s on basis of slope-area measurement of peak flow; no flow for several months in most years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 3.7 ft³/s, Feb. 25, gage height, 2.67 ft; no flow many days.

MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	. 49	. 67	, 64	.63	.72	. 86	, 62	.38	.15	.19	0	0	
2	, 55	. 59	.68	.66	.75	.88	.61	.32	.14	.09	0	0	
3	. 54	,61	.68	.63	.78	.89	.61	.26	.12	,05	Ö	Õ	
4	.51	.68	.70	.69	.84	.86	.65	. 20	.09	.02	Ö	.02	
5	. 45	.74	.69	2.0	.83	. 84	.61	. 20	.08	.01	Ŏ	0	
6	. 42	.76	.88	1.1	.87	1.3	. 57	.21	.06	0	0	0	
7	. 45	.78	1.1	1.6	. 80	1.3	. 57	.21	.08	.02	0	0	
8	.51	.74	. 84	1.1	.90	1.0	, 53	.32	. 14	.07	0	0	
9	.56	.72	.75	.96	.78	. 93	.51	, 26	.28	.19	0	0	
10	.74	.71	.66	.88	.86	1.1	.48	. 23	. 27	.19	0	.11	
11	.66	.74	.68	.75	.81	, 93	, 50	. 24	. 29	. 12	0	.20	
12	. 62	.74	.69	.76	. 83	. 88	.52	.31	.26	.08	0	.22	
13	. 57	.79	.65	.79	.84	. 84	.50	. 28	, 15	.02	0	.24	
14	.55	.84	.64	.81	1.0	. 84	. 44	. 26	,11	.01	.10	.30	
15	. 58	. 83	.58	.78	.89	1.1	.40	.29	.16	.01	.10	.34	
16	. 59	. 85	, 56	. 84	, 90	. 87	.38	.33	.21	.01	.03	1.1	
17	. 59	1.1	. 57	.78	.88	. 83	.40	. 23	.21	.10	.01	1.4	
18	.61	1.5	.58	.70	. 91	. 84	. 44	. 17	.26	.15	.08	.33	
19	. 62	. 84	.60	.78	.91	. 88	. 43	. 20	.26	.06	.08	.14	
20	. 67	.70	.66	.77	.89	. 84	.34	.33	. 26	.01	.07	.09	
21	. 69	. 65	, 59	.81	. 84	. 96	.31	. 44	, 23	. 14	.05	.05	
22	.68	.60	.60	, 83	. 84	1.0	,30	.41	.19	.16	. 03	.11	
23	. 67	. 56	,68	. 83	.91	.88	,29	, 36	.19	.12	0	.19	
24	.70	. 59	.66	.78	1.5	. 92	.30	.32	.14	.07	.01	. 23	
25	.66	.61	. 56	.74	2.6	.99	.30	.28	. 17	.02	0	.15	
26	. 62	.61	. 56	.71	1.6	.81	.30	. 29	. 14	0	.06	. 12	
27	.61	.61	.62	.78	1.1	,77	.33	.37	.10	0	.08	.13	
28	. 67	. 64	. 63	.76	. 95	.75	. 44	. 43	.05	Ō	.07	.11	
29	.70	.65	.64	.81		.74	. 44	. 40	.03	.02	.03	.14	
30	.70	. 62	.62	.83		.70	.43	.37	.12	0	0.33	.14	
31	.72		.62	.81		.65		, 24		Ö	Ö		
TOTAL	18.70	22,07	20.61	26.70	27.33	27,98	13,55	9,14	4.94	1.93	. 80	5.86	
MEAN	. 60	.74	.66	, 86	.98	.90	.45	.29	.16	.062	.026	.20	
MAX	.74	1.5	1.1	2.0	2.6	1.3	,65	. 44	.29	.19	.10	1.4	
MIN	. 42	. 56	.56	.63	.72	.65	.29	.17	.03	0		0	
AC-FT	37	44	41	53	54	55	27	18	9.8	3.8	1.6	12	

CAL YR 1986 TOTAL 207,33 MEAN .57 MAX 6.8 MIN 0 AC-FT 411 WTR YR 1987 TOTAL 179.61 MEAN .49 MAX 2.6 MIN 0 AC-FT 356

11072100 TEMESCAL CREEK ABOVE MAIN STREET, AT CORONA, CA

LOCATION.--Lat 33°53'21", long 117°33'43", in La Sierra Grant, Riverside County, Hydrologic Unit 18070203, on right bank 500 ft upstream from Main Street bridge in Corona, 1.5 mi upstream from topographic boundary of Prado Flood control basin.

DRAINAGE AREA. -- 224 mi², excludes 768 mi² above Lake Elsinore.

CAL YR 1986 TOTAL 4032.5 WTR YR 1987 TOTAL 2228.3 MEAN 11.0

MEAN 6.10

MAX 200 MAX 70

PERIOD OF RECORD. -- December 1967 to September 1974, December 1980 to July 1983, February 1984 to current year.

GAGE.--Water-stage recorder and concrete-lined flood control channel. Elevation of gage is 600 ft above National Geodetic Vertical Datum of 1929, from topographic map. December 1967 to September 1974, water-stage recorder at site 1.2 mi downstream at different datum. December 1980 to July 1983 at site 500 ft downstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 7-9, and Oct. 11 to Nov. 4. Records poor. Flow regulated by several small storage reservoirs. Many diversions upstream for irrigation. Gage removed July 26, 1983, due to channel construction, and reinstalled Feb. 28, 1984.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 8,850 ft³/s, Feb. 25, 1969, gage height, 8.17 ft, from floodmark, at old site 1.2 mi downstream, on basis of slope-area measurement of peak flow; no flow many days in some years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 662 ft³/s, Sept. 23, gage height, 4.14 ft; minimum daily, 1.5 ft³/s, Dec. 10.

		2222	_,		M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.6	3.4	1.9	3.7	3.0	3.7	3.9	3.7	4.2	4.5	5.5	4.1
2	7.0	3.4	3.4	6.0	4.2	3.4	4.5	4.3	4.2	5.8	8.7	4.7
3	7.6	3.4	3.7	5.7	4.9	3.7	13	4.9	4.4	5.8	11	4.6
4	8.6	3.2	5.5	70	4.6	3.6	8,4	4.7	3.6	7.9	7.5	4.1
5	8.4	3.0	4.8	40	5.1	5.8	7.1	4.8	3.0	9.7	6.2	4.0
6	8.3	3.0	39	19	5.6	39	6.6	4.4	2.8	8.0	4.0	3.7
7	9.0	2.8	12	11	5.8	5.0	7.0	5.1	2.6	9.7	4.3	3.9
8	11	3.0	3.4	3.2	5.4	4.3	7.2	8.9	2.3	12	3.2	3.8
9	11	2.9	2.8	2.4	8.6	5.0	8.6	3.8	2.0	13	3.4	3.8
10	41	2.3	1.5	3.3	7.7	5.1	7.8	2.3	2.2	9.4	3,5	3.4
11	18	2.4	2.0	2.2	5.2	5.1	9.5	2.6	3.2	11	3.1	4.9
12	10	3.7	2.0	2.1	4.9	5.4	11	3,2	2.8	11	3.6	5.5
13	5.5	2.6	2.2	2,2	17	6.0	9.4	3.2	3.1	9.6	3.2	6.2
14	3.0	1.9	2.4	2.2	8.2	5.1	8.1	3.1	3.3	8.3	3.8	4.1
15	2.8	2.7	3.1	2.1	4.3	23	7.5	3.3	3.6	6.6	3.6	4.3
16	2.8	3.6	2.4	4.2	4.2	5.2	7.8	3.3	3.0	7.5	3.4	4.6
17	2.9	5.7	2.8	2.2	3.7	5.3	7.7	4.0	2.4	9.0	2.7	5.3
18	3.0	57	2.0	2.5	3.9	6.1	8.9	3,5	2.2	5.6	2.9	6.6
19	3.2	2.8	2.4	2.7	4.0	7.0	7.3	5.2	2.2	5.0	2.9	7.9
20	3,2	2.3	3.7	2.6	4.5	6.9	6.7	5.7	2.5	4.8	2.5	9.0
21	3.2	2.4	2.7	2.2	5.4	53	5.3	5.3	3.3	4.0	3.4	11
22	3,1	2.9	3.0	2.1	5.8	9.5	7.8	2.5	3.3	4.6	3.2	17
23	3.1	2.4	3.0	2.5	16	7.3	5.6	3.4	2.8	5.0	3.8	46
24	3.1	2.4	3.4	2.6	63	23	5.4	3.3	3,1	4.2	4.2	8.8
25	3.1	2.6	2.9	2.2	34	7.9	5.6	4.6	3.1	3.1	3.2	5.8
26	3.1	2.6	1.8	2.1	6.7	5.0	5.2	4.6	2,5	3.2	3.2	3.8
27	3.3	2.4	2.1	2.6	6.0	4.2	5,9	4.7	2.5	3.7	2.9	5.5
28	3.3	3.1	2.5	15	5,3	4.3	3.8	4.3	3.5	4.1	2.8	5.5
29	3.4	2.0	3.4	4.7		4.7	3.6	4.8	3,6	4.5	3.3	4.4
30	3.5	2.1	3.3	4.1		4.0	4.1	4.8	3.8	4.2	2.8	3.4
31	3.5		3.0	3.6		3.8		4.2		4.2	3.8	
TOTAL	207.6	140.0	134.1	233.0	257.0	280.4	210.3	130,5	91.1	209.0	125.6	209.7
MEAN	6,70	4.67	4.33	7,52	9.18	9.05	7.01	4.21	3.04	6.74	4.05	6.99
MAX	41	57	39	70	63	53	13	8.9	4.4	13	11	46
MIN	2.8	1.9	1.5	2.1	3.0	3,4	3.6	2,3	2.0	3.1	2.5	3.4
AC-FT	412	278	266	462	510	556	417	259	181	415	249	416

MIN 1.5 AC-FT 8000 MIN 1.5 AC-FT 4420

11073360 CHINO CREEK AT SCHAEFER AVENUE, NEAR CHINO, CA

LOCATION.--Lat 34°00'14", long 117°43'34", in Santa Ana del Chino Grant, San Bernardino County, Hydrologic Unit 18070203, on right bank 300 ft downstream from Schaefer Avenue, 0.8 mi downstream from San Antonio Creek, and 1.5 mi southwest of Chino.

DRAINAGE AREA. -- 48.9 mi².

CAL YR 1986 TOTAL 3377.69

WTR YR 1987 TOTAL 1464.45

MEAN 9,25

MEAN 4.01

MAX 430

MAX 307

MIN

.70

. 62

AC-FT

PERIOD OF RECORD. -- October 1969 to current year.

GAGE.--Water-stage recorder. Concrete dikes have formed low-water control since October 1975. Elevation of gage is 685 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. Flow mostly regulated by San Antonio flood-control reservoir, capacity, 7,620 acre-ft. Natural streamflow affected by extensive ground-water withdrawals, diversions for power, domestic use, irrigation, and return flow from irrigated areas. California Water Project reported no releases during the year to the basin via San Antonio Creek from Rialto Pipeline below San Antonio Dam at a site 10 mi upstream.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 12,700 ft³/s, Feb. 27, 1983, gage height, 10.32 ft, from rating curve extended above 1,200 ft³/s on basis of slope-conveyance study; no flow May 21, June 30, July 1, Oct. 30, Nov. 3, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 25, 1969, reached a stage of 9.23 ft, present datum, discharge, 9,200 ft³/s, by contracted-opening measurement at site 6.1 mi downstream.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 956 ${\rm ft}^3/{\rm s}$, Jan. 4, gage height, 6.25 ft; minimum daily, 0.62 ${\rm ft}^3/{\rm s}$, May 4.

	MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	1.9	.88	1.5	1.2	.96	.88	1.1	1,1	1.7	.95	1.6	1.5	
2	31	.74	1.1	1.2	. 96	. 86	2.2	. 99	.98	1.0	1.1	2.9	
3	1.6	.88	1.1	1.3	.89	. 83	18	, 64	1.0	1.1	1.3	1.9	
4	1.0	.91	. 96	307	.83	. 88	2.1	. 62	.95	1.2	1.2	1.6	
5	, 98	1.0	1.3	35	.84	9.6	1.4	.76	1.1	1.0	1.2	1.7	
6	1.1	1.0	54	36	1.2	73	, 96	1.2	4.0	, 96	1.4	2.6	
7	1.1	1.0	1.6	29	. 96	1,4	.96	. 99	.93	1.0	1.3	3.8	
8	1.1	1.2	1.1	1.4	. 96	. 96	.96	3.3	1,0	.98	1.4	1.6	
9	1.5	1.1	1.1	1.6	3.2	. 83	.91	1.0	. 96	1.1	1.3	1.4	
10	14	1.1	1.1	1.8	1.1	. 98	. 92	.86	1.2	1.2	1.3	1.5	
11	1.4	1.1	.91	1.1	.90	1.1	, 96	1.1	1.0	1.2	1.3	1.8	
12	1.2	1.1	.90	1.4	.83	.80	1,3	. 92	.91	1.6	1.8	1.8	
13	1.2	, 96	1.0	.98	119	. 83	1.1	1.0	.92	1.5	1,6	1.3	
14	.91	1.2	1.0	. 96	3.8	. 86	1.2	1.0	.79	.90	1.6	1.4	
15	. 92	2.2	. 94	1.1	1.2	34	1.1	1.3	. 83	1.0	1,5	1.5	
16	. 92	1.4	. 83	2.2	. 92	1.4	1.0	2.2	. 92	.97	1.3	1.6	
17	1.0	18	1.2	3,2	.83	. 92	. 92	1.1	1.2	3.2	1.4	1.4	
18	1.0	111	1.0	2.7	.83	, 96	1.2	. 91	1.2	1.1	1.4	1.6	
19	.97	1.4	1.1	1.3	. 83	2.6	, 82	. 90	1.1	1.2	1.5	1.6	
20	. 96	.83	3.3	. 96	. 85	. 89	. 80	1.0	1.0	4.4	1.6	2.2	
21	, 96	. 92	1.2	2.2	.88	55	1.1	1,2	. 93	1.1	1.9	1,8	
22	. 97	1.0	1.2	2,2	2.5	2.3	1.2	1.2	. 87	1.2	1.7	1.3	
23	1,1	1.8	. 96	1.2	4.7	1.6	.98	. 98	1.0	1.0	1.5	9.5	
24	.84	1.1	. 96	.96	28	. 86	1.2	.91	.88	1.2	1.7	.73	
25	.92	1.5	. 96	1.2	40	1.2	.94	1.3	. 96	1.3	1.4	.86	
26	.96	1.1	1,4	1.1	2.4	. 80	.81	1.4	1.1	1.0	1.4	.81	
27	1.1	. 96	1.1	1.3	1.7	, 86	. 97	1.0	1.1	1.2	1.3	.65	
28	1.0	. 96	1.3	4.9	. 96	. 87	.88	1.4	1.1	1.2	1.9	1.3	
29	. 94	. 92	1.6	.96		. 86	1.0	1.3	. 94	1.1	1,8	1.4	
30	.86	.96	1.6	.96		. 85	1.3	1.6	1.1	1.2	1.6	1.4	
31	1.3		1.9	.96		1.2		1.1		1.3	1,6		
TOTAL	76,71	160,22	91.22	449.34	223.03	200.98	50,29	36.28	33.67	40.36	45.9	56.45	
MEAN	2,47	5.34	2.94	14.5	7.97	6.48	1.68	1.17	1.12	1.30	1.48	1.88	
MAX	31	111	54	307	119	73	18	3,3	4.0	4.4	1.9	9,5	
MIN	. 84	.74	. 83	.96	.83	.80	.80	.62	.79	.90	1.1	.65	
AC-FT	152	318	181	891	442	399	100	72	67	80	91	112	
									٠.				

11073495 CUCAMONGA CREEK NEAR MIRA LOMA, CA

LOCATION.--Lat 33°58'58", long 117°35'55", in SW 1/4 NE 1/4 sec.22, T.2 S., R.7 W., San Bernardino County, Hydrologic Unit 18070203, on right bank 300 ft upstream from Merrill Avenue bridge, 4.6 mi west of Mira Loma.

DRAINAGE AREA. -- 75.8 mi².

PERIOD OF RECORD .-- January 1968 to July 1977, January 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 660 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 1977 at site 100 ft downstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 4-9, 11-29, Nov. 1, 8-15, 19-27, Dec. 27 to Jan. 2, 8-30, Feb. 2-12, 14-22, Feb. 26 to Mar. 14, 16-20, Mar. 22 to Apr. 4, Apr. 7, 10-24, Apr. 28 to May 7, May 30 to June 3, June 6, June 10 to July 4, July 13 to Aug. 8, and Aug. 22 to Sept. 30. Records poor. Channel is now a trapezoidal concrete floodway; records for low and medium flows prior to July 31, 1977, are not equivalent. Chino Basin Municipal Water District Tertiary Plant No. 1 began discharging effluent 1.5 mi above station on May 8, 1985. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE. -- 8 years (water years 1969-76), 2.74 ft³/s, 1,990 acre-ft/yr; 5 years (water years 1980-84), 19.3 ft³/s, 13,980 acre-ft/yr.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,100 ft³/s, Feb. 27, 1983, gage height, 7.85 ft, from floodmark on basis of slope-conveyance study of peak flow; no flow most of some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,910 ft³/s, Jan. 4, gage height, 4.87 ft; minimum daily, 2.5 ft³/s, June 6.

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN AUG SEP 6.0 2.5 g 2.6 2.0 2.3 2.7 _---___ ___ TOTAL 553,5 1233.0 24.6 20.5 19.8 18.5 MEAN 20.4 21.0 48.5 38.8 29 3 18.5 19.3 41.1 MAX 2.8 2.4 MIN 2.5 6.0 AC-FT

CAL YR 1986 TOTAL 13332.7 MEAN 36.5 MAX 674 MIN 9.7 AC-FT 26450 WTR YR 1987 TOTAL 9706.5 MEAN 26.6 MAX 772 MIN 2.5 AC-FT 19250

CAL YR 1986 TOTAL 94400.6 WTR YR 1987 TOTAL 70955.6

MEAN 259

MEAN 194

MAX 2320

675

MAX

SANTA ANA RIVER BASIN

11074000 SANTA ANA RIVER BELOW PRADO DAM, CA (National stream-quality accounting network station)

LOCATION.--Lat 33°53'00", long 117°38'40", in La Sierra Grant, Riverside County, Hydrologic Unit 18070203, on left bank of outlet channel, 2,500 ft downstream from axis of Prado Dam, and 4.5 mi west of Corona.

DRAINAGE AREA. -- 1,490 mi², excludes 768 mi² above Lake Elsinore.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1930 to November 1939 (irrigation seasons only), March 1940 to current year. Published as "at Santa Fe Railroad Bridge, near Prado" May 1930 to November 1931, as "at Atchison, Topeka, and Santa Fe Railroad Bridge, near Prado" May 1932 to November 1939, and as "below Prado Dam, near Prado" March 1940 to September 1950.

GAGE. -- Water-stage recorder and concrete control since August 1944. Datum of gage is approximately 449 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Mar. 18, 1940, at about same site at various datums.

REMARKS.--Estimated daily discharges: Nov. 21-23. Records good. Flow regulated since 1941 by Prado Reservoir, capacity, 201,200 acre-ft. Natural streamflow affected by extensive ground-water withdrawals, diversion for irrigation, and return flow from irrigated areas. No releases by California Water Project were made to the basin. See schematic diagram of Santa Ana River basin.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,440 ft³/s, Feb. 21, 1980, gage height, 6.88 ft; minimum daily, 2.4 ft³/s, July 29 to Aug. 3, Sept. 20, 1978 (result of gate closure).

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Mar. 2, 1938, reached a discharge of 100,000 ft³/s, by slope-area measurement of peak flow at site 2.5 mi downstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 850 ft³/s, Jan. 5, gage height, 4.29 ft; minimum daily, 4.0 ft³/s, Oct. 8.

		DISCHARGE,	IN CUBIC	FEET		WATER YEAR CAN VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	322	171	177	207	263	257	269	285	143	153	126	133
2	333	173	181	199	261	256	271	279	128	151	123	137
3	360	175	183	205	259	254	310	272	129	145	117	138
4	246	176	246	293	245	254	328	262	129	140	118	138
5	159	176	188	650	225	191	328	249	135	135	116	129
6	179	98	190	675	226	185	327	230	135	133	121	134
7	59	196	230	525	226	255	326	197	150	152	122	135
8	4.0	214	240	439	227	254	327	202	150	167	124	140
9	4.6	177	210	203	228	253	327	190	166	158	122	146
10	173	169	194	199	175	252	327	183	161	143	121	96
11	364	164	230	196	185	251	327	171	153	147	123	44
12	342	167	260	196	243	250	326	168	146	151	123	54
13	270	167	257	196	192	250	322	165	136	149	125	56
14	202	169	254	220	117	251	320	165	131	133	133	54
15	181	166	251	232	118	254	316	162	110	130	133	50
16	177	168	249	227	118	256	327	165	96	130	134	50
17	176	159	255	223	219	256	342	167	53	121	135	50
18	174	325	257	223	281	257	336	159	21	119	134	50
19	178	283	263	221	279	258	330	159	104	115	131	50
20	177	286	264	233	277	259	319	162	168	134	122	50
21	172	260	252	253	276	262	312	166	171	149	128	50
22	159	260	234	253	277	264	309	164	68	145	135	50
23	155	170	216	254	206	266	304	161	84	145	131	50
24	157	157	242	253	162	266	300	155	164	141	129	50
25	160	182	211	250	271	266	294	150	172	138	131	52
26	156	204	192	246	339	267	288	152	168	133	130	52
27	158	199	198	244	288	268	294	155	167	131	130	52
28	162	191	198	242	258	268	304	155	165	130	128	52
29	151	184	197	164		267	297	154	161	134	133	53
30	158	180	197	187		266	292	157	156	134	135	53
31	163		205	264		267		157		131	129	
TOTAL	5831.6	5766	6921	8372	6441	7880	9399	5718	4020	4317	3942	2348
MEAN	1.88	192	223	270	230	254	313	184	134	139	127	78.3
MAX	364	325	264	675	339	268	342	285	172	167	135	146
MIN	4.0	98	177	164	117	185	269	150	21	115	116	44
AC-FT	11570	11440		16610	12780			11340	7970	8560	7820	4660

MIN 4.0 AC-FT 187200 MIN 4.0 AC-FT 140700

11074000 SANTA ANA RIVER BELOW PRADO DAM. CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967 to current year. CHEMICAL DATA: Water years 1967 to current year. BIOLOGICAL DATA: Water years 1975 to current year. SPECIFIC CONDUCTANCE: Water years 1970 to current year. WATER TEMPERATURE: Water years 1970 to current year. SEDIMENT DATA: Water years 1974 to current year.

PERIOD OF DAILY RECORD . --

CHLORIDE: October 1970 to September 1971, SPECIFIC CONDUCTANCE: October 1969 to current year. WATER TEMPERATURE: October 1969 to current year.

SUSPENDED-SEDIMENT DISCHARGE: October 1973 to June 1982.

INSTRUMENTATION, -- Water-quality monitor recording specific conductance and water temperature since October 1969.

REMARKS . -- Periods of missing conductivity and temperature data due to equipment malfunctions.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum recorded, 1,830 microsiemens, Apr. 30, 1971; minimum recorded, 220 microsiemens, Feb. 20, 1978.

WATER TEMPERATURE: Maximum recorded, 36.0°C, Sept. 4, 1972, Sept. 8, 1984; minimum recorded, 2.5°C, Dec. 30, 1969.

SEDIMENT CONCENTRATION: Maximum daily mean, 2,870 mg/L, Mar. 5, 1978; minimum daily mean, 3 mg/L, Apr. 2, 1980, and several days during 1982.

SEDIMENT LOAD: Maximum daily, 18,900 tons, Mar. 5, 1978; minimum daily, 0.58 ton, Sept. 20, 1978.

EXTREMES FOR CURRENT YEAR. --

SPECIFIC CONDUCTANCE: Maximum recorded, 1,200 microsiemens, Oct. 4; minimum recorded, 362 microsiemens, Jan. 5.
WATER TEMPERATURE: Maximum recorded, 28.0°C, Aug. 6; minimum recorded, 8.5°C, Jan. 18-23.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
OCT												
02 NOV	1230	346	1080		18.5							
04	1350	179	1080		17.5							
14	1140	174	1060		14.0							
25	1245	223	1070	7.9	14.5	745	8.1	9.6	97	K1200	610	330
DEC												
02	1330	175	1070		12.5							
JAN												
08	1015	452	636		12.0							
14	1215	235	980	7.9	11.5	745	5.2	9.6	90	640	190	310
FEB												
04	1050	253	1080		14.5							
MAR								•				
02	1140	253	876		13.5							
18,	1145	251	967	8.0	16.0	740	2.0	8.8	92	K12	K16	300
APR												
01	1030	266	910		16.5						·	
17	0800	342	953		19.5							
MAY	0000	0.47	4440									
05	0830	247	1110		21.0	7/5	100			 V1100		
13	1045	168	1070	8.0	22.5	745	100	7.4	88	K1100	2300	310
JUN 03	0730	127	1050		19.0							
30	1130	157	1050		21.0							
JUL	1130	137	1030		21.0							
20	1200	131	1090		20.0							
28	1245	133	1050	8.0	23.0	740	32	7.4	89	K1300	620	310
AUG	1243	100	1030	0.0	20.0	/40	52	7.4	09	K1300	020	310
14	1215	132	1040		22.0							
SEP	1413	102	1040		22,0							
02	1000	134	1040		22.0							
22	1215	49	1070	7.9	21.0	745	2.3	7.8	90	500	250	320
22	2270		1070	,,,	21.0	, ,,,	2.0	7.0		300	200	0110

See footnote at end of table.

11074000 SANTA ANA RIVER BELOW PRADO DAM, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
OCT 02									***			
NOV 04					~-							
14												
25 DEC	110	94	23	95	38	2	9.6	262	0	215	216	150
02 JAN												
08 14	99	90	21	 80	 35	 2	10	263		 215	213	 130
FEB												
04 MAR												
02 18	98	88	20	 79	36	2	7.7	248	0	204	204	130
APR 01												
17 MAY												
05	 83	 87	 22	93	 39	 2			 0			
13 JUN	03						8.9	275		226	226	130
03 30												
JUL 20												
28	85	88	21	93	39	2	9.2	270	0	222	222	130
AUG 14												
SEP 02												
22	82	93	22	98	39	2	11	294	0	241	241	140
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
OCT	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	DIS- SOLVED (TONS PER	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 DIS- SOLVED (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHORUS, TOTAL (MG/L
OCT 02 NOV	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	DIS- SOLVED (TONS PER	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 DIS- SOLVED (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHORUS, TOTAL (MG/L
OCT 02 NOV 04	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 DIS- SOLVED (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHORUS, TOTAL (MG/L
OCT 02 NOV 04 14 25	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHORUS, TOTAL (MG/L AS P)
OCT 02 NOV 04 14 25 DEC 02	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)
OCT 02 NOV 04 14 25 DEC 02 JAN 08	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)
OCT 02 NOV 04 14 25 DEC 02 JAN 08 14 FEB	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)
OCT	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)
OCT 02 NOV 04 14 25 DEC 02 JAN 08 14 FEB 04 MAR 02	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2	PHORUS, TOTAL (MG/L AS P)
OCT 02 NOV 04 14 25 DEC 02 JAN 08 14 FEB 04 MAR 02 18 APR	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)
OCT 02 NOV 04 14 25 DEC 02 JAN 08 14 FEB 04 MAR 02 18 APR 01 17	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2	PHORUS, TOTAL (MG/L AS P)
OCT	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589 570 583	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220 0.110	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3 0.250	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3 0.250	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2 1.2	PHORUS, TOTAL (MG/L AS P)
OCT	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589 570 583	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220 0.110	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3 0.250	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2 1.2	PHORUS, TOTAL (MG/L AS P)
OCT	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589 570 583	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220 0.110	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3 0.250	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3 0.250	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2 1.2	PHORUS, TOTAL (MG/L AS P)
OCT 02 NOV 04 14 25 DEC 02 JAN 08 14 FEB 04 MAR 02 18 APR 01 17 MAY 05 13 JUN 03 JUN 03 JUL 20	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/AS/ SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589 570 583 678 654 670 636	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220 0.110 0.310	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3 0.250 1.7	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3 0.250 1.5	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2 1.2 3.4 3.4	PHORUS, TOTAL (MG/L AS P) 3.3 1.7 1.9 3.8
OCT	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589 570 583 678 654	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220 0.110 0.310	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3 0.250	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3 0.250	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2 1.2	PHORUS, TOTAL (MG/L AS P) 3.3 1.7 1.9 3.8
OCT	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/AS/ SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589 570 583 678 654 670 636	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220 0.110 0.310	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3 0.250 1.7	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3 0.250 1.5	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2 1.2 3.4 3.4	PHORUS, TOTAL (MG/L AS P) 3.3 1.7 1.9 3.8
OCT	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F) 0.60 0.50 0.70 0.50 0.50	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 655 685 661 694 671 407 611 669 535 589 570 583 678 654 670 636 672 643	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT) 0.94 0.83 0.80 0.89 0.89	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.170 0.220 0.110 0.310 0.260	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) 0.450 1.3 0.250 1.7	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.440 1.3 0.250 1.5	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.4 2.2 1.2 3.4 11	PHORUS, TOTAL (MG/L AS P) 3.3 1.7 1.9 3.8 3.6

SANTA ANA RIVER BASIN

11074000 SANTA ANA RIVER BELOW PRADO DAM, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

OCT		(UG/L AS FE)
NOV		
04,		
14		
25 2,9 2,7 <10 4 44 <0,5 <1 <1 <3	3	9
DEC		
02		
JAN		
08		
14 1.7 1.3 <10 4 51 <0.5 <1 <1 <3	3	19
FEB .		
04		
MAR		
02		
18 1.8 1.7		
APR		
01		
17		
MAY		
03		
13 2.6 <10 5 45 <0.5 <1 <1 <3	5	13
JUN 03		
30		
JUL		
20,		
28 3.2 2.7 <10 4 41 <0.5 <1 <1 <3	2	23
AUG	4	20
14		
SEP		
02		
22 2.5 2.4		

See footnote at end of table.

11074000 SANTA ANA RIVER BELOW PRADO DAM, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT											
02 NOV											
04											
14											
25	<5	16	110	<0.1	<10	5	<1	<1	590	6	14
DEC						_	_	_			
02											
JAN											
08											
14	<5	17	60	<0.1	<10	. 4	<1	<1	550	<6	9
FEB											
04											
MAR											
02											
18											
APR											
01											
17											
MAY											
05											
13	<5	14	190	0.1	<10	5	<1	<1	580	7	7
Jun											
03											
30											
JUL											
20											
28	<5	14	110	<0.1	<10	6	<1	<1	560	7	55
AUG											
14											
SEP											
02											
22											

K Results based on colony count outside the acceptable range (non-ideal colony count). < Actual value is known to be less than the value shown.

CROSS-SECTIONAL DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	SEDI- MENT, SUS- PENDED (MG/L)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
JAN										
14*	1435	4.0	. 981	7.8	11.5	745	9.6	90	11	96
14*	1438	11.0	980	7.9	11.5	745	9.6	90	12	96
14*	1441	15.0	980	7.9	11.5	745	9.6	90	14	72
14*	1444	19.0	980	7.9	11.5	745	9.6	90	10	97
14*	1447	24.0	981	7.9	11.5	745	9.6	90	10	93
14*	1450	32.0	981	7.9	11.5	745	9.7	91	9	100
JUL										
28*	1345	6.0	1060	8.0	24.5	740	7.4	92	134	96
28*	1355	12.0	1060	8.0	24.5	740	7.4	92	168	92
28*	1405	17.0	1050	8.0	24.5	740	7.3	91	183	90
28*	1415	24.0	1050	8.0	24.5	740	7.4	92	180	90
28*	1425	31.0	1040	8.0	24.5	740	7.4	92	172	91

^{*} Instananeous streamflow at the time of cross-sectional measurements: Jan. 14, 235 ${\rm ft}^3/{\rm s}$; July 28, 133 ${\rm ft}^3/{\rm s}$.

11074000 SANTA ANA RIVER BELOW PRADO DAM, CA--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		OBER		EMBER		EMBER		UARY		RUARY	MAR	
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
1	1090	1010	1120	1100	1110	1070	1060	1040	1100	1040	926	885
2	1110	1060	1120	1090	1090	1050	1050	1040	1080	1030	897	866
3	1130	1030	1110	1070	1080	1040	1040	1030	1070	1040	948	867
4	1200	1160	1090	1050	1090	1050	1040	422	1120	1040	990	908
5	1150	1060	1080	1040	1090	1070	503	362	1120	1030	951	891
6	1050	1030			1070	815	554	473	1110	1020	993	911
7				1050	866	776	705	564	1110	1010	994	963
8			1070	1050	838	767	877	606	1060	1020	986	944
9			1060	1040	919	758	852	708	1090	1010	967	946
10			1060	1030	980	840	896	794	1100	1040	969	918
11	1030	880	1060	1040	1020	901	929	867	1110	1020	970	920
12 13	1020 1020	890 974	1060 1070	1040 1040	1030 1050	942 973	944 1010	872 888	1100 1120	1050 1050	962 943	912 902
14	1010	984	1080	1050	1050	1000	1000	879	1110	1060	945	914
15	998	968	1080	1050	1070	1040	982	891	1100	1040	946	915
16	990	970	1070	1050	1070	1050	1020	952	1110	1030	988	936
17	982	962	1070	1040	1070	1050	1050	982	1090	1040	999	958
18	975	963	1040	684	1100	1050	1060	984	1060	1040	990	950
19	977	956	870	837	1090	1070	1030	975	1110	1040	969	939
20	988	967	984	850	1100	1060	1130	996	1080	1020	998	939
0.1	1000	000	1050		1000	1000	1050	007	1070	1000	000	047
21	1000	969	1050	994	1090	1060	1050	997	1070	1000	998	947
22 23	1040	1000	1070	1030	1090	1070 1080	1070 1090	1010 1020	1060 1070	1000 972	1020	937 966
	1060	1030	1080	1040	1100						1020	925
24 25	1060 1070	1040 1040	1090 1100	1070 1060	1110 1110	1080 1070	1090 1070	1040 1040	1050 1060	1000 993	956 955	925
25 26	1090	1040	1000	1070	1090	1070	1070	1040	1000	894	944	884
26 27		1070	1100		1090	1050	1060	1020	924	884	924	883
28	1100 1130	1090	1000	1060 1060	1070	1050	1060	1030	925	895	923	882
29	1150	1130	1090	1060	1080	1040	1000				932	892
30	1150	1130	1100	1080	1060	1040					951	921
31	1160	1110			1070	1040	1100	1050			970	910
MONTH					1110	758			1120	884	1020	866
DAY		RIL		IAY	JU			LY		GUST		TEMBER
DAY	AP MAX	RIL MIN	MAX MAX	MIN	JU MAX	NE MIN	JU MAX	LY MIN	AU0 MAX	GUST MIN	SEP MAX	TEMBER MIN
	MAX	MIN	MAX	MIN	MAX	MIN					MAX	MIN
DAY 1 2										MIN		
1	MAX 970	MIN 910	MAX 1110	MIN 1040	MAX 1070	MIN 1040				MIN	MAX 1050	MIN 1030
1 2	MAX 970 982	MIN 910 931	MAX 1110 1110	MIN 1040 1050	MAX 1070 1060	MIN 1040 1040				MIN	MAX 1050 1050	MIN 1030 1020
1 2 3 4 5	MAX 970 982 983	MIN 910 931 934	MAX 1110 1110 1100	MIN 1040 1050 1070	MAX 1070 1060 1060	MIN 1040 1040 1040 1030 1030				MIN	MAX 1050 1050 1050	MIN 1030 1020 1030 1030 1040
1 2 3 4	970 982 983 965	MIN 910 931 934 934	MAX 1110 1110 1100 1120	MIN 1040 1050 1070 1080	MAX 1070 1060 1060 1070	MIN 1040 1040 1040 1030			MAX 	MIN 	MAX 1050 1050 1050 1070	MIN 1030 1020 1030 1030 1040 1040
1 2 3 4 5	970 982 983 965 986	MIN 910 931 934 934 935	MAX 1110 1110 1100 1120 1120	MIN 1040 1050 1070 1080 1080	MAX 1070 1060 1060 1070 1060	MIN 1040 1040 1040 1030 1030			MAX 	MIN 	MAX 1050 1050 1050 1070 1070 1060 1080	MIN 1030 1020 1030 1030 1040 1040
1 2 3 4 5	970 982 983 965 986 998	910 931 934 934 935 937	MAX 1110 1110 1100 1120 1120 1130	MIN 1040 1050 1070 1080 1080 1080	MAX 1070 1060 1060 1070 1060 1060	MIN 1040 1040 1040 1030 1030 1020 1010 991			MAX 	MIN	MAX 1050 1050 1050 1070 1070 1060	MIN 1030 1020 1030 1030 1040 1040 1030
1 2 3 4 5 6 7	970 982 983 965 986 998 969	MIN 910 931 934 934 935 937 949	MAX 1110 1110 1100 1120 1120 1130 1090	MIN 1040 1050 1070 1080 1080 1080 1060	MAX 1070 1060 1060 1070 1060 1060 1050	MIN 1040 1040 1040 1030 1030 1020 1010			MAX 	MIN	MAX 1050 1050 1050 1070 1070 1060 1080	MIN 1030 1020 1030 1030 1040 1040
1 2 3 4 5 6 7 8	970 982 983 965 986 998 969 970	910 931 934 934 935 937 949 931	MAX 1110 1110 1100 1120 1120 1130 1090 1070	MIN 1040 1050 1070 1080 1080 1080 1060 1030	MAX 1070 1060 1060 1070 1060 1060 1050	MIN 1040 1040 1040 1030 1030 1020 1010 991			MAX 	MIN	MAX 1050 1050 1050 1070 1070 1060 1080 1070	MIN 1030 1020 1030 1030 1040 1040 1030
1 2 3 4 5 6 7 8 9	970 982 983 965 986 998 969 970	910 931 934 934 935 937 949 931 932	MAX 1110 1110 1100 1120 1120 1130 1090 1070	MIN 1040 1050 1070 1080 1080 1080 1060 1030	MAX 1070 1060 1060 1070 1060 1050 1030 999	MIN 1040 1040 1040 1030 1030 1020 1010 991 979			MAX 	MIN	MAX 1050 1050 1070 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1030 1040 1040 1030 1050
1 2 3 4 5 6 7 8 9	970 982 983 965 986 998 969 970 962 963	MIN 910 931 934 935 937 949 931 932 924 924	MAX 1110 1110 1110 1120 1120 1130 1090 1070 1070	MIN 1040 1050 1070 1080 1080 1060 1030 1030	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010	MIN 1040 1040 1030 1030 1030 1020 1010 991 979 981 981 980			MAX 	MIN	MAX 1050 1050 1070 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1030 1040 1040 1030 1050
1 2 3 4 5 6 7 8 9 10	MAX 970 982 983 965 986 998 969 970 962 963	910 931 934 934 935 937 949 931 932 924	MAX 1110 1110 1110 1120 1120 1130 1090 1070 1070	MIN 1040 1050 1070 1080 1080 1060 1030 1030 1030	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010	MIN 1040 1040 1040 1030 1030 1030 1020 1010 991 979 981			MAX	MIN	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1040 1040 1050 1050
1 2 3 4 5 6 7 8 9 10	MAX 970 982 983 965 986 998 969 970 962 963 975 986	MIN 910 931 934 935 937 949 931 932 924 924	MAX 1110 1110 1110 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1060 1030 1030 1030 1040 1050	MAX 1070 1060 1060 1070 1060 1050 1050 1030 999 1010 1010	MIN 1040 1040 1030 1030 1030 1020 1010 991 979 981 981 980			MAX	MIN	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1030 1040 1040 1050 1050
1 2 3 4 5 6 7 8 9 10	MAX 970 982 983 965 986 998 969 970 962 963 975 986 978	910 931 934 935 937 949 931 932 924 924 946 947	MAX 1110 1110 1110 1120 1120 1130 1070 1070 1070 1070	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1040 1050	MAX 1070 1060 1060 1070 1060 1050 1050 1030 999 1010 1010 1010	MIN 1040 1040 1030 1030 1020 1010 991 979 981 981 980 988			MAX 1040	MIN 1010	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1030 1040 1040 1050 1050
1 2 3 4 5 6 7 8 9 10 11 12 13 14	MAX 970 982 983 965 986 998 969 970 962 963 975 986 978 999	MIN 910 931 934 934 935 937 949 931 932 924 924 946 947 968	MAX 1110 1110 1110 1120 1120 1130 1090 1070 1070 1070 1070	MIN 1040 1050 1070 1080 1080 1080 1060 1030 1030 1030 1040 1050 1050 1020	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1040 1030 1030 1020 1010 991 979 981 981 988 988			MAX 1040 1020	MIN	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1030 1040 1040 1050 1050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	970 982 983 965 986 998 969 970 962 963 975 986 978 999	910 931 934 934 935 937 949 931 932 924 946 947 968 970	MAX 1110 1110 1110 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1050 105	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010	MIN 1040 1040 1040 1030 1030 1020 1010 991 979 981 981 988 988			MAX 1040	MIN 1010	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1030 1040 1040 1050 1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000	910 931 934 934 935 937 949 931 932 924 946 947 968	MAX 1110 1110 1110 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1050 1020 1000 992	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1010	MIN 1040 1040 1040 1030 1030 1030 1010 991 979 981 981 988 985			MAX 1040 1020	MIN 1010 994	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1040 1040 1050 1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000	910 931 934 934 935 937 949 931 932 924 946 947 968 970 962 946	MAX 1110 1110 1110 1120 1120 1130 1090 1070 1070 1070 1070 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1060 1030 1030 1030 1050 1050 1050 1020 1000 992 982	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1040 1030 1030 1030 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040	MIN 1010 994 982	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1050	MIN 1030 1020 1030 1040 1040 1030 1050 1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 999	910 931 934 934 935 937 949 931 932 924 946 947 968 970 962 946 946	MAX 1110 1110 1110 1120 1120 1130 1070 1070 1070 1070 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1040 1050 1050 1020 1000 992 982 981	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1010	MIN 1040 1040 1030 1030 1020 1010 991 979 981 981 988 985			MAX 1040 1020 1010	MIN 1010 994 982 979	MAX 1050 1050 1070 1070 1060 1080 1070	MIN 1030 1020 1030 1040 1040 1050 1050 1050 1050 1050 105
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000	910 931 934 935 937 949 931 932 924 946 947 968 970 962 946 946 946 946	MAX 1110 1110 1110 1120 1120 1130 1090 1070 1070 1070 1070 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1040 1050 1050 1020 1000 992 981 980	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1030 1030 1020 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040 1050	MIN 1010 994 982 979 1000 1020	MAX 1050 1050 1070 1070 1060 1080 1070	MIN 1030 1020 1030 1030 1040 1050 1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000	910 931 934 934 935 937 949 931 932 924 946 947 968 970 962 946 946 946 946 946	MAX 1110 1110 1110 1120 1120 1130 1070 1070 1070 1070 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1040 1050 1050 1020 1000 992 981 980 979 969 980	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1030 1030 1030 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040 1050	MIN 1010 994 982 979 1000 1020	MAX 1050 1050 1050 1070 1070 1060 1080 1070	MIN 1030 1020 1030 1030 1040 1050 1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000	910 931 934 935 937 949 931 932 924 946 947 968 970 962 946 946 946 946	MAX 1110 1110 1110 1120 1120 1130 1090 1070 1070 1070 1070 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1050 1020 1000 992 981 980 979 969	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1030 1030 1030 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040 1050	MIN 1010 994 982 979 1000 1020	MAX 1050 1050 1050 1070 1070 1060 1080 1070	MIN 1030 1020 1030 1040 1040 1050 1000 1010
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000	910 931 934 934 935 937 949 931 932 924 946 947 968 970 968 970 968 970 968 961 986	MAX 1110 1110 1110 1120 1120 1130 1070 1070 1070 1070 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1040 1050 1050 1020 1000 992 981 980 979 969 980	MAX 1070 1060 1060 1070 1060 1050 1050 1030 999 1010 1010 1010 1010 1010	MIN 1040 1040 1030 1030 1020 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1010 1020 1040 1050	MIN 1010 994 982 979 1000 1020 1010 1000 1020	MAX 1050 1050 1050 1070 1070 1060 1080 1070	MIN 1030 1020 1030 1040 1040 1030 1050 1000 1010 1010
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000	910 931 934 935 937 949 931 932 924 946 947 968 970 962 946 946 946 946 946 946 946 946 946 946	MAX 1110 1110 1120 1120 1120 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1050 1050 1050 1050 105	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1010 101	MIN 1040 1040 1040 1030 1030 1020 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040 1050 1040 1050	MIN 1010 994 982 979 1000 1020 1010 1000	MAX 1050 1050 1050 1070 1070 1060 1080 1070 1080	MIN 1030 1020 1030 1040 1040 1050 1000 1010
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000 1000 1000	910 931 934 935 937 949 931 932 924 946 946 946 946 946 946 946 946 946 94	MAX 1110 1110 1110 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1020 1000 992 982 981 980 979 969 980 979 978	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1010 101	MIN 1040 1040 1040 1030 1030 1030 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1010 1020 1040 1050	MIN 1010 994 982 979 1000 1020 1010 1000 1020	MAX 1050 1050 1050 1070 1060 1080 1070 1080 1060	MIN 1030 1020 1030 1040 1040 1030 1050 1000 1010 1010
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000 1040 1040	910 931 934 934 935 937 949 931 932 924 946 947 968 970 962 946 946 946 986 982 997 1000 1010 1020	MAX 1110 1110 1120 1120 1120 1130 1070 1070 1070 1070 1070 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1040 1050 1050 1020 1000 992 981 980 979 969 980 979 978 978 978 996 1000	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1010 101	MIN 1040 1040 1040 1030 1030 1030 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040 1050 1040 1050 1060 1060 1060 1070	MIN 1010 994 982 979 1000 1020 1010 1000 1000 1000 1020 1030 103	MAX 1050 1050 1070 1070 1060 1080 1070 1080 1060 1050 1050 1050 1060 1050 1060	MIN 1030 1020 1030 1040 1050 1000 1010 1010 1020 1020 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000 1000 1000	910 931 934 935 937 949 931 932 924 946 946 946 946 946 946 946 946 946 94	MAX 1110 1110 1120 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1050 1020 1000 992 981 980 979 969 980 979 978 978 978 996 1000 1030	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1030 1030 1030 1020 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 10140 1050 1040 1050 1060 1060 1060 1070 1080	MIN 1010 994 982 979 1000 1020 1010 1000 1020 1030 1030 1030	MAX 1050 1050 1070 1070 1060 1080 1070 1080 1060 1050 1080 1110 1120	MIN 1030 1020 1030 1040 1040 1050 1000 1010 1010 1060 1060 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1040 1040 1040	910 931 934 935 937 949 931 932 924 946 947 962 946 946 961 986 982 997 1000 1010 1020 1020 1030	MAX 1110 1110 1110 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1020 1000 992 982 981 980 979 969 980 979 978 978 996 1000 1030 1040	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1030 1030 1030 1020 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040 1050 1040 1050 1040 1050 1060 1060 1070 1080 1070	MIN 1010 994 982 979 1000 1020 1010 1000 1020 1030 1030 1040 1040 1040 1050	MAX 1050 1050 1070 1070 1060 1080 1070 1080 1060 1050 1080 1110 1120 1110	MIN 1030 1020 1030 1040 1030 1050 1000 1010 1010 1020 1080 1080
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1000 1000 1000	910 931 934 934 935 937 949 931 932 924 946 947 968 970 962 946 946 961 986 986 995 986 997 1000 1020 1020 1030 1040	MAX 1110 1110 1110 1120 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1050 105	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1030 1030 1030 1020 1010 991 979 981 981 988 985			MAX 1040 1020 1010 1020 1040 1050 1040 1050 1040 1050 1060 1070 1080 1070 1080 1070 1060	MIN 1010 994 982 979 1000 1020 1010 1000 1000 1000 1000 1040 104	MAX 1050 1050 1070 1070 1060 1080 1070 1080 1060 1050 1050 1080 1110 1120 1110	MIN 1030 1020 1030 1040 1030 1050 1000 1010 1020 1080 1080 1070
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	970 982 983 965 986 998 969 970 962 963 975 986 978 999 1000 1000 1000 1000 1040 1040 1040	910 931 934 935 937 949 931 932 924 946 947 962 946 946 961 986 982 997 1000 1010 1020 1020 1030	MAX 1110 1110 1110 1120 1120 1120 1070 107	MIN 1040 1050 1070 1080 1080 1080 1030 1030 1030 1030 1050 1050 1020 1000 992 982 981 980 979 969 980 979 978 978 996 1000 1030 1040	MAX 1070 1060 1060 1070 1060 1050 1030 999 1010 1010 1010 1010 1000	MIN 1040 1040 1040 1030 1030 1030 1010 991 979 981 988 985			MAX 1040 1020 1010 1020 1040 1050 1040 1050 1040 1050 1060 1060 1070 1080 1070	MIN 1010 994 982 979 1000 1020 1010 1000 1020 1030 1030 1040 1040 1040 1050	MAX 1050 1050 1070 1070 1060 1080 1070 1080 1060 1050 1080 1110 1120 1110	MIN 1030 1020 1030 1040 1030 1050 1000 1010 1010 1020 1080 1080

11074000 SANTA ANA RIVER BELOW PRADO DAM, CA--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	oct	OBER	NOV	EMBER	DEC	EMBER	JA	NUARY	FEB	RUARY	м	ARCH
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
1 2	19.0 18.5	18.0 18.0	18.0 18.0	15.5 14.5	15.0 15.0	12.5 12.5	14.0 15.5	11.0 12.5	14.0 13.5	13.0 13.0	12.0 12.5	11.0 11.5
3	19.0	18.0	18.5	14.0	15.0	12.0	15.0	10.5	13.5	13.0	13.0	12.0
4	21.0	16.5	18.5	14.0	15.5	13.0	14.5	12.5	15.0	13,5	14.0	12.5
5	21.5	16.0	19.0	14.5	16.0	14.0	12.5	12.0	15.0	13.5	13.5	13.0
6 7	21.5	17.0			16.0 14.5	14.5 14.0	12.0 12.0	11.5 11.5	14.5 14.5	13.5 13.5	14.0 14.5	13.0 14.0
8			17.5	14.0	14.0	12.5	12.0	11.5	14.0	13.5	15.0	14.0
9			17.0	12.5	13.0	12.5	12.0	11.0	14.5	14.0	15.5	14.5
10			17.0	12.5	13.0	12.0	11.5	11.0	16.0	13.5	15.5	15.0
11	20.0	19.5	17.5	14.0	12.5	11.5	11.5	10.5	15.5	13.0	16.0	15.0
12 13	20.0 20.0	19.0 17.5	18.0 17.5	12.5 13.0	12.0 11.5	11.0 11.0	11.5 11.5	10.5 11.0	16.0 16.0	15.0 15.0	16.0 16.5	15.5 15.5
14	20.0	15.0	17.0	13.0	11.5	11.0	12.0	10.5	16.5	15.0	16.5	16.0
15	19.5	15.5	18.5	14.0	12.0	11.5	11.0	10.5	16.5	15.0	16.5	16.0
16	19.5	15.0	18.5	15.0	13.0	12.0	10.5	9.5	16.5	15.0	16.5	16.0
17 18	20.5 20.0	17.5 16.0	18.0 17.5	16.5 16.5	13.5 13.5	13.0 13.0	9.5 9.5	9.0 8.5	16.0 15.5	14.5 15.0	16.5 16.0	15.5 15.5
19	19.5	15.5	17.0	17.0	14.0	13.0	9.5	8.5	15.0	14.0	16.0	15.0
20	20.0	15,5	17.0	16.5	14.5	14.0	9.5	8.5	14.5	13.5	16.0	15,5
21	20.0	15.5	17.5	17.0	14.5	13.0	9.0	8.5	14.0	13.5	15.5	15.0
22 23	20.0 20.0	16.0 16.0	17.0 16.5	16.5 14.5	14.5 15.0	12.0 12.0	9.0 9.0	8.5 8.5	13.5 13.5	13.0 12.5	15.5	15.0 14.0
24	20.0	16.0	14.5	14.0	15.5	12.5	10.0	9.0	12.5	12.0	15.0 15.0	14.0
25	21.0	15,5	14.5	14.0	15.0	11.5	10.5	9.5	12.0	11.5	15.5	14,0
26	20.5	16.0	15.0	13.0	14.0	10.5	11.0	10.0	12.0	11.5	15.0	14.0
27	20.5	16.0	15.5	13.0	14.0	10.0	11.5	11.0	12.0	11.0	15.5	14.5
28 29	20,0 21,0	16.0 17.5	16.0 16.0	13.0 13.5	14.5 15.0	11.0 11.0	12.0	11.5	12.0	11.0	16.0 16.5	14.5 15.0
30	20.0	16.5	15.5	13.0	14.5	10.0					16.5	15.5
31	20.5	17.5			14.0	11.0	14.0	13.5			16.5	15.5
MONTH					16.0	10.0			16.5	11.0	16.5	11.0
D.111		PRIL		MAY		UNE		ULY		GUST		TEMBER
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	ULY MIN	AUA XAM	MIN	SEP MAX	TEMBER MIN
1	MAX 16.5	MIN 15.5	MAX 20.0	MIN 19.5	MAX 26.5	MIN 18.0	MAX 23.0	MIN 21.0	MAX 27.0	MIN 20.0	MAX 25,0	MIN 21.0
1 2	MAX 16.5 16.5	MIN 15.5 15.5	MAX 20.0 20.0	MIN 19.5 19.5	MAX 26.5 26.5	MIN 18.0 19.0	MAX 23.0 23.0	MIN 21.0 21.5	MAX 27.0 27.0	MIN 20.0 21.0	MAX 25.0 26.5	MIN 21.0 21.5
1 2 3	MAX 16.5 16.5 16.5	MIN 15.5 15.5 16.0	MAX 20.0 20.0 21.0	MIN 19.5 19.5 19.5	MAX 26.5 26.5 26.5	MIN 18.0 19.0 19.5	MAX 23.0 23.0 23.0	MIN 21.0 21.5 21.5	MAX 27.0 27.0 27.0	MIN 20.0 21.0 21.5	MAX 25.0 26.5 26.0	MIN 21.0 21.5 21.5
1 2 3 4 5	MAX 16.5 16.5 16.5 17.0	MIN 15.5 15.5 16.0 16.0	MAX 20.0 20.0 21.0 22.0 23.0	MIN 19.5 19.5 19.5 20.0 21.0	MAX 26.5 26.5 26.5 26.5 27.0	MIN 18.0 19.0	MAX 23.0 23.0	MIN 21.0 21.5 21.5 20.5 21.0	MAX 27.0 27.0	MIN 20.0 21.0 21.5 21.0 22.0	MAX 25.0 26.5 26.0 25.5 25.0	MIN 21.0 21.5 21.5 21.0 20.0
1 2 3 4 5 6	MAX 16.5 16.5 16.5 17.0 17.0	MIN 15.5 15.5 16.0 16.0 16.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0	MIN 18.0 19.0 19.5 19.5 21.0 22.0	MAX 23.0 23.0 23.0 23.0 23.5 23.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5
1 2 3 4 5 6 7	MAX 16.5 16.5 17.0 17.0 17.0	MIN 15.5 15.5 16.0 16.0 16.0 16.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0	MAX 23.0 23.0 23.0 23.0 23.5 23.5 24.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0
1 2 3 4 5 6 7 8	MAX 16.5 16.5 16.5 17.0 17.0 17.0 17.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 16.5	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5 24.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 19.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5	MAX 23.0 23.0 23.0 23.0 23.5 23.5 24.5 24.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0
1 2 3 4 5 6 7	MAX 16.5 16.5 17.0 17.0 17.0	MIN 15.5 15.5 16.0 16.0 16.0 16.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0	MAX 23.0 23.0 23.0 23.0 23.5 23.5 24.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0
1 2 3 4 5 6 7 8 9 10	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5	MAX 26.5 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 22.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.5 21.0 21.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5
1 2 3 4 5 6 7 8 9 10	MAX 16.5 16.5 17.0 17.0 17.0 17.5 18.0 18.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 22.0 24.0 25.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.0 20.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 18.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0 18.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 21.0	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5	MAX 23.0 23.0 23.0 23.5 23.5 24.5 24.0 22.0 24.0 25.0 26.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.0 20.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	MAX 16.5 16.5 17.0 17.0 17.0 17.5 18.0 18.0 18.0 19.5	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0 18.0 18.5	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5 26.0	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 20.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 22.0 24.0 25.0 26.0 26.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.5 21.0 20.5 21.0 20.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 18.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0 18.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 21.0	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5	MAX 23.0 23.0 23.0 23.5 23.5 24.5 24.0 22.0 24.0 25.0 26.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.0 20.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 19.5 19.5 20.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.0 24.0 24.0 25.0	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 20.0	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5	MAX 23.0 23.0 23.0 23.5 24.5 24.5 24.0 24.0 25.0 26.0 26.5 25.0 23.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.0 21.0 21.0 20.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MAX 16.5 16.5 17.0 17.0 17.0 17.5 18.0 18.0 18.5 19.0 19.5 19.5 20.0 20.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0 18.5 18.5 19.0 19.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 25.0	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 20.0 20.5 20.0 20.5 19.5 20.0 20.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5	MAX 23.0 23.0 23.0 23.5 23.5 24.5 24.0 22.0 24.0 25.0 26.0 26.5 26.0 25.0 23.0 26.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.0 20.5 21.0 20.0 20.5 20.0 21.0 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.0 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 20.0	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 19.5 19.5 20.0	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.0 24.0 24.0 25.0	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 20.0	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5	MAX 23.0 23.0 23.0 23.5 24.5 24.5 24.0 24.0 25.0 26.0 26.5 25.0 23.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.0 21.0 21.0 20.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 19.5 19.5 20.0 20.5 20.5	MIN 15.5 15.5 16.0 16.0 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.0 19.0 19.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 25.0 21.5 19.0 22.0	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 19.5 20.0 20.5 19.5 17.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5 19.5 21.0 21.0	MAX 23.0 23.0 23.0 23.5 24.5 24.5 24.0 22.0 24.0 25.0 26.0 25.0 26.0 25.0 26.0 26.0 26.5 22.0 24.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 20.5 19.5 20.0 20.0 21.0 21.0 20.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 20.0 19.0	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 18.5 19.5 19.5 20.0 20.5 20.0 20.5	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.5 19.0 19.0 19.0 19.0 19.0	MAX 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 25.0 21.5 19.0 22.0 23.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 21.0 20.5 21.0 20.5 19.5 20.0 19.5 17.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.5 26.0	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5 19.5 21.0 21.0	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 25.0 26.5 26.0 25.0 26.5 22.0 24.0 24.0 24.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 21.5 21.0 21.0 20.5 20.0 21.0 20.5 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.5 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 20.0 19.0 19.0 19.0	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 18.5 19.5 19.5 20.0 20.0 20.0 20.0 20.0	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.0 19.0 19.0 19.0 19.0 19.0	MAX 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 21.5 19.0 22.0 23.5 22.5	MIN 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.6 20.5 21.0 20.6 20.6 20.7 20.8 20.8 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 25.0 25.5 26.0	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5 20.5 20.5 20.5 20.5	MAX 23.0 23.0 23.0 23.0 23.5 23.5 24.5 24.0 22.0 24.0 25.0 26.0 26.0 26.0 26.5 22.0 24.0 24.0 25.0 26.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.5 21.0 21.0 20.5 19.5 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.5 25.0 25.5 25.0 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 20.0 19.0 19.0 19.5 19.0 18.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 22.0	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 18.5 19.0 20.0 20.0 20.5 20.0 20.0 20.0 20.0	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.0 18.5 19.0 19.0 19.0 19.0 19.0 19.0 19.0	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 21.5 19.0 22.0 23.5 22.5 23.0	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 19.5 21.0 20.5 19.5 19.5 20.0 20.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19	MAX 26.5 26.5 26.5 26.5 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.0	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.5 20.5 20.5 20.5 20.5 21.5 21.5 21.0 21.0 22.0	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 25.0 26.0 26.0 26.0 25.0 26.0 26.0 26.0 25.0 26.0 25.0 26.0 25.0 26.0 25.0 26.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.5 21.0 21.0 20.5 19.5 20.0 20.5 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.5 25.0 25.5 25.0 24.5	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 19.0 19.5 19.0 18.5 18.5	MAX 25.0 26.5 26.0 25.5 25.0 24.5 24.5 22.0 22.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 18.5 19.5 19.5 20.0 20.0 20.0 20.0 20.0	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.0 19.0 19.0 19.0 19.0 19.0	MAX 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 21.5 19.0 22.0 23.5 22.5	MIN 19.5 19.5 20.0 21.0 20.5 20.5 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.6 20.5 21.0 20.6 20.6 20.7 20.8 20.8 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 25.0 25.5 26.0	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 20.5 19.5 19.5 19.5 20.5 20.5 20.5 20.5	MAX 23.0 23.0 23.0 23.0 23.5 23.5 24.5 24.0 22.0 24.0 25.0 26.0 26.0 26.0 26.5 22.0 24.0 24.0 25.0 26.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.5 21.0 21.0 20.5 19.5 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.5 25.0 25.5 25.0 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 20.0 19.0 19.0 19.5 19.0 18.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5 22.0 22.5 22.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	MAX 16.5 16.5 17.0 17.0 17.0 17.5 17.5 18.0 18.0 18.5 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	MIN 15.5 16.0 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.5 19.0 19.0 19.0 19.0 19.0 19.0 19.5 19.5	MAX 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 24.0 25.0 21.5 19.0 22.0 23.5 23.5 23.5 23.5 23.5 23.5 23.0 22.5 23.5	MIN 19.5 19.5 20.0 21.0 20.5 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 19.5 20.0 20.5 19.5 21.0 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20	MAX 26.5 26.5 26.5 26.5 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.5 24.5 25.5 25.0 25.5 24.5 25.5 25.0 25.5 25.5 25.0 25.5 25.5 25	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.0 20.5 20.5 19.5 19.5 19.5 21.0 21.0 22.5 22.0 22.5 22.0	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 25.0 26.5 26.0 25.0 26.5 22.0 24.0 25.0 26.5 26.0 26.5 26.0 26.5 26.0 26.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.0 20.5 19.5 20.0 20.0 21.0 20.0 21.0 21.0 21.0 21.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.5 25.0 25.0 25.5 24.0 24.0 24.0 25.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 20.0 19.0 19.0 19.5 18.5 18.5 18.5 18.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5 22.0 22.5 22.5 22.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	MAX 16.5 16.5 17.0 17.0 17.0 17.5 18.0 18.0 18.5 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.5 19.5 19.5	MAX 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 25.0 25.0 25.0 21.5 26.0 21.5 22.0 22.5 23.0	MIN 19.5 19.5 20.0 21.0 20.5 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 20.0 20.0	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.5 25.0 25.5 24.5 25.5 25.0 25.5 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 20.5 20.5 20.5 19.5 19.5 19.5 19.5 21.0 22.0 22.5 22.0 22.0	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 25.0 26.0 26.5 22.0 24.0 25.0 26.5 25.0 26.5 22.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.5 21.0 21.0 20.5 19.5 20.0 21.0 20.0 19.0 17.5 18.5 19.0 18.5 19.0 20.0 20.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.0 25.5 25.0 24.5 24.0 24.5 24.0 25.0 26.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 19.0 20.0 19.0 19.5 18.5 18.5 18.5 18.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5 22.0 22.5 22.5 22.5 22.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 20.5 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	MAX 16.5 16.5 17.0 17.0 17.0 17.5 18.0 18.0 18.5 19.0 19.5 19.5 20.0 20.0 20.5 20.0 20.0 20.0 20.0 20	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.5 19.0 19.0 19.0 19.0 19.0 19.0 19.5 19.5 19.5 19.5	MAX 20.0 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 25.0 21.5 19.0 22.0 23.5 22.5 23.0 22.5 22.0 21.5 23.0 23.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.0 20.5 21.0 20.5 21.0 20.5 19.5 21.0 20.5 19.5 17.5 17.0 16.5 17.5 17.0 17.5 17.5 17.0 17.5 17.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.0 25.0	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 25.0 26.0 26.5 26.0 25.0 24.0 25.0 26.0 26.5 26.0 26.5 26.0 26.5 26.0 26.5	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.5 21.0 21.0 20.5 19.5 20.0 20.0 21.0 20.0 19.0 17.5 18.5 19.0 18.5 19.0 20.0 20.5 20.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.5 25.0 25.5 25.0 24.5 24.0 24.0 25.5	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 19.0 19.5 19.0 18.5 18.5 18.5 18.5 18.5 18.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5 22.0 22.5 22.5 22.5 22.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0 20.5 20.5 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	MAX 16.5 16.5 17.0 17.0 17.0 17.5 18.0 18.0 18.5 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.5 19.5 19.5	MAX 20.0 21.0 22.0 23.0 24.5 24.5 25.5 26.0 25.5 26.0 24.0 25.0 25.0 25.0 25.0 21.5 26.0 21.5 22.0 22.5 23.0	MIN 19.5 19.5 20.0 21.0 20.5 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 20.0 20.0	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 26.0 25.5 24.5 25.0 25.5 24.5 25.0 25.5 24.5 25.5 25.0 25.5 24.5 25.5 25.0 25.5 25.5	MIN 18.0 19.0 19.5 19.5 21.0 22.0 20.5 20.5 20.5 19.5 19.5 19.5 19.5 21.0 22.0 22.5 22.0 22.0	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 25.0 26.0 26.5 22.0 24.0 25.0 26.5 25.0 26.5 22.0	MIN 21.0 21.5 21.5 20.5 21.0 21.0 21.5 21.0 21.0 20.5 19.5 20.0 21.0 20.0 19.0 17.5 18.5 19.0 18.5 19.0 20.0 20.0	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.0 25.5 25.0 24.5 24.0 24.5 24.0 25.0 26.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 19.0 20.0 19.0 19.5 18.5 18.5 18.5 18.5	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5 22.0 22.5 22.5 22.5 22.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 20.5 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	MAX 16.5 16.5 17.0 17.0 17.0 17.5 18.0 18.0 18.5 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	MIN 15.5 16.0 16.0 16.0 16.5 16.5 17.0 17.5 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.5 19.5 19.5 19.5 20.0	MAX 20.0 21.0 22.0 23.0 24.5 23.5 24.5 25.5 26.0 24.0 24.0 25.0 24.0 25.0 22.0 21.5 19.0 22.0 23.5 22.5 23.5 24.5 24.5	MIN 19.5 19.5 19.5 20.0 21.0 20.5 20.5 20.0 20.5 20.0 20.5 21.0 20.5 21.0 20.5 19.5 20.0 20.5 19.5 17.5 17.0 16.5 17.5 17.0 17.5 17.5 17.5	MAX 26.5 26.5 26.5 26.5 27.0 26.0 25.5 24.5 25.5 25.5 24.5 24.5 25.5 24.5 25.5 24.5 25.5 25	MIN 18.0 19.0 19.5 19.5 21.0 22.0 21.5 20.5 20.5 19.5 19.5 19.5 19.5 21.0 22.0 22.5 22.0 22.0 22.5 22.0 22.0	MAX 23.0 23.0 23.0 23.0 23.5 24.5 24.0 24.0 25.0 26.0 26.5 26.0 25.0 24.0 24.0 26.5 26.0 26.5 22.0	MIN 21.0 21.5 20.5 21.0 21.0 21.0 21.0 21.0 20.5 19.5 20.0 20.0 21.0 21.0 21.0 20.5 19.5 20.0 21.0 21.0 20.0 19.0 17.5 18.5	MAX 27.0 27.0 27.0 27.5 27.0 28.0 25.0 25.5 25.0 25.0 25.5 25.0 24.0 24.0 24.0 24.0 25.5 26.0	MIN 20.0 21.0 21.5 21.0 22.0 22.5 20.0 19.0 20.0 20.0 19.0 19.0 19.5 19.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 19.0 20.0 20.5 21.0	MAX 25.0 26.5 26.0 25.5 25.0 23.5 24.0 24.5 24.5 22.0 22.5 22.5 22.5 22.5 22.5	MIN 21.0 21.5 21.5 21.0 20.0 18.5 18.0 18.5 19.0 20.5 20.5 20.5 20.5 20.5 20.5

SANTA ANA RIVER BASIN

11074000 SANTA ANA RIVER BELOW PRADO DAM, CA--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)		SED. SUSP. SIEVE DIAM. I FINER THAN .062 MM
VOV						
04	1350	179	17.5	98	47	
25	1245	223	14.5	15	9.0	91
JAN						
14	1215	235	11.5	12	7.6	91
MAR						
02	1140	253	13.5	6	4.1	
18	1145	251	16.0	3	2.0	88
APR						
17	0800	342	19.5	9	8.3	
MAY						
13	1045	168	22.5	359	163	96
JUL						
28	1245	133	23.0	161	58	92
SEP						
02	1000	134	22.0	87	31	
22	1215	49	21.0	8	1.1	85

11075720 CARBON CREEK BELOW CARBON CANYON DAM, CA

LOCATION.--Lat 33°54'40", long 117°50'29", in SW 1/4 NE 1/4 sec.17, T.3 S., R.9 W., Orange County, Hydrologic Unit 18070106, on right wall of outlet channel 250 ft downstream from toe of Carbon Canyon Dam and 2.4 mi northwest of Yorba Linda.

DRAINAGE AREA. -- 19.5 mi².

PERIOD OF RECORD. -- October 1961 to current year.

GAGE, -- Water-stage recorder. Datum of gage is 396.29 ft, U.S. Army Corps of Engineers datum. Prior to Dec. 3, 1971, at datum 2.00 ft higher.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Carbon Canyon flood-control reservoir, capacity, 6,610 acre-ft. No diversion above station. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE. -- 26 years, 1.07 ft 3/s, 775 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 554 ft³/s, Mar. 1, 1983, gage height, 5.11 ft, present datum, from rating curve extended above 110 ft³/s on basis of optical current-meter measurement at 241 ft³/s and computation of flow in concrete-lined channel at gage heights 6.18 and 4.12 ft; no flow many days each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 75 ft3/s, Jan. 4, gage height, 2.82 ft; no flow most of year.

		DISCHAR	GE, IN C	JBIC FEET		D, WATER N VALUES	YEAR OCTOBE	R 1986	то ѕертемі	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 07	0	0	0	0	0						
2	.09	ŏ	ŏ	ŏ	ŏ	ŏ						
3	.11	Ŏ	ŏ	.04	ŏ	Õ						
2 3 4	.07	Ö	Ŏ	9.4	0	ő						
5	.07	Ö	0	2.4	0	0						
J	.07	U	U	2.4	U	U						
6 7	.04	0	0	1.3	0	0						
7	.04	0	.04	.16	0	0						
8	.04	0	.02	.02	0	0						
9	.04	0	0	0	0	0						
10	.04	Ö	0	0	0	Ö						
				-		•						
11	.03	0	0	0	0	0						
12	0	0	0	0	0	0						
13	0	0	0	0	.49	0						
14	Ó	0	0	0	.05	0 "						
15	Ō	Ō	Ō	Ō	0	.02						
	-	•	_	•		••-						
16	0	0	0	0	0	0						
17	0	0	0	0	0	0						
18	0	.61	0	.08	0	0						
19 .	0	.32	0	0	0	Ó						
20	Õ	.10	Ö	ō	Ō	ō						
	ū	, _ ,	•	ū	•	•						
21	0	.07	0	0	0	.31						
22	0	.07	0	0	0	0						
23	0	.06	0	0	0	0						
24	0	.04	0	Ó	0	Ö						
25	ŏ	.03	Ö	Ŏ	Ö	Ö						
22	Ū	.00	•	·	•	U						
26	0	0	0	0	0	0						
27	0	0	0	Ö	0	Ō						
28	ō	Ō	Ō	Ö	ō	Ö						
29	ŏ	Ö	Ö	Ö		Ŏ						
30	0	0	Ö	0		0						
31	0		0	0		0						
31	U		U	U		U						
TOTAL	.64	1.30	.06	13.40	. 54	.33	0	0	0	0	0	0
MEAN	.021	.043	.002	.43	.019	.011	ŏ	Ö	ő	ŏ	Õ	ő
MAX	.11	.61	.04	9.4	.49	.31	0	Ö	0	0	0	0
MIN	0	.01										
			0	0	0	0	0	0	0	0	0	0
AC-FT	1.3	2.6	.1	27	1.1	.7	0	0	0	0	0	0
CAL YR	1986 TOTAL	L 184.18	MEAN .	50 MAX	101	MIN O	AC-FT 365					
WTR YR		L 16,27	MEAN .		9.4	MIN 0	AC-FT 32					
11 11 1R	TOO, TOTAL	L 10,2/	ammi, (A LIUM	3,4	STIL O	AC-FI 32					

11075755 SANTA ANA RIVER AT BALL ROAD, AT ANAHEIM, CA

LOCATION.--Lat 33°49'00", long 117°52'17", in SE 1/4 SW 1/4 sec.24, T.4 S., R.10 W., Orange County, Hydrologic Unit 18070203, 350 ft south of Ball Road, 0.6 mi west of Batavia Street, 1.0 mi east of State College Boulevard in Anaheim, and 16 mi downstream from Prado Dam.

DRAINAGE AREA, --1,587 mi², excludes 768 mi² above Lake Elsinore.

PERIOD OF RECORD. -- October 1976 to current year.

REVISED RECORDS, -- WDR CA-86-1: 1985.

TOTAL

MEAN

MAX

MIN

AC-FT

44.61

1.44

1437.89

47.9

669.46

21,6

GAGE. -- Water-stage recorder and concrete cut-off wall. Elevation of gage is 170 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records fair. River flow is regulated by Prado Dam, infiltration ponds and diversions.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,500 ft³/s, Mar. 1, 1983, gage height, 6.17 ft, from rating curve extended above 7,000 ft³/s; no flow for many months each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 7,190 ft3/s, Nov. 18, gage height, 4.19 ft; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 9.1 O 5.9 n 5,0 3.9 1.5 .10 8.6 1.3 3.8 หล 4.5 . 21 2.3 1.9 2.3 Я 3.8 9.1 3.4 .16 6.8 3.4 6.7 9.1 3.0 4.2 7.1 1.3 5.2 .60 .21 3.9 5.7 3.0 .34 3.6 n O 3.0 O 1.5 3.6 5.1 n 3.8 n 1.4 .01 8,3 3,1 .90 3.3 . 54 1.9 4.2 3.7 .18 .01 .01 .12 2.1 .08 . 65 . 14 8.3 .05 2.7 8.4 .34 n .89 .02 n 1.3 .28 7.6 .87 5.3 5.7 1.4 .96 4.7 .20 3.5 4.6 3.4 .70 O n 2.8 4.4 2.5 n . 99 n 7.1 ___ 3.5 ___ .16 1.3

496.46

16.0

.01

207.79

6.93

406.66

13.1

3.60

.12

3.0

7.1

192.3

6,20

O

CAL YR 1986 TOTAL 30772.78 MEAN 84.3 MAX 2120 MIN 0 AC-FT 61040 WTR YR 1987 TOTAL 7410.92 MEAN 20.3 MAX 742 MIN 0 AC-FT 14700

3253.45

698.70

25.0

11075800 SANTIAGO CREEK AT MODJESKA, CA

LOCATION.--Lat 33°42'46", long 117°38'39", in NE 1/4 NE 1/4 sec.30, T.5 S., R.7 W., Orange County, Hydrologic Unit 18070203, on right bank at Santiago Canyon road bridge, 0.9 mi northwest of Modjeska, 1.0 mi downstream from Harding Creek, and 1.5 mi downstream from Modjeska Reservoir.

DRAINAGE AREA. -- 13.0 mi².

PERIOD OF RECORD, -- October 1961 to current year.

REVISED RECORDS, -- WDR CA-86-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 1,210 ft above National Geodetic Vertical Datum of 1929, from topographic map. Sept. 10, 1969, to Feb. 6, 1985, at site 0.6 mi upstream at datum 44 ft higher. Prior to Sept. 10, 1969, at datum 48 ft higher.

REMARKS.--Estimated daily discharges: Oct. 1-9, Nov. 25 to Dec. 4, and May 6 to Sept. 30. Records good. Slight regulation by Modjeska Reservoir on Harding Creek. No diversion above station. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE. -- 26 years, 7.92 ft 3/s, 5,740 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 6,520 ft³/s, Feb. 25, 1969, gage height, 10.50 ft, at site and datum then in use, from rating curve extended above 840 ft³/s on basis of slope-area measurement of peak flow; no flow at times in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 5	0300	*13.0	*5.95				

No flow for many days.

WTR YR 1987 TOTAL

126.21

MEAN .35

MAX

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987
					MEAN	VALUES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0 0 0 0	0 0 0 0	0 0 0 0	.28 .28 .28 3.4 8.4	.40 .40 .39 .35	.92 .92 .91 .85	1.1 .92 1.6 1.4	.09 .07 .04 .01				
6 7 8 9 10	0 0 0 0 .03	0 0 0 0	.70 1.8 1.2 .95	3.7 2.6 1.8 1.2 1.1	.33 .32 .31 .32 .39	1.4	1.0 .89 .79 .71 .64	0 0 0 0				
11 12 13 14 15	.12 .13 .05 0	0 0 0 0	.62 .45 .29 .27 .25	1.0 .96 .87 .83	.36 .35 .47 .59 .52	1.1	.62 .57 .50 .43 .38	0 0 0 0				
16 17 18 19 20	0 0 0 0	0 .01 1.2 .68 .41	.23 .21 .20 .20	.67 .59 .55 .54	. 47 . 41 . 38 . 34 . 33	1.4 1.2 1.1 .99 .84	.33 .31 .31 .30 .27	0 0 0 0				
21 22 23 24 25	0 0 0 0	.25 .16 .06 0	.95 .72 .62 .54 .47	.46 .48 .49 .52 .48	.32 .31 .41 1.1 1.7	1.5 1.6 1.4 1.9 2.4	.21 .16 .12 .06 .03	0 0 0 0				
26 27 28 29 30 31	0 0 0 0 0	0 0 0 0 0	.41 .38 .34 .28 .28	.44 .43 .44 .42	1.2 1.0 .96	2.2 2.0 1.8 1.6 1.3	.02 .02 .02 .03 .10	0 0 0 0 0				
TOTAL MEAN MAX MIN AC-FT	.33 .011 .13 0 .7	2.77 .092 1.2 0 5.5	15.11 .49 1.8 0 30	35.21 1.14 8.4 .28 70	14.76 .53 1.7 .31 29	42.78 1.38 2.4 .84	15.04 .50 1.6 .02 30	.21 .007 .09 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
CAL YR	1986 TOTAL				MAX	133 MIN		2940				

MIN 0

AC-FT

8.4

11077500 SANTIAGO CREEK AT SANTA ANA, CA

LOCATION.--Lat 33°46'13", long 117°53'01", in SW 1/4 NW 1/4 sec.1, T.5 S., R.10 W., Orange County, Hydrologic Unit 18070203, on left bank 127 ft upstream from Bristol Street bridge at Santa Ana and 1,700 ft upstream from . mouth at Santa Ana River.

DRAINAGE AREA. -- 98.6 mi².

PERIOD OF RECORD. --October 1928 to current year. Monthly discharge only October to December 1928, published in WSP 1315-B.

GAGE.--Water-stage recorder. Datum of gage is 105.00 ft, Orange County Environmental Management Agency datum. Frior to Sept. 8, 1969, at site 0.1 mi upstream at different datum; Sept. 9, 1969, to July 21, 1976, at site 127 ft downstream at datum 2.66 ft lower.

REMARKS.--Estimated daily discharges: Nov. 13-18, Jan. 7 to Feb. 9. Records fair. Flow regulated by Santiago Reservoir, capacity, 25,000 acre-ft; since January 1963 by Villa Park flood-control reservoir, capacity, 15,500 acre-ft, and affected by intervening gravel pits. Diversions above station by Irvine County and Serrano and Carpenter Irrigation Districts. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE. -- 59 years, 4.87 ft 3/s, 3,530 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 6,600 ft³/s, Feb. 25, 1969, gage height, 9.10 ft, site and datum then in use; maximum gage height, 9.85 ft, Jan. 16, 1952, site and datum then in use; no flow for several months in each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 405 ft³/s, Jan. 4, gage height, 3.87 ft; no flow for several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		0 0 0 0		0 0 0 45 2.6	0 0 0 0	0 0 0 0		0 0 0 0	0 0 0 0			
6 7 8 9 10		0 0 0 0		3.5 .02 0 0	0 0 0 0	0 0 0 0		0 0 0 0	0 0 0 0			
11 12 13 14 15		0 0 0 0		0 0 0 0	0 0 7.9 .03	0 0 0 0		0 0 0 0	0 0 0 .08			
16 17 18 19 20		0 0 .90 0		0 0 0 0	0 0 0 0	0 0 0 0		0 0 0 0	0 0 0 0			
21 22 23 24 25		0 0 0 0		0 0 0 0	0 0 0 1.4 .19	2.7 0 0 0 1.9		0 0 0 0	0 0 0 0			
26 27 28 29 30 31		0 0 0 0		0 0 0 0 0	0 0 0 	0 0 0 0 0		0 0 0 0 0 .50	0 0 0 0			
TOTAL MEAN MAX MIN AC-FT	0 0 0 0	.90 .030 .90 0	0 0 0 0	51.12 1.65 45 0 101	9.52 .34 7.9 0	4.6 .15 2.7 0 9.1	0 0 0 0	.50 .016 .50 0	.08 .003 .08 0	0 0 0 0	0 0 0 0	0 0 0 0

CAL YR 1986 TOTAL 478.56 MEAN 1.31 MAX 172 MIN 0 AC-FT 949 WTR YR 1987 TOTAL 66.72 MEAN .18 MAX 45 MIN 0 AC-FT 132

11078000 SANTA ANA RIVER AT SANTA ANA. CA

LOCATION.--Lat 33°44'46", long 117°54'30", in SW 1/4 SE 1/4 sec.10, T.5 S., R.10 W., Orange County, Hydrologic Unit 18070203, on right bank 50 ft downstream from Fifth Street Bridge in Santa Ana and 1.8 mi downstream from Santiago Creek.

DRAINAGE AREA.--1,700 mi², excludes 768 mi² above Lake Elsinore.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1923 to current year.
REVISED RECORDS. -- WDR CA-74-1: Drainage area. WDR CA-79-1: 1978 (M).

GAGE.--Water-stage recorder. Datum of gage is 61.01 ft (revised), Orange County Environmental Management Agency datum. Jan. 3, 1923, to Jan. 24, 1929, at same site at different datum. Jan. 25, 1929, to June 20, 1948, at site 450 ft upstream at different datum. June 21, 1948, to May 2, 1960, at same site at different datum. Feb. 28, 1961, to Oct. 1, 1961, at same site at datum 12.00 ft (revised) higher. Oct. 2, 1961, to Nov. 28, 1979, at same site at datum 10.00 ft (revised) higher. Nov. 29, 1979, to Apr. 20, 1980, at same site at arbitrary datum approximately 15 ft (revised) lower. Apr. 21, 1980, to Aug. 14, 1981, no gage due to channel reconstruction.

REMARKS.--Estimated daily discharges: Mar. 5 to Apr. 8. Records poor. Natural flow affected by ground-water withdrawals, diversions, importation by Metropolitan Water District, municipal use, return flow from irrigation. Since 1940, natural flow affected by Prado flood-control reservoir, capacity, 201,200 acre-ft; three small flood-control reservoirs, combined capacity, 31,900 acre-ft; Big Bear Lake (station 11049000); and Santiago Reservoir, capacity, 25,000 acre-ft. Discharge up to 100 ft³/s can be diverted from Carbon Creek to Coyote Creek 1.5 mi upstream from mouth of Carbon Creek. See schematic diagram of Santa Ana River basin.

AVERAGE DISCHARGE.--17 years (water years 1924-40), 23.4 ft³/s, 16,940 acre-ft/yr; 47 years (water years 1941-87, unadjusted for storage), 54.2 ft³/s, 39,270 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,300 ft³/s, Mar. 3, 1938, gage height, 10.20 ft, site and datum then in use, on basis of slope-area measurement of peak flow; no flow for several months in each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 9,790 ft³/s, Nov. 18, gage height, 8.65 ft; no flow many days during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					Pit	WI AWFOED						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.15	0	0	0	.75	14	0	0				
2	2.1	0	0	0	1.3	10	Ó	Ö				
3	2.6	ō	ō	ŏ	18	8.2	Õ	Ö				
4	0	ŏ	ŏ	1220	11	57	ŏ	ŏ				
5	0	ŏ	19	712	7,6	40	1.0	Ö				
J	U	U	15	/12	7,0	40	1.0	U				
6	0	0	54	707	1.2	12	8.0	0				
7	0	0	43	265	, 92	6.2	0	0				
8	0	0	48	370	. 64	24	0	0				
9	0	0	52	63	1.4	7.0	0	0				
10	2.3	0	23	9.0	11	2.8	0	0				
11	. 13	0	3.6	14	3.2	.60	0	.64				
12	0.10	ŏ	1.0	7.5	.86	0.00	ŏ	10				
13	Ö	ŏ	28	10	26	0	Ö	10				
14												
	0	0	29	1.9	60	0	0	10				
15	0	0	29	.60	2,3	0	0	2.0				
16	0	0	29	. 42	.74	3.0	0	0				
17	0	1.1	9.9	, 55	. 56	8.8	0	0				
18	0	972	. 47	0	. 44	2.0	0	0				
19	0	126	0	0	.38	.60	0	0				
20	ō	117	.79	ō	.32	2.0	Õ	Ŏ				
21	0	110	.02	0	.30	7.0	0	0				
22	0	47	0	0	.30	35	0	0				
23	0	35	0	12	14	15	0	0				
24	0	19	0	22	36	6.0	0	0				
25	0	3.6	0	24	3.3	4.0	Ö	Ô				
							J	Ü				
26	0	7,0	0	25	13	2.0	0	0				
27	0	1.1	0	27	49	.80	0	. 0				
28	0	.07	0	37	28	.25	0	0				
29	0	0	0	20	~~~	0	ō	Õ				
30	ŏ	ŏ	ő	4.6	~	ŏ	Õ	Ö				
31	ŏ		ŏ	1.1		Ö		Ö				
TOTAL	7 00	1420 07	260 72	0.550 67	000 51	000 05		00.01	•			
	7.28	1438.87	369.78	3553.67	292.51	268,25	9.0	32.64	0	0	0	0
MEAN	. 23	48.0	11.9	115	10.4	8.65	.30	1,05	0	0	0	0
MAX	2.6	972	54	1220	60	57	8.0	10	0	0	0	0
MIN	0	0	0	0	.30	0	0	0	0	0	0	0
AC-FT	14	2850	733	7050	580	532	18	65	0	0	0	0
CAT. YR	1986 ፕ೧	TAT. 29533	3 61 ME	AN AN G	MAX 2290	MTN O	ልሮ-ፑፕ	58580				

CAL YR 1986 TOTAL 29533.61 MEAN 80.9 MAX 2290 MIN 0 AC-FT 58580 WTR YR 1987 TOTAL 5972.00 MEAN 16.4 MAX 1220 MIN 0 AC-FT 11850

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD, -- Water years 1968-71, 1973 to current year. WATER TEMPERATURE: Water years 1968-71, 1973 to current year. SEDIMENT DATA: Water years 1968-71, 1973 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: October 1967 to September 1969, October 1970 to September 1971, October 1972 to September 1980, October 1981 to current year.

SUSPENDED-SEDIMENT DISCHARGE: October 1967 to September 1971, October 1972 to September 1980, October 1981 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD . --

SEDIMENT CONCENTRATION: Maximum daily mean, 78,000 mg/L, Feb. 25, 1969; minimum daily mean, no flow many days each year.

SEDIMENT LOAD: Maximum daily, 2,670,000 tons, Feb. 25, 1969; minimum daily, 0 ton many days each year.

EXTREMES FOR 1986 WATER YEAR (NOT PREVIOUSLY PUBLISHED) .--

SEDIMENT CONCENTRATION: Maximum daily mean, 4,210 mg/L, Feb. 15, 1986; minimum daily mean, no flow many days. SEDIMENT LOAD: Maximum daily, 96,000 tons, Feb. 14, 1986; minimum daily, 0 ton many days.

EXTREMES FOR CURRENT YEAR. --

SEDIMENT CONCENTRATION: Maximum daily mean, 2,140 mg/L, Jan. 5; minimum daily mean, no flow many days. SEDIMENT LOAD: Maximum daily, 22,000 tons, Jan. 4; minimum daily, 0 ton many days.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 ONCE-DAILY (NOT PREVIOUSLY PUBLISHED)

DAY OCT NOV DEC JAN FEB MAR APR 1 ___ ___ ___ ___ 2 13.5 18.0 ___ ___ ------3 ---------------17.0 ---5 ---___ ___ 17,0 ---6 ---17.0 ___ 17.0 ------------11.5 ---___ ___ 8 21 0 ___ ---14.0 ---9 22.0 ------10 13.0 ___ 14.0 ___ ___ ___ ___ 20.5 ___ 13.0 10,5 ------15.5 ---12 ---___ 12.0 ___ 13 10.0 ___ 18.5 14 15 16,5 ___ 14.5 16.0 16 ---------___ ---17 ------___ ---16.5 ___ 18 19 15.0 ---___ 17.0 18.5 ___ 20 ___ ___ 18.5 ___ 21 ---22,5 18.0 22 ___ ---___ ---___ 23 ---24 ------------___ 25 ---___ ___ ___ 24.0 ___ ___ ___ 27 ---___ ___ ___ ___ ---___ ___ ___ ------___ 29 14.5 ___ 30 31 16.5

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5 6 7 8 9				.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	107 46 1.9 .47 .45 .05 91 160 151	110 660 30 20 20 20 20 89 90 65	33 12 .15 .03 .02 .00 30 39 27 8.5
11 12 13 14 15 16 17 18 19 20				993 347 .00 11 59 5.6 105 129 32 5.6	840 370 0 49 104 56 170 150 78 40	4400 590 .00 5.3 22 1.4 60 52 6.7 .60	82 92 49 51 53 78 47 60 17	20 20 22 20 20 40 30 30 25 20	4.4 5.0 2.9 2.8 2.9 8.4 3.8 4.9 1.1
21 22 23 24 25 26 27 28 29 30 31				.08 .00 .00 .00 191 .01 .00 .00	20 0 0 320 40 0 1230 140	.00 .00 .00 .00 390 .00 .00 .00	.11 .05 .03 .01 .01 .00 .00 .00	20 20 20 20 20 0 0 0	.01 .00 .00 .00 .00 .00 .00 .00
TOTAL	0.00		0.00	3534.29		19057.00	1189.42		185.93
DAY		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5 6 7 8 9	.00 .00 .00 .00 1.2 .12 .05 .02 .01	0 0 0 0 50 30 20 20 20	.00 .00 .00 .16 .01 .00 .00	205 193 150 88 43 39 43 164 39 23	210 130 98 82 58 61 72 160 60 50	116 68 40 19 6.7 6.4 8.4 91 6.3 3.1	.63 .20 .11 .08 .06 .05 .06 202	10 10 10 10 10 10 10 200 210 729	.02 .01 .00 .00 .00 .00 .00 .101 1710
11 12 13 14 15 16 17 18 19 20	.00 .00 .00 .00 .00 .00 .00 .14 .28	0 0 0 0 0 0 0 0 40 30 25	.00 .00 .00 .00 .00 .00 .00 .02 .02	29 65 763 1860 2290 1840 1750 1440 609 504	30 50 1270 3600 4210 1300 760 740 600 285	2.3 8.8 7740 96000 37000 6460 3590 2880 987 388	728 1030 706 459 689 1120 1680 1070 636 229	531 1400 770 320 531 950 1400 920 260 150	1290 4000 1470 397 1640 3500 6350 2660 446 93
21 22 23 24 25 26 27 28 29 30 31	.04 .01 .00 .00 .76 2.4 .70 .09 282	20 20 0 0 40 40 30 20 500 390	.00 .00 .00 .00 .08 .26 .06 .00	466 104 90 101 78 48 42 12 	170 46 62 48 38 17 15 12	214 13 15 13 8.0 2.2 1.7 .39	224 295 285 233 66 61 56 38 36 18	115 110 100 100 90 90 80 80 70 70	70 88 77 63 16 15 12 8.2 6.8 3.4 1.8
TOTAL	642.90		1158.61	13078		155688,29	10833.19		24388.23

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5 6 7 8 9	.65 .14 .06 .04 19 484 239 595 477 83	40 30 20 20 140 847 170 445 85	.07 .01 .00 .00 17 1870 150 715 109 2.2	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	.01 .01 .01 .01 .01 .01 .01 .01	10 10 10 10 10 10 10 10 10	.00 .00 .00 .00 .00 .00 .00
11 12 13 14 15 16 17 18 19 20	27 7.4 3.9 .70 .08 .05 .03 .02 .01	10 10 10 10 10 10 10 10 10	.73 .20 .11 .02 .00 .00 .00 .00	.00 .00 .00 .00 .00 .24 .07 .03 .02	0 0 0 0 30 20 20 20	.00 .00 .00 .00 .00 .02 .00 .00	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00
21 22 23 24 25 26 27 28 29 30 31	.00 .00 .00 .00 3.2 4.2 .10 .04	0 0 0 20 42 20 20 20	.00 .00 .00 .71 .48 .01 .00	.01 .00 .00 .00 .00 .00 .00 .00 .00	20 0 0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00
TOTAL	1944.63		2865.54	0.38		0.02	0.09		0.00
DAY		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5 6 7 8 9							.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00
11 12 13 14 15 16 17 18 19 20							.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00
21 22 23 24 25 26 27 28 29 30 31							.00 .00 .00 61 836 3.3 .19 133 168 17	0 0 77 1700 60 16 17 40 20	.00 .00 .00 15000 .53 .01 6.5 18
TOTAL	0.00		0.00	0.00		0.00	1218.49		15145.96
YEAR	32441.39		218489.58						

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

SUMMARY OF WATER AND SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

	WATER ISCHARGE CFS-DAYS	SUSPENDED SEDIMENT DISCHARGE TONS	BEDLOAD DISCHARGE TONS	TOTAL SEDIMENT DISCHARGE TONS
OCTOBER 1985	0.00	0.00	0	0
NOVEMBER	3534.29	19057.00	5390	24400
DECEMBER	1189.42	185,93	80	266
JANUARY 1986	642.90	1158.61	197	1360
FEBRUARY	13078	155688.29	18000	174000
MARCH	10833.19	24388.23	6190	30600
APRIL	1944.63	2865.54	654	3520
MAY	.38	0.02	0	0
JUNE	.09	0.00	0	0
JULY	0.00	0,00	0	0
AUGUST	0.00	0.00	0	0
SEPTEMBER	1218.49	15145.96	1630	16800
TOTAL	32441.39	218489.58	32141	250946

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

		STREAM- FLOW,	TEMPER-	SEDI- MENT,	SEDI- MENT, DIS- CHARGE,	SED. SUSP. SIEVE DIAM.
DATE	TIME	INSTAN- TANEOUS	ATURE WATER	SUS- PENDED	SUS- PENDED	% FINER THAN
NOV		(CFS)	(DEG C)	(MG/L)	(T/DAY)	.062 MM
12	1345	175	13.0	148	70	100

PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

				BED	BED	BED	BED	BED	BED
		NUMBER		MAT.	MAT.	MAT.	MAT.	MAT,	MAT.
		OF	STREAM-	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE
		SAM-	FLOW,	DIAM.	DIAM.	DIAM.	DIAM,	DIAM.	DIAM.
		PLING	INSTAN-	<pre>% FINER</pre>	% FINER	<pre>% FINER</pre>	% FINER	% FINER	% FINER
DATE	TIME	POINTS	TANEOUS	THAN	THAN	THAN	THAN	THAN	THAN
		(COUNT)	(CFS)	.125 MM	.250 MM	.500 MM	1.00 MM	2.00 MM	4.00 MM
AUG									
19	1030	4	0.0	1	9	53	89	98	100

SANTA ANA RIVER BASIN

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 ONCE-DAILY

DAY	OCT	NOV	DEC	JAN	FEB	MAR
1						
2						
3	21.5				16.5	
4					18.0	
5				14.0		
6						
6						
7				11.5		
8						
9						19.0
10						
11			14.5			
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24					10.5	
25						
26						
27						
28						
29						
30						
31						
MONTH						

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5 6 7 8 9	.15 2.1 2.6 .00 .00 .00 .00 .00	10 4 13 0 0 0 0 0 0	.00 .14 .14 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 19 54 43 48 52 23	0 0 0 28 58 40 30 30	.00 .00 .00 .00 4.2 9.9 4.6 3.9 4.2
11 12 13 14 15 16 17 18 19 20	.13 .00 .00 .00 .00 .00 .00 .00	10 0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 1.1 972 126	0 0 0 0 0 0 50 1070 43 31	.00 .00 .00 .00 .00 .15 16000 15 9.8	3.6 1.0 28 29 29 29 9.9 .47 .00	11 15 20 20 20 20 20 10 0	.11 .04 1.5 1.6 1.6 .53 .01 .00
21 22 23 24 25 26 27 28 29 30 31	.00 .00 .00 .00 .00 .00 .00 .00	0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00	110 47 35 19 3.6 7.0 1.1 .07 .00	27 25 30 30 30 40 30 20 0	8.0 3.2 2.8 1.5 .29 .76 .09 .00	.02 .00 .00 .00 .00 .00 .00 .00	10 0 0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00 .00
TOTAL	7,28		0.37	1438.87		16041.59	369.78	. 	35.03
DAY		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5 6 7 8 9	.00 .00 .00 1220 712 707 265 370 63 9,0	0 0 1900 2140 920 360 180 95	.00 .00 .00 22000 5690 2000 258 180 16	.75 1.3 18 11 7.6 1.2 .92 .64 1.4	10 12 8 6 7 6 6 6 8 21	.02 .04 .39 .18 .14 .02 .01 .01	14 10 8.2 57 40 12 6.2 24 7.0 2.8	10 10 10 40 30 20 15 10 5	.38 .27 .22 6.2 3.2 .65 .25 .65 .09
11 12 13 14 15 16 17 18 19	14 7.5 10 1.9 .60 .42 .55	60 50 70 50 40 30 25 0	2.3 1.0 1.9 .26 .06 .03 .04	3.2 .86 26 60 2.3 .74 .56 .44	12 10 28 45 30 25 20 20	.10 .02 5.7 7.3 .19 .05 .03 .02	.60 .00 .00 .00 .00 3.0 8.8 2.0	10 0 0 0 0 10 10	.16 .00 .00 .00 .00 .08 .24 .05
	.00	ŏ	.00	.32	10	.01	2.0	10	.05
21 22 23 24 25 26 27 28 29 30 31					10 10 22 43 35 24 20 15				.05 .19 3.8 1.2 .32 .11 .05 .02 .01 .00 .00

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

AFRIL MAY JUNE	DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
2			APRIL			MAY			JUNE	
12	2 3 4 5 6 7 8 9	.00 .00 .00 1.0 8.0 .00	0 0 0 10 10 0 0	.00 .00 .00 .03 .22 .00	.00 .00 .00 .00 .00 .00	0 0 0 0 0 0	.00 .00 .00 .00 .00 .00			
22 00 0 0 00 00 00 00 00 20 2	12 13 14 15 16 17 18	.00 .00 .00 .00 .00 .00	0 0 0 0 0 0	.00 .00 .00 .00 .00 .00	10 10 10 2.0 .00 .00	20 20 20 10 0 0	.54 .54 .54 .05 .00 .00			
DAY JULY AUGUST SEPTEMBER 1 2 3 4 4 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 27 28 29 30	.00 .00 .00 .00 .00 .00	0 0 0 0 0 0	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	0 0 0 0 0 0	.00 .00 .00 .00 .00 .00			
1 2 3 4 5 5 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TOTAL	9.00		0.25	32.64		1,69	0.00		0.00
31 TOTAL 0.00 0.00 0.00 0.00 0.00 0.00	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		JULY			AUGUS1			SEPTEMBER	
	31	0.00		0 00	0 00		0.00	0.00		0 00

11078000 SANTA ANA RIVER AT SANTA ANA, CA--Continued

SUMMARY OF WATER AND SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MONTH	WATER TH DISCHARGE CFS-DAYS		BEDLOAD DISCHARGE TONS	TOTAL SEDIMENT DISCHARGE TONS
OCTOBER 1986	7.28	0.37	0	0
NOVEMBER	1438.87	16041.59	2360	18400
DECEMBER	369.78	35.03	12	47
JANUARY 1987	3553.67	30157.55	4170	34300
FEBRUARY	292.51	29.15	10	39
MARCH	268.25	18.29	6	24
APRIL	9.0	0.25	0	0
MAY	32.64	1.69	0	2
JUNE	0.00	0.00	0	0
JULY	0.00	0.00	0	0
AUGUST	0.00	0.00	0	0
SEPTEMBER	0.00	0.00	0	0
TOTAL	5972.00	46283.92	6558	52812

PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

				BED						
		NUMBER		MAT.						
		OF	STREAM-	SIEVE						
		SAM-	FLOW,	DIAM.						
		PLING	INSTAN-	% FINER	7 FINER	7 FINER	% FINER	% FINER	% FINER	% FINER
DATE	TIME	POINTS	TANEOUS	THAN						
		(COUNT)	(CFS)	.062 MM	.125 MM	.250 MM	.500 MM	1.00 MM	2.00 MM	4,00 MM
FEB										
13	1400	3	0.0	1	2	9	54	93	99	100

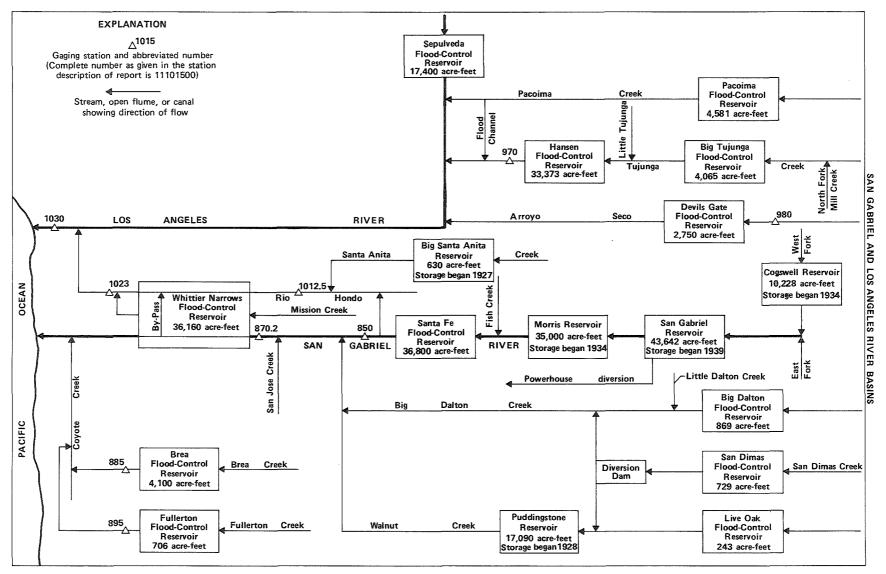


FIGURE 18. - Schematic diagram showing diversions and storage in San Gabriel and Los Angeles River basins.

11085000 SAN GABRIEL RIVER BELOW SANTA FE DAM, NEAR BALDWIN PARK, CA

LOCATION.--Lat 34°06'44", long 117°58'07", NE 1/4 SW 1/4 sec.6, T.1 S., R.10 W., Los Angeles County, Hydrologic Unit 18070106, on left bank at stilling basin of outlet of Santa Fe flood-control dam, 500 ft downstream from axis of dam, and 1.7 mi north of Baldwin Park.

DRAINAGE AREA. -- 236 mi².

WTR YR 1987 TOTAL

13.00

MEAN .036

MAX 13

MIN 0

AC-FT

PERIOD OF RECORD. -- October 1942 to current year.

GAGE, -- Water-stage recorder. Datum of gage is 400.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Estimated daily discharges: Dec. 11-22. Records good. Flow regulated by Cogswell and San Gabriel flood-control reservoirs, combined capacity, 53,870 acre-ft; Morris Reservoir, capacity, 35,000 acre-ft; and Santa Fe flood-control reservoir, capacity, 32,640 acre-ft. Diversions above station for irrigation, power development, and ground-water replenishment. At times water is diverted from side of stilling basin to headwaters of Rio Hondo; 115 acre-ft were diverted during the current year. See schematic diagram of San Gabriel and Los Angeles River basins.

COOPERATION, -- Records of diversion to Rio Hondo were provided by Los Angeles County Department of Public Works.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 30,900 ft³/s, Jan. 26, 1969, gage height, 22.20 ft; no flow for several months in each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 51 ft³/s, Nov. 18, gage height, 10.51 ft; no flow for most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MFAN VALUES

MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		0 0 0 0										
6 7 8 9 10		0 0 0 0										
11 12 13 14 15		0 0 0 0										
16 17 18 19 20		0 0 13 0										
21 22 23 24 25		0 0 0 0										
26 27 28 29 30 31		0 0 0 0 0						,				
TOTAL MEAN MAX MIN AC-FT CAL YR 198	0 0 0 0 0 0	13 .43 13 0 26	0 0 0 0 0 MEAN 3.	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0

11087020 SAN GABRIEL RIVER ABOVE WHITTIER NARROWS DAM, CA

LOCATION. --Lat 34°02'03", long 118°02'14", in La Puente Grant, Los Angeles County, Hydrologic Unit 18070106, at Peck Road 0.8 mi downstream from San Jose flood channel, 1.2 mi upstream from axis of Whittier Narrows Dam, and 1.8 mi south of El Monte.

DRAINAGE AREA, -- 442 mi².

PERIOD OF RECORD, -- October 1955 to September 1957, October 1963 to current year.

REVISED RECORDS. -- WDR CA-86-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 220 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by San Gabriel, Cogswell, and Santa Fe flood-control reservoirs, combined capacity, 90,670 acre-ft; several small flood-control reservoirs, combined capacity, 19,100 acre-ft; and Morris Reservoir, capacity, 35,000 acre-ft. Many diversions above station for irrigation, power development, and ground-water replenishment. Colorado River water released to the San Gabriel River at a site 14.9 mi upstream from gage, at Metropolitan Water District aqueduct crossing on San Dimas Creek for ground-water replenishment. Los Angeles County Department of Public Works diverted 115 acre-ft from San Gabriel River below Santa Fe Dam to Rio Hondo during the current year. See schematic diagram of San Gabriel and Los Angeles River basins.

COOPERATION .-- Records of diversion to Rio Hondo were provided by Los Angeles County Department of Public Works.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,600 ft³/s, Jan. 25, 1969, gage height, 10.90 ft; no flow for part of some years.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 14,900 ft3/s, Jan. 4, gage height, 7.74 ft; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DIDOME	on, in oon	10 1111		MEAN VALUES		DDR 1000	IO DELIER	DDIT 1007		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.7	10	70	144	193	192	171	90	63	44	93	75
2	281	5.3	7.3	104	195	193	188	87	84	48	93	78
3	21	64	5.6	11	193	191	220	83	72	0	95	80
4	8.4	134	6,3	4210	192	153	195	82	79	Ö	96	81
5	9.1	132	7.5	298	190	45	191	76	46	Ö	97	80
6	8.8	138	202	208	196	297	187	80	14	55	157	80
7	6.4	136	19	142	196	18	182	87	1.5	80	162	80
8	4.5	135	13	15	204	10	187	80	12	78	97	80
9	4.6	135	16	14	295	10	189	82	.41	79	94	80
10	46	136	80	13	213	13	187	79	1.3	50	158	80
11	7.2	136	136	10	206	94	185	79	.66	.02	176	80
12	8.3	135	141	10	206	145	182	72	. 59	0	111	80
13	7.7	133	144	16	991	141	181	79	.05	57	93	80
14	5,8	136	145	64	60	144	181	81	0	75	58	76
15	5.9	145	126	115	11	355	180	44	.08	73	68	79
16	5,1	142	16	143	9.8	147	178	1.9	0	62	67	79
17	5.3	337	12	138	11	143	175	2.6	0	48	66	82
18	5.5	1190	135	134	18	122	179	56	Ó	.04	60	86
19	6.0	17	138	137	144	12	179	47	Ō	0	43	99
20	5.4	62	144	177	198	9.1	180	.45	Ō	65	18	102
21	3.5	139	141	228	191	249	178	127	0	85	46	102
22	3.0	136	150	177	202	15	82	157	0	84	0	104
23	8.5	138	132	194	213	9.8	64	149	0	80	0	114
24	6.3	140	147	193	333	9.0	76	149	0	51	0	96
25	4.2	138	150	195	469	7.3	84	157	0	0	0	93
26	4.3	140	150	200	201	6.6	81	116	0	0	19	94
27	4.6	142	143	176	189	73	86	1.8	Ó	34	69	93
28	4.5	140	143	66	190	124	89	2.9	Ŏ	91	73	86
29	2.9	139	145	186		126	87	3.5	Ŏ	93	73	87
30	4.2	142	144	188		133	90	1.9	ő	93	73	91
31	4.7		148	193		130		1.3		93	73	
TOTAL	508.4	4852.3	3156.7	8099	5909,8	3316.8	4614	2155.35	374,59	1518.06	2328	2597
MEAN	16.4	162	102	261	211	107	154	69.5	12.5	49.0	75.1	86.6
MAX	281	1190	202	4210	991	355	220	157	84	93	176	114
MIN	2.9	5.3	5.6	10	9.8	6.6	64	.45	0	0	0	75
AC-FT	1010	9620	6260	16060	11720	6580	9150	4280	743	3010	4620	5150
CAT VD	1000 00	TAT AEAG	7 (0 1004)	N 104	MAY 2000	MIN O O	40 777	00130				

CAL YR 1986 TOTAL 45437.40 MEAN 124 MAX 3920 MIN 2.2 AC-FT 90130 WTR YR 1987 TOTAL 39430.00 MEAN 108 MAX 4210 MIN 0 AC-FT 78210

11088500 BREA CREEK BELOW BREA DAM, NEAR FULLERTON, CA

LOCATION .-- Lat 33°53'16", long 117°55'32", in NE 1/4 NE 1/4 sec.28, T.3 S., R.10 W., Orange County, Hydrologic Unit 18070106, on right bank 0.2 mi downstream from Brea Dam and 1 mi north of Fullerton.

DRAINAGE AREA. -- 21.6 mi².

WTR YR 1987 TOTAL 1235.74

MEAN 3.39

MAX 313

MIN

. 48

PERIOD OF RECORD . -- January 1942 to current year.

GAGE. --Water-stage recorder. Datum of gage is 196.67 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Dec. 4, 1964, at datum 1.03 ft higher.

REMARKS.--Estimated daily discharges: Oct. 1 to Dec. 15, Jan. 3-10, 14, 15, May 9-15, and June 27 to July 9. Records fair except those below 10 ft³/s, which are poor. Flow regulated by Brea flood-control reservoir, capacity, 4,100 acre-ft. No diversion above station. Since August 1966 low flow mostly the result of irrigation wastewater from golf course 0.8 mi upstream. See schematic diagram of San Gabriel and Los Angeles River basins.

AVERAGE DISCHARGE. -- 45 years, 3.13 ft 3/s, 2,270 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 1,700 ft³/s, Feb. 18, 1980, maximum discharge and gage height unknown; no flow for parts of some years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 812 ft³/s, Jan. 4, gage height, 4.29 ft; minimum daily, 0.48 ft³/s, Feb. 22.

		DISCHARGE	, IN COD	it Leet	PER SECOR	MEAN VALUE	S CIC	DER 1900 .	IO SEFIEM	DER 1907		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.2	1.2	1.2	2.0	. 56	1.2	1.1	.84	. 97	1.0	, 96	2.6
2	28	1.2	1.2	2.0	1.0	1.3	1.0	. 87	.96	. 98	1.3	2.1
3	17	1,2	1.2	2.1	. 87	1.3	4.5	. 83	. 96	. 96	1.1	2.1
4	1.5	1.2	1.2	313	.77	1.2	2.0	1.1	.91	1.0	.98	1.7
5	1.4	1.2	1.2	96	.69	2.6	.76	1.2	.75	1.1	.89	1.5
6	1.3	1.2	20	58	.80	16	.81	3.4	.76	1.1	.86	1.5
7	1.2	1.2	5.5	28	1.2	3.7	.83	2.6	.82	1.1	1.0	1.6
8	1.2	1.2	1.5	12	.83	1.8	.83	2.3	.77	1.1	.94	1.5
9	1.2	1.2	1.3	5.4	1.3	1.0	1.1	1.9	.67	1.0	.99	1.6
10	17	1.2	1.2	2.0	2.0	.79	.97	1.4	.69	.85	1.1	1.6
11	3.5	1,2	1,2	1.5	.66	.71	.93	.95	. 58	. 93	1.0	1.9
12	1.5	1.2	1.2	1.2	.60	.70	. 84	.80	. 56	1.0	. 97	1.9
13	1.3	1.2	1.2	, 96		.74	. 94	. 67	.61	.89	.92	1.6
14	1.2	1.2	1.2	1.0	4.9	.81	.98	. 62	.60	. 58	1.4	2.0
15	1.2	4.0	1.2	1.1	.94	11	. 84	. 59	. 55	. 54	1.1	1.6
16	1.2	2.7	1.4	1.1	. 85	1.1	1.0	.51	. 54	. 59	.99	1.6
17	1.2	4.5	1.4	.99	. 92	1.0	. 90	. 57	.64	.60	.94	2.1
18	1.2	106	1.4	1.2	.70	.94	.65	1.2	.83	.60	1.2	1.8
19	1,2	2.3	1.4	1.1	.63	.83	, 69	.66	.66	. 58	1.7	1.5
20	1.2	1.8	1.4	. 96	.65	. 87	. 90	. 59	.64	.80	1.2	1.3
21	1.2	1.5	1.4	1.0	, 59	28	.96	. 67	.62	1.1	1.1	1.4
22	1.2	1.4	1.4	1.0	.48	4.0	. 95		.74	. 81	.86	1.4
23	1.2	1.3	1.4	.93	1.1	2.5	1.0	1.2	1.1	1.1	1.1	2.2
24	1.2	1.3	1.4	. 83	1.0	1.9	. 92	2.5	.86	1.0	1.2	1.7
25	1.2	1.2	1.4	. 84	11	1.7	1.0	2.7	.91	1.0	1.2	1.7
26	1.2	1.2	1.4	.82	2,6	1.6	.90	2.4	1.0	1.1	1.8	1.6
27	1.2	1.2	1.4	. 83	1.6	1.4	.96	2.3	1.1	1.1	1.6	1.6
28	1.2	1.2	1.4	1.7	1.2	1.3	1.0	2.1	1.1	1.2	2.2	1.6
29	1,2	1.2	1.4	. 64		1.1	.72	, 91	1.1	1,1	2.7	1.6
30	1.2	1.2	1.7	.63		1.1	.92	, 82	1.0	1.1	2.8	1.6
31	1.2		2.0	. 65		1.1		. 93		.86	2.9	
TOTAL	98.9	150.8	64.8	541.48	66.44	95.29	31.90	40.86	24.00	28,77	41.00	51.5
MEAN	3.19	5.03	2.09	17.5	2.37	3.07	1.06	1.32	.80	. 93	1.32	1.72
MAX	28	106	20	313	26	28	4.5	3.4	1.1	1.2	2.9	2.6
MIN	1.2	1.2	1.2	.63	.48	.70	. 65	. 51	. 54	. 54	. 86	1.3
AC-FT	196	299	129	1070		189	63	81	48	57	81	102
		AL 2710.9		7.43	MAX 411	MIN .74	AC-FT					
		AT 1005 7				MITNI LO	AC TOTO					

2450

AC-FT

11089500 FULLERTON CREEK BELOW FULLERTON DAM, NEAR BREA, CA

LOCATION.--Lat 33°53'45", long 117°53'07", in NW 1/4 SW 1/4 sec.24, T.3 S., R.10 W., Orange County, Hydrologic Unit 18070106, on left bank of outlet channel of Fullerton Dam, 1.6 mi southeast of Brea.

DRAINAGE AREA. -- 4.94 mi².

PERIOD OF RECORD . -- October 1941 to current year.

REVISED RECORDS. -- WDR CA-82-1: 1981.

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above National Geodetic Vertical Datum of 1929, from topographic map. V-notch sharp-crested weir used Oct. 25, 1946, to Feb. 2, 1956. Prior to Dec. 3, 1971, at datum 3.00 ft higher.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Fullerton flood-control reservoir, capacity, 706 acre-ft. Small tributary formerly entering below station diverted into reservoir since December 1954. See schematic diagram of San Gabriel and Los Angeles River basins.

AVERAGE DISCHARGE.--13 years (water years 1942-54), 0.19 ft³/s, 135 acre-ft/yr; 32 years (water years 1955-87), 1.23 ft³/s, 891 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 392 ft³/s, Mar. 1, 1983, gage height, 8.25 ft, present datum; no flow at times some years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 308 ft³/s, Jan. 4, gage height, 7.57 ft; minimum daily, 0.25 ft³/s, Nov. 2.

MÉAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	.60	.28	. 52	.66	. 51	.51	. 49	. 84	. 55	.60	. 59	.60	
2	9.3	.25	,51	,60	.56	. 52	. 50	.83	.60	.60	. 57	,60	
3	1.2	.28	.50	.60	.60	.60	3.6	.76	.60	.60	.59	,60	
4	.66	. 44	. 53	108	.60	.60	2.0	.72	.60	.59	. 57	.60	
5	.60	.48	.58	45	.70	1.7	.51	.70	.60	.51	.68	.60	
6	. 54	. 58	4.8	17	. 64	6.6	. 49	. 83	, 60	. 51	.61	. 59	
7	. 54	. 46	1.3	6.4	, 54	.65	, 65	, 68	.60	. 56	.60	. 57	
8	. 57	.46	. 59	4.2	.51	. 57	.60	.65	.60	. 52	. 60	.59	
9	.49	. 47	.51	1.1	2.8	.65	.83	.58	.60	.72	. 60	. 57	
10	4.2	.41	. 51	.83	1.3	.81	.71	. 53	.60	.75	.60	.60	
11	.69	. 40	.51	.73	.65	.51	, 65	. 53	.60	.60	.65	,60	
12	. 57	.41	. 51	.72	.60	.51	.64	. 57	.60	.71	.68	,60	
13	.49	.42	. 55	1,3	14	.51	.66	. 56	.60	1.2	. 82	.60	
14	.46	.48	.60	1.4	8,7	.51	. 57	, 57	.60	1.2	1.6	,60	
15	. 43	1.1	. 57	1.3	.72	7.1	. 94	. 59	.60	.96	.87	.60	
16	.43	. 51	. 55	3.0	,86	.66	.63	.69	,60	.77	.67	.60	
17	.43	4.5	.60	.61	, 66	. 56	.76	, 67	.72	. 93	.60	.63	
18	.43	33	.65	.60	.59	.51	1.3	.60	.57	.71	.73	.64	
19	, 43	.77	.60	.65	. 52	.57	.61	.51	.60	. 58	. 60	.60	
20	. 43	. 67	.60	. 54	. 51	. 51	.66	. 54	. 57	1.6	. 64	, 58	
21	.43	. 57	. 53	,51	.56	15	.64	.59	. 51	1.0	.89	.68	
22	.43	. 51	.55	. 59	,60	1.8	, 60	.61	.60	.69	. 69	.70	
23	.38	. 46	. 57	,60	1.5	.71	.68	. 56	, 69	. 59	. 58	.60	
24	.34	.62	.59	.69	2,3	.66	.89	.51	. 59	.59	.60	.68	
25	.34	.51	.55	.70	3.2	.60	.75	. 55	, 57	. 59	.60	.69	
26	.36	. 49	.51	.60	.73	.60	.74	. 54	. 73	. 55	.60	.60	
27	.34	. 58	.65	. 64	. 55	.60	. 91	. 57	. 63	. 57	.60	.60	
28	.36	.61	. 56	1.1	.51	.66	.90	.60	.60	.60	1.2	.60	
29	.36	. 55	. 56	, 51		.71	.78	1.4	.60	.60	.77	.66	
30	.35	.49	. 57	. 51		.63	.89	. 57	. 60	.60	.60	, 59	
31	.34		.60	.51		. 51		. 52		.74	.60		
TOTAL	27.52	51.76	22,33	202,20	46,52	47.64	25.58	19,97	18,13	22.34	21.60	18.37	
MEAN	.89	1.73	.72	6.52	1.66	1.54	. 85	.64	, 60	.72	.70	.61	
MAX	9.3	33	4.8	108	14	15	3,6	1.4	.73	1.6	1.6	.70	
MIN	.34	.25	.50	.51	.51	.51	.49	. 51	, 51	.51	. 57	. 57	
AC-FT	55	103	44	401	92	94	51	40	36	44	43	36	

CAL YR 1986 TOTAL 872.93 MEAN 2.39 MAX 180 MIN .25 AC-FT 1730 WTR YR 1987 TOTAL 523.96 MEAN 1.44 MAX 108 MIN .25 AC-FT 1040

11097000 BIG TUJUNGA CREEK BELOW HANSEN DAM, CA

LOCATION.--Lat 34°15'13", long 118°23'17", in Mission San Fernando Grant, Los Angeles County, Hydrologic Unit 18070105, in city of Los Angeles, on left bank of outlet channel 0.5 mi downstream from Hansen Dam, 0.1 mi upstream from Glen Oaks Boulevard, and 3 mi southeast of San Fernando.

DRAINAGE AREA. -- 153 mi²

PERIOD OF RECORD. -- May 1932 to February 1938, August 1940 to current year. Monthly discharge only for some periods, published in WSP 1315-B.

REVISED RECORDS. --WDR CA-84-1: 1978 (M).

GAGE. Water-stage recorder. Datum of gage is 943.32 ft, U.S. Army Corps of Engineers datum. See WSP 1735 for history of changes prior to Oct. 1, 1953.

REMARKS. -- No estimated daily discharges. Records poor. Flow regulated since July 1931 by Big Tujunga floodcontrol reservoir, capacity, 5,720 acre-ft in 1979, and since September 1940 by Hansen flood-control reservoir, capacity, 29,700 acre-ft. Several small diversions for domestic use and irrigation. Water reported herein is that which passed Hansen Dam. Los Angeles County Department of Public Works diverts water 0.3 mi upstream from gage to spreading grounds, as shown in footnote below table. See schematic diagram of San Gabriel and Los Angeles River basins.

COOPERATION, -- Records of diversion were provided by Los Angeles County Department of Public Works.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 15,200 ft³/s, Feb. 10, 1978, Mar. 2, 1983; maximum gage height, 7.64 ft, Mar. 2, 1983; no flow many days in most years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum discharge, 54,000 ft3/s, estimated, Mar. 2, 1938.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 38 ft3/s, Oct. 2, gage height, 1.17 ft; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES OCT NOV DEC MAR APR MAY JUN JUL AUG SEP DAY JAN FEB 3.8 0 7.7 0 2 3 8.3 0 0 7.6 5 7.3 0 6 6.1 0 7 6.1 0 8 6.1 0 9 5.8 0 10 4.6 0 11 0 4.6 0 12 4.6 13 3.9 2.8 14 3.1 4.7 15 4.6 .50 .50 5.3 17 .50 6.9 18 5.3 .40 0 19 4.6 20 0 4.0 21 0 3.4 22 0 3.4 23 0 1.9 24 . 50 0 .50 25 O 26 0 . 50 2.7 0 .39 28 0 Λ 29 0 0 30 0 0 31 0 0 TOTAL 81,50 0 0 0 0 0 0 0 0 48.79 0 0 MEAN 2,63 0 0 0 0 1.57 0 0 0 0 0 0 0 0 0 0 MAX 8.3 0 0 0 0 0 0 6.9 MTN n 0 n 0 n 0 0 0 0 O 0 0 AC-FT 162 Λ n 0 n 0 0 n n 97 n O 187 418 587 1010 854 1220 695 700 578 536 416 369

MEAN 3.00

.36

MAX

MAX

126

8.3

MIN 0

MIN 0

AC-FT

AC-FT

2170

258

CAL YR 1986

WTR YR 1987

TOTAL

TOTAL

1096,02

130,29

MEAN a Combined discharge, in acre-feet, of creek and diversion.

11098000 ARROYO SECO NEAR PASADENA, CA

LOCATION.--Lat 34°13'20", long 118°10'36", in NW 1/4 NE 1/4 sec.31, T.2 N., R.12 W., Los Angeles County, Hydrologic Unit 18070105, on right bank 0.7 mi east of Angeles Crest Highway, 1.5 mi upstream from Millard Canyon, and 5.5 mi northwest of Pasadena.

DRAINAGE AREA. -- 16.0 mi².

PERIOD OF RECORD. -- December 1910 to current year.

GAGE.--Water-stage recorder. Broad-crested weir since November 1938. Datum of gage is 1,397.88 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1916, nonrecording gage at different datum. Oct. 1, 1916, to Oct. 19, 1945, water-stage recorder at datum 4.00 ft lower.

REMARKS. -- No estimated daily discharges. Records good. See schematic diagram of San Gabriel and Los Angeles River basins.

AVERAGE DISCHARGE, --73 years (water years 1914-15, 1917-87), 9.86 ft3/s, 7,140 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,620 ft³/s, Mar. 2, 1938, gage height, 9.42 ft, present datum, on basis of slope-area measurement of peak flow; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan, 5	0230	*13	*1,58				

Minimum daily, 0.04 ft³/s, Sept. 9.

CAL YR 1986 TOTAL 2364.76 WTR YR 1987 TOTAL 490.47 MEAN 6.48

MEAN 1.34 MAX

MAX

8.8

		DISCHARGE,	IN CUBIC	FEET		WATER Y		1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.5	1.1	1.4	1.5	1.9	2.5	2.0	1.2	. 57	.32	.05	.10
2	1,5	1.1	1.4	1.6	1,8	2.4	1.9	1.1	,53	.30	.05	.10
3	1.6	1.1	1.4	1.6	1.8	2.3	2,6	1.0	,52	.27	.06	.07
4	1.3	1.2	1.4	6.1	1,8	2.2	2.7	.86	.49	.26	.08	.12
5	1.2	1.1	1.4	8.8	1.8	2.5	2.4	.76	.44	.26	.09	.12
3		***	1.7	0.0	1.0	2.5	2.7	.,,	• • • •	. 20	.00	
6	1.2	1.2	2.3	5.2	1.8	6.4	2.1	.72	. 64	.29	.10	.09
7	1.2	1.3	2.0	5.8	1.7	6.4	1.9	.75	. 59	. 27	.10	.06
8	1.2	1.2	2.1	4.8	1.7	4.9	1.8	.66	.56	.29	.10	.05
9	1.2	1.1	2.0	4.0	1.8	4.1	1.6	.64	.52	.35	.07	.04
10	1.3	1.1	1.7	3.3	2.2	3.7	1.6	.70	. 49	.38	.08	.06
11	1.3	1.1	1.6	2.9	2.3	3.3	1.7	.68	.46	.31	.08	.12
12	1.4	1.1	1.6	2.6	2.1	3.1	1.7	.62	. 43	.24	.10	. 26
13	1.3	1.1	1.6	2,5	4.1	2.9	1.6	.62	. 42	.19	. 12	.31
14	1.3	1.1	1.5	2.4	5.2	2.8	1.4	. 62	.45	.18	.41	.26
15	1.2	1.2	1.5	2.2	3,8	3.5	1.3	.64	. 47	.18	.31	,20
16	1.2	1.2	1.5	2.1	2.9	3.1	1.2	.77	. 44	.31	,18	.18
17	1.2	1.4	1.5	2.1	2.5	2.7	1.3	.70	.39	.57	.15	.20
18	1.3	6.0	1.5	2.1	2.3	2.7	1.3	.69	.39	.31	.15	.17
19	1.3	4.0	1.5	2.1	2.3	2.6	1.4	.69	.40	.23	.13	.17
20												
20	1.3	2.9	1.6	1.9	2.0	2.6	1.2	.73	. 44	. 24	. 12	. 15
21	1.2	2.4	1.5	1.9	2.0	3.9	1.1	.72	. 42	.28	.12	. 14
22	1.2	2.0	1.5	1.8	2,1	5.3	.99	.63	.37	.25	. 14	. 13
23	1.3	1.8	1.5	1.9	2.3	3.8	. 96	. 63	. 33	.21	.16	.21
24	1.3	1.6	1.5	1.9	2.7	3,2	. 93	.66	.31	.19	.18	. 14
25	1.2	1.6	1.5	1.9	3.6	2.9	.91	.78	.29	.16	.10	. 12
26	1.2	1.5	1.4	2.0	3.6	2.7	. 92	.78	. 29	.14	.09	. 12
27	1.1	1.5	1.5	2.0	3.0	2.5	. 95	.80	. 29	.12	,09	. 13
28	1.2	1.5	1.6	2.0	2.7	2.5	. 97	.75	.31	.13	.08	. 10
29	1.2	1.5	1.5	2.0		2.3	1.1	.75	.30	.10	.10	.09
30	1.2	1.5	1,5	2.0		2.1	1.3	.78	.31	. 15	.10	.07
31	1.2		1.5	2.0		2.0		.64		.18	.08	
TOTAL	39.3	49.5	49.0	86.9	69.6	99.9	44.83	23.07	12.86	7,66	3.77	4.08
MEAN	1,27	1.65	1.58	2,80	2.49	3,22	1.49	.74	. 43	.25	, 12	. 14
MAX	1.6	6.0	2.3	8.8	5.2	6.4	2.7	1.2	. 64	, 57	.41	,31
MIN	1.1	1.1	1.4	1.5	1.7	2.0	.91	. 62	.29	.10	.05	.04
AC-FT	78	98	97	172	138	198	89	46	26	15	7.5	8.1
					=			. •			,	

.25

MIN .04

AC-FT

AC-FT

4690

11101250 RIO HONDO ABOVE WHITTIER NARROWS DAM, CA

LOCATION.--Lat 34°03'30", long 118°04'15", in Potrero Grande Grant, Los Angeles County, Hydrologic Unit 18070105, on right bank 0.3 mi downstream from Garvey Avenue, 0.4 mi downstream from Rubio Wash, 2.8 mi upstream from axis of Whittier Narrows Dam, and 2.2 mi west of El Monte.

DRAINAGE AREA, -- 91,2 mi².

CAL YR 1986 TOTAL 27842.64

WTR YR 1987 TOTAL 4504.37

MEAN 76.3

MEAN 12.3

MAX 1420

MAX 1010

MIN

MIN .64

.77

AC-FT 55230

8930

AC-FT

PERIOD OF RECORD. -- February 1956 to current year.

GAGE. -- Water-stage recorder. Concrete trapezoidal channel. Datum of gage is 217.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Aug. 27-30 and Sept. 14-30. Records good except those for periods of estimated record, which are poor. Flow regulated by Big Santa Anita, Sawpit, and Eaton flood-control reservoirs, and Sierra Madre, Las Flores, and Rubio debris basins, combined capacity, 2,195 acre-ft. Many diversions above station for domestic use and irrigation. Los Angeles County Department of Public Works diverted 115 acre-ft from San Gabriel River below Santa Fe Dam to Rio Hondo during current year. See schematic diagram of San Gabriel and Los Angeles River basins.

COOPERATION . -- Records of diversion were provided by the Los Angeles County Department of Public Works.

AVERAGE DISCHARGE. -- 31 years, 42.9 ft3/s, 31,080 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 18,200 ft³/s, Feb. 16, 1980, gage height, 7.35 ft; no flow some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,130 ft³/s, Jan. 4, gage height, 3.99 ft; minimum daily, 0.64 ft³/s, Jan. 16.

		DISCHARG	E, IN CU	BIC FEET		O, WATER :	YEAR OCTOBER ES	. 1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 178 3.7 1.2 .79	1.2 .85 1.1 1.3 1.2	3.3 3.4 2.3 1.1 2.1	1.1 1.4 1.7 1010 23	1.1 1.5 1.9 1.4 2.0	.82 2.5 2.6 1.4 59	4.6 4.8 12 1.4 1.2	1.4 1.6 1.0 1.3	1.9 1.6 3.6 2.0 2.9	2.1 2.9 1.3 1.3	1.1 .88 1.5 1.1	1.7 1.6 1.4 1.3
6 7 8 9 10	1.3 1.7 2.7 2.5 3.5	1.4 1.3 1.2 1.0	133 1.2 1.1 .98 .86	86 37 .98 .86	1.2 1.1 1.1 252 6.3	118 4.9 1.4 1.3 1.1	1.3 1.2 1.3 1.4 1.3	1.7 1.7 2.6 1.5	80 2.2 4.0 2.2 1.9	1.3 2.4 3.0 3.0 1.6	1.7 1.7 1.1 .93 1.8	.99 .89 1.2 2.1 2.7
11 12 13 14 15	1.3 2.0 1.5 1.5	1.1 1.4 1.9 1.7 2.7	.83 .80 1.3 .77 2.0	.65 1.2 1.6 1.2	1.5 1.8 520 5.6 1.1	1.2 1.5 1.5 2.1 99	1.5 1.3 1.5 1.4	1.6 1.7 2.4 2.5 2.7	1.6 1.8 2.0 1.4 3.6	1.4 .97 2.4 2.4 3.1	1.2 1.6 1.4 4.9 1.4	1.5 1.4 1.5 1.4 1.8
16 17 18 19 20	3.1 1.6 1.2 1.3	1.3 317 398 1.9	2.2 1.4 1.6 1.5	.64 .65 .74 1.0 .88	3.3 .82 1.2 .72 .79	1.1 1.4 1.2 .93 1.2	1.7 2.2 4.3 6.0 3.7	2.7 2.6 1.8 2.1 3.2	1.6 1.6 1.4 3.0 1.4	2.6 19 1.0 .81 4.6	1.1 2.6 1.4 1.2	1.6 1.4 1.6 1.4
21 22 23 24 25	1.6 1.7 1.6 1.8	1.8 1.3 1.4 1.4 2.0	.96 1.6 1.2 3.0	1.0 1.1 1.3 1.3	.77 22 6.6 318 13	189 1.4 1.1 9.4 2.4	1.8 1.6 2.0 1.3	1.3 2.6 1.3 1.3	1.3 2.7 2.8 2.4 4.0	1.0 2.5 2.9 2.7 1.2	1.4 1.1 .95 1.5	1.8 1.3 1.9 2.1 1.8
26 27 28 29 30	2.1 1.8 1.8 2.3 1.6 1.3	1.6 1.4 1.6 1.6	.89 .94 .83 1.3 1.2	1.4 1.5 1.2 1.2 1.2	2.4 2.3 .86	1.2 5.1 3.7 .92 4.2 3.7	.92 1.6 1.7 2.7 2.4	1.5 2.4 1.7 1.7 1.0	5.4 2.4 2.7 1.7 1.9	1.0 3.0 1.9 1.3 1.3	1.3 1.8 1.7 1.6 1.4	1.6 1.9 1.5 1.6 1.7
TOTAL MEAN MAX MIN AC-FT	232.99 7.52 178 .79 462	756.45 25.2 398 .85 1500	177.14 5.71 133 .77 351	1185.75 38.3 1010 .64 2350	1172.36 41.9 520 .72 2330	526.27 17.0 189 .82 1040	73.52 2.45 12 .92 146	57.97 1.87 3.2 .87 115	149.0 4.97 80 1.3 296	78.28 2.53 19 .81 155	47.26 1.52 4.9 .88 94	47.38 1.58 2.7 .89 94

11102300 RIO HONDO BELOW WHITTIER NARROWS DAM. CA

LOCATION.--Lat 34°01'00", long 118°05'15", in Paso de Bartolo Grant, Los Angeles County, Hydrologic Unit 18070105, on right levee 0.2 mi upstream from Beverly Boulevard, 0.4 mi downstream from axis of Whittier Narrows Dam. and 1.0 mi northeast of Montebello.

DRAINAGE AREA. -- 124 mi².

WTR YR 1986 TOTAL 45053.10

MEAN 123

MAX

4310

MIN 0

AC-FT

89360

PERIOD OF RECORD . -- October 1966 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 175 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records fair above 100 ft³/s and poor below. Flow regulated by Whittier Narrows flood-control reservoir, capacity, 36,160 acre-ft. There are several small flood-control reservoirs (combined capacities, 1,700 acre-ft) and several small debris basins above Whittier Narrows Dam. Many diversions for domestic use and irrigation. At times flow is diverted from San Gabriel River to Rio Hondo from sites below Santa Fe Dam and above Whittier Narrows Dam. See schematic diagram of San Gabriel and Los Angeles River basins. Records for water year 1986 not available in time for the 1986 publication are published here.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 38,800 ft³/s, Jan. 25, 1969, gage height, 13.82 ft, from rating curve extended above 15,000 ft³/s on basis of gate openings at dam at gage heights 12.32 and 13.82 ft; no flow at times in each year.

EXTREMES FOR WATER YEAR 1986 (NOT PREVIOUSLY PUBLISHED).--Maximum discharge, 15,500 ft³/s, Feb. 14, gage height, 8.30 ft; no flow many days May to September.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,200 ft³/s, Jan. 4, gage height, 6.96 ft; minimum daily, 0.11 ft³/s, Mar. 19.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986
MEAN VALUES
(NOT PREVIOUSLY PUBLISHED)

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	7,2	200	23	717	263	111	193	1.3	31	0	0
2	17	13	128	22	182	290	181	214	1.1	33	0	0
3	15	13	73	19	31	285	187	258	. 57	36	Ö	0
4	16	15	18	29	28	298	145	255	.29	34	ŏ	Ö
5	14	16	17	75	13	308	67	236	.29	36	Ö	ŏ
3	. 14	10	17	/3	13	300	07	230	. 29	30	U	U
6	16	15	18	21	20	292	384	262	.25	36	0	0
7	26	15	18	37	83	162	28	304	.04	35	6.8	0
8	20	18	17	97	151	1220	14	330	.07	32	18	8.9
9	17	18	16	116	114	318	100	314	. 11	30	18	1.4
10	15	21	18	139	128	1420	177	291	0	28	19	6.7
	13		10	100	120	1120	1,,	201	ŭ	20	10	0.,,
11	15	746	22	144	136	305	167	280	0	30	26	6.3
12	15	120	21	149	134	175	188	261	0	32	25	8,1
13	16	15	21	61	736	425	192	247	.06	32	27	12
14	15	9.9	20	24	999	388	192	247	. 42	33	34	13
15	13	4.8	22	40	4310	373	110	204	. 87	33	42	15
16	15	4.8	19	90	582	3720	8.1	159	3.2	32	50	16
17	14	4.8	19	92	185	450	20	239	2.7	31	57	15
18	15											15
		4.8	19	95	184	111	92	299	. 47	30	32	
19	14	4.8	18	95	513	39	107	284	.21	28	0	15
20	14	4.4	19	95	358	4.3	113	207	1.4	29	0	11
21	165	3.7	21	95	211	5.4	156	284	6.5	31	0	11
22	113	9.0	23	92	54	16	174	347	11	29	ŏ	4.9
23	13	15	26	100	22	16	197	195	12	20	. 0	,16
24	3.9	75	27	120	20	9.4	224	4.4	20	0	Ö	89
25	2.9	788	28	183	79	3.3	223	1.7	26	0	0	567
26	2,7	482	29	191	160	2.4	215	.63	26	0	0	138
27	2.7	19	30	182	176	3.9	215	.20	25	0	0	10
28	2,7	17	31	151	193	30	166	0	26	Ó	Ō	7.3
29	2.7	1210	32	129		31	158	.06	27	ŏ	ŏ	5.7
30	2.8	623	32	1230		31	172	4.6	29	ŏ	ŏ	5.6
31	3.1	020	30	899		39	1/2	2.3		Ö	Õ	J.U
31	3,1		30	099		38		2.3		U	U	
TOTAL	634.5	4312.2	1032	4835	10519	11033.7	4483.1	5923.89	221.85	721	354.8	982.06
MEAN	20.5	144	33.3	156	376	356	149	191	7.40	23.3	11.4	32.7
MAX	165	1210	200	1230	4310	3720	384	347	29	36	57	567
MIN	2.7	3.7	16	19	13	2.4	8.1	Ó	0	Ō	0	0
AC-FT	1260	8550	2050	9590	20860	21890	8890	11750	440	1430	704	1950
CAL YR		TAL 30258		82.9	MAX 16							
מייים עד	יועצובי ייירוי	PAI 65053	IG MEAN	1 1 1 2 1 2	MAY //2	III MAIN	1) Ar'-R'T	goven				

LOS ANGELES RIVER BASIN

11102300 RIO HONDO BELOW WHITTIER NARROWS DAM, CA--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.3	21	47	131	145	79	74	6.0	. 53	20	52	86
2	112	20	4.1	109	149	74	112	3,5	3,6	20	56	87
3	154	41	3.7	26	147	77	125	3.7	1.9	20	55	98
4	7.8	63	3.7	2210	145	68	119	3,1	2.4	19	46	100
5	5.4	73	3,7	575	117	55	115	21	6.6	17	50	92
6	4.8	90	71	250	113	215	111	37	61	18	65	85
7	4.8	93	4.8	85	111	17	111	67	22	18	81	80
8	4.8	91	4.8	21	111	4.4	111	20	19	17	57	79
9	4.8	93	4.3	4.3	292	3.7	117	2.7	14	18	60	77
10	5.4	102	3.7	3.3	129	3.7	122	2.7	17	20	88	75
11	5.3	104	3.7	2,4	116	12	125	20	12	17	104	73
12	4.8	109	222	2.0	115	37	127	20	17	16	51	69
13	4.8	109	105	2.7	392	46	127	9.5	19	16	52	68
14	4.8	111	100	3.7	453	65	130	4.2	20	16	44	65
15	5.2	126	115	50	23	270	135	3.7	12	16	64	63
16	6.4	126	31	172	12	95	144	3.7	13	18	62	61
17	6.4	51	26	99	11	83	158	3.7	20	30	66	64
18	6.4	402	101	96	15	35	171	3.7	20	23	75	69
19	6.4	187	121	104	75	.11	193	3,7	22	24	53	71
20	6.4	176	126	118	117	.62	184	4.2	24	27	25	69
21	6.4	204	120	148	111	. 58	184	74	25	28	55	69
22	6.4	85	122	134	127	. 17	124	90	26	28	19	69
23	6.4	75	127	142	117	.13	30	90	25	32	18	80
24	6.4	69	128	138	351	. 27	42	90	21	30	19	74
25	6.4	94	128	137	246	.66	33	103	20	33	17	69
26	7.4	105	122	139	87	.61	22	84	21	39	25	70
27	6.2	115	111	139	86	13	50	6.2	- 21	43	72	73
28	3.7	94	108	52	86	17	35	4.4	19	40	78	68
29	3.9	79	40	140		21	6.8	3.7	19	34	85	69
30	4.8	81	112	141		30	6.4	3.7	20	31	88	68
31	9.3		162	142		51		2.7		49	92	
TOTAL	433.3	3189	2381.5	5516,4	3999	1374.95	3144.2	794.8	544.03	777	1774	2240
MEAN	14.0	106	76.8	178	143	44.4	105	25.6	18.1	25.1	57.2	74.7
MAX	154	402	222	2210	453	270	193	103	61	49	104	100
MIN	3.7	20	3.7	2.0	11	.11	6.4	2.7	. 53	16	17	61
AC-FT	859	6330	4720	10940	7930	2730	6240	1580	1080	1540	3520	4440
										20.0		

CAL YR 1986 TOTAL 45078.20 MEAN 124 MAX 4310 MIN 0 AC-FT 89410 WTR YR 1987 TOTAL 26168.18 MEAN 71.7 MAX 2210 MIN .11 AC-FT 51900

11103000 LOS ANGELES RIVER AT LONG BEACH, CA (National stream-quality accounting network station)

LOCATION.--Lat 33°49'02", long 118°12'20", in Los Cerritos Grant, Los Angeles County, Hydrologic Unit 18070105, on right bank 5,000 ft upstream from Willow Street, 3.4 mi north of Long Beach, and 3.7 mi upstream from mouth.

DRAINAGE AREA. -- 827 mi².

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD. -- December 1928 to September 1983. October 1983 to current year, available in files of Los Angeles County Department of Public Works; not reviewed by U.S. Geological Survey.
- GAGE.--Water-stage recorder. Datum of gage is 11.91 ft above National Geodetic Vertical Datum of 1929 (levels by Los Angeles County Department of Public Works). See WSP 1735 for history of changes prior to Jan. 19, 1956.
- REMARKS.--Flow regulated since September 1940 by Hansen flood-control reservoir; since December 1946 by Sepulveda flood-control reservoir (combined capacity, 49,400 acre-ft); and by several small flood-control reservoirs. City of Los Angeles stores imported Owens River water in San Fernando and Chatsworth Reservoirs and at times discharges imported water into Los Angeles River above station. Many diversions above station for domestic use and irrigation. AVERAGE DISCHARGE represents flow to the ocean, regardless of upstream development. See schematic diagram of San Gabriel and Los Angeles River basins.
- AVERAGE DISCHARGE. --54 years (water years 1930-83), 215 ft³/s, 155,800 acre-ft/yr,
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 129,000 ft³/s, Feb. 16, 1980, gage height, 17.99 ft; no flow at times in 1929-30, 1934.

11103000 LOS ANGELES RIVER AT LONG BEACH, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water years 1973 to current year. CHEMICAL DATA: Water years 1973 to current year. BIOLOGICAL DATA: Water years 1973-81. SPECIFIC CONDUCTANCE: Water years 1974-75, 80-83. WATER TEMPERATURE: Water years 1974-75, 80-83. SEDIMENT DATA: Water years 1975 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1973 to September 1975, July 1980 to September 1983.
WATER TEMPERATURE: October 1973 to September 1975, January 1980 to September 1983.

INSTRUMENTATION. -- Water-quality monitor from October 1973 to September 1975, January 1980 to September 1983.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
DEC 31 MAR	1250	126	840	10.0	16,5	765	8.2	>20.0	>197	<4	K58	200
25 JUN	1515	121	950	9.7	24.5	760	3,5	>20.0	>237	К8	110	240
30 SEP	1430	114	860	10.1	25.5	760	17	>20.0	>235	K31	67	210
29	1240	118	890	10.1	29.0	765	7.1	>20.0	>261	K18	93	210
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
DEC 31	91	52	18	95	49	3	8.8	22	57	114	113	160
MAR 25	110	66	18	100	47	3	8.7	3	79	134	131	190
JUN 30	81	57	17	97	48	3	9,8	16	71	131	132	170
SEP 29	80	57	16	100	52	3		9	73	129	129	150
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
DEC 31 MAR	91	0.60	11	538	510	0.73	1.0	5.5	0.420	0.510	3.6	1.8
25	110	0.70	20	614	600	0.84	0.540	3.4	1.1	1.1	3.4	0.700
JUN 30	94	0.70	24	492	550	0.67	1.0	3.1	0.280	0.270	0.70	3.6
SEP 29	100	0.70	18	563	520	0.77	0.290	1.7	0.070	0.040	5.2	0.820

See footnotes at end of table.

11103000 LOS ANGELES RIVER AT LONG BEACH, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTERMBER 1987

DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
DEC 31	0.260	0.200	30	5	25	<0.5	1	<1	<3	8	11
MAR 25	0.170	0.090	30	5	42	<0.5	<1	<1	<3	7	7
JUN 30 SEP	0.260	0.210	<10	7	21	<0.5	2	<1	<3	11	10
29	0.210		40	8	21	<0.5	<1	<1	<3	10	8
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SÓLVED (UG/L AS ZN)
DEC 31	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L	DIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L
DEC 31 MAR 25	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
DEC 31	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)

- > Actual value is known to be greater than the value shown. < Actual value is known to be less than the value shown.
- K Results based on colony count outside the acceptable range (non-ideal colony count).

CROSS-SECTIONAL DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	SEDI- MENT, SUS- PENDED (MG/L)
MAR									
25*	1300	20.0	925	9.9	25.0	760	>20.0	>238	6
25*	1315	36,0	940	9.7	24.5	760	>20.0	>237	6
25*	1330	42.0	940	9.6	24.0	760	>20.0	>235	6
25*	1345	48.0	940	9.7	24.0	760	>20.0	>235	6
25*	1400	54.0	940	9.8	25.0	760	>20.0	>238	7

^{*} Instantaneous streamflow at the time of cross-sectional measurement: Mar. 25, 121 ${\rm ft}^3/{\rm s}$.

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

					SEDI-	SED.
					MENT,	SUSP.
		STREAM-		SEDI-	DIS-	SIEVE
		FLOW,	TEMPER-	MENT,	CHARGE,	DIAM.
		INSTAN-	ATURE	SUS-	SUS-	% FINER
DATE	TIME	TANEOUS	WATER	PENDED	PENDED	THAN
		(CFS)	(DEG C)	(MG/L)	(T/DAY)	.062 MM
DEC						
31	1250	126	16,5	22	7.5	79
MAR						
25	1515	121	24.5	6	2.0	60
JUN						
30	1430	114	25.5	45	14	80
SEP						
29	1240	118	29.0	39	12	59

11108500 SANTA CLARA RIVER AT LOS ANGELES-VENTURA COUNTY LINE, CA (National stream-quality accounting network station)

LOCATION.--Lat 34°23'59", long 118°42'14", in San Francisco Grant, Ventura County, Hydrologic Unit 18070102, on downstream end of old diversion weir on right bank, on private road 0.2 mi south of Highway 126, 0.8 mi west of Los Angeles-Ventura County line, and 6.4 mi west of intersection of Highway 126 and Interstate 5.

DRAINAGE AREA. -- 625 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- October 1952 to current year,

REVISED RECORDS. -- WDR CA-78-1: Drainage area.

GAGE, -- Water-stage recorder. Datum of gage is 794.93 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Base flow affected by pumping from wells along stream for irrigation. Flow partly regulated since January 1972 by Castaic Reservoir, capacity, 324,000 acre-ft. Imported water from California Water Project stored and released at Castaic Dam.

AVERAGE DISCHARGE. -- 35 years, 48.9 ft 3/s, 35,430 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 68,800 ft³/s, Jan. 25, 1969, gage height, 19.01 ft, from rating curve extended above 9,200 ft³/s on basis of field estimate of peak flow; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 750 ft3/s and maximum (*):

Date	Time	Discharge G (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 18	0300	*1,460	*6.73				

Minimum daily, 19 ft³/s, Aug. 27, 28.

		DISCHARGE,	IN CUB	IC FEET	PER SECON	D, WATER YEA MEAN VALUES	R OCTOBER	1986	TO SEPTEMBER	1987	,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32	36	42	38	40	44	35	33	30	29	25	20
2	39	35	42	38	41	45	34	33	29	29	24	20
3	39	35	42	38	41	44	34	33	32	29	24	20
4	31	33	42	56	40	43	33	32	32	30	24	21
5	31	33	43	45	40	46	32	31	31	29	25	21
,	31	00	40	43	40	40	32	31	31	25	23	21
6	31	34	48	46	40	50	32	31	30	29	25	21
7	31	33	45	45	40	46	31	31	30	28	25	21
8	31	32	46	42	41	44	31	31	29	27	25	22
9	31	33	45	42	41	43	31	31	29	26	25	22
10	31	34	44	41	41	42	30	32	29	27	25 25	23
10	31	34	44	41	41	42	30	32	29	41	23	23
11	30	35	43	39	40	42	30	32	29	27	25	24
12	28	35	42	39	40	41	29	31	29	27	26	25
13	28	35	42	39	43	41	29	31	30	26	27	25
14	29	35	43	38	42	41	29	31	29	27	28	25
15	28	37	43	38	43	42	29	31	29	27	27	25
13	20	37	40	36	40	42	25	31	29	41	21	2.3
16	27	36	43	38	42	40	29	32	28	27	27	24
17	27	40	42	38	42	40	30	31	29	28	27	24
18	28	205	41	38	42	41	30	30	29	27	25	25
19	28	52	41	38	42	42	30	29	28	27	25	25
20	28	49	42	39	41	43	29	30	29	26	24	24
20	20	40	42	00	47	40	29	30	25	20	24	24
21	29	47	41	39	42	47	29	30	30	25	24	25
22	29	44	41	40	43	43	30	31	26	26	24	25
23	31	42	41	40	43	67	30	32	29	25	24	25
24	31	41	41	40	44	37	31	31	29	26	23	26
25	31	41	39	41	46	36	31	30	28	26	20	26
26	32	41	40	40	44	36	31	32	26	25	20	26
27	31	41	41	40	44	35	32	30	28	25	19	26
28	32	40	41	40	44	35	32	31	23	26	19	26
29	33	40	40	39		34	32	29	25	26	20	25
30	34	40	40	39		34	33	30	28	25	20	25
31	35		40	40		34		30		25	20	
TOTAL	956	1314	1306	1253	1172	1298	928	962	862	832	741	712
MEAN	30.8	43.8	42.1	40.4	41.9	41.9	30.9	31.0	28.7	26.8	23.9	23.7
MAX	39	205	48	56	46	67	35	33	32	30	28	26
MIN	27	32	39	38	40	34	29	29	23	25	19	20
AC-FT	1900	2610	2590	2490	2320	2570	1840	1910	1710	1650	1470	1410
												•

CAL YR 1986 TOTAL 24212 MEAN 66.3 MAX 3080 MIN 21 AC-FT 48020 WTR YR 1987 TOTAL 12336 MEAN 33.8 MAX 205 MIN 19 AC-FT 24470

11108500 SANTA CLARA RIVER AT LOS ANGELES-VENTURA COUNTY LINE, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water years 1969 to current year.
CHEMICAL DATA: Water years 1969, 1972 to current year.
BIOLOGICAL DATA: Water years 1979-80.
WATER TEMPERATURE: Water years 1969-78 (observed), February to September 1980.
SEDIMENT DATA: Water years 1969-78, October 1978 to current year (periodic record only).

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: June 1969 to September 1981.

PH: June to September 1969.
CHLORIDE: June to September 1969.
WATER TEMPERATURE: February 1980 to September 1981.
SEDIMENT DATA: October 1968 to September 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	(MM OF	CC T B	UR- FID- TY TU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
DEC 09 MAR	1045	42	1300	8.2	14.0	75	50 1	.1	9.5	94	170	70	470
17 JUN	1135	36	1300	8.3	20.5	74	5 1	.0	9.6	110	K24	94	470
16 SEP	1130	39	1200	8.3	23.5	73	5	5.1	6.8	83	51	210	420
30	1050	23	1320	8.3	19.5	74	0	4.5	9.4	106	K150	360	490
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM		S D SO (M	TAS- IUM, IS- LVED G/L K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
DEC 09 MAR	210	120	40	110	34	2		5.4	308	0	252	252	330
17	210	120	41	110	33	2		5.4	309	0	253	260	360
JUN 16 SEP	160	110	35	110	36	2		4.9	297	12	263	263	270
30	220	130	40	110	33	2		5.2	323	6	275	274	350
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLVE (TONS	, G NIT D D S SO	TRO- EN, RITE IS- LVED G/L N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
DEC 09	77	0.60	22	904	860	1.2	. 0	.240	4.2	0.340	0.360	1.7	1.1
MAR 17	76	0.50	22	884	900	1.2	. 0	.050	4.9	0.060	0.050	1.0	1.2
JUN 16	84	0.50	24	835	800	1.1	. 0	.170	4.0	0.070	0.070	0.30	1.2
SEP 30	81	0.50	24	920	910	1.3	0	.090	3.8	0.060	0.030	0.40	0.800
DAT	SOL	US, ORT S- DIS VED SOLV //L (MG/	US, AL HO, IN E- D ED SO L (U	LVED SOL 3/L (UG	S- DI VED SOL	IUM, L S- D VED S G/L (ERYL- IUM, IS- OLVED UG/L S BE)	CADMI DIS SOLV (UG/ AS (S- DIS VED SOL /L (UG	M, COBA - DIS VED SOLV /L (UG	- DIS ED SOL	- DI VED SOL /L (UG	S- VED /L
DEC 09 MAR	1.	1 0.	990	<10	2	47	<0.5		1	<1	<3	2	4
17 JUN	1.	1 1.	0	50	1	42	<0.5		1	<1	<3	2	,5
16 SEP	1.	1 1.	1	10	2	41	<0.5		<1	<1	<3	1	8
30	0.	790 0.	700	10	2	41	<0.5		<1	<1	<3	5	10

See footnotes at end of table.

11108500 SANTA CLARA RIVER AT LOS ANGELES-VENTURA COUNTY LINE, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
DEC											
09 MAR	<5	32	33	0.3	<10	2	3	<1	880	<6	10
17 JUN	23	32	22	<0.1	<10	<1	<1	1	920	<6	5
16	<5	23	8	<0.1	10	3	2	<1	860	<6	10
SEP 30	<5	28	37	<0.1	<10	2	3	<1	900	<6	24

K Results based on colony count outside the acceptable range (non-ideal colony count). < Actual value is known to be less than the value shown.

CROSS-SECTIONAL DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	SEDI- MENT, SUS- PENDED (MG/L)	SED. SUSP. SIEVE DIAM. 7 FINER THAN .062 MM
DEC										
09*	1055	4.00	1300	8.1	14.0	750	9.5	94	306	13
09*	1100	6,00	1300	8.2	14.0	750	9.5	94	306	13
09*	1105	8.00	1290	8.2	14.0	750	9.5	94	361	10
09*	1110	10.0	1300	8.2	14.0	750	9.5	94	318	11
09*	1115	12.0	1300	8.2	14.0	750	9.5	94	89	39
JUN										
16*	1320	15.0	1200	8.0	26.5	735	6.8	88	58	29
16*	1330	12.0	1210	8.1	26.5	735	6.7	87	60	26
16*	1345	10.0	1210	8.1	26.5	735	6.8	88	65	28
16*	1355	7.00	1210	8.1	26.5	735	6.8	88	49	37
16*	1405	4.00	1210	8.1	26.5	735	6.7	87	42	42

^{*} Instantaneous streamflow at the time of cross-sectional measurements: Dec. 9, 42 ft³/s; June 16, 39 ft³/s.

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS	TEMPER- ATURE WATER	SEDI- MENT, SUS- PENDED	SEDI- MENT, DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
DEC		(CFS)	(DEG C)	(MG/L)	(T/DAY)	.062 MM
09 MAR	1045	42	14.0	247	28	15
17 Jun	1135	36	20.5	195	19	15
16 SEP	1130	39	23.5	55	5.8	32
30	1050	23	19.5	56	3,5	54

11109600 PIRU CREEK ABOVE LAKE PIRU, CA

LOCATION. --Lat 34°31'23", long 118°45'22", in NE 1/4 NW 1/4 sec.15, T.5 N., R.18 W., Ventura County, Hydrologic Unit 18070102, on left bank near Blue Point, 1.3 mi downstream from Agua Blanca Creek, 4.3 mi upstream from Santa Felicia Dam, 8.0 mi northeast of Piru, and 15 mi downstream from Pyramid Dam.

DRAINAGE AREA. -- 372 mi².

WTR YR 1987 TOTAL 4728.7

MEAN 13.0

MAX

104

MIN 6.8

AC-FT

9380

PERIOD OF RECORD. -- October 1955 to current year.

REVISED RECORDS, -- WDR CA-64-1; Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,058.55 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Forest Service). Prior to Dec. 15, 1972, at site 0.3 mi upstream at different datum.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated beginning December 1971 by Pyramid Dam, capacity, 173,500 acre-ft. Imported water from the California Water Project stored and released at Pyramid Dam.

AVERAGE DISCHARGE, -- 16 years (water years 1956-71), 55.1 ft3/s, 39,920 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 31,200 ft³/s, Feb. 25, 1969, gage height, 18.6 ft, site and datum then in use, from floodmarks, from rating curve extended above 4,000 ft³/s on basis of slope-area measurement at gage height 12.2 ft and inflow-outflow records for Lake Piru; no flow in some years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Mar. 2, 1938, reached a discharge of 35,000 ft 3/s, and is the greatest since that date.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 172 ft³/s, Mar. 5, gage height, 3.82 ft; minimum daily, 6.8 ft³/s, June 22.

DISCHARGE IN CURIC FEET PER SECOND WATER VEAR OCTORER 1986 TO SEPTEMBER 1987

		DISCHARG	E, IN CUB	IC FEET P		, WATER YE EAN VALUES		BER 1986 1	O SEPTEME	ER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP
1	9.7	9.4	6.9	12	12	14	21	11	7.4	11	11	12
2	9.4	9,3	6.9	12	12	14	21	10	7.3	9.7	11	14
3	9.2	9,4	6.9	13	12	14	18	9.9	7.1	9.0	11	13
4	9.1	9.4	6.9	32	12	13	16	9.3	8.9	9.3	12	13
5	9.0	9.7	7.1	30	12	28	14	10	11	9.3	11	12
6	9,2	9.7	8.2	18	12	104	14	12	10	9.3	13	9.9
7	8.3	9.6	11	18	12	47	12	14	8.4	9.5	12	11
8	9.4	11	9.3	16	12	41	12	13	11	11	10	10
9	9.5	11	8.8	15	13	37	20	12	10	12	10	12
10	9.5	10	8.6	15	15	35	26	12	12	9.1	11	12
11	9.0	9.3	8.7	14	15	27	27	12	9.9	8.8	11	12
12	9.7	9.5	9.5	14	15	25	28	12	8.7	8.7	11	10
13	7.6	9.4	9.8	14	15	24	29	11	11	9.9	10	10
14	9.3	9.4	10	14	16	24	29	10	9.5	12	10	10
15	9.7	9.4	10	14	15	24	29	12	9.7	12	9.4	9,6
16	9.4	9.4	10	13	14	24	29	11	7.4	12	8.7	11
17	9.2	10	10	13	14	23	28	9.5	7.0	10	8.5	15
18	9.5	42	10	13	14	23	28	9.3	7.9	9.6	11	11
19	9.4	14	10	13	14	23	29	9.0	8.2	9,3	11	10
20	9.5	9.7	11	13	14	23	28	9.3	8.3	9.2	10	11
21	9.7	8.4	11	13	14	25	18	9.1	8,3	9,4	11	11
22	9,4	7.5	11	13	14	25	11	8.6	6.8	14	11	12
23	9.8	7.1	11	13	13	24	9.9	8.3	7.3	9.7	10	13
24	9.4	7.0	11	13	14	23	9.7	8.3	9.5	10	10	9,6
25	9.4	6.9	11	13	18	23	9.6	8.3	11	10	10	9.6
26	9.6	6.9	11	12	17	22	8.9	9.0	11	9.8	10	11
27	9.7	6.9	12	18	15	. 22	9.3	8.5	11	10	11	11
28	9.4	6.9	12	13	14	22	9.4	8.3	11	12	11	9.9
29	9.4	6.9	12	13		22	9.5	8.2	11	12	12	11
30	9.4	6.9	12	13		22	9.9	8.0	11	11	12	12
31	9.4		12	12		21		7.4		11	12	
TOTAL	289.2	302.0	305.6	462	389	838	563.2	310.3	278.6	319.6	332.6	338,6
MEAN	9.33	10.1	9,86	14.9	13.9	27.0	18.8	10.0	9.29	10.3	10,7	11.3
MAX	9.8	42	12	32	18	104	29	14	12	14	13	15
MIN	7.6	6.9	6.9	12	12	13	8.9	7.4	6.8	8.7	8.5	9.6
AC-FT	574	599	606	916	772	1660	1120	615	553	634	660	672
CAL YR		AL 23260			AX 2000	MIN 6.9	AC-FT	46140				

11109700 LAKE PIRU NEAR PIRU, CA

LOCATION.--Lat 34°27'41", long 118°45'02", in Temescal Grant, Ventura County, Hydrologic Unit 18070102, near center of Santa Felicia Dam on Piru Creek, 0.5 mi downstream from Santa Felicia Canyon, 4.2 mi northeast of Piru, and 20 mi downstream from Pyramid Dam.

DRAINAGE AREA. -- 425 mi 2.

PERIOD OF RECORD. -- May 1955 to current year. Prior to October 1985, monthend elevation and contents only.

GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by United Water Conservation District). Prior to Jan. 27, 1956, reference point at intake tower at same datum. Jan. 27, 1956, to Dec. 1, 1980, nonrecording gage at same site and datum.

REMARKS.--Lake is formed by earthfill dam. Storage began May 20, 1955. Capacity below spillway level at elevation 1,055.0 ft, 88,340 acre-ft. Flow regulated since December 1971 by Pyramid Lake, capacity, 173,500 acre-ft. Imported water from the California Water Project stored behind and released from Pyramid Lake. Water is released from outlet to Piru Creek for ground-water recharge, domestic use, and irrigation on the Oxnard Plain.

COOPERATION .-- Capacity table provided by United Water Conservation District.

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents observed, 109,400 acre-ft, Feb. 25, 1969, elevation, 1,061.45 ft; lake dry, Oct. 25 to Nov. 20, 1961.

EXTREMES FOR CURRENT YEAR. -- Maximum contents, 50,000 acre-ft, Apr. 22, elevation, 1,019.10 ft; minimum, 20,680 acre-ft, Sept. 15, 16, elevation, 960.69 ft.

Capacity table (elevation, in feet, and contents, in acre-feet) (Based on survey dated October 1985)

975 980	17,420 20.270	1,000 1.005	33,920 37,860	1,020 1.025	50,830 55,550
985	23,360	1,010	41,980	1,030	60,460
990 995	26,670 30,190	1,015	46,310	1,035	65,590

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	46620	46660	46940	47110	47700	48100	49540	49980	49850	34690	23870	20900
2	46640	46660	46940	47120	47720	48130	49560	49970	49820	34080	23810	20900
3	46650	46660	46940	47120	47730	48160	49600	49970	49760	33310	23680	20900
4	46660	46660	46950	47270	47740	48180	49620	49960	49730	32780	23610	20900
5	46660	46660	46950	47310	47740	48260	49640	49960	49700	32410	23480	20800
6	46740	46660	46970	47370	47740	48510	49640	49960	49660	31960	23420	20850
7	46730	46660	46980	47400	47740	48600	49660	49960	49640	31360	23360	20810
8	46730	46660	46990	47400	47760	48680	49670	49960	49300	30850	23230	20760
9	46720	46660	47000	47450	47790	48750	49680	49970	48560	30260	23160	20750
10	46720	46660	47000	47460	47800	48790	49730	49970	47560	29690	23040	20730
11	46700	46660	47000	47470	47820	48860	49730	49970	46830	28970	22910	20730
12	46700	46660	47000	47470	47830	48880	49750	49980	46450	28480	22850	20700
13	46690	46660	47000	47470	47900	48940	49800	49970	45970	28050	22720	20700
14	46680	46660	47000	47470	47910	48970	49830	49980	45470	27630	22620	20690
15	46670	46660	47000	47470	47930	49030	49860	49980	44930	27220	22520	20680
1.6	46660	46660	47010	47480	47930	49040	49880	49970	44400	26740	22420	20680
17	46680	46840	47020	47490	47940	49090	49910	49970	43740	26190	22320	20690
18	46690	46950	47020	47500	47950	49120	49930	49960	43010	25780	22220	20690
19	46700	47000	47020	47530	47950	49160	49970	49940	42750	25320	22210	20690
20	46700	47010	47030	47540	47950	49180	49980	49920	41730	25050	21970	20690
21	46690	47020	47040	47550	47960	49240	49990	49920	40810	24980	21840	20700
22	46690	47010	47040	47550	47980	49290	50000	49910	40140	24850	21730	20700
23	46710	46990	47060	47560	47980	49310	49960	49910	39480	24780	21650	20720
24	46710	46980	47060	47560	48000	49350	49960	49900	38670	24650	21570	20720
25	46680	46960	47080	47580	48030	49380	49960	49910	38020	24590	21480	20730
26	46680	46950	47080	47610	48080	49420	49960	49900	37450	24520	21400	20730
27	46680	46950	47090	47630	48090	49450	49980	49880	36890	24390	21300	20730
28	46680	46950	47100	47650	48100	49450	49980	49870	36260	24260	21210	20730
29	46660	46950	47100	47650		49490	49980	49860	35710	24200	21120	20750
30	46660	46940	47100	47660		49530	49980	49860	35160	24130	21010	20750
31	46660	No. 444 444	47110	47680		49540		49860		24000	20930	
MAX	46740	47020	47110	47680	48100	49540	50000	49980	49850	34690	23870	20900
MIN	46620	46660	46940	47110	47700	48100	49540	49860	35160	24000	20930	20680
a	1015.40	1015.71	1015.90	1016.54	1017.00	1018.60	1019.08	1018.95	1001.60	986.00	981.10	980.80
b	+20	+280	+170	+570	+420	+1440	+440	-120	-14700	-11160	-3070	-180

CAL YR 1986 b +25930 WTR YR 1987 b -25890

a Elevation, in feet, at end of month.

b Change in contents, in acre-feet.

11109800 PIRU CREEK BELOW SANTA FELICIA DAM, CA

LOCATION.--Lat 34°27'37", long 118°45'04", in Temescal Grant, Ventura County, Hydrologic Unit 18070102, on right bank 750 ft downstream from Santa Felicia Dam, 1 mi upstream from Lime Canyon, 4 mi northeast of Piru, and 20 mi downstream from Pyramid Dam.

DRAINAGE AREA, -- 425 mi².

PERIOD OF RECORD. --October 1955 to September 1968, October 1973 to current year.

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 858.8 ft above National Geodetic Vertical Datum of 1929 (levels by United Water Conservation District).

REMARKS.--No estimated daily discharges. Records good. Since May 1955 flow regulated by Lake Piru (station 11109700) and since December 1971 by Pyramid Lake, capacity, 173,500 acre-ft. Imported water from the California Water Project stored by Pyramid Lake. No diversion above station. Spill from Lake Piru bypasses

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 623 ft³/s, Aug. 2, 1982, gage height, 3.82 ft; no flow at times in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 497 ft³/s, June 9, gage height, 3.62 ft; no flow Oct. 10-16, Mar. 3, 4, 18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DISCHARGE	s, IN CODI	C FEEL	M	EAN VALUE	S COLOR	LK 1900 1	OBLIDA	LK 1507		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.3	4.8	4.5	5.0	5.2	5.0	5.0	5.0	13	244	55	29
2	5.2	4.8	4.5	5.0	5.2	2.4	5.0	5.0	14	273	55	12
3	5.2	4,8	4.5	5.0	5,2	0	5.0	5.2	26	261	55	7.8
4	5.2	4.8	4.5	5.1	5,2	0	5.0	5.2	26	277	57	14
5	5.4	4.8	4.5	5.0	5.2	3.6	5.0	5.2	22	289	57	18
6	5,5	4.8	4.5	5.0	5.2	5.0	5.0	5.2	12	265	55	18
7	5.5	4.8	4.5	5.0	5.2	5.0	5.0	5.5	16	285	55	19
8	5.5	4.8	4.5	5.0	5.2	5.0	5.0	5.5	167	288	55	20
9	1.9	4.8	4.5	5.0	5.2	5.0	5.0	5.5	367	283	55	17
10	0	4.7	4.5	5.0	5.1	5.0	5.2	5.4	496	310	55	11
11	0	4.8	4.5	5.0	3.6	5.0	5.2	5.2	371	290	55	9.0
12	0	4,8	3,1	5.0	.19	5.0	5.2	5.2	188	286	58	16
13	0	4.8	4.8	5.0	3.2	5.0	5.2	5.3	210	282	58	15
14	0	4.8	4.8	5.0	4.9	5.0	5.2	5.0	250	239	58	14
15	0	4.8	4.8	5.1	5.0	5.0	5.2	6.7	267	237	57	9.0
16	0	4.8	4.8	5,2	5.1	5.0	5.2	6.0	259	142	57	6.5
17	6.1	4.9	4.8	5.2	5.0	3.4	5.2	4.3	322	256	57	8.1
18	8.8	4.8	4.8	5,2	5.1	0	5.2	4.5	325	250	60	7.6
19	9.0	4.5	4.8	5.2	5.0	1.7	5.2	5.1	353	204	63	4.5
20	5.8	4.5	5.0	5.2	5.1	5.0	5.2	5.5	346	118	81	6.0
21	5.3	4.5	5.0	5,2	5,1	5,0	5.2	4.8	346	62	77	7.6
22	5.0	4.5	3.7	5.2	5.0	5.0	5.0	4.8	351	64	62	9.3
23	5.0	4.5	5.0	5.2	5.0	5.0	4.1	4.8	354	67	53	9.4
24	5.0	4.5	5.0	5.2	5.1	5.0	4.7	4.8	388	58	52	7.8
25	5.0	4.5	5.0	5.2	5.2	5.0	5.1	4.8	309	53	53	7.0
26	5.0	4.5	5.0	5,2	5.2	5.7	5.5	4.8	269	53	55	6.2
27	5.0	4.5	5.0	5.2	5.1	11	5.5	4.6	318	52	58	7.0
28	5.0	4.5	5.0	5.2	5.0	5.0	5.2	4.8	297	53	55	7.0
29	4.9	4.5	5.0	5.2		5.0	5.0	4.8	271	55	57	6,7
30	4.8	4.5	5.0	5.2		4.7	5.0	4.8	285	55	63	6.9
31	4.8		5.0	5.2		5.0		4.8		55	55	
TOTAL	129.2	140.4	144.9	158.4	134.79	137,5	152.5	158,1	7238	5706	1798	336.4
MEAN	4.17	4.68	4.67	5,11	4.81	4.44	5.08	5.10	241	184	58.0	11.2
MAX	9.0	4.9	5.0	5,2	5,2	11	5.5	6.7	496	310	81	29
MIN	0	4.5	3.1	5.0	. 19	0	4.1	4.3	12	52	52	4.5
AC-FT	256	278	287	314	267	273	302	314	14360	11320	3570	667

CAL YR 1986 TOTAL 10228.80 MEAN 28.0 MAX 526 MIN 0 AC-FT 20290 WTR YR 1987 TOTAL 16234.19 MEAN 44.5 MAX 496 MIN 0 AC-FT 32200

11111500 SESPE CREEK NEAR WHEELER SPRINGS, CA

LOCATION.--Lat 34°34'40", long 119°15'25", in NW 1/4 SW 1/4 sec.30, T.6 N., R.22 W., Ventura County, Hydrologic Unit 18070102, on right bank at Sespe Gorge, 1.6 mi upstream from Tule Creek, and 5 mi northeast of Wheeler Springs.

DRAINAGE AREA. -- 49.5 mi².

PERIOD OF RECORD. --October 1947 to current year. Daily discharge for period October 1947 to July 1948 estimated on basis of weather records and records for North Fork Matilija Creek.

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is 3,500.65 ft above National Geodetic Vertical Datum of 1929 (levels by Ventura County Flood Control District).

REMARKS .-- No estimated daily discharges. Records fair. No regulation or diversion upstream from station.

AVERAGE DISCHARGE. -- 40 years, 13.7 ft 3/s, 9,930 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 11,600 ft³/s, Mar. 1, 1983, gage height, 15.02 ft, from rating curve extended above 3,000 ft³/s on basis of slope-area measurement of peak flow; no flow many days in some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Bage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 18	0430	200	3.18	Mar. 6	0330	*216	*3.22

Minimum daily, 0.02 ft3/s, Sept. 21.

		DISCHARGE,	IN CUBIC	FEET), WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.76	.95	1,7	1.4	1.6	1.8	3.1	1.8	. 84	.33	.18	.06
2	.88	1.0	1.7	1.4	1.6	1.7	3.0	1.8	.71	.32	. 17	.09
3	.91	1.0	1.7	1.4	1,6	1.7	3.1	1.6	.60	.28	. 16	.14
4	, 93	1.0	1.7	5.9	1.6	1,7	3.0	1.4	. 53	. 27	.15	.14
5	.79	1.0	1.7	3.0	1.6	13	2.9	1.4	.51	. 29	.15	.14
6	.81	1.1	2.2	2.4	1.6	91	2.9	1.3	. 47	. 28	. 16	.15
7	.85	1.3	1.8	2.3	1.6	15	2.8	1.3	. 52	.28	.16	.19
8	.94	1.3	1.7	2.1	1.6	7.8	2.7	1.3	.51	.32	.15	.21
9	1.1	1.4	1.7	2.0	3.5	5.8	2.5	1.3	. 50	.34	. 14	.17
10	1.1	1.4	1.6	1.9	3.8	5.2	2.5	1.4	. 47	.32	. 14	.18
11	.99	1.4	1.6	1.8	2,4	4.7	2.4	1.8	.46	.29	.13	.15
12	.95	1.4	1.6	1.7	2.2	4.4	2.5	1.7	. 42	.28	. 14	.20
13	1.0	1.4	1.6	1.7	2.6	4.2	2.4	1.4	.43	.28	.15	. 22
14	1.0	1.4	1.6	1.7	2.4	4,1	2.4	1.3	.41	.26	. 17	.19
15	.96	1.4	1.6	1.5	2.2	4.3	2.3	1.3	. 47	.25	. 17	. 15
16	.89	1.4	1,6	3.3	2.2	4.2	2.3	1.3	. 44	.25	. 14	, 12
17	.98	4.2	1.5	2.4	2.1	4.0	2.2	1.3	. 45	. 24	, 12	.11
18	.98	34	1,4	6.0	2.0	3.8	2.2	1.3	. 42	. 24	. 13	.09
19	1.0	3.5	1,6	1.4	2.0	3.6	2.2	1.5	. 43	.20	. 13	.05
20	1.0	2.5	1.7	1,5	1.9	3.6	2.2	1.7	.41	.18	. 12	.03
21	.94	2.1	1.6	1.5	1,9	4.0	2.1	1.7	.42	.18	, 12	.02
22	.92	2.0	1.6	1.5	1.9	3.7	1.9	1.4	.41	. 17	. 12	.04
23	. 93	2.0	1.6	1.6	1.9	3.6	1.9	1.4	.41	. 17	. 12	.08
24	. 94	2.0	1.6	1.6	2.0	3.6	1.9	1.3	.39	. 17	. 12	.06
25	.89	1.9	1.6	1.7	2.0	3.5	1.9	1.3	.38	. 16	.07	.05
26	.83	1.9	1.6	1.6	1.9	3.3	1.9	1.3	.34	.16	.05	.06
27	.79	1.8	1.5	1.7	1.8	3.2	1.8	1.2	.33	.16	.06	.06
28	.85	1.8	1.5	1.6	1.8	3.2	1.7	1.2	.34	.16	.05	.06
29	, 90	1.8	1.5	1.6		3.2	1.7	1.1	.33	.16	.05	.07
30	.90	1.8	1.4	1.7		3.1	1.8	1.1	.33	.16	.06	.07
31	.95		1.4	1.6		3,1		. 95		.16	.06	
TOTAL	28,66	83.15	50.2	64.5	57.3			43.15	13.68	7.31	3.84	3.35
MEAN	. 92	2.77	1.62	2.08	2.05		2.34	1,39	.46	. 24	. 12	.11
MAX	1.1	34	2.2	6.0	3.8	91	3,1	1.8	.84	.34	. 18	. 22
MIN	.76	. 95	1.4	1.4	1,6	1.7	1.7	.95	.33	.16	.05	.02
AC-FT	57	165	100	128	114	443	139	86	27	14	7.6	6.6

CAL YR 1986 TOTAL 8486.03 MEAN 23.2 MAX 1200 MIN .31 AC-FT 16830 WTR YR 1987 TOTAL 648.44 MEAN 1.78 MAX 91 MIN .02 AC-FT 1290

11113500 SANTA PAULA CREEK NEAR SANTA PAULA. CA

LOCATION.--Lat 34°24'48", long 119°04'53", in NW 1/4 SE 1/4 sec.21, T.4 N., R.21 W., Mission San Buenaventura Grant, Ventura County, Hydrologic Unit 18070102, on right bank 1.3 mi downstream from Sisar Creek and 4.8 mi north of Santa Paula.

DRAINAGE AREA. -- 38.4 mi².

PERIOD OF RECORD. --October 1927 to current year. March 1912 to September 1913, at site 1.2 mi upstream; records not equivalent.

GAGE.--Water-stage recorder. Elevation of gage is 790 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 22, 1980, at various sites and datums 1.3 mi downstream. See U.S. Geological Survey Water-Data Report CA-79-1 for history of changes prior to Oct. 22, 1980.

REMARKS.--Estimated daily discharges: Apr. 7 to May 11, May 29 to Aug. 20, Aug. 22 to Sept. 6, Sept. 10-30.

Records fair except for periods of estimated record, which are poor. Natural flow affected by pumping and return flow from irrigated areas.

AVERAGE DISCHARGE. -- 60 years, 23.5 ft 3/s, 17.030 acre-ft/yr,

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,000 ft³/s, Feb. 25, 1969, gage height, 18.18 ft, from floodmark, site and datum then in use, from rating curve extended above 2,300 ft³/s on basis of critical-depth measurement at gage height 15.2 ft; no flow at times in 1949, 1951-52, 1965.

EXTREMES FOR CURRENT YEAR.-Peak discharges greater than base discharge of 200 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0330	*170	*3.15				

Minimum daily, 0.90 ${\rm ft}^3/{\rm s}$, for many days in August and September.

		DISCHARGE,	IN CUBIC	FEET		WATER YEAR AN VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	3.8 4.8 5.5	4.2 4.2 4.4	4.5 4.4 4.5	3.6 3.6 3.6	3.8 3.6 3.6	5.6 5.4 5.0	5.9 5.7 5.7	3.7 3.7 3.7	3.2 3.0 2.9	2.2 2.1 2.1	1.5 1.5 1.5	.90 .90 .90
4 5	4.4	4.7 5.0	4.2	22 13	3.6 3.3	5.0 9.2	5.9 6.0	3.7	2.8	2.1	1.4	.90 .90
6 7 8 9 10	4.1 3.9 4.0 3.8 3.8	5.1 5.4 5.4 5.3 5.1	6.0 5.4 4.6 4.4 4.2	11 10 6.9 6.3 6.6	3.1 3.2 3.5 4.3 5.2	104 35 20 15 13	5.8 5.2 4.8 4.6 4.4	3.7 3.7 3.7 3.7 3.7	2.7 2.6 2.5 2.5 2.4	2.1 2.1 2.1 2.1 2.1	1.4 1.4 1.3 1.3	.90 .90 2.2 1.1
11 12 13 14 15	3.6 3.8 3.8 3.5 3.2	5.1 4.9 4.6 4.6 5.0	4.2 4.2 4.1 3.9 3.9	6.1 5.9 5.7 5.0 5.2	4.8 4.6 7.9 7.6 6.8	9.6 9.4 8.8 8.9	4.3 4.2 4.1 4.0 3.9	3.7 3.9 4.2 4.4 4.8	2.4 2.4 2.4 2.4 2.3	2.1 2.1 2.1 2.1 2.1	1.3 1.3 1.3 1.3	.93 .92 .90 .90
16 17 18 19 20	3.3 3.4 3.6 3.4 3.5	4.9 10 19 9.9 8.8	3.8 3.6 3.6 3.6 3.8	5.0 5.0 4.9 4.6 4.6	6.3 5.8 5.3 5.0 5.1	8.5 8.4 8.1 7.9 7.8	3.8 3.8 3.8 3.8	5.2 5.4 5.4 5.4 5.4	2.3 2.3 2.3 2.3 2.3	2.1 2.1 2.0 2.0 2.0	1.2 1.2 1.2 1.2	.90 .90 .90 .90
21 22 23 24 25	3.7 3.4 3.2 3.5 3.6	7.8 6.9 6.5 6.0 5.7	3.6 3.6 3.6 3.6 3.6	4.6 4.6 4.5 4.4	5.0 4.8 4.8 5.6 7.2	10 9.3 8.6 8.5 8.0	3.8 3.8 3.8 3.8 3.8	5.4 4.9 4.1 3.9 3.9	2.3 2.3 2.2 2.2 2.2	2.0 1.9 1.9 1.8 1.8	1.2 1.0 1.0 .90	.90 .90 .90 .90
26 27 28 29 30 31	3.6 3.6 3.7 3.9 3.9	5.0 4.8 4.6 4.6 4.6	3.7 3.6 3.6 3.6 3.6 3.6	4.5 4.2 4.1 3.9 3.9 3.9	6.6 6.1 5.8 	7.6 7.1 7.2 6.9 6.5 6.1	3.7 3.7 3.7 3.7 3.7	3.9 3.8 3.6 3.4 3.3	2.2 2.2 2.2 2.2 2.2	1.7 1.7 1.6 1.6	.90 .90 .90 .90 .90	.90 .90 1.1 2.0 1.0
TOTAL MEAN MAX MIN AC-FT	117.2 3.78 5.5 3.2 232	182.1 6.07 19 4.2 361	124.8 4.03 6.0 3.6 248	185,8 5,99 22 3,6 369	142.3 5.08 7.9 3.1 282		31.0 4.37 6.0 3.7 260	128.9 4.16 5.4 3.3 256	72.9 2.43 3.2 2.2 145	61.1 1.97 2.2 1.6 121	36.80 1.19 1.5 .90 73	30.00 1.00 2.2 .90 60

CAL YR 1986 TOTAL 10176.50 MEAN 27.9 MAX 1040 MIN 2.5 AC-FT 20190 WTR YR 1987 TOTAL 1604.30 MEAN 4.40 MAX 104 MIN .90 AC-FT 3180

WTR YR 1987 TOTAL 19282

SANTA CLARA RIVER BASIN

11113900 SATICOY DIVERSION NEAR SATICOY, CA

LOCATION.--Lat 34°17'35", long 119°06'00", in Santa Paula Y Saticoy Grant, Ventura County, Hydrologic Unit 18070102, on diversion works at Santa Clara River, 1.9 mi east of Saticoy.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1969 to September 1987 (discontinued). Daily discharge for October 1981 to September 1982, published in WDR CA-83-1. October 1928 to April 1969 in files of United Water Conservation District.

GAGE. -- Water-stage recorder. Elevation of gage is 160 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Water is diverted from left bank of Santa Clara River to percolation basin near Los Angeles Avenue (State Highway 118) and for irrigation in Pleasant Valley. Imported water from the California Water Project released to the basin at Castaic Dam and Pyramid Dam since 1972.

COOPERATION .-- Records were provided by United Water Conservation District.

MEAN 52.8 MAX 296

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 437 ft³/s, Dec. 10, 1978; no flow at times in most years.

		DISCHARGE,	IN CUBIC	FEET		D, WATER YEAN MEAN VALUES	R OCTOBER	1986 TC	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	24	51	47	58	64	75	32	28	106	21	18
	32	24	51	49	58	65	74	32	26	73	22	18
2	30	33	52	50	56	64	75	32	26	114	21	17
4	35	31	51	57	54	61	75	32	25	117	21	16
5	36	28	52	76	52	64	76	31	26	124	19	16
6	40	28	60	111	57	124	77	28	27	123	19	17
7	39	30	58	115	48	296	66	28	29	119	20	18
8	25	31	57	94	48	212	66	26 27	29 26	139	20	18
	29 29	33	57 54	85								
9					49	151	57	28	24	126	22	18
10	34	33	53	80	49	132	56	30	40	140	23	18
11	26	33	53	89	51	119	52	30	73	144	23	19
12	26	29	54	84	54	109	52	30	49	173	22	19
13	28	28	57	79	66	103	51	30	34	162	21	18
14	26	28	59	80	46	99	51	29	28	109	21	17
15	25	29	59	79	70	104	52	28	39	124	21	16
16	25	30	55	72	68	97	50	28	42	143	21	16
17	31	44	54	69	65	94	50	28	43	122	21	19
18	26	67	52	65	65	94	47	28	68	137	21	11
19	29	86	53	64	65	87	50	28	78	102	20	10
20	31	80	53	66	63	88	46	29	90	132	18	11
										102		
21	29	62	53	64	65	95	39	30	94	70	18	12
22	40	56	52	66	64	95	38	32	106	51	18	12
23	45	52	51	65	64	87	37	31	111	43	18	18
24	31	52	50	65	63	89	36	31	120	38	19	20
25	25	51	53	66	69	87	34	32	105	36	18	12
26	24	51	57	64	70	86	35	32	87	32	18	10
27	24	51	62	60	66	84	37	30	102	28	17	11
28	24	50		58	00							
			64			86	34	28	129	25	17	13
29	23	50	53	56		91	34	21	122	26	16	13
30 31	23 23	_53 	47 46	56 59		84 78	33	26 28	121	19 21	16 17	12
TOTAL	913	1277	1676	2190	1665	3189	1555	909	1918	2918	609	463
MEAN	29.5	42.6	54.1	70,6	59.5	103	51.8	29.3	63.9	94.1	19.6	15.4
MAX	45	86	64	115	70	296	77	32	129	173	23	20
MIN	23	24	46	47	46	61	33	21	24	19	16	10
AC-FT	1810	2530	3320	4340	3300	6330	3080	1800	3800	5790	1210	918
CAL YR	1986 TOTA	L 35190	MEAN	96.4	MAX 392	MIN 0	AC-F	r 69800				

MIN

10

AC-FT 38250

11113900 SATICOY DIVERSION NEAR SATICOY, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD, -- August 1982 to September 1987 (discontinued). SPECIFIC CONDUCTANCE: August 1982 to September 1987 (discontinued). pH: April 1982 to September 1987 (discontinued). WATER TEMPERATURE: August 1982 to September 1987 (discontinued).

PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: August 1982 to September 1987 (discontinued).

PH: April 1982 to September 1987 (discontinued).
WATER TEMPERATURE: August 1982 to September 1987 (discontinued).

INSTRUMENTATION .-- Water-quality monitor August 1982 to September 1987 (discontinued).

REMARKS .-- Interruptions in record were due to malfunction of the recording instruments.

EXTREMES FOR PERIOD OF RECORD . --

SPECIFIC CONDUCTANCE: Maximum recorded, 2,170 microsiemens, Sept. 1, 1985; minimum recorded, 470 microsiemens, Mar. 6, 1987.

Hall G. Maximum, 8.9 units, Apr. 16, 1984, July 21, 1987; minimum, 7.0 units, Oct. 3, 5, 1985. WATER TEMPERATURE: Maximum recorded, 34.0 °C, July 3, 1985; minimum recorded, 3.5 °C, Dec. 5, 1983.

EXTREMES FOR CURRENT YEAR. --

SPECIFIC CONDUCTANCE: Maximum recorded, 1,920 microsiemens, Mar. 3; minimum recorded, 470 microsiemens. Mar. 6.

pH: Maximum recorded, 8.9 units, July 21; minimum recorded, 7.4 units, Sept. 9. WATER TEMPERATURE: Maximum recorded, 29.5 °C, May 8; minimum recorded, 6.5 °C, Jan. 17.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	OC:	TOBER	NOV	EMBER	DEC	EMBER	JAI	NUARY	FEBI	RUARY	М	ARCH
DAY	MAX	MIN	MAX	MIN								
1	1650	1570	1640	1600	1590	1560	1610	1580	1540	1530	1520	1490
2	1640	1590	1620	1590	1600	1560	1600	1590	1560	1530	1520	1490
3	1610	1550	1620	1580	1580	1560	1640	1600	1560	1530	1920	1490
4	1620	1580	1630	1600	1580	1560	1770	860	1570	1530	1850	1500
5	1630	1590	1640	1610	1580	1560	1700	1330	1580	1550	1520	1090
6	1640	1590	1620	1590	1580	1320	1410	1020	1600	1560	1240	470
7	1650	1620	1620	1590	1570	1550	1440	1160	1620	1570	1060	640
8	1660	1620	1630	1600	1580	1550	1470	1440	1630	1560	1120	920
9	1640	1600	1620	1590	1580	1540	1480	1450	1590	1550	1240	1130
10	1650	1610	1660	1610	1590	1570	1500	1470	1600	1560	1340	1240
11	1640	1610	1670	1630	1590	1540	1510	1480	1590	1550	1340	1300
12	1640	1590	1650	1620	1590	1560	1510	1480	1580	1530	1360	1340
13	1620	1590	1650	1610	1580	1560	1520	1490	1560	1130	1390	1360
14	1660	1610	1620	1590	1590	1560	1530	1510	1580	1510	1390	1370
15	1650	1600	1620	1600	1570	1540	1530	1500	1530	1500	1400	1310
16	1660	1620	1610	1590	1570	1550	1540	1500	1540	1510	1410	1380
17	1650	1610	1620	1290	1570	1550	1530	1500	1530	1520	1420	1390
18	1660	1610	1640	810	1580	1530	1530	1500	1540	1520	1430	1410
19	1640	1610	1480	1330	1580	1550	1530	1500	1560	1530	1430	1410
20	1640	1610	1510	1380	1570	1530	1540	1510	1560	1490	1420	1410
21	1650	1610	1560	1510	1570	1550	1530	1500	1540	1520	1420	1070
22	1660	1620	1580	1550	1570	1520	1530	1500	1530	1510	1430	1400
23	1660	1620	1580	1570	1570	1540	1530	1510	1550	1510	1420	1400
24	1670	1620	1590	1570	1580	1550	1520	1500	1540	1400	1410	1390
25	1640	1610	1600	1570	1580	1540	1520	1500	1510	1450	1420	1400
26	1630	1600	1590	1560	1570	1560	1530	1500	1510	1480	1440	1400
27	1630	1590	1600	1570	1580	1560	1530	1510	1510	1490	1420	1400
28	1610	1590	1590	1560	1570	1550	1540	1520	1510	1490	1420	1400
29	1620	1580	1580	1560	1570	1550	1540	1520			1410	1400
30	1630	1590	1610	1550	1600	1580	1560	1530			1420	1400
31	1640	1600			1610	1580	1550	1530			1410	1390
MONTH	1670	1550	1670	810	1610	1320	1770	860	1630	1130	1920	470

SANTA CLARA RIVER BASIN 11113900 SATICOY DIVERSION NEAR SATICOY, CA--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	Al	PRIL	ı	1AY	J	JNE	J	JLY	AUG	GUST	SEP:	TEMBER
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
1	1410	1390	1600	1540			1330	1250	1680	1630	1760	1710
2	1420	1390	1600	1550			1440	1330	1690	1640	1770	1720
3	1410	1340	1590	1540			1390	1240	1690	1650	1770	1720
4	1390	1370	1600	1550			1330	1300	1700	1660	1770	1720
5	1380	1350	1610	1540		~	1330	1240	1690	1650	1760	1720
6	1390	1360	1610	1550			1300	1230	1690	1640	1760	1730
7	1410	1380	1680	1580			1300	1230	1700	1660	1770	1720
8	1430	1380	1700	1620			1260	1200	1710	1660	1770	1730
9	1450	1410	1700	1640			1290	1210	1710	1660	1780	1740
10	1470	1430	1670	1630			1270	1210	1710	1670	1770	1730
11	1480	1430	1680	1640	1480	1430	1280	1210	1720	1670	1770	1730
12	1480	1430	1690	1630	1610	1480	1260	1210	1720	1670	1750	1730
13	1510	1440			1690	1570	1300	1210	1710	1670	1770	1730
14	1530	1470			1720	1680	1340	1260	1700	1680	1770	1730
15	1500	1470			1700	1540	1360	1240	1730	1680	1770	1740
16	1520	1480			1590	1540	1350	1250	1730	1680	1780	1740
17	1510	1490			1620	1410	1360	1250	1720	1680	1770	1750
18	1540	1500			1450	1370	1300	1230	1730	1680	1800	1750
19	1540	1510			1500	1330	1350	1280	1730	1670	1800	1750
20	1540	1500			1350	1320	1340	1230	1740	1690	1800	1750
21	1570	1520			1340	1320	1500	1370	1750	1660	1790	1760
22	1570	1520			1350	1320	1540	1510	1720	1660	1810	1760
23	1550	1520			1350	1300	1560	1530	1730	1670	1790	1760
24	1570	1520			1420	1280	1600	1550	1740	1690	1810	1770
25	1570	1530			1350	1270	1590	1540	1740	1680	1810	1770
26	1590	1540			1430	1320	1600	1540	1750	1700	1810	1760
27	1590	1530			1440	1290	1600	1550	1750	1700	1820	1770
28	1600	1550			1300	1270	1610	1550	1750	1700	1800	1760
29	1600	1550			1340	1270	1620	1560	1760	1700	1800	1760
30	1590	1550			1350	1270	1650	1580	1740	1700	1800	1770
31	E 40 A						1680	1620	1740	1700		
MONTH	1600	1340					1680	1200	1760	1630	1820	1710

PH (UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	OCI	OBER	NOVE	EMBER	DECE	EMBER	JAN	IUARY	FEBR	UARY	MA	ARCH
DAY	XAM	MIN	MAX	MIN	XAM	MIN	MAX	MIN	MAX	MIN	XAM	MIN
1	8.2	7.9	8.4	7.7	8,2	7.9	8.4	7.8	8.1	7.9	8.4	7.9
2	8.2	7.9	8.4	7.6	8,2	7.9	8.3	7.8	8.1	7.8	8.4	8.0
3	8.3	7.9	8.4	7.6	8.2	7.9	8.1	7.7	8.2	7.8	8.4	8.0
4	8.4	7.9	8.3	7.6	8.1	7.9	7,8	7.6	8.2	7.9	8.4	8.0
5	8.4	7,9	8.4	7.6	8,2	7.9	7.8	7.7	8.3	8.0	8.1	7.8
6	8.3	7.9	8.5	7.7	8.1	7.8	7,9	7.7	8.3	7.9	7.8	7.8
7	8.2	7.8	8.4	7.7	8.1	7.9	8.0	7.8	8.3	7.9	8.0	7.9
8	8.2	7.7	8.4	7.6	8.2	7.9	8.0	7.9	8.3	7.9	8.2	8.0
9	8.2	7.7	8.4	7.6	8.1	7.9	8.0	7.9	8.1	7.9	8.1	8.0
10	8.2	7.7	8.2	7.6	8.2	7.8	8.0	7.9	8.2	7.9	8.2	8.0
11	8.2	7.7	8.3	7.7	8.1	7.8	8.0	7.9	8,3	7.9	8.2	8.0
12	8.3	7.7	8.3	7.6	8.1	7.8	8.0	7.9	8.3	7.9	8.2	8.0
13	8.2	7.7	8.3	7.6	8,2	7.8	8.0	7.9	8.1	7.7	8.2	8.0
14	8.2	7.7	8.4	7.7	8.2	7.8	8.0	7.9	8.2	7.8	8.2	8.0
15	8.2	7.7	8.5	7.7	8.1	7.8	8.0	7.9	8.2	7.9	8.2	7.9
16	8.3	7.7	8.5	7.7	8.1	7.8	8.0	7.9	8.3	7.9	8.2	8.0
17	8.3	7.7	8,1	7.7	8.1	7.8	8.1	7.8	8.3	7.9	8.2	8.0
18	8.3	7.7	7.8	7.6	8.1	7.8	8.1	7.8	8,3	7.9	8.2	8,0
19	8.4	7.8	8.0	7.8	8.1	7.8	8.0	7.8	8.3	8.0	8.2	8.0
20	8.4	7.8	8.0	7.8	8.2	7.8	8.0	7.8	8.3	7.9	8.2	7.9
21	8.4	7.8	8.0	7.9	8.2	7.8	8.0	7.8	8.3	7.9	8.1	7.9
22	8.4	7.8	8.1	7.9	8.2	7.8	8.0	7.8	8.3	7.9	8.2	7.9
23	8.4	7.8	8.1	7.9	8.2	7.8	8.1	7.9	8.3	7.9	8.2	7.9
24	8.4	7.7	8.1	7.9	8.2	7.8	8.1	7.9	8.2	7.8	8.1	7.9
25	8.4	7.7	8.1	7.9	8.2	7.8	8.2	8.0	8.2	7.8	8.2	7.9
26	8.4	7.7	8.1	7.8	8.2	7.8	8.2	8.0	8.4	7.9	8.2	7.9
27	8.4	7.7	8.1	7.8	8.2	7.8	8.2	8.0	8.4	7.9	8.3	7.9
28	8.3	7.7	8,1	7.8	8.2	7.8	8.2	7.9	8.4	8.0	8.4	7.9
29	8.4	7.7	8.1	7,8	8.3	7.8	8.1	7.9			8.4	8.0
30	8.4	7.7	8.1	7.8	8.3	7.8	8.0	7.8			8.4	8.0
31	8.4	7.7			8.3	7.9	8.1	7.9			8.4	8.0
10nth	8.4	7.7	8.5	7.6	8.3	7.8	8.4	7.6	8.4	7.7	8.4	7.8

11113900 SATICOY DIVERSION NEAR SATICOY, CA--Continued PH (UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	AF	PRIL	M.	IAY	JT	JNE	JU	ILY	AUG	UST	SEPT	EMBER
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
1 2 3 4 5 6 7 8 9	8.6 8.5 8.6 8.6 8.7 8.6 8.7	8.0 8.0 8.0 8.0 8.0 8.0 8.1 8.1	8.6 8.7 8.8 8.8 8.7 8.4 8.4 8.4	7.9 7.9 7.9 8.0 8.0 7.9 7.8 7.8 7.7	8.4 8.4 8.4 8.3 8.3 8.3 8.3	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	8.4 8.5 8.5 8.6 8.4 8.4 8.4	7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.9	8.7 8.6 8.5 8.7 8.6 8.6 8.6 8.6	8.0 7.9 7.9 8.0 8.0 7.9 7.9	8.2 8.1 8.0 8.0 7.9 8.1 8.0 8.2	7.8 7.7 7.7 7.5 7.5 7.5 7.5 7.7
11 12 13 14 15 16 17 18 19	8.7 8.6 8.6 8.6 8.5 8.5 8.5	8.1 8.1 8.1 8.0 8.0 8.0 8.0	8.3 8.2 8.2 8.2 8.0 8.1 8.4	7.7 7.6 7.5 7.6 7.6 7.6 7.6 7.6	8.1 8.3 8.2 8.2 8.2 8.3 8.5 8.3	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9 8.0	8.5 8.5 8.5 8.6 8.4 8.5 8.5 8.5	7.9 7.9 7.9 8.0 8.0 8.0 8.0	8.5 8.6 8.4 8.5 8.5 8.5 8.5	7.9 7.9 8.0 8.0 7.9 8.0 8.0	8.1 7.9 8.0 8.0 7.9 7.9 8.0 7.8 7.8	7.7 7.7 7.7 7.6 7.6 7.6 7.6 7.6 7.5
21 22 23 24 25 26 27 28 29 30 31	8.5 8.6 8.6 8.6 8.6 8.6 8.6	8.0 8.0 8.0 8.0 7.9 7.9 7.9	8.1 8.2 8.1 8.2 8.2 8.3 8.5 8.5	7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.7	8.3 8.3 8.1 8.1 8.2 8.2 8.3	7.9 7.9 7.8 7.8 7.8 7.8 7.8 7.8	8.9 8.6 8.5 8.5 8.6 8.7 8.8 8.6	8.0 8.1 8.0 8.0 8.0 8.0 8.0 8.0	8.6 8.5 8.4 8.8 8.3 8.3 8.4 8.2 8.2	8.0 7.9 7.9 7.9 7.8 7.8 7.8 7.8 7.8	7.8 8.1 7.8 7.9 7.7 7.7 7.8 7.9 7.9	7.6 7.6 7.6 7.6 7.6 7.5 7.5 7.6 7.6
MONTH	8.7	7.9	8.8	7.5	8.5	7.7	8.9	7.8	8.8	7.8	8.2	7.4
			PERATURE (·							
DAY	MAX	OBER MIN	NOVE MAX	MBER	DECI MAX	MIN	JAN MAX	UARY MIN	FEBR MAX	UARY MIN	MAX	ARCH MIN
1 2 3 4 5	22.5 22.5 24.0 24.5 24.5	15.5 15.5 14.5 14.5	20.5 20.0 20.5 21.0 20.5	13.0 12.0 12.0 12.5 12.5	16.0 16.0 16.0 15.5 16.0	10.0 11.0 10.0 12.5 12.5	15.0 16.0 16.0 15.0 15.5	10.0 11.5 10.5 13.5 11.0	17.5 16.5 18.5 18.5 17.5	11.0 11.0 12.5 11.0	18.5 18.5 19.5 19.5 16.5	11.0 12.0 12.5 13.0 15.0
6 7 8 9 10	25.0 25.5 26.0 24.0 24.5	15.5 16.5 18.5 19.0 19.0	20.5 18.5 19.0 16.0	15.0 11.5 11.5 11.0	17.0 16.5 16.0 16.0 16.0	14.5 12.0 10.5 10.5 10.5	12.0 15.5 15.0 15.5 15.5	10.0 11.0 9.5 10.0 9.0	17.5 18.0 17.0 16.0 18.5	10.5 11.5 12.0 13.5 15.0	15.5 18.0 20.5 20.0 18.5	13.5 13.0 15.0 14.0 13.0
11 12 13 14 15	22.0 24.5 23.0 23.5 22.0	18.0 16.5 14.0 13.0 13.0	19.5 19.5 19.5 19.0 19.5	12.0 12.0 12.0 12.5 14.5	15.0 15.0 15.5 16.0 15.0	9.5 9.5 10.0 11.0 11.0	15.5 16.0 15.5 15.0 13.5	9.5 9.0 10.0 8.5 8.0	19.5 19.0 17.0 19.5 17.5	15.0 15.5 15.5 13.0 13.5	21.0 19.5 21.5 17.5 19.0	14.0 15.5 15.5 13.5 12.0
16 17 18 19 20	22.0 22.0 21.5 22.0 22.5	13.5 15.0 13.5 13.0 14.0	20.0 18.0 20.0 21.0 20.5	14.5 16.0 17.0 16.5 15.0	15.5 16.0 16.0 15.5 16.5	11.5 11.0 11.0 11.5 12.0	13.0 13.5 14.0 15.0 13.5	7.0 6.5 7.5 8.0 7.5	18.5 18.5 19.0 17.5 17.0	11.0 11.0 11.0 11.0 9.5	20.0 20.5 20.0 20.0 19.0	11.5 12.0 12.5 13.0 11.5
21 22 23 24 25	22.0 23.0 22.0 22.5 23.5	13.5 14.5 14.5 14.0 14.5	20.0 19.0 18.5 18.5	16.0 13.0 13.0 12.5 12.0	16.0 15.5 16.0 15.5 15.0	10.5 11.0 11.5 11.0	14.5 14.5 16.0 16.0 18.0	7.5 8.0 11.5 9.5 10.5	17.0 17.0 16.0 13.0 14.5	10.0 11.5 10.0 9.5 10.0	15.0 19.5 19.5 20.0 21.0	11.5 10.0 11.5 12.0 12.0
26 27 28 29 30 31	21.0 23.0 20.0 23.0 22.5 21.5	14.5 14.0 14.5 15.0 15.0	18.0 17.5 17.0 17.5 15.0	11.0 11.0 11.0 12.5 10.5	14.5 14.5 15.0 15.5 15.0 14.5	10.0 10.0 10.0 10.5 9.5 10.0	18.0 16.0 18.0 16.5 16.0 17.5	11.5 13.0 13.5 11.5 12.5 10.5	17.0 17.0 17.0 	9.0 9.5 10.0 	21.5 22.0 21.0 21.0 20.5 21.0	12.5 13.0 12.5 11.5 12.5 12.5

17.0

9.5

18.0

6,5

19.5

22.0

9.0

10.0

MONTH

26.0

13.0

11113900 SATICOY DIVERSION NEAR SATICOY, CA--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR, OCTOBER 1986 TO SEPTEMBER 1987

	A	PRIL	ì	YAY	J	JNE	Jt	JLY	AUC	SUST	SEP	TEMBER
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
1	21.5	12,5	26.0	14.5	29.0	17.5	24.5	18.0	28.0	18.5	27.0	18.5
2	22.0	13.0	26.5	15.5	29.5	18.0	25.5	18.5	28.0	19.5	28.0	19.5
3	21.5	15.5	27.0	15.5	28.5	19.5	24.0	18.5	27.5	19.5	27.0	20.0
4	22.0	12.5	28.0	16.5	29.0	19.0	25.0	18.0	28.0	19.5	26.5	20.5
5	22.0	13.5	28.5	17.0	28.0	18.5	24.5	18.5	27.5	20.0	25.5	18.0
6	23,0	14.0	29.0	17.5	27.5	19.5	24.5	18.5	28.0	19.5	24.5	16.5
7	24.0	15.0	28.0	19.5	28.0	19.5	24.5	18.5	28.0	20.5	25.0	16.5
8	24.5	14.5	29.5	19.5	27.5	19.5	21.5	18.5	28.5	21.0	26.0	17.5
9	25.0	15.0	29.0	19.5	29.0	17.5	24.5	19.0	27.5	19.0	25.0	18.0
10	24.5	15.0	28.5	19.5			21.5	18.5	27.5	19.0	24.0	17.5
11	23.5	16,5	28.5	19.0			24.5	18.0	27.5	19.5	24.5	17.5
12	24.0	14.5	28.0	19.0			24.5	19.0	27.0	19.5	21.0	19.0
13	25.0	14.0	28.5	19.5			25.0	18.5	25.5	19.0	23.0	18.5
14	25.0	15.0	29.0	20.0			25.5	19.5	23.5	20.0	23.5	17.0
15	24.5	15.5	28.5	20.0			25.0	19.5	26.0	19,5	23.5	17.0
16	25.0	15.5	23.0	20.0			22.0	19.5	26.0	17.5	24.5	17.0
17	23,5	17.0	25.0	18.5			22.5	19.5	25.5	18.5	24.0	19.5
18	24.0	16.5	27.5	18.0			24.0	17.0	25.5	19.0	25.0	19.0
19	23.5	14.5	24.5	18,0	24.0	17.0	24.5	17.5	25.5	18.0	25.0	18.0
20	24.5	13.0	20.5	16.5	24.0	17.0	24.0	17.0	26.0	17,5	25.0	18.0
21	25.5	14.0	24.5	15.0	24.5	17.5	25.5	17.0	26.5	17.5	24.0	19.5
22	26,5	14.5	26.5	15.0	25.0	17.5	26.5	17.0	26.0	17.0	26.0	19.5
23	25.5	15.0	24.0	17.5	24.5	18.0	27.0	17.0	25.5	16.5	24.5	20.5
24	26.5	15.5	26.5	16.0	25.5	18.5	25.5	18.5	25.5	16.5	24.5	19.5
25	25.0	15.0	25.0	16.5	25.0	19.5	26.0	18.0	25.5	17,5	24.5	18.5
26	26.0	17.0	25.5	15.5	25.5	19.5	26.5	18.5	26.0	18,5	25.0	19.0
27	26.0	17.0	26.5	15.5	24.5	19.0	26.5	18.5	27.0	19.0	24.5	19.5
28	25.0	18.0	27.0	15.5	23.5	18.5	26.5	18.5	27.0	19.5	25.0	19.5
29	22.0	18,0	25.5	16.5	23.5	18.0	26.5	18.0	27.0	20.0	24.5	18,5
30	24.5	17.5	27.0	16.0	23.0	18.0	28.0	18.0	26.5	20,0	24.5	18.5
31	*** *** ***		28,5	17.0			28.0	18.0	26.0	18.5		
MONTH	26.5	12.5	29.5	14.5			28.0	17.0	28.5	16.5	28.0	16.5

11114000 SANTA CLARA RIVER AT MONTALVO, CA

LOCATION.--Lat 34°14'31", long 119°11'21", in San Miguel Grant, Ventura County, Hydrologic Unit 18070102, on downstream end of center pier of southbound bridge on U.S. Highway 101, 0.9 mi southeast of Montalvo, and 4.5 mi upstream from mouth.

DRAINAGE AREA. -- 1,612 mi².

PERIOD OF RECORD. --October 1927 to September 1932, October 1949 to current year. Monthly discharge only for 1950-67, published in WSP 2128. October 1949 to September 1969, published as "at Saticoy."

REVISED RECORDS. -- WSP 2128: Drainage area.

GAGE. -- Two water-stage recorders. Datum of main gage is 51.88 ft above National Geodetic Vertical Datum of 1929 (levels by Ventura County Flood Control District). Oct. 1, 1927, to Sept. 30, 1932, and Oct. 1, 1949, to Sept. 30, 1967, at same site at different datums. Oct. 1, 1967, to Feb. 2, 1970, at site 3.9 mi upstream at different datum. Supplementary gage 0.7 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Jan. 4-7. Records poor. Flow partly regulated by Lake Piru (station 11109500) 33 mi upstream since May 1955; by Pyramid Lake, capacity, 173,500 acre-ft, 42 mi upstream since December 1971; and by Castaic Reservoir, capacity 324,000 acre-ft, 43 mi upstream since January 1972. Natural flow affected by ground-water withdrawals, diversions, municipal use, and ground-water replenishment. Imported water from the California Water Project released to the basin at Castaic Dam and Pyramid Dam. Diversion to spreading grounds and for irrigation in Pleasant Valley, at site 6.0 mi upstream (station 11113900). AVERAGE DISCHARGE represents flow to the ocean regardless of upstream development.

AVERAGE DISCHARGE. -- 43 years, 153 ft 3/s, 110,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 165,000 ft³/s, Jan. 25, 1969, gage height, 17.41 ft, present datum; no flow for long periods in most years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Mar. 2, 1938, reached a discharge of 120,000 ft 3/s, estimated by Ventura County Flood Control District.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 851 ft 3/s, Mar. 6, gage height, 3.35 ft; no flow several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

							MEA	M AWTOES						
DAY	00	CT	NOV	DEC	JAN	F	EB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			0		0			0		0				
2			Ŏ		ŏ			ŏ		Ö				
2 3			ő		Ö			0		ŏ				
4			ő		5.0			0		Ö				
5			0		20			0		0				
J			U		20			U		U				
6			0		10		1	94		0				
7			0		3.0			37		0				
8			0		0			0		Ó				
9			Ō		Ō			Ö		ō				
10			ő		Ö			Ö		ő				
10			Ū		·					v				
11			0		0			.10		0				
12			0		0			8.1		0				
13			18		0			5.8		0				
14			9.4		Ō			3.3		Ö				
15			ō ·		ŏ			0		6.4				
10			Ū		·			•						
16			0		0			0		9.4				
17			0		0			0		0				
18			9.1		0			0		0				
19			0		0			0		0				
20			Ō		ŏ			Ŏ		Ö				
			•		•			•		ū				
21			0		0			0		0				
22			0		0			0		0				
23			0		Ö			Ō		Ö				
24			Ŏ		Ö			Ö		ŏ				
25			ŏ		ŏ			Ö		ŏ				
213			Ü		Ū			v		J				
26			0		0			1.6		0				
27			0		0			10		0				
28			0		0			3.7		0				
29			0		Ö	_		0		Ö				
30			ŏ		Ö	_		0		Ö				
31					0			0		0				
31					U	_		U		U				
TOTAL		0	36.5	0	38.0		0 2	63,60	0	15.8	0	0	0	0
MEAN		0	1.22	0	1.23		0	8.50	0	.51	0	0	0	0
MAX		0	18	0	20		0	194	0	9.4	0	0	0	0
MIN		Ö	0	ō	0		Ö	0	ō	0	ō	Ö	Ŏ	Ö
AC-FT		Ö	72	ő	75		ŏ	523	ŏ	31	ŏ	Ö	Ŏ	ő
11		•	7 24	v	, ,		•	220	v	01	v	U	v	U
CAL YR 1	986	TOTAL	77805.56	MEAN	213	MAX	17300	MIN 0	AC-FT	154300				

CAL YR 1986 TOTAL 77805.56 MEAN 213 MAX 17300 MIN 0 AC-FT 154300 WTR YR 1987 TOTAL 353.90 MEAN .97 MAX 194 MIN 0 AC-FT 702

11115000 MATILIJA RESERVOIR AT MATILIJA HOT SPRINGS, CA

LOCATION.--Lat 34°29'08", long 119°18'25", in NW 1/4 SE 1/4 sec.29, T.5 N., R.23 W., Ventura County, Hydrologic Unit 18070101, on left end of dam on Ventura River, 0.2 mi east of Matilija Hot Springs, and 1.8 mi southwest of Wheeler Springs.

DRAINAGE AREA. -- 54.4 mi².

PERIOD OF RECORD.--March 1948 to September 1965, October 1970 to current year. Prior to October 1985, monthend elevation and contents only. March 1948 to October 1953, published as "at Matilija."

GAGE, --Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Ventura County Department of Public Works). Prior to Nov. 12, 1970, at site near right end of dam at same datum.

REMARKS.--Reservoir is formed by concrete-arch dam. Dam was completed in 1948. Storage began Mar. 14, 1948. Structural modifications have resulted in lowering the crest of the dam since March 1964. Capacity table dated August 1983 not valid due to silting of reservoir during the 1986 water year. Lowest sluice gate silted, elevation, 1,000 ft. Lowest usable outlet, elevation 1,064 ft, and crest of spillway, elevation 1,095 ft. Water is released from reservoir to natural stream for recharge of ground-water basin in Ventura River Valley and since May 1959 is at times diverted at Robles diversion dam downstream to Lake Casitas on Coyote Creek.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 7,399 acre-ft, Apr. 3, 1958, elevation, 1,128.10 ft; reservoir dry several days in 1979 due to construction.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum contents from October 1965 to September 1970, 3,128 acre-ft, Jan. 25, 1969, elevation, 1,103.6 ft.

EXTREMES FOR CURRENT YEAR, -- Maximum elevation, 1,092.13 ft, Dec. 4; minimum elevation, 1,073.00 ft, Oct. 20.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1073.67	1077.37	1091.32	1079.00	1083.73	1085,17	1089,44	1089.40	1089.14	1088.81	1087.88	1086.34
2	1073.63	1077.84	1091.63	1079.12	1083,61	1085,20	1089.62	1089.40	1089.10	1088.79	1087.82	1086.29
3	1073.59	1078.31	1091.90	1079,26	1083.55	1081.26	1089.47	1089,43	1089.04	1088.78	1087.77	1086.23
4	1073.53	1078.77	1091.52	1080,18	1083.47	1083.55	1089.35	1089.43	1089.01	1088.77	1087.72	1086.20
5	1073.49	1079.23	1090,57	1080,64	1083.38	1079.33	1089.27	1089.43	1088.98	1088.76	1087.65	1086,17
-												
6	1073,42	1079.69	1090,00	1081,12	1083,30	1086.86	1089.33	1089.44	1088.96	1088.74	1087.59	1086.13
7	1073,38	1080.09	1089.38	1081.60	1083.20	1087.04	1089,39	1089.43	1088.95	1088.73	1087,51	1086.11
8	1073.32	1080.52	1088,80	1081,94	1083.10	1086.38	1089.48	1089.41	1088,94	1088,72	1087,45	1086,07
9	1073.30	1080.94	1088.15	1082,27	1083.21	1085.42	1089.52	1089.41	1088,94	1088.72	1087.40	1086.02
10	1073.27	1081.36	1087.48	1082.52	1083.43	1084.31	1089.64	1089.38	1088.95	1088.71	1087.33	1085.96
11	1073.22	1081.75	1086.81	1082.76	1083.50	1083.05	1089.66	1089.35	1088.95	1088.69	1087.30	1085.90
12	1073.20		1086.19	1083.00	1083,56	1083.12		1089.35	1088.94	1088.68	1087.23	1085.85
13	1073.17		1085.51	1083.27	1083.78	1084.07		1089.35	1088.94	1088.65	1087.19	1085,80
14	1073.09		1084.85	1083.43	1083.95	1084.91		1089.33	1088.95	1088.64	1087.11	1085.76
15	1073.01		1084.15	1083.59	1084.08	1085.68		1089.33	1088.96	1088.58	1087.07	1085.72
16	1073.01		1083.41	1083.76	1084.08	1086.23		1089.28	1088.97	1088.54	1087.03	1085.65
17	1073.04			1083.95	1084.10	1086.35	1090.10	1089.24	1088.97	1088.51	1086.96	1085.60
18	1073.02			1084.11	1084.16	1086.10	1089,99	1089.21	1088.98	1088,49	1086.93	1085.54
19	1073.01	1086,38		1084.29	1084.20	1085.83	1089.92	1089.17	1088.98	1088.45	1086.88	1085.49
20	1073.00	1087.00		1084.45	1084.18	1085.85	1089.81	1089.15	1088.96	1088.42	1086.84	1085.42
	1070 00	4007 55		1001 00	1001 07	1000 01	1000 7/	1000 15	1000 05	4000 07	4000 70	1005 00
21	1073.08	1087.55	1070 /0	1084.62	1084.37	1086.34	1089.74	1089.15	1088.95	1088.37	1086.76	1085.38
22 23	1073.09	1088.02	1078.40	1084.77	1084.46	1086.73	1089.66	1089.14	1088.94	1088.33	1086.72	1085.34
23 24	1073.09	1088.47	1077.99	1084.92	1084.58	1087.12	1089.60	1089.14	1088.93	1088.32	1086.67	1085.30
24 25	1073,32 1073,85	1088.92 1089.29	1077.93 1077.91	1084.79	1084,69	1087.44 1087.74	1089.55	1089.15	1088.92	1088.27	1086.62	1085.28
23	10/3.65	1009.29	10//.91	1084.66	1084.80	1007.74	1089.47	1089.15	1088,92	1088.23	1086.60	1085,24
26	1074.36	1089.67	1078.08	1084.54	1084.93	1088,03	1089,46	1089.15	1088.89	1088,20	1086.56	1085.21
27	1074.87	1090.03	1078.26	1084.37	1085.01	1088.30	1089,41	1089.16	1088.87	1088.13	1086.54	1085.20
28	1075.40		1078.41	1084,24	1085.10	1088.53	1089.41	1089.18	1088.85	1088.09	1086.51	1085.15
29	1075.91		1078.52	1084.08		1088.76	1089.41	1089,20	1088.82	1088.03	1086.46	1085.10
30	1076.41		1078.68	1083.96		1089.01	1089.38	1089.20	1088.81	1087.98	1086.43	1085.06
31	1076.88		1078.81	1083.86		1089.20		1089.19		1087.92	1086.38	
	20,0,00		_0,0,02					2000.20		2007.02	2000.00	
MAX	1076.88			1084.92	1085,10	1089.20		1089.44	1089.14	1088,81	1087.88	1086.34
MIN	1073,00			1079,00	1083.10	1079,33		1089.14	1088.81	1087.92	1086.38	1085.06

11115500 MATILIJA CREEK AT MATILIJA HOT SPRINGS, CA

LOCATION.--Lat 34°28'58", long 119°18'03", in NW 1/4 SW 1/4 sec.28, T.5 N., R.23 W., Ventura County, Hydrologic Unit 18070101, on right bank 0.2 mi east of Matilija Hot Springs, 0.2 mi upstream from North Fork, and 0.4 mi downstream from Matilija Dam.

DRAINAGE AREA, -- 54,6 mi².

PERIOD OF RECORD.--October 1927 to current year. Combined monthly records for creek and diversion, May 1951 to September 1969. Prior to October 1953, published as "at Matilija."

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE.--Water-stage recorder. Concrete control since September 1969. Elevation of gage is 900 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Feb. 11, 1939, at site 0.6 mi upstream at different datum

REMARKS.--Estimated daily discharges: June 16 to July 6. Records fair. Flow regulated by Matilija Reservoir March 1948 to March 1964, capacity, 7,020 acre-ft. Structural modification of dam and siltation has resulted in only partial regulation since March 1964. Current capacity, 1,480 acre-ft, capacity table dated August 1983.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 20,000 ft³/s, Jan. 25, 1969, gage height, 16.5 ft, from rating curve extended above 4,200 ft³/s on basis of computation of peak flow over dam; minimum daily, 0.10 ft³/s, several days in some years of regulated flow.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 165 ft³/s, Mar. 4, gage height, 3.18 ft; minimum daily, 0.20 ft³/s, several days in October, November, and December.

	MÉAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.0	.21	.20	4.9	9.5	6.7	5.7	7.3	5.4	4.8	4.0	3.4
2	9.0	.21	.20	4.9	9.4	6.5	6.6	6.8	5.4	4.7	4.3	3.7
3	9.0	.22	.20	4.9	8.8	6.3	16	6.7	5.5	4.6	4.5	3.3
4	8.4	.22	23	5,6	8.1	49	16	6,4	5.3	4.5	4.6	2.9
5	8.0	.20	42	4.7	7.7	122	14	5.7	5.1	4.4	4.1	2.9
6	7.8	.22	29	4.7	7.5	39	9.2	5.6	4.3	4.0	4.0	3.0
7	7.7	. 24	29	4.6	7.4	64	8.6	5.7	4.7	4.3	4.0	2.6
8	7.9	.24	27	4.5	7.4	64	8.2	5.7	4.7	4.1	3.7	2.4
9	8.1	.22	30	4.6	7.8	64	7.8	5.7	4.9	4.3	3,5	2.5
10	8.1	.21	29	4.4	7.8	63	7.8	5.7	5.0	4.4	3.4	2.7
11	8.1	.20	29	4.4	7.8	62	7.6	5.7	5.0	4.2	3.4	2.9
12	7.8	.20	29	4.4	7.8	26	7.4	5.7	5.0	4.1	3.4	2.8
13	7.7	. 23	28	4.4	7.9	. 52	7.0	5.7	5.0	3.8	3.6	2.6
14	7.4	.27	27	4.4	7,5	.45	7.0	5,6	5.1	3.9	3.6	2.5
15	7.4	.29	27	4.4	8.8	. 44	6.6	5.7	4.8	4.1	3,6	2.6
16	7.2	. 28	27	4.5	9.3	2.9	6.3	5.7	4.8	4.1	3.2	2.7
17	7.1	. 42	26	4.6	9.4	15	8.4	5.7	5.1	4.3	3.4	3.0
18	6.9	.45	26	4.5	8.2	25	12	5.7	5.0	4.4	3.0	3.0
19	6.7	.25	26	4.4	7.3	24	11	5.8	4.9	4.5	3.2	3.0
20	6.7	. 25	26	4.4	7.3	15	11	6.0	4.8	4.5	3.4	2.9
21	6,7	.35	26	4.0	7.0	6.3	10	5.5	4.7	4.6	3,4	2.9
22	7.0	. 22	25	4.1	7.0	6.1	9.3	5.5	4.6	4.6	3.4	2.8
23	7.1	.20	15	5.7	7.0	6.0	9.0	5.4	4.6	4.6	2.8	2.8
24	5.1	.20	8.2	10	7.0	6.0	8.9	5.4	5.0	4.6	2.8	2.6
25	.31	.20	7.0	10	6.9	6.0	8.3	5.3	4.8	4.6	2.3	2.9
26	. 25	. 22	4.9	10	6.7	6.0	7.9	5,1	4.7	4.6	2.4	2.9
27	.23	.20	4.9	10	6.7	6.0	7.8	5.2	4.6	4.5	2.5	3,1
28	.25	,23	4.9	10	6.7	6.0	7.7	5.0	5.0	4.4	2.8	3.0
29	. 25	.22	4.9	10		6.0	7.6	5.4	4.9	4.4	3.1	3.3
30	. 24	.20	4.8	9.5		6.0	7.4	5.6	4.8	4.5	3.0	3.3
31	.20		4.9	9.4		5.7		5.4		4.3	3.1	****
TOTAL	183.63	7.27	591.10	184.9	217.7	721.91	268.1	177.4	147.5	135.7	105.5	87.0
MEAN	5.92	.24	19.1	5.96	7.78	23.3	8.94	5.72	4.92	4.38	3.40	2.90
MAX	9.0	.45	42	10	9.5	122	16	7.3	5.5	4.8	4.6	3.7
MIN	.20	.20	,20	4.0	6.7	. 44	5.7	5.0	4.3	3,8	2.3	2.4
AC-FT	364	14	1170	367	432	1430	532	352	293	269	209	173

CAL YR 1986 TOTAL 22394.50 MEAN 61.4 MAX 2660 MIN .20 AC-FT 44420 WTR YR 1987 TOTAL 2827.71 MEAN 7.75 MAX 122 MIN .20 AC-FT 5610

11116550 VENTURA RIVER NEAR MEINERS OAKS, CA

LOCATION.--Lat 34°27'49", long 119°17'22", in NW 1/4 NE 1/4 sec.4, T.4 N., R.23 W., Ventura County, Hydrologic Unit 18070101, on right bank 500 ft downstream from Robles diversion dam and 1.2 mi northwest of Meiners Oaks.

DRAINAGE AREA. -- 76.4 mi².

PERIOD OF RECORD.--May 1959 to September 1978, December 1980 to February 1983, January 1984 to current year. Since October 1985, only discharges below 200 ft³/s published.

GAGE. --Water-stage recorder and concrete control since December 1980. Datum of gage is 745.85 ft above National Geodetic Vertical Datum of 1929 (U.S. Bureau of Reclamation bench mark). Prior to Oct. 30, 1969, at datum 1.25 ft lower. Oct. 30, 1969, to Sept. 30, 1978, at site 500 ft upstream at datum 4.15 ft higher.

REMARKS.--Estimated daily discharges: Oct. 9, 10. Records fair. Flow regulated by Matilija Reservoir, capacity, 1,480 acre-ft. Flow up to 500 ft³/s diverted since May 1959 at Robles diversion dam to Lake Casitas on Coyote Creek. Flow reported is discharge less than 200 ft³/s released downstream from Robles diversion dam

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 28,000 ft³/s, Jan. 25, 1969, estimated on basis of peak flows at stations on nearby streams, gage height, unknown; no flow several months in most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 89 ft³/s, Mar. 5, gage height, 3.67 ft; no flow several days in November, December, and September.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 11 . 52 .42 5.8 9.1 7.1 6.1 7.0 2.7 1.3 .73 .15 1 .70 0 6.2 6.8 6.1 2.0 1.0 0 2 9.0 1.3 11 11 9.3 n 8.8 6.5 2.6 1.3 0 3 10 ,69 5.9 13 1.4 9.9 .08 11 19 8.8 9.6 14 5.5 2.6 1.6 1.0 0 .07 5 9,9 0 28 13 9.3 31 13 4.3 2.0 1.6 .63 6 9,2 0 21 11 8.8 18 9.5 3.7 2.3 1.5 .84 .25 .18 8.6 0 21 11 8.2 8.7 3.4 3.4 1.1 .77 .47 1.1 8 8.6 0 20 11 8,2 .15 8.6 3.0 3.2 1.2 .31 9.0 21 9.9 2.4 8.1 2.9 3.2 1.7 1.4 .11 10 9,5 0 21 6.9 11 4.4 7.3 3.2 2.7 1.4 1.3 0 0 21 11 9.4 6.7 9.3 4.3 7.6 3.1 2.2 1.4 1.1 .18 9.0 2.5 21 4.1 2.5 1.1 6.4 8.3 1.5 .54 12 9.3 0 21 . 97 5.7 6.4 2.6 2.7 1.7 13 9.2 n 9.8 7.8 1.2 .91 14 8.6 ٨ 22 5.8 9.0 3.5 6.8 2.6 2.7 1.4 1.2 15 8.9 n 22 5.9 9.3 3,3 5.9 2.9 3.2 1.6 1.5 .92 16 8.8 0 20 6.0 9.3 3.5 5.1 3.3 2.7 1.4 1.6 .85 17 7.8 .22 19 6.1 9.3 10 6.4 3.4 2.5 1.3 .81 1.7 10 7.1 17 3.4 18 8.1 19 9.0 9.8 2.1 1.5 1.5 .89 4.3 7.7 19 20 5.9 17 10 4.0 1,7 . 80 8.3 1.5 1.1 5.3 7.9 9.1 20 7.5 4.0 21 14 4.5 1.6 1.5 1.1 1.4 21 7.1 5.2 22 4.3 7.7 7.6 8.1 1.9 1.6 1.0 .92 22 7.3 4.4 22 3.8 7.1 7.1 7.6 4.4 .80 1.7 1.7 1.1 23 7.6 3.1 17 4.4 6.9 6.7 7.3 4.1 1,3 1.3 1.0 1.4 .70 24 6.7 3.4 8,0 8.4 7.4 6.6 7.4 4.7 1,3 1.7 .77 25 1.9 2.8 6.9 8.8 7.6 6.8 7.1 4.0 .62 .25 .62 1.7 26 1.6 2.1 6,2 9.7 6.8 6.4 7.0 3.4 .23 1.6 .60 .66 .88 2.0 9.8 6.9 3.4 27 6.0 7.1 5.8 .60 1.6 .18 1.2 3.2 ,06 28 .17 2.0 6.0 9.8 7,2 6.3 6.7 1.2 .81 1.2 2.2 7.0 9.5 3.5 1,5 .76 .68 29 .33 6.6 6.5 .19 ___ .79 .40 30 .22 1.6 6.0 8.6 6.6 6.8 3.6 1.6 .57 31 .27 ___ 5.0 9.1 ___ 6.2 3.0 ---.76 .39 ___ TOTAL 216.67 49.31 461,52 244.6 238.5 241.93 242.6 127.3 62.35 43.91 29.41 17.59 MEAN 6.99 1.64 14.9 7.89 8,52 7.80 8.09 4.11 2.08 1.42 . 95 . 59 3.4 MAX 11 10 28 19 11 31 14 11 1.7 1.7 1.4 .23 MIN 0 3.8 6.8 5.1 2.5 .76 .06 . 17 n . 15 0 98 915 35 AC-FT 485 473 252 124 87 58 430 480 481

WTR YR 1987 TOTAL 1975.69 MEAN 5.41 MAX 31 MIN 0 AC-FT 3920

11117600 COYOTE CREEK NEAR OAK VIEW, CA

LOCATION.--Lat 34°25'00", long 119°22'11", in Santa Ana Grant, Ventura County, Hydrologic Unit 18070101, on left bank at Los Padres National Forest boundary, 0.8 mi upstream from Poplin Creek, and 4.2 mi northwest of Oak View.

DRAINAGE AREA. -- 13.2 mi².

PERIOD OF RECORD . -- October 1958 to current year.

GAGE.--Water-stage recorder. Datum of gage is 577.37 ft, U.S. Bureau of Reclamation datum. Prior to Oct. 1, 1980, at site 1,000 ft downstream at datum 16.90 ft lower.

REMARKS.--Estimated daily discharges: Oct. 21-27, Jan. 30 to Feb. 6, Mar. 11, Apr. 12, 20, Apr. 24 to May 5, July 6 to Sept. 3. Records poor. No regulation or diversion upstream from station.

AVERAGE DISCHARGE. -- 29 years, 7.96 ft3/s, 5,940 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 8,000 ft³/s, Jan. 25, 1969, gage height, 12.00 ft, site and datum then in use, from floodmarks, from rating curve extended above 2,100 ft³/s on basis of slope-area measurements at gage heights 9.10 and 12.00 ft; maximum gage height, 13.72 ft, Feb. 16, 1980, site and datum then in use, backwater from Casitas Reservoir; no flow at times in some years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 150 ft³/s and maximum (*), from rating curve extended above 82 ft³/s on basis of slope-area measurements at gage heights 7.53 and 9.61 ft;

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0230	*286	*3.92				

Minimum daily, 0.18 ft³/s, Sept. 8, 19, 20, 22, 29.

		DISCHARGE,	IN CUBIC	FEET I			YEAR OCTOBER	1986 7	O SEPTEMBER	1987		
					ME	AN VALU	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.86	. 86	1,0	1.0	1,2	1.2	1,5	. 80	.74	.39	.39	.27
2	.86	, 86	. 92	1.0	1.1	1,2	1.5	.80	. 74	. 47	.39	. 26
3	.86	.98	.86	1.0	1.1	1.2	1.3	.85	.71	.40	.38	. 26
4	.99	.86	.86	4.8	1.1	1.2	1.6	.83	, 73	.42	.38	, 26
5	1.2	.67	.86	3.7	1.1	13	1.5	.82	.73	. 43	.37	. 24
6	1.2	.60	1.4	2.2	1.0	106	1.4	.81	.82	.40	.37	.25
7	1.1	.60	1.4	3.2	1.0	16	1.2	.75	.81	.40	.37	.21
8	1.0	.60	1,2	2.1	1.0	9.7	1,2	.71	.80	.40	.37	.18
9	1.0	,60	1.0	1.5	1.4	6.3	1,0	.71	.71	.41	.37	.20
10	1.0	.60	1.0	1.2	2.7	4.6	1.2	.72	.71	. 43	.37	.20
11	1.0	. 60	1.0	1.1	1.7	4.1	1.1	. 65	,66	. 45	.37	.21
12	1.0	.60	1.0	1.0	1.7	3.6	1,1	.69	.64	. 46	.37	.31
13	1.0	.60	1.0	.90	4.1	3.2	1,4	.64	,62	. 46	.39	.27
14	.92	.60	1.0	.91	3.7	2.7	1,2	.61	.61	.47	.40	.20
15	.86	.60	1.0	.86	2.2	2.6	1,1	.65	.56	.48	.40	.20
16	.86	. 60	1.0	.90	1.8	2,2	1.1	. 67	, 57	. 48	. 43	. 20
17	.98	1.4	1.0	1.2	1.5	2.2	1.0	.65	.56	.51	.42	.21
18	1,0	17	1.0	1.2	1.4	2.2	.95	.62	. 54	.54	.42	.19
19	1.0	1.6	.99	1.2	1.4	2.1	.91	.62	. 53	. 53	.38	.18
20	1.0	1.1	. 86	1.2	1.4	1.7	. 97	. 56	. 50	. 52	. 37	.18
21	1.0	.75	.86	1.1	1.3	3.5	. 95	. 56	. 47	. 52	.36	.20
22	1.0	, 96	.86	1.2	1.3	2.8	.91	. 57	. 44	. 50	.34	.18
23	1.1	1.2	.86	1.3	1.4	2.2	.88	. 55	. 42	. 50	.33	.20
24	1.1	1.3	.86	1.3	1.7	2.2	. 85	. 59	.41	. 47	.32	, 22
25	1.1	1.2	.95	1.3	1.8	2.1	.85	.63	.41	.45	.31	. 20
26	1.2	1.2	1.0	1.2	1.6	2.0	, 85	.64	. 42	. 44	.31	. 24
27	1.2	1.1	1.0	1.2	1.4	1.8	.80	.65	. 41	. 44	.31	. 22
28	1.3	1.0	1.0	1.2	1.3	1.7	.80	.76	. 44	.43	.28	. 22
29	1.4	1.0	1.0	1.3		1.7	.80	.78	.41	. 42	. 27	. 18
30	1,2	1.0	1.0	1.3		1.4	.82	.77	.37	.41	. 27	.19
31	.86		1.0	1.2		1.3		.74		.40	. 27	
TOTAL	32.15	42.64	30.74	45.77	45.4	210.0	32,74	21.40	17.49	14.03	11.06	6,53
MEAN	1.04	1.42	,99	1.48	1,62	6.77	1.09	, 69	. 58	.45	.36	.22
MAX	1.4	17	1.4	4.8	4.1	106	1.6	.85	.82	. 54	. 43	.31
MIN	.86	.60	.86	,86	1,0	1.2	.80	.55	.37	.39	. 27	.18
AC-FT	64	85	61	91	90	417	65	42	35	28	22	13
1.0 1 1	5 4	00	0.1	0.1	00	7.27		72			~~	20

CAL YR 1986 TOTAL 3661.34 MEAN 10.0 MAX 559 MIN .33 AC-FT 7260 WTR YR 1987 TOTAL 509.95 MEAN 1.40 MAX 106 MIN .18 AC-FT 1010

11117800 SANTA ANA CREEK NEAR OAK VIEW, CA

LOCATION.--Lat 34°25'25", long 119°20'25", in Santa Ana Grant, Ventura County, Hydrologic Unit 18070101, on upstream end of right abutment of bridge on Santa Ana Road, 400 ft upstream from unnamed tributary, and 3.0 mi northwest of Oak View.

DRAINAGE AREA. -- 9.11 mi².

PERIOD OF RECORD. -- October 1958 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 612.43 ft, U.S. Bureau of Reclamation datum. Prior to Aug. 17, 1970, on downstream end of right abutment at same datum.

REMARKS, -- No estimated daily discharges. Records good. Low flow slightly regulated by one small reservoir upstream. Some small diversions above station.

AVERAGE DISCHARGE. -- 29 years, 6.05 ft3/s, 4,380 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,330 ft³/s, Mar. 4, 1978, gage height, 10.01 ft, from rating curve extended above 1,000 ft³/s on basis of slope-area measurement at gage height 8.57 ft; maximum gage height, 10.70 ft, Jan. 25, 1969; no flow at times in each year.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Mar. 2, 1938, reached a discharge of 3,780 ft 3/s, by slope-area measurement at site 2.0 mi downstream.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0300	*87	*4.68				

No flow many days.

CAL YR 1986 TOTAL 3925.03

255,35

WTR YR 1987 TOTAL

MEAN 10.8

MEAN .70

MAX 552

MAX 44

MIN .09

MIN 0

AC-FT

AC-FT

7790

		DISCHARGE,	IN CUBIC	FEET		WATER YEAR CAN VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.28	.17	. 58	.61	.82	1.0	. 87	. 56	.08	.03		
2	.31	.18	.62	. 62	.79	.90	. 87	. 47	.08	.03		
3	.27	.18	.64	.61	.77	.96	.89	.40	.08	.03		
4	.24	.18	.69	3.7	.75	.68	.92	. 27	.07	.02		
5	.24	.18	.72	1.9	.72	4.4	.81	.23	. 07	.02		
6	.40	.20	1.1	1.7	. 67	44	.75	.21	.07	.02		
7	. 42	.27	.85	2.1	, 66	9.9	.70	.20	.07	.02		
8	.43	.32	.75	1.5	.66	5,5	,66	.19	.07	.02		
9	. 47	.35	.72	1.5	1.3	4.1	.64	.19	.06	.02		
10	. 54	.38	.71	1.5	1.9	3.3	.64	.20	.06	.02		
11	. 58	.37	.71	1.4	1.2	2.9	.72	.21	.06	.02		
12	.58	.37	.70	1.4	1.1	2,5	.62	.19	.06	.02		
13	.50	.37	.66	1.3	2.7	2,5	.48	.19	.05	.02		
14	.42	.34	.66	1.3	2.8	2.1	.58	.18	.05	.02		
15	.38	.38	.66	1.3	1.9	2.1	. 46	.17	.05	.01		
16	.40	.37	.66	1.3	1.5	2.0	. 43	. 17	.05	.01		
17	.43	.62	.66	1.2	. 58	1.8	. 56	. 17	.04	.01		
18	.32	4.6	.66	1.1	. 51	1.7	.58	.16	.04	.01		
19	. 27	.73	.69	1.1	. 56	1.7	.40	.15	.04	.01		
20	. 27	.35	.70	1.0	, 51	1.5	. 46	.15	.04	.01		
21	.29	.44	.67	1.0	.74	2.1	. 53	.15	.04	.01		
22	. 27	.46	.66	1,0	1.2	1.8	.50	.13	.04	.01		
23	.26	.63	.68	1.0	1.2	1,6	.37	.13	.04	0		
24	.22	.65	.71	1.0	1.3	1.3	.45	. 12	.04	0		
25	.21	.63	.69	.98	1.4	1.2	.49	.12	.03	0		
26	,20	.60	.66	, 93	1.2	1.4	.52	.11	.03	0		
27	.19	.59	.66	. 93	1.1	1.4	. 54	.11	.03	0		
28	.19	.59	.66	.88	1.0	1.3	, 53	.10	.03	0		
29	.18	. 59	.66	.89		1.3	. 55	.10	.03	0		
30	.18	. 59	.61	.89		1.2	. 64	.09	.03	0		
31	,18		.61	.85		.98		.09		0		
TOTAL	10.12	16.68	21.41	38.49	31.54	111.12 1	8.16	5.91	1.53	.39	0	0
MEAN	.33	.56		1.24	1.13	3,58	.61	.19	.051	.013	0	0
MAX	. 58	4.6	1.1	3.7	2.8	44	. 92	. 56	.08	, 03	0	Ó
MIN	.18	.17	. 58	.61	.51	,68	.37	.09	.03	0	0	Ö
AC-FT	20	33	42	76	63	220	36	12	3.0	. 8	0	0

11117900 LAKE CASITAS NEAR CASITAS SPRINGS, CA

LOCATION.--Lat 34°22'24", long 119°19'56", in Santa Ana Grant, Ventura County, Hydrologic Unit 18070101, on left end of dam on Coyote Creek, 1.5 mi west of Casitas Springs.

DRAINAGE AREA. -- 38.6 mi².

PERIOD OF RECORD. -- December 1978 to current year. Prior to October 1985, monthend elevation, National Geodetic Vertical Datum, and contents only. Daily readings prior to December 1978 in files of Casitas Municipal Water District.

GAGE, --Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation).

REMARKS.--Reservoir is formed by earthfill dam. Storage began January 1959. Capacity table is dated December 1958. Usable capacity, 250,835 acre-ft between bottom of lowest outlet gate at elevation 350.00 ft and crest of spillway at elevation 567.00 ft. Dead storage, 3,167 acre-ft, included in contents. Flow from Ventura River is diverted at Robles diversion dam through concrete canal to Lake Casitas and is included in these records.

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents, 260,100 acre-ft, Feb. 21, 1980, elevation, 569.24 ft; minimum, 196,400 acre-ft, Nov. 24, 1985, elevation, 544,18 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 242,000 acre-ft, Oct. 1, 2, elevation, 562.52 ft; minimum, 213,400 acre-ft, Sept. 30, elevation, 551.30 ft.

Capacity table (elevation, in feet NGVD, and contents, in acre-feet) (Based on survey dated December 1958, by U.S. Bureau of Reclamation)

540	186,800	560	235,400
545	198,300	565	248,600
550	210,300	570	262,200
555	222 600		

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	242000	239500	237500	235800	234800	233900	234600	232000	228800	225300	221700	217200
2	242000	239400	237500	235700	234800	233900	234600	231900	228600	225200	221500	217000
3	241900	239300	237400	235700	234700	233900	234500	231800	228500	225000	221400	216700
4	241800	239200	237300	236000	234700	233900	234500	231800	228300	224900	221200	216600
5	241800	239000	237300	236000	234600	234400	234400	231700	228200	224800	221000	216500
6	241600	238900	237300	236000	234400	234900	234400	231500	228100	224700	220900	216300
7	241500	238800	237300	236000	234400	235200	234300	231400	228000	224600	220700	216300
8	241500	238700	237300	236000	234400	235200	234200	231300	227900	224500	220600	216200
9	241300	238600	237200	236000	234400	235400	234100	231100	227800	224400	220400	216100
10	241300	238500	237200	235900	234400	235400	234000	231100	227700	224300	220300	215900
11	241200	238400	237100	235900	234400	235700	233900	231000	227600	224200	220100	215800
12	241100	238300	237100	235900	234400	235700	233800	230900	227500	224200	220000	215700
13	241100	238200	237000	235800	234400	235700	233800	230700	227400	224100	219700	215600
14	241000	238100	236900	235800	234400	235700	233700	230600	227300	224000	219600	215500
15	240900	238000	236900	235700	234400	235400	233600	230500	227200	223800	219500	215400
16	240800	238000	236900	235700	234400	235400	233500	230400	227100	223700	219300	215100
17	240700	238300	236800	235600	234400	235400	233400	230300	226900	223600	219300	215000
18	240600	238300	236800	235500	234400	235400	233300	230200	226800	223500	219100	215000
19	240500	238300	236700	235500	234400	235200	233200	230100	226700	223400	219000	214800
20,	240500	238200	236600	235400	234400	235200	233100	230000	226500	223300	218900	214700
21	240400	238200	236600	235400	234100	235400	233000	229900	226500	223100	218700	214600
22	240300	238100	236500	235300	234100	235200	232900	229800	226400	223000	218600	214400
23	240200	238000	236400	235300	234100	235400	232700	229700	226200	222900	218400	214300
24	240100	237900	236300	235200	234100	235200	232600	229600	226100	222800	218300	214200
25	240000	237900	236300	235200	234100	235200	232500	229500	226000	222600	218200	214000
26	240000	237900	236300	235200	233900	235200	232500	229400	225900	222500	218000	213900
27	239900	237800	236200	235100	233900	234900	232400	229300	225700	222400	217900	213800
28	239800	237700	236100	235000	233900	234900	232300	229100	225600	222300	217700	213700
29	239800	237700	236000	235000		234900	232200	229100	225500	222100	217600	213600
30	239700	237600	236000	234900		234900	232000	229000	225400	222000	217500	213400
31	239600		235900	234900		234900		228900	225300	221800	217300	
MAX	242000	239500	237500	236000	234800	235700	234600	232000	228800	225300	221700	217200
MIN	239600	237600	235900	234900	233900	233900	232000	228900	225400	221800	217300	213400
a	561,58	560.84	560.17	559.80	559,43	559.77	558.70	557.47	556.10	554.67	552,87	551.30
b	-2500	-2000	-1700	-1000	-1000	+1000	~2900	-3100	~3500	-3600	-4500	-3900

CAL YR 1986 b +35300 WTR YR 1987 b -28700

a Elevation, in feet NGVD, at end of month.

b Change in contents, in acre-feet.

11118500 VENTURA RIVER NEAR VENTURA, CA

LOCATION.--Lat 34°21'05", long 119°18'23", in southeast corner of Santa Ana Grant, Ventura County, Hydrologic Unit 18070101, on right bank 420 ft downstream from bridge on Casitas Pass Road at Foster Memorial Park, 0.2 mi downstream from Coyote Creek, and 5 mi north of Ventura.

DRAINAGE AREA. -- 188 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --September 1911 to January 1914, October 1929 to current year; combined records of river and diversion, October 1932 to current year.
REVISED RECORDS. --WSP 1928: Drainage area.

GAGE.--Water-stage recorder on river; water-stage recorder and Parshall flume on diversion. Datum of gage is 205.23 ft, Ventura County Flood Control datum. See WSP 1315-B for history of changes prior to Nov. 2, 1949. Nov. 2, 1949, to June 12, 1969, at site 80 ft downstream at datum 9.00 ft lower. June 13, 1969, to Dec. 22, 1986, at site 370 ft upstream at datum 5.00 ft lower.

REMARKS.--Estimated daily discharges: Oct. 1 to Dec. 22. Records good except those for period of estimated discharges, which are poor. Flow partly regulated since March 1948 by Matilija Reservoir, usable capacity, 1,480 acre-ft, and since October 1959 by Casitas Reservoir, capacity, 267,000 acre-ft. Water diverted to Casitas Reservoir on Coyote Creek since January 1959. Diversion by city of Ventura for municipal supply began prior to 1911. AVERAGE DISCHARGE (river only) represents flow to ocean regardless of upstream development. For records of combined discharge of river and Ventura City diversion, see following page.

AVERAGE DISCHARGE.--River only: 60 years (water years 1912-13, 1930-87), 60.2 $\rm ft^3/s$, 43,610 acre-ft/yr. Combined river and diversion: 55 years, 69.9 $\rm ft^3/s$, 50,640 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --River only: Maximum discharge, 63,600 ft³/s, Feb. 10, 1978, gage height, 24.14 ft, from rating curve extended above 34,000 ft³/s; maximum gage height, 29.3 ft, Jan. 25, 1969, present datum, from floodmarks; no flow at times in many years.

Combined river and diversion: Maximum discharge, 63,600 ft³/s, Feb. 10, 1978; no flow Nov. 28, 29, 1977.

EXTREMES FOR CURRENT YEAR.--River only: Maximum discharge, 174 ft³/s, Mar. 6, gage height, 4.66 ft; no flow many days in August and September.

Combined river and diversion: Maximum discharge, 176 ft³/s, Mar. 6; minimum daily, 5.0 ft³/s, Sept. 28.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					r II	TAM AVEO	LIO					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.0	2.4	3.6	5.2	7.3	8.8	6.5	3.5	3.5	. 47	.04	
2	3,8	2.7	3.4	4.8	5.6	8.2	9.4	3,9	2.2	. 42	,02	
3	3.8			3.1	4.0	6.2		5.0		.40	0	
		2.7	3.1				7.1		1.3		-	
4	5.6	2.4	3.0	27	4.2	6.0	8.0	4.5	1.0	.38	0	
5	3.8	2.4	3.0	13	4.7	11	9.4	3.1	.83	.36	0	
6	3.6	2.3	3.3	10	4.4	103	8.2	2,5	.83	.38	0	
7	3.5	2.3	3.6	14	5.0	30	6.0	1.9	1.6	.41	0	
8	3.5	2.3	3,9	5.3	6,5	20	5.7	1,5	2.5	.37	0	
9	3.7	2.4	3,5	2.7	8,3	13	3.4	2.0	1.3	.35	Õ	
10	3.7	2.6	3.2	3,3	7.1	9.4	2,5	4.2	1.0	,33	ŏ	
10	3.7	2.0	3,2	3,3	7.1	5.4	2,5	4,2	1.0	, 33	U	
11	4.2	2.5	3,1	4.7	3.6	9.4	3.9	4.7	.83	.32	0	
12	4.8	2.7	3.0	4.3	4.7	9.4	6.8	2.4	.86	.30	0	
13	5.7	2.4	3.0	3,3	17	7.3	6.5	2,1	.99	.30	0	
14	5,9	2.3	3,6	3.3	18	7.3	5.0	1.9	2.0	.30	0	
15	3.3	2.4	3.7	3.4	14	8.9	4.9	2,2	2.5	.30	0	
16	3.2	2.7	3,3	3.8	12	8.5	3,2	3.1	1.5	, 26	0	
17	3.1	3.2	3.3	3.8	6.2	6.8	3,8	5.3	1.7	.25	ŏ	
18	4.1	20	3.4	4.7	2.8	6.8	4.9	5.3	1.3	.23	0	
19	5.5	5.7	3.5	5,0	3.3	6.9	6.1	2.9	. 94	.23	0	
20	4.1	3.9	3.7	4.4	4.0	7.2	6,1	2.2	.77	. 23	0	
21	3,1	2.8	4.1	3.3	4.9	16	4.8	2.3	.89	.20	0	
22	3,0	2,7	4.1	2.9	6.8	15	3,7	2.4	1.2	.20	0	
23	2.7	3.4	2.5	2.6	7.6	10	3.3	2.7	.98	.17	Ö	
24	2.6	3,3	2.3	3,1	7.4	8.9	3.0	5.1	.75	.15	ŏ	
25	2.7	3,1	3,4	4.1	12	9.9	3.2	7.4	.65	.13		
23	2.7	3,1	3,4	4.1	12	9.9	3.2	7.4	.05	.13	0	
26	3.0	3.0	6.4	4.4	10	9.6	4.0	7.1	.58	.11	0	
27	2.9	3,2	6.5	3.4	5.1	8.6	4.5	2.4	.51	.11	0	
28	2.7	3,6	6.2	3.2	6,6	8.7	3.6	1.8	. 50	.10	0	
29	2.5	3.4	4.5	4.2		11	3.0	1.6	. 50	.08	0	
30	2.6	3.5	2.2	4.2		11	3.0	1.6	.51	.08	Ö	
31	2.5		2.1	5.3		8.1		3.2		.05	Ö	
TOTAL	112.0	104.2	111 5	160 0	202 1	410.0	150 5	101 0	20 50	7 07	0.0	•
	113.2	104.3	111.5	169.8	203.1	410.9	153.5	101.8	36.52	7.97	.06	0
MEAN	3.65	3.48	3.60	5.48	7.25	13.3	5.12	3.28	1.22	. 26	.002	0
MAX	5.9	20	6.5	27	18	103	9.4	7.4	3.5	. 47	.04	0
MIN	2.5	2.3	2.1	2.6	2.8	6.0	2.5	1.5	.50	.05	0	0
AC-FT	225	207	221	337	403	815	304	202	72	16	. 1	0
CAL YR	1986 TOTA	AL 22730	.54 MEAN	1 62.3	MAX 5420	NIM C	.38 AC-	FT 45090				

MEAN 3.87

MAX

103

MIN 0

AC-FT

WTR YR 1987 TOTAL 1412.65

11118501 VENTURA RIVER NEAR VENTURA, CA--Continued

COMBINED DISCHARGE, IN CUBIC FEET PER SECOND, OF VENTURA RIVER AND VENTURA CITY DIVERSION NEAR VENTURA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	13	17	10	16	16	20	16	17	12	9.3	7.7
2	18	14	17	17	19	20	22	12	15	12	9.2	7.6
3	18	16	19	13	18	17	19	14	16	12	9.0	7.5
4	14	17	17	35	13	17	16	20	16	10	9.0	7.3
5	12	16	17	24	19	24	18	14	14	9.6	9.0	6.7
6	18	16	15	21	15	111	20	19	11	9.8	8.8	6.5
7	17	16	13	25	14	38	20	17	10	12	8.8	6.9
8	16	16	16	16	19	28	21	17	16	12	8.7	6.9
9	17	12	18	16	20	24	18	8.8	15	11	8.7	6.9
10	18	15	18	12	21	20	14	13	15	12	8.7	6.8
11	14	16	17	12	13	20	13	18	14	10	8.6	6.9
12	13	15	17	17	14	19	15	15	11	8.7	8.6	6.8
13	13	18	12	15	27	17	21	15	9.6	11	8.5	6.8
14	17	17	12	15	26	16	18	15	11	11	8.4	6.8
15	16	12	16	13	22	17	18	14	14	11	8.4	6.8
16	17	12	17	17	20	21	15	11	15	11	8.3	6.7
17	13	15	13	13	19	19	15	13	12	11	8.3	6.6
18	13	31	15	13	15	17	14	18	14	11	8.3	6.5
19	13	17	13	16	14	18	15	17	14	9.7	8.2	6.7
20	17	18	13	17	15	16	19	16	12	9.5	8.1	6.4
21	17	19	13	19	15	23	19	15	10	11	8.0	5.4
22	18	12	18	18	15	23	18	15	12	10	7.9	6.7
23	18	13	17	16	20	21	18	10	14	10	8.0	5.8
24	19	16	12	13	16	19	17	13	13	10	7.8	6.6
25	12	17	11		17	21	15	16	13	10	7.9	6.5
23	14	17	11	13	17	21	13	10	13	10	7.9	0.5
26	13	17	11	17	20	21	14	20	13	10	7.8	6.3
27	17	12	15	17	17	19	18	17	13	9.4	7.4	6.3
28	19	15	12	14	15	18	19	16	10	10	7.8	5.0
29	16	13	17	15		19	16	16	10	9.8	7.7	5.1
30	16	14	16	14		23	15	12	14	9.7	7.7	6.4
												0.9
31	18		11	14		21		12		9.5	7.6	
TOTAL	495	470	465	507	494	723	520	464.8	393,6	325.7	258.5	197.9
MEAN	16.0	15.7	15,0	16,4	17.6	23.3	17.3	15.0	13,1	10.5	8.34	6.60
MAX	19	31	19	35	27	111	22	20	17	12	9.3	7.7
MIN	12	12	11	10	13	16	13	8.8	9.6	8.7	7.4	5.0
AC-FT	982	932	922	1010	980	1430	1030	922	781	646	513	393
WC-LT	804	934	944	1010	900	1430	1030	922	/01	040	212	283
CAL YR	1986 TOTAL	27105.	1 MEAN	74.3	MAX 5430	MIN 4.6	AC-FT	53760				
taren san	1007 WOWAI	5011	E BATT A ST	11.0	14437 111	MIN E A	A (3 1207)	10510				

WTR YR 1987 TOTAL 5314.5 MEAN 14.6 MAX 111 MIN 5.0 AC-FT 10540

11118500 VENTURA RIVER NEAR VENTURA, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --December 1907 to December 1908, water years 1967 to current year. CHEMICAL DATA: December 1907 to December 1908, water years 1967-79. WATER TEMPERATURE: Water years 1969, 1971-73, 1975 to current year. SEDIMENT DATA: Water years 1969-73, 1975 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: October 1968 to September 1969, October 1970 to September 1973, October 1974 to September 1981, October 1985 to September 1986.
SUSPENDED-SEDIMENT DISCHARGE: October 1968 to September 1973, October 1974 to September 1981, October 1985

to September 1986.

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE WATER (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT					
07	1245	3,6	20.0	5	0.05
NOV				_	
05 DEC	1320	2.4	20.0	2	0.01
02	1240	3.3	16.0	3	0.03
JAN	1240	3.5	10.0	,	0.03
07	1335	14	15.0	40	1,5
FEB					
06	1415	4.7	15.5	21	0.27
11	1155	3.7	15.5	19	0.19
MAR					
03	1135	6.9	15.5	74	1.4
05	1545	8.5	15.0	21	0.48
APR					
02	1000	7.3	15.5	1	0.02
MAY					
06	1030	3.1	18.0	7	0.06
27	1150	2.5	19.0	15	0.10
JUL					
07	1350	0.41	22.0	15	0.02

CARPINTERIA CREEK BASIN

11119500 CARPINTERIA CREEK NEAR CARPINTERIA, CA

LOCATION.--Lat 34°24'05", long 119°29'08", in El Rincon Grant, Santa Barbara County, Hydrologic Unit 18060013, on right bank 100 ft upstream from bridge on State Highway 192, 165 ft downstream from Gobernador Creek, and 1.8 mi northeast of Carpinteria.

DRAINAGE AREA. -- 13.1 mi².

No flow several months.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD . -- January 1941 to September 1977, October 1978 to current year,

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 130 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 1, 1958, at site 100 ft downstream, at datum 6.00 ft higher. July 2, 1958, to Aug. 27, 1970, at site 65 ft downstream at datum 4.00 ft higher. Aug. 28, 1970, to Sept. 30, 1977, at site 100 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Jan. 19 to Feb. 25. Records poor. No regulation upstream from station. Gobernador Land and Water Co. diverts from Gobernador Creek 1.8 mi upstream from station. Small lake 0.8 mi southeast of station and outside the drainage area stores storm runoff and surplus water diverted by Gobernador Land and Water Co. from Gobernador Creek. At times this lake is drained by pumping water back into Gobernador Creek 1,000 ft upstream from station.

AVERAGE DISCHARGE.--45 years (water years 1942-77, 1979-87), 3.05 ft3/s, 2,210 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 8,880 ft³/s, Dec. 27, 1971, gage height, 14.10 ft, from floodmark, from rating curve extended above 130 ft³/s on basis of slope-area measurement of peak flow; no flow at times in each year.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 125 ft³/s and maximum (*):
Discharge
Gage height
Date
Time

Cft³/s)

Date
Time

Gage height
Gage height
Gage height

Gage height
Ar. 6

0430

*109

*4.34

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0 0 0 0	0 0 0 0	0 0 .11 0	0 0 0 2.2 .86	0 0 0 0	0 0 0 0 3.2				0 0 0 0		
6 7 8 9 10	0 0 0 0	0 0 0 0	0 0 0 0	.81 .54 .04	0 0 0 0 .10	77 11 .98 .22 .11				0 0 0 0		
11 12 13 14	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	.40 .01 .02 4.0 .10	.04 0 0 0 .01				0 0 0 .04		
16 17 18 19 20	0 0 0 0	0 .13 1.5 0	0 0 0 0	0 0 0 0	.01 0 0 0	0 0 0 0		r		0 0 0 0		
21 22 23 24 25	0 0 0 0 .03	0 0 .14 0	0 0 0 0	0 0 0 0	0 0 0 0	.33 .37 1.0 1.3				0 0 0 0		
26 27 28 29 30 31	0 0 0 0 0	0 0 0 0 0	.05 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0				0 0 0 0 0		
TOTAL MEAN MAX MIN AC-FT	.03 .001 .03 .06	1.77 .059 1.5 0	.16 .005 .11 0	4.45 .14 2.2 0 8.8	4.64 .17 4.0 0 9.2	95.56 3.08 77 0 190	0 0 0 0	0 0 0 0	0 0 0 0	.04 .001 .04 0	0 0 0 0	0 0 0 0

CAL YR 1986 TOTAL 1088.22 MEAN 2.98 MAX 141 MIN 0 AC-FT 2160 WTR YR 1987 TOTAL 106.65 MEAN .29 MAX 77 MIN 0 AC-FT 212

CARPINTERIA CREEK BASIN

11119500 CARPINTERIA CREEK NEAR CARPINTERIA, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --CHEMICAL DATA: Water year 1979 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
JAN 1987 08	1300	0.03	716	6.80	13.0	483

ARROYO BURRO CREEK BASIN

11119780 ARROYO BURRO CREEK AT SANTA BARBARA, CA

LOCATION.--Lat 34°26'13", long 119°44'44", in Pueblo Lands of Santa Barbara, Santa Barbara County, Hydrologic Unit 18060013, on right bank 0.2 mi south of State Street on Hope Avenue in Santa Barbara.

DRAINAGE AREA. -- 6.65 mi².

PERIOD OF RECORD. -- October 1970 to current year.

REVISED RECORDS. -- WDR CA-76-1: 1974(M), 1975(P).

GAGE, --Water-stage recorder. Concrete-lined channel with a low-water control. Elevation of gage is 160 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records fair. Small amount of inflow occurs at times from large shopping center that empties water directly into the stream. Partial regulation by Lauro Canyon Reservoir on San Roque Creek.

AVERAGE DISCHARGE. -- 17 years, 2.40 ft 3/s, 1,740 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,850 ft³/s, Mar. 4, 1978, Feb. 16, 1980, from rating curve extended above 50 ft³/s on basis of slope-conveyance study; maximum gage height, 5.67 ft, Mar. 4, 1978; no flow many days in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 5	0915	*132	*2.56				

No flow several days in May, August, and September.

		DISCHARGE,	IN CUI	BIC FEET	PER SECO	OND, WATER MEAN VALU		OBER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEI	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.03	.05	.02	.04	.01	.01	.03	.03	.01	.01	0	.03
2	.03	.03	.05	.03	.04		.04			.02	ŏ	.04
3	.04	.05	.02	.12	.01		,05			.02	ŏ	.02
4	.07	.05	.02	11	.01		.06			,01	Ō	.02
5	.10	.04	.39	.05	.01		.06			.02	Ó	.01
6	.07	.04	.93	4.8	.01		.05			.03	0	.01
7	.05	.02	.02	.34	.01		.07			.02	.01	,01
8	.03	.02	.02	.02	. 02		.06			.02	.01	.02
9	.05	.03	.02	.02	3.7		.07	.01	.02	.03	.01	.02
10	.04	.02	.02	, 02	.94	.01	.05	.01	.02	.04	.03	.04
11	.04	.02	.02	.01	.01		.01			.03	.06	.02
12	.03	.02	.04	.01	.01		.02			.03	.05	.02
13	.03	.03	.05	.02	7.6	, 51	.01			.05	.02	.02
14	.03	.02	.03	.02	.06		.01			.06	.03	,03
15	.05	.05	.03	.05	1.4	.03	.01	.02	.04	.05	.01	.05
16	.04	.01	.03	.04	.01		.01			.05	0	.03
17	.04	4.9	.06	.03	.01		.01			.07	.03	.01
18	.04	3.1	.06	.03	. 02		.01			.05	.01	.01
19	.05	.02	.07	. 04	. 02		.02	.01	.04	.04	.01	0
20	.04	.01	.08	.03	.04	.01	.02	.01	.04	.03	0	.01
21	.05	.02	.01	.01	.04		.01			.05	.01	.01
22	.04	.02	.03	.05	.72		.02			.04	0	.01
23	.03	.02	.03	.03	. 23		.01	. 02		.03	0	.01
24	.04	.02	.03	.04	. 28		.02			.03	.01	.01
25	.03	.05	.03	.01	1.5	.01	.01	.03	.03	.04	.03	.03
26	.03	.01	.04	.02	.02		.01	.05	.02	.03	.08	.04
27	.03	.01	.05	.01	. 01		.01		.01	.02	.02	.01
28	.03	.01	.05	.01	.01		.02	.02	.01	.01	.02	.10
29	.03	.02	.04	.01			.45	.02		.02	.02	.07
30	.04	.01	.03	.02		.02	. 17	.01	.02	.01	.01	,01
31	.04		.06	.01		.03		.01		.01	.02	
TOTAL	1.29	8.72	2.38	16.94	16.75		1.40	.77	.80	. 97	. 50	.72
MEAN	.042	. 29	.077	, 55	.60		.047	.025	.027	.031	.016	.024
MAX	. 10	4.9	. 93	11	7.6		. 45	.08	.05	.07	.08	.10
MIN	.03	.01	.01	.01	.01		.01	0	.01	.01	0	0
AC-FT	2.6	17	4.7	34	33	112	2.8	1.5	1.6	1.9	1.0	1.4

CAL YR 1986 TOTAL 553.73 MEAN 1.52 MAX 82 MIN .01 AC-FT 1100 WTR YR 1987 TOTAL 107.47 MEAN .29 MAX 37 MIN 0 AC-FT 213

ATASCADERO CREEK BASIN

1119940 MARIA YGNACIO CREEK AT UNIVERSITY DRIVE, NEAR GOLETA, CAA, CA

LOCATION. --Lat 34°26'42", long 119°48'10", in Goleta Grant, Santa Barbara County, Hydrologic Unit 18060013, on right bank at University Drive, 0.2 mi east of Patterson Avenue, and 1.5 mi northeast of Goleta.

DRAINAGE AREA, -- 6.35 mi².

PERIOD OF RECORD. -- October 1970 to current year.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 29 to Jan. 5, Jan. 25-28, Aug. 17 to Sept. 3. Records fair. No regulation above station. Some pumping for irrigation.

AVERAGE DISCHARGE. -- 17 years, 1.80 ft 3/s, 1,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,650 ft³/s, Jan. 16, 1978, gage height, 5.87 ft, from rating curve extended above 290 ft³/s on basis of slope-area measurement of peak flow; no flow most of each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 75 ft 3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0345	*45	*1.90				

No flow several months.

		DISCHARGE,	IN CUBIC	FEET		WATER AN VALU		OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1		0	0	0	.25	0		. 33	.32				
2		0	0	0	. 29	0		.33	.20				
3		0	0	.03	, 23	. 25	0		. 14				
4		0	0	1.1	. 25	1.2	0		.05				
5		0	0	. 17	.30	17	0		.01				
6		0	.05	.64	.17	14	0		.06				
7		0	0	.23	.01	1.8		.02	.09				
8		0	0	.11	0	1.6	0		.14				
9		0	0	.05	. 44	1.5	0		0				
10		0	0	.01	. 25	1.4	0		0				
11		0	0	0	0	1.7	0		0				
12		0	0	0	0	.86	0		0				
13		0	0	0	3.2	.36	0		0				
14		0	0	0	. 28	. 23	0		0				
15		0	0	0	.36	. 22	0		0				
16		0	0	0	.01	. 12	0		0				
17		.04	Ō	Ō	0	.10	Ö		Ō				
18		.13	Ō	.04	Ö	.09	ŏ		Ŏ				
19		0	Ŏ	.16	Ö	.05		.03	Ŏ				
20		Ō	Ō	.12	Ō	.07	0		Ö				
21		0	0	.09	0	1.4		. 12	0				
22		Ö	Ŏ	.08	Ö	. 27		.14	0				
23		Ö	Ŏ	.06	Ö	.15		.13	0				
24		ŏ	Ŏ	.01	.04	.11	0		0				
25		ő	Ŏ	.02	.18	.08	ő		0				
		ŭ	·	.02	, 10	.00	v		U				
26		0	0	.05	.06	.03	0		0				
27		0	0	.10	, 15	.06	0		0				
28		0	0	.20	. 14	.41	0		0				
29		0	0	. 26		.04		.33	0				
30		0	0	.29		0		.35	0				
31			0	.32		.02			0				
TOTAL	0	. 17	.05	4.14	6.61	45.12	1	.78	1.01	0	0	0	0
MEAN	Ö	.006	.002	.13	.24	1.46		059	.033	Õ	Ö	ŏ	ŏ
MAX	ŏ	.13	,05	1.1	3,2	17		.35	.32	ŏ	Ö	ŏ	ő
MIN	ō	0	0	- 0	0	ő		0	0	ŏ	ő	ŏ	ŏ
AC-FT	Ō	, 3	. 10	8.2	13	89	;	3,5	2.0	ő	ő	ŏ	ŏ

CAL YR 1986 TOTAL 564.68 MEAN 1.55 MAX 137 MIN 0 AC-FT 1120 WTR YR 1987 TOTAL 58.88 MEAN .16 MAX 17 MIN 0 AC-FT 117

ATASCADERO CREEK BASIN

11120000 ATASCADERO CREEK NEAR GOLETA, CA

LOCATION.--Lat 34°25'29", long 119°48'39", in La Goleta Grant, Santa Barbara County, Hydrologic Unit 18060013, on downstream side of center pier of county road bridge 100 ft downstream from Maria Ygnacio Creek, 1.3 mi upstream from mouth, and 1.3 mi southeast of Goleta.

DRAINAGE AREA, -- 18,9 mi².

PERIOD OF RECORD.--October 1941 to current year. Prior to October 1947, published as "Alascadero Creek near Goleta."

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 8.59 ft, Santa Barbara County benchmark. Prior to Dec. 14, 1967, at site 275 ft downstream, datum 4.00 ft higher. Dec. 14, 1967, to Sept. 30, 1976, at datum 4.00 ft higher; and Oct. 1, 1976, to Sept. 30, 1978, at datum 2.00 ft higher, both at present site.

REMARKS.--Estimated daily discharges: June 9-17. Records fair except those below 1.0 ft³/s, which are poor. No regulation above station. Small diversions for irrigation above station. Some low flow results from return irrigation wastewater.

AVERAGE DISCHARGE.--46 years, 4.79 ft³/s, 3,470 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,380 ft³/s, Jan. 18, 1973, gage height, 17.1 ft, present datum, from rating curve extended above 2,300 ft³/s; maximum gage height, 17.3 ft, from floodmark, Dec. 3, 1974, present datum; no flow some days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 225 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 5	2045	*189	*3.32				

No flow many days during September.

		DISCHARGE,	IN CUB	IC FEET		D, WATER YE. MEAN VALUES		R 1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.13	.05	.09	.11	.09	.18	.24	.29	.06	.09	. 13	.01
2	.12	.05	.08	.09	.09	,20	.22	.25	.06	.05	.05	.01
3	.17	.06	.09	.10	.10	.21	.20	.21	.06	.06	.02	.01
4	.15	,06	.09	15	.12	2.1	.20	.20	.07	.09	.02	0
5	.13	.07	.33	, 64	.11	127	.19	, 20	.10	.04	.02	0
5	,10	.07	.00	, 04	.11	12/	.13	. 20	. 10	.04	.02	U
6	.10	.06	3.7	12	.09	63	.25	. 24	.08	.04	.02	0
7	.15	.07	. 17	1.8	.08	4.1	. 22	, 23	.05	.09	.02	0
8	.15	.08	. 14	. 57	.09	2.7	.34	.34	.04	.09	.01	0
9	, 13	.07	.14	, 55	6.3	2.4	.36	.74	. 04	.09	. 02	0
10	.11	.06	. 13	, 32	2.4	2.1	.41	. 14	.04	. 24	.01	Ō
					_•.	-,-				•	•	-
11	.14	.06	. 11	.31	.30	2.5	.21	.10	.05	.11	.01	0
12	.07	.06	. 12	. 24	.19	1.7	.35	. 11	.05	.07	.02	0
13	.04	.08	.14	. 17	30	2.3	.69	.11	. 04	.06	. 02	0
14	.09	.08	.13	.20	1.4	1.3	. 66	.14	.06	.05	.02	0
15	.17	.08	.11	.20	4.1	1.1	.33	.16	.06	.05	.02	0
		, , ,						.10	.00	.05	.02	·
16	.09	.08	.11	.24	.70	.49	.37	.18	.05	.05	.02	0
17	.08	. 26	. 11	. 20	.36	.41	.26	. 52	.06	.07	.02	0
184	.06	5.8	.11	.11	.19	. 47	,22	.35	.05	. 07	.02	0
19	.05	.21	.12	. 14	.14	.49	.16	. 15	.05	.04	.01	0
20	.06	. 13	. 14	. 26	. 14	.64	.20	.15	. 05	.04	.01	0
21	.12	.10	. 13	.23	. 13	12	.18	, 13	.04	.03	. 02	0
22	.08	.07	.09	.23	.39	1.0	.18	.11	.04	.04	.02	0
23	.06	.06	.08	.22	.17	.60	.23	.09	.03	.03	.02	Ö
24	.05	.05	.09	.19	,66	.41	.31	.10	.04	.02	.01	0
25	.05	.06	.09	.15	1.7	.35	.31	.09	.03	.02	.01	0
23	.0.5	.00	.05	.13	1.7	.03	.51	.09	.03	.02	.01	U
26	.06	.06	.09	.16	. 48	.35	. 23	.06	.04	.03	.01	0
27	.06	.06	.09	.14	,25	.35	.25	.06	.06	.03	.01	0
28	.08	.06	.09	.13	. 17	.33	.32	.23	.06	.03	.01	0
29	.08	.07	.10	.11		.31	. 46	. 24	.06	. 04	,01	0
30	.07	.08	.18	.11		.28	.61	.09	.10	.03	.01	ō
31	.05		.12	.15		.26		.07		.02	.01	
mom47	0.05		7 04	05.0=	50.5 1	224 22	0.40					
TOTAL	2,95	8.14	7.31	35,07	50.94	231.63	9.16	6.08	1.62	1.81	. 63	.03
MEAN	.095	.27	. 24	1.13	1,82	7.47	.31	.20	.054	.058	.020	.001
MAX	. 17	5.8	3.7	15	30	127	.69	.74	. 10	. 24	. 13	.01
MIN	.04	.05	.08	.09	.08	. 18	. 16	.06	.03	.02	.01	0
AC-FT	5,9	16	14	70	101	459	18	12	3,2	3.6	1.2	.06

CAL YR 1986 TOTAL 1713.39 MEAN 4.69 MAX 254 MIN .02 AC-FT 3400 WTR YR 1987 TOTAL 355.37 MEAN .97 MAX 127 MIN 0 AC-FT 705

SAN JOSE CREEK BASIN

11120500 SAN JOSE CREEK NEAR GOLETA, CA

LOCATION.--Lat 34°27'33", long 119°48'29", in La Goleta Grant, Santa Barbara County, Hydrologic Unit 18060013, on right bank 1.1 mi downstream from unnamed tributary and 1.7 mi northeast of Goleta.

DRAINAGE AREA. -- 5.51 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1941 to current year.

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE.--Water-stage recorder and concrete low-water control. Datum of gage is 95.61 ft, Santa Barbara County Road Department datum. Prior to Dec. 24, 1955, at datum 5.50 ft higher. Dec. 24, 1955, to Jan. 10, 1960, at datum 1.5 ft higher. Prior to Oct. 1, 1971, at site 75 ft downstream.

REMARKS.--Estimated daily discharges: Mar. 9-11, Aug. 3 to Sept. 8. Records fair except those for periods of estimated daily discharges, which are poor. No regulation above station. Many small diversions above station for irrigation.

AVERAGE DISCHARGE. -- 46 years, 2.10 ft 3/s, 1,520 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 2,000 ft³/s, Jan. 25, 1969, gage height, 10.10 ft, from rating curve extended above 400 ft³/s on basis of slope-area measurement at gage height 9.32 ft; maximum gage height, 12.74 ft, present datum, Jan. 21, 1943; no flow at times in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0445	*87	*4.08				

Minimum daily, 0.02 ${\rm ft}^3/{\rm s}$, several days in November and September.

		DISCHARGE,	IN CUBIC	FEET		D, WATER MEAN VALU		TOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	AP	R	MAY	JUN	JUL	AUG	SEP
1	.33	.05	. 26	. 64	.27	.65	.2	2	.32	.31	.06	.04	.08
1 2	.32	.02	,16	. 54	,33	,65	. 2		.32	.25	.06	.04	.08
3	.33	,02	. 23	,46	,24	,65	.2		.32	.28	.06	.08	.08
4	.16	.02	.29	1,1	,15	.66	. 2		.32	.21	.05	.08	.08
5	.12	.10	.13	. 84	.10	16	.2		.32	. 23	.13	.08	.06
6	.14	.07	.50	, 92	,10	35	. 2	4	.32	. 25	.08	.08	.05
7	.18	.04	.48	.96	.22	3,6	. 2		.29	.38	.06	.08	.04
8	.24	.03	. 44	.67	.11	1.8	.1		.25	. 43	.06	.08	.03
ğ	.10	.08	.31	. 57	,16	1.3	.1		.25	.32	.06	.08	.02
10	.23	.14	. 47	.62	.78	.95	.1		.25	.39	.06	.08	.02
10	. 23	.14	.47	, 02	./0	.83	. 1	.0	.23	.59	.00	.00	.02
11	, 25	.11	.48	.65	.64	. 80	. 2	3	.22	.38	.07	.08	.02
12	.21	.05	.33	.65	.56	.80	. 2	.5	.07	.37	.09	.08	.02
13	.06	.04	.19	,65	1.4	.65	. 3		.10	.34	.06	.08	.02
14	.06	.05	.36	. 58	1.2	.65	. 2		.11	.39	.06	.08	.02
15	.13	.07	.40	. 56	.76	.65	,1		.18	.31	.06	.08	.02
16	.16	.15	.39	. 53	.60	. 59	.2	.1	.25	.21	.04	.08	.02
17	.04	,25	.26	.48	.56	.56	,2		.28	.14	.04	.08	.03
18	.19	.61	.26	. 48	.36	. 56	.2		.27	.14	.04	.08	.03
19	.15	.74	.34	, 53	,35	, 56	.1		.26	.14	.07	.08	.03
20	.21	.75	.32	.37	,34	. 56	.2		.38	.13	.07	.08	.03
20	.21	./3	.52	,	, 54	. 30	. 2	.5	. 30	. 13	.00	.00	.03
21	. 14	.75	.31	. 44	. 44	.88	. 2	5	.40	.10	.06	.08	.03
22	.08	, 56	, 55	. 53	.35	.92	. 1	.0	.23	.10	.06	.08	.03
23	.06	.74	. 50	.45	.50	.65	.1	.3	.20	.10	.06	.08	.03
24	.06	.76	.72	. 45	.55	. 56	.1		. 17	.10	.06	.08	.03
25	.12	.73	. 53	. 43	.54	.35	. 1		.21	.10	.04	.08	.03
26	.06	.70	.40	. 52	.70	.32	.1	9	,19	. 10	.04	.08	.03
27	.10	.55	.43	. 44	,65	.32	.3		.24	.08	.04	.08	.03
28	.08	.42	. 54	. 40	.65	.32	. 4		. 27	.06	.10	.08	.03
29	.12	.29	. 48	.37	.03	.32	.3		.26	.06	.10	.08	.06
30	.05	.37	.46	.34		,32	.3		.32	.06	.10	.08	.04
31	.08	.57	.40	. 57		.24			.34	.00	.07	.08	
V 2									.04		.07	.00	
TOTAL	4.56	9.26	11,92	17.74	13.61	72.84	7.0	1	7.91	6.46	2.02	2.40	1.12
MEAN	.15	.31	.38	. 57	.49	2,35	. 2	3	. 26	.22	.065	.077	.037
MAX	.33	.76	.72	1.1	1.4	35	. 4		. 40	, 43	. 13	.08	.08
MIN	.04	,02	. 13	.34	.10	. 24	. 1		.07	.06	.04	.04	.02
AC-FT	9.0	18	24	35	27	144	1		16	13	4.0	4.8	2,2
									-		•		. =

CAL YR 1986 TOTAL 1082.07 MEAN 2.96 MAX 157 MIN .02 AC-FT 2150 WTR YR 1987 TOTAL 156.85 MEAN .43 MAX 35 MIN .02 AC-FT 311

SAN JOSE CREEK BASIN

11120500 SAN JOSE CREEK NEAR GOLETA, CA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. --CHEMICAL DATA: Water year 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 1986						
23 DEC	1320	0.06	1600	7.3	16.5	1190
02	1540	0.13	1730	7.9	12.5	1330
JAN 1987 06 FEB	1010	0.53	1190	7.8	10.5	891
06	1130		1650	7.7	11.0	1460
MAR	1010		1050	7.0	40.5	
11 APR	1010	0.80	1050	7.9	12.5	685
10	1125	0.16	1380	8.1	16.0	1020
MAY	4005					4400
11 JUN	1035	0.25	1390	7.9	17.5	1120
16	1415	0.14	2020	7.6	21.0	1640
AUG 03	1355	0.08	2710	7.7	20.0	2190
SEP 04	1130	0.08	2550	7.6	20.0	1980

SAN JOSE CREEK BASIN

11120510 SAN JOSE CREEK AT GOLETA, CA

LOCATION.--Lat 34°25'49", long 119°49'16", in La Goleta Grant, Santa Barbara County, Hydrologic Unit 18060013, on right bank south of Hollister Avenue on Kellogg Avenue and 0.5 mi southeast of Goleta.

DRAINAGE AREA. -- 9.42 mi².

PERIOD OF RECORD. -- October 1970 to current year.

REVISED RECORDS. -- WDR CA-75-1: 1973(M).

GAGE, -- Water-stage recorder and concrete channel. Elevation of gage is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 10 to Dec. 2, Jan. 5 to Feb. 19. Records fair except those for estimated daily discharges, which are poor. No regulation above station. Diversions for irrigation and domestic use above station.

AVERAGE DISCHARGE. -- 17 years, 3.18 ft 3/s, 2,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,330 ft³/s, Mar. 4, 1978, gage height, 5.65 ft, from rating curve extended above 400 ft³/s on basis of slope-conveyance computation of flow in concrete channel at gage height 8.00 ft; no flow for long periods in each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft 3/s and maximum (*), from rating curve extended as explained above:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar, 5	1115	*112	*2.86				

No flow many days.

		DISCHARGE,	IN CUE	SIC FEET		WATER		OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	1	APR	MAY	JUN	JUL	AUG	SEP
1	.05	0	0	.03	.02	.21		.30	. 17		0		
2	.02	Ö	Ŏ	.08	.02	.18		.32	.07		Ö		
3	.06	Ŏ	Ŏ	.08	.02	.19		. 29	.01		0		
4	.07	Ŏ	Ö	3.4	,02	1.0		. 28	0.01		Ö		
5	0.07	Ŏ	.20	.50	.02	52		.25	0		0		
	Ū	Ů	.20	. 50	.02	32		. 23	U		U		
6	0	0	1.5	.40	.02	25		. 36	0		0		
7	0	0	. 24	2.0	.02	4.5		.41	0		0		
8	0	0	, 26	.10	.02	1.8		. 14	0		0		
9	0	0	.06	.02	.05	1.2		. 25	0		0		
10	0	0	. 11	.02	1.0	.90		. 13	0		0		
		_											
11	0	0	.28	.02	.07	.74		. 10	0		0		
12	0	0	.12	.02	.06	.65		. 11	0		0		
13	0	0	.03	.02	.05	1.0		. 19	0		0		
14	0	0	0	.02	.04	.84		.12	0		0		
15	0	0	.32	.02	.03	.64		. 10	0		0		
16	0	0	.37	.02	.03	. 58		. 09	0		0		
17	Ŏ	.10	.22	.02	.03	.57		. 11	,15		.02		
18	Ö	5.0	.15	.02	.03	,56		. 13	,07		0		
19	ŏ	.20	.10	.02	.09	.51		. 10	.01		ŏ		
20	Ö	0 2	.18	.02	.10	.50		.06	.04		0		
	·	v	.10	.02	, 20	.50	•	. 00	.04		U		
21	.02	0	.03	.02	.14	5.0		. 12	.13		0		
22	0	0	.10	.02	. 17	.90		.02	.05		0		
23	0	0	.13	.02	.30	. 57	0		0		0		
24	0	0	.07	.02	.46	.46	0		0		0		
25	0	0	.15	.02	, 49	.35	0		0		0		
26	0	0	.02	.02	.25	.34	0		0		0		
27	0	Ö	.03	.02	.25	.42	0		0		0		
28	.10	Ö	.05	.02	.23		-						
29		0	.12		. 22	.40		.05	0		0		
	.03			.02		.39		.05	0		0		
30	.07	0	.08	.02		.32		. 29	0		0		
31	0		.03	.02		.32	-		0		0		
TOTAL	.42	5.30	4.95	7.05	4.02	103.04	4.	.37	.70	0	.02	0	0
MEAN	.014	.18	.16	.23	. 14	3.32		15	.023		.0006	ō	ŏ
MAX	.10	5.0	1.5	3.4	1.0	52		41	.17	ŏ	.02	ŏ	ŏ
MIN	0	0	- 0	,02	.02	.18		0	0	ŏ	. 02	ŏ	Ö
AC-FT	. 8	11	9.8	14	8.0	204	£	3.7	1.4	ő	.04	ő	Ö
				- '		207	•	/	7	ŭ	.07	v	•

CAL YR 1986 TOTAL 1106.66 MEAN 3.03 MAX 181 MIN 0 AC-FT 2200 WTR YR 1987 TOTAL 129.87 MEAN .36 MAX 52 MIN 0 AC-FT 258

11121000 SANTA YNEZ RIVER AT JAMESON LAKE, NEAR MONTECITO, CA

LOCATION.--Lat 34°29'32", long 119°30'25", in NE 1/4 NW 1/4 sec.28, T.5 N., R.25 W., Santa Barbara County, Hydrologic Unit 18060010, on upstream face of Juncal Dam, 6.5 mi north of Carpinteria, and 8 mi northeast of Montecito.

DRAINAGE AREA. -- 13.9 mi², excludes that of Alder Creek.

PERIOD OF RECORD.--December 1930 to current year. Prior to October 1938, published as "at Juncal Reservoir, near Montecito."

GAGE, -- Two water-stage recorders. Datum of lake gage is 2,021.6 ft above National Geodetic Vertical Datum of 1929 (U.S. Bureau of Reclamation bench mark). Supplementary gage and sharp-crested weir on outlet conduit of lake release, at different datum.

REMARKS.--Records of total inflow represent all water reaching Jameson Lake, including precipitation on the lake. Total inflow computed on basis of records of storage, diversion (draft) to city of Montecito, spill and release to river, evaporation, and seepage. Records of net inflow exclude precipitation on lake surface. Monthly evaporation from lake surface computed on basis of evaporation from U.S. Weather Bureau Class A land pan. Area and capacity tables are based on survey made in 1980. Lake capacity at spillway level, gage height 223.82 ft, 5,725 acre-ft. Dead storage, 32 acre-ft, below lowest outlet at gage height 139.0 ft included in these records. There is no regulation or diversion above station. At times flow of Alder Creek, which enters Santa Ynez River 2 mi downstream from Juncal Dam, is diverted at elevation 2,250 ft through a tunnel to Jameson Lake and is included in these records.

COOPERATION, -- Reservoir-operation records and related data were provided by Montecito Water District.

AVERAGE DISCHARGE. -- 56 years (water years 1932-87), 7.09 ft 3/s, 5,140 acre-ft/yr.

MONTHLY NET INFLOW, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	Date	Eleva- tion (feet) ^a	Contents (acre- feet)	Change in contents (acre- feet)	Draft (acre- feet)	Spill and release (acre- feet)	Evapo- ration and seepage (acre- feet)	Total inflow (acre- feet)	Rain on reservoir (acre- feet)	Net inflow (acre- feet)
Sept.	30	2,217.81	4,970							
Oct.	31	2,216.64	4,830	-140	141	0	19	20	4	16
Nov.	30	2,215.58	4,700	-130	152	0	15	37	13	24
Dec.	31	2,214.75	4,600	-100	133	0	7	40	3	37
CAL	YR 1986			+1,720	1,300	5,574	409	8,993	262	8.731
Jan.	31	2,214.69	4,590	-10	77	0	7	44	25	49
Feb.	28	2,214.59	4,580	-10	73	0	20	83	27	56
Mar.	31	2,216.04	4,760	+180	12	50	36	278	14	264
Apr.	30	2,215.21	4,660	-100	124	0	40	64	0	64
May	31	2,214.02	4,520	-140	139	0	47	46	0	46
June	30	2,212.20	4,320	-200	172	0	73	45	0	45
July	31	2,210.02	4,070	-250	187	0	70	7	0	7
Aug,	31	2,207.41	3,800	-270	228	0	73	31	0	31
Sept.	30	2,205.02	3,540	-260	211	0	62	13	0	13
WTR	YR 1987			-1,430	1,649	50	469	738	86	652

a Elevation at 0800.

NOTE, --For months when inflow to the lake was small and other quantities were large, preliminary computations may indicate negative net inflow. This arises primarily from the difficulty of computing net inflow as the residual of several large quantities, which are not conducive to precise measurement. When this occurs, evaporation and seepage is adjusted to produce non-negative inflows.

11122000 SANTA YNEZ RIVER ABOVE GIBRALTAR DAM. NEAR SANTA BARBARA. CA

LOCATION. --Lat 34°31'34", long 119°41'08", in NW 1/4 SW 1/4 sec.11, T.5 N., R.27 W., Santa Barbara County, Hydrologic Unit 18060010, on upstream face of Gibraltar Dam, 7 mi north of Santa Barbara.

DRAINAGE AREA, -- 216 mi².

PERIOD OF RECORD. -- April 1920 to current year. November 1903 to November 1918 (fragmentary) at river station at damsite; records not equivalent because records since April 1920 are based on operation of Gibraltar Reservoir, and since December 1930, Jameson Lake. Prior to October 1945, published as "Santa Ynez River near Santa Barbara."

REVISED RECORDS. -- WDR CA-86-1: 1934-43.

GAGE.--Two water-stage recorders. Datum of gage is National Geodetic Vertical Datum of 1929. Supplementary gage and sharp-crested weir on diversion from reservoir at different datum. See WSP 1735 for history of changes on both gages prior to Oct. 1, 1955. Spill and release measured by streamgaging station below dam (station 11123000).

REMARKS.--Records of total inflow represent all water reaching Gibraltar Reservoir, including precipitation on reservoir. Total inflow computed on basis of records of storage, diversion (draft) to city of Santa Barbara, spill and release to river, evaporation, and seepage. Records of net inflow exclude precipitation on reservoir surface. Monthly evaporation from reservoir surface computed on basis of evaporation from U.S. Weather Bureau Class A land pan. Area and capacity tables are based on survey made in October 1979. Reservoir capacity at spillway level, elevation, 1,399.82 ft, 8,940 acre-ft. Lowest outlet at elevation 1,333.86 ft. Flow regulated by Jameson Lake (station 11121000) since December 1930.

COOPERATION, -- Reservoir - operation records and related data were provided by city of Santa Barbara.

MONTHLY NET INFLOW, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	Date	Eleva- tion (feet)a	Contents (acre- feet)	Change in contents (acre- feet)	Draft (acre- feet)	Spill and release (acre- feet)	Evapo- ration and seepage (acre- feet)	Total inflow (acre- feet)	Rain on reservoir (acre- feet)	Net inflow (acre- feet)
Sept.	30	1,393,31	6,770							
Oct.	31	1,391.42	6,370	-400	353	6	61	20	0	20
Nov.	30	1,390.23	6,110	-260	232	0	46	18	17	1
Dec.	31	1,389.23	5,910	-200	190	8	24	22	7	15
CAL	YR 1986	÷= -=		+3,580	3,820	56,208	1,004	64,612	456	64,156
Jan.	31	1,389.60	5,980	+70	9	0	21	100	42	58
Feb.	28.,	1,389.10	5,880	-100	269	0	22	191	35	156
Mar.	31	1,391.21	6,320	+440	284	0	45	769	160	609
Apr,	30	1,389.04	5,870	-450	603	0	90	243	0	243
May	31	1,385.67	5,190	-680	635	0	99	54	0	54
June	30	1,382.96	4,680	-510	435	0	112	37	0	37
July	31	1,379.57	4,050	-630	522	0	108	0	0	0
Aug.	31	1,376.71	3,560	-490	368	28	110	16	0	16
Sept.	30	1,374.26	3,150	-410	294	29	87	0	0	0
WTR	YR 1987			-3,620	4,194	71	825	1,470	261	1,209

a Elevation at 0800.

NOTE. -- For months when inflow to the reservoir was small and other quantities were large, negative figures of inflow may appear. This arises primarily from the difficulty of computing inflow as the residual of several larger quantities, which are not conducive to precise measurement. When this occurs, evaporation and seepage is adjusted to produce non-negative inflows.

11123000 SANTA YNEZ RIVER BELOW GIBRALTAR DAM, NEAR SANTA BARBARA, CA

LOCATION.--Lat 34°31'28", long 119°41'11", in SW 1/4 SW 1/4 sec.11, T.5 N., R.27 W., Santa Barbara County, Hydrologic Unit 18060010, on left bank 700 ft downstream from Gibraltar Dam and 7 mi north of Santa Barbara.

DRAINAGE AREA. -- 216 mi².

PERIOD OF RECORD, --April 1920 to current year (monthly discharge only prior to October 1941).

REVISED RECORDS. -- WDR CA-86-1: 1934-43.

GAGE.--Two water-stage recorders. Datum of gage on main channel is 1,227 ft above National Geodetic Vertical Datum of 1929. Supplementary gage and sharp-crested weir on the release channel from Gibraltar Dam to river at different datum. See WSP 1735 for history of changes on both gages prior to May 20, 1958.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Jameson Lake (station 11121000) and Gibraltar Reservoir (station 11122000). City of Santa Barbara diverted 4,190 acre-ft during current year from Gibraltar Reservoir; Montecito Water District diverted 1,650 acre-ft during current year from Jameson Lake.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 54,200 ft³/s, Jan. 25, 1969, gage height, 25.8 ft, from rating curve extended above 2,100 ft³/s on basis of computations of flow from gate openings and flow over dam at gage heights 17.5 and 25.8 ft; no flow at times in most years.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 8.6 ft³/s, Aug. 22 (return flow from release weir), gage height, 8,22 ft; no flow most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

						LITTINIA AL	TOTO						
DAY	OCT	NOV	DEC	JAN	FEB	M/	AR	APR	MAY	JUN	JUL	AUG	SEP
1	0		0									0	.10
2	Ŏ		.09									ō	0
3	Ö		.07									Ö	ō
4	ŏ		.10									Ŏ	.38
5	Ŏ		.24									Ö	.39
-	•											•	
6	0		. 47									0	.39
7	Ō		. 52									0	.39
8	0		. 52									0	.39
9	0		. 52									0	.39
10	0		. 52									0	.39
11	0		. 52									0	.39
12	0		.33									0	.39
13	0		0									.09	.39
14	0		0									.28	.39
15	0		0									.38	.39
	_		_										
16	0		0									.38	.39
17	.21		0									.37	.39
18	.60		0									.38	.39
19	.61		0									.38	.39
20	. 56		0									.30	. 39
21	. 52		0									.60	.39
22	.35		0									5.1	.39
23	0.33		0									2.6	.39
24	ő		0									.39	.39
25	ŏ		0									.39	.90
2.5	Ū		·									.00	.00
26	0		0									.39	1.1
27	Ö		Ō									.39	1.1
28	Ö		Ö									,39	1.0
29	Ō		Ö									.39	, 95
30	0		0									.39	1.1
31	0		0									.39	
MOMAY	0.05		0.00	•	^		•	^	^	^		13.98	11 10
TOTAL	2.85	0	3.90	0	0		0	0 0	0	0	0		14.43
MEAN	.092	0	. 13	0	0		0	-	0	0	0	.45	.48 1.1
MAX	.61	0	. 52	0	0		0	0	0	0	0	5.1 0	
MIN	0 5.7	0	0 7.7	0 0	0		0	0 0	0	0 0	0 0	28	0 29
AC-FT	3.7	0	1.1	U	U		U	U	U	U	U	20	29
CAL YR	1986 TOTAL	28304.7	3 MEAN	77.5	MAX	4500	MIN 0	AC-FT	56140				

CAL YR 1986 TOTAL 28304.73 MEAN 77.5 MAX 4500 MIN 0 AC-FT 56140 WTR YR 1987 TOTAL 35.16 MEAN .096 MAX 5.1 MIN 0 AC-FT 70

11123500 SANTA YNEZ RIVER BELOW LOS LAURELES CANYON, NEAR SANTA YNEZ, CA

LOCATION. -- Lat 34°32'37", long 119°51'50", in San Marcos Grant, Santa Barbara County, Hydrologic Unit 18060010, on left bank 0.3 mi downstream from Los Laureles Canyon Creek, 10 mi downstream from Gibraltar Reservoir, and 13.3 mi east of Santa Ynez.

DRAINAGE AREA. -- 277 mi 2.

PERIOD OF RECORD. -- April 1947 to current year. Monthly discharge only for some periods, published in WSP 1315-B.

GAGE. -- Water-stage recorder. Datum of gage is 787.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Jameson Lake and Gibraltar Reservoir (stations 11121000 and 11122000). Water diverted out of basin from these reservoirs to cities of Montecito and Santa Barbara for municipal supply. Low flow affected by intermittent pumping for irrigation from infiltration gallery in riverbed at station.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 67,500 ft³/s, Jan. 25, 1969, gage height, 18.88 ft, from rating curve extended above 11,600 ft³/s on basis of peak flow for station below Gibraltar Dam plus tributary inflow; no flow for several months in each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 52 ft3/s, Mar. 6, gage height, 4.23 ft; no flow several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

MEAN VALUES												
DAY O	CT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						0 0 0 0 1.4	.04 .04 .04 .04					
6 7 8 9 10						19 2.0 .58 .13 .09	.02 .01 0 0					
11 12 13 14 15						.07 .06 .05 .05	0 0 0 0					
16 17 18 19 20						.06 .05 .05 .05	0 0 0 0					
21 22 23 24 25						.07 .09 .08 .07	0 0 0 0					
26 27 28 29 30						.06 .05 .05 .05 .04	0 0 0 0					
TOTAL MEAN MAX MIN AC-FT	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	24.41 .79 19 0 48	.22 .007 .04 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
CAL YR 1986 WTR YR 1987	TOTAL TOTAL	26984.63 24.63	MEAN 7	73.9 .068	MAX 47 MAX	90 MIN 19 MIN		53520 49				

11124500 SANTA CRUZ CREEK NEAR SANTA YNEZ, CA

LOCATION.--Lat 34°35'48", long 119°54'28", in San Marcos Grant, Santa Barbara County, Hydrologic Unit 18060010, on right bank 0.6 mi downstream from Pine Canyon and 9.9 mi east of Santa Ynez.

DRAINAGE AREA. -- 74.0 mi².

PERIOD OF RECORD. --October 1941 to current year. Monthly discharge only for some periods, published in WSP 1315-B.

GAGE. --Water-stage recorder. Datum of gage is 783.38 ft above National Geodetic Vertical Datum of 1929. See WSP 1735 for history of changes prior to Sept. 27, 1952. Sept. 27, 1952, to June 24, 1969, at datum 3.25 ft higher.

REMARKS .-- No estimated daily discharges. Records good. No regulation or diversion upstream from station.

AVERAGE DISCHARGE. -- 46 years, 17.7 ft 3/s, 12,820 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,050 ft³/s, Feb. 24, 1969, gage height, 14.45 ft, from floodmark, present datum, from rating curve extended above 2,500 ft³/s on basis of slope-area measurement at gage height 14.16 ft; no flow at times since 1953.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft³/s and maximum (*), from rating curve extended above 160 ft³/s on basis of slope-area measurement at gage height 12.10 ft:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0900	*203	*8.32				

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow many days.

	I	DISCHARG	E, IN CUE	SIC FEEL P		EAN VALUE	S COLOB	EK 1980 1) SEPIEMBE	W 1901		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4			0	.25	1.8	3.0	2.6	1.1	.05			
2			0	.28	1.7	2.8	2.7	1.1	.05			
3			0	.31	1.7	2.8	3.2	1.0	.05			
4			0	1,6	1.6	2.7	3.5	.75	.05			
5			0	3.5	1.5	17	3.1	.70	.05			
6	•		0	3.7	1.4	118	2.9	. 64	.05			
7			0	5.1	1.3	37	2.6	. 58	.05			
7 8 9			0	3.9	1.3	17	2.6	.45	.05			
9			Ö	2.5	1.6	11	2.4	. 43	. 04			
10			Ō	1.9	2.0	7.5	2.4	.38	. 04			
11			0	1.6	2.5	5.9	2.5	.31	.04			
12			ŏ	1.5	2.4	5.0	2.7	. 29	.03			
13			Ö	1.4	3.6	4.6	2.3	, 23	.03			
14			Ö	1.3	15	4.4	2.2	.20	.03			
15			Ŏ	1.3	9.0	4.6	2.0	. 18	.02			
13			U	1.5	9.0	4.0	2.0	. 10	.02			
16			0	1.2	6.7	4.0	1.7	. 14	.02			
17			0	1,2	5.7	3.7	1.7	.13	.02			
18			0	1.2	4.6	3.4	1.8	. 11	.01			
19			Õ	1,2	4.0	3.2	1.7	.09	.01			
20			.03	1.1	3.5	3.1	1.7	.09	0			
								.00	•			
21 '			.05	1.2	3,2	4.6	1.7	.06	0			
22			.05	1.3	3.1	5.5	1.4	.05	0			
23			.05	1,4	3.4	4.4	1.2	.05	0			
24			.08	1,3	4.2	4.0	1.2	.05	0			
25			.10	1.3	4.1	3.4	1.2	.05	0			
26			.11	1.3	3.8	3.1	1.0	.05	0			
27			. 14	1,3	3.3	3.0	.99	.05	Ö			
28			.16	1.4	3.1	3.0	1.0	.05	Ŏ			
29			.16	1.4		2.9	.92	.05	ŏ			
30			.20	1.6		2.8	.93	.05	ő			
31			.22	1.8		2.7		.05				
mamır										_	_	_
TOTAL	0	0	1.35	51.34	101.1	300.1	59.84	9.46	.69	0	0	0
MEAN	Ō	0	.044	1.66	3.61	9.68	1.99	.31	.023	0	0	0
MAX	0	0	.22	5.1	15	118	3,5	1.1	.05	0	0	0
MIN	0	0	0	. 25	1.3	2.7	. 92	.05	0	0	0	0
AC-FT	0	0	2.7	102	201	595	119	19	1.4	0	0	0

CAL YR 1986 TOTAL 7017.25 MEAN 19.2 MAX 611 MIN 0 AC-FT 13920 WTR YR 1987 TOTAL 523.88 MEAN 1.44 MAX 118 MIN 0 AC-FT 1040

11125500 LAKE CACHUMA NEAR SANTA YNEZ. CA

LOCATION. -- Lat 34°34'57", long 119°58'47", in Lomas de la Purification Grant, Santa Barbara County, Hydrologic Unit 18060010, at Bradbury Dam on Santa Ynez River, on upstream face near left end of dam, and 6.1 mi east of Santa Ynez. DRAINAGE AREA, --417 mi².

PERIOD OF RECORD.--November 1952 to current year. Prior to October 1985, only monthend elevations and contents and total diversions published. November 1952 to October 1960, published as "Cachuma Reservoir near Santa Ynez."

GAGE, --Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (U.S. Bureau of Reclamation bench mark). Prior to Oct. 1, 1965, nonrecording gage.

REMARKS. -- Reservoir is formed by earthfill dam. Storage began November 1952. Dead storage below outlet gage to river, elevation, 600 ft, 3,114 acre-ft, included in contents. Capacity below sill of inlet to Tecolote tunnel, elevation, 660 ft, 32,514 acre-ft; below spillway level, elevation, 720 ft, 125,292 acre-ft; and below top of four radial gates, elevation, 750 ft, 204,874 acre-ft. Water is released from outlet to Santa Ynez River to satisfy downstream water rights. Water diverted to Tecolote tunnel for use by city of Santa Barbara, nearby communities, and Santa Ynez River Water Conservation District, and to Cachuma recreation area, COOPERATION .-- Reservoir elevation, contents, and diversion figures were provided by U.S. Bureau of Reclamation. Contents not rounded to U.S. Geological Survey standards.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 221,100 acre-ft, Feb. 24, 1969, elevation, 755.11 ft; minimum since initial filling in April 1958, 105,300 acre-ft, Dec. 24, 25, 1977, elevation 710.56 ft. EXTREMES FOR CURRENT YEAR .-- Maximum contents, 171,791 acre-ft, Oct. 1, elevation, 738.63 ft; minimum, 128,352 acre-ft, Sept. 30, elevation, 721.35 ft.

> Capacity table (elevation, in feet NGVD, and contents, in acre-feet) (Based on survey dated January 1953, by U.S. Bureau of Reclamation)

720	125,292	745	189,827
725	136,861	750	204,874
730	149,099	755	220,694
735	162,004	760	237,200
740	175 560		•

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 INSTANTANEOUS OBSERVATIONS AT 0800

				TND	TANTANEOUS	ODDEKAV	TY CMOTT	0800				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	171791	168980	166358	164186	162057	160713	160424	156530	152317	145904	140126	132644
2	171736	168898	166277	164106	162004	160687	160318	156426	152138	145756	139763	132481
3	171681	168736	166224	164026	161925	160661	160187	156323	151985	145583	139376	132270
4	171599	168654	166089	164106								
					161872	160634	160055	156220	151627	145434	138968	131968
5	171544	168519	166008	164026	161846	160898	159923	156143	151248	145261	138561	131829
6	171489	168410	166008	163973	161741	161240	159818	155988	150869	145113	138154	131667
7	171380	168301	165901	164026	161688	161504	159712	155833	150489	144964	137723	131505
8	171325	168139	165820	164000	161609	161504	159581	155704	150110	144840	137340	131343
9	171243	168030	165740	163946	161556	161504	159502	155575	149731	144717	136909	131181
10	171188	167895	165632	163920	161530	161425	159423	155472	149352	144568	136506	131019
11	171078	167786	165498	163893	161477	161398	159318	155368	148999	144445	136316	130857
12	170996	167650	165417	163867	161398	161346	159214	155239	148899	144247	136103	130695
13	170914	167542	165391	163760	161346	161293	159083	155110	148749	144123	135914	130556
14	170832	167406	165337	163734	161425	161240	158979	154981	148599	144001	135701	130441
15	170695	167271	165310	163654	161451	161214	158822	154852	148474	143854	135535	130302
16	170585	167164	165256	163494	161425	161082	158666	154723	148323	143707	135369	130140
17	170476	167056	165202	163414	161346	161082	158509	154568	148148	143536	135227	130024
18	170366	167137	165122	163308	161240	161056	158379	154439	147948	143340	135061	129862
19	170257	167083	165068	163228	161187	161003	158196	154284	147773	143193	134896	129748
20	170147	167083	165041	163122	161108	160950	158066	154155	147573	143021	134730	129633
									211010	1,0021	201700	120000
21	170065	167030	164961	163042	161056	160924	157910	154053	147398	142850	134564	129519
22	169956	166949	164853	162935	161003	160924	157753	153951	147197	142630	134353	129427
23	169875	166895	164826	162856	160924	160898	157623	153823	147047	142385	134142	129290
24	169767	166868	164772	162776	160898	160871	157440	153696	146847	142189	133955	129176
25	169658	166788	164665	162669	160924	160819	157284	153517	146697	141993	133744	129061
	100000	100,00	104005	202000	100024	100013	137204	150517	140097	141333	155744	129001
26	169577	166761	164612	162589	160898	160766	157127	153364	146498	141797	133580	128924
27	169468	166653	164532	162510	160819	160713	156971	153236	146399	141627	133393	128764
28	169387	166573	164452	162403	160766	160661	156814	153083	146275	141457	133253	128627
29	169251	166519	164399	162323		160608	156684	152904	146152	141288	133112	128490
30	169170	166438	164319	162244		160555	156633	152725	146028	140852	132972	128352
31	169061		164239	162137		160503		152521		140489	132832	
1417	474764	100000	100000	404405	40005							
MAX	171791	168980	166358	164186	162057	161504	160424	156530	152317	145904	140126	132644
MIN	169061	166438	164239	162137	160766	160503	156633	152521	146028	140489	132832	128352
a	737.63	736,66	735.84	735.05	734.53	734.43	732.95	731.35	728.77	726.51	723.29	721.35
b	-2812	-2623	-2199	-2102	-1371	-263	-3870	-4112	-6493	-5539	-7657	-4480
C	1975	1964	1756	2001	1476	1435	3338	2823	3527	3528	4061	3287
	1986 b	+33197										
WTR YR	1987 Ъ	-43521										

-43521 WIR YR 198/

a Elevation in feet NGVD, at end of month.

b Change in contents, in acre-feet.

c Diversions, in acre-feet.

11128300 ALISAL RESERVOIR NEAR SOLVANG, CA

LOCATION. -- Lat 34°32'56", long 120°07'45", in NE 1/4 NW 1/4 sec.4, T.5 N., R.31 W., Santa Barbara County, Hydrologic Unit 18060010, in cove on right bank 0.4 mi upstream from reservoir spillway and 3 mi south of Solvang.

DRAINAGE AREA. -- 7.83 mi².

PERIOD OF RECORD. -- December 1971 to current year. Prior to October 1985, only monthend elevations and contents published.

GAGE .-- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS. -- Lake is formed by earthfill dam. Storage began Dec. 19, 1970. Usable capacity, 2,260 acre-ft between bottom of outlet gate at elevation 555,70 ft, and crest of spillway at elevation 599.88 ft. Dead storage, 110 acre-ft. Inflow must total 150 acre-ft during any month between November and June in order to store flows for that water year.

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents, 2,770 acre-ft, Mar. 4, 1978, elevation, 604.31 ft; minimum, 748 acre-ft, Nov. 8-10, 1972, elevation, 577.15 ft.

EXTREMES FOR CURRENT YEAR. -- Maximum contents, 2,380 acre-ft, Mar. 15, elevation, 599.98 ft; minimum, 2,120 acreft, many days, elevation, 597.09 ft.

> Capacity table (elevation in feet NGVD, and contents, in acre-feet) (Based on data provided by Santa Barbara County Flood Control District in 1971)

> > 595 1,940 2,380 600 2,840 605

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 INSTANTANEOUS OBSERVATIONS AT 1800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2180	2150	2130	2120	2130	2140	2370	2350	2320	2270	2210	2160
2	2180	2150	2120	2120	2130	2140	2370	2350	2310	2270	2210	2160
3	2180	2150	2120	2120	2130	2140	2370	2350	2310	2260	2210	2160
4	2180	2140	2120	2130	2130	2140	2370	2350	2310	2260	2210	2150
5	2180	2140	2120	2130	2130	2210	2370	2350	2310	2260	2210	2150
,	2100	2140	2120	2130	2130	2210	2370	2330	2310	2200	2210	2150
6	21,80	2140	2130	2130	2130	2340	2370	2350	2310	2260	2200	2150
7	2170	2140	2120	2130	2130	2350	2370	2350	2310	2260	2200	2150
8	2170	2140	2120	2130	2130	2360	2370	2350	2310	2250	2200	2150
9	2170	2140	2120	2130	2130	2370	2370	2350	2300	2250	2200	2150
10	2170	2140	2120	2130	2130	2370	2370	2340	2300	2250	2200	2140
11	2170	2140	2120	2130	2130	2370	2370	2340	2300	2250	2190	2140
12	2170		2120	2130	2130	2370	2370	2340	2300	2250	2190	2140
13	2170 2170	2140			2140	2370	2370	2340	2300		2190	2140
		2130	2120	2130						2250		
14	2170	2130	2120	2130	2140	2370	2360	2340	2300	2250	2190	2140
15	2170	2130	2120	2130	2140	2370	2360	2340	2300	2240	2190	2140
16	2170	2130	2120	2130	2140	2370	2360	2340	2290	2240	2190	2140
17	2160	2130	2120	2130	2140	2370	2360	2340	2290	2240	2180	2140
18	2160	2140	2120	2130	2140	2370	2360	2330	2290	2240	2180	2130
19	2160	2140	2120	2130	2140	2370	2360	2330	2290	2240	2180	2130
20	2160	2140	2120	2130	2140	2370	2360	2330	2290	2230	2180	2130
21	2160	2140	2120	2130	2140	2370	2360	2330	2280	2230	2180	2130
22	2160	2130	2120	2130	2140	2370	2360	2330	2280	2230	2170	2120
23	2160	2130	2120	2130	2140	2370	2360	2330	2280	2230	2170	2130
23 24	2160	2130	2120	2130	2140	2370	2360	2330	2280	2230	2170	2130
25	2160	2130	2120	2130	2140	2370	2360	2330	2280	2230	2170	2120
26	2160	2130	2120	2130	2140	2370	2360	2320	2280	2220	2170	2120
27	2160	2130	2120	2130	2140	2370	2360	2320	2270	2220	2160	2120
28	2150	2130	2120	2130	2140	2370	2360	2320	2270	2220	2160	2120
29	2150	2130	2120	2130		2370	2350	2320	2270	2220	2160	2120
30	2150	2130	2120	2130		2370	2350	2320	2270	2220	2160	2120
31	2150		2120	2130		2370		2320		2210	2160	
MAX	2180	2150	2130	2130	2140	2370	2370	2350	2320	2270	2210	2160
MIN	2150	2130	2120	2120	2130	2140	2350	2320	2270	2210	2160	2120
a	597.45	597.18	597.12	597.20	597.33	597.85	599.71	599.30	598,77	598,16	597,55	597.09
a b	-30	-20	-10	+10	+10	+230	-20	-30	-50	-60	-50	-40
D	- 30	-20	10	110	4.10	TZ30	-20	-30	- 50	00	-30	4 0

CAL YR 1986 b -10

WTR YR 1987 b -60

a Elevation, in feet, at end of month. b Change in contents, in acre-feet.

11128500 SANTA YNEZ RIVER AT SOLVANG. CA

LOCATION.--Lat 34°35'06", long 120°08'37", in San Carlos de Jonata Grant, Santa Barbara County, Hydrologic Unit 18060010, near left bank on downstream end of pier of Alisal Road bridge, 25 ft downstream from Alisal Creek, 0.8 mi southwest of Solvang, and 10 mi downstream from Lake Cachuma.

DRAINAGE AREA. -- 579 mi 2

PERIOD OF RECORD.--October 1928 to November 1936, June 1937 to November 1940 (irrigation seasons only), October 1946 to current year.

GAGE.--Water-stage recorder. Datum of gage is 362.43 ft above National Geodetic Vertical Datum of 1929. Various datums used during period of record. July 29 to Sept. 30, 1953, auxiliary water-stage recorder 750 ft upstream at different datum. Oct. 1, 1953, to Sept. 30, 1968, water-stage recorder at datum 2.00 ft higher.

REMARKS.--Estimated daily discharges: Oct. 1, 2. Records poor. Flow regulated by Jameson Lake, Gibraltar Reservoir, and since November 1952 by Lake Cachuma (stations 11121000, 11122000, and 11125500). Water diverted out of basin from Jameson Lake, Gibraltar Reservoir, and Lake Cachuma to cities of Montecito, Santa Barbara, and Goleta for municipal supply. Water for irrigation pumped from wells along banks of river in valley upstream.

EXTREMES FOR PERIOD OF RECORD (1928-36 and since 1946).--Maximum discharge, 82,000 ft³/s, Jan. 25, 1969, estimated on basis of discharge measurements up to 81,000 ft³/s for Santa Ynez River near Buellton, gage height, 17.1 ft, from flood mark; no flow for several months in many years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 99 ft3/s, Aug. 10, gage height, 1.14 ft; no flow many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

LIERTI ANDORO												
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1		0	0	.80	0			0		0	
2	1.2		ŏ	ŏ	.92	Ö			ŏ		13	
3	.73		ŏ	ő	.22	ŏ			Ö		46	
4	2.8		Ö	2.9	0	ŏ			Ö		60	
5	1.3		ō	3.1	Ö	7.8			ŏ		67	
			-						-			
6	0		0	2.7	0	18			0		76	
7	0		0	4.0	Q	9,0			0		85	
8	0		0	4.0	0	7.1			0		87	
9	0		. 92	3.6	0	6.0			.56		87	
10	0		2.3	3.4	0	5.0			32		78	
11	0		2.8	3,5	0	4.3			41		15	
12	0		2.8	1.6	0	4.0			7.1		7.2	
13	0		2.8	. 92	0	3.5			.33		4.4	
14	0		2.8	. 54	0	3.5			0		2.6	
15	.06		2,9	1.5	0	3.8			0		. 22	
16	0		3.4	3.4	0	3,0			0		.0	
17	0		3.4	3.9	0	1.7			0		O	
18	0		3.4	3.1	0	1.1			0		0	
19	0		3.4	2.8	0	.76			0		0	
20	0		3.4	2.8	0	.38			0		0	
21	0		3.4	2.8	0	. 87			0		0	
22	Ō		3.4	2.6	ō	.16			ŏ		ŏ	
23	Ó		3.4	2.6	ō	0			Ŏ		ŏ	
24	0		3.4	1.8	Ō	Ō			Ō		Ō	
25	0		3.4	1.8	0	0			0		0	
26	0		3.4	2.4	0	0			0		0	
27	Ö		3.4	2.8	ō	Ö			ŏ		ŏ	
28	. 13		2.7	2.7	Ö	Ö			ŏ		ŏ	
29	0		.49	2.5		ō			ŏ		ŏ	
30	ō ·		0	2.8		ō			ŏ		ŏ	
31	0		Ö	1.5		Ö					ŏ	
TOTAL	7.32	0	61,31	74.06	1.94	79.97	0	0	80.99	0	628,42	0
MEAN	.24	ŏ	1.98	2.39	.069	2.58	0	0	2.70	0	20.3	0
MAX	2.8	ŏ	3.4	4.0	.92	18	ő	0	41	0	87	0
MIN	2.0	ő	0.7	7.0	. 52	0	ő	0	0	0	0	0
AC-FT	15	ő	122	147	3.8	159	0	0	161	0	1250	0
	10	J	100	17/	0.0	133	U	U	TOT	U	1230	U

CAL YR 1986 TOTAL 6049,78 MEAN 16.6 MAX 378 MIN 0 AC-FT 12000 WTR YR 1987 TOTAL 934.01 MEAN 2.56 MAX 87 MIN 0 AC-FT 1850

11132500 SALSIPUEDES CREEK NEAR LOMPOC, CA

LOCATION.--Lat 34°35'19", long 120°24'27", in W 1/2 sec.24, T.6 N., R.34 W., Santa Barbara County, Hydrologic Unit 18060010, on right bank at bridge on Jalama Road, 0.4 mi downstream from El Jaro Creek, and 4.4 mi southeast of Lompoc.

DRAINAGE AREA. -- 47.1 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1941 to current year.

GAGE.--Water-stage recorder and concrete low-water control. Elevation of gage is 220 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Mar. 10-12, 14, 17-20, Mar. 25 to Apr. 7, May 6 to July 8. Records fair except those for periods of estimated daily discharges, which are poor. No regulation above station. Small diversions for irrigation above station.

AVERAGE DISCHARGE. -- 46 years, 10.1 ft3/s, 7,320 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,400 ft³/s, Mar. 15, 1952, gage height, 20.8 ft; no flow at times in some years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 700 ft3/s and maximum (*);

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0030	*569	*3.55				

Minimum daily, 0.04 ft³/s, Sept. 21-24.

CAL YR 1986 TOTAL 5186.76

813.43

WTR YR 1987 TOTAL

MEAN 14.2

MEAN 2.23

MAX

MAX

1140

171

		DISCHA	RGE, IN C	JBIC FEET		ND, WATER AN VALUES		OBER 1986	TO SEPTER	MBER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.88	1.0	1.4	1.6	1.8	2.0	2.3	1.4	.88	, 29	. 17	.07
2	.98	.89	1.4	1.6	1.6	2.0	2.3	1.3	. 84	.28	.17	.07
3	.99	.88	1.4	1.6	1.9	2.0	2.3	1.2	. 82	.26	. 17	.07
4	.92	.93	1.4	5,6	2.0	2.0	2.3	1.2	.78	.25	.16	.06
5	.87	1.0	1.5	3.6	1.8	155	2.3	1.2	.76	.24	.16	,06
•	70		2.0			474			٠,	00	10	0.0
6	.73	1.0	3.2	8.4	1.8	171	2.3	1.2	. 74	. 23	.16	.06
7	. 73	1.0	2.1	4.9	1.8	13	2.3	1.2	.70	. 22	. 15	.06
8	.73	1.1	1.6	2,8	1.6	5.9	2.2	1,2	.68	.21	. 15	.05
9	.75	1.1	1.4	2.2	1.7	3.8	2.1	1.2	.64	. 21	. 15	.05
10	1.1	1.2	1.4	2.0	2.4	2.5	2.0	1.1	. 62	.21	. 14	.06
11	1.1	1,1	1.4	2.0	2.3	2.2	2.0	1.1	,60	.21	, 13	.06
12	1.2	1.1	1.4	1.8	1.9	2,2	2.0	1.1	, 58	.21	.13	.06
13	1.0	1.1	1.4	1.8	6,2	2.4	2.0	1.1	. 56	.21	.12	.06
14	.88	1.2	1.5	1.8	4.8	2.5	2.0	1.1	.54	.21	.12	.05
15	.88	1.2	1.5	1.8	2.9	5.6	1.8	1.1	.52	.20	,12	.05
13	.00	1,2	1.5	1.0	2.5	3.0	1.0	4.1	. 52	.20	. 12	.03
16	.88	1.2	2.9	1.8	2.6	3.3	1.8	1.1	. 50	.20	.11	.05
17	. 97	1.6	2.0	1.8	2.2	2.8	1.8	1.1	. 48	. 20	. 11	.05
18	1.1	5.3	1,6	1.8	2.2	2.7	1.8	1.0	.46	.20	.11	.06
19	1.2	2,2	1.6	1.8	2,1	2.5	1.8	1.0	. 45	.19	.10	.06
20	1.2	1.5	1.7	1.8	2.0	2.4	1.8	1.0	.43	,19	.09	.05
21	1.2	1.4	1.6	1.8	2.0	9.1	1.6	1.0	. 42	.18	.09	.04
22	1.2	1.3	1.6	1.8	2.3	8.1	1.6	.99	.40	.18	.08	.04
23	1.2	1.3	1.6	2.0					.38	.18	.08	.04
					2.3	3.4	1.6	.98				
24	1.2	1.2	1.6	1.8	2.8	2.4	1.6	. 96	.37	.18	.08	.04
25	1.3	1.3	1.6	2.1	3.0	2.3	1.6	. 95	.36	.19	.07	.05
26	1.2	1.2	1.6	2.7	2.3	2.3	1.6	.94	.35	.18	.07	.06
27	1.2	1,2	1.6	2.7	2.0	2.3	1.4	, 93	.33	. 17	.07	,06
28	1.3	1.3	1.6	2.7	1.9	2.3	1.4	. 92	.32	. 17	. 07	.06
29	1.4	1.4	1.6	2.7		2.3	1.4	. 91	.31	. 17	.07	.05
30	1,3	1.4	1.6	2.9		2.3	1.4	. 90	.30	. 17	.07	.05
31	1.1		1.6	2.7		2.3		.89		. 17	.07	
TOTAL	32.69	40.50	51.4	78.4	66.2	426.9	56.4	33.27	16.12	6.36	3.54	1,65
MEAN	1.05	1,35	1.66	2,53	2.36	13.8	1.88	1.07	.54	.21	.11	,055
MAX	1.03	5.3	3.2	8.4	6.2	171	2.3	1.07	.88	. 29	. 17	.033
												.07
MIN	.73	.88	1.4	1.6	1.6	2.0	1.4	. 89	.30	. 17	.07	
AC-FT	65	80	102	156	131	847	112	66	32	13	7.0	3.3

.48

.04

MIN

MIN

AC-FT 10290

AC-FT

11132500 SALSIPUEDES CREEK NEAR LOMPOC, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water year 1978 to current year. CHEMICAL DATA: Water year 1978 to current year. pH: Water years 1982-83. WATER TEMPERATURE: Water years 1982-83.

PERIOD OF DAILY RECORD. --

pH: October 1981 to September 1983. WATER TEMPERATURE: October 1981 to September 1983.

INSTRUMENTATION. -- Water-quality monitor from October 1981 to September 1983.

	WATER	QUALITY DA	ATA, WATER	YEAR OCT	OBER 1986	TO SEPTE	MBER 1987 SOLIDS.	
	DAME	m Them	STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT-	PH (STAND-	TEMPER-	RESIDUÉ AT 180 DEG. C DIS-	
	DATE	TIME	TANEOUS (CFS)	ANCE (US/CM)	ARD UNITS)	WATER (DEG C)	SOLVED (MG/L)	
	OCT 1986 07	1420	0.75	1500	7.8	19.5	1080	
	NOV 05	0955	0,98	1400	7.9	11.0		
	DEC 03	1340	1.2	1440	8.0	9,0	740	
	JAN 1987 05	1420	3.7	1200	8.0	11.5	801	
	FEB 03	1355	1.9	1420	7.7	12.5	943	
	MAR 04	1310	2.0	1270	8.1	15,5	942	
	APR 06 MAY	1450	2.3	1330	8.0	19.0	919	
	05 JUN	1415	1,2	1320	8.1	23,0	945	
	01 JUL	1330	0.88	1300	8.1	23.5	946	
	01	1220	0.29	1550	7.8	19.0	1020	
	03 26	1525 1145	0.17 0.08	1660 1630	8.1 7.8	24.0 21.5	1120 1130	
						HARD	-	
- ·	F) IN:	LOW, COM STAN- DUC	FIC N- PH CT- (STA)	ND- ATU	RE (MG	S WHW. /L TOT	ARB CALCIUM AT DIS- FLD SOLVED	DIS- SOLVED
DATE	FI IN: TIME TAI	REAM- CII LOW, COI STAN- DUO NEOUS ANO	FIC N- PH CT- (STA)	ND- ATU. D WAT	ER- NES RE (MG ER AS	D- NONC. S WH W. /L TOT : MG/L	ARB CALCIUM AT DIS- FLD SOLVED AS (MG/L	SIUM, DIS- SOLVED (MG/L
JAN 1987	FI IN: TIME TAI	REAM- CII LOW, CON STAN- DUC NEOUS AND CFS) (US	FIC N- PH CT- (STA) CE ARI (CM) UNIT:	ND- ATU D WAT S) (DEG	ER- NES RE (MG ER AS C) CAC	D- NONC. S WH W. /L TOT : MG/L O3) CAC	ARB CALCIUM AT DIS- FLD SOLVED AS (MG/L O3 AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)
	FI IN: TIME TAI	REAM- CII LOW, COI STAN- DUC NEOUS ANC CFS) (US	FIC N- PH CT- (STA) CE ARI (CM) UNIT:	ND- ATU D WAT S) (DEG	ER- NES: RE (MG ER AS C) CAC	D- NONC. S WH W. /L TOT : MG/L O3) CAC	ARB CALCIUM AT DIS- FLD SOLVED AS (MG/L	SIUM, DIS- SOLVED (MG/L
JAN 1987	FI IN: TIME TAI	REAM- CII LOW, COI NEOUS AND CFS) (US, 3.7	FIC N- PH CT- (STA) CE ARI (CM) UNIT:	ND- ATU D WAT S) (DEG	ER- NES RE (MG ER AS C) CAC	D- NONC. S WH W. /L TOT : MG/L O3) CAC	ARB CALCIUM AT DIS- FLD SOLVED AS (MG/L 03 AS CA) 180 120 CHLO- F, RIDE, R DIS- 1 SOLVED S (MG/L (I	SIUM, DIS- SOLVED (MG/L AS MG)
JAN 1987 05	TIME TAI (0 1420 SODIUM DIS- SOLVED (MG/L AS NA	REAM- CII LOW, COI NEOUS AND CFS) (US, 3.7	FIC N- PH CT- (STA) CE AR (CM) UNIT: 1200 8 SODIUM AD- SORP- TION	ND- ATU D WAT S) (DEG .0 1 POTAS- SIUM, DIS- SOLVED (MG/L	ER- NES: RE (MG ER AS C) CAC 1.5 ALKA- LINITY WH WAT TOTAL FIELD MG/L AS	D- NONC. S WH W /L TOT: MG/L 03) CAC 470 SULFATE DIS- SOLVED (MG/L	ARB CALCIUM AT DIS- FLD SOLVED AS (MG/L 03 AS CA) 180 120 CHLO- F, RIDE, R DIS- 1 SOLVED S (MG/L (I	SIUM, DIS- SOLVED (MG/L AS MG) 42 LUO- IDE, DIS- DIS- DLVED
JAN 1987 05 DATE JAN 1987	TIME TAI TIME TAI (0 1420 SODIUM DIS- SOLVED (MG/L AS NA 93 SILICA DIS- SOLVEI (MG/L AS SOLVEI (MG/L AS SOLVEI (MG/L AS	REAM- CILLOW, COINTENDED STAN- DUCKNEOUS AND CFS) (US, 3.7 CILLOW) SODIUM SOLIDS, SUM OF CONSTI-D TUENTS, DIS-SOLVED	FIC N- PH (CT- (STA) (ND- ATU D WAT S) (DEG .0 1 POTAS- SIUM, DIS- SOLVED (MG/L AS K) 2.8 PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L	ER- NES: RE (MG ER AS C) CACC 1.5 ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3 297 BOROO DIS SOLV: (UG/)	D- NONC. S WH W. /L TOT: MG/L O3) CAC 470 SULFATE DIS- SOLVED (MG/L AS SO4) 250 N, IRON - DIS ED SOLV. L (UG/)	ARB CALCIUM AT DIS- FLD SOLVED AS (MG/L 03 AS CA) 180 120 CHLO- FI RIDE, R DIS- SOLVED SO (MG/L (I AS CL) AS 93 MANGA- NESE, DIS- ED SOLVED L (UG/L	SIUM, DIS- SOLVED (MG/L AS MG) 42 LUO- IDE, DIS- DLVED MG/L S F)
JAN 1987 05 DATE JAN 1987 05	TIME TAI (() 1420 SODIUM DIS- SOLVED (MG/L AS NA 93 SILICA DIS- SOLVEI (MG/L	REAM- CILLOW, COLORSTAN- DUG STAN- DUG NEOUS AND CFS) (US, 3.7 :	FIC N- PH CT- (STA) CE ARI CCM) UNITS 1200 8 SODIUM AD- SORP- TION RATIO 2 NITRO- GEN, NO2+NO3 DIS- SOLVED	ND- ATU D WAT S) (DEG .0 1 POTAS- SIUM, DIS- SOLVED (MG/L AS K) 2.8 PHOS- PHORUS, ORTHO, DIS- SOLVED	ER- NESI RE (MG ER AS C) CACC 1.5 ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3 297 BOROL DIS SOLVI	D- NONC. S WH W. /L TOT. MG/L O3) CAC 470 SULFATE DIS- SOLVED (MG/L AS SO4) 250 N, IRON - DIS ED SOLV. L (UG/)	ARB CALCIUM AT DIS- FLD SOLVED AS (MG/L 03 AS CA) 180 120 CHLO- FI RIDE, R DIS- SOLVED SO (MG/L (I AS CL) AS 93 MANGA- NESE, DIS- ED SOLVED L (UG/L	SIUM, DIS- SOLVED (MG/L AS MG) 42 LUO- IDE, DIS- DLVED MG/L S F)

< Actual value is known to be less than the value shown.

11133000 SANTA YNEZ RIVER AT NARROWS, NEAR LOMPOC, CA

LOCATION.--Lat 34°38'14", long 120°25'28", in Canada de Salsipuedes Grant, Santa Barbara County, Hydrologic Unit 18060010, on left bank 0.6 mi upstream from State Highway 246, 1.9 mi east of Lompoc, 1.8 mi downstream from Salsipuedes Creek, and 12.4 mi downstream from Lake Cachuma.

DRAINAGE AREA. -- 789 mi².

MTN

AC-FT

. 95

101

WTR YR 1987 TOTAL

CAL YR 1986 TOTAL 15423.61

95

133

2628.19

3.3

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1947 to November 1951 (irrigation seasons only). May 1952 to September 1963, October 1964 to September 1978, October 1980 to current year. Records equivalent, except for low-flow periods, to those published as "near Lompoc" (station 11133500), November to December 1906, October 1907 to September 1918, May 1925 to September 1960, and October 1978 to September 1980.

GAGE.--Two water-stage recorders. Elevation of main gage is 90 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1715 for history of changes prior to Oct. 1, 1961. Since Oct. 1, 1961, at various sites and datums within 0.1 mi of present site. Supplementary gage, used for high-water periods, at site 0.6 mi downstream at datum 79.25 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Jameson Lake, Gibraltar Reservoir, and since November 1952 by Lake Cachuma (stations 11121000, 11122000, and 11125500). Water diverted out of Jameson Lake, Gibraltar Reservoir, and Lake Cachuma to cities of Montecito, Santa Barbara, and Goleta for municipal supply. Water pumped from wells along banks of river for irrigation in valley upstream.

EXTREMES FOR PERIOD OF RECORD (1952-63 and since 1964).--Maximum discharge, 80,000 ft³/s, Jan. 25, 1969, gage height, 24.20 ft, from supplementary gage; no flow at times in each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 9, 1907, reached a stage of 22.0 ft, site and datum then in use, discharge, 120,000 ft³/s, from mean-depth study.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 923 ft³/s, Mar. 6, gage height, 3.12 ft, from rating curve extended above 360 ft³/s on basis of velocity-area study at gage height of 5.99 ft; no flow several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MEAN VALUES

				<u> </u>								
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.8	1.0	3.3	5.1	10	11	11	1,2	.27			
2	2.6	1.0	3.5	5.2	10	11	11	1.1	.27			
3	2.4	1.1	3.3	5.4	9.9	9.8	11	. 93	.27			
4	2,2	1,3	3.3	8.4	9.4	8.1		.87	.27			
5	1.8	1.4	3.4	12	9.0	299	11	.89	.29			
J	1.0		٠, ٠		0.0	200		.00	, 20			
6	1.7	1.4	4.8	13	8.6	376	10	.86	,30			
7	1.6	1.3	4.8	23	7.8	125	9.2	.80	.27			
8	1.5	1.3	5.1	16	7.4	84	7.8	. 84	.23			
9	1.3	1.4	5.4	14	7.6	67	6.5	. 83	.18			
10	1.3	1,5	5.4	13	7.6	57	5.9	.80	.17			
11	1.5	1.4	5.4	12	8.7	50	5.6	. 80	. 17			
12	2.1	1.4	5.4	12	8.4	44	5.3	. 68	.17			
13	1.9	1.1	5.4	12	8.9	38	4.9	.66	.16			
14	1.8	1.0	5.4	11	17	35	4.4	.60	.10			
15	1.7	.95	5.9	11	13	35	4.1	. 55	.05			
16	1.7	1,2	6.1	11	12	31	3.3	, 55	.06			
17	1.7	1.8	6.3	10	11	26	3.3	. 53	.06			
18	1.7	5.4	5.8	9.7	10	24	3.2	. 50	.05			
19	1.8	4.1	5,5	9.5	9.3	22	2.8	. 50	.02			
20	1.7	3.4	5.4	9.5	8.5	21	2.6	. 47	.02			
21	1.8	3.1	5.4	9.5	8,3	23	2,6	. 45	.02			
22	1.9	3.0	5.4	9.0	10	27	2.3	. 45	.02			
23	1.7	3.0	5.4	9.3	11	21	1.4	.41	.01			
24	1.3	3.5	5.4	9.4	13	19	1.3	.41	0.01			
25	1.1	3.5	5.4	8.8	17	17	1.4	.37	ŏ			
		0.0	٠	0.0					•			
26	1.0	3.4	5.4	8.5	15	16	1,5	.30	0			
27	1,2	3,0	5.4	8.4	12	15	1.4	.33	0			
28	1,3	3,3	5.4	9.0	11	14	1.4	.31	0			
29	1.1	3.4	6.0	9.0		13	1.3	.30	0			
30	.95	3.4	5,4	9.3		13	1.3	.30	0			
31	1.0		5.1	10		12		.27				
TOTAL	51.15	67.05	150 F	222 0	291.4	1563.9	150 0	10 06	2 42		•	^
			158.6	323.0			150.8	18.86	3.43	0	0	0
MEAN	1.65	2.24	5.12	10.4	10.4	50.4	5.03	.61	.11	0	0	0
MAX	2.8	5.4	6.3	23	17	376	12	1.2	.30	0	0	0

7.4

MAX 1500

MAX 376

8.1

MIN 0

MIN 0

3100

1.3

299

AC-FT

AC-FT

. 27

30590

5210

6.8

5.1

MEAN 42.3

MEAN 7.20

11133000 SANTA YNEZ RIVER AT NARROWS, NEAR LOMPOC, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Water year 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	
	OCT 1986							
	07	1115	1.8	1620	7.9	20.0	1320	
	DEC 03 JAN 1987	1040	3.2	1760	8.1	17.5	1310	
	05	1110	14	1500	8.3	13.0	1110	
	FEB 03	1045	9.5	1600	7.9	14.5	1220	
	MAR 04 APR	1045	7.8	1500	8.1	16.0	1230	
	06 MAY	1050	10	1560	8.0	16.0	1180	
	05 JUN	1025	0.84	1520	7.5	21.0	1270	
	01	0950	0.27	1550	7.8	21.0	1280	
DATE	FI INS TIME TAI	SPI REAM- CIE LOW, CON STAN- DUC NEOUS AND CFS) (US)	FIC V- PH CT- (STA) CE ARI	ND- ATU D WAT	TRE (MG	S WHW/ /L TOT I MG/L	S ARB CALCI AT DIS- FLD SOLV AS (MG/	DIS- ED SOLVED L (MG/L
JAN 1987	1110		500 0		2.0	700	100 150	00
05	1110	14 1	1500 8	.3 1	.3.0	700	400 150	80
DATE	SODIUM DIS- SOLVED (MG/L AS NA	PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JAN 1987 05	92	22	2	3,5	308	450	96	0.40
03	92	22	4	3.3	306	450	90	0.40
DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	BORO DIS SOLVE (UG/1 AS B)	- DIS- D SOLVEI L (UG/I	DIS- SOLVED UG/L	
JAN 1987 05	22	1100	<0.100	0.080	500	48	15	

11135800 SAN ANTONIO CREEK AT LOS ALAMOS, CA

LOCATION.--Lat 34°44'36", long 120°16'12", in Los Alamos Grant, Santa Barbara County, Hydrologic Unit 18060009, on left bank 100 ft upstream from bridge on northbound lane of Highway 101 at Los Alamos.

DRAINAGE AREA. -- 34.9 mi².

PERIOD OF RECORD, -- October 1970 to current year.

GAGE, --Water-stage recorder. Elevation of gage is 580 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records fair. No regulation above station. Pumping for irrigation of about 1,000 acres above station.

AVERAGE DISCHARGE.--17 years, 1.88 ft³/s, 1,360 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,230 ft³/s, Mar. 1, 1983, gage height, 11.6 ft, from floodmarks, from rating curve extended above 150 ft³/s on basis of computation of peak flow through culverts; no flow most of each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 30 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	1530	*2.4	*1.38				

No flow most of year.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1986	ΤO	SEPTEMBER	1987
					ME	AN VALU	JES					

1	DAY (OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3	1							.01					
3	2						.02						
5	3							.02					
Cal	4							.03					
8	5				0	0	1,2	0					
8	6				.02	0		0					
9 10 0 0 .17 0 11 12 12 10 0 0 .13 0 0 11 12 10 11 12 10 0 0 1.10 0 11 12 10 0 0 0 .05 .09 0 11 13 0 0 .05 .09 0 11 14 0 0 .05 .11 0 0 15 .11 0 15 0 .05 .11 0 0 15 .11 0 16 .15 0 0 .05 .11 0 0 .01 .10 0 0 18 0 0 .01 .09 0 0 18 0 0 0 .08 0 0 0 0 .08 0 0 0 0 .08 0 0 0 0	7				0	0		0					
9 10 0 0 .17 0 11 12 12 10 0 0 .13 0 0 11 12 10 11 12 10 0 0 1.10 0 11 12 10 0 0 0 .05 .09 0 11 13 0 0 .05 .09 0 11 14 0 0 .05 .11 0 0 15 .11 0 15 0 .05 .11 0 0 15 .11 0 16 .15 0 0 .05 .11 0 0 .01 .10 0 0 18 0 0 .01 .09 0 0 18 0 0 0 .08 0 0 0 0 .08 0 0 0 0 .08 0 0 0 0	8				0	0	.25	0					
10 0 0 .13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9				0	0	. 17						
12	10				0	0	.13	0					
12 13 13 0 .05 .09 0 14 15 0 .01 .10 0 15 16 0 .02 .10 0 17 18 0 .01 .09 0 18 0 19 0 .08 0 19 0 20 0 0 .08 0 20 0 0 .08 0 20 0 0 0 .08 0 22 2 0 0 .07 .17 0 28 0 0 .05 .20 0 24 0 .10 .19 0 25 0 0 .09 .17 0 26 27 0 0 .06 .14 0 27 0 0 .08 .16 0 27 0 0 .06 .14 0 28 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .05 .13 0 29 0 0 .06 .14 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11				0	0	.10	0					
13 14 0 0 0 0 0 0 15 16 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0					0								
14					0	.05							
15						.01	.10						
17 18 0 0 0 .08 0 19 20 0 0 0 .08 0 20 21 22 0 0 .07 .17 0 28 24 0 .05 .20 25 0 0 .09 .17 0 26 27 0 0 .08 .16 0 27 0 0 .09 .17 0 28 29 0 .00 .06 .14 0 28 29 0 .00 .05 .13 0 29 29 0 .00 .05 .13 0 29 30 3006 0 3106 0 3106 0 3106 0 3106 0 3106 0 3106 0 0 0 0 0 0 MEAN 0 0 0 0 .02 .64 5.77 .06 0 0 0 0 0 0 MAX 0 0 0 0 .005 .023 .19 .002 0 0 MAX 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 MAX 0 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 0 MAX 0 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 0 MC-FT 0 0 0 0 .04 1.3 11 .1 0 0 0 0 0 CAL YR 1986 TOTAL 55.36 MEAN .15 MAX 33 MIN 0 AC-FT 110	15					.05	.11						
17 18 0 0 0 .08 19 20 0 0 0 .08 20 21 22 0 0 .07 .17 0 28 24 0 0 .05 .20 25 26 27 2 0 0 .09 .17 0 26 27 28 0 0 .09 .17 0 28 29 0 0 .06 .14 0 28 29 0 0 .05 .13 0 29 29 0 0 .05 .13 0 29 29 0 0 .06 .14 0 28 29 0 0 .05 .13 0 29 30 3006 0 3106 0 3106 0 3106 0 3106 0 3106 0 3106 0 3106 0 3106 0 0 0 0 0 MEAN 0 0 0 0 .02 .64 5.77 .06 0 0 0 0 0 MAX 0 0 0 0 .006 .023 .19 .002 0 0 0 MAX 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 MAX 0 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 0 MIN 0 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 0 MC-FT 0 0 0 0 0 .04 1.3 11 .1 0 0 0 0 0	16				0	.02	.10	0					
18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
19							.08						
20 0 0 0 .09 0 21 0 0 0 .23 0 22 0 .07 .17 0 28 0 .05 .20 0 24 0 .10 .19 0 25 0 .09 .17 0 26 0 .08 .16 0 27 0 .06 .14 0 28 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 29 0 .05 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13 0 20 .13													
21	20												
22								U					
28					0	0		0					
24	22				0	.07	. 17	0					
24 25 0 .10 .19 0 26 26 0 .08 .16 0 27 0 .06 .14 0 28 0 .05 .13 0 29 011 0 30 31 0 006 0 MEAN 0 0 0 0 .02 .64 5.77 .06 0 0 0 0 0 MEAN 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 MAX 0 0 0 0 .02 .10 1.2 .03 0 0 0 MIN 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 MIN 0 0 0 0 0 .04 1.3 11 .1 0 0 0 0 0 CAL YR 1986 TOTAL 55,36 MEAN .15 MAX 33 MIN 0 AC-FT 110	28				0	.05	.20	0					
25	24				0		.19	0					
27 28 0 .06 .14 0 29 29 011 0 30 31 0 006 0 MEAN 0 0 0 .002 .64 5.77 .06 0 0 0 0 0 MEAN 0 0 0 .0006 .023 .19 .002 0 0 0 0 0 MAX 0 0 0 .02 .10 1.2 .03 0 0 0 0 MIN 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 MIN 0 0 0 0 0 0 0 0 0 0 0 0 AC-FT 0 0 0 0 .04 1.3 11 .1 0 0 0 0 0	25						. 17						
27 28 0 .06 .14 0 29 29 011 0 30 31 0 006 0 MEAN 0 0 0 .002 .64 5.77 .06 0 0 0 0 0 MEAN 0 0 0 .0006 .023 .19 .002 0 0 0 0 0 MAX 0 0 0 .02 .10 1.2 .03 0 0 0 0 MIN 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 MIN 0 0 0 0 0 0 0 0 0 0 0 0 AC-FT 0 0 0 0 .04 1.3 11 .1 0 0 0 0 0	26				0	0.8	16	n					
28 29 011 0 30 31 0 006 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
29 30 31 31 00 03 03 00 03 00 03 TOTAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							13						
30	20						11						
31 003 TOTAL 0 0 0 .02 .64 5.77 .06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							.11						
TOTAL 0 0 0 .02 .64 5.77 .06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31						.00						
MEAN 0 0 0 0.0006 .023 .19 .002 0 0 0 0 0 0 0 MAX 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31				U		.03						
MEAN 0 0 0 0.0006 .023 .19 .002 0 0 0 0 0 0 0 MAX 0 0 0 0 .02 .10 1.2 .03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL	0	0	0	.02	.64	5,77	.06	0	0	0	0	0
MAX 0 0 0 .02 .10 1.2 .03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													Ó
MIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						. 10	1.2						ő
CAL YR 1986 TOTAL 55,36 MEAN .15 MAX 33 MIN 0 AC-FT 110													ő
CAL YR 1986 TOTAL 55,36 MEAN .15 MAX 33 MIN 0 AC-FT 110								. 1					Õ
									J	Ū	v	v	J
WTR YR 1987 TOTAL 6.49 MEAN .018 MAX 1.2 MIN 0 AC-FT 13													
	WTR YR 1987	TOTAL	6.49	MEAN .018	B MAX	1.2	MIN 0	AC-FT 13					

11136050 SAN ANTONIO CREEK ABOVE BARKA SLOUGH, NEAR ORCUTT, CA

LOCATION.--Lat 34°46'03", long 120°26'00", unsurveyed, Santa Barbara County, Hydrologic Unit 18060009, on left bank 150 ft downstream from Harris Canyon tributary, 200 ft downstream from bridge on San Antonio Road, 0.4 mi west of State Highway 1, 7.0 mi south of Orcutt, and 8.7 mi west of Los Alamos.

DRAINAGE AREA, -- 114 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, --April 1985 to September 1987 (irrigation season only), discontinued.

GAGE. -- Water-stage recorder. Elevation of gage is 300 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records fair. No regulation upstream from station. Flow affected by pumping from wells and irrigation runoff upstream from station.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

							_					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							.07	0	.09	.03	.05	0
ŝ							.09	ŏ	.20	.12	0	.01
1 2 3 4							.01	0	.15	. 14	.09	.11
							0	.01	. 14	.42	.04	.05
5							0	.32	. 14	.44	.04	.19
3							U	. 32	.16	.01	.21	.19
6 7 8 9							0	.71	0	0	.53	.22
7							0	. 24	0	.04	,06	0
8							0	.14	0	0	0	0
9							0	.28	.11	0	0	.19
10							0	. 52	, 28	0	.16	0
11							0	0	. 54	.05	.07	0
12							ő	Ö	.24	.21	.35	.07
12 13							,01	0	,05	.01	.01	0.07
1/							.02	0	.38		.06	0
14 15									.30	.11		
12							0	.37	.63	. 58	.12	.18
16							0	0	.92	.60	.11	0
17							0	0	. 89	. 52	0	0
18							0	0	.80	. 44	.08	0
19							.06	.04	.68	. 42	.03	Ō
20							.23	.50	. 27	0	.30	Ö
									. 217	U	.00	
21							.19	. 26	. 27	.01	.29	0
22							.13	.39	. 55	0	.06	0
23							.06	. 61	.79	.19	0	0
24							.07	0	.18	. 24	Ō	Ó
23 24 25							.77	Ō	.42	0	Ö	.02
26							.29	.39	.32	.09	0	.10
27							.32	.22	.35	.13	Ö	.10
28							.52	14				.10
20							. 57	.14	.39	.38	0	.01
29							.98	.05	.01	. 26	0	.02
30							.27	0	0	.19	0	.33
31								0		.07	0	
TOTAL	0						4.14	5.19	9.81	5.26	2.62	1.60
MEAN	0						.14	.17	,33	.17	.085	.053
MAX	ŏ						,98	.71	. 92	.60	. 53	.33
MIN	ŏ						. 50	. , 2	0	.00	. 50	0
AC-FT	0						8.2	10	19	10		3,2
AC-FI	U						0.2	10	19	10	5.2	3.2

11136050 SAN ANTONIO CREEK ABOVE BARKA SLOUGH, NEAR ORCUTT, CA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. --CHEMICAL DATA: Water year 1984 to September 1987 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DÆ	ATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 19 27		1045	0.17	1030	8.0	16,5	260	88	66	23
AUG										
12.,	• •	1345	0.73	1140	8.1	27.0	320	110	80	29
I	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	WH WAT	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
MAY 1		120	49	3	6.3	172	84	160	0.60	
AUG 12.		110	42	3	5.4	212	130	140	0.30	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)		N, IRON - DIS ED SOLV	MANG I, NESE 3- DIS VED SOLV	A- <u>,</u> ED L	
MAY 1		44	610	11.0	1.30	1	.70	75	9	
AUG 12.		39	660	1.90	0.520	2	00	27	3	
DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	IN BOT - TOM MA- S TERIAI	TOM MATERIAL	TOM MA	TOTAL - IN BOT - TOM MA L TERIA	DDD, TOTAL - IN BOT - TOM MA L TERIA	TOTAL IN BOTAL TOM MA TERIAL	- TOM MA- L TERIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1986										
28 APR 1987	1155	-	- <1	<1.0	<0.	1 <1.0	3.4	16	30	1.2
10	1030	0.00	<1	<1.0	<0.	1 <1.0	66	87	59	5.0
DATE OCT 1986	SUL TO IN TOM TE	TAL TO BOT- IN MA- TOM RIAL TE	RIN, CH TAL TO BOT- IN MA- TO RIAL TH	HLOR, CHOTAL EPO BOT- TOTAL BO MA- BO ERIAL N	OXIDE I I. IN IN OTTOM TO MATL. I	NDANE COTAL COTAL COMMENT OF TOM MARKET BUT TO TOTAL COMMENT OF THE COMMENT OF TH	HLOR, T T. IN IN OTTOM TO MATL. T	OTAL TI BOT- IN M MA- TO ERIAL TE	ER- PH HANE TO BOT- IN I M MA- TOM RIAL TE	XA- ENE, TAL BOT- MA- RIAL /KG)
28		0.7	0.5	<0.1	<0.1	<0.1	0.8	<0.1 <	1.00 14	0
APR 1987 10		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 4	8.0 69	0

< Actual value is known to be less than the value shown.

11136100 SAN ANTONIO CREEK NEAR CASMALIA, CA

LOCATION.--Lat 34°46'56", long 120°31'47", in Jesus Maria Grant, Santa Barbara County, Hydrologic Unit 18060009, on Vandenberg Military Reservation on downstream side of San Antonio Road bridge, 0.7 mi east of junction of San Antonio Road and Lompoc-Casmalia Road, and 3.8 mi south of Casmalia.

DRAINAGE AREA. -- 135 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- October 1955 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 160 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 27, 1958, at datum 2.00 ft higher.

REMARKS. -- No estimated daily discharges. Records fair. No regulation above station. Flow affected by pumping from wells along stream for irrigation upstream from station. At times water released to creek from Vandenberg Air Force Base water-treatment plant.

AVERAGE DISCHARGE. -- 32 years, 6.07 ft 3/s, 4,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 4,680 ft³/s, Mar. 1, 1983, gage height, 14.32 ft, from rating curve extended above 1,100 ft³/s on basis of slope-area measurement at gage height 12.93 ft; minimum daily, 0.10 ft³/s, June 19, 20, 1957.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 5	1400	*102	*2.89				

Minimum daily, 0.16 ft³/s, July 18.

		DISCHARGE,	IN CUBIC	FEET	PER		, WATER EAN VALU		OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN		FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	.26	.34	1.1	.34	*	1,6	. 57		.92	.72	.26	.44	.26	.33
2	.34	,26	1.1	.34		1.6	. 57		, 92	. 57	. 24	.50	. 25	. 27
3	. 26	.34	1.1	. 44		1.4	.34		. 1	.72	.30	. 55	.30	.25
4	.20	. 44	1.1	4.2		1.4	, 34		. 4	.72	.31	.41	.33	.25
5	.20	. 57	1.4	1.4		1.1	41		. 4	.72	.30	.34	.27	.29
6	.20	. 57	3.9	2.1		1.1	29		.1	. 72	. 34	.31	.26	. 27
7	.20	, 57	1.8	2.4		1.1	6.4		1	.72	. 34	.30	. 29	. 29
8	.26	.72	1.4	1.1		.92	2.1		. 1	. 57	. 40	.32	. 26	.25
9	.34	.72	1.4	. 92		1.4	.92		, 92	.72	. 47	.26	.26	.22
10	. 26	. 57	1.4	. 92		1.1	1.1	1	. , 1	.72	. 58	.24	.34	. 24
11	. 44	. 44	1.1	1.1		1.1	1.1		.1	. 72	. 48	.21	.26	. 27
12	. 44	. 44	1.4	1.1		, 92	. 92		. 1	.72	. 40	.18	. 20	. 24
13	.34	. 44	1.4	. 92		3.2	. 92		.92	.72	. 46	. 17	. 26	.21
14	.34	. 57	1.4	. 92	1	2	1.1	1	1	. 57	.41	.19	. 24	.21
15	.34	. 57	1.4	. 92		3.9	1,1	1	.1	. 57	.39	.19	.22	. 25
16	.44	. 44	1.4	. 92		2.6	1.1		. 57	. 57	.41	.17	. 27	.28
17	.34	.72	. 92	. 92		1.8	1.1		, 92	. 57	. 57	. 17	. 22	. 27
18	.44	14	.92	. 92		1.8	1.1		,72	. 57	. 54	.16	. 24	.33
19	. 44	1.8	. 92	. 92		1.4	, 92		,72	. 57	. 55	.20	, 29	.29
20	. 44	1,1	1,1	.72		1.1	, 92		. 57	. 57	, 57	.19	.30	. 28
21	. 44	1.1	.92	.72		1.1	1.4		.72	. 56	. 53	.20	. 26	. 26
22	. 44	1.1	, 57	. 92		1.8	1,8		,72	.61	.43	.20	. 22	.32
23	, 44	1.4	.72	1.6		1.4	1.1		, 92	. 55	. 44	.21	. 20	.30
24	. 44	1.6	. 57	1.4		1.6	1,1		1	. 56	. 40	. 25	, 25	.31
25	.44	1.4	. 57	1.4		1.4	1.1		, 92	. 49	.36	.23	.29	.41
26	. 44	1.4	. 57	1.1		1.1	1.1		.92	.48	.36	.21	.31	.38
27	. 44	1.4	.34	1.1		. 92	.92		. 92	.49	.38	.19	.30	.45
28	, 57	1.4	.34	1.6		.72	.92	1	4	. 44	. 41	. 24	.26	. 44
29	. 57	1.4	.34	1.4			.92		.1	. 44	.41	. 25	.26	.43
30	. 44	1.1	.34	1.8			1.1		.92	.36	.34	.26	, 29	.43
31	. 44		.34	1.6			.92			. 28		.24	.31	
TOTAL	11.62			38.16		2.58	105.00			18,31	12.38	7.98	8.27	9.02
MEAN	.37			1.23		1.88	3.39		.98	. 59	. 41	.26	.27	.30
MAX	. 57	14	3.9	4.2		12	41		1.4	.72	. 58	. 55	.34	.45
MIN	.20	.26	.34	.34		.72	.34		, 57	.28	. 24	. 16	, 20	. 21
AC-FT	23	77	66	76		104	208		59	36	25	16	16	18

CAL YR 1986 TOTAL 781,78 MEAN 2.14 MAX 124 MIN .18 AC-FT 1550 WTR YR 1987 TOTAL 365,04 MEAN 1.00 MAX 41 MIN .16 AC-FT 724

11136100 SAN ANTONIO CREEK NEAR CASMALIA, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water year 1978 to current year. CHEMICAL DATA: Water year 1978 to current year. pH: December 1981 to September 1983. WATER TEMPERATURE: December 1981 to September 1983.

PERIOD OF DAILY RECORD. --

pH: December 1981 to September 1983.
WATER TEMPERATURE: December 1981 to September 1983.

INSTRUMENTATION. -- Water-quality monitor from December 1981 to September 1983.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	
	o	CT 1986							
		28	1300	0.68	2290	7.6	14.5	1430	
	D	EC 05	1140	0,72	2230	8.0	9.5	1500	
	J	AN 1987							
	Ter.	08 EB	1100	1.0	2080	7.8	9.0	1380	
	-	11	1350	0,93	2380	7.9	15.5	1550	
	*	AR 11	1245	1.1	*2820	7.6	19.5	1710	
	A1	PR 10	0930	0.84	2530	7,6	16.0	2080	
	M	AY	1000	0.70	0100	7.0	10 5		
	Ji	13 Un	1000	0.73	2400	7.8	19.5	1710	
	71	09 UL	1015	0.48	1840	7.9	16.5	1500	
		09	0915	0.27	2420	7.8	17.0	1510	
		UG 13	1130	0,23	2460	7.9	18.0	1520	
	SI	EP 11	1015	0.26	2110	8.0	16.0	1390	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC 1986									
05 MAR 1987	1140	0.72	2230	8.0	9.5	530	160	140	43
11	1245	1.1	2820*	7.6	19.5	890	610	230	77
JUN 09	1015	0.48	1840	7.9	16,5	550	150	140	48
SEP 11	1015	0.26	2110	8.0	16.0	490	82	130	40
~									

See footnote at end of table.

11136100 SAN ANTONIO CREEK NEAR CASMALIA, CA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	SODIUM, DIS- SOLVED (MG/L AS NA)	\$	AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATI DIS- SOLVEI (MG/L AS SO4	DIS- SOLVED (MG/L	(MG/L
DEC 1986 05	310	55	6	15	369	320	380	0.30
MAR 1987	310	10	U	13	309	320	360	0.30
11 JUN	310	43	5	15	285	760	350	0.60
09 SEP	340	57	7	15	400	320	390	0.40
11	320	58	7	17	407	230	350	0.30
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVEI	GEN - NO2+N , DIS SOLV) (MG/	, PHO 103 OR 3- DI 7ED SOL L (MG	S- VED : /L	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	
DEC 1986 05	52	1500	7.5	i 0	.960	1700	20	
MAR 1987 11 JUN	45	2000	6.4	. 0	.590	1700	30	
09 SEP	31	1500	2.9	1	.0	2000	30	
11	45	1400	3.0	1	.1	1900	30	

^{*} Value is based on a laboratory value.

11136800 CUYAMA RIVER BELOW BUCKHORN CANYON, NEAR SANTA MARIA, CA

LOCATION (REVISED).--Lat 35°01'19", long 120°13'39", SW 1/4 sec.14, T.11 N., R.32 W., San Luis Obispo-Santa Barbara County line, Hydrologic Unit 18060007, on downstream side of bridge on State Highway 166, 1.5 mi downstream from Buckhorn Canyon, and 13 mi northeast of Santa Maria.

DRAINAGE AREA, -- 886 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1903 to December 1905 (published as Santa Maria River near Santa Maria), October 1959 to current year. Monthly discharge only for October 1903 and July 1904 and yearly estimate for water year 1941 (incomplete), published in WSP 1315-B.

REVISED RECORDS. -- WDR CA-71-1: Drainage area. WDR-CA-77-1: 1976.

GAGE.--Water-stage recorder. Elevation of gage is 760 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to October 1959, nonrecording gage at different site and datum.

REMARKS.--Estimated daily discharges: June 8-17. Records poor. No regulation above station. Pumping from wells along stream for irrigation of several thousand acres in Upper Cuyama Valley.

AVERAGE DISCHARGE.--30 years (water years 1904, 1905, 1960-87), 22.8 ft³/s, 16,520 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 17,800 ft³/s, Feb. 25, 1969, gage height, 13.70 ft, from rating curve extended above 4,900 ft³/s on basis of slope-area measurement at gage height 10.85 ft; maximum gage height, 14.74 ft, Mar. 4, 1978; no flow at times in most years.

EXTREMES FOR CURRENT YEAR, -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 8	0645	*953	*7.85				

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

No flow many days.

		DISCURRO	E, IN CUB.	IC PEEL P.		EAN VALUES		K 1880	IO PERIEMBE	K 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.09	.02	,01	0	.01	.04	.24	.05	0			
2	.08	.02	.01	0	.01	.02	.25	.02	0			
3	.07	.02	.01	Ö	.01	.02	.26	.01	Ö			
4	,06	,02	.02	.33	.01	.02	.23	0	Ŏ			
5	.05	.01	.06	.04	.01	3.2	.22	Ŏ	Ō			
6	.04	.02	.09	.17	.01	6.9	,19	0	0			
7	.04	.02	.02	. 24	.01	4.7	.15	0	0			
8	.04	.02	.02	.06	0	1.1	.15	Ö	155			
9	.04	.02	.02	.05	.01	.55	.16	ŏ	2.0			
10	.06	.01	.01	.05	0	.59	.15	ŏ	1.0			
11	.06	.01	.01	.05	0	. 40	.15	0	. 50			
12	.04	.01	,01	.05	ŏ	.34	.16	Ö	.40			
13	.04	.01	.01	.04	3,2	,34	.15	Ö	.30			
14	.03	.01		.05					.20			
			.01		.99	.44	.15	0				
15	.03	.01	.01	.05	.18	.76	.16	0	.10			
16	.03	.01	.02	.06	.11	.36	.14	0	.05			
17	.04	.01	.01	.06	.11	.32	. 14	0	.01			
18	.05	. 15	.01	.04	.09	.26	. 15	0	0			
19	.05	.02	.01	.04	.08	. 26	, 13	0	0			
20	.05	.01	.10	.03	.07	, 25	. 10	0	0			
21	.05	.01	.01	.03	.08	2.1	.08	0	0			
22	.04	.01	.01	,03	.08	1.5	.04	0	0			
23	.04	.01	.01	.03	.07	1.3	.05	0	0			
24	.04	.01	.01	,02	.10	. 83	.06	0	0			
25	.03	.01	0	.01	.10	.71	.05	0	0			
26	.02	.01	0	.01	. 07	. 44	.03	0	0			
27	.02	.01	.01	.02	.05	.34	.03	0	0			
28	.04	.01	0.02	,02	.05	.32	.04	Ö	Ö			
29	.03	.01	ő	.02		.30	.06	ŏ	Ö			
30	.02	.01	ŏ	.02		.25	.10	ő	Ö			
31		.01	0					0	0			
31	.02		U	.01		.25		U				
TOTAL	1.34	. 53	.52	1.63	5.51	29.21	3.97	.08	159.56	0	0	0
MEAN	.043	.018	.017	,053	.20	.94	. 13	.003	5.32	Ö	Ö	0
MAX	.09	.15	.10	.33	3.2	6.9	. 26	.05	155	Ŏ	ō	Ö
MIN	.02	.01	. 10	.00	0.2	.02	.03	. 03	0	ŏ	Ö	ŏ
AC-FT	2.7	1.1	1.0	3.2	11	58	7.9	.2	316	0	ŏ	Ö
no ri	2.7	1.1	1.0	0.2	11	20	7.5	. 2	310	U	U	3

CAL YR 1986 TOTAL 4214.25 MEAN 11.5 MAX 733 MIN 0 AC-FT 8360 WTR YR 1987 TOTAL 202.35 MEAN .55. MAX 155 MIN 0 AC-FT 401

11136800 CUYAMA RIVER BELOW BUCKHORN CANYON, NEAR SANTA MARIA, CA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- CHEMICAL DATA: Water year 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	I	DATE	TIME	STREA FLOW INSTA TANEO (CFS	M- (M- I DUS A	SPE- CIFIC CON- DUCT- ANCE US/CM)	PH (STAN ARI UNITS	ID-	EMPER- ATURE WATER DEG C)	RES AT DI I SO	LIDS, SIDUE 180 EG. C DIS- DLVED MG/L)	
	DEC :			_			_	_				
	04. JAN 1		1400	0,	02	1470	8.	2	10.0)	1110	
	06.		1400	0.	47	1390	7.	8	12.5	i	1070	
	MAR 10.		1330	0.	75	1350	8.	0	19,0)	1220	
	APR 08		1600	0.	17	1270	8.	6	29.0)	1110	
	MUL 08,		1230	110		3820≠	7.	2	22.0)	3560	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFI CON- DUCT ANCE (US/C	C - (S	PH STAND- ARD IITS)	TEMPI ATUF WATI (DEG	ir- n le (ir	IARD- IESS MG/L AS (ACO3)	HAR NES NONC WH W TOT MG/L CAC	SARB IAT FLD . AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 1987												
10	1330	0.75	13	50	8.0	19	0.0	680		480	140	81
DAT	rE	SODIUM DIS- SOLVE (MG/I AS NA	O L PER	CENT DIUM	SODIU AD- SORP- TION RATIO	- - 1 S	POTAS- SIUM, DIS- SOLVED MG/L S K)	ALK LINI WH W TOT FIE MG/L CAC	TY AT S AL LD AS	ULFAT DIS- SOLVE (MG/I S SO4	DIS- ED SOLVE L (MG/L	D
MAR 198	37											
10	•	130		29	2		3.5		207	610	79	
DAT	TE.	FLU RII DIS SOL (MG, AS I	DE, S- S VED (/L	ILICA, DIS- OLVED MG/L AS IO2)	SOL) SUM CONS TUENT DIS SOLV	OF STI- N SS, S- S /ED (NITRO- GEN, 102+NO3 DIS- SOLVED MG/L SN)	PHO	ED L	BORG DIS- SOLVE (UG/L AS B)	DIS- D SOLVE L (UG/L	D
MAR 198		0	. 50	12	12	200 <	0.100	<0.	010	37	70 7	5

< Actual value is known to be less than the value shown.</p>
* Value is based on a laboratory value.

11138500 SISOUCC RIVER NEAR SISOUCC, CA

LOCATION.--Lat 34°50'23", long 120°10'02", in Sisquoc Grant, Santa Barbara County, Hydrologic Unit 18060008, on left bank 2.6 mi upstream from La Brea Creek and 7 mi east of Sisquoc.

DRAINAGE AREA. -- 281 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, --October 1943 to current year. October 1929 to September 1933, at site 0.2 mi downstream; low-flow records not equivalent owing to diversion immediately upstream. Monthly discharge only for some periods, published in WSP 1315-B.

GAGE.--Water-stage recorder. Datum of gage is 624.30 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). See WSP 1735 for history of changes prior to Aug. 24, 1951.

REMARKS .-- No estimated daily discharges. Records fair. No regulation or diversion above station.

AVERAGE DISCHARGE. -- 44 years, 44.9 ft 3/s, 32,530 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 23,200 ft³/s, Dec. 6, 1966, gage height, 15.75 ft, from rating curve extended above 1,700 ft³/s on basis of slope-area measurements at gage heights 10.08 and 15.75 ft; no flow Nov. 11-18, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Mar. 2, 1938, 11,000 ft³/s, gage height, 8,1 ft, from high-water mark in gage well, at site in use 1929-33, from rating curve extended above 2,800 ft³/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	1345	*269	*2.76				

Minimum daily, 0.77 ft³/s, Sept. 23, 30.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEAR EAN VALUES	OCTOBER	1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.8	1.3	1.8	2.0	1.9	1.5	8.6	3.5	2.0	1.6	1.0	. 84
2	1.7	1.3	1.7	2.0	2.0	1.5	8.4	3.2	1.9	1.6	1.0	.84
3	1.7	1.3	1.7	1.8	1.8	1.5	8.8	3.0	1.6	1.5	1.0	.84
4	1.7	1.3	1.7	2.6	1.8	1.5	8.9	2.8	1.7	1.4	.98	.84
5	1.7	1.3	1.9	2.1	1.5	2.5	8.3	2.7	1,7	1.5	.99	.82
3	1.7	1.5	1.5	2.1	1.5	2.5	0,0	2.7	1.7	1.5	. 55	.02
6	1.6	1.4	2.2	2.2	1,7	126	7.9	2.6	1.8	1.4	. 98	.82
7	1,6	1.3	1.9	2.3	1.7	96	7.4	2.6	1.8	1.4	1.0	. 84
8	1.6	1.3	1.7	2.4	1.7	49	7.0	2,5	1.8	1.4	1.0	. 82
9	1.6	1.3	1.8	2.3	1.9	29	6.6	2.5	1.9	1.5	1.0	.82
10	1.6	1.3	2.2	2.3	2.0	21	6.4	2.5	1.9	1.4	1.0	.82
11	1.6	1.2	2.3	2,3	2.3	17	6,4	2,4	1,9	1.5	.99	.80
12	1.6	1.2				15	6.2	2.4	1.9	1.5	.98	.80
13	1.5		2.3	2.1	2.4		5.9	2.4				.79
		1.2	2.4	1.9	3.3	14			1.9	1.4	. 97	
14	1.4	1.2	2.3	2.0	2.8	13	5.5	2.3	2.0	1.4	. 97	.80
15	1.4	1.2	2.3	2.2	2.7	15	5.3	2.3	1.8	1.3	.97	.80
16	1.4	1.2	2.5	2.4	2,4	13	5.0	2.4	1.8	1.2	.95	.79
17	1.4	1.4	2.4	2.6	2.5	13	4.8	2.3	1.8	1.3	. 94	.79
18	1.4	2.4	2.6	2,3	2.4	12	4.8	2.2	1.8	1.2	.94	.79
1'9	1.5	2.1	2.6	2.3	2,1	11	4.4	2.2	1.8	1.2	. 93	.79
20	1,5	2.0	2.7	2.3	1.4	10	4.0	2.1	1.8	1.2	.90	.78
21	1.4	2.0	2.2	2.3	1.4	12	3,9	2.1	1.7	1.2	.89	.79
22	1.4	1.7		2.3	1.4		3.6	2.1	1.7	1.2	.88	.79
23	1.3	1.7	2.0		1.4	14 14	3.5	2.0	1.7	1.2	. 80 . 87	.79
			2.1	2.4			3.5					.79
24	1.3	1.7	2.2	1.9	1.6	13		2.0	1.6	1.1	. 88	.80
25	1.3	1.7	2.3	1.9	1.6	13	3.7	2.0	1.6	1.1	, 87	. 80
26	1.2	1.6	2.2	1.8	1.6	12	3.8	2.1	1.6	1.0	. 86	.80
27	1.3	1.5	2.1	2.0	1.5	11	3.6	2.0	1.6	1.0	.85	.80
28	1.4	1.7	2.0	1.9	1.5	10	3.5	2.1	1.6	1.1	. 85	.79
29	1.4	2.0	2.0	2.0		10	3.7	2.1	1.5	1.1	. 85	.79
30	1.4	2.0	1.9	2.0		9.2	3.6	2.1	1.5	1.1	. 84	.77
31	1.4		2.0	1.9		8.9		2.1		1.0	. 84	
TOTAL	46.0	45.8	66.0	66,8	54.3	589,6 1	67.0	73,4	52.7	40.0	28.97	24.12
									1,76			
MEAN	1.48	1.53	2.13	2.15	1.94		5.57	2.37		1.29	. 93	.80
MAX	1.8	2.4	2.7	2.6	3.3	126	8.9	3.5	2.0	1.6	1.0	. 84
MIN	1.2	1.2	1.7	1.8	1.4	1.5	3.5	2.0	1.5	1.0	. 84	.77
AC-FT	91	91	131	132	108	1170	331	146	105	79	57	48
GAT IM		404.5	0 100111		1417 410		10 77	01000				

CAL YR 1986 TOTAL 12145.40 MEAN 33.3 MAX 1130 MIN 1.2 AC-FT 24090 WTR YR 1987 TOTAL 1254.69 MEAN 3.44 MAX 126 MIN .77 AC-FT 2490

11138500 SISQUOC RIVER NEAR SISQUOC, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Water year 1978 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	
	OCT 1986 29	1030	1.4	1090	7.7	16.5	793	
	DEC 04	1050	1.7	1060	7.7	14.0	705	
	JAN 1987 06	1030		1040	7.8	12.5	794	
	FEB		2.0					
	10 MAR	1120	1.9	1110	8.0	16,5	821	
	09 APR	1130	30	872	7.9	7.0	694	
	08 May	1135	6.8	1030	8.2	18.5	787	
	12 JUN	1100	2.4	1050	7.8	20.0	811	
	10 JUL	1000	1.8	871	7.5	17.5	730	
	08	1000	1.4	1140	7.6	18,5	821	
	AUG 11	1100	1.0	1140	7.4	20.0	851	
	SEP 09	1030	0.82	1050	7.5	18.0	810	
DATE	STREA FLOW INSTA TIME TANEO (CFS	i, con N- duc Dus anc	IC - PH T- (STAI E ARI	UTA - DN TAW C	re (MG Er as	S WH W /L TOT MG/L	S ARB CALCI AT DIS- FLD SOLV AS (MG/	DIS- ED SOLVED L (MG/L
MAR 1987								
09	1130 30		872 7	.9		470	270 96	57
DATE		PERCENT SODIUM	SODIUM AD- SORP- TION RATIO AS K)	SIUM, DIS- SOLVED (MG/L	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS AS SO4)	SULFATE DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED (MG/L
MAR 1987	4.0	4.0		4.0	200		1.0	
09	49	18	1	1.9	200	320	16	0.40
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	(UG/L	
MAR 198	7							
09	17	680	<0.100	<0.010	130	11	13	

< Actual value is known to be less than the value shown.

11139500 TEPUSQUET CREEK NEAR SISQUOC, CA

LOCATION.--Lat 34°52'21", long 120°14'37", unsurveyed, Santa Barbara County, Hydrologic Unit 18060008, on downstream wingwall of right bridge abutment on Tepusquet Road, 1.1 mi upstream from mouth, and 3 mi east of Sisquoc.

DRAINAGE AREA. -- 28.7 mi².

REVISED RECORDS, -- WSP 1928: Drainage area.

PERIOD OF RECORD, -- October 1943 to September 1987 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 500 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Dec. 9, 1948, at datum 0.9 ft higher.

REMARKS.--No estimated daily discharges. Records good. No regulation above station. Some diversion by pumping from wells along stream to irrigate about 100 acres above station.

AVERAGE DISCHARGE. -- 44 years, 1.71 ft 3/s, 1,240 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 788 ft³/s, Dec. 6, 1966, gage height, 5.48 ft, from rating curve extended above 220 ft³/s on basis of computation of peak flow at contracted opening; maximum gage height, 6.33 ft, Mar. 1, 1983; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Dec, 20	0145	*13	*3.67				

No flow Sept. 9-11, 17.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEA EAN VALUES	R OCTOBER	1986 7	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 20	.16	, 19	.15	.37	.37	. 40	.79	.35	, 16	.12	.05
2	.19	.17	.18	. 16	.37	.37	. 47	.69	, 16	.06	.14	.06
3	.19	. 17	.14	.19	, 33	.37	. 43	. 64	.30	.13	.13	.05
4	.16	.16	. 19	. 51	,37	.36	.37	.78	. 41	.13	.07	.01
5	. 12	, 15	.25	. 22	.36	1.1	.37	.72	.32	.08	.13	.02
6	. 12	.18	.32	.31	.37	.81	.37	. 69	.34	.09	.18	.07
7	. 14	.19	.21	.35	.34	.60	.42	.72	.39	.10	.17	.07
8	.16	.19	.21	, 28	.37	.58	. 55	.72	.39	,09	.18	.05
9	.20	.15	.20	. 27	.37	.57	.55	.67	.37	.10	.18	0
10	.19	.15	.21	.25	.39	.58	.58	.67	.35	.10	.17	Ö
11	. 12	17	01		10	67	E E	6.5	25	00	4.1	0
11		. 17	.21	. 22	. 42	. 57	.55	. 65	.35	.09	. 14	•
12	. 16	.15	. 18	. 21	. 47	. 58	.55	. 60	.34	.08	. 13	.02
13	.10	. 16	. 14	. 21	. 94	. 56	. 58	. 57	.35	.05	.06	.07
14	. 19	. 17	.21	.21	, 64	.57	.61	. 57	.34	.01	.06	.07
15	. 17	.21	.21	.21	.63	.42	.49	. 58	. 20	.03	.08	.01
16	. 17	. 17	. 24	.21	. 54	.44	.48	. 64	.25	.03	.08	.01
17	. 19	. 17	.21	.21	. 51	.42	. 53	.72	. 26	.05	.07	0
18	.19	.30	.21	. 21	. 52	. 47	.61	. 59	. 26	.04	.01	.07
19	. 17	.20	, 23	.21	. 48	.47	, 56	.35	.26	.07	.11	.10
20	. 17	.20	.49	.21	. 47	.47	. 57	.28	. 22	.07	.11	. 12
21	. 15	.19	. 15	.21	. 47	.70	. 50	. 36	. 24	.06	.11	.09
22	.16	.16	.15	.21	.49	.48	. 58	. 54	, 22	,04	.09	.12
23	.18	.17	.15	.25	.49	.47	.64	. 52	.19	.04	.11	.11
24	.19	.18	.15	.28	.43	.43	.71	. 49	.17	.03	.12	.12
25	. 17	,16	. 15	.28	.40	.37	.72	. 43	.18	.08	.12	.13
26	. 18	. 17	. 15	, 29	.37	.37	. 67	. 63	. 18	.10	. 17	.15
27	.17	.15	.15	.33	.37	.33	.66	. 58	.18	.08	.17	.13
28	.20	.16		.33								
29			.15		.37	.37	.71	. 55	.18	.05	.12	.12
	.20	.17	. 15	.37		.37	.74	. 51	. 16	.05	.13	. 13
30	.20	.18	.15	,38		.37	.80	. 53	. 16	.06	.09	. 12
31	. 17		. 15	. 37		.37		. 54		.05	.04	
TOTAL	5.27	5.26	6.08	8.14	12.65			18.32	8.07	2.20	3,55	2.07
MEAN	. 17	, 18	.20	. 26	.45	.49	. 56	. 59	.27	.071	.11	.069
MAX	. 20	,30	. 49	. 51	. 94	1,1	.80	.79	. 41	.16	.18	. 15
MIN	. 10	.15	. 14	. 15	. 33	.33	.37	. 28	. 16	.01	.01	0
AC-FT	10	10	12	16	25	30	33	36	16	4.4	7.0	4.1

CAL YR 1986 TOTAL 382.66 MEAN 1.05 MAX 45 MIN .01 AC-FT 759 WTR YR 1987 TOTAL 103.69 MEAN .28 MAX 1.1 MIN 0 AC-FT 206

11140000 SISQUOC RIVER NEAR GAREY, CA

- LOCATION.--Lat 34°53'38", long 120°18'20", in SW 1/4 sec.36, T.10 N., R.33 W., Santa Barbara County, Hydrologic Unit 18060008, on downstream side of Santa Maria Mesa Road bridge near left bank, 0.6 mi northeast of Garey, and 3.7 mi downstream from Tepusquet Creek.
- DRAINAGE AREA, -- 471 mi².
- PERIOD OF RECORD. --October 1940 to current year. Records for water year 1941 incomplete; yearly estimate and monthly discharge only for October 1940 and January 1941, published in WSP 1315-B.
- REVISED RECORDS. -- WSP 1011: 1941, 1943. WSP 1928: Drainage area.
- GAGE.--Two water-stage recorders. Datum of main gage is 354.8 ft, Santa Barbara County datum. See WSP 1735 for history of changes of main gage prior to Oct. 1, 1959. Oct. 1, 1959, to Dec. 30, 1965, at datum 6.00 ft higher. Since Oct. 1, 1959, supplementary gage on downstream side of bridge near right bank at same datum.
- REMARKS.--No estimated daily discharges. Records good. No regulation above station. Pumping from wells along stream for irrigation of about 7,000 acres above station.
- AVERAGE DISCHARGE. -- 47 years, 44.4 ft3/s, 32,170 acre-ft/yr.
- EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 33,600 ft³/s, Mar. 1, 1983, gage height, 11.16 ft, from rating curve extended above 22,000 ft³/s; maximum gage height, 13.50 ft, Dec. 6, 1966; no flow several months in each year.
- EXTREMES FOR CURRENT YEAR .-- No flow during year.

11140600 BRADLEY DITCH NEAR DONOVAN ROAD, AT SANTA MARIA, CA

LOCATION.--Lat 34°58'00", long 120°25'00", in NE 1/4 NE 1/4 sec.11, T.10 N., R.34 W., Santa Barbara County, Hydrologic Unit 18060008, on left bank 250 ft upstream from bridge on Donovan Road, and 0.2 mi east of U.S. Highway 101 in Santa Maria.

DRAINAGE AREA. -- 5.47 mi².

PERIOD OF RECORD . -- October 1970 to September 1978, October 1979 to current year.

GAGE.--Water-stage recorder on concrete-lined channel. Elevation of gage is 225 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to September 1978, at site 50 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Apr. 21 to May 12. Records fair except those for estimated discharges, which are poor. Extensive channel modification in 1979 water year widened the concrete-lined channel.

AVERAGE DISCHARGE. -- 16 years, 1.48 ft 3/s, 1,070 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 539 ft³/s, Mar. 1, 1983, gage height, 4.59 ft, from rating curve extended above 69 ft³/s on basis of slope-conveyance studies of discharge; maximum gage height, 5.85 ft, Mar. 4, 1978; no flow for several days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*).

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 6	0145	*48	*2.05				

DISCHARGE IN CURIC FEFT PER SECOND WATER VEAR OCTORER 1986 TO SEPTEMBER 1987

No flow Mar. 9, 23.

		DISCHARGE	I, IN CUB	IC FEET		, WATER Y EAN VALUE	MEAR OCTOBER ES	1986	O SEPTEMBE	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.37	1.6	2.1	.83	.10	.95	3.0	1.8	1.8	1.6	1.6	1.5
2	1.0	. 93	1.7	. 57	. 44	1.1	1.9	2.0	3.9	1.2	2.9	1.5
3	.83	.95	1.7	.74	. 94	1.9	1.6	2.1	4.3	1.4	2.0	1.7
4	1.1	1.9	. 92	4.7	.69	1.6	.35	2.0	3.4	2.0	2.6	1.3
5	.56	1,6	5.4	.23	1.7	25	. 40	1.8	2.0	1.3	2.7	2.0
6	. 56	1.4	2.4	4.6	2.3	14	. 24	1.6	1.2	, 83	4.0	1.9
7	.88	2,5	. 14	2,2	2.0	.25	.81	1,5	3.3	1.7	2.9	.41
8	.90	2.4	.15	.08	2.4	.01	1.3	1.4	1.3	1.9	2.1	. 22
9	.67	1.2	. 44	.09	2.3	0	1.8	1.3	2.9	1.9	1.3	2.1
10	.68	.89	.72	.09	3.1	.04	2.4	1.4	2.8	1.1	1.3	2.1
11	.66	1.5	.90	.14	1.1	.13	2.1	1.5	2.0	1.9	1.7	1.4
12	.33	2.2	. 96	.02	1.2	1.1	2.8	1.8	2.0	1.9	. 92	2.1
13	.48	2.6	.91	.01	6.2	. 54	1.9	2.3	2.5	.72	1.7	2.1
14	1.0	2.8	1.9	.73	.81	2.6	1.4	1.4	1.4	2.0	2.0	. 62
15	.86	1,6	1.7	2.4	.69	.39	2.4	2.0	1.3	2,3	1.6	1.8
16	.15	1.8	.99	2.6	.05	.01	2.2	1.7	3,2	1.8	1.4	1.2
17	. 55	.78	.74	1.8	.18	1.3	1.8	.81	2.2	1.7	.61	2.4
18	.67	1.1	. 65	2.2	1.1	2.5	2.4	1.1	. 47	1.2	. 57	1.4
19	.60	.35	. 17	1.9	3.2	2.0	2.3	1.4	1.7	1.4	1.4	1.4
20	.36	. 26	1.7	2.5	3.0	1.6	1.5	1.6	1.3	1.1	1.4	. 57
21	.68	.86	.05	3.7	2.8	4.0	2.6	2.0	1.6	1.4	1.9	. 67
22	.89	1.0	. 22	2.8	1.4	.10	1.8	, 92	1.3	1.9	1.7	1.2
23	.86	. 92	1.2	1.6	.43	0	1.6	2.2	2.1	2.0	1.9	1.8
24	.94	.14	. 55	2.7	1.0	.21	1.8	2.1	3.0	2.4	1.1	1.5
25	. 90	.80	.09	2.6	, 15	.30	2.0	.08	3.1	3.2	1.2	1.7
26	. 82	1.1	.21	1.6	.05	.79	1.8	.40	2.3	2.3	1.0	1.8
27	.62	2.0	.31	1.4	1.3	1.7	1.7	1.8	2.6	2.1	1.2	1.4
28	.70	1.3	.05	1.0	1.9	1.7	1.6	2.8	2.0	1.7	1.5	.81
29	, 15	2,2	. 14	.03		1.4	1.5	2.9	1.8	2.1	1.2	1.2
30	.15	2.4	.35	.67		1.0	1.5	2.9	1.9	2.5	1.9	1.2
31	1.0		1.3	. 22		1.7		2.5		2.4	2.1	
TOTAL	20,92	43,08	30,76	46.75	42,53	69,92		53,11	66,67	54,95	53.40	43.00
MEAN	. 67	1.44	.99	1.51	1.52	2.26	1.75	1.71	2.22	1.77	1,72	1.43
MAX	1.1	2.8	5.4	4.7	6.2	25	3.0	2.9	4.3	3.2	4.0	2.4
MIN	.15	.14	.05	.01	.05	0	. 24	.08	. 47	.72	, 57	. 22
AC-FT	41	85	61	93	84	139	104	105	132	109	106	85

CAL YR 1986 TOTAL 644.39 MEAN 1.77 MAX 112 MIN 0 AC-FT 1280 WTR YR 1987 TOTAL 577.59 MEAN 1.58 MAX 25 MIN 0 AC-FT 1150

11141000 SANTA MARIA RIVER AT GUADALUPE, CA

LOCATION.--Lat 34°58'35", long 120°34'15", in Guadalupe Grant, Santa Barbara County, Hydrologic Unit 18060008, on downstream side of bridge on State Highway 1, 0.5 mi north of Guadalupe, and 4.5 mi upstream from mouth.

DRAINAGE AREA, --1.741 mi².

PERIOD OF RECORD. --October 1940 to September 1987 (discontinued). Monthly discharge only for October 1940 to January 1941, published in WSP 1315-B.

REVISED RECORDS. -- WSP 1928: Drainage area.

GAGE.--Three water-stage recorders. Datum of main gage (left channel) is 64.92 ft above National Geodetic Vertical Datum of 1929. Two supplementary gages started in 1956 at different datums and locations. Prior to Aug. 11, 1955, main gage at site 100 ft upstream, at present datum.

REMARKS.--Estimated daily discharges: Mar. 5, 6. Records poor. Flow regulated since February 1959 by Twitchell Reservoir, capacity 240,000 acre-ft, 25 mi upstream on Cuyama River. Several small diversions and extensive pumping for irrigation from wells upstream from station.

AVERAGE DISCHARGE. -- 47 years, 29.9 ft 3/s, 21,660 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 32,800 ft³/s, Jan. 16, 1952, gage height, 8.18 ft; maximum gage height, 10.00 ft, Feb. 26, 1969; no flow for all or part of each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 20 ft³/s, Mar. 5, estimated on basis of peak flows at stations on nearby streams, gage height, unknown; no flow most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					MEA	N VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						0 0 0 0 5.0						
6 7 8 9		,				.30 0 0 0						
11 12 13 14 15						0 0 0 0						
16 17 18 19 20						0 0 0 0						
21 22 23 24 25						0 0 0 0						
26 27 28 29 30 31						0 0 0 0 0						
TOTAL MEAN MAX MIN AC-FT	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	5.30 .17 5.0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
CAL YR 1986 WTR YR 1987	TOTAL TOTAL	1800.00 5.30	MEAN 4. MEAN .0	93 MAX 15 MAX	820 5.0	MIN 0 MIN 0	AC-FT AC-FT	3570 11				

11141050 ORCUTT CREEK NEAR ORCUTT, CA

LOCATION.--Lat 34°53'01", long 120°29'38", in SW 1/4 SE 1/4 sec.6, T.9 N., R.34 W., Santa Barbara County, Hydrologic Unit 18060008, on right bank 10 ft upstream from Black Road bridge, 0.2 mi northeast of State Highway 1, and 3.0 mi northwest of Orcutt.

DRAINAGE AREA. -- 18.5 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD . -- October 1982 to current year.

CAL YR 1986 TOTAL 530.56 MEAN 1.45 WTR YR 1987 TOTAL 101.63 MEAN .28

GAGE.--Water-stage recorder. Elevation of gage is 160 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Mar. 5-18, Apr. 10-24, May 11, 12, 25-27, May 31 to June 15. Records poor. No regulation or diversion above station. Natural flow affected by pumping and return flow from irrigated areas.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,830 ft³/s, Mar. 1, 1983, gage height, 7.53 ft, from floodmarks, from rating curve extended above 10 ft³/s on basis of slope-area measurements at gage heights 4.83 and 7.53 ft; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 95 ft3/s, Mar. 5, gage height, 4.89 ft; no flow Oct. 1-10.

		DISCHARGE,	IN CUE	BIC FEET		D, WATER MEAN VALU	YEAR OCTOBE ES	ER 1986 I	O SEPTEMB	ER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	0	, 17	.09	.16	.07	.11	.10	.01	.08	. 15	.10	.10
2	0	.20	.09	.16	.07	.13	.10	.01	.08	.16	.11	.10
3	Õ	. 48	.09	.17	.07	.12	.14	.01	.19	.26	.43	.09
4	Ö	.27	.09	3.6	.06	.15	.31	.01	.10	.12	.11	.08
5	0	.22	.17	.72	.05	33	.28	.01	.08	.11	.09	.00
J	U	. 22	.17	, / 2	.05	33	.20	.01	.00	, 11	.09	.05
6	0	.24	2.3	3.0	.05	4.5	.12	.02	. 07	.08	.09	.09
7	0	.21	. 22	1.5	.03	.20	.08	.03	.07	. 12	.10	.48
8	0	. 25	.16	.25	.03	.10	.08	.03	.07	.15	.10	.60
9	0	.31	.17	. 12	.05	.05	.24	.02	.07	. 14	.11	.15
10	0	.55	.16	.10	.04	.04	. 50	.02	.07	.14	.50	.10
11	.06	.79	. 15	.09	.03	.03	.30	.02	.07	.16	.37	.09
12	. 13	. 68	. 15	.09	.02	.03	.10	.02	.07	.25	.21	.08
13	. 07	. 58	.15	.09	2.0	.03	.05	.02	. 07	.15	.13	.07
14	. 14	. 60	. 15	.09	.76	.03	.03	.01	. 07	.35	.11	. 26
15	.09	.20	.18	.08	.40	.03	.03	.02	.07	. 22	.11	.10
16	.13	.18	. 47	.09	.16	.03	.03	.03	.07	.46	. 15	.08
17	.10	. 73	. 19	.09	, 10	.03	.03	.02	.07	, 23	.36	.10
18	.15	1,5	.16	.09	.13	.03	.03	.03	.07	.18	.13	.09
19	.03	.45	.18	.09	.10	.02	.03	.03	.06	.11	.10	.07
20	.07	.14	. 83	.13	.07	.02	.03	.05	.06	.27	.10	.07
20	.07	. 14	.03	.13	.07	.02	.03	.00	,00	.27	.10	.07
21	, 12	.10	. 24	.09	.08	. 93	.03	.06	.07	,10	.09	. 43
22	.11	.09	.19	.12	,41	.68	.03	.03	, 13	.10	.08	.10
23	.13	.08	.19	.15	.21	,30	.03	.05	.10	.08	.09	.26
24	.10	.09	.16	.10	.62	.16	,03	.07	.08	.07	.33	.10
25	.13				. 43	.16		.12				
23	. 13	.09	.16	.08	.43	. 10	.03	. 12	.08	.08	. 12	.10
26	.05	.08	.15	.08	.22	.13	.02	.10	.08	.08	.11	.08
27	.09	.08	.16	.09	. 11	.12	.02	. 07	.08	.38	,10	, 11
28	. 17	.09	.15	. 12	.09	.10	.03	.06	.09	.13	. 10	. 55
29	.15	.09	.15	.09		.11	.03	.07	. 15	.14	, 12	. 22
30	.16	.09	.16	.08		.10	.02	.09	. 12	.12	.09	. 14
31	.14		.18	.09		.10		.08		.09	. 27	
TOTAL	2.32	0.60	0.01	11 00	6.46		0.00	1 00	0.51		5 01	
TOTAL		9.63	8.04	11.80	6.46	41.57	2.88	1.22	2.54	5.18	5.01	4.98
MEAN	.075	.32	. 26	.38	.23	1,34	.096	.039	.085	.17	. 16	. 17
MAX	. 17	1.5	2.3	3.6	2.0	33	. 50	. 12	. 19	. 46	. 50	. 60
MIN	0	.08	.09	.08	.02	.02	.02	.01	.06	. 07	.08	.07
AC-FT	4.6	19	16	23	13	82	5.7	2.4	5.0	10	9.9	9.9

MAX 160

MAX 33

MIN 0

MIN 0

AC-FT 1050

AC-FT

11141050 ORCUTT CREEK NEAR ORCUTT, CA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD, -- CHEMICAL DATA: Water year 1983 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)		SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	
		r 1986 28	1020	0.03	2210	7.3	16.0	1370	
	DEC		1325	0,02	2440	7.9	13.0	1500	
	JAI	N 1987	1215	1,3	1100	7.4	13.0	558	
	FEI	3				•			
	MAI		1050	0.02	2530	9.0	22.0	1550	
	API	l1 R	0900	0.02	3310	7.8	15.0	2530	
	MA.	09 K	1500	0.27	3990	9.4	30.0	2820	
	JUI	13	1145	0.02	2220	9,6	28.0	1360	
		09	1200	0.07	1840	8.9	23.5	1300	
	(08	1445	0.14	2560	7.8	24.0	1460	
		13	0915	0.06	2490	7.6	18.5	1550	
	SE	9	1555	0.16	2410	7.7	20.0	1570	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH (STAND- ARD UNITS)	TEMPER - ATURE WATER (DEG C	(MG/L AS	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS) CACO3	DIS-	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 1987	0900	0.02	3310	7.8	15.	0 710) 450	150	82
11	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	1987 1	620	65	10	9.1	259	320	1100	0.60
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	BORON DIS- SOLVEI (UG/L AS B)	DIS-	(UG/L	
	1987	28	2500	2.8	1.0	1100	40	1400	

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the U.S. Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at miscellaneous sites are given in separate tables.

Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage station is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for the current year is given. Information on some lower floods may have been obtained but is not published here. The years given in the period of record represent water years for which the annual maximum has been obtained.

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS FOR 1986 WATER YEAR (NOT PREVIOUSLY PUBLISHED), AND 1987 WATER YEAR

		,	Drain-			Annual i	naximums
Station No.	Station name	Location	age area (mi ²)	Period of record	Date	Gage height (feet)	Discharge (ft ³ /s)
		Bristol Lake basin					
10253000	Gourd Creek near Ludlow, CA	Lat 34°40'35", long 116°02'20", in SW 1/4 sec.23, T.7 N., R.9 E. San Bernardino County, Hydro- logic Unit 18090208, at culvert on U.S Highway 66, 8.5 mi southeast of Ludlow.	0.30	1959-74 1976-87	8-13-86 	14.72	82
10261800	Beacon Creek at Helendale, CA	Lat 34°45'00", long 117°18'53", in SE 1/4 sec.29, T.8 N., R.4 W., San Bernardino County, Hydrologic Unit 18090208, at culvert on county road (formerly U.S. Highways 66 and 91), 0.6 mi northeast of Helendale.	0.72	1959-60 1961-67* 1968-69 1976-87	 6-7-87	b16,17	0 Unknown
10262600	Boom Creek near Barstow, CA	Lat 34°54'20", long 116°56'57", NW 1/4 NE 1/4 sec.2, T.9 N., R.1 W., San Bernardino County, Hydrologic Unit 18090208, at culvert on U.S. Highway I-15, 4.3 mi east of Barstow.	0.24	1956-66 1967-73* 1976-87	7-23-86 7-27-87	11.07 10.35	57 39
		Antelope Valley					
10263900	Buckhorn Creek near Valyermo, CA	Lat 34°20'35", long 117°55'13", in SW 1/4 sec.15, T.3 N., R.10 W., Los Angeles County, Hydrologic Unit 18090206, at culvert on State Highway 2, Angeles National Forest, 8.1 mi southwest of Valyermo.	0.48	1961-66* 1967-69 1971-73 1977-87	1-30-86 3-6-87	2.40 1.47	20 3.0
10264530	Pine Creek near Palmdale, CA	Lat 34°36'09", long 118°14'48", in SW 1/4 sec.15, T.6 N., R.13 W., Los Angeles County, Hydrologic Unit 18090206, at culvert on Pine Canyon Road, 7.5 mi northwest of Palmdale.	1.37	1959-73 1977-87	2-15-86 6-6-87	10.58 10.19	1.5 0.21
10264560	Spencer Canyon Creek near Fairmont, CA	Lat 34°46'33", long 118°34'08", in SW 1/4 SW 1/4 sec.15, T.8 N., R.16 W., Los Angeles County, Hydrologic Unit 18090206, at culvert on county road, 8.5 mi northwest of Fairmont.	3.60	1959-64 1965-73* 1974 1978-87	2-14-86 	Unknown 	1 0

^{*} Operated as a continuous-record gaging station.

b Culvert plugged.

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS DURING WATER YEAR 1987--Continued

			Drainage	Period	Ann	ual max Gage	imum
Station No.	Station name	Location	area (mi ²)	of record			Discharge (ft ³ /s)
		Franklin Creek basin					
11119530	Franklin Creek at Carpinteria, CA	Lat 34'24'17", long 119'31'05", in Pueblo Lands of Santa Barbara, Santa Barbara County, Hydrologic Unit 18060013, on right bank 20 ft downstream from Malibu Drive bridge, 0.5 mi north of Carpinteria, and 0.9 mi upstream from mouth.	1.81	1970-78* 1981-87		a	<109
		Santa Ynez River basin					
11131700	Santa Rita Creek near Lompoc, CA	Lat 34'38'41", long 120'22'09", in Santa Rita Grant, Santa Barbara County, Hydrologic Unit 18060010, on left bank 2.4 mi upstream from mouth and 6.5 mi east of Lompoc.	14.1	1976-79 1981-87		a	<26
11133700	Purisima Creek near Lompoc, CA	Lat 34'41'34", long 120'25'51", in Purisima Grant, Santa Barbara County, Hydrologic Unit 18060010, on right bank 1.1 mi northeast of junction of Buener Road and Lompoc-Casmalia Road, and 4.0 mi northeast of Lompoc.	4.75	1972-75* 1976-87	11-18-86	1.71	26
11135200	Rodeo-San Pasqual Creek near Lompoc, CA	Lat 34'38'42", long 120'30'57", in Lompoc Grant, Santa Barbara County, Hydrologic Unit 18060010, on left bank 0.1 mi east of Dewolf Avenue at Highwa 246, and 3.3 mi west of Lompoc.	7.80 y	1971-72* 1973-78 1980-87		a	<29

^{*}Operated as a continuous record station.
a Peak stage did not reach bottom of gage.
< Actual value is known to be less than the value shown.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1987

			Drainage area (mi ²)	Measured previously (water		Discharge (ft ³ /s)
Stream	Tributary to	Location	(mi²)	years)	Date	(ft ³ /s)
		Atascadero Creek basin				
Maria Ygnacio Creek	Atascadero Creek	Lat 34°27'34", long 119°47'24", in SE 1/4 NE 1/4 sec. 3, T.4 N., R.28 W., Santa Barbara County, Hydrologic Unit 18060013, 0.1 mi upstream from Old San Marcos Pass Road bridge, 300 ft upstream from confluence with East Fork, and 2.5 mi northeast of Goleta.		1984-85	10/04/85* 10/07/85* 10/18/85* 10/18/85* 10/28/85* 11/15/85* 11/15/85* 11/15/85* 12/01/85* 12/13/85* 12/16/85* 12/13/86* 01/23/86* 01/15/86* 01/23/86* 02/24/86* 02/24/86* 03/21/86* 03/21/86* 03/21/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 03/12/86* 05/12/86* 05/12/86* 05/12/86* 05/12/86* 05/12/86* 05/12/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86* 06/04/86*	.00 .00 .01 .14 .09 1.99 .23 .39 .34 .32 .33 .30 .31 .29 .27 .32 .30 .22 .30 .29 .27 .32 .30 .45 .27 .29 .7 .32 .50 .49 .41 .47 .34 .30 .39 .39 .37 .26 .32 .32 .30 .39 .37 .26 .32 .32 .30 .39 .37 .26 .32 .32 .30 .39 .37 .26 .32 .32 .32 .32 .30 .39 .31 .30 .39 .37 .26 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32
					,,	

^{*} Not previously published.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1987

Stream	Tributary to	Location	Drainage area (mi ²)	Measured previously (water years)		surements ischarge (ft ³ /s)
Boream	TIIDUCALY CO		(1112)	years	Date	(10 /3/
		Atascadero Creek basin				
Maria Ygnacio Creek	Atascadero Cree	Atascadero Creek basin k Lat 34°27'34", long 119°47'24", in SE 1/4 NE 1/4 sec. 3, T.4 N., R.28 W., Santa Barbara County, Hydrologic Unit 18060013, 0.1 mi upstream from Old San Marcos Pass Road bridge, 300 ft upstream from confluence with East Fork, and 2.5 mi northeast of Goleta.		1984-85	10/04/85* 10/07/85* 10/18/85* 10/28/85* 11/04/85* 11/15/85* 11/18/85* 12/01/85* 12/01/85* 12/16/85* 12/16/85* 12/16/85* 12/16/85* 01/03/86* 01/15/86* 01/15/86* 02/10/86* 02/21/86* 02/21/86* 02/21/86* 03/05/86* 03/12/86* 04/14/86* 04/14/86* 05/15/86* 05/15/86* 05/15/86* 06/16/86* 06/16/86* 06/16/86* 06/16/86* 06/18/86* 06/18/86* 06/18/86* 06/18/86* 06/18/86* 09/08/86* 09/08/86* 09/08/86*	0.00 .00 .00 .01 .14 .09 1.99 .23 .34 .32 .33 .30 .30 .31 .29 .29 .27 .32 .32 .32 .32 .32 .37 .22 .72 .72 .72 .72 .75 .55 .50 .41 .47 .34 .32 .33 .30 .30 .30 .30 .30 .30 .30 .30 .30
					09/22/86* 09/29/86*	.07 .26

^{*} Not previously published.

DISCHARGE AND WATER-QUALITY AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1987

Stream Tributary to	Location	Drainage area (mi ²)	Measured previously (water years)	, Date	Time	Stream- flow Instan- taneous (CFS)	Specific conduc- tance (UMHOS)	Temper- ature (DEG C)
	Atascadero Creek basin							
Stream Tributary to		area (mi ²)	(water		Time 0915 1000 1045 1045 0930 1030 0945 0930 1000 1015 1300 1045 1145 1130 1045 11400 1115 1200 1115 1400 11100 1130 1145 1400 1100 1100 1100	taneous (CFS) .06 .18 .19 .16 .08 .21 .21 .21 .23 .23 .22 .21 .41 .12 .23 .35 .26 .24 .25 .27 .21 .19 .18 .13 .20 .14 .17 .16 .03 .01	tance	ature (DEG C) 16.0 13.0 13.5 14.5 13.5 10.5 10.0 10.0 9.0 8.5 10.0 13.5 10.5 10.0 11.0 10.0 11.0 10.0 11.0 11
				06/02/87 06/08/87 06/15/87 06/12/87 06/22/87 07/06/87 07/14/87 07/27/87 08/03/87 08/10/87 08/17/87 09/03/87 09/09/87		.01 .17 .15 <.01 .01 .01 .01 <.01 <.01 <.01 <.01 0 0	1120 1550 1500 1990 1700 1970 1860 1990 2110 2110 	19.0 17.0 17.5 20.0 16.0 18.0 17.5 20.0 19.0 24.0

DISCHARGE AND WATER-QUALITY AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1987

Ohman	multi-house ha	T. c. ch l. c.	area	Measure previous (water	ly	I t	flow instan- aneous	tance	Temper- ature (DEG C)
Stream	Tributary to	Location	(mi ²)	years)	Date	11me	(CFS)	(UMHOS)	(DEG C)
		Atascadero Creek basinContinu	ed						
East Fork,	Maria Ygnacio	Lat 34°28'32", long 119°46'40"	,		02/02/87	1030	.04	685	9.5
Maria Ygnacio	Creek	in SE 1/4 NE 1/4 sec. 35,			02/10/87	1015	.04	665	13.5
Creek		T.5 N., R.28 W., Santa			02/17/87	0945	.04	670	11.0
		Barbara County, Hydrologic			02/24/87	0930	.04	715	7.5
		Unit 18060013, 100 ft			03/04/87	1030	.02	670	11.5
		upstream from bridge on			03/10/87	0900	.08	730	11.5
		private road, 1.5 mi			03/18/87	1300	.04	720	14.0
		upstream from Maria			03/25/87	1015	.04	720	12.0
		Ygnacio Creek, and 4.0 mi			03/31/87	0915	.03	725	11.0
		northeast of Goleta.			04/07/87	1115	.03	720	14.0
					04/13/87	1130	.05	741	14.5
					04/20/87	1200	.04	735	15.0
					04/28/87	0930	.02	691	14.5
					05/04/87	0845	.02	766	15.5
					05/12/87	0915	.03	738	17.0
					05/18/87	0930	.03	693	15.0
					05/27/87	0945	.02	595	14.0
					06/02/87	0930	.02	580	16.0
					06/08/87	0845	.02	635	15.5
					06/15/87	1030	.02	697	15.0
					06/22/87	0945	.02	708	
					06/29/87	1030	.02	700	14.5
					07/06/87	1130	.01	705	15.0
					07/14/87	0845	.02	725	15.5
					07/20/87	0945	.01	728	14.0
					07/27/87	1015	.01	731	16.0
					08/03/87	1000	0		
					08/10/87	1030	0		
					08/17/87	1030	0		
					08/24/87	1300	0		
					09/03/87	1300	0		
					09/09/87	1245	0		
					09/14/87	1300	0		
					09/23/87	0930	Ô		
					09/30/87	1030	.03	770	16.5

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1987

Stream	Tributary to	Location	Drainage area (mi ²)	Measured previously (water years)	M Date	Discharge (ft ³ /s)
peragn	ilibubaly bo		(1111)	yours,	Date	(10 /0)
		Atascadero Creek basinContinued				
East Fork, Maria Ygnacio Creek	Maria Ygnacio Creek	Atascadero Creek basinContinued Lat 34°27'36", long 119°47'26", in SE 1/4 NE 1/4 sec. 3, T.4 N., R.28 W., Santa Barbara County, Hydrologic Unit 18060013, 0.1 mi upstream from Old San Marcos Pass Road bridge, 75 ft upstream from confluence with Maria Ygnacio Creek, and 2.5 mi northeast of Goleta.		1984-85	10/04/85* 10/07/85* 10/18/85* 10/28/85* 11/04/85* 11/104/85* 11/18/85* 11/18/85* 12/01/85* 12/01/85* 12/16/85* 12/16/85* 12/16/86* 01/15/86* 01/15/86* 01/15/86* 01/15/86* 02/10/86* 02/10/86* 02/10/86* 03/12/86* 04/14/86* 04/14/86* 05/12/86* 05/12/86* 05/12/86* 05/12/86* 05/12/86* 06/09/86* 06/09/86* 06/09/86* 06/16/86* 06/09/86* 07/14/86* 07/14/86* 07/14/86* 07/14/86* 07/14/86* 08/11/86* 08/11/86*	0.02 .02 .02 .02 .02 .02 .02 .02 .02 .02
					09/15/86* 09/22/86*	.30
					09/29/86*	.03

^{*} Not previously published.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1987

			Dustuses	Measured	Me	easurements
Stream	Tributary to	. Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		Santa Maria River basin				
Green Canyon Creek	Santa Maria River	Lat 34°57'27", long 120°37'54", Santa Barbara County, Hydrologic Unit 18060008, at culvert on Main Street, 3.6 mi southwest of Guadalupe.		1984-86	10/16/85* 11/20/85* 12/20/85* 02/20/86* 02/20/86* 03/14/86* 05/14/86* 05/14/86* 07/16/86* 07/16/86* 09/24/86* 10/30/86 12/03/86 01/07/87 02/11/87 03/10/87 04/07/87 05/13/87 06/09/87 08/12/87	3.74 5.75 4.93 5.98 27.1 8.04 15.9 9.83 12.0

^{*} Not previously published.

SAN MATEO CREEK BASIN

11046370 SAN MATEO CREEK AT SAN ONOFRE, CA

LOCATION.--Lat 33°24'00", long 117°35'09", in SW 1/4 SW 1/4 sec.11, T.9 S., R.7 W., San Diego County, Hydrologic Unit 18070301, on Camp Joseph H. Pendleton Naval Reservation, on right bank 0.6 mi upstream from bridge on Interstate Highway 5, 1.2 mi upstream from mouth, and 1.9 mi downstream from Cristianitos Creek.

DRAINAGE AREA.--130 \min^2 .

PERIOD OF RECORD. --

WATER TEMPERATURE: Water years 1982 to current year.
SEDIMENT DATA: Water years 1982 to current year. Records for October 1984 to September 1985, published in WDR CA-84-1, are unreliable and should not be used.

PERIOD OF DAILY RECORD . --

WATER DISCHARGE: October 1946 to September 1967, October 1984 to September 1985. Records for October 1984 to September 1985, published in WDR CA-84-1, are unreliable and should not be used. WATER TEMPERATURE: December 1983 to September 1984. SUSPENDED-SEDIMENT DISCHARGE: December 1983 to September 1984.

REMARKS. -- Minor flows regulated by percolation basins. No flow for the entire year.

TOPANGA CREEK BASIN

11104000 TOPANGA CREEK NEAR TOPANGA BEACH, CA

LOCATION.--Lat 34°03'52", long 118°35'10", in NW 1/4 SW 1/4 sec.20, T.1 S., R.16 W., Los Angeles County, Hydrologic Unit 18070104, on right bank 1.8 mi north of Topanga Beach on Topanga Canyon Road.

DRAINAGE AREA, -- 18.0 mi².

PERIOD OF RECORD. --

CHEMICAL DATA: Water years 1982 to current year.

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JAN 1982 02	1330	0.89	1460	8.5	14.0	755	10,1	99	440	K1500
MAR 17	1430		522	8.0	11.5	745	10.1	95	22000	K104000
JUL	1445		1380		27.0	760				
27 MAR 1983		0.30					10.1	128	<100	1400
02 JUL	1115		700	8.4	14.0	745°	9.7	97		
13 MAY 1984	0930	E4.5	1370	8.2	19.5	755	8.2	91		
30 JUN	1130	0.30	1350	8.3	23,5	755	11.5	137	200	51
26	1445	0.17	1280	8.5	26.0	750	9.4	118	K20	кз
JUL 24 AUG	1400	0,15	1190	8.2	27.5	760	7.4	94	K10	K17
29	1415	0.11	1060	8.6	29.0	755	10.8	142	K10	
NOV 1985 25	1115	73	580	7.8	13.0	745	10.0	97		
JUL 1986 23	1340	0.31	1260	8,2	24.5	760	10.0	121	К8	2400
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 1982	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 02 MAR	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 27	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 02 MAR 17 JUL	NESS TOTAL (MG/L AS CACO3) 630	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG) 70	DIS- SOLVED (MG/L AS NA) 110	PERCENT 27 24	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 450
JAN 1982 02 MAR 17	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 27	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 02 MAR 17 JUL 27 MAR 1983 02	NESS TOTAL (MG/L AS CACO3) 630	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG) 70	DIS- SOLVED (MG/L AS NA) 110	PERCENT 27 24	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 450
JAN 1982 02 MAR 17 JUL 27 MAR 1983 02 JUL 13	NESS TOTAL (MG/L AS CACO3) 630 200 490	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 380 110 350	DIS- SOLVED (MG/L AS CA) 140 48	SIUM, DIS- SOLVED (MG/L AS MG) 70 19	DIS- SOLVED (MG/L AS NA) 110 30	27 24 32	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 4.3 4.3	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 450 140
JAN 1982 02 MAR 17 JUL 27 MAR 1983 02 JUL 13 MAY 1984 30	NESS TOTAL (MG/L AS CACO3) 630 200 490	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 380 110 350 160	DIS- SOLVED (MG/L AS CA) 140 48 99	SIUM, DIS- SOLVED (MG/L AS MG) 70 19 60 28	DIS- SOLVED (MG/L AS NA) 110 30 110 35	27 24 32 21	AD- SORP- TION RATIO 2 1 2	SIUM, DIS- SOLVED (MG/L AS K) 4.3 4.3 4.9	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 450 140 390
JAN 1982 02 MAR 17 JUL 27 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26	NESS TOTAL (MG/L AS CACO3) 630 200 490 290 590	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 380 110 350 160 340	DIS- SOLVED (MG/L AS CA) 140 48 99 70	SIUM, DIS- SOLVED (MG/L AS MG) 70 19 60 28 71	DIS- SOLVED (MG/L AS NA) 110 30 110 35	27 24 32 21 27	AD- SORP- TION RATIO 2 1 2 0.9	SIUM, DIS- SOLVED (MG/L AS K) 4.3 4.3 4.9 3.1	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 450 140 390 190 420
JAN 1982 02 MAR 17 JUL 27 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26 JUN 24	NESS TOTAL (MG/L AS CACO3) 630 200 490 290 590	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 380 110 350 160 340 260	DIS- SOLVED (MG/L AS CA) 140 48 99 70 120 94	SIUM, DIS- SOLVED (MG/L AS MG) 70 19 60 28 71	DIS- SOLVED (MG/L AS NA) 110 30 110 35 100 98	27 24 32 21 27 31	AD- SORP- TION RATIO 2 1 2 0.9 2	SIUM, DIS- SOLVED (MG/L AS K) 4.3 4.3 4.9 3.1 4.7	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 450 140 390 190 420 350
JAN 1982 02 MAR 17 JUL 27 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26 JUL 24 AUG 29	NESS TOTAL (MG/L AS CACO3) 630 200 490 290 590 480 470	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 380 110 350 160 340 260 240	DIS- SOLVED (MG/L AS CA) 140 48 99 70 120 94	SIUM, DIS- SOLVED (MG/L AS MG) 70 19 60 28 71 59	DIS- SOLVED (MG/L AS NA) 110 30 110 35 100 98	27 24 32 21 27 31 32	AD-SORP-TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 4.3 4.3 4.9 3.1 4.7 4.4	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 450 140 390 190 420 350 320
JAN 1982 02 MAR 17 JUL 27 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26 JUN 26	NESS TOTAL (MG/L AS CACO3) 630 200 490 290 590 480 470 450	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 380 110 350 160 340 260 240	DIS- SOLVED (MG/L AS CA) 140 48 99 70 120 94 88 88	SIUM, DIS- SOLVED (MG/L AS MG) 70 19 60 28 71 59 60 58	DIS- SOLVED (MG/L AS NA) 110 30 110 35 100 98 100	27 24 32 21 27 31 32 32	AD- SORP- TION RATIO 2 1 2 0.9 2 2 2 2	SIUM, DIS- SOLVED (MG/L AS K) 4.3 4.3 4.9 3.1 4.7 4.4 4.2 4.3	LINITY WAT WH TOT FET FIELD MG/L AS CACO3 87 130 250 222 232 198	DIS- SOLVED (MG/L AS SO4) 450 140 390 190 420 350 320 310

See footnotes at end of table.

TOPANGA CREEK BASIN

11104000 TOPANGA CREEK NEAR TOPANGA BEACH, CA--Continued

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

dividual div		CHLO- RIDE, DIS- SOLVE (MG/I AS CI	R D S	LUO- IDE, DIS- OLVED MG/L S F)	DIS SOL (MG	CA, R - A' VED :	OLIDS, ESIDUE T 180 DEG. C DIS- SOLVED (MG/L)	CONS TUE! D. SOI	OF STI- NTS, IS-	NITE GEN NO2+N DIS SOLV (MG/ AS N	I, P 103 5- VED S	PHOS- HOROUS ORTHO, DIS- OLVED MG/L S P)	DI SOI (UC		IRON, DIS- SOLVED (UG/L AS FE)
JAN 1982							, 61		3 9			. :			
02 MAR		130		0.6	17	'	1100	:	1070	0.	39	0.06		560	<10
17		19		0.4	13		360		338	2.	6	0.16		140	81
JUL 27		120	*	0.7	17		969		889	<0.	1	0.03	+ +4	740	10 :
MAR 1983															
02 JUL		18		0.4	21	•	487		452	1.	8	0.09		170	33
13		95		0.5	15		1020		977	<0.	1	0.02		530	<3
MAY 1984 30		110	*	0.7	14		896		865	<0.	1	0.25		620	4
JUN 26		110		0.8	19	1	880		842	<0.	1	0.07		620	13:
JUL													-		
24 AUG		110		8.0	18	,	846		805	<0.	1	0.04		720	8
29		110		0.8	17		796		747	<0.	1	0.03		700	21
NOV 1985 25		30		0.4	g	0,0	397		391	3.3		0.27		150	120
JUL 1986 23		98		0.7	20	7 A.	850	i, v.	707	<0.1	٥	0.02		620	14
20		90		0.7	22				/9/	~0.1	.0	0.02	1.13	020	14
**.						CADMIU	CHRC M MIU		LEA	n 14	ERCUR	v	1113	ZINC,	
						TOTAL	TOI	'AL	TOT	ΑĹ	TOTAL	SE	LE-	TOTAL	
				ARSE		RECOV		OV-	RECO		RECOV		UM,	RECOV	
· T	ATE		TIME	TOI (UC		ERABLI (UG/L		BLE L	ERAI (UG		ERABL:		TAL G/L	ERABL (UG/L	
-					AS)	AS CD		CR)	AS		AS HG		SE)	AS ZN	
JUL 1	082														
27.			1445		2	10	0	. 10	<	100	0,1	0	<1	- 2	0
MAR 1	1983		1115		3	<10	n ·	20	<	100	0.2	n	4	7	0
JUL															
13. MAY 1			0930		. 1	<1	0	<10	<:	100	0.4	0	1	. 2	0
30.			1130		<1	<1	0	10	<	100	<0.1	0	<1	. 3	0
JUN 26.			1445		<1	<10	0	10	<	100	0.1	0	<1	<1	0
JUL 24.		1.00	1400		1	<10	 n	<10		100	0.1	n	<1	<1	0
AUG										4673					
29. NOV 1			1415		<1	<3	0	10	<;	100	0.1	0	<1	<1	0
25.			1115		9	1	0	110	:	100	<0.1	0	8	47	0 0
JUL 1 23.			1340		<1	<10	0	<10	<;	100	0.1	0	<1	<1	0
						_									

See footnotes at end of table.

Altre-

TOPANGA CREEK BASIN

11104000 TOPANGA CREEK NEAR TOPANGA BEACH, CA--Continued

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

ENDO-

SULFAN,

TOTAL IN BOT-TOM MA-

TERIAL

(UG/KG)

<0.1

<0.1 <0.1

<0.1

<0.1

<0.1 <0.1

DATE	:	STREAM- TO FLOW, IN INSTAN- TO IANEOUS TI	DTAL TOT BOT- IN MA- TOM ERIAL TE	AL TO BOT- IN MA- TO RIAL T	ORIN, OTAL BOT- I M MA- T ERIAL	OM MA- TERIAL	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUL 1982 27	1445	0.30	<1	<1.0	<0.1	3.0	0.4	0.2	0.1	0.1
JUL 1983 13	0930	E4.5	<1	<1.0	<0.1	1.0	<0.1	0.1	0.1	0.1
MAY 1984 30	1130	0.30	<1	<1.0	<0.1	1.0	<0.1	0.1	0.1	<0.1
JUN 26	1445	0.17	<1	<1.0	<0.1	2.0	<0.1	0.3	0.7	0.1
JUL 24	1400	0.15	2	<1.0	<0.1	1.0	<0.1	0.2	0.2	<0.1
AUG 29	1415	0.11	<1	<1.0	<0.1	1.0	<0.1	0.1	0,9	<0.1
JUL 1986 23	1340	0.31	<1	<1.0	<0.1	1.0	0.1	0.2	<0.1	<0.1
DATE	ENDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	TOTAL - IN BOT TOM MA- L TERIAL	HEPTA CHLOR EPOXIE TOT. I BOTTO MATL (UG/KG	E LINI DE TO: IN IN I MM TOM TEI	MA- RIAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX TOTAI IN BOT TOM MA TERIA (UG/KC	THA T- IN I A- TOM AL TERI	R- PH ANE TO BOT- IN MA- TOM [AL TE	XA- ENE, TAL BOT- MA- RIAL /KG)
JUL 1982 27	<0.	1 <0.1	<0.	1 .	<0.1	<0.1	<0.	.1 <1	1.00 <1	0
JUL 1983	<0.	1 <0.1	<0.	1 .	<0.1	<0.1	<0.	.1 <1	1.00 <1	0
MAY 1984 30	<0.	1 <0.1	<0.	1 .	<0.1	<0.1	<0.	.1 <1	1.00 <1	0
JUN 26	<0.	1 <0.1	<0.	1 .	<0.1	<0.1	<0.	1 <1	1.00 <1	0
JUL 24	<0.	1 <0.1	<0.	1 .	<0.1	<0.1	<0.	1 <1	1.00 <1	0
AUG 29 JUL 1986	<0.	1 <0.1	<0.	1	<0.1	<0.1	<0.	.1 <1	.00 <1	0
23	<0.	1 <0.1	<0.	1	<0.1	<0.1	<0.	1 <1	.00 <1	0
DATE	TIM	STREAM- FLOW, INSTAN- E TANEOUS (CFS)	AME- TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	DI- AZINO TOTA (UG/	N, ETHIC L TOTA	L TOTA	N, THI	A- ON, AL
JAN 1982 02	133	n n oo	M0 0	0.20	M0.0					
MAR 17	1430		M0.0 M0.0	0.20	M0.0					
JUL 27	144		<0.10	<0.10	<0.1					
MAR 1983 02	111:		<0.10	<0.10	<0.1			.01 <0.	01 <0	.01
JUL 13	093		<0.10	<0.10	<0.1					.01
MAY 1984 30	113		<0.10	<0.10	<0.1			.01 <0.		.01
JUN 26	144		<0.10	<0.10	<0.1					.01
JUL 24	140		<0.10	<0.10	<0.1					.01
AUG 29	141		<0.10	<0.10	<0.1			01 <0.		. 01
NOV 1985 25	111:	5 73	<0.10	0.10	<0.1	0 0.	08 <0.	01 0.	04 <0	.01

See footnotes at end of table.

TOPANGA CREEK BASIN

11104000 TOPANGA CREEK NEAR TOPANGA BEACH, CA--Continued

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	METHYL TRI- THION, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PROMETONE TOTAL (UG/L)	PROMETRYNE TOTAL (UG/L)	PRO- PAZINE TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)	TOTAL TRI- THION (UG/L)
JAN 1982								
02			M0	MO	MO.0	1.5	MO	
MAR 17 JUL			MO	M0	M0.0	0.20	MO	
27 MAR 1983			<0.1	<0.1	<0.10	0.20	<0.1	
02 JUL	<0.01	<0.01	<0.1	<0.1	<0.10	0.10	<0.1	<0.01
13 MAY 1984	<0.01	<0.01	<0.1	<0.1	<0.10	<0.10	<0.1	<0.01
30 Jun	<0.01	<0.01	<0.1	<0.1	<0.10	<0.10	<0.1	<0.01
26 JUL	<0.01	<0.01	<0.1	<0.1	<0.10	<0.10	<0.1	<0.01
24 AUG	<0.01	<0.01	<0.1	<0.1	<0.10	<0.10	<0.1	<0.01
29 NOV 1985	<0.01	<0.01	<0.1	<0.1	<0.10	<0.10	<0.1	<0.01
25	<0.01	<0.01	<0.1	<0.1	<0.10	0.30	<0.1	<0.01

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)		COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	KF AGAR (COLS,
MAR 1987										
06 AUG	1515	2.7	1340	7.3	14.0	760	9.6	94	400	700
05 SEP	1310	E0.10	1320	8.0	24.0	755	8.3	99	<1	150
17	1300	E0.10	1360	7.4	22.0	755	8.2	95	K2	220
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	(MG/L	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
MAR 1987										
06 AUG	580	350	130	63	120	31	2	4.1	231	480
05 SEP	510	210	110	58	100	30	2	3.7	305	300
17	470	220	98	55	100	31	2	3.7	249	300
	DATE MAR 1987 06	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	
A	AUG 05	110	0.7	27	885	893	1.20	<0.10	0.04	
S	EP									
	17	110	0.9	23	872	841	1.19	<0.10	0.02	J.

E Estimated value.

Before 1983 the U.S. Geological Survey published values of 0 or 0.0. Now published as less than the detection level.

TOPANGA CREEK BASIN

11104000 TOPANGA CREEK NEAR TOPANGA BEACH, CA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	ARSENI TOTAL (UG/L AS AS	SOLVE	RECO	L TOT V- REC LE ERA L (UG	M, AL : OV- BLE :	DIS- I	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZIN TOTA RECO ERAB (UG/ AS	L V- LE L
	1987 3	<	1 48	0	10	<10	270	<100	<0.10	<1		<10
	5	<	1 79	0 <	10	20	32	<100	<0.10	6		<10
	'	<	1 80	0 <	10	<10	20	<100	1.9	<1		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOX TOM MA	DDI L TOTA I- IN BO A- TOM I	AĹ TO: OT- IN I MA- TOM IAL TEI	TAL TO: BOT- IN I MA- TOM RIAL TEI	DT, EL TAL T BOT- IN MA- TO RIAL T	DI- DRIN, OTAL BOT- M MA- ERIAL G/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG 1987 05 SEP	1310	0.10	<1	<1.0	<0.1	<1.0	0 <	0.1	0.2	0.1	<0.1	<0.1
17	1300	0.10	<1	<1.0	0.1	1.0	0 (0.1	0.1	0.1	<0.1	<0.1
DATE	TO IN TO TI	DRIN, COTAL I BOT- IN MA- TO ERIAL I	HLOR, CEOTAL EPO BOT- TO M MA- BO ERIAL	OXIDE T T. IN IN OTTOM TO MATL. T	NDANE OTAL BOT- T M MA- ERIAL	METH- OXY- CHLOR, OT. IN BOTTOM MATL. UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG	TOM MA-	- - L		
AUG 1987 05 SEP 17		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1					

E Estimated value. < Actual value is known to be less than the value shown. K Results based on colony count outside the acceptable range.

MALIBU CREEK BASIN

11104400 MALIBU CREEK AT CORNELL, CA

LOCATION.--Lat 34°06'51", long 118°46'42", in SW 1/4 NW 1/4 sec.4, T.1 S., R.18 W., Los Angeles County, Hydrologic Unit 18070104, at Mulholland Highway Bridge, 0.2 mi west of Cornell.

DRAINAGE AREA.--37.6 mi².

PERIOD OF RECORD.-
CHEMICAL DATA: Water years 1983-84, 1986 to current year. No data for water year 1985.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1986

(NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 1983										
14 MAY 1984	1020		995	8.1	24.0	745	8.7	106		
31 NOV 1985	1000	0.28	1060	7.7	21.5	760	12.6	144	150	550
25	1605		1060	8.2	13.0	735	9.3	92	5600	34000
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
JUL 1983 14	390	170	76	49	65	26	1	2.3		210
MAY 1984 31	400	140	77	51	71	28	2	1.9		200
NOV 1985 25	420	220	81	53	88	31	2	3.3	203	270
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
JUL 1983 14	57	0.2	33	659	628	0.9	<0.1	0.10	130	<3
MAY 1984 31	64	0.3	30	680	651	0.92	<0.1	0.05	130	<3
NOV 1985 25	82	0.2	21	710	722	0.97	0.32	0.07	210	29
	DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	
M	AY 1984 31	1000	2	<10	20	<100	<0.10	<1	10	
N	OV 1985	1605	2	<10	20	<100		1		
	DATE	TIME	AME- TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	0.30 ETHION, TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	
NO	OV 1985 25	1605	<0.10	0,10	<0.10	0.28	<0.01	0.03	<0.01	
	DATE	METHYL TRI- THION, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PROMETONE TOTAL (UG/L)	PROME- TRYNE TOTAL (UG/L)	PRO- PAZINE TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	
NO	OV 1985	-0.01	-0 01	-n 1	-0 1	-0 10	0.50	-0.1	-0.01	
\$	25 See footnot	<0.01 e at end	<0.01 of table.	<0.1	<0.1	<0.10	0.50	<0.1	<0.01	

MALIBU CREEK BASIN

11104400 MALIBU CREEK AT CORNELL, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMEBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
MAR 1987 06	0900	18	1120	7.8	15.0	745	9.5	97	670	4100
	HA	RD-						AL	KA-	
DATE	HARD- NESS TOTAL (MG/L AS	NESS NONCARB WH WAT TOT FLD MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L	LINITY WAT WH TOT FET FIELD MG/L AS	
	CACO3)	CACO3	AS CA)	AS MG)	AS NA)	PERCENT		AS K)	CACO3	
MAR 1987 06	430	200	88	52	86	30	2	2.7	235	
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	
MAR 1987 06	270	93	0.2	23	788	757	1.07	0.24	0.09	
DATE	ARSENIC TOTAL (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	
MAR 1987 06	1	180	<10	<10	10	<100	0.4	1	<10	

< Actual value is known to be less than the value shown.

MALIBU CREEK BASIN

11105410 COLD CREEK AT PIUMA ROAD, NEAR MONTE NIDO, CA

LOCATION.--Lat 34°04'45", long 118°41'54", in NW 1/4 SE 1/4 sec.18, T.1 S., R.17 W., Los Angeles County, Hydrologic Unit 18070104, at culvert under Piuma Road 0.2 mi upstream from mouth and 0.7 mi west of Monte Nido.

DRAINAGE AREA.--7.73 mi².

PERIOD OF RECORD. --

CHEMICAL DATA: Water years 1982-84, 1986. No data for water years 1985 and 1987.

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1984

(NOT PREVIOUSLY PUBLISHED)

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
	MAR 1982	1000		400		10 5	700	10.0	101	voz	7/00
	18 JUL	1230		430	8.1	10.5	720	10.9	104	K67	K82
12°	27 JUL 1983	1125	0.20	745		17.5	750	10.6	113	K36	260
	13 MAY 1984	1520	1.5	1040	8.3	27.0	750	8.1	104		
	30 JUN	1930	0.08	1160	7.8	20.5	760	5.9	66	55	570
	26 JUL	1030	0.07	1120	8.1	19.5	750	8.2	91	68	1100
	24	1030	0.03	1220	8.0	22.0	750	6.9	81	110	2600
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
	MAR 1982 18	170	12	36	20	21	21	0.7	1.0		14
	JUL										
	27 JUL 1983	320	49	68	36	40	21	1	1.6		56
	13 MAY 1984	430	140	93	47	72	27	2	1.4	290	190
	30 JUN	490	110	110	53	73	24	1	1.2		190
	26 JUL	510	110	110	56	77	25	2	1.2	396	190
	24	500	120	110	55	78	25	2	1.3	385	190
	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
	MAR 1982	4.0									
	18 JUL	19	0.30	21	263	230	0.36	<0.100	0.030	1700	48
	27 JUL 1983	30	0.40	28	457	425	0.62	<0.100	0.060	3900	19
	13 MAY 1984	48	0.30	42	680	670	0.92	0.270	0.070	970	<3
	30 JUN	58	0.30	47	762	764	1.04	<0.100	0.020	710	26
	26	59	0.40	46	780	778	1.06	<0.100	0.050	650	<3
	JUL 24	65	0.30	48	783	779	1.06	<0.100	0.090	750	7

See footnotes at the end of table.

MALIBU CREEK BASIN

11105410 COLD CREEK AT PIUMA ROAD, NEAR MONTE NIDO, CA--Continued WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1984 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAY 1984								
30	1930	3	<10	20	<100	<0.10	<1	20
JUN								
26	1030	1	<10	<10	<100	0.10	<1	10
JUL								
24	1030	2	<10	<10	100	0.10	<1	<10

K Results based on colony count outside the acceptable range. < Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

				(NOI PKE	MICOSLI	LODLIDE	ieu)				
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	(Mi OF	RIC S- RE OXYGI M DIS SOLV	D SC EN, (P S- C VED SA	IS- LVED ER- ENT TUR- (COLI- FORM, FECAL, 0.7 UM-MF COLS./ 00 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
FEB 1986 01 JUL	0900	4.5	900	8.0	11.5	7	750 10.0)	93	700	2600
24	0910	0.16	1210	8.0	16.5	7	755 8.3	7	90	160	1000
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODI PERCE	SORI TIC [UM RAT])- S P- D ON SO IO (M	TAS- L SIUM, W SIS- T DLVED G/L M	ALKA- INITY AT WH OT FET FIELD G/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB 1986											
01 JUL	360	110	80	39	61		27	L	2.3	246	190
24	540	100	120	58	73		23	L	1.1	435	160
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLV (TON PER	S- NO2+1 /ED DIS IS SOL' R (MG)	N, PHO NO3 OR S- DI VED SOL VL (MG			
FEB 1986											
01 JUL	48	0.3	29	598	605	0.	81 1	.5 0	.06		
24	59	0.3	49	816	787	1.	11 1.3	20 0	.06		
DATE	ARSE TOI (UG AS	'AL SOL	CON, I S- F VED F	COTAL TRECOV- FERABLE F	RECOV- ERABLE S [UG/L (RON, I DIS- F OLVED	TOTAL ! RECOV- I ERABLE (UG/L	ERCURY FOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE	(UG/	L V- BLE L
FEB 1986 01		1	860	<10	<10	12	<100			1	50
JUL				<10	10	12	<100	0.30		1	10
24		4	510	~10	10	12	-700	0.20	•	1	10

See footnote at end of table.

MALIBU CREEK BASIN

11105410 COLD CREEK AT PIUMA ROAD, NEAR MONTE NIDO, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME T		PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUL 1986 24	0910	0.16	<1	<1.0	<.1	3.0	<0.1	0.1	<0.1	<0.1	<0.1
DATE JUL 1986	ENDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	TOT - IN B - TOM L TER	OR, CHI AL EPOI OT- TOT MA- BOI IAL M		FAL CHL BOT- TOT. MA- BOT	- MIR OR, TOT. IN IN B TOM TOM I TL. TER	AL THA OT- IN B MA- TOM I IAL TERI	NE TOT. OT- IN BOMA- TOM I AL TER	NE, AL OT- MA- IAL		
24	< 0.1	<0	.1 <	0.1 <0).1 <0	.1 <0.	1 <1.0	0 <10			

< Actual value is known to be less than the value shown.

MALIBU CREEK BASIN

11105500 MALIBU CREEK AT CRATER CAMP, NEAR CALABASAS, CA

LOCATION.--Lat 34°04'40", long 118° 42'03", in SW 1/4, SE 1/4, sec.18, T.1S, R.17 W., Los Angeles County, Hydrologic Unit 18070104, on right bank 0.4 mi southeast of intersection of Piuma and Malibu Canyon Roads.

DRAINAGE AREA.--105 mi².

PERIOD OF RECORD. --

CHEMICAL DATA: Water year 1982 to current year.

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC FRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JAN 1982										
02 MAR	1100	16	1890	8.3	12.0	745	11.2	107	K110	K1200
18 JUL	0915	104	940	8.0	13.0	745	9.0	88	6400	12000
28	0855		1850		21.0	755	9.7	111	K470	3000
MAR 1983 01	1135	ED- 456	440	7.7	14.0	765	10.6	103		
JUL 13	1345	eo 4a	1790	8.6	26.5	750	7.7	98		
MAY 1984 30	1740	12	1490	7.3	24.0	760	7.2	86	270	280
JUN 26	1300	13	1320	7.4	24.5	750	9.4	115	270	870
JUL 24 AUG	1215	4.3	1260	7.1	26.0	750	8.5	107	150	560
29	1200	12	1120	7.5	26.0	750	7.2	91	240	820
FEB 1986 01	1430	102	1010	7.8	15.0	760	9.4	94	K270	7400
JUL 24	1120	3.0	1900	7.9	21.0	755	8,9	101	60	350
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 1982	ness Total (MG/L AS	NESS NONCARB WH WAT TOT FLD MG/L AS	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L		AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	LINITY WAT WH TOT FET FIELD MG/L AS	DIS- SOLVED (MG/L
JAN 1982 02 MAR	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 28	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 02 MAR 18 JUL	NESS TOTAL (MG/L AS CACO3) 840	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA) 170	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT 28 30	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 690
JAN 1982 02 MAR 18 JUL 28 MAR 1983	NESS TOTAL (MG/L AS CACO3) 840 420 700	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430	DIS- SOLVED (MG/L AS CA) 170 31	SIUM, DIS- SOLVED (MG/L AS MG) 100 84	DIS- SOLVED (MG/L AS NA) 150 84 150	28 30 32	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 3.9 4.0	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 690 320 560
JAN 1982 02 MAR 18 JUL 28 MAR 1983 01	NESS TOTAL (MG/L AS CACO3) 840 420 700	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430 85	DIS- SOLVED (MG/L AS CA) 170 31 150 42	SIUM, DIS- SOLVED (MG/L AS MG) 100 84 78	DIS- SOLVED (MG/L AS NA) 150 84 150 27	28 30 32 25	AD- SORP- TION RATIO 2 2 2 3	SIUM, DIS- SOLVED (MG/L AS K) 3.9 4.0 6.1	LINITY WAT WH TOT FET FIELD MG/L AS CACO3 166 86	DIS- SOLVED (MG/L AS SO4) 690 320 560
JAN 1982 02 MAR 18 JUL 28 MAR 1983 01	NESS TOTAL (MG/L AS CACO3) 840 420 700	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430	DIS- SOLVED (MG/L AS CA) 170 31	SIUM, DIS- SOLVED (MG/L AS MG) 100 84	DIS- SOLVED (MG/L AS NA) 150 84 150	28 30 32	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 3.9 4.0	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 690 320 560
JAN 1982 02 MAR 18 JUL 28 MAR 1983 01 JUL 13 MAY 1984 30	NESS TOTAL (MG/L AS CACO3) 840 420 700	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430 85	DIS- SOLVED (MG/L AS CA) 170 31 150 42	SIUM, DIS- SOLVED (MG/L AS MG) 100 84 78	DIS- SOLVED (MG/L AS NA) 150 84 150 27	28 30 32 25	AD- SORP- TION RATIO 2 2 2 3	SIUM, DIS- SOLVED (MG/L AS K) 3.9 4.0 6.1	LINITY WAT WH TOT FET FIELD MG/L AS CACO3 166 86	DIS- SOLVED (MG/L AS SO4) 690 320 560
JAN 1982 02 MAR 18 JUL 28 MAR 1983 01 JUL 13 MAY 1984 30 JUN 26	NESS TOTAL (MG/L AS CACO3) 840 420 700 170 710	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430 85 420	DIS- SOLVED (MG/L AS CA) 170 31 150 42	SIUM, DIS- SOLVED (MG/L AS MG) 100 84 78 16	DIS- SOLVED (MG/L AS NA) 150 84 150 27	28 30 32 25 28	AD- SORP- TION RATIO 2 2 2 3 0.9 2	SIUM, DIS- SOLVED (MG/L AS K) 3.9 4.0 6.1 3.1 4.2	LINITY WAT WH TOT FET FIELD MG/L AS CACO3 166 86 290	DIS- SOLVED (MG/L AS SO4) 690 320 560 100
JAN 1982 02 MAR 18 JUL 28 MAR 1983 01 JUL 13 MAY 1984 30 JUN 26 JUL 24	NESS TOTAL (MG/L AS CACO3) 840 420 700 170 710	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430 85 420 280	DIS- SOLVED (MG/L AS CA) 170 31 150 42 150	SIUM, DIS- SOLVED (MG/L AS MG) 100 84 78 16 82 49	DIS- SOLVED (MG/L AS NA) 150 84 150 27 130	28 30 32 25 28 37	AD- SORP- TION RATIO 2 2 2 3 0.9 2	SIUM, DIS- SOLVED (MG/L AS K) 3.9 4.0 6.1 3.1 4.2	LINITY WAT WH TOT FET FIELD MG/L AS CACO3 166 86 290 155	DIS- SOLVED (MG/L AS SO4) 690 320 560 100 570
JAN 1982 02 MAR 18 JUL 28 MAR 1983 01 JUL 13 MAY 1984 30 JUN 26 JUN 24 AUG 29	NESS TOTAL (MG/L AS CACO3) 840 420 700 170 710 440 410	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430 85 420 280 280	DIS- SOLVED (MG/L AS CA) 170 31 150 42 150 95	SIUM, DIS- SOLVED (MG/L AS MG) 100 84 78 16 82 49	DIS- SOLVED (MG/L AS NA) 150 84 150 27 130 120	28 30 32 25 28 37 38	AD- SORP- TION RATIO 2 2 2 3 0.9 2 3 3	SIUM, DIS- SOLVED (MG/L AS K) 3.9 4.0 6.1 3.1 4.2 8.9	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 690 320 560 100 570 370 340
JAN 1982 02 MAR 18 JUL 28 MAR 1983 01 JUL 13 MAY 1984 30 JUN 26 JUN 24 AUG	NESS TOTAL (MG/L AS CACO3) 840 420 700 170 710 440 410 390	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 560 260 430 85 420 280 280 250	DIS- SOLVED (MG/L AS CA) 170 31 150 42 150 95 89	SIUM, DIS- SOLVED (MG/L AS MG) 100 84 78 16 82 49 45	DIS- SOLVED (MG/L AS NA) 150 84 150 27 130 120 120	28 30 32 25 28 37 38 39	AD- SORP- TION RATIO 2 2 3 0.9 2 3 3 3	SIUM, DIS- SOLVEN SOLVEN SOLVEN (MG/L AS K) 3.9 4.0 6.1 3.1 4.2 8.9 8.9 10	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 690 320 560 100 570 370 340 330

See footnotes at end of table.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS MALIBU CREEK BASIN

11105500 MALIBU CREEK AT CRATER CAMP, NEAR CALABASAS, CA--Continued

WATER QUALITY DATA, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILI DIS SOL (MG AS SIO	CA, RES - AT VED DEC /L D	IDUĖ S 180 C	SOLIDS, SUM OF CONSTI- CUENTS, DIS- SOLVED (MG/L)	GI NO2- DI SOI (MK	EN, PH +NO3 O IS- D LVED SO G/L (M	HOS- OROUS RTHO, IS- LVED G/L P)	BORON, DIS- SOLVED (UG/L AS B)	D SO: (U	ON, IS- LVED G/L FE)
	1982 2	140	0.3	23		1540	1450		0.54	0.17	370		<10
MAR		61	0.3	47		745	742			0.58	260		24
JUL		130	0.3	30		1340	1300			2.7	610		8
MAR	1983 1	17	0.2	21		298	287			0.43	100		290
JUL		95	0.4	. 31		1280	1250			0.97	510		<3
MAY	1984	110	0.4	23		922	925	1:		0.70	570		13
JUN		100	0.4	22		880	861	1:		0.96	620		16
JUL		100	0.8	24		855	862	10		5.6	810		17
AUG		95	0.4	23		849	858			5.0	730		150
FEB	1986 1	62	0.3	19		666	673			0.70	210		18
JUL		96	0.3	30		1460	1330			0.77	430		14
2	7	30	0.0	00		CHRO-		v	.00	0.77	400		47
	DATE	TI	•	NIC	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	MIUM, TOTAL RECOV ERABL (UG/L AS CR	LEA TOT F REC LE ERA		MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE NIUM TOTAI (UG/I	REC ERA (UC	TAL COV- ABLE	
	JUL 1982 28	08:	55	4	10	1	10 <	<100	<0.10		3	30	
	MAR 1983				30	18		200	0.30			490	
	JUL 13	134		3	<10			<100	0.10		6	20	
	MAY 1984 30			2	<10			<100	<0.10		2	80	
	JUN 26	130		1	<10			<100	0.20		2	30	
	JUL 24	12:		3	<10	<1		100	0.20			20	
	AUG 29	120		2	<30	<1		<100	<0.10		1	20	
	FEB 1986			2	<10			<100			3	60	
	JUL 24	11:		2	<10			<100	0.10		3	<10	
DATE		STREA FLOM INSTA E TANEO	I AM- TO N, IN AN- TON DUS TI	PCB, DTAL BOT- MA- ERIAL	PCN, TOTAL IN BOT- TOM MA- TERIAL	ALDRIN TOTAL IN BOT TOM MA	CHLC N, DAN TOT I IN E A TOM AL TEF	OR- NE, FAL BOT- MA- RIAL	DDD, TOTAL IN BOT- TOM MA- TERIAL	DDE TOTAI IN BO TOM M TERIA	DI TOI T- IN I A- TOM	OT, CAL BOT- MA- RIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL
		(CF	s) (UC	3/KG)	(UG/KG)	(UG/KG	3) (UG/	(KG)	(UG/KG)	(UG/K	3) (UG/	KG)	(UG/KG)
JUL 1983 13	134	5		<1	<1.0	<0.	.1 <1	1.0	0.2	0	. 3	0.4	<0.1
MAY 1984 30	174	0 12	•	:1	<1.0	<0.	.1 <1	1.0	<0.1	0	.2 <	0.1	0.1
JUN 26	130	0 13	•	:1	<1.0	<0.	.1 4	4.0	<0.1	0	. 5	0.7	0.2
JUL 24	121	5 4	. 3	3	<1.0	<0.	.1 <1	1.0	<0.1	. 0	.6	0.1	0.2
JUL 1986 24	112	0 3	.0	: 1	<1.0	<0.	.1 <1	1.0	0.1	0	.1	0.1	0.1

See footnotes at end of table.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS MALIBU CREEK BASIN

11105500 MALIBU CREEK AT CRATER CAMP, NEAR CALABASAS, CA--Continued

WATER QUALITY DATA, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DA:		ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIA	CHLOR EPOXIDE TOT. IN BOTTOM MATL.	IN BOT- TOM MA- TERIAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUL 19	83									
13 MAY 19		<0.1	<0.1	<0.3	1 <0.1	<0.1	<0.1	<0.1	<1.00	<10
30 JUN		<0.1	<0.1	<0.3	1 <0.1	0.3	<0.1	<0.1	<1.00	<10
26 JUL	•	<0.1	<0.1	<0.1	0.1	0.3	<0.1	<0.1	<1.00	<10
24		<0.1	<0.1	<0.3	1 <0.1	0.4	<0.1	<0.1	<1.00	<10
JUL 198		<0.1	<0.1	<0.2	1 <0.1	<0.1	<1.0	<0.1	<1.00	<10
DA!	ГE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	AME - TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)
JAN 198		1100	16	MO.0	0.60	MO.0				
MAR 18		0915	104	MO.0	2.3	MO.0				
JUL 28		0855		<0.10	0.10	<0.10				
MAR 19	83	1135		<0.10	0.10	<0.10	0.01	<0.01	<0.01	<0.01
JUL 13		1345		<0.10	0.10	<0.10		<0.01		
MAY 198	84	1740	12	<0.10	0.10	<0.10	<0.01	<0.01	<0.01	<0.01
JUN 26		1300	13	<0.10	0.10	<0.10	<0.01	<0.01	<0.01	<0.01
JUL 24		1215	4.3	<0.10	0.10	<0.10	<0.01	<0.01	<0.01	<0.01
AUG 29		1200	12							
FEB 198	86			<0.10	0.20	<0.10	<0.01	<0.01	<0.01	<0.01
01	•	1430	104	<0.10	0.40	<0.10	0.10	<0.01	0.01	<0.01
	DATE	TH TH: TO:	ION, TH	ION, I	TONE TR	OME- PRO- YNE PAZ: TAL TOTA G/L) (UG	INE ZI AL TOI	MA- SIMINE TRY FAL TOT G/L) (UG	'NE TR 'AL THI	I-
J	AN 1982 02				M0 I	MO MO	0.0	0.40 M	10	
M	AR 18				M0 1	MO MO	0.0 1	1.6 M	10	
J	JL 28				<0.1	<0.1 <0	0.10 (0.20 <	0.1	
M	AR 1983 01		0.01 <	0.01						.01
J	JL 13		0.01							.01
M	AY 1984 30			0.01						.01
J	UN 26			0.01						.01
J	JL. 24			0.01						.01
	29			0.01						.01
Fl	EB 1986 01			0.01						.01
				7					-,0	

K Results based on colony count outside the acceptable range. M Before 1983 the U.S. Geological Survey published values of 0 or 0.0. Now published as less than the detection level.

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS MALIBU CREEK BASIN

11105500 MALIBU CREEK AT CRATER CAMP, NEAR CALABASAS, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
MAR 1987		7.	1000	7.0	15.0	750		100	200	610
06 AUG	1245	74	1390	7.6	15.0	750	9.9	100	390	610
05 SEP	1600	0.80	2000	7.6	24.0	750	9.1	111	140	150
17	1515	13	1250	7.1	24.0	750	7.4	90	45	290
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
MAR 1987		400	100	7.5	120	20	0	5 0	212	520
06 AUG	610	400	120	75	130	32	2	5.0	213	
05 SEP	850	590	180	97	150	28	2	6,0	256	720
17	350	260	76	38	120	42	3	10	89	290
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	AS	CA, RE - AI VED D /L	DLIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO GEN NO2+NO DIS SOLV (MG/) AS N	, PHOI 03 OR - DI: ED SOL L (MG	VED /L
MAR 1987					4400	44.00	4 50			•
06 AUG	110	0.3	18		1180	1120	1,60	2.9		. 2
05 SEP	130	0.3	13		1540	1470	2.09	3.9		.7
17	120	0.3	21		796	799	1.08	13	4	. 2
	DATE	ARSENIO TOTAL (UG/L AS AS	SOLV (UG/	- RECOV ED ERABI L (UG/I	TOTAL RECOLE ERAB	, L IRON, V- DIS- LE SOLVE L (UG/I	RECOV- ED ERABLE (UG/L	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
İ	MAR 1987								_	
	06 AUG	:	1 3	40 1	.0 <	10	8 <100	<0.10	3	<10
i	05 SEP	:	3 5	00 <1	.0	10 2	20 <100	<0.10	<1	<10
	17	:	1 5	20 <1	.0 <	10 1	L5 <100		<1	30
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG 1987 05	1600	0.80	<1	<1.0	<0.1	<1.0		<0.1	0.1	<0.1
SEP 17	1515	13	<1	<1.0	0.3	1.0	<0.1	0.2	0.2	<0.1
	ote at end o		-1	11.0	0.0	1.0	-0,1	٠.٤	٧.٤	-0,1

See footnote at end of table,

MALIBU CREEK BASIN

11105500 MALIBU CREEK AT CRATER CAMP, NEAR CALABASAS, CA--Continued

	ENDO-		HEPTA-	HEPTA-		METH-			TOXA-
	SULFAN,	ENDRIN,	CHLOR,	CHLOR	LINDANE	OXY-	MIREX.	PER-	PHENE.
	TOTAL	TOTAL	TOTAL	EPOXIDE	TOTAL	CHLOR,	TOTAL	THANE	TOTAL
	IIN BOT-	IN BOT-	N BOT-	TOT. IN	IN BOT-	TOT, IN	IN BOT-	IN BOT-	IN BOT-
	TTOM MA-	TOM MA-	OM MA-	BOTTOM	TOM MA-	BOTTOM	TOM MA-	TOM MA-	TOM MA-
DATE	TERIAL	TERIAL	TERIAL	MATL.	TERIAL	MATL.	TERIAL	TERIAL	TERIAL
	((UG/KG)	(UG/KG)	UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
AUG 1987									
05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10
SEP									
17	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<1.00	<10

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

PACIFIC SLOPE BASIN

11105580 ZUMA CREEK AT RAINSFORD PLACE, NEAR MALIBU, CA

LOCATION.--Lat 34°01'21", long 118°48'58", in NE 1/4 SE 1/4 sec.1, T.2 S., R.19 W., Los Angeles County, Hydrologic Unit 18070104, at Rainsford Place stream crossing 1.6 mi northwest of Point Dume. DRAINAGE AREA.--8.58 mi². PERIOD OF RECORD.-CHEMICAL DATA: Water years 1983 and 1986. No data for water years 1984, 1985, and 1987.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM	PH (STA) AR UNIT	ND- D	EMPER- ATURE WATER DEG C)	OXYGE DIS SOLV (MG/	S-É (MG, VED AS	O- NE S NON AL WH /L TOT MG/	ARD- CSS ICARB WAT FLD L AS	CALCIUM DIS- SOLVED (MG/L AS CA)
JUL 1983 12	1540	E0.5	114	0 7	.6	22.5	9.	1 4	490	210	110
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUI PERCEN'	A SOR TI M RAT	D- P- ON TO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT WAT W TOT F FIEL MG/L CACO	Y H SULFA ET DIS- D SOLV AS (MG)	ATE RI - DI VED SC /L (N	ILO- IDE, IS- OLVED IG/L IG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JUL 1983 12	52	59	2:	1	1	4.2	2	80 230	6	9	0.2
ים	DI SC (M ATE A	ICA, RES S- AT LVED DE G/L D S SC	IDUÉ SI 180 CO G. C TO DIS- DLVED :	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L)	SOLID DIS SOLV (TON PER AC-F	S, G - NO2 ED D S SO	TRO- EN, +NO3 IS- LVED G/L	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVEI (UG/L AS B)	D SO (U	ON, IS- LVED G/L FE)
JUL 19		.5	786	724	1.	07	1.4	0.07	110)	<3

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE		STREAM- C FLOW, C INSTAN- D TANEOUS A	UCT- (S'	rand- a'	ME PR MPER- S IURE (ATER	OF SC	D SO GEN, (F DIS- C DLVED SA	PIS- FO PLVED FE PER- 0. PENT UM TUR- (CC	OLI- STREP- ORM, TOCOCCI OCAL, FECAL, OCAL, OCAL
MAR 1986 10	1500	28	513	8.1	13.5	760	9,5	92 3	9000 92000
DATE	HARD NESS TOTA (MG/ AS CACO	NONCARB L WH WAT L TOT FLD MG/L AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3
MAR 1986 10	2	20 64	47	26	24	19	0.7	3.8	161
DATE	SULFA DIS- SOLV (MG/ AS SO	DIS- ED SOLVED L (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
MAR 1986 10	92	21	0.3	21	338	336	0.46	0.83	0.15

E Estimated value.

PACIFIC SLOPE BASIN

11105580 ZUMA CREEK AT RAINSFORD PLACE, NEAR MALIBU, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	ARSENIC TOTAL (UG/L AS AS)	BORON, T DIS- R SOLVED E (UG/L (DMIUM M OTAL T ECOV- R RABLE E UG/L (ECOV- RABLE S UG/L (RON, DIS- SOLVED UG/L	LEAD, N TOTAL RECOV- ERABLE (UG/L AS PB)	RECOV- ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 1986									
10	1	50	<10	20	75	<100	<0.1	1	50
		ATRA-	CYAN-	DI-		MALA-	METHYL PARA-		
	AME-	ZINE.	AZINE	AZINON,	ETHION.				
DATE	TRYNE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL			
	TOTAL	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)) (UG/L)		
MAR 1986									
10	<0.10	0.20	<0.10	<0.01	<0.01	<0.01	1 <0.01		
DAT	METHY TRI- THION TE TOTAL (UG/L	PARA- I, THION, TOTAL	TOTAL	TRYNE TOTAL	PAZINE TOTAL	TOTAL	E TRYNE L TOTAL	TRI- THION	[
MAR 198		01 <0.01	<0.1	<0.1	. <0.1	0 0.7	70 <0.	1 <0.0	1

< Actual value is known to be less than the value shown.

. .

PACIFIC SLOPE BASIN

11105660 ARROYO SEQUIT AT LEO CARRILLO STATE BEACH, NEAR POINT MUGU, CA

LOCATION.--Lat 34°02'44", long 118°56'02", in SW 1/4 SW 1/4 sec.25, T.1 S., R.20 W., Los Angeles County, Hydrologic Unit 18070104, 250 ft upstream from Highway 1.

DRAINAGE AREA. -- 11.0 mi².

PERIOD OF RECORD. --

CHEMICAL DATA: Water year 1986. No data for water year 1987.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
FEB 1986 13	1130	60	295	8.0	16.0	765	9,9	100	<1	1400
MAR			200	0.0	2010				_	2.00
10	1410									
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB 1986	110	7	24	13	19	26	0.8	1.4	107	18
13 MAR	110	,					0.8		107	
10	170	14	34	20	23	23	0.8	0.9		39
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
FEB 1986 13	7.4	<0.1	27	158	178	0.21	0.96	wa ma	50	120
MAR 10	10	0,2	38	264	260	0.36		0.04	80	46
10	DATE	0,2	ARSENIC TOTAL (UG/L AS AS)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	40
F	EB 1986 13		3	20	170	<100	<0.10	<1	120	
	DATE	AME- TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	120	
F	EB 1986 13	<0.10	<0.10	<0.10	<0.01	<0.01	<0.01	<0.01		
	DATE	METHYL TRI- THION, TOTAL	PARA- THION, TOTAL	PROME - TONE TOTAL	PROME- TRYNE TOTAL	PRO- PAZINE TOTAL	SIMA- ZINE TOTAL	SIME- TRYNE TOTAL	TOTAL TRI- THION	
		(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	

< Actual value is known to be less than the value shown.

PACIFIC SLOPE BASIN

11105780 BIG SYCAMORE CANYON CREEK NEAR POINT MUGU, CA

LOCATION.--Lat 34°04'30", long 119°00'52", in SW 1/4 SE 1/4 sec.18, T.1 S., R.20 W., Ventura County, Hydrologic Unit 18070104, on left bank 0.25 mi upstream from Highway 1 and 2.8 mi southeast of Point Mugu. DRAINAGE AREA.--20.8 mi². PERIOD OF RECORD.-CHEMICAL DATA: Water years 1983 and 1986. No data for water years 1984, 1985, and 1987.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARC METE PRES SUF (MA)	O- RIC S- RE OX A	YGEN, DIS- OLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
MAR 1983 01	1500	~ ~	385	8.2	14.5	7	755 1	0.0	99	160	30
JUL. 12	1130	<0.1	1110	7.2	21.0			3,2		430	180
16	1130	~0.1	1110	7.2	21.0					430	100
DATE	(MC	SIUM SI S- DI LVED SOI S/L (M		S- ·	SO T IUM RA	DIUM AD- RP- ION TIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	WAT TOT	TTY WH SULT FET DIT ELD SOT AS (M	FATE RI S- DI LVED SO G/L (M	LO- DE, S- LVED G/L CL)
MAR 1983 01	36	3 1	7 23	3	24	0.8	1.6		130 5	1 2	0
JUL	95				24	1	0.9		250 17		
DATE	FLU RII DI	IO- : DE, :S- :VED :/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOL SUM CON TUE D SO	IDS,	SOLI DI SOL (TO PE AC-	s- Ved Ns R	NITRO GEN, NO2+NO: DIS- SOLVE! (MG/L AS N)	PHOS- PHOROUS ORTHO	s,
MAR 1983			00	201		0.04	^				
JUL		0.2	30	264		261		.36	0,9		
12	().4	30	690		634	U	.94	0.1	0.03	
D.	ATE	ARSENIC TOTAL (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	IRON DIS SOLV (UG) AS I	S- REC /E DER /L (UG	AL OV- ABLE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 1 01.		7	70	10	400		49	100	0.60	2	430
JUL. 12.		1	140	<10	<10		3	<100	0.10	2	30
	ATE	AME~ TRYN TOTA	ATRA ZINI E TOTA	A- CYAN- 3, AZINE AL TOTAL	DI AZIN TOT	ON, ET	THION, TOTAL (UG/L)	MALA THIO TOTA (UG)	METI A- PAR. DN, THIO	HYL A- ON, AL	
MAR 1											
01.	• •	<0.	10 <0.	.10 <0.	10 <0	.01	<0.01	<0.	.01 <0	.01	
D	ATE	METHYL TRI- THION, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PROMETONE TONE TOTAL (UG/L)	PROME- TRYNE TOTAL (UG/L)	PRO- PAZINI TOTAL (UG/L)	Z Z TO	MA- INE TAL G/L)	SIME- TRYNE TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	
MAR 1		-0.01	-0.00								
01. < Act		<0.01 Lue is kn	<0.01 own to be	<0.1 less than	<0.1 the val	0.1> ue shov		0.10	<0.1	<0.01	

PACIFIC SLOPE BASIN

11105780 BIG SYCAMORE CANYON CREEK NEAR POINT MUGU, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	J	STREAM- C FLOW, C INSTAN- D IANEOUS A	UCT- (S NCE	TAND- A' ARD W	M P MPER- : TURE ATER	(MM) OF Se	I SC YGEN, (I DIS- C OLVED SA	DIS- FO DLVED FI PER- 0. CENT UN ATUR- (CO	DLI- STREP- DRM, TOCOCCI ECAL, FECAL, 7 KF AGAR 4-MF (COLS.) DLS./ PER 0 ML) 100 ML)
MAR 1986 10	1240	12	552	8.0	15.0	760	9.8	98 1	23000
DATE	HARD- NESS TOTAL (MG/I AS CACOS	NONCARE WH WAT TOT FLD MG/L AS	DIS- SOLVED	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3
MAR 1986 10	23	30 60	47	27	35	25	1	1.9	169
DATE	SULFAT DIS- SOLVE (MG/I AS SO	CHLO- CE RIDE, DIS- CD SOLVED	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED	SOLIDS, RESIDUE AT 180	SOLIDS, SUM OF CONSTI-	SOLIDS, DIS- SOLVED (TONS	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
MAR 1986 10	83	36	0.3	30	376	370	0.51	0.8	0.09
DATE	ARSENI TOTAI (UG/I AS AS	SOLVED (UG/L	RECOV-	TOTAL RECOV- ERABLE (UG/L	SOLVED (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 1986 10		2 70	<10	40	220	<100	<0.1	1	50

< Actual value is known to be less than the value shown.

PACIFIC SLOPE BASIN

340215118455401 LATIGO CREEK AT LATIGO CANYON ROAD, NEAR POINT DUME, CA

LOCATION.--Lat 34°02'15", long 118°45'54", in NE 1/4 SE 1/4 sec.33, T.1 S., R.18 W., Los Angeles County, Hydrologic Unit 18070104, at culvert on Latigo Canyon Road 0.8 mi north of Highway 1 and 3.4 mi northeast of Point Dume.

DRAINAGE AREA. -- Not determined.

PERIOD OF RECORD. --

CHEMICAL DATA: Water years 1983 and 1986. No data for water years 1984, 1985, and 1987.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
NOV 1982 10	0900	520	8,0	18.0				220	130	57	18
MAR 1983 02	0855	1440	8,1	15.5	750	10.0	102	720	500	180	66
JUL 12	1200	2340	8.1	25.0		8.1		1400	1100	280	160
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)
NOV 1982 10 MAR 1983	18	15	0.6	8.8		150	20	0.4	7.4	338	0.46
02 JUL	51	13	0.9	4.0	220	510	55	0.4	18	1040	1.41
12	140	18	2	2.9	260	1200	150	0.6	23	2120	2.88
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
NOV 1982	1.0	0.00	20		200	400	200				0000
10 MAR 1983	1.0	0.36	32	50	390	420	230	500	2.2	86	2200
02 JUL	4.2	0.05	30	100	470	450	9	400	1.0	100	2500
12	0.62 DAT	0.03 E TI	3 ATR ZIN ME TOT (UG	E, AZIN	E AZIN L TOT	ON, ETHI		A- PAR ON, THI AL TOT	A- TR ON, THI 'AL TOT	ON,	30
	MAR 198 02		55 0	.10 <0	.10 <0	.01 <0	.01 <0	.01 <0	.01 <0	.01	
		DATE	THION, TOTAL	PRO- PAZINE TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)	PROME- TRYNE TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)	TOTAL TRI- THION (UG/L)		
		1983 2	<0.01	<0.10	<0.1	<0.1	<0.10	<0.1	<0.01		

< Actual value is known to be less than the value shown.

PACIFIC SLOPE BASIN

340215118455401 LATIGO CREEK AT LATIGO CANYON ROAD, NEAR POINT DUME, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
FEB 1986	1020	0.91	1990	8.0	15.5	760	9.1	92	160	680	1100	810
JUL 23	1015	0.04	2270	7.6	18.5	755	9.1	99	K49		1300	930
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
FEB 1986 17	270	110	70	12	0.9	2.8	318	840	77	0.4	20	1590
JUL 23	280	140	95	14	1	1.4	344	950	99	0.5	23	1800
DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB 1986			0.00	_	140	70	70	10	-100			010
17 JUL	2.16	2.3	0.03	5	140	70	70	19	<100	0.1	51	310
23	2.44	<0.10	0.02	<1	170	<10	<10	30	<100	0.1	26	<10

K Results based on colony count outside the acceptable range.

< Actual value is known to be less than the value shown.

PACIFIC SLOPE BASIN

340248118352401 TUNA CREEK NEAR TOPANGA BEACH, CA

LOCATION. -- Lat 34°02'48", long 118°35'24", in SE 1/4 SE 1/4 sec.30, T.1 S., R.16 W., Los Angeles County, Hydrologic Unit 18070104, at culvert 0.5 mi north of Highway 1 on Tuna Canyon Road, 0.8 mi northwest of Topanga Beach.

DRAINAGE AREA, -- Not determined.

PERIOD OF RECORD. --

CHEMICAL DATA: Water years 1982-84, 1986 to current year. No data for water year 1985.

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JAN 1982	1500	0.50	000	0.0	14.0	750	10.4	102	V1200	2000
01 MAR	1500	0.50	900	8.3	14.0	750	10.4	103	K1300	2800
17 JUL	1230	6.4	425	7.8	11.5	750	10.8	101	10000	
28 MAR 1983	1125	0.20	1200		24.0	760	10.4	124	630	3000
02	1015		440	8.3	14.5	755	10.2	101		
JUL 13 MAY 1984	1055	E0.3	1160	8.3	22.0	755	7.6	88		
30	1530	0.06	1200	8.1	25.0	750	9.4	116	77	160
JUN 26	1630	0.05	1290	8.3	24.0	750	8.2	99	K4	110
JUL 24	1530	0.05	1090	8.1	26.0	760	7.5	93	кз	K43
AUG 29	1615	0.05	978	8.4	26.0	755	7.1	89	K15	
FEB 1986 01	1230	1.1	758	8.2	15.0	760	9.9	99	K300	1400
JUL 24	1325	0.05	1190	8.0	24.0	760	8.4	100	кз	570
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 1982	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 01 MAR	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 01	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 01 MAR 17 JUL 28	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	PERCENT	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)
JAN 1982 01 MAR 17 JUL 28 MAR 1983 02	NESS TOTAL (MG/L AS CACO3) 440	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG) 43	DIS- SOLVED (MG/L AS NA) 45	PERCENT 18 21	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 270
JAN 1982 01 MAR 17 JUL 28 MAR 1983 02 JUL 13	NESS TOTAL (MG/L AS CACO3) 440 140 520	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 250 85	DIS- SOLVED (MG/L AS CA) 100 32	SIUM, DIS- SOLVED (MG/L AS MG) 43 14	DIS- SOLVED (MG/L AS NA) 45 17	18 21 23	AD- SORP- TION RATIO 1 0.7	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.5	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 270 81 370
JAN 1982 01 MAR 17 JUL 28 MAR 1983 02 JUL 13 MAY 1984 30	NESS TOTAL (MG/L AS CACO3) 440 140 520	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 250 85 400	DIS- SOLVED (MG/L AS CA) 100 32 120	SIUM, DIS- SOLVED (MG/L AS MG) 43 14 54	DIS- SOLVED (MG/L AS NA) 45 17 72 23	18 21 23 22	AD- SORP- TION RATIO 1 0.7 1	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.5 2.6	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 270 81 370
JAN 1982 01 MAR 17 JUL 28 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26	NESS TOTAL (MG/L AS CACO3) 440 140 520 170 510	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 250 85 400 100	DIS- SOLVED (MG/L AS CA) 100 32 120 42	SIUM, DIS- SOLVED (MG/L AS MG) 43 14 54 17	DIS- SOLVED (MG/L AS NA) 45 17 72 23 56	18 21 23 22 19	AD- SORP- TION RATIO 1 0.7 1 0.8	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.5 2.6 1.3	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 270 81 370 100
JAN 1982 01 MAR 17 JUL 28 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26 JUL 24	NESS TOTAL (MG/L AS CACO3) 440 140 520 170 510	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 250 85 400 100 300	DIS- SOLVED (MG/L AS CA) 100 32 120 42 120	SIUM, DIS- SOLVED (MG/L AS MG) 43 14 54 17 50	DIS- SOLVED (MG/L AS NA) 45 17 72 23 56 59	18 21 23 22 19 20	AD- SORP- TION RATIO 1 0.7 1 0.8 1	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.5 2.6 1.3 1.9	LINITY WAT WH TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 270 81 370 100 330 360
JAN 1982 01 MAR 17 JUL 28 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26 JUL 24 AUG 29	NESS TOTAL (MG/L AS CACO3) 440 140 520 170 510 520	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 250 85 400 100 300 300	DIS- SOLVED (MG/L AS CA) 100 32 120 42 120 120	SIUM, DIS- SOLVED (MG/L AS MG) 43 14 54 17 50 53	DIS- SOLVED (MG/L AS NA) 45 17 72 23 56 59 61	18 21 23 22 19 20	AD- SORP- TION RATIO 1 0.7 1 0.8 1	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.5 2.6 1.3 1.9 1.9	LINITY WAT WH TOT FET FIELD MG/L AS CACO3 *74 210 217 218	DIS- SOLVED (MG/L AS SO4) 270 81 370 100 330 360
JAN 1982 01 MAR 17 JUL 28 MAR 1983 02 JUL 13 MAY 1984 30 JUN 26 JUL 24	NESS TOTAL (MG/L AS CACO3) 440 140 520 170 510 520 520	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 250 85 400 100 300 300 300	DIS- SOLVED (MG/L AS CA) 100 32 120 42 120 120 120	SIUM, DIS- SOLVED (MG/L AS MG) 43 14 54 17 50 53 54	DIS- SOLVED (MG/L AS NA) 45 17 72 23 56 59 61 61	18 21 23 22 19 20 20	AD- SORP- TION RATIO 1 0.7 1 0.8 1 1	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.5 2.6 1.3 1.9 1.9	LINITY WAT WH TOT FET FIELD MG/L AS CACO3 *74 210 217 218 203	DIS- SOLVED (MG/L AS SO4) 270 81 370 100 330 360 360 360

See footnotes at end of table.

PACIFIC SLOPE BASIN

340248118352401 TUNA CREEK NEAR TOPANGA BEACH, CA--Continued
WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986
(NOT PREVIOUSLY PUBLISHED)

DATE	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RIDE, DIS- D SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLVED (TONS PER	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
JAN 1982 01	46	0.6	18	669	650	0.91	0.44	0.03	190	<10
MAR 17	21	0.4	11	240	220	0.33	2.4	0.05	60	75
JUL 28	60	0.7	19	836	770	1.1	<0.1	0.02	320	18
MAR 1983 02	22	0.3	23	306	280	0.42	1.9	0.04	90	54
JUL 13	62	0.7	17		760	1.0	<0.1	0.04	270	14
MAY 1984 30	59	0.7	18	830	802	1.13	<0.1	0.02	270	<3
JUN 26	58	0.8	18	851	804	1.16	<0.1	0.02	280	<3
JUL 24	58	0.8	19	838	796	1.14	<0.1	0.01	300	28
AUG 29	62	0.7	20	818	808	1.11	<0.1	<0.01	330	10
FEB 1986 01	46	0.4	17	498	491	0.68	3.0	0.03	130	20
JUL 24	54	0.7	19	857	810	1.17	<0.10	0.01	300	<3
	DATE	TO: (U	TO ENIC REC FAL ER 3/L (U	ABLE ERA G/L (UG	M, LE CAL TO COV- RE ABLE ER G/L (U	ABLE ERA G/L (UC	CAL SEI COV- NIU ABLE TOT G/L (UC	IM, REC FAL ERA F/L (UG	TAL COV- ABLE	
	AY 1984 30		2	<10	20	<100 <0	0.10	<1	20	
	UN 26		<1	<10	<10	<100	.20	<1	<10	
	UL. 24		2	<10	<10	<100 <0	0.10	<1	<10	
	.UG 29		<1	<30	10	<100	.10	<1	10	
	EB 1986		1	<10	<10	<100		<1	50	
J	UL 24		1	<10	<10	<100	.20	<1	<10	
DA	TE	AME - TRYNE TOTAL	ZINE, TOTAL	CYAN- AZINE A IOTAL (UG/L)	DI- ZINON, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)		
FEB 19		-0.10	0 10	-0.10	-0.01	-0.01	-0.01	-0.01		
01	•	<0.10	0.10	<0.10	<0.01	<0.01	<0.01	<0.01		
	DATE	METHYL TRI- THION, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)	PROME- TRYNE TOTAL (UG/L)	PRO- PAZINE TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	
F	EB 1986 01	<0.01	<0.01	<0.1	<0.1	<0.10	<0.10	<0.1	<0.01	

See footnotes at end of table.

PACIFIC SLOPE BASIN

340248118352401 TUNA CREEK NEAR TOPANGA BEACH, CA--Continued

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1986

			(NOI	r PREVIOUS	SLY PUBLIS	HED)			
	PCB.	PCN,	ALDRIN		DDD.	DDE,	DDT.	ELDRIN	
	TOTAL	TOTAL	TOTAL		TOTAL	TOTAL	TOTAL	TOTAL	,
	IN BOT-	IN BOT-	IN BOT-						-
	TOM MA-	TOM MA-	TOM MA-				TOM MA-		
DATE	TERIAL		TERIAI						
	(UG/KG)	(UG/KG)	(UG/KG)						
JUL 1986									
24	<1	<1.0	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	
	ENDO-		НЕРТА-	HEPTA-		METH-			TOXA-
	SULFAN,	ENDRIN,	CHLOR,	CHLOR	LINDANE	OXY-	MIREX,	PER-	PHENE.
	TOTAL	TOTAL	TOTAL	EPOXIDE	TOTAL	CHLOR,	TOTAL	THANE	TOTAL
	IN BOT-	IN BOT-	IN BOT-	TOT. IN	IN BOT-			IN BOT-	IN BOT-
	TOM MA-	TOM MA-	TOM MA-	BOTTOM	TOM MA-			TOM MA-	TOM MA-
DATE	TERIAL	TERIAL	TERIAL	MATL.	TERIAL	MATL.	TERIAL	TERIAL	TERIAL
	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
JUL 1986									
24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10

- K Results based on colony count outside the acceptable range. \leq Actual value is known to be less than the value shown.
- E Estimated value.
- * Filtered before processing.

DATE	F IN TIME TA	REAM- CI LOW, CO STAN- DI NEOUS AM	JCT- (ST NCE /	AND- A	M P MPER- TURE ATER	(MM OF S	YGEN, (DIS- OLVED S	DIS- F OLVED F PER- O CENT U ATUR- (C	ORM, TOC ECAL, FE .7 KF M-MF (CC OLS./ E	COCC CCAL AGAI OLS PER ML
7 1987)5	1130	0.05	1160	.6	23.5	760	8.0	95	K140	26
17	1045	E0.05	1200 7	,5	21.0	760	8.2	93	170	11
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	WAT WH TOT FET	
AUG 1987 05 SEP	520	300	120	53	61	20	1	1.6	216	
17	540	320	130	52	61	20	1	1.5	221	
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLVED (TONS PER	NO2+NO3 DIS- SOLVED (MG/L	DIS-	
AUG 1987 05	360	55	0.6	28	850	809	1.16	<0.10	<0.01	
SEP 17	360	54	0.7	19	826	811	1.12	<0.10	0.01	
DATE	ARSENIC TOTAL (UG/L AS AS)	BORON,	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	
AUG 1987 05 SEP	1	320	<10	<10	18	<100	<0.1	<1	<10	
17 See footn	<1 otes at en		<10	20	<3	<100	<0.1	<1	<10	

PACIFIC SLOPE BASIN

340248118352401 TUNA CREEK NEAR TOPANGA BEACH, CA--Continued

DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL	DDD, TOTAL IN BOT- TOM MA- TERIAL	DDE, TOTAL IN BOT- TOM MA- TERIAL	DDT, TOTAL IN BOT- TOM MA- TERIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL	
	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	
AUG 1987									
05	<0.1	6.0	0.3	1.4	0.8	<0.1	<0.1	<0.1	
SEP	-0.1	0.0			0.0	-0.1	-0.4	-0.1	
17	<0.1	2.0	0.3	0.5	0.6	<0.1	<0.1	<0.1	
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG 1987									
05 SEP	<0.1	<0.1	<0.1	<0.1	<0.1	<1.0	<1.00	<1	<10
17	<0.1	<0.1	<0.1	<0.1	<0,1	<1.0	<1,00	<1	<10

K Results based on colony count outside the acceptable range. < Actual value is known to be less than the value shown.

E Estimated value.

PACIFIC COAST BASIN

340313118574701 LITTLE SYCAMORE CREEK AT HIGHWAY 1, NEAR SOLROMAR, CA

LOCATION.--Lat 34°03'13", long 118°57'47", in SE 1/4 NW 1/4 sec.27, T.1 S., R.20 W., Ventura County, Hydrologic Unit 18070104, 500 ft west of Yerba Buena Road at Highway 1 and 1.7 mi northwest of Leo Carillo State Beach.

DRAINAGE AREA. -- Not determined.

PERIOD OF RECORD.--CHEMICAL DATA: Water years 1982-83, 1986. No data for water years 1984, 1985, and 1987.

WATER QUALITY DATA, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1983 (NOT PREVIOUSLY PUBLISHED)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
MAR 1982 17	1715	0,67	1220	8.2	14.0	750	8.8	87	5300	K1100000
MAR 1983									2000	111100000
01 JUL	1600		425	8,3	14.5	755	10.0	99		
12	1245	***	1020	8.2	19.5		10.2			
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
MAR 1982										
17 MAR 1983	520	230	110	61	65	21	1	3.4		280
01 JUL	180	40	39	20	21	20	0.7	1.8	140	54
12	490	220	100	58	63	22	1	1.3	270	250
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 1982										
17 MAR 1983	70	0.4	28	834	794	1,13	0.95	0.16	90	76
01 JUL	15	0.2	34	286	270	0.39	1.3	0.08	50	25
12	70	0.4	30	748	740	1.0	<0.1	0.16	90	<3
	DATE	AME- TRYNE TOTAL (UG/L)	ATRA- TONE TOTAL (UG/L)	ATRA- ZINE, TOTAI (UG/I	AZINE L TOTAL	CYPRA- ZINE TOTAL (UG/L)	NOT ATOT	E L		
1	MAR 1982									
	17	M0.0	M0.0	M0.0	M0.0	M0.0	MO			
	D	ATE	PROMETRYNE TOTAL (UG/L)	PAZINE TOTAL	SIMA- ZINE TOTAL (UG/L)	SIME- TONE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L			
		R 1982								
		17	MO	M0.0	M0.0	MO.0	М0			

< Actual value is known to be less than the value shown.

M Before 1983 the U.S. Geological Survey published 0 or 0.0. Now published as less than the detection level.

PACIFIC COAST BASIN

340313118574701 LITTLE SYCAMORE CANYON CREEK AT HIGHWAY 1, NEAR SOLROMAR, CA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 (NOT PREVIOSLY PUBLISHED)

	D <i>ā</i>	ATE	TIME	FL INS TAN	EAM- CI OW, CO TAN- DU EOUS AN	ict- (s ice	TAND~ . ARD !	M P EMPER- ATURE VATER	(MM OF S	I SC CYGEN, (I DIS- C SOLVED SA	DIS- FO DLVED FE PER- 0. CENT UM ATUR- (CO	ORM, TOC CCAL, FE 7 KF I-MF (CC OLS./ F	REP- OCCI CAL, AGAR LS. ER ML)
	FEB 1		4000			705	, 	44.0	705	10.1		1000	
	13.	•	1600		4.9	785	7.5	14.0	765	10.1	96	1200	3200
		DATE	A	SS G/L	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVE (MG/L	, SODIUM, DIS- D SOLVED (MG/L	PERCENT SODIUM		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	
	1	TEB 1986		330	96	68	38	50	2.5	5 1	3.7	230	
		10		000		00	00	SOLIDS,	SOLIDS,			PHOS-	
		DATE	DI: SOI (MX	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA DIS- SOLVE (MG/L AS SIO2)	, RESIDUE AT 180	SUM OF CONSTI- TUENTS, DIS- SOLVED	SOLIDS, DIS- SOLVED (TONS) PER	GEN, NO2+NO3 DIS- SOLVED (MG/L	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	
	FI	EB 1986 13	10	60	41	0.30	30	553	539	0.75	2.1	0.110	
	DATE	TIM	FI IN: E TAI	REAM- LOW, STAN- NEOUS CFS)	ARSENIC TOTAL (UG/L AS AS)	SOLVE (UG/L	RECO D ERAB (UG/	TOTAL V- RECOV LE ERABL L (UG/L	IRON, DIS- E SOLVE	RECOV- ED ERABLI (UG/L	- RECOV- E ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
13	1986 3	160	0	4.9	1	L 9	0		- 2	24	<0.1	<1	
MAR 10)	1400	0		1	-	- <	10 1	0 -	<10	0	1	40

< Actual value is known to be less than the value shown.

SANTA MARIA RIVER BASIN

345556120274001 LA BREA RECHARGE POND AT SANTA MARIA, CA

LOCATION.--Lat 34°55'56", long 120°27'40", unsurveyed, Santa Barbara County, Hydrologic Unit 18060008, at inflow structure of recharge pond, 2.1 mi southwest of Santa Maria.

DRAINAGE AREA, -- Not determined,

PERIOD OF RECORD, --

CHEMICAL DATA: Water year 1985 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
JAN 1987					
07	0850	156	7.0	10.0	101
APR					
09	1045	233	7.1	20.5	124

SANTA MARIA RIVER BASIN

345727120375401 GREEN CANYON CREEK AT MAIN STREET, NEAR GUADALUPE, CA

LOCATION.--Lat 34°57'27", long 120°37'54", Santa Barbara County, Hydrologic Unit 18060008, at culvert on West Main Street, 3.6 mi southwest of Guadalupe.

DRAINAGE AREA. -- Not determined.

PERIOD OF RECORD. --

CHEMICAL DATA: Water year 1986 to current year.

See footnote at end of table.

DATE	TIME	STREAN FLOW INSTA TANEO (CFS	, CON- N- DUC' US ANC	IC - P I- (ST E A	H AND- RD TS)	TEMP ATU WAT (DEG	RE ER	HARD- NESS (MG/1 AS CACOS	WH WA L TOT I MG/L	S ARB CALCI AT DIS- FLD SOLV AS (MG)	- DIS- VED SOLVED /L (MG/L
FEB 1987 11 AUG	0930	4.	9 2	080	7.5	1	5.5	8	50 5	550 190	90
12	1030	17	2:	230	7.6	1	8.5	92	20 6	330 210	96
DATE	DI SOL (M	VED	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	9 0 80 (M	OTAS- SIUM, DIS- DLVED G/L K)	ALKA LINIT WH WA TOTA FIEL MG/L CACO	TY AT S AL LD AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 1987 11	15	0	28	2		5.6	2	294	660	170	0.40
AUG 12	14	0	25	2		5.6	2	290	720	160	0.40
DATE	DI SO: (M A	ICA, 1 S LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	0 NO2 D SC (M	TRO- EN, HNO3 DIS- DLVED G/L N)	PHOSE PHORE ORTH DIS- SOLVE (MG/I AS P)	JS, HO, ED	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
FEB 1987 11 AUG		32		1540	14	.0	0.3	310	300	30	390
12		31	1680	1600	15	5.0	0.4	480	290	20	130
DATE	TIME	STREAM FLOW INSTA TANEO (CFS	, N- AME- US TRYNI	ZI E TO	RA- NE, TAL G/L)	CYAN AZIN TOTA (UG/	E A L	DI- AZINOM TOTAL (UG/I	TOTA	L TOTA	ON, THION, AL TOTAL
FEB 1987	0930	4.	0 -0	.10 <	0.10	-0	. 10	0,:	16 <0.	01 -0	.01 <0.01
11 AUG 25	1130	7. -			0.10		. 10	0.0			.01 <0.01
DATE FEB 1987 11 AUG 25	ME TH TO (U	THYL RI- ION, TAL G/L) 0.01	PARA- THION, TOTAL (UG/L)	PROMETONE TOTAL (UG/L) <0.1	PR TR TC (U	COME- LYNE OTAL IG/L)	PRO- PAZII TOTAI (UG/I	NE	SIMA- ZINE TOTAL (UG/L) 0.20	SIME- TRYNE TOTAL (UG/L)	TOTAL TRI- THION (UG/L) <0.01
							•				

SANTA MARIA RIVER BASIN

345727120375401 GREEN CANYON CREEK AT MAIN STREET, NEAR GUADALUPE, CA--Continued

DATE	TIME	STREAM FLOW INSTAMEOTANEO (CFS	M- TO , in N- TOM USE TE	TAL TO BOT- IN MA- TOP RIAL TE	TAL BOT- I I MA- T RIAL				DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1987											
15	1430	0.	31 <1	<1.	0	0.3	<1.0	21	99	76	2.3
AUG	1000	17	<20		^	-0.1	-1 0	0.7			-0 1
12	1030	17	\ 20	<1.	U	<0.1	<1.0	2.7			<0.1
	SUI TO IN	NDO- LFAN, DTAL BOT-	ENDRIN, TOTAL IN BOT-	HEPTA- CHLOR, TOTAL IN BOT-	HEPTA- CHLOR EPOXIDE TOT. IN	LINDANE TOTAL IN BOT-	CHLOR,	IN BOT-	THANE IN BOT-		
		-AM M	TOM MA-	TOM MA-	BOTTOM	TOM MA-					
DATE		ERIAL G/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	MATL. (UG/KG)	TERIAL (UG/KG)				TERIAL (UG/KG)	
JUN 1987 15 AUG			16	<0.1	<0.1	<0.1	0.4	<0.1	26	200	
12				<0.1	<0.1	<0.1	<0.1	<0.1	<1.0	160	

< Actual value is known to be less than the value shown.

INDEX

ABONDIGAS CREEK ABOVE LAKE GREGORY		COTTONWOOD CREEK ABOVE TECATE CREEK,	
AT CRESTLINE	68		83
ACCESS TO WATSTORE DATA	14	COYOTE CREEK BELOW BOX CANYON NEAR	
Accuracy the Records	10	BORREGO SPRINGS	45
Acre-foot, definition	14	COYOTE CREEK NEAR OAK VIEW 2	:1:
Adenosine triphosphate, definition	14	Cross-Sectional Data	1:
AGUA CALIENTE CREEK NEAR WARNER		Cubic foot per second, definition	1
SPRINGS	108		1:
ALAMO RIVER AT DROP NO 3 NEAR			6
CALIPATRIA	43	CUYAMA RIVER BELOW BUCKHORN CANYON	
ALAMO RIVER AT THE UNITED STATES-		NEAR SANTA MARIA	5
MEXICO INTERNATIONAL BOUNDARY	41	ADDE DIAMETER CHARLES OF THE CONTRACT OF THE C	,
ALAMO RIVER NEAR NILAND	46	DARWIN CREEK NEAR DARWIN	3
Algae, definition	14	Data Collection and Computation	,
Algal growth potential, definition	14	Data Presentation9,	11
ALISAL RESERVOIR NEAR SOLVANG		DEEP CREEK NEAR HESPERIA	Tr
ALISO CREEK AT SOUTH LAGUNA	239 126		63
ANDREAS CREEK NEAR PALM SPRINGS	62		14
Aquifer, definition	14	DEVIL CANYON CREEK NEAR SAN BERNARDINO 1	
Arrangement of Records	11		18
ARROYO BURRO CREEK AT SANTA BARBARA		• •	1:
ARROYO SECO NEAR PASADENA	192		23
ARROYO SEQUIT AT LEO CARRILLO STATE			23
BEACH NEAR POINT MUGU			15
ARROYO TRABUCO AT SAN JUAN CAPISTRANO		• • • • • • • • • • • • • • • • • • • •	16
Artesian, definition	14	Diversity index, definition	16
Artificial substrate, definition	19	Downstream Order System	6
Ash mass, definition	15	Drainage area, definition	16
ATASCADERO CREEK NEAR GOLETA	229	Drainage basin, definition	16
		Dry mass, definition	15
Bacteria, definition	14	•	
BARRETT LAKE NEAR DULZURA	82	East Fork Maria Ygnacio Creek 2	65
BAUTISTA CREEK AT VALLE VISTA	163	EAST TWIN CREEK NEAR ARROWHEAD SPRINGS 1	
Bed material, definition	14		91
Bedload discharge, definition	18	EXPLANATION OF THE RECORDS	ŕ
Bedload, definition	18		
BEELER CREEK AT POMERADO ROAD NEAR POWAY	99	Fecal-coliform bacteria, definition	14
Benthic organisms, definition			14
BIG BEAR LAKE NEAR BIG BEAR LAKE		FLOW FROM MEXICO AT INTERNATIONAL	-
BIG ROCK CREEK NEAR VALYERMO	77		41
			94
BIG SYCAMORE CANYON CREEK NEAR POINT MUGU			-
BIG TUJUNGA CREEK BELOW HANSEN DAM		FRANKLIN CREEK AT CARPINTERIA	02
Biochemical oxygen demand, definition	15	FULLERTON CREEK BELOW FULLERTON DAM	
Biomass, definition	15	NEAR BREA 1	9.
BISHOP CREEK BELOW POWERPLANT NO 6	7.0		
NEAR BISHOP	78		16
Blue-green algae, definition	18		16
BORREGO PALM CREEK NEAR BORREGO SPRINGS	50	• • • • • • • • • • • • • • • • • • • •	16
Bottom material, definition	15		18
BRADLEY DITCH NEAR DONOVAN ROAD AT		Green Canyon Creek 24	68
SANTA MARIA		GREEN CANYON CREEK AT MAIN STREET	
BREA CREEK BELOW BREA DAM NEAR FULLERTON	192	NEAR GUADALUPE	98
CAJON CREEK BELOW LONE PINE CREEK		Hardness, definition	18
NEAR KEENBROOK	156	HOUSTON CREEK ABOVE LAKE GREGORY AT	
CAMPO CREEK NEAR CAMPO		CRESTLINE	67
CARBON CREEK BELOW CARBON CANYON DAM	176	HOUSTON CREEK BELOW LAKE GREGORY AT	
CARPINTERIA CREEK NEAR CARPINTERIA	225		70
CARUTHERS CREEK NEAR IVANPAH	39	Hydrologic Bench-Mark Network	ē
Cell volume determination	15		16
Cells per volume	15		16
Chemical oxygen demand, definition	15	nydrorogic dills, derimitation	*
CHINO CANYON CREEK BELOW TRAMWAY	13	Identifying Estimated Daily Discharge	10
	58		10
NEAR PALM SPRINGS	20	Imperial County, location of discharge	21
CHINO CREEK AT SCHAEFER AVENUE NEAR	166		24
Chlavarbull definition	166		41
Chlorophyll, definition	15		41
CITY CREEK NEAR HIGHLAND	148		15
Classification of Records	11	INTRODUCTION	1
COACHELLA VALLEY INFLOW TO THE		Inyo County, location of discharge	_
SALTON SEA	41	• • • • • • • • • • • • • • • • • • • •	25
COLD CREEK AT PIUMA ROAD NEAR MONTE NIDO	277		87
Color unit, definition	15	JAMUL CREEK NEAR JAMUL	88
Contents, definition	15		
Continuing-record station	11	Kern County, location of discharge	
Control structure, definition	15		26
Control, definition	15		
COOPERATION	2	LA BREA RECHARGE POND AT SANTA MARIA 29	98

Laboratory Measurements	12	National Stream Quality Accounting	
Lakes and reservoirs:	220	Network, definition	
Alisal Reservoir near Solvang Barrett Lake near Dulzura		Natural substrate, definition Nekton, definition	1
Big Bear Lake near Big Bear Lake		NEW RIVER AT INTERNATIONAL BOUNDARY	
El Capitan Lake near Lakeside		AT CALEXICO	4
Lake Cachuma near Santa Ynez		NEW RIVER NEAR WESTMORLAND	4
Lake Casitas near Casitas Springs		Numbering system for miscellaneous sites	
Lake Gregory at Crestline		• •	
Lake Hodges near Escondido		Onsite Measurements and Sample Collection	1
Lake Piru near Piru	206	Orange County, location of discharge	
Lake Wohlford near Escondido		and water-quality stations	2
Lower Otay Lake near Chula Vista	89	ORCUTT CREEK NEAR ORCUTT	
Matilija Reservoir at Matilija Hot	010	Organic mass, definition	1.
Springs		Organism count/area, definition	1
Mono Lake near Mono Lake	79	Organism count/volume, definition Organism, definition	1
Baja California, Mexico	86	Other Records Available	1
Salton Sea near Westmorland	40	Obiel Recolds Mallable	-
San Vicente Reservoir near Lakeside	92	PALM CANYON CREEK NEAR PALM SPRINGS	6
LAKE CACHUMA NEAR SANTA YNEZ		Parameter, definition	1
LAKE CASITAS NEAR CASITAS SPRINGS		Partial-record station	1
LAKE GREGORY AT CRESTLINE	69	Partial-record station, definition	1
LAKE HODGES NEAR ESCONDIDO		Particle size, definition	1
LAKE PIRU NEAR PIRU		Particle-size classification, definition	1
LAKE WOHLFORD NEAR ESCONDIDO	107	Percent composition or percent of	
LATIGO CREEK AT LATIGO CANYON ROAD	000	total, definition	1
NEAR POINT DUME		Periphyton, definition	1
Latitude-Longitude System	7	Pesticides, definitionpH, definition	17
Light-attenuation coefficient, definition	16	Phytoplankton, definition	1
LITTLE SYCAMORE CREEK AT HIGHWAY 1	10	Picocurie, definition	
NEAR SOLROMAR	296	PIRU CREEK ABOVE LAKE PIRU	
LONE PINE CREEK NEAR KEENBROOK		PIRU CREEK BELOW SANTA FELICIA DAM	
Los Angeles County, location of discharge		Plankton, definition	1
and water-quality stations	27	PLUNGE CREEK NEAR EAST HIGHLANDS	14
LOS ANGELES RIVER AT LONG BEACH		Polychlorinated biphenyls, definition	1
LOS COCHES CREEK NEAR LAKESIDE	93	POWAY CREEK NEAR POWAY	9
LOS PENASQUITOS CREEK BELOW POWAY		Primary productivity, definition	1
CREEK NEAR POWAY		PUBLICATIONS ON TECHNIQUES WATER-	
LOS PENASQUITOS CREEK NEAR POWAY		RESOURCES INVESTIGATIONS	2
LOWER OTAY LAKE NEAR CHULA VISTA		PURISIMA CREEK NEAR LOMPOC	20.
LYTLE CREEK AT COLTONLYTLE CREEK NEAR FONTANA		Radiochemical Program, definition	18
LIILE CREEK NEAR PONIANA	133	RATTLESNAKE CREEK AT POWAY	9
Macrophytes, definition	16	Records Stage and Water Discharge	
MALIBU CREEK AT CORNELL		Records Surface-Water Quality	1
MALIBU CREEK AT CRATER CAMP NEAR		Recoverable, definition	18
CALABASAS	280	Remark Codes	13
Maria Ygnacio Creek	263	RIO HONDO ABOVE WHITTIER NARROWS DAM	19
MARIA YGNACIO CREEK AT UNIVERSITY		RIO HONDO BELOW WHITTIER NARROWS DAM	19
DRIVE NEAR GOLETA		Riverside County, location of discharge	_
MATILIJA CREEK AT MATILIJA HOT SPRINGS	217	and water-quality stations	
MATILIJA RESERVOIR AT MATILIJA HOT	040	RODEO-SAN PASQUAL CREEK NEAR LOMPOC	262
SPRINGS Mean concentration, definition		RODRIGUEZ RESERVOIR AT RODRIGUEZ DAM	
Mean discharge, definition		BAJA CALIFORNIA MEXICO	
Metamorphic stage, definition	16	ROSH CREEK BELOW ROMEN LAKE MEAR JUNE LAKE.,	0.
Methylene blue active substance,		SALSIPUEDES CREEK NEAR LOMPOC	24
definition	16	SALT CREEK NEAR MECCA	
Micrograms per gram, definition	16	SALT CREEK NEAR STOVEPIPE WELLS	38
Micrograms per liter, definition	16	SALTON SEA NEAR WESTMORLAND	4(
MILL CREEK BELOW LUNDY LAKE NEAR		SAN ANTONIO CREEK ABOVE BARKA SLOUGH	
MONO LAKE	80	NEAR ORCUTT	246
Milligrams per liter, definition	16	SAN ANTONIO CREEK AT LOS ALAMOS	245
MISSION CREEK NEAR DESERT HOT SPRINGS	57	SAN ANTONIO CREEK NEAR CASMALIA	248
Mojave River:		San Bernardino County, location of	_
See West Fork	70	discharge and water-quality stations	3:
MOJAVE RIVER AT AFTON	76 76	San Diego County, location of discharge	
MOJAVE RIVER AT BARSTOW	75	and water-quality stations	32
MOJAVE RIVER AT LOWER NARROWS NEAR VICTORVILLE	73	SAN DIEGO CREEK AT CAMPUS DRIVE, NEAR IRVINE	10.
MOJAVE RIVER BELOW FORKS RESERVOIR	, ,	SAN DIEGO RIVER AT FASHION VALLEY AT	14.
NEAR HESPERIA	72	SAN DIEGO	96
MOJAVE RIVER NEAR HODGE	74	SAN DIEGO RIVER AT MAST ROAD NEAR SANTEE	9:
Mono County, location of discharge		SAN DIEGUITO RIVER NEAR DEL MAR	
stations	28	SAN FELIPE CREEK NEAR WESTMORLAND	5:
MONO LAKE NEAR MONO LAKE	79	San Gabriel and Los Angeles River	
MURRIETA CREEK AT TEMECULA	115	basins, schematic diagram	189
Walter Andrews Comment		SAN GABRIEL RIVER ABOVE WHITTIER	
National Geodetic Vertical Datum	17	NARROWS DAM	19
1929, definition	17	SAN GABRIEL RIVER BELOW SANTA FE DAM	104
National Stream Quality Accounting Network	6	NEAR BALDWIN PARK	TA

INDEX

SAN JACINTO RIVER NEAR ELSINORE	164	Station Identification Numbers	6
SAN JACINTO RIVER NEAR SAN JACINTO	161	Streamflow, definition	19
SAN JOSE CREEK AT GOLETA	232	Substrate, definition	19
SAN JOSE CREEK NEAR GOLETA	230	SUMMARY HYDROLOGIC CONDITIONS	2
SAN JUAN CREEK AT LA NOVIA STREET		Surface area, definition	19
BRIDGE, AT SAN JUAN CAPISTRANO	118	Surface Water	2
San Luis Obispo County, location of		Surficial bed material, definition	18
discharge and water-quality stations	33	Suspended sediment, definition	18
SAN LUIS REY RIVER AT COUSER CANYON		Suspended, definition	19
BRIDGE NEAR PALA	109	Suspended, recoverable, definition	19
SAN LUIS REY RIVER AT OCEANSIDE	110	Suspended, total, definition	18
SAN MATEO CREEK AT SAN ONOFRE	269	Suspended-sediment concentration,	
SAN TIMOTEO CREEK NEAR LOMA LINDA	149	definition	18
SAN VICENTE RESERVOIR NEAR LAKESIDE	92	Suspended-sediment discharge, definition	19
SANTA ANA CREEK NEAR OAK VIEW	220	Suspended-sediment load, definition	19
SANTA ANA RIVER AT BALL ROAD AT ANAHEIM		SWEETWATER RIVER NEAR DESCANSO	90
SANTA ANA RIVER AT E STREET NEAR SAN			
BERNARDINO	151	TAHQUITZ CREEK NEAR PALM SPRINGS	60
SANTA ANA RIVER AT MWD CROSSING NEAR		Taxonomy, definition	20
ARLINGTON	159	TEMECULA CREEK NEAR AGUANGA	114
SANTA ANA RIVER AT SANTA ANA	180	TEMESCAL CREEK ABOVE MAIN STREET, AT CORONA, 1	165
Santa Ana River basin, schematic diagram	139	TEPUSQUET CREEK NEAR SISQUOC	255
SANTA ANA RIVER BELOW PRADO DAM		Thermograph, definition	20
SANTA ANA RIVER NEAR MENTONE	141	TIJUANA RIVER NEAR DULZURA	85
Santa Barbara County, location of		Time-weighted average, definition	20
discharge and water-quality stations	34	Tons per acre-foot, definition	20
SANTA CLARA RIVER AT LOS ANGELES-		Tons per day, definition	20
VENTURA COUNTY LINE	202	TOPANGA CREEK NEAR TOPANGA BEACH 2	270
SANTA CLARA RIVER AT MONTALVO		Total coliform bacteria, definition	14
SANTA CRUZ CREEK NEAR SANTA YNEZ		Total load, definition	20
SANTA MARGARITA RIVER AT YSIDORA		Total organism count, definition	17
SANTA MARGARITA RIVER NEAR TEMECULA		Total, definition	20
SANTA MARIA CREEK NEAR RAMONA		Total, recoverable, definition	20
SANTA MARIA RIVER AT GUADALUPE		Total-sediment discharge, definition	18
SANTA PAULA CREEK NEAR SANTA PAULA		Total-sediment, definition	18
SANTA RITA CREEK NEAR LOMPOC	262	TUNA CREEK NEAR TOPANGA BEACH	292
SANTA YNEZ RIVER ABOVE GIBRALTAR DAM		Turbidity, definition	20
NEAR SANTA BARBARA	234		
SANTA YNEZ RIVER AT JAMESON LAKE		Ventura County, location of discharge	
NEAR MONTECITO	233	and water-quality stations	35
SANTA YNEZ RIVER AT NARROWS NEAR LOMPOC	243	VENTURA RIVER NEAR MEINERS OAKS	218
SANTA YNEZ RIVER AT SOLVANG		VENTURA RIVER NEAR VENTURA	222
SANTA YNEZ RIVER BELOW GIBRALTAR DAM			
NEAR SANTA BARBARA	235	WARM CREEK NEAR SAN BERNARDINO 1	152
SANTA YNEZ RIVER BELOW LOS LAURELES		Water Quality	5
CANYON NEAR SANTA YNEZ	236	Water Temperature	12
SANTA YSABEL CREEK NEAR RAMONA	102	Water year, definition	20
SANTIAGO CREEK AT MODJESKA		WDR, definition	20
SANTIAGO CREEK AT SANTA ANA		Weighted average, definition	20
SATICOY DIVERSION NEAR SATICOY		WEST FORK MOJAVE RIVER NEAR HESPERIA	71
Sediment		Wet mass, definition	15
Sediment, definition		WHITEWATER RIVER AT INDIO	64
SESPE CREEK NEAR WHEELER SPRINGS		WHITEWATER RIVER AT WHITE WATER	
SISQUOC RIVER NEAR GAREY		CUTOFF AT WHITE WATER	52
SISQUOC RIVER NEAR SISQUOC		WHITEWATER RIVER AT WINDY POINT NEAR	
SNOW CREEK NEAR WHITE WATER	54	WHITE WATER	56
Sodium-adsorption-ratio, definition	19	WHITEWATER RIVER NEAR MECCA	65
Solute, definition	19	WSP, definition	20
SPECIAL NETWORKS AND PROGRAMS	6	,	
Specific conductance, definition	19	Zooplankton, definition	18
Stage-discharge relation, definition	19	ZUMA CREEK AT RAINSFORD PLACE NEAR MALIBU 2	
5	-		-

	•		
			i.

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54×10^{-2}	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047×10^3	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047×10^{-3}	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft³)	2.832×10^{1}	cubic decimeters (dm³)
	2.832×10^{-2}	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
Cont. (cont. (cont. (ch.)	2.447×10^{-3}	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832×10^{1}	liters per second (L/s)
1 (/-/	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTER INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Room W-2234 2800 Cottage Way, Federal Building Sacramento, CA 95825

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE