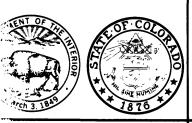
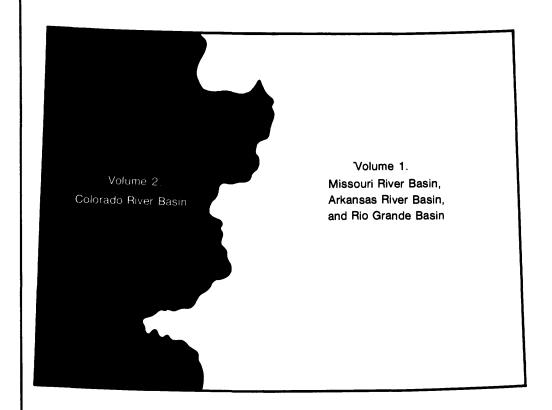


Water Resources Data Colorado Water Year 1987


Volume 2. Colorado River Basin

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-87-2 Prepared in cooperation with the State of Colorado and with other agencies

CALENDAR FOR WATER YEAR 1987


										198	36									
		oca	гові	ER					NO	VEMI	BER					DE	CEM	BER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	Т	F	S
			1	2	3	4							1		1	2	3	4	5	6
5	6	7	8			11	2	3	4	5	6	7	8	7				11	_	
														14	15	16	17	18	19	20
													22						26	27
26	27	28	29	30	31		23 30	24	25	26	27	28	29	28	29	30	31			
	2						 			198	37									
		JA	NUA	ARY					FI	EBRI	JAR	Y				1	MAR	СН		
S	M	T	W	Т	F	S	S	M	T	W	Т	F	S	S	M	T	W	T	F	S
				1	2	3	1	2	3	4	5	6	7	1	2	3	4	5	6	7
4	5	6	7	8	9	10	8	9	10	11	12	13	14	8	9	10	11	12	13	14
														15						
							22	23	24	25	26	27	28						27	28
25	26	27	28	29	30	31								29	30	31				
		F	PR	IL						MA	Y						JUN	E		
S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	Т	F	S
			1	2	3	4						1	2		1	2	3	4	5	6
5	6	7				11	3	4	5	6	7			7		9				
							10	11	12	13	14	15	16	14	15	16	17	18	19	20
														21				25	26	27
26	27	28	29	30					26	27	28	29	30	28	29	30				
							31													
			TUL!	Y					Al	JGU	ST					SEP'	[EM]	BER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
						4							1							
														6						
														13						
	20	21	22	23	24	25	16	17	18	19	20	21	22	20	21	22	23	24	25	26
														27						

Water Resources Data Colorado Water Year 1987

Volume 2. Colorado River Basin

by R.C. Ugland, R.G. Kretschman, E.A. Wilson, and J.D. Bennett

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-87-2 Prepared in cooperation with the State of Colorado and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in Colorado write to:

District Chief, Water Resources Division U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Lakewood, Co 80225

PREFACE

This volume of the annual hydrologic data report of Colorado is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Colorado are contained in two volumes:

Volume 1. Missouri River, Arkansas River, and Rio Grande basins in Colorado,
Volume 2. Colorado River basin.

This report is the culmination of a concerted effort by dedicated personnel of the U. S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

R.	W.	Boulger	J.	W.	Gibbs	D.	Α.	Loucks	R.	L.	Reed
D.	L.	Butler	D.	W.	Grey	J.	D.	Martinez	н.	Ε.	Stranathan
R.	G.	Carver	z.	D.	Hill	R.	F.	Middelburg	R.	W.	Teller
Ε.	J.	Charbonneau	C.	Р.	Hollowed	R.	М.	Neam	L.	Α.	Walsh
в.	J.	Cochran	R.	Α.	Jenkins	G.	В.	O'Neill	Κ.	D.	Wassenaar
c.	Н.	Corneille	D.	Α.	Johncox	R.	s.	Parker	М.	J.	Werito
Α.	c.	Duncan	Α.	L.	Jones	Κ.	G.	Petty	Μ.	Ε.	Whiteman
J.	L.	Ebling	L.	L.	Jones	н.	Ε.	Petsch Jr.			

This report was prepared in cooperation with the State of Colorado and with other agencies under the general supervision of C. A. Pascale, District Chief, Colorado.

302/2 - 101						
REPORT DOCUMENTATION PAGE	L REPORT NO. USGS/WRD/HD-88/250	2.	3. Recipient's Accession No.			
9	ta for Colorado, Water ye	ear 1987	5. Report Date June 1988			
Volume 2. Colorado	o River basin		6.			
	, R.G. Kretschman, , and J.D. Bennett		8. Performing Organization Rapt. No. USGS-WDR-CO-87-2			
9. Performing Organization Name U.S. Geological Sur	end Address Evey, Water Resources Div	10. Project/Tesk/Work Unit No.				
Box 25046, Mail Sto	•	11. Contract(C) or Grant(G) No.				
Denver Federal Cen		(C)				
Lakewood, CO 8022			(G)			
U.S. Geological Sur Box 25046, Mail Sto	evey, Water Resources Div	vision	13. Typo of Report & Period Covered Annual Oct. 1,1986 to Sept. 30, 1987			
Denver Federal Cent Lakewood, CO 8022			14.			

15. Supplementary Notes

Prepared in cooperation with the State of Colorado and other agencies.

16. Abstract (Limit: 200 words)

Water-resources data for Colorado for the 1987 water year consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of wells and springs. This report (Volumes 1 and 2) contains discharge records for 319 gaging stations, stage and contents of 24 lakes and reservoirs, 5 partial-record low-flow stations, peak flow information for 34 crest-stage partial record stations, and 1 miscellaneous site; water quality for 115 gaging stations, 177 miscellaneous sites; and for 14 observation wells. Six pertinent stations in bordering States also are included in this report. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of C.A. Pascale, District Chief. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies.

17. Document Analysis a. Descriptors

*Colorado, *Hydrologic data, *Surface water, *Ground water, *Water quality; Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediment, Water temperatures, Sampling sites, Water analyses.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement	19. Security Class (This Report)	21. No. of Pages
No restriction on distribution. This report may	Unclassified	409
be purchased from: National Technical Information	20. Security Class (This Page)	22. Price
Service, Springfield, VA 22161	Unclassified	

CONTENTS

	Page
Preface	. III
List of gaging stations, in downstream order, for which records are	***
published	. VI
Introduction	4
Overview of water year 1987	. 5
Special networks and programs	. 13
Explanation of the records	. 13
Downstream order system	. 13
Other records available	. 16
Records of surface-water quality	. 16
Access to WATSTORE DATA	. 18
Definition of terms	. 19
Selected references	. 25
Publications on techniques of water-resources investigations	. 27
Gaging-station records	. 29
Transmountain diversions	. 360
Transmountain diversions from Colorado River basin in Colorado	. 360
Discharge at partial-record stations and miscellaneous sites	. 363
Crest-stage partial-record stations	. 364
Meteorological data at miscellaneous sites	. 366
Miscellaneous station analyses	367
Supplemental Water-Quality Data for Gaging Stations	368
Index	. 391
_	
ILLUSTRATIONS	
	Do
	Page
Figures 1-2. Map showing:	
1. Locations of lake and stream-gaging stations	
and water-quality stations in Colorado	. 2
2. Locations of crest-stage	
partial-record stations in Colorado	. 3
Comparison of precipitation and discharge during water	
year 1987 to long-term means for precipitation	
year 1907 to long-term means for precipitation	_
and discharge	. 6
and discharge	. 6
and discharge	•
and discharge	. 6
and discharge	•
and discharge	. 10
and discharge	•
and discharge	. 10
and discharge	Page . 5
and discharge	Page . 5

(Letter after station name designates type and frequency of published data.

Daily tables: (D) discharge, (C) specific conductance, (S) sediment,

(T) temperature, (e) elevation or contents, (O) dissolved oxygen, (P) pH.

Partial tables: (c) chemical, (b) biological, (m) microbiological, (s) sediment, (t) temperature)

	Page
COLORADO RIVER BASIN	20
Colorado River below Baker Gulch, near Grand Lake (D)	29
North Inlet (head of Grand Lake Outlet): Grand Lake:	
Alva B. Adams tunnel at east portal, near Estes Park (Dct)	30 33
Granby Pump Canal near Grand Lake (tcm)	34
Lake Granby near Granby (etcb)	35 37
WILLOW CREEK BASIN Willow Creek Reservoir near Granby (e)	38
FRASER RIVER BASIN	-
Fraser River at Upper Station near Winter Park (D) Fraser River near Winter Park (D)	39 40
Vasquez Creek near Winter Park (D)	41 42
Elk Creek near Fraser (D)	43
Ranch Creek near Fraser (D)	44 45
Colorado River at Windy Gap near Granby (D)	46 47
Colorado River at Hot Sulphur Springs (DctCT)	•
Bobtail Creek (head of Williams Fork) near Jones Pass (D) Williams Fork below Steelman Creek (D)	51 52
Williams Fork above Darling Creek, near Leal (D)	53 55
Darling Creek near Leal (D)	56
South Fork Williams Fork above Tributary near Ptarmigan Pass (D)	57
South Fork Williams Fork above Short Creek near	
Ptarmigan Pass (D)	58
Ptarmigan Pass (D)	59 60
South Fork Williams Fork near Leal (D)	61
Williams Fork near Leal (D)	62 63
Williams Fork Reservoir near Parshall (e)	67 68
Troublesome Creek near Pearmont (D)	72
MUDDY CREEK BASIN Muddy Creek at Kremmling (DCTcts)	73
BLUE RIVER BASIN Monte Cristo Creek (head of Blue River):	
Monte Cristo diversion near Hoosier Pass (D)	80
Hoosier Creek: Bemrose-Hoosier diversion near Hoosier Pass (D)	81
Blue River: McCullough Creek:	
McCullough-Spruce-Crystal diversion near Hoosier Pass (D)	82
Blue River at Blue River (D)	83 84
Snake River near Montezuma (D)	85 86
Tenmile Creek below North Tenmile Creek, at Frisco (D)	87
Blue River below Dillon (D)	88 89
Rock Creek near Dillon (D)	90 91
Slate Creek at upper station, near Dillon (D)	92
Blue River above Green Mountain Reservoir, near Dillon (DCTct) Black Creek below Black Lake, near Dillon (D)	93 95
Cataract Creek near Kremmling (D)	96 97
Dillon Reservoir (e)	97
Green Mountain Reservoir (e)	97 98
Colorado River near Kremmling (D)	102 103
PINEY RIVER BASIN	
Piney River below Piney Lake, near Minturn (D) Dickson Creek near Vail (D)	108 109
Freeman Creek near Minturn (D)	110 111
Piney River near State Bridge (D)	112
ROCK CREEK BASIN Rock Creek at Crater (DtcsCT)	113
Rock Creek at McCoy (Dtcs)	119
Eagle River at Red Cliff (D)	123
Turkey Creek: _ Wearyman Creek near Red Cliff (D)	124
Turkey Creek near Red Cliff (D)	125
Missouri Creek near Gold Park (D)	126
Homestake Creek at Gold Park (D)	127 128
Cross Creek near Minturn (D)	129

	Page
Colorado RiverContinued	
EAGLE RIVER BASINContinued Gore Creek at upper station, near Minturn (D)	130
Black Gore Creek near Minturn (D)	131
Bighorn Creek near Minturn (D)	132 133
Booth Creek near Minturn (D)	134
Middle Creek near Minturn (D)	135 136
Beaver Creek at Avon (DtcT)	137
Eagle River at Gypsum (ctCT)	140 143
Colorado River near Dotsero (D)	144
Colorado River above Glenwood Springs (TC)	145 146
ROARING FORK RIVER BASIN	148
Roaring Fork River above Difficult Creek near Aspen (D)	149
Hunter Creek near Aspen (D)	150 151
Castle Creek above Aspen (D)	152
Owl Creek near Aspen (D)	153
Fryingpan River near Thomasville (D)	154
Ruedi Reservoir near Basalt (e)	155 156
Crystal River above Avalanche Creek, near Redstone (D)	157
Roaring Fork River at Glenwood Springs (D)	158 159
DIVIDE CREEK BASIN	
West Divide Creek (head of Divide Creek) near Raven (Dcts)	160 163
Colorado River near Cameo (DctsCT)	164
PLATEAU CREEK BASIN Plateau Creek near Cameo (D)	168
GUNNISON RIVER BASIN	,,,,
Taylor River (head of Gunnison River): Taylor Park Reservoir at Taylor Park (e)	169
Taylor River below Taylor Park Reservoir (D)	170
Taylor River at Almont (D)	171 172
Gunnison River near Gunnison (D)	173
Tomichi Creek: Cochetopa Creek below Rock Creek, near Parlin (D)	174
Tomichi Creek at Gunnison (D)	175
GUNNISON RIVER BASIN Lake Fork at Gateview (D)	176
Cimarron River near Cimarron (D)	177
Gunnison River below Gunnison tunnel (D)	178 179
Smith Fork near Lazear (D)	180
East Muddy Creek (head of North Fork Gunnison River): North Fork Gunnison River near Somerset (D)	181
Minnesota Creek near Paonia (D)	182 183
Leroux Creek at Hotchkiss (D)	184
Tongue Creek:	185
Surface Creek near Cedaredge (D)	186
Tongue Creek at Cory (D)	187 188
Uncompander River near Ridgway (D)	189
Dallas Creek near Ridgway (D)	190 191
Uncompangre River at Colona (D)	192
Escalante Creek near Delta (D)	193 194
REED WASH BASIN	134
Reed Wash near Mack (D)	199 200
LITTLE DOLORES RIVER BASIN	
Hay Press Creek above Fruita Reservoir No. 3, near Glade Park (D) . DOLORES RIVER BASIN	205
Dolores River below Rico (D)	206
Dolores River at Dolores (D)	207 208
Dolores River at Bedrock (DTC)	209
West Paradox Creek: West Paradox Creek above Bedrock (tc)	212
Dolores River below West Paradox Creek near Bedrock (TCtc)	213
Dolores River near Bedrock (D)	215 216
San Miguel River at Uravan (D)	217
GREEN RIVER BASIN Yampa River:	
Yampa River near Oak Creek (DctsS)	218 222
Fish Creek:	
Long Lake Inlet near Buffalo Pass (D)	223 224
North Fork Fish Creek:	
Middle Fork Fish Creek near Buffalo Pass (D)	225 226
Middle Fork Fish Creek Tributary below Fish Creek	
Reservoir (D)	227 228
Yampa River at Steamboat Springs (D)	229
Elk River at Clark (D)	230

PAGE

COLORADO RIVERCONTINUED	
GREEN RIVER BASINContinued Yampa RiverContinued	
Trout Creek:	
Middle Creek near Oak Creek (Dct)	231
Foidel Creek near Oak Creek (Dcts)	234
Foidel Creek at mouth, near Oak Creek (Dcts)	238
Elkhead Creek near Elkhead (D)	241 242
Fortification Creek near Fortification (Dcts)	242
Williams Fork:	277
Williams Fork River at mouth near Hamilton (DcmsCT)	246
Wilson Creek above Taylor Creek near Axial (D)	248
Taylor Creek at mouth, near Axial (D)	249
Yampa River near Maybell (DcmtsCT)	250
Little Snake River near Slater (Dot)	255
Slater Fork near Slater (D)	256
Little Snake River near Dixon, WY (Dct)	257 259
Willow Creek near Dixon, WY (D)	260
Little Snake River near Lily (Dctms)	261
Yampa River at Deerlodge Park (D)	262
North Fork White River:	
Lost Creek near Buford (D)	263
North Fork White River at Buford (Dtc)	264
South Fork White River at Budge's Resort (Dtc)	267
Wagonwheel Creek at Budge's Resort (Dtc)	270
South Fork White River near Budge's Resort (Dtc)	273 276
South Fork White River near Buford (Dtc)	279
South Fork White River at Buford (Dtc)	282
White River near Meeker (D)	285
White River below Meeker (Dbtcs)	286
Piceance Creek below Rio Blanco (Dtcs)	289
Stewart Gulch above West Fork, near Rio Blanco (tcs)	292
Piceance Creek tributary near Rio Blanco (DtcTC)	294
Willow Creek near Rio Blanco (stc)	297
Piceance Creek above Hunter Creek, near Rio Blanco (Dtcs)	299
Piceance Creek below Ryan Gulch, near Rio Blanco (DesCT)	302
Piceance Creek at White River (Dcts)	306 308
White River above Crooked Wash, near White River City (Dtc) Yellow Creek:	200
Corral Gulch below Water Gulch, near Rangely (Dct)	311
Corral Gulch near Rangely (DtcCT)	313
White River below Boise Creek, near Rangely (Dcts)	317
SAN JUAN RIVER BASIN	
East Fork San Juan River above Sand Creek, near Pagosa Springs (D)	321
West Fork San Juan River at West Fork Campground, near Pagosa	
Springs (Dtcs)	322
Wolf Creek at Wolf Creek Campground near Pagosa Springs (DctmsS).	325 328
Windy Pass Creek near Pagosa Springs (Dctmss)	331
San Juan River at Pagosa Springs (D)	
Rio Blanco below Blanco diversion dam, near Pagosa Springs (D)	335 336
Navajo River at Banded Peak Ranch, near Chromo (D)	337
Navajo River below Oso diversion dam, near Chromo (D)	338
Little Navajo River below Little Oso Diversion Dam,	
near Chromo (D)	339
Navajo River at Edith (D)	340
San Juan River near Carracas (D)	341
Piedra River near Arboles (D)	342
Vallecito Creek near Bayfield (Domts)	343
Vallecito Reservoir near Bayfield (e)	346
Los Pinos River at La Boca (D)	347
Spring Creek at La Boca (D)	348
Animas River at Durango (D)	349
Animas River near Cedar Hill, NM (D)	350
La Plata River at Hesperus (D)	351
La Plata River at Colorado-New Mexico State line (D)	352
Mancos River near Towacc (D)	353
Navajo Wash near Towaoc (D)	354
McElmo Creek:	
	355
McElmo Creek near Cortez (DCT)	355 358

WATER RESOURCES DATA - COLORADO, 1987

VOLUME 2: COLORADO RIVER BASIN

By R. C. Ugland, R. G. Kretschman, E. A. Wilson, and J. D. Bennett

INTRODUCTION

The Water-Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Colorado each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in the report series entitled "Water Resources Data - Colorado".

This report (Volume 2 of two volumes) includes records of surface water in the State, west of the continental divide. Specifically, it contains: (1) discharge records for 195 streamflow-gaging stations, for 5 partial-record streamflow stations and 1 miscellaneous streamflow site; (2) stage and contents for 10 lakes and reservoirs; and (3) water-quality data for 57 streamflow-gaging stations, miscellaneous water-quality for 4 ungaged sites, miscellaneous water-quality data for 126 gaged sites, and meteorological data for 2 sites. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Colorado.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Colorado were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-water Supply of the United States," Parts 6B, 7, and 8." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States." Data on ground-water levels for the 1935 through 1955 water years were published annually under the title "Water Levels and Artesian Pressures in Observation Wells in the United States." For the 1956 through 1974 water years the data were published in four 5-year reports under the title "Ground-Water Levels in the United States." Water-supply papers may be purchased from the, U.S. Geological Survey, Books and Open-File Reports, Federal Center, Building 41, Box 25425, Denver, CO 80225.

For water years 1961 through 1970, streamflow data were released by the Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data on streamflow, water quality, and ground-water are published in official survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report CO-87-2." These water-data reports are for sale, in paper copy or in micro-fiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (303) 236-4882.

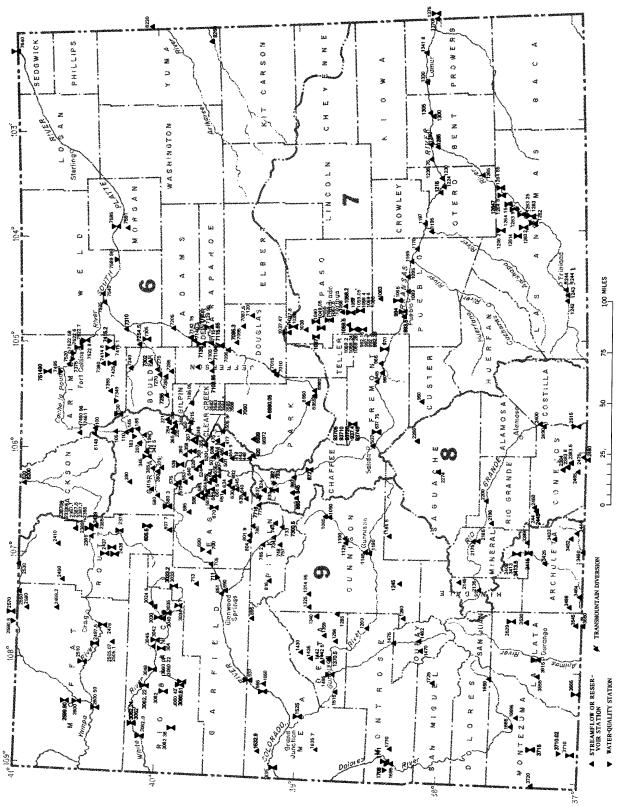


Figure 1. -- Map showing locations of lakes and stream-gaging stations and water-quality stations in Colorado.

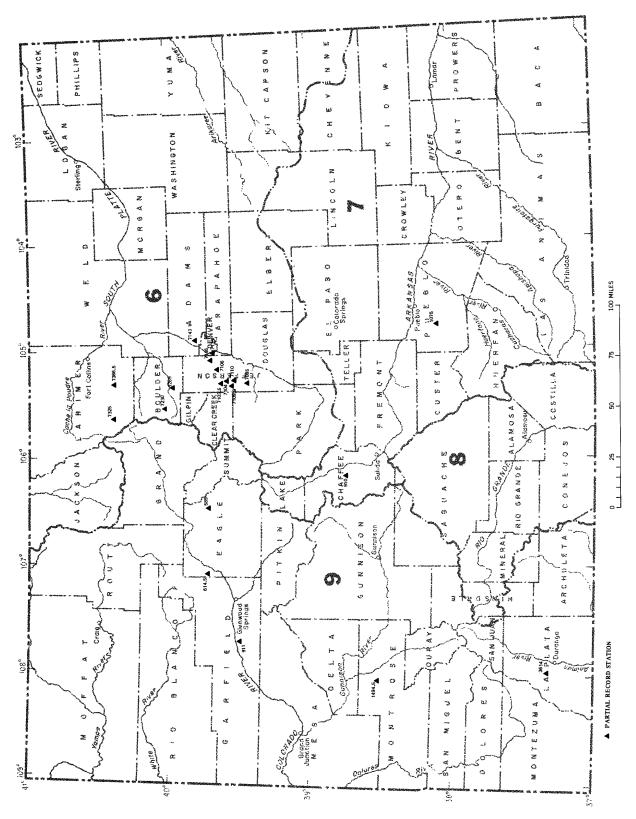


Figure 2. -- Map showing locations of crest-stage partial-record stations in Colorado.

COOPERATION

The U.S. Geological Survey and organizations of the State of Colorado have had cooperative agreements for the systematic collection of surface-water records since 1895 and for water-quality records since 1941. Organizations that assisted in collecting data for this report through cooperative agreement with the Survey are:

```
Arkansas River Compact Administration, Jim Rogers, Treasurer.
Boulder County Public Works Department, C. Light, Systems Analyst.
Cherokee Water and Sanitation District, F. S. Loosley, Manager.
Cherry Creek Basin Authority, Rhonda Sandquist.
City and County of Denver, Board of Water Commissioners, J. A. Yelenick, President.
    City and County of Denver, Board of Water Commissioners, J. A. Yelenick City of Aspen, Robert Anderson, City Manager.
City of Arvada, Jim Sullivan, City Engineer.
City of Aurora, Thomas Griswold, acting Director of Utilities.
City of Boulder, James Piper, City Manager.
City of Colorado Springs, Larry N. Blick, City Manager.
City of Englewood, Stewart Fonda, Director, Wastewater Treatment Plant.
City of Fort Collins, Bobbi Dunham, Civil Engineer II.
City of Fruita, Peter Haller, Mayor.
City of Glendale, Robert Taylor.
City of Glenwood Springs. M. Flinn. Manager.
     City of Glenwood Springs, M. Flinn, Manager.
City of Longmont, Linn Folsom.
City of Thornton, Joseph E. Vigil, Chairman, Utilities Board.
City of Steamboat Springs, J. Zimmerman.
City of Thornton, Joseph E. Vigil, Chairman, Utilities Board.
City of Steamboat Springs, J. Zimmerman.
Colorado Department of Health, Thomas M. Vernon, Executive Director.
Colorado Department of Natural Resources, David H. Getches, Executive Director.
Colorado Division of Water Resources, J. A. Danielson, State Engineer.
Colorado Division of Mined Land Reclamation, David Shelton, Director.
Colorado Geological Survey, John Rold, State Geologist.
Colorado River Water Conservation District, Roland C. Fischer, Secretary-Engineer.
Colorado Springs Department of Public Utilities, J. D. Phillips, Director.
Delta County Board of County Commissioners, Roger Blouch, Chairman.
Denver Regional Council of Governments, Robert D. Farley, Executive Director.
Eagle County Board of Commissioners, D. E. Mott, Commissioner.
Evergreen Metropolitan District, G. C. Schulte, General Manager.
Fountain Valley Authority, Ed Bailey, Secretary.
Garfield County, Rodger Ludwig, Director of Administrative Services.
Grand County, R. Howard Moody, County Manager.
Larimer-Weld Regional Council of Governments, L. L. Pearson, Executive Director.
Lost Creek Groundwater Management District, G. H. Bush, Manager.
Lower Fountain Water-Quality Management Association, Stuart Loosely, President.
Metropolitan Denver Sewage Disposal District No. 1, Jack B. Enger, Manager.
Morflat County, Charles Steele, Planning Officer.
Moffat County, Richard Gibbons, Director.
North Kiowa-Bijou Ground Water Management District, Donald F. McClary, Attorney.
North LaJunta Water Conservation District, Mark Korbitz.
Northern Colorado Water Conservation District, L. Simpson, Secretary.
Pikes Peak Area Council of Governments, Maurice Rahimi.
Pikes Peak Area Council of Governments, Maurice Rahimi.
Pikes Peak Regional Building Department, Dan Bunting.
Pitkin County Board of County Commissioners, C. Stewart, County Manager.
    Pikes Peak Regional Building Departments, Maurice Hanimi.
Pikes Peak Regional Building Department, Dan Bunting.
Pitkin County Board of County Commissioners, C. Stewart, County Manager.
Pueblo Board of Water Works, Alan Hamel, Executive Director.
Pueblo Civil Defense, Betty Jo Hopper, Director.
Pueblo West Metro Water District, E. M. Zamecki, Manager.
Purgatoire River Water Conservancy District, C. Latuda, President.
Rio Blanco County Board of County Commissioners, A. J. Jones.
Rio Grande Water Conservation District, Ralph Curtis, Manager.
Southeastern Colorado Water Conservancy District, C. L. Thomson, General Manager.
Southwestern Water Conservation District. Edward Searle. Manager.
     Southwestern Water Conservation District, Edward Searle, Manager. St. Charles Mesa Water Association, Lee Simpson, Manager. Town of Breckenridge, Gary Roberts, Town Manager. Town of Castle Rock, Tom Gallier, Director of Utilities.
     Town of Castle Rock, Tom Gallier, Director of Utilities.
Trinchera Water Conservancy District, L. Smith, President.
Uncompangre Valley Water Users Association, J. Hokit, Manager.
Upper Yampa Water Conservancy District, J. Fetcher.
Upper Arkansas River Water Conservancy District, K. Baker, General Manager.
Upper Black Squirrel Grounwater Management District, Elvin Henderson, Chairman.
Urban Drainage and Flood Control District, L. Scott Tucker, Executive Director.
Water Users No. 1, Jim Gayler, Associate Manager.
Yellow Jacket Water Conservancy District, F. G. Cooley, Secretary-Council.
```

Financial assistance was also provided by the U.S. Army, Corps of Engineers, U.S. Army; U.S. Air Force; Bureau of Land Management, Bureau of Mines, Bureau of Reclamation, the National Park Service, and the U.S. Environmental Protection Agency, U.S. Federal Emergency Management Agency, and U.S. National Weather Service. Organizations that supplied data are acknowledged in station descriptions.

OVERVIEW OF WATER YEAR 1987
[West of the Continental Divide]

Prepared by Harold E. Petsch, Jr.

Precipitation

Precipitation data for water year 1987, were obtained from published reports of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, for the National Weather Service Division in Colorado that is west of the Continental Divide. These data are listed in table 1. Precipitation and departures from normal precipitation are listed for the first 6 months of the water year when precipitation is predominately snow, and then for the remaining 6 months when precipitation is predominately rain. Also listed are the precipitation and departure from normal precipitation for the entire water year.

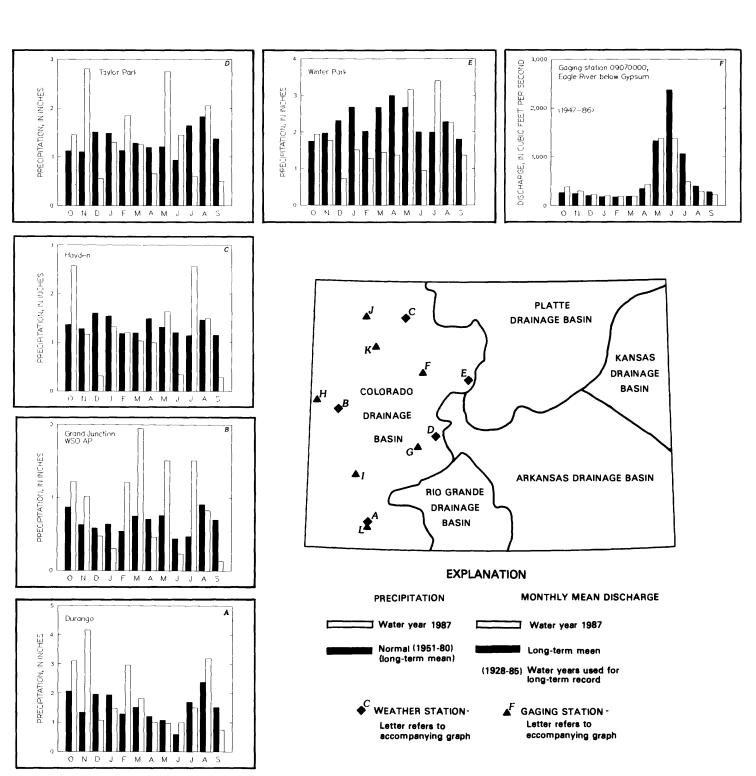
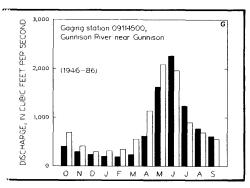
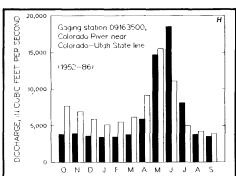
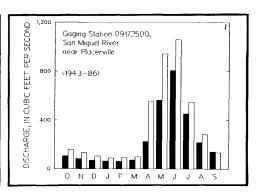
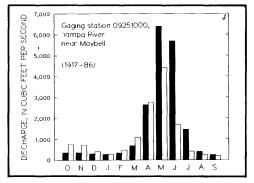
The Colorado Drainage Basin Division had 15 percent greater than normal precipitation during the first 6 months of the water year and 5 percent less than normal precipitation during the last 6 months; accordingly, precipitation was 5 percent greater than normal during the entire water year. Graphs of monthly precipitation for the water year and normal monthly precipitation, at selected weather stations, are shown in figure 3.

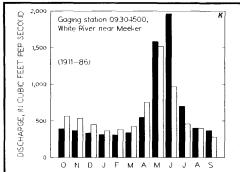
Table 1.--Precipitation during water year 1987 and departures from normal precipitation (1951-80), in inches

	Octob	er-March	April-S	September	Water	year 1987
National Weather Service division	Precipi- tation	Departure from normal	Precipi- tation	Departure from normal	Precipi- tation	Departure from normal
Colorado Drainage Basin	8.78	1.17	7.36	-0.39	16.14	0.78

Streamflow

Monthly mean discharge during water year 1987 at selected stream-gaging stations is compared with long-term mean monthly discharge in figure 3. Individual graphs show the varied streamflow conditions west of the Continental Divide during the water year. The graphs for the gaging stations indicate that discharge during the water year had the same general trend as long-term discharge. At the beginning of the water year, discharge was from 43 to 135 percent greater than the long-term mean at the selected gaging stations.


Figure 3.—Comparison of precipitation and discharge during water year 1987 to long-term means for precipitation and discharge.

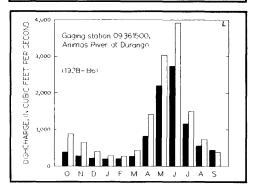


Figure 3.--(continued)

The graphs for gaging stations 09070000, Eagle River below Gypsum (fig. 09114500, Gunnison River near Gunnison (fig. 3G); and 09163500, Colorado River near Colorado-Utah State line (fig. 3H), indicate that monthly discharges for water year 1987 were greater than the long-term means through May but then declined to less than the long-term means. The graphs for gaging stations 09172500, San Miguel River near Placerville (fig. 31); and 09361500, Animas River at Durango (fig. 3L), indicate that monthly discharges for water year 1987 were greater than the long-term means throughout most of the water year. The graphs for gaging stations 09251000, Yampa River near Maybell (fig. 3J); and 09304500, White River near Meeker (fig. indicate that monthly discharges for water year 1987 was greater than the long-term means through April but then declined to less than the long-term means. mean discharge at gaging stations 09163500, Colorado River near Colorado-Utah State line; 09172500, San Miguel River near Placerville; and 09361500, Animas River at Durango, has been greater than average for 6 consecutive years. The annual mean discharge at gaging station 09114500, Gunnison River near Gunnison, has been greater than average for 5 consecutive years.

Peak discharges during water year 1987 and for the period of record for selected gaging stations are shown in table 2. The peak discharge at most of the selected gaging stations was less than the long-term median value and indicates the generally less than average runoff in the northern part of the area. No gaging station had a peak discharge greater than the 75th-percentile value. Peak discharges at gaging stations 09034500, Colorado River at Hot Sulphur Springs; 09070000, Eagle River below Gypsum; 09070500, Colorado River near Dotsero; 09085000, Roaring Fork River at Glenwood Springs; 09085100, Colorado River below Glenwood Springs; 09095500, Colorado River near Cameo, 09239500, Yampa River at Steamboat Springs; 09251000 Yampa River at Maybell; and 09304500, White River near Meeker, were less than their 25th-percentile values, but were substantially greater than their record minimums.

Chemical Quality of Streamflow

To determine whether significant changes are occurring in the chemical quality of streamflow in Colorado, an analysis was made of specific conductance measured either approximately weekly or approximately monthly at gaging stations on five representative streams. Each gaging station either is the most downstream station on that stream or is representative of a major part of the drainage area of that stream. A comparison of the range and the distribution of the specific conductance for water year 1987 to long-term values for each selected gaging station is shown in figure 4.

Specific conductance can be used to estimate the dissolved-solids concentration in water because specific conductance is directly proportional to the concentrations and types of ions in water. To determine whether significant differences in values of specific conductance for water year 1987 and values for the period of record used for comparison, a statistical technique called the t-test was used.

Table 2.--Peak discharges for water year 1987 and for the period of record at selected gaging stations

 $[\mathrm{mi}^2, \mathrm{square} \ \mathrm{miles}; \ \mathrm{ft}^3/\mathrm{s}, \ \mathrm{cubic} \ \mathrm{feet} \ \mathrm{per} \ \mathrm{second}]$

				Water	vear 1987	Period	of record	
	Gaging station	Drainage	Period of	1	Peak	1	Peak	Remarks on
		area	record	0	discharge	•	discharge	1987 реак
	identification	(mi ²)	(water years)	Date	(ft ³ /s)	Date	(ft ³ /s)	discharge
09034500	Colorado River at Hot Sulobur Sorioss	825	1905-86	6/10	983	6/15/21	10,300	Less than 25th percentile
00001060	Eagle River below	944	1947-86	8/9	2,850	5/25/84	7,020	Less than 25th
09070200	Colorado River near Dotsero	4,394	1941-86	5/17	5,840	5/25/84	22,200	Less than 25th percentile
09082000	Roaring Fork River at Glenwood Springs	1,451	1906-9, 1911-86	6/9	6,040	7/1/57	19,000	Less than 25th percentile
09085100	Colorado River below Glenwood Springs	6,013	1967-86	6/9	11,100	5/25/84	31,500	Less than 25th percentile
09095500	Colorado River near Cameo	8,050	1934-86	5/17	13,100	5/26/84	39,300	Less than 25th percentile
09114500	Gunnison River near	1,012	1911-27, 1945-86	6/9	3,380	6/13/18	11,400	Less than median
09132500	North Fork Gunnison River near Somerset	526	1934-86	4/28	2,820	5/24/84	9,220	Less than median
09149500	Uncompangre River at Delta	1,129	1903-31, 1939-86	4/18	1,760	5/15/84	5,800	Greater than median
09152500	Gunnison River near Grand Junction	7,928	1897-99, 1902-6, 1917-86	5/2	9,360	5/23/20	35,700	Less than median
09163500	Colorado River near Colorado-Utah State line	17,843	1951-86	5/18	22,500	5/27/84	69,800	Less than median
09166500	Dolores River at Dolores	504	1896~1903, 1911~12, 1922~86	5/18	3,880	10/5/11	10,000	Greater than median
09171100	Dolores River near Bedrock	2,145	1972-86	4/18	5,040	4/30/73	9,500	Less than median
09239500	Vampa River at Steamboat Springs	604	1904-6, 1910-86	5/16	2,230	6/14/21	6,820	Less than 25th percentile
09251000		3,410	1904-5, 1916-86	5/6	6,140	5/17/84	25,100	Less than 25th percentile (4th lowest)
09304500	White River near Meeker	755	1901-5,	5/17	2,160	5/25/84	6,950	Less than 25th
09346400	San Juan River near Carragas	1,230	1962-86	11/2	5,650	0//9/9	9,730	Greater than median
09361500	Animas River at Durango	692	1912-86	2/9	5,530	10/5/11	25,000	Greater than median

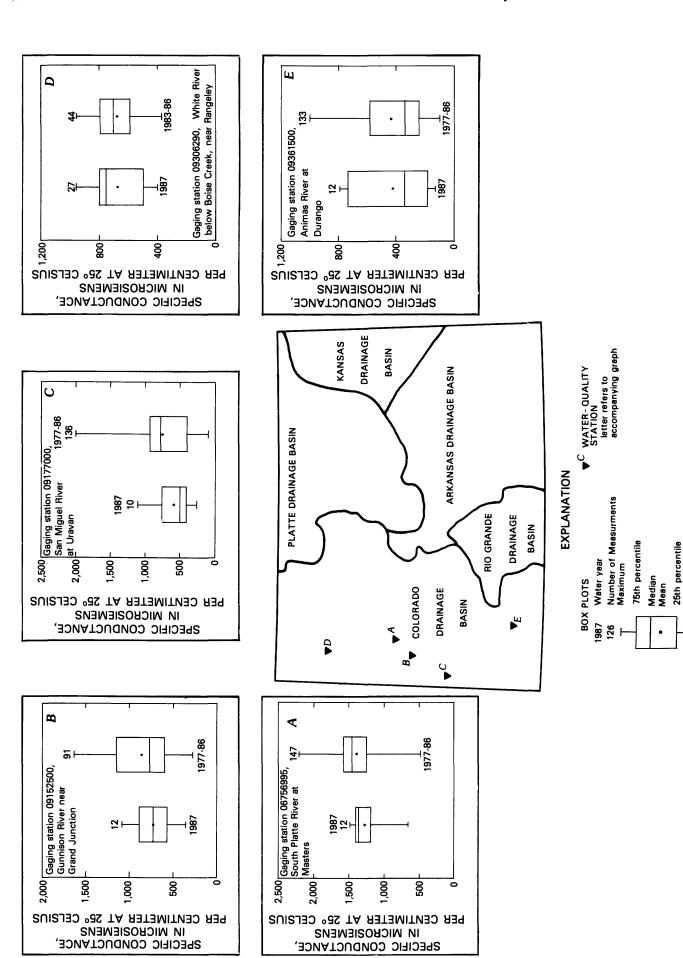


Figure 4.--Comparison of range and distribution of specific conductance measured during water year 1987 to long-term values.

Minimum

The t-test technique requires proving or disproving a hypothesis that the mean specific conductance for water year 1987 was equal to the mean for the period of record. The procedure for testing the hypothesis requires computing a t statistic and comparing it to a value obtained from a table of "Student's" t values (Box, 1978). If the absolute value of the computed t value (t_C) is less than the tabular t value (t_{tab}), the hypothesis that the means are equal is proven. If the absolute value of t is greater than t_{tab}, the hypothesis is disproven, and the means are not equal. For specific conductance, a rejection of the hypotheses indicates a difference in water quality at a particular gaging station for water year 1987 compared to the period of record. A 95-percent level of significance ($\alpha = 0.05$) was used for each t-test, and the data were assumed to be distributed normally.

Results of the the t-tests for the five stations are listed in table 3. For four of the gaging stations, 09152500, Gunnison River near Grand Junction; 09177000, San Miguel River at Uravan; 09306290, White River below Boise Creek, near Rangely; and 09361500, Animas River at Durango, comparisons of mean specific conductance for water year 1987 to that for the period of record indicate that the means of specific conductance are not different statistically.

The mean specific conductance for water year 1987 for gaging station 09095500, Colorado River near Cameo, was substantially greater than the mean specific conductance for the 10-year period of record 1977-86 (table 3). Published records of specific conductance and coincident water discharge for the gaging station indicate an inverse relation for the two parameters. For water year 1987, mean discharge at the gaging station was less than the 10-year mean discharge by 20 percent; therefore, the mean specific conductance for water year 1987 should be substantially greater than the mean specific conductance for the period of record.

Table 3.--Results of t-tests comparing mean specific conductance of discharge for water year 1987 with mean for

the period of record at selected gaging stations [Specific conductance, in microsiemens per centimeter at 25 degrees Celsius; R, rejected; A, accepted]	che perio	d of riens per	the period of record at selected gaging stations microsiemens per centimeter at 25 degrees Celsiu	selected er at 25	gaging degre	stations es Celsius;	R, rejec	ted; A, a	ccepted]	
			Speci	Specific conductance	luctance			t-test	ı,	
	Wate	Water year 1987	1987	Per	Period of record	record	Period			
Gaging station	Number		Standard	Number		Standard	nsed	ر 1	′4	Hypoth-
identification	of	Mean	devia-	of	Mean	devia-	(water	CaD	ن	esis
	values		tion	values		tion	year)			
U9U955UU COLOrado River										
near Cameo	51	894	229	199	785	306	1977-86 + 1.99	+ 1.99	2.80	œ
09152500 Gunnison River								1		
near Grand Junction	12	734	205	91	872	358	1977 - 86 + 2.08	+ 2.08	-1.97	Ą
09177000 San Miguel River								ì		
at Uravan	10	592	252	136	740	352	1977-86 + 2.18	+ 2.18	-1.74	Ą
09306290 White River below Boise								1		
Creek, near Rangely	27	9/9	162	44	677	164	1983-86 + 2.00	+ 2.00	02	Æ
09361500 Animas River								ı		
at Durango	12	421	259	133	422	197	1977-86 ± 2.18	± 2.18	01	4

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 57 small sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

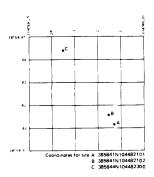
National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

EXPLANATION OF THE RECORDS

The surface-water records published in this report are for the 1987 water year that began on October 1, 1986, and ended September 30, 1987. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface water. The locations of the stations where the data were collected are shown in figures 1, and 2. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for miscellaneous sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for surface-water stations where only infrequent measurements are made.


Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downtream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 09010500, which appears just to the left of the station name, includes the two-digit Part number "09" plus the six-digit downstream-order number "010500." The Part number designates the major river basin; for example, Part "09" is the Colorado River basin.

Latitude-Longitude System

The identification numbers for wells, springs, and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote the degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

System for numbering wells, springs, and miscellaneous sites (township and range).

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles. Records of miscellaneous discharge measurements or of measurements from special studies may be considered as partial records, but they are presented separately in this report. Locations of crest-stage partial record stations for which data are given in this report are shown in figure 2.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog records that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outlfow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections. "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR. -- Extremes given here are similar to those for the period of record, except the peak discharge listed may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

 ${\tt REVISIONS.--If}\ a\ critical\ error\ in\ published\ records\ is\ discovered,\ a\ revision\ is\ included\ in\ the\ first\ report\ published\ following\ discovery\ of\ the\ error.$

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acrefeet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are ommitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

If applicable, data collected at partial-record stations follow the information for continuous-record sites. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true value; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for daily values less than 1 ft 3 /s; to the nearest tenth between 1.0 and 10 ft 3 /s; to whole numbers between 10 and 1,000 ft 3 /s; and to 3 significant figures for more than 1,000 ft 3 /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records at specific sites can be obtained from that office upon request.

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Colorado District office. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period oaf years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 1.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs signficantly from that at the nearby surface-water station, the continuing water-quality record is published with its own number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on pages 30 and 31 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. District Office whose address is given on the back of the title page of this report.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken as about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depthintegrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally, all other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., or Doraville, Ga. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1. A3. and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD. -- This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION. -- Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

 ${\tt REMARKS.--Remarks}$ provide added information pertinent to the collection, analysis, or computation of the records.

 ${\tt COOPERATION.--Records~provided~by~a~cooperating~organization~or~obtained~for~the~Geological~Survey~by~a~cooperating~organization~are~identified~here.}$

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record statiopns and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remarks codes may appear with the water-quality data in this report:

PRINTED OUTPUT REMARK

- E Estimated value
- > Actual value is known to be greater than the value shown
- $\,\,^{<}$ Actual value is known to be less than the value shown
- K Based on non-ideal colony count
- $\ensuremath{\mathtt{M}}$ Presence of material verified but not quantified

ACCESS TO WATSTORE DATA

The National WATer Data $\underline{ST0}$ rage and REtrieval System (WATSTORE) was established for handling water data collected through the activities \widehat{of} the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's District offices (see address given on the back of the title page).

General inquires about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

 $\frac{\text{Acre-foot}}{\text{foot}}$ (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

 $\underline{\texttt{Algae}}$ are mostly aquatic single-celled, colonial, or multicelled plants, containing chlorophyll and $\underline{\texttt{lacking}}$ roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C \pm 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 $^{\circ}$ C \pm 0.2 $^{\circ}$ C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organism which produce red or pink colonies with 48 hours at 35°C \pm 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

 $\underline{\text{Biomass}}$ is the amount of living matter present at any given time, expressed as the mass per unit $\overline{\text{area}}$ or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500\,^{\circ}\text{C}$ for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

Dry mass refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common green pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

 $\underline{\text{Contents}}$ is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at a gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic foot per second (ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Cubic feet per second per square mile $(ft^3/s)/mi^2$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific time.

Instantaneous discharge is the discharge at a particular instant of time.

 $\underline{\text{Dissolved}}$ refers to that material in a representative water sample which passes through a 0.45 $\underline{\text{um}}$ membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage" although gage height is more appropriate when used with a reading on a gage.

 $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO3).

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each groundwater observation well.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

 $\underline{\text{Micrograms per gram}}$ (ug/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

 $\frac{\text{National Trends Network}}{\text{Intermode Network}} \text{ (NTN)} \text{ is a 150-station network for sampling atmospheric deposition in the United States.} \text{ The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which incudes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).}$

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per unit area habitat, usually square meter (m^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter or particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Unit Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay Silt Sand Gravel	0.00024 - 0.004 .004062 .062 - 2.0	Sedimentation Sedimentation Sedimentation or sieve Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{-12} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\underline{\text{Plankton}}$ is a community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

 $\underline{\text{Diatoms}}$ are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton is dominated by small crustaceans and rotifers.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time mg $C/(m^2.time)$ for periphyton and macrophytes and mg $C/(m^3.time)$ for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time $mgO/(m^2.time)$ for periphyton and macrophytes and $mgO/(m^3.time)$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

 $\frac{\text{Radiochemical program}}{\text{collected to be analyzed for radioisotopes.}} \text{ sampled water-quality stations where samples are collected to be analyzed for radioisotopes.} \text{ The streams that are sampled represent major drainage basins in the conterminous United States.}$

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

 $\underline{\text{Runoff in inches}}$ (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

 $\underline{\text{Bed load}}$ is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

 $\underline{\text{Bed load discharge}}$ (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

 $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft 3 /s) x 0.0027.

 $\underline{\textbf{Suspended-sediment load}} \ \ \text{is a general term that refers to material in suspension.} \ \ \text{It is not synonymous with either discharge or concentration.}$

 $\frac{\text{Total sediment discharge}}{\text{discharge.}} \text{ (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.}$

Total-sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\frac{7-\text{day 10-year low flow}}{10-\text{year low flow}}$ (7 Q 10) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values 10f the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

 $\underline{Stage-discharge\ relation}$ is the relation between gage height (stage) and the volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is they physical surface upon which an organism lives.

 ${
m Natural\ substrate}$ refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton.

 $\underline{Surface\ area}$ of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analytical details.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituents.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

 Kingdom
 Animal

 Phylum
 Arthropoda

 Class
 Insecta

 Order
 Ephemeroptera

 Family
 Ephemeridae

 Genus
 Hexagenia

 Species
 Hexagenia

Thermograph is an instrument that continuously records variation of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical $\delta \mathbf{x}$ chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

 $\underline{\text{Total discharge}} \text{ is the total quantity of any individual constituent, as measured by dry mass or } \\ \text{volume, that passes through a stream cross-section per unit of time. This term needs to be } \\ \text{qualifed, such as "total sediment discharge," "total chloride discharge," } \\ \text{and so on.}$

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses, because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

<u>Water year</u> in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1980, is called the "1980 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\frac{\text{WSP}}{\text{Is}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

SELECTED REFERENCES

- The following publications are available for background information on the methods for collecting, analyzing, and evaluating the chemical and physical properties of surface waters:
- American Public Health Association, and others, 1980, Standard methods for the examination of water and waste water, 13th ed: American Public Health Assoc., New York, 1134 p.
- Box, George E. P., Hunter, William G., and Hunter, J. Stuart, 1978, Statistics for Experimenters: New York, John Wiley, and Sons, 653 p.
- Cain, D. L., 1984, Quality of the Arkansas River and irrigation-return flows in the lower Arkansas River Valley of Colorado: Water-Resources Investigation Report 84-4273, 91 p.
- Carter, R. W., and Davidian, Jacob, 1968, General procedures for gaging streams: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6, 13 p.
- Clarke, F. W., 1924, The composition of the river and lake waters of the United States: U.S. Geological Survey Professional Paper 135, 199 p.
- Colby, B. R., 1963, Fluvial sediments--a summary of source, transportation, deposition, and measurements of sediment discharge: U.S. Geological Survey Bulletin 1181-A, 47 p.
- Colby, B. R., and Hembree, C. H., 1955, Computations of total sediment discharge, Niobrara River near Cody, Nebraska: U.S. Geological Survey Water-Supply Paper 1357, 187 p.
- Colby, B. R., and Hubbell, D. W., 1961, Simplified methods for computing total sediment discharge with the modified Einstein procedure: U.S. Geological Survey Water-Supply Paper 1593, 17 p.
- Collins, W. D., and Howard, C. S., 1928, Quality of water of Colorado River in 1925-26: U.S. Geological Survey Water-Supply Paper 596-B, p. 33-43.
- Corbett, D. M., and others, 1942, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.
- Crouch, T. M., and others, 1984, Water-Resources Appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado: Water-Resources Investigation Report 82-4114, 123p.
- Fishman, M. J., and Bradford, W. L., 1982, A supplement to methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Laboratory Analysis, Chapter A1, open-file report 82-272, 136 p.
- Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p.
- Gregg, D. O., and others, 1961, Public water supplies of Colorado (1959-60): Fort Collins, Colorado State University Agricultural Experiment Station, General Service 757, 128 p.
- Guy, H. P., 1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigation, Book 3, Chapter C1, 55 p.
- _____1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 57 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Hawley, Gessner G., 1981, The condensed chemical dictionary; Van Nostrand-Reinhold Publication Corporation, New York, 10th edition, 1135 p.
- Hem, John D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Howard, C. W., 1955, Quality of water of the Colorado River, 1925-40: U.S. Geological Survey openfile report, 103 p.
- Iorns, W. V., and others, 1964, Water Resources of the Upper Colorado River basin--basic data: U.S. Geological Survey Professional Paper 442, 1,036 p.
- _____1965, Water Resources of the Upper Colorado River basin--technical report: U.S. Geological Survey Professional Paper 441, 370 p.
- Lane, E. W., and others, 1947, Reports of Subcommittee on terminology: American Geophysical Union Transaction, v. 28, p. 937.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Lohman, S. W., and others, 1972, Definitions of selected ground-water terms--revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, p. 2.
- McGuinness, C. L., 1963, The role of ground water in the national water situation: U.S. Geological Survey Water-Supply Paper 1800, 1121 p.
- Meinzer, O. E., 1923, The occurrence of ground water in the United States: U.S. Geological Survey Water-Supply Paper 489, 321 p.
- ____1923, Outline of ground-water hydrology, with definitions: U.S. Geological Survey Water-Supply Paper 494, 71 p.
- Moran, R. E., and Wentz, D. A., 1974, Effects of metal-mine drainage on water quality in selected areas of Colorado, 2 of 3, 1972-73: Colorado Water Conservation Board Circular 25, 250 p.
- Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.

- Ritter, J. R., and Helley, E. J., 1969, Optical method for determining particle sizes of coarse sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C3, 33 p.
- Slack, K. V., and others, 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 165 p.
- Spahr, N. E., Blakely, S. R., and Hammond, S. E., 1985, Selected Hydrologic Data for the South Platte River through Denver, Colorado: U. S. Geological Survey open file report 84-703, 225 p.
- Stabler, Herman, 1911, Some stream waters of the Western United States: U.S. Geological Survey Water-Supply Paper 274, 188 p.
- U.S. Inter-Agency Committee on Water Resources, A study of methods used in measurements and analysis of sediment loads in streams:
- Report 11, 1957, The development and calibration of visual accumulation tube: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., 109 p.
- Report 12, 1957, Some fundamentals of particle-size analysis: Washington, D. C., U.S. Government Printing Office, 55 p.
- Report AA, 1959, Federal Inter-Agency sedimentation instruments and reports: St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minn., 41 p.
- Report 13, 1961, The single-stage sampler for suspended sediment: Washington, D. C., U.S. Government Printing Office, 105 p.
- Report 14, 1963, Determinations of fluvial sediment discharge: Washington, D. C., U.S. Government Printing Office 151 p.

The U.S. Geological Survey publishes a series of manuals describing procedures for

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Occuments, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." Investigations.

- Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. 1-02.
- Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter Dl. 1974. 116 pages. 2-D1.
- Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages. 2-E1.
- General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages. 3-A1.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. $1967.\ 12$ pages.
- Measurement of peak discharge at culverts by indirect methods, by $G.\ L.\ Bodhaine:\ USGS-TWRI Book 3, Chapter A3. 1968. 60 pages.$
- Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages. 3-A4.
- Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. 3-A5.
- General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. 3-A6.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages. 3-A7-
- Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages. 3-A8.
- Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 3-A9. 44 pages.
- Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Alu. 3-A10. 1984. 59 pages.
- Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. $1969.\ 22$ pages. 3-A11.
- Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983.53 pages. 3-A13.
- Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI 3-A14. Book 3, Chapter A14. 1983. 46 pages.
- Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter Al5. 1984. 48 pages. 3-A15.
- Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages. 3-B1.
- Introduction to ground-water hydraulies, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages. 3-B2.
- Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages. 3-B3.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations. by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 1B pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics. by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter A1. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy. by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water. by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments. by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 19B1. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book B, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters. by G. F. Smoot and C. E. Novak: USGS--TWRI Book B, Chapter B2. 1968. 15 pages.

HYDROLOGIC-DATA STATION RECORDS

COLORADO RIVER MAIN STEM

09010500 COLORADO RIVER BELOW BAKER GULCH, NEAR GRAND LAKE, CO

LOCATION.--Lat 40°19'33", long 105°51'22", in NE4NW4 sec.12, T.4 N., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 500 ft downstream from Baker Gulch, 1.0 mi upstream from Bowen Gulch, and 5.5 mi northwest of town of Grand Lake.

DRAINAGE AREA. -- 53.4 mi2.

PERIOD OF RECORD. -- May 1953 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 8,750 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 7-9, Nov. 29 to Apr. 21. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station by Grand River ditch (see elsewhere in this report). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 34 years, 64.3 ft 3/s; 46,590 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 976 ft³/s, June 30, 1957, gage height, 7.19 ft; maximum gage height, 7.30 ft, June 25, 1971; minimum daily discharge, 3.0 ft³/s, Jan. 13, 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $364 \text{ ft}^3/\text{s}$ at 0100 May 17, gage height, 5.85 ft; minimum daily, $9.0 \text{ ft}^3/\text{s}$, Mar. 1-15.

		DISCHAR	GE, CUBI	C FEET	PER SECON	D, WATER MEAN VAL	YEAR OCTOB JUES	ER 1986	TO SEPTEME	ER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	37 37 45 42 37	26 26 26 26 25	18 18 18 18	14 14 14 14 14	10 10 10 10	9.0 9.0 9.0 9.0	15 15 15 15 15	119 111 88 75 70	129 136 138 150 160	86 64 57 52 48	27 24 21 18 17	13 15 14 13
6 7 8 9 10	36 38 37 38 36	26 26 26 26 27	18 18 18 18	14 14 14 14 14	10 10 10 10	9.0 9.0 9.0 9.0	19 19 19 19 19	78 88 102 116 122	166 186 210 240 238	45 41 40 38 34	16 24 26 18 16	12 12 13 12 12
11 12 13 14 15	33 28 27 29 28	25 26 24 23 23	18 18 18 18 18	13 13 13 13	10 10 10 10 10	9.0 9.0 9.0 9.0	22 22 22 22 22	122 123 136 155 178	211 193 190 181 174	37 72 52 39 34	15 14 14 16 13	12 11 11 12 19
16 17 18 19 20	27 26 26 27 28	23 23 23 21 21	18 18 18 18	12 12 12 12 12	10 10 10 10	10 10 10 10 10	25 30 35 40 50	221 340 276 228 229	160 146 130 121 110	32 37 39 31 28	13 12 12 12 12	20 21 18 16 15
21 22 23 24 25	27 29 30 28 27	21 20 17 19 19	16 16 16 16	11 11 11 11	10 10 10 10	11 11 11 11	55 69 91 104 98	225 209 186 177 167	101 93 87 82 75	26 25 23 22 21	13 15 18 20 18	14 14 13 13
26 27 28 29 30 31	26 27 27 26 27 27	19 18 19 18 18	16 16 16 16 16	10 10 10 10 10	10 10 10	13 13 13 13 13	90 91 99 115 113	157 140 125 120 114 115	71 67 63 73 81	22 21 27 24 32 32	17 15 14 14 12	14 14 13 13
TOTAL MEAN MAX MIN AC-FT	963 31.1 45 26 1910	680 22.7 27 17 1350	536 17.3 18 16 1060	379 12.2 14 10 752	280 10.0 10 10 555	318.0 10.3 13 9.0 631	1385 46.2 115 15 2750	4712 152 340 70 9350	4162 139 240 63 8260	1181 38.1 86 21 2340	507 16.4 27 11 1010	419 14.0 21 11 831

CAL YR 1986 TOTAL 33767.6 MEAN 92.5 MAX 632 MIN 8.0 AC-FT 66980 WTR YR 1987 TOTAL 15522.0 MEAN 42.5 MAX 340 MIN 9.0 AC-FT 30790

GRAND LAKE OUTLET BASIN

09013000 ALVA B. ADAMS TUNNEL AT EAST PORTAL, NEAR ESTES PARK, CO

LOCATION.--Lat 40°19'40", long 105°34'39", in SWANWA sec.9, T.4 N., R.73W., Larimer County, Hydrologic Unit 10190006, on right bank at upstream end of Aspen Creek siphon, 700 ft downstream from east portal, and 4.5 mi southwest of Estes Park.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1946 to current year (monthly discharge only for August and September 1947).

GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 8,250 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1950, water-stage recorder and Parshall flume at different datum. Oct. 1, 1950, to Sept. 30, 1952, water-stage recorder and Cippoletti weir at different datum.

REMARKS.--No estimated daily discharges. Records good. This is a transmountain diversion from Grand Lake and Shadow Mountain Lake for power and irrigation developments in the South Platte River basin as part of the Colorado-Big Thompson project. Diversion point is at west portal near town of Grand Lake, 13.35 mi west of east portal.

COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.

AVERAGE DISCHARGE. -- 41 years, 280 ft 3/s; 202,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 592 ft³/s, June 30, 1962; no flow at times in most years.

		DISCHA	RGE, CUBIC	FEET PE		, WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	198 198 198 198 198	115 117 116 115 117	471 471 470 470 471	502 503 503 500 500	383 384 312 304 305	24 13 13 13 13	390 392 416 456 465	550 552 547 551 549	201 202 312 247 213	299 301 304 304 301	402 404 403 402 396	435 439 441 233 188
6 7 8 9 10	191 73 75 74 83	116 207 195 204 214	498 500 501 502 501	502 502 497 327 364	302 303 303 303 385	130 160 1.2 309 312	544 544 547 546 552	547 547 552 550 551	200 116 98 5.1 98	303 381 391 395 395	345 468 551 550 552	184 186 188 268 303
11 12 13 14 15	269 284 286 283 285	207 205 208 207 206	501 500 500 501 501	383 384 382 384 382	387 387 390 390 388	311 312 271 160 12	551 549 551 551 553	520 499 363 276 400	189 154 130 132 132	421 462 452 390 344	551 515 474 460 459	.00 .00 .00
16 17 18 19 20	229 283 282 285 282	208 340 344 346 349	501 501 501 501 499	389 390 491 383 389	390 390 392 393 396	311 320 305 306 308	551 551 553 551 553	453 300 201 434 453	203 207 246 257 256	344 389 404 438 450	459 457 450 438 430	.00 .00 .00
21 22 23 24 25	283 282 336 369 389	352 350 341 451 470	500 500 499 500 500	379 379 384 423 417	390 387 387 391 213	158 12 312 208 204	555 553 555 483 553	360 386 256 251 251	260 257 303 305 306	453 450 438 432 434	415 405 405 414 442	.00 .00 .00
26 27 28 29 30 31	393 395 396 160 132 117	481 548 545 470 468	502 502 501 500 502 502	378 377 380 380 384 384	158 158 8.8 	385 392 393 393 392 391	553 553 549 551 552	251 251 251 220 201 201	280 300 301 303 300	434 434 423 372 371 375	446 444 435 434 435 433	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	7506 242 396 73 14890	8612 287 548 115 17080	15369 496 502 470 30480	12922 417 503 327 25630	9279.8 331 396 8.8 18410	6844.2 221 393 1.2 13580	15823 527 555 390 31380	12274 396 552 201 24350	6513.1 217 312 5.1 12920	12084 390 462 299 23970	13874 448 552 345 27520	3018.00 101 441 .00 5990

CAL YR 1986 TOTAL 143295.00 MEAN 393 MAX 552 MIN 35 AC-FT 284200 WTR YR 1987 TOTAL 124119.08 MEAN 340 MAX 555 MIN .00 AC-FT 246200

GRAND LAKE OUTLET BASIN

09013000 ALVA B. ADAMS TUNNEL AT EAST PORTAL, NEAR ESTES PARK, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- September 1970 to current year.

REMARKS.--Field data collected prior to 1974 water year are available in district office.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
0CT 28	1100	542	<50	7.1	7.5	9.2	13	4.0	0.80
NOV 18	1120	536	<50	7.6	5.0	8.8	15	4.7	0.90
DEC 30	0800	502	55	7.7	3.5	9.0	20	6.2	1.2
JAN 21	1050	502	50	7.7	1.0	9.6	21	6.5	1.2
FEB 26	1215	396	53	8.2	3.0	8.7	21	6.6	1.2
MAR 19	1200	455	64	6.8	6.0	9.6	22	6.6	1.3
APR 16	1300	548	48	7.6	7.0	7.6	20	6.0	1.2
MAY 14	1355	398	40	7.3	9.0	8.5	15	4.8	0.82
JUN 11	1240	244	25	7.7	13.0	8.4	10	3.1	0.62
JUL 16	1215	619	33	7.6	18.0	7.6	13	3.8	0.74
AUG 20	1230	441	45	8.0	16.0	7.7	18	5.4	1.0
	1250	,	,,	0.0	,0.0	(- /		341	110
	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	(MG/L	
	OCT 28	1.4	0.2	0.70	14	4.3	0.40	0.10	
	NOV 18	1.5	0.2	0.80	16	5.8	0.40	0.10	
	DEC 30	1.8	0.2	0.80	21	5.0	0.20	0.10	
	JAN 21	1.9	0.2	0.60	22	5.6	0.30	0.10	
	FEB 26	1.7	0.2	0.80	23	0.3	0.50	0.20	
	MAR 19	1.9	0.2	0.70	23	4.4	0.50	0.10	
	APR 16	1.8	0.2	0.70	21	4.3	<0.10	0.10	
	MAY 14	1.6	0.2	0.60	18	4.4	0.30	0.10	
	JUN 11	1.0	0.1	0.50	11	7.7	0.30	0.10	
	JՄL 16	1.3	0.2	0.60	14	6.4	0.20	0.10	
	AUG 20	1.7	0.2	0.60	22	4.2	0.30	0.20	

09013000 ALVA B ADAMS TUNNEL AT EAST PORTAL, NEAR ESTES PARK, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAT	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)
OCT 28	3.8	24	35	0.03	<0.10	<0.10	<0.2	<0.01	0.01
NOV 18	4.3	28	41	0.04	<0.10	<0.10	0.5	0.02	<0.01
DE C 30	4.1	32	43	0.04	<0.10	<0.10	0.5	0.01	0.01
JAN 21	4.1	34	45	0.05	<0.10	<0.10	0.4	0.01	0.01
FEB 26	4.3	29	31	0.04	<0.10	<0.10		0.01	<0.01
MAR 19	4.4	34	41	0.05	<0.10	<0.10	0.5	0.02	0.01
APR 16	4.6	31	46	0.04	<0.10	<0.10	0.7	0.02	0.01
MAY 14	4.1	28	30	0.04	<0.10	<0.10	0.8	0.01	0.01
JUN 11	3.6	24	16	0.03	<0.10	<0.10	0.6	0.01	0.02
JUL 16	3.1	25	41	0.03	<0.10	<0.10	1.7	0.02	<0.01
AUG 20	3.2	30	36	0.04	<0.10	<0.10	0.3	0.01	0.01
	DATE	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	ост 28	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	
	OCT 28 NOV 18	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) 44	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21 FEB 26	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) 44 57	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21 FEB 26 MAR 19	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) 44 57 42	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN) 6 8	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21 FEB 26 MAR 19 APR 16	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) 44 57 42 34 33	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN) 6 8 4 4	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21 FEB 26 MAR 19 APR 16 MAY 14	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) 44 57 42 34 33	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN) 6 8 4 4	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21 FEB 26 MAR 19 APR 16 MAY 14 JUN 11	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) 44 57 42 34 33 20	DIS- SOLVED (UG/L AS PB) <5 <5 <5	NESE, DIS- SOLVED (UG/L AS MN) 6 8 4 4 5 2	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21 FEB 26 MAR 19 APR 16 MAY 14 JUN 11 JUL 16	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) 44 57 42 34 33 20 34 83	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN) 6 8 4 4 5 2 3	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	
	OCT 28 NOV 18 DEC 30 JAN 21 FEB 26 MAR 19 APR 16 MAY 14 JUN 11 JUL	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU) 1 1 1 <1	DIS- SOLVED (UG/L AS FE) 44 57 42 34 33 20 34 83	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN) 6 8 4 4 5 2 3 1 <1	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)	

COLORADO RIVER MAIN STEM

09014500 SHADOW MOUNTAIN LAKE NEAR GRAND LAKE, CO

LOCATION.--Lat 40°12'26", long 105°50'27", in SWANWA sec.19, T.3 N., R.75 W., Grand County, Hydrologic Unit 14010001, in gate house on left side of outlet gates near center of Shadow Mountain Dam on Colorado River, 1.0 mi upstream from Pole Creek and 3.2 mi south of town of Grand Lake.

DRAINAGE AREA. -- 185 mi²

PERIOD OF RECORD. -- April 1947 to current year. Prior to October 1960, published as Shadow Mountain Reservoir near Grand Lake.

REVISED RECORDS.--WSP 1149: 1947-48. WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. Supplementary water-stage recorder on Grand Lake, 800 ft north of outlet gates and 2.9 mi north of Shadow Mountain Dam.

REMARKS.--Lake is formed by earth and rockfill dam and dikes. Storage began in April 1947. Capacity, 17,860 acre-ft, including usable capacity of Grand Lake above elevation 8,365 ft, between elevation 8,347 ft, sill of outlet gate, and 8,367 ft, maximum water surface. Dead storage in Shadow Mountain Lake, 506 acre-ft. Dead storage in Grand Lake not determined. Shadow Mountain Lake is used for stabilization of water level in Grand Lake. Usable capacity for diversion through Alva B. Adams tunnel, 3,660 acre-ft between elevations 8,365 ft, crest of tunnel inlet and 8,367 ft, maximum water surface. Figures given represent usable contents as determined from summation of individual contents of Grand Lake and Shadow Mountain Lake. Transmountain diversion from Colorado River basin, including water pumped from Lake Granby, is effected through Grand Lake and Alva B. Adams tunnel, for power and irrigation in South Platte River basin.

COOPERATION .-- Records provided by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 17,920 acre-ft, May 22, 1955, elevation, 8,367.03 ft; minimum since appreciable storage was first attained, 2,630 acre-ft, May 14, 1948.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 17,590 acre-ft, Apr. 11, elevation, 8,366.89 ft; minimum, 16,720 acre-ft, May 17, elevation, 8,366.35 ft.

MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

										Da	te															Elevation	Contents (acre-feet	Change in contents) (acre-feet)
Sept. Oct. Nov. Dec.	30. 31. 30. 31.	:	:	:	:	:		•		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	8,366.71 8,366.78 8,366.69 8,366.70		- +80 -180 +20
CAL	ΥR	19	86																									-10
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31. 28. 31. 30. 31. 30.			:		:	• • • • • • • • • • • • • • • • • • • •			•	•	:				:	: : : : : : : : : : : : : : : : : : : :			•					•	8,366.68 8,366.77 8,366.74 8,366.74 8,366.74 8,366.74 8,366.76 8,366.76	17,260 17,430 17,260 17,370 17,240 17,360 17,480 17,390 17,260	-30 +170 -170 +110 -130 +120 +120 -90 -130
WTR	Ϋ́R	19	87																									-110

COLORADO RIVER BASIN

09018300 GRANBY PUMP CANAL NEAR GRAND LAKE, CO

LOCATION.--Lat 40°12'25", long 105°50'56", in SWANEA sec.24, T. 3 N., R.76 W., Grand County, Hydrologic Unit 14010001, at road crossing at south end of Shadow Mountain Lake, 4 mi southwest of Grand Lake, and 13.5 mi northeast of Granby.

PERIOD OF RECORD. -- September 1970 to September 1975, March 1978 to current year.

REMARKS .-- No flow at time of visit for Oct., Nov., Feb., June, and Sept. of 1987 water year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
	DEC 12	0700	570	53	7.6	1.0	9.2	K 1	K<1
	28	0710	303	52	7.3	3.5	9.0	K4	K<1
	1AR 27	0635	666	53	7.6	3.0	7.0	K 2	K<1
	APR 23	0720	705	53	7.0	4.0	8.7	К7	K < 1
	JUL 15	0730	745	47	7.3	6.0	5.1	K<1	K<1
P	13	0725	388	51	7.2	6.5	4.4	49	K10
	DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, DIS- SOLVED (UG/L AS CU)	LEAD, DIS- SOLVED (UG/L AS PB)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, DIS- SOLVED (UG/L AS ZN)
I	DATE DEC 12	GEN, NO2+NO3 TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHORUS, TOTAL (MG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L
ن	DEC 12 JAN 28	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)
	DEC 12 JAN 28 4AR 27	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN)
) P	DEC 12 JAN 28 4AR 27 1PR	GEN, NO2+NO3 TOTAL (MG/L AS N) <0.10	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P) 0.01	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN) <10
P P	DEC 12 JAN 28 4AR 27 APR 23 JUL 15	GEN, NO2+NO3 TOTAL (MG/L AS N) <0.10 <0.10	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.30 0.40 0.60	PHORUS, TOTAL (MG/L AS P) 0.01 0.01	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS ZN) <10 <10
P P	DEC 12 JAN 28 4AR 27 APR 23	GEN, NO2+NO3 TOTAL (MG/L AS N) <0.10 <0.10 <0.10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60	PHORUS, TOTAL (MG/L AS P) 0.01 0.01 0.02	DIS- SOLVED (UG/L AS CD)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS NI)	DIS 2 SOLVED (UG/L AS ZN) <10 <10 <10 <10 <10

K BASED ON NON-IDEAL COLONY COUNT.

COLORADO RIVER MAIN STEM

09018500 LAKE GRANBY NEAR GRANBY, CO

LOCATION.--Lat 40°10'55", long 105°52'14", in NW4NE4 sec.35, T.3 N., R.76 W., Grand County, Hydrologic Unit 14010001, in Granby pumping plant at north shore of lake, 2.5 mi north of Granby Dam on Colorado River and 7.5 mi northeast of Granby.

DRAINAGE AREA . - - 312 mi2.

RESERVOIR ELEVATIONS AND CONTENTS RECORDS

PERIOD OF RECORD.--October 1949 to current year. Prior to October 1955, published as Granby Reservoir near Granby.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. Prior to Apr. 9, 1951, nonrecording gage at dam at present datum.

REMARKS.--Lake is formed by earthfill dam and dikes. Regulation began Sept. 13, 1949, and usable storage began June 14, 1950, while dam was under construction. Usable capacity, 465,600 acre-ft, between elevations 8,186.00 ft, trash rack sill at outlet, and 8,280.00 ft, top of radial spillway gates. Dead storage, 74,190 acre-ft. Figures given represent usable contents. Lake is used to store water for pumping to Shadow Mountain Lake for transmountain diversion through Alva B. Adams tunnel for, power and irrigation in South Platte River basin.

COOPERATION .-- Records provided by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 465,900 acre-ft, July 13, 1962, elevation, 8,280.05 ft; minimum since appreciable storage was attained, 13,070 acre-ft, Apr. 16, 1978, elevation, 8,190.93 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 451,100 acre-ft, Oct. 10, elevation, 8,278.00 ft; minimum, 334,600 acre-ft, Apr. 26, elevation, 8,260.81 ft.

MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation (feet)	Contents Change in contents (acre-feet) (acre-feet)
Sept. 30		449,300 443,600 -5,700 433,100 -10,500 403,800 -29,300
CAL YR 1986		- +30,600
Jan. 31. Feb. 28. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30.	8,265.11 8,263.33 8,261.33 8,267.51 8,271.86 8,269.35 8,269.35	379,700 -24,100 362,300 -17,400 350,800 -11,500 337,900 -12,900 378,300 +40,400 407,900 +29,600 390,700 -17,200 366,600 -24,100 363,500 -3,100
WTR YR 1987	-	85,800

COLORADO RIVER BASIN

09018500 LAKE GRANBY NEAR GRANBY, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--November 1973 to June 1975, June 1979, June 1980, July 1981, June 1982, July 1983, June 1984, July 1985, July 1986, and July 1987.

REMARKS.--A complete taxonomic identification with cell counts for phytoplankton available in district office.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DATE	TIME	SAMP- LING DEPTH (FEET)	TEMPEI ATURE WATEI ((DEG (DIS SOLV	ED				
		166 166	0915 0916 0917 0918 0919 0920 0921 0923 0924 0925 0928 0927 0928 0931 0933 0933 0933 0933 0933	0.1 5.0 10.0 15.0 20.0 25.0 30.0 40.0 50.0 75.0 80.0 90.0 110 120 125 130 140 150 160	166 165 155 14 14 19 66 55 55 55 55 55 55 55 55	05055505055555000000	56532205867766776665555				
DATE	TIME	SAM- PLING DEPTH (FEET)	TRANS- PAR- ENCY (SECCHI DISK) (IN)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DIS- SOLVE	, IMN (COL D PE	RM, FO CAL, FE MED. O. LS. UN LR (CO	DRM, ECAL, 7 4-MF DLS./	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
JUL 16 16	0945 1025	0.1 170	139	50 52	7.8	16.0 5.0	7.5 4.5	K 1		K<1	<0.10 <0.10
DATE	NITE GEN, A MONIA ORGAN TOTA (MG/ AS N	AM- A + PHOS IIC PHORI L TOT. 'L (MG	US, DI: AL SOL /L (UG	S- DIS VED SOL /L (UG	- DI VED SOL	S- DI VED SO /L (U	S- 1 LVED SO G/L (1	INC, DIS- DLVED JG/L S ZN)	ALGAL GROWTH POTEN- TIAL, BOTTLE TEST (MG/L)	PHY PLA TO TOT (CE PER	NK- N, AL LLS
JUL 16 16	0.	.50 0. .80 0.		2 1	2 2	<5 <5	<1 <1	10 <10	52 	1810	0

K BASED ON NON-IDEAL COLONY COUNT.

COLORADO RIVER MAIN STEM

09019500 COLORADO RIVER NEAR GRANBY, CO

LOCATION.--Lat 40°07'15", long 105°54'00", in SWANWA sec.22, T.2 N., R.76 W., Grand County, Hydrologic Unit 14010001, on right bank 0.3 mi upstream from bridge on U.S. Highway 34, 1.3 mi upstream from Willow Creek, and 3.2 mi northeast of Granby.

DRAINAGE AREA . - - 323 mi2.

PERIOD OF RECORD.--October 1907 to September 1911 (published as Grand River near Granby), October 1933 to September 1953. May 1961 to current year (irrigation season only). Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,960 ft above National Geodetic Vertical Datum of 1929, from topographic map. June 10, 1908, to Sept. 30, 1911, and May 12 to June 10, 1934, nonrecording gage, at site 300 ft upstream at different datums. June 11, 1934, to Sept. 30, 1953, water-stage recorder at present site and datum.

REMARKS.--No estimated daily discharges: Records good. Flow regulated by Lake Granby (station 09018500) since Sept. 13, 1949. Several diversions for irrigation of hay meadows upstream from station. Transmountain diversions upstream from station by Eureka and Grand River ditches and Alva B. Adams tunnel (see elsewhere in this report). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF SEASONAL RECORD.--Maximum discharge, 2,510 ft³/s, July 11, 1983, gage height, 5.39 ft; minimum daily, 9.6 ft³/s, Sept. 21, 1981.

EXTREMES FOR PERIOD OF CONTINUOUS RECORD.--Maximum discharge observed, 4,100 ft³/s, June 20, 1909, gage height, 5.5 ft, site and datum then in use; minimum daily, 6.6 ft³/s, Jan. 29, 1950; minimum observed prior to starting construction of Shadow Mountain Lake, 20 ft³/s, Apr. 6, 1936 (discharge measurement).

EXTREMES FOR CURRENT SEASON.--Maximum discharge, 91 ft³/s at 1630 June 23, gage height, 1.21 ft; minimum daily, 11 ft³/s, Sept. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MEAN VALUES

DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	ма у	JUN	JUL	AUG	SEP
1 2 3 4 5								51 75 75 76 75	62 60 61 63 60	64 59 59 62 61	34 37 38 37 36	17 16 16 15
6 7 8 9 10								76 75 73 70 72	61 62 66 64 61	61 60 60 60	34 33 38 33 33	14 14 20 20 17
11 12 13 14 15								73 80 77 69 69	61 61 61 61 60	60 66 61 63 63	35 35 35 34 33	17 17 17 16 17
16 17 18 19 20							 	72 76 78 73 76	60 63 63 63 61	63 63 63 61	32 32 31 32 33	16 16 16 16
21 22 23 24 25								78 68 66 81 73	63 63 62 61 61	63 63 66 66	34 35 35 35	17 19 18 17 16
26 27 28 29 30 31							31 30	66 67 64 64 64	61 63 60 64 66	63 67 67 66 69 44	37 38 38 38 37 32	16 16 16 16 16
TOTAL MEAN MAX MIN AC-FT								2216 71.5 81 51 4400	1858 61.9 66 60 3690	1935 62.4 69 44 3840	1079 34.8 38 31 2140	490 16.3 20 11 972

WILLOW CREEK BASIN

09020700 WILLOW CREEK RESERVOIR NEAR GRANBY, CO

LOCATION.--Lat 40°08'49", long 105°56'31", in SE4 sec.7, T.2 N., R.76 W., Grand County, Hydrologic Unit 14010001, in shaft house near right end of Willow Creek Dam, 3.2 mi upstream from mouth, and 4.2 mi north of Granby.

DRAINAGE AREA . -- 134 mi2.

PERIOD OF RECORD. -- May 1953 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earth and rockfill dam; storage began March 1953. Dead storage pool filled May 3, 1953. Usable capacity, 9,060 acre-ft between elevations 8,077.00 ft, trash rack sill at outlet, and 8,130.00 ft, crest of spillway. Dead storage, 1,490 acre-ft. Figures given represent usable contents. Water is pumped to Lake Granby for transmountain diversion for irrigation and power in South Platte River basin. Records are provided by U.S. Bureau of Reclamation.

COOPERATION .-- Records provided by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 9,100 acre-ft, May 24, 1984, elevation, 8,130.12 ft; minimum 50 acre-ft, Dec. 4, 1985 to Jan. 17, 1986, drawdown for maintenance, elevation, 8,077.50 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,290 acre-ft, Nov. 11, elevation, 8,127.36 ft; minimum, 5,750 acre-ft, Apr. 11, elevation, 8,117.05 ft.

MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

											D	at	е														Elevation	Contents (acre-feet)	Change in contents (acre-feet)
Sept. Oct. Nov. Dec.	30. 31. 30.	:	:	:	:	:	:	:	:	:	:			•	:	:	:	:	:	:	:	:	:	:	:	:	8,125.60 8,125.82 8,118.84 8,121.20	7,810 7,870 6,140 6,690	- +60 -1,730 +550
CAL	YR	19	86																										+6,640
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31. 28. 31. 30. 31. 31. 30.		:		•	:	:			• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •							• • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	:			:	:		8,122.53 8,124.13 8,126.17 8,121.09 8,120.20 8,122.46 8,123.51 8,126.30 8,120.55	7,020 7,420 7,960 6,660 6,450 7,000 7,260 8,000 6,540	+330 +400 +540 -1,300 -210 +550 +260 +740 -1,460
WT	R YF	1	981	7																									-1,270

09022000 FRASER RIVER AT UPPER STATION, NEAR WINTER PARK, CO

LOCATION.--Lat 39°50'45", long 105°45'05", in Sec.26, T.2 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank 0.8 mi upstream from Parsenn Creek and 2.5 mi south of Winter Park.

DRAINAGE AREA .-- 10.5 mi2.

- PERIOD OF RECORD. -- May to September 1908, July to November 1909 (published as "at upper station near Fraser"), October 1968 to September 1973, Aug. 21, 1984 to current year. January to September 1911, gage heights only (published as "near Fraser"). Records for August to December 1910, published in WSP 289 as "near Fraser" are unreliable and should not be used.
- GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,520 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1968, nonrecording gage at site 0.9 mi upstream at different datum. Since Oct. 1, 1968, supplementary water-stage recorder and Parshall flume on Berthoud Pass ditch.
- REMARKS.--Estimated daily discharges: Oct. 12-15, 17, 26-30, Nov. 1-13, 20, 21, 23-29, Dec. 2 to Mar. 28, Apr. 3-15, 17. Records good except for period May 15 to July 8, and for estimated daily discharges, which are poor. Transmountain diversions upstream from station through Berthoud Pass ditch to Moffat water tunnel, see elsewhere in this report). Several observations of specific conductance and water temperature were obtained, and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 8 years, 14.7 ft 3/s; 10,650 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 181 ft 3 /s, June 5, 1972, gage height, 2.15 ft; minimum daily, 1.3 ft 3 /s, Feb. 20, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, not determined, probably occurred June 9; minimum daily, 1.4 ft³/s, Feb. 16 to Mar. 29.

		DISCHA	ARGE, CUBI	C FEET PI		, WATER YE EAN VALUES		R 1986 T	O SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	7.3 7.3 7.5 7.1 7.1	4.5 4.5 4.5 4.5 4.5	3.6 3.5 3.5 3.5 3.5	2.4 2.2 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	1.7 1.7 1.7 1.7	18 16 14 13 12	33 36 37 42 47	25 23 22 22 20	19 18 17 16 16	7.9 8.0 7.5 7.8 7.3
6 7 8 9 10	7.5 7.7 7.6 8.0 7.3	4.5 4.5 4.5 4.5 4.5	3.5 3.5 3.5 3.5	1.9 1.8 1.7 1.6	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	1.7 1.7 1.7 1.7	13 14 16 20 23	49 52 62 67	20 18 17 18 17	16 16 15 14 13	6.9 6.8 6.6 6.4 6.4
11 12 13 14 15	6.5 6.4 6.4 6.4	4.0 4.0 4.0 4.0 4.0	3.0 3.0 3.0 3.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	1.7 1.7 1.7 2.0 2.5	23 26 35 36 39	59 56 55 55 50	16 19 17 15 14	13 13 13 12 11	6.4 6.2 6.0 6.4 7.5
16 17 18 19 20	6.4 6.2 6.0 6.0 5.8	4.1 4.2 4.2 3.7 4.0	3.0 3.0 3.0 3.0	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	1.4 1.4 1.4 1.4	3.4 4.0 6.4 7.5 7.3	54 49 45 43	52 46 44 41 36	14 15 14 12 12	9.5 9.0 8.8 8.5	8.0 6.6 6.2 6.0
21 22 23 24 25	5.5 5.6 5.6 5.3 5.2	4.0 4.0 4.0 4.0 4.0	2.7 2.7 2.7 2.7 2.7	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	1.4 1.4 1.4 1.4	5.8 7.3 9.6 11	43 39 39 36 34	35 33 33 32 29	12 11 11 11 11	8.8 9.3 11 11 9.9	5.8 5.7 5.5 5.3
26 27 28 29 30 31	5.2 5.0 4.8 4.8 4.6 4.5	3.7 3.7 3.7 3.7 3.6	2.7 2.7 2.7 2.7 2.7 2.7	1.5 1.5 1.5 1.5 1.5	1.4 1.4 1.4 	1.4 1.4 1.4 1.5 1.6	12 14 14 15 16	32 30 28 28 28 29	28 27 26 26 28	12 13 16 17 17	9.0 9.0 8.8 8.3 8.0	5.2 5.2 5.2 5.0 4.7
TOTAL MEAN MAX MIN AC-FT	193.0 6.23 8.0 4.5 383	123.6 4.12 4.5 3.6 245	94.8 3.06 3.6 2.7 188	50.6 1.63 2.4 1.5 100	40.7 1.45 1.5 1.4 81	43.7 1.41 1.6 1.4 87	170.9 5.70 16 1.7 339	921 29.7 54 12 1830	1278 42.6 67 26 2530	499 16.1 25 11 990	368.9 11.9 19 8.0 732	191.7 6.39 8.0 4.7 380

CAL YR 1986 TOTAL 6035.2 MEAN 16.5 MAX 98 MIN 1.7 AC-FT 11970 WTR YR 1987 TOTAL 3975.9 MEAN 10.9 MAX 67 MIN 1.4 AC-FT 7890

FRASER RIVER BASIN

09024000 FRASEL RIVER NEAR WINTER PARK, CO

LOCATION.--Lat 39°54'00", long 105°46'34", in SEL sec.4, T.2 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank 500 ft downstream from bridge on U.S. Highway 40, 1.1 mi northwest of Winter Park, 2.0 mi upstream from Vasquez Creek, 3.5 mi downstream from point of diversion for Moffat water tunnel, and 3.9 mi southeast of Fraser.

DRAINAGE AREA. -- 27.6 mi².

PERIOD OF RECORD.--September 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Arrow" 1910-23 and as "near West Portal" 1924-39. Records since June 9, 1936, equivalent to earlier records if transmountain diversions are added to flow past station.

REVISED RECORDS. -- WSP 929: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 8,906.23 ft, Colorado State Highway Datum (levels by U.S. Geological Survey). Sept. 23, 1910, to May 12, 1916, nonrecording gage at trail bridge 0.6 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 7-15, 20-25, 27-29, Dec. 1-5, 9-19, Feb. 6, 7, 16, and Feb. 19 to Apr. 27. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station through Berthoud Pass ditch (see elsewhere in this report) and to Moffat water tunnel (not known since 1968). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 820 ft³/s, June 13, 1918, gage height, 2.9 ft; minimum daily determined, 2.0 ft³/s, Mar. 30, Apr. 9, 1912, Jan 23, 1915.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 216 $\rm ft^3/s$ at 2300 June 9, gage height, 1.80 ft; minimum daily, 3.7 $\rm ft^3/s$, Feb. 15-20.

		DISCH	ARGE, CUBI	C FEET F	ER SECOND M	, WATER YE	EAR OCTOBE	R 1986 I	O SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	11 9.4 9.4 9.1 8.5	7.2 6.8 6.7 7.0 7.3	5.6 5.6 5.6 5.6	4.3 3.8 4.3 4.9	5.5 5.5 5.2 5.0	7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0	14 10 9.4 8.8 8.8	52 49 46 48 54	17 37 36 16 5.5	33 48 44 40 37	21 21 20 20 18
6 7 8 9 10	8.3 8.0 9.2 8.3 8.2	7.5 7.0 7.0 7.0 7.0	5.5 5.5 5.2 5.2 5.2	4.9 4.9 4.5 5.5	5.5 5.5 5.3 5.4	7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0	11 11 12 12 12	34 33 84 169 184	5.4 5.4 6.0 9.8 9.7	38 37 33 31 29	17 17 17 16 16
11 12 13 14 15	8.0 8.1 10 6.5 4.5	6.2 6.2 6.2 6.2	5.6 5.6 5.6 5.6	5.5 5.4 5.3 5.2	4.9 4.3 4.2 4.3 3.7	7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 8.0	11 10 9.4 8.6	163 152 144 119 89	10 14 11 10 10	28 26 27 26 23	16 15 15 16 19
16 17 18 19 20	4.0 3.8 3.8 4.0 5.2	6.2 6.2 6.2 6.2	6.0 6.0 6.0 5.8	5.2 5.8 4.9 5.5	3.7 3.7 3.7 3.7	7.0 7.0 7.0 7.0 7.0	9.0 10 11 12	11 8.8 8.9 8.3 13	44 23 17 35 75	12 14 13 12 12	22 21 20 19 19	19 21 17 15 16
21 22 23 24 25	7.3 7.4 7.4 7.4 7.3	6.2 6.2 6.2 6.2	6.0 6.1 4.9 5.5	5.5 5.5 5.5 5.5	5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0	14 15 16 17 18	13 13 23 23 20	73 58 25 7.5 5.8	11 11 11 11 10	22 23 28 29 26	16 15 14 13 14
26 27 28 29 30 31	7.3 7.2 7.1 7.1 7.3 7.3	6.2 6.2 6.2 6.2	4.9 4.9 5.5 4.9	5.5 5.1 4.9 5.9 5.5	6.0 6.0 	7.0 7.0 7.0 7.0 7.0 7.0	19 20 14 13 14	15 47 48 48 36 35	5.5 5.5 5.9 6.1	9.1 9.9 11 16 11 3.8	24 24 23 22 21	14 14 13 13
TOTAL MEAN MAX MIN AC-FT	227.4 7.34 11 3.8 451	194.5 6.48 7.5 6.2 386	170.4 5.50 6.1 4.9 338	159.9 5.16 5.9 3.8 317	136.8 4.89 6.0 3.7 271	217.0 7.00 7.0 7.0 7.0 430	321.0 10.7 20 7.0 637	530.0 17.1 48 8.3 1050	1811.8 60.4 184 5.5 3590	380.6 12.3 37 3.8 755	867 28.0 48 19 1720	491 16.4 21 13 974

CAL YR 1986 TOTAL 6257.6 MEAN 17.1 MAX 232 MIN 2.9 AC-FT 12410 TR YR 1987 TOTAL 5507.4 MEAN 15.1 MAX 184 MIN 3.7 AC-FT 10920

09025000 VASQUEZ CREEK NEAR WINTER PARK, CO

LOCATION.--Lat 39°55'13", long 105°47'05", in NE4NW4 sec.33. T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 30 ft downstream from bridge on U.S. Highway 40, 0.2 mi upstream from mouth, 2.5 mi northwest of Winter Park, 2.5 mi southeast of Fraser, and 4.5 mi downstream from Moffat water tunnel diversion.

DRAINAGE AREA. -- 27.8 mi2.

PERIOD OF RECORD.--June to August 1907, July to November 1909, October 1933 to current year. Monthly discharge only for some periods, published in WSP 1313. Records for June to October 1908, published in WSP 269, are unreliable and should not be used. Published as Vasquez River at lower station, near Fraser 1907-9, and as "near West Portal" 1934-39. Records for May 26, 1937, to September 1959, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station.

REVISED RECORDS. -- See PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 8,768.48 ft above National Geodetic Vertical Datum of 1929. June 1, 1907, to Oct. 31, 1909, nonrecording gage at site 0.8 mi upstream at different datum

REMARKS.--Estimated daily discharges: Nov. 7-23, and Nov. 26 to Apr. 20. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel not known since 1959. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 526 ft³/s, June 27, 1983, gage height, 4.14 ft, from rating curve extended above 286 ft³/s; no flow at times in 1944, 1946, 1956, 1960, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 129 ft³/s at 1800 June 9, gage height, 2.67 ft, from peak stage indicator; minimum daily, 1.2 ft³/s, Oct. 30.

		DISCHA	RGE, CUBIC	FEET P		WATER YEAR AN VALUES	OCTOBER	1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 4.2 4.7 4.7 4.5	3.4 2.9 2.6 2.1 2.1	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	8.4 8.0 7.5 7.1 7.3	17 33 31 35 35	10 9.6 9.0 8.5 8.1	7.5 7.2 7.0 6.8 6.7	8.1 8.1 7.9 7.8 8.2
6 7 8 9 10	4.6 4.1 4.6 4.5 4.5	2.3 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	8.1 8.4 8.9 9.1 8.8	17 17 30 85 105	7.6 7.4 7.5 7.3 7.2	7.6 8.6 8.1 7.8 7.8	8.3 8.4 8.3 8.2
11 12 13 14 15	4.2 4.2 4.1 3.5 3.4	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	2.0 2.5 2.7 2.9 3.0	8.4 8.3 8.7 9.9	98 96 94 86 64	7.6 10 9.7 8.6 7.4	7.3 7.3 7.3 7.3 7.3	8.3 8.3 8.8 9.4
16 17 18 19 20	3.4 3.6 3.9 7.1	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	3.0 3.5 4.0 4.5 5.0	9.9 13 9.6 8.9 13	68 62 58 55 71	7.3 8.2 7.6 8.2 8.1	7.0 6.9 6.9 7.1 7.3	5.2 4.6 4.3 4.2
21 22 23 24 25	6.6 6.0 4.4 3.6 3.6	2.0 2.0 2.0 1.9	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	5.2 5.3 6.9 8.1 8.5	12 11 10 11 12	67 60 36 12 9.5	8.0 8.1 7.0 6.5 6.3	7.4 8.5 9.3 8.8	3.8 3.8 4.0
26 27 28 29 30 31	3.6 3.6 3.0 1.9 1.2 2.5	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5	9.5 11 8.3 7.5 7.5	13 32 32 22 12	9.6 9.3 9.0 10	6.3 6.4 7.5 8.0 7.3	8.2 7.9 7.9 7.9 8.1 8.1	4.2 4.1 4.2 4.2
TOTAL MEAN MAX MIN AC-FT	135.4 4.37 13 1.2 269	63.2 2.11 3.4 1.9 125	62.0 2.00 2.0 2.0 123	46.5 1.50 1.5 1.5	42.0 1.50 1.5 1.5 83	46.5 1 1.50 1.5 1.5 92	25.9 4.20 11 1.5 250	357.6 11.5 32 7.1 709	1389.4 46.3 105 9.0 2760	244.4 7.88 10 6.3 485	237.5 7.66 9.3 6.7 471	187.8 6.26 9.4 3.8 373

CAL YR 1986 TOTAL 4126.5 MEAN 11.3 MAX 173 MIN 1.2 AC-FT 8180 WTR YR 1987 TOTAL 2938.2 MEAN 8.05 MAX 105 MIN 1.2 AC-FT 5830

FRASER RIVER BASIN

09025400 ELK CREEK NEAR FRASER, CO

LOCATION.--Lat 39°55'09", long 105°49'31", in SE4NW± sec.31, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 100 ft upstream from unnamed tributary 1,150 ft downstream from West Elk Creek, 2.0 mi southwest of Fraser, and 2.5 mi upstream from mouth.

DRAINAGE AREA .-- 7.15 mi2.

PERIOD OF RECORD. -- September 1970 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,805 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 13-18, Nov. 3-17, and Dec. 17 to Apr. 26. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel. Diversions for irrigation of about 100 acres of hay meadows upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 106 ft³/s, May 24, 1984, gage height, 3.13 ft maximum gage height, 3.97 ft, Mar. 12, Apr. 10-16, 1987, backwater from ice; minimum daily discharge, 0.10 ft³/s, Jan. 13, 1977

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 16 ft³/s at 2100 June 9, gage height, 2.03 ft; maximum gage height, 3.97 ft, Mar. 12, Apr. 10-16, backwater from ice; minimum daily discharge, 0.38 ft³/s, July 10.

		DISCH	ARGE, CUBI	C FEET PE	ER SECOND M	, WATER YEEAN VALUES	EAR OCTOBE	R 1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	.90 .80 .96 .94 .84	.50 .55 .56 .56	.56 .56 .56 .56	.50 .50 .50 .50	.46 .46 .46 .46	. 41 . 41 . 41 . 41 . 40	.40 .40 .40 .40	5.2 4.3 4.0 4.0 4.2	6.5 6.5 6.0 6.0 4.0	3.1 2.3 1.4 1.1 1.4	3.2 2.0 1.2 1.0	1.0 1.3 1.1 1.1
6 7 8 9 10	.83 .78 .76 .74	.56 .56 .56 .56	.57 .57 .57 .56 .55	.50 .50 .50 .50	.45 .45 .45 .45	.40 .40 .40 .40	.40 .42 .43 .45	4.5 4.4 4.5 4.7 4.2	3.5 3.2 3.1 7.5	1.4 1.0 .82 .79 .38	.84 .98 .90 .84 .78	.99 .95 .94 .99
11 12 13 14 15	.71 .66 .66 .66	.56 .56 .56 .56	.56 .56 .56 .55	.50 .50 .50 .50	. 45 . 44 . 44 . 44	.40 .40 .40 .40	.50 .54 .58 .62 .66	3.5 3.4 3.4 2.9 2.3	9.9 10 8.7 8.5 8.1	.49 1.6 1.3 .69	.75 .77 .80 .89	.85 .85 .84 .97
16 17 18 19 20	.66 .66 .66 .79	.56 .56 .52 .56	.54 .50 .50 .50	.50 .50 .49 .49	.44 .43 .43 .43	.40 .40 .40 .40	.72 .84 .92 1.1	2.6 3.7 2.9 2.4 2.8	7.7 7.1 6.8 6.6 5.9	.44 .75 .78 .45	.83 .64 .53 .52 .53	1.7 2.6 1.9 1.3
21 22 23 24 25	.69 .51 .45 .45	.55 .55 .56 .56	.50 .50 .50 .50	.48 .48 .48 .48	.43 .42 .42 .42 .42	.40 .40 .40 .40	1.4 2.0 3.0 3.5 4.0	3.3 3.7 2.8 3.2 3.2	5.1 4.6 4.1 2.8 .85	.40 .40 .40 .45	.58 .81 1.3 2.2 1.6	1.1 1.1 1.1 1.0 .96
26 27 28 29 30 31	.47 .57 .54 .57 .52 .49	.57 .56 .56 .56 .57	.50 .50 .50 .50 .50	. 47 . 47 . 47 . 47 . 47	.42 .42 .41	. 40 . 40 . 40 . 40 . 40	4.3 4.4 4.5 4.5 4.7	2.9 5.9 5.7 6.5 6.0	.39 .79 1.5 2.7 3.5	1.2 1.3 2.2 1.7 2.2 3.6	1.1 .91 .84 1.1 1.4	.78 .44 .41 .40 .40
TOTAL MEAN MAX MIN AC-FT	21.20 .68 1.1 .45 42	16.70 .56 .57 .50 33	16.44 •53 •57 •50 33	15.19 .49 .50 .47 30	12.28 .44 .46 .41 24	12.44 .40 .41 .40 25	48.15 1.60 4.7 .40 96	124.0 4.00 6.7 2.3 246	162.93 5.43 11 .39 323	35.52 1.15 3.6 .38 70	32.65 1.05 3.2 .52 65	31.94 1.06 2.6 .40 63

CAL YR 1986 TOTAL 948.02 MEAN 2.60 MAX 21 MIN .37 AC-FT 1880 WTR YR 1987 TOTAL 529.44 MEAN 1.45 MAX 11 MIN .38 AC-FT 1050

09026500 ST. LOUIS CREEK NEAR FRASER, CO

LOCATION.--Lat 39°54'36", long 105°52'40", in SE4SW4 sec.34, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 300 ft downstream from West St. Louis Creek and 4.1 mi southwest of Fraser.

DRAINAGE AREA. -- 32.9 mi².

PERIOD OF RECORD.--October 1933 to current year. Prior to August 1934, monthly discharge only, published in WSP 1313. Records for May 1956 to September 1959, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 8,980.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Nov. 4-12 and Nov. 21 to Apr. 24. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel not known since 1959. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 470 ft³/s, June 15, 1952, gage height, 2.89 ft; maximum gage height, 3.21 ft, June 10, 1952 (backwater from log on control); minimum discharge not determined, probably occurred during January or February 1961.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 150 $\rm ft^3/s$ at 1815 June 9, gage height, 1.98 ft; minimum daily, 5.2 $\rm ft^3/s$, Mar. 1 to Apr. 5.

		DISCH.	ARGE, CUBI	C FEET P	ER SECOND Mi	, WATER YEAR EAN VALUES	R OCTOBER	1986 TO) SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	10 10 11 10 10	8.9 8.3 7.9 8.0 8.0	7.0 7.0 7.0 7.0 7.0	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0	5.2 5.2 5.2 5.2 5.2	5.2 5.2 5.2 5.2 5.2	15 14 11 11	44 73 74 58 37	38 53 50 44 30	20 20 19 18 18	12 14 12 11
6 7 8 9 10	10 10 10 9.9 9.6	8.0 8.0 8.0 8.0	7.0 7.0 7.0 7.0 7.0	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0	5.2 5.2 5.2 5.2 5.2	5.6 5.6 5.6 5.6	13 13 14 15	40 44 75 127 126	22 22 22 21 22	18 19 18 17 16	10 10 10 9.6 9.4
11 12 13 14 15	9.6 9.1 9.1 9.3 8.7	8.0 8.0 8.1 8.1	7.0 7.0 7.0 7.0 7.0	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0	5.2 5.2 5.2 5.2 5.2	6.2 6.2 6.2 6.2	14 14 15 15 18	117 115 116 104 80	22 27 24 23 22	16 15 15 15 14	9.3 9.3 9.1 9.5
16 17 18 19 20	8.3 8.4 8.5 12	8.0 7.8 7.7 7.7 7.6	6.6 6.6 6.6 6.6	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0	5.2 5.2 5.2 5.2 5.2	7.0 7.0 7.0 7.0 7.0	28 29 27 26 28	53 39 35 54 73	22 26 26 23 22	14 13 12 11 11	7.9 8.1 7.5 7.1 6.8
21 22 23 24 25	9.5 8.7 8.3 8.8	7.5 7.4 7.4 7.4 7.4	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0	5.4 5.4 5.4 5.4 5.4	5.2 5.2 5.2 5.2 5.2	8.0 8.0 8.0 9.0	28 29 26 27 27	70 51 26 25 22	21 21 21 23 23	12 16 18 22 18	7.0 6.9 6.9 6.7
26 27 28 29 30 31	8.3 8.3 8.2 8.1 8.4 9.0	7.4 7.4 7.4 7.4 7.4	6.0 6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0 6.0	5.4 5.4 5.4 	5.2 5.2 5.2 5.2 5.2 5.2	10 12 13 13 13	36 53 60 50 34 33	21 21 22 25 22	23 28 32 29 27 23	15 14 13 13 12 11	6.7 6.6 6.5 6.3
TOTAL MEAN MAX MIN AC-FT	297.1 9.58 17 8.1 589	234.2 7.81 8.9 7.4 465	204.0 6.58 7.0 6.0 405	186.0 6.00 6.0 6.0 369	163.2 5.83 6.0 5.4 324		224.0 7.47 13 5.2 444	749 24.2 60 11 1490	1789 59.6 127 21 3550	832 26.8 53 21 1650	483 15.6 22 11 958	261.8 8.73 14 6.3 519

CAL YR 1986 TOTAL 8242.4 MEAN 22.6 MAX 242 MIN 5.8 AC-FT 16350 WTR YR 1987 TOTAL 5584.5 MEAN 15.3 MAX 127 MIN 5.2 AC-FT 11080

FRASER RIVER BASIN

09032000 RANCH CREEK NEAR FRASER, CO

LOCATION.--Lat 39°57'00", long 105°45'54", in NWHNEL sec.22, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 450 ft downstream from Middle Fork and 2.7 mi east of Fraser.

DRAINAGE AREA. -- 19.9 mi2.

PERIOD OF RECORD. -- August 1934 to current year. Records since May 15, 1949, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station.

REVISED RECORDS. -- WSP 1243: 1935.

GAGE.--Water-stage recorder. Elevation of gage is 8,685 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 12-17, Nov. 2-10, 20, 21, Nov. 25 to Dec. 2, Mar. 20, Apr. 7, 8, 13-19, 22. Records good except for estimated daily discharges, which are poor. Diversion upstream from station for irrigation of hay meadows along Fraser River. Transmountain diversion upstream from station to Moffat water tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 451 ft³/s, June 27, 1983, gage height, 3.96 ft; minimum daily, 0.4 ft³/s, Sept. 21, Oct. 6, 1960.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 166 $\rm ft^3/s$ at 2100 June 9, gage height, 2.76 ft; minimum daily, 1.5 $\rm ft^3/s$, Apr. 11, and Sept. 29.

		DISCH	ARGE, CUBI	C FEET P	ER SECOND, ME	WATER Y	EAR OCTOBI	ER 1986 1	TO SEPTEMB	ER 1987		
DAY	OCT	иои	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 4.5 4.7 4.4	3.9 4.0 4.0 4.0	3.4 3.4 3.3 3.2	2.9 2.9 2.9 2.9	2.0 2.0 2.0 1.9 1.8	1.8 1.8 1.8 1.8	1.7 1.7 1.6 1.7	9.8 8.7 7.9 7.7 8.2	54 56 58 64 41	14 24 23 16 4.4	7.8 7.2 6.6 5.7 5.3	4.2 4.5 4.2 4.0
6 7 8 9	3.9 3.3 3.7 3.7	4.0 4.0 4.0 4.0	3.3 3.2 3.2 3.1 3.3	2.8 2.6 2.6 2.6	1.8 1.8 1.7 1.7	1.9 2.0 2.0 1.9 1.8	1.6 1.6 1.6 1.7	9.6 9.7 11 12 13	27 30 69 130 143	4.3 4.2 4.0 3.9 4.1	5.4 6.2 5.5 5.1	3.9 3.9 3.8 3.7
11 12 13 14 15	3.4 3.6 3.6 3.6	3.7 3.7 3.7 3.7 3.7	3.2 3.2 3.2 3.1 3.1	2.5 2.5 2.4 2.2 2.0	1.7 1.7 1.7 1.7	1.7 1.7 1.7 1.8 1.8	1.5 1.6 1.9 2.2 2.5	13 13 15 17 21	132 127 118 99 58	4.4 8.0 6.6 5.2 4.8	4.8 4.9 5.0 4.5	3.5 3.4 3.7 4.8
16 17 18 19 20	3.6 3.6 3.7 4.2	3.7 3.7 3.7 3.7 3.7	3.2 3.2 3.2 3.4	2.0 1.9 1.8 1.8	1.7 1.7 1.7 1.7	1.8 1.8 1.7 1.7	2.7 3.3 3.6 3.8 3.9	27 20 18 15 17	45 38 27 29 30	4.7 5.2 5.4 4.3 3.9	4.4 4.2 4.1 4.2 4.0	4.7 5.9 4.3 3.3
21 22 23 24 25	4.3 4.8 4.4 4.4 4.3	3.7 3.5 3.7 3.4 3.4	3.3 3.1 3.1 3.1	1.8 1.8 1.8 1.8	1.7 1.9 2.0 2.2 2.2	1.8 1.8 1.7 1.7	3.9 5.0 5.3 6.4	17 16 16 16 15	27 21 14 9.7 5.2	4.1 4.3 4.2 3.6 6.2	4.3 5.2 6.1 7.0 6.7	1.6 1.6 1.6 1.7
26 27 28 29 30 31	4.2 4.0 4.0 3.9 3.8 3.8	3.4 3.4 3.4 3.4	2.9 2.8 2.8 2.9 2.9	1.8 1.9 2.0 2.0 2.0	2.1 2.0 2.0	1.6 1.6 1.6 1.6 1.6	6.1 6.8 7.0 7.0 8.6	18 54 51 49 46	4.8 4.4 4.0 4.5 4.9	9.0 8.9 10 9.3 9.0 8.9	5.7 5.0 4.5 4.3 4.2	1.7 1.7 1.6 1.5
TOTAL MEAN MAX MIN AC-FT	123.4 3.98 4.8 3.3 245	111.6 3.72 4.0 3.4 221	97.6 3.15 3.4 2.8 194	69.5 2.24 2.9 1.8 138	51.6 1.84 2.2 1.7 102	54.5 1.76 2.0 1.6 108	105.5 3.52 8.6 1.5 209	617.6 19.9 54 7.7 1230	1474.5 49.1 143 4.0 2920	231.9 7.48 24 3.6 460	162.5 5.24 7.8 4.0 322	95.1 3.17 5.9 1.5 189

CAL YR 1986 TOTAL 3785.4 MEAN 10.4 MAX 133 MIN 1.6 AC-FT 7510 WTR YR 1987 TOTAL 3195.3 MEAN 8.75 MAX 143 MIN 1.5 AC-FT 6340

FRASER RIVER BASIN

09032100 CABIN CREEK NEAR FRASER, CO

LOCATION.--Lat 39°59'09", long 105°44'40", in NW4SE4 sec.2, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 200 ft downstream from concrete diversion dam, 2.7 mi upstream from mouth and 4.6 mi northeast of Fraser.

DRAINAGE AREA .-- 4.87 mi2.

PERIOD OF RECORD. -- October 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,560 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 1 to May 14. Records good except for estimated daily discharges, which are poor, and July 9 to Aug. 3, which are fair. Transmountain diversion upstream from station to Moffat water tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 126 ft³/s June 13, 1984, gage height, 2.37 ft; minimum daily, 0.04 ft³/s May 7, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 66 $\rm ft^3/s$ at 1700 June 9, gage height, 1.84 ft; minimum daily, 1.0 $\rm ft^3/s$, Feb. 1 to Apr. 10.

		DISCHA	RGE, CUBI	C FEET		, WATER YEAR CAN VALUES	OCTOBER	1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	4.4 4.1 4.1 3.9 4.3	3.0 3.0 3.0 3.0	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	2.1 2.2 2.3 2.4 2.5	21 24 25 28 31	13 12 12 11 10	5.4 5.1 4.9 4.5 4.3	3.3 3.2 3.0 3.0 2.9
6 7 8 9 10	4.1 3.8 3.6 3.4 3.3	3.0 3.0 3.0 3.0	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	2.6 2.7 2.8 2.9 3.0	31 32 37 52 50	9.3 8.7 8.2 7.7 7.6	4.5 4.9 4.4 4.2 3.8	2.8 2.7 2.6 2.5 2.5
11 12 13 14 15	3.0 3.9 3.8 3.6 3.2	3.0 3.0 3.0 3.0	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.1 1.2 1.3 1.4	3.0 3.0 3.0 5.8	45 42 39 34 33	7.4 11 9.4 8.1 7.5	3.9 3.8 3.7 3.4 3.2	2.3 2.2 2.2 2.4 3.3
16 17 18 19 20	3.0 3.0 2.9 2.9 3.4	3.0 3.0 3.0 3.0	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.6 1.7 1.8 1.9	14 17 22 31 33	28 29 27 26 24	7.0 7.8 7.6 7.4 7.1	3.4 2.0 3.0 2.9 2.9	3.4 4.5 3.3 2.8 2.5
21 22 23 24 25	3.3 12 10 1.3 1.3	2.5 2.5 2.5 2.5 2.5	2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0	29 28 24 23 22	22 20 19 18 17	6.8 6.2 5.0 4.8 4.6	2.7 2.9 3.9 4.5 4.2	2.5 2.3 2.2 2.2 2.2
26 27 28 29 30 31	1.2 2.1 3.4 3.6 3.2 2.9	2.5 2.5 2.5 2.5 2.5	2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5 1.5	1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0	19 17 16 16 15	16 15 14 15 14	4.6 4.9 6.6 6.1	3.6 3.3 3.4 3.5 3.3	2.2 2.1 2.0 1.9
TOTAL MEAN MAX MIN AC-FT	116.0 3.74 12 1.2 230	85.0 2.83 3.0 2.5 169	62.0 2.00 2.0 2.0 123	54.0 1.74 2.0 1.5 107	28.0 1.00 1.0 1.0 56		45.5 1.52 2.0 1.0 90	385.3 12.4 33 2.1 764	828 27.6 52 14 1640	240.6 7.76 13 4.6 477	116.7 3.76 5.4 2.0 231	78.9 2.63 4.5 1.9

CAL YR 1986 TOTAL 2377.2 MEAN 6.51 MAX 56 MIN 1.0 AC-FT 4720 WTR YR 1987 TOTAL 2071.0 MEAN 5.67 MAX 52 MIN 1.0 AC-FT 4110

COLORADO RIVER MAIN STEM

09034250 COLORADO RIVER AT WINDY GAP NEAR GRANBY, CO

LOCATION.--Lat 40°06'30", long 106°00'13" in NW4 sec.27, R.77 W., T.2 N., Grand County, Hydrologic Unit 14010001, on right bank 300 ft downstream from county highway bridge, 1.1 mi downstream from Windy Gap diversion dam, 2.4 mi downstream from mouth of Fraser River and 3.8 mi northwest of Granby.

DRAINAGE AREA. -- 789 mi2.

PERIOD OF RECORD. -- October 1981 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7,790 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 10-12, Dec. 3, 5, Dec. 8 to Mar. 20, Mar. 29-31. Natural flow of stream affected by transmountain diversions, storage reservoirs, and diversions for irrigation. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 6 years, 364 ft 3/s; 263,700 acre-ft/year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,260 ft 3 /s, May 25, 1984, gage height, 7.34 ft; minimum daily, 42 ft 3 /s, Oct. 11, 2, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,110 $\rm ft^3/s$ at 0600 June 10, gage height, 4.31 ft; minimum daily, 43 $\rm ft^3/s$, Sept. 8.

		DISCHA	RGE, CUBIC	FEET	PER SECON	D, WATER MEAN VAL	YEAR OCTO UES	BER 1986	TO SEPTEM	1BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	122 134 128 142 136	107 109 108 106 94	86 83 83 83 81	80 80 80 80	75 75 75 75 75	84 84 84 84	80 80 82 84 87	335 375 355 351 321	364 419 408 415 401	280 310 304 289 250	168 168 167 165 140	93 85 83 83
6 7 8 9 10	125 114 111 110 101	78 89 92 88 95	80 82 82 82 82	75 75 75 75 75	75 75 75 75 75	84 84 84 84	124 166 159 156 157	313 308 235 276 300	347 328 408 737 1010	214 190 188 184 177	135 139 142 142 139	81 58 43 65 71
11 12 13 14 15	98 100 98 88 89	100 100 101 115 124	82 82 82 82 82	75 75 75 75 75	75 75 75 75 75	84 84 84 84	154 153 139 122 123	292 283 288 273 264	876 819 804 756 645	178 251 284 241 226	125 114 115 110	71 71 70 73 73
16 17 18 19 20	97 95 94 94 82	122 122 116 122 141	82 82 82 82 82	75 75 75 75 75	80 80 80 80	86 86 86 86 86	203 386 395 361 349	291 327 332 333 353	509 412 391 367 463	215 224 229 223 215	100 100 100 97 97	80 87 83 72 67
21 22 23 24 25	104 126 123 122 123	114 100 97 97 97	82 82 82 82 82	75 75 75 75 75	80 80 80 80 80	87 84 85 84 86	220 230 299 349 321	216 249 185 179 238	460 436 331 276 268	205 208 187 177 160	87 80 83 116 141	67 68 68 67 63
26 27 28 29 30 31	121 114 112 109 108 107	97 95 94 94	80 80 80 80 80	75 75 75 75 75 75	80 80 80 	85 84 81 80 80	310 295 297 294 286	182 209 256 258 232 346	232 212 214 226 255	165 171 259 236 219 212	130 115 110 110 112 109	69 73 73 68 64
TOTAL MEAN MAX MIN AC-FT	3427 111 142 82 6800	3108 104 141 78 6160	2534 81.7 86 80 5030	2350 75.8 80 75 4660	2165 77.3 80 75 4290	2606 84.1 87 80 5170	6461 215 395 80 12820	8755 282 375 179 17370	1010 212	6871 222 310 160 13630	3757 121 168 80 7450	2172 72.4 93 43 4310

CAL YR 1986 TOTAL 129489 MEAN 355 MAX 1500 MIN 61 AC-FT 256800 WTR YR 1987 TOTAL 57995 MEAN 159 MAX 1010 MIN 43 AC-FT 115000

09034500 COLORADO RIVER AT HOT SULPHUR SPRINGS, CO

LOCATION.--Lat 40°05'00", long 106°05'15", in NE4NE4 sec.2, T.1 N., R.78W., Grand County, Hydrologic Unit 14010001, on left bank about 1,000 ft north of U.S. Highway 40, 1 mi northeast of Hot Sulphur Springs, and 4.5 mi upstream from Beaver Creek.

DRAINAGE AREA. -- 825 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1904 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to 1907 and 1914-18, published as Grand River at Hot Sulphur Springs, and as Grand River at Sulphur Springs 1907-13.

REVISED RECORDS. -- WSP 1313: 1905. WSP 1924: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,670 ft, from railroad elevations. July 28, 1904, to Apr. 16, 1906, nonrecording gage on bridge 1.7 mi downstream at different datum. Apr. 17, 1906, to Sept. 18, 1930, nonrecording gage at bridge 1.4 mi downstream at datum 7,651.26 ft, National Geodetic Vertical Datum of 1929. Supplemental water-stage recorder (nonrecording gage prior to Jan. 1, 1963) at different datum at site 1.7 mi downstream, used for winter records some years.

REMARKS.--Estimated daily discharges: Nov. 9-21, Dec. 3-6, Dec. 8 to Apr. 4. Records good except for estimated daily discharges, which are poor. Flow affected by transmountain diversions, storage reservoirs, and diversions upstream from station for irrigation of about 13,000 acres.

AVERAGE DISCHARGE.--39 years (1905-09, 1911-47), 675 $\rm ft^3/s$; 489,000 acre-ft, prior to storage by Lake Granby; 34 years (1954-87), 248 $\rm ft^3/s$; 179,700 acre-ft, subsequent to storage by Lake Granby.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 10,300 ${\rm ft}^3/{\rm s}$, June 15, 1921, gage height, 8.7 ft, site and datum then in use; minimum daily, 33 ${\rm ft}^3/{\rm s}$, Sept. 27, 1956.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 983 ft 3 /s at 0600 June 10, gage height, 2.09 ft; minimum daily, 42 ft 3 /s, Sept. 8.

		DISCHA	RGE, CUBI	C FEET	PER SECON	D, WATER MEAN VAL	YEAR OCTOR	3ER 1986	TO SEPTEM	BER 1987		
DA Y	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	132 139 134 135 133	107 108 107 107 98	104 92 91 89 88	76 76 76 76 76	76 76 76 76 76	85 85 85 85	91 92 94 95 99	331 377 356 348 317	357 398 392 396 386	253 273 279 271 236	184 184 160 158 143	85 81 81 84 71
6 7 8 9 10	124 111 109 106 100	79 90 106 110 110	85 82 82 79 76	76 76 76 76 76	76 76 76 76 76	85 85 85 85	121 170 162 156 155	304 299 237 251 276	335 309 375 654 904	202 185 164 165 160	137 142 139 139 140	68 60 42 55 67
11 12 13 14 15	96 96 94 83 84	110 110 110 110 110	76 76 76 76 76	74 74 74 74 74	76 80 80 80 80	85 85 85 90	153 152 148 124 124	26 7 254 286 268 252	783 728 707 667 603	171 242 284 237 219	126 114 114 111 104	69 69 72 75 78
16 17 18 19 20	98 97 96 94 87	110 110 110 110 110	76 76 76 76 76	74 74 74 74 74	80 80 80 80	90 90 90 90	178 358 381 348 352	276 323 329 329 356	487 383 362 337 403	212 232 241 234 229	106 106 102 107 100	82 86 87 75 71
21 22 23 24 25	98 124 119 118 121	110 101 108 109 103	76 76 76 76 76	74 74 74 74 74	80 85 85 85	90 90 90 90	227 228 289 338 316	229 250 186 185 245	403 385 302 252 237	214 222 213 207 190	94 86 87 105 119	68 69 69 65
26 27 28 29 30 31	121 119 111 110 107 107	98 105 100 99 97	76 76 76 76 76 76	74 74 74 74 74 74	85 85 	91 91 91 91 91	306 291 293 297 293	189 196 252 254 225 338	214 188 192 204 233	190 199 266 271 231 226	118 117 116 116 116 95	70 74 75 72 68
TOTAL MEAN MAX MIN AC-FT	3408 110 139 84 6760	3152 105 110 79 6250	2464 79.5 104 76 4890	2314 74.6 76 74 4590	2226 79.5 85 76 4420	2731 88.1 91 85 5420	6431 214 381 91 12760	8585 277 377 185 17030	12576 419 904 188 24940	6918 223 284 160 13720	3785 122 184 86 7510	2157 71.9 87 42 4280

CAL YR 1986 TOTAL 134442 MEAN 368 MAX 1590 MIN 64 AC-FT 266700 WTR YR 1987 TOTAL 56747 MEAN 155 MAX 904 MIN 42 AC-FT 112600

COLORADO RIVER MAIN STEM

09034500 COLORADO RIVER AT HOT SULPHUR SPRINGS, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1947 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1947 to current year. WATER TEMPERATURES: April 1949 to current year.

REMARKS. -- Limited temperature data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 524 microsiemens, Dec. 24, 1986; minimum daily, 48 microsiemens June 2,

WATER TEMPERATURES: Maximum daily, 29°C, Aug. 3, 1981; minimum daily, freezing point on many days during winter months each year.

17...

< 1

<1 10

< 1

3

180

11

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 524 microsiemens, Dec. 24; minimum daily, 83 microsiemens June 12.
WATER TEMPERATURES: Maximum daily, 23°C, July 27; minimum daily, freezing point on many days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		nn.	IDN QUALI	.II DAI	л, ил.	IEN IEI	4 N O C	IODEN	1 1900	10 .	36F 16	TIDER	1901					
DATE	TIME	STREA FLOI INSTANE (CF:	W, CON AN- DUC OUS ANC	'IC - CT- (CE	PH STAND ARD NITS)	TA - TAW	PER- JRE TER G C)	SOL	GEN, SS- VED G/L)	HAR NES TOTA (MG. AS CAC	S AL /L	CALCI DIS- SOLV (MG/ AS (IUM - /ED S /L (MAGNE SIUN DIS- SOLVE (MG/L	A, SOI DI DI SOI (N	DIUM, S- VED MG/L NA)	SO T RA	DIUM AD- RP- ION TIO
DEC 11	1540	71		136	8.2		0.0	1	1.2		59	18		3.3	3	6.9		0.4
APR 22	0910	231		115	7.7		3.0	1	11.4		47	14		2.9)	5.5		0.4
JUN 04	0910	409		104	8.0		9.0		8.7		44	14		2.1	ı	4.5		0.3
SEP 17	0930	79		128	8.0		9.5		9.8		52	16		3.0)	6.4		0.4
DATE	S (OTAS- SIUM, DIS- OLVED MG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	TE 1 ED 3 L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RI: D: SOI (M:	UO- DE, IS- LVED G/L F)	SILIO DIS- SOLV (MG/ AS SIO2	ED L	SOL	OF TI-	SOLIDS DIS- SOLVE (TONS PER AC-FT	ED S	SOLIDS, DIS- SOLVEI (TONS PER DAY)	NO T (ITRO- GEN, 2+NO3 OTAL MG/L S N)	
DEC 11		1.2	66	9.	0	2.4		0.30	11							. <	0.10	
APR 22		2.1	53	12		2.3		0.20	10			81	0.	1 1	50.6		0.10	
JUN 04		1.3	50	10		2.3		0.30	11			76	0.	10	83.6	<	0.10	
SEP 17		1.3	61	6.	3	1.5	1	0.20	10			81	0.	1 1	17.3	<	0.10	
DATE	NO S (ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	M- + l IC PI L	PHOS- HOROUS FOTAL (MG/L AS P)	PHO D SOI (M	OS- ROUS IS- LVED G/L P)	ANTI MONY DIS SOLV (UG/ AS S	(, ;= ;ED 'L	ARSE TOT (UC	AL	ARSENI DIS- SOLVE (UG/I AS AS	ED S	BARIUM, DIS- SOLVED (UG/L AS BA)	, L D S (ERYL- IUM, IS- OLVED UG/L S BE)	
DEC 11	<	0.10	0.50	٥	70	0.04	٥	.04		<1		2		< 1	21		<0.5	
APR 22		0.10	1.5		40	0.07		.03		<1		1		` <1	21		<0.5	
JUN 04		0.10	0.90		40	0.07		.02		< 1		<1		<1	21		<0.5	
SEP 17	<	0.10	0.50	0.	30	0.04	0	.04		< 1		1		<1	20)	<0.5	
DATE	T R E (DMIUM OTAL ECOV- RABLE UG/L S CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO MIUM TOTA RECO ERAB (UG/ AS C	L 1 V- 1 LE 5 L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TO' RE ER	PER, TAL COV- ABLE G/L CU)	COPPE DIS- SOLV (UG/ AS C	ED L	SOL (U)	ON, S- VED J/L FE)	LEAD, TOTAL RECOV ERABI (UG/I AS PI	/ – LE	LEAD, DIS- SOLVEI (UG/L AS PB)	N S (ANGA- ESE, DIS- OLVED UG/L S MN)	
DE C 11		< 1	1		3	<1		3		2		98		< 5	< 5	5	39	
APR 22			<1		3	<1				<1		240			<5		35	
JUN 04		<1	<1		4	2		3		1		140		< 5	< 5	5	19	
SEP 17					10			2				180		۷	< 5		11	

COLORADO RIVER MAIN STEM

09034500 COLORADO RIVER AT HOT SULPHUR SPRINGS, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
DEC 1986 11 APR 1987	<0.10	<0.1	<1	1	<1	<1	<1	<1.0	<10	<3
22 JUN	0.10	0.3		2	<1	<1		<1.0	<10	8
04 SEP	<0.10	<0.1	5	3	<1	<1	<1	<1.0	<10	5
17	<0.10	<0.1	<1	1	<1	<1	<1	<1.0	<10	<3

<0.1 <1 <1.0 SPECIFIC CONDUCTANCE, (MICROSIEMENS PER CENTIMETER AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 ONCE DAILY DAY OCT Nov DEC JAN FEB MA R APR MA Y JUN JUL AUG SEP 153 145 1 2 143 129 118 158 151 124 109 142 110 126 124 86 146 98 126 128 132 130 134 162 137 173 167 133 138 121 18 151 122 138 ---144 135 135 156 121 133 134 270 27 162 136 158 157 140 140 ---114 31 ---___ ---___

MEAN

COLORADO RIVER MAIN STEM

09034500 COLORADO RIVER AT HOT SULPHUR SPRINGS, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

TEMPERATURE, WATER, (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 ONCE DAILY

					•	NOL DAIG	•					
DAY	OCT	NOA	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	13.0 10.0 7.0 9.0 9.0	5.0 6.0 3.0 1.0 6.0	.0 1.0 1.0 1.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	1.0 .0 3.0 .0 7.0	9.0 10.0 6.0 8.0 7.0	13.0 13.0 15.0 14.0 14.0	15.0 18.0 19.0 17.0	22.0 20.0 20.0 20.0 20.0	20.0 18.0 18.0 13.0
6 7 8 9 10	12.0 10.0 12.0 9.0 10.0	4.0 1.0 .0 .0	1.0 2.0 3.0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0 1.0	8.0 4.0 8.0 3.0 5.0	13.0 10.0 13.0 16.0 12.0	14.0 14.0 12.0 12.0 12.0	19.0 18.0 15.0 17.0 15.0	17.0 18.0 21.0 21.0	16.0 12.0 17.0 17.0
11 12 13 14 15	10.0 8.0 10.0 9.0	.0 .0 .0	.0	.0 .0 .0	.0 .0 .0	1.0 1.0 .0 .0	1.0 3.0 2.0 1.0	13.0 10.0 10.0 13.0 14.0	12.0 14.0 15.0 14.0 15.0	14.0 12.0 14.0 16.0 17.0	15.0 20.0 18.0 16.0 20.0	16.0 17.0 15.0 13.0
16 17 18 19 20	9.0 8.0 9.0 	.0 2.0 4.0 3.0 3.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 1.0 5.0	6.0 9.0 8.0 8.0 4.0	16.0 14.0 13.0 12.0 13.0	11.0 15.0 15.0 15.0 18.0	18.0 17.0 17.0 16.0 18.0	20.0 17.0 17.0 19.0 17.0	9.0 13.0 14.0 14.0
21 22 23 24 25	6.0 7.0 4.0 9.0 8.0	4.0 2.0 1.0 .0 2.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	1.0 1.0 4.0 .0	4.0 6.0 7.0 8.0 11.0	10.0 14.0 11.0 12.0	15.0 15.0 16.0 19.0	16.0 21.0 20.0 19.0 21.0	18.0 13.0 16.0 16.0 13.0	9.0 13.0 14.0 9.0 14.0
26 27 28 29 30 31	9.0 8.0 9.0 8.0 7.0 6.0	2.0 .0 1.0 1.0	.0 .0 .0 .0	.0	.0	2.0 1.0 .0 .0	12.0 9.0 9.0 9.0 10.0	13.0 11.0 12.0 11.0 14.0 9.0	20.0 20.0 19.0 14.0 16.0	20.0 23.0 17.0 15.0 17.0 21.0	18.0 14.0 16.0 18.0 19.0	16.0 13.0 13.0 6.0 14.0
ME A N		1.50		.0	.0	•5	6.00		15.0	17.5	17.5	14.0

51

09034900 BOBTAIL CREEK NEAR JONES PASS, CO

LOCATION.--Lat 39°45'37", long 105°54'21", in sec.28, T.3 S., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 320 ft upstream from diversion dam and 0.4 mi south of entrance to August P. Gumlick Tunnel.

DRAINAGE AREA . -- 5.49 mi2.

PERIOD OF RECORD .-- October 1965 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 10,430 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 11-18, 21-23, Oct. 26 to June 7, and July 25-29. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 22 years, 10.3 ft3/s; 7,460 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 199 ft³/s, June 25, 1983, gage height, 4.80 ft; maximum recorded gage height, 7.57 ft, May 15, 1984 (backwater from ice); minimum daily discharge, 0.44 ft³/s, Feb. 11, 1972.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 90 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 19	1330	* 79	*4.02				

Minimum daily, 0.76 ft³/s, Feb. 5 to Mar. 9.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCT	OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	3.8 3.6 3.8 3.2 4.6	1.8 1.7 1.7 1.7	1.4 1.4 1.4 1.4	.96 .96 .96 .94	.82 .82 .82 .82 .76	.76 .76 .76 .76	.78 .78 .78 .78 .80	5.8 6.0 5.6 5.2 5.2	37 40 42 45 50	25 23 21 20 18	9.9 9.1 9.1 8.6 8.6	3.1 3.1 3.2 3.1 2.8
6 7 8 9 10	4.9 4.7 3.8 3.6 3.5	1.6 1.6 1.6 1.6	1.3 1.3 1.3 1.3	.94 .94 .94 .92	.76 .76 .76 .76	.76 .76 .76 .76 .78	.80 .80 .80 .80	5.8 6.8 7.6 9.0	54 58 60 66 59	17 15 15 13 13	8.6 7.1 6.3 6.3	2.6 2.6 2.4 2.3 2.2
11 12 13 14 15	3.5 3.5 3.4 3.4	1.6 1.6 1.6 1.6	1.2 1.2 1.2 1.2 1.1	.92 .92 .92 .92	.76 .76 .76 .76	.78 .78 .78 .78	.82 .84 1.0 1.2	12 15 18 22 26	54 55 52 52 50	12 17 13 11	6.3 6.5 6.9 6.7	2.1 2.1 2.1 2.2 2.4
16 17 18 19 20	3.2 3.2 3.1 2.9 3.3	1.6 1.6 1.6 1.5	1.1 1.1 1.1 1.1	.90 .90 .90 .90	.76 .76 .76 .76	.78 .78 .78 .78	1.9 2.3 2.9 3.2 2.8	29 28 27 27 27	48 42 39 36 34	10 12 10 9.6 9.4	6.9 7.1 7.3 7.7 7.9	3.2 3.4 2.6 2.2 2.1
21 22 23 24 25	3.5 3.0 3.0 2.7 2.5	1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0	.88 .88 .88 .86	.76 .76 .76 .76	.78 .78 .78 .78	2.5 3.0 4.2 4.5 4.7	27 27 26 26 25	34 33 32 30 30	8.6 8.2 7.8 7.3 7.5	8.2 7.9 7.6 4.8 4.6	1.9 1.9 1.8 1.9
26 27 28 29 30 31	2.4 2.3 2.2 2.1 2.0 1.9	1.5 1.5 1.5 1.4	.98 .98 .98 .98 .98	.86 .86 .86 .86	.76 .76 .76	.78 .78 .78 .78 .78	4.9 5.4 6.2 6.6 5.4	24 25 28 30 32 34	29 27 25 30 27	8.2 9.0 10 8.8 8.7	4.1 4.2 3.7 3.6 3.3	2.0 1.8 1.7 1.9
TOTAL MEAN MAX MIN AC-FT	100 3.23 4.9 1.9	47.2 1.57 1.8 1.4 94	35.54 1.15 1.4 .96 70	28.02 .90 .96 .82 56	21.52 .77 .82 .76 43	24.00 .77 .78 .76 48	73.98 2.47 6.6 .78 147	602.0 19.4 34 5.2 1190	1270 42.3 66 25 2520	390.1 12.6 25 7.3 774	206.0 6.65 9.9 3.3 409	70.4 2.35 3.4 1.7 140

CAL YR 1986 TOTAL 5103.72 MEAN 14.0 MAX 109 MIN .96 AC-FT 10120 WTR YR 1987 TOTAL 2868.76 MEAN 7.86 MAX 66 MIN .76 AC-FT 5690

09035500 WILLIAMS FORK BELOW STEELMAN CREEK, CO

LOCATION.--Lat 39°46'44", long 105°55'40", in sec.20, T.3 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 700 ft downstream from Steelman Creek and 6.5 mi southeast of Leal.

DRAINAGE AREA .-- 16.3 mi².

PERIOD OF RECORD.--July 1933 to September 1941, published as Williams River below Steelman Creek, October 1965 to current year. Monthly discharge only for some periods, published in WSP 1313.

GAGE.--Water-stage recorder. Elevation of gage is 9,800 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 21, 1933, nonrecording gage, and July 21, 1933, to Sept. 30, 1941, water-stage recorder at site 600 ft upstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 7 to May 5. Records fair except for estimated daily discharges, which are poor. Transmountain diversions upstream from station through August P. Gumlick Tunnel (station 09036000) since May 10, 1940. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--30 years, 26.3 ft3/s; 19,060 acre-ft/yr, including diversions to August P. Gumlick Tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441 ft³/s, June 21, 1938, gage height, 2.48 ft, site and datum then in use, from rating curve extended above 260 ft³/s; maximum gage height, 6.96 ft, May 15, 1984 (backwater from ice); minimum daily discharge, 0.20 ft³/s, Mar. 6, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 165 ft^3/s at 1500 June 9, gage height, 4.83 ft; minimum daily, 0.35 ft^3/s , Jan. 1 to Apr. 13.

		DISCH	ARGE, CUB	C FEET	PER SECOND	, WATER YE EAN VALUES	AR OCTOBE	R 1986 T	O SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1.0 .96 1.0 .96	.78 .78 1.1 1.0	. 44 . 44 . 44 . 43 . 43	.35 .35 .35 .35	.35 .35 .35 .35	.35 .35 .35 .35	.35 .35 .35 .35	1.9 1.9 1.6 1.5 7.1	66 73 79 99 103	57 51 48 45 43	24 22 21 19 17	8.9 9.4 9.8 9.9
6 7 8 9 10	1.0 .96 2.3 .90 .84	.66 .78 .78 .78	.43 .42 .42 .42 .41	•35 •35 •35 •35	.35 .35 .35 .35	.35 .35 .35 .35	.35 .35 .35 .35	2.1 2.6 3.0 3.6 3.8	109 119 121 153 143	40 38 36 34 32	13 1.1 .78 .60 .57	8.3 8.5 8.9 8.9
11 12 13 14 15	.78 .72 1.0 .96	.48 .48 .48 .48	. 41 . 41 . 40 . 40 . 40	.35 .35 .35 .35	.35 .35 .35 .35	.35 .35 .35 .35	.35 .35 .35 .36	13 4.4 4.7 5.1 5.6	134 134 129 129 125	32 41 35 28 26	.57 6.6 14 14 12	9.8 9.8 10 13
16 17 18 19 20	.96 .90 .78 2.0 5.9	.48 .48 .47 .47	.39 .39 .39 .38	.35 .35 .35 .35	.35 .35 .35 .35	.35 .35 .35 .35	.52 .60 .78 .90 .84	7.0 6.5 65 37 7.7	122 105 95 89 85	25 30 27 23 21	11 11 9.3 9.3 8.5	13 18 16 12
21 22 23 24 25	3.5 1.1 .78 .90	.47 .46 .46 .46	.38 .37 .37 .37 .36	.35 .35 .35 .35	.35 .35 .35 .35	.35 .35 .35 .35	.70 .78 .96 1.2	40 54 56 53 49	79 78 74 69	21 20 19 19 18	9.6 11 16 16	9.7 9.3 8.5 4.5
26 27 28 29 30 31	.90 1.2 1.1 1.3 .88 .72	.45 .45 .45 .44	.36 .36 .36 .36	.35 .35 .35 .35 .35	.35 .35 .35 	.35 .35 .35 .35 .35	1.4 1.5 1.7 2.0 1.8	46 43 42 42 41 50	63 59 56 70 61	19 21 29 25 25 28	12 11 11 11 10 9.5	1.1 1.0 1.1 1.1
TOTAL MEAN MAX MIN AC-FT	39.12 1.26 5.9 .72 78	17.33 .58 1.1 .44 34	12.24 .39 .44 .36 24	10.85 •35 •35 •35 22	9.80 .35 .35 .35	10.85 .35 .35 .35 .22	22.30 .74 2.0 .35 44	701.1 22.6 65 1.5 1390	2885 96.2 153 56 5720	956 30.8 57 18 1900	347.42 11.2 24 .57 689	250.5 8.35 18 1.0 497

CAL YR 1986 TOTAL 7420.77 MEAN 20.3 MAX 205 MIN .36 AC-FT 14720 WTR YR 1987 TOTAL 5262.51 MEAN 14.4 MAX 153 MIN .35 AC-FT 10440

09035700 WILLIAMS FORK ABOVE DARLING CREEK, NEAR LEAL, CO

LOCATION.--Lat 39°47'22", long 106°01'18", in NWdSWd sec.16, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 1.0 mi upstream from Darling Creek and 1.9 mi southeast of Leal.

DRAINAGE AREA . -- 34.7 mi2.

PERIOD OF RECORD. -- October 1965 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,970 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1972, May 6, 1981 to Jan. 31, 1983, at site 0.6 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 5-18, and Nov. 30 to May 19. Records fair except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09036000). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--22 years, 38.7 ${\rm ft}^3/{\rm s}$; 27,680 acre-ft/yr. The figure published in the 1986 report was in error; the correct figure is, 21 years, 38.5 ${\rm ft}^3/{\rm s}$; 27,900 acr-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 677 ft³/s, June 24, 1971, gage height, 7.12 ft, site and datum then in use, from rating curve extended above 430 ft³/s; minimum daily, 2.7 ft³/s, Apr. 5, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 262 $\rm ft^3/s$ at 1700 June 9, gage height, 4.33 ft; minimum daily, 6.0 $\rm ft^3/s$, Mar. 10 to Apr. 14.

REVISIONS. -- Revised daily discharges, in cubic feet per second, for the period from July 18 to Sept. 30 are given below. These figures supersede those published in the report for 1986.

July 18 56 19 54 20 79 21139	July	22122 23127 24117 25106	July	26 97 27 87 28 71	July 29 41 30 36 31 36
	TOTAL	MEAN	MA X	MIN	AC-FT
July 1986	4377	141	260	36	8680
Aug. 1 35 2 34 3 33 4 36 5 33 6 32 7 35 8 32	Aug.	9 31 10 30 11 29 12 31 13 30 14 29 15 27 16 26	Aug.	17 25 18 24 19 24 20 25 21 26 22 25 23 26 24 25	Aug. 25 24 26 26 27 23 28 21 29 23 30 23
	TOTAL	MEAN	MA X	MIN	AC-FT
August 1986	TOTAL 866	MEAN 27.9	MA X 36	MIN 21	AC-FT 1720
August 1986 Sept. 1 25 2 23 3 22 4 20 5 19 6 20 7 21 8 24	866		36		
Sept. 1 25 2 23 3 22 4 20 5 19 6 20 7 21	866	27.9 920 1021 1120 1219 1318 1417	36	21 17 16 18 15 19 15 20 14 21 14 22 14	1720 Sept. 24 15 25 16 26 17 27 15 28 15

WILLIAMS FORK BASIN

09035700 WILLIAMS FORK ABOVE DARLING CREEK, NEAR LEAL, CO--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14 13 14 14 13	10 10 11 10 9.8	8.6 8.6 8.4 8.4	7.6 7.6 7.6 7.6 7.6	7.0 7.0 7.0 7.0 7.0	6.4 6.2 6.2 6.2	6.0 6.0 6.0 6.0	23 23 22 21 21	127 141 149 168 180	88 76 70 65 59	35 34 32 31 30	19 19 18 19 18
6 7 8 9 10	13 13 14 13 12	9.8 9.6 9.6 9.6	8.4 8.4 8.2 8.2	7 · 4 7 · 4 7 · 4 7 · 4 7 · 4	7.0 7.0 6.8 6.8	6.2 6.2 6.2 6.0	6.0 6.0 6.0 6.0	23 25 27 29 30	188 196 209 235 225	55 52 50 47 44	30 22 19 18 17	17 17 16 16 15
11 12 13 14 15	12 11 10 11	9.6 9.4 9.4 9.4	8.2 8.2 8.0 8.0	7.4 7.4 7.4 7.4 7.2	6.8 6.8 6.8 6.6	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.6	31 35 37 40 42	211 209 209 203 199	44 57 49 43 40	16 18 26 26 25	15 15 15 15 17
16 17 18 19 20	11 10 11 11 18	9.2 9.2 9.2 9.1 9.0	8.0 7.8 7.8 7.8 7.8	7.2 7.2 7.2 7.2 7.2	6.6 6.6 6.6 6.6	6.0 6.0 6.0 6.0	7.2 7.8 8.6 9.6	45 50 52 58 63	191 174 157 147 137	39 43 41 38 36	24 23 22 21 21	18 21 17 15 14
21 22 23 24 25	17 12 11 11	8.9 8.8 8.8 8.8	7.8 7.8 7.8 7.8 7.8	7.2 7.2 7.2 7.2 7.2	6.6 6.4 6.4	6.0 6.0 6.0 6.0	12 14 13 14 16	96 127 123 123 110	128 123 117 107 101	35 34 34 34 33	21 24 28 30 27	14 13 12 8.7 7.2
26 27 28 29 30 31	11 11 11 11 11	8.8 8.8 8.8 8.6	7.6 7.6 7.6 7.6 7.6 7.6	7.0 7.0 7.0 7.0 7.0 7.0	6.4 6.4 6.4	6.0 6.0 6.0 6.0 6.0	18 20 23 26 25	102 94 88 86 83 95	95 91 86 109 96	34 40 36 36 39	25 23 22 22 21 20	6.8 6.4 6.4
TOTAL MEAN MAX MIN AC-FT	377 12.2 18 10 748	280.0 9.33 11 8.6 555	248.4 8.01 8.6 7.6 493	225.8 7.28 7.6 7.0 448	187.8 6.71 7.0 6.4 373	188.2 6.07 6.4 6.0 373	315.8 10.5 26 6.0 626	1824 58.8 127 21 3620	4708 157 235 86 9340	1425 46.0 88 33 2830	753 24.3 35 16 1490	423.7 14.1 21 6.4 840

CAL YR 1986 TOTAL 17366.2 MEAN 47.6 MAX 340 MIN 5.8 AC-FT 34450 WTR YR 1987 TOTAL 10956.7 MEAN 30.0 MAX 235 MIN 6.0 AC-FT 21730

55

09035800 DARLING CREEK NEAR LEAL, CO

LOCATION.--Lat 39°48'20", long 106°01'05", in NE4SW4 sec.9, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 0.6 mi upstream from mouth and 1.4 mi southeast of Leal.

DRAINAGE AREA .-- 8.21 mi2.

PERIOD OF RECORD. -- October 1965 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,090 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 17 to Apr. 16. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 22 years, 9.86 ft 3/s; 7,140 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 241 ft 3 /s, June 30, 1984, gage height, 4.30 ft, from rating curve extended above 100 ft 3 /s; minimum daily, 1.0 ft 3 /s, Jan. 12, 1975.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 64 $\rm ft^3/s$ at 2100 June 9, gage height, 3.41; minimum daily, 2.3 $\rm ft^3/s$, Jan. 21 to Feb. 20.

		DISCHA	RGE, CUBI	C FEET P		WATER YEAR AN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	4.7 4.6 4.6 4.5 4.4	3.5 3.6 3.5 3.1 3.5	2.8 2.8 2.8 2.7 2.7	2.5 2.5 2.5 2.5 2.5	2.3 2.3 2.3 2.3 2.3	2.4 2.4 2.4 2.4 2.4	2.5 2.5 2.5 2.5 2.5	8.4 8.0 6.3 5.5	23 26 29 34 36	21 19 18 17 16	7.8 7.2 6.8 6.4 6.4	5.7 5.6 5.5 5.7
6 7 8 9	4.5 4.5 4.4 4.3	3.4 3.4 3.4 3.4	2.7 2.7 2.7 2.7 2.7	2.5 2.5 2.5 2.5 2.5	2.3 2.3 2.3 2.3 2.3	2.4 2.4 2.4 2.4	2.5 2.5 2.5 2.5 2.5	6.0 6.9 8.3 9.6	37 37 40 50 52	16 15 15 14 13	6.5 7.4 6.9 6.4 6.3	5.5 5.4 5.3 5.3
11 12 13 14 15	4.1 3.9 3.9 4.0 3.9	3.4 3.4 3.4 3.3	2.7 2.7 2.7 2.7 2.7	2.4 2.4 2.4 2.4 2.4	2.3 2.3 2.3 2.3 2.3	2.4 2.4 2.4 2.4 2.4	2.5 2.5 2.5 2.5 2.6	12 14 18 22 25	42 41 39 39 36	13 17 14 12	6.1 6.0 6.1 6.2 5.9	5.2 5.2 5.5 6.2
16 17 18 19 20	3.8 3.7 3.8 4.0	2.7 2.8 2.8 2.8 2.8	2.7 2.7 2.7 2.7 2.7	2.4 2.4 2.4 2.4 2.4	2.3 2.3 2.3 2.3 2.3	2.4 2.5 2.5 2.5	2.7 2.8 3.3 3.6 3.2	30 33 29 25 25	35 33 30 29 27	10 11 9.9 8.8 8.2	5.9 5.4 5.3 5.3	6.6 7.4 6.0 5.5
21 22 23 24 25	3.5 4.0 3.9 3.7 3.7	2.8 2.8 2.8 2.8 2.8	2.7 2.6 2.6 2.6 2.6	2.3 2.3 2.3 2.3	2.4 2.4 2.4 2.4 2.4	2.5 2.5 2.5 2.5 2.5	2.8 3.0 4.2 4.7 4.8	21 19 19 19 17	25 24 23 22 21	8.0 7.6 7.3 7.0 6.9	5.7 6.4 8.3 8.5 8.0	5.4 5.2 5.2 5.2
26 27 28 29 30 31	3.8 3.7 3.7 3.7 3.7 3.7	2.8 2.8 2.8 2.8 2.8	2.6 2.6 2.6 2.6 2.6	2.3 2.3 2.3 2.3 2.3 2.3	2.4 2.4 2.4	2.5 2.5 2.5 2.5 2.5 2.5	4.8 5.2 6.4 6.8 6.7	16 15 14 14 14	20 19 18 23 22	7.1 7.4 9.6 8.4 9.5	7.2 6.6 6.5 6.2 5.9	5.2 5.2 5.2 5.1
TOTAL MEAN MAX MIN AC-FT	124.7 4.02 4.7 3.5 247	93.1 3.10 3.6 2.7 185	83.0 2.68 2.8 2.6 165	74.3 2.40 2.5 2.3 147	65.2 2.33 2.4 2.3 129		02.6 3.42 6.8 2.5 204	493.3 15.9 33 5.3 978	932 31.1 52 18 1850	367.1 11.8 21 6.9 728	200.7 6.47 8.5 5.3 398	165.6 5.52 7.4 5.1 328

CAL YR 1986 TOTAL 4201.5 MEAN 11.5 MAX 79 MIN 2.2 AC-FT 8330 WTR YR 1987 TOTAL 2777.4 MEAN 7.61 MAX 52 MIN 2.3 AC-FT 5510

09035820 SOUTH FORK WILLIAMS FORK AT UPPER STATION NEAR PTARMIGAN PASS, CO

LOCATION. -- Lat 39°42'30", long 105°56'49", in Grand County, Hydrologic Unit 14010001, on left bank 3.5 mi upstream from Short Creek, 3.4 mi northeast of Ptarmigan Pass.

DRAINAGE AREA .-- 2.78 mi2.

105

AC-FT

72

PERIOD OF RECORD. -- October 1984 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 10,820 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 13 to May 3, Sept. 28-30. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperatures were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 77 ft³/s, June 8, 1985, gage height 1.36 ft; minimum daily 0.41 ft³/s, Mar. 6 to Apr 5, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 44 ft3/s at 1630 June 13, gage height, 1.06 ft; minimum daily, 0.41 ft3/s, Mar. 6 to Apr. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAYOCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 1.5 .98 .74 .58 . 44 .41 20 3.6 1.6 1.7 3.1 11 2 1.9 1.5 .96 .72 .72 .57 .43 .41 2.9 21 10 3.2 1.6 3 1.4 .96 .57 .43 .41 2.7 24 9.2 2.9 1.6 4 1.8 1.4 .96 .72 .56 42 .41 2.5 28 8.4 2.6 1.7 5 1.7 1.4 .94 .70 .56 .42 .41 3.0 27 7.7 2.4 1.6 6 .94 •55 1.8 .68 .55 .41 .43 5.9 30 34 6.6 1.4 7 8 1.4 .94 2.8 2.5 .92 1.3 .54 37 1.7 .68 .43 8.9 5.9 2.3 10 1.8 1.3 •53 34 .92 .67 .41 11 .53 .52 .52 1.9 1.3 .90 .67 .41 .43 12 33 34 5.3 2.1 12 13 .90 .67 .41 .45 13 6.6 2.1 1.8 1.2 .67 .49 5.6 2.1 1.3 14 1.8 1.2 .88 .66 .51 .58 18 32 4.7 2.1 15 1.8 1.2 .86 .66 .51 .41 .70 21 30 4.2 1.9 1.6 1.8 .80 2.0 16 1.2 .86 .66 .50 .41 25 28 3.8 2.1 17 1.8 1.2 .86 .65 .50 25 5.1 2.0 2.1 .41 1.0 1.7 1.2 .84 .65 .49 .41 1.2 22 22 4.3 2.0 1.7 .84 19 17 3.5 3.3 19 1.7 1.1 .64 .49 .41 1.4 21 1.8 20 19 1.8 1.3 1.7 .82 .64 .48 .41 1.1 1.5 1.2 21 1.7 .82 .63 .48 1.3 14 18 3.0 22 23 1.7 1.1 .82 .63 .47 .41 1.4 13 17 16 2.3 1.1 .47 .41 1.6 13 3.1 1.0 24 .80 .46 2.7 .94 1.6 1.0 .62 .41 1.8 13 15 13 2.6 25 1.6 .80 1.0 .61 .46 .41 2.0 2.7 .98 .41 13 12 2.3 26 1.6 .78 .61 3.1 1.0 .45 2.2 11 1.1 .78 .76 .76 27 1.0 .45 .41 2.4 3.0 2.0 1.6 .60 11 1.1 28̀ 1.6 . 44 4.6 1.0 .60 9.7 9.6 1.0 .41 11 1.0 .59 .41 2.8 13 3.6 .96 1.5 ---30 .98 .76 .59 .41 2.9 9.5 12 3.7 .96 31 14 4.0 1.5 .74 .58 ---.41 1.6 71.7 2.31 3.6 1.6 367.2 11.8 25 699 23.3 TOTAL 53.1 36.18 26.70 20.26 14.28 12.80 33.74 160.0 40.54 .65 MEAN 1.21 1.12 5.16 1.35 .98 .74 53 2.9 37 11 2.1 MA X 1.9 1.5 .58 . 44 11 2.6 .44 .94 MIN .58 .41 1.5

25

67

728

1390

142

80

CAL YR 1986 WTR YR 1987 TOTAL 2272.28 MEAN 6.23 MAX 46 MIN .50 AC-FT 4510 TOTAL 1535.49 MEAN 4.21 MAX 37 MIN .41 AC-FT 3050

40

28

09035840 SOUTH FORK WILLIAMS FORK ABOVE TRIBUTARY NEAR PTARMIGAN PASS, CO

LOCATION.--Lat 39°42'13", long 105°58'54', in Grand County, Hydrologic Unit 14010001, on right bank, 1.5 mi upstream from Short Creek, 1.7 mi northeast of Ptarmigan Pass.

DRAINAGE AREA .-- 5.53 mi2.

PERIOD OF RECORD. -- October 1984 to October 1986, May to September 1987.

GAGE..-Water-stage recorder. Elevation of gage is 10,360 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Aug. 21-30, Sept. 14-19, 25-29. Records, good except for estimated daily discharges, which are poor. No diversion upstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 182 ft³/s, June 8, 1985, gage height, 2.17 ft; maximum gage height, 2.56 ft, May 1, 1985 (backwater from ice); minimum daily discharge, 1.1 ft³/s, Feb. 13-19, 1986.

EXTREMES FOR CURRENT YEAR--October, May to September: Maximum discharge, 83 ft⁹/s at 1930 June 9, gage height, 1.47 ft; minimum daily, 2.4 ft³/s, Sept. 21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					•	DAN VADOL	~					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.5 3.7 3.4 3.5 3.6							6.6	28 29 33 41 39	13 12 12 11 11	6.1 5.7 5.2 4.9 4.7	2.8 2.7 2.6 2.6 2.6
6 7 8 9 10	4.0 3.7 3.9 4.4 3.5							7.6 12 12 15 16	44 50 60 69	10 9.6 9.3 8.8 8.4	4.8 5.0 4.4 4.4 4.3	2.7 2.7 2.6 2.6 2.6
11 12 13 14 15								18 19 23 25 30	57 54 53 52 48	8.2 9.7 8.7 7.7	4.2 4.1 4.1 4.1 4.0	2.7 2.7 2.6 3.0 3.3
16 17 18 19 20								41 41 35 30 28	44 35 31 28 26	7.0 8.2 7.4 6.6 6.2	3.9 3.8 3.7 3.7	3.7 4.1 3.7 3.0 2.6
21 22 23 24 25								24 22 23 22 20	24 22 21 19 17	5.9 5.6 5.2 5.2	4.0 4.6 4.9 4.6 4.1	2.4 2.5 2.6 2.5 2.5
26 27 28 29 30 31								18 17 16 15 15	16 15 14 18 15	5.5 7.4 6.3 7.0	3.8 3.5 3.2 3.1 3.0	2.6 2.8 2.6 2.5 2.5
TOTAL MEAN MAX MIN AC-FT									1062 35.4 69 14 2110	247.6 7.99 13 5.2 491	130.8 4.22 6.1 3.0 259	83.4 2.78 4.1 2.4 165

AC-FT

281

216

WILLIAMS FORK BASIN

09035850 SOUTH FORK WILLIAMS FORK ABOVE SHORT CREEK NEAR PTARMIGAN PASS, CO

LOCATION.--Lat $39^{\circ}42'11"$, long $105^{\circ}59'23"$, in Grand County, Hydrologic Unit 14010001 on right bank 1.1 mi northeast of Ptarmigan Pass.

DRAINAGE AREA. -- 6.53 mi2.

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 10,210 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 2 to May 5. Records good except for estimated daily discharges, which are poor. No diversions upstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 164 $\rm ft^3/s$, June 8, 1985, gage height, 2.91 ft; minimum daily, 1.3 $\rm ft^3/s$, Feb. 13-19, 1986.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 65 ft³/s at 2000 May 16, gage height, 2.17 ft; minimum daily, 1.9 ft³/s, Feb. 11 to Apr. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEÁN VALUES DAY OCT NOV DE C JAN FEB MAR APR MAY JUN JUL AUG SEP 18 8.8 4.2 3.2 30 5.4 4.2 2.4 2.0 1.9 1.9 20 2.3 5.1 4.2 32 35 4.2 2.0 19 8.0 1.9 1.9 17 15 3.1 3 5.1 4.1 2.0 1.9 15 4.2 4.9 4.1 2.0 13 39 40 14 7.0 6.6 4.3 5 4.9 10 4.1 4.0 2.3 2.0 14 3.1 1.9 1.9 6 4.9 4.0 3.1 2.2 2.0 1.9 2.0 41 13 6.8 3.9 3.9 3.9 3.9 5.2 3.0 2.2 2.0 1.9 2.2 13 45 13 3.8 50 55 51 4.8 4.9 3.0 8 2.2 2.0 1.9 2.2 16 12 6.6 2.1 2.0 1.9 2.1 19 11 6.3 10 3.8 4.7 2.9 2.1 2.0 1.9 2.0 21 11 3.8 49 3.6 11 4.8 2.9 2.1 1.9 1.9 24 10 6.0 5.9 5.8 3.6 12 4.7 3.7 2.9 2.0 1.9 1.9 2.3 26 48 13 4.7 2.9 3.7 2.0 1.9 47 3.4 13 1.9 2.6 31 11 1.9 3.0 3.5 5.0 2.0 10 5.7 15 4.7 3.6 2.8 3.5 37 44 5.3 4.0 2.0 1.9 1.9 9.3 3.6 45 8.8 5.3 4.7 16 4.2 2.8 42 2.0 1.9 1.9 4.1 4.2 46 3.5 3.5 2.8 2.0 1.9 1.9 5.0 5.8 37 11 5.5 4.6 17 5.0 18 4.2 42 34 9.7 4.8 19 4.3 3.4 2.0 1.9 32 8.7 4.6 4.3 20 4.1 3.4 2.7 2.0 1.9 1.9 8.0 37 30 8.3 4.5 3.2 21 4.3 1.9 6.2 33 28 8.0 4.8 3.2 3.3 2.7 2.0 1.9 4.3 4.1 3.3 7.8 22 2.6 2.0 1.9 1.9 7.0 8.5 30 26 3.0 25 23 2.9 23 2.6 2.0 1.9 1.9 30 6.5 3.3 30 7.2 4.3 24 2.6 2.0 1.9 1.9 10 5.7 2.5 25 10 27 7.2 5.6 2.0 1.9 2.9 1.9 26 4.3 3.3 3.3 3.3 3.2 2.5 2.0 1.9 12 23 21 21 7.7 7.9 5.2 5.0 3.0 2.5 13 15 17 20 4.4 1.9 1.9 27 2.0 1.9 28 4.4 2.0 3.2 3.0 1.9 19 19 10 4.9 8.8 4.3 2.0 19 23 4.7 ---8.7 9.6 30 3.2 2.4 2.0 1.9 18 19 20 4.4 2.8 23 4.2 31 4.2 ___ 2.4 2.0 ---1.9 ___ ---108.7 TOTAL 141.8 86.4 328.1 64.5 54.2 58.9 180.3 792 1054 179.8 110.3 4.57 5.4 4.1 2.79 3.2 2.4 MEAN 3.62 2.08 1.94 1.90 6.01 25.5 10.6 5.80 3.68 35.1 MAX 4.2 2.4 2.0 1.9 18 46 55 19 18 8.8 5.5 1.9 7.2 MIN 3.2 10 2.0 1.9 1.9

117

358

1570

2090

651

357

219

CAL YR 1986 TOTAL 5486.5 MEAN 15.0 MAX 99 MIN 1.3 AC-FT 10880 WTR YR 1987 TOTAL 3159.0 MEAN 8.65 MAX 55 MIN 1.9 AC-FT 6270

128

108

171

59

09035870 SOUTH FORK WILLIAMS FORK BELOW SHORT CREEK NEAR PTARMIGAN PASS, CO

LOCATION.--Lat 39°44'57", long 106°01'53", in Grand County, Hydrologic Unit 14010001 on left bank 3.25 mi downstream from Short Creek, 4.5 mi northwest of Ptarmigan Pass.

DRAINAGE AREA. -- 20.0 mi2.

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,360 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 6 to Mar. 31. Records good except for estimated daily discharges, which are poor. No diversions upstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 302 $\rm ft^3/s$, June 8, 1985, gage height, 2.51 ft; minimum daily, 4.6 $\rm ft^3/s$, Feb. 12-19, 1986.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 145 $\rm ft^3/s$ at 2100 June 7, gage height, 1.99 ft; minimum daily, 4.8 $\rm ft^3/s$, Apr. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEÁN VALUES OCT JUL AUG SEP DAY NOV DE C JAN FEB MAR APR MA Y JUN 5.5 5.5 5.5 73 79 83 20 10 5.3 5.4 16 12 9.4 6.4 5.1 39 55 38 49 9.4 9.2 19 10 2 12 6.4 5.2 16 5.3 34 13 6.2 5.4 30 45 18 10 15 15 12 9.2 6.2 5.5 5.1 26 92 43 17 11 5 15 12 9.2 6.2 5.4 5.4 4.8 24 95 40 16 10 6 17 12 9.1 8.8 5.4 26 99 38 16 9.8 6.2 5.2 5.5 5.7 6.2 32 38 108 35 34 18 9.5 9.4 16 12 5.4 5.2 5.3 8 8.6 6.2 5.2 117 16 16 12 15 12 8.4 6.2 5.2 47 126 32 15 9.1 30 15 9.0 5.0 52 10 14 12 8.2 6.2 5.3 5.3 120 14 8.0 56 113 29 14 9.1 11 11 6.2 5.2 5.2 5.2 5.3 5.2 5.2 5.3 5.7 6.3 8.0 6.2 5.2 61 113 36 14 9.3 12 15 11 73 84 32 28 9.1 13 14 11 7.8 6.2 5.2 113 14 14 9.5 5.2 14 14 11 7.6 6.2 111 5.2 15 14 10 7.4 6.2 5.2 6.7 90 109 26 13 12 8.0 13 12 12 16 17 13 14 24 10 7.4 6.0 5.2 5.2 106 104 14 5.3 7.2 95 89 29 10 6.0 5.2 10 113 5.2 106 18 27 12 7.0 6.0 12 10 19 12 10 6.8 6.0 5.2 5.3 84 23 11 10 20 13 10 6.8 5.8 5.2 5.2 15 98 80 21 11 9.5 5.8 5.8 21 12 10 5.2 5.2 13 88 76 20 11 9.2 6.6 73 22 6.4 5.2 14 79 77 13 9.2 13 10 5.2 17 23 13 10 6.4 5.8 5.2 5.2 17 18 8.8 8.6 24 13 12 10 6.4 5.6 5.2 5.2 21 77 66 18 8.5 25 10 6.4 5.6 5.2 5.2 21 70 62 17 16 64 60 18 14 8.6 26 10 6.4 5.6 5.2 5.2 24 13 58 59 55 53 9.3 8.5 8.2 13 5.6 5.2 5.2 13 27 10 6.4 27 18 5.5 28 13 10 6.4 5.2 5.2 26 12 9.8 22 12 5.2 65 ---29 13 6.4 34 52 60 21 12 8.2 30 6.4 5.5 35 12 9.6 5.2 59 23 11 31 5.5 6.4 12 2649 377.9 1970 896 446 291.4 TOTAL 429 324.4 234.1 185.0 147.8 162.4 ME AN Ma X 13.8 7.55 5.97 6.4 5.28 5.24 12.6 63.5 88.3 28.9 14.4 9.71 10.8 126 20 13 8.2 9.6 6.4 5.5 5.2 5.2 4.8 24 56 17 11 MIN 885 AC-FT851 643 464 367 293 322 750 3910 5250 1780 578

CAL YR 1986 TOTAL 12128.7 MEAN 33.2 MAX 194 MIN 4.6 AC-FT 24050 WTR YR 1987 TOTAL 8113.0 MEAN 22.2 MAX 126 MIN 4.8 AC-FT 16090

09035880 SOUTH FORK WILLIAMS FORK BELOW OLD BALDY MOUNTAIN, NEAR LEAL, CO

LOCATION.--Lat $39^{\circ}45'32"$, long $106^{\circ}02'08"$, in Grand County, Hydrologic Unit 14010001, on right bank 5.3 mi northwest of Ptarmigan Pass, and 3.6 mi south of Leal.

DRAINAGE AREA .-- 21.8 mi2.

PERIOD OF RECORD. -- October 1985 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,330 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 5 to May 5, July 29-30. Records good except for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 285 ft³/s, June 19, 1986, gage height, 3.37 ft; minimum daily, 5.6 ft³/s, Feb. 12-19, 1986.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 186 $\rm ft^3/s$ at 2030 June 7, gage height, 2.65 ft; minimum daily, 6.0 $\rm ft^3/s$, Mar. 5 to Apr. 12.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCTO	OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	15 14 15 15 14	10 10 9.6 9.1 9.8	8.0 8.0 8.0 7.8 7.8	7.1 7.1 7.1 7.1 7.0	6.6 6.6 6.5 6.5	6.1 6.1 6.1 6.0	6.0 6.0 6.0 6.0	37 36 31 28 29	80 86 94 108 113	53 48 44 41 38	20 19 18 17 16	12 12 12 13 12
6 7 8 9 10	15 15 14 13 13	9.8 9.6 9.4 9.4	7.8 7.8 7.8 7.6 7.6	7.0 7.0 7.0 7.0 7.0	6.5 6.5 6.5 6.4	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0	27 32 40 49 57	120 134 146 156 146	35 33 32 30 28	16 18 16 15	12 11 11 11 10
11 12 13 14 15	12 13 14 13 12	9.2 9.0 9.0 8.8	7.6 7.6 7.6 7.4 7.4	6.9 6.9 6.9	6.4 6.4 6.4 6.4	6.0 6.0 6.0 6.0	6.0 6.2 6.8 7.6	61 68 78 86 89	137 136 136 133 128	28 35 30 26 24	14 15 14 15 14	11 11 10 11 13
16 17 18 19 20	12 11 11 11 12	8.8 8.6 8.4 8.4	7.4 7.4 7.4 7.2 7.2	6.9 6.8 6.8 6.8	6.3 6.3 6.3 6.3	6.0 6.0 6.0 6.0	9.4 11 13 15 13	106 113 104 95 94	121 108 97 91 85	23 27 26 22 20	13 13 13 12 12	13 14 12 11
21 22 23 24 25	11 12 11 11	8.4 8.4 8.2 8.2	7.2 7.2 7.2 7.2 7.2	6.8 6.7 6.7 6.7	6.3 6.2 6.2 6.2	6.0 6.0 6.0 6.0	14 17 19 21 22	85 76 75 75 67	78 76 72 68 63	19 18 17 17 16	13 14 17 19 16	11 10 9.8 9.7 9.6
26 27 28 29 30 31	11 11 10 11 10	8.2 8.2 8.0 8.0	7.2 7.2 7.2 7.2 7.1 7.1	6.7 6.7 6.6 6.6 6.6	6.2 6.2 6.1	6.0 6.0 6.0 6.0 6.0	24 26 29 34 33	64 60 56 55 53 62	59 57 54 67 61	17 17 25 22 21 23	15 14 13 14 13	9.7 10 9.6 9.4 9.2
TOTAL MEAN MAX MIN AC-FT	382 12.3 15 10 758	266.5 8.88 10 8.0 529	231.4 7.46 8.0 7.1 459	212.6 6.86 7.1 6.6 422	178.3 6.37 6.6 6.1 354	186.4 6.01 6.1 6.0 370	393.0 13.1 34 6.0 780	1988 64.1 113 27 3940	3010 100 156 54 5970	855 27.6 53 16 1700	466 15.0 20 12 924	331.0 11.0 14 9.2 657

CAL YR 1986 TOTAL 13986.8 MEAN 38.3 MAX 245 MIN 5.6 AC-FT 27740 WTR YR 1987 TOTAL 8500.2 MEAN 23.3 MAX 156 MIN 6.0 AC-FT 16860

61

09035900 SOUTH FORK WILLIAMS FORK NEAR LEAL. CO

LOCATION.--Lat 39°47'45", long 106°01'48", in NE4 sec.17, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 800 ft upstream from highway bridge, 0.6 mi upstream from mouth, and 1.2 mi southeast of Leal.

DRAINAGE AREA . -- 27.3 mi2.

PERIOD OF RECORD. -- October 1965 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,950 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 5 to Apr. 16. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 22 years, 32.8 ft 3/s; 23,760 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 464 ft³/s, June 15, 1978, gage height 3.37 ft; maximum gage height, 4.22 ft, Nov. 22, 1979 (backwater from ice); minimum daily discharge, 2.6 ft³/s, Mar. 6, 1967.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft³/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 9	2000	*143	*2.77				

Minimum daily, 8.6 ft³/s, Jan. 12-25.

		DISCH	ARGE, CU	BIC FEET	PER SECONI	D, WATER Y MEAN VALUE	EAR OCTOBER	R 1986 1	то ѕертемве	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	18 17 18 18	14 14 13 13	11 11 11 11 10	9.0 9.0 9.0 9.0	8.8 8.8 8.8 8.8	9.0 9.0 9.0 9.0	9.0 9.0 9.0 9.0	47 46 37 33 31	78 85 89 97 102	53 48 45 42 40	22 22 20 18 17	13 13 13 14 13
6 7 8 9	18 18 18 17	13 13 13 13 13	10 10 10 10 10	8.8 8.8 8.8 8.8	8.8 8.8 8.8 8.8	9.0 9.0 9.0 9.0	9.0 9.0 9.0 9.0	33 39 45 54 60	105 114 127 134 131	38 36 35 33 32	17 20 18 17 16	12 12 14 16 15
11 12 13 14 15	16 15 15 16 15	13 13 13 13 13	10 10 10 10 9.8	8.8 8.6 8.6 8.6	8.8 8.8 8.8 8.8	9.0 9.0 9.0 9.0	9.0 9.0 9.2 10	64 69 76 87 91	125 123 120 119 118	31 37 34 30 28	16 16 16 17 15	11 11 11 12 14
16 17 18 19 20	15 15 15 15 16	13 13 13 13 13	9.8 9.6 9.6 9.6	8.6 8.6 8.6 8.6	8.8 8.8 8.8 8.8	9.0 9.0 9.0 9.0	12 13 15 18 17	101 111 105 99 100	112 102 91 86 80	26 30 30 25 23	15 14 14 13	15 17 14 13
21 22 23 24 25	16 16 15 15	13 13 13 13 12	9.6 9.4 9.2 9.2	8.6 8.6 8.6 8.6	8.8 8.8 9.0 9.0	9.0 9.0 9.0 9.0	15 16 21 27 27	93 84 81 83 74	77 73 70 66 61	22 21 20 19 18	14 16 18 22 18	12 12 11 11 11
26 27 28 29 30 31	14 14 14 14 14	12 12 12 12 11	9.2 9.2 9.2 9.2 9.0	8.8 8.8 8.8 8.8	9.0 9.0 9.0	9.0 9.0 9.0 9.0 9.0	31 34 38 41 42	70 67 62 61 59 64	58 56 54 64 59	19 20 28 25 24 25	16 15 15 15 14 13	11 12 11 11 11
TOTAL MEAN MAX MIN AC-FT	492 15.9 18 14 976	385 12.8 14 11 764	304.0 9.81 11 9.0 603	271.0 8.74 9.0 8.6 538	247.6 8.84 9.0 8.8 491	279.0 9.00 9.0 9.0 553	505.2 16.8 42 9.0 1000	2126 68.6 111 31 4220	2776 92.5 134 54 5510	937 30.2 53 18 1860	512 16.5 22 13 1020	378 12.6 17 11 750

CAL YR 1986 TOTAL 14401.1 MEAN 39.5 MAX 242 MIN 6.9 AC-FT 28560 WTR YR 1987 TOTAL 9212.8 MEAN 25.2 MAX 134 MIN 8.6 AC-FT 18270

09036000 WILLIAMS FORK NEAR LEAL, CO

LOCATION.--Lat 39°50'02", long 106°03'21", in sec.31, T.2 S., R.77 W., Grand County, Hydrologic Unit 14010001, on right bank at downstream side of bridge, 100 ft downstream from Kinney Creek, and 1.7 mi northwest of

DRAINAGE AREA . = 89 5 mi 2.

PERIOD OF RECORD.--July 1933 to current year. Records since May 10, 1940, equivalent to earlier records if diversion to August P. Gumlick Tunnel is added to flow past station. Prior to October 1958, published as Williams River near Leal.

REVISED RECORDS. -- WSP 1733: 1951. WSP 2124: Drainage area. WRD Colo. 1973: 1972.

GAGE.--Water-stage recorder. Elevation of gage is 8,790 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 16, 1953, at site 15 ft downstream at present datum.

REMARKS.--Estimated Daily discharges: Dec. 10-11, 25-29, Jan. 1-4, 10-12, 15-28, Feb. 19-25, Mar. 19, 22, 31, Apr. 4, May. 17-20. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (see table below for figures of diversion). Diversions for irrigation of about 200 acres of hay meadows upstream from station and about 40 acres downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

COOPERATION. -- Diversions, in acre-feet, through August P. Gumlick Tunnel, provided by Colorado Division of Water Resources.

AVERAGE DISCHARGE.--54 years, 105 ft3/s; 76,070 acre-ft/yr, including diversions to August P. Gumlick Tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,720 $\rm ft^3/s$, June 10, 1952, gage height, 4.23 $\rm ft$; maximum gage height, 5.46 $\rm ft$, June 29, 1971 (backwater from log); minimum daily discharge, 13 $\rm ft^3/s$, at times in 1939, 1963, 1964, and 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 493 ft 3 /s at 2200 June 9, gage height, 3.02 ft; minimum daily,17 ft 3 /s, Mar. 26, Apr. 3.

		DISCHA	RGE, CUBI	C FEET PE	R SECOND,	, WATER Y MEAN VALU	EAR OCTOBEI	R 1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	53 50 52 51 46	40 40 39 36 .37	35 33 35 34 37	20 20 21 21 22	19 19 19 20 20	20 20 20 20 20	18 18 17 18 18	100 100 83 75 86	240 264 276 311 338	191 167 153 143 135	77 75 69 64 60	38 38 37 39 38
6 7 8 9 10	47 45 44 44 41	36 36 33 33 37	35 34 34 32 31	22 22 22 22 21	20 21 21 21 21	20 20 21 21 21	18 19 19 19	75 85 96 111 124	349 370 396 444 438	127 120 116 110 104	59 55 4 9 44 41	35 35 35 35 34
11 12 13 14 15	41 39 36 38 39	37 40 37 38 38	31 30 29 28 28	21 20 20 20 20	21 21 21 21 20	19 21 20 19 19	18 19 18 19 21	143 140 156 183 195	410 403 403 394 389	102 127 119 101 92	39 38 45 48 44	33 35 31 34 41
16 17 18 19 20	38 39 39 39 48	38 38 38 38 35	27 27 26 25 25	19 19 19 19 19	20 20 20 20 20	19 19 18 18	26 34 42 47 43	230 280 260 260 242	368 344 311 294 277	87 93 102 85 81	43 41 40 39 38	44 52 41 42 40
21 22 23 24 25	51 45 43 43	36 36 32 36 36	24 23 22 22 22	19 19 19 19	20 19 19 19 18	18 18 18 18 18	36 41 55 66 68	239 256 244 254 229	261 249 238 224 210	78 75 71 67 67	39 45 51 75 63	38 37 37 33 29
26 27 28 29 30 31	41 39 39 39 40 42	39 33 35 36 36	21 21 20 20 20 20	19 19 19 19 19	18 19 19 	17 18 18 18 18	70 74 84 105 92	215 199 185 178 171 198	199 189 181 220 212	69 74 87 84 81 86	55 48 46 46 42 40	28 29 28 27 28
TOTAL MEAN MAX MIN AC-FT a	1335 43.1 53 36 2650 594	1099 36.6 40 32 2180 355	851 27.5 37 20 1690 184	618 19.9 22 19 1230 152	556 19.9 21 18 1100 62	590 19.0 21 17 1170 94	1160 38.7 105 17 2300 322	5392 174 280 75 10700 1840	9202 307 444 181 18250 0	3194 103 191 67 6340 0	1558 50.3 77 38 3090 150	1071 35.7 52 27 2120 88

CAL YR 1986 TOTAL 44426 MEAN 122 MAX 776 MIN 16 AC-FT 88120 WTR YR 1987 TOTAL 26626 MEAN 72.9 MAX 444 MIN 17 AC-FT 52810

a-Diversions, in acre-feet, through August P. Gumlick Tunnel, furnished by Colorado Division of Water Resources.

09037500 WILLIAMS FORK NEAR PARSHALL, CO

LOCATION.--Lat 40°00'01", long 106°10'45", in SW4SW4 sec.31, T.1 N., R.78 W., Grand County, Hydrologic Unit 14010001, on left bank 150 ft downstream from bridge on State Highway 286, 3.7 mi downstream from Skylark Creek, 3.9 mi south of Parshall, and 4.2 mi upstream from Williams Fork Reservoir Dam.

DRAINAGE AREA .-- 184 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1904 to September 1924, June 1933 to current year. Records since May 10, 1940, equivalent to earlier records if diversion to August P. Gumlick Tunnel is added to flow past station. Published as "near (Hot) Sulphur Springs" 1904-12 and as Williams River near Parshall June 1933 to September 1958.

REVISED RECORDS.--WSP 1243: 1918. WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 7,808.95 ft, (Denver Board of Water Commissioners Datum). See WSP 1733 for history of changes prior to Aug. 9, 1938. Aug. 10, 1938 to Aug. 19, 1983 gage located on right bank at present datum.

REMARKS.--Estimated daily discharges: Nov. 8 to Mar. 26, Mar. 28 to Apr. 1, Apr. 3-9. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09036000). Diversions upstream from station for irrigation of about 1,300 acres upstream from station, and about 2,500 acres downstream from station. About 150 acres upstream from station irrigated by diversions into the drainage area.

AVERAGE DISCHARGE.--74 years, 137 ft3/s; 99,260 acre-ft/yr, including diversion to August P. Gumlick Tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 2,620 ft³/s, June 14, 1918, gage height, 6.05 ft, site and datum then in use, from rating curve extended above 1,400 ft³/s; minimum daily, 4.8 ft³/s, May 6, 8-10, 1972.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 405 $\rm ft^3/s$ at 0100 June 7, gage height, 2.80 $\rm ft$; minimum daily, 13 $\rm ft^3/s$, Aug. 18-21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP μ'n 73 17 б 73 71 16 58 35 15 36 46 67 42 68 65 ---___ ___ TOTAL 31.2 23.9 58.3 43.2 21.7 58 MEAN 68.5 33.1 35.8 30.0 73.7 MA X MIN AC-FT

CAL YR 1986 TOTAL 51955 MEAN 142 MAX 1010 MIN 22 AC-FT 103100 WTR YR 1987 TOTAL 24579 MEAN 67.3 MAX 362 MIN 13 AC-FT 48750

09037500 WILLIAMS FORK NEAR PARSHALL, CO--Continued

PERIOD OF RECORD. -- April 1986 to September 1987.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: April 1986 to September 1987. WATER TEMPERATURE: April 1986 to September 1987.

INSTRUMENTATION. -- Water-quality monitor from April 1986 to September 1987 (discontinued).

EXTREMES FOR PERIOD OF DAILY RECORD . --SPECIFIC CONDUCTANCE: Maximum daily, 115 microsiemens Aug. 29, 1986; minimum, 37 microsiemens June 20, 1986. WATER TEMPERATURE: Maximum daily, 23.0°C, July 26, 1987; minimum, 0.0°C, Oct. 13, 16-18, 22, Nov. 2, 4-12, 1986.

EXTREMES FOR CURRENT YEAR .--SPECIFIC CONDUCTANCE: Maximum, 111 microsiemens Aug. 12; minimum, 51 microsiemens June 8, 9, 11, 12. WATER TEMPERATURE: Maximum, 23.0°C, July 26; minimum, 0.0°C, Oct. 13, 16-18, 22, Nov. 2, 4-12, 1986.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DIS SOL	DE1 B: EN, CE S- IC VED 5	IO- HEM- CAL,	OXYGEN DEMAND, BIOCHEM 20 DAY, 20 DEG (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WHOLE WATER TOTAL FIELD MG/L AS CACO3
APR 13. 27.		1500 1645	71 143	106 76	8.1 7.7	3.0 6.5		9.9			48	_5
MA Y 06		1240	150	70	8.2	7.5	; {	3.7	0.4	1.3	30	0
JUN 02. 23.		1340 1400	170 81	59 62	8.1 8.1	10.5 14.0		3.8 3.2	0.8	1.7	31 32	3 4
JUL 20. SEP		1400	18	96	8.0	18.5	;	7.8			55	10
15.		1530	51	97	8.2	11.5	5 8	3.4	0.7	1.7	43	2
I	DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULF/ DIS- SOL (MG, AS SO	ATE R: - D: VED S(/L (1	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
APR 13. 27.		15 	2.6	3.0	1.3	43 	•	.0	1.2	0.3	11	59
MAY 06. JUN		9.2	1.7	2.3	1.1	31	6	. 6	8.0	0.2	9.3	42
02. 23. JUL		9.9 10	1.5 1.6	1.6 1.5	0.7	28 28		. 5 . 8	0.5 0.2	0.3	7.6 7.0	38 45
20. SEP	• • •	18	2.4	2.5	1.3	45	5	. 8	0.4	0.3	11	61
15.		13	2.5	2.5	1.2	41	7	. 4	1.1	0.3	9.7	49
	DATE	E SOL	OF SOLITI- DITS, SOL S- (TO VED PE	S- DI VED SOL NS (TO	S- AT 1 VED DEG. NS SUS R PEND	L RES 05 VC C, TI 5- SU DED PEN	SIDUE DLA- LLE, 1 DED IG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN NO2+N TOTA (MG/ AS N	, NO2+ 03 DI L SOL L (MG	N, NIT NO3 GE S- AMMO VED TOT /L (MO	NÍA AL /L
	13 27		67 O	.08 11	·3			<0.01	<0.1 <0.1		<0. <0.	
	1A Y 06		50 0	.06 17	.0			<0.01	<0.1	0	<0.	01
	02 23			.05 17 .06 9			<1	<0.01	<0.1 0.1		10 0.	02 01
	20		69 0	.08 2	.96				<0.1	0 <0.	10 <0.	01
2	15		62 0	.07 6	.75			<0.01	<0.1	0	<0.	01

09037500 WII 1AMS FORK NEAR PARSHALL, CO--Continued

65

WATER QUALITY D? A, WATER YEAR OCTOBER 1986 TO OCTOBER 1987

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- JEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
APR									
13			0.30			0.02		0.01	
27			0.60			0.02		<0.01	
MAY									
06			1.1			0.02		0.01	
JUN									
02	0.03	0.18	0.20	<0.20		0.01	0.02	<0.01	<0.01
23			0.40		0.50	0.01		0.03	
JUL									
20	<0.01		0.50	0.50		0.01	0.01	<0.01	<0.01
SEP									
15			<0.20			<0.01		<0.01	

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO OCTOBER 1987

					ME	CAN VALUES	\$					
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2	91 92	90 91						69 68	68 64	72 78	96 98	102 102
3 4	92 91	92						68	63	84	98 98	102
5	93	92 93						75 75	62 54	87 89 <i>·</i>	100	102 101
6	94	93						74		89	101	100
7	89	93 91						73	53 52	90	101 98	102 102
8	89	93						67	51	94	92	102
9	91	97						66	51	95	95	103
10	91	92						65	59	95	96	103
11	91	96						64	51	98	104	104
12	91	91						64	51	97	111	104
13	92							64	52	96	103	104
14 1 5	94 93							62 62	53 56	94 95	103 103	103 96
15	93							02	50	95	103	90
16	93							63	60	96	103	90
17 18	93							61	59	93	104	87
19	93 93							59 57	61 64	95 96	104 104	88 91
20	92							60	56	98	105	93
)_							00	70	30	100	7.5
21	88							61	57	99	105	94
22	78						87	62	59	99	105	95
23 24	86						82	63 63	61 63	100	103	96
25	90 91						77 76	63	65	100 101	94 95	97 9 9
	91						10	0,5	0,5	101	3)	30
26	91						76	65	69	101	97	100
27 28	92						7 7	67	73	101	98	100
26 29	92 92						77 74	70 72	75 75	102 99	98 99	100 101
30	92						72	73	67	99 95	100	100
30 31	90							73		95	101	
MEAN	91.0							66.1	60.1	94.3	100	98.8

09037500 WILLIAMS FORK NEAR PARSHALL, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO OCTOBER 1987

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO OCTOBER 1987

DAY	MA X	MIN	MAX	MIN	MA X	MIN	MAX	MIN	MA X	MIN	MA X	MIN
Ditt	OCTOB		NOVEMB		DE CEMB		JANUA		FEBRUA		MAR	
1	9.1	3.0	4.8	1.5								
2	9.2	4.5	3.6	.0								
3 4	7.0 6.7	4.5 3.5	3.6 3.7	.5 .0								
5	9.5	3.0	4.1	.0								
6	9.7	3.0	2.3	.0								
7 8	10.0 9.7	4.0 4.0	.8 .0	.0 .0								
9	9.5	3.8	.0	.0								
10	8.3	3.3	.0	•0								
11 12	6.2 6.1	3.3 1.1	.0 .1	.0								
13	6.0	.0										
14 15	6.6 6.7	•1 •5										
16	6.8	.0										
17	6.5	.0										
18 19	7.0 6.3	.0 3.0										
20	7.1	3.0										
21	4.5	•5										
22	3.8	.0										
23 24	4.7 5.6	.5 1.2										
25	5.2	1.5										
26	6.2	• 5										
27 28	5.8 5.7	•5 •8										
29	5.6	•5										
30 31	6.1 3.3	1.5 1.7										
MONTH	10.0	•0										
DA Y	MA X	MIN	MA X	MIN	MA X	MIN	х ам	MIN	MA X	MIN	X AM	MIN
DA Y	MAX APRII		MA X MA Y	MIN	MA X JUNE		MA X JULY		MA X A U GUS		MAX SEPTEN	
1				MIN 4.1								
1 2	APRII	L 	МАҮ 7.8 5.8	4.1 3.1	JUNE 13.2 12.0	6.7 5.5	JULY 14.8 18.5	7•9 8•3	AUGUS 22.2 22.0	12.3 12.7	SEPTEN 19.6 18.3	4BER 9.1 10.4
1 2 3 4	APRII	L 	MAY 7.8	4.1	JUNE 13.2 12.0 12.5 12.8	6.7	JULY 14.8	7 . 9	AUGUS 22.2	12.3 12.7 13.2 11.5	SEPTEN 19.6 18.3 16.8 14.1	9.1 10.4 9.2
1 2 3	APRII	L 	MAY 7.8 5.8 3.5	4.1 3.1 2.2	JUNE 13.2 12.0 12.5	6.7 5.5 5.5	JULY 14.8 18.5 19.3	7•9 8•3 8•8	AUGUS 22.2 22.0 20.6	12.3 12.7 13.2	SEPTEN 19.6 18.3 16.8	9.1 10.4 9.2
1 2 3 4 5	APRII		7.8 5.8 3.5 6.5 7.8	4.1 3.1 2.2 1.9 2.7	JUNE 13.2 12.0 12.5 12.8 11.4	6.7 5.5 5.5 6.7 6.6	JULY 14.8 18.5 19.3 19.2 17.8	7.9 8.3 8.8 8.7 8.8	AUGUS 22.2 22.0 20.6 21.0 20.2	12.3 12.7 13.2 11.5 11.3	SEPTEN 19.6 18.3 16.8 14.1 16.5	9.1 10.4 9.2 10 7.7 6.9
1 2 3 4 5	APRII	 	MAY 7.8 5.8 3.5 6.5 7.8	4.1 3.1 2.2 1.9 2.7	JUNE 13.2 12.0 12.5 12.8 11.4	6.7 5.5 5.5 5.5 6.7	JULY 14.8 18.5 19.3 19.2 17.8	7.9 8.3 8.8 8.7 8.8	AUGUS 22.2 22.0 20.6 21.0 20.2	12.3 12.7 13.2 11.5 11.3	SEPTEN 19.6 18.3 16.8 14.1 16.5	9.1 10.4 9.2 10 7.7
1 2 3 4 5 6 7 8	APRI		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0	4.1 3.1 2.2 1.9 2.7 3.0 3.3 4.3	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5	6.7 5.5 5.5 6.6 6.5 6.5	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8	7.9 8.3 8.8 8.7 8.8 8.7 9.1	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 16.1	9.1 10.4 9.2 10 7.7 6.9 6.9 6.3 8.1
1 2 3 4 5 6 7 8 9	APRII		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2	4.1 3.1 2.2 1.9 2.7 3.0 3.3 4.3 4.3	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8	6.7 5.5 5.5 6.7 6.6 6.5 5.2	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1	7.9 8.3 8.8 8.7 8.8 8.7 9.1 8.8	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4	12.3 12.7 13.2 11.5 11.3 11.8 11.8 11.9 11.5	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 16.1 15.0	9.1 10.4 9.2 10 7.7 6.9 6.3 8.1 7.2
1 2 3 4 5 6 7 8 9 10	APRI		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3	4.1 3.1 2.2 1.9 2.7 3.0 3.3 4.3 4.3 4.5	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8	6.75555.7 6.0555.2 7.5555.7	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8	7.9 8.3 8.8 8.7 9.1 8.8 9.0	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.7 16.3 16.1 15.0	9.1 10.4 9.2 10 7.7 6.9 6.3 8.1 7.2
1 2 3 4 5 6 7 8 9 10	APRII		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2	4.1 3.1 2.2 1.9 2.7 3.3 4.3 4.5 4.9 3.9	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5	6.55.57 6.65.52 6.55.52 7.25	JULY 14.8 18.5 19.3 19.2 17.8 18.9 16.8 19.1 16.8 13.9 13.6 17.1	7.9 8.3 8.8 8.7 8.8 8.7 9.1 8.9 9.1 9.1	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5 12.1	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 16.3 16.1 15.0 15.6 15.9 13.8	9.1 10.4 9.2 10 7.7 6.9 6.9 6.3 8.1 7.2 6.5 6.4
1 2 3 4 5 6 7 8 9 10	APRI		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2	4.1 3.1 2.2 1.9 2.7 3.3 4.3 4.5 4.9 3.9	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8	6.7555.7 6.0552 7.2	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8	7.9 8.3 8.8 8.7 8.8 8.7 9.3 9.1 8.0 9.1	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.5 12.1	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 16.1 15.0	9.1 10.4 9.2 10 7.7 6.9 6.3 8.1 7.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	APRII		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1	4.1 3.1 2.9 3.3 4.3 4.5 4.9 9.9 9.2 9.5 4.9 5.6	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0	6.7 5.5 5.5 6.0 6.5 5.5 6.5 7.6 6.5 7.6	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.9 13.6 17.1 18.9 20.3	7.9 8.3 8.8 8.7 8.8 9.1 8.9 9.1 9.1 9.1	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5 12.1	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 16.1 15.6 15.9 13.8 15.2	9.1 10.4 9.2 10 7.7 6.9 6.9 6.3 8.1 7.2 6.5 6.4 7.3 7.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	APRI		7.8 5.8 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1 10.9 9.4	4.1 3.1 2.9 3.3 4.3 4.5 4.9 9.9 9.2 9.3 9.5 4.9 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6	6.75.55.7 6.05.52 7.25.56 6.05.2 7.66.5.7 7.1	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 13.9 13.6 17.1 18.9 20.3	7.93 8.8 8.7 8.8 8.7 9.3 9.6 9.1 8.1 9.7 8.4 9.9 9.4 9.9	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5 12.1	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 15.0 15.6 15.9 13.8 15.2 11.2	9.1 10.4 9.2 10 7.7 6.9 6.3 8.1 7.2 6.5 6.4 7.3 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	APRII		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1 10.9	4.1 3.1 2.9 3.3 4.3 4.5 4.9 9.9 9.2 9.5 4.9 5.6	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4	6.55.5.7 6.05.5.2 7.55.6 6.05.5.2 7.5.6 6.5.5.7 7.6.7 7.6.7	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.6 17.1 18.9 20.3	7.93 8.38 8.78 8.73 8.89 9.11 8.99 7.44 9.1	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5 12.1 11.5 12.1	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 16.3 16.1 15.0 15.6 15.9 13.8 15.2 11.2	9.1 10.4 9.2 10 7.7 6.9 6.9 6.3 8.1 7.2 6.5 6.4 7.3 7.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	APRII		7.8 5.8 5.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1 10.9	4.1 1.1 2.9 2.0 3.3 4.5 4.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2	6.75.55.7 6.05.52 7.25.56 6.05.2 7.66.5.7 7.1	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.6 17.1 18.9 20.3	7.93 8.38 8.78 8.89 9.11 8.99 9.14 9.99 9.19 9.90	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5 11.5 12.1 11.5 10.4 9.7	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 15.0 15.6 15.9 13.8 15.2 11.2	9.1 10.4 9.2 10 7.7 6.9 6.9 6.3 8.1 7.2 6.5 6.4 7.3 7.2 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	APRII		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1 10.9 10.9 9.4 8.7 8.3 7.4 7.0	4.1 3.2 1.2 2.7 3.3 4.5 4.9 9.9 9.9 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1	6.55.5.7 6.65.5.2 7.55.5.6 6.55.5.2 7.66.5.5.2 7.7.8 7.7.8 7.7	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.9 13.6 17.1 18.9 20.3	7.93 8.8 8.7 8.8 8.7 9.1 8.9 9.1 8.9 9.1 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.7 18.1 19.5 16.9 17.2	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5 12.1 11.5 10.4 9.7 10.3 8.8 9.7	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 16.1 15.0 15.6 15.9 13.8 15.2 11.2 11.9 11.2 12.0 12.5 12.3	9.1 10.4 9.2 10 7.7 6.9 6.9 6.3 8.1 7.2 6.5 6.4 7.3 7.2 8.5 6.6 4.4 5.4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3	APRII		7.8 5.8 5.8 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 10.9 10.9 9.4 8.7 8.3 7.4 7.0 8.5	4.1 1.1 2.97 3.3 4.5 4.9 9.9 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0	65.55.7 60.55.2 7.25.56 61.72.8 7.25.56 66.5.2 7.25.56 61.72.8 7.25.56 61.70.7 7.25.56 61.70.70.7 7.25.56 61.7	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 13.9 13.6 17.1 18.9 20.3	7.93.88.78.8.8.8.8.9.0.6.14.4.1.9.0.6.5.9.0.6.5.0.5.	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.5 16.9	12.3 12.7 13.7 11.5 11.3 11.8 12.8 11.9 11.5 12.1 11.5 11.4 11.5 10.4 9.7 10.3 8.8 9.7	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 15.0 15.6 15.9 13.8 15.2 11.2 12.5 12.3 13.1	9.1 10.4 9.2 10 7.7 6.9 6.3 8.1 7.2 6.5 6.4 7.32 8.5 6.6 4.3 4.4 5.4
1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24	APRII		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1 10.9 10.9 9.4 8.7 8.3 7.4 7.0 8.5 9.3 8.1	4.1297 033335 99929 69037 5450 4.33554 54545 4345	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1 14.2 14.5 14.6	65.55.7 66.55.2 7.55.56 66.55.7 7.67.7 7.88.66 8.66	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.6 17.1 18.9 20.3 19.8 16.9 19.1 20.1 19.6	7.93 8.38 8.78 8.89 9.11 8.99 9.10 9.65 10.05 11.6	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.2 19.5 16.9 17.2 16.0 15.9 14.3	12.3 12.7 13.2 11.5 11.3 11.8 12.8 11.9 11.5 12.1 11.5 10.4 9.7 10.3 9.7 10.3 9.7 10.6 8.9 8.9 9.7	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 15.0 15.6 15.9 11.2 11.2 11.2 12.0 12.5 12.3 13.1 13.5 14.2	9.1 10.4 9.2 10 7.7 6.9 6.9 6.3 8.1 7.2 6.5 6.4 7.3 8.5 6.6 3 4.4 5.4 5.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	APRII		7.8 5.8 6.5 7.8 11.6 11.8 12.0 12.2 8.3 9.0 11.1 9.1 10.9 10.9 9.4 8.7 8.3 7.4 7.0 8.5 9.3	4.12.97 0.333355 9.9929 6.9037 5.4504 4.33554 5.99329 6.9037 5.4504	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1 14.2 14.5	6.55.5.7 6.05.5.2 7.25.5.6 61.7.2.8 7.2.6 7.2.8 7.2.8 8.6	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 13.6 17.1 18.9 20.3 19.8 16.9 19.1 20.1 19.6	7.93 8.38 8.78 8.89 9.18 9.06 9.14 9.06 9.5 10.5 11.2	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.5 16.9 17.2 16.0 15.9	12.3 12.7 13.2 11.3 11.8 12.8 11.9 11.5 12.1 11.5 10.4 9.7 10.6 8.9 8.9 9.7	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 16.3 15.6 15.9 13.8 15.2 11.2 11.9 12.0 12.5 12.3 13.1 13.0 13.5	9.1 10.4 9.2 10 7.7 6.9 6.9 8.1 7.2 6.5 4.3 4.4 5.4 5.4 5.6 6.6
1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 224 25 26	APRII		7.8 5.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1 10.9 10.9 10.9 8.7 8.3 7.4 7.0 8.5 9.3 8.1 8.7	1.1.2.9.7 0.3.3.3.5 9.9.2.9 6.9.0.3.7 5.4.5.0.4 3.3.5.4 5.4.5.4.5.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3 4.5.3.4.5.3.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.3 4.5.3.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.5.4.5.4	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1 14.2 14.5 14.6 15.0 17.0	65.55.7 6.05.52 72.55.6 61.72.8 72.66.8 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.6 17.1 18.9 20.3 19.6 19.1 20.1 19.6	7.93 8.38 8.78 8.89 9.18 9.18 9.19 9.65 10.05 11.65 11.55 13.1	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.2 19.5 16.9 17.2 16.0 15.9 14.3 16.0	12.3 12.7 13.2 11.5 11.3 11.8 11.95 11.5 11.5 10.4 11.5 10.4 9.7 10.6 8.9 8.9 8.7	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.6.1 15.0 15.6 15.9 13.8 15.2 11.2 11.2 12.0 12.5 12.3 13.1 13.5 14.2 13.6 13.2	9.1 10.4 9.2 10 7.7 6.9 6.9 8.1 7.2 6.5 4.3 4.4 5.4 5.4 5.6 6.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	APRII		7.8 5.8 5.8 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 10.9 10.9 9.4 8.7 8.3 7.4 7.0 8.5 9.3 8.1 9.1 9.1	1.1.2.97 0.3.3.3.5 9.9.9.2.9 6.9.0.3.7 5.4.5.0.4 3.6.6 4.3.2.1.2 3.3.3.5.4 5.5.3.7 5.4.5.0.4 3.6.6	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1 14.5 14.6 15.0 17.0 16.3 16.1	755557 605552 725556 61728 72668 840	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 13.6 17.1 18.9 20.3 19.8 16.9 19.1 20.1 19.6 19.4 22.5 22.1 23.0 21.8 19.3	7.938.88.78.88.89.99.18.99.65.99.18.99.65.11.65.	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.2 19.5 16.9 17.2 16.0 15.9 14.3 16.0 16.5 16.8 15.0	12.3 12.7 13.5 11.3 11.8 12.8 11.9 11.5 11.4 11.5 10.4 9.7 10.3 8.9 8.9 11.5 10.6 11.1 11.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.6.3 15.0 15.6 15.9 13.8 15.2 11.2 11.9 12.0 12.5 12.3 13.1 13.6 13.5 14.6 13.5 14.7	9.1 10.4 10.4 10.7 6.9 6.3 8 6.3 8 6.3 4 4 5 5 6 5 6 5 6 5 6 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 9	APRII		7.8 5.8 3.5 6.5 7.8 11.6 12.0 12.2 8.3 9.0 11.1 10.9 10.9 10.9 8.7 8.3 7.4 7.0 8.3 8.1 7.8 8.3 7.4 7.0 8.3 8.1 8.3	1.1.2.9.7 0.3.3.3.5 9.9.2.9 6.9.0.3.7 5.4.5.0.4 3.6.6.3 4.3.2.1.2 3.3.4.4.4 4.3.3.5.4 5.4.5.4.5.4.3.6.6.3	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1 14.5 14.6 15.0 17.0 16.3 16.1 11.5	65.55.7 605552 72556 61728 72668 8401 7555.7 60552 72556 61728 72668 8401	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.6 17.1 18.9 20.3 19.8 19.1 20.1 19.6 19.4 21.2 21.4 22.5 22.1 23.0 21.8 19.3	7.93 8.88 8.78 8.89 9.18 9.18 9.19 9.65 10.52 11.65 13.38 12.6	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.2 19.5 16.9 17.2 16.0 15.9 14.3 16.0 16.5 16.8 15.0 18.0	12.3 12.7 13.5 11.3 11.8 11.9 11.5 12.1 11.5 10.4 11.5 10.4 11.5 10.4 11.5 10.6 11.1 11.5 10.6 11.1 11.5 10.6 11.1 11.5 10.6 11.5 10.6 11.5 10.6 11.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.6.1 15.0 15.6 15.9 13.8 15.2 11.9 11.2 12.0 12.3 13.1 13.5 14.2 13.6 13.5 14.2 13.6 13.5 12.0	9.1 10.4 9.2 10 7.7 6.9 6.3 8.1 2 6.3 8.5 6.3 4.4 5.4 5.6 6.5 5.6 6.5 5.6 6.5 6.3 4.4 5.6 6.3 4.4 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	APRII		7.8 5.8 5.8 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 10.9 10.9 9.4 8.7 8.3 7.4 7.0 8.5 9.3 8.1 9.1 9.1	1.1.2.97 0.3.3.3.5 9.9.9.2.9 6.9.0.3.7 5.4.5.0.4 3.6.6 4.3.2.1.2 3.3.3.5.4 5.5.3.7 5.4.5.0.4 3.6.6	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 9.4 8.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1 14.5 14.6 15.0 17.0 16.3 16.1	755557 605552 725556 61728 72668 840	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 13.6 17.1 18.9 20.3 19.8 16.9 19.1 20.1 19.6 19.4 22.5 22.1 23.0 21.8 19.3	7.938.88.78.88.89.99.18.99.65.99.18.99.65.11.65.	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.2 19.5 16.9 17.2 16.0 15.9 14.3 16.0 16.5 16.8 15.0	12.3 12.7 13.5 11.3 11.8 12.8 11.9 11.5 11.4 11.5 10.4 9.7 10.3 8.9 8.9 11.5 10.6 11.1 11.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.6.3 15.0 15.6 15.9 13.8 15.2 11.2 11.9 12.0 12.5 12.3 13.1 13.6 13.5 14.6 13.5 14.7	9.1 10.4 10.4 10.7 6.9 6.3 8 6.3 8 6.3 4 4 5 5 6 5 6 5 6 5 6 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 4 2 5 26 27 8 29 30	APRII		7.8 5.8 3.5 6.5 7.8 11.6 11.8 12.0 12.3 12.2 8.3 9.0 11.1 9.1 10.9 10.9 9.4 8.7 8.3 7.4 7.0 8.5 9.3 8.7 8.7 8.7	11297 03335 99929 69037 54504 36631 43212 33444 43354 54545 43453 43345.	JUNE 13.2 12.0 12.5 12.8 11.4 11.0 9.5 10.8 11.3 10.7 12.5 13.6 12.0 13.4 10.6 12.2 13.7 13.0 14.1 14.2 14.5 14.6 15.0 17.0 16.3 16.1 11.5 12.9	65.55.7 6.05.52 72.55.6 61.72.8 72.66.8 84.01.1	JULY 14.8 18.5 19.3 19.2 17.8 18.9 17.3 16.8 19.1 16.8 13.6 17.1 18.9 20.3 19.8 16.9 19.1 20.1 19.6 19.4 21.2 21.1 22.5 22.1 23.0 21.8 19.3 21.3	7.93 8.88 8.78 8.89 9.18 9.18 9.18 9.19 9.10 10.52 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11.65	AUGUS 22.2 22.0 20.6 21.0 20.2 17.3 19.2 19.3 19.4 19.2 20.1 19.8 16.9 17.0 19.1 19.7 18.1 19.5 16.9 17.2 16.0 17.3 16.0 16.5 16.8 15.0 17.7	12.3 12.7 13.2 11.3 11.8 11.9 11.5 11.5 11.5 10.4 11.5 10.4 11.5 10.4 11.5 11.5 11.1 11.5 10.6 11.1 11.5 11.6 11.1 11.5 11.6 11.6 11	SEPTEN 19.6 18.3 16.8 14.1 16.5 14.7 14.1 15.0 15.6 15.9 11.2 11.2 11.2 11.2 11.3 13.5 12.3 13.6 13.5 12.0 12.0	9.1 10.4 9.2 10.7 6.9 6.9 8.1 7.7 8.5 6.3 4.4 4.5 4.5 6.5 5.6 6.5 7.6 6.5 7.6 8.3 8.3 8.3 8.4 9.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09038000 WILLIAMS FORK RESERVOIR NEAR PARSHALL, CO

LOCATION.--Lat 40°02'06", long 106°12'17", in SE4 sec.23, T.1 N., R.79 W., Grand County, Hydrologic Unit 14010001, at dam on Williams Fork, 2.1 mi upstream from mouth, and 2.2 mi southwest of Parshall.

DRAINAGE AREA. -- 230 mi2.

PERIOD OF RECORD. -- April 1939 to current year. Prior to October 1948, published in WSP 1313.

REVISED RECORDS .-- WSP 2124: Drainage area.

GAGE. -- Non recording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city engineer of Denver); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by concrete-arch dam completed in October 1939; storage began April 1939; dam was enlarged Dec. 5, 1956, to Apr. 22, 1959. Enlarged capacity, 96,820 acre-ft, between elevations 7.634 ft, invert of outlet, and 7,811 ft, top of radial gates on spillway. No dead storage. Figures given represent usable contents. Reservoir is used for power development and to store water to compensate for water diverted through August P. Gumlick Tunnel. Water is released during periods of low flow in Colorado River to supply decreed prior water rights. Records provided by Denver Board of Water Commissioners.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 97,130 acre-ft, July 9, 1962, elevation, 7,811.19 ft; no contents at times in 1958 (construction) and 1966 (drained for repairs).

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 90,180 acre-ft, Oct. 1, elevation, 7,806.78 ft; minimum, 52,150 acre-ft, Apr. 15, elevation, 7,776.54 ft.

MONTHEND ELEVATION AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Contents Change in contents Elevation (acre-feet) (acre-feet)
Sept. 30	7,806.85 90,280 - 7,803.31 85,020 -5,260 7,798.57 78,350 -6,670 7,792.48 70,320 -8,030
CAL YR 1986	-2,700
Jan. 31. Feb. 28. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30.	7,785.18 61,500 -8,820 7,781.78 57,700 -3,800 7,777.93 53,580 -4,120 7,777.40 53,030 -550 7,783.46 59,550 +6,520 7,797.12 76,390 +16,840 7,799.03 78,980 +2,590 7,799.38 79,460 +480 7,797.94 77,490 -1,970
WTR YR 1987	-12,790

09038500 WILLIAMS FORK BELOW WILLIAMS FORK RESERVOIR, CO

LOCATION.--Lat 40°02'07", long 106°12'17", in SE4 sec.23, T.1 N., R.79 W., Grand County, Hydrologic Unit 14010001, on left bank 400 ft downstream from Williams Fork Reservoir, 2.1 mi upstream from mouth, and 2.1 mi southwest of Parshall.

DRAINAGE AREA . -- 230 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1948 to September 1954, August 1958 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to October 1958, published as Williams River below Williams Fork Reservoir.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 7,615.0 ft, (Denver Board of Water Commissioners Datum). See WSP 1713 or 1733 for history of changes prior to Oct. 21, 1959.

REMARKS.--No estimated daily discharges. Records good. Flow completely regulated by Williams Fork Reservoir (station 09038000). Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09036000). Diversions upstream from station for irrigation of about 3,200 acres upstream from station and about 100 acres downstream from station. About 450 acres upstream from station irrigated by diversion into the drainage area.

AVERAGE DISCHARGE. -- 35 years, 130 ft3/s; 94,180 acre-ft/yr, adjusted for storage in Williams Fork Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,640 $\rm ft^3/s$, June 20, 1953, gage height, 8.50 $\rm ft$, site and datum then in use, from rating curve extended above 1,500 $\rm ft^3/s$; no flow for part of Apr. 29, 1975.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 188 $\rm ft^3/s$ at 0830 Jan. 25, gage height, 1.98 ft; minimum daily, 15 $\rm ft^3/s$, Sept. 26 and 27.

		DISCHA	RGE, IN	CUBIC FEET		ND, WATER MEAN VALUE		DBER 1986	TO SEPTER	MBER 1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	120	170	175	179	139	116	116	113	28	27	37	21
2	163	171	175	179	113	118	116	113	28	27	37	21
3	165	171	177	179	113	117	116	113	28	27	37	21
4	165	171	176	179	114	118	116	114	28	27	37	21
5	165	171	176	179	115	118	116	113	28	27	37	21
6 7 8 9 10	167 167 167 167 167	149 171 171 171 171	175 175 175 175 175	179 181 180 181 181	115 115 115 115 115	118 118 116 115 115	118 118 120 120 120	113 113 111 111 112	28 28 28 29 29	27 27 27 27 27 30	37 33 22 22 22	21 22 63 113 113
11	167	171	177	182	115	115	120	113	28	40	30	112
12	167	169	179	182	114	115	118	113	28	39	38	110
13	167	174	178	181	115	116	118	113	28	34	38	110
14	167	173	177	182	116	116	116	112	28	27	39	111
15	168	173	177	182	116	116	116	111	28	25	40	111
16	169	173	177	182	116	115	116	111	24	33	40	100
17	169	173	179	182	116	115	116	112	25	37	31	109
18	169	173	179	184	116	113	116	113	27	37	21	109
19	120	173	179	186	116	113	116	98	27	37	21	109
20	17	174	177	184	116	113	115	107	27	37	21	110
21	96	175	177	184	117	113	115	111	27	37	21	110
22	168	175	177	184	103	113	110	111	27	37	20	110
23	167	174	177	185	114	113	115	111	27	37	20	112
24	168	175	177	186	118	112	115	111	27	37	20	95
25	169	174	179	187	118	111	115	111	27	37	20	16
26 27 28 29 30 31	169 170 171 169 169	173 173 173 175 175	179 179 179 179 178 177	187 186 186 186 186 187	117 116 116 	115 115 115 115 116 116	115 111 115 115 113	111 110 110 59 28 28	27 27 27 27 27	37 37 37 37 37 37	20 20 20 20 21 21	15 15 19 21 21
TOTAL	4878	5155	5491	5668	3244	3570	3482	3230	822	1026	863	2061
MEAN	157	172	177	183	116	115	116	104	27.4	33.1	27.8	68.7
MAX	171	175	179	187	139	118	120	114	29	40	40	113
MIN	17	149	175	179	103	111	110	28	24	25	20	15
AC-FT	9680	10220	10890	11240	6430	7080	6910	6410	1630	2040	1710	4090

CAL YR 1986 TOTAL 59236 MEAN 162 MAX 289 MIN 15 AC-FT 117500 WTR YR 1987 TOTAL 39490 MEAN 108 MAX 187 MIN 15 AC-FT 78330

09038500 WILLIAMS FORK BELOW WILLIAMS FORK RESERVOIR, CO--Continued

PERIOD OF RECORD. -- April 1986 to September 1987.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: March 1986 to September 1987. WATER TEMPERATURE: March 1986 to September 1987.

INSTRUMENTATION. -- Water-quality monitor from March 1986 to September 1987 (discontinued).

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 112 microsiemens Apr. 17-22, 25, 1987; minimum, 76 microsiemens June 19, July 28, 31, Aug. 1, 1986.
WATER TEMPERATURE: Maximum daily, 12.0°C, Aug. 15, 1986; Minimum, 2.8°C, Dec. 10, 1986.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 112 microsiemens Apr. 17-22, 25; minimum, 78 microsiemens Oct. 2-4, 7, 1986.
WATER TEMPERATURE: Maximum, 10.4°C, Oct. 12, 1986; Minimum, 2.8°C, Dec. 10.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WHOLE WATER TOTAL FIELD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 13	1400	122	112	8.1	4.0	8.3	48	0	15	2.6	3.1	1.5
MAY 06	1200	120	105	8.0	4.5	9.7	44	0	14	2.2	2.8	1.4
JՄN 02	1300	32	107	8.1	5.5	9.8	50	2	16	2.4	2.8	1.6
23 JUL	1310	24	104	8.0	6.5	10.2	47	1	15	2.4	2.6	1.3
20 SEP	1310	38	101	7.9	7.0	9.6	52	7	17	2.4	2.9	1.4
15	1440	123	96	7.9	8.0	6.1	53	9	17	2.6	2.9	1.4
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
APR 13	52	6.4	0.8	0.3	12	67	73	0.09	22.1	<0.01	0.10	
MAY 06	47	6.0	1.0	0.2	11	69	67	0.09	22.4	0.01	<0.10	
JUN 02 23	48 46	6.5 7.8	0.8	0.4	11 10	68 75	70 68	0.09 0.10	5.88 4.86	<0.01	<0.10 <0.10	0.10
JUL 20	45	7.5	0.8	0.3	9.9	65	69	0.09	6.67		<0.10	<0.10
SEP 15	44	12	0.7	0.2	11	68	74	0.09	22.6	<0.01	0.10	
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 13	<0.01				0.20		0.30	0.03		0.01		
MAY 06	0.01		0.29		0.30		0.50	0.02		0.01		
JUN 02	0.01	0.03	0.59	0.77	0.60	0.80		0.02	0.02	0.01	0.01	0.03
23 JUL	0.02		1.3		1.3			0.03		0.02		
20 SEP	0.01	<0.01	0.59		0.60	0.90		0.02	0.01	<0.01	<0.01	
15	<0.01				0.60		0.70	<0.01		<0.01		

09038500 WILLIAMS FORK BELOW WILLIAMS FORK RESERVOIR, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			, , , , , , , , , , , , , , , , , , , ,		N	MEAN VALUÉ	S					
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	79 78 78 78 79	89 89 89 89	92 92 92 92 92	96 96 96 96	101 101 101 101 101	103 103 103 104 104	108 108 108 108 109	108 110 106 104 106	102 101 101 101 101	98 98 98 97 98	97 97 97 97 97	97 97 97 98 97
6 7 8 9 10	79 78 79 80 80	89 89 89 89	92 92 92 92 93	96 96 96 96	102 102 103 103 101	104 104 105 105	109 109 109 110 110	105 103 103 103 102	101 101 101 101 101	97 98 97 98 98	97 97 97 97 97	97 97 96 96 96
11 12 13 14 15	80 84 83 84	89 90 89 89	93 93 93 93 93	96 97 97 97 97	101 100 101 100 100	105 105 105 105 105	110 110 111 111 111	103 103 102 101 101	101 100 100 100 100	97 98 98 97 97	97 97 97 97 97	96 96 96 96
16 17 18 19 20	85 87 88 88 89	89 89 89 90	93 93 93 94 94	98 98 98 98 99	101 101 101 101 102	105 106 106 106 106	111 112 112 112 112	101 102 102 100 100	101 110 103 100 100	97 97 97 97 97	97 97 97 99 98	96 96 96 96
21 22 23 24 25	89 88 89 89	90 90 90 91 91	94 94 94 95	99 99 100 100 100	102 103 104 103 103	107 107 107 107 107	112 112 111 111 111	99 100 100 100 100	99 99 98 99	97 97 97 97 97	97 97 97 97 98	96 96 99 97 99
26 27 28 29 30 31	89 89 89 89 89	92 92 92 92 92	95 95 96 96	100 100 100 101 101 101	102 103 103 	107 107 107 107 108 108	110 111 109 109 109	100 100 99 101 103 102	98 97 98 98 98	97 97 96 97 97	98 99 98 98 98	99 99 99 99
MEAN	84.5	89.8	93.5	97.9	102	106	110	102	100	97.3	97.4	97.0

09038500 WILLIAMS FORK BELOW WILLIAMS FORK RESERVOIR, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DAY	MAX	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN
2 10.1 9.7 8.4 8.2 4.5 4.4 3.6 3.5 5.5 5.6 3.4 3.4 3.4 3.5 3.6 3.5 5.6 3.4 3.4 3.4 3.2 3.6 3.5 5.6 3.4 3.4 3.4 3.2 3.6 3.5 5.6 3.4 3.4 3.4 3.2 3.6 3.5 5.6 3.4 3.4 3.4 3.2 3.2 3.6 3.5 5.6 3.4 3.4 3.4 3.2 3.2 3.6 3.5 5.6 3.4 3.4 3.4 3.2 3.2 3.6 3.5 5.6 3.4 3.4 3.4 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2		ОСТОВ	ER	NOVEMB	ΕR	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	H
T 10.1 9.8 7.7 7.6 4.0 3.9 3.6 3.5 3.5 3.4 3.4 3.4 3.2 3.2 3.1 10.2 9.7 7.6 4.2 7.5 4.0 3.9 3.6 3.6 3.5 3.5 3.4 3.4 3.4 3.2 3.2 3.1 10.2 9.7 7.2 7.6 4.2 7.5 4.0 2.8 3.9 3.6 3.6 3.5 3.4 3.2 3.4 3.2 3.2 3.1 11.1 10.3 9.8 6.6 6.7 6.2 6.0 3.8 3.6 3.6 3.5 3.4 3.3 3.2 3.2 3.1 11.1 10.3 9.8 6.6 6.7 6.2 3.8 3.8 3.0 3.6 3.5 3.4 3.3 3.3 3.2 3.2 3.1 11.1 10.2 9.7 6.2 6.0 3.8 3.8 3.0 3.6 3.5 3.5 3.4 3.3 3.3 3.2 3.2 3.1 11.1 10.0 9.7 6.2 6.0 3.8 3.8 3.0 3.6 3.5 3.5 3.4 3.3 3.3 3.2 3.2 3.1 11.1 10.0 9.7 6.2 6.0 3.8 3.0 3.6 3.5 3.5 3.4 3.3 3.3 3.2 3.2 3.1 11.1 10.0 9.7 6.2 6.0 3.8 3.0 3.0 3.5 3.5 3.5 3.4 3.3 3.3 3.2 3.2 3.1 11.1 10.0 9.7 6.2 6.0 5.8 3.7 3.8 3.0 3.6 3.5 3.5 3.4 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	2 3 4	10.1 10.1 10.0	9.7 9.8 9.8	8.4 8.2 8.1	8.2 8.0 7.9	4.5 4.5 4.4	4.4 4.3 4.2	3.6 3.6 3.6	3.5 3.5 3.5	3.5 3.4 3.4	3.4 3.4 3.4	3.4 3.4 3.3	3.3 3.2
12 10.4 10.7 6.4 6.1 3.8 3.1 3.6 3.5 3.5 3.4 3.3 3.3 3.2 15 15 9.8 9.8 9.6 6.3 6.2 3.8 3.8 3.6 3.5 3.5 3.5 3.6 3.4 3.3 3.3 3.2 15 9.8 9.6 6.2 6.0 3.8 3.8 3.6 3.5 3.5 3.5 3.6 3.4 3.3 3.3 3.2 15 9.8 9.6 6.2 6.0 5.8 3.8 3.6 3.5 3.5 3.5 3.4 3.3 3.3 3.2 16 9.9 9.6 9.5 6.0 5.8 5.6 3.7 3.8 3.5 3.5 3.5 3.4 3.3 3.3 3.2 16 9.6 9.5 6.0 5.8 5.6 3.7 3.8 3.5 3.5 3.5 3.4 3.4 3.3 3.3 3.2 19 9.6 9.5 9.5 9.5 9.5 9.6 9.5 3.7 3.5 3.5 3.5 3.6 3.5 3.4 3.4 3.3 3.3 3.2 19 9.6 9.5 9.1 5.6 5.4 3.8 3.8 3.5 3.5 3.5 3.6 3.5 3.4 3.4 3.4 3.3 3.3 3.2 19 9.6 9.1 5.6 5.4 3.8 3.8 3.5 3.5 3.5 3.4 3.4 3.4 3.3 3.3 3.2 22 22 9.4 9.2 5.5 5.8 5.6 3.7 3.5 3.5 3.5 3.4 3.4 3.4 3.3 3.3 3.2 22 22 9.4 9.2 5.5 5.5 5.4 3.5 3.6 3.5 3.5 3.4 3.4 3.4 3.3 3.3 3.2 22 22 9.4 9.2 5.5 5.5 5.5 5.7 3.4 3.6 3.5 3.5 3.4 3.4 3.4 3.3 3.3 3.2 22 22 9.4 9.2 5.5 5.5 5.5 5.7 3.7 3.6 3.5 5.3 3.4 3.4 3.4 3.3 3.3 3.2 22 22 9.4 9.2 5.5 5.5 5.5 5.7 3.7 3.6 3.5 5.5 3.4 3.3 3.6 3.2 3.3 3.2 22 3.9 3.2 3.5 3.4 3.4 3.4 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.2 3.2	7 8 9	10.1 10.1 10.2	9.8 9.7 9.8	7.7 7.6 7.2	7.6 7.2 6.9	4.0 4.0 4.0	3.9 3.9 3.8	3.6 3.6 3.6	3.5 3.5 3.5	3.4 3.4 3.4	3.4 3.3 3.3	3.4 3.3 3.3	3.2 3.2 3.2
17 9.7 9.5 5.9 5.8 3.77 3.4 3.5 3.5 3.4 3.3 3.3 3.2 3.2 3.2 3.9 9.4 8.9 5.5 5.4 3.7 3.5 3.4 3.4 3.3 3.3 3.2 3.2 3.2 3.2 3.9 9.4 8.9 5.5 5.4 3.7 3.5 3.2 3.5 3.4 3.4 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12 13 14	10.4 10.2 10.0	10 9.7 9.7	6.4 6.3 6.2	6.1 6.2 6.0	3.8 3.8 3.8	3.1 3.4 3.0	3.6 3.5 3.5	3.5 3.5 3.5	3.4 3.4 3.4	3.3 3.3	3.3 3.3 3.3	3.2 3.2 3.2
22 9,4 9,2 9,0 5,3 5,5 5,2 3,7 3,6 3,5 3,4 3,6 3,2 3,3 3,2 2,2 8,9 8,8 5,1 5,0 3,7 3,6 3,5 3,4 3,6 3,3 3,3 3,3 3,2 2,2 8,8 8,9 8,8 5,1 5,0 3,7 3,6 3,5 3,4 3,4 3,4 3,3 3,3 3,3 3,2 3,1 2,2 8,8 8,9 8,8 5,1 5,0 3,7 3,6 3,5 3,4 3,4 3,4 3,3 3,3 3,3 3,2 2,2 8,8 8,7 8,8 5,5 5,0 4,9 3,6 3,6 3,5 3,4 3,4 3,4 3,3 3,3 3,3 3,2 2,2 8,8 8,7 8,8 5,5 5,0 4,9 4,8 3,6 3,5 3,4 3,4 3,4 2,3 3,3 3,3 3,2 2,8 8,8 7,8 8,5 5,0 4,9 4,8 3,6 3,5 3,4 3,4 3,4 3,3 3,3 3,2 2,2 8,8 8,7 8,5 8,4 9,9 4,8 3,6 3,5 3,5 3,4 3,4 3,4 3,3 3,3 3,2 2,2 8,8 8,7 8,5 8,4 9,9 4,8 3,6 3,5 3,5 3,4 3,4 3,4 3,3 3,3 3,2 2,9 8,8 8,8 8,4 4,8 4,8 4,7 3,6 3,5 3,5 3,5 3,4 3,4 3,4 3,3 3,3 3,2 2,9 8,8 8,8 8,4 4,8 4,7 4,6 3,6 3,5 3,5 3,5 3,4 3,4 3,4 3,3 3,3 3,2 2,9 8,8 8,8 8,4 4,7 4,6 3,6 3,5 3,5 3,5 3,4 3,4 3,4 3,3 3,3 3,2 2,9 8,8 8,8 8,4 4,7 4,6 3,6 3,5 3,5 3,5 3,4 3,4 3,4 3,3 3,3 3,2 2,3 3,3 3,2 2,3 3,3 3,2 3,3 3,2 3,3 3,3	17 18 19	9.7 9.6 9.6	9.5 9.5 9.1	5.9 5.8 5.6	5.8 5.6 5.4	3.7 3.7 3.8	3.4 3.5 3.5	3.5 3.5 3.5	3.5 3.5 3.4	3.4 3.4 3.4	3.3 3.3 3.3	3.3 3.3	3.2 3.2
27 8.8 8.5 5.0 4.9 3.6 3.6 3.5 3.4 3.4 3.4 3.3 3.3 3.2 2.8 8.7 8.5 4.9 4.8 4.7 3.6 3.5 3.5 3.5 3.4 3.4 3.4 3.3 3.3 3.2 2.9 8.7 8.4 4.8 4.7 4.6 3.6 3.5 3.5 3.5 3.4 3.3 3.2 3.3 3.2 3.3 8.7 8.5 8.4 4.7 4.6 3.6 3.5 3.5 3.4 3.4 3.3 3.2 3.3 3.1 3.1 8.7 8.5 3.6 3.5 3.5 3.4 3.4 3.3 3.2 3.1 3.1 8.7 8.5 3.6 3.5 3.5 3.4 3.4 3.3 3.3 3.1 8.7 8.5 8.6 8.6 4.6 4.6 4.6 4.6 2.8 3.6 3.5 3.4 3.4 3.3 3.3 3.1 8.7 8.7 8.5 8.7 8.5 8.7 8.7 8.5 8.7 8.7 8.5 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	22 23 24	9.4 9.2 9.1	9.2 9.0 8.9	5.5 5.3 5.3	5.2 5.2 5.1	3.7 3.7 3.7	3.6 3.6 3.6	3.5 3.5 3.5	3.4 3.4 3.4	3.6 3.6 3.4	3.2 3.3 3.3	3.3 3.3 3.2	3.2 3.1 3.1
DAY MAX MIN MA	27 28 29 30	8.8 8.7 8.7 8.8	8.5 8.5 8.4 8.4	5.0 4.9 4.8 4.7	4.9 4.8 4.7 4.6	3.6 3.6 3.6 3.6	3.6 3.5 3.5 3.5	3.5 3.5 3.5 3.5	3.4 3.4 3.4	3.4 3.4 	3.3 3.3	3.3 3.3 3.3	3.2 3.2 3.2 3.1
APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 3.3 3.1 3.9 3.6 5.2 4.5 6.6 6.0 7.3 6.8 8.0 7.0 2 3.3 3.1 3.9 3.6 5.2 4.5 6.7 5.9 7.3 6.8 7.9 7.1 3 3.3 3.1 3.9 3.6 5.2 4.5 6.7 5.9 7.2 6.7 7.8 7.0 4 3.3 3.1 4.1 3.8 5.5 4.7 6.6 5.9 7.2 6.7 7.8 7.0 5 3.2 3.1 4.1 3.8 5.5 5.0 6.6 5.9 7.3 6.7 7.8 7.0 6 3.3 3.1 4.0 3.8 5.6 5.0 6.6 5.9 7.3 6.7 7.8 6.9 6 3.3 3.1 4.0 3.8 5.6 5.0 6.6 5.9 7.3 6.7 7.8 6.9 8 3.3 3.1 4.6 3.8 5.7 5.1 6.7 6.0 7.1 6.8 7.6 6.8 9 3.3 3.1 4.3 3.8 5.7 5.1 6.7 6.0 7.1 6.8 7.6 6.8 9 3.3 3.1 4.3 3.9 5.9 5.1 6.6 6.0 7.5 6.8 7.8 6.8 9 3.3 3.1 4.3 3.9 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 11 3.2 3.2 7.5 4.0 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 11 3.2 3.2 3.1 4.6 4.1 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 12 3.2 3.1 4.6 6.1 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 12 3.2 3.1 4.6 6.1 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 14 3.3 3.1 4.9 4.1 6.1 5.9 5.1 6.6 6.2 7.4 6.9 8.0 7.3 14 3.3 3.1 4.9 4.1 6.1 5.9 5.1 6.5 6.2 7.4 6.9 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.9 7.8 7.4 6.9 7.8 7.4 15 3.3 3.1 4.9 4.1 6.1 5.9 5.1 6.5 6.2 7.4 6.9 7.8 7.4 6.9 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.9 7.8 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.2 5.3 6.9 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 7.7 7.9 7.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	MONTH	10.4	8.4	8.6	4.6					3.6			
APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 3.3 3.1 3.9 3.6 5.2 4.5 6.6 6.0 7.3 6.8 8.0 7.0 2 3.3 3.1 3.9 3.6 5.2 4.5 6.7 5.9 7.3 6.8 7.9 7.1 3 3.3 3.1 3.9 3.6 5.2 4.5 6.7 5.9 7.2 6.7 7.8 7.0 4 3.3 3.1 4.1 3.8 5.5 4.7 6.6 5.9 7.2 6.7 7.8 7.0 5 3.2 3.1 4.1 3.8 5.5 5.0 6.6 5.9 7.3 6.7 7.8 7.0 6 3.3 3.1 4.0 3.8 5.6 5.0 6.6 5.9 7.3 6.7 7.8 6.9 6 3.3 3.1 4.0 3.8 5.6 5.0 6.6 5.9 7.3 6.7 7.8 6.9 8 3.3 3.1 4.6 3.8 5.7 5.1 6.7 6.0 7.1 6.8 7.6 6.8 9 3.3 3.1 4.3 3.8 5.7 5.1 6.7 6.0 7.1 6.8 7.6 6.8 9 3.3 3.1 4.3 3.9 5.9 5.1 6.6 6.0 7.5 6.8 7.8 6.8 9 3.3 3.1 4.3 3.9 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 11 3.2 3.2 7.5 4.0 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 11 3.2 3.2 3.1 4.6 4.1 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 12 3.2 3.1 4.6 6.1 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 12 3.2 3.1 4.6 6.1 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 14 3.3 3.1 4.9 4.1 6.1 5.9 5.1 6.6 6.2 7.4 6.9 8.0 7.3 14 3.3 3.1 4.9 4.1 6.1 5.9 5.1 6.5 6.2 7.4 6.9 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.9 7.8 7.4 6.9 7.8 7.4 15 3.3 3.1 4.9 4.1 6.1 5.9 5.1 6.5 6.2 7.4 6.9 7.8 7.4 6.9 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.9 7.8 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.1 5.3 6.9 6.9 6.2 7.4 6.9 7.8 7.4 1.1 6.2 5.3 6.9 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.9 8.2 7.4 1.1 6.2 5.3 6.9 6.3 7.7 6.8 7.7 7.9 7.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1													
1 3.3 3.1 3.9 3.6 5.3 4.6 6.6 6.0 7.3 6.8 8.0 7.0 2 3.3 3.1 3.9 3.6 5.2 4.5 6.7 5.9 7.3 6.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.1 3.6 8.8 7.9 7.2 6.7 7.8 7.0 8.0 7.3 3.2 3.1 4.1 3.8 5.5 4.7 6.6 5.0 6.6 5.9 7.2 6.7 7.8 7.0 6.9 7.3 6.7 7.8 6.9 7.0 6.8 8.3 3.3 3.1 4.0 3.8 5.6 5.0 6.6 5.9 7.3 6.7 7.8 6.9 7.6 6.8 8.3 3.3 3.1 4.3 3.8 5.7 5.1 6.7 6.0 7.1 6.8 7.6 6.8 7.8 6.8 8.3 3.3 3.1 4.3 3.8 5.7 5.2 6.7 6.1 7.5 6.8 7.8 6.8 7.8 6.8 9.3 3.3 3.1 4.3 3.9 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 10 3.3 3.1 4.3 3.9 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 11 3.2 3.2 7.5 4.0 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 13 3.2 3.1 4.9 4.1 6.0 5.9 5.1 6.6 6.2 7.4 6.9 8.0 7.3 13 3.2 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 5.3 6.9 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.0 5.2 5.3 6.9 6.2 7.4 6.8 8.2 7.4 16 3.3 3.1 4.9 4.1 6.0 5.3 5.3 7.0 6.2 7.4 6.8 8.2 7.4 18 18 3.3 3.1 4.9 4.1 6.0 5.3 6.9 6.2 7.4 6.8 8.2 7.4 18 18 3.3 3.1 4.9 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 18 3.2 6.2 4.5 6.1 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 18 18 18 18 18 18 18 18 18 18 18 18													
2 3.3 3.1 3.9 3.6 5.2 4.5 6.7 5.9 7.3 6.8 7.9 7.1 4 3.3 3.3 3.1 4.1 3.6 5.3 4.6 6.7 5.9 7.2 6.7 7.8 7.0 4 3.3 3.1 4.1 3.8 5.5 4.7 6.6 5.9 7.2 6.7 7.8 7.0 5 3.2 3.1 4.1 3.8 5.5 4.7 6.6 5.9 7.2 6.7 7.8 7.0 6.9 5.9 7.2 6.7 7.8 7.0 6.9 5.9 7.2 6.7 7.8 7.0 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.7 7.8 6.9 7.3 6.9 7.6 6.8 7.8 6.9 7.6 6.8 7.8 6.9 7.6 6.8 7.8 6.8 7.3 7.0 6.7 6.0 7.3 6.9 7.6 6.8 7.8 6.8 7.3 7.0 7.3 7.0 6.9 7.0 6.8 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	DA Y	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MAX	MIN	MAX	MIN
7 3.2 3.1 4.6 3.8 5.7 5.1 6.7 6.0 7.3 6.9 7.6 6.8 8.9 3.3 3.1 4.3 3.8 5.7 5.2 6.9 6.1 7.5 6.8 7.8 6.8 7.8 6.8 9 3.3 3.1 4.3 3.9 5.6 5.2 6.9 6.1 7.5 6.8 8.1 7.3 10 3.3 3.1 4.3 3.9 5.9 5.1 6.6 6.0 7.5 6.8 8.1 7.3 11 3.2 3.2 3.1 4.6 4.1 5.9 5.1 6.5 6.2 7.4 6.9 8.0 7.3 13 3.2 3.1 4.6 4.1 5.9 5.1 6.5 6.2 7.4 6.9 8.0 7.3 13 3.2 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.1 5.3 6.9 6.2 7.4 6.9 7.8 7.4 15 3.3 3.1 4.8 4.1 6.3 5.3 7.0 6.2 7.4 6.8 7.8 7.4 15 3.3 3.1 4.8 4.1 6.3 5.3 7.0 6.2 7.4 6.8 8.2 7.4 16 3.3 3.1 4.9 4.1 6.3 5.3 7.0 6.2 7.4 6.8 7.8 7.4 17 3.3 3.1 4.8 4.1 6.3 5.3 7.0 6.2 7.4 6.8 7.8 7.4 17 3.3 3.1 4.8 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 17 3.3 3.1 4.9 4.1 6.0 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 19 3.4 3.2 6.2 4.5 6.1 5.3 7.0 6.3 7.7 6.8 8.2 7.4 19 3.4 3.2 5.6 4.5 6.1 5.3 7.0 6.3 7.7 6.8 8.2 7.4 19 3.4 3.2 5.6 4.5 6.1 5.3 7.0 6.3 7.7 6.9 8.0 7.5 19 3.4 3.2 5.6 4.5 6.1 5.3 7.0 6.3 7.7 6.9 8.2 7.4 19 3.3 3.2 5.6 4.5 6.1 5.3 7.0 6.3 7.7 6.9 8.2 7.4 19 3.3 3.2 5.6 4.5 6.1 5.3 7.0 6.6 7.5 7.2 8.0 7.5 19 3.4 3.5 3.4 5.5 4.4 6.3 5.5 7.0 6.6 7.5 7.2 8.0 7.5 19 3.3 3.3 5.8 4.4 6.2 5.5 7.0 6.6 7.5 7.2 8.0 7.5 19 3.5 3.4 5.9 4.5 6.5 5.5 7.0 6.6 7.2 8.1 7.3 7.5 7.1 7.8 7.0 1.2 8.1 7.3 1.2 8.3 1.2 8.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1	DAY				MIN		MIN						
12 3.2 3.1 4.6 4.1 5.9 5.1 6.5 6.2 7.4 6.8 8.0 7.3 13 3.2 3.1 4.9 4.1 6.0 5.2 6.7 6.2 7.4 6.8 8.0 7.3 14 3.3 3.1 4.9 4.1 6.1 5.3 6.9 6.2 7.4 6.8 8.0 7.3 15 3.3 3.1 4.8 4.1 6.3 5.3 7.0 6.2 7.4 6.8 8.0 7.3 16 3.3 3.1 5.0 4.2 6.2 5.4 6.8 6.2 7.6 6.9 7.8 7.4 17 3.3 3.1 4.9 4.1 6.0 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.7 6.8 8.2 7.4 18 3.3 3.2 5.6 4.5 6.1 5.3 7.0 6.3	1 2 3 4	APRIL 3.3 3.3 3.3 3.3	3.1 3.1 3.2 3.1	MAY 3.9 3.9 4.1 4.1	3.6 3.6 3.6 3.8	JUNE 5.3 5.2 5.3 5.5	4.6 4.5 4.6 4.7	JULY 6.6 6.7 6.7 6.6	6.0 5.9 5.9	AUGUS 7.3 7.3 7.2 7.2	6.8 6.8 6.7 6.7	SEPTEM 8.0 7.9 7.8 7.8	7.0 7.1 7.0 7.0
18 3.3 3.1 5.4 4.1 6.2 5.3 6.9 6.3 7.6 6.8 8.4 7.4 19 3.4 3.2 6.2 4.5 6.1 5.3 7.0 6.3 7.7 6.8 8.4 7.4 20 3.3 3.2 5.6 4.5 6.2 5.4 6.9 6.3 7.7 6.8 8.4 7.4 21 3.4 3.3 6.2 4.5 6.3 5.4 7.1 6.4 7.5 7.0 8.0 7.4 22 3.8 3.3 5.8 4.4 6.2 5.5 7.0 6.6 7.5 7.2 8.0 7.5 23 3.5 3.4 5.5 4.4 6.3 5.5 7.1 6.4 7.7 7.1 7.9 7.5 24 3.5 3.4 5.8 4.5 6.4 5.6 7.2 6.6 7.6 7.2 8.1 7.3 25 3.5 3.4 5.5 4.6 6.7 5.7 7.2 6.6	1 2 3 4 5 6 7 8	APRIL 3.3 3.3 3.3 3.2 3.3 3.2 3.3 3.2	3.1 3.1 3.2 3.1 3.1 3.1 3.1 3.1	MAY 3.9 3.9 4.1 4.1 4.0 4.6 4.3 5.7	3.6 3.6 3.8 3.7 3.8 3.8	JUNE 5.3 5.2 5.3 5.6 5.6 5.7 5.6	4.6 4.5 4.6 4.7 5.0 5.1 5.2	JULY 6.6 6.7 6.7 6.6 6.6 6.7 6.7 6.7	6.0 5.9 5.9 5.9 5.9 6.0 6.1 6.1	AUGUS 7.3 7.2 7.2 7.3 7.1 7.3 7.5 7.5	6.8 6.8 6.7 6.7 6.7 6.8 6.9 6.8 6.7	8.0 7.9 7.8 7.8 7.6 7.6 7.6 8.0	7.0 7.1 7.0 7.0 6.9 6.8 6.8 6.8 7.3
22 3.8 3.3 5.8 4.4 6.2 5.5 7.0 6.6 7.5 7.2 8.0 7.5 23 3.5 3.4 5.5 4.4 6.3 5.5 7.1 6.4 7.7 7.1 7.9 7.5 24 3.5 3.4 5.8 4.5 6.4 5.6 7.2 6.6 7.6 7.2 8.1 7.3 25 3.5 3.4 5.9 4.5 6.5 5.6 7.1 6.7 7.5 7.1 7.8 7.0 26 3.6 3.4 5.5 4.6 6.7 5.7 7.2 6.7 7.6 6.9 8.0 6.9 27 4.5 3.6 6.6 4.5 6.7 5.8 7.2 6.8 7.7 6.8 7.9 6.9 28 3.7 3.6 6.1 4.7 6.6 5.7 7.2 6.8 7.6 6.7 7.6 6.8 7.7 6.8 7.7 6.8 7.7 6.8 7.7 6.8 7.7 6.8	1 2 3 4 5 6 7 8 9 10	APRIL 3.3 3.3 3.3 3.2 3.2 3.3 3.2 3.3 3.2	3.1 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	MAY 3.9 3.9 4.1 4.1 4.0 4.66 4.3 5.7 4.3 7.56 4.9	3.6 3.6 3.8 3.7 3.8 3.8 3.9 4.0 4.1 4.1	JUNE 5.3 5.2 5.3 5.6 5.6 5.7 5.6 5.9 5.9 6.1	4.6 4.5 4.7 5.0 5.1 5.2 5.1 5.1 5.2	JULY 6.6 6.7 6.7 6.6 6.6 6.7 6.7 6.9 6.6 6.5 6.7 6.9	6.0 5.9 5.9 5.9 5.9 6.0 6.1 6.1 6.2 6.2	AUGUS 7.3 7.3 7.2 7.2 7.3 7.1 7.3 7.5 7.5 7.5 7.5 7.4 7.4 7.4	6.8 6.8 6.7 6.7 6.7 6.7 6.8 6.9 6.8 6.9 6.9	SEPTEM 8.0 7.9 7.8 7.8 7.6 7.6 7.8 8.0 8.1 8.0 8.0 7.8	7.0 7.1 7.0 7.0 6.9 6.8 6.8 7.3 7.3 7.3
27 4.5 3.6 6.6 4.5 6.7 5.8 7.2 6.8 7.7 6.8 7.9 6.9 28 3.7 3.6 6.1 4.7 6.6 5.7 7.2 6.8 7.6 6.7 7.6 6.7 29 3.8 3.6 6.1 4.6 6.2 6.0 7.3 6.7 7.7 6.8 7.7 6.8 30 3.8 3.6 5.0 4.5 6.5 5.9 7.3 6.7 7.8 6.8 7.7 6.9 31 5.2 4.5 7.3 6.8 7.8 6.8	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	APRIL 3.3 3.3 3.3 3.2 3.2 3.3 3.2 3.3 3.3 3.3	3.1 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	MAY 3.9 3.9 4.1 4.1 4.0 4.6 4.3 5.7 4.9 4.8 5.9 4.8	3.6 3.6 3.8 3.7 3.8 3.8 3.9 4.0 4.1 4.1 4.1 4.1	JUNE 5.3 5.2 5.3 5.6 5.7 5.6 5.9 5.9 6.1 6.3 6.2 6.0 6.1	4.5670 01221 11233 43333 55555 55555 55555	JULY 6.6 6.7 6.7 6.6 6.6 6.7 6.7 6.7 6.9 6.6 6.6 6.9 7.0	6.0 5.9 5.9 5.9 6.0 6.1 6.1 6.2 6.2 6.3 6.3	AUGUS 7.3 7.3 7.2 7.2 7.3 7.1 7.3 7.5 7.5 7.5 7.4 7.4 7.4 7.6 7.7 7.6 7.7	6.8 6.8 6.7 6.7 6.7 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.8	SEPTEM 8.0 7.9 7.8 7.8 7.6 7.6 7.6 7.6 8.0 8.1 8.0 8.0 7.8 7.8	7.0 7.1 7.0 7.0 6.9 6.8 6.8 6.8 7.3 7.3 7.3 7.4 7.4 7.4
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4	APRIL 3.3 3.3 3.3 3.2 3.2 3.3 3.3 3.3 3.3 3.3	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	MAY 3.9 4.1 4.0 4.37 7.56 9.9 4.1 5.28 5.58	3.666.88.7 3.88.89.9 4.11.1.1.1.1.55 4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	JUNE 5.3 5.2 5.3 5.6 5.7 5.6 5.7 5.9 5.9 6.1 6.2 6.2 6.2 6.3 6.3 6.3	4.5670 01221 11233 43334 45556 55555 55555 55555	JULY 6.6 6.7 6.7 6.7 6.7 6.7 6.9 6.6 6.5 6.7 6.9 7.0 6.8 6.9 7.0 7.1	6.99 5.99 6.01 6.01 6.01 6.02 6.03 6.03 6.04 6.06 6.06 6.06 6.06 6.06 6.06 6.06	AUGUS 7.3 7.3 7.2 7.2 7.3 7.1 7.3 7.5 7.5 7.5 7.4 7.4 7.4 7.6 7.7 7.7 7.7 7.6 7.7 7.6	6.8 6.8 6.7 6.7 6.7 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 7.0 7.1 7.2	SEPTEM 8.0 7.9 7.8 7.8 7.6 7.6 8.0 8.0 8.0 7.8 8.2 8.0 8.2 8.0 7.8 8.2 8.2 8.0	7.0 7.1 7.0 6.9 6.8 6.8 7.3 7.3 7.4 7.4 7.4 7.4 7.5 7.4 7.5
	1 22 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30	APRIL 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.	3.1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MAY 991.11 1.06373.56998.09426.28589.5611.0 4.15.373.56998.09426.6.5555.555.56661.0	33333333333333333333333333333333333333	JUNE 5.23 5.6 5.77 5.69 5.99 5.00 6.3 6.02 6.32 6.77 6.62 6.66 6.5	44.5 55555 55555 55555 55566 78709	JULY 6.6 6.7 6.7 6.6 6.7 6.7 6.9 6.6 6.7 6.9 7.0 6.8 6.9 7.0 7.1 7.2 7.2 7.3 7.3	6.99999	AUGUS 7.3 7.3 7.2 7.2 7.3 7.1 7.3 7.5 7.5 7.5 7.4 7.4 7.6 7.7 7.7 7.5 7.6 7.7 7.6 7.7 7.8	6.88 6.77 6.89 6.78 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.9	SEPTEM 8.0 7.9 7.8 7.8 7.6 7.8 8.0 8.0 8.0 8.0 8.0 8.2 8.2 8.4 8.2 8.4 7.8 8.7 8.7	7.1009 6.88 6.83 7.33 7.44 445533 7.530 9977.66.9

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

TROUBLESOME CREEK BASIN

09039000 TROUBLESOME CREEK NEAR PEARMONT, CO

LOCATION.--Lat 40°13'03", long 106°18'45", in SE4 sec.14, T.3 N., R.80 W., Grand County, Hydrologic Unit 14010001, on left bank 45 ft downstream from small tributary, 3 mi north of Pearmont, 4 mi downstream from Rabbit Ear Creek, 5.2 mi upstream from East Fork, and 12 mi northeast of Kremmling.

DRAINAGE AREA . - - 44.6 mi2.

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,049 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 11, 20, 21, and Nov. 23 to Mar. 25. Records good except for estimated daily discharges, which are poor. One diversion upstream from station for irrigation of about 250 acres downstream from station. Flow partly regulated during irrigation season by one reservoir, capacity, 1,070 acre-ft, upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 34 years, 30.8 ft3/s; 22,310 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 630 ft³/s, June 25, 1983, gage height, 2.81 ft; maximum gage height, 3.93 ft, Mar. 31, 1965 (backwater from ice); minimum daily discharge, 4.5 ft³/s, Dec. 20-24, 1976.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 151 $\rm ft^3/s$ at 2100 May 18, gage height, 1.74 ft; minimum daily, 7.2 $\rm ft^3/s$, Sept. 22-24, 28-30.

		DISCHA	RGE, CUBI	C FEET PI	ER SECOND	, WATER YEAR MEAN VALUES	OCTOBER	1986 T) SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	20 21 21 21 21	21 20 19 20 20	17 16 15 15	10 10 10 10 10	11 11 11 11	13 13 13 13	23 23 23 23 23	7 7 78 70 64 63	82 80 78 56 54	41 37 36 35 35	17 17 16 16 16	8.8 9.1 9.0 9.1 9.2
6 7 8 9	20 20 20 20 20	19 19 20 21 20	14 13 13 13	10 10 10 10	11 11 11 11	15 15 15 15 15	22 22 22 22 22	63 68 77 82 97	57 57 59 59 58	35 34 33 33 32	16 22 20 17 15	8.9 8.6 8.6 8.3
11 12 13 14 15	21 19 18 18 18	20 20 23 24 23	10 10 10 10 10	10 10 10 10	12 12 12 12 12	15 15 15 15 15	22 22 22 22 22	103 101 103 113 119	56 52 48 46 43	34 41 36 33 29	14 14 13 16 14	8.3 8.1 8.0 7.9 8.2
16 17 18 19 20	18 17 18 17	18 18 18 18	10 10 10 10 10	10 10 10 10 10	12 12 12 12 12	15 15 15 15 15	24 27 30 31 29	130 142 142 130 129	40 36 35 34 33	17 19 20 18 18	14 14 14 13	8.3 8.0 7.6 7.5
21 22 23 24 25	19 20 20 19 19	18 18 18 18	10 10 10 10 10	10 10 10 10 10	12 12 12 12 13	15 15 15 15 16	26 27 32 43 59	126 114 106 110 107	32 35 40 37 42	15 13 12 13 13	7.8 8.1 8.9 9.1	7.4 7.2 7.2 7.2 7.3
26 27 28 29 30 31	19 19 20 19 19 21	18 18 17 17 17	10 10 10 10 10	11 11 11 11 11	13 13 13	17 15 18 21 23 23	57 60 68 71 70	98 89 80 76 73 78	38 37 38 40 41	17 20 16 16 17	8.4 8.2 8.1 8.1 7.9 8.0	7.4 7.4 7.2 7.2 7.2
TOTAL MEAN MAX MIN AC-FT	601 19.4 21 17 1190	576 19.2 24 17 1140	353 11.4 17 10 700	316 10.2 11 10 627	330 11.8 13 11 655	485 15.6 23 13 962	989 33.0 71 22 1960	3008 97.0 142 63 5970	1443 48.1 82 32 2860	785 25.3 41 12 1560	405.6 13.1 22 7.8 805	240.3 8.01 9.2 7.2 477

CAL YR 1986 TOTAL 17605.0 MEAN 48.2 MAX 323 MIN 10 AC-FT 34920 WTR YR 1987 TOTAL 9531.9 MEAN 26.1 MAX 142 MIN 7.2 AC-FT 18910

09041500 MUDDY CREEK AT KREMMLING, CO

LOCATION.--Lat 40°03'37", long 106°23'48", in SWHSEH sec. 7, T.1 N., R.80 W., Grand County, Hydrologic Unit 14010001, on left bank 450 ft upstream from U.S. Highway 40 bridge at Kremmling and 2.8 mi upstream from mouth.

DRAINAGE AREA . -- 290 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August to October 1904, April to October 1905. Monthly discharge only in WSP 1313. April 1982 to current year.

GAGE..-Water-stage recorder. Elevation of gage is 7,340 ft above National Geodetic Vertical Datum of 1929, from topographic map. Supplementary recorder on diversion ditch about 2,000 ft downstream from point of diversion.

REMARKS.--Estimated daily discharges: Oct. 3-5, 22-27, Oct. 31 to Nov. 3, Nov. 6 to Mar. 26, Apr. 2-7, May 16-20, May 28 to June 3, June 6 to July 8, July 28 to Sept. 17, Sept. 25-30. Records good, exce estimated daily discharges, which are poor. Records include flow of diversion ditch. Records good, except for

AVERAGE DISCHARGE. -- 5 years, 131 ft3/s; 94,910 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum combined discharge, 1,670 ft³/s, May 16, 1984, gage height, 12.67 ft; minimum daily, 1.0 ft³/s, Sept. 24, 25, 1905.

EXTREMES FOR CURRENT YEAR.--Maximum combined discharge, 640 $\rm ft^3/s$ at 1200 Apr. 29, gage height, 7.23 ft; minimum daily, 12 $\rm ft^3/s$, Sept. 28-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 15 15 32 524 33 15 27 18 23 36 36 15 15 15 15 14 32 15 52 325 17 15 15 18 29 19 15 28 292 17 32 15 15 77 215 15 3 1 15 ---27 151 33 19 12 ---------TOTAL. 19.3 MEAN 33.2 20.9 15.0 15.0 26.8 94.5 49.1 21.3 16.4 MA X 137 MIN AC-FT

CAL YR 1986 TOTAL 52971 MEAN 145 145 MAX 995 MIN 15 AC-FT 105100 67.7 MAX 567 MIN 12 AC-FT 48990 TOTAL 24700 WTR YR 1987 MEAN

MUDDY CREEK BASIN

09041500 MUDDY CREEK AT KREMMLING, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1985 to September 1987.

PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: April 1986 to September 1987. WATER TEMPERATURES: April 1986 to September 1987.

INSTRUMENTATION. -- Water-quality monitor since April 1986.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum mean, 1,610 microsiemens July 29, 1987; minimum mean, 212 microsiemens May 22, 1986.

WATER TEMPERATURES: Maximum, 24.8°C, July 26, 1987; minimum 0.0°C, on many days during winter.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum mean, 1,610 microsiemens July 29, 1987; minimum mean, 261 microsiemens May 11, 1987. WATER TEMPERATURES: Maximum 24.8°C, July 26, 1987; minimum, 0.0°C, on many days during winter..

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	OXYGEN DEMAND, BIOCHEM UNINHIB 20 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)
OCT 09	1010	31	845	8.1	8.0		9.0			380	88	38
JAN	1010	J 1	047	0.1	0.0		9.0			300	00	50
28 MAR	1120	40	700	7.8	0.0	13	7.9			290	76	24
27 APR	1300	31	985	8.1	0.0	20	10.2			400	82	48
28 29	0730 1250	440 652	315 2 8 5	8.0 7.7	7.0 8.0	500	8.7 8.6	1.0	3.4	130 110	35 30	11 8.7
MAY	1230	٥٦٤	207	, • ,	0.0	500	0.0			1.5	30	0.1
01	1130 1145	569	275	7.8	7.5	270	8.7			120	32	9.0
08	1125	295 308	327 281	7.9 8.1	7.0 9.5	95 86	9.0 8.4			140 110	37 30	11 9.0
13	1230	262	305	8.0	9.0	00 	8.8			120	30 31	9.4
14	1305	283	288	8.1	11.5	82	8.1			120	31	9.2
21	1150	224	555	7.9	9.5	87	8.4			240	60	23
JUN			,,,	, , ,	,.,	91	• • • •					_3
02	1200							1.2	3.2			
04	1245	36	1020	8.4	15.0	17	8.7			520	140	42
23	1200	29	1120	8.2	19.5		7.4	1.3	3.2			
JUL				_	_							
16	1430	45	1230	8.1	19.5	22	7.3			660	170	57
20 AUG	1640	36	1520	8.4	20.5		7.2			810	200	76
14	1015	19	1060	8.0	16.5	52	7.4			540	130	52
17	1450	13	1080	8.4	18.0	52 	6.8	2.7	5.8	J40) <u></u>
SEP	, , 0	. 5	1000	J.,	70.0	_	0.0	,	,			
15	1300	14	1310	8.3	13.5		7.7			620	140	65
17	1415	17	1200	8.1	12.0	19	8.5			600	140	60

75

09041500 MUDDY CREEK AT KREMMLING, CO--Continued

WATER QUALITY DATA, WATER OCTOBER 1986 TO SEPTEMBER 1987

DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINI LI (MO AS	AB DI G/L S(S (N	FATE R S- D DLVED S MG/L (HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)
OCT 09	44	20	1	3.3	158	5	310	5.8	0.20	7.1		590	0.80
JAN 28	28	17	0.7	2.2	153	2	210	4.8	0.30	11	456		0.62
MAR 27	66	26	1	3.2	166	3	390	12	0.20	8.9	725	710	0.99
APR 28 29 MAY	13 10	17 16	0.5 0.4	2.3 2.4	99 94		67 66	1.7 1.5	0.20 0.10	9.6 8.5	208 185	200 180	0.28 0.25
01 05 08 13 14 21	10 13 9.8 11 10 26	15 17 16 17 16 19	0.4 0.5 0.4 0.5 0.4	2.1 1.6 1.4 1.3 1.6 2.2	83 87 76 70 72 101	2	49 75 66 79 76	1.2 1.7 1.4 1.5 1.4 2.0	0.10 0.20 0.20 0.10 0.20 <0.10	9.4 10 9.0 9.1 8.7 9.3	151 204 172 190 199 390	160 200 170 180 180 380	0.21 0.28 0.23 0.26 0.27
02 04 23	36	13	0.7	3.2	187	1	30	11	0.20	10	779 	780	1.1
JUL 16 20 AUG	45 68	13 15	0.8	3.3 3.7	222 213		510 590	14 5.7	0.40 0.30	7.7 8.5	983 1240	940 1200	1.3
14 17 SEP	50 	17 	1	3.1 	171	1	150	5.0	0.30	6.3	825 	800 	1.1
15 17	66 64	19 19	1 1	3.5 3.4	149 180		580 510	8.5 7.0	0.40 0.30	4.9 5.1	1010 929	960 899	1.4 1.26
DAT	SOLI DI: SOL (TOI E PE: DA	S- AT 10 VED DEG. NS SUS- R PENDE	UE SOLII 5 VOL. C, TILI SUS. D PENDI	A- (E, NIT - T(ED (N	TRO- EN, PRATE TAL IG/L	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN NO2+NO	, NO2+1 03 DI3 . SOL' . (MG.	N, NIT NO3 GE S- AMMO VED TOT /L (MG	N, AMMO NIA DI AL SOL /L (MG	N, NIT NIA GE S- ORGA VED TOT /L (MG	N, NIC AL /L
OCT 09	DIS SOL (TOI E PE	DS, RESID S- AT 10 VED DEG. NS SUS- R PENDE	UE SOLII 5 VOL. C, TILI SUS. D PENDI	A- (E, NIT - T(ED (N	EN, RATE TAL IG/L	GEN, NITRITE TOTAL (MG/L	GEN, NITRITE DIS- SOLVED (MG/L	NITRO GEN NO2+NO TOTAL (MG/I	O- GEI , NO2+1 O3 DI3 . SOL' . (MG.	N, NIT NO3 GE S- AMMO VED TOT /L (MG	RO- GE N, AMMO NIA DI AL SOL /L (MG N) AS	N, NIT NIA GE S- ORGA VED TOT /L (MG N) AS	N, NIC AL /L
OCT 09 JAN 28	DI: SOL' (TOI E PE: DA'	DS, RESID S- AT 10 VED DEG. NS SUS- R PENDE	UE SOLI: 5 VOL. C, TILI SUS D PENDI L) (MG	A- (0 E, NIT - T(ED (N /L) AS	EN, RATE TAL IG/L	GEN, NITRITE TOTAL (MG/L	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITROGEN NO2+NO TOTAL (MG/I AS N	O- GEI , NO2+1 O3 DIS C SOL (MG) AS I	N, NIT NO3 GE S- AMMO VED TOT /L (MG N) AS	RO- GE N, AMMO NIA DI AL SOL /L (MG N) AS	N, NIT NIA GE S- ORGA VED TOT /L (MG N) AS	N, NIC AL /L N)
OCT 09 JAN 28 MAR 27	DI: SOL (TO E PE DA	DS, RESID S- AT 10 VED DEG. NS SUS- R PENDE	UE SOLI: 5 VOL. C, TIL. SUS D PENDL L) (MG	A- (0 E, NIT - TO ED (10 /L) AS	EN, RATE TAL IG/L	GEN, NITRITE TOTAL (MG/L	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITROGEN NO2+NO TOTAL (MG/I AS N	O- GEI NO2+1 O3 DII SOL (MG.) AS I	N, NIT NO3 GE S- AMMO VED TOT /L (MG N) AS	RO- GE. N, AMMO NIA DI. AL SOL /L (MG N) AS	N, NIT NIA GE S- ORGA VED TOT /L (MG N) AS 0	N, NIC AL /L N)
OCT	DI: SOL (TOI E PE. DA	DS, RESIDS, AT 10 VED DEG. NS SUS-R PENDE Y) (MG/	UE SOLI: 5 VOL. C, TIL. SUS D PENDL L) (MG	A - (0 E, NIT - TC ED (N/L) AS	EN, RATE TAL IG/L	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRG GEN NO2+NG TOTAL (MG/I AS N) <	O- GEI , NO2+1 , NO2+1 , NO2+1 , SOL' (MG. AS I	N, NIT NO3 GE S- AMMO VED TOT /L (MG N) AS <0.	RO- GE. AMMO NIA DII. AL SOL /L (MG N) AS	N, NIT NIA GE S- ORGA VED TOT /L (MG N) AS 0 0	N, C NIC AL /L N)
OCT 09 JAN 28 MAR 27 APR 28 29 MAY 01 05 13 14 21	DI: SOL (TOI) E PE. DA' 49 49 61 247 326 232 162 143 134 152	DS, RESID S AT 10 VED DEG. NS SUS- R PENDE Y) (MG/	UE SOLI: 5 VOL. 5 VOL. SUS PENDI L) (MG	A- (0 E, NII) - T(0 ED (N/L) AS	PRATE TAL IG/L N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN NO2+NO TOTAL (MG/L AS N)	O- GEI NO2+ NO2+ NO2+ SOL GEI N	N, NIT NO3 GE S- AMMO VED TOT (MG N) AS <0 0 0. 10 0 0.	RO- GE AMMO NIA DII. SOL (MG N) AS 01 06 08 09 11 12 0.08 05 003 0.04	N, NIT NIA GE S- ORGA VED TOT /L (MG N) AS 0 0 0 1 002 22 1 003 03	N,C NIC AL /L N) .79 .34 .72
OCT	DI: SOL (TOI) E PE. DA 49 49 61 247 326 232 162 143 134 152 236	DS, RESID S, AT 10 VED DEG. NS SUS- R PENDE Y) (MG/	UE SOLI 5 VOL. C, TILI SUS D PENDI L) (MG	A - (C) (E) (NIT) (C) (NIT) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	EN, RATE ITAL GOLL IN N N N N N N N N N N N N N N N N N	GEN, NITRITE TOTAL (MG/L AS N) 0.03	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRG GEN NO2+NN NO2+NN TOTAL (MG/LAS N) <0.10 0.20 0.20 0.10 0.10 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11	O- GEI NO2+1 NO2+1 SOL (MG) AS 1	N, NIT NO3 GE S AMMO VED TOT /L AS 0 0 0. 10 0 0. 10 0 0.	RO- GE AMMO NIA DIL SOL (MG N) AS 01 06 08 09 11 12 0.08 005 003 0.04 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	N, NIT NIA GE S- ORGA VED TOT /L (MG N) AS 0 0 2 6 02 2 2 1 03 2 0 0	N, C N, IC AL /L N) .79 .34 .72 .8 .9 .2 .1 .7.57 .6 .95
OCT 09 28 MAR 27 APR 29 MAY 01 05 08 14 21 JUN 02 04 23 JUL 16 20 AUG	DI: SOL (TOI E PE. DA 49 49 61 247 326 232 162 143 134 152 236 76	DS, RESID S, AT 10 VED DEG. NS SUS- R PENDE Y) (MG/	UE SOLI 5 VOL. 6, TILI SUS D PENDI L) (MG	A - (C) (E) (NIT) (C) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	EN, RATE TTAL IG/L IG/L IG/L IG/L IG/L IG/L IG/L IG/	GEN, NITRITE TOTAL (MG/L AS N) 0.03	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRG GEN NO2+NN NO2+NN TOTAL (MG/LAS N) <0.10 0.20 0.20 0.10 <0.10 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11	O- GEI NO2+ NO2+ NO2+ SOL' (MG O O O O O O O O O O O O O O O O O O O	N, NIT NO3 GE S AMMO VED TOT (MG N) AS 0 0 0. 10 0 0. 110 0 0. 110 0 0. 110 0 0 0.	RO- GE AMMO NIA SOL (MG N) AS O1 06 08 09 11 12 0.08 05 03 0.04 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06	N, NIT GE S- ORGA TOT (MG N) AS 0 0 2 6 02 1 03 2 0 06 06 0 06	N, C N, IC AL /L N) .79 .34 .72 .8 .9 .2 .1 .7 .57 .6 .95 .35 .70 .74
OCT	DI: SOL (TOI PE DA 49 49 61 247 326 232 162 143 134 152 236 76 119 121	DS, RESID S AT 10 VED DEG. NS SUS-R PENDE Y) (MG/	UE SOLI 5 VOL. C, TILI SUS D PENDI L) (MG	A- (6 E, NII) - T(6 ED (N/L) AS	EN, RATE TTAL IG/L IG/L IG/L IG/L IG/L IG/L IG/L IG/	GEN, NITRITE TOTAL (MG/L AS N) 0.03	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRG GEN NO2+NO2+NO2+NO2+NO2+NO2+NO2+NO2+NO2+NO2+	O- GEI NO2+ NO2+ NO2+ SOL' (MG O O O O O O O O O O O O O O O O O O O	N, NIT NO3 GE S AMMO VED TOT (MG N) AS 0 0 0. 10 0 0. 110 0 0. 110 0 0. 110 0 0 0.	RO- GE AMMO NIA SOL (MG N) AS O1 06 08 09 11 12 0.08 05 03 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.06 0.04 0.04	N, NIT GE S- ORGA TOT (MG N) AS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N, C N, IC AL AL AL AL AL AL AL AL AL AL AL AL AL

MUDDY CREEK BASIN

09041500 MUDDY CREEK AT KREMMLING, CO--Continued

WATER QUALITY DATA, WATER OCTOBER 1986 TO SEPTEMBER 1987

	DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	
	OCT 09		0.80			0.04		<0.01				
	JAN 28		0.40		0.60	0.03		0.01				
	MAR 27		0.80		1.00	0.06		0.01		5.5	4.6	
	APR 28 29		2.90 7.00		3.00 7.10	0.07 1.90		0.05 0.07		46 		
	MAY 01 05 08 13 14 21	0.78 0.77	2.30 1.20 1.70 0.60 2.60 1.00	0.80	2.40	0.09 0.28 0.35 0.12 0.26	0.03	0.09 0.03 0.03 0.02	0.01 <0.01	21 9.1	6.8	
	JUN 02 04		0.40	 		0.23	 	0.02		8.9	8.5	
	23 JUL 16 20	0.64	0.80 0.80	0.70	 	0.06 0.04	0.02	0.02 <0.01	<0.01	8.9 8.9	8.8	
	14 17 SEP		0.20			0.11		0.02		 		
	15 17	0.28	0.20 0.50	0.30		0.01 0.05	<0.01	<0.01 <0.02	<0.01	5.7	6.0	
DATE	TIME	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
OCT 09		INUM, TOTAL RECOV- ERABLE (UG/L	TOTAL (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	LIUM, TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	MIUM, TOTAL RECOV- ERABLE (UG/L	MIUM, DIS- SOLVED (UG/L
OCT 09 JAN 28	. 1010	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOTAL (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS BA)	DIS- SOLVED (UG/L	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L	MIUM, DIS- SOLVED (UG/L
OCT 09 JAN 28 MAR 27	. 1010 . 1120	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	DIS- SOLVED (UG/L AS BA)	LIUM, TOTAL RECOV - ERABLE (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	MIUM, DIS- SOLVED (UG/L
OCT 09 JAN 28 MAR 27 APR 28 29	1010112013000730	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	DIS- SOLVED (UG/L AS BA)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	MIUM, DIS- SOLVED (UG/L
OCT 09 JAN 28 MAR 27 APR 28 29 MAY 01 05 08 13 14	. 1010 . 1120 . 1300 . 0730 . 1250 . 1130 . 1145 . 1125 . 1230 . 1305	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	DIS- SOLVED (UG/L AS BA)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	MIUM, DIS- SOLVED (UG/L AS CR)
OCT 09 28 MAR 27 APR 28 29 MAY 01 05 08 13 14 21 JUN 02 04 23 JUL	. 1010 . 1120 . 1300 . 0730 . 1250 . 1130 . 1145 . 1125 . 1230 . 1305 . 1150 . 1200 . 1245 . 1200	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA) 200	DIS- SOLVED (UG/L AS BA)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) <10	DIS- SOLVED (UG/L AS B) 80 20 	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	MIUM, DIS- SOLVED (UG/L AS CR)
OCT 09 JAN 28 MAR 27 APR 28 29 05 05 05 14 21 JUN 02 04 23 JUL 16	. 1010 . 1120 . 1300 . 0730 . 1250 . 1130 . 1145 . 1125 . 1230 . 1305 . 1150 . 1200 . 1245 . 1200	INUM, TOTAL RECOV— ERABLE (UG/L AS AL)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA) 200	DIS- SOLVED (UG/L AS BA)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BIS- SOLVED (UG/L AS B) 80 20 	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 20	MIUM, DIS- SOLVED (UG/L AS CR)
OCT 09 28 MAR 27 APR 28 29 MAY 01 05 08 13 14 21 JUN 02 04 23 JUL 16	. 1010 . 1120 . 1300 . 0730 . 1250 . 1130 . 1145 . 1125 . 1230 . 1305 . 1150 . 1200 . 1245 . 1200 . 1440 . 1015	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA) 200	DIS- SOLVED (UG/L AS BA)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BIS- SOLVED (UG/L AS B) 80 20 	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 20	MIUM, DIS- SOLVED (UG/L AS CR)

09041500 MUDDY CREEK AT KREMMLING, CO--Continued

WATER QUALITY DATA, WATER OCTOBER 1986 TO SEPTEMBER 1987

DATE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
OCT 09					18							
JAN 28					33							
MAR 27					18							
APR 28												
29 MAY					130							
01	8	40	6	20000	170 82	20	9	< 5	420	17 	<0.1	0.10
08					120							
13 14					94							
21 JUN					100							==
02												
04 23					32							
JUL												
16 20					33							
AUG 14					19							
17 SEP												
15 17	 2	 4	 3	1300	 11	 60	7	 < 5	 90	- - 51	 <0.1	<0.10
DAT	MOL DEN TOT REC ERA E (UG AS	UM, MOL AL DEN OV- DI BLE SOL /L (UC	.VED ERA	AL NICK COV- DIS BLE SOL	VED TO	LE- NII UM, DI TAL SOI G/L (U	LE- SILV JM, TOT IS- REC LVED ERA G/L (UG SE) AS	AL SILOV- DBLE SO	VER, T IS- D LVED SO G/L (U	LVED ERA G/L (UC	CAL ZIN COV- DI ABLE SOL G/L (UC	S- VED
OCT 09	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC	IUM, TOT IS- REC IVED ERA I/L (UG	AL NICK COV- DIS BLE SOL	VED TO	LE- NII UM, DI TAL SOI G/L (U	JM, TOT IS- REC LVED ERA G/L (UG	AL SILOV- DBLE SO	VER, T IS- D LVED SO G/L (U	IUM, TOT IS- REC LVED ERA G/L (UC	CAL ZIN COV- DI ABLE SOL G/L (UC	S- VED I/L
OCT 09 JAN 28	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC MO) AS	IUM, TOT S- REC VED ERA G/L (UG MO) AS	AL NICK COV- DIS BLE SOL I/L (UC NI) AS	VED TO	LE- NII UM, DI TAL SOI G/L (U SE) AS	JM, TOT IS- REC LVED ERA G/L (UG SE) AS	AL SIL OV- D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT IS- REC LVED ERA G/L (UC SR) AS	CAL ZINCOV- DI ABLE SOL G/L (UC ZN) AS	S- VED :/L ZN)
OCT 09 JAN 28 MAR 27	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC MO) AS	IUM, TOT IS- REC IVED ERA I/L (UG MO) AS	AL NICK OV- DIS BLE SOL I/L (UG NI) AS	- NI VED TO VL (U NI) AS	LE- NI UM, D TAL SO G/L (U SE) AS	JM, TOT IS- REC LVED ERA G/L (UG SE) AS	AL SIL OV- D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT IS- REC LVED ER G/L (UC SR) AS	TAL ZIN COV- DI ABLE SOL G/L (UC ZN) AS	S- VED J/L ZN)
OCT 09 JAN 28 MAR 27 APR	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC MO) AS	IUM, TOT IS REC IVED ERA IVL (UG MO) AS	AL NICK DV- DIS BLE SOL (VC NI) AS	VED TO' //L (U NI) AS	LE- NII UM, D TAL SOI G/L (U SE) AS	JM, TOT IS- REC LVED ERA G/L (UG SE) AS	AL SIL OV- D BLE SO //L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOTIS RECUVED ERM G/L (UC SR) AS	TAL ZIN COV DI ABLE SOL G/L (UC ZN) AS	S- VED I/L ZN)
OCT 09 JAN 28 MAR 27 APR 28 29	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV - DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VVED ERA I/L (UG MO) AS	AL NICK OV- DIS BLE SOL (//L (UC NI) AS	VED TO' I/L (U' NI) AS	LE- NII UM, D TAL SOI G/L (U SE) AS	JM, TOT S = REC LVED ERA G/L (UG SE) AS	AL SIL OV- D BLE SO //L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT IS = REC LVED ERA G/L (UC SR) AS	PAL ZIN DOV DI ABLE SOL G/L (UC ZN) AS	S- VED VED VL ZN)
OCT 09 28 MAR 27 APR 28 29 MAY	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV - DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VED ERA M/L (UG MO) AS	AL NICK DIS BLE SOL I/L (UC NI) AS	NI NI TO' VED TO' V/L (U NI) AS	LE- NII UM, D TAL SOO G/L (U SE) AS <1	JM, TOT IS- REC VED ERA G/L (UG SE) AS <1	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS <1	IUM, TOT REC LVED ER/G/L (UC SR) AS	PAL ZINCOV- DI BBLE SOL G/L (UC ZN) AS	S- VED VED E/L ZN)
OCT 09 JAN 28 MAR 27 APR 28 29 MAY 01	DEN TOT REC ERA E (UG	UM, MOLAL DEN OV - DI I BLE SOL (UC MO) AS	UM, TOT S- REC VED ERA I/L (UG MO) AS	AL NICK DIS BLE SOL I/L (UC NI) AS	VED TO VED TO V/L (UV NI) AS	LE- NII UM, D TAL SOI G/L (U SE) AS <1	JM, TOT SS- REC LYUED ERA G/L (UG SE) AS <1	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT IS- REC G/L ER G/L (UC SR) AS 880 270	TAL ZIN COV- DI BBLE SOL G/L (UC ZN) AS	S- VED VED VED VED VED VED VED VED VED VED
OCT 09 28 MAR 27 APR 28 29 MAY	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV - DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VED ERA M/L (UG MO) AS	AL NICK DIS BLE SOL I/L (UC NI) AS	NI NI TO' VED TO' V/L (U NI) AS	LE- NII UM, D TAL SOO G/L (U SE) AS <1	JM, TOT IS- REC VED ERA G/L (UG SE) AS <1	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS <1	IUM, TOT REC LVED ER/G/L (UC SR) AS	PAL ZINCOV- DI BBLE SOL G/L (UC ZN) AS	S- VED VED E/L ZN)
OCT	DEN TOT REC ERA E (UG	UM, MOLAL DEN OV - DI I BLE SOL (UC MO) AS	UM, TOT S- REC VED ERA I/L (UG MO) AS	AL NICK DIS BLE SOL I/L (UC NI) AS	NI: NI: NI: VED TO: VE	LE- NII UM, D TAL SO G/L (U SE) AS	JM, TOT IS - REC VED ERA GJ/L (UG SE) AS	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT REC LVED ER/ REC LVED	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VED VED V/L ZN) 6
OCT 09 JAN 28 MAR 27 APR 28 29 MAY 01 05 08 13 21	DEN TOT REC ERA E (UG	UM, MOLAL DEN OV - DI I BLE SOL (UC MO) AS	UM, TOT S- REC VED ERA I/L (UG MO) AS	AL NICKOV-DIS SOLUTION AS	VED TO VED TO V/L (UV NI) AS	LE- NII UM, D TAL SOI G/L (U SE) AS <1	JM, TOT SS- REC LYUED ERA G/L (UG SE) AS <1	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS D LVED SO G/L (U AG) AS	IUM, TOT LVED ER/ G/L (UC SR) AS 880 270	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VED VED VED VIL ZN)
OCT	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VVED ERA V/L (UG MO) AS	AL NICKOV-DIS SOLUTION AS	NI: NI: NI: VED TO: VE	LE- NII UM, D TAL SO G/L (U SE) AS	JM, TOT IS- REC VED ERA G/L (UG SE) AS	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT REC LVED ER/ REC LVED	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VVED V/L ZN)
OCT O9 JAN 28 MAR 27 APR 28 29 MAY O1 O5 08 14 JUN O2 O4	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV - DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VED ERA 3/L (UG MO) AS	AL NICK OV - DIS BLE SOL I/L (UC NI) AS 36	NI NI TO' VED	LE NII UM, D TAL SOO G/L (U SE) AS	JM, TOT IS- REC VED ERA G/L (UG SE) AS	AL SIL OV D BLE SO //L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT LVED ER/ G/L (UU SR) AS 880 270	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VED VED VED VIL ZN)
OCT	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VVED ERA S/L (UG MO) AS	AL NICKOV-DIS SOLUTION AS	NI: VVED TO: I/L (U'NI) AS	LE- NII UM, D TAL SOI G/L (U SE) AS	JM, TOT IS- REC VED ERA G/L (UG SE) AS	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT IS- REC REC G/L (UC SR) AS 880 270	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VED VED VED VED VED VED VED VED VED VED
OCT O9 JAN 28 MAR 27 APR 28 29 MAY O1 05 03 14 JUN 02 04 23 JUL 16	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VVED BRA S/L (UG MO) AS	AL NICK OV DIS BLE SOL I/L (UC NI) AS	NI:	LE- NII UM, D TAL SOI G/L (U SE) AS	JM, TOT IS - REC VED BRA G/L (UG SE) AS	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT REC LVED ER/ REC (UC SR) AS	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VED VED VAL ZN)
OCT	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV - DI BLE SOL /L (UC MO) AS	UM, TOT S- REC VVED ERA 6/L (UG MO) AS	AL NICK DIS BLE SOL I/L (UO NI) AS	NI: VVED TO: I/L (U'NI) AS	LE NII UM, D TAL SO G/L (U SE) AS	JM, TOT IS - REC VED ERA G/L (UG SE) AS	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT REC LVED ER/G/L (UC SR) AS	TAL ZINCOV- DI BBLE SOL G/L (UC ZN) AS	S- VVED
OCT	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV- DI BLE SOL /L (UC MO) AS	IUM, TOT S- REC VVED ERA I/L (UG MO) AS	AL NICK DIS BLE SOL I/L (UC NI) AS	NI:	LE- NII UM, D TAL SO G/L (U SE) AS	JM, TOT IS - REC VED ERA G/L (UG SE) AS	AL SIL OV D BLE SO /L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT REC LVED ER/ REC LVED	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VED VED VAL ZN)
OCT	DEN TOT REC ERA E (UG	UM, MOL AL DEN OV - DI BLE SOL /L (UO MO) AS	UM, TOT S- REC VVED BRA S/L (UG MO) AS	AL NICK DIS BLE SOL I/L (UO NI) AS	NI:	LE- NII UM, D TAL SOI G/L (U SE) AS	JM, TOT IS- REC VED ERA G/L (UG SE) AS	AL SIL OV D BLE SO //L (U AG) AS	VER, T IS- D LVED SO G/L (U AG) AS	IUM, TOT REC LVED ER/ REC (UC SR) AS	PAL ZIN COV DI BBLE SOL (UC ZN) AS	S- VED VED V/L ZN)

MUDDY CREEK BASIN

09041500 MUDDY CREEK AT KREMMLING, CO--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT					
09 JAN	1010	31	51	4.2	100
28 FEB	1120	40	45	4.8	81
26	1640	22	314	19	95
MAR 27	1300	31	57	4.8	91
APR 24 27 29	1115 1150 1115	359 504 652	1690 2090 2570	1640 2840 4520	94 88 87
MAY 01 05 08 14 21	1130 1125 1110 1250 1135	569 295 308 283 224	1150 351 358 220 180	1770 280 298 168 109	79 83 88 92 97
JUN 04	1245	36	107	10	69
JUL 16	1430	45	123	15	77
AUG 14	1015	19	154	8.0	70
SEP 17	1415	17	78	3.5	92

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	МОЛ	DEC	JAN	FEB	MA R	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1020 963 967 940 1050	875 907 1020 1090	1000 1010 1040 1100 1050	862 855 846 846 833	761 724 714 678 677	716 728 717 723 778	843 844 995 856 879	273 282 289 311 326	927 933 960 10 0 0 945	1160 1140 1090 1100	1320 1270 1140 1090 1080	1050 1130 1190 1140 1120
6 7 8 9 10	911 867 845 838 837	1090 1040 1040 1090 1110	994 959 938 976 1110	812 820 819 819 836	685 679 673 668 669	836 910 1090 1260 1060	360 745 683 650 600	317 300 286 282 268	964 981 989 973 925	1160 1150 1150 1140 1120	1100 1100 1010 1350 1140	1120 1120 1150 1200 1160
11 12 13 14 15	824 838 904 978 908	1100 1020 975 958 1050	1160 1220 1160 1030 935	792 749 716 708 715	663 666 698 712 744	994 1100 975 997 862	690 702 717 740 806	261 275 296 292 288	957 961 971 1010 1020	1130 1130 1220 1180 1150	1050 1050 1050 1060 1030	1190 1170 1150 1180 1220
16 17 18 19 20	884 877 868 871 902	982 990 1050 1130 1160	915 885 870 868 864	723 726 727 725 718	792 851 877 868 845	922 955 1000 1040 1020	613 437 414 396 390	333 352 393 442 477	1020 1040 1060 1060 1060	1220 1240 1280 1370 1440	1010 1020 1020 964 966	1240 1210 1190 1280 1320
21 22 23 24 25	920 991 1050 1220 1040	1350 1310 1080 1060 1100	855 847 835 829 832	720 717 715 703 705	783 751 724 706 690		455 485 464 405	569 620 614 659 755	1070 1090 1060 1110 1100	1420 1410 1420 1440 1410	966 989 1020 1030 1040	1120 1040 1040 1040 1030
26 27 28 29 30 31	950 931 911 906 897 890	1080 1030 1020 1050 1030	843 843 838 840 845 860	702 697 704 730 729 770	694 704 708 	968 973 909 948	327 304 269	753 770 798 817 856 889	1120 1120 1100 1120 1100	1340 1210 1570 1610 1330 1270	1060 1310 1200 1060 1040 1060	1040 1050 1060 1050 1050
MEAN	929	1063	947	759	729			466	1025	1262	1084	1135

79

09041500 MUDDY CREEK AT KREMMLING, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		I E M.	PERATURE,		sta. C), W				EPTEMBER			
DAY	MAX	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN
	OCTOBE	R	NOVEME	BER	DE CE MI	BER	JANUA	RY	FEBRU	ARY	MARC	Н
1 2 3 4 5	10.0 10.0 8.8 7.3 8.0	7.8 7.5 7.3 6.2 5.6	2.7 2.5 2.1 1.7 1.5	1.7 1.1 .8 .4	.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0	.0
6 7 8 9 10	9.2 9.3 9.0 10.3 9.8	6.5 7.3 7.2 6.6 7.6	1.2 1.2 .2 .2	.2 .2 .1	.0 .0 .0	.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0
11 12 13 14 15	8.4 4.5 4.0 5.6 6.4	4.7 2.4 1.3 2.3 3.2	.1 .1 .0 .0	.1 .0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0
16 17 18 19 20	6.9 6.5 6.9 7.0 6.9	3.9 3.9 4.1 5.0 5.2	.0 1.2 2.5 1.1	.0 .0 .9	.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0
21 22 23 24 25	6.5 5.0 5.2 5.5 5.2	5.1 4.2 4.1 3.8 4.2	.5 .3 .0 .0	.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0		
26 27 28 29 30 31	5.3 5.4 5.9 5.6	3.0 3.1 3.1 3.6 2.4	.0	.0	.0	.0 .0 .0	.0 .0 .0	.0	.0 .0 .0	.0	.1 .1 .1	.0 .1 .1
MONTH	10.3	1.3	2.7	.0	.0	.0	.0	.0	.0	.0		
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MA X	MIN
4	APRIL	2	MAY		JUNE		JULY		AUGUS		SEPTEME	
1 2 3 4 5	.2 .2 .3	.2	7•9 7•3	7.1 5.1	16.4	14.0	16.5	14.3	22.9	18.4	18.2	14.4 14.9
6	•3	.2 .3 .3	5.0 8.2 8.4	4.5 4.0 6.7	16.2 15.9 17.8	14.3 14.1 15.2	19.7 21.1 20.9 20.5	16.6 16.9 16.6 16.2	24.0 23.1 22.5 21.3	20.0 20.8 18.8 17.7	18.1 18.4 16.5 16.3	14.7 14.7 13.5
7 8 9 10	.6 2.3 4.1 3.9 3.5		8.2	4.5 4.0	15.9	14.1	19.7 21.1 20.9	16.6 16.9 16.6	24.0 23.1 22.5	20.0 20.8 18.8	18.1 18.4 16.5	14.7 14.7
8 9	.6 2.3 4.1 3.9	.3 .4 .4	8.2 8.4 10.9 11.7 11.7	4.5 4.0 6.7 6.4 8.3 9.1 8.8	15.9 17.8 18.3 18.4 17.3 16.3	14.1 15.2 16.6 16.2 16.2 14.8	19.7 21.1 20.9 20.5 20.1 20.8 19.5 19.2	16.6 16.9 16.6 16.2 15.2 15.4 15.6 15.3	24.0 23.1 22.5 21.3 20.3 20.8 20.4 20.7	20.0 20.8 18.8 17.7 17.7 17.5 13.9	18.1 18.4 16.5 16.3 14.9 14.1 14.1	14.7 14.7 13.5 12.1 11.7 11.2 11.8
8 9 10 11 12 13 14	.3 .6 2.3 4.1 3.5 2.2 3.2 5.8	.3 .4 .6 .9 .5 .9	8.2 8.4 10.9 11.7 11.7 10.9 10.6	4.5 4.0 6.7 6.4 8.3 9.1 8.8 9.1 8.9 7.9	15.9 17.8 18.3 18.4 17.3 16.3 15.2 15.3 16.2 19.3	14.1 15.2 16.6 16.2 14.8 13.9 13.5 14.5 15.9	19.7 21.1 20.9 20.5 20.1 20.8 19.5 19.2 18.2 16.1 14.1 16.3 19.3	16.6 16.9 16.2 15.2 15.4 15.6 15.3 16.1 14.4	24.0 23.1 22.5 21.3 20.3 20.8 20.4 20.7 21.7 21.4 20.6 19.7 20.1	20.0 20.8 18.8 17.7 17.7 17.5 13.9 17.7 18.2 17.6 17.6 17.6	18.1 18.4 16.3 14.9 14.1 15.4 15.5 15.0 15.1 14.0 15.3	14.7 14.7 13.5 12.1 11.7 11.8 12.3 11.9 11.5 11.8
8 9 10 11 12 13 14 15 16 17 18	.3 .6 2.3 4.1 3.9 3.5 2.2 2.1 8.4 8.4 6.4 6.1	.3 .4 .4 .6 .9 .6 1.3 5.3 2.9 .8 1.2	8.2 8.4 10.9 11.7 10.9 10.6 10.9 10.2 12.2 14.1 14.1 14.7 14.4 13.0	4.5 4.0 6.7 6.4 8.3 9.1 8.8 9.1 8.9 10.1 11.4 12.3 11.2	15.9 17.8 18.3 18.4 17.3 16.3 15.2 15.3 16.4 19.3 20.0	14.1 15.2 16.6 16.2 14.8 13.9 13.5 14.5 18.2 18.8 17.6 16.9 17.5	19.7 21.1 20.9 20.5 20.1 20.8 19.5 19.2 16.1 14.1 16.3 19.3 21.0 22.2 20.4 19.4 20.6	16.6 16.9 16.6 16.2 15.2 15.6 15.3 16.1 14.4 17.6 14.4 17.6 17.6	24.0 23.1 22.5 21.3 20.8 20.4 20.7 21.7 21.4 20.6 19.7 20.1 19.7 19.2 18.4 18.7 18.8	20.0 20.8 18.8 17.7 17.7 17.5 13.9 17.7 18.2 17.6 17.0 16.4 16.2 15.7 15.0	18.1 18.5 16.3 14.9 14.1 15.5 15.0 15.1 14.0 15.3 13.8 13.9 14.1 13.6 13.7	14.7 14.7 13.5 12.1 11.2 11.8 12.3 11.9 11.5 11.8 11.3 12.2
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	.3 .6 2.1 3.5 2.1 3.5 2.2 3.1 5.8 8.1 4.6 6.1 2.9 5.1 6.8 8.5 7.9 8.1	.3 .4 .6 .9 .5 .6 .3 .5 .3 .8 1.2 .9 .5 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	8.2 8.4 10.9 11.7 10.9 10.6 10.9 10.2 12.2 14.1 14.1 14.7 11.8 53.5 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6	4.5 4.0 6.7 6.4 8.3 9.1 8.9 10.1 11.4 12.3 11.2 9.4 10.6 9.3 11.2 9.8 10.7 9.8 10.7 9.8 10.0	15.9 17.8 18.3 18.3 16.3 15.2 15.3 16.3 19.3 20.0 19.4 18.8 19.7 20.4 19.5 20.4 19.5 20.6	14.1 15.2 16.6.2 14.8 13.9 13.5 14.5 18.8 17.9 18.1 17.9 17.8 16.7 17.9 16.7 15.6 16.7 17.0 16.5 17.0 16.5 17.0 16.3	19.7 21.1 20.9 20.5 20.8 19.5 19.2 16.1 14.1 16.3 19.3 21.0 22.2 20.4 120.6 20.7 21.9 23.5 24.1 24.8 22.8 23.6	16.6 16.9 16.9 16.9 15.4 15.4 15.6 15.3 16.4 17.1 14.4 17.1 16.8 17.3 18.1 18.3 18.3 19.3 19.9	24.0 23.1 22.5 21.3 20.8 20.4 20.7 21.7 21.4 20.6 19.7 20.1 19.7 18.8 18.7 18.8 17.7 16.7 16.7 15.3 16.3	20.0 20.8 18.8 17.7 17.75 13.9 17.7 18.2 17.96 17.0 16.4 15.7 15.0 15.7 15.7 15.9 14.7 14.5 13.8 13.9 13.8	18.1 18.5 16.3 14.1 15.5 15.1 15.8 13.7 13.7 13.7 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 14.1 15.3 16.3 17.0	14.7 14.7 13.5 12.1 11.7 11.8 12.3 11.9 11.8 11.8 11.8 11.8 11.8 11.8 9.3 9.3 9.7 9.8 10.2 11.0 12.0 12.0 12.0 12.0 12.0 12.0
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	.3 6.31.95 322.184 1.41.46 1.295.1 6.88.5.1 7.92	.3 .4 .4 .6 .9 .5 .5 .5 .3 .5 .3 .5 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	8.2 8.4 10.9 11.7 11.7 11.7 10.6 10.2 12.2 14.1 14.1 14.7 11.8 53.5 12.6 13.6 13.0 11.7 11.7	4.5 4.7 6.4 8.9 8.9 8.9 10.1 11.4 12.1 11.2 9.4 10.6 9.3 11.4 10.6 9.3 11.4 10.6 9.5 11.4 11.4	15.9 17.8 18.3 18.4 17.3 16.3 15.2 15.3 16.2 18.4 19.3 20.0 19.4 18.3 18.8 19.1 18.8 19.5 20.4 19.5 20.4 19.5 20.4 19.5 20.5 21.6	14.1 15.2 16.62 16.2 14.8 13.9 13.5 15.9 18.2 18.8 17.6 16.7 17.9 17.8 16.7 15.7 15.6 15.7 15.0	19.7 21.1 20.9 20.5 20.8 19.5 19.2 18.2 16.1 16.3 19.3 21.0 22.4 19.4 20.6 20.7 21.0 22.4 19.4 20.6 20.7 21.0 22.3 24.1 24.8 24.8 22.8	16.6 16.9 16.9 16.2 15.4 15.6 15.3 16.1 14.4 17.6 16.1 16.1 16.1 16.1 16.1 16.1 18.5 19.3 20.0 18.4 19.2	24.0 23.1 22.5 21.3 20.8 20.4 20.7 21.7 21.4 20.6 19.7 20.1 19.7 18.8 18.7 18.8 17.7 16.7 16.7 16.7	20.0 20.8 18.8 17.7 17.75 13.9 17.6 18.2 17.6 16.4 16.4 15.0 15.7 15.0 15.7 14.7 14.5 13.8 13.9 12.9	18.1 18.5 16.3 14.1 15.5 15.0 15.8 13.7 13.7 13.7 13.7 13.7 13.7 13.8 14.1 15.5 15.0	14.7 14.7 13.5 12.1 11.2 11.8 12.3 11.9 11.8 11.8 11.8 11.8 9.3 9.3 9.7 9.8 9.7 9.8 10.3 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09041900 MONTE CRISTO DIVERSION NEAR HOOSIER PASS, CO

LOCATION.--Lat 39°22'51", long 106°04'15", in NE\set sec.2, T.8 S., R.78W., Summit County, Hydrologic Unit 14010002, on left bank at entrance to Hoosier Pass tunnel, 1,800 ft downstream from diversion point, 1.4 mi northwest of Hoosier Pass, and 7 mi southwest of Breckenridge.

PERIOD OF RECORD. -- October 1957 to current year.

GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 10,986 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. This is a transmountain diversion from Monte Cristo Creek in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion point is in SWANE4 sec.2, T.8 S., R.78 W. The entire flow is regulated by diversion gates.

COOPERATION .-- Gage-height record collected in cooperation with city of Colorado Springs.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 52 ft 3/s, June 29, 1985; no flow for most of each year.

		DISCHAR	GE, IN	CUBIC FEET	PER SECON	D, WATER EAN VALUE	YEAR OCT	OBER 1986	TO SEPTEM	IBER 1987	,	
DAY	OCT	NOA	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	47	.00	.00	.00	.00	.00	.00	7.9	4.6	.00	.00	37
2	46	.00	.00	.00	.00	.00	.00	7.7	4.7	.00	.00	37
3	45	.00	.00	.00	•00	•00	.00	5.7	4.5	.00	.00	33
4	43	.00	.00	.00	.00	.00	.00	4.5	4.7	.00	.00	32
5	41	.00	.00	.00	.00	.00	.00	3.6	4.9	.00	.00	31
,								2 2	h. 0		00	29
6	40	.00	.00	.00	.00	.00	.00	3.3	4.9	.00	.00	
7	38	.00	.00	•00	.00	.00	.00	4.4	5.0	.00	.00	28
8	38	.00	.00	.00	.00	•00	.00	7.3	5.9	.00	2.9	26
9	42	.00	.00	.00	.00	•00	.00	12	7.5	.00	5.5	23
10	39	.00	.00	.00	.00	.00	.00	15	6.5	.00	5.1	2.3
11	36	.00	.00	.00	.00	•00	.00	16	5.4	.00	3.2	31
12	33	.00	.00	.00	.00	.00	.00	18	4.9	.00	•54	36
13	30	.00	.00	.00	.00	.00	.00	23	3.2	•00	•0	34
14	19	.00	.00	.00	.00	.00	.00	30	•0	•00	.00	30
15	8.3	.00	.00	.00	.00	.00	.00	28	.00	.00	.00	26
16	13	.00	.00	.00	.00	.00	.00	29	.00	.00	.00	20
17	6.7	.00	.00	.00	.00	.00	.00	30	.00	.00	.00	15
18	.00	.00	.00	.00	.00	.00	.00	28	.00	.00	.00	.0
19	.00	.00	.00	.00	.00	.00	.00	20	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	6.1	.00	•00	9.9	.00
21	.00	.00	.00	.00	.00	.00	.00	4.8	.00	•00	42	.00
22	.00	.00	.00	.00	.00	.00	.00	3.9	.00	•00	43	.00
23	.00	.00	.00	.00	.00	.00	.00	3.6	.00	.00	43	.00
24	.00	.00	.00	.00	.00	.00	.00	4.0	.00	.00	43	.00
25								3.3	.00	.00	42	.00
20	.00	.00	.00	.00	.00	.00	.00	3.3	•00	•00	42	•00
26	.00	.00	.00	.00	.00	.00	.00	3.0	.00	.00	41	.00
27	.00	.00	.00	.00	.00	.00	.00	2.4	.00	.00	41	.00
28	.00	.00	.00	.00	.00	.00	.00	2.5	.00	.00	40	.00
29	.00	.00	.00	.00		.00	.00	2.6	.00	.00	39	.00
30	.00	.00	.00	.00		.00	4.9	2.8	.00	.00	39	.00
31	.00		.00	.00		.00		3.4		.00	38	
TOTAL	565.00	0.0	0.0	0.0	0.0	0.0	4.90	335.8	66.70	•00	478.14	470.30
		•00	.00	.00	•00	•00		10.8	2.22	.00	15.4	15.7
MEAN	18.2	.00	.00	.00	.00	.00	.16				43	37
MA X	47	.00	.00	.00	.00	.00	4.9	30	7.5	.00		.00
MIN	.00	.00	.00	.00	.00	.00	.00	2.4	.00	.00	.00	
AC-FT	1120	.0	.0	.0	• 0	• 0	9.7	666	132	.0	948	933

CAL YR 1986 TOTAL 2320.40 MEAN 6.36 MAX 47 MIN .00 AC-FT 4600 WTR YR 1987 TOTAL 1920.84 MEAN 5.26 MAX 47 MIN .00 AC-FT 3810

09044300 BEMROSE-HOOSIER DIVERSION NEAR HOOSIER PASS, CO

LOCATION.--Lat 39°22'50", long 106°04'13", in NE4SE4 sec.2, T.8 S., R.78W., Summit County, Hydrologic Unit 14010002, on right bank at entrance to Hoosier Pass tunnel, 1.4 mi northwest of Hoosier Pass, 1.6 mi downstream from diversion point on Bemrose Creek, and 7 mi southwest of Breckenridge.

PERIOD OF RECORD. -- October 1957 to current year.

GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 10,986 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: June 24-27. Records good. This is a transmountain diversion from Bemrose and Hoosier Creeks in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion points are in SW4SW4 sec.6, T.8 S., R.77 W., and in sec.12, T.8 S., R.78 W. The entire flow is regulated by diversion gates.

COOPERATION .-- Gage-height record collected in cooperation with city of Colorado Springs.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 44 ft3/s, June 21, 1965; no flow for most of each year.

		DISCHAR	GE, IN C	JBIC FEET	PER SECON M	D, WATER EAN VALUE	YEAR OCT	OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2	.00	.00	.00	.00	.00	.00	.00	3.5 3.5	9.9 12	9.5 8.9	3.2 3.3	•30 •30
3 4	.00	.00	.00	.00	.00	.00	.00	2.2	12	8.4 7.8	3.0	.30 .30
5	.00	.00	.00	.00	.00	.00	.00	2.1 2.0	15 17	7.4	2.7 2.5	.30
6	.00	.00	.00	.00	.00	.00	.00	2.2	19	7.2	2.3	.30
7 8	.00	.00	.00	.00	.00	.00	.00	2.9 4.0	20 22	6.5 6.3	2.1 2.1	.30 .30
9	.00	.00	.00	.00	.00	.00	.00	4.8	28	6.1	2.1	.10
10	.00	.00	.00	.00	.00	.00	.00	5.0	26	5.2	1.6	.00
11	.00	.00	.00	.00	.00	.00	.00	5.6	25	3.8	2.1	.00
12 13	.00	.00	.00	.00	.00	.00	.00	6.5 7.4	25	3.7 3.5	2.2	.00
13 14	.00	.00	.00	.00	.00	.00	.00	7 • 4 9 • 5	21 17	3.5 3.5	2.2 2.1	.00
15	.00	.00	.00	.00	.00	.00	.00	9.5	16	3.3	2.0	.00
16	.00	.00	.00	.00	.00	.00	.00	11	15	3.0	1.9	.00
17 18	.00	.00	.00	.00	.00	.00	.00	10	14	3.2	1.7	.00
19	.00	.00	.00	.00	.00	.00	.00	9.7 9.3	14 13	2.9 2.6	1.5 .97	.00
20	.00	.00	.00	.00	.00	.00	.00	10	12	2.5	.69	.00
21	.00	.00	.00	.00	.00	.00	.00	9.7	10	2.5	.60	.00
22	.00	.00	.00	.00	.00	.00	.00	8.7	10	2.3	• 54	.00
23 24	.00	.00	.00	.00	.00	.00	.00	9.1 9.7	11 14	2.2 2.2	.48 .48	.00
25	.00	.00	.00	.00	.00	.00	.00	8.9	12	2.2	.48	.00
26	.00	.00	.00	.00	.00	.00	.00	8.4	9.3	2.1	.42	.00
27	.00	•00	.00	.00	.00	.00	.00	8.0	9.7	2.1	.42	.00
28	.00	.00	.00	.00	.00	.00	.00	7.8	9.5	2.2	•42	.00
29 30	.00	.00	.00	.00		.00	.00 2.3	7.2 6.9	12 11	2.1 2.3	.42 .36	.00
31	.00		.00	.00		.00		7.6		3.0	.36	
TOTAL	.00	.00	.00	.00	.00	.00	2.30	212.7	461.4	130.5	47.24	2.50
MEAN	.00	.00	.00	.00	.00	.00	.08	6.86	15.4	4.21	1.52	.08
MA X	.00	.00	.00	.00	.00	.00	2.3	11	28	9.5	3.3	.30
MIN	.00	.00	.00	.00	.00	.00	.00	2.0	9.3	2.1	.36	.00
AC-FT	.0	.0	.0	.0	.0	.0	4.6	422	915	259	94	5.0

CAL YR 1986 TOTAL 995.86 MEAN 2.73 MAX 23 MIN .00 AC-FT 1980 WTR YR 1987 TOTAL 856.64 MEAN 2.35 MAX 28 MIN .00 AC-FT 1700

09044800 MCCULLOUGH-SPRUCE-CRYSTAL DIVERSION NEAR HOOSIER PASS, CO

LOCATION.--Lat 39°22'51", long 106°04'14", in NE4SE4 sec.2, T.8 S., R.78 W., Summit County, Hydrologic Unit 14010002, on left bank at entrance to Hoosier Pass tunnel, 1.4 mi northwest of Hoosier Pass, 1.6 mi downstream from diversion point on McCullough Gulch, and 7 mi southwest of Breckenridge.

PERIOD OF RECORD.--October 1957 to current year. Prior to October 1961, Published as McCullough diversion near Hoosier Pass.

GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 10,986 ft, above National Geodetic Vertical datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Aug. 10-17. Records good. This is a transmountain diversion from McCullough Gulch and Spruce and Crystal Creeks in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion points are in secs.14, 23, and 26, T.7 S., R.78 W. The entire flow is regulated by diversion gates.

COOPERATION. -- Gage-height record collected in cooperation with city of Colorado Springs.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 123 ft³/s, June 20, 1968, June 19, 1983; no flow for most of each year.

DISCHARGE,	ΙN	CUBIC FE	EET PER	SECOND,	WATER	YE A R	OCTOBER	1986	ΤO	SEPTEMBER	1987
				MEA	N VALUE	ES					

DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	7.8 7.2 4.2 2.9 2.3	26 31 31 37 45	25 21 19 17 15	27 43 28 12 9.3	.00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	2.6 5.1 9.7 14 18	48 53 66 76 51	17 26 26 24 23	9.2 2.2 1.9 11	.00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	18 22 30 49 47	25 25 17 .61	.97 .72 .72 .61	6.9 3.0 .53 .50	.00 .00 .00
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	53 51 40 31 27	.61 .61 .61 .61	.50 .50 .50 .50	.50 4.8 .0 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	23 17 17 18 14	.61 .61 .61 8.1	.50 .50 .45 .45	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00	.00 .00 .00 .00	2.0 4.2 6.5 7.2 6.7	13 12 11 12 11 16	20 20 19 18 22	.50 .50 .50 .50 .50	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	26.60 .89 7.2 .00	605.8 19.5 53 2.3 1200	662.20 22.1 76 .61 1310	240.03 7.74 26 .45 476	161.53 5.21 43 .00 320	.00

CAL YR 1986 TOTAL 3822.81 MEAN 10.5 MAX 100 MIN .00 AC-FT 7580 WTR YR 1987 TOTAL 1696.16 MEAN 4.65 MAX 76 MIN .00 AC-FT 3360

09046490 BLUE RIVER AT BLUE RIVER, CO

LOCATION.--Lat 39°27'21", long 106°01'52", in NEtSEt sec.7, T.7 S, R.77 W., Summit County, Hydrologic Unit 14010002 on left bank, 350 ft downstream from spillway of Goose Pasture Tarn Dam, 2.0 mi southeast of Breckenridge.

DRAINAGE AREA .-- 22.6 mi2.

AC-FT

PERIOD OF RECORD. -- October 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,385 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Jan. 16, 18-23, 25-26, Feb. 21 to Mar. 13. Records good, except for estimated daily discharges, which are poor. Transmountain diversions upstream from station by Boreas Pass ditch and Hoosier Pass tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 506 $\rm ft^3/s$ July 1, 1984, gage height, 2.84 ft, minimum daily, 4.5 $\rm ft^3/s$, Mar. 23, 1986.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 174 $\rm ft^3/s$, June 14, gage height, 2.07 $\rm ft$, minimum daily, 4.8 $\rm ft^3/s$, Mar. 24-26.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MA R APR MA Y JUN JUL AUG SEP 6.3 7.8 5.9 5.8 5.2 5.1 76 81 5.2 5.6 64 5.2 7.3 5.8 5.1 7.3 5.9 5.2 5.1 5.8 5.2 5.1 5.2 5.2 5.2 7.5 5.7 5.3 17 7.3 6.9 5.7 5.6 5.6 5.4 37 45 5.2 5.7 5.8 5.2 5.4 7.0 6.1 5.2 5.2 5.3 9.6 6.9 7.1 6.9 5.8 5.7 7.0 5.8 6.2 6.5 5.6 5.5 6.6 9.9 6.2 5.2 6.3 7.3 8.7 9.6 6.3 5.2 5.5 6.2 5.2 5.2 9.0 9.3 6.2 5.2 5.1 5.2 9.0 6.2 5.6 8.7 6.2 8.2 6.2 5.2 5.2 16 13 8.0 6.2 5.2 5.0 26 81 5.2 5.9 8.0 6.2 5.2 4.8 7.7 4.8 5.2 7.2 6.2 7.0 6.1 6.4 5.2 5.2 5.3 71 31 6.4 6.7 5.0 ___ 5.0 6.8 6.2 ___ 5.1 ___ ---24.6 TOTAL 423.5 291.9 204.8 154.5 161.7 MEAN 5.52 5.22 6.3 14.1 52.9 84 31.7 18.5 13.9 9.42 6.61 65.9 15 MAX 7.8 6.4 4.8 5.1 MTN 5.9 5.2

CAL YR 1986 TOTAL 9443.9 MEAN 25.9 MAX 111 MIN 4.5 AC-FT 18730 WTR YR 1987 TOTAL 10878.4 MEAN 29.8 MAX 165 MIN 4.8 AC-FT 21580

09046600 BLUE RIVER NEAR DILLON, CO

LOCATION.--Lat 39°32'55", long 106°02'19", in NW±NE± sec.7, T.6 S., R.77 W., Summit County, Hydrologic Unit 14010002, on right bank 0.2 mi downstream from Swan River and 5.5 mi south of Dillon.

DRAINAGE AREA .-- 119 mi2.

PERIOD OF RECORD. -- October 1957 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 9,120 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Mar. 11-19. Records good. Transmountain diversions upstream from station by Boreas Pass ditch and Hoosier Pass tunnel (see elsewhere in this report). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 30 years, 105 ft3/s; 76,070 acre-ft/yr, adjusted for diversions to Hoosier Pass tunnel.

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 1,250 ft³/s, June 17, 1965, gage height, 5.38 ft, from rating curve extended above 800 ft³/s; minimum daily, 17 ft³/s, Mar. 21, 1961, Feb. 24-26, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $380 \text{ ft}^3/\text{s}$ at 0600 June 10, gage height, 3.96 ft; minimum daily, $20 \text{ ft}^3/\text{s}$, Feb. 7, 9, 10, 13.

		DISCHA	RGE, CUBIC	FEET		, WATER YEA EAN VALUES	R OCTOBER	1986 T	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	59	47	36	26	22	23	23	116	188	224	116	66
2	60	47	35	26	21	23	23	126	205	211	100	64
3	59	46	35	26	21	23	23	126	217	196	95	63
4	60	46	35	27	22	23	23	106	232	179	87	62
5	61	44	34	27	21	24	23	93	255	164	84	63
6	61	43	34	27	21	25	23	89	270	151	84	70
7	59	44	35	27	20	25	23	90	286 ₂	141	84	72
8	58	43	35	27	21	26	24	96	313	127	86	71
9	57	42	34	28	20	27	25	108	344	119	91	71
10	56	42	33	28	20	22	25	127	369	113	84	70
11	55	41	33	28	21	24	25	144	358	110	78	68
12	56	41	32	28	21	24	27	160	352	116	75	63
13	54	40	32	28	20	24	26	177	344	123	73	58
14	51	40	31	29	21	24	26	208	353	118	75	57
15	51	40	31	28	21	24	27	243	355	111	78	57
16 17 18 19 20	53 59 57 55 55	41 41 41 41 41	31 31 30 31 30	27 27 26 26 25	21 22 22 21 22	24 24 24 25	32 39 45 53 58	276 304 295 274 262	343 339 322 317 311	109 112 127 126 111	75 72 68 64 62	56 57 55 54 55
21	55	41	30	25	22	25	58	263	304	103	61	54
22	55	41	30	24	22	24	58	249	291	101	62	51
23	55	39	29	24	23	24	61	233	282	115	71	48
24	53	39	29	24	22	24	68	236	271	121	86	46
25	52	38	30	24	22	24	74	239	240	111	91	45
26 27 28 29 30 31	51 50 49 47 46	38 37 36 36 36	29 28 28 27 27 27	23 23 22 22 23 23	23 23 23 	24 24 23 23 23 23	82 87 93 103 111	220 208 196 190 183 178	216 211 208 208 230	104 103 117 125 124 129	86 81 77 73 71 69	44 44 43 42 41
TOTAL	1696	1232	972	797	601	743	1388	5815	8534	4041	2459	1710
MEAN	54•7	41.1	31.4	25.7	21.5	24.0	46.3	188	284	130	79.3	57.0
MAX	61	47	36	29	23	27	111	304	369	224	116	72
MIN	46	36	27	22	20	22	23	89	188	101	61	41
AC-FT	3360	2440	1930	1580	1190	1470	2750	11530	16930	8020	4880	3390

CAL YR 1986 TOTAL 32752 MEAN 89.7 MAX 389 MIN 23 AC-FT 64960 WTR YR 1987 TOTAL 29988 MEAN 82.2 MAX 369 MIN 20 AC-FT 59480

85

09047500 SNAKE RIVER NEAR MONTEZUMA, CO

LOCATION.--Lat 39°36'20", long 105°56'33", in NW4 sec.19, T.5 S., R.76 W. (projected), Summit County, Hydrologic Unit 14010002, on right bank 200 ft downstream from North Fork and 4.5 mi northwest of Montezuma.

DRAINAGE AREA. -- 57.7 mi2.

PERIOD OF RECORD. -- July 1942 to September 1946, October 1951 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 9,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 14, 1943, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Nov. 3 to Apr. 29. Records good except for estimated daily discharges, which are poor. Small diversions upstream from station for irrigation and domestic use. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 40 years, 61.6 ft 3/s; 44,630 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,250 ft³/s, June 10, 1952, gage height, 3.51 ft; maximum gage height, 3.88 ft, June 6, 1972; minimum discharge not determined.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 9	1800	*388	*2.93				

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 13 ft³/s, Mar. 16-22.

		DISCHE	inde, cobi	IC FEET FE	ME	AN VALUES	AR OCTOBE	SK 1900 I	O SELIENDI	5N 1907		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	38 36 39 38 37	26 27 26 26 26	22 22 22 22 22	17 17 17 17	17 17 17 17 17	15 15 15 15 15	15 15 15 15 15	89 84 65 58 55	169 187 200 227 247	129 121 115 109 103	68 66 65 66 62	39 39 37 38 36
6 7 8 9 10	37 37 35 34 33	26 26 26 26 26	22 21 21 20 20	17 17 17 17 17	1'7 17 17 17 17	15 15 15 15 15	15 15 15 15 15	59 70 88 113 134	256 272 290 346 319	98 92 88 85 82	61 64 60 56 56	35 35 34 34 32
11 12 13 14 15	33 32 32 33 33	26 26 26 26 26	19 19 18 18	17 17 17 17 17	17 17 17 17 16	15 15 15 15 14	15 15 15 17 18	144 146 173 196 220	296 287 286 270 254	80 83 80 73 70	52 51 54 52 46	32 32 31 32 35
16 17 18 19 20	32 32 30 31 33	26 26 26 26 25	17 17 17 17 17	17 17 17 17 17	15 15 15 15 15	13 13 13 13	20 23 26 29 27	273 275 249 226 211	238 223 210 201 191	68 76 73 64 61	45 42 41 39 38	35 37 33 31 30
21 22 23 24 25	31 31 30 30 29	24 23 22 22 22	17 17 17 17 17	17 17 17 17 17	15 15 15 15	13 13 14 15	25 29 32 35 40	188 165 159 159	178 170 168 159	59 58 57 54 53	40 53 59 64 55	29 28 27 27 27
26 27 28 29 30 31	28 28 31 27 28 28	22 22 22 22 22	17 17 17 17 17	17 17 17 17 17	15 15 15 	15 15 15 15 15	45 50 54 60 82	136 124 116 114 112 132	144 139 134 151 141	54 78 69 69 87	51 48 47 46 43 41	26 26 25 24 24
TOTAL MEAN MAX MIN AC-FT	1006 32.5 39 27 2000	743 24.8 27 22 1470	578 18.6 22 17 1150	527 17.0 17 17 1050	449 16.0 17 15 891	449 14.5 15 13 891	807 26.9 82 15 1600	4478 144 275 55 8880	6503 217 346 134 12900	2442 78.8 129 53 4840	1631 52.6 68 38 3240	950 31.7 39 24 1880

CAL YR 1986 TOTAL 28041 MEAN 76.8 MAX 463 MIN 11 AC-FT 55620 WTR YR 1987 TOTAL 20563 MEAN 56.3 MAX 346 MIN 13 AC-FT 40790

09047700 KEYSTONE GULCH NEAR DILLON, CO

LOCATION.--Lat 39°35'40", long 105°58'19", in NE4NE4 sec.26, T.5 S., R.77 W., Summit County, Hydrologic Unit 14010002, on right bank 0.7 mi upstream from mouth and 4.7 mi southeast of Dillon.

DRAINAGE AREA . - - 9 . 10 mi 2 .

PERIOD OF RECORD. -- October 1957 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 9,350 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 3 to Apr. 29. Records good except for estimated daily discharges, which are poor. No known diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 30 years, 6.00 ft3/s; 4,350 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 118 ft³/s, June 27, 1983, gage height, 3.01 ft, from rating curve extended above 65 ft³/s; minimum not determined.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 35 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 9	1700	*24	*2.20				

Minimum daily, 2.0 ft3/s, Feb. 7-15.

		DISCHA	RGE, CUBI	C FEET P	ER SECOND,	, WATER YE EAN VALUES	AR OCTOBE	R 1986 T	O SEPTEMBE	R 1987		
DA Y	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	4.8 4.8 4.9 4.9	4.5 4.5 4.2 4.1 4.0	3.0 3.0 3.0 3.0	2.2 2.2 2.2 2.2 2.2	2.2 2.2 2.2 2.2 2.2	2.2 2.2 2.2 2.2 2.2	2.2 2.2 2.2 2.2 2.2	7.2 6.7 5.1 4.5 4.3	12 13 13 14 15	8.9 8.0 7.4 7.2 6.7	4.4 4.2 3.9 3.9	3.2 3.4 3.1 3.2 3.1
6 7 8 9 10	4.7 4.6 4.6 4.6 4.6	4.0 4.0 4.0 4.0	3.0 3.0 3.0 3.0	2.2 2.2 2.2 2.2 2.2	2.1 2.0 2.0 2.0 2.0	2.2 2.2 2.2 2.2 2.2	2.2 2.2 2.3 2.5 2.6	5.5 7.7 9.1 9.8 9.7	15 1 7 18 20 19	6.7 6.6 6.6 6.4	3.8 4.0 4.0 3.8 3.8	2.9 2.9 2.9 2.8
11 12 13 14 15	4.6 4.7 6.0 5.2 5.0	4.0 4.0 4.0 3.9 3.8	3.0 3.0 3.0 2.9 2.8	2.2 2.2 2.2 2.2	2.0 2.0 2.0 2.0 2.0	2.2 2.2 2.2 2.2 2.2	2.8 3.0 3.0 3.0	11 11 12 14 15	18 16 16 15 15	6.2 6.4 5.9 5.6	3.9 3.6 4.3 3.9	2.8 2.8 2.8 2.9 3.1
16 17 18 19 20	4.9 4.9 4.5 4.4 4.4	3.7 3.6 3.5 3.3 3.2	2.7 2.6 2.5 2.5 2.5	2.2 2.2 2.2 2.2 2.2	2.1 2.2 2.2 2.2 2.2	2.2 2.2 2.2 2.2 2.2	3.0 3.1 3.3 3.4 3.6	16 16 15 15 16	14 13 12 12 12	5.3 6.4 6.0 4.9 4.6	3.8 3.7 3.6 3.4 3.4	3.3 3.2 3.0 2.9 3.0
21 22 23 24 25	4.4 4.4 4.5 4.5 4.4	3.1 3.0 3.0 3.0 3.0	2.5 2.5 2.5 2.5 2.5	2.2 2.2 2.2 2.2 2.2	2.2 2.2 2.2 2.2 2.2	2.2 2.2 2.2 2.2 2.2	3.8 4.0 4.2 4.4 4.6	15 14 13 14 13	12 11 11 10 9.9	4.4 4.2 4.2 4.2 4.3	3.4 4.1 4.9 4.5 4.0	2.9 2.9 2.7 2.7
26 27 28 29 30 31	4.6 4.8 4.8 4.7 4.4	3.0 3.0 3.0 3.0	2.5 2.5 2.5 2.5 2.4 2.3	2.2 2.2 2.2 2.2 2.2 2.2	2.2 2.2 2.2	2.2 2.2 2.2 2.2 2.2 2.2	4.8 5.2 5.4 5.8 6.1	14 12 11 11 11	9.4 9.0 8.7 9.8 9.9	4.3 4.2 4.7 4.6 4.8 5.5	3.7 3.5 3.4 3.4 3.3	2.7 2.7 2.6 2.7 2.6
TOTAL MEAN MAX MIN AC-FT	145.9 4.71 6.0 4.4 289	108.4 3.61 4.5 3.0 215	84.7 2.73 3.0 2.3 168	68.2 2.20 2.2 2.2 135	59.6 2.13 2.2 2.0 118	68.2 2.20 2.2 2.2 135	102.3 3.41 6.1 2.2 203	349.6 11.3 16 4.3 693	399.7 13.3 20 8.7 793	178.0 5.74 8.9 4.2 353	119.4 3.85 4.9 3.2 237	87.4 2.91 3.4 2.6 173

CAL YR 1986 TOTAL 2683.3 MEAN 7.35 MAX 32 MIN 2.3 AC-FT 5320 WTR YR 1987 TOTAL 1771.4 MEAN 4.85 MAX 20 MIN 2.0 AC-FT 3510

09050100 TENMILE CREEK BELOW NORTH TENMILE CREEK, AT FRISCO, CO

LOCATION.--Lat 39°34'31", long 106°06'36", in SEANW4 sec.34, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 220 ft upstream from bridge on U.S. Highway 6, 160 ft downstream from North Tenmile Creek, and 0.6 mi west of Frisco.

DRAINAGE AREA .-- 93.3 mi2.

PERIOD OF RECORD. -- October 1957 to current year. Prior to October 1971, published as "below North Fork, at Frisco."

GAGE.--Water-stage recorder. Elevation of gage is 9,100 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Apr. 21, 1981 at site 720 ft downstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 7-14, 21-25, 27-29, Dec. 1-26, Dec. 30 to Jan. 30, Feb. 16 to Mar. 2, Mar. 28-30, Apr. 19, 20. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by a few small diversions upstream from station for irrigation and municipal use and transbasin diversion from Robinson Reservoir, capacity, 2,520 acre-ft, in Eagle River basin. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 30 years, 99.9 ft 3/s; 72,380 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,910 ft 3 /s, June 16, 1965, gage height, 6.15 ft, from rating curve extended above 750 ft 3 /s; minimum daily, 7 ft 3 /s, Mar. 8, 14, 1960.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 16	2230	*710	*3.60	No other	peak greater	r than base o	lischarge.

Minimum daily, $18 \text{ ft}^3/\text{s}$, Feb. 23-28.

		DISCHAR	GE, CUBIC	FEET PE	R SECOND,	WATER YEAR EAN VALUES	ROCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	иои	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	57 56 56 58 54	38 36 35 34 34	26 26 26 26 25	21 21 21 21 21	21 21 21 21 20	19 20 21 21 22	30 30 30 30 31	171 141 117 102 103	326 364 360 374 364	177 150 136 123 113	115 133 90 75 66	50 50 48 49 49
6 7 8 9 10	52 51 51 49 49	33 32 32 31 31	25 25 25 25 25	21 21 21 21 21	21 20 20 20 21	22 22 23 22 22	32 33 34 36 34	105 140 248 293 341	324 343 371 378 360	105 102 100 95 90	63 69 72 69 63	47 48 47 46 42
11 12 13 14 15	49 46 45 42	30 30 30 30 30	25 25 25 25 25	21 21 21 21 21	21 21 20 20 20	24 25 26 26 26	35 37 37 37 37	360 367 378 465 551	357 347 360 347 353	84 87 85 78 77	61 59 58 62 59	41 38 38 40 39
16 17 18 19 20	38 36 36 38 40	31 31 30 30 29	25 25 25 25 25	21 21 21 21 21	20 20 20 19 19	28 30 30 30 31	43 49 60 60 59	521 534 525 447 430	367 343 311 298 292	76 86 91 76 72	56 52 49 47 46	38 39 38 37 34
21 22 23 24 25	37 36 36 38 38	28 28 28 28 27	25 25 25 25 25	21 21 21 21 21	19 19 18 18	32 34 34 32 32	58 52 69 82 82	361 321 315 297 260	260 254 251 235 227	68 71 68 63 65	49 56 66 69 63	32 31 30 28 28
26 27 28 29 30 31	38 39 36 38 38 38	27 27 26 26 26	25 25 23 21 21 21	21 21 21 21 21 21 22	18 18 18	30 30 30 30 30 30	90 100 121 126 124	258 246 225 222 225 257	210 198 193 179 195	66 76 81 76 82 85	62 61 59 58 55 52	28 29 27 26 28
TOTAL MEAN MAX MIN AC-FT	1355 43.7 58 36 2690	908 30.3 38 26 1800	765 24.7 26 21 1520	652 21.0 22 21 1290	552 19.7 21 18 1090	834 26.9 34 19 1650	1678 55.9 126 30 3330	9326 301 551 102 18500	9141 305 378 179 18130	2804 90.5 177 63 5560	2014 65.0 133 46 3990	1145 38.2 50 26 2270

CAL YR 1986 TOTAL 42399 MEAN 116 MAX 808 MIN 16 AC-FT 84100 WTR YR 1987 TOTAL 31174 MEAN 85.4 MAX 551 MIN 18 AC-FT 61830

09050700 BLUE RIVER BELOW DILLON, CO

LOCATION.--Lat 39°37'32", long 106°03'57", in SE4SE4 sec.12, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 0.3 mi downstream from Dillon Dam, 0.1 mi upstream from Straight Creek, and 1.1 mi west of Dillon.

DRAINAGE AREA. -- 335 mi2.

PERIOD OF RECORD .-- January 1960 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,760 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since Sept. 3, 1963, by Dillon Reservoir, 0.3 mi upstream (station 09050600). Natural flow of stream affected by transmountain diversions, transbasin diversions, and diversions upstream from station for irrigation of about 400 acres of hay meadows. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--24 years (water years 1964-87), 217 ft³/s; 157,200 acre-ft/yr, since completion of Dillon Reservoir.

DISCHARGE IN CURIC FEET DER SECOND. WATER YEAR OCTOBER 1086 TO SEPTEMBER 1087

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,010 ft³/s, May 25, 1984, gage height, 3.88 ft; maximum gage height, 3.95 ft, June 22, 1983; no flow, Sept. 4 to Nov. 19, 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,360 $\rm ft^3/s$ at 1130 June 12, gage height, 3.18 ft; minimum daily, 46 $\rm ft^3/s$, Mar. 20, 25-30.

		DISCHAI	RGE, IN	CUBIC FEET	PER SECON	ND, WATER MEAN VALUE	YEAR OCT ES	OBER 1986	TO SEPTE	MBER 1987	•	
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	183 193 193 193 197	136 136 136 136 136	65 63 56 51	53 53 51 51	49 49 49 49	49 49 55 55	48 48 48 48	49 49 49 49	642 700 738 770 811	576 552 513 475 4 4 5	390 381 363 331 280	295 295 236 190 183
6 7 8 9 10	197 199 201 201 201	136 136 136 136 136	51 51 53 51 51	51 51 55 51 51	51 51 51 53 53	53 53 53 53 52	48 48 48 48	49 49 51 51	846 874 922 992 1060	425 395 372 354 331	304 291 287 275 263	186 186 147 63 63
11 12 13 14 15	201 201 201 201 201	136 136 136 96 65	51 51 51 50 49	51 51 51 51 51	53 53 53 53	51 51 53 53 53	48 49 49 50 51	51 51 50 49 87	1060 1040 1010 993 979	309 313 317 313 295	244 251 251 225 219	67 67 65 65
16 17 18 19 20	201 201 201 201 201	65 65 65 65	49 49 49 49	51 52 53 55 55	53 53 53 53	55 55 51 47 46	50 49 49 49 51	340 674 873 943 965	972 951 903 867 8 2 5	287 283 30 4 304 287	219 231 201 190 176	67 67 100 126 126
21 22 23 24 25	201 204 204 316 395	63 65 65 65	49 49 51 51	55 55 53 53 53	53 53 51 51 53	48 48 48 48	51 51 51 51 51	951 909 861 832 804	784 745 719 686 654	304 308 275 227 278	172 170 168 175 175	126 123 126 160 247
26 27 28 29 30 31	395 395 395 395 395 255	63 64 65 65	51 53 53 53 53	51 53 51 51 50	51 51 50 	46 46 46 46 46 47	50 49 49 49	771 725 693 654 630 624	618 588 570 564 582	326 326 362 419 400 390	160 188 279 295 295 295	251 255 247 247 194
TOTAL MEAN MAX MIN AC-FT	7518 243 395 183 14910	2897 96.6 136 63 5750	1619 52.2 65 49 3210	1615 52.1 55 50 3200	1447 51.7 53 49 2870	1557 50.2 55 46 3090	1476 49.2 51 48 2930	13033 420 965 49 25850	24465 815 1060 564 48530	11065 357 576 227 21950	7744 250 390 160 15360	4637 155 295 63 9200

CAL YR 1986 TOTAL 116008 MEAN 318 MAX 1790 MIN 33 AC-FT 230100 WTR YR 1987 TOTAL 79073 MEAN 217 MAX 1060 MIN 46 AC-FT 156800

09051050 STRAIGHT CREEK BELOW LASKEY GULCH NR DILLON, CO.

LOCATION. -- Lat 39°38'23", long 106°02'23", in SW4SW4 sec.5, T.5 S., R.77 W., Summit County, Hydrologic Unit 14010002, on left bank, 120 ft upstream from culverts on Deer Trail Drive, in the community of Dillon Valley, 0.9 mi north of Dillon, 1.1 mi downstream of Laskey Gulch and 1.8 mi upstream from mouth.

DRAINAGE AREA .-- 18.3 mi².

PERIOD OF RECORD. -- October 1986 to September 1987.

GAGE.--Water-stage recorder. Elevation of gage is 9,070 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1, Oct. 25 to Nov. 29, Dec. 2, 3, 10, Dec. 13 to Jan. 16, Mar. 4-24, Apr. 1-4, 6-8, 14-25. Records good except for estimated daily discharges, which are poor. Diversion upstream from station for municipal purposes downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 55 ft³/s, June 7, 1987, gage height, 4.81 ft; minimum daily, 3.0 ft³/s, Feb. 28, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 55 $\rm ft^3/s$ at 1900 June 7, gage height, 4.81 ft; minimum daily, 3.0 $\rm ft^3/s$, Feb. 28.

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	ND, WATER MEAN VALU	YEAR OCT	OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	9.4 9.4 10 11	8.2 8.0 7.9 7.8 7.7	5.3 5.2 5.0 4.8 4.8	4.3 4.3 4.3 4.3	3.1 3.3 3.3 3.2 3.1	3.2 3.5 3.8 3.9	3.7 3.7 3.7 3.7 3.7	17 17 14 12	29 31 33 37 38	25 23 22 20 20	8.3 8.6 9.5 9.3 8.5	7.3 7.0 7.4 7.6 6.8
6 7 8 9 10	10 10 10 9.8 9.8	7.6 7.5 7.4 7.3 7.3	4.6 4.7 4.6 6.0	4.3 4.3 4.3 4.3	3.6 3.5 3.8 3.8 3.6	3.9 3.9 3.9 3.9	3.7 3.7 3.7 3.6 3.7	12 15 17 20 23	39 40 47 52 47	18 17 17 17 15	9.3 11 9.7 9.3 9.4	7.1 6.8 7.0 7.8 7.2
11 12 13 14 15	9.5 9.7 10 11	7.2 7.1 7.0 6.9 6.8	5.5 5.5 5.4 5.4	4.3 4.3 4.3 4.3	3.5 3.6 3.4 3.1 3.1	3.8 3.7 3.7 3.7 3.7	3.4 3.2 3.6 3.9	25 26 29 32 33	46 45 45 44 43	15 18 16 14 13	8.5 8.8 8.6 8.4 7.8	6.6 7.3 7.1 8.2 8.5
16 17 18 19 20	11 10 9.4 9.1	6.7 6.6 6.5 6.4 6.3	5.3 5.1 5.1 5.0 5.0	4.3 4.1 4.3 4.2 4.3	3.2 3.2 3.2 3.2 3.1	3.7 3.7 3.7 3.7 3.7	5.0 5.6 6.4 8.0 7.1	38 40 36 36 34	41 38 37 34 32	9.6 13 11 8.7 8.3	7.9 7.7 7.3 7.3 6.7	8.4 9.9 7.4 6.9 6.8
21 22 23 24 25	8.9 9.9 9.7 8.8 8.7	6.2 6.2 6.1 6.0	4.9 4.8 4.7 4.6 4.6	4.2 4.2 4.1 4.0 3.8	3.2 3.4 3.5 3.7 3.7	3.7 3.7 3.7 3.7 3.2	6.6 7.4 8.2 9.0	31 30 30 31 29	33 32 30 29 28	8.1 7.9 7.8 7.3 7.5	7.7 8.9 13 12 9.7	6.5 6.6 6.1 6.2 6.2
26 27 28 29 30 31	8.6 8.6 8.5 8.4 8.3	6.0 5.9 5.8 5.8	4.5 4.4 4.4 4.3 4.3	3.7 3.5 3.4 3.2 3.1 3.1	3.3 3.1 3.0 	3.6 3.3 3.4 3.1 3.8 3.9	11 12 14 15 15	27 26 26 25 25 27	27 26 25 30 27	8.2 8.8 13 9.1 9.8 9.6	9.9 9.3 8.4 8.8 8.2 7.8	6.1 6.6 6.2 5.8 6.0
TOTAL MEAN MAX MIN AC-FT	298.1 9.62 11 8.3 591	204.1 6.80 8.2 5.7 405	152.2 4.91 6.0 4.3 302	126.0 4.06 4.3 3.1 250	93.8 3.35 3.8 3.0 186	114.0 3.68 3.9 3.1 226	195.6 6.52 15 3.2 388	794 25.6 40 11 1570	1085 36.2 52 25 2150	417.7 13.5 25 7.3 829	275.6 8.89 13 6.7 547	211.4 7.05 9.9 5.8 419

WTR YR 1987 TOTAL 3967.5 MEAN 10.9 MAX 52 MIN 3.0 AC-FT 7870

09052000 ROCK CREEK NEAR DILLON, CO

LOCATION.--Lat 39°43'23", long 106°07'41", in NE4 sec.9, T.4 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 500 ft upstream from bridge on State Highway 9, 1,100 ft upstream from mouth, 1,200 ft downstream from confluence of North and South Rock Creeks, and 8 mi northwest of Dillon.

DRAINAGE AREA. -- 15.8 mi².

PERIOD OF RECORD. -- July 1942 to September 1956, October 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is 8,502.52 ft, (Colorado Highway Department datum). Prior to Apr. 21, 1943, nonrecording gage, and Apr. 21, 1943, to Sept. 13, 1950, water-stage recorder, at site 500 ft downstream at datum 28.76 ft, lower.

REMARKS.--Estimated discharges: Nov. 8 to Apr. 17, Sept. 30. Records good except for estimated daily discharges, which are poor. A few small diversions for irrigation of hay meadows upstream and downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--35 years, (water years 1943-56, 1967-87), 23.2 ft3/s; 16,810 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 289 ft³/s, June 10, 1973, gage height, 4.35 ft, from rating curve extended above 154 ft³/s; maximum gage height, 4.36 ft, June 24, 1971; minimum daily discharge, 2.2 ft³/s, Apr. 13, 17, 1945.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 160 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 16	2400	*136	*3.77	No oth	ner peak gre	eater than base	discharge.

DISCHARGE. CURIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, $3.5 \text{ ft}^3/\text{s}$, Feb. 11-17.

		DISCH	ARGE, CUB	IC FEET 1		MEAN VALU	EAR OCTOBE IES	ER 1986 T	O SEPTEMB	ЕК 1987		
DAY	ОСТ	Nov	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	11 11 11 11	8.1 7.9 8.1 7.9 8.7	6.8 6.5 6.2 6.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0	4.0 4.0 4.0 4.0	5.0 5.0 5.0 5.0	44 40 27 21 20	52 5 7 54 59 65	43 37 37 35 32	34 26 22 19 17	9.6 9.3 9.1 9.5 9.1
6 7 8 9 10	11 11 10 10 10	8.9 7.7 7.6 7.2 7.0	6.0 6.0 6.0 6.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 3.8	4.2 4.4 4.6 4.8 4.9	5.0 5.0 5.2 5.4	22 29 41 56 61	65 77 86 86 77	29 28 28 28 27	17 20 21 20 19	8.6 8.3 8.1 7.8 7.4
11 12 13 14 15	12 10 10 10 9.5	7.0 7.0 7.0 7.0	6.0 6.8 5.6 5.5	4.0 4.0 4.0 4.0	3.5 3.5 3.5 3.5	5.0 5.0 5.0 5.0	5.8 6.0 6.4 6.8 7.0	67 73 7 5 82 95	75 74 72 76 78	26 27 23 20 20	17 17 16 15 14	7.2 7.0 6.9 8.2
16 17 18 19 20	9.2 8.8 8.7 8.8	7.0 7.0 7.0 7.0 7.0	5.3 5.2 5.0 4.9 4.7	4.0 4.0 4.0 4.0	3.5 3.5 3.8 4.0 4.0	5.0 5.0 5.0 5.0	7.4 8.0 11 14 14	108 107 85 70 65	72 66 55 52 52	20 22 23 20 19	14 12 12 11 11	11 14 12 9.8 8.8
21 22 23 24 25	9.4 9.1 8.9 8.7 8.6	7.0 7.0 7.0 7.0	4.5 4.4 4.2 4.1 4.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	5.0 5.0 5.0 5.0	13 15 17 22 26	56 49 46 46 39	51 51 51 51 45	19 20 20 19 19	11 13 15 24 20	8.3 7.7 7.3 7.0 6.8
26 27 28 29 30 31	8.3 8.4 8.4 7.9 8.2 8.5	7.0 7.0 7.0 7.0 7.0	4.0 4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0 4.0	4.0 4.0 	5.0 5.0 5.0 5.0 5.0	31 35 37 43 41	36 31 29 31 29 34	43 43 42 49 47	19 29 35 26 31 57	17 14 13 12 11	6.8 7.1 6.3 6.1 6.0
TOTAL MEAN MAX MIN AC-FT	298.4 9.63 12 7.9 592	219.1 7.30 8.9 7.0 435	160.7 5.18 6.8 4.0 319	124.0 4.00 4.0 4.0 246	108.1 3.86 4.0 3.5 214	147.9 4.77 5.0 4.0 293	417.0 13.9 43 5.0 827	1614 52.1 108 20 3200	1823 60.8 86 42 3620	838 27.0 57 19 1660	514 16.6 34 10 1020	252.1 8.40 14 6.0 500

CAL YR 1986 TOTAL 10283.6 MEAN 28.2 MAX 181 MIN 4.0 AC-FT 20400 WTR YR 1987 TOTAL 6516.3 MEAN 17.9 MAX 108 MIN 3.5 AC-FT 12930

09052400 BOULDER CREEK AT UPPER STATION, NEAR DILLON, CO

LOCATION.--Lat 39°43'41", long 106°10'22", in SW4SW4 sec.6, T.4 S., R.78 W., Summit County, Hydrologic Unit 14010002, on left bank 1.2 mi downstream from Boulder Lake, 3.2 mi upstream from mouth, and 9.4 mi northwest of Dillon.

DRAINAGE AREA .-- 8.56 mi2.

PERIOD OF RECORD. -- October 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,460 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1-7, Nov. 3 to Apr. 27. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--21 years, 17.4 ft3/s; 12,610 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 316 ft^3/s , July 1, 1984, gage height, 3.42 ft ; minimum daily, 0.80 ft^3/s , Jan. 6, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 120 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 16	2200	*100	*2.42				

Minimum daily, 2.5 ft³/s, Jan. 30 to Feb. 7.

		DISCH.	ARGE, CUBI	C FEET PI	ER SECOND, ME	, WATER YEA EAN VALUES	AR OCTOBE	R 1986 T	O SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	8.0 7.9 7.8 7.6 7.4	5.8 5.6 5.8 6.0	4.3 4.2 4.2 4.1 4.1	3.0 3.0 3.0 3.0	2.5 2.5 2.5 2.5 2.5	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	19 16 11 8.9 8.6	38 47 47 56 59	34 30 30 27 25	23 20 18 15 14	6.9 6.9 7.1 6.9
6 7 8 9 10	7.2 7.0 7.1 7.1 7.1	6.0 6.0 6.0 6.0	4.0 4.0 4.0 4.0	3.0 3.0 3.0 3.0 3.0	2.5 2.5 2.7 2.8 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.2 3.5	11 15 24 30 38	61 73 81 80 70	23 22 22 22 22	13 15 15 13 13	6.7 6.3 5.8 5.3
11 12 13 14 15	7.4 6.7 7.1 6.5 6.3	6.0 6.0 5.6 5.4 5.0	4.0 4.0 3.9 3.8 3.7	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	3.8 4.2 4.5 4.9 5.3	47 50 46 55 68	67 67 69 76 75	20 22 19 16 17	12 11 11 11 9.7	5.1 4.7 4.7 5.1 6.9
16 17 18 19 20	6.0 5.8 5.8 5.8 6.5	5.0 5.0 5.0 5.0	3.6 3.5 3.4 3.2 3.1	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	5.7 6.2 6.8 7.3 7.8	81 80 66 51 47	70 62 52 50 48	17 18 18 15	9.4 9.2 8.3 7.7 7.7	7.1 9.1 8.0 7.1 6.7
21 22 23 24 25	6.3 6.3 6.0 5.6	5.0 4.9 4.8 4.8	3.1 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	8.5 9.2 10 11 12	35 30 30 30 25	47 44 47 43 39	15 17 18 17 15	7.7 8.6 9.4 13	5.8 5.3 5.1 4.8 4.7
26 27 28 29 30 31	5.8 5.3 5.1 5.3 5.3	4.7 4.6 4.5 4.5 4.4	3.0 3.0 3.0 3.0 3.0	3.0 2.9 2.7 2.6 2.5	3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	13 14 15 19 18	22 20 18 18 18 22	38 35 34 36 35	17 26 30 22 22 30	11 9.5 8.9 8.0 7.4 7.1	4.7 4.7 4.7 4.6
TOTAL MEAN MAX MIN AC-FT	200.7 6.47 8.0 5.1 398	159.1 5.30 6.0 4.4 316	110.2 3.55 4.3 3.0 219	91.2 2.94 3.0 2.5 181	80.0 2.86 3.0 2.5 159	93.0 3.00 3.0 3.0 184	216.9 7.23 19 3.0 430	1040.5 33.6 81 8.6 2060	1646 54.9 81 34 3260	663 21.4 34 15 1320	359.6 11.6 23 7.1 713	177.5 5.92 9.1 4.6 352

CAL YR 1986 TOTAL 7988.8 MEAN 21.9 MAX 149 MIN 2.8 AC-FT 15850 WTR YR 1987 TOTAL 4837.7 MEAN 13.3 MAX 81 MIN 2.5 AC-FT 9600

09052800 SLATE CREEK AT UPPER STATION, NEAR DILLON, CO

LOCATION.--Lat 39°45'47", long 106°11'31", in SWLNWL sec.25, T.3 S., R.79 W., Summit County, Hydrologic Unit 14010002, on left bank 0.2 mi upstream from unnamed tributary, 2.7 mi upstream from mouth, and 12 mi northwest of Dillon.

DRAINAGE AREA . -- 14.2 mi2.

PERIOD OF RECORD. -- October 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,040 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 8-22, 13-27, and rec. 20 to Apr. 13. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE .-- 21 years, 26.6 ft 3/s; 19,270 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 485 ft³/s, Aug. 5, 1983, gage height, 6.14 ft, from rating curve extended above 170 ft³/s; maximum gage height, 6.56 ft, May 2, 1975 (backwater from beaver dam and ice); minimum daily discharge, 1.0 ft³/s, Mar. 14, 1974, Jan. 12, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 160 $\mathrm{ft^3/s}$, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0045	*146	*4.48				

Minimum daily, 2.8 ft³/s, Feb. 9-16.

		DISCH	ARGE, CUBI	C FEET P	ER SECOND, ME	WATER YEAN VALUES	EAR OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	12 12 12 13 12	7.6 7.5 7.1 7.0 6.8	5.2 5.2 5.0 5.1	3.2 3.1 3.1 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	43 41 31 25 22	55 64 63 71 79	53 50 49 44 40	36 30 26 23 20	10 9.6 9.3 9.8 10
6 7 8 9 10	11 12 13 13 13	6.9 7.2 6.8 6.6	5.0 5.1 5.0 4.8 4.6	3.0 3.0 3.0 3.0	3.0 3.0 3.0 2.8 2.8	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.3 3.7	22 26 37 51 59	78 95 102 97 86	38 36 35 34 36	19 21 24 22 19	9.0 8.3 7.5 6.8 6.4
11 12 13 14 15	13 12 11 11	6.4 6.3 6.0 5.8 5.6	4.5 4.5 4.5 4.5 4.5	3.0 3.0 3.0 3.0	2.8 2.8 2.8 2.8 2.8	3.0 3.0 3.0 3.0	4.0 4.5 5.0 5.4 7.3	71 80 80 88 104	81 81 83 94 89	33 35 34 27 28	18 17 15 15	6.2 6.0 5.9 6.2 8.0
16 17 18 19 20	9.4 8.9 8.4 8.2 9.2	5.4 5.0 5.0 5.0	4.5 4.5 4.4 4.3	3.0 3.0 3.0 3.0	2.8 2.9 3.0 3.0	3.0 3.0 3.0 3.0	11 13 12 14 14	122 121 98 78 72	82 78 65 64 63	28 27 28 25 24	12 11 10 9.4 9.0	9.5 15 13 10 8.5
21 22 23 24 25	8.9 9.0 8.9 8.7 8.5	5.0 5.0 5.0 5.0	4.2 4.1 4.0 3.9 3.8	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	12 13 17 22 25	60 50 47 46 39	60 61 62 61 57	23 28 29 26 25	9.3 10 14 26 29	7.4 6.6 6.2 6.1 5.9
26 27 28 29 30 31	8.1 7.7 7.4 7.1 7.0 7.4	5.0 5.3 5.1 5.1	3.7 3.6 3.5 3.4 3.3	3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	27 31 38 46 44	35 30 27 27 26 32	57 55 52 54 54	26 42 54 40 35 39	29 21 17 14 12	5.8 5.7 5.6 5.5
TOTAL MEAN MAX MIN AC-FT	312.8 10.1 13 7.0 620	176.0 5.87 7.6 5.0 349	135.7 4.38 5.2 3.3 269	93.6 3.02 3.2 3.0 186	82.3 2.94 3.0 2.8 163	93.0 3.00 3.0 3.0 184	396.2 13.2 46 3.0 786	1690 54.5 122 22 3350	2143 71.4 102 52 4250	1071 34.5 54 23 2120	561.7 18.1 36 9.0 1110	235.6 7.85 15 5.5 467

CAL YR 1986 TOTAL 12058.3 MEAN 33.0 MAX 225 MIN 2.9 AC-FT 23920 WTR YR 1987 TOTAL 6990.9 MEAN 19.2 MAX 122 MIN 2.8 AC-FT 13870

93

09053500 BLUE RIVER ABOVE GREEN MOUNTAIN RESERVOIR, CO

LOCATION.--Lat 39°49'32", long 106°12'50", in NE¼ sec.3, R.79 W, T.3 S, Summit County, Hydrologic Unit 14010002, on left bank, 400 ft downstream of State Highway 9, 1.1 mi downstream from Brush Creek, 0.25 mi downstream from McKinney Gulch, and 18 mi southeast of Kremmling.

DRAINAGE AREA .-- 511 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1943 to September 1971, October 1985 to October 1987 (discontinued).

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,965 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1943 to Sept. 30, 1971, at site 0.2 mi downstream, at different datum.

REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 17. Records good. Flow regulated by Dillon Reservoir since Sept. 3, 1963 (see station 09050600). Natural flow of stream affected by transmountain and transbasin diversions and by many small diversions for irrigation of about 4,000 acres of hay meadows upstream from station

AVERAGE DISCHARGE.--20 years (1943-63), 433 $\rm ft^3/s$; 313,500 acre-ft/yr; 9 years (1963-70, 1986-87); 331 $\rm ft^3/s$; 239,800 acre-ft/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,020 ft³/s, June 11, 1952, gage height, 4.93 ft; minimum daily, 33 ft³/s, Oct. 20, 1963.

DISCUARCE IN CHRIC PERT DED SECOND WATER VEAR OCTORER 1086 TO SERTEMBER 1087

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,680 ft^3/s , June 10, gage height, 9.45 ft; minimum daily, 100 ft^3/s , Mar. 13.

		DISCHAI	RGE, IN C	UBIC FEET		ND, WATER MEAN VALU		OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1	288	231	145	130	130	110	117	280	877	819	572	354
2	281	226	145	130	125	110	119	284	961	752	523	354
3	286	224	146	130	120	110	118	250	978	711	507	321
4	289	219	147	130	120	110	125	228	1040	666	457	267
5	281	218	141	130	120	110	123	217	1110	626	409	264
6	278	221	128	130	120	110	123	220	1150	578	410	258
7	277	221	130	130	120	110	126	230	1230	540	422	255
8	278	218	129	130	120	110	129	258	1360	514	415	256
9	278	217	130	130	120	110	133	309	1460	480	399	168
10	278	218	130	130	120	110	127	331	1520	448	388	156
11	283	218	130	130	120	110	132	369	1510	432	358	152
12	273	217	130	130	120	105	132	393	1460	440	359	159
13	268	215	130	130	120	100	126	408	1450	438	356	152
14	274	203	130	130	120	105	124	433	1460	411	341	155
15	271	155	130	130	120	110	142	505	1470	391	324	167
16	269	152	130	130	120	115	173	752	1420	385	316	168
17	268	153	130	130	120	120	181	1160	1340	383	311	183
18	269	154	130	130	120	126	194	1370	1220	404	307	181
19	267	154	130	130	120	120	201	1410	1150	386	270	209
20	278	155	130	130	120	119	202	1400	1100	375	267	207
21	281	155	130	130	120	119	175	1340	1090	377	254	205
22	279	152	130	130	115	118	184	1230	1010	388	261	200
23	275	151	130	130	110	116	207	1160	963	371	278	198
24	331	151	130	130	110	115	232	1140	930	315	324	199
25	455	149	130	130	110	115	239	1090	879	340	306	274
26 27 28 29 30 31	450 452 452 446 450 388	145 147 145 143 143	130 130 130 130 130 130	130 130 130 130 130 130	110 110 110 	114 117 120 123 130 126	247 249 258 280 274	1020 926 877 856 822 805	847 814 801 825 833	388 465 529 599 583 631	283 289 334 368 365 360	281 287 279 277 259
TOTAL	9793	5470	4101	4030	3310	3543	5192	22073	34258	15165	11133	6845
MEAN	316	182	132	130	118	114	173	712	1142	489	359	228
MAX	455	231	147	130	130	130	280	1410	1520	819	572	354
MIN	267	143	128	130	110	100	117	217	801	315	254	152
AC-FT	19420	10850	8130	7990	6570	7030	10300	43780	67950	30080	22080	13580

CAL YR 1986 TOTAL 190835 MEAN 523 MAX 2900 MIN 110 AC-FT 378500 WTR YR 1987 TOTAL 124913 MEAN 342 MAX 1520 MIN 100 AC-FT 247800

BLUE RIVER BASIN

09053500 BLUE RIVER ABOVE GREEN MOUNTAIN RESERVOIR, CO--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	218											
2	213											
3	189											
4	187											
5	188											
,												
6	182											
7	184											
8	183											
9	183											
10	189											
10	109											
11	216											
12	219											
13	222											
14												
	233											
15	209											
	450											
16	152											
17	310											
18	312											
19	283											
20	307											
21	306											
22	284											
23	220											
24	221											
25	209											
26	141											
27	133											
28	206											
29	206											
30	174											
31	139											
TOTAL	6618											
MEAN	213											
MAX	312											
MIN	133											
AC-FT	13130											
	, 5 , 50				- -							

09054000 BLACK CREEK BELOW BLACK LAKE, NEAR DILLON, CO

LOCATION.--Lat 39°47'59", long 106°16'04", in SW4SW4 sec.8, T.3 S., R.79 W., Summit County, Hydrologic Unit 14010002, on right bank 600 ft upstream from bridge, 0.3 mi downstream from Black Lake, 4.5 mi upstream from highwater line of Green Mountain Reservoir at elevation 7,950 ft, and 17 mi northwest of Dillon.

DRAINAGE AREA .-- 15.0 mi2.

PERIOD OF RECORD. -- July 1942 to September 1949, October 1966 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area, WDR CO-77-2: 1976.

GAGE.--Water-stage recorder. Elevation of gage is 8,750 ft above National Geodetic Vertical Datum of 1929, from topographic map. July 17, 1942, to May 27, 1943, nonrecording gage, and May 28, 1943, to Sept. 30, 1949, water-stage recorder at site 600 ft downstream at different datums.

REMARKS.--Estimated daily discharges: Jan. 9-11, 15, 17, 18, 30, Feb. 5-10, 12, 16, 18-23, Mar. 4-7, 11, 13, 20-31, Apr. 2, 3, 14, 15. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 28 years, 32.7 ft3/s; 23,690 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 555 ft³/s, June 25, 1983, gage height, 4.74 ft, from rating curve extended above 240 ft³/s, maximum gage height, 5.64 ft, June 30, 1984; minimum daily discharge, 1.3 ft³/s, Feb. 22, 1976, Jan. 10, 1977.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 160 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0200	*233	*4.60	June 9	0100	161	4.16

Minimum daily discharge, 1.7 ft^3/s , Jan. 24, 25.

		DISCH	ARGE, CUBI	C FEET PE		WATER Y	EAR OCTOBER	1986 T	O SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	16 16 17 18 17	9.4 8.4 7.8 7.3	5.1 5.1 4.9 4.7 4.7	3.7 3.9 4.0 3.2 2.6	2.1 2.2 2.3 2.4 2.4	3.1 2.9 3.0 3.0 3.0	2.9 3.0 3.0 2.9 2.9	53 49 39 33 30	51 76 77 84 96	56 56 56 54 50	48 40 38 37 35	17 17 17 17 16
6 7 8 9 10	17 19 20 20 19	7.6 8.7 8.5 8.6 9.1	4.5 4.4 4.4 4.4	2.6 2.6 2.6 2.6 2.6	2.5 2.6 2.6 2.6 2.6	3.0 3.0 2.9 2.9 2.9	3.0 2.9 2.9 2.9	30 34 45 76 82	98 135 150 151 120	46 43 42 42 45	34 36 37 36 35	16 15 15 14 13
11 12 13 14 15	20 19 17 16 15	10 6.8 6.0 6.1 6.9	4.4 4.4 4.2 4.0 4.0	2.6 2.6 2.8 2.6 2.4	2.6 2.8 2.9 2.9	2.8 2.9 3.0 3.1 3.1	2.9 2.9 2.9 3.0 3.0	111 95 92 110 146	95 96 103 131 117	42 45 43 40 39	33 32 30 28 25	12 11 10 8.2 8.3
16 17 18 19 20	14 13 13 12 12	5.8 6.0 4.9 5.1	4.0 3.9 3.7 3.9 4.0	2.3 2.2 2.1 2.0 2.1	2.9 2.9 3.0 3.0	3.1 3.1 3.1 3.1 3.0	2.9 3.0 7.2 14 20	158 179 135 93 83	121 109 86 83 82	40 41 42 40 40	23 22 21 20 19	10 12 13 12 12
21 22 23 24 25	13 13 13 14 14	5.1 5.4 5.5 5.2 5.1	3.7 3.8 4.0 3.9 3.7	1.9 1.8 1.8 1.7	3.0 3.0 3.0 3.1 3.1	3.0 3.0 3.0 3.0	21 20 21 30 36	76 56 44 43 39	78 81 82 79 76	39 40 41 40 40	19 20 21 31 38	11 10 9.5 5.9 3.9
26 27 28 29 30 31	13 13 13 12 11	5.1 5.1 5.1 5.1 5.1	3.9 4.0 3.7 3.8 4.0 3.9	1.8 1.9 1.9 1.9 2.0 2.1	3.1 3.1 3.1	3.0 3.0 3.0 3.0 3.0	42 47 48 53 49	37 36 34 34 33	76 74 73 74 68	40 59 63 55 46 42	37 31 26 22 19 18	3.4 3.4 3.4 3.4
TOTAL MEAN MAX MIN AC-FT	469 15.1 20 10 930	200.9 6.70 11 4.9 398	129.5 4.18 5.1 3.7 257	74.6 2.41 4.0 1.7 148	77.7 2.77 3.1 2.1 154	93.0 3.00 3.1 2.8 184	458.1 15.3 53 2.9 909	2140 69.0 179 30 4240	2822 94.1 151 51 5600	1407 45.4 63 39 2790	911 29.4 48 18	322.8 10.8 17 3.4 640

CAL YR 1986 TOTAL 14003.4 MEAN 38.4 MAX 260 MIN 3.7 AC-FT 27780 WTR YR 1987 TOTAL 9105.6 MEAN 24.9 MAX 179 MIN 1.7 AC-FT 18060

09055300 CATARACT CREEK NEAR KREMMLING, CO

LOCATION.--Lat 39°50'07", long 106°18'57", in SWHNEL sec.35, T.2 S., R.80 W., Summit County, Hydrologic Unit 14010002, on right bank 70 ft downstream from lower Cataract Lake, 2.8 mi upstream from highwater line of Green Mountain Reservoir at elevation 7,950 ft, and 17 mi south of Kremmling.

DRAINAGE AREA. -- 12.0 mi2.

PERIOD OF RECORD. -- October 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,605 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Feb. 15 to Apr. 8. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--21 years, 20.6 ft3/s; 14,920 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 353 ft 3/s, June 25, 1983, gage height, 5.20 ft, maximum gage height, 5.43 ft, June 21, 1967; minimum daily discharge, 0.28 ft 3/s, Oct. 7, 1971.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 160 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0500	*212	*4.35	June 9	0500	188	4.21

DISCUADCE IN CURIC PERT DED CECOND. MATER VEAR OCTORED 1086 TO SERTEMBER 1087

Minimum daily discharge, 1.0 ft³/s, Feb. 10, 13-14.

		DISCHAI	RGE, IN C	UBIC FEET		ID, WATER MEAN VALU	YEAR OCTO	OBER 1986	TO SEPTE	MBER 1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	8.1 8.6 8.4 8.2	4.9 4.8 4.7 4.3	2.8 2.7 2.7 2.6 2.6	1.6 1.5 1.5 1.5	1.2 1.2 1.2 1.1	1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1	52 46 36 28 24	45 70 68 76 95	35 33 31 29 27	26 23 19 15 13	5.9 5.5 4.9 4.6
6 7 8 9 10	8.0 8.4 8.9 9.1 9.0	4.1 4.0 4.4 4.5	2.5 2.5 2.5 2.5 2.5	1.4 1.4 1.4 1.4	1.1 1.1 1.1 1.0	1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.3 1.5	22 24 29 39 51	85 112 141 157 116	24 23 22 20 19	12 11 12 12 11	4.4 4.1 3.8 3.5 3.3
11 12 13 14 15	9.0 8.6 7.7 7.1 6.6	4.4 4.2 4.0 3.8 3.7	2.5 2.5 2.4 2.4 2.3	1.4 1.4 1.4 1.3	1.1 1.1 1.0 1.0	1.1 1.1 1.1 1.1	1.5 1.6 1.7 1.6 1.7	69 78 72 82 111	104 106 100 105 104	19 21 24 20 17	9.9 9.2 9.0 8.4 7.6	3.1 3.0 2.8 2.7 2.8
16 17 18 19 20	6.1 5.9 5.7 5.1 5.3	3.7 3.7 3.7 3.7 3.7	2.3 2.2 2.1 2.1 2.0	1.3 1.3 1.3 1.3	1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1	2.2 3.8 4.0 5.0 7.3	118 176 142 102 82	97 88 68 59 53	16 16 20 18 15	6.9 6.8 5.2 4.6	2.9 3.4 3.6 3.5
21 22 23 24 25	5.4 5.6 5.4 5.1	3.6 3.4 3.3 3.2	2.0 1.9 1.9 1.8	1.3 1.3 1.3 1.3	1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1	8.4 9.8 11 16 24	64 46 39 39 36	49 48 47 44 41	15 14 13 13	4.3 4.2 4.2 5.3 8.0	3.3 3.2 3.0 2.9 2.8
26 27 28 29 30 31	4.9 4.8 4.8 4.8	3.3 3.2 3.2 3.0 3.0	1.8 1.7 1.7 1.7 1.6 1.6	1.3 1.2 1.2 1.2 1.2	1.1 1.1 1.1 	1.1 1.1 1.1 1.1 1.1	27 30 31 36 45	33 29 26 25 24 27	40 37 35 36 37	12 17 23 20 19 23	10 9.5 8.4 7.7 7.0 6.4	2.6 2.6 2.5 2.4 2.3
TOTAL MEAN MAX MIN AC-FT	208.1 6.71 9.1 4.8 413	116.0 3.87 4.9 3.0 230	68.2 2.20 2.8 1.6 135	41.6 1.34 1.6 1.2 83	30.8 1.10 1.2 1.0 61	34.1 1.10 1.1 1.1 68	280.2 9.34 45 1.1 556	1771 57.1 176 22 3510	2263 75.4 157 35 4490	630 20.3 35 12 1250	301.8 9.74 26 4.2 599	103.3 3.44 5.9 2.3 205

CAL YR 1986 TOTAL 8748.1 MEAN 24.0 MAX 203 MIN 1.5 AC-FT 17350 WTR YR 1987 TOTAL 5848.1 MEAN 16.0 MAX 176 MIN 1.0 AC-FT 11600

RESERVOIRS IN BLUE RIVER BASIN

09050600 DILLON RESERVOIR. -- Lat 39°37'14", long 106°03'53", in NEt sec.13, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, in gatehouse at dam, 0.8 mi upstream from Straight Creek, about 1.3 mi southwest of Dillon, and 3.5 mi northeast of Frisco. DRAINAGE AREA, 335 mi². PERIOD OF RECORD, September 1963 to current year. GAGE, nonrecording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Denver Board of Water Commissioners); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929.

Reservoir is earth and rockfill dam. Dem completed and stores bear Sect. 2. 1662 and 1929.

National Geodetic Vertical Datum of 1929.

Reservoir is earth and rockfill dam. Dam completed and storage began Sept. 3, 1963; dead storage pool filled Sept. 12, 1963. Capacity, 254,000 acre-ft between elevations 8,829.00 ft, invert of outlet valve, and 9,017.00 ft, crest of spillway. Dead storage, 3,270 acre-ft. Figures given represent usable contents. Reservoir stores water for transmountain diversion to South Platte River basin through Harold D. Roberts tunnel for municipal use by city of Denver. Records provided by Denver Board of Water Commissioners.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 262,200 acre-ft, June 30, 1983, elevation, 9,019.46 ft; minimum since appreciable storage was attained in July 1964, 45,310 acre-ft, Apr. 20, 1965, elevation,

8,904.16 ft. EXTREMES FOR CURRENT YEAR: Maximum contents, 259,300 acre-ft, June 10, elevation, 9,018.59 ft; minimum, 232,000 acre-ft, Mar. 5, elevation, 9,009.90.

09057000 GREEN MOUNTAIN RESERVOIR.--Lat 39°52'42", long 106°19'45", in NE¹/₄ sec.15, T.2 S., R.80 W., Summit County, Hydrologic Unit 14010002, in hoist house at right end of dam, 0.6 mi upstream from Elliott Creek, and 13 mi southeast of Kremmling. DRAINAGE AREA, 598 mi², includes 15.3 mi² of Elliott Creek above diversion for Elliott Creek feeder canal. PERIOD OF RECORD, November 1942 to current year. REVISED RECORDS, WSP 2124: Drainage area. GAGE, Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929.

Reservoir is formed by an earth and rockfill dam. Dam completed and storage began November 1942. Capacity, 146,900 acre-ft between elevations 7,800 ft, sill of outlet gate, and 7,950 ft, top of radial spillway gates. Dead storage, 6,860 (revised) acre-ft. Figures given represent usable contents. Reservoir is used for power development and storage for replacement of water diverted to South Platte River basin. Water released to fill decrees during late irrigation season when flow of Colorado River is deficient. Records provided by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 148,900 acre-ft, July 10, 1947, elevation, 7.950.95 ft;

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 148,900 acre-ft, July 10, 1947, elevation, 7,950.95 ft; minimum since appreciable storage was attained, 388 acre-ft, Jan. 12, 1963, elevation, 7,801.70 ft. EXTREMES FOR CURRENT YEAR: Maximum contents, 143,200 acre-ft, Aug. 4, elevation, 7,948.28 ft; minimum, 51,200 acre-ft, Apr. 16, elevation, 7,888.70 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation	Contents	Change in contents	Elevation	Contents	Change in contents	
	(feet)	(acre-feet)	(acre-feet)	(feet)	(acre-feet)	(acre-feet)	
	09050600	DILLON RESERVOIR		09057000	GREEN MOUNTAIN	RESERVOIR	
Sept. 30	9,014.51	246,100	-	7,947.01	140,500	_	
Oct. 31	9,012.69	240,400	-5, 700	7,943.52	133,400	-7,100	
Nov. 30	9,012.74	240,600	+200	7,936.34	119,500	-13,900	
Dec. 31	9,012.09	238,600	-2,000	7,927.26	103,300	- 16,200	
CAL YR 1986	-	-	+7,900	-	-	+4,130	
Jan. 31	9,011.09	235,500	-3,100	7,917.51	87,700	-15,600	
Feb. 28	9,010.11	232,600	-2,900	7,906.03	71,580	-16,120	
Mar. 31	9,010.43	233,600	+1,000	7,892.26	54,970	-16,610	
Apr. 30	9,012.86	240,900	+7,300	7,892.79	55,560	+590	
May 31	9,018.14	257,800	+16,900	7914.248	82,890	+27,330	
June 30	9,018.06	257,500	-300	7,41.334	129,100	+46,210	
July 31	9,017.39	255,300	-2,200	7,947.73	142,000	+12,900	
Aug. 31	9,016.38	252,000	-3,300	7,944.05	134,500	-7,500	
Sept. 30	9,015.76	250,000	-2,000	7,934.47	116,000	-18,500	
WTR YR 1987	_	-	+3,900	-	_	-24,500	

09057500 BLUE RIVER BELOW GREEN MOUNTAIN RESERVOIR, CO

LOCATION.--Lat 39°52'49", long 106°20'00", in SWANEA sec.15, T.2 S., R.80 W., Summit County, Hydrologic Unit 14010002, on left bank 0.3 mi upstream from Elliott Creek, 0.3 mi downstream from Green Mountain Dam, and 13 mi southeast of Kremmling.

DRAINAGE AREA.--599 mi², includes 15.3 mi² of Elliott Creek above diversion for Elliott Creek feeder canal.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1937 to current year. Prior to October 1943, published as Blue River below Green Mountain Reservoir, near Kremmling.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 7,682.66 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to Oct. 1, 1951, water-stage recorder at site 3.7 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Green Mountain Reservoir since November 1942 (station 09057000). Diversions for irrigation of about 5,000 acres upstream from station. Transmountain diversions upstream from station (see elsewhere in this report).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 4,000 ft³/s, June 4, 1938, gage height, 5.93 ft, site and datum then in use, from rating curve extended above 3,000 ft³/s; maximum gage height, 9.52 ft, July 11, 1983; minimum daily discharge (prior to construction of Green Mountain Reservoir), 80 ft³/s, Feb. 18-24, 1938, Feb. 18-19, 1940; no flow at times in 1943.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 1,050 ft3/s at 1515 Aug. 5, gage height, 6.09 ft; minimum daily, 1.0 ft3/s, May 20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			•			MÉAN VALU	JES	-				
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	545	490	415	337	384	386	303	331	715	147	394	593
2	545	496	405	341	380	386	249	383	722	251	395	594
3	549	460	387	339	377	386	247	380	656	401	437	610
4	552	422	392	338	385	386	245	379	630	399	507	598
5	549	424	388	325	388	386	247	377	631	398	519	598
6	545	424	384	310	379	386	245	326	632	398	522	593
7	519	426	392	308	384	386	242	284	626	399	519	592
8	486	428	382	310	389	383	229	284	626	326	502	544
9	485	430	390	313	384	383	226	283	628	272	501	415
10	479	431	396	312	390	386	224	283	623	270	501	369
11 12 13 14 15	485 484 488 489	431 429 426 435 436	384 393 389 380 380	311 313 309 305 312	388 386 381 385 384	386 386 386 386 384	224 222 229 226 226	282 284 285 285 286	626 627 621 626 569	271 274 271 263 271	499 506 509 546 568	414 511 541 538 489
16	473	433	387	321	383	383	227	286	508	280	562	437
17	459	428	390	314	384	383	150	285	513	304	566	438
18	456	415	390	312	382	383	82	284	509	333	600	440
19	456	412	364	311	377	382	82	97	463	333	599	443
20	465	420	338	325	379	382	82	1.0	397	357	668	438
21	465	411	335	332	383	381	82	170	396	367	720	441
22	462	413	335	357	308	380	82	599	399	387	651	508
23	451	420	336	384	389	381	82	720	346	418	597	563
24	452	418	336	377	386	383	82	719	231	437	584	606
25	451	421	342	377	378	369	82	718	188	509	400	706
26 27 28 29 30 31	452 451 462 508 503 497	422 418 421 415 414	342 337 334 338 338 333	383 385 385 393 387 389	383 386 386 	345 339 345 347 345 345	84 166 275 286 283	718 718 718 722 721 717	144 147 142 140 145	442 505 379 234 233 291	397 400 477 533 568 609	709 709 709 713 711
TOTAL	15141	12869	11432	10515	10668	11655	5711	12925.0	14226	10420	16356	16570
MEAN	488	429	369	339	381	376	190	417	474	336	528	552
MAX	552	496	415	393	390	386	303	722	722	509	720	713
MIN	451	411	333	305	308	339	82	1.0	140	147	394	369
AC-FT	30030	25530	22680	20860	21160	23120	11330	25640	28220	20670	32440	32870

CAL YR 1986 TOTAL 215286.0 MEAN 590 MAX 1780 MIN 305 AC-FT 427000 WTR YR 1987 TOTAL 148488.0 MEAN 407 MAX 722 MIN 1.0 AC-FT 294500

BLUE RIVER BASIN 99

09057500 BLUE RIVER BELOW GREEN MOUNTAIN RESERVOIR, CO--Continued

WATER QUALITY RECORDS

PERIOR OF RECORD. -- January 1986 to September 1987.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1986 to September 1987.
WATER TEMPERATURES: January 1986 to September 1987.

INSTRUMENTATION. -- Water quality monitor from January 1986 to September 1987 (discontinued).

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 259 microsiemens Apr. 27, 1986; minimum, 127 microsiemens July 24, 1986.

WATER TEMPERATURE: Maximum daily, 14.0°C, SEPT. 25, 1987; minimum, 2.6°C, Apr. 2, 21, 22, 1987.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 259 microsiemens Apr. 27; minimum, 131 microsiemens July 26.
WATER TEMPERATURES: Maximum, 14.0°C, Sept. 25; minimum, 2.6°C, Apr. 2, 21, 22.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WHOLE WATER TOTAL FIELD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 14	0850	233	220	8.4	3.0	8.4	93	34	29	4.9	4.9	1.9
MA Y 13	1430	303	195	8.1	5.5	10.2	79	26	25	4.0	4.2	1.7
JUN 02	1500	400	190	7.7	6.0	10.1	82	30	26	4.1	4.2	1.9
23 JUL	1510	230	170	7.6	9.0	8.6	67	22	21	3.5	3.7	1.7
20 SEP	1130	361	175	7.9	10.0	7.6	69	15	22	3.3	3.6	1.7
16	0740	466	195	7.7	12.5	6.1	80	33	26	3.6	4.2	2.2
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS S102)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS- DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
APR 14 MAY	59	38	2.2	0.5	4.9	124	122	0.17	78.0	<0.01	0.20	
13 JUN	53	34	2.2	0.4	4.5	114	108	0.16	93.3	<0.01	0.20	
02 23	52 45	32 33	2.1 2.0	0.1 0.4	4.9 5.1	106 110	107 97	0.14 0.15	114 68.3	<0.01	0.20 0.20	0.20
JUL 20 SEP	54	39	2.1	0.4	4.5	116	109	0.16	113		0.20	0.15
16	47	39	1.8	0.4	4.1	104	109	0.14	131	<0.01	0.20	
DAT	GE AMMO TOT	TAL SOL B/L (MG	N, NITH NIA GEN S- ORGAN VED TOTA /L (MG/	I, ORGA NIC DI AL SOL L (MG	N, GEN, NIC MONI S- ORGA VED TOT /L (MG	AM- GEN, A + MONI NIC ORGA AL DIS // (MG	AM- A + NIT NIC GE TOT	G/L (MC	ROUS DI	OUS PHOR S - ORT VED TOT //L (MG	US, ORT HO, DIS AL SOLV	OUS HO, ED L
APR 14	0.	.01 -	- 0.	. 19	0	.20	0	0.40 0.	.01 -	- <0.	01 -	_
MAY 13	<0.		_			.20				- <0.		_
JUN 02				.3 1						02 <0.		01
23 JUL	<0.					.50						
20 SEP	<0.	.01 <0.	01		0	.50 0	.60 0	0.70 0	.01 0.	06 <0.	01 <0.	01
16	<0.	.01 -	-		<0	.20		0	.01 -	<0.	01 -	-

BLUE RIVER BASIN 09057500 BLUE RIVER BELOW GREEN MOUNTAIN RESERVOIR, CO--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	01 0011 1	.0 00112001		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 OII RI Z	MEAN VALUE	S	JAN OOLODE	1 1900 10	OBI IBIIDE	, n 1901	
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	151 151 150 150 150	149 149 150 150		162 163 162 164 161	169 170 170 170 170	185 186 188 188 187	198 190 204 212 213	168 172 173 169 163	172 170 167 167 167	180 177 175 173 171	152 152 152 152 152	165 166 166 167 168
6 7 8 9 10	149 150 150 150 149	151 151 		161 161 161 161 161	171 171 172 173 174	188 188 188 189 192	215 215 215 213 216	169 168 188 203 202	166 166 162 162 161	169 168 166 164 162	153 152 153 153 153	170 171 171 175 174
11 12 13 14 15	149 148 148 148 149			162 162 163 163 157	174 175 175 176 177	194 193 191 189 187	217 217 218 220 222	200 200 197 191 189	162 162 163 163 163	159 158 156 154 151	153 153 153 153 154	175 176 178 178 179
16 17 18 19 20	148 148 148 147 146		161 159 160 162	164 164 164 164 164	177 178 178 178 178	185 183 181 182 192	224 224 227 230 234	189 189 186 	164 164 163 165 165	149 149 149 149	154 154 154 155 156	179 179 179 179 181
21 22 23 24 25	146 148 149 150 151		160 159 160 162 162	164 165 165 166 166	179 174 181 182 183	20 3 211 210 211 213	238 243 248 250 245	189 187 188 184	166 166 170 193 191	149 143 149 149	156 158 159 159 160	181 181 181 182 180
26 27 28 29 30 31	151 151 149 151 151 152		163 163 162 163 160 162	166 167 168 168 168 169	184 185 185 	212 212 215 215 213 211	246 259 249 213 194	186 180 179 181 175 177	189 187 185 171 181	131 150 151 152 152 152	161 161 162 162 163 164	182 182 182 182 182
MEAN	149			164	176	196	224		170	157	156	176

101

09057500 BLUE RIVER BELOW GREEN MOUNTAIN RESERVOIR, CO--Continued TEMPERATURE, WATER (DEG.C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY MAX MIN MAX MIN			TEMP	ERATURE,	WATER (DE	G.C), WAT	ER YEAR	OCTOBER 19	186 TO SE.	PTEMBER 1	987		
1	DAY												
2 11.6 11.4 8.7 8.7 8.6 6.7 3.9 3.7 3.9 3.7 3.2 3.9 3.7 3.2 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			BER			DE CEMB	ER						
T 11.3 10.9 7.9 7.8 3.9 3.7 3.8 3.6 3.6 3.2 2.9 8 11.2 10.2 10.9 7.9 7.8 3.9 3.7 3.7 3.5 3.7 3.5 3.2 2.9 10 11.1 10.8 3.0 3.9 3.7 3.7 3.5 3.2 2.9 10 11.1 10.8 3 3.0 3.9 3.7 3.7 3.5 3.2 2.9 10 11.1 10.8 3 3.0 3.9 3.7 3.7 3.7 3.5 3.2 2.9 11 11 11.0 10.8 3 3.0 3.9 3.7 3.7 3.7 3.5 3.2 2.9 11 11 11.0 10.8 3 3.0 3.8 3.6 3.5 3.1 2.9 11 11 11.0 10.8 3 3.0 3.8 3.6 3.5 3.1 2.9 11 11 11.0 10.7 3 3.0 3.8 3.6 3.5 3.2 2.9 11 11 11.0 10.7 3 3.0 3.8 3.6 3.5 3.1 2.9 11 11 11.0 10.8 3 3.0 3.8 3.6 3.5 3.2 2.9 11 12 10.8 10.4 3 3.0 3.8 3.6 3.5 3.2 2.9 11 12 10.8 10.4 3 3.0 3.8 3.7 3.5 3.3 3.2 2.9 11 15 10.6 10.3 3 3.0 3.8 3.7 3.5 3.3 3.1 2.9 11 15 10.6 10.3 3 3.8 3.4 3.8 3.7 3.5 3.3 3.1 2.9 11 17 10.3 9.9 3 3.8 3.4 3.8 3.7 3.5 3.3 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.5 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.6 3.5 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.6 3.5 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.6 3.5 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.6 3.5 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.6 3.5 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.6 3.5 3.1 2.9 11 18 10.2 9.8 3.8 3.6 3.7 3.5 3.3 3.2 2.9 11 18 10.2 9.8 3.8 3.6 3.8 3.7 3.5 3.3 3.2 2.9 11 18 10.2 9.8 3.8 3.6 3.8 3.7 3.5 3.3 3.2 2.9 11 18 10.2 9.8 3.8 3.6 3.8 3.7 3.5 3.3 3.2 2.9 3.0 2.9 11 1.2 9.8 3.8 3.6 3.8 3.7 3.5 3.3 3.2 2.9 3.0 2.9 3.0 2.0 10.3 3.0 0.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	2 3 4	11.6 11.5 11.5	11.4 11.4 11.3	8.7 8.6 8.4	8.6 8.3 8.3			3.9 3.9 3.9	3.7 3.8 3.8	3.9 3.8 3.8	3.7 3.7 3.7	3.2 3.2	3.0 3.0 3.0
122 11.0 10.7 4.0 3.8 3.7 3.5 3.2 2.9 18 19 10.6 10.3 3.8 3.7 3.5 3.2 2.9 18 10.6 10.3 3.8 3.7 3.5 3.5 3.2 2.9 18 10.6 10.3 3.8 3.7 3.5 3.5 3.2 2.9 18 19 10.6 10.3 3.8 3.7 3.5 3.5 3.3 3.1 2.9 19 10.4 9.9 3.6 3.8 3.7 3.5 3.3 3.1 2.9 19 10.4 9.9 3.7 3.6 3.8 3.6 3.8 3.6 3.4 3.3 3.2 2.9 20 10.3 10.0 3.6 3.8 3.8 3.6 3.6 3.4 3.3 3.2 2.9 20 10.3 10.0 3.8 3.8 3.6 3.8 3.6 3.4 3.3 3.2 2.9 20 10.3 10.0 3.8 3.8 3.6 3.8 3.6 3.4 3.3 3.2 2.9 20 10.3 10.0 3.8 3.8 3.6 3.8 3.6 3.4 3.3 3.2 2.9 20 10.3 10.0 3.8 3.8 3.6 3.8 3.6 3.4 3.3 3.2 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2	7 8 9	11.3 11.2 11.1	10.9 10.9 10.9	7.9 	7.8			3.9 3.9 3.9	3.7 3.7 3.7	3.8 3.7 3.7	3.6 3.5 3.5	3.2 3.1 3.2	2.9 2.9 3.0
19	12 13 14	11.0 10.9 10.8	10.7 10.5 10.4					4.0 3.9 3.9	3.8 3.8 3.7	3.7 3.6 3.5	3.5 3.5 3.4	3.2 3.2 3.1	2.9 2.9
22 9.8 9.6 9.6 3.8 3.8 3.8 3.7 3.4 2.8 3.1 2.9 2.8 2.3 9.6 9.2 3.8 3.8 3.6 3.8 3.7 3.3 3.2 2.9 3.1 2.9 2.8 2.9 9.6 9.2 3.8 3.6 3.8 3.7 3.3 3.2 2.9 3.1 2.9 2.8 2.8 9.6 9.2 3.8 3.6 3.8 3.7 3.3 3.2 2.9 3.1 2.8 2.8 2.8 9.1 9.2 3.8 3.6 3.8 3.7 3.3 3.2 3.1 3.0 2.8 2.8 2.8 9.1 8.8 3.9 3.8 3.8 3.6 3.8 3.7 3.3 3.2 3.1 3.0 2.8 2.8 2.8 9.1 8.8 3.9 3.9 3.7 3.8 3.6 3.2 3.1 3.0 2.8 2.8 2.8 9.1 8.8 3.9 3.7 3.8 3.8 3.6 3.2 3.1 3.0 2.2 2.8 2.9 9.1 8.8 3.9 3.7 3.8 3.6 3.8 3.7 3.8 3.6 3.2 3.1 3.0 2.7 3.9 8.9 8.9 8.7 3.8 3.7 3.8 3.6 3.8 3.6 3.2 3.1 3.0 2.7 3.9 8.9 8.9 8.7 3.8 3.7 3.8 3.6 3.6 3.2 3.1 3.0 2.7 3.9 2.8 3.9 2.7 3.8 3.8 3.6 3.2 3.1 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.9 2.8 3.3 2.7 3.8 3.7 3.8 3.6 3.2 2.9 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.1 3.1 3.0 2.2 3.1 3.0 2.7 3.9 2.8 3.1 3.0 2.7 3.9 2.8 3.3 2.7 3.8 3.7 3.8 3.6 3.7 3.8 3.6 3.7 3.8 3.6 3.7 3.8 3.6 3.7 3.8 3.6 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8 3.7 3.8 3.8	17 18 19	10.3 10.2 10.4	9.9 9.8 9.9			3.8 3.7 3.7	3.4 3.5 3.6	3.8 3.8 3.8	3.7 3.7 3.6	3.5 3.5 3.4	3.3 3.3	3.0 3.2 3.2	2.9 2.9 2.9 2.8
27 9.3 8.8 3.9 3.8 3.6 3.6 3.2 2.1 3.0 2.8 28 9.1 8.8 8.5 3.9 3.7 3.8 3.5 3.2 2.9 3.0 2.7 30 8.9 8.7 3.8 3.7 3.8 3.6 3.6 3.2 2.9 3.0 2.7 30 8.9 8.4 3.8 3.7 3.8 3.6 3 2.9 2.7 31 8.8 8.5 3.0 2.7 3.8 3.7 3.8 3.6 3 2.9 2.7 31 8.8 8.5 3.8 3.7 3.8 3.6 3 2.9 2.7 3.1 2.8 MONTH 11.7 8.4 3.8 3.7 3.8 3.7 3.8 3.6 3 2.9 2.7 3.1 2.8 MONTH 11.7 8.4 3.8 3.7 3.8 3.7 3.8 3.6 3 3.1 2.8 MONTH 11.7 8.4 3.8 3.7 3.8 3.7 3.8 3.7 3.9 2.8 3.3 2.7 DAY MAX MIN MIN MAX MIN MAX MIN MIN MAX MIN	22 23 24	9.8 9.7 9.6	9.6 9.4 9.2			3.8 3.8 3.8	3.8 3.6 3.7	3.8 3.8 3.8	3.7 3.7 3.7	3.4 3.3 3.3	2.8 2.9 3.1	3.1 3.1 3.0	2.9 2.8 2.8
MONTH	27 28 29 30	9.3 9.1 8.9 8.9	8.8 8.8 8.7 8.4			3.9 3.9 3.8 3.8	3.8 3.7 3.7 3.7	3.8 3.8 3.8	3.6 3.6 3.6	3.2 3.2	3.1 2.9 	3.0 3.0 3.0 2.9	2.8 2.7 2.7 2.7
APRIL MAY JUNE JULY AUGUST SEPTEMBER	MONTH	11.7	8.4							3.9	2.8		2.7
APRIL MAY JUNE JULY AUGUST SEPTEMBER													
1 3.2 2.8 3.6 3.3 7.3 5.2 9.4 8.2 10.4 9.6 11.9 11.6 2 3.1 2.6 3.5 3.3 7.5 5.3 9.1 8.5 10.4 9.6 12.0 11.6 3.3 3.3 2.7 3.5 3.3 7.5 5.3 9.1 8.5 10.4 9.6 12.0 11.6 4 3.3 2.7 3.5 3.5 3.3 7.5 6.8 9.0 8.4 10.4 9.6 12.0 11.6 4 3.3 2.8 4.6 3.8 7.5 6.7 9.5 8.5 10.5 10.0 12.0 11.7 5 3.4 2.8 4.6 3.8 7.5 6.7 9.5 8.5 11.0 10.1 12.1 11.8 6 3.2 2.8 4.2 3.6 7.7 6.4 9.3 8.7 10.5 10.0 12.0 11.9 7 3.3 2.8 4.3 3.7 7.4 6.5 9.3 8.7 10.5 10.0 12.0 11.9 8 3.3 2.8 4.5 3.5 7.3 6.8 9.3 8.7 10.5 10.1 12.0 11.9 8 3.3 2.8 4.5 3.5 7.3 6.8 9.3 8.7 10.7 10.1 12.0 11.9 9 3.3 2.9 4.6 3.6 7.3 6.8 9.3 8.8 10.8 10.3 12.1 11.9 10.3 2.2 2.9 4.5 3.7 7.8 6.4 9.4 8.9 10.9 10.2 12.1 11.9 11.3 12.2 12.1 11.9 11.3 12.1 11.9 11.3 12.1 11.9 11.3 12.1 11.9 11.3 12.1 11.9 11.3 12.1 11.9 11.3 12.1 11.9 11.3 12.1 11.9 11.3 12.1 11.9 11.5 12.0 11.9 11.5 12.0 11.9 11.5 12.0 11.9 11.5 12.0 11.9 11.5 12.0 11.5 12.1 11.9 11.5 12.0 11.5 12.1 11.9 11.5 12.0 11.9 11.5 12.0 11.9 11.5 12.0 11.9 11.5 12.0 11.9 11.5 12.0 11.5 12.0 11.5 12.1 11.9 12.1 12.1 12.1 12.1 12.1 12.1	DAY	MA X	MIN	MAX	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN
2 3.1 2.6 3.5 3.3 7.5 5.3 9.1 8.5 10.4 9.6 12.0 11.6 4 3.3 3.2 7.7 3.5 5.8 9.0 8.4 10.4 9.8 12.0 11.6 4 3.3 3.2 2.8 3.9 3.5 7.6 6.3 9.2 8.5 10.5 10.0 12.0 11.7 5 3.4 2.8 4.6 3.8 7.5 6.7 9.5 8.5 11.0 10.1 12.1 11.8 6 3.2 2.8 4.6 3.8 7.5 6.7 9.5 8.5 11.0 10.1 12.1 11.8 6 3.2 2.8 4.3 3.9 7.4 6.5 9.3 8.7 10.5 10.1 12.0 11.9 8 3.3 2.8 4.3 3.7 7.4 6.5 9.3 8.7 10.7 10.1 12.0 11.9 8 3.3 2.8 4.5 3.5 7.3 6.8 9.3 8.7 10.7 10.1 12.0 11.9 8 3.3 2.8 4.5 3.5 7.3 6.8 9.3 8.7 10.7 10.1 12.0 11.9 11.9 10 3.2 2.9 4.6 3.6 7.3 6.9 9.4 8.8 10.8 10.3 12.1 11.9 10 3.2 2.9 4.5 3.7 7.8 6.4 9.4 8.9 10.9 10.2 12.1 11.8 10 3.2 2.9 4.5 3.7 7.8 6.4 9.4 8.9 10.9 10.2 12.2 11.7 11.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3		APRI	L	MAY		JUNE		JULY	:	AUGUS	ST	SEPTEN	1BER
7 3.3 2.8 4.3 5.7 7.4 6.5 9.3 8.7 10.7 10.1 12.0 11.9 8 3.3 2.8 4.5 3.5 7.3 6.8 9.3 8.8 10.8 10.3 12.1 11.9 9 3.3 2.9 4.6 3.6 7.3 6.9 9.4 8.9 10.9 10.2 12.1 11.8 10 3.2 2.9 4.5 3.7 7.8 6.4 9.4 8.9 10.9 10.2 12.2 11.7 11 3.2 2.9 5.4 3.8 7.9 6.7 9.6 8.9 10.9 10.2 12.2 11.7 11 3.2 2.9 5.4 7.7 7.7 7.1 9.5 9.0 10.8 10.4 12.3 11.8 12 3.1 2.8 4.7 4.0 7.7 7.1 9.5 9.0 10.8 10.4 12.3 11.9 13 3.1 2.7 5.2 4.4 7.9 7.1 9.6 8.9 11.1 10.4 12.2 11.9 14 3.3 2.7 5.0 4.2 8.1 7.2 9.6 9.1 11.1 10.3 12.4 12.0 15 3.4 2.9 4.9 4.5 8.1 7.4 9.7 9.1 11.1 10.6 12.2 12.0 15 3.4 2.9 5.6 4.4 7.9 7.3 9.7 9.1 11.1 10.6 12.2 12.0 16 3.4 2.9 6.4 4.3 8.2 7.7 9.6 9.3 11.4 10.6 12.2 12.0 18 4.4 2.9 6.4 4.3 8.2 7.7 9.6 9.3 11.4 10.8 12.4 11.9 19 4.6 3.0 8.3 7.6 9.7 9.5 11.4 10.9 12.4 12.0 20 3.7 2.8 8.4 7.7 9.9 9.2 11.4 10.9 12.4 12.0 21 4.1 2.0 22 4.3 2.6 6.2 4.6 8.5 8.0 10.2 9.6 11.6 11.2 12.3 12.0 12.4 4.5 3.0 6.6 5.4 9.4 7.9 8.9 7.7 10.1 9.4 11.6 11.2 12.3 12.0 12.0 12.0 12.3 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	2 3 4	3.1 3.3 3.3	2.6 2.7 2.8	3.5 3.5 3.9	3.3 3.3 3.5	7.5 7.8 7.6	5.3 5.8 6.3	9.1 9.0 9.2	8.5 8.4 8.5	10.4 10.4 10.5	9.6 9.8 10.0	12.0 12.0 12.0	11.6 11.6 11.7
12 3.1 2.8 4.7 4.0 7.7 7.1 9.5 9.0 10.8 10.4 12.3 11.9 13 3.1 2.7 5.2 4.4 7.9 7.1 9.6 8.9 11.1 10.4 12.2 11.9 14 3.3 2.7 5.0 4.2 8.1 7.2 9.6 9.1 11.1 10.3 12.4 12.0 15 3.4 2.9 4.9 4.5 8.1 7.4 9.7 9.1 11.1 10.6 12.2 12.0 16 3.4 2.9 5.6 4.4 7.9 7.3 9.7 9.2 11.3 10.4 12.2 11.9 17 4.8 3.0 5.8 4.5 8.6 7.3 9.8 9.1 11.2 10.6 12.3 12.0 18 4.4 2.9 6.4 4.3 8.2 7.7 9.6 9.3 11.4 10.8 12.4 12.0 20 3.7 2.8 8.3 7.6 9.7	7 8 9	3.3 3.3 3.3	2.8 2.8 2.9	4.3 4.5 4.6	3.7 3.5 3.6	7.4 7.3 7.3	6.5 6.8 6.9	9.3 9.3 9.4	8.7 8.8 8.8	10.7 10.8 10.8	10.1 10.3 10.2	12.0 12.1 12.1	11.9 11.9 11.8
17 4.8 3.0 5.8 4.5 8.6 7.3 9.8 9.1 11.2 10.6 12.3 12.0 18 4.4 2.9 6.4 4.3 8.2 7.7 9.6 9.3 11.4 10.8 12.4 11.9 19 4.6 3.0 8.3 7.6 9.7 9.3 11.4 10.9 12.4 12.0 20 3.7 2.8 8.4 7.7 9.9 9.2 11.4 10.9 12.4 12.0 21 4.1 2.6 8.6 7.7 10.2 9.3 11.5 11.0 12.4 12.0 21 4.1 2.6 6.2 4.6 8.5 8.0 10.2 9.6 11.6 11.2 12.3 12.0 23 4.5 2.8 6.5 4.7 8.8 7.9 9.9 9.5 11.6 11.3 12.3 12.0 24 4.5 3.0 6.2 4.9 8.9 7.7 <t< th=""><th>12 13 14</th><th>3.1 3.1 3.3</th><th>2.8 2.7 2.7</th><th>4.7 5.2 5.0</th><th>4.0 4.4 4.2</th><th>7.7 7.9 8.1</th><th>7.1 7.1 7.2</th><th>9.5 9.6 9.6</th><th>9.0 8.9 9.1</th><th>10.8 11.1 11.1</th><th>10.4 10.4 10.3</th><th>12.3 12.2 12.4</th><th>11.9 11.9 12.0</th></t<>	12 13 14	3.1 3.1 3.3	2.8 2.7 2.7	4.7 5.2 5.0	4.0 4.4 4.2	7.7 7.9 8.1	7.1 7.1 7.2	9.5 9.6 9.6	9.0 8.9 9.1	10.8 11.1 11.1	10.4 10.4 10.3	12.3 12.2 12.4	11.9 11.9 12.0
22 4.3 2.6 6.2 4.6 8.5 8.0 10.2 9.6 11.6 11.2 12.3 12.0 23 4.5 2.8 6.5 4.7 8.8 7.9 9.9 9.5 11.6 11.3 12.3 12.0 24 4.5 3.0 6.2 4.9 8.9 7.7 10.1 9.4 11.6 11.2 12.3 12.1 25 4.4 3.0 6.6 5.4 9.4 7.9 10.1 9.7 11.7 11.2 14.0 12.0 26 4.7 3.1 6.2 4.7 9.0 8.1 12.1 9.6 11.7 11.3 12.3 12.0 27 4.1 3.2 6.9 4.6 9.3 8.2 10.2 9.6 11.7 11.3 12.2 12.0 28 3.6 3.1 7.0 5.5 8.8 8.5 10.2 9.7 11.8 11.4 12.1 11.8 29 3.6 3.1 6.5 5.6 8.8 8.2	17 18 1 9	4.8 4.4 4.6	3.0 2.9 3.0	5.8 6.4	4.5 4.3	8.6 8.2 8.3	7.3 7.7 7.6	9.8 9.6 9.7	9.1 9.3 9.3	11.2 11.4 11.4	10.6 10.8 10.9	12.3 12.4 12.4	12.0 11.9 12.0
27 4.1 3.2 6.9 4.6 9.3 8.2 10.2 9.6 11.7 11.3 12.2 12.0 28 3.6 3.1 7.0 5.5 8.8 8.5 10.2 9.7 11.8 11.4 12.1 11.8 29 3.6 3.1 6.5 5.6 8.8 8.2 10.5 9.5 11.8 11.5 12.0 11.8 30 3.9 3.1 6.8 5.8 9.0 8.5 10.4 9.8 11.9 11.5 12.0 11.6 31 6.7 5.8 10.3 9.6 11.9 11.6	22 23 24	4.3 4.5 4.5	2.8 3.0	6.2 6.5 6.2	4.6 4.7 4.9	8.5 8.8 8.9	7·9 7·7	10.2 9.9 10.1	9.5 9.4	11.6 11.6 11.6	11.2 11.3 11.2	12.3 12.3 12.3	12.0 12.0 12.1
	27 28 29 30	4.1 3.6 3.6 3.9	3.2 3.1 3.1 3.1	6.9 7.0 6.5 6.8	4.6 5.5 5.6 5.8	9.3 8.8 8.8 9.0	8.2 8.5 8.2 8.5	10.2 10.2 10.5 10.4	9.6 9.7 9.5 9.8	11.7 11.8 11.8 11.9	11.3 11.4 11.5 11.5	12.2 12.1 12.0 12.0	12.0 11.8 11.8 11.6

NOTE: Daily water temperatures are reported to the nearest 0.1 $^{\circ}\text{C}$ but are accurate only to the nearest 0.5 $^{\circ}\text{C}$.

COLORADO RIVER MAIN STEM

09058000 COLORADO RIVER NEAR KREMMLING, CO

LOCATION.--Lat 40°02'12", long 106°26'22", in NE4SW4 sec.23, T.1 N., R.81 W., Grand County, Hydrologic Unit 14010001, on right bank at upstream end of Gore Canyon, 3.0 mi southwest of Kremmling, and 3.8 mi downstream from Blue River.

DRAINAGE AREA. -- 2,382 mi².

PERIOD OF RECORD.--July 1904 to September 1918 (published as Grand River near Kremmling), October 1961 to September 1970, October 1971 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1313 for history of changes prior to Oct. 1, 1961.

REMARKS.--Estimated daily discharges: Jan. 11, 16, 17. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation of about 40,000 acres upstream from station, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 25 years (water years 1962-70, 1972-87), 1,060 ft3/s; 768,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 21,500 ft³/s, June 7, 1912, gage height, 21.8 ft, datum then in use, from rating curve extended above 14,000 ft³/s; minimum observed, 166 ft³/s, Dec. 19, 1907.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,940 $\rm ft^3/s$ at 2100 June 10, gage height, 7.48 ft; minimum daily, 514 $\rm ft^3/s$, June 28.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCT	OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	852	935	817	695	756	681	682	1540	1320	717	850	783
2	982	934	786	711	692	683	624	1670	1350	726	835	754
3	1010	916	774	707	688	683	612	1590	1290	922	826	761
4	1030	858	783	701	697	689	632	1460	1170	920	889	753
5	1030	849	779	689	697	697	662	1360	1180	896	897	759
6 7 8 9	1010 987 931 924 922	835 837 838 818 841	791 800 789 787 754	675 675 672 694 690	694 700 714 701 708	699 710 723 742 745	682 759 771 811 751	1290 1200 1210 1150 1230	1150 1130 1180 1410 1820	850 813 790 728 696	866 875 890 840 818	746 747 731 684 628
11	916	820	743	700	716	769	744	1270	1840	694	793	633
12	917	871	755	709	714	791	751	1270	1740	811	787	729
13	908	830	774	699	708	802	699	1240	1640	949	785	772
14	907	844	771	697	711	840	674	1200	1600	853	790	785
15	889	888	766	704	705	808	694	1200	1530	772	809	782
16	883	899	768	700	703	785	833	1200	1350	755	803	735
17	872	890	770	700	705	761	1060	1280	1220	751	799	738
18	865	875	766	703	707	753	1090	1340	1150	813	798	732
19	861	872	762	680	695	762	1140	1300	1130	801	795	727
20	773	878	732	675	706	791	1170	1060	1060	782	809	711
21	731	878	724	712	702	741	941	1060	1100	786	896	703
22	902	871	721	700	697	740	837	1390	1080	783	880	719
23	923	827	720	746	636	726	910	1490	972	788	790	786
24	911	826	735	734	698	720	1040	1370	735	810	806	781
25	908	832	718	734	685	710	1160	1450	660	820	776	847
26 27 28 29 30 31	901 897 888 927 931 949	854 816 824 822 833	717 726 731 714 715 742	740 748 750 768 757 775	684 687 688 	679 684 672 660 667 669	1190 1220 1420 1520 1540	1410 1320 1330 1350 1280 1260	586 526 514 529 619	843 875 893 770 696 715	721 687 686 754 758 801	830 830 823 837 832
TOTAL	28337	25711	23430	22040	195 9 4	22582	27619	40770	34581	24818	25109	22678
MEAN	914	857	756	711	700	728	921	1315	1153	801	810	756
MAX	1030	935	817	775	756	840	1540	1670	1840	949	897	847
MIN	731	816	714	672	636	660	612	1060	514	694	686	628
AC-FT	56210	51000	46470	43720	38860	44790	54780	80870	68590	49230	49800	44980

CAL YR 1986 TOTAL 544852 MEAN 1493 MAX 4490 MIN 608 AC-FT 1081000 WTR YR 1987 TOTAL 317269 MEAN 869 MAX 1840 MIN 514 AC-FT 629300

09058030 COLORADO RIVER NEAR RADIUM, COLORADO

103

COLORADO RIVER MAIN STEM

LOCATION.--Lat 39°58'01", long 106°31'22", in NW4NW4 sec.24, T.1 S., R.82 W., Grand County, Hydrologic Unit 14010001, on left bank, 1.0 mi upstream from Blacktail Creek, 2.0 mi northeast of Radium, and 3.0 mi downstream from Canyon Creek.

DRAINAGE AREA . -- 2,412 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1981 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 6,910 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Jan. 2 to Apr. 23. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation of about 40,000 acres upstream from station, and return flow from irrigated areas.

AVERAGE DISCHARGE.--6 years, 1,484 ft3/s; 1,075,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,800 ft³/s, probably occurred on May 26, 1984, gage height, 12.91 ft, from highwater mark in well; minimum daily, 370 ft³/s, Dec. 23-25, 1981.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 1,940 ft³/s at 0030 June 11, gage height, 4.57 ft; minimum daily, 560 ft³/s, June 28.

		DISCHA	RGE, IN (CUBIC FEET		ND, WATER MEAN VALU		OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	864	975	868	759	797	722	723	1590	1290	782	868	794
2	1010	977	836	752	733	724	665	1710	1350	787	854	766
3	1040	962	829	748	729	724	653	1660	1310	995	843	776
4	1080	890	836	742	738	730	673	1520	1210	997	909	766
5	1080	883	829	730	738	738	703	1400	1210	966	916	773
6	1050	875	843	716	735	740	723	1320	1190	913	884	759
7	1020	871	850	716	741	751	800	1240	1170	868	889	762
8	953	876	840	713	755	764	812	1240	1220	843	907	745
9	946	864	833	735	742	783	852	1190	1420	777	854	696
10	944	881	739	731	749	786	792	1250	1830	742	836	639
11	930	869	780	741	757	810	785	1290	1870	741	807	647
12	934	916	811	750	755	832	792	1290	1780	859	801	751
13	930	875	832	740	749	843	740	1260	1690	1000	798	797
14	926	885	812	738	752	881	715	1230	1650	900	804	808
15	905	925	801	744	746	849	735	1220	1580	823	825	805
16	903	939	815	741	744	826	874	1220	1370	800	819	753
17	890	930	815	741	746	802	1100	1270	1250	791	815	759
18	883	917	808	744	748	794	1130	1330	1180	848	815	749
19	882	912	815	721	736	803	1180	1310	1160	836	812	745
20	805	916	784	716	747	832	1210	1080	1090	822	822	728
21	760	916	763	753	743	782	982	1090	1120	825	920	714
22	924	908	742	741	738	781	878	1350	1110	819	894	734
23	952	868	748	787	677	767	951	1510	994	822	805	804
24	946	867	797	775	739	761	1070	1380	765	839	825	804
25	944	874	749	775	726	751	1180	1460	687	848	794	863
26 27 28 29 30 31	935 937 917 961 968 993	903 868 867 867 878	748 773 794 766 773 790	781 789 791 809 798 816	725 728 729 	720 725 713 701 708 710	1210 1240 1420 1560 1610	1420 1330 1320 1350 1300 1280	618 571 560 578 670	871 898 932 799 723 734	738 698 698 772 776 818	854 853 847 860 857
TOTAL	29212	26954	24819	23333	20742	23853	28758	41410	35493	26200	25616	23208
MEAN	942	898	801	753	741	769	959	1336	1183	845	826	774
MAX	1080	977	868	816	797	881	1610	1710	1870	1000	920	863
MIN	760	864	739	713	677	701	653	1080	560	723	698	639
AC-FT	57940	53460	49230	46280	41140	47310	57040	82140	70400	51970	50810	46030

TOTAL 557907 MEAN 1529 MAX 4650 MIN 620 AC-FT 1107000 TOTAL 329598 MEAN 903 MAX 1870 MIN 560 AC-FT 653800 CAL YR 1986 WTR YR 1987

COLORADO RIVER MAIN STEM

09058030 COLORADO RIVER NEAR RADIUM, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- August 1981 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	D	ATE	TIME	FL INS TAN	REAM- OW, STAN- SEOUS SFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	(3	PH TAND- ARD ITS)	A T W A	MPER- TURE ATER EG C)	TUR- BID- ITY (NTU)	S	YGEN, DIS- DLVED MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	,
(OCT 29.		1035	90	0	198		8.5		7.5	4.0		10.0	<1	
1	MAR 26.		1030	134	10	255		8.1		3.5	31		11.0	K63	3
	APR 24.	••	1430	247	0	243		ĕ.0		8.5	200		9.2	K110)
	MAY 21.	••	1100	324	10	171		7.7		9.5	37		9.1	220)
	JUN 11.		1200	444	0	202		8.5		10.5	20		9.1	120)
	JUL 16.		0910	150	0	283		8.2		16.5	30		7.7	300)
I	AUG 26.	••	0845	82	14	250		7.8		14.5	7.6		8.2	K22	2
DA.	TE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)	MAGN SIUM TOTA RECO ERAB (MG/ AS M	L V – LE L	SODIUM TOTAL RECOV ERABL: (MG/L AS NA	TOTA - RECOV E ERABL (MG/	M, L E L	ALKA LINIT LAB (MG/I AS CACO	Y L	SULFIDE TOTAL (MG/L AS S)	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLID RESID AT 18 DEG. DIS SOLV (MG/	DUÉ BO C S-
0CT 29 MAR	•				-	- 1	.8	59		<0.5	35	;	1.9	1	152
26 APR		32	8.	0	10	2	. 7	82		<0.5	57	•	3.2	1	169
24 MAY	•	30	7.	0	10	4	• 3	86		<0.5	36	,	1.8	1	165
21 JUN	•	22	5.	0	7.	0 1	• 7	61		<0.5	27	,	1.5	1	119
11 JUL	•	23	5.	6	7.	0 1	• 5	61		<0.5	33	3	1.5	1	131
16 AUG	•	33	7.	0	11	2	. 1	88		<0.5	49	5	2.1	1	166
26	•	27	6.	0	9.	0 2	2 - 4	76		<0.5	43	3	2.2	1	155
DA ⁷	TE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITR GEN NITRI TOTA (MG/ AS N	ŤE L L	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	MONÍA	M- IC L	NITR GEN TOTA (MG/ AS N	, L	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS PHORU ORTH TOTA (MG/ AS F	IS, IO, L 'L	CYANIDE TOTAL (MG/L AS CN)	ALGA GROW POTE TIA BOTT TES (MG/	TH EN- LL, TLE ST
0CT 29	•	18	<0.0	1	<0.10	0.	3				0.0	1	<0.01		
MAR 26		65	<0.0	1	0.10	0.	6	0.	7	0.08	0.0	2	<0.01	21	i
APR 24		536	0.0	3	0.10	1.	2	1.	3	0.28	0.0)5	<0.01		
MAY 21		75	<0.0	1	<0.10	0.	6			0.06	0.0	2	<0.01		-
JUN 11 JUL		38	<0.0	1	<0.10	0.	4			0.07	0.0	2	<0.01	45	;
16	•	32	<0.0	1	<0.10	0.	6			0.03	0.0	3	<0.01		
AUG 26	•	15	<0.0	1	<0.10	0.	4			0.05	0.0	12	<0.01	71	i

K BASED ON NON-IDEAL COLONY COUNT.

09058030 COLORADO RIVER NEAR RADIUM, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 29 MAR	1035	<1	30	<1	7	1		40
26	1030	1	40	1	9	5	2000	60
APR 24	1430	2	90	1	30	18		150
MAY 21	1100	1	40	<1	10	7	2600	80
JUN 11	1200	<1	30	<1	7	5	1200	70
JUL 16	0910	1	30	<1	15	8	1400	60
AUG 26	0845	1	50	<1	3	1	550	40
DATE	*LEA TOT REC ERA (UG AS	AL TOTA OV- RECO BLE ERAL /L (UG)	E, MAN AL NES DV- DI BLE SOL /L (UG	S- REC VED ERA	AL TOTOS COV- REC BLE ERA	TAL SEI COV- NII ABLE TOT G/L (UC	JM, REC FAL ERA G/L (UC	CAL COV- BLE
OCT 29		2		10		5	<1	2
MAR 26		3	90		.10	3	1	<1
APR 24			300		.10	25	2	<1
MAY 21		4	80		.10	28	1	<1
JUN 11		<5	50		.10	6	<1	<1
JUL 16		< 5	90		.10	7	<1	<1
AUG 26		< 5	50	-	1.10	1	<1	<1

^{*} The minimum reporting level for Lead was changed from <1 to <5 during June, 1986.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./
OCT								
08	0840	938	208	8.0	9.0	3.4	9.3	K7
NOV			-1.0					
12 MAR	1140	930	248	8.5	3.5	2.7	11.0	K5
26	0915	674	227	7.9	1.5	2.1	11.6	K 1
APR	33.3	٥, ،	,	1,	1.43	,	, , • •	,
23	1015	959	252	8.0	8.0	45	9.8	K14
MAY								
13 JUN	1015	1230	200	8.1	9.5	21	9.1	K51
03	0945	1330	260	8.3	9.5	5.7	9.7	33
JUL				-		,	, ,	33
15	0945	814	344	8.1	15.0	2.8	9.1	40
AUG	00.20	903	222	7 7	13.0	2 11	0 7	V 1 0
12 SEP	0930	803	222	7.7	13.0	3.4	8.7	K18
16	1015	740	214	8.0	11.0	2.3	9.0	20
							-	

K BASED ON NON-IDEAL COLONY COUNT

COLORADO RIVER MAIN STEM

09058030 COLORADO RIVER NEAR RADIUM, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE OCT	WATER CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) 12 24 24 24 34 25 31 40 26 24	MAG SIU TOT REC ERA (MG AS 5 8 8 7 6 6 9 5 5	NE- M, SODI AL TOT OV- REC BLE ERA /L (MG MG) AS .7 .0 .7 .5 .7 .5	COV- RECOMBLE ERAI	TAS- IUM, FAL DV- SC/L K) 2.0 1.9 1.8 2.4 2.7	ALKA- LINITY LAB (MG/L AS CACO3 64 70 70 84 66 77 110 70	SULE TOTO (MC	SUL TIDE DI TAL SC	FATE S- DLVED :	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 2.9 2.2 2.8 2.8 1.8 2.7 3.0 2.3	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 136 155 141 163 138 155 221 127
DAT OCT O8 NOV 12 MAR 26 APR 23 MAY	SO RE AT DE S SFE PE (LIDS, SIDUE 105 G. C, US- NDED MG/L) 13 9	NITRO- GEN, NITRITE TOTAL (MG/L AS N) <0.01 <0.01	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) <0.10 <0.10 <0.10	NITI GEN, MONI ORGAN TOTI (MG AS !	RO- AM- A + VIC P AL /L	PHOS-HORUS, TOTAL (MG/L AS P) 0.04 0.02 0.03	PHOS-PHORUS, ORTHO, TOTAL (MG/L AS P) <0.01 <0.01 0.01 0.03	ı	AL GREPO DE T. BOO. (M	GAL OWTH TEN- IAL, TTLE EST G/L) 38 60
13 JUN 03 JUL 15 AUG 12 SEP 16	•	41 8 9 10	<0.01 <0.01 <0.01 <0.01 <0.01	<0.10 <0.10 <0.10 <0.10 <0.10	0 0 <0	.80 .90 .50 .20	0.10 0.06 0.04 0.03 0.02	0.02 0.02 0.04 0.01	<0.0 <0.0 <0.0 <0.0	1	 66 44
DAT	ΓE	TIME	ARSENIC TOTAL (UG/L AS AS)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADM: TOT: RECO ERAI (UG.	IUM AL OV- BLE /L	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL RECOVERABLE (UG/I	IR V- D LE SOI L (U	ON, IS- LVED G/L FE)
OCT 08		0840	<1	20		<1	2	6	5 39	90	30
NOV 12		1140	2	<10		<1	<1	5		20	20
MAR 26		0915	1	60		<1	8	5	-		20
APR 23		1015	2	10		<1	25	7			60
MAY 13			1				25 4				
JUN		1015		110		<1					100
03 JUL 15		0945	<1	40		<1	9	3		40	70
15 AUG		0945	1	20		<1	14			80	130
12 S e p		0930	<1	40		<1	<1	3		30	50
16	•	1015	2	30		<1	7	1	t 4.	70	40

09058030 COLORADO RIVER NEAR RADIUM, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)
OCT							
08 NOV	< 5	40	10	<0.10	2	<1	1
12	< 5	30	20	<0.10	3	<1	<1
MAR 26	< 5	30	20	<0.10	3	<1	<1
APR		50	20	-0.10	,	- 1	• • • • • • • • • • • • • • • • • • • •
23	< 5	90	20	0.20	6	<1	<1
MA Y 13	< 5	60	10	<0.10	12	<1	<1
JUN 03	< 5	60	40	<0.10	2	<1	<1
JUL	_						
15	< 5	70	40	<0.10	2	<1	<1
AUG 12	< 5	70	10	0.20	3	<1	<1
SEP 16	< 5	40	20	<0.10	<1	<1	<1

108 PINEY RIVER BASIN

09058500 PINEY RIVER BELOW PINEY LAKE, NEAR MINTURN, CO

LOCATION.--Lat 39°42'29", long 106°25'34", Eagle County, Hydrologic Unit 14010001, on left bank 1.4 mi upstream from Dickson Creek, 2.0 mi downstream from Piney Lake, and 8.5 mi north of Minturn.

DRAINAGE AREA . -- 13.0 mi2.

PERIOD OF RECORD. -- October 1947 to September 1954, October 1963 to current year.

GAGE.--Water-stage recorder. Datum of gage is 9,145.25 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to October 1963, water-stage recorder at site 15 ft upstream at present datum.

REMARKS.--Estimated daily discharges: Nov. 6 to Apr. 22. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 31 years (1948-54, 1964-87), 25.2 ft3/s; 18,260 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 560 ft³/s, June 8, 1985, gage height, 5.12 ft; maximum gage height observed, 6.44 ft, Apr. 13, 1977; minimum not determined.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0300	*226	*4.46	June 9	0200	196	*4.46

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 1.3 ft³/s, Jan. 18-24.

		DISOMA	NGE, CODI	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M BECOMD,	EAN VALUE	S	1 1900 10		1 1 1 9 0 1		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	9.3 9.7 11 12	8.3 7.8 7.6 7.7 7.0	5.0 5.0 5.0 5.0	2.5 2.5 2.5 2.5 2.5	1.5 1.5 1.8 2.0 2.0	2.0 2.5 2.7 3.0 3.2	3.5 4.0 4.0 4.5	74 62 38 26 24	49 73 73 86 101	38 32 30 26 23	18 14 12 10 8.9	5.7 5.3 5.1 5.0 4.8
6 7 8 9 10	10 12 14 14 14	6.5 6.0 5.5 5.5	4.5 4.5 4.0 3.0	2.0 2.0 1.8 1.8	2.0 2.0 2.0 2.0 2.0	3.3 3.4 3.5 3.5 3.2	4.5 4.5 4.5 5.0	27 39 59 69 80	84 98 135 147 91	21 19 18 17	8.1 8.8 10 9.5 8.5	4.8 4.6 4.5 4.2 4.0
11 12 13 14 15	14 12 9.6 8.9 8.3	5.5 5.5 5.5 5.5	3.0 3.5 4.0 4.0	2.0 2.3 2.3 2.3 2.0	2.0 2.0 1.8 1.8	3.0 3.0 3.0 3.0	5.0 5.0 5.0 6.0	105 99 89 129 145	83 81 88 94 93	16 18 20 16 14	7.2 6.7 6.1 6.3 5.9	3.9 3.7 3.6 3.4 4.1
16 17 18 19 20	7.6 7.2 7.0 6.9 7.0	5.5 6.5 6.5	4.0 4.0 4.0 3.5 3.5	1.6 1.4 1.3 1.3	1.8 1.8 1.8 1.7	3.0 3.0 3.0 3.0	8.0 10 13 15 20	163 182 147 103 92	81 79 69 62 60	14 14 17 15	5.5 5.2 4.6 4.5	5.2 7.7 8.3 6.8 5.7
21 22 23 24 25	7.6 7.9 8.1 8.2 8.0	6.5 6.5 5.0 5.0	3.5 3.5 3.5 3.5 3.0	1.3 1.3 1.3 1.3	1.6 1.6 1.6 1.6	3.0 3.0 2.9 2.7 2.7	18 16 27 49 59	71 52 43 47 37	55 57 57 52 46	11 10 10 9.6 9.0	4.5 4.4 4.9 8.3	5.1 4.6 4.1 3.9 3.6
26 27 28 29 30 31	7.7 8.1 9.2 9.1 9.2 9.0	5.0 5.0 5.0 5.0	3.0 3.0 3.0 3.0 2.5 2.5	1.5 1.5 1.5 1.5 1.5	1.6 1.7 1.8 	2.7 2.7 2.7 2.7 2.7 2.7 3.0	55 60 55 65 71	31 25 19 19 19	44 36 33 34 40	10 24 27 20 16 17	15 11 9.1 7.9 6.9 6.3	3.5 3.4 3.4 3.2
TOTAL MEAN MAX MIN AC-FT	297.6 9.60 14 6.9 590	180.9 6.03 8.3 5.0 359	117.0 3.77 5.0 2.5 232	55.3 1.78 2.5 1.3 110	50.0 1.79 2.0 1.5 99	91.1 2.94 3.5 2.0 181	610.0 20.3 71 3.5 1210	2136 68.9 182 19 4240	2181 72.7 147 33 4330	560.6 18.1 38 9.0 1110	257.0 8.29 18 4.4 510	138.6 4.62 8.3 3.2 275

CAL YR 1986 TOTAL 10908.9 MEAN 29.9 MAX 248 MIN 2.0 AC-FT 21640 WTR YR 1987 TOTAL 6675.1 MEAN 18.3 MAX 182 MIN 1.3 AC-FT 13240

PINEY RIVER BASIN

109

09058610 DICKSON CREEK NEAR VAIL, CO

LOCATION.--Lat 39°42'14", long 106°27'25", Eagle County, Hydrologic Unit 14010001, on right bank 0.6 mi upstream from Freeman Creek, 1.0 mi upstream from mouth, and 6 mi northwest of Vail.

DRAINAGE AREA . - - 3.41 mi2.

PERIOD OF RECORD. -- October 1971 to current year. Prior to October 1972, published as "near Minturn."

GAGE.--Water-stage recorder. Elevation of gage is 9,245 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 8, and Nov. 19 to Apr.23. Records good except for estimated daily discharges, which are poor. Diversion by Willy N. ditch 75 ft upstream for irrigation of hay meadows downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 16 years, 2.28 ft 3/s; 1,650 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 48 ft³/s, May 6, 1979, gage height, 2.75 ft; maximum gage height 4.89 ft, May 9, 1984 (backwater from ice); no flow at times some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5.4 ft³/s at 1300 May 16, gage height, 2.40 ft; minimum daily, 0.40 ft³/s, Jan. 15-22.

		DISCHAR	GE, CUBI	C FEET PER		WATER YEAR EAN VALUES	OCTOBER	1986 TO	SEPTEMBE	R 1987		
DA Y	OCT	иои	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.5 1.5 1.5	1.2 1.1 1.1 1.1	.80 .80 .80 .80	.60 .60 .60 .60	.70 .70 .70 .60	.70 .80 1.0 1.2 1.4	1.0 1.2 1.3 1.3	2.2 2.2 1.6 1.8 1.6	3.0 3.1 2.8 2.7 2.7	1.4 1.3 1.3 1.2	1.1 1.0 .93 .97	1.1 .98 .94 1.0
6 7 8 9 10	1.3 1.3 1.2 1.2	1.1 1.1 1.0 .97	.70 .70 .70 .70	.50 .50 .50 .50	.60 .60 .60 .60	1.6 1.7 1.7 1.7	1.1 1.1 1.1 1.1	2.0 2.3 2.3 2.6 2.6	2.7 3.1 2.8 2.9 2.5	1.2 1.2 1.2 1.2	.70 1.2 1.2 .78 1.0	.95 .93 1.0 .71 .90
11 12 13 14 15	1.2 1.2 1.1 1.1	.93 .89 .78 .80	.60 .60 .70 .70	.60 .60 .50 .40	.60 .60 .60 .50	1.3 1.1 1.0 1.0	1.1 1.0 .90 .90	2.9 3.2 3.3 3.9	2.3 2.1 2.0 2.0 2.1	1.4 1.6 1.3 1.1	1.0 1.1 1.2 1.2 .72	.97 .91 1.1 1.0
16 17 18 19 20	1.1 1.1 1.1 1.2	.85 .91 .99 1.1	.70 .70 .70 .70	.40 .40 .40 .40	.50 .50 .50 .50	1.0 1.1 1.1 1.1	1.2 1.4 1.6 1.8	5.0 5.0 5.1 4.7 4.7	1.8 1.8 1.7 1.7	1.2 1.4 1.2 1.1	.95 1.1 1.1 1.1	1.7 1.2 .93 .93
21 22 23 24 25	1.2 1.2 1.2 1.2 1.2	1.0 1.0 .90 .90	.70 .70 .70 .70	.40 .40 .50 .60	.50 .50 .50 .50	.90 .80 .80 .80	1.2 1.1 1.2 1.3	4.8 4.4 4.2 4.0 3.7	1.7 1.6 1.6 1.6	1.1 .97 .79 .89	1.2 1.3 1.7 1.5	1.1 .93 .98 1.0
26 27 28 29 30 31	1.2 1.2 1.2 1.2 1.2	1.0 1.0 1.0 1.0 -90	.70 .70 .80 .80 .80	.60 .60 .60 .60 .70	.50 .50 .60	.80 .80 .70 .70 .70	1.5 1.7 1.9 2.1 2.2	3.7 3.7 3.9 3.8 3.3 2.9	1.6 1.4 1.8 1.6	1.4 1.5 1.4 1.1 1.0	1.3 1.2 1.2 1.1 1.2	.97 1.0 .98 .93 .99
TOTAL MEAN MAX MIN AC-FT	38.1 1.23 1.5 1.0 76	29.35 .98 1.2 .78 58	22.20 .72 .80 .60 44	16.30 .53 .70 .40	15.70 .56 .70 .50 31	32.70 1.05 1.7 .70 65	39.50 1.32 2.2 .90 78	105.8 3.41 5.1 1.6 210	63.6 2.12 3.1 1.4 126	37.45 1.21 1.6 .79 74	34.65 1.12 1.7 .70 69	30.02 1.00 1.7 .71 60

CAL YR 1986 TOTAL 741.60 MEAN 2.03 MAX 8.1 MIN .60 AC-FT 1470 WTR YR 1987 TOTAL 465.37 MEAN 1.27 MAX 5.1 MIN .40 AC-FT 923

09058700 FREEMAN CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°41'54", long 106°26'42", Eagle County, Hydrologic Unit 14010001, on right bank 0.8 mi upstream from mouth and 7.5 mi north of Minturn.

DRAINAGE AREA. -- 2.94 mi2.

PERIOD OF RECORD. -- October 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,335 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 12-15, and Nov. 8 to May 3. Records fair except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--23 years, 1.41 ft^3/s ; 1,020 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82 ft³/s, May 25, 1984, gage height, 2.21 ft, maximum gage height, 3.51 ft, May 18, 1973 (backwater from ice); no flow for some days some years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 25 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 15	0100	* 16	*1.88				

DISCUARCE CURIC PERT DED SECOND WATER VEAR OCTOBER 1086 TO SERTUMBER 1087

Minimum daily, 0.04 ft3/s, Sept. 24.

		DISCHARC	GE, CUBI	C FEET PER		WATER YEA San values		R 1986 TO	SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	.49 .42 .46 .50	.35 .36 .27 .21 .20	.20 .20 .20 .20	.07 .06 .05 .05	.05 .05 .05 .05	.05 .05 .05 .05	.05 .05 .05 .05	1.9 2.1 2.3 2.3 3.0	1.7 1.6 1.4 1.3	.49 .41 .36 .34	.63 .38 .31 .27 .25	.12 .10 .07 .09
6 7 8 9 10	.38 .36 .33 .33	.19 .19 .20 .21	.20 .20 .20 .20	.05 .05 .05 .05	.05 .05 .05 .05	.05 .05 .05 .05	.05 .05 .05 .08	4.9 6.5 6.8 6.9	1.3 1.3 1.6 1.5	.28 .28 .28 .26	.22 .33 .44 .36 .28	.08 .06 .07 .06
11 12 13 14 15	.36 .34 .32 .30 .27	.21 .21 .21 .21 .22	.20 .20 .20 .20	.05 .05 .05 .05	.05 .05 .05 .05	.05 .05 .05 .05	.13 .16 .20 .26	6.8 6.4 6.2 5.8 8.7	1.2 1.0 1.0 .91 .84	.28 .37 .33 .29	.30 .34 .27 .13 .12	.06 .09 .11 .24 .37
16 17 18 19 20	.25 .24 .25 .27 .32	.22 .22 .22 .22 .22	.20 .20 .20 .20	.05 .05 .05 .05	.05 .05 .05 .05	.05 .05 .05 .05	.43 .54 .62 .68	9.1 9.9 7.5 6.3 5.7	.78 .73 .69 .63	.24 .27 .29 .27 .23	.11 .10 .09 .09	.38 .40 .24 .17
21 22 23 24 25	.33 .38 .42 .27 .26	.22 .22 .22 .21 .20	.20 .20 .18 .17	.05 .05 .05 .05	.05 .05 .05 .05	.05 .05 .05 .05	.86 .94 1.1 1.2 1.3	5.5 4.2 3.5 3.4 3.0	.55 .51 .48 .47	.21 .24 .22 .20 .24	.11 .11 .22 .51	.12 .11 .07 .04
26 27 28 29 30 31	.37 .38 .38 .39 .36	.20 .20 .20 .20 .20	.14 .13 .11 .10 .09	.05 .05 .05 .05 .05	.05 .05 .05	.05 .05 .05 .05 .05	1.4 1.5 1.6 1.7 1.8	2.7 2.4 2.1 2.1 2.0 1.8	.42 .42 .39 .52 .58	.36 .60 .51 .37 .31	.33 .14 .13 .13 .13	.11 .10 .11 .11
TOTAL MEAN MAX MIN AC-FT	10.86 .35 .50 .24 22	6.62 .22 .36 .19	5.56 .18 .20 .08	1.58 .05 .07 .05 3.1	1.40 .05 .05 .05 2.8	1.55 .05 .05 .05 3.1	18.14 .60 1.8 .05 36	148.3 4.78 9.9 1.8 294	27.56 .92 1.7 .39 55	9.85 .32 .60 .20	7.65 .25 .63 .09	3.96 .13 .40 .04 7.9

CAL YR 1986 TOTAL 636.13 MEAN 1.74 MAX 18 MIN .08 AC-FT 1260 WTR YR 1987 TOTAL 243.03 MEAN .67 MAX 9.9 MIN .04 AC-FT 482

PINEY RIVER BASIN

09058800 EAST MEADOW CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°43'54", long 106°25'34", Eagle County, Hydrologic Unit 14010001, on left bank 1.4 mi upstream from mouth and 10 mi north of Minturn.

DRAINAGE AREA . -- 3.61 mi2.

PERIOD OF RECORD .-- October 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,455 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 19 to Apr. 21, and July 17 to Sept. 1. Records fair except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 23 years, 4.55 ft3/s; 3,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 81 ft³/s, June 30, 1984, gage height, 1.71 ft, but may have been higher during period of no gage height record May 11 to June 26, 1984; maximum gage height, 2.22 ft, May 12, 1970 (backwater from ice); minimum daily discharge, 0.32 ft³/s, Jan. 7, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 33 ft³/s at 1900 May 16, gage height, 1.46 ft; minimum daily, 0.42 ft³/s, Mar. 3.

		DISCHA	RGE, CUBI	C FEET PE		WATER YE EAN VALUE	EAR OCTOBE	R 1986 TC	SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	2.8 2.7 2.5 2.2 2.7	1.6 1.8 1.6 1.7	1.0 1.0 1.1 1.1	.70 .68 .66 .64	.68 .63 .60 .60	.51 .45 .42 .45	.60 .63 .66 .70	9.6 7.0 5.6 5.2 6.0	17 17 18 20 19	4.0 3.4 3.0 2.8 2.7	1.9 1.6 1.4 1.3	1.0 1.1 .80 .80
6 7 8 9 10	2.7 2.7 2.5 2.6 2.5	1.6 1.6 1.6 1.6	1.2 1.2 1.2 1.2	.60 .59 .58 .57	.60 .60 .60 .60	.51 .54 .54 .54	.80 .87 .90 .98	8.7 11 12 14 17	19 20 22 18 16	2.5 2.5 2.3 2.1 2.4	1.5 1.6 1.4 1.3	.80 .80 .76 .74 .69
11 12 13 14 15	2.6 2.9 3.7 3.5 2.3	1.5 1.5 1.5 1.5	1.2 1.2 1.2 1.1	•55 •54 •54 •54	.60 .60 .60 .60	.54 .54 .54 .54	1.1 1.2 1.2 1.3 1.4	17 17 18 21 23	15 14 12 12 12	3.1 2.5 2.1 1.9	1.1 1.1 1.1 1.2 1.0	.69 .67 .71 .84
16 17 18 19 20	2.7 2.5 2.1 2.1 2.3	1.5 1.2 1.1 .86 .89	1.1 1.1 1.0 1.0 .98	•54 •54 •54 •54	.60 .60 .60 .60	.54 .54 .54 .54	1.5 1.6 1.8 2.0 2.6	27 27 25 24 21	10 9.6 8.4 7.7 7.0	1.9 1.9 1.9 1.9	.88 .90 .98 1.0	1.4 1.3 .89 .80
21 22 23 24 25	1.9 2.2 2.0 1.6 1.6	.93 .97 1.0 1.0	.95 .90 .88 .87	•54 •54 •56 •58	.60 .60 .60 .60	.54 .54 .54 .54	2.8 3.8 8.5 16	19 17 18 16 15	6.0 5.9 5.4 5.0 4.5	1.8 1.7 1.5 1.6 2.0	1.2 1.3 1.4 1.5	.67 .60 .54 .55
26 27 28 29 30 31	2.2 1.8 2.2 1.7 1.8	1.0 1.0 1.0 1.0	.83 .80 .78 .76 .74	.62 .64 .66 .68 .70	.60 .56 	.54 .54 .54 .54 .54	10 9.8 9.5 8.8 8.7	15 12 12 12 12 15	4.3 4.1 3.8 5.0 5.1	2.4 2.9 2.3 2.0 2.6 2.2	1.2 1.1 1.0 1.1 1.1	.52 .59 .52 .54 .47
TOTAL MEAN MAX MIN AC-FT	73.5 2.37 3.7 1.6 146	39.35 1.31 1.8 .86 78	31.36 1.01 1.2 .72 62	18.42 .59 .70 .54 37	16.87 .60 .68 .56	16.34 .53 .56 .42 32	112.49 3.75 16 .60 223	479.1 15.5 27 5.2 950	342.8 11.4 22 3.8 680	71.6 2.31 4.0 1.5 142	38.06 1.23 1.9 .88 75	22.81 .76 1.4 .47 45

CAL YR 1986 TOTAL 2430.09 MEAN 6.66 MAX 49 MIN .55 AC-FT 4820 WTR YR 1987 TOTAL 1262.70 MEAN 3.46 MAX 27 MIN .42 AC-FT 2500

09059500 PINEY RIVER NEAR STATE BRIDGE, CO

LOCATION.--Lat 39°48'00", long 106°35'00", in SWdNEd sec.16, T.3 S., R.82 W., Eagle County, Hydrologic Unit 14010001, on left bank at downstream side of private bridge at Perry Olsen Ranch 1.2 mi downstream from Rock Creek, and 6.0 mi southeast of State Bridge.

DRAINAGE AREA . -- 86.2 mi².

PERIOD OF RECORD. -- May 1944 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 7,272.35 ft above National Geodetic Vertical Datum of 1929. Prior to July 29, 1944, nonrecording gage, and July 29, 1944, to Oct. 24, 1947, water-stage recorder, at datum 2.38 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 7-19, 21, 24-26, and Mar. 28 to Apr. 23. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 400 acres of hay meadows upstream and downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--43 years, 77.2 ft3/s; 55,930 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 1,300 ft³/s, May 25, 1984 (occured during a period of no gage-height record); maximum recorded discharge, 1,220 ft³/s, June 27, 1983, gage height, 5.82 ft, (from peak stage indicator), but may have been higher May 25, 1984; minimum daily, 1.9 ft³/s, Sept. 1, 18, 19, 1984

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 520 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0600	* 536	*4.88	No oth	er peak g	reater than base	discharge.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 10 ft3/s, Dec. 11.

			, , , , , , , , , , , , , , , , , , , ,		ME	EAN VALUES	3	.,,		,,,-,		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	35 37 36 41 37	33 31 30 29 29	24 20 20 20 21	15 18 19 18 20	16 15 15 15 15	12 13 13 13 15	16 16 16 18 19	227 226 176 146 142	211 241 237 248 261	80 70 65 59 55	41 31 26 24 22	16 15 15 14 15
6 7 8 9 10	36 37 38 38 38	30 29 26 27 26	22 19 19 16 11	19 18 17 17 15	14 14 15 15	17 18 19 21 19	19 20 21 24 23	159 198 247 261 286	246 261 299 309 252	49 44 42 40 37	20 23 26 23 21	14 14 14 14 13
11 12 13 14 15	38 35 30 30 29	28 27 26 26 27	10 12 14 16 16	17 18 18 17 16	16 16 17 17 15	17 16 17 19 18	23 25 22 20 23	319 312 308 363 406	232 219 215 210 203	37 45 43 37 32	20 19 18 19	12 12 13 14 15
16 17 18 19 20	27 27 28 27 29	26 26 27 28 27	15 15 14 17 19	14 15 14 16 15	15 15 14 14 13	17 16 16 16 17	32 41 55 65 72	453 472 442 383 354	184 175 151 138 130	31 32 37 32 29	16 16 15 14 14	16 21 20 18 17
21 22 23 24 25	29 30 31 32 32	26 28 27 28 29	21 20 19 22 18	16 14 15 16 16	13 12 13 13 14	15 17 16 15	69 65 120 168 187	308 273 249 244 227	118 115 111 106 97	27 26 25 24 22	13 14 15 20 27	16 15 15 14 14
26 27 28 29 30 31	30 32 34 33 34	29 26 26 27 28	17 19 20 18 1 7 18	16 16 15 15	13 13 13	15 16 15 15 14 1 5	182 190 195 210 211	209 194 173 168 163 171	90 81 75 80 91	29 50 50 39 33 33	28 24 21 19 18 17	14 13 13 14 14
TOTAL MEAN MAX MIN AC-FT	1024 33.0 41 27 2030	832 27.7 33 26 1650	549 17•7 24 10 1090	506 16.3 20 14 1000	405 14.5 17 12 803	497 16.0 21 12 986	2167 72.2 211 16 4300	8259 266 472 142 16380	5386 180 309 75 10680	1254 40.5 80 22 2490	641 20.7 41 13 1270	444 14.8 21 12 881

CAL YR 1986 TOTAL 37127 MEAN 102 MAX 720 MIN 10 AC-FT 73640 WTR YR 1987 TOTAL 21964 MEAN 60.2 MAX 472 MIN 10 AC-FT 43570

09060550 ROCK CREEK AT CRATER, CO

LOCATION.--Lat 39°58'42", long 106°42'34", in NWiNE sec. 17, T.1 S., R.83 W., Routt County, Hydrologic Unit 14010001, on right bank 250 ft downstream from county bridge crossing, 2 miles downstream from Kayser Mutual Ditch diversion and 0.8 miles northwest of Crater, Colorado.

DRAINAGE AREA . -- 72.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7,185 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of approximately 1,025 acres upstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge recorded, 422 ft³/s, May 6, 1985, gage height, 3.97 ft, but may have been higher during period of no gage-height record May 7-14, 1985; minimum daily, 4.4 ft³/s, Sept. 13, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 227 ft³/s at 2100 Apr. 24, gage height, 3.44 ft; minimum daily, 4.4 ft³/s, Sept. 13.

		DISCHARGE,	CUBIC	FEET PER		WATER YEAR MEAN VALUE		1986 TO S	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	27 29 36 31 22	21 19 19 19 18	15 15 13 14 14	10 9.7 9.6 9.9	11 11 11 11	11 10 10 10	12 12 12 13 14	156 148 123 110 108	51 45 40 36 33	21 14 11 9.9 9.1	13 9.0 7.8 7.1 6.6	5.0 4.9 5.1 5.3
6 7 8 9 10	15 17 17 16 15	18 17 15 14 17	14 14 14 15 14	11 11 11 11	12 12 11 11	12 13 13 13 12	15 17 18 20 19	120 128 133 142 135	33 32 60 80 65	7.7 6.7 6.9 6.7	6.5 11 19 10 8.1	5.2 5.0 4.9 4.9
11 12 13 14 15	18 14 11 11	15 19 16 16 17	12 12 13 13 13	11 11 11 10 10	11 11 11 11 11	12 12 13 13	20 17 15 15 21	186 171 165 166 164	46 41 33 28 26	6.5 24 22 11 8.0	7.5 7.0 6.7 6.3 6.2	4.8 4.5 4.4 4.7 5.1
16 17 18 19 20	15 19 20 20 22	17 17 17 18 15	13 13 12 11 12	10 10 10 9.9 9.6	12 12 12 12 12	12 11 10 11	37 63 91 115 103	166 155 140 142 136	24 21 19 18 16	7.1 6.7 6.7 6.6 6.2	5.8 5.3 4.8	5.1 5.1 5.1 4.8 4.6
21 22 23 24 25	23 23 22 21 23	16 22 19 14 16	12 12 12 11	9.6 9.4 9.4 9.7 9.7	12 12 12 12 12	12 11 11 11	70 86 129 163 161	130 117 100 95 96	16 15 13 13	5.8 5.5 5.4 5.3 4.9	4.8 4.8 5.1 8.6	4.6 4.6 4.6 4.6
26 27 28 29 30 31	23 24 23 21 21 22	16 17 14 15 15	11 10 10 10 10	9.7 10 10 11 11	11 11 11 	11 11 11 11 12	147 151 158 148 146	86 80 72 68 65 60	11 10 10 11 25	5.8 8.9 27 29 13	9.2 7.5 6.2 5.7 5.6 5.2	4.6 4.6 4.6 4.6
TOTAL MEAN MAX MIN AC-FT	632 20.4 36 11 1250	508 16.9 22 14 1010	385 12.4 15 10 764	318.2 10.3 11 9.4 631	320 11.4 12 11 635	355 11.5 13 10 704	2008 66.9 163 12 3980	3863 125 186 60 7660	883 29.4 80 10 1750	332.1 10.7 29 4.9 659	233.2 7.52 19 4.8 463	144.3 4.81 5.3 4.4 286

CAL YR 1986 TOTAL 18464.2 MEAN 50.6 MAX 310 MIN 8.2 AC-FT 36620 WTR YR 1987 TOTAL 9981.7 MEAN 27.3 MAX 186 MIN 4.4 AC-FT 19800

09060550 ROCK CREEK AT CRATER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- December 1984 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: April 1986 to September 1987 (discontinued).
WATER TEMPERATURES: April 1986 to September 1987 (discontinued).

INSTRUMENTATION. -- Water-quality monitor since April 1986.

REMARKS.--Daily maximum and minimum specific-conductance data available in district office. Water-quality monitor was not operated during winter.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 187 microsiemans Aug.28, 1986; minimum, 46 microsiemans several days during May and June, 1986.
WATER TEMPERATURE: Maximum, 19.0°C July 26, 1987; minimum, 0.0°C many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum during period of operation, 178 microsiemans Aug.19, 20; minimum during period of operation, 51 microsiemans May 15.
WATER TEMPERATURES: Maximum, 19.0°C July 26; minimum, 0.0°C several days during November, March, and April.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)
OCT 15	1500	8.0	131	8.0	4.0		10.2	69	5	21	4.0
NOV 18	1020	16	132	8.1	0.5	1.4	12.2	57	0	17	3.6
JAN 21	1030	9.6	144	7.8	0.5	1.0	11.6	65	2	19	4.2
MA R 10	1430	12	136	7.7	2.0	1.5	12.1	64	3	19	3.9
APR 14 MAY	1500	16	134	7.7	0.5	1.5	11.2	65	4	19	4.3
06 20	1530 1025	96 115	65 55	7.8 7.6	6.5 7.0	4.5 3.7	9.8 9.9	33 28	0 1	10 8.3	1.9 1.7
JUN 02	1055	45	76	7.7	7.0	2.1	9.0	34	0	10	2.2
JUL 07 AUG	1050	7.0	141	7.8	10.0	0.70	8.5	66	0	20	3.9
05 SEP	1100	6.6	159	8.1	10.5	0.80	8.6	76	0	23	4.4
01	1315	4.9	165	7.8	9.0	0.40	9.5	83	4	26	4.5
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
OCT 15	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED	DIS- SOLVED (TONS PER	DIS- SOLVED (TONS PER
OCT 15 NOV 18	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)
OCT 15 NOV 18 JAN 21	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)
OCT 15 NOV 18 JAN 21 MAR 10	DIS- SOLVED (MG/L AS NA) 3.7	AD- SORP- TION RATIO 0.2	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY) 2.01
OCT 15 NOV 18 JAN 21 MAR 10 APR 14	DIS- SOLVED (MG/L AS NA) 3.7 3.4	AD- SORP- TION RATIO 0.2 0.2	SIUM, DIS- SOLVED (MG/L AS K) 1.5 1.0	LINITY LAB (MG/L AS CACO3) 64 58	DIS- SOLVED (MG/L AS SO4) 11 10	RIDE, DIS- SOLVED (MG/L AS CL) 1.1 1.0	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.10	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 93 84	DIS- SOLVED (TONS PER AC-FT) 0.13 0.14	DIS-SOLVED (TONS PER DAY) 2.01 4.28 3.10
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 06 20	DIS- SOLVED (MG/L AS NA) 3.7 3.4 4.4 3.6	AD-SORP-TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 1.5 1.0	LINITY LAB (MG/L AS CACO3) 64 58 63	DIS- SOLVED (MG/L AS SO4) 11 10 13	RIDE, DIS- SOLVED (MG/L AS CL) 1.1 1.0 0.70 0.80	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.10 0.20	DIS-SOLVED (MG/L AS SI02) 12 13 15	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 93 84 95	DIS- SOLVED (TONS PER AC-FT) 0.13 0.14 0.16	DIS- SOLVED (TONS PER DAY) 2.01 4.28 3.10 2.87
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 06 20 JUN 02	DIS- SOLVED (MG/L AS NA) 3.7 3.4 4.4 3.6 3.6 2.5	AD- SORP- TION RATIO 0.2 0.2 0.2 0.2 0.2 0.2	SIUM, DIS- SOLVED (MG/L AS K) 1.5 1.0 1.0 1.1	LINITY LAB (Mg/L AS CACO3) 64 58 63 61 61	DIS- SOLVED (MG/L AS SO4) 11 10 13 10 12 7.8	RIDE, DIS- SOLVED (MG/L AS CL) 1.1 1.0 0.70 0.80 6.4 0.60	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.10 0.10 <0.10	DIS - SOL VED (MG/L AS SI02) 12 13 15 14 14	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 93 84 95 89 97	DIS- SOLVED (TONS PER AC-FT) 0.13 0.14 0.16 0.12 0.12	DIS- SOLVED (TONS PER DAY) 2.01 4.28 3.10 2.87 3.80 14.5
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 06 20 JUN 02 JUL 07	DIS- SOLVED (MG/L AS NA) 3.7 3.4 4.4 3.6 3.6 2.5 2.2	AD- SORP- TION RATIO 0.2 0.2 0.2 0.2 0.2 0.2	SIUM, DIS- SOLVED (MG/L AS K) 1.5 1.0 1.0 1.0	LINITY LAB (Mg/L AS CACO3) 64 58 63 61 61 33 27	DIS- SOLVED (MG/L AS SO4) 11 10 13 10 12 7.8	RIDE, DIS- SOLVED (MG/L AS CL) 1.1 1.0 0.70 0.80 6.4 0.60 0.40	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.10 0.20 0.10 <0.10 <0.10	DIS- SOLVED (MG/L AS SIO2) 12 13 15 14 14 12 11	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 93 84 95 89 97 56 52	DIS- SOLVED (TONS PER AC-FT) 0.13 0.14 0.16 0.12 0.12 0.08 0.06	DIS- SOLVED (TONS PER DAY) 2.01 4.28 3.10 2.87 3.80 14.5
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 06 20 JUN 02 JUL	DIS- SOLVED (MG/L AS NA) 3.7 3.4 4.4 3.6 2.5 2.2 2.7	AD- SORP- TION RATIO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	SIUM, DIS- SOLVED (MG/L AS K) 1.5 1.0 1.0 1.1 0.8 0.6	LINITY LAB (MG/L AS CACO3) 64 58 63 61 61 33 27 37	DIS- SOLVED (MG/L AS SO4) 11 10 13 10 12 7.8 11 <5.0	RIDE, DIS- SOLVED (MG/L AS CL) 1.1 1.0 0.70 0.80 6.4 0.60 0.40	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.10 0.10 <0.10 <0.10	DIS- SOLVED (MG/L AS SIO2) 12 13 15 14 14 12 11	SUM OF CONSTITUENTS, DIS-SOLVED (MG/L) 93 84 95 89 97 56 52	DIS- SOLVED (TONS PER AC-FT) 0.13 0.14 0.16 0.12 0.12 0.08 0.06	DIS- SOLVED (TONS PER DAY) 2.01 4.28 3.10 2.87 3.80 14.5 14.6

09060550 ROCK CREEK AT CRATER, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
OCT 15			<0.10		<0.01				<0.20	
NOV 18	1		<0.10		<0.01				0.20	
JAN 21			0.20		<0.01				<0.20	
MAR 10			0.10		<0.01				2.8	
APR 14	7		0.10		<0.01				0.40	
MAY 06 20 JUN	<1 	<0.01	<0.10 <0.10	<0.10	0.02 0.02	0.01	0.28 0.48	0.69	0.30 0.50	0.70
02	9		<0.10		<0.01				0.70	
JUL 07			<0.10		0.02		0.58		0.60	
AUG 05	<1	<0.01	<0.10	0.12	<0.01	<0.01			0.30	<0.20
SEP 01			<0.10		<0.01				<0.20	
DATE	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOL VED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	STRON - TIUM, DIS- SOLVED (UG/L AS SR)
OCT	GEN, TOTAL (MG/L	PHOROUS TOTAL (MG/L AS P)	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOROUS ORTHO, DIS- SOLVED (MG/L	ORGANIĆ TOTAL (MG/L	ORGANIĆ DIS- SOLVED (MG/L	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	TIUM, DIS- SOLVED (UG/L AS SR)
OCT 15 NOV	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P)	PHOROUS DIS- SOL VED (MG/L	PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOROUS ORTHO, DIS- SOLVED (MG/L	ORGANIĆ TOTAL (MG/L AS C)	ORGANIĆ DIS- SOLVED (MG/L AS C)	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L AS FE)	TIUM, DIS- SOLVED (UG/L
OCT	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P) 0.02	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ TOTAL (MG/L	ORGANIĆ DIS- SOLVED (MG/L	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	TIUM, DIS- SOLVED (UG/L AS SR)
OCT 15 NOV 18 JAN	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P)	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.02	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ TOTAL (MG/L AS C)	ORGANIĆ DIS- SOLVED (MG/L AS C)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	TIUM, DIS- SOLVED (UG/L AS SR)
OCT 15 NOV 18 JAN 21	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P) 0.02 0.02	PHOROUS DIS- SOL VED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.02 0.01	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ TOTAL (MG/L AS C)	ORGANIĆ DIS- SOLVED (MG/L AS C)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE) 130 160	TIUM, DIS- SOLVED (UG/L AS SR)
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 066 20	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P) 0.02 0.02 0.03	PHOROUS DIS- SOL VED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.02 0.01 0.02	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ TOTAL (MG/L AS C)	ORGANIĆ DIS- SOLVED (MG/L AS C)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE) 130 160 170	TIUM, DIS- SOLVED (UG/L AS SR)
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 06 20 JUN 02	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P) 0.02 0.03 0.03 0.03	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL, (MG/L AS P) 0.02 0.01 0.02 0.03 0.02	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ TOTAL (MG/L AS C) 2.7 2.8 6.5	ORGANIĆ DIS- SOLVED (MG/L AS C) 3.0 2.7 4.8	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE) 130 160 170 160 150 200	TIUM, DIS- SOLVED (UG/L AS SR) 110 62
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 06 20 JUN 02 JUL 07	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P) 0.02 0.02 0.03 0.03 0.03	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.02 0.01 0.02 0.03 0.02	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ TOTAL (MG/L AS C) 2.7 2.8 6.5	ORGANIĆ DIS- SOLVED (MG/L AS C) 3.0 2.7 4.8	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE) 130 160 170 160 150 200 160	TIUM, DIS- SOLVED (UG/L AS SR) 110 62
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 06 20 JUN 02 JUL	GEN, TOTAL (MG/L AS N)	PHOROUS TOTAL (MG/L AS P) 0.02 0.03 0.03 0.03 0.03	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.02 0.01 0.02 0.03 0.02 0.01 0.01	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ TOTAL (MG/L AS C) 2.7 2.8 6.5	ORGANIĆ DIS- SOLVED (MG/L AS C) 3.0 2.7 4.8	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE) 130 160 170 160 200 160	TIUM, DIS- SOLVED (UG/L AS SR) 110 62

09060550 ROCK CREEK AT CRATER, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME (1	RABLE TOT JG/L (UC	TAL SOL G/L (UC	S- REC VED ERA	CAL BARI COV- DIS ABLE SOLV	LI UM, TO E- RE VED ER	TAL TOT COV- REC ABLE ERA G/L (UC	COV- DI ABLE SOL G/L (UC	S- REC VED ERA	JM, CF CAL MI COV- DI ABLE SC G/L (U	HRO- LUM, IS- DLVED JG/L G CR)
MAY 06	1530	300	<1	<1	100	38 <	10	<1	<1	<10	<10
AUG 05	1100	30	1	<1	200	62 <	10	< 1	<1	<10	30
DATE MAY 06 AUG 05	COBALT TOTAL RECOV ERABLI (UG/L AS CO	TOTAL RECOV- E ERABLE (UG/L) AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) 1.8	MERCURY DIS- SOLVET (UG/L AS HG) 0.2	2
DATE	MOLYB- DENUM TOTAL RECOV- ERABLE (UG/L AS MO	MOLYB- DENUM, DIS- SOLVED (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE - NIUM, DIS - SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVEI (UG/L AS ZN)	
MAY 06 AUG		1 <1	1	<1	<1	<1	<1	<1.0	20	13	3
05	<	1 <5	<1	2	<1	<1	<1	<1.0	<10	5	5

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV					
18 APR	1020	16	12	0.51	46
14	1500	16	15	0.65	62
15	1025	18	5	0.24	85
MA Y			_		
06	1530	96 120	9 17	2.3 5.5	66 66
21 JUN	0935	120	1.7	3.3	00
02	1055	45	9	1.1	
03	0905	42	9 6	0.68	57
JUL					
07	1050	7.0	4	0.08	68
08	1510	6.9	24	0.45	
23 AUG	0920	5.4	10	0.15	56
05	1100	6.6	3	0.05	
SEP	,,,,,,		,	0.00	
01	1315	4.9	3	0.04	38
02	1520	4.9	4	0.05	15

09060550 ROCK CREEK AT CRATER, CO--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					-		-					
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	136	121					146	67	80	108	136	171
2	133	127					144	67	82	120	149	171
3	119	125					140	72	83	129	155	171
4	121	128					138	75	86	132	159	170
5	130	131					138	75	88	135	163	168
6	135	133					136	72	89	136	165	168
7	129	130					131	67	89	144	151	170
8	123	138					127	65	79	147	129	170
9	125	144					125	63	74	147	150	170
10	127	137					135	63	78	151	158	171
11	125	136				137	149	60	83	151	161	172
12	137	130				136	136	61	87	119	163	173
13	143	134				136	138	61	90	110	165	173
14	141	136				137	133	58	94	129	166	168
15	141	132				139	121	57	97	141	168	167
16	139	131				138	103	57	98	147	169	167
17	133	132				138	90	58	102	150	169	167
18	130					138	81	59	106	150	173	168
19	128					137	79	60	109	153	176	170
20	125					136	78	61	111	157	177	171
21	122					140	90	62	112	160	175	171
22	125					140	87	63	115	162	173	172
23	135					139	77	65	118	164	170	172
24	136					143	70	67	120	167	155	172
25	132					143	67	69	122	170	146	173
26	134					144	69	70	126	163	151	172
27	130					143	70	72	128	148	158	172
28	130					144	68	73	129	119	163	168
29	129					144	68	74	126	119	164	168
30	126					145	68	74	107	136	165	168
31	121					145		77		132	169	
MEAN	130						107	65.9	100	142	161	170

09060550 ROCK CREEK AT CRATER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MAX	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN
OCTOBER	₹	NOVEMBE	R	DECEMB	ER	JANUA	RY	FEBRUA	RY	MA R	CH	
1 2 3 4 5	7.5 8.5 6.6 5.8 7.1	3.4 5.2 5.1 3.7 3.0	3.3 2.7 2.8 2.2 2.1	1.2 .6 .3 .3								
6 7 8 9	7.9 8.6 7.5 8.4 7.5	3.6 4.7 4.4 4.4	2.3 .8 .2 .2	.2	 	 	 	 	 	 	 	
11 12 13 14 15	6.8 4.6 6.5 7.0 7.2	3.2 2.3 2.1 2.1 2.3	.2 .5 .3 .5	.1 .0 .0 .0	 		 				.9 2.3 2.2 1.7 1.4	.0 .4 .1 .4
16 17 18 19 20	7.2 5.0 5.7 5.8 6.3	2.4 1.6 2.4 3.7 3.9	1.4 1.4 	.5 .9 	 	 	 	 	 	 	1.5 1.4 2.0 2.5 1.4	.5 .3 .6
21 22 23 24 25	5.2 3.5 4.3 4.8 5.3	2.1 1.8 1.8 1.5 2.8				 	 	 	 		.3 2.2 2.0 .5	.0 .1 .0 .0
26 27 28 29 30 31	4.4 4.2 4.2 4.2 4.8 3.7	1.4 1.4 1.6 1.6 2.6					 				1.1 1.1 .4 .4 .4	.0
MONTH	8.6	1.4										
	APRIL		MAY		JUNE		JULY		AUGUS	T	SEPTEM	BER
1 2 3 4 5	2.0 2.1 2.3 2.3 3.1	.0 .0 .0 .2	7.4 4.6 4.4 6.3 7.3	3.7 2.4 2.8 2.6 3.0	14.0 13.5 13.9 14.3 14.8	7.7 7.1 7.1 7.2 8.8	14.6 16.7 16.4 16.1 15.6	10.0 10.3 9.6 9.6 9.7	18.1 18.5 16.9 17.7 16.4	12.6 11.9 12.1 10.2	15.2 12.7 14.2 12.3 13.5	9.2 9.7 9.0 9.9 8.5
6 7 8 9 10	4.4 3.3 3.7 2.5 3.4	.0 .0 .1 .2	9.9 10.2 9.9 8.2 8.9	3.0 3.0 3.7 3.8 3.8	15.1 14.4 13.4 12.2 12.9	10.2 10.1 10.5 9.9 8.7	16.2 14.4 14.2 15.9 13.7	9.3 9.8 9.8 9.5	14.9 16.6 16.2 16.5 14.9	11.2 12.2 11.8 11.1	12.1 11.5 12.4 13.1 12.7	7.6 7.9 7.4 8.4 7.7
11 12 13 14 15	1.9 1.5 2.4 3.3 5.7	.0 .0 .0 .0	9.1 9.1 8.5 10.8 12.3	5.7 4.1 4.3 4.5 5.4	13.7 15.1 15.9 16.6 15.6	8.2 9.3 9.2 10.5 10.7	11.7 12.9 14.4 16.1 17.1	9.8 9.9 8.4 9.5	16.4 15.5 14.9 14.1 15.6	10.5 10.7 10.4 10.8 10.1	12.1 12.0 11.0 12.3 11.6	7.3 7.4 7.7 7.9 8.4
16 17 18 19 20	4.5 3.9 3.8 4.6 2.1	.4 .2 .2 .5	12.0 11.2 10.2 10.1 9.2	6.7 7.1 6.5 5.5 7.1	15.9 15.6 15.7 15.5 15.5	10.8 9.3 9.5 9.1 9.5	17.1 13.1 15.7 16.4 15.9	9.9 10.9 9.3 9.5 8.9	14.9 15.3 15.6 15.7 13.6	9.8 9.2 8.8 8.8 9.5	11.4 11.7 11.6 11.4 11.8	8.2 8.1 5.9 5.3
21 22 23 24 25	4.5 4.8 4.8 6.8 6.6	.0 .0 .4 .8	8.9 10.9 12.0 9.6 9.9	5.6 5.3 6.9 7.4 5.5	14.5 15.6 14.9 15.9	9.6 9.6 9.9 9.9	17.3 17.5 17.7 17.9	10.3 11.1 10.5 9.9 12.0	14.3 13.2 13.7 12.6 13.1	11.1 11.1 10.9 11.6 11.1	11.6 11.7 11.8 12.1 11.6	6.2 6.0 6.7 7.6
26 27 28 29 30 31	5.9 7.7 7.4 7.0 7.2	1.3 1.6 2.1 1.7 2.0	9.5 8.9 10.7 9.5 9.8 12.6	6.1 4.3 4.3 5.6 5.9	16.6 15.7 13.4 12.7 12.6	10.2 10.3 10.0 11.2 10.2	18.9 18.2 17.8 18.1 18.8 17.9	12.5 12.3 13.4 12.5 12.9	13.3 14.3 11.6 14.6 14.5 15.0	9.7 8.7 8.4 8.2 8.4 8.5	12.4 11.6 10.5 10.4 10.7	7.3 8.2 5.7 5.1 5.6
MONTH	7.7	.0	12.6	2.4	16.6	7.1	18.9	8.4	18.5	8.2	15.2	5.1

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

ROCK CREEK BASIN

09060770 ROCK CREEK AT McCOY, CO

LOCATION.--Lat 39°54'44", long 106°43'30", in SELNEL sec.6, T.2 S., R.83 W., Eagle County, Hydrologic Unit 14010001, on right bank 1,900 ft downstream from bridge on State Highway 131 and 0.25 mi south of

DRAINAGE AREA. -- 198 mi2.

PERIOD OF RECORD. -- October 1982 to September 1983 (measurements only), October 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,660 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 10 to Feb. 3, 5-10, 12, 16, 18-24, 27, 28, and March 1-7. Recorgood except for periods of estimated daily discharges, which are fair. Diversions for irrigation of approximately 5,000 acres upstream from station. Several observations of specific conductance and water temperature were obtained and published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,760 ft³/s, May 16, 1984, gage height, 4.74 ft, (outside highwater mark); minimum daily, 7.4 ft³/s, July 24, 25, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 550 ft³/s at 0400 April 19, gage height, 2.58 ft; minimum daily, 7.4 ft³/s, July 24, 25, 1987.

		DISCHARC	GE, CUBIC	FEET PER	SECOND,	WATER YEAR EAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	AP R	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	54 54 61 63 55	51 52 51 48 48	37 45 42 38 44	25 25 25 27 27	28 29 29 28 29	27 27 26 26 27	34 35 40 45 53	322 298 254 209 199	78 66 62 58 53	42 34 26 24 21	29 22 17 14 11	11 12 14 15 16
6 7 8 9 10	48 49 47 45 44	51 48 41 46 45	38 38 38 38 35	28 28 28 28 27	30 30 30 30 30	29 31 34 42 38	62 73 92 104 88	211 226 238 247 235	50 47 68 111 102	18 17 16 16 15	12 20 30 21 18	14 13 13 13
11 12 13 14 15	52 48 41 43 42	50 49 46 46 48	34 35 38 38 39	27 27 27 26 25	27 27 27 28 28	39 34 35 36 41	92 69 62 58 99	297 277 271 253 238	69 60 49 41 38	13 30 39 25 19	17 15 16 16 17	11 11 12 14 15
16 17 18 19 20	41 45 45 44 46	46 45 44 51 42	39 35 34 35 34	25 25 25 26 26	28 28 29 29 28	38 34 34 36 38	196 293 323 388 314	226 208 190 208 202	34 30 27 26 24	16 14 15 15	16 14 13 12 12	15 16 16 17 18
21 22 23 24 25	51 56 57 55 56	49 48 37 43 44	34 34 31 30 30	25 25 25 25 26	29 29 28 28 27	40 36 34 34 34	158 189 250 324 348	196 181 147 144 152	23 21 20 20 18	12 11 9.2 7.4 7.4	12 13 14 19 24	16 16 16 15
26 27 28 29 30 31	54 52 51 50 50	42 40 44 45 39	29 27 26 27 26 26	26 26 27 27 28 28	26 27 26 	33 31 34 33 37 36	342 326 353 338 322	136 132 114 106 102 96	17 17 19 24 43	8.8 16 31 34 28 30	22 18 16 15 15 13	15 16 14 13
TOTAL MEAN MAX MIN AC-FT	1550 50.0 63 41 3070	1379 46.0 52 37 2740	1074 34.6 45 26 2130	815 26.3 28 25 1620	792 28.3 30 26 1570	1054 34.0 42 26 2090	5470 182 388 34 10850	6315 204 322 96 12530	1315 43.8 111 17 2610	622.8 20.1 42 7.4 1240	523 16.9 30 11 1040	427 14.2 18 11 847

CAL YR 1986 TOTAL 42198.0 MEAN 116 MAX 802 MIN 24 WTR YR 1987 TOTAL 21336.8 MEAN 58.5 MAX 388 MIN 7.4 AC-FT 42320

09060770 ROCK CREEK AT MCCOY, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- December 1984 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NON CARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)
OCT 15 NOV	1520	43	390	8.8	7.5		11.8	200	34	56	14
18	1400	42	339	8.8	3.0	6.1	10.8	160	12	45	11
JAN 21	1430	25	362	8.8	0.0	2.1	12.2	180	25	51	12
MAR 10	1100	39	316	8.3	1.5	4.0	12.8	150	23	43	11
APR 14	1030	43	382	8.0	0.0	2.5	11.4	180	28	50	13
MAY 07 20	1020 1 245	235 210	206 195	7.7 8.8	5.5 9.5	6.2 12	9.8 8.9	100 88	17 4	32 25	6.0 6.1
JUN 02	1345	65	220	8.1	12.0	3.4	8.7	110	5	32	7.8
JUL 07	1350	17	350	8.7	17.5	0.80	8.0	180	15	49	13
AUG 05	1400	11	360	8.6	18.5	0.90	8.4	180	17	48	15
SEP 01	1345	11	412	8.4	13.5	0.60	9.6	180	16	49	14
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
ост 15	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED	DIS- SOLVED (TONS PER	DIS- SOLVED (TONS PER
OCT 15 NOV 18	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)
OCT 15 NOV 18 JAN 21	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)
OCT 15 NOV 18 JAN 21 MAR 10	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K) 3.0 2.4	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)
OCT 15 NOV 18 JAN 21 MAR 10 APR 14	DIS- SOLVED (MG/L AS NA) 10 9.0	AD- SORP- TION RATIO 0.3 0.3	SIUM, DIS- SOLVED (MG/L AS K) 3.0 2.4 3.3	LINITY LAB (MG/L AS CACO3) 164 146	DIS- SOLVED (MG/L AS SO4) 51 41	RIDE, DIS- SOLVED (MG/L AS CL) 2.7 2.0 3.3	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 250 212 228	DIS- SOLVED (TONS PER AC-FT) 0.34 0.30	DIS- SOLVED (TONS PER DAY) 29.1 25.1
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 07 20	DIS- SOLVED (Mg/L AS NA) 10 9.0 11 8.8	AD- SORP- TION RATIO 0.3 0.3	SIUM, DIS- SOLVED (MG/L AS K) 3.0 2.4 3.3	LINITY LAB (MG/L AS CACO3) 164 146 152	DIS- SOLVED (MG/L AS SO4) 51 41 39 37	RIDE, DIS- SOLVED (MG/L AS CL) 2.7 2.0 3.3	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20	DIS- SOLVED (MG/L AS SIO2) 14 14 17	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 250 212 228 201	DIS- SOLVED (TONS PER AC-FT) 0.34 0.30 0.31	DIS- SOLVED (TONS PER DAY) 29.1 25.1 15.6 20.9
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 07 20 JUN 02	DIS- SOLVED (MG/L AS NA) 10 9.0 11 8.8 11	AD- SORP- TION RATIO 0.3 0.4 0.3 0.4	SIUM, DIS- SOLVED (MG/L AS K) 3.0 2.4 3.3 5.3 4.6	LINITY LAB (MG/L AS CACO3) 164 146 152 130 150 88	DIS- SOLVED (MG/L AS SO4) 51 41 39 37 41 21	RIDE, DIS- SOLVED (MG/L AS CL) 2.7 2.0 3.3 3.5	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 0.20 0.20	DIS- SOLVED (MG/L AS SIO2) 14 14 17 14 14	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 250 212 228 201 227	DIS- SOLVED (TONS PER AC-FT) 0.34 0.30 0.31 0.27 0.31	DIS- SOLVED (TONS PER DAY) 29.1 25.1 15.6 20.9 26.3
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 07 JUN 02 JUL 07	DIS- SOLVED (MG/L AS NA) 10 9.0 11 8.8 11 4.6 4.8	AD- SORP- TION RATIO 0.3 0.4 0.3 0.4 0.2 0.2	SIUM, DIS- SOLVED (MG/L AS K) 3.0 2.4 3.3 5.3 4.6	LINITY LAB (MG/L AS CACO3) 164 146 152 130 150 88 84	DIS- SOLVED (MG/L AS SO4) 51 41 39 37 41 21	RIDE, DIS- SOLVED (MG/L AS CL) 2.7 2.0 3.3 3.3 3.5	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 0.20 0.20 0.10 <0.10	DIS- SOLVED (MG/L AS SIO2) 14 14 17 14 14 12	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 250 212 228 201 227 132 120	DIS- SOLVED (TONS PER AC-FT) 0.34 0.30 0.31 0.27 0.31 0.18 0.17	DIS- SOLVED (TONS PER DAY) 29.1 25.1 15.6 20.9 26.3 85.0 71.4
OCT 15 NOV 18 JAN 21 MAR 10 APR 14 MAY 07 20 JUN 02 JUL	DIS- SOLVED (Mg/L AS NA) 10 9.0 11 8.8 11 4.6 4.8 6.9	AD- SORP- TION RATIO 0.3 0.4 0.3 0.4 0.2 0.2 0.3	SIUM, DIS- SOLVED (MG/L AS K) 3.0 2.4 3.3 5.3 4.6 1.5 1.4	LINITY LAB (MG/L AS CACO3) 164 146 152 130 150 88 84	DIS- SOLVED (MG/L AS SO4) 51 41 39 37 41 21 19	RIDE, DIS- SOLVED (MG/L AS CL) 2.7 2.0 3.3 3.5 1.9 1.1	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 0.20 0.20 0.10 <0.10	DIS- SOLVED (MG/L AS SIO2) 14 14 17 14 12 12	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 250 212 228 201 227 132 120 148	DIS- SOLVED (TONS PER AC-FT) 0.34 0.30 0.31 0.27 0.31 0.18 0.17	DIS- SOLVED (TONS PER DAY) 29.1 25.1 15.6 20.9 26.3 85.0 71.4 28.7

09060770 ROCK CREEK AT MCCOY, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	RESI TOTA AT 1 DEG. SUS PEND (MG	L 05 NI C, - S ED (ITRO- GEN, TRITE DIS- OLVED MG/L S N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
OCT 15				<0.10		<0.01				0.30	
NOV 18	1	3		<0.10		<0.01				0.30	
JAN 21				0.40		0.04		0.16		0.20	
MAR 10				0.20		0.02		2.9		2.9	
APR 14	1	4		0.20		0.02		0.48		0.50	
MAY 07 20	2	0 <	0.01	<0.10 <0.10	0.20	0.02 0.01	0.02	0.88	0.58	0.90	0.60
JUN 02		7		<0.10		<0.01				0.90	
ՄԱ 07				<0.10		0.02		0.68		0.70	
AUG 05		2 <	0.01	<0.10	<0.10	<0.01	<0.01			1.1	0.70
SEP 01				<0.10		0.02				<0.20	
DATE	NIT GE TOT (MG AS	N, PH AL T /L (HOS- OROUS OTAL MG/L S P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)		BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	STRON - TIUM, DIS - SOLVED (UG/L AS SR)
OCT 15			0.02		0.01				30	27	350
NOV 18			0.01		0.01		3.6	3.6		38	
JAN 21	0	.60	0.02		0.01					41	
MAR 10	3	. 1	0.14		0.09					130	
APR 14 MAY	0	.70	0.08		0.05		7.6	6.4		130	
07 20 JUN			0.08 0.04	0.02	0.02	0.01	8.1	5 .9	10 	150 120	170
02 JUL			0.03		0.01		5.9	4.6		56	
07 AUG			0.03		<0.01					24	
05 SEP			0.02	0.02	0.01	<0.01	5.8	5.8	40	27	360
01			0.03		0.01					11	
DATE	TIME	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOT (UG	AL SOL	NIC TO: S- REG VED ERA		LI IUM, TO S- RE VED ER G/L (U	ABLE ERA G/L (UC	TAL CADM COV- DI ABLE SOL	S- REC	M, CHRO- AL MIUM, COV- DIS- BLE SOLVED (UG/L
MA Y 07	1020	850		<1	<1	<100	61 <	10	< 1	<1	<10 <10
AUG 05	1400	50		1	1	200	91 <	10	<1	<1	<10 30

09060770 ROCK CREEK AT MCCOY, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)
MAY 07	< 1	3	2	< 5	< 5	<10	40	8	0.30	0.6
AUG 05	· <1	1	1	< 5	5	10	40	21	<0.10	0.1
					-					
DATE	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE - NIUM, DIS - SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
MA Y										
07 AUG	2	<1	2	<1	<1	<1	<1	<1.0	10	120

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV					
18 APR	1400	42	23	2.6	89
14	1030	43	64	7.4	63
15 MAY	1130	56	25	3.8	80
07	1020	235	57	36	83
20	1245	210	27	15	88
21 JUN	1045	225	34	21	76
02	1345	65	9	1.6	88
03 JUL	1010	63	8	1.4	79
07	1350	17	2	0.09	
23 AUG	1030	9.5	18	0.46	51
05	1400	11	27	0.81	53
SEP	1215	1.1	4.5	0 h7	
01 02	1345 1605	11 11	16 8	0.47 0.24	52 62

09063000 EAGLE RIVER AT RED CLIFF, CO

LOCATION.--Lat 39°30'30", long 106°21'58", in $NW_{4}^{1}SW_{4}^{1}$ sec.20, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010303, on left bank at Redcliff, 0.3 mi upstream from Turkey Creek.

DRAINAGE AREA . -- 70.0 mi2.

PERIOD OF RECORD.--October 1910 to September 1925, May 1944 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 2124: Drainage area. WRD Colo. 1972: 1971.

GAGE.--Water-stage recorder. Datum of gage is 8,653.79 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Jan. 8, 1911, to Sept. 30, 1925, nonrecording gage at bridge 0.2 mi downstream at different datum. May 25, 1944, to Oct. 12, 1952, water-stage recorder at site 200 ft upstream at datum 1.46 ft, lower. Prior to May 6, 1982, at site 250 ft downstream at datum 5.00 ft, lower.

REMARKS.--Estimated daily discharges: Nov. 9-11, 13-15, Nov. 23 to Dec. 6, Dec. 8-26, 28-30, Jan. 2-5, 7-9, and Jan. 12 to May 1. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station by Columbine, Ewing, and Wurtz ditches. Transbasin diversion upstream from station from Robinson Reservoir, capacity, 2,520 acre-ft to Tenmile Creek for mining development. Small diversions for irrigation of 400 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--58 years (water years 1911-25, 1945-87), 48.4 ft³/s; 35,070 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 1,010 ft³/s, June 5, 1912, gage height, 4.0 ft, site and datum then in use, from rating curve extended above 500 ft³/s; maximum gage height recorded, 6.43 ft, May 24, 1984; minimum daily discharge, 1.0 ft³/s, Oct. 1, 5, 1917.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 280 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 12	0200		*a5.23	May 17	0100	* 251	4.53

Minimum daily discharge, 8.5 ft³/s, Jan. 16. a Backwater from ice.

		DISCHARGE	E, CUBIC	FEET PER	SECOND,	WATER YEA EAN VALUES	R OCTOBER	1986 ТО	SEPTEMBEF	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	23 23 23 24 24	17 17 19 18 19	15 15 15 15 15	11 10 10 10 9.5	9.5 9.5 9.5 9.5 9.5	10 10 11 11	10 10 11 11	120 106 90 81 77	107 111 111 115 119	58 50 44 41 38	19 23 19 17 16	13 13 13 13
6 7 8 9 10	24 24 22 22 21	18 19 19 18 18	15 15 14 14 14	9.4 9.5 9.5 9.6	9.5 9.5 9.5 9.5 9.5	12 11 11 11 10	12 12 12 13 13	81 95 105 116 130	119 118 132 130 124	37 35 34 33 30	16 18 18 16 15	14 12 12 12 12
11 12 13 14 15	21 20 19 20 19	18 18 17 17	14 14 14 13	9.5 9.5 9.5 9.0	9.5 9.5 9.5 9.5 9.0	10 10 9.5 9.5 9.5	13 12 15 21 30	149 154 163 199 219	117 111 106 101 97	29 30 29 27 25	14 14 14 14 13	12 12 12 13 13
16 17 18 19 20	19 18 18 19 20	16 16 16 16 17	13 13 12 12 12	8.5 8.5 9.0 9.5	9.0 9.0 9.0 9.0	9.5 9.5 9.5 9.5	35 45 52 57 53	225 230 221 205 194	94 87 83 79 73	24 24 25 22 21	13 12 12 11 11	14 14 14 14 13
21 22 23 24 25	20 20 18 19 19	18 17 17 17 16	12 12 11 11	10 11 11 11 10	9.0 9.0 9.0 9.0	10 10 10 10 10	50 58 68 76 85	180 168 157 149 140	71 66 63 59 58	20 20 19 18 17	12 15 17 19 18	13 13 13 12 13
26 27 28 29 30 31	18 19 18 18 19	16 16 16 16	11 11 11 11 11	9.5 9.5 9.5 9.5 9.5 9.5	9.0 9.5 9.5 	10 10 10 10 10	88 92 100 133 127	133 127 119 114 109 105	55 51 49 55 74	16 24 32 22 19 18	16 15 15 15 14 13	13 13 13 13 12
TOTAL MEAN MAX MIN AC-FT	629 20.3 24 18 1250	515 17.2 19 16 1020	400 12.9 15 11 793	299.5 9.66 11 8.5 594	260.0 9.29 9.5 9.0 516	314.5 10.1 12 9.5 624	1325 44.2 133 10 2630	4461 144 230 77 8850	2735 91.2 132 49 5420	881 28.4 58 16 1750	474 15.3 23 11 940	386 12.9 14 12 766

CAL YR 1986 TOTAL 17633.4 MEAN 48.3 MAX 273 MIN 8.5 AC-FT 34980 WTR YR 1987 TOTAL 12680.0 MEAN 34.7 MAX 230 MIN 8.5 AC-FT 25150

09063200 WEARYMAN CREEK NEAR RED CLIFF, CO

LOCATION.--Lat 39°31'14", long 106°19'06", in SW\sE\ sec.15, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank 0.4 mi upstream from mouth and 2.5 mi east of Red Cliff.

DRAINAGE AREA . - - 8.78 mi².

PERIOD OF RECORD. -- October 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,158 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 13-14, and Nov. 4 to May 12. Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--23 years, 8.87 ft3/s; 6,430 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 155 $\rm ft^3/s$, June 20, 1983, gage height, 3.61 $\rm ft$; minimum daily, 0.30 $\rm ft^3/s$, Feb. 21, 1967.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 70 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 7	2100	*49	*2.50				

Minimum Daily, 0.95 ft³/s, Feb. 26 to Mar. 2.

		DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR EAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	3.5 3.5 3.5 3.3	2.2 2.3 2.4 2.4 2.4	2.1 2.2 2.2 2.2 2.2	1.6 1.6 1.6 1.6	1.3 1.3 1.2 1.2	.95 .95 1.0 1.0	1.1 1.1 1.1 1.1	9.0 9.0 8.0 7.5 7.5	24 24 26 30 34	17 17 16 15	7.3 7.3 6.9 6.6 6.3	3.4 3.7 3.8 3.5 3.5
6 7 8 9 10	3.4 3.3 3.4 3.2 3.1	2.4 2.5 2.5 2.5 2.5	2.2 2.2 2.2 2.2 2.2	1.6 1.6 1.6 1.6	1.2 1.2 1.2 1.2 1.2	1.0 1.0 1.0 1.0	1.2 1.2 1.2 1.2	7.5 8.0 9.0 10	39 43 43 41	14 14 13 13	6.6 6.4 5.9 5.7	3.6 3.7 3.7 3.4 3.3
11 12 13 14 15	3.1 2.9 2.8 2.8	2.4 2.4 2.4 2.4 2.4	2.2 2.2 2.1 2.0 1.9	1.6 1.5 1.5 1.4	1.1 1.1 1.1 1.1	1.0 1.0 1.0 1.0	1.3 1.7 1.9 2.1 2.3	12 13 14 16 17	41 40 39 39 39	11 11 11 10 9.8	6.1 6.0 5.8 5.8 5.4	3.3 3.4 3.4 3.8 4.5
16 17 18 19 20	2.9 2.6 2.4 2.6 2.7	2.4 2.4 2.4 2.4 2.5	1.9 1.9 1.9 1.9	1.4 1.4 1.4 1.3	1.1 1.1 1.1 1.0	1.0 1.0 1.0 1.0	2.3 2.3 2.4 2.6	20 22 23 25 27	38 36 34 30 27	9.6 9.3 8.8 8.7	5.3 5.1 4.7 4.5 4.5	4.2 4.4 4.0 3.8 3.7
21 22 23 24 25	2.6 2.6 3.3 2.6 2.4	2.4 2.3 2.3 2.3 2.3	1.8 1.8 1.8 1.8	1.3 1.3 1.3 1.3	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.1	2.7 3.0 3.2 3.5 3.7	27 26 27 26 25	25 24 23 22 21	8.5 8.1 7.8 7.5 7.7	4.8 5.4 5.7 5.8 5.3	3.8 3.8 3.8 3.8 3.7
26 27 28 29 30 31	2.4 2.4 2.3 2.3 2.3	2.2 2.1 2.1 2.1 2.1	1.7 1.7 1.7 1.7 1.7	1.3 1.3 1.3 1.3 1.3	.95 .95 .95 	1.1 1.1 1.1 1.1 1.1	4.0 5.0 6.0 7.0 8.5	25 24 23 23 23 23	20 19 19 19 18	7.5 8.6 8.5 7.8 7.5	5.0 4.6 4.3 3.9 3.8 3.7	3.7 3.6 3.6 3.6
TOTAL MEAN MAX MIN AC-FT	89.0 2.87 3.5 2.3 177		60.7 1.96 2.2 1.6 120	44.5 1.44 1.6 1.3 88	30.85 1.10 1.3 .95 61	31.80 1.03 1.1 .95 63	79.4 2.65 8.5 1.1 157	547.5 17.7 27 7.5 1090	918 30.6 43 18	332.8 10.7 17 7.5 660	171.1 5.52 7.3 3.7 339	111.2 3.71 4.5 3.3 221

CAL YR 1986 TOTAL 3745.10 MEAN 10.3 MAX 93 MIN 1.1 AC-FT 7430 WTR YR 1987 TOTAL 2487.25 MEAN 6.81 MAX 43 MIN .95 AC-FT 4930

125

09063400 TURKEY CREEK NEAR RED CLIFF, CO

LOCATION.--Lat 39°31'22", long 106°20'08", in NW\u00e4SW\u00e4 sec.16, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank 400 ft downstream from Lime Creek, 1.9 mi northeast of Red Cliff, and 2.0 mi upstream from mouth.

DRAINAGE AREA. -- 23.9 mi².

PERIOD OF RECORD. -- October 1963 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,918 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 4 to May 1. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 24 years, 23.2 ft 3/s; 16,810 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 556 ft³/s, June 8, 1985, gage height, 2.87 ft, from rating curve extended above 325 ft³/s; maximum recorded gage height, 3.22 ft, June 24, 1983 (backwater from debris); minimum discharge, not determined.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 160 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 7	2330	*103	*2.24				

Minimum daily, $1.5 \text{ ft}^3/\text{s}$, Jan. 15-22.

		DISCHARG	E, CUBIC	FEET PER		WATER YEAR EAN VALUES	R OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 9.6 9.9 9.9	7.4 7.4 7.3 7.0 7.0	3.5 3.5 3.5 3.5 3.5	2.0 2.0 2.0 2.0	2.5 2.5 2.5 2.5 2.5	2.5 3.0 3.0 3.0	3.5 3.5 3.5 3.5	30 29 27 25 23	63 65 69 77 84	33 31 29 28 26	13 13 12 12 11	7.1 7.3 7.2 7.2 6.9
6 7 8 9 10	9.4 9.3 9.3 9.0 8.9	7.0 7.0 6.0 5.0 5.0	3.5 3.5 3.5 3.0 2.5	2.0 2.0 2.0 2.0	2.5 3.0 3.0 3.0	4.0 5.0 5.0 5.0	4.0 4.0 4.0 4.0	22 23 26 32 37	90 93 96 101 101	25 24 23 22 21	11 12 11 10 10	6.8 6.7 6.5 6.5
11 12 13 14 15	9.2 8.2 8.8 8.4	5.0 5.0 5.0 5.0	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.0 1.5	3.0 3.0 2.5 2.5 2.5	4.5 4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0	42 48 51 57 66	94 88 90 93 91	21 21 20 19 18	9.8 9.7 9.6 9.5	6.4 6.5 6.9 7.5
15 17 18 19 20	8.2 8.1 8.0 8.1 8.5	5.0 5.0 5.5 5.5	2.5 2.5 2.5 2.5 2.5	1.5 1.5 1.5 1.5	2.5 2.5 2.0 2.0	4.0 4.0 4.0 4.0	7.0 9.0 11 13	76 86 88 90 92	82 75 71 65 60	17 17 17 16 15	8.8 8.5 8.2 8.0 7.9	7.2 7.4 6.8 6.5 6.4
21 22 23 24 25	8.3 8.4 8.1 8.2 8.0	5.5 5.5 4.5 4.0 4.0	2.5 2.5 2.5 2.5 2.5	1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.0	3.5 3.5 3.5 3.5 3.5	11 12 14 15	88 79 74 72 69	57 53 49 46 43	15 15 14 14 14	8.3 9.1 10 9.8 9.1	6.3 6.2 6.1 6.1
26 27 28 29 30 31	7.6 7.4 7.4 7.2 7.3 7.5	4.0 4.0 4.0 4.0	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 	3.0 3.0 3.0 3.0 3.0	19 21 22 23 27	67 64 60 59 57	41 38 36 38 36	14 17 15 14 13	8.5 7.9 8.0 7.8 7.4 7.2	6.0 6.3 6.0 6.0
TOTAL MEAN MAX MIN AC-FT	264.0 8.52 10 7.2 524	161.1 5.37 7.4 4.0 320	83.0 2.68 3.5 2.0 165	59.5 1.92 2.5 1.5 118	67.5 2.41 3.0 2.0 134	117.0 3.77 5.0 2.5 232	291.5 9.72 27 3.5 578	1718 55.4 92 22 3410	2085 69.5 101 36 4140	602 19.4 33 13 1190	297.1 9.58 13 7.2 589	198.3 6.61 7.5 6.0 393

CAL YR 1986 TOTAL 9284.8 MEAN 25.4 MAX 170 MIN 2.0 AC-FT 18420 WTR YR 1987 TOTAL 5944.0 MEAN 16.3 MAX 101 MIN 1.5 AC-FT 11790

09063900 MISSOURI CREEK NEAR GOLD PARK, CO

LOCATION.--Lat 39°23'25", long 106°28'10", Eagle County, Hydrologic Unit 14010003, on left bank 50 ft downstream from road culvert, 0.6 mi upstream from Fancy Creek, 2.2 mi southwest of Gold Park, and 10 mi southwest of Red Cliff.

DRAINAGE AREA .-- 6.42 mi2.

PERIOD OF RECORD. -- August 1972 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,980 ft, above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 1 to Apr. 24, and May 15-20. Records good except those for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Arkansas River basin through Homestake tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--15 years, 8.63 ft³/s; 6,250 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 300 ft³/s, July 4, 1975, gage height, 3.19 ft, from rating curve extended above 35 ft³/s; maximum gage height, 3.83 ft, July 30, 1983; minimum daily discharge, 0.24 ft³/s, Feb. 12, 13, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 180 $\rm ft^3/s$ at 2215 June 7, gage height, 3.29 ft; minimum daily, 0.60 $\rm ft^3/s$, Feb. 20 to Mar. 3.

		DISCHA	RGE, CUBI	C FEET PE		WATER YE EAN VALUE	AR OCTOBEI	R 1986 TO	SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	6.6 6.4 6.8 7.5 6.8	3.5 3.5 3.5 3.5 3.5	2.0 2.0 2.0 2.0 2.0	1.3 1.3 1.3 1.3	.80 .80 .80 .80	.60 .60 .60 .70	.70 .70 .70 .70	9.1 6.5 4.1 3.0 2.6	15 15 15 16 16	19 15 14 12 10	9.3 7.8 6.6 5.8	3.9 3.7 3.9 3.7 3.5
6 7 8 9 10	7.2 7.4 7.4 7.0 6.8	3.5 3.0 3.0 3.0	2.0 2.0 2.0 2.0	1.1 .90 .80 .80	.80 .80 .80 .80	1.2 1.2 1.2 1.0	.80 .80 .80 .80	3.5 6.5 10 14 13	17 42 62 20 13	9.4 8.9 8.3 7.9 7.4	5.2 6.7 10 7.2 6.0	3.1 2.8 2.7 2.6 2.3
11 12 13 14 15	8.0 6.9 7.1 7.6 6.9	2.5 2.5 2.0 2.0	1.5 1.5 1.5 1.5	.90 1.0 1.0 1.0	.70 .70 .70 .70	1.0 1.0 1.0 1.0	.80 .80 .80 .80	17 20 23 34 45	11 9.4 10 10 8.7	12 15 13 11	5.3 5.1 4.7 4.3 3.7	2.2 2.3 2.2 2.7 2.9
16 17 18 19 20	6.2 5.5 5.0 4.7 4.7	2.5 2.5 2.5 2.5 2.5	1.5 1.5 1.5 1.5	.80 .70 .70 .70	.70 .70 .70 .70	.80 .80 .80 .80	1.0 1.2 1.3 1.3	40 35 30 25 20	8.0 6.6 6.1 5.4 5.0	11 12 10 8.8 8.1	3.5 3.0 2.7 2.4 2.2	3.3 3.7 3.5 3.0 2.7
21 22 23 24 25	4.5 4.6 5.4 5.2 4.8	2.5 2.5 2.0 2.0	1.5 1.5 1.5 1.5	.70 .70 .80 .90	.60 .60 .60 .60	.80 .80 .80 .70	1.3 1.5 2.0 3.5 7.2	18 16 15 15 13	4.8 4.6 10 17 16	9.0 11 9.0 7.9 7.6	2.2 3.0 6.7 10	2.5 2.3 2.1 1.9
26 27 28 29 30 31	4.7 4.3 4.7 4.7 4.5 4.2	2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5 1.5	.90 .90 .90 .90 .80	.60 .60 	.70 .70 .70 .70 .70	10 8.4 6.2 7.2 7.6	13 11 10 10 10	16 15 16 20 18	11 23 23 14 12	8.6 6.6 6.0 6.3 5.2 4.4	1.7 1.7 1.6 1.4
TOTAL MEAN MAX MIN AC-FT	184.1 5.94 8.0 4.2 365	77.5 2.58 3.5 2.0 154	51.0 1.65 2.0 1.5 101	28.40 .92 1.3 .70 56	19.70 .70 .80 .60	26.10 .84 1.2 .60 52	72.60 2.42 10 .70 144	504.3 16.3 45 2.6 1000	448.6 15.0 62 4.6 890	362.3 11.7 23 7.4 719	182.5 5.89 11 2.2 362	79.1 2.64 3.9 1.4 157

CAL YR 1986 TOTAL 6247.14 MEAN 17.1 MAX 135 MIN .61 AC-FT 12390 WTR YR 1987 TOTAL 2036.20 MEAN 5.58 MAX 62 MIN .60 AC-FT 4040

09064000 HOMESTAKE CREEK AT GOLD PARK, CO

LOCATION.--Lat 39°24'20", long 106°25'58", Eagle County, Hydrologic Unit 14010003, on left bank at Gold Park, 400 ft downstream from ford, at Gold Park Campground, 0.5 mi downstream from French Creek, and 8 mi southwest of Red Cliff.

DRAINAGE AREA. -- 36.1 mi².

PERIOD OF RECORD. -- October 1947 to September 1954, August 1972 to current year.

REVISED RECORDS. -- WRD Colo. 1973: Drainage area at former site.

GAGE.--Water-stage recorder. Elevation of gage is 9,200 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 1, 1972, water-stage recorder at site 1,500 ft upstream at datum 9,245 ft, above National Geodetic Vertical Datum of 1929 (river-profile survey).

REMARKS.--Estimated daily discharges: Oct. 13, 14, Nov. 2 to Mar. 5, Mar. 21, 28-31, Apr. 1, and Apr. 7-14.
Records good except for estimated daily discharges, which are poor. Flow regulated by Homestake Lake,
capacity, 44,360 acre-ft, since June 7, 1966. Transmountain diversion upstream from station to Arkansas
River basin through Homestake tunnel since June 6, 1967. Several observations of specific conductance and
water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--7 years (water years 1948-54), 63.4 ft³/s; 45,930 acre-ft/yr, prior to diversion through Homestake tunnel; 15 years (water years 1973-87), 30.3 ft³/s; 21,950 acre-ft/yr, subsequent to diversion through Homestake tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,080 ft³/s, June 13, 1953, gage height, 6.84 ft, site and datum then in use, from rating curve extended above 700 ft³/s; minimum not determined.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 325 ft³/s at 0100 June 8, gage height, 5.30 ft; minimum daily, 5.5 ft³/s, Feb. 26 to Mar. 3.

DISCUARGE CURIC FEFT DER SECOND. MATER VEAR OCTORER 1086 TO SERTEMBER 1087

		DISCHAF	GE, CUBI	C FEET PE	R SECOND,	WATER YE EAN VALUE	SAR OCTOBE	R 1986 TO	SEPTEMBE	к 1987		
DAY	ост	Nov	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	24 23 25 27 25	17 16 16 16 16	12 12 12 12 12	10 10 10 10 10	9.0 9.0 9.0 9.0	5.5 5.5 5.5 8.0	8.5 8.6 8.7 8.1 7.7	53 44 32 25 25	34 35 35 35 36	61 55 51 48 46	40 40 35 32 29	18 18 19 18 18
6 7 8 9 10	28 26 26 25 24	15 15 15 15 14	12 12 12 12 10	10 10 9.0 9.0	9.0 9.0 9.0 9.0	9.7 11 11 11	7.8 7.5 7.5 7.5 7.5	33 40 47 52 57	37 63 167 75 52	44 42 41 40 40	27 31 37 30 26	17 16 16 16 15
11 12 13 14 15	28 25 24 24 25	14 14 12 12 12	10 10 11 11	10 10 10 10 9.0	8.0 8.0 8.0 7.0	10 9.8 9.4 9.0 8.8	8.0 8.0 8.0 9.0	59 61 62 95 103	47 43 41 43 42	49 54 43 31 30	24 24 23 21 20	14 12 11 13 13
16 17 18 19 20	24 21 19 19 19	13 13 13 13 13	11 11 11 11 11	8.0 8.0 8.0 8.0	7.0 7.0 7.0 6.0 6.0	8.5 8.5 8.4 8.1	16 23 30 35 33	97 86 65 58 58	39 36 34 32 31	29 32 34 30 28	19 17 16 16 15	14 15 14 13 12
21 22 23 24 25	18 20 20 20 20 18	13 12 12 12 12	11 11 11 11 11	8.0 8.0 9.0 9.0	6.0 6.0 6.0 6.0	8.0 8.8 8.7 8.9	24 26 30 38 41	53 49 45 43 39	29 33 55 58 56	29 33 30 28 27	15 18 25 34 36	12 11 10 9.9 9.9
26 27 28 29 30 31	18 20 20 19 17 17	12 12 12 12 12	10 10 10 10 10	10 10 10 10 9.0 9.0	5.5 5.5 5.5 	8.7 8.3 8.0 8.0 8.0	39 41 45 47 52	38 36 33 33 31 31	56 54 55 63 63	30 61 72 44 37 35	31 26 24 24 21 19	9.5 9.7 9.5 9.2 9.2
TOTAL MEAN MAX MIN AC-FT	688 22.2 28 17 1360	405 13.5 17 12 803	341 11.0 12 10 676	288.0 9.29 10 8.0 571	208.5 7.45 9.0 5.5 414	265.4 8.56 11 5.5 526	643.4 21.4 52 7.5 1280	1583 51.1 103 25 3140	1479 49.3 167 29 2930	1254 40.5 72 27 2490	795 25.6 40 15 1580	401.9 13.4 19 9.2 797

CAL YR 1986 TOTAL 20516.9 MEAN 56.2 MAX 353 MIN 8.6 AC-FT 40700 WTR YR 1987 TOTAL 8352.2 MEAN 22.9 MAX 167 MIN 5.5 AC-FT 16570

09064500 HOMESTAKE CREEK NEAR RED CLIFF. CO

LOCATION. -- Lat 39°28'24", long 106°22'02", in NELNEL sec.6, T.7 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank at downstream side of Forest Service road bridge, 2.4 mi south of Red Cliff, and 3.0 mi upstream from mouth.

DRAINAGE AREA. -- 58.3 mi².

PERIOD OF RECORD. -- October 1910 to September 1918, May 1944 to current year. Published as "at Redcliff" October 1910 to September 1916.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 8,783 ft above National Geodetic Vertical Datum of 1929 (river-profile survey). See WSP 1713 or 1733 for history of changes prior to May 8, 1961.

REMARKS.--Estimated daily discharges: Nov. 1 to May 1. Records good except for estimated daily discharges, which are poor. Flow regulated by Homestake Lake (capacity, 44,360 acre-ft) since June 7, 1966.

Transmountain diversions upstream from station through Homestake tunnel (see elsewhere in this report) since June 6, 1967. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--30 years (water years 1911-18, 1945-66), 86.6 ft^3/s ; 62,740 acre-ft/yr, prior to diversion through Homestake tunnel: 21 years (water years 1967-87), 44.4 ft^3/s ; 32,170 acre-ft/yr, subsequent to diversion through Homestake tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 1,300 ft³/s, June 24, 1918, gage height, 6.2 ft, site and datum then in use; minimum observed, 0.60 ft³/s, Jan. 25, 1915 (discharge measurement).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 431 $\rm ft^3/s$ at 0300 June 8, gage height, 3.15 $\rm ft$; minimum daily, 2.5 $\rm ft^3/s$, Jan. 16-23, and Feb. 16-27.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES OCT NOV JUN JUI. AUG SEP DAY DE C JAN FEB MA R APR MA Y 5.0 3.0 4.0 5.0 4.0 3.5 3.5 6.0 7.0 75 24 23 23 15 42 47 4.0 7.0 4.0 3.5 9.0 1Ó 4.0 13 77 83 21 3.0 3.5 3.5 3.0 3.0 3.0 3.5 3.0 3.0 9.0 118 4.0 3.0 8.0 32 8.0 4.0 3.0 4.0 8.0 3.0 7.0 3.0 3.0 7.0 7.0 2.5 2.5 2.5 7.0 2.5 7.0 2.5 2.5 32 18 2.5 2.5 7.0 2.5 2.5 7.0 8.0 2.5 2.5 6.0 37 2.5 8.0 2.5 6.0 47 8.0 2.5 2.5 6.0 MΩ 8.0 3.0 2.5 5.0 30 5.0 6.0 73 2.5 6.0 3.0 5.0 30 6.0 3.0 2.5 5.0 6.0 5.0 6.0 3.0 4.0 27 5.0 3.0 ---4.0 5.0 3.0 ---4.0 ___ TOTAL 320.0 99.0 82.0 213.0 953.0 10.3 6.87 34.3 MEAN 33.8 19.2 3.19 2.93 31.8 94.9 68.5 45.5 18.4 17 5.0 3.5 5.0 MAX MIN 5.0 4.0 AC-FT

CAL YR 1986 TOTAL 27990.0 MEAN 76.7 MAX 415 MIN 5.0 AC-FT 55520 WTR YR 1987 TOTAL 11316.0 MEAN 31.0 MAX 228 MIN 2.5 AC-FT 22450

09065100 CROSS CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°34'05", long 106°24'43", in SW\(\frac{1}{2}\)SW\(\frac{1}{2}\) sec.36, T.5 S., R.81 W., Eagle County, Hydrologic Unit 14010003, on right bank 0.4 mi upstream from mouth and 1.5 mi southeast of Minturn.

DRAINAGE AREA . -- 33.5 mi2.

PERIOD OF RECORD. -- May 1956 to September 1963, October 1967 to current year.

REVISED RECORDS.--WDR-CO-81-2: 1980 (M).

GAGE.--Water-stage recorder. Elevation of gage is 7,992 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 18, 1956, nonrecording gage at site 0.3 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 6-16, 20-25, and Nov. 27 to Apr. 23. Records good except for estimated daily discharges, which are poor. Bolts ditch exports water upstream from station to tailings ponds and recreation lake along Eagle River. Diversion 0.2 mi upstream from station for water supply of school and for municipal supply of Minturn. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 27 years, 53.4 ft3/s; 38,690 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 754 ft³/s, June 30, 1957, gage height, 5.45 ft; maximum gage height, 6.14 ft, Aug. 6, 1983; minimum daily discharge, 0.1 ft³/s, Dec. 27-31, 1962, Jan. 6-8, 11-15, 1963.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 8	0700	*488	*4.87	No o	ther peak gr	reater than base	discharge.

Minimum daily, 2.0 ft3/s, Jan. 17 to Apr. 12.

		DISCHARGE	, IN CUB	IC FEET PE	R SECOND,	WATER CAN VALU	YEAR OCTOBE	R 1986 '	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	29 28 29 30 28	17 18 16 16 16	8.0 7.5 7.5 7.0 7.0	3.2 3.2 3.0 3.0 2.8	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	123 108 76 59 50	106 148 149 176 197	109 102 91 81 73	109 72 58 49 41	24 23 25 25 24
6 7 8 9 10	28 29 29 29 28	15 14 13 12 12	6.5 6.0 6.0 5.5	2.8 2.6 2.6 2.6	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	52 69 93 125 143	195 220 389 314 248	66 63 60 57 57	37 41 56 47 37	22 20 19 18 16
11 12 13 14 15	30 28 26 27 24	12 12 11 11 10	5.0 5.0 5.0 5.0	2.4 2.4 2.2 2.2 2.2	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	2.0 2.0 2.1 2.2 2.5	155 166 148 190 257	207 189 201 230 229	53 55 50 42 42	35 37 34 33 29	15 15 14 16 20
16 17 18 19 20	23 22 22 21 21	10 10 9.2 9.4 10	5.0 5.0 5.8 4.6	2.1 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	3.0 5.0 8.0 12 16	282 278 226 181 156	215 194 164 146 145	40 48 53 40 36	27 25 22 22 20	22 25 25 22 19
21 22 23 24 25	22 21 20 22 23	10 10 10 10 10	4.4 4.4 4.2 4.0 3.8	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	21 30 40 62 77	128 108 94 94 83	134 132 132 124 112	34 44 39 35 34	20 22 27 51 64	17 16 14 12 13
26 27 28 29 30 31	19 20 20 18 19	10 10 10 9.5 9.0	3.8 3.6 3.4 3.4 3.4	2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	82 89 103 110 105	76 68 60 64 63	115 106 109 108 119	39 82 193 87 88 76	61 43 35 35 31 27	12 13 12 11 10
TOTAL MEAN MAX MIN AC-FT	754 24.3 30 18 1500	352.1 11.7 18 9.0 698	158.4 5.11 8.0 3.4 314	72.1 2.33 3.2 2.0 143	56.0 2.00 2.0 2.0 111	62.0 2.00 2.0 2.0 123	793.8 26.5 110 2.0 1570	3839 124 282 50 7610	5253 175 389 106 10420	1969 63.5 193 34 3910	1247 40.2 109 20 2470	539 18.0 25 10 1070

CAL YR 1986 TOTAL 25330.9 MEAN 69.4 MAX 532 MIN 3.4 AC-FT 50240 WTR YR 1987 TOTAL 15095.4 MEAN 41.4 MAX 389 MIN 2.0 AC-FT 29940

09065500 GORE CREEK AT UPPER STATION, NEAR MINTURN, CO

LOCATION.--Lat 39°37'33", long 106°16'39", in NELNWL sec.18, T.5 S., R.79 W., Eagle County, Hydrologic Unit 14010003, on right bank 10 ft downstream from bridge pier on Interstate 70, 0.2 mi upstream from Black Gore Creek, 4.4 mi east of Vail, and 8.4 mi northeast of Minturn.

DRAINAGE AREA . -- 14.3 mi2.

PERIOD OF RECORD .-- October 1947 to September 1956, October 1963 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 8,600 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1947 to Sept. 30, 1956, Oct. 1, 1963 to Sept. 30, 1980, at various sites about 1200 ft upstream at different datums. See WDR-CO-80-2 for history of changes prior to Oct. 1, 1980.

REMARKS.--Estimated daily discharges: Nov. 6-10, 20-24, Dec. 10 to Apr. 7. Records good, except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 33 years, 30.3 ft 3/s; 22,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 662 ft³/s, June 24, 1983, gage height, 2.60 ft, from rating curve extended above 140 ft³/s; maximum gage height, 6.65 ft, June 18, 1951, datum then in use; minimum daily discharge, 1.2 ft³/s, Mar. 5, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s, and maximum (*).

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 16	1700	*260	*1.62	No oth	ner peak gre	eater than base d	ischarge

DISCHARGE, CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, $3.8 \text{ ft}^3/\text{s}$, Mar. 4-10.

		DISCH	ARGE, CUB	IC FEET P	ER SECOND	, WATER Y MEAN VALU	EAR OCTOBI ES	ER 1986 T	O SEPTEMB	ER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	11 12 12 12 12	10 11 10 8.9 9.3	6.8 6.5 6.5 6.2	4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0	4.0 4.0 3.9 3.8 3.8	4.0 4.0 4.0 4.3	63 56 42 34 31	116 121 119 132 128	45 41 40 36 32	22 19 16 15 14	9.3 9.3 9.0 8.7 8.4
6 7 8 9 10	12 12 12 12 12	9.0 9.0 9.0 9.0	6.2 6.2 6.5 6.0	4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0	3.8 3.8 3.8 3.8	4.6 5.0 5.7 6.2 5.8	32 45 68 90 102	128 141 155 147 130	30 28 26 25 24	14 15 15 14 13	8.0 8.0 8.0 7.7
11 12 13 14 15	12 9.8 9.8 10 12	9.3 8.5 7.7 7.4 7.7	6.0 6.0 6.0 6.0	4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	5.8 5.8 5.8 6.1 7.4	101 106 125 170 177	126 126 120 125 117	23 23 22 20 20	13 12 12 12 11	7.4 7.4 6.8 8.0 9.5
16 17 18 19 20	12 12 12 11 11	7.4 7.7 7.4 7.7 7.0	6.0 6.0 5.8 5.6 5.3	4.5 4.4 4.3 4.1	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	12 17 21 23 22	198 180 147 123 114	106 92 79 76 74	18 19 18 17 15	11 8.5 8.4 8.4	12 16 14 12 11
21 22 23 24 25	10 10 14 12 10	7.0 7.0 7.0 7.0 7.1	5.0 4.8 4.5 4.5	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	18 19 26 36 42	91 82 84 82 71	68 69 68 63 57	15 15 15 14 14	8.0 11 15 21 18	9.8 9.3 8.5 8.4 7.9
26 27 28 29 30 31	9.8 9.8 10 9.8 11	6.8 6.8 6.8 6.8	4.5 4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0 4.0	4.0 4.0 4.0	4.0 4.0 4.0 4.0 4.0	49 46 46 53 56	66 62 59 60 57 77	57 50 50 53 50	14 18 21 18 19 28	15 14 13 12 11	7.7 7.7 7.1 7.4 7.4
TOTAL MEAN MAX MIN AC-FT	349.0 11.3 14 9.8 692	241.1 8.04 11 6.8 478	172.6 5.57 6.8 4.5 342	133.3 4.30 4.5 4.0 264	112.0 4.00 4.0 4.0 222	122.5 3.95 4.0 3.8 243	564.5 18.8 56 4.0 1120	2795 90.2 198 31 5540	2943 98.1 155 50 5840	713 23.0 45 14 1410	409.3 13.2 22 8.0 812	269.7 8.99 16 6.8 535

CAL YR 1986 TOTAL 10621.9 MEAN 29.1 MAX 184 MIN 4.5 AC-FT 21070 WTR YR 1987 TOTAL 8825.0 MEAN 24.2 MAX 198 MIN 3.8 AC-FT 17500

131

09066000 BLACK GORE CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°35'47", long 106°15'52", Eagle County, Hydrologic Unit 14010003, on right bank 200 ft from U.S. Highway 6, 0.3 mi upstream from Timber Creek, 2.5 mi upstream from mouth, and 9 mi east of Minturn.

DRAINAGE AREA. -- 11.8 mi2.

PERIOD OF RECORD .-- October 1947 to September 1956, October 1963 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,150 ft above National Geodetic Vertical Datum of 1925, from topographic map. Prior to October 1963, at site 15 ft upstream, at present datum.

REMARKS.--Estimated daily discharges: Nov. 20 to Apr. 27, May 4 to June 19. Records fair except for estimated daily discharges, which are poor. No diversion upstream from station. Natural regulation by two small recreation lakes upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 33 years, 11.7 ft 3/s; 12,610 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 365 ft³/s, June 7, 1952, gage height, 5.42 ft; maximum gage height, 6.00 ft, Mar. 30, 1968 (backwater from ice); minimum daily discharge, 0.90 ft³/s, Feb. 22, 1968, Jan. 30, 1970, Feb. 4 to Mar. 6, 1979.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 4	unknown	unknown	unknown				

Minimum daily, 2.7 ft³/s, Mar. 3-10.

		DISCH	ARGE, CUB	C FEET	PER SECOND), WATER Y MEAN VALUE	EAR OCTOBI	ER 1986	ТО ЅЕРТЕМВЕІ	R 1987		
DA Y	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	6.1 5.9 6.3 6.8	5.8 5.8 6.1 5.7 6.7	5.6 5.6 5.6 5.6	4.0 4.0 4.0 4.0	3.0 3.0 3.0 3.0	3.0 3.0 2.7 2.7 2.7	3.0 3.0 3.0 3.0	37 38 30 26 29	43 52 54 64 65	15 13 12 12 11	7.4 7.4 6.5 6.0 5.6	4.2 4.2 4.1 4.1 4.1
6 7 8 9 10	6.3 6.1 5.7 5.6 5.8	6.8 5.9 7.9 8.2 6.7	5.6 5.4 5.2 5.0 5.0	4.0 4.0 4.0 4.0	3.0 3.0 3.0 3.0	2.7 2.7 2.7 2.7 2.7	3.4 3.8 4.4 5.0 5.5	32 34 37 40 45	70 74 80 68 60	11 10 9.9 9.5 9.2	5.8 7.0 6.7 5.7 5.4	4.1 4.0 4.0 3.9 3.8
11 12 13 14 15	5.9 5.3 5.9 6.3	6.5 6.3 6.0 5.8 5.6	5.0 5.0 5.0 5.0	4.0 4.0 4.0 4.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	6.0 6.0 6.0 6.0	48 52 58 80 90	52 48 44 33 33	9.1 10 9.5 8.7 8.3	5.1 5.1 5.1 4.9 4.6	3.8 3.6 3.6 4.3 5.7
16 17 18 19 20	5.9 5.4 5.2 5.3 5.7	5.1 5.1 5.2 5.5 5.6	4.8 4.5 4.4 4.2 4.0	3.9 3.7 3.5 3.5	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	6.3 6.7 7.0 7.4 7.8	110 85 70 66 60	30 28 26 24 23	8.0 8.3 7.9 7.3 7.0	4.6 4.3 4.3 4.2 4.1	5.2 5.6 4.4 4.1 4.1
21 22 23 24 25	5.4 6.7 7.0 6.5 6.1	5.6 5.6 5.6 5.6	4.0 4.0 4.0 4.0	3.5 3.5 3.5 3.5 3.5	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	8.0 8.4 8.8 9.3 9.8	58 54 50 48 45	21 20 19 19	7.3 7.1 6.4 6.2 6.1	4.6 5.7 7.4 6.5 6.3	4.0 3.9 3.6 3.5 3.4
26 27 28 29 30 31	6.0 6.1 5.9 5.9 5.9	5.6 5.6 5.6 5.6	4.0 4.0 4.0 4.0 4.0	3.5 3.5 3.4 3.3 3.2 3.0	3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	9.0 8.6 8.2 18 28	42 40 38 36 37 39	16 15 15 17 16	6.5 9.1 8.6 7.5 10 8.4	5.5 4.9 4.8 4.6 4.4	3.3 3.7 3.4 3.5 3.3
TOTAL MEAN MAX MIN AC-FT	185.5 5.98 7.0 5.2 368	178.3 5.94 8.2 5.1 354	145.1 4.68 5.6 4.0 288	115.5 3.73 4.0 3.0 229	84.0 3.00 3.0 3.0 167	90.6 2.92 3.0 2.7 180	218.4 7.28 28 3.0 433	1554 50.1 110 26 3080	1146 38.2 80 15 2270	279.9 9.03 15 6.1 555	168.8 5.45 7.4 4.1 335	120.5 4.02 5.7 3.3 239

CAL YR 1986 TOTAL 7316.3 MEAN 20.0 MAX 145 MIN 4.0 AC-FT 14510 WTR YR 1987 TOTAL 4286.6 MEAN 11.7 MAX 110 MIN 2.7 AC-FT 8500

09066100 BIGHORN CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°38'24", long 106°17'34", in N½ sec.12, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank 0.3 mi upstream from U.S. Highway 6, 0.4 mi upstream from mouth, 4.5 mi east of Vail, and 8.5 mi northeast of Minturn.

DRAINAGE AREA .-- 4.37 mi2.

PERIOD OF RECORD. -- October 1963 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,625 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 25 to Apr. 29, May 6-10. Records good, except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 24 years, 10.1 ft 3/s; 7,320 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 338 ft³/s, June 8, 1985, gage height, 4.10 ft, from rating curve extended above 82 ft³/s; maximum gage height, 4.26 ft, June 8, 1985 (backwater from debris); minimum daily discharge determined, 0.10 ft³/s, Feb. 8, 1967, Jan. 30, 1970.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 50 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0230	* 96	*3.47	June 8	2330	70	3.38

Minimum daily discharge, 1.5 ft3/s, Feb. 5-11.

		DISCHA	RGE, CUBI	C FEET P		WATER YEAR AN VALUES	R OCTOBER	1986 ТО	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	2.5 2.6 3.0 2.8 2.8	2.5 2.5 2.5 2.5 2.5	1.6 1.6 1.6 1.6	1.6 1.6 1.6 1.6	1.6 1.6 1.6 1.6	1.7 1.7 1.7 1.7	2.0 2.0 2.0 2.0 2.0	22 20 14 12 11	32 42 44 44 51	15 15 15 14 14	9.2 8.1 7.5 6.5 6.2	3.0 3.8 2.9 2.7
6 7 8 9 10	3.5 3.9 4.0 4.1	2.5 2.5 2.5 2.5 2.5	1.6 1.6 1.6 1.6	1.6 1.6 1.6 1.6	1.5 1.5 1.5 1.5	1.7 1.7 1.7 1.7	2.0 2.0 2.0 2.0 2.0	12 15 19 23 28	46 54 57 56 48	13 12 12 12 11	6.0 6.7 6.5 5.5	2.5 2.5 2.3 2.3
11 12 13 14 15	4.1 3.7 2.9 2.9 3.2	2.5 2.5 2.5 2.5 2.5	1.6 1.6 1.6 1.6	1.6 1.6 1.6 1.6	1.5 1.6 1.7 1.7	1.7 1.7 1.7 1.7	2.0 2.2 2.5 2.9 3.2	33 34 35 54 61	44 42 44 46 40	9.9 10 8.9 8.3 8.6	5.3 5.3 4.9 4.9	2.3 2.2 2.1 2.1 2.6
16 17 18 19 20	2.8 2.8 2.7 2.7 2.7	2.5 2.5 2.5 2.5 2.5	1.6 1.6 1.6 1.6	1.6 1.6 1.6 1.6	1.7 1.7 1.7 1.7	1.8 1.9 2.0 2.0	3.5 4.0 4.5 5.0	61 72 59 44 35	35 30 22 22 22	8.9 9.2 8.3 8.1 8.1	4.1 3.8 3.3 3.3	2.9 5.1 4.6 3.8 3.2
21 22 23 24 25	2.5 2.3 2.8 3.0 2.9	2.5 2.5 2.5 2.4 2.2	1.6 1.6 1.6 1.6	1.6 1.6 1.6 1.6	1.7 1.7 1.7 1.7	2.0 2.0 2.0 2.0 2.0	6.2 7.0 8.0 9.0	23 20 20 19 15	20 19 19 18 17	7.5 8.3 8.3 7.8 7.5	3.3 4.0 4.1 6.7 5.8	2.9 2.7 2.5 2.2 2.1
26 27 28 29 30 31	2.7 2.5 2.5 2.5 2.5 2.5	2.0 1.8 1.6 1.6	1.6 1.6 1.6 1.6 1.6	1.6 1.6 1.6 1.6 1.6	1.7 1.7 1.7 	2.0 2.0 2.0 2.0 2.0 2.0	12 14 16 17 18	14 13 13 13 13	17 16 15 16 15	7.5 10 11 8.9 8.1	5.2 4.3 4.0 3.6 3.3 3.0	2.0 2.1 2.0 1.9 1.8
TOTAL MEAN MAX MIN AC-FT	92.4 2.98 4.1 2.3 183	70.7 2.36 2.5 1.6 140	49.6 1.60 1.6 1.6 98	49.6 1.60 1.6 1.6 98	45.7 1.63 1.7 1.5 91	57.2 1.85 2.0 1.7 113	72.6 5.75 18 2.0 342	841 27.1 72 11 1670	993 33.1 57 15 1970	317.2 10.2 15 7.5 629	157.5 5.08 9.2 3.0 312	79.4 2.65 5.1 1.8 157

CAL YR 1986 TOTAL 4347.6 MEAN 11.9 MAX 79 MIN 1.6 AC-FT 8620 WTR YR 1987 TOTAL 2925.9 MEAN 8.02 MAX 72 MIN 1.5 AC-FT 5800

09066150 PITKIN CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°38'37", long 106°18'07", in SWdSWd sec.1, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank 100 ft downstream from Pitkin ditch headgate, 1,000 ft upstream from U.S. Highway 6, 1,200 ft upstream from mouth, 4.0 mi east of Vail, and 8 mi northeast of Minturn.

DRAINAGE AREA. -- 5.39 mi².

PERIOD OF RECORD.--Annual maximum and occasional low-flow measurements water years 1965-66. October 1966 to current year.

REVISED RECORDS. -- WRD Colo. 1971: 1967-70.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,525 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1964, to Sept. 30, 1966, crest-stage gage at datum 0.98 ft, lower.

REMARKS.--Estimated daily discharges: Oct. 9 to Apr. 14. Records good, except for estimated daily discharges, which are poor. Diversions upstream from station by Pitkin ditch for irrigation downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--21 years, 12.2 ft3/s; 8,840 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 265 ft³/s, June 8, 1985, gage height, 2.85 ft; maximum gage height, 3.60 ft, June 21, 1983 (backwater from debris); minimum daily discharge, 0.24 ft³/s, Oct. 29 to Nov. 1, 1972.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 60 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 15	0100	49	2.48				

Minimum daily, 1.4 ft³/s, Mar. 2-10.

		DISCHA	ARGE, CUBI	C FEET PE	R SECOND,	WATER YEA	AR OCTOBE	R 1986 TO	SEPTEMB	ER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 6.9 6.9 6.9	5.0 5.0 5.0 5.0	2.0 2.0 2.0 1.9 1.8	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.4 1.4 1.4	1.5 1.5 1.5 1.5	23 21 15 12 10	30 35 36 39 39	17 16 15 14 12	6.9 6.3 5.6 5.3 5.0	3.5 3.4 3.3 3.3
6 7 8 9 10	7.6 8.3 8.3 8.0 8.0	5.0 5.0 5.0 4.8	1.7 1.6 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	1.5 1.5 1.5 1.5	10 14 22 29 32	37 39 41 39 36	11 11 10 9.8 9.7	4.8 5.4 5.3 4.8 4.7	3.1 2.9 2.9 2.8 2.6
11 12 13 14 15	8.0 6.8 5.0 5.0	4.6 4.3 4.0 3.8 3.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.7	37 35 36 44 45	35 35 36 37 36	9.0 9.5 8.5 8.0 7.7	4.4 4.3 4.2 4.1 3.9	2.6 2.5 2.5 2.9 4.0
16 17 18 19 20	5.2 5.6 6.0 6.0	3.3 3.1 3.0 2.8 2.6	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	2.3 3.5 4.8 6.7 7.7	45 46 42 38 35	34 32 28 26 26	7.6 7.8 7.5 7.1 6.9	3.8 3.6 3.4 3.2 3.1	4.5 6.0 5.1 4.4 4.0
21 22 23 24 25	6.0 6.0 6.0 7.0 6.6	2.5 2.3 2.2 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	6.7 6.4 9.3 14	28 26 25 24 20	24 24 23 22 21	6.7 7.0 6.6 6.3 6.0	3.1 3.5 4.4 5.6 5.3	3.8 3.5 3.3 3.2 3.1
26 27 28 29 30 31	6.0 5.6 5.2 5.0 5.0	2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5	17 19 18 21 22	18 16 15 14 14	20 18 16 18 18	5.9 9.1 9.4 7.3 6.9 7.0	4.8 4.3 4.2 4.0 3.8 3.6	3.1 3.2 3.1 2.9 2.9
TOTAL MEAN MAX MIN AC-FT	196.7 6.35 8.3 5.0 390	105.8 3.53 5.0 2.0 210	49.0 1.58 2.0 1.5 97	46.5 1.50 1.5 1.5 92	42.0 1.50 1.5 1.5 83	45.6 1.47 1.5 1.4 90	196.1 6.54 22 1.5 389	810 26.1 46 10 1610	900 30.0 41 16 1790	283.3 9.14 17 5.9 562	138.7 4.47 6.9 3.1 275	101.6 3.39 6.0 2.5 202

CAL YR 1986 TOTAL 4699.9 MEAN 12.9 MAX 58 MIN 1.3 AC-FT 9320 WTR YR 1987 TOTAL 2915.3 MEAN 7.99 MAX 46 MIN 1.4 AC-FT 5780

09066200 BOOTH CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°38'54", long 106°19'21", at NE4SE4 of sec.3, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on center bridge pier 100 ft upstream from U.S. Highway 6, 0.4 mi upstream from mouth, 3.0 mi northeast of Vail, and 7.0 mi northeast of Minturn.

DRAINAGE AREA. -- 6.03 mi2.

PERIOD OF RECORD. -- October 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,325 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 4, 1984, gage at site 1,000 ft upstream at different datum (gage destroyed by rock slide).

REMARKS.--Estimated daily discharges: Dec. 15 to Mar. 27, May 18 to June 3. Records good, except for estimated daily discharges, which are poor. No diversion or regulation upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--23 years, 12.6 ft³/s; 9,130 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 355 ft³/s, June 15, 1978, gage height, 4.07 ft; maximum gage height, 4.62 ft, June 18, 1983 (backwater from debris); minimum daily discharge, 0.20 ft³/s, Feb. 8, 1967, Jan. 29, 1970, Feb. 10-11, 1981.

.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 73 ft³/s at 0600 May 17, gage height 2.99 ft; minimum daily, 0.60 ft³/s, Sept. 13.

		DISCH	ARGE, CUBI	C FEET P	ER SECOND	, WATER Y MEAN VALU	EAR OCTOBER ES	1986 TC	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 4.9 5.3 5.5	5.8 5.7 5.8 5.6 5.5	3.9 3.4 3.7 3.6 3.5	1.0 1.0 1.0 1.0	.90 .90 .90 .90	.80 .80 .80 .80	1.2 1.3 1.3 1.7 1.6	34 33 28 24 22	33 39 42 50 53	22 18 18 16 15	6.9 5.8 5.1 4.5 3.7	1.7 1.6 1.4 1.4
6 7 8 9 10	6.1 6.4 6.0 5.7 5.6	5.8 5.5 5.9 4.5 3.3	3.6 3.5 3.5 3.5 3.2	1.0 1.0 1.0 1.0	.80 .80 .80 .80	.80 .80 .80 .80	1.5 1.7 1.8 1.9	21 25 29 33 36	51 51 53 53 50	14 13 12 11	3.4 4.4 4.8 3.9 3.3	1.2 1.1 1.1 .92 .83
11 12 13 14 15	5.7 5.3 5.2 5.1 4.8	5.4 5.0 4.8 4.8	3.1 3.1 3.0 2.3 2.0	1.0 1.0 1.0 1.0	.80 .80 .80 .80	.80 .80 .80 .80	1.7 1.6 1.5 1.7 2.6	41 44 42 51 55	49 48 49 49	9.3 11 9.6 8.1 7.6	2.9 2.5 2.3 2.0	.73 .76 .60 .97
16 17 18 19 20	4.6 4.4 4.4 4.5 4.7	4.6 4.6 4.7 4.9 5.6	2.0 2.0 2.0 2.0 2.0	1.0 1.0 1.0 1.0	.80 .80 .80 .80	.80 .80 .80 .80	5.8 9.5 14 15	55 58 54 52 48	45 44 39 38 37	7.2 7.2 8.0 6.5 6.0	1.9 1.7 1.5 1.2	2.2 4.4 3.7 2.8 2.3
21 22 23 24 25	4.4 4.4 5.4 5.2 4.9	5.8 5.5 5.6 4.9	2.0 2.0 1.5 1.0	1.0 1.0 1.0 1.0	.80 .80 .80 .80	.80 .80 .80 .80	12 13 19 25 27	45 42 40 37 35	34 32 31 29 27	5.7 6.6 5.7 5.2 4.6	1.4 2.2 3.8 9.1 7.7	1.8 1.7 1.3 1.1
26 27 28 29 30 31	4.8 5.3 5.5 5.4 5.7 5.9	4.6 4.4 4.3 4.1 4.1	1.0 1.0 1.0 1.0 1.0	.90 .90 .90 .90 .90	.80 .80 .80	.80 .80 .80 1.0 1.1	27 31 29 32 37	32 30 28 27 25 28	25 22 20 22 23	4.7 11 13 7.8 6.8 6.6	6.5 5.0 4.2 3.7 2.9 2.1	1.2 1.3 1.2 1.1
TOTAL MEAN MAX MIN AC-FT	161.2 5.20 6.4 4.4 320	151.4 5.05 5.9 3.3 300	72.4 2.34 3.9 1.0 144	30.40 .98 1.0 .90	22.90 .82 .90 .80 45	25.80 .83 1.3 .80 51	336.2 11.2 37 1.2 667	1154 37.2 58 21 2290	1187 39.6 53 20 2350	307.2 9.91 22 4.6 609	113.8 3.67 9.1 1.1 226	45.81 1.53 4.4 .60 91

CAL YR 1986 TOTAL 5216.90 MEAN 14.3 MAX 86 MIN 1.0 AC-FT 10350 WTR YR 1987 TOTAL 3608.11 MEAN 9.89 MAX 58 MIN .60 AC-FT 7160

09066300 MIDDLE CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°38'45", long 106°22'54", in sec.6, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank 200 ft upstream from Interstate Highway 70, 0.2 mi upstream from mouth, and 5.0 mi northeast of Minturn.

DRAINAGE AREA. -- 5.97 mi2.

PERIOD OF RECORD. -- October 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,200 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1977 at site 700 ft upstream, at different datum.

REMARKS.--Estimated daily discharges: Oct. 1-7, Nov. 15-19, 21-23, and Dec. 2 to Mar. 20. Records good except for estimated daily discharges, which are poor. No diversion or regulation upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 23 years, 6.22 ft 3/s; 4,510 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 116 ft³/s, June 20, 1974, gage height, 2.65 ft, datum then in use; maximum gage height, 3.28 ft, June 25, 1983, backwater from debris; no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 38 ft 3 /s at 2200 June 8, gage height, 2.33 ft; minimum daily, 0.37 ft 3 /s, Mar. 3-13.

		DISCH	ARGE, CUB	IC FEET	PER SECOND), WATER YEAR IEAN VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	2.0 2.0 2.0 2.0	1.9 1.8 1.9 1.8 2.1	1.1 1.0 1.0 .98 .96	.50 .48 .47 .46	.40 .40 .40 .40	.40 .40 .37 .37 .37	.60 .59 .58 .62	7.8 7.7 6.7 6.1 5.8	17 21 22 23 24	8.5 7.5 6.9 6.5 6.1	2.9 2.3 1.9 1.7	.80 .77 .71 .75
6 7 8 9 10	2.0 2.0 2.0 2.2 2.3	1.5 1.6 1.4 1.3 1.2	.94 .92 .90 .88 .86	.44 .43 .42 .41	.40 .40 .40 .40	.37 .37 .37 .37 .37	.60 .60 .60 .62	6.0 6.7 7.8 8.9	24 26 32 32 29	5.8 5.5 5.3 4.6	1.5 1.9 1.9 1.5	.70 .70 .70 .67
11 12 13 14 15	2.4 2.1 1.9 2.1 2.0	1.2 1.3 1.3 1.3	.84 .82 .80 .78 .76	.40 .40 .40 .40	.40 .40 .40 .40	.37 .37 .37 .38 .40	.60 .61 .58 .62	12 14 15 18 21	26 25 24 24 24	4.7 5.4 5.0 4.4 4.1	1.3 1.2 1.1 1.1 .95	.60 .63 .51 .46
16 17 18 19 20	1.9 1.9 1.8 1.9 2.0	1.4 1.5 1.5 1.5	.74 .72 .70 .68 .66	.40 .40 .40 .40	.40 .40 .40 .40	.40 .43 .44	1.1 1.5 2.1 2.4 2.4	25 28 27 25 24	23 22 20 18 17	3.7 3.5 3.6 3.0 2.8	.95 .79 .72 .81 .77	.96 1.4 1.1 .80 .74
21 22 23 24 25	1.9 1.8 2.1 2.0	1.5 1.5 1.5 1.7	.64 .62 .62 .60	.40 .40 .40 .40	.40 .40 .40 .40	.50 .49 .49	2.1 2.3 3.1 4.2 4.9	22 20 20 19 18	16 14 13 12 11	2.7 2.8 2.5 2.1 2.1	.76 .82 1.3 3.8 2.4	.69 .65 .63 .60
26 27 28 29 30 31	1.8 1.9 1.8 1.8 1.9	1.4 1.2 1.2 1.2	.58 .56 .54 .54 .52	.40 .40 .40 .40 .40	.40 .40 .40	.50 .50 .54	5.0 5.3 5.7 6.2 6.8	16 15 14 14 13	10 9.3 8.6 9.0 9.2	2.6 4.7 4.0 2.7 2.6 3.0	1.8 1.3 1.1 1.1 .97 .87	.57 .60 .59 .54
TOTAL MEAN MAX MIN AC-FT	61.3 1.98 2.4 1.8	44.3 1.48 2.1 1.2 88	23.36 .75 1.1 .50 46	12.86 .41 .50 .40 26	11.20 .40 .40 .40		4.32 2.14 6.8 .58 128	467.5 15.1 28 5.8 927	585.1 19.5 32 8.6 1160	133.6 4.31 8.5 2.1 265	44.51 1.44 3.8 .72 88	21.27 .71 1.4 .46 42

CAL YR 1986 TOTAL 2905.95 MEAN 7.96 MAX 67 MIN .50 AC-FT 5760 WTR YR 1987 TOTAL 1482.68 MEAN 4.06 MAX 32 MIN .37 AC-FT 2940

09066400 RED SANDSTONE CREEK NEAR MINTURN, CO

LOCATION.--Lat 39°40'58", long 106°24'03", Eagle County, Hydrologic Unit 14010003, on left bank 150 ft upstream from road culvert, 1,400 ft upstream from Indian Creek, and 6.8 mi north of Minturn.

DRAINAGE AREA . -- 7.27 mi2.

PERIOD OF RECORD .-- October 1963 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,212 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 13-17, 19, 23-25, 27, Nov. 2 to May 14, and Aug. 19-20. Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 24 years, 9.29 ft 3/s; 6,730 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 215 ft3/s, June 19, 1983, gage height, 4.66 ft, maximum gage height, 5.18 ft, Apr. 17, 1987 (backwater from ice); minimum daily discharge, 0.20 ft3/s, Jan. 30, 1970.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 70 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 16	1700	*57	3.68	Apr. 17	0745		a*5.18

Minimum daily discharge, 0.40 ft³/s, Jan. 10-15. a Backwater from ice.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DE C FEB APR MA Y JUN JUL AUG SEP JAN MAR .56 .56 2.7 1.0 .46 .46 10 24 9.4 8.7 1.0 .58 .56 .96 1.4 25 26 2.3 2 1.0 .46 .46 11 2.6 2.4 1.4 .46 .46 12 7.7 1.9 1.0 1.0 .54 .54 13 28 .92 5 2.2 1.4 1.0 .52 .54 .46 .46 15 29 6.3 1.5 .96 6 1.3 .49 28 2.3 1.0 .52 . 46 .46 16 6.0 1.5 1.0 2.1 .46 .46 1.0 1.0 17 27 5.5 5.2 2.0 ġ 1.3 .50 18 27 1.0 .45 .46 2.0 1.0 .46 1.3 .43 .52 5.2 5.0 .98 10 1.6 1.0 .40 . 48 .46 .66 22 29 1.5 .92 .80 1.6 1.0 .40 .47 .46 24 27 4.5 1.4 .92 1.2 11 4.5 12 1.5 1.2 1.0 .40 .46 .46 .90 26 26 .92 13 14 1.4 1.2 1.0 .40 .46 .46 1.1 28 24 4.5 1.3 .92 30 39 23 24 3.9 1.3 .92 1.4 1.2 1.0 . 40 . 46 .46 1.3 15 1.4 1.2 1.0 .40 .46 .46 1.5 16 1.4 1.2 1.0 .42 .46 .46 1.8 46 22 3.0 1.2 17 1.3 1.1 1.0 .43 .46 .46 2.1 47 20 3.2 1.1 1.7 18 1.3 41 18 3.4 1.3 1.1 1.0 . 45 .46 .46 2.5 1.1 .48 2.9 37 19 1.0 1.0 .46 .46 2.9 16 1.0 1.1 1.3 35 20 .46 .46 3.5 15 2.5 1.0 1.0 1.0 1.0 .52 .46 33 31 29 2.4 21 .56 4.0 .99 1.3 1.0 1.0 .46 1 Ц 22 1.3 1.0 1.0 - 60 . 46 .46 5.0 5.2 14 1.1 23 1.0 .98 .66 .46 .46 13 2.1 1.3 .91 1.4 1.0 .94 .64 .46 .6 27 2.8 .85 27 25 1.5 1.0 . 88 .64 .46 - 46 6.0 1.7 2.8 .85 .84 .85 26 1.5 1.0 .62 .46 .46 6.4 26 11 3.2 1.8 27 1.5 1.0 .80 .62 .46 .46 7.0 24 10 6.0 1.4 .85 1.5 1.5 1.5 28 1.0 .76 .68 .46 .46 23 9.9 4.3 1.3 .85 .85 29 8.0 22 21 9.9 1.3 1.0 .72 .58 ---- 46 2.8 ---.85 30 2.5 .58 1.0 .70 . 46 9.0 31 1.4 .66 •58 .46 20 3.6 1.1 ---------TOTAL 29.39 52.2 34.8 29.28 16.12 13.54 14.26 87.06 790 601.4 134.5 49.4 1.16 .94 .48 25.5 4.34 9.4 1.7 .98 ME A N 1.68 .52 .46 2.90 20.0 1.59 MAX 2.7 3.9 .68 29 .56 .46 9.0 .85 MIN 1.0 .66 .40 .46 .46 .46 10 9.6 58 104 69 58 32 27 28 173 1570 1190 267 98

CAL YR 1986 TOTAL 3445.98 MEAN 9.44 MAX 72 MIN .66 AC-FT 6840 WTR YR 1987 TOTAL 1851.95 MEAN 5.07 MAX 47 MIN .40 AC-FT 3670

09067000 BEAVER CREEK AT AVON, CO

LOCATION.--Lat 39°37'47", long 106°31'20", in NE4SW4 sec.12, T.5 S., R.82 W., Eagle County, Hydrologic Unit 14010003, on left bank at Avon, 550 ft upstream from U.S. Highways 6 and 24, and 700 ft upstream from mouth.

DRAINAGE AREA. -- 15.7 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January to December 1911, January 1912 to September 1914 (gage heights and discharge measurements only), May 1974 to September 1987 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 7,453 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to May 1, 1974, nonrecording gage near present site at different datum.

REMARKS.--Estimated daily discharges: Nov. 9-15, Nov. 23 to Feb. 1, Feb. 5 to Mar. 15, Mar. 21 to Apr. 1, and Apr. 13, 14. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation upstream and downstream from station. Slight natural regulation by several small lakes in headwaters.

AVERAGE DISCHARGE.--13 years (water years 1975-87), 13.7 ft3/s; 9,930 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 249 ft³/s, June 27, 1983, gage height, 3.46 ft; minimum daily, 0.55 ft³/s, Sept. 10, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 80 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 8	0300	*77	*2.49				

Minimum daily, 2.0 ft³/s, Jan. 15-21, and Feb. 15-24.

		DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR EAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 6.6 7.3 7.2 6.5	4.7 4.9 4.2 4.4 4.5	4.0 4.0 4.0 4.0 4.0	3.0 3.0 3.0 2.5 2.5	2.6 2.7 2.7 2.6 2.4	3.5 4.0 4.5 5.0 5.5	3.3 3.6 4.2 4.0 3.9	22 21 17 14 14	31 34 35 40 47	28 24 22 22 21	20 14 11 10 8.9	4.3 4.6 4.4 4.7 5.0
6 7 8 9 10	6.4 6.2 6.2 6.2	4.5 4.6 4.5 4.5	3.5 3.5 3.5 3.0	2.5 2.5 2.5 2.5 2.5	2.3 2.3 2.3 2.3 2.3	5.5 5.5 5.5 5.5	4.1 3.9 4.2 4.1 4.1	14 16 17 20 23	49 53 69 63 59	20 18 16 15 14	8.4 9.8 11 9.4 8.2	4.9 5.3 5.8 4.9 4.7
11 12 13 14 15	6.8 6.2 5.8 5.9	4.5 4.5 4.0 4.0	3.0 3.5 3.5 3.5	2.7 3.0 3.0 2.5 2.0	2.3 2.3 2.3 2.3 2.0	4.0 3.5 3.5 3.5 3.5	4.0 4.0 3.8 4.0 4.6	26 29 30 32 35	55 55 54 54 52	13 14 13 12 11	7.7 7.3 7.6 6.7 6.1	4.7 4.4 4.7 4.6 5.3
16 17 18 19 20	5.8 5.9 5.9 5.9	4.3 4.3 4.5 4.9	3.5 3.5 3.5 3.5 3.5	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	3.5 3.8 3.8 3.8 3.6	5.9 7.3 9.6 11	39 46 46 43 44	53 52 47 45 43	11 14 14 12 10	5.7 5.6 5.3 5.0 4.8	5.3 5.6 5.0 4.5 4.1
21 22 23 24 25	5.8 6.0 5.3 5.1 5.3	4.5 4.9 4.5 4.5 5.0	3.5 3.5 3.5 3.5	2.0 2.3 2.5 2.5 2.5	2.0 2.0 2.0 2.0 2.5	3.5 3.0 3.0 3.0	8.2 8.5 11 14 16	41 37 35 35 32	41 38 36 35 33	9.9 9.8 9.0 8.4 7.3	5.1 5.2 6.7 9.9 8.5	3.8 3.7 3.6 3.6 3.9
26 27 28 29 30 31	4.9 4.7 4.7 4.5 4.6 4.9	5.2 5.5 5.5 5.0 4.5	3.5 3.5 4.0 4.5 4.5 3.5	2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 3.0	3.0 3.0 2.5 2.5 2.5 3.0	17 16 17 19	31 29 28 28 27 27	32 30 28 29 30	7.4 11 21 15 18	7.8 6.2 5.6 5.2 4.9 4.5	3.7 3.7 3.4 3.4
TOTAL MEAN MAX MIN AC-FT	181.3 5.85 7.3 4.5 360	138.4 4.61 5.5 4.0 275	112.0 3.61 4.5 3.0 222	76.5 2.47 3.0 2.0 152	64.2 2.29 3.0 2.0 127	118.0 3.81 5.5 2.5 234	249.3 8.31 19 3.3 494	898 29.0 46 14 1780	1322 44.1 69 28 2620	457.8 14.8 28 7.3 908	242.1 7.81 20 4.5 480	133.0 4.43 5.8 3.4 264

CAL YR 1986 TOTAL 5333.4 MEAN 14.6 MAX 85 MIN 2.6 AC-FT 10580 WTR YR 1987 TOTAL 3992.6 MEAN 10.9 MAX 69 MIN 2.0 AC-FT 7920

09067000 BEAVER CREEK AT AVON, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- January 1975 to current year.

INSTRUMENTATION. -- Turbidity recorder since September 1974.

REMARKS.--Daily record for turbidity data available in district office. Turbidity data at this station will continue to be published in the annual reports. Records published will be the daily maximum and minimum turbidity.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
OCT 29	1233	4.3	237	8.2	6.0	0.40	9.8	120	34	8.2	2.3	0.1
NOV 26	1300	5.7	263	7.9	1.5	0.60	10.0	130	37	9.2	2.7	0.1
DEC 16	1133	3.5	337	8.4	0.5	0.40	13.2	150	42	10	3.0	0.1
JAN 28	0730	2.5	290		0.0	0.40	10.0	150	42	11	3.0	0.1
MAR 04	1235	12	322	7.9	0.5	3.5	10.9	160	44	11	3.9	0.1
APR 01	1144	3.4	248	8.3	1.5	1.5	10.2	150	44	10	2.8	0.1
MAY 13	1120	30	131		6.0	4.4	9.0	60	16	4.9	1.6	0.1
JUN 02 JUL	1830	33			9.5	1.5	10.0	44	12	3.3	1.4	0.1
13 30	1400 1415	13 17	118 99	8.4 8.2	12.0 14.5	0.40 1.3	8.1 7.6	52 46	15 13	3.6 3.3	1.4 1.6	0.1 0.1
SEP 02 30	1045 1225	4.5 3.7	202 229	8.4 8.5	9.5 6.5	0.30 0.50	8.6 9.1	97 100	28 2 9	6.5 7.1	2.3	0.1
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
OCT 29	SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	RESIDUÉ AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED	DIS- SOLVED (TONS PER	DIS- SOLVED (TONS PER	GEN, NO2+NO3 DIS- SOLVED (MG/L	PHOROUS ORTHO, DIS- SOLVED (MG/L
OCT 29 NOV 26	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
OCT 29 NOV 26 DEC 16	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
OCT 29 NOV 26 DEC 16 JAN 28	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 7.8	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
OCT 29 NOV 26 DEC 16 JAN 28 MAR	SIUM, DIS- SOLVED (MG/L AS K) 1.0 1.0	LINITY LAB (MG/L AS CACO3) 72 80 81	DIS- SOLVED (MG/L AS SO4) 49 57	RIDE, DIS- SOLVED (MG/L AS CL) 1.6 1.4	RIDE, DIS- SOLVED (MG/L AS F) <0.10 <0.10	DIS- SOLVED (MG/L AS SIO2) 7.8 7.8 7.9	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L) 162 162	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT) 0.22 0.22	DIS- SOLVED (TONS PER DAY) 1.88 2.49	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) <0.010 <0.010
OCT 29 NOV 26 DEC 16 JAN 28 MAR 04 APR 01	SIUM, DIS- SOLVED (MG/L AS K) 1.0 1.0	LINITY LAB (Mg/L AS CACO3) 72 80 81	DIS- SOLVED (MG/L AS SO4) 49 57 63	RIDE, DIS- SOLVED (MG/L AS CL) 1.6 1.4 1.6	RIDE, DIS- SOLVED (MG/L AS F) <0.10 0.10	DIS- SOLVED (MG/L AS SIO2) 7.8 7.8 7.9 8.4	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L) 162 162 193 179	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 147 164 177 182	DIS- SOLVED (TONS PER AC-FT) 0.22 0.22 0.26	DIS- SOLVED (TONS PER DAY) 1.88 2.49 1.82	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) <0.100 0.100 0.190 0.220	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) <0.010 <0.010
OCT 29 NOV 26 DEC 16 JAN 28 MAR 04 APR 01 MAY 13	SIUM, DIS- SOLVED (MG/L AS K) 1.0 1.0 0.90	LINITY LAB (MG/L AS CACO3) 72 80 81 83	DIS- SOLVED (MG/L AS SO4) 49 57 63 65 73	RIDE, DIS- SOLVED (MG/L AS CL) 1.6 1.4 1.6 1.8 3.8	RIDE, DIS- SOLVED (MG/L AS F) <0.10 0.10 0.10	DIS- SOLVED (MG/L AS SIO2) 7.8 7.8 7.9 8.4 7.7	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L) 162 162 193 179 201	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 147 164 177 182 200	DIS- SOLVED (TONS PER AC-FT) 0.22 0.22 0.26 0.24	DIS- SOLVED (TONS PER DAY) 1.88 2.49 1.82 1.21 6.70	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) <0.100 0.100 0.190 0.220 0.340	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) <0.010 <0.010 0.010 0.020
OCT 29 NOV 26 DEC 16 JAN 28 MAR 04 APR 01 MAY 13 JUN 02	SIUM, DIS- SOLVED (MG/L AS K) 1.0 1.0 0.90	LINITY LAB (Mg/L AS CACO3) 72 80 81 83 92	DIS- SOLVED (MG/L AS SO4) 49 57 63 65 73 67	RIDE, DIS- SOLVED (MG/L AS CL) 1.6 1.4 1.6 1.8 3.8	RIDE, DIS- SOLVED (MG/L AS F) <0.10 0.10 0.10 0.10	DIS- SOLVED (MG/L AS SIO2) 7.8 7.8 7.9 8.4 7.7 7.8	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L) 162 162 193 179 201	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 147 164 177 182 200 186	DIS- SOLVED (TONS PER AC-FT) 0.22 0.22 0.26 0.24 0.27	DIS- SOLVED (TONS PER DAY) 1.88 2.49 1.82 1.21 6.70	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) <0.100 0.100 0.190 0.220 0.340 <0.100	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) <0.010 <0.010 0.010 0.020
OCT 29 NOV 26 DEC 16 JAN 28 MAR 04 APR 01 MAY 13 JUN	SIUM, DIS- SOLVED (MG/L AS K) 1.0 1.0 0.90 1.3 0.90	LINITY LAB (Mg/L AS CACO3) 72 80 81 83 92 88 53	DIS- SOLVED (MG/L AS SO4) 49 57 63 65 73 67	RIDE, DIS- SOLVED (MG/L AS CL) 1.6 1.4 1.6 1.8 3.8 1.0	RIDE, DIS- SOLVED (MG/L AS F) <0.10 0.10 0.10 0.10 <0.10 <0.10	DIS- SOLVED (MG/L AS SIO2) 7.8 7.8 7.9 8.4 7.7 7.8 7.2	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L) 162 162 193 179 201 191	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 147 164 177 182 200 186 75	DIS- SOLVED (TONS PER AC-FT) 0.22 0.22 0.26 0.24 0.27 0.26	DIS- SOLVED (TONS PER DAY) 1.88 2.49 1.82 1.21 6.70 1.75 7.30	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) <0.100 0.100 0.190 0.220 0.340 <0.100 <0.100	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) <0.010 <0.010 0.010 0.020 0.020 <0.010

TURBIDITY (NTU), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

09067000 BEAVER CREEK AT AVON, CO--Continued

			TONDIDI	II (NIO)	, WAILE I	BAR OCIODI	sh 1900 IC	J SEPIEMB	ER 1901			
DAY	MAX	MIN	MA X	MIN	MAX	MIN	MAX	MIN	MA X	MIN	MA X	MIN
	OCTOBE	ER	NOVEMB	ER	DECEM	BER	JANUAF	RY	FEBRU	ARY	MARC	Н
1 2 3 4 5			1.5 2.0 9.0 2.0	1.0 1.0 1.0 1.0	2.0 1.5 10 10 1.5	1.0 1.0 1.0 2.0					1.5 1.5 2.5 9.0	1.0 1.0 1.0 1.0 2.0
6 7 8 9 10	4.0 5.0	2.8	2.0 2.0 2.0 10 2.0	1.0 1.0 1.0 1.0	1.5 1.5 1.5 10	1.0 1.0 1.0 1.0 2.0					10 10 8.0 9.0 9.0	1.5 1.5 2.0 2.0 2.0
11 12 13 14 15	10 4.0 	1.0 1.0 1.0	4.0 2.0 2.0 10	1.0 1.0 1.0 1.0	10 1.5 10 10 10	1.0 1.0 1.0 1.0					7.0 5.0 7.0 6.0 2.0	1.5 1.5 1.5 1.5
16 17 18 19 20			2.5 3.0 3.0 10	2.0 1.5 2.0 2.0		.60 			1.0	1.0	2.0 1.5 1.5 10 1.0	1.0 1.0 1.0 1.0 2.0
21 22 23 24 25			10 4.0 5.0 3.0	2.0 1.5 1.0 1.0				.60	2.0 1.5 2.0 1.0	1.0 1.0 1.0 1.0	4.0 1.5 2.0 9.0 8.0	1.0 1.0 1.0 1.0
26 27 28 29 30 31	2.0 2.0 1.5	1.0	3.0 10 10 2.0 1.5	1.0 1.0 1.0 1.0		2.2			1.0 2.5 1.0 	1.0 1.0 1.0	9.0 8.0 8.0 9.0 3.0 5.0	1.0 1.0 1.0 1.0 1.0
MONTH			10	1.0							10	1.0
	APF	RIL	MA	Y	JĮ	JNE	Ju	ΙLΥ	AUG	GUST	SEPTI	EMBER
1	3.0	1.0									10	1.0
2 3 4 5	3.0 9.0 4.0	1.0 1.0 1.0				2.5 2.2 1.0					2.0 2.0 2.0 2.0	.80 1.0 1.0
6 7 8 9 10	5.0 10 5.0 2.0 2.0	1.0 1.0 1.0 1.0				1.0					2.5 2.0 2.0 10 2.0	1.0 1.0 1.0 1.0
11 12 13 14 15	9.0 3.0 1.0 2.0	1.0 1.0 1.0 1.0		6.5			2.0 2.0 2.0	1.0 1.0 1.0	4.0 1.0	1.0	2.0 2.0 2.0 10 2.0	1.0 1.5 2.0 1.0
16 17 18 19 20	3.0 10 10 8.0 3.0	1.0 1.0 1.0 1.0 2.0					2.0 4.0 4.0 4.0	1.0 2.0 2.0 1.0	1.5 10 2.0 10	1.0 1.0 1.0 1.0	2.0 10 10 	1.0 2.0 2.0
21 22 23 24 25	2.0 5.0 10 10	1.0 1.0 1.0 2.0 3.0					10 3.0 2.0 3.0 6.0	1.0 1.0 1.0 1.0 2.0	10 3.0 10 10	1.0 1.0 1.0 1.0		
26 27 28 29 30 31	6.0 5.0 3.0	2.0							2.0 1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0 1.0		
MONTH												

09069000 EAGLE RIVER AT GYPSUM, CO

LOCATION.--Lat 39°39'00", long 106°57'06", Eagle County, Hydrologic Unit 14010003, at bridge at Gypsum, about 400 ft upstream from Gypsum Creek, about 520 ft upstream from bridge on U.S. Highways 6 and 24, and about 550 ft upstream from gaging station.

DRAINAGE AREA.--944 mi², at gaging station.

PERIOD OF RECORD .-- April 1947 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1947 to current year. WATER TEMPERATURE: April 1949 to current year.

REMARKS.--Records of discharge are given for Eagle River below Gypsum (station 09070000), located 550 ft, downstream from Eagle River at Gypsum (station 09069000).

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,850 microsiemens Aug. 6, 1949; minimum daily, 130 microsiemens
June 9, 10, 1976.
WATER TEMPERATURES: Maximum daily, 24°C Aug. 24, 1949; minimum, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1,300 microsiemens Jan.2; minimum daily, 180 microsiemens several days in May and June.

WATER TEMPERATURES: Maximum daily, 20.0°C several days in August; minimum daily, 0.0°C on many days in December and January.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
DEC 15 APR	1520	231	996	8.2	0.0	12.6	330	99	21	67	2
13 JUN	1630	205	946	8.2	7.5	10.2	320	93	21	63	2
03	1230	1430	232	7.6	10.0	9.6	95	28	6.0	8.3	0.4
AUG 31	1700	284	874	8.5	18.0	8.9	320	97	19	55	1
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA - LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
DEC 15	2.8	142	220	100	0.10	8.6	604	0.82	3 7 7	15	0.50
APR 13	2.5	133	200	95	0.20	8.3	563	0.77	312	29	0.60
03	0.70	62	39	12	<0.10	5.5	137	0.19	528		<0.10
AUG 31	2.8	109	210	81	0.20	7.7	538	0.73	413	4	<0.10
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	ANTI - MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)
DE C 15	0.54	0.80	0.40	1.3	0.06	0.04	<1	<1	<1	49	<0.5
APR 13	0.41	1.1	0.30	1.7	0.09	0.04	<1	<1	<1	53	<0.5
JUN 03	<0.10	0.70	0.40		0.02	0.03	<1	<1	<1	39	<0.5
AUG 31	<0.10	<0.20	0.30		0.06	0.02	<2	<1	<1	47	<0.5

09069000 EAGLE RIVER AT GYPSUM, CO.--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
DEC 15	<1	1	<1	<1	5	2	6	7	< 5	170	
APR 13	<1	<1	<1	<1	5	3	4	< 5	< 5	160	
JUN 03	<1	<1	2	<1	5	2	60	< 5	< 5	30	
AUG 31	<1	1	<1	<1	2	1	9	< 5	< 5	27	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	
DEC 15	0.20	0.3	<1	<1	1	1	<1	<1.0	100	78	
APR 13	<0.10	0.4	3	1	<1	<1	< 1	<1.0	90	40	
JUN 03	<0.10	<0.1	1	<1	1	<1	< 1	<1.0	70	44	
AUG 31	<0.10	<0.1	<1	< 1	<1	<1	< 1	<1.0	40	8	
SPECIFIC	CONDUCTAN	CE (MICRO	SIEMENS/C		DEG. C), I	WATER YEAR LUES	OCTOBER	1986 TO S	EPTEMBER	1987	
OCT	NOA	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
800 800 750 750 750	750 750 750 750 750	850	1000 1300 1100 1100 1100	1000 1000 1000 1050 1050	1200 1200 1200 1100 1200	1100 1100 1100 1050 1000	260 280 290 260 260	320 300 300 250 250	350 350 380 400 450	700 700 600 650 600	850 900 900 900 900
750 750	750 750 750 750 750	850 850 900	1100 1000 1100 1100 1100	1000 1000 1050 1050 1100	1000 900 900 900 900	1000 1000 1000 1000 950	260 250 250 250 240	200 200 180 180 200	450 450 500 500 450	700 700 750 800	900 900 950 900 900
 750 750 750	750 800 800 800 800	1000	1100 1100 1100 1000 1100	1100 1100 1050 1050 1050	900 850 850 800 1000	1000 1000 1000 1000 800	225 225 240 200 180	200 200 220 240 240	450 450 450 500 580	900 800 900 900 850	950 950 950 950
750 750 750 750 750	800 800 800 800 800		1100 1100 1100 1100 1000	1050 1050 1100 1100 1100	1000 900 900 900	700 700 650 600	180 180 200 200 225	240 250 300 300 300	580 580 550 580 590	900 850 900 850 850	950 950
750 750 750 750 750	800 850 900 950 850	1000 1000 1000	1100 1100 1100 1000 1000	1100 1150 1150 1100 1150	1000 1000 1000	550 525 450 400 350	240 240 240 280 280	300 320 300 300 300	620 600 550 600 400	800 800 800 850	1000 1000 1000 1000
800 750 800 750 750 750	850 850 850 850 850	1000 1000 1000	1100 1000 1000 1000 1000 1000	1100 1200 1200 	1100 1000 1000 1100	350 350 350 300 280	280 280 280 280 280 290	320 350 320 300 340	440 320 300 400 440 450	800 800 800 850 850	1000 1000 1100 1100 1100

DAY

MEAN

09069000 EAGLE RIVER AT GYPSUM, CO.--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 INSTANTANEOUS VALUES

					INSTAN	TANEOUS	ALUES						
	DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	10.0 11.0 9.0 9.0 9.0	7.0 7.0 5.0 4.0 3.0	2.0 2.0 2.0 2.0	.0 .0 .0	1.0 1.0 1.0 1.0	5.0 4.0 5.0 5.0 6.0	8.0 8.0 8.0 9.0	10.0 6.0 8.0 10.0	13.0 13.0 13.0 13.0	14.0 15.0 16.0 16.0	20.0 20.0 19.0 20.0 19.0	17.0 16.0 15.0 15.0	
6 7 8 9 10	11.0	2.0 2.0 2.0 2.0	2.0 3.0 2.0 1.0	.0 .0 .0	1.0 1.0 1.0 1.0	6.0 8.0 7.0 7.0 8.0	10.0 10.0 10.0 10.0	10.0 11.0 11.0 11.0	11.0 10.0 10.0 10.0	17.0 17.0 17.0 17.0	20.0 20.0 20.0 18.0	15.0 15.0 14.0 15.0	
11 12 13 14 15	8.0 9.0 8.0	3.0 4.0 4.0 5.0 5.0	.0	.0	1.0 1.0 1.0 1.0	8.0 7.0 7.0 7.0 6.0	10.0 10.0 11.0 11.0	12.0 12.0 11.0 11.0	12.0 12.0 12.0 13.0 14.0	17.0 17.0 17.0 18.0 19.0	17.0 19.0 18.0 18.0	14.0 14.0 14.0 14.0	
16 17 18 19 20	7.0 8.0 8.0 8.0 9.0	5.0 6.0 6.0 5.0	.0	.0	2.0 3.0 3.0 2.0 2.0	5.0 7.0 6.0 7.0	12.0 12.0 13.0 13.0	11.0 11.0 12.0 12.0 11.0	14.0 14.0 14.0 14.0	19.0 19.0 18.0 18.0	18.0 17.0 18.0 17.0	14.0 14.0	
21 22 23 24 25	7.0 8.0 8.0 7.0	4.0 4.0 3.0 3.0 2.0	.0	.0	2.0 2.0 2.0 2.0	8.0 8.0 8.0	12.0 12.0 11.0 11.0	9.0 9.0 9.0 9.0	14.0 14.0 14.0 14.0	19.0 19.0 19.0 19.0 18.0	15.0 16.0 16.0 17.0	15.0 15.0 14.0 14.0	
26 27 28 29 30 31	8.0 8.0 8.0 7.0 7.0	2.0 2.0 2.0 2.0 2.0	.0	.0	2.0 3.0 3.0	8.0 8.0 8.0 8.0	11.0 11.0 11.0 10.0	9.0 9.0 9.0 9.0 10.0	14.0 14.0 14.0 14.0	18.0 17.0 17.0 19.0 19.0	16.0 16.0 16.0 17.0	14.0 14.0 13.0 13.0	
MEAN		3.5		.0	1.5		10.5	10.0	13.0	17.5			

09070000 EAGLE RIVER BELOW GYPSUM, CO

LOCATION.--Lat 39°38'58", long 106°57'11", in SW\(\frac{1}{4}\)NW\(\frac{1}{4}\) sec.5, T.5 S., R.85W., Eagle County, Hydrologic Unit 14010003, on right bank 30 ft downstream from bridge on U.S. Highways 6 and 24 at Gypsum and 150 ft downstream from Gypsum Creek.

DRAINAGE AREA . - - 944 mi2.

PERIOD OF RECORD. -- October 1946 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is 6,275.11 ft, above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Transmountain diversions upstream from station (see elsewhere in this report). Transbasin diversions upstream from station from Robinson Reservoir, capacity, 2,520 acre-ft, to Tenmile Creek for mining development. Many small diversions for irrigation of hay meadows upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--41 years, 585 ft³/s; 423,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,020 ft³/s, May 25, 1984, gage height, 9.46 ft; minimum daily, 110 ft³/s, Feb. 21, 1955, Feb. 3, 1956, Dec. 26, 27, 1962.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,500 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 8	1200	*2,850	*6.66				

Minimum daily, 162 ft³/s, March 30.

		DISCHARG	E, CUBI	FEET PER		WATER YEA EAN VALUES		R 1986 TO	SEPTEMBER	1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	422	367	263	176	204	167	193	1220	1070	859	510	248
2	406	350	241	204	202	172	193	1230	1320	783	450	236
3	423	347	254	218	199	176	188	1010	1330	715	394	232
4	436	337	260	206	197	177	200	824	1440	661	359	233
5	413	320	258	230	196	185	210	722	1580	612	325	244
6	397	317	268	224	189	201	208	698	1580	573	300	230
7	397	334	278	217	190	215	211	789	1720	534	315	223
8	395	313	267	209	194	222	212	960	2470	511	369	217
9	390	287	262	211	192	236	227	1170	2330	479	346	214
10	385	302	181	205	192	229	218	1310	2000	460	294	210
11	431	287	175	190	200	204	221	1420	1770	451	268	206
12	410	314	195	206	197	194	239	1590	1670	485	259	198
13	375	296	211	213	202	201	215	1600	1650	483	258	195
14	377	289	240	212	207	208	199	1780	1670	424	261	210
15	380	292	239	201	194	202	217	2160	1680	381	252	225
16	369	299	244	180	188	194	267	2280	1570	363	231	241
17	362	293	237	192	189	190	327	2420	1490	366	221	260
18	359	295	218	180	181	187	418	2260	1310	417	211	266
19	353	303	247	198	178	189	496	2010	1200	372	201	252
20	360	308	238	188	172	195	555	1890	1130	338	186	234
21	375	292	237	199	172	177	461	1740	1060	319	177	223
22	381	304	227	182	167	193	424	1550	997	322	194	208
23	371	273	210	190	171	189	496	1410	974	314	219	203
24	364	254	235	201	173	180	652	1360	951	296	307	194
25	361	279	210	201	180	175	789	1270	889	278	353	191
26 27 28 29 30 31	351 345 344 339 337 360	283 264 261 269 279	187 181 217 199 192 201	201 198 204 193 196	177 174 172 	175 187 172 173 162 181	852 920 975 1040 1090	1180 1100 996 953 915 889	863 812 793 797 972	294 390 795 591 531 504	364 318 281 274 274 266	188 185 188 184 182
TOTAL	11768	9008	7072	6222	5249	5908	12913	42706	41088	14901	9037	6520
MEAN	380	300	228	201	187	191	430	1378	1370	481	292	217
MAX	436	367	278	230	207	236	1090	2420	2470	859	510	266
MIN	337	254	175	176	167	162	188	698	793	278	177	182
AC-FT	23340	17870	14030	12340	10410	11720	25610	84710	81500	29560	17920	12930

CAL YR 1986 TOTAL 267035 MEAN 732 MAX 3700 MIN 175 AC-FT 529700 WTR YR 1987 TOTAL 172392 MEAN 472 MAX 2470 MIN 162 AC-FT 341900

COLORADO RIVER MAIN STEM

09070500 COLORADO RIVER NEAR DOTSERO, CO

LOCATION.--Lat 39°38'38", long 107°04'38", in NW4SE4 sec.6, T.5 S., R.86 W., Eagle County, Hydrologic Unit 14010001, on left bank about 500 ft south of Interstate Highway 70, 1.5 mi west of Dotsero, and 1.5 mi downstream from Eagle River.

DRAINAGE AREA. -- 4,394 mi2.

PERIOD OF RECORD. -- October 1940 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,130 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 8-11, Dec. 13 to Mar. 4. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, diversions for irrigation of 68,000 acres upstream from station, and return flow from irrigated areas.

COOPERATION .-- Gage-height record collected in cooperation with the Colorado Division of Water Resources.

AVERAGE DISCHARGE. -- 47 years, 2,160 ft3/s; 1,565,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,200 ft³/s, May 25, 1984, gage height, 14.20 ft; minimum daily, 350 ft³/s, Jan. 5, 1944.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 5,840 ft³/s at 1000 May 17, gage height, 6.35 ft; minimum daily, 1,000 ft³/s, Jan. 10, 11, 17, 18, 21, 22, and Feb. 24.

		DISCHARGE,	IN CUBI	C FEET PER	SECOND,	, WATER YEAR MEAN VALUES	OCTOBER	1986 T	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	1700	1760	1380	1100	1100	1100	1140	4070	3070	1890	1580	1270
	1740	1670	1330	1200	1200	1100	1140	4150	3380	1870	1600	1230
3	1910	1650	1320	1200	1100	1100	1080	3810	3410	1790	1560	1200
2 3 4	1970	1610	1330	1100	1200	1100	1110	3360	3410	1900	1440	1210
5	1900	1530	1330	1200	1100	1130	1170	3060	3500	1820	1440	1220
6	1870	1530	1340	1300	1100	1160	1210	2960	3510	1730	1420	1210
7	1860	1530	1380	1200	1100	1190	1250	3050	3590	1620	1430	1180
7 8	1840	1500	1360	1200	1100	1220	1360	3250	4550	1560	1510	1180
9	1780	1450	1320	1100	1100	1310	1430	3510	4860	1490	1520	1160
10	1760	1500	1120	1000	1100	1300	1410	3690	4720	1410	1390	1100
11	18 10	1500	1100	1000	1200	1240	1370	4010	4610	1360	1320	1030
12	1780	1520	1230	1100	1200	1240	1400	4230	4320	1480	1290	1040
13	1710	1490	1270	1100	1200	1270	1310	4260	4110	1680	1270	1140
14	1680	1460	1300	1200	1200	1310	1230	4430	4030	1660	1280	1220
15	1660	1500	1300	1100	1100	1330	1270	4940	4000	1470	1270	1240
16	1620	1550	1300	1100	1100	1270	1500	5190	3720	1370	1250	1250
17	1630	1550	1300	1000	1200	1230	1930	5470	3380	1340	1230	1210
18	1610	1540	1200	1000	1100	1210	2350	5380	3080	1410	1240	1220
19	1590	1540	1300	1100	1100	1220	2580	5080	2890	1430	1210	1210
20	1590	1540	1300	1100	1100	1240	2670	4680	2750	1340	1200	1190
21	1510	1510	1250	1000	1100	1210	2260	4360	2600	1310	1230	1150
22 23	1560	1540	1300	1000	1100	1210	1950	4030	2510	1300	1320	1120
23	1700	1430	1300	1100	1100	1190	2120	4060	2430	1300	1280	1140
24	1670	1380	1300	1200	1000	1160	2630	3880	2290	1270	1310	1190
25	1650	1430	1190	1200	1100	1160	3130	3760	2000	1290	1460	1190
26	1640	1460	1140	1200	1200	1140	3170	3630	1840	1330	1420	1240
27	1620	1410	1140	1200	1100	1130	3280	3400	1690	1460	1300	1230
28	1610	1380	1200	1200	1100	1090	3500	3160	1600	1950	1230	1210
29	1600	1400	1200	1200		1090	3810	3100	1610	1780	1230	1210
30	1620	1420	1100	1100		1030	4000	3020	1860	1610	1270	1220
31	1670		1100	1100		1120		2880		1590	1250	
TOTAL	52860	45280	39030	34900	31500	36800	59760	121860	95320	47810	41750	35610
MEAN	1705	1509	1259	1126	1125	1187	1992	3931	3177	1542	1347	1187
MAX	1970	1760	1380	1300	1200	1330	4000	5470	4860	1950	1600	1270
MIN	1510	1380	1100	1000	1000	1030	1080	2880	1600	1270	1200	1030
AC-FT	104800	89810	77420	69220	62480	72990	18500	241700	189100	94830	82810	70630

CAL YR 1986 TOTAL 1071000 MEAN 2934 MAX 10600 MIN 1100 AC-FT 2124000 WTR YR 1987 TOTAL 642480 MEAN 1760 MAX 5470 MIN 1000 AC-FT 1274000

GRIZZLY CREEK BASIN 145

09071300 GRIZZLY CREEK NEAR GLENWOOD SPRINGS, CO

LOCATION.--Lat 39°43'00", long 107°18'35", in NE4SW4 sec.7, T.4 S., R.88 W., Garfield County, Hydrologic Unit 14010001, on left bank 0.5 mi west of Grizzly Cow Camp and 14 mi north of Glenwood Springs.

DRAINAGE AREA .-- 5.73 mi2.

PERIOD OF RECORD .-- September 1976 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 10,435 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 19, 1978, at site 600 ft upstream, at datum, 25.33 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 3-5, 7-11, 19-21, Dec. 20 to Jan. 22, April 26 to May 4. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 11 years, 15.3 ft3/s; 11,080 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 364 ft³/s, June 5, 1986, gage height, 4.99 ft, maximum gage height observed, 8.63 ft, May 4, 1982 (backwater from ice); no flow many days most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 85 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
April 27 May 16	2200 1600	*176	*a6.79 4.39	June 7	2300	135	4.19

a Backwater from ice. Minimum daily discharge, 0.79 ft³/s, April 11-15.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE	R OCTOBER ES	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	5.0 5.2 5.7 5.5 5.0	5.5 5.1 5.2 5.0 4.8	3.5 3.3 3.3 3.3 3.2	2.0 2.1 2.1 1.9 2.1	1.3 1.3 1.3 1.3	1.1 1.1 1.1 1.1	.84 .84 .84 .84	80 78 70 60 31	82 107 109 116 126	7.3 6.9 5.9 5.9	2.2 2.1 1.6 1.3 1.2	1.3 1.4 1.4 1.4 1.3
6 7 8 9 10	4.9 5.1 5.2 5.3 5.6	4.8 4.7 4.4 4.2 4.4	3.2 3.1 3.1 3.0	2.0 2.0 2.0 1.8 1.7	1.2 1.2 1.2 1.2 1.2	1.0 1.0 1.0 1.0	.84 .84 .84 .83	17 19 28 43 63	128 129 129 119 97	3.6 3.4 3.2 3.0	1.2 1.8 1.7 1.5	1.3 1.4 1.3 1.3
11 12 13 14 15	5.9 5.9 6.0 6.2	4.3 4.2 4.1 4.1 4.1	3.0 3.0 3.0 2.9 2.9	1.8 1.8 1.6 1.5	1.2 1.2 1.2 1.2 1.2	.99 .97 .97 .97	.79 .79 .79 .79	71 74 87 110 141	73 59 48 41 35	3.4 5.1 4.0 3.3 2.9	1.1 1.1 1.2 1.2	1.2 1.2 1.2 1.3
16 17 18 19 20	6.1 6.0 5.9 5.6 5.5	3.9 3.9 4.0 4.4 4.0	2.7 2.6 2.6 2.5 2.5	1.6 1.6 1.5 1.6	1.3 1.2 1.2 1.2	.97 .97 .97 .97	.82 .98 1.2 1.2	164 134 133 133 130	29 26 22 19 17	2.6 2.7 2.7 2.5 2.2	1.2 1.2 1.1 1.1	1.3 1.2 1.2 1.2 1.2
21 22 23 24 25	5.5 5.6 5.5 5.5	4.3 4.0 3.8 3.6 3.6	2.3 2.2 2.3 2.2 1.9	1.5 1.5 1.5 1.4	1.2 1.2 1.2 1.2	.91 .91 .91 .86	1.2 1.3 2.4 7.6 20	123 92 69 68 66	14 12 11 10 9.1	2.2 2.1 2.0 2.0 1.9	1.2 1.2 1.3 1.7 2.3	1.1 1.0 1.0 1.1
26 27 28 29 30 31	5.2 5.0 4.8 4.7	3.5 3.5 3.3 3.4 3.5	1.9 2.0 2.1 2.0 2.0	1.4 1.4 1.4 1.4 1.4	1.2 1.2 1.1	.91 .91 .91 .90 .84	41 45 53 62 76	58 47 41 36 36 51	8.4 7.7 7.1 7.1 7.3	2.1 2.3 2.1 2.0 2.0 2.7	1.8 1.5 1.4 1.8 1.6	1.1 1.1 1.1 .98 .97
TOTAL MEAN MAX MIN AC-FT	168.9 5.45 6.2 4.7 335	125.6 4.19 5.5 3.3 249	82.7 2.67 3.5 1.9 164	51.9 1.67 2.1 1.4 103	34.0 1.21 1.3 1.1 67	29.93 .97 1.1 .84 59	327.24 10.9 76 .79 649	2353 75.9 164 17 4670	1604.7 53.5 129 7.1 3180	102.0 3.29 7.3 1.9 202	44.5 1.44 2.3 1.1 88	36.25 1.21 1.4 .97 72

CAL YR 1986 TOTAL 8878.34 MEAN 24.3 MAX 290 MIN .79 AC-FT 17610 WTR YR 1987 TOTAL 4960.72 MEAN 13.6 MAX 164 MIN .79 AC-FT 9840

COLORADO RIVER MAIN STEM

09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO

LOCATION.--Lat 39°33'38", long 107°17'59", Garfield County, Hydrologic Unit 14010001, 100 yards downstream of No Name Creek and two miles above Glenwood Springs.

DRAINAGE AREA . -- 4,556 mi2.

PERIOD OF RECORD. -- December 1985 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: December 1985 to current year. WATER TEMPERATURE: December 1985 to current year.

INSTRUMENTATION .-- Water-quality monitor since December 1985.

REMARKS.--Discharge obtained by subtracting the flow in Roaring Fork River at Glenwood Springs (station 09085000) from the flow in the Colorado River below Glenwood Springs (station 09085100). Water-quality data collection was moved downstream to this site from previous site 09071100 on Dec.12,1985. Water-quality data collected at this site are considered equivalent to data collected at old site. Daily maximum and minimum specific-conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: Maximum, 806 microsiemans Aug.21, 1986; minimum, 228 microsiemans June 10, 1 WATER TEMPERATURE: Maximum, 22.5°C July 26, 1987; minimum, 0.0°C many days in winter period, 1986.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 790 microsiemens Dec. 12; minimum, 253 microsiemens May 31. WATER TEMPERATURE: Maximum 22.5°C July 26; minimum, 0.4°C many days during winter period.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

HARD-

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	
	AUG 27	1200	1460	650	19.0	190	93	57	12	65	2	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	
	AUG 27	5.0	99	90	88	0.30	7.7	384	0.52	1520	0.460	
	SPECIFIC	CONDUCTAN	ICE (MICRO	SIEMENS/C	CM AT 25 D MEA	EG. C), W N VALUES	IATER YEAR	OCTOBER	1986 TO S	EPTEMBER	1987	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	620 616 601 579 567	59 7 595 596 602 604	619 631 631 623 621	675 666 655 652 646	563 562 564 564 564	653 654 653 654 652	667 660 664 656 654	347 336 340 349 361	278 303 300 300 311	574 578 564 551 544	650 665	679 635 684 694 692
6 7 8 9 10	555 558 558 552 561	629 647 644 645 655	619 617 616 615 631	633 628 626 625 625	564 563 562 559 556	650 654 658 668 665	664 667 676 673 672	373 374 367 356 346	327 332 337 338 342	544 541 544 540 558		694 693 702 701 680
11 12 13 14 15	567 569 570 570 570	661 654 650 640 634	704 763 694 659 642	624 625 621 628 627	552 551 548 546 544	657 664 661 655 659	673 673 674 678 671	338 326 324 320 310	352 360 373 385 394	543 	706 711 701 712	707 685
16 17 13 19 20	570 571 574 580 584	631 625 622 619 621	640 638 635 632 630	624 626 616 569 559	570 619 648 633 623	668 673 669 669 671	656 617 565 520 479	295 294 300 233 264	402 416 427 435 444		716 733 736 734 742	687 683 692 687 688
21 22 23 24 25	591 594 595 596 592	620 620 620 622 618	626 626 640 661 663	568 575 583 592 585	629 631 673 672 692	671 668 667 669 659	4 7 0 468 489 483 455	266 266 269 267 268	455 464 473 510 526		734 697 645 630 626	698 708 711 703 682
26 27 28 29 30 31	592 601 605 605 608 610	617 618 616 616 614	662 666 668 671 685 685	568 565 565 564 563 565	670 655 651 	668 670 669 667 673 669	445 423 406 386 368	267 265 264 261 261 262	532 520 533 551 636		636 616 631 701 686	667 632 626 638 638
MEAN	583	625	649	608	597	663	575	307	412			

09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO.--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MA X	MIN	MAX	MIN	MAX	MIN	MA X	MIN	MAX	MIN
	остов	3ER	NOVEM	BER	DE CE MI	3ER	JANU	ARY	FEBRU	ARY	MAR	СН
1 2 3 4 5	10.9 11.4 11.6 11.3 11.2	10.0 10.6 11.1 10.5 10.0	7.1 6.6 6.7 6.8 6.3	5.4 5.9 6.4 5.8 5.2	2.5 2.3 1.8 2.0 2.0	1.6 1.1 .9 1.2 1.6	.5 .6 .5 .7	.4 .5 .4 .4	1.0 1.0 1.2 1.1	.4 .5 .5 .6	3.3 3.8 4.5 5.0 6.1	1.8 2.1 2.6 3.4 4.0
6 7 8 9 10	10.7 11.3 11.9 11.9	10.0 10.8 11.0 10.7 10.4	5.8 5.6 4.8 3.1 2.5	4.8 4.6 3.1 2.0 1.7	2.6 3.7 3.8 3.8 2.3	2.1 2.7 3.3 2.4	.9 .9 .6	•5 •5 •4 •4	1.0 1.1 1.2 1.2	. 4 . 4 . 4 . 5 . 4	6.8 7.3 7.5 7.1 6.8	4.6 5.1 5.6 6.1 5.8
11 12 13 14 15	11.2 9.3 7.3 7.1 7.8	9.3 7.3 5.9 6.4 6.9	2.6 3.4 3.5 3.5 3.9	1.5 2.3 2.7 2.7 3.2	.5 .6 .7	. 4 . 4 . 4	•5 •6 •6 •5	.4 .4 .5 .4	1.5 1.5 2.0 2.3 2.8	.8 .6 1.2 1.6	6.6 6.5 7.4 7.1 7.3	5.4 5.9 5.9
16 17 18 19 20	8.2 8.4 8.8 9.2 9.2	7.4 7.6 8.1 8.5 8.7	4.7 5.7 6.0 6.3 6.4	4.0 4.9 5.6 5.9 4.8	.9 .8 .7 .9	•5 •5 •6	•5 •5 •6 •5	.4 .4 .4 .5	3.0 3.5 3.1 3.2 2.6	2.3 2.5 2.3 2.5 1.8	6.3 5.1 6.0 6.6 6.1	5.1 4.2 4.4 5.6 5.2
21 22 23 24 25	9.0 8.0 8.2 8.4 8.1	7.9 7.6 7.6 7.3 7.5	5.1 4.9 4.6 3.2 2.8	4.1 4.4 2.5 2.1 2.2	.8 .6 .7 .7	. 4 . 4 . 4 . 5	•5 •5 •6 •8	.4 .4 .5 .5	2.5 2.4 2.2 3.0 3.1	1.4 1.1 1.5 1.5	6.1 5.9 6.4 5.8 5.8	4.6 4.8 4.5 4.5
26 27 28 29 30 31	8.0 8.0 8.0 8.1 8.1	7.1 7.0 7.1 7.3 7.4 7.1	3.3 3.4 2.8 2.8 2.7	2.6 2.2 2.0 2.0 2.2	.5 .6 .5 .5	- 4 - 4 - 4 - 4 - 4	.9 .8 .9 .8 .7	•5 •5 •4 •4	3.2 2.1 2.8	2.2 1.2 1.3	6.2 5.8 5.6 5.8 4.5 5.7	4.3 4.5 3.8 3.6 2.4 2.7
MONTH	11.9	5.9	7.1	1.5	3.8	. 4	1.0	. 4	3.5	. 4	7.5	1.8
	APRI	ſL.	MA	ľ	JUNE	:	JUL	Y	AUGUS	ST	SEPTE	MBE R
_												
1 2 3 4 5	7.0 8.4 8.9 9.1 9.2	4.4 6.0 6.8 7.4 8.1	11.1 10.5 8.5 8.7 9.9	10.0 8.6 7.2 7.0 8.5	14.0 13.9 13.9 14.4 14.9	12.1 12.1 12.2 12.3 13.1	16.1 16.6 18.1 18.0 18.0	15.0 15.4 16.9 17.4 17.4	20.1 21.4 21.6 20.6 20.5	19.5 20.4 20.5 19.4 17.5	19.7 20.0 19.6 18.1 18.1	13.5 17.5 17.0 16.0 15.5
2 3 4	8.4 8.9 9.1	6.0 6.8 7.4	10.5 8.5 8.7	8.6 7.2 7.0	13.9 13.9 14.4 14.9 14.9 15.1 15.0	12.1 12.2 12.3	16.6 18.1 18.0	15.4 16.9 17.4	21.4 21.6 20.6	20.5 19.4	20.0 19.6 18.1	17.0 16.0
2 3 4 5 6 7 8 9	8.4 8.9 9.1 9.2 10.4 10.2 10.0 9.9 9.0	6.0 6.8 7.4 8.1 8.8 8.4 8.7	10.5 8.5 8.7 9.9 11.5 12.3 12.4 12.2 12.3	8.6 7.2 7.0 8.5 9.1 10.5 11.1 10.6 10.5	13.9 13.9 14.4 14.9 14.9 15.1 15.0 12.9 13.9	12.1 12.2 12.3 13.1 13.2 13.6 13.0 12.2	16.6 18.1 18.0 18.0 18.1 18.4 18.6 18.5	15.4 16.9 17.4 17.4 17.1 17.5 17.5	21.4 21.6 20.6 20.5 20.1 19.9 20.1 19.6	20.5 19.4 17.5 19.0 19.1 19.0 18.9	20.0 19.6 18.1 18.1 17.6 16.4 16.5	17.0 16.0 15.5 15.1 13.9 14.3 14.8
2 3 4 5 6 7 8 9 10 11 12 13 14	8.4 8.9 9.1 9.2 10.4 10.0 9.9 9.0 9.0 8.1 6.9 8.1	6.0 6.8 7.4 8.1 8.8 8.7 8.4 7.9 7.8 6.3 6.1 6.1	10.5 8.5 8.7 9.9 11.5 12.3 12.4 12.2 12.3 12.2 12.2 11.2	8.6 7.2 7.0 8.5 9.1 10.5 11.1 10.5 11.1 10.6 9.8 10.0	13.9 13.9 14.4 14.9 15.1 15.0 12.9 13.9 14.7 14.8 15.5 16.1	12.1 12.2 12.3 13.1 13.6 13.6 12.2 11.7 12.3 13.6 13.6 13.7 13.6	16.6 18.1 18.0 18.0 18.1 18.4 18.6 18.5 17.6 17.6 16.6 18.5	15.4 16.9 17.4 17.1 17.1 17.5 17.5 17.0 15.6 15.6 16.5	21.4 21.6 20.6 20.5 20.1 19.9 20.1 19.6 20.1 20.0 19.1 18.6	20.5 19.4 17.5 19.0 19.1 19.0 18.9 19.1 18.6 19.0 18.0 16.5	20.0 19.6 18.1 17.6 16.4 16.5 17.0 17.9 18.9 18.5 15.4	17.0 16.0 15.5 15.1 13.9 14.8 13.9 14.8 13.9 13.9
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13	8.4 8.9 9.1 9.2 10.4 10.0 9.9 9.0 8.1 10.3 11.8 11.9 10.9	6.0 6.8 7.4 8.1 8.8 8.7 8.4 7.9 7.8 6.1 6.4 7.6 9.7 11.2 9.7	10.5 8.5 8.7 9.9 11.5 12.3 12.4 12.2 12.3 12.2 11.2 12.1 12.0 11.7 11.0 10.6	8.6 7.2 7.0 8.5 9.1 10.5 11.1 10.6 10.6 10.6 10.6 10.6 10.6	13.9 13.9 14.4 14.9 14.9 15.1 15.0 12.9 14.7 14.8 16.1 16.0	12.1 12.2 12.3 13.1 13.6 13.6 13.0 12.2 11.7 12.3 13.6 14.8 15.0 14.4 14.7	16.6 18.1 18.0 18.0 18.1 18.4 18.6 17.6 17.6 17.6 18.5 19.1 20.1 19.6 17.9 18.5	15.4 16.9 17.4 17.1 17.5 17.5 17.0 15.6 15.6 16.5 17.5 18.4 17.9 16.9	21.4 21.6 20.6 20.5 20.1 19.9 20.1 20.0 20.0 19.1 18.6 18.1 18.3 18.4 18.8	20.5 19.4 17.5 19.0 19.1 19.0 18.9 19.1 18.6 19.0 16.5 16.2	20.0 19.6 18.1 17.6 16.4 16.5 17.9 18.0 15.4 15.5 16.4 15.5	17.0 16.5 15.5 15.9 13.9 14.8 13.95 13.95 13.95 14.38 14.38 14.38 12.9
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30	8.4 8.9 9.1 10.2 10.0 9.9 9.0 9.1 10.3 11.8 11.9 10.9 9.7 12.0 12.0 11.9 11.3 11.3	6.0 6.8 7.4 8.1 8.4 7.8 8.4 7.6 9.7 11.2 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	10.5 8.5 8.7 9.9 11.5 12.3 12.4 12.2 12.3 12.2 12.1 12.0 11.7 11.0 10.6 10.4 10.1 11.5 11.3 11.3 11.3 12.4	8.6 7.2 7.0 8.5 9.1 10.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	13.9 13.9 14.9 14.9 15.1 15.0 12.9 14.7 14.8 15.5 16.1 16.2 16.1 16.2 16.4 17.1 17.2 17.0 18.0 18.4 17.6	12.1 12.2 13.1 13.6 13.6 13.6 13.7 13.6 14.4 14.7 15.2 15.9 16.1 16.9 17.4 16.1 16.1 16.1	16.6 18.1 18.0 18.0 18.1 18.4 18.6 17.6 17.6 16.6 17.6 17.6 18.5 19.1 19.6 19.6 19.1 20.1 18.6 21.1 22.1 22.4 21.5 20.1	15.4 16.9 17.4 17.1 17.5 17.5 17.5 17.5 15.6 16.5 17.5 18.4 17.9 16.9 17.0 19.0 19.5 20.5 20.6 19.5	21.4 21.6 20.6 20.5 20.1 19.9 20.1 20.0 20.0 19.1 18.6 18.1 18.3 18.4 19.0 18.1 17.3 17.3 17.3 17.3 17.3 17.6 19.6 19.6	20.5 19.4 17.5 19.1 19.0 18.9 19.1 18.6 18.0 16.5 16.2 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.1 15.6	20.0 19.6 18.1 17.6 16.5 17.9 18.0 16.5 17.9 18.0 16.5 15.5 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	17.0 16.5 15.9 13.9 14.8 13.5 13.3 14.3 13.3 14.3 12.2 12.3 13.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 15.3 16.3 17.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 29	8.4 8.9 9.2 10.4 10.0 9.9 9.0 9.1 10.0 9.9 9.1 11.9 11.9 12.0 12.0 11.9 11.9 11.9 11.9	6.0 6.8 7.4 8.1 8.8 8.4 7.8 8.4 7.6 9.7 11.5 9.7 7.9 8.5 8.1 11.0 10.4 10.4 10.4 10.4 10.4 10.4 10	10.5 8.5 8.7 9.9 11.5 12.3 12.4 12.2 12.3 12.2 12.1 12.0 12.0 11.7 11.0 10.6 10.4 10.1 11.5 11.3 11.5 11.3	8.6 7.2 8.5 9.15 11.1 10.5 10.6 10.6 10.6 10.9 9.5 9.5 9.6 9.5 10.3 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	13.9 13.9 14.9 15.1 15.0 12.9 13.9 14.7 15.5 16.1 16.2 16.2 16.4 16.2 17.4 17.2 17.0 17.6 18.0 17.4 17.4 17.4	12.1 12.2 12.3 13.1 13.6 13.0 12.2 11.7 12.3 13.7 13.6 14.4 14.7 15.2 15.5 15.9 16.2 16.1 16.9 17.4 15.1	16.6 18.1 18.0 18.0 18.1 18.4 18.6 17.5 16.6 17.5 16.6 17.9 18.5 19.1 20.1 19.1 21.1 22.1 22.4 21.5 20.0	15.4 16.9 17.4 17.1 17.5 17.5 17.5 15.6 16.5 17.5 18.4 17.9 16.9 17.5 19.5 19.5 19.5 20.1 20.5 21.6	21.4 21.6 20.6 20.5 20.1 19.9 20.1 20.1 20.0 19.1 18.6 18.1 18.3 18.4 18.8 19.0 18.1 17.2 17.3 17.0	20.5 19.4 17.5 19.0 19.1 19.0 18.9 19.1 18.0 16.5 16.2 16.3 16.7 16.7 16.7 16.7 16.7 16.4 15.9	20.0 19.6 18.1 17.6 16.4 16.9 18.0 17.9 18.0 15.4 15.5 16.4 15.5 16.5 15.5 17.6 16.4 15.5 17.6 16.5 17.6 16.4 16.5 17.6 16.5 17.6 16.5 17.6 16.5 17.6 16.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6	17.0 16.5 15.1 13.9 14.3 13.3 14.3 13.3 14.3 14.2 12.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 13.3 14.3 14.3 15.3 16.3 17.3

YEAR MAXIMUM 22.5 MINIMUM .4

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09073300 ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN, CO

LOCATION.--Lat 39°08'28", long 106°46'25", Pitkin County, Hydrologic Unit 14010004, on left bank in the White River National Forest at Difficult Creek Campground, 0.45 mi above Difficult Creek tributary and 4.25 mi southeast of Aspen.

DRAINAGE AREA .-- 75.8 mi².

PERIOD OF RECORD .-- October 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,120 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1-15, Oct. 23 to Nov. 4, Nov. 6 to Mar. 3, and Sept. 29, 30.

Records fair except for estimated daily discharges, which are poor. Transmountain diversion 11 mi upstream through Twin Lakes Tunnel to Arkansas River basin since May 24, 1935 (17,900 acre-ft diverted, during current year, furnished by U.S. Bureau of Reclamation). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--8 years, 144 ft3/s; 104,300 acre-ft/yr, including diversion by Twin Lakes tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,350 ft³/s, June 8, 1985, gage height, 5.10 ft, from rating curve extended above 910 ft³/s; minimum daily, 8.0 ft³/s, Jan. 11, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,450 ${\rm ft}^3/{\rm s}$ at 2200 June 8, gage height, 4.16 ft; minimum daily, 14 ${\rm ft}^3/{\rm s}$, Feb. 28.

		DISCHAI	RGE, CUBIC	C FEET PER	SECOND, ME	WATER YEA	R OCTOBER	1986 TO	SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	50 51 50 49 46	33 32 29 26 28	28 27 27 27 27	25 24 24 24 23	20 19 19 19 19	15 15 15 15 15	16 16 16 17 17	121 115 92 79 81	443 491 610 705 765	325 302 283 265 251	34 35 33 31 32	29 25 24 31 26
6 7 8 9 10	52 60 61 63 90	33 32 31 31 31	26 26 27 28 28	23 23 22 22 21	19 18 18 18	15 16 16 16 16	18 18 18 20 20	105 115 140 171 189	800 825 1100 1260 1160	249 215 169 149 90	33 35 38 39 38	21 21 21 20 20
11 12 13 14 15	84 80 76 72 70	32 33 32 32 32	28 28 27 28 26	21 21 21 20 20	18 18 18 18	16 16 16 17	19 20 19 20 20	214 240 245 286 376	1020 990 979 1030 1040	65 61 60 58 54	34 35 35 35 33	20 19 19 21 28
16 17 18 19 20	67 63 61 59 58	32 32 32 31 31	25 25 25 25 25	21 20 19 20 20	18 19 20 20 19	17 17 17 17 17	24 30 36 41 43	385 412 315 288 305	972 893 741 565 564	53 52 53 49 46	33 32 31 31 31	28 28 27 25 24
21 22 23 24 25	40 36 34 36 36	30 32 30 29 28	26 26 25 25 25	19 18 19 19	17 17 16 16 15	17 17 17 17 17	36 40 52 67 76	293 328 372 448 447	540 549 540 511 498	44 42 40 40 38	32 40 46 45 45	23 22 24 25 24
26 27 28 29 30 31	36 35 35 34 34	28 29 29 30 28	26 26 26 25 25 25	19 19 20 20 21 20	15 15 14 	17 17 18 18 21	91 105 109 112 117	433 381 363 385 334 353	456 435 428 396 359	39 44 42 41 38 39	41 37 35 35 33 31	22 21 21 19 19
TOTAL MEAN MAX MIN AC-FT	1653 53•3 90 34 3280	918 30.6 33 26 1820	813 26.2 28 25 1610	647 20.9 25 18 1280	498 17.8 20 14 988	514 16.6 21 15 1020	1253 41.8 117 16 2490	8411 271 448 79 16680	21665 722 1260 359 42970	3296 106 325 38 6540	1098 35.4 46 31 2180	697 23.2 31 19 1380

CAL YR 1986 TOTAL 30784 MEAN 84.3 MAX 509 MIN 15 AC-FT 61060 WTR YR 1987 TOTAL 41463 MEAN 114 MAX 1260 MIN 14 AC-FT 82240

09073400 ROARING FORK RIVER NEAR ASPEN, CO

LOCATION.--Lat 39°10'48", long 106°48'05", Pitkin County, Hydrologic Unit 14010004, on right bank 25 ft upstream from private bridge, 115 ft upstream from Salvation ditch headgate, 1.0 mi southeast of Aspen, and 2.0 mi upstream from Hunter Creek.

DRAINAGE AREA .-- 108 mi2.

PERIOD OF RECORD .-- October 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is 8,014.01 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 25, 1968, at site 85 ft upstream at datum 1.16 ft, higher.

REMARKS.--Estimated daily discharges: Oct. 1-15, Dec. 16-18, 20, 22, 23, 25-27, Dec. 29 to Jan. 1, Jan. 3, 10, 11, 15-18, 22, 30, Feb. 27 to Mar. 1, June 2, 3, 10-12, and June 15-23. Records good except for estimated daily discharges, which are poor. Transmountain diversion 14 mi upstream through Twin Lakes tunnel to Arkansas River basin since May 24, 1935 (17,900 acre-ft diverted, current year, provided by U.S. Bureau of Reclamation). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--23 years, 150 ft3/s; 108,700 acre-ft/yr, including diversion by Twin Lakes tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,230 ft³/s, June 9, 1985, gage height, 5.29 ft; minimum daily, 12 ft³/s, Nov. 28, 1976.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,290 ft³/s at 0700 June 9, gage height, 4.24 ft; minimum daily, 29 ft³/s, Feb. 28.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE	R OCTOBER ES	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	72 70 70 68 66	61 60 58 60	54 53 55 54 55	39 40 39 40 39	35 35 35 33 33	30 33 32 32 32	33 33 33 35 34	195 183 143 120 111	531 620 640 685 733	411 373 349 334 322	58 62 56 52 52	45 42 39 45 44
6 7 8 9 10	64 70 78 78 110	62 61 55 61 59	54 54 54 51 44	39 38 38 36 34	33 36 35 34 33	33 35 35 34 34	34 34 36 38 36	123 154 186 223 254	730 806 1050 1190 1160	306 271 223 212 153	52 57 66 56 64	38 37 38 38 36
11 12 13 14 15	100 94 92 90 88	59 63 59 61 62	47 50 50 49 49	37 39 40 36 35	33 33 33 33 33	33 33 34 34 34	37 37 35 35 41	280 313 332 401 448	1100 1050 979 1010 1100	117 115 112 103 96	55 54 52 52 50	35 36 35 37 43
16 17 18 19 20	87 86 86 84 84	61 59 59 61 60	48 47 46 46 44	36 35 33 35 35	33 33 33 32 33	34 34 34 33 33	47 59 74 82 85	454 438 416 378 388	1060 1020 920 840 600	91 93 94 83 77	48 48 45 44 43	48 47 45 42 41
21 22 23 24 25	65 58 56 58 57	57 62 52 57 57	45 43 42 43 42	34 32 33 33 33	34 34 33 33 32	33 34 34 33 32	69 73 95 119 136	354 384 429 472 471	580 570 560 528 516	76 74 69 65	43 56 69 71 70	40 42 39 41 41
26 27 28 29 30 31	58 57 58 59 60	59 55 59 56 55	40 43 45 43 42 41	34 35 35 35 34 36	31 30 29	32 33 33 39 31 32	146 169 178 179 186	455 420 393 390 366 406	474 460 451 431 412	61 73 78 73 67 65	62 54 51 53 51 47	39 38 38 37 37
TOTAL MEAN MAX MIN AC-FT	2281 73.6 110 56 4520	1771 59.0 63 52 3510	1473 47.5 55 40 2920	1117 36.0 40 32 2220	927 33.1 36 29 1840	1032 33.3 39 30 2050	2228 74.3 186 33 4420	10080 325 472 111 19990	22806 760 1190 412 45240	4698 152 411 61 9320	1693 54.6 71 43 3360	1203 40.1 48 35 2390

CAL YR 1986 TOTAL 39609 MEAN 109 MAX 516 MIN 29 AC-FT 78560 WTR YR 1987 TOTAL 51309 MEAN 141 MAX 1190 MIN 29 AC-FT 101800

09074000 HUNTER CREEK NEAR ASPEN, CO

LOCATION.--Lat 39°12'21", long 106°47'49", Pitkin County, Hydrologic Unit 14010004, on right bank 280 ft upstream from headgate of Red Mountain ditch, 1.5 mi upstream from mouth, and 1.5 mi northeast of Aspen.

DRAINAGE AREA . -- 41.1 mi2.

PERIOD OF RECORD. -- June 1950 to September 1956, September 1969 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,610 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 1, 1969, at site 220 ft downstream, at different datum.

REMARKS.--Estimated daily discharges: Oct. 24, 25, Nov. 7 to May 12. Records fair except for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Charles H. Boustead tunnel by feeder conduit. Several small diversions upstream from station for irrigation of hay meadows upstream from and downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--16 years (water years 1951-1956, 1970-1979), 50.7 ft³/s; 36,730 acre-ft/yr, prior to diversion through Charles H. Boustead Tunnel; 8 years (water years 1980-87), 48.0 ft³/s; 34,780 acre-ft/yr, subsequent to diversions through Charles H. Boustead Tunnel.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,170 ft³/s, June 8, 1985, gage height, 2.33 ft; from rating curve extended above 300 ft³/s; maximum gage height, 4.30 ft, Nov. 30, 1984 (backwater from ice); minimum discharge not determined.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 890 ft³/s at 2400 June 8, gage height, 2.08 ft; minimum daily, 5.0 ft³/s, Mar. 28.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE		1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	45 44 41 44 44	14 14 15 16 16	11 11 11 11	11 12 12 12 11	11 10 9.6 9.4 9.0	6.8 6.8 7.0 7.0	5.6 5.8 5.8 6.0	74 68 60 56 57	281 351 367 430 510	95 74 61 52 48	38 30 26 23 20	12 12 11 11
6 7 8 9 10	39 40 39 36 35	16 15 16 15 15	11 12 13 14 14	12 12 11 11	8.4 8.2 8.4 8.6	6.8 7.0 7.2 8.0 7.5	6.0 6.1 6.2 6.2	58 60 70 90 120	483 554 737 624 436	41 35 29 29 28	19 27 40 25 20	11 10 10 10 9.4
11 12 13 14 15	39 35 32 31 28	15 16 14 15 14	14 13 12 12 12	11 12 12 12 12	9.0 9.2 9.6 9.2 8.6	7.0 6.8 6.6 6.2 7.0	6.6 7.8 7.0 6.8 6.9	150 200 288 414 535	358 393 406 368 364	29 31 29 28 26	18 18 17 17 15	9.0 9.0 9.4 11
16 17 18 19 20	25 25 23 21 21	14 14 14 14 14	12 11 11 12 12	12 12 12 13 12	8.4 8.0 7.6 7.2 7.0	6.4 6.6 6.8 6.6	7.2 8.0 9.0 11	542 517 424 306 326	341 250 178 150 136	26 31 39 28 27	14 13 12 11	13 14 14 11
21 22 23 24 25	21 21 19 18 18	13 13 13 13	12 11 11 12 12	11 11 10 10 11	7.2 7.4 7.8 7.4 7.0	6.0 6.0 6.2 5.8	11 12 15 20 26	252 184 169 169 140	120 117 106 108 100	25 28 25 22 21	12 20 25 32 31	9.9 9.4 9.4 9.0
26 27 28 29 30 31	18 16 15 15 14 14	12 12 12 12 12 12	11 11 12 13 12 11	11 11 11 10 10	6.8 6.6 6.4 	6.0 6.0 5.0 5.6 5.0 5.2	35 45 56 66 78	134 122 103 100 97 149	97 86 83 62 58	24 39 39 42 40 50	25 18 15 15 14 12	9.0 9.0 9.0 8.7 8.7
TOTAL MEAN MAX MIN AC-FT	876 28.3 45 14 1740	421 14.0 16 12 835	368 11.9 14 11 730	351 11.3 13 10 696	231.4 8.26 11 6.4 459	199.9 6.45 8.0 5.0 397	506.0 16.9 78 5.6 1000	6034 195 542 56 11970	8654 288 737 58 17170	1141 36.8 95 21 2260	633 20.4 40 11 1260	307.9 10.3 14 8.7 611

CAL YR 1986 TOTAL 20440.8 MEAN 56.0 MAX 417 MIN 5.0 AC-FT 40540 WTR YR 1987 TOTAL 19723.2 MEAN 54.0 MAX 737 MIN 5.0 AC-FT 39120

09074800 CASTLE CREEK ABOVE ASPEN, CO

LOCATION.--Lat 39°05'15", long 106°48'42", Pitkin County, Hydrologic Unit 14010004, on right bank 0.4 mi downstream from Forest Service bridge, 0.4 mi upstream from Sandy Creek, and 7 mi south of Aspen.

DRAINAGE AREA. -- 32.2 mi.

PERIOD OF RECORD. -- September 1969 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,100 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 23 to Apr. 14, and July 29 to Aug. 25. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 18 years, 44.7 ft3/s; 32,380 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 559 ft³/s, June 30, 1984, gage height, 3.64 ft; maximum gage height, 3.88 ft, June 23, 1970; minimum daily discharge, 6.0 ft³/s, Jan. 7, 1982.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 16	2300	216	2.37	June 8	2400	*364	*3.01

Minimum daily discharge, 10 ft³/s, Mar.4.

	D	ISCHARGE, 1	IN CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE		1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	35 34 34 33 32	25 25 24 24 24	17 17 17 17 17	15 15 16 17 18	13 13 14 14 14	11 11 11 10 12	12 13 13 13	84 79 66 58 54	103 126 140 167 190	128 129 124 116 109	60 58 58 58 58	28 28 28 28 27
6 7 8 9 10	31 31 31 31 31	23 23 21 20 20	17 17 17 17 18	18 17 16 15 15	13 13 14 14 13	14 14 14 13 14	12 12 12 12 12	53 59 68 80 88	197 226 271 306 258	105 102 100 100 98	60 60 62 62 60	26 26 27 25 23
11 12 13 14 15	33 30 29 30 30	20 21 20 20 20	17 17 18 18 18	15 15 15 15 14	14 14 15 14 14	13 12 12 13 14	12 13 14 15	94 105 105 119 150	255 264 257 262 264	91 88 80 82 81	60 58 56 53 50	23 23 22 23 25
16 17 18 19 20	29 29 28 29 29	20 19 19 20 19	17 17 17 18 18	14 13 14 14 13	14 14 13 13	13 12 12 13 13	16 16 17 17 18	192 176 145 138 119	256 229 207 199 186	79 82 74 69	48 48 46 44 44	25 24 23 23 22
21 22 23 24 25	28 27 27 26 26	19 19 17 18 17	17 17 17 16 15	13 13 13 13	12 12 12 12 12	13 13 13 12	19 19 20 23 27	111 101 98 97 90	172 162 169 168 162	69 74 72 66 67	46 58 66 74 65	23 22 22 22 22 22
26 27 28 29 30 31	26 26 25 25 24 25	17 17 17 17 17	15 15 15 15 16 15	14 14 13 13 13	13 13 12 	12 11 11 11 11	38 54 64 76 81	86 79 76 74 72 81	160 153 142 129 123	69 75 81 76 70 66	49 41 36 34 31 29	22 22 22 22 21
TOTAL MEAN MAX MIN AC-FT	904 29.2 35 24 1790	602 20.1 25 17 1190	519 16.7 18 15 1030	450 14.5 18 13 893	370 13.2 15 12 734	381 12.3 14 10 756	698 23.3 81 12 1380	2997 96.7 192 53 5940	5903 197 306 103 11710	2691 86.8 129 66 5340	1632 52.6 74 29 3240	719 24.0 28 21 1430

CAL YR 1986 TOTAL 20579 MEAN 56.4 MAX 324 MIN 13 AC-FT 40820 WTR YR 1987 TOTAL 17866 MEAN 48.9 MAX 306 MIN 10 AC-FT 35440

09075700 MAROON CREEK ABOVE ASPEN, CO

LOCATION.--Lat 39°07'25", long 106°54'17", Pitkin County, Hydrologic Unit 14010004, on left bank 0.3 mi upstream from Silver Queen Forest Service campground, 1.2 mi downstream from confluence of East and West Maroon Creeks, and 7.2 mi southwest of Aspen.

DRAINAGE AREA .-- 35.4 mi2.

PERIOD OF RECORD. -- September 1969 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,720 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 10 to Apr. 15. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Natural regulation by Maroon Lake. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--18 years, 69.3 ft3/s; 50,210 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 836 ft³/s, June 22, 1980, gage height, 3.39 ft, from rating curve extended above 350 ft³/s, but may have been higher during a period of indefinite stage-discharge relationship in June, 1984; maximum gage height, 4.53 ft, Feb. 3, 1972 (backwater from ice); minimum daily discharge, 9.0 ft³/s, Mar. 29, 1975.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 14	2100	*230	*2.72				

Minimum daily, 13 ft3/s, Mar. 29.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU	R OCTOBER ES	1986 ТО	SEPTEMBER	1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	72 72 72 70 69	52 51 50 49 48	38 37 36 36 36	23 23 23 23 25	16 17 18 16 16	18 17 17 17 18	14 14 14 15	53 54 50 47 52	93 108 124 135 147	163 158 152 139 132	105 111 104 101 99	63 62 61 60 58
6 7 8 9 10	68 67 66 65	48 48 47 46 45	36 36 35 35 27	25 25 25 25 24	16 18 17 16 15	19 21 21 20 18	15 15 15 15 15	57 61 71 72 78	167 176 197 210 199	132 130 130 128 127	96 96 97 92 89	57 57 56 54 53
11 12 13 14 15	67 65 64 62 62	45 44 44 44	29 32 30 30 30	24 24 24 24 24	16 16 16 16 17	17 16 16 15	15 15 15 15 15	82 89 95 101 121	192 202 204 217 217	121 120 113 112 107	86 84 82 80 78	52 51 50 50 50
16 17 18 19 20	60 60 59 59	43 42 42 43 42	31 31 28 27 27	24 23 23 22 22	16 16 16 15	15 15 15 15	17 18 19 19 20	128 139 139 139 137	194 205 211 207 197	106 107 104 100 100	75 73 71 69 67	49 48 47 46 46
21 22 23 24 25	59 58 56 56 55	41 41 41 40 40	24 24 24 24 25	21 21 20 20 18	18 17 17 17 17	15 15 15 15 14	20 21 22 24 26	130 126 126 118 109	182 166 164 163 159	100 102 104 102 105	66 68 69 74 73	45 45 44 43 43
26 27 28 29 30 31	54 53 52 52 51 51	39 39 39 38 38	25 25 24 27 25 26	17 17 17 17 20 17	14 17 16 	14 14 14 13 14	30 33 38 43 48	105 98 92 88 87 86	159 158 156 155 158	107 110 111 111 106 106	69 66 65 64 64	42 41 41 40
TOTAL MEAN MAX MIN AC-FT	1900 61.3 72 51 3770	1313 43.8 52 38 2600	920 29.7 38 24 1820	681 22.0 25 17 1350	459 16.4 18 14 910	497 16.0 21 13 986	620 20.7 48 14 1230	2930 94.5 139 47 5810	5222 174 217 93 10360	3645 118 163 100 7230	2498 80.6 111 64 4950	1495 49.8 63 40 2970

CAL YR 1986 TOTAL 34600 MEAN 94.8 MAX 519 MIN 18 AC-FT 68630 WTR YR 1987 TOTAL 22180 MEAN 60.8 MAX 217 MIN 13 AC-FT 43990

09076520 OWL CREEK NEAR ASPEN. CO

LOCATION.--Lat 39°13'25", long 106°52'45", in NE4SE4 sec.33, T.9 S., R.85 W., Pitkin County, Hydrologic Unit 14010004, on left bank 1.2 mi upstream from mouth and 3.8 mi northwest of Aspen.

DRAINAGE AREA. -- 6.60 mi2.

PERIOD OF RECORD. -- October 1974 to current year.

GAGE.--Water-stage recorder with V-notch concrete control. Elevation of gage is 7,870 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 1-3, 9-15, 18-30, Dec. 1-4, 11-29, Jan. 2 to Apr. 14, Sept. 22-30. Records good except for estimated daily discharges, which are poor. Several small diversions upstream from station for irrigation of hay meadows. Water imported upstream from station, at times, from West Willow Creek through Willow and Owl ditches. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years, 3.19 ft3/s; 2,310 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 90 ft³/s, May 21, 1984, gage height, 2.39 ft; no flow, Feb. 9 to Mar. 6, Sept. 10, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 28 ${\rm ft}^3/{\rm s}$ at 1700 May 1, gage height, 1.69 ft; minimum daily, 0.12 ${\rm ft}^3/{\rm s}$, Sept. 11.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU		1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	.70 .72 .70 .68 .68	.80 .80 .76 .77	.50 .52 .54 .56	.27 .27 .26 .26 .27	.30 .31 .32 .31	.27 .29 .30 .28	.45 .54 .64 .76	26 28 24 20 18	4.6 1.4 .78 .77 .56	2.1 1.6 1.4 1.2	1.2 .71 .84 .49	.21 .21 .16 .19
6 7 8 9 10	.68 .66 .66 .68	.63 .62 .62 .54	.62 .62 .62 .62	.26 .28 .26 .27 .28	.29 .31 .33 .32 .33	.29 .31 .33 .34	.76 .82 .90 1.0	17 18 20 21 22	.55 .83 2.3 3.3 2.0	1.2 1.4 1.6 2.2 2.1	.40 .55 1.1 .56 .41	.16 .16 .16 .16
11 12 13 14 15	.68 .64 .68 .68	.52 .56 .56 .54	.52 .46 .49 .47	.29 .27 .29 .26 .24	.32 .31 .32 .30	.33 .31 .32 .33	1.1 1.1 1.2 1.4 2.3	22 22 23 23 23	1.7 2.3 2.2 2.4 2.5	2.1 2.1 1.9 1.7	.38 .38 .38 .40	.12 .14 .14 .16 .18
16 17 18 19 20	.72 .77 .77 .77	.62 .76 .72 .70	.52 .48 .49 .46	.23 .26 .27 .27 .26	.30 .28 .26 .27	.34 .33 .35 .37	4.4 4.3 4.7 5.0 4.7	24 23 22 20 17	2.4 2.2 1.5 1.6	1.2 1.6 1.7 1.1	.30 .30 .22 .22	.19 .19 .19 .19
21 22 23 24 25	.77 1.0 1.1 .99	.60 .62 .46 .48 .50	.48 .41 .42 .44	.26 .26 .27 .30	.26 .25 .26 .28	.34 .34 .36 .37	3.8 4.5 5.9 7.1	16 14 13 12 11	1.7 1.7 1.6 1.6	.91 .77 .56 .46	.18 .21 .32 .48	.16 .16 .16 .15
26 27 28 29 30 31	.84 .77 .77 .77 .77	.54 .52 .56 .60 .54	.38 .36 .37 .35 .28	.31 .30 .29 .28 .28	.25 .24 .25	.37 .36 .35 .36	14 16 23 26 26	9.0 8.3 7.8 7.3 6.8 6.1	1.4 1.3 1.2 1.8 1.8	.45 .62 .55 .83 .91	.38 .27 .22 .25 .25	.15 .14 .14 .14
TOTAL MEAN MAX MIN AC-FT	23.59 .76 1.1 .64 47	18.38 1 .61 .80 .46 36	4.87 .48 .63 .25 29	8.47 .27 .31 .23	8.12 .29 .33 .24 16	10.38 .33 .39 .27 21	177.17 5.91 26 .45 351	544.3 17.6 28 6.1 1080	53.29 1.78 4.6 .55 106	38.95 1.26 2.2 .43 77	13.04 .42 1.2 .18 26	4.90 .16 .21 .12 9.7

CAL YR 1986 TOTAL 1367.25 MEAN 3.75 MAX 39 MIN .25 AC-FT 2710 WTR YR 1987 TOTAL 915.46 MEAN 2.51 MAX 28 MIN .12 AC-FT 1820

09078600 FRYINGPAN RIVER NEAR THOMASVILLE, CO

LOCATION.--Lat 39°20'41", long 106°40'23", in NW4NW4 sec.21, T.8 S., R.83 W., Pitkin County, Hydrologic Unit 14010004, on right bank 400 ft upstream from private bridge, 400 ft downstream from North Fork, 1.6 mi southeast of Thomasville, and 1.7 mi northwest of Norrie.

DRAINAGE AREA. -- 134 mi2.

PERIOD OF RECORD .-- October 1975 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,210 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 18, 22-30, Jan. 1, 3-7, Jan. 8 to Mar. 20, and July 6-9. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Arkansas River basin through Busk-Ivanhoe tunnel since June 1925 and Charles H. Boustead tunnel since May 16, 1972.

COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.

AVERAGE DISCHARGE. -- 12 years, 106 ft3/s; 76,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft³/s, June 8, 1987, gage height, 4.50 ft; minimum daily, 10 ft³/s, Nov. 28, 1976, Jan. 2, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,550 ${\rm ft}^3/{\rm s}$ at 0330 June 8, gage height, 4.50 ft; minimum daily, 15 ${\rm ft}^3/{\rm s}$, Jan. 2, 3.

DISCHARGE CURIC FEET DER SECOND. WATER VEAR OCTORER 1086 TO SEPTEMBER 1087

		DISCH	ARGE, CUBI	C FEET P	ER SECOND	, WATER Y MEAN VALU	EAR OCTOB ES	ER 1986 1	TO SEPTEMB	ER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	95 91 90 93 93	64 66 61 56 53	40 38 40 38 40	16 15 15 16 18	22 23 24 25 25	23 24 25 26 27	27 27 28 31 31	416 355 257 208 197	467 564 571 620 669	360 294 266 255 212	99 90 83 84 77	51 50 51 50 50
6 7 8 9 10	90 90 86 84 80	51 51 42 44 53	40 41 41 38 28	20 21 20 19 19	25 25 25 25 25	28 29 29 28 28	31 35 37 38 37	205 270 318 371 436	676 773 1200 904 773	197 156 122 99 110	74 90 126 93 82	47 45 48 44 41
11 12 13 14 15	88 80 73 76 75	53 58 50 50 49	38 44 44 44	19 19 20 21 20	25 25 25 25 25	28 27 27 28 28	38 37 34 35 50	508 606 620 758 896	698 676 669 648 641	139 144 133 121 115	77 75 74 70 64	40 38 38 45 50
16 17 18 19 20	75 74 72 72 74	49 50 50 54 51	42 38 38 38 35	19 18 18 18 18	24 24 24 23 23	28 28 28 29 30	74 106 141 160 153	896 870 781 669 698	662 585 522 406 371	113 128 136 106 99	58 56 50 45 45	54 57 51 45 42
21 22 23 24 25	75 75 70 74 70	49 50 38 49 51	30 26 25 26 23	18 18 19 19	23 22 22 23 24	27 29 28 28 28	115 128 173 204 232	592 501 467 455 400	329 308 308 308 350	95 97 91 87 82	47 60 82 101 104	40 38 36 35 34
26 27 28 29 30 31	66 66 64 66 69	49 40 41 42 44	20 21 20 21 22 20	19 20 21 22 23 22	25 25 24 	28 27 26 26 25 26	248 287 350 371 388	371 339 299 303 289 329	344 313 313 327 329	97 147 153 146 136 117	95 69 69 67 61 56	34 34 34 33 31
TOTAL MEAN MAX MIN AC-FT	2412 77.8 95 64 4780	1508 50.3 66 38 2990	1043 33.6 44 20 2070	589 19.0 23 15 1170	675 24.1 25 22 1340	846 27.3 30 23 1680	3646 122 388 27 7230	14680 474 896 197 29120	16324 544 1200 308 32380	4553 147 360 82 9030	2323 74.9 126 45 4610	1286 42.9 57 31 2550

CAL YR 1986 TOTAL 57799 MEAN 158 MAX 862 MIN 20 AC-FT 114600 WTR YR 1987 TOTAL 49885 MEAN 137 MAX 1200 MIN 15 AC-FT 98950

09080190 RUEDI RESERVOIR NEAR BASALT, CO

LOCATION.--Lat 39°21'50", long 106°49'05", in NW4 sec.18, T.8 S., R.84 W., Pitkin County, Hydrologic Unit 14010004, in gatehouse of Ruedi Dam just upstream from Rocky Fork Creek and 13 mi east of Basalt.

DRAINAGE AREA. -- 223 mi2.

PERIOD OF RECORD. -- May 1968 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by an earthfill dam. Storage began in May 1968; dam completed July 16, 1968. Capacity, 102,300 acre-ft, 1969 survey, between elevations 7,540.00 ft, sill of auxiliary outlet, and 7,766.00 ft, crest of spillway. Dead storage below elevation 7,540.00 ft, 61 acre-ft. Figures given are total contents.

COOPERATION .-- Records provided by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 103,900 acre-ft, July 15, 1973, elevation, 7,767.56 ft; minimum after first filling, 48,000 acre-ft, May 13, 1971, elevation, 7,698.03 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 101,400 acre-ft, July 30, elevation, 7,764.99 ft; minimum contents, 55,400 acre-ft, April 17, 18, elevation, 7,709.35 ft.

MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	7,764.50 7,761.12 7,755.84 7,747.00	100,900 97,600 92,600 84,500	-3,300 -5,000 -8,100
CAL YR 1986			+3,900
Jan. 31. Feb. 28. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30.	7,736.96 7,726.87 7,715.18 7,714.33 7,739.42 7,762.70 7,764.97 7,762.98 7,759.17	75,000 68,000 59,400 58,800 78,000 99,100 101,300 99,400 95,700	-8,500 -8,000 -8,600 -600 +19,200 +21,100 +2,200 -1,900 -3,700
WTR YR 1987			- 5,200

09080400 FRYINGPAN RIVER NEAR RUEDI, CO

LOCATION.--Lat 39°21'56", long 106°49'30", in SE4SE4 sec.12, T.8 S., R.85 W., Eagle County, Hydrologic Unit 14010004, on right bank 0.4 mi downstream from Rocky Fork Creek and Ruedi Dam, 1.5 mi west of former site of Ruedi, and 12.5 mi east of Basalt.

DRAINAGE AREA . -- 238 mi2.

PERIOD OF RECORD. -- October 1964 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 7,473.25 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to Nov. 7, 1970, at site 2.0 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Jan. 13 to Apr. 24. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of hay meadows upstream from station. Transmountain diversions upstream from station to Arkansas River basin through Busk-Ivanhoe tunnel since June 1925 and Charles H. Boustead tunnel since May 16, 1972 (see elsewhere in this report). Flow regulated by Ruedi Reservoir (station 09080190) since May 18, 1968. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--20 years (water years 1968-87), 190 ft³/s; 137,700 acre-ft/yr, subsequent to completion of Ruedi Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,690 ft³/s, June 18, 1965, gage height, 5.16 ft, site and datum then in use; minimum daily, 16 ft³/s, Feb. 2, 1968 (result of storage in Ruedi Reservoir); minimum daily prior to construction of Ruedi Reservoir, 28 ft³/s, Mar. 4,1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 403 ft³/s at 0700, June 19, gage height, 2.45 ft; minimum daily, 120 ft³/s, Aug. 24-27.

		DISCH	ARGE, CUBI	C FEET I	ER SECOND	, WATER YEAR EAN VALUES	OCTOBER	1986 T	O SEPTEMBER	1987		
DA Y	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	157 157 157 157 157	152 152 152 152 150	169 170 170 170 171	188 188 188 188	190 190 190 190 190	190 190 190 190 190	180 180 180 180 180	236 273 273 292 325	376 376 381 381 381	218 226 259 259 259	147 147 147 147 145	122 123 124 124 124
6 7 8 9 10	157 157 156 155 155	150 150 150 150 152	176 176 209 251 263	188 188 188 188	190 190 190 190 190	190 190 190 190 190	175 175 175 175 175	325 325 325 325 325	381 381 381 381 381	263 263 227 188 188	145 145 145 145 145	125 126 126 126 126
11 12 13 14 15	155 155 155 155 155	155 155 157 157 159	270 217 191 191 191	188 188 188 190 190	190 190 190 190 190	190 190 190 190 190	175 175 175 175 175	325 325 329 337 345	381 381 381 381 381	188 151 148 1 49 150	143 143 143 143 143	127 128 128 128 128
16 17 18 19 20	155 155 155 155 155	160 160 160 161 162	191 191 191 191 191	190 190 190 190 190	190 190 190 190 190	185 185 185 185 185	177 179 183 187 190	349 354 363 367 367	381 381 390 403 403	150 150 150 150 150	143 141 141 141 131	129 130 130 130 131
21 22 23 24 25	155 155 155 155 157	162 162 164 165 165	191 191 188 188 188	190 190 190 190 190	190 190 190 190 190	185 185 185 185 185	194 194 194 194 201	372 376 376 376 376	403 403 350 305 291	150 150 150 150 150	124 124 122 120 120	132 132 132 132 133
26 27 28 29 30 31	165 165 165 160 153 152	165 166 167 167 167	188 188 188 188 188	190 190 190 190 190	190 190 190 	180 180 180 180 180 180	200 200 200 203 217	376 376 376 376 376 376	281 280 280 255 225	150 150 150 150 148 147	120 120 121 122 122 122	134 134 134 134 136
TOTAL MEAN MAX MIN AC-FT	4852 157 165 152 9620	4746 158 167 150 9410	6014 194 270 169 11930	5864 189 190 188 11630	5320 190 190 190 19550	186 190 180	185 217 175	10617 342 376 236 21060	10736 358 403 225 21290	5531 178 263 147 10970	4207 136 147 120 8340	3868 129 136 122 7670

CAL YR 1986 TOTAL 95034 MEAN 260 MAX 639 MIN 65 AC-FT 188500 WTR YR 1987 TOTAL 73098 MEAN 200 MAX 403 MIN 120 AC-FT 145000

09081600 CRYSTAL RIVER ABOVE AVALANCHE CREEK, NEAR REDSTONE, CO

LOCATION.--Lat 39°13'56", long 107°13'36", in SE 1_4 SW 1_4 sec.33, T.9 S., R.88 W., Pitkin County, Hydrologic Unit 14010004, on right bank 1.2 mi upstream from Avalanche Creek and 3.6 mi north of Redstone.

DRAINAGE AREA . -- 167 mi2.

PERIOD OF RECORD .-- October 1955 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,905 ft, from river-profile map.

REMARKS.--Estimated daily discharges: Jan. 22 to Mar. 2. Records good except for estimated daily discharges, which are poor. A few small diversions for irrigation upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 32 years, 305 ft 3/s; 221,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,180 ft³/s, June 25, 1983, gage height, 6.12 ft; minimum daily, 22 ft³/s, Dec. 5, 1955, Feb. 15, 1964, Jan 2, Feb. 17, 18, 1978.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 ft3/s, and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
May	17	0100	*1,670	*4.21

Minimum daily, 52 ft³/s, Jan. 18.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NON	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	260	181	114	64	66	66	85	873	689	615	223	126
2	258	177	113	77	66	68	90	827	862	592	242	130
3	286	177	113	72	70	60	97	666	969	581	211	126
4	257	172	109	84	74	65	104	559	1110	543	194	128
5	246	166	109	87	72	73	100	525	1190	504	183	125
6	252	167	108	83	70	85	105	554	1250	475	177	119
7	266	165	107	79	70	98	113	651	1370	450	230	117
8	273	157	102	77	70	103	122	757	1450	429	266	117
9	271	151	100	73	74	100	130	866	1490	427	202	109
10	272	156	72	57	76	94	134	934	1330	416	184	103
11	302	150	76	62	74	89	141	974	1240	370	173	101
12	264	150	80	74	76	87	140	1030	1240	363	168	99
13	230	145	88	72	78	92	130	1050	1220	337	162	99
14	223	145	87	73	80	93	128	1130	1270	328	158	104
15	216	143	93	58	80	91	144	1320	1300	323	148	100
16	206	140	96	74	78	88	187	1520	1320	318	144	98
17	200	141	91	59	78	83	268	1520	1220	341	139	97
18	200	144	86	52	76	84	356	1320	1120	315	135	94
19	195	183	95	75	74	85	378	1170	1050	274	131	91
20	196	163	90	69	70	83	336	1060	970	268	129	87
21	201	154	86	62	70	79	282	929	897	258	130	85
22	193	159	76	68	68	84	298	801	873	284	140	84
23	186	142	75	66	66	79	399	731	853	282	175	81
24	185	141	91	64	64	76	506	715	815	256	223	79
25	184	140	73	64	64	74	562	650	780	242	231	82
26 27 28 29 30 31	178 173 168 163 161 169	137 127 126 124 123	62 65 73 66 69 65	64 66 66 68 68	70 66 66 	73 77 73 75 67 78	634 709 771 820 859	616 544 498 489 467 520	784 752 736 730 646	268 267 278 258 242 284	208 171 155 144 134 129	82 82 80 77 75
TOTAL	6834	4546	2730	2145	2006	2522	9128	26266	31526	11188	5439	2977
MEAN	220	152	88.1	69.2	71.6	81.4	304	847	1051	361	175	99.2
MAX	302	183	114	87	80	103	859	1520	1490	615	266	130
MIN	161	123	62	52	64	60	85	467	646	242	129	75
AC-FT	13560	9020	5410	4250	3980	5000	18110	52100	62530	22190	10790	5900

CAL YR 1986 TOTAL 168130 MEAN 461 MAX 2530 MIN 62 AC-FT 333500 WTR YR 1987 TOTAL 107307 MEAN 294 MAX 1520 MIN 52 AC-FT 212800

09085000 ROARING FORK RIVER AT GLENWOOD SPRINGS, CO

LOCATION.--Lat 39°32'37", long 107°19'44", IN SW\dSE\d sec.9, T.6 S., R.89 W., Garfield County, Hydrologic Unit 14010004, on left bank at Glenwood Springs, 2,1000 ft, upstream from mounth.

DRAINAGE AREA .-- 1,451 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1905 to September 1909, September 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to October 1960, published as Roaring Fork at Glenwood Springs.

REVISED RECORDS.--WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 5,720.73 ft above National Geodetic Vertical Datum of 1929.
Prior to Nov. 20, 1915, nonrecording gage on highway bridge 800 ft downstream, at different datum. Nov. 20, 1915, to Oct. 26, 1917, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good. Diversions upstream from station for irrigation of about 35,000 acres. Transmountain diversions to Arkansas River basin through Busk-Ivanhoe tunnel since 1925, Twin Lakes tunnel since 1935, and Charles H. Boustead tunnel since 1972. Natural flow of stream affected by storage in Ruedi Reservoir on Fryingpan River (station 09080190) since May 1968.

AVERAGE DISCHARGE.--65 years (water years 1906-9, 1911-71), 1,368 ft³/s; 991,100 acre-ft/yr prior to diversion through Charles H. Boustead tunnel; 16 years (water years 1972-87), 1,301 ft³/s, 942,600 acre-ft/yr, subsequent to diversions through Charles H. Boustead tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,000 ft³/s, July 1, 1957, gage height, 8.65 ft; maximum gage height, 8.7 ft, June 14, 1921, from floodmarks; minimum discharge, 145 ft³/s, Jan. 21, 1935, gage height, 0.65 ft; minimum daily discharge, 179 ft³/s, Jan. 21, 1935.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,040 $\rm ft^3/s$ at 0900, June 9, gage height, 5.62 ft; minimum daily 485 $\rm ft^3/s$, Sept. 30.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT JUL NOV DEC JAN FEB MA R APR MA Y JUN AUG SEP 894 584 616 740 730 Ŕ 720 632 782 615 2710 740 761 ---TOTAL MEAN 749 MA X

CAL YR 1986 TOTAL 621494 MEAN 1703 MAX 7020 MIN 601 WTR YR 1987 TOTAL 460126 MEAN 1261 MAX 5720 MIN 485

COLORADO RIVER MAIN STEM

09085100 COLORADO RIVER BELOW GLENWOOD SPRINGS, CO

LOCATION.--Lat 39°33'18", long 107°20'13", in NWANW4 sec.9, T.6 S., R.89W., Garfield County, Hydrologic Unit 14010005, on left bank 0.6 mi downstream from Roaring Fork River and 1.0 mi northwest of Post Office in Glenwood Springs.

DRAINAGE AREA. -- 6,013 mi².

PERIOD OF RECORD. -- October 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is 5,700.75 ft above National Geodetic Vertical Datum of 1929 (Colorado State Highway Department benchmark).

REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation of 110,000 acres.

AVERAGE DISCHARGE.--21 years, 3,621 ft^3/s ; 2,623,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,500 ft³/s, May 25, 1984, gage height, 12.49 ft; minimum daily, 870 ft³/s, Feb. 11, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,100 ft³/s at 1300 June 9, gage height, 7.54 ft; minimum daily, 1,540 ft³/s, Mar. 30.

		DISCHARGE,	IN CUBIC	FEET	PER		, WATER MEAN VAL		BER 1	986	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN		FEB	MA R	APR		MA Y	JUN	JUL	AUG	SEP
1 2	3010 3030	3120 2960	2240 2170	1680 1740		1830 1860	1660 1690	1670 1690		650 860	5520 6350	4370 4260	2630 2650	2020 1990
2 3 4	3270 3330	29 10 2850	2160 2150	1780 1780		1810 1840	1700 1700	1650 1660	6	300	6750 7220	4060 4060	2520 2390	1950 1950
5	3200	2750	2140	1880		1760	1730	1730		000	7660	3910	2320	1990
6 7	3160 3130	2720 2750	2150 2180	1950 1880		1730 1730	1790 1860	1770 1810		810 020	7900 8320	3740 3530	2260 2330	1980 1930
7 8 9	3120 3040	2610 2490	2170 2200	1810 1750		1780 1790	1910 2010	1930 2000	5	430 920	9690 10600	3300 3190	2580 2470	1930 1880
10	3010	2570	1860	1600		1790	2010	2020		280	9850	3010	2300	1810
11 12	3180 3120	2510 2580	1690 1830	1580 1700		1860 1850	1900 1850	2020 2030		680 280	9360 8950	2890 2950	2190 2120	1710 1690
13	2970	2590	1910	1780		1890	1900	1990	7	420	8700	3090	2080	1760
14 15	2920 2920	2510 2530	1990 2000	1780 1690		1910 1820	1920 1960	1830 1890	7 8	770 840	8610 8660	3050 2850	2080 2040	1860 1890
16 17	2900 2870	2570 2570	2060 2040	1680 1570		1780 1860	1920 1830	2100 2750		600	8440 7950	2750 2740	2040 2000	1910 1880
18	2840	2550	1960	1560		1740	1750	3430	9	690	7230	2790	1990	1890
19 20	2810 2810	2690 2640	2040 2050	1770 1730		1730 1690	1800 1810	3820 3970		120 450	6720 6300	2730 2670	1940 1910	1870 1840
21 22	2800 2780	2540 2610	1980 1870	1570 1590		1680 1660	1780 1770	3490 3080		880 110	5980 5830	2560 2580	1900 2010	1770 1710
23	2890	2440	1790	1660		1700	1770	3280	6	910	5680	2520	2160	1700
24 25	2870 2850	2310 2360	1920 1830	1870 1940		1580 1750	1700 1670	4040 4750		740 500	5370 4970	2440 2370	2270 2470	1770 1740
26 27	2820 2780	2410 2340	1690 1700	1920 1870		1730 1710	1690 1670	5140 5480		290 890	4770 4510	2430 2520	2430 2250	1770 1790
28	2750	2270	1800	1910		1690	1640	5870	5	450	4380	3010	2080	1780
29 30	2750 2770	2280 2310	1800 1740	1870 1800			1610 1540	6270 6470		270 130	4310 4410	3020 2700	2010 2060	1750 1750
31	2870		1730	1830			1620			010		2840	2010	
TOTAL MEAN	91570 2954	77340 2578	60840 1963	54520 1759		19550 1770	55160 1779	91630 3054		910	210990 7033	94930 3062	68490 2209	55260 1842
MAX MIN	3330 2750	3120 2270	2240 1690	1950		1910 1580	2010	6470	10	100	10600 4310	4370 2370	2650 1900	2020 1690
AC-FT	181600			08100		8280	109400	1650 181700		300		188300	135800	109600

CAL YR 1986 TOTAL 1757810 MEAN 4816 MAX 19400 MIN 1690 AC-FT 3487000 WTR YR 1987 TOTAL 1121190 MEAN 3072 MAX 10600 MIN 1540 AC-FT 2224000

160 DIVIDE CREEK BASIN

09089500 WEST DIVIDE CREEK NEAR RAVEN, CO

LOCATION.--Lat 39°19'52", long 107°34'46", in NE\pi SW\frac{1}{4} sec.29, T.8 S., R.91 W., Mesa County, Hydrologic Unit 14010005, on left bank 10 ft, downstream from private road bridge, 0.8 mi upstream from Brook Creek, 8 mi south of Raven, and 16 mi south of Silt.

DRAINAGE AREA. -- 64.6 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1955 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,050 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 6-16, 19, 20, 24-30, Dec. 1-17, 27-29, Jan. 2-12, Mar. 6-10, 13-15, 21, 23-26, 28-30. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by water imported from Thompson Creek (Roaring Fork basin), Muddy Creek (Muddy Creek basin), and Buzzard Creek (Plateau Creek basin). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 32 years, 36.3 ft 3/s; 26,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,410 ft³/s, May 14, 1984, gage height, 5.83 ft, from rating curve extended above 670 ft³/s; no flow at times in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 160 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr 19	2000	170	3.98	May 16	2300	246	4.25
Apr 28	2200	* 344	*4.55	June 9	0300	202	3.99

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 1.6 ft³/s, Sept. 23-25, 28-30.

		DISCHARGE	, COBIC	reel ren		MEAN VALU		1900 10 .	DET LENDEN	1 1901		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	ма у	JUN	JUL	AUG	SEP
1 2 3 4 5	9.9 11 20 15 11	19 17 15 14 13	9.6 9.2 8.8 8.6 8.4	4.3 4.7 4.4 4.9 5.2	4.1 4.2 4.2 4.0 3.9	3.3 3.4 4.0 4.7 5.1	8.9 9.9 14 14 12	296 264 205 191 186	116 125 125 128 140	36 29 26 23 21	9.9 6.8 5.2 4.0 3.3	2.6 2.5 2.3 4.4 4.0
6 7 8 9 10	10 12 11 11	13 14 14 13 14	8.6 8.4 8.2 7.8 6.0	5.0 5.0 5.0 4.8 4.4	3.8 3.9 4.1 4.1 4.1	5.6 6.6 7.4 7.0 7.0	15 23 27 27 25	164 189 205 207 212	142 152 151 170 125	19 17 16 15 13	3.0 6.9 7.7 5.3 3.9	3.1 2.7 2.6 2.5 2.4
11 12 13 14 15	15 13 12 12 11	14 13 13 13	6.2 6.6 6.8 6.8	4.6 5.0 5.2 5.0 4.9	4.0 4.1 4.5 4.7 4.4	7.0 7.0 7.2 7.2 6.8	28 25 22 23 36	213 217 219 223 218	112 109 115 118 112	13 19 14 11	3.3 2.9 3.2 4.1 2.8	1.9 1.7 1.7 2.2 2.5
16 17 18 19 20	10 10 10 9.7 10	12 12 12 17 14	6.6 6.8 6.6 6.7	4.9 4.8 4.6 4.6 4.7	4.3 4.1 3.9 3.7 3.6	7.0 6.1 6.2 6.5 5.5	55 78 118 130 98	221 220 212 203 206	107 94 85 76 74	9.7 10 13 9.1 8.0	2.3 2.0 1.8 1.7	2.5 2.6 2.6 2.1 1.9
21 22 23 24 25	12 13 11 11	14 13 12 12 12	6.6 6.2 5.9 6.1 5.6	4.7 4.6 4.6 4.6 4.3	3.5 3.6 3.6 3.4	6.4 6.5 7.8 7.8	77 94 132 190 190	203 187 161 162 144	69 61 58 52 48	7.4 6.6 5.9 4.9	2.0 5.6 5.7 7.5	1.8 1.7 1.6 1.6
26 27 28 29 30 31	10 10 10 9.5 9.3	11 11 10 10 10	5.0 5.0 5.0 4.8 4.7 4.5	4.2 4.1 4.1 4.2 4.0 4.2	3.4 3.4 3.3 	8.0 8.6 8.8 9.0	215 234 260 273 277	140 125 114 111 118 109	44 41 39 42 40	3.6 5.3 4.7 6.4 16	6.6 4.6 3.8 4.3 3.6 3.0	1.7 1.7 1.6 1.6
TOTAL MEAN MAX MIN AC-FT	353.4 11.4 20 9.3 701	394 2 13.1 19 10 781	209.4 6.75 9.6 4.5 415	143.6 4.63 5.2 4.0 285	109.4 3.91 4.7 3.3 217	209.3 6.75 10 3.3 415	2730.8 91.0 277 8.9 5420	5845 189 296 109 11590	2870 95.7 170 39 5690	414.6 13.4 36 3.6 822	139.5 4.50 11 1.7 277	67.3 2.24 4.4 1.6 133

CAL YR 1986 TOTAL 19855.4 MEAN 54.4 MAX 369 MIN 2.2 AC-FT 39380 WTR YR 1987 TOTAL 13486.2 MEAN 36.9 MAX 296 MIN 1.6 AC-FT 26750

09089500 WEST DIVIDE CREEK NEAR RAVEN, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1986 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		an:	D	,	001022	1,00 1	HAR RD- NES		MAG	NE –
DATE	FI IN: TIME TA:	LOW, CO STAN- DU NEOUS AN	FIC N- PH CT- (STA	AND- ATU RD WAT	RE DI	S- (MO	SS NONC TAL WH W G/L TOT	CARB CALC VAT DIS FLD SOL AS (MG	IUM SI - DI VED SOL	UM, SODIUM, S- DIS- VED SOLVED
MAY 04 13 JUN		86 23		3.1 7.9	6.5 7.5	9.0 9.4	130 100	4 4 4 0 33		.0 9.3 .7 7.6
08 AUG	1300 1	38	180 8	3.0	9.0	9.3	97	0 31	4	.7 7.4
14	1215	4.2	445 8	3.4 1	4.5	7.8	200	7 55	16	30
DATE	SODIU AD- SORP- TION RATIO	M POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
MAY 04 13 JUN	0.		131 111	10 11	2.3 1.7	0.10 0.10	9.6 9.9	162 136	0.22 0.18	81.2 81.7
08 AUG	0.	3 1.0	99	9.8	1.7	0.10	9.5	125	0.17	46.4
14	0.	9 2.2	196	32	12	0.20	9.2	274	0.37	3.09
DATE	NITRO GEN, NITRAT TOTAL (MG/L AS N)	GEN,	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
MAY 04 13 JUN	0.46	0.04	0.02	0.50 <0.10	0.75	0.11 0.05	0.05	0.99 0.45	1.0	1.1 0.50
08 AUG	-	- 0.03		<0.10		0.06		0.74		0.80
14	-	- <0.01		<0.10		<0.01				0.70
DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	- NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
MAY 04 13 JUN	1.1		0.32 0.08	0.02	0.08	0.03	6.0 6.6	4.5 4.2	<10 10	42 7 5
08	-		0.27		0.02		28	5.0	<10	87
AUG 14	-		0.02		<0.01		4.6	5.0	20	25

DIVIDE CREEK BASIN

09089500 WEST DIVIDE CREEK NEAR RAVEN, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	FOTAL TO RECOV- RE ERABLE ER (UG/L (U	TAL TO CCOV- RE ABLE ER G/L (U	UM, MI TAL TO COV- RE ABLE ER G/L (U	TAL TO: COV- REC ABLE ERA G/L (UC	ABLE ERA G/L (UG	AL TOT OV- REC BLE ERA	CAL TOTAL COV- RECOV- BLE ERABLE
MA Y 04	1330	5500	200 <	10	<1	4	12 4	1300 <5
DAT	MANG NESE TOTAI RECO' ERABI E (UG/I	MERCURY TOTAL V- RECOV- LE ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L	TOTAĹ (UG/L	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MA Y 04	11	60 0.20	<1	9	<1	<1	320	30

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI - MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT					
07	1125	14	11	0.40	
APR 08	1205	30	4400	356	89
MA Y	1205	70	4400	שכנ	0,
04	1330	186	343	172	76
13	1245	223	290	175	79
JUN 08	1300	138	1020	380	82
JUL	1500	1,50	1020	500	0.2
10	1100	14	4 1	1.5	77
24	1110	5.0	15	0.20	29
AUG 14	1215	4.2	27	0.30	46
SEP	1217	7.5	۷.	0.50	40
03	1110	2.1	34	0.19	72

09093700 COLORADO RIVER NEAR DE BEQUE, CO

LOCATION.--Lat 39°21'45", long 108°09'07", in NEASWA sec.7, T.8 S., R.96 W., Mesa County, Hydrologic Unit 14010006, on left bank 3.0 mi downstream from Alkali Creek and 3.8 mi northeast of De Beque.

DRAINAGE AREA . -- 7,370 mi2.

PERIOD OF RECORD.--Streamflow records, October 1966 to current year. Water-quality data available, August 1973 to September 1982. Sediment data available, October 1974 to September 1976.

GAGE.--Water-stage recorder. Elevation of gage is 4,940 ft from National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 14 to Feb. 2. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation of about 158,000 acres. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 21 years, 4,000 ft3/s; 2,898,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 38,200 ft³/s, May 26, 1984, gage height, 14.83 ft; minimum daily, 914 ft³/s, Dec. 22, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,900 $\rm ft^3/s$ at 1800 June 9, gage height, 8.76 ft; minimum daily, 1,790 $\rm ft^3/s$, Sept. 13.

		DISCHARGE	, IN CUE	BIC FEET	PER SECOND	, WATER MEAN VAL	YEAR OCTOB	BER 1986	TO SEPTEMB	ER 1987		
DA Y	ост	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	3680	3570	2710	2100	2000	1980	2010	7810	6030	4680	2950	2130
2	3630	3430	2620	2000	S2100	1960	2040	8170	6860	4600	2840	2140
3	3870	3290	2580	2000	2110	1990	2060	7920	7340	4360	2790	2070
4	3920	3230	2570	2000	2130	2030	2030	7010	7710	4240	2640	2050
5	3800	3110	2550	2100	2110	2060	2110	6290	8120	4140	2490	2090
6	3680	3050	2580	2200	2040	2140	2160	5940	8490	3960	2450	2110
7	3660	3130	2630	2200	2000	2240	2200	5950	8800	3780	2460	2070
8	3650	3050	2630	2100	2030	2360	2280	6310	9830	3560	2610	2050
9	3590	2940	2620	2100	2050	2560	2410	6740	11400	3360	2710	2020
10	3540	2860	2490	2000	2060	2600	2440	7250	11000	3180	2540	1960
11	3630	2920	2010	1900	2130	2400	2480	7690	10200	3040	2400	1850
12	3740	2900	2190	1900	2210	2300	2510	8000	9610	3080	2270	1810
13	3600	2970	2250	2000	2270	2300	2510	8260	9210	3110	2200	1790
14	3470	2910	2300	2000	2490	2390	2340	8500	9010	3140	2170	1940
15	3450	2890	2400	2000	2290	2380	2270	9450	8930	2970	2160	1990
16	3430	2920	2400	2000	2100	2410	2490	10500	8820	2730	2130	2000
17	3360	2950	2400	1900	2060	2280	3040	11400	8300	2710	2100	1990
18	3340	2940	2400	1900	2130	2190	3810	11300	7640	2760	2050	1970
19	3290	3050	2300	2000	2010	2170	4560	10600	7170	2700	2000	1980
20	3290	3160	2350	1900	1980	2250	4810	9720	6710	2630	1970	1960
21	3300	3000	2400	1800	1940	2190	4060	9220	6420	2540	1940	1900
22	3290	3000	2300	1850	1930	2230	3920	8390	6210	2480	1970	1850
23	3290	2970	2200	1900	1920	2160	3900	7760	6020	2460	2140	1820
24	3340	2760	2200	2000	1970	2110	4670	7630	5780	2450	2310	1840
25	3290	2760	2200	2100	1890	2050	5530	7430	5420	2370	2550	1880
26 27 28 29 30 31	3270 3290 3120 3110 3110 3160	2820 2790 2700 2700 2730	2100 2000 2000 2100 2100 2100	2100 2100 2100 2000 1900 2000	2040 2080 1990 	2060 2050 2000 1980 1930 1900	6050 6440 6840 7280 7570	7210 6900 6420 6070 5980 5770	5150 4940 4720 4620 4660	2380 2490 2750 3310 2980 2970	2630 2480 2290 2170 2160 2160	1850 1880 1900 1900 1860
TOTAL	107190	89500	72680	62150	58060	67650	108820	243590	225120	97910	72730	58650
MEAN	3458	2983	2345	2005	2074	2182	3627	7858	7504	3158	2346	1955
MAX	3920	3570	2710	2200	2490	2600	7570	11400	11400	4680	2950	2140
MIN	3110	2700	2000	1800	1890	1900	2010	5770	4620	2370	1940	1790
AC-FT	212600	177500	144200	123300	115200	134200	215800	483200	446500	194200	144300	116300

CAL YR 1986 TOTAL 1999560 MEAN 5478 MAX 21400 MIN 1910 AC-FT 3966000 WTR YR 1987 TOTAL 1264050 MEAN 3463 MAX 11400 MIN 1790 AC-FT 2507000

COLORADO RIVER MAIN STEM

09095500 COLORADO RIVER NEAR CAMEO, CO

LOCATION.--Lat 39°14'20", long 108°16'00", in SW\(\frac{1}{4}\)SW\(\frac{1}{4}\) sec.30, T.9 S., R.97 W., Mesa County, Hydrologic Unit 14010006, on left bank 100 ft north of U.S. Highways 6 and 24, 0.5 mi upstream from Jackson Canyon, 5.9 mi upstream from Grand Valley project diversion dam, and 7 mi northeast of Cameo.

DRAINAGE AREA. -- 8,050 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1933 to current year.

REVISED RECORDS .-- WRD Colo. 1973: 1970.

GAGE.--Water-stage recorder. Datum of gage is 4,813.73 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 10, 1934, nonrecording gage on river and water-stage recorder on Highline Canal, about 10 mi downstream at different datum. Oct. 10, 1934, to Feb. 27, 1958, water-stage recorder at site 3.0 mi downstream at datum 22.55 ft, lower.

REMARKS.--Estimated daily discharges: Jan. 17 to Feb. 1. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversion for irrigation of about 160,000 acres.

AVERAGE DISCHARGE. -- 54 years, 3,966 ft 3/s; 2,873,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $39,300 \text{ ft}^3/\text{s}$, May 26, 1984, gage height, 14.36 ft, minimum daily, $700 \text{ ft}^3/\text{s}$, Dec. 29, 1939.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,100 ft³/s at 2000 May 17, gage height, 8.00 ft, minimum daily, 1,900 ft³/s, Jan. 21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MA Y JUN JUL AUG SEP 7330 2520 9430 3190 2280 2610 2450 2190 ---TOTAL MEAN MA X MIN AC-FT

CAL YR 1986 TOTAL 2106450 MEAN 5771 MAX 22100 MIN 2090 AC-FT 4178000 WTR YR 1987 TOTAL 1309000 MEAN 3586 MAX 12400 MIN 1900 AC-FT 2596000

09095500 COLORADO RIVER NEAR CAMEO, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1933 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: December 1935 to current year.
WATER TEMPERATURES: April 1949 to current year.

INSTRUMENTATION. -- Water-quality monitor since October 1982.

REMARKS. -- Daily maximum and minimum specific-conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum , 1,970 microsiemens Jan. 19, 1940; minimum , 230 microsiemens June 2,3 1984.
WATER TEMPERATURES: Maximum, 25.0°C July 27, 1987; minimum, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 1,560 microsiemens Dec. 29, 30; minimum, 293 microsiemens May 20.
WATER TEMPERATURES: Maximum recorded, 25.0°C July 27; minimum, 0.0°C many days in December and January.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STRE FLO INST TANE (CF	W, CO AN- DU OUS AN	FIC N- CT-	PH (STAND ARD UNITS)	WATE	RE (MO	SS AL 3/L	HARD NESS NONCA WH WA TOT F MG/L CACO	RB CA T D LD S AS (LCIUM DIS- OLVED MG/L S CA)	MAGN SIU DIS SOLV (MG/ AS N	JM, SODI S- DIS JED SOLV 'L (MG	UM, A - SOI ED TI /L RAT	DIUM AD- RP- ION rIO
AUG 26 SEP	1100	2780		978	8.2	16	5.0	250	1	20	73	17	110		3
30	1200	1900		1120	8.4	12	2.0	260	1	20	73	18	130		4
DATE	E :	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)		FATE S- LVED G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SO (M A	ICA, S-	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	SOLI - DI S, SOL (TO	S- VED NS	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	
AUG 26 SEP 30		4.1	136 141	150 140		140 170	0.30		9.6 7.0	58 62		.80	4400 3220	0.13	

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 03 08 15 30	1100 1200 1300 1200	3650 3610 3450 3120	1040 51 28 18	10200 497 261 152	96 68 63 64
05	1200	3170	40	342	77
12	1300	2900	28	219	70
20	1200	3170	221	1890	93
26	1100	2880	37	288	75
03	1200	2710	49	359	79
10	1300	2680	20	145	77
17	1200	2550	25	172	83
30	1300	2210	45	269	77
07 14 31 FEB	1200 1200 1200	2400 2340 2210	38 26 43	246 164 257	81 73 80
04	1200	2170	139	814	91
11	1400	2250	80	486	92
18	1200	2400	70	454	83
26	1100	2190	32	189	78
04	1100	2170	78	457	86
11	1400	2600	160	1120	91
18	1000	2380	104	668	93
24	1100	2320	102	639	81

COLORADO RIVER MAIN STEM

09095500 COLORADO RIVER NEAR CAMEO, CO--Continued

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI - MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
	APR	0025	2130	46	265	82
	01 08	0935 1300	2130 2440	112	738	89
	15	1300	2440	97	639	93
	22	1200	3960	303	3240	80
	28 MAY	1000	6610	1060	18900	76
	07	1300	5920	229	3660	79
	13	1200	8640	349	8140	66
	20 26	1400 1300	10400 7390	220 10 5	6180 2100	57 67
	JUN	_	,			•
	03	1300	7160	100	1930	52
	10 17	1200 0955	11900 8420	206 86	6620 1960	58 56
	24	1300	5410	67	979	46
	JUL	4000	1.2.4.6	20	240	
	01 08	1200 1200	4310 3390	30 25	349 229	55 63
	15	1300	2990	29	234	65
	23	1000	2550	33	227	68
	29 AUG	1200	3260	371	3270	89
	06	1100	2550	285	1960	20
	12	1400	2380	38	244	85
	19 26	0930 1100	2150 2 750	21 410	122 3040	60 96
:	SEP	1100	2150	410	3040	90
	02	1300	2320	32	200	80
	09 16	1100 1045	2330 2210	28 35	176 209	74 77
	23	1230	2010	33	179	67
	30	1200	2030	31	170	80

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	935 947 966 921 884	888 864 879 893 904	964 966 984 997 999	1400 1390 1200 1100 1170	1060 1060 1050 1040 1050	1090 1090 1090 1080 1080	1130 1090 1070 1060 1070	439 431 431 465 505	573 524 464 443 427	655 629 647 669	840 874 865 860 886	1040 1050 1060 1070 1070
6 7 8 9	874 863 855 860 838	915 925 923 931 945	1000 1000 998 996 984	1100 1020 1030 1090	1060 1080 1080 1080 1070	1060 1030 1020 989 959	1050 1040 1020 1010 922	539 545 525 494 464	413 406 396 382 367	711 734 741 754 775	914 914 915 878 866	1060 1060 1060 1040 1060
11 12 13 14 15	853 839 840 853 865	959 946 973 951 928	1040 1090 1050 1070 1050	1130 1170 1060 1080 1090	1070 1030 1020 1020 1010	968 1050 998 1020 1000	936 928 943 947 989	448 431 412 431 423	369 395 413 424 430	800 828 852 837 824	894 932 959 984 9 7 5	1040 1080 1110 1130 1100
16 17 18 19 20	867 866 870 878 881	954 951 950 956 949	1020 1000 991 989 977	1050 1140 1160 1180 1140	1040 1060 1070 1070 1090	997 1010 1040 1060 1060	984 943 824 705 631	358 346 358 370 355	422 429 436 464 495	935 	978 981 983 998 1020	1070 1070 1070 1080 1080
21 22 23 24 25	880 884 897 896 882	931 948 940 943 973	947 944 957 1070 1020	1090 1100 1090 1010 966	1110 1120 1130 1130 1130	954 990 1040 1050 1060	610 645 700 683 599	364 369 412 436 456	522 547 568 532 503	884 911 935	1050 1060 1050 1010 1010	1090 1110 1140 1160 1170
26 27 28 29 30 31	887 895 900 904 897 897	979 966 956 973 980	1200 1290 1310 1380 1290 1520	918 904 914 990 1000 1040	1140 1090 1090 	1070 1070 1030 1080 1100	535 505 483 462 445	477 497 523 546 560 568	531 562 595 623 655	956 958 881 882 774 826	951 909 943 990 1030 1040	1170 1150 1130 1120 1110
MEAN	383	939	1068		1075	1041	832	451	477		954	1092

167

09095500 COLORADO RIVER NEAR CAMEO, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MA X	MIN	MAX	MIN	MAX	MIN	MA X	MIN	MA X	MIN	MAX	MIN
	OCTO	BER	NOVEM	BER	DE CE MI	BE R	JANU	ARY	FEBRU	ARY	MAR	СН
1 2 3 4 5	11.2 10.9 10.9 12.0 12.0	9.5 9.9 9.6 9.7 10.0	7.2 6.9 7.4 7.3 7.1	6.3 5.9 5.1 5.7 5.5	3.1 2.9 2.9 3.1 3.0	1.6 1.2 1.1 1.4 1.8	1.1 1.1 1.1 1.1	1.0 1.1 1.1 1.1	2.8 3.3 3.4 3.9 3.5	.7 .9 1.8 2.7 1.6	5.2 5.9 6.5 6.5 7.3	1.8 2.3 2.9 3.7 3.6
6 7 8 9 10	12.6 13.6 14.1 14.0 13.2	10.5 11.3 12.0 12.0 11.7	6.2 5.5 4.2 3.0 3.8	5.2 4.0 2.8 1.8	3.3 4.0 4.3 4.0	2.3 3.0 3.0 1.9	2.8 2.6 1.5 .4	1.2 .2 .2 .0	3.5 3.8 3.9 3.8 3.8	1.2 1.2 1.8 1.8	8.2 8.6 8.6 7.7 8.6	4.4 5.0 6.2 6.5 5.5
11 12 13 14 15	12.1 9.2 8.5 8.7 9.3	9.4 7.6 6.3 6.5 6.9	3.7 4.2 4.5 4.7 4.8	1.8 2.2 2.7 2.9 3.1	.4 .0 .3 .7	.0 .0 .0	.0 .3 .4 .9	.0 .0 .0	5.5 4.3 5.3 5.0	3.4 3.2 3.9 3.9 3.3	8.3 8.8 9.2 9.3 8.1	6.2 5.3 5.8 6.0 7.0
16 17 18 19 20	9.8 9.7 10.0 10.6 10.2	7.5 7.8 8.5 8.9	5.2 6.7 6.4 7.6 6.9	3.2 4.3 5.3 6.3 5.8	2.0 1.4 1.0 1.6 1.7	.2 .2 .1 .5	.0 .0 .0	.0	5.0 5.3 5.0 4.2 5.2	3.6 3.0 2.7 2.7 2.3	6.9 7.1 8.8 7.6 6.2	5.4 5.2 5.1 6.3 5.2
21 22 23 24 25	9.2 9.6 9.5 9.7 9.9	8.3 7.9 7.6 7.7 7.9	6.4 6.8 5.4 5.1 4.3	5.2 5.4 4.1 3.7 3.2	2.0 1.4 .5 .9	.6 .4 .5 .5	.0	.0 .0 .0	5.0 4.9 3.9 3.4 4.8	2.3 2.0 2.4 2.1 2.6	6.7 7.9 7.7 7.4 7.7	4.2 4.9 4.5 4.4 4.3
26 27 28 29 30 31	9.4 9.4 9.2 9.0 9.1 8.5	7.5 7.5 7.4 7.5 6.0 7.2	4.7 4.7 4.4 3.2 4.0	3.8 3.3 2.9 2.7 2.7	.8 .9 .9	.7 .8 .8 .9	.0 .6 1.5 1.5 .9 2.3	.0 .5 .2 .1	4.3 3.4 4.5 	3.1 2.0 1.5 	8.3 7.3 6.7 6.2 6.6 8.5	4.4 5.2 3.3 3.2 2.5 3.7
MONTH	14.1	6.0	7.6	1.8	4.3	.0	2.8	.0	5.5	• 7	9.3	1.8
	APRI	[L	MA :	Y	JUNE	:	JUL	Y	AUGUS	TE	SEPTE	MBER
1 2 3 4 5	APRI 10.0 10.5 11.0 10.0 10.3	5.2 6.0 6.5 8.0 8.1	MA: 11.8 10.9 9.5 11.2 12.2	10.0 9.4 7.9 7.9 9.7	JUNE 16.6 16.4 16.6 16.4 16.2	13.8 13.6 13.5 13.2 13.6	JUL 18.7 19.4 19.2 19.4 19.4	15.7 16.4 16.3 16.6 16.6	AUGUS 21.9 23.0 23.9 23.4 23.1	18.1 19.5 20.6 19.8 19.3	SEPTER 20.6 21.1 21.0 19.5 18.9	MBER 16.6 17.3 17.4 17.4 16.1
2 3 4	10.0 10.5 11.0 10.0	5.2 6.0 6.5 8.0	11.8 10.9 9.5 11.2	10.0 9.4 7.9 7.9	16.6 16.4 16.6 16.4	13.8 13.6 13.5 13.2	18.7 19.4 19.2 19.4	15.7 16.4 16.3 16.6	21.9 23.0 23.9 23.4	18.1 19.5 20.6 19.8	20.6 21.1 21.0 19.5	16.6 17.3 17.4 17.4
2 3 4 5 6 7 8 9	10.0 10.5 11.0 10.0 10.3 12.7 13.9 13.8 13.8	5.0 6.5 8.1 8.3 9.8	11.8 10.9 9.5 11.2 12.2 14.2 15.0 15.3	10.0 9.4 7.9 7.9 9.7 11.1 12.3 12.6 12.5	16.6 16.4 16.6 16.2 16.6 16.3 15.3	13.8 13.6 13.5 13.2 13.6 13.5 13.7 12.6	18.7 19.4 19.2 19.4 19.4 19.7 19.7	15.7 16.4 16.3 16.6 16.6 16.7 16.9 17.7 17.4 17.2	21.9 23.0 23.9 23.4 23.1 22.7 23.1 23.3 22.1 23.0	18.1 19.5 20.6 19.8 19.3 19.4 19.7 19.5 18.9	20.6 21.1 21.0 19.5 18.9 18.2 17.5 17.8	16.6 17.3 17.4 17.4 16.1 14.9 15.1 14.0 14.5
2 3 4 5 6 7 8 9 10 11 12 13 14	10.0 10.5 11.0 10.0 10.3 12.7 13.9 13.8 12.2 10.6 9.5 9.9	56.5 66.5 8.1 8.3 9.8 10.4 9.5 9.8 6.7	11.8 10.9 9.5 11.2 12.2 14.2 15.0 15.3 15.0 15.3 15.0	10.0 9.4 7.9 7.9 9.7 11.1 12.3 12.6 12.5 12.6 12.5 12.5	16.6 16.4 16.6 16.4 16.2 16.6 16.3 14.0 14.7 15.6 16.5 17.5	13.8 13.6 13.5 13.2 13.6 13.7 12.6 11.6	18.7 19.4 19.2 19.4 19.4 19.7 19.5 20.1 19.2 17.8 19.4 20.3 21.3	15.7 16.4 16.3 16.6 16.6 16.7 17.7 17.4 17.2 16.0 15.6 17.5	21.9 23.0 23.9 23.4 23.1 22.7 23.3 22.1 23.0 22.6 22.2 21.5 20.1	18.1 19.5 20.6 19.8 19.3 19.4 19.7 19.5 19.4 18.9 19.5 18.8	20.6 21.1 21.0 19.5 18.9 18.2 17.5 17.8 17.4 18.0 17.5 16.3 15.6	16.6 17.3 17.4 17.4 16.1 14.9 15.1 14.5 14.4 14.3 14.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	10.0 10.5 11.0 10.0 10.3 12.7 13.8 13.8 12.2 10.6 9.9 11.1 13.0 14.5 15.2 14.5	5.2 6.5 8.0 8.1 8.3 9.8 10.4 9.5 9.1 7.8 6.7 7.8	11.8 10.9 9.5 11.2 12.2 14.2 15.3 15.3 15.3 15.3 14.1 14.8 14.6 13.7 13.4	10.0 9.4 7.9 7.9 9.7 11.1 12.6 12.5 12.6 12.5 12.1 11.8 12.6	16.6 16.4 16.6 16.4 16.2 16.6 16.3 14.0 14.7 15.6 16.5 17.5 17.2	13.8 13.6 13.5 13.2 13.6 13.7 12.6 11.6 12.4 13.6 14.1 14.4 14.1 14.4	18.7 19.4 19.2 19.4 19.7 19.5 20.1 19.5 20.1 21.8 21.3 21.8 22.3 20.3 20.5	15.7 16.4 16.3 16.6 16.6 16.7 17.7 17.4 17.2 16.0 15.6 17.5 18.0 18.8 18.8 16.7	21.9 23.0 23.9 23.4 23.1 22.7 23.3 22.1 23.0 22.6 22.2 21.5 20.1 19.5 20.6 20.9 21.2	18.1 19.5 20.6 19.8 19.3 19.4 19.7 19.4 18.9 19.5 18.1 17.6 16.7 16.7	20.6 21.1 21.0 19.5 18.9 18.2 17.5 17.4 18.0 17.5 16.3 15.6 15.9 16.8	16.6 17.3 17.4 17.4 16.1 14.9 15.1 14.5 14.4 13.4 13.2 13.7 12.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	10.0 10.5 11.0 10.0 10.3 12.7 13.8 13.8 12.2 10.6 9.9 11.1 13.0 14.5 12.5 10.5	5.20 6.50 8.1 8.35 9.8 10.4 9.5 9.1 10.4 11.2 10.6 9.0 7.7 9.4 11.9	11.8 10.9 9.5 11.2 12.2 14.2 15.3 15.3 15.3 15.3 14.1 14.8 14.6 13.7 13.4 14.0 13.7 13.8 13.8	10.0 9.4 7.9 7.9 9.7 11.1 12.6 12.5 12.5 12.1 11.8 12.6 12.5 12.1 11.8 12.6	16.6 16.4 16.6 16.4 16.6 16.3 15.3 14.0 14.7 15.6 16.5 17.5 17.2 16.8 17.3 17.4 18.4 18.9 19.1 21.2	13.8 13.6 13.5 13.6 13.7 12.6 11.6 12.4 13.6 11.6 14.1 14.4 14.1 14.4 14.1 13.8 14.7	18.7 19.4 19.2 19.4 19.7 19.5 20.1 19.5 20.1 21.3 21.3 21.8 22.3 20.3 21.8 22.3 20.5 19.2	15.7 16.3 16.6 16.6 16.7 17.7 17.4 17.2 16.0 15.6 17.5 18.0 18.8 18.6 16.7 16.8 17.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	21.9 23.0 23.9 23.4 23.1 22.7 23.3 22.1 23.0 22.6 22.2 21.5 20.1 19.5 20.9 21.2 19.1 19.9 20.8 17.8	18.1 19.5 20.6 19.8 19.3 19.4 19.7 19.4 18.9 19.5 18.1 17.6 16.7 17.3 17.4 18.1 17.5	20.6 21.1 21.0 19.5 18.9 17.8 17.4 18.0 17.5 16.6 15.9 16.0 16.2 16.2 16.2	16.6 17.3 17.4 17.4 16.1 14.9 15.10 14.5 14.4 13.4 13.4 13.7 12.6 12.5 12.7

NOTE: Daily water temperatures are reported to the nearest 0.1 $^{\circ}\text{C}$ but are accurate only to the nearest 0.5 $^{\circ}\text{C}$.

PLATEAU CREEK BASIN

09105000 PLATEAU CREEK NEAR CAMEO, CO

LOCATION.--Lat 39°11'00", long 108°16'02", in SW&SW& sec.18, T.10 S., R.97 W., Mesa County, Hydrologic Unit 14010005, on left bank 300 ft from State Highway 65, 1.15 mi upstream from mouth and 4 mi northeast of Cameo.

DRAINAGE AREA. -- 592 mi2.

PERIOD OF RECORD.--October 1935 to September 1983. October 1985 to current year. Prior to May 1936, monthly discharges only, published in WSP 1313.

REVISED RECORDS.--WSP 979: 1942. WSP 2124: Drainage area. WDR-C0-83-2: 1973 (M), 1975 (M).

GAGE.--Water-stage recorder. Elevation of gage is 4,840 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 27, 1936, nonrecording gage.

REMARKS.--Estimated daily discharges: Dec. 2 to Jan. 29. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 25,000 acres, return flow from irrigated areas, and for power development. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--50 years (water years 1935-83, 1986-87) 192 ft3/s; 139,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,010 ft^3/s , June 22, 1983, gage height, 8.51 ft; maximum gage height, 8.59 ft, May 28, 1983; minimum daily discharge, 8.2 ft^3/s , Aug. 15, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,270 ft³/s, at 0100 May 17, gage height 5.32 ft: minimum daily, 90 ft³/s, Jan. 22.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU	R OCTOBER ES	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	347 332 364 320 294	231 226 207 202 192	141 138 136 135 134	101 101 104 106 108	102 104 114 137 110	99 108 108 119 135	145 165 160 194 182	1110 1170 875 652 613	747 916 911 974 916	171 163 147 137	152 131 125 115 112	131 127 124 123 126
6 7 8 9 10	280 269 264 258 255	193 217 198 171 199	133 132 131 130 130	108 106 100 98 98	104 108 116 116 118	156 191 215 257 225	183 228 249 292 256	657 709 797 836 837	887 919 884 1040 864	126 122 120 121 111	115 156 141 132 125	123 121 120 119 110
11 12 13 14 15	290 304 272 274 265	185 201 196 204 208	130 130 130 130 130	98 99 98 98 97	153 143 169 239 159	197 170 190 228 193	283 275 215 219 279	814 801 959 1210 1570	687 546 503 486 433	111 142 137 132 124	120 119 119 127 124	108 109 105 121 117
16 17 18 19 20	251 235 234 233 231	205 206 205 250 284	128 127 122 127 127	94 93 94 100 96	141 133 122 124 121	186 164 162 186 178	413 533 644 712 560	1830 2000 1950 1910 1520	414 356 317 299 281	125 134 147 128 121	127 128 126 127 127	115 115 114 116 115
21 22 23 24 25	235 245 239 228 224	230 238 200 199 220	125 118 118 118 110	93 90 91 96 100	108 117 131 123 119	149 220 163 139 126	398 403 542 713 760	1420 1190 1100 1080 1030	257 234 219 222 216	123 124 118 108 100	132 133 151 195 186	115 118 118 119 122
26 27 28 29 30 31	217 213 205 196 192 185	231 183 169 176 183	106 106 108 106 104 102	102 100 110 108 100	114 102 100 	125 136 116 123 104 123	750 851 1060 1110 992	957 842 739 682 660 588	201 178 172 180 187	100 119 110 128 136 137	185 159 147 144 138 136	117 114 111 104 106
TOTAL MEAN MAX MIN AC-FT	7951 256 364 185 15770	207 284 169	3842 124 141 102 7620	3087 99.6 110 90 6120	3547 127 239 100 7040	4991 161 257 99 9900	13766 459 1110 145 27300	33108 1068 2000 588 65670	15446 515 1040 172 30640	3953 128 171 100 7840	4254 137 195 112 8440	3503 117 131 104 6950

CAL YR 1986 TOTAL 138911 MEAN 381 MAX 2430 MIN 90 AC-FT 275500 WTR YR 1987 TOTAL 103657 MEAN 284 MAX 2000 MIN 90 AC-FT 205600

09108500 TAYLOR PARK RESERVOIR AT TAYLOR PARK, CO

LOCATION.--Lat 38°49'07", long 106°36'24", Gunnison County, Hydrologic Unit 14020001, at dam on Taylor River just downstream from Taylor Park, 16 mi northeast of Almont.

DRAINAGE AREA .-- 254 mi2.

PERIOD OF RECORD. -- October 1937 to current year. Prior to October 1938, published in WSP 1313.

REVISED RECORDS .-- WSP 1089: 1940(M), 1942(M), 1945-46. WSP 1924: Drainage area.

GAGE.--Nonrecording gage read once daily. Datum of gage is 9,187 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by an earth and rockfill dam. Dam completed by U. S. Bureau of Reclamation in September 1937. Capacity of reservoir, 106,200 acre-ft between elevations 9,187 ft, bottom of outlet gates, and 9,330 ft, crest of spillway. No dead storage. Water used for irrigation in Uncompander Valley. Figures given are usable contents.

COOPERATION . -- Records provided by Uncompangre Valley Water Users Association.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 111,000 acre-ft, July 1, 1957, elevation, 9,332.35 ft; minimum after first filling, 8,780 acre-ft, Oct. 19, 20, 1956, elevation, 9,240.70 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 106,200 acre-ft, July 2-5, elevation, 9,330.10 ft; minimum contents, 53,800 acre-ft, Apr. 21, elevation, 9,299.20 ft.

MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 1800, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

											D	at	е													Elevation	Cont (acre	ents -feet)	Change in con (acre-feet	
Sept.																										9,316.60 9,313.80		,700 ,900	-4,800	
Oct. Nov.	31.					•		•			•									٠						9,313.30	75	,000	- 900	
Dec.	31.	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	9,314.30	76	,700	+1,700	
CAL	YR	19	86			•																				-		-	+7,700	
Jan.	31.																									9,313.90	76	,000	-700	
Feb.	28.																									9,313.60	75	,500	- 500	
Mar.	31.																									9,305.40	62	,600	-12,900	
Apr.	30.																									9.301.00	56	,300	-6,300	
Мау	31.																									9.313.70	75	700	+19,400	
June	30.																									9.329.10	104	200	+28,500	
July	31.																									9,327.10	100	,200	-4,000	
Aug.	31.																									9,323.00	92	.300	-7,900	
Sept.																										9,316.80	8 1	,000	-11,300	
WT	R YF	1	987	٠.																						_		_	+300	

GUNNISON RIVER BASIN

09109000 TAYLOR RIVER BELOW TAYLOR PARK RESERVOIR, CO

LOCATION.--Lat 38°49'06", long 106°36'31", Gunnison County, Hydrologic Unit 14020001, on left bank 1,000 ft downstream from Taylor Park Reservoir Dam, 3.4 mi upstream from Lottis Creek, and 17 mi northeast of Almont.

DRAINAGE AREA . - - 254 mi2.

PERIOD OF RECORD.--June 1929 to September 1934 (monthly discharges only, published in WSP 1313), October 1938 to current year.

REVISED RECORDS. -- WSP 1924: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 9,169.67 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to Nov. 11, 1952, at site 1,600 ft downstream, at datum 1.00 ft, lower. Oct. 15, 1946, to May 4, 1952, supplementary nonrecording gage just downstream from reservoir outlet at different sites and datums used during winter months.

REMARKS.--Estimated daily discharges: Nov. 24 to Apr. 22. Records good, except for estimated daily discharges, which are poor. Flow regulated by Taylor Park Reservoir (station 09108500) since 1937. One small diversion for irrigation from Willow Creek upstream from reservoir. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--5 years (water years 1930-34), 156 ${\rm ft}^3/{\rm s}$; 113,000 acre-ft/yr: 49 years (water years 1939-87), 200 ${\rm ft}^3/{\rm s}$; 144,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,270 ft³/s, July 1, 1957, gage height, 7.56 ft; no flow May 1 to July 3, 1940, May 7-22, 1942, May 5-21, 1943.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 512 ${\rm ft}^3/{\rm s}$ at 1100 June 20, gage height, 4.68 ft; minimum daily, 69 ${\rm ft}^3/{\rm s}$, many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES AUG DAY OCT NOV DEC JAN FEB MA R APR MA Y JUN JUL SEP 268 214 373 314 158 69 122 314 323 152 314 74 296 78 374 ------TOTAL MEAN 72.7 MA X MIN AC-FT

CAL YR 1986 TOTAL 113791 MEAN 312 MAX 1240 MIN 69 AC-FT 225700 WTR YR 1987 TOTAL 89342 MEAN 245 MAX 507 MIN 69 AC-FT 177200

09110000 TAYLOR RIVER AT ALMONT, CO

LOCATION.--Lat 38°39'52", long 106°50'41", in NW4SE4 sec.22, T.51 N., R.1 E., Gunnison County, Hydrologic Unit 14020001, on left bank at Almont, 15 ft downstream from bridge on State Highway 306, and 800 ft upstream from confluence with East River.

DRAINAGE AREA . - 477 mi2.

PERIOD OF RECORD. -- July 1910 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 1213: 1911. WSP 1924: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 8,010.76 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 16, 1922, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 4 to Apr. 21. Records good except for estimated daily discharges, which are poor. Flow partly regulated since September 1937 by Taylor Park Reservoir (station 09108500), 24 mi upstream from station. Diversions for irrigation of about 360 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 77 years, 340 ft 3/s; 246,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge observed, 3,760 ft³/s, June 9, 1920, gage height, 5.00 ft, from rating curve extended above 2,300 ft³/s; maximum gage height, 5.32 ft, July 1, 1957; minimum discharge observed before storage began in Taylor Park Reservoir, 50 ft³/s for several days in August 1913, gage height, 1.2 ft; minimum daily discharge, subsequent to completion of Taylor Park Dam, 24 ft³/s, Mar. 12, 1938.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,230 ft³/s at 2330 May 16, gage height, 3.48 ft, from maximum indicator; minimum daily, 113 ft³/s, Dec. 13-17.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		2133	0052			MEAN VALU		1,00 11		1501		
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1	349	245	120	130	180	170	330	798	685	718	421	370
2	299	246	120	130	180	200	320	784	715	693	420	385
3	279	247	130	140	180	230	330	709	726	661	391	384
4	281	234	140	140	180	270	360	678	752	631	411	384
5	279	230	140	150	180	300	340	676	792	605	380	379
6 7 8 9	283 281 275 356 465	230 230 225 220 220	130 120 120 115 115	150 150 150 150 150	170 170 180 190 200	320 330 340 344 350	340 340 340 350 350	682 694 707 719 736	816 828 969 1040 936	583 562 546 531 514	375 397 393 375 372	377 375 376 372 368
11	559	220	115	150	200	350	340	750	880	495	367	369
12	578	215	115	145	200	340	340	848	845	495	368	369
13	575	215	113	145	210	360	340	871	817	476	371	368
14	585	210	113	140	205	390	360	924	774	461	371	372
15	558	200	113	140	200	390	360	1010	7 7 4	463	366	372
16	464	200	113	140	190	360	360	1120	798	455	362	371
17	377	200	113	150	190	350	360	1120	756	468	360	368
18	296	200	115	150	185	340	370	1080	786	478	365	367
19	269	200	115	160	180	350	370	1020	810	465	372	364
20	254	195	115	170	180	360	370	982	845	440	372	364
21	239	180	120	170	180	360	330	900	845	437	353	364
22	229	180	120	170	180	360	409	849	824	446	370	362
23	216	180	120	160	180	350	546	816	804	437	385	354
24	215	180	125	170	170	330	593	806	738	402	385	334
25	213	170	125	180	160	330	617	773	672	423	378	329
26 27 28 29 30 31	215 225 220 225 238 240	170 160 150 140 125	125 130 130 130 135 130	180 180 180 180 180 180	160 170 170 	320 320 330 330 350 350	627 652 697 735 748	745 714 691 680 670 667	626 611 622 653 711	427 440 450 440 428 426	372 369 369 367 363 361	332 309 331 331 334
TOTAL	10137	6017	3780	4860	5120	10174	12924	25219	23450	15496	11681	10834
MEAN	327	201	122	157	183	328	431	814	782	500	377	361
MAX	585	247	140	180	210	390	748	1120	1040	718	421	385
MIN	213	125	113	130	160	170	320	667	611	402	353	309
AC-FT	20110	11930	7500	9640	10160	20180	25630	50020	46510	30740	23170	21490

CAL YR 1986 TOTAL 171648 MEAN 470 MAX 1610 MIN 85 AC-FT 340500 WTR YR 1987 TOTAL 139692 MEAN 383 MAX 1120 MIN 113 AC-FT 277100

09112500 EAST RIVER AT ALMONT, CO

LOCATION.--Lat 38°39'52", long 106°50'51", in NW4SE4 sec.22, T.51 N., R.1 E., Gunnison County, Hydrologic Unit 14020001, on left bank at Almont, 200 ft upstream from bridge on State Highway 135, and 400 ft upstream from confluence with Taylor River.

DRAINAGE AREA . - - 289 mi2.

PERIOD OF RECORD.--April to October 1905, July 1910 to September 1922, October 1934 to current year. Monthly discharges only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 1313: 1911. WSP 1733: 1952. WSP 1924: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 8,006.29 ft above National Geodetic Vertical Datum of 1929. Apr. 16 to Sept. 30, 1905, and July 27, 1910, to Apr. 30, 1922, nonrecording gages at bridge 200 ft downstream, at different datums. Oct. 1, 1934, to Sept. 22, 1954, water-stage recorder at present site at datum 2.00 ft, higher.

REMARKS.--Estimated daily discharges: Dec. 24 to Apr. 21. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 7,400 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this re ort.

AVERAGE DISCHARGE.--65 years (water years 1911-22, 1935-87), 343 ft3/s; 248,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 6,500 ft³/s, June 15, 1921, gage height, 6.6 ft, site and datum then in use, from rating curve extended above 3,000 ft³/s; minimum daily, 19 ft³/s, Aug. 13, 1913.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,600 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0500	1,790	5.67	June 9	0500	*1,820	*5.71

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 70 ft³/s, Feb. 21-23, 28, Mar. 1-3.

		D13011F	inde, cobi	.o radi ra	M BECOMD	EAN VALUES	n oolobi	31. 1900 I	0 001 1011001	. 1701		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	272 267 265 260 248	220 216 208 199 192	122 123 133 126 129	82 83 83 83 82	78 80 82 80 78	70 70 70 78 98	96 108 120 125 122	1460 1320 1030 880 833	696 855 956 1060 1150	518 495 470 446 420	198 197 189 184 175	162 164 164 163 166
6 7 8 9 10	246 262 268 268 270	192 199 174 167 197	143 141 122 128 82	82 80 82 80 80	76 78 82 82 84	110 110 100 100 100	122 124 126 128 130	822 894 979 1130 1230	1230 1270 1470 1710 1470	398 375 361 352 340	170 205 223 208 196	172 165 163 152 142
11 12 13 14 15	304 291 256 259 261	169 187 169 170	90 103 105 107 107	86 86 80 80 74	86 90 90 86 84	103 110 120 118 110	136 140 150 190 260	1210 1260 1270 1330 1460	1350 1300 1260 1260 1250	316 310 295 268 264	219 234 225 218 203	137 134 131 134 130
16 17 18 19 20	259 256 246 247 252	169 163 166 191 173	129 125 124 135 111	74 74 76 74 74	80 78 78 76 74	103 102 109 107 100	330 370 380 335 310	1640 1710 1550 1450 1300	1200 1110 1000 948 885	267 269 275 249 246	193 184 176 168 152	126 117 115 112 109
21 22 23 24 25	252 245 231 225 218	158 177 132 139 152	105 99 98 92 88	76 76 72 72 74	70 70 70 74 76	96 96 92 90 90	380 474 684 846 1000	1180 1020 960 956 876	829 775 735 699 665	244 244 242 214 202	151 179 245 303 295	106 102 100 98 82
26 27 28 29 30 31	208 201 197 197 192 196	163 128 139 142 153	88 86 88 89 82	74 74 76 76 76 76	74 72 70 	90 88 86 78 76 84	1070 1170 1220 1340 1420	805 701 603 574 548 555	655 619 607 588 559	201 215 210 208 204 197	251 220 201 190 178 169	77 79 79 79 80
TOTAL MEAN MAX MIN AC-FT	7619 246 304 192 15110	5175 172 220 128 10260	3386 109 143 82 6720	2417 78.0 86 72 4790	2198 78.5 90 70 4360	95.3 120 70	13406 447 1420 96 26590	33536 1082 1710 548 66520	30161 1005 1710 559 59820	9315 300 518 197 18480	6299 203 303 151 12490	3740 125 172 77 7420

CAL YR 1986 TOTAL 185761 MEAN 509 MAX 2810 MIN 76 AC-FT 368500 WTR YR 1987 TOTAL 120206 MEAN 329 MAX 1710 MIN 70 AC-FT 238400

173

GUNNISON RIVER BASIN

09114500 GUNNISON RIVER NEAR GUNNISON, CO

LOCATION.--Lat 38°32'31", long 106°56'57", in NWANWA sec.2, T.49 N., R.1 W., Gunnison County, Hydrologic Unit 14020002, on right bank 0.7 mi downstream from Antelope Creek and 1.2 mi west of Gunnison.

DRAINAGE AREA . -- 1.012 mi2.

PERIOD OF RECORD. -- October 1910 to December 1928, October 1944 to current year. Monthly discharges only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 1313: 1911, 1916.

GAGE.--Water-stage recorder. Elevation of gage is 7,655 ft above National Geodetic Vertical Datum of 1929, from topographic map. Nov. 25, 1910 to Dec. 31, 1928, nonrecording gages (supplementary water-stage recorder Apr. 28, 1916 to June 17, 1918) at bridge about 0.6 mi downstream at various datums. Oct. 1, 1944 to July 28, 1970, water-stage recorder at sites 0.4 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 16-24, Nov. 4 to Mar. 9. Records good except for estimated daily discharges, which are poor. Flow regulated by Taylor Park Reservoir (station 09108500), 37 mi upstream from station. Diversions for irrigation of about 22,000 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 61 years (water years 1911-28, 1945-87), 774 ft3/s; 560,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 11,400 ft³/s, June 13, 1918, gage height, 4.05 ft, site and datum then in use, from rating curve extended above 5,000 ft³/s; minimum daily, 80 ft³/s, Dec. 27,

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,380 ft³/s at 1100 June 9, gage height, 3.50 ft; minimum daily, 270 ft³/s, Dec. 14-15.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DID OHR HOD ,	00510	1001 101	DB COMD,	MEAN VALU	JES	1 1900 10	OBI IBIIDDI	. 1701		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	750	456	350	300	350	330	568	2560	1390	1430	753	618
2	691	482	300	300	350	350	599	2480	1530	1350	753	627
3	649	490	340	300	350	400	618	2030	1640	1290	735	627
4	662	527	330	300	340	440	627	1880	1800	1210	717	627
5	653	450	320	300	340	480	618	1880	2000	1160	691	627
6	663	440	300	300	340	540	644	1890	2170	1100	664	627
7	654	420	300	300	340	580	826	1890	2250	1060	716	627
8	623	410	290	290	350	600	711	1890	2560	991	752	627
9	697	410	280	290	350	600	761	2000	3150	958	709	609
10	788	400	280	290	360	618	771	2130	2810	935	673	577
11	932	400	280	280	370	600	809	2130	2540	903	672	545
12	924	400	280	280	390	576	772	2220	2430	880	698	536
13	881	390	280	280	400	592	639	2300	2370	860	690	536
14	875	390	270	280	390	617	636	2370	2290	791	690	544
15	841	390	270	280	380	618	787	2640	2210	754	672	544
16	827	390	280	290	370	609	943	2940	2330	762	654	544
17	800	390	280	300	360	577	1080	3040	2160	762	645	544
18	775	390	280	310	350	599	1200	2840	1970	809	627	536
19	755	400	280	320	340	644	1250	2690	1910	763	627	528
20	730	400	280	330	330	636	1170	2480	1840	753	618	528
21 22 23 24 25	700 680 660 600 569	400 400 400 390 390	280 280 280 280 280 280	330 340 340 340 350	330 320 320 310 310	593 600 592 561 560	1020 1220 1460 1680 1830	2260 1980 1870 1880 1770	1820 1750 1680 1600 1710	762 762 762 727 744	609 627 742 809 805	536 536 520 498 490
26 27 28 29 30 31	564 529 505 483 475 460	390 380 370 360 350	290 290 290 300 300 300	350 350 350 350 350 350	310 310 320	552 568 544 544 536 552	1920 2060 2160 2330 2410	1640 1510 1410 1380 1390 1330	1430 1370 1320 1330 1500	753 771 780 790 763 744	754 709 673 663 645 627	483 460 482 490 483
TOTAL	21395	12255	9040	9720	9680	17208	34119	64700	58860	27879	21419	16556
MEAN	690	408	292	314	346	555	1137	2087	1962	899	691	552
MAX	932	527	350	350	400	644	2410	3040	3150	1430	809	627
MIN	460	350	270	280	310	330	568	1330	1320	727	609	460
AC-FT	42440	24310	7930	19280	19200	34130	67680	128300	116700	55300	42480	32840

CAL YR 1986 TOTAL 406227 MEAN 1113 MAX 4690 MIN 230 AC-FT 805800 TOTAL 302831 MEAN 830 MAX 3150 MIN 270 AC-FT 600700 WTR YR 1987

AC-FT

GUNNISON RIVER BASIN

09118450 COCHETOPA CREEK BELOW ROCK CREEK, NEAR PARLIN, CO

LOCATION.--Lat 38°20'08", long 106°46'18", in SWHNEL sec.17, T.47 N., R.2 E. Saguache County, Hydrologic Unit 14020003, on left bank 0.75 mi downstream from Rock Creek and 12 mi southeast of Parlin.

DRAINAGE AREA . - - 334 mi2.

PERIOD OF RECORD. -- October 1981 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,470 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 7 to Mar. 13, 21-30, Apr. 7-10, 13-20. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of hay meadows upstream from station. Transmountain diversion by Tarbell ditch exports water upstream from station to Saguache Creek, since 1913. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 6 years, 65.8 ft3/s; 47,670 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,120 ft³/s, May 23, 1984, gage height, 4.49 ft; minimum daily, 8.4 ft³/s, Feb. 7, 1982.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 304 ft³/s at 1900 May 17, gage height, 3.46 ft; maximum gage height, 4.42 ft, Mar. 27 (backwater from ice); minimum daily discharge, 20 ft³/s, Feb. 22, 24.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOA DEC JAN FEB MA R APR MA Y JUN JUL AUG SEP 51 69 25 56 35 78 23 61 48 37 24 25 42 137 1ó 36 36 68 36 65 28 33 73 22 28 82 53 75 ------------___ TOTAL 29.5 35 23.8 MEAN 44.5 40.2 220 254 57.4 87 81.4 48.3 79 24.0 32.8 MA X MIN ÄΛ

CAL YR 1986 TOTAL 20138 MEAN 55.2 MAX 192 MIN 16 AC-FT 39940 WTR YR 1987 TOTAL 24939 MEAN 68.3 MAX 270 MIN 20 AC-FT 49470

09119000 TOMICHI CREEK AT GUNNISON, CO

175

LOCATION.--Lat 38°31'18", long 106°56'25", in NE4SW4 sec.11, T.49 N., R.1 W., Gunnison County, Hydrologic Unit 14020003, on right bank 300 ft downstream from highway bridge, 1.8 mi southwest of Post Office in Gunnison, and 2.0 mi upstream from mouth.

DRAINAGE AREA. -- 1.061 mi2.

PERIOD OF RECORD.--November and December 1910 (gage heights and discharge measurements only), October 1937 to current year. Monthly discharges only for some periods, published in WSP 1313. Published as "near Gunnison" 1910.

REVISED RECORDS. -- WSP 2124: Drainage area. WDR CO-86-2: 1985.

GAGE.--Water-stage recorder. Datum of gage is 7,628.58 ft above National Geodetic Vertical Datum of 1929.

Nov. 25 to Dec. 24, 1910, nonrecording gage 300 ft upstream at different datum. Apr. 20, 1938, to Oct. 2, 1940, water-stage recorder at present site at datum 1.00 ft, higher.

REMARKS.--Estimated daily discharges: Oct. 1-16, and Nov. 5 to Apr. 20. Records fair. Diversions for irrigation of about 24,000 acres upstream from station. Water diverted upstream from station by Larkspur ditch to Arkansas River basin since 1935 and by Tarbell ditch to Rio Grande basin since 1914. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--50 years (water years 1938-87), 178 ft3/s; 129,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,620 ft³/s, May 23, 1984, gage height, 5.49 ft; minimum daily, 2.6 ft³/s, Sept. 30, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,510 ft³/s at 2400 May 18, gage height, 4.39 ft; minimum daily, 80 ft³/s, many days.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE	R OCTOBER ES	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	170 160 160 150 150	182 181 187 185 165	140 150 145 145 145	105 100 100 100 100	90 90 95 95	80 80 80 80 100	150 190 210 230 200	767 783 790 692 593	500 509 544 571 618	388 347 297 263 249	190 217 231 216 198	111 109 114 113 121
6 7 8 9 10	150 140 140 135 140	165 160 155 140 150	150 155 145 135 105	100 95 95 95 95	90 90 95 95	200 250 230 210 230	200 200 200 220 220	542 518 522 569 616	692 735 829 1090 1320	236 221 204 182 179	178 200 196 174 167	115 108 110 107 101
11 12 13 14 15	180 180 170 170 165	145 150 150 145 150	105 110 110 110 105	95 95 95 95 95	100 100 105 110 100	230 210 250 270 250	240 240 260 240 320	652 682 733 822 923	1210 980 856 781 736	166 166 171 172 173	167 161 158 162 158	90 88 85 89 93
16 17 18 19 20	165 159 158 160 168	150 145 150 180 160	105 105 105 110 110	90 90 90 90	100 95 95 90 85	230 210 210 230 210	480 640 760 740 680	1080 1300 1400 1420 1280	790 799 716 632 576	169 179 231 232 210	150 141 132 122 115	95 94 91 90
21 22 23 24 25	188 191 183 174 173	155 160 155 150 155	110 105 105 100 100	90 90 100 90 90	80 80 80 80	180 180 150 150	494 412 492 601 632	1170 1110 1010 939 877	541 513 462 429 399	192 185 177 171	100 112 145 184 182	92 89 87 81 83
26 27 28 29 30 31	167 166 166 163 165 164	160 150 150 150 150	100 100 100 100 105 100	90 95 90 90 90	85 80 80 	130 150 150 130 100 110	591 598 661 706 722	801 683 619 591 592 554	374 355 323 343 425	168 172 182 212 208 190	166 149 139 138 132 125	91 91 89 85 80
TOTAL MEAN MAX MIN AC-FT	5070 164 191 135 10060	4730 158 187 140 9380	3615 117 155 100 7170	2915 94.0 105 90 5780	2555 91.2 110 80 5070	5400 174 270 80 10710	12529 418 760 150 24850	25630 827 1420 518 50840	19648 655 1320 323 38970	6463 208 388 166 12820	5005 161 231 100 9930	2882 96.1 121 80 5720

CAL YR 1986 TOTAL 79667 MEAN 218 MAX 640 MIN 75 AC-FT 158000 WTR YR 1987 TOTAL 96442 MEAN 264 MAX 1420 MIN 80 AC-FT 191300

09124500 LAKE FORK AT GATEVIEW, CO

LOCATION.--Lat 38°17'56", long 107°13'46", in SELNEL sec.29, T.47 N., R.3 W., Gunnison County, Hydrologic Unit 14020002, on left bank at old village of Gateview, 25 ft downstream from private bridge, 0.2 mi upstream from Indian Creek, and 6.3 mi upstream from waterline of Blue Mesa Reservoir, at elevation 7,519 ft.

DRAINAGE AREA. -- 334 mi².

PERIOD OF RECORD. -- October 1937 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 7,827.66 ft above National Geodetic Vertical Datum of 1929.
Prior to Oct. 1, 1938, at datum 2.00 ft, higher, and Oct. 1, 1938, to Sept. 30, 1945, at datum 1.00 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 5 to Apr. 22, July 19 to Aug. 21. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,600 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 50 years, 242 ft 3/s, 175,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,720 ft³/s, July 10, 1983, gage height, 4.18 ft; minimum daily, 22 ft³/s, Jan. 21, 1976.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,400 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 9	0600	*1,810	*3.43	No ot	her peak g	reater than base	discharge.

Minimum daily, 47 ft³/s, Jan. 18.

		DICCHARGE	CUDIC	DDDT DDD	ar cour	MAMPE VES	o comoners	1006 TO	CEDTEMBER	1097		
		DISCHARGE,	, CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE		1986 10	SEP LEMBER	1907		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	157	144	78	58	58	50	78	604	625	811	300	158
2	153	146	84	62	58	52	84	628	827	772	330	159
3	153	138	84	62	60	52	98	522	968	738	310	153
4	153	139	84	62	60	60	100	424	1130	700	290	147
5	153	129	86	62	58	70	94	371	1200	641	280	146
6	154	110	88	62	56	82	90	343	1340	609	280	143
7	153	105	88	60	56	88	92	351	1470	574	320	135
8	151	100	86	62	60	84	92	419	1580	540	350	134
9	153	92	82	60	62	86	92	519	1700	513	310	134
10	154	105	74	56	60	90	92	600	1600	518	270	125
11 12 13 14 15	160 167 150 150 150	94 98 98 94 92	64 64 66 68	56 56 54 54 54	62 66 74 76 68	90 84 94 94 88	94 96 94 110 140	595 723 851 935 1090	1540 1590 1610 1620 1600	505 473 446 433 425	250 240 229 214 201	120 111 108 109 109
16	150	92	70	50	64	84	190	1220	1620	415	182	105
17	145	94	70	48	62	82	210	1280	1440	423	175	101
18	146	120	70	47	62	82	230	1230	1330	425	169	99
19	145	110	72	50	58	88	210	1060	1270	350	153	94
20	154	100	70	54	56	80	190	896	1210	270	145	92
21	156	103	70	54	54	76	170	819	1120	280	148	85
22	153	103	68	50	52	72	190	712	1100	330	154	84
23	142	96	68	54	54	72	244	658	1100	340	218	81
24	142	94	64	56	52	68	329	646	1070	320	269	81
25	137	98	66	58	56	68	399	607	1100	330	335	79
26 27 28 29 30 31	136 131 132 129 127 130	98 90 88 88 8 4	64 62 64 60 56	58 60 60 60 58 58	58 56 52 	68 72 72 66 64 68	423 501 522 533 585	561 504 452 423 413 474	1070 1030 955 921 845	370 370 360 340 320 320	317 271 235 205 188 173	81 82 81 77 76
TOTAL	4566	3142	2218	1755	1670	2346	6372	20930	37581	14261	7511	3289
MEAN	147	105	71.5	56.6	59.6	75•7	212	675	1253	460	242	110
MAX	167	146	88	62	76	94	585	1280	1700	811	350	159
MIN	127	84	56	47	52	50	78	343	625	270	145	76
AC-FT	9060	6230	4400	3480	3310	4650	12640	41510	74540	28290	14900	6520

CAL YR 1986 TOTAL 101177 MEAN 277 MAX 1680 MIN 54 AC-FT 200700 WTR YR 1987 TOTAL 105641 MEAN 289 MAX 1700 MIN 47 AC-FT 209500

09126000 CIMARRON RIVER NEAR CIMARRON, CO

LOCATION.--Lat 38°15'36", long 107°32'43", in NWtNEt sec.8, T.46 N., R.6 W., Gunnison County, Hydrologic Unit 14020002, on right bank 100 ft upstream from Forest Service bridge, 0.6 mi upstream from headgate on Cimarron ditch, 2.1 mi downstream from Silver Jack Dam, and 13 mi south of Cimarron.

DRAINAGE AREA.--66.6 mi².

PERIOD OF RECORD. -- October 1954 to current year. Prior to October 1965, published as Cimarron Creek near Cimarron.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 8,631.48 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 12, 1972, at site 0.2 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 1-8, 12 to Nov. 3, 6-14, Dec. 6 to Mar. 23, and Mar. 27 to Apr. 4.
Records good except for estimated daily discharges, which are poor. Diversion upstream from station through
Owl Creek ditch into Uncompangre River basin. Flow regulated by Silver Jack Dam, 2.1 mi upstream since
Dec. 23, 1970, total capacity, 13,520 acre-ft. Several observations of specific conductance and water
temperature were obtained and are published elsewhere in this report.

COOPERATION. -- For period Oct. 1-8, gage-height record provided by Colorado Division of Water Resources.

AVERAGE DISCHARGE.--16 years (water years 1955-70), 88.6 ft³/s; 64,190 acre-ft/yr, prior to completion of Silver Jack Dam: 17 years (water years 1971-87), 101 ft³/s; 73,170 acre-ft/yr, subsequent to completion of Silver Jack Dam

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,790 ft³/s, June 28, 1957, gage height, 8.32 ft, site and datum then in use; no flow Dec. 24, 1970, to Jan. 9, 1971 (result of storage in Silver Jack Dam); minimum daily prior to construction of Silver Jack Dam, 8.0 ft³/s, Dec. 27, 28, 1962, Jan. 13, 1963; minimum daily, 4.4 ft³/s, Apr. 20, 21, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 737 $\rm ft^3/s$ at 0100 May 17, gage height, 4.71 ft, minimum daily, 21 $\rm ft^3/s$, 0ct. 7, Nov. 9.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			,		,	MEAN VALUE	S	.,,,,,		. ,		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	26 26 27 27 27	25 26 26 26 24	25 25 25 25 25	29 25 26 26 26	25 26 28 28 27	24 24 24 24 26	27 28 29 32 32	86 79 72 71 73	349 420 457 502 490	239 209 189 173 151	129 126 122 116 114	96 96 89 86 88
6 7 8 9 10	26 21 29 29 24	24 23 22 21 22	25 26 26 25 25	27 25 26 26 25	26 26 28 28 28	30 27 25 23 25	33 33 33 33 34	75 78 78 79 79	552 580 591 658 583	148 138 146 156 162	112 115 115 114 112	88 88 89 89
11 12 13 14 15	24 26 25 25 25	23 24 25 26 27	26 27 28 28 28	25 29 26 25 25	29 29 33 35 29	25 24 31 35 33	36 37 36 37 39	78 123 418 484 607	545 563 580 580 544	159 159 158 153	110 110 110 108 107	89 89 86 82
16 17 18 19 20	24 23 23 24 25	27 28 29 33 29	28 28 26 26 28	23 23 24 23 24	29 28 28 26 25	32 30 30 34 32	44 47 50 52 51	648 667 614 522 473	519 476 437 394 367	156 155 156 156 150	107 101 96 96 95	81 80 79 80 81
21 22 23 24 25	24 23 23 22 22	27 26 25 25 25	27 26 27 27 28	23 23 29 23 23	24 23 24 23 24	31 31 30 29 29	50 55 57 60 65	425 383 367 359 320	334 341 337 318 319	146 146 145 143	93 93 95 100 100	80 77 74 75 73
26 27 28 29 30 31	22 23 22 22 22 23	25 25 25 25 25	27 27 27 26 29 26	23 23 25 26 26 26	26 25 24 	31 31 29 27 26 26	69 68 71 76 80	281 206 203 208 194 219	302 292 267 279 259	143 137 132 132 132 130	98 99 99 98 97	70 49 32 32 32
TOTAL MEAN MAX MIN AC-FT	754 24.3 29 21 1500	763 25.4 33 21 1510	822 26.5 29 25 1630	778 25.1 29 23 1540	754 26.9 35 23 1500	878 28.3 35 23 1740	1394 46.5 80 27 2760	8569 276 667 71 17000	13235 441 658 259 26250	4795 155 239 130 9510	3286 106 129 93 6520	2327 77.6 96 32 4620

CAL YR 1986 TOTAL 40600 MEAN 111 MAX 786 MIN 21 AC-FT 80530 WTR YR 1987 TOTAL 38355 MEAN 105 MAX 667 MIN 21 AC-FT 76080

09128000 GUNNISON RIVER BELOW GUNNISON TUNNEL. CO

LOCATION.--Lat 38°31'45", long 107°38'54", in NE4NW4 sec.10, T.49 N., R.7 W., Montrose County, Hydrologic Unit 14020002, on left bank 0.4 mi downstream from east portal of Gunnison tunnel, 4.7 mi downstream from Crystal Creek, and 12 mi northeast of Montrose.

DRAINAGE AREA . - 3.965 mi2.

PERIOD OF RECORD.--October 1903 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at east portal of Gunnison tunnel" 1905-6 and as "at River portal" 1907-11.

REVISED RECORDS.--WSP 1313: 1906(M). WSP 1733: 1918-19, 1948. WSP 2124: Drainage area. WDR CO-77-2: 1926, 1941.

GAGE.--Water-stage recorder. Datum of gage is 6,526.06 ft above National Geodetic Vertical Datum of 1929.

Apr. 9, 1905, to Aug. 20, 1915, nonrecording gage at site 300 ft upstream from diversion dam at east portal of Gunnison tunnel, at different datum. Aug. 21, 1915, to Jan. 19, 1943, nonrecording gage at site 500 ft downstream from diversion dam at east portal of Gunnison tunnel, at different datum. Jan. 20, 1943, to Sept. 30, 1956, water-stage recorder at present site at datum 1.0 ft, higher.

REMARKS.--Estimated daily discharges: Sept. 23-30. Records good. Natural flow of stream affected by transmountain diversions, transbasin diversion through Gunnison tunnel for irrigation of about 75,000 acres in Uncompangre Valley (see table below for figures of diversion), Taylor Park Reservoir (station 09108500), Blue Mesa Reservoir (station 09124600), Morrow Point Reservoir (station 09125400), Crystal Reservoir (station 09127600), diversions for irrigation of about 63,000 acres, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

COOPERATION. -- Diversions, in acre-feet, through Gunnison tunnel; provided by Uncompangre Valley Water Users Association.

AVERAGE DISCHARGE .-- 84 years, 1,402 ft3/s; 1,016,000 acre-ft/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 19,000 ft³/s, June 15, 1921, gage height, about 15.8 ft, present datum, from rating curve extended above 14,000 ft³/s; no flow Sept. 25-26, 1936, Oct. 8, 1949, Sept. 5-6, 15-16, 1950.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 2,570 ft³/s at 1000 Mar. 12, gage height, 5.34 ft; minimum daily, 566 ft³/s, Oct. 22.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MA Y JUN JUL. AUG SEP **1**20 2170 2180 1830 8 2350 2190 579 578 2140 2170 1170 ------TOTAL MEAN 2130 MAX MIN 66180 AC-FT

CAL YR 1986 TOTAL 695689 MEAN 1906 MAX 4300 MIN 566 AC-FT 1380000 WTR YR 1987 TOTAL 568213 MEAN 1557 MAX 2500 MIN 566 AC-FT 1127000

a-Diversions, in acre-feet, through Gunnison Tunnel, provided by Uncompangre Valley Water Users Association.

09128500 SMITH FORK NEAR CRAWFORD, CO

LOCATION.--Lat 38°43'40", long 107°30'22", in SW\dSE\d sec.24, T.15 S., R.91 W., Delta County, Hydrologic Unit 14020002, on left bank 20 ft upstream from Forest Service bridge, 0.4 mi upstream from Second Creek, 6 mi northeast of Crawford, and 6.5 mi upstream from Iron Creek.

DRAINAGE AREA . -- 42.8 mi².

PERIOD OF RECORD.--October 1935 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 1313: 1941. WDR CO-83-2: Drainage area. WDR CO-85-2: 1984, 1984 (M).

GAGE.--Water-stage recorder. Elevation of gage is 7,091 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 16, 1938, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Nov. 9, 11, Dec. 1-3, 10-15, 22, 23, Dec. 25 to Mar. 4, Apr. 11-15, July 20-27. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of a few small hay meadows upstream from station. Saddle Mountain ditch diverts water upstream from station for irrigation of about 800 acres downstream. One small ditch diverts water from Virginia Creek to Iron Creek drainage. Head and Ferrier ditch imports water from Curecanti Creek drainage. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 52 years, 42.9 ft3/s; 31,080 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,410 ft³/s, May 15, 1984, gage height, 8.28 ft, but may have been higher during period of indefinite stage-discharge relationship May 16-21, 1984; minimum daily discharge, 1.8 ft³/s, July 30-31, Aug. 1, 1963, Sept. 5-6, 1978.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 260 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 29	2100	*370	*3.42	May 15	2000	318	3.13

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 1.7 ft³/s, Aug. 20.

		DISCHARGE	, IN CODI	J FEET TE.	n becomb,	MEAN VALU	ES COLOBE	in 1900 10	JEI ILMDE	11. (30)		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	33 34 35 35 34	31 30 28 27 27	24 27 26 25 22	21 17 18 18 18	21 22 23 23 22	19 19 19 25 25	26 27 31 35 36	351 350 285 239 224	96 104 107 110 115	50 47 46 32 30	8.8 7.7 7.4 7.4 6.7	5.6 5.6 5.6 6.3
6 7 8 9 10	33 32 31 30 30	27 27 27 23 27	25 24 23 21 16	19 16 17 17	21 21 22 22 22	27 30 32 32 32	38 44 49 55 58	231 252 279 296 294	118 121 122 129 125	28 23 22 20 18	5.9 9.2 10 7.8 6.7	5.6 5.6 5.6 5.9
11 12 13 14 15	36 37 33 33 32	26 25 24 24 25	16 18 17 18 16	17 19 14 13	23 23 25 26 23	32 31 32 33 32	63 62 59 62 72	288 290 278 276 301	115 107 103 98 95	19 20 18 18 17	5.9 5.6 5.9 6.3 4.9	5.2 4.7 5.5 6.3
16 17 18 19 20	32 32 32 32 32	25 25 28 61 49	20 20 21 19 19	12 12 13 12 13	23 22 22 21 20	30 29 28 27 26	96 127 156 165 157	313 290 287 262 230	92 86 80 75 71	17 18 17 17 15	4.1 2.7 2.2 2.0 1.7	5.2 5.2 4.9 4.9
21 22 23 24 25	33 32 29 29 27	41 39 34 32 30	20 19 19 20 21	12 12 21 18 18	19 19 19 19 20	34 25 25 29 30	139 147 182 228 254	206 181 161 151 141	67 62 57 54 51	14 13 12 11	2.2 3.5 5.2 7.3 7.5	4.6 3.8 3.3 3.2 4.3
26 27 28 29 30 31	27 26 26 25 25 25	29 27 26 26 27	20 20 20 19 21 19	18 19 20 19 21 21	21 20 19 	28 25 32 25 33 32	269 286 305 336 343	130 115 103 94 88 86	50 51 52 56 52	9.0 8.0 7.6 7.7 7.4 8.8	6.7 5.6 5.9 5.2 5.2	5.5 5.6 5.6 4.4 3.5
TOTAL MEAN MAX MIN AC-FT	962 31.0 37 25 1910	897 29.9 61 23 1780	635 20.5 27 16 1260	515 16.6 21 12 1020	603 21.5 26 19 1200	878 28.3 34 19 1740	3907 130 343 26 7750	7072 228 351 86 14030	2621 87.4 129 50 5200	600.5 19.4 50 7.4 1190	178.8 5.77 10 1.7 355	154.6 5.15 6.3 3.2 307

CAL YR 1986 TOTAL 22640.6 MEAN 62.0 MAX 326 MIN 7.0 AC-FT 44910 WTR YR 1987 TOTAL 19023.8 MEAN 52.1 MAX 351 MIN 1.7 AC-FT 37730

09129600 SMITH FORK NEAR LAZEAR, CO

LOCATION.--Lat 38°42'27", long 107°42'35", in SE4NE4 sec.31, T.15 S., R.92 W., Delta County, Hydrologic Unit 14020002, on left bank 25 ft downstream from bridge, 1.8 mi upstream from Diamond Joe Gulch, and 6.4 mi southeast of Lazear.

DRAINAGE AREA. -- 166 mi2.

PERIOD OF RECORD. -- June 1976 to September 1987 (discontinued).

REVISED RECORDS.--WRD-CO-85-2: 1984, 1984 (M).

GAGE.--Water-stage recorder. Elevation of gage is 5,830 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 26, 30, 31, Jan. 9-13, Jan. 17 to Mar. 3, and Mar. 7 to July 10.
Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by
reservoirs, diversions into basin, diversions for irrigation, and return flow from irrigated areas. Several
observations of specific conductance and water temperature were obtained and are published elsewhere in this
report.

AVERAGE DISCHARGE. -- 11 years, 38.8 ft3/s; 28,110 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,610 $\rm ft^3/s$, May 18, 1984, gage height, 9.28 ft, from floodmarks; minimum daily, 0.10 $\rm ft^3/s$, Aug. 12-14, 1977.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, unknown; minimum daily, 1.1 ft3/s, July 25.

		DISCHAR	GE, IN CU	BIC FEET), WATER MEAN VALU	YEAR OCTO	3ER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	10 8.2 9.9 10 9.5	21 18 13 10 10	8.8 8.8 8.8 9.1	41 33 37 34 34	30 32 34 46 36	36 34 33 32 39	48 64 68 80 57	278 262 190 144 120	75 60 90 110 140	31 27 17 17	9.6 10 9.5 9.1 9.1	1.7 1.3 1.3 1.4 3.6
6 7 8 9 10	9.0 7.6 7.4 7.4 7.7	10 11 11 9.6 9.5	28 38 43 44 43	36 35 34 33 35	33 33 34 34 32	52 66 75 72 62	55 76 90 114 128	160 195 1 7 5 150 166	136 138 144 162 134	14 11 8.2 1.8 2.0	8.8 10 9.4 8.1 8.6	5.1 4.8 5.2 5.1 4.7
11 12 13 14 15	13 14 12 11	9.0 8.8 8.3 8.2 8.2	49 46 43 45	41 38 34 34 38	36 36 43 72 44	58 54 62 67 59	136 134 87 105 150	162 182 215 240 327	114 90 78 73 69	2.8 3.2 2.9 2.5 2.1	9.1 9.2 9.3 9.5 9.0	4.3 3.9 3.8 4.2 3.9
16 17 18 19 20	12 14 14 14 14	7.8 7.8 8.0 12	48 43 44 45 44	32 32 38 40 36	40 37 33 34 33	56 52 50 57 50	232 282 312 336 240	336 336 300 303 280	57 47 44 41 36	1.9 2.7 3.1 2.1 2.4	9.5 9.8 11 8.1 6.2	4.1 4.1 4.1 3.9 3.9
21 22 23 24 25	16 16 15 15 15	9.5 11 12 12 11	44 43 43 41	38 40 43 36 30	34 34 32 31 32	48 54 51 47 45	174 200 268 306 295	295 285 240 228 208	29 16 20 31 20	3.2 3.5 2.0 1.9	4.3 3.5 4.0 5.9	4.0 4.0 4.1 4.1
26 27 28 29 30 31	14 14 14 13 12	11 8.5 8.2 8.2 9.0	41 40 38 42 42 42	30 31 37 33 30 30	34 33 35 	44 45 44 43 41	280 285 275 260 250	192 184 150 136 120 100	29 30 25 33 51	1.5 1.6 1.7 3.6 4.8 5.8	4.2 3.2 3.4 3.2 2.9 2.5	3.9 3.9 4.0 4.0
TOTAL MEAN MAX MIN AC-FT	370.7 12.0 16 7.4 735	312.6 10.4 21 7.8 620	1161.5 37.5 49 8.8 2300	1093 35•3 43 30 2170	1017 36.3 72 30 2020	1570 50.6 75 32 3110	5387 180 336 48 10690	6659 215 336 100 13210	2122 70.7 162 16 4210	196.4 6.34 31 1.1 390	224.9 7.25 11 2.5 446	114.3 3.81 5.2 1.3 227

CAL YR 1986 TOTAL 20476.8 MEAN 56.1 MAX 280 MIN 1.7 AC-FT 40620 WTR YR 1987 TOTAL 20228.4 MEAN 55.4 MAX 336 MIN 1.1 AC-FT 40120

09132500 NORTH FORK GUNNISON RIVER NEAR SOMERSET, CO

LOCATION.--Lat 38°55'33", long 107°26'01", in SELSWL sec.10, T.13 S., R.90 W., Gunnison County, Hydrologic Unit 14020004, on left bank 2.3 mi east of Somerset and 4.8 mi upstream from Hubbard Creek.

DRAINAGE AREA . -- 526 mi2.

PERIOD OF RECORD. --October 1933 to current year. Monthly discharge only for some periods, published in WSP 1313. Water-quality data available, October 1977 to September 1982. Sediment data available, November 1978 to September 1982.

REVISED RECORDS. -- WSP 2124: Drainage area. WDR CO-77-2: 1976.

GAGE.--Water-stage recorder. Elevation of gage is 6,280 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1,1982, at various sites 0.8 mi downstream, at different datums. See WDR CO-81-2, for history of changes.

REMARKS.--Estimated daily discharges: Jan. 15 to Feb. 12. Records good except those for estimated daily discharges, which are fair. Natural flow of stream affected by small diversions for irrigation in nearby drainage areas, irrigation of about 3,000 acres upstream from station, storage in Overland Reservoir, capacity, 6,280 acre-ft, and storage in Paonia Reservoir, capacity, 18,300 acre-ft, since February 1962. See table below for contents of Paonia Reservoir.

COOPERATION .-- Monthend contents, in acre-feet, in Paonia Reservoir; provided by U.S. Bureau of Reclamation.

AVERAGE DISCHARGE. -- 54 years, 464 ft 3/s; 336,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,220 ft³/s, May 24, 1984, gage height, 8.20 ft, from outside highwater mark; minimum daily, 17 ft³/s, Nov. 10, 1950.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,820 $\rm ft^3/s$ at 2200 Apr. 28, gage height, 5.11 ft; minimum daily, 75 $\rm ft^3/s$, Sept. 24-26, 29, 30.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND,	WATER YE EAN VALUE	AR OCTOBEI	R 1986 1	O SEPTEMBEI	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1	387	384	221	150	120	87	108	2580	1170	500	268	221
2	380	361	222	152	115	97	124	2510	1310	452	260	239
3	373	351	232	147	120	108	134	2230	1380	412	254	237
4	373	346	234	150	125	110	158	1780	1470	371	247	234
5	354	338	239	153	125	120	154	1560	1510	337	244	237
6	346	345	234	153	125	143	165	1600	1550	316	238	234
7	346	347	227	150	115	167	189	1740	1610	300	256	234
8	345	333	206	149	115	178	370	1680	1640	314	264	228
9	289	317	188	120	125	452	526	1620	1920	292	254	222
10	608	338	151	77	125	649	598	1670	1720	275	252	228
11	838	310	171	88	125	727	673	1640	1550	259	248	230
12	804	327	200	127	101	764	687	1700	1500	281	245	232
13	768	319	200	138	105	765	636	1690	1420	293	237	230
14	753	321	186	132	111	762	619	1830	1380	286	241	233
15	743	323	187	125	104	750	682	2000	1350	279	234	230
16	728	327	186	115	100	753	922	2260	1340	274	231	232
17	726	286	182	115	98	748	1210	2610	1210	283	226	227
18	706	253	176	115	99	724	1400	2430	1090	291	224	228
19	690	447	186	115	97	503	1630	2230	988	268	231	233
20	517	405	175	115	97	280	1740	2010	871	257	232	229
21	438	331	178	115	91	271	1520	1920	785	258	236	230
22	428	333	166	115	93	270	1340	1760	746	277	238	232
23	376	280	169	110	102	265	1730	1580	709	278	251	145
24	353	273	179	115	96	257	2110	1490	656	275	279	75
25	345	270	172	115	96	214	2200	1390	619	269	258	75
26 27 28 29 30 31	338 338 216 152 152 231	270 254 243 246 250	164 169 176 165 156 144	115 115 120 120 120 120	94 92 91 	175 107 102 100 94 102	2330 2470 2510 2520 2500	1310 1230 1100 1030 997 994	591 550 530 561 535	267 281 277 282 275 281	230 218 218 218 218 225 222	75 76 76 75 75
TOTAL	14441	9528	5841	3866	3002	10844	33955	54171	34261	9360	7479	5752
MEAN	466	318	188	125	107	350	1132	1747	1142	302	241	192
MAX	838	447	239	153	125	765	2520	2610	1920	500	279	239
MIN	152	243	144	77	91	87	108	994	530	257	218	75
AC-FT	28640	18900	11590	7670	5950	21510	67350	107400	67960	18570	14830	11410
a	7160	7730	7090	8580	9970	14100	5080	18100	18200	14900	8410	890

CAL YR 1986 TOTAL 300589 MEAN 824 MAX 3690 MIN 80 AC-FT 596200 WTR YR 1987 TOTAL 192500 MEAN 527 MAX 2610 MIN 75 AC-FT 381800

a-Monthend contents, in acre-feet, in Paonia Reservoir.

09134000 MINNESOTA CREEK NEAR PAONIA, CO

LOCATION.--Lat 38°52'12", long 107°30'13", in SEtNEt of sec.1, T. 14 S., R. 91 W., Delta County, Hydrologic Unit 14020004, on right bank .25 mi downstream from South Fork, 6 mi upstream from mouth, and 4.5 mi east of Paonia.

DRAINAGE AREA . -- 41.3 mi 2.

PERIOD OF RECORD. -- April 1936 to September 1947, October 1985 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,200 ft above National Geodetic Vertical Datum of 1929, from topographic map. April 1936 to October 1941, staff gages at different datums. October 1941 to September 1947, water-stage recorder at different datum. December 1985 to present, water-stage recorder, datum lowered 2.0 ft.

REMARKS.--Estimated daily discharges: Dec. 10-15, 22, 23, 25-27, Dec. 29-Jan. 1, 3, Jan. 9-22, 28, 29, Feb. 18 to Apr. 3. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by two small storage reservoirs, one of which obtains water from the East Muddy Creek Basin. Small trans-basin diversion from Coal Creek into Minnesota Creek. Diversions upstream from station for irrigation of about 100 acres. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years (water years 1936-47, 1986-87), 25.8 ft3/s; 18,690 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 356 ft³/s, July 10, 1936 (gage height 3.00 ft, site and datum then in use); minimum daily, 3.0 ft³/s, Mar. 30, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 176 ${\rm ft}^3/{\rm s}$ at 1930 May 11, gage height, 2.49 ft, from peak-stage indicator; minimum daily, 3.0 ${\rm ft}^3/{\rm s}$, Mar. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES OCT JUL AUG SEP DAY NOV DEC JUN JAN FEB MA R APR MAY 3.5 3.5 3.5 3.5 10 8.5 5.5 5.0 107 80 42 2 10 14 13 7.0 5.6 6.0 115 86 88 39 38 22 21 16 13 12 11 11 7.5 5.7 8.0 20 41 9.6 12 106 74 40 21 6.8 4.0 12 19 5 10 10 9.7 5.6 60 39 122 7.4 6 9.8 10 11 6.6 5.9 5.0 15 117 60 37 16 35 35 36 7.2 7.1 7.0 9.7 9.5 9.3 78 11 10 6.4 6.1 6.0 15 117 64 25 9.8 9.5 25 6.2 5.5 17 128 67 6.0 14 9.5 5.6 24 5.8 132 75 10 9.7 8.0 5.8 5.5 137 35 21 17 5.2 5.1 5.1 32 32 8.0 11 21 12 7.1 5.5 18 144 69 20 6.6 16 10 12 9.0 8.5 6.8 5.0 6.0 141 68 23 6.4 22 13 18 13 9.1 8.5 133 68 19 6.6 9.0 5.0 14 12 8.8 8.4 18 124 67 35 20 7.0 15 8.5 12 8.8 6.6 6.0 22 144 68 34 20 6.6 16 11 8.8 10 5.2 146 84 33 6.0 26 19 17 18 11 9.4 10 33 42 148 6.0 5.0 90 11 32 12 12 5.2 6.0 5.0 150 86 16 5.4 44 8.1 5.2 6.0 48 19 5.5 151 83 30 17 4.7 21 8.0 5.0 5.0 81 28 20 11 5.0 45 139 20 21 11 15 8.6 5.0 4.5 4.5 4.5 42 78 28 20 4.4 22 11 17 8.0 5.0 4.5 44 128 73 47 27 27 21 4.4 23 3.0 10 11 4.0 53 120 22 4.5 26 61 26 4.6 10 12 5.6 4.5 4.0 44 103 25 5.5 4.5 43 4.5 3.5 3.5 4.0 4.0 26 8.0 26 10 11 5.5 5.0 69 104 41 22 3.9 27 8.0 5.3 5.0 73 79 93 88 25 25 3.7 3.7 10 10 4.5 33 20 9.2 9.9 4.0 4ó 19 8.4 29 9.0 9.7 8.0 5.5 3.5 88 84 43 24 19 18 8.8 8.5 30 9.8 5.5 3.0 95 3.2 44 24 4.2 31 8.0 24 9.0 5.4 ___ 4.0 78 ---18 178.1 1086.0 3733 1981 982 638 TOTAL 341.0 159.8 143.5 11.0 9.08 20.6 MEAN 12.9 5.75 8.5 5.71 4.63 36.2 120 66.0 31.7 8.74 21 44 8.5 MAX 13 6.5 95 151 90 41 8.8 8.8 7.7 MIN 5.0 353 3.0 285 5.0 24 16 4.0 78 559 AC-FT 317 7400 3930 1950 1270

CAL YR 1986 TOTAL 14744.6 MEAN 40.4 MAX 203 MIN 4.9 AC-FT 29250 WTR YR 1987 TOTAL 10173.4 MEAN 27.9 MAX 151 MIN 3.0 AC-FT 20180

09135900 LEROUX CREEK AT HOTCHKISS, CO

LOCATION.--Lat 38°47'53", long 107°43'53", in NW4NE4 sec.36, T.14 S., R.9 3 W., Delta County, Hydrologic Unit 14020004, on left bank at upstream side of culvert, 0.3 mi west of Hotchkiss city limits, and 0.5 mi upstream from mouth.

DRAINAGE AREA. -- 66.7 mi².

PERIOD OF RECORD. -- June 1976 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,315 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records fair. Natural flow of stream is affected by diversions upstream from station for irrigation and by return flow from irrigated area upstream from station. Mostly return flow after June. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, 37.2 ft³/s; 26,950 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,880 $\rm ft^3/s$, June 7, 1984, gage height, 11.82 $\rm ft$; minimum daily, 0.55 $\rm ft^3/s$, July 10, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $487 \text{ ft}^3/\text{s}$ at 2100 Apr. 25, gage height, 6.40 ft; minimum daily, 1.9 ft³/s, June 25-28.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU		1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	58 81 87 69 62	84 79 75 68 59	32 39 36 32 31	19 20 20 20 20	26 25 25 29 27	30 28 20 10 18	18 25 28 36 28	368 285 149 96 74	31 60 65 60 55	2.9 3.2 3.7 4.0 4.0	8.3 8.3 7.5 7.5 7.1	5.6 5.6 5.6 6.2
6 7 8 9 10	67 80 82 84 98	55 51 50 49 55	32 35 32 29 22	20 20 20 19 19	26 26 27 30 29	37 48 52 49 43	24 35 50 62 68	92 138 138 127 131	54 49 51 67 43	4.0 3.7 3.7 3.2 3.9	7.1 6.9 6.6 6.6	5.9 5.9 6.2 6.2
11 12 13 14 15	143 133 125 126 124	47 50 40 38 37	24 26 26 26 25	20 19 18 18 17	31 32 37 44 34	40 37 40 41 39	77 73 54 55 83	148 188 160 166 247	27 15 3.5 4.5 3.4	5.6 5.4 5.6 7.9	6.4 6.6 7.1 5.4 5.5	6.2 6.2 6.2 7.0 7.5
16 17 18 19 20	108 95 85 74 79	35 35 38 96 64	24 23 23 24 22	18 18 15 17 18	32 30 30 31 32	38 33 32 35 32	143 232 308 333 252	239 257 233 184 143	3.4 3.2 3.1 3.1	9.2 8.4 7.9 7.5 7.5	5.4 5.1 5.8 5.6	7.7 7.9 6.7 6.2 6.6
21 22 23 24 25	87 85 75 72 68	50 51 45 49 49	21 22 22 19 20	23 25 25 25 25	30 27 24 20 18	29 31 28 30 31	162 187 259 333 357	168 99 60 46 24	2.7 2.7 2.7 2.1 1.9	7.9 7.5 8.1 8.3 8.3	5.9 6.4 6.2 6.6 7.1	6.2 5.9 7.9 6.0 7.0
26 27 28 29 30 31	63 59 57 60 60 63	44 41 39 38 36	18 18 20 19 20 18	25 25 27 28 27 26	21 23 27	27 26 23 21 21 20	328 314 340 350 329	11 9.2 7.5 7.5 7.9 8.8	1.9 1.9 1.9 2.0 2.4	9.8 8.8 8.4 8.3 8.3	6.1 5.6 5.1 5.1 4.9 4.8	7.5 7.5 7.5 7.1 6.6
TOTAL MEAN MAX MIN AC-FT	2609 84.2 143 57 5170	96 35	780 25.2 39 18 1550	656 21.2 28 15 1300	793 28.3 44 18 1570	989 31.9 52 10 1960	4943 165 357 18 9800	4011.9 129 368 7.5 7960	626.5 20.9 67 1.9 1240	203.2 6.55 10 2.9 403	194.6 6.28 8.3 4.8 386	196.1 6.54 7.9 5.6 389

CAL YR 1986 TOTAL 20544.0 MEAN 56.3 MAX 425 MIN 4.0 AC-FT 40750 WTR YR 1987 TOTAL 17549.3 MEAN 48.1 MAX 368 MIN 1.9 AC-FT 34810

09137050 CURRANT CREEK NEAR READ, CO

LOCATION.--Lat 38°47'05", long 107°56'18", in SW4SE4 sec.31, T.14 S., R.94 W., Delta County, Hydrologic Unit 14020005, on right bank 0.2 mi downstream from Dry Creek, 0.4 mi upstream from mouth, 0.7 mi northeast of Austin, and 2.4 mi northeast of Read.

DRAINAGE AREA .-- 56.9 mi2.

PERIOD OF RECORD. -- May 1976 to September 1987 (discontinued).

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 5,035 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges, Jan. 18-25. Records good. Natural flow of stream affected by diversions for irrigation and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 11 years, 14.6 ft 3/s; 10,580 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 644 ft³/s, June 7, 1984, gage height, 5.73 ft, no flow, Aug. 2, 4, 5, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 320 ft³/s at 0230 Apr. 26, gage height, 4.81 ft, from peak-stage indicator; minimum daily, 0.78, Aug. 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DE C JAN FEB MAR APR Ma y JUN JUL AUG SEP 4.4 3.4 2.5 3.9 2.1 1.8 2.3 1.3 Ā 2.7 1.8 2.0 1.9 1.6 1.7 34 2.3 1.0 2.0 3.1 1.7 .78 44 18 3.5 3.3 3.2 33 1.2 1.1 1.3 1.5 57 42 1.4 1.6 2.4 13 37 18 1.7 2.3 1.9 1.3 1.8 2.4 1.5 1.8 1.8 1.8 2.8 35 1.7 2.4 12 3.0 2.2 2.9 3.0 3.2 8.0 1.7 2.0 5.4 2.5 2.8 3.1 2.2 2.9 23 24 35 15 17 3.1 2.3 2.0 2.3 3.7 5.5 .84 1.4 3.3 4.8 2.0 1.5 2.0 27 28 31 3.8 3.0 1.2 4.0 71 45 25 3.2 3.0 1.6 2.6 1.2 2.5 1.4 2.4 ---5.5 1.6 2.7 2.5 ---3.2 2.5 TOTAL 290.6 63.7 77.98 70.74 17.7 18.6 24.7 MEAN 32.1 33.7 78 20.5 69.7 25.8 9.69 2.05 2.52 2.36 5.5 .78 155 3.8 MAX 4.4 MIN 1.7 1.2 AC-FT

CAL YR 1986 TOTAL 9429.30 MEAN 25.8 MAX 186 MIN 2.2 AC-FT 18700 WTR YR 1987 TOTAL 7869.02 MEAN 21.6 MAX 158 MIN .78 AC-FT 15610

09143000 SURFACE CREEK NEAR CEDAREDGE, CO

LOCATION. -- Lat 38°59'05", long 107°51'13", in NW1NW1 sec.25, T.12 S., R.94 W., Delta County, Hydrologic Unit 14020005, on left bank 5 ft downstream from private bridge, 1.4 mi downstream from Caesar Creek, and 7.0 mi northeast of Cedaredge.

DRAINAGE AREA . -- 27.4 mi2.

PERIOD OF RECORD .-- July 1939 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WDR CO-83-2: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 8,261 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 2-16, Dec. 1-Jan. 14, 29, 30, Feb. 14, 15, 25-28, May 8-12. Records good except for estimated daily discharges, which are poor. Flow regulated by many small reservoirs. Some water imported from Leon Lake in Plateau Creek drainage. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 48 years, 43.6 ft 3/s; 31,590 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 824 ft³/s, June 7, 1984, gage height, 3.67 ft, from rating curve extended above 310 ft³/s; maximum gage height, 5.10 ft, Apr. 13, 1958 (ice jam); minimum daily discharge, 0.80 ft³/s, Jan. 15, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $382 \text{ ft}^3/\text{s}$ at 2200 May 14. gage height, 2.80 ft; minimum daily, 11 ft $^3/\text{s}$ Feb. 7, 9, 10, Mar. 31.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MEAN VALUES DAYOCT NOV DE C JAN FEB MAR APR MA Y JUN JUL AUG SEP 22 13 19 15 12 70 62 71 68 18 13 16 17 18 48 62 89 18 78 27 88 34 _---78 31 ___ ___ ---------TOTAL. 14.7 MEAN 14.3 18 28.0 19.5 76.4 38.0 16.7 12.5 17 81.1 56.5 MINAC-FT

CAL YR 1986 TOTAL 26208 MEAN 71.8 MAX 388 MIN 4.9 AC-FT 51980 AC-FT 42050 WTR YR 1987 TOTAL 21202 MEAN 58.1 MAX 252 MIN 11

09143500 SURFACE CREEK AT CEDAREDGE, CO

LOCATION.--Lat 38°54'06", long 107°55'14", in SW\u00e4SE\u00e4 sec.20, T.13 S., R.94 W., Delta County, Hydrologic Unit 14020005, on left bank at Cedaredge, 700 ft east of State Highway 65, and 8.5 mi upstream from mouth.

DRAINAGE AREA. -- 39.0 mi2.

PERIOD OF RECORD. -- October 1916 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WDR-CO-83-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,220 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 8, 1917, nonrecording gage at present site at datum 0.50 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 24 to Jan. 3, 10, 11, 19, 20, 24, Feb. 3-5, Mar. 3, 4, 25-30.
Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions to and from nearby streams, many small storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 71 years, 28.4 ft 3/s; 20,580 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,190 ft³/s, May 13, 1941, gage height, 2.50 ft, from rating curve extended above 640 ft³/s; no flow, Sept. 25, 1939, and practically no flow at times during some winters.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 431 $\rm ft^3/s$ at 2300 May 14, gage height, 2.76 $\rm ft$; minimum daily 2.5 $\rm ft^3/s$, Dec. 10.

		DISCHARGE	, IN CUBI	C FEET PE		WATER YEA		1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	29 32 37 31 30	28 26 26 26 24	6.5 7.0 6.5 6.0 5.5	9.0 11 13 16 14	10 11 11 15 12	13 13 12 12 13	16 18 19 21 18	174 148 106 80 83	72 87 95 101 103	51 52 51 39 34	31 31 30 33 33	11 10 19 20 23
6 7 8 9	33 33 30 30 34	24 23 21 28 25	8.0 8.0 7.0 5.5 2.5	15 18 16 15 16	10 11 11 12 12	15 17 18 18 18	18 21 25 30 35	107 119 119 111 107	105 104 94 99 77	33 30 27 42 47	27 29 26 23 23	21 21 18 18 23
11 12 13 14 15	40 34 27 28 30	23 24 21 20 19	5.5 6.5 6.0 5.5	18 16 18 16 15	13 13 13 15 17	17 17 18 18 16	40 39 34 35 49	103 111 129 168 112	66 57 55 58 55	33 30 28 35 36	30 23 27 27 8.5	26 22 23 23 21
16 17 18 19 20	31 32 34 34 34	18 18 19 34 28	5.5 5.0 4.5 5.5	14 15 15 16 14	15 13 14 14 15	17 16 16 16 16	79 115 144 134 89	200 203 188 185 165	54 46 44 50 64	31 33 28 23 22	4.5 4.7 11 16 15	20 21 21 15 14
21 22 23 24 25	34 29 26 27 26	24 22 17 13 11	5.0 5.0 5.0 6.0 5.5	11 11 12 15 12	14 14 13 13 12	18 18 18 16 15	74 105 144 162 161	169 143 118 109 92	66 65 63 61 58	24 26 27 25 23	15 14 13 17 16	14 14 13 12
26 27 28 29 30 31	25 23 22 22 23 24	9.0 9.0 8.5 8.0	5.5 5.0 5.0 7.0 7.0	12 13 14 12 12	12 12 12 	15 15 15 14 12 13	155 169 162 161 172	83 71 65 60 55 57	52 49 48 48 58	22 19 17 17 23 27	15 11 9.8 10 11	16 16 16 16 16
TOTAL MEAN MAX MIN AC-FT	924 29.8 40 22 1830	608.5 20.3 34 8.0 1210	180.5 5.82 3.0 2.5 358	435.0 14.0 18 9.0 863	359 12.8 17 10 712	485 15.6 18 12 962	2444 81.5 172 16 4850	3740 121 203 55 7420	2054 68.5 105 44 4070	955 30.8 52 17 1890	594.5 19.2 33 4.5 1180	535 17.8 26 10 1060

CAL YR 1986 TOTAL 17441.3 MEAN 47.8 MAX 310 MIN 2.5 AC-FT 34590 WTR YR 1987 TOTAL 13314.5 MEAN 36.5 MAX 203 MIN 2.5 AC-FT 26410

09144200 TONGUE CREEK AT CORY, CO

LOCATION.--Lat 38°47'16", long 107°59'41", in SE4SE4 sec.34, T.14 S., R.95 W., Delta County, Hydrologic Unit 14020005, on left bank at downstream side of bridge, 500 ft upstream from North Delta canal headgate, 0.5 mi west of Cory, and 1.0 mi upstream from mouth.

DRAINAGE AREA. -- 197 mi2.

PERIOD OF RECORD. -- October 1957 to September 1968, May 1976 to September 1987 (discontinued).

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,030 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Mar. 30, 31, and June 20 to July 13. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by many small storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Diversions to and from nearby streams. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--22 years (water years 1958-68, 1977-87), 47.0 ft³/s; 34,050 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,130 ft³/s, June 7, 1984, gage height, 6.77 ft, from peak stage indicator; minimum daily, 0.35 ft³/s, July 22, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 440 $\rm ft^3/s$ at 0100 May 15, gage height, 3.21 ft; minimum daily, 17 $\rm ft^3/s$, Aug. 6.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DIBGHANGE	, 00010	TEET FER		MEAN VALU		1900 10	DEF TEMBER	1901		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	115 115 129 123 114	185 150 138 131 125	63 64 64 62 61	58 56 58 60 56	56 58 61 77 63	65 62 61 64 70	79 102 105 119 91	295 282 213 165 140	132 144 137 152 153	61 56 45 45 37	21 20 20 20 20 18	36 36 35 35 35
6	113	131	71	57	60	87	88	156	151	41	17	37
7	119	127	72	59	60	105	114	180	154	37	20	37
8	115	123	67	57	62	115	127	184	160	34	21	37
9	111	108	65	56	62	111	150	173	180	23	22	35
10	118	124	54	59	60	99	162	191	151	24	22	37
11	174	115	60	65	65	95	169	187	134	25	26	36
12	172	120	65	62	65	89	165	207	112	27	22	37
13	144	116	64	60	74	101	114	241	96	28	26	41
14	144	115	61	60	112	107	117	263	94	23	28	45
15	142	111	62	59	74	97	174	342	91	22	27	42
16	136	107	62	59	70	93	255	349	77	22	25	42
17	134	107	60	58	66	86	300	350	65	40	26	37
18	132	113	59	65	61	83	328	323	61	37	26	36
19	129	277	60	69	62	92	347	326	58	31	29	39
20	130	159	59	63	61	83	261	304	53	28	33	40
21	131	117	58	65	62	81	197	320	48	27	32	39
22	125	106	56	68	62	88	225	308	34	25	34	42
23	122	88	5 7	7 2	60	84	285	271	38	23	37	42
24	124	83	59	63	58	78	321	261	50	23	61	39
25	118	75	5 7	56	60	74	314	240	38	25	55	39
26 27 28 29 30 31	113 112 107 105 104 110	78 71 71 70 68	5 7 55 55 59 59	55 57 64 59 56 55	62 61 63 	73 74 73 72 67 69	298 302 293 279 270	226 199 174 156 139 121	48 49 45 53 71	25 23 20 20 19 22	58 48 44 40 40 38	39 39 36 35 34
TOTAL	3880	3509	1886	1866	1817	2598	6151	7286	2829	938	956	1139
MEAN	125	117	60.8	60.2	64.9	83.8	205	235	94.3	30.3	30.8	38.0
MAX	174	277	72	72	112	115	347	350	180	61	61	45
MIN	104	68	54	55	56	61	79	121	34	19	17	34
AC-FT	7700	6960	3740	3700	3600	5150	12200	14450	5610	1860	1900	2260

CAL YR 1986 TOTAL 40914 MEAN 112 MAX 480 MIN 32 AC-FT 81150 WTR YR 1987 TOTAL 34855 MEAN 95.5 MAX 350 MIN 17 AC-FT 69130

09144250 GUNNISON RIVER AT DELTA. CO

LOCATION.--Lat 38°45'01", long 108°04'06", in SE4NE4 sec.13, T.15 S., R.96 W., Delta County, Hydrologic Unit 14020005, on left bank near upstream side of U.S. Highway 50 bridge at north edge of Delta.

DRAINAGE AREA. -- 5.628 mi2.

PERIOD OF RECORD. -- May 1976 to current year. Gage-height records collected at this site 1912-77 (flood seasons only) are in reports of the National Weather Service.

GAGE.--Water-stage recorder. Datum of gage is 4,919.97 ft, National Weather Service Datum (levels by National Weather Service). Prior to May 1976 nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, and many diversions for irrigation. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 11 years, 2,584 ft3/s; 1,872,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,500 ft³/s, June 7, 1984, gage height, 13.15 ft; minimum daily, 208 ft³/s, Aug. 11, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum gage height observed, 13.5 ft, June 6, 1957, from National Weather Service wire-weight gage at present datum, (discharge not determined).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,460 ft³/s at 0300 May 2, gage height, 6.98 ft; minimum daily, 1,040 ft³/s, Sept. 2.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT AUG NOV DE C JAN FEB MA R APR MA Y JUN JUL. SEP 3010 3550 2840 3170 2930 3310 2570 14 3600 3120 1240 3320 3320 1880 ---TOTAL MEAN MIN AC-FT

CAL YR 1986 TOTAL 1348840 MEAN 3695 MAX 8010 MIN 1680 AC-FT 2675000 WTR YR 1987 TOTAL 1043010 MEAN 2858 MAX 6170 MIN 1040 AC-FT 2069000

09146200 UNCOMPAHGRE RIVER NEAR RIDGWAY, CO

LOCATION.--Lat 38°11'02", long 107°44'43", in SW\u00e4NE\u00e4 sec.4, T.45 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 15 ft downstream from bridge, 0.2 mi downstream from Dry Creek, 0.5 mi upstream from Dallas Creek, and 2.3 mi north of Ridgway.

DRAINAGE AREA .-- 149 mi2.

PERIOD OF RECORD .-- October 1958 to current year.

REVISED RECORDS. -- WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6,877.58 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation).

REMARKS.--Estimated daily discharges: Dec. 2, 11-14, 27, Dec. 30 to Jan. 1, Jan. 10-23, and July 9 to Aug. 26.
Records good except for estimated daily discharges, which are fair. Diversions for irrigation upstream from station. Water is imported upstream from station in some years by Red Mountain ditch from Mineral Creek in San Juan River basin. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 29 years, 169 ft 3/s; 122,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,100 ft³/s, June 24, 1983, gage height, 5.73 ft; from rating curve extended above 1,800 ft³/s; minimum daily, 26 ft³/s, Jan. 13, 1963.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 15	0100	*1,020	* † * † †	No oth	er peak gre	ater than base d	ischarge.

Minimum daily, 42 ft³/s, Jan. 18.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	VCN	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	151 145 146 139 136	119 122 122 121 106	72 70 77 77 77	50 54 56 56 56	50 52 55 55 54	46 45 46 48 52	59 68 75 89 82	466 450 330 284 280	310 424 518 601 587	497 475 466 435 391	200 210 190 170 150	138 140 140 136 136
6 7 8 9 10	135 132 132 129 130	106 99 93 77 86	80 83 80 78 62	57 54 55 50	51 55 56 55	69 78 74 69 74	83 83 86 86	277 317 375 448 464	668 748 686 843 811	377 360 347 340 340	150 220 200 160 150	132 130 128 126 122
11 12 13 14 15	143 142 129 130 124	82 85 85 83 86	60 60 60 62	50 50 48 48	57 58 64 69 57	75 69 78 85 80	88 91 93 90 104	458 549 560 586 688	746 740 814 851 872	330 310 290 290 280	130 120 110 100 100	118 116 114 116 114
16 17 18 19 20	122 118 114 110 118	86 85 87 117 98	62 62 62 64 64	46 44 42 44 46	57 55 55 53 50	77 69 69 77 72	141 187 216 211 186	739 711 671 567 507	866 699 671 665 637	270 310 290 230 190	95 90 85 80 75	109 106 104 99 98
21 22 23 24 25	121 110 103 101 101	93 99 94 85 88	64 62 62 58 59	46 44 48 49	48 47 48 47 49	65 66 62 62 59	153 180 246 293 330	459 395 363 353 326	588 569 578 571 596	200 230 230 210 220	80 85 140 280 330	96 93 91 88 88
26 27 28 29 30 31	96 96 96 94 93	91 83 82 82 82	58 55 57 56 55 50	49 50 51 50 51 51	52 49 47 	58 61 61 58 50 52	365 383 383 425 465	295 259 235 230 225 235	587 565 516 533 493	220 260 260 230 220 220	260 190 162 157 146 140	88 85 85 85
TOTAL MEAN MAX MIN AC-FT	3732 120 151 93 7400	2824 94.1 122 77 5600	2008 64.8 83 50 3980	1547 49.9 57 42 3070	1496 53.4 69 47 2970	2006 64.7 85 45 3980	5424 181 465 59 10760	13102 423 739 225 25990	19353 645 872 310 38390	9318 301 497 190 18480	4755 153 330 75 9430	3309 110 140 85 6560

CAL YR 1986 TOTAL 77574 MEAN 213 MAX 1130 MIN 42 AC-FT 153900 WTR YR 1987 TOTAL 68874 MEAN 189 MAX 872 MIN 42 AC-FT 136600

09147000 DALLAS CREEK NEAR RIDGWAY, CO

LOCATION.--Lat 38°10'40", long 107°45'28", on line between sec.4 and 5, T.4 5 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 25 ft downstream from county bridge, 1.5 mi upstream from mouth, and 1.5 mi northwest of Ridgway.

DRAINAGE AREA . - - 96.2 mi2.

PERIOD OF RECORD. -- March 1922 to October 1927, October 1955 to September 1971, October 1979 to current year.

REVISED RECORDS. -- WSP 1924: 1960: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,980 ft above National Geodetic Vertical Datum of 1929, from topographic map. Mar. 1, 1922 to Oct. 31, 1927, nonrecording gage at different datum.

REMARKS.--Estimated daily discharges: Nov. 9-11, 24, 25, 28, 29, Dec. 1-5, Dec. 11 to Feb. 2, Feb. 6-13, Feb. 19 to Mar. 3. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 4,500 acres upstream from and 700 acres downstream from station. One small ditch imports water from Leopard Creek (Dolores River basin) to drainage upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 29 years, 42.3 ft 3/s; 30,650 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 1,120 ft³/s, Aug. 15, 1923, gage height, 4.40 ft, datum then in use, from rating curve extended above 160 ft³/s; maximum gage height, 6.13 ft, July 21, 1983; minimum daily discharge, 0.21 ft³/s, June 19, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 471 ${\rm ft}^3/{\rm s}$ at 2400 May 13, gage height, 5.37 ft; minimum daily, 20 ${\rm ft}^3/{\rm s}$, Jan. 19.

		DISCHARGE	, CUBIC	FEET PER		VATER YEAR IN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	50 48 47 47 46	40 38 37 39 36	30 28 30 30 30	24 26 26 26 26	26 26 29 30 29	22 22 22 26 25	36 41 43 46 42	178 192 163 131 125	59 54 41 42 42	98 92 92 98 91	98 87 82 74 66	48 47 47 42 42
6 7 8 9 10	44 44 43 43	35 33 29 26 28	33 35 34 33 29	26 26 26 26 24	26 26 26 28 28	29 34 36 41 45	47 47 57 74 84	123 112 107 110 107	53 89 70 88 96	80 71 66 61 61	64 111 88 77 72	41 41 41 41 40
11 12 13 14 15	49 48 44 43 44	26 29 29 27 25	28 28 28 28 28 30	24 24 24 24 24	28 30 32 38 33	43 42 49 50 46	97 121 89 77 94	105 142 172 204 182	92 84 93 98 137	62 67 64 64 63	69 66 64 60 55	37 36 35 36 36
16 17 18 19 20	43 41 41 39 42	26 26 25 65 44	30 30 30 30 30	22 22 22 20 22	31 29 29 26 26	41 35 37 46 40	137 197 218 225 191	220 189 196 196 194	165 138 129 121 116	61 74 74 59 51	51 44 42 42 43	35 33 33 32 31
21 22 23 24 25	40 39 37 36 36	38 50 38 32 34	30 30 30 28 28	22 22 24 24 24	24 24 24 24 24	33 34 33 32 29	155 186 231 243 231	176 147 131 129 112	101 94 92 98 101	49 50 56 54 58	46 46 80 93 103	30 29 29 27 25
26 27 28 29 30 31	37 36 35 35 35 35	37 34 32 32 35	28 26 26 26 26 26	24 26 26 26 26 26	26 24 24 	29 31 31 28 28 32	234 228 214 208 186	97 88 89 87 85 68	101 104 102 115 102	72 103 105 95 96 111	88 72 62 58 54 49	26 26 25 26 31
TOTAL MEAN MAX MIN AC-FT	1291 41.6 50 35 2560	65 25	908 29.3 35 26 1800	754 24.3 26 20 1500	770 27.5 38 24 1530	1071 34.5 50 22 2120	4079 136 243 36 8090	4357 141 220 68 8640	2817 93.9 165 41 5590	2298 74.1 111 49 4560	2106 67.9 111 42 4180	1048 34.9 48 25 2080

CAL YR 1986 TOTAL 18669 MEAN 51.1 MAX 229 MIN 12 AC-FT 37030 WTR YR 1987 TOTAL 22524 MEAN 61.7 MAX 243 MIN 20 AC-FT 44680

09147500 UNCOMPANGRE RIVER AT COLONA, CO

LOCATION.--Lat 38°19'53", long 107°46'44", in NW4NW4 sec.17, T.47 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 15 ft downstream from county highway crossing, 0.2 mi north of Colona, and 1.0 mi upstream from Beaton Creek.

DRAINAGE AREA. -- 443 mi2.

PERIOD OF RECORD.--April 1903 to November 1905, April to June 1906 (gage heights and discharge measurements only), October 1912 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Colona" 1904-6, 1922-34.

REVISED RECORDS.--WSP 1313: 1904. WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6,318.80 ft above National Geodetic Vertical Datum of 1929. See WSP 1713 or 1733 for history of changes prior to Sept. 30, 1949.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Ridgway Reservoir, 1.1 mi upstream since 1986, total capacity, 80,000 acre-ft. Diversions upstream from station for irrigation of about 2,600 acres downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--75 years (water years 1904-5, 1913-86), 271 ft³/s; 196,300 acre-ft/yr, prior to completion of Ridgway Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 4,080 ft $^3/s$, June 13, 14, 1921; minimum daily, 12 ft $^3/s$, Sept. 19, 1956, May 7, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,710 $\rm ft^3/s$ at 2300 May 16, gage height, 4.49 ft; minimum daily, 76 $\rm ft^3/s$, Apr. 14.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DISCHARGE	, COBIC	reer ren	SECOND,	MEAN VALU	R OCTOBER	1 1900 10	SEFIEMBER	. 1901		
DAY	OCT	иои	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	94 141 436 441 277	114 113 107 104 101	99 99 103 103 103	94 95 92 94 96	97 97 100 100 98	101 105 105 111 121	106 107 115 128 121	1030 1030 912 815 767	366 471 540 617 598	740 627 587 568 556	517 517 517 512 495	405 398 398 393 398
6 7 8 9 10	240 237 141 195 348	102 102 98 93 99	103 103 102 102 98	95 92 91 90 87	96 97 101 102 101	137 155 151 140 140	119 122 130 139 142	755 769 822 854 855	658 713 639 681 627	547 539 477 387 352	495 555 534 512 506	407 413 411 404 404
11 12 13 14 15	264 281 248 254 240	96 99 99 99	93 99 99 100 102	89 93 94 93 92	102 103 105 105 101	133 125 129 132 123	155 146 118 76 203	835 897 908 951 1070	581 568 562 770 935	347 347 355 359 355	506 501 480 456 455	404 402 396 400 404
16 17 18 19 20	233 219 219 209 155	98 96 97 109 104	101 99 100 100 99	97 96 95 100 98	101 100 100 99 99	122 115 108 113 111	412 486 529 514 498	1360 1630 1630 1600 1400	917 871 811 719 682	355 359 386 409 383	455 455 455 450	402 396 395 395 393
21 22 23 24 25	99 98 98 97 97	102 105 101 99 103	99 96 97 97 97	93 94 97 98 99	98 100 102 103 105	106 107 105 103 102	434 483 548 580 589	1130 996 954 929 868	624 575 542 481 470	329 264 263 258 254	455 455 457 484 516	387 386 378 375 369
26 27 28 29 30 31	97 96 96 96 96	105 99 103 103 103	95 94 94 93 92	96 96 102 99 96 96	104 102 102 	101 103 102 100 95 99	595 672 790 881 989	703 571 542 509 366 263	455 441 452 675 818	254 254 282 408 545 523	491 470 470 441 414 413	368 362 359 355
TOTAL MEAN MAX MIN AC-FT	5937 192 441 94 11780	3052 102 114 93 6050	3055 98.5 103 92 6060	2939 94.8 102 87 5830	2820 101 105 96 5590	3600 116 155 95 7140	10927 364 989 76 21670	28721 926 1630 263 56970	18859 629 935 366 37410	12669 409 740 254 25130	14894 480 555 413 29540	11725 391 413 355 23260

CAL YR 1986 TOTAL 114171 MEAN 313 MAX 1490 MIN 46 AC-FT 226500 WTR YR 1987 TOTAL 119198 MEAN 327 MAX 1630 MIN 76 AC-FT 236400

09149500 UNCOMPAHGRE RIVER AT DELTA, CO

LOCATION.--Lat 38°44'31", long 108°04'49", in SW4SW4 sec.13, T.15 S., R.96 W., Delta County, Hydrologic Unit 14020006, on right bank 525 ft downstream from 5th Street Bridge at west edge of Delta and 1.1 mi upstream from mouth.

DRAINAGE AREA . -- 1,129 mi2.

PERIOD OF RECORD.--April 1903 to October 1931 (no winter records in most years), September 1938 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Delta" 1907-24.

REVISED RECORDS. -- WSP 1243: 1904. WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,926.49 ft above National Geodetic Vertical Datum of 1929. Feb. 18, 1960, to Mar. 26, 1963, water-stage recorder at site 750 ft upstream at datum 3.43 ft, higher. Mar. 27, 1963, to May 12, 1965, water-stage recorder at site 1,050 ft upstream at datum 6.08 ft, higher. See WSP 1733 or 1924 for history of changes prior to Feb. 18, 1960.

REMARKS.--Estimated daily discharges: July 1-10, and Aug. 2-7. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by water diverted from Gunnison River (see record of diversion through Gunnison tunnel published with station 09128000) and other adjacent basins, diversions for irrigation of about 90,000 acres above station, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--51 years (water years 1908, 1921, 1939-87), 299 ft3/s; 216,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 5,800 ft³/s, May 15, 1984, gage height, 8.85 ft, from rating curve extended above 3,400 ft³/s; no flow at times in 1908; minimum daily determined since beginning of diversion through Gunnison tunnel, 7.0 ft³/s, July 10-15, 17, 21, 24-28, 1910.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,760 $\rm ft^3/s$ at 0900 Apr. 18, gage height, 5.38 ft; minimum daily, 80 $\rm ft^3/s$, Mar. 26.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DIDONANOL	, 111 0001	0 1 001 101	1	MEAN VALU	ES COTOBE	11. 1900 10	ODI IDIDE	11. 1901		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	315	764	153	125	106	108	335	1230	341	700	665	675
2	367	644	135	118	105	111	349	1390	381	640	640	571
3	616	335	148	105	108	110	335	1340	376	500	540	582
4	772	273	154	118	117	104	743	1060	460	520	500	562
5	620	258	151	127	112	109	780	881	483	360	475	611
6	481	242	166	118	102	126	771	846	508	440	450	645
7	476	255	210	108	97	141	774	797	598	380	540	670
8	464	232	190	110	102	168	761	861	665	320	636	709
9	489	210	165	102	106	175	743	869	743	210	565	748
10	677	215	136	95	105	197	658	824	823	220	526	743
11	684	210	117	99	106	174	718	788	680	205	442	746
12	772	184	167	125	109	148	846	786	621	220	397	742
13	636	175	156	134	117	135	774	814	548	218	375	754
14	747	165	144	135	143	150	630	774	588	204	373	818
15	786	162	140	114	139	146	597	856	885	198	347	872
16	701	161	141	117	114	150	988	1040	735	204	338	889
17	624	158	132	116	110	146	1220	1440	634	245	333	869
18	609	179	132	85	103	132	1440	1430	428	328	308	904
19	606	269	144	122	98	128	1440	1440	308	341	288	910
20	618	273	130	119	93	135	1380	1320	307	321	283	903
21	834	220	130	105	94	126	854	1040	340	281	285	913
22	658	208	116	97	91	129	732	901	306	247	305	933
23	427	192	116	127	94	137	844	814	252	228	349	877
24	384	175	129	147	91	110	1010	817	237	220	705	752
25	391	177	112	128	100	100	1080	814	223	221	932	701
26 27 28 29 30 31	379 380 413 385 270 262	194 182 163 170 173	108 114 115 110 111 113	122 121 118 140 112 108	108 108 110 	80 204 243 207 203 228	1030 1100 1170 1180 1220	738 505 444 415 484 384	224 226 237 365 807	216 231 217 239 488 621	917 878 920 930 864 818	541 519 512 491 438
TOTAL	16843	7218	4285	3617	2988	4560	26502	28142	14329	9983	16924	21600
MEAN	543	241	138	117	107	147	883	908	478	322	546	720
MAX	834	764	210	147	143	243	1440	1440	885	700	932	933
MIN	262	158	108	85	91	80	335	384	223	198	283	438
AC-FT	33410	14320	8500	7170	5930	9040	52570	55820	28420	19800	33570	42840

CAL YR 1986 TOTAL 140285 MEAN 384 MAX 1260 MIN 80 AC-FT 278300 WTR YR 1987 TOTAL 156991 MEAN 430 MAX 1440 MIN 80 AC-FT 311400

09151500 ESCALANTE CREEK NEAR DELTA, CO

LOCATION. -- Lat 38°45'24", long 108°15'34", in E½ sec.8, T.15 S., R.97 W., Sixth Principal Meridian, Delta County, Hydrologic Unit 14020005, on left bank just upstream from county bridge, 0.2 mi upstream from mouth, and 10.5 mi west of Delta.

DRAINAGE AREA .-- 209 mi2.

PERIOD OF RECORD. -- April 1922 to September 1923, May 1976 to current year.

REVISED RECORDS. -- WSP 1313: 1923 (monthly runoff). WDR CO-84-2: 1979.

GAGE.--Water-stage recorder. Elevation of gage is 4,810 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to September 1923, nonrecording gage at different datum operated by State Engineer of Colorado.

REMARKS.--Estimated daily discharges: Nov. 13 to Mar. 20. Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 11 years, 65.5 ft3/s; 47,450 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,050 ft³/s, July 24, 1977, gage height, 8.54 ft, from floodmarks, from rating curve extended above 320 ft³/s, on basis of slope-area measurement of peak flow; no flow, June 23-25, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,410 $\rm ft^3/s$ at 2200 July 27, gage height, 7.21 $\rm ft$; minimum daily, 3.0 $\rm ft^3/s$, July 26.

DISCHARGE CURIC FEET PER SECOND. WATER YEAR OCTOBER 1086 TO SEPTEMBER 1087

		DISCHARGE,	COBIC	FEET PER		MEAN VALUE		1986 TO 2	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	81 85 140 105 97	88 72 66 61 57	30 30 30 30 30	25 25 26 27 28	26 26 26 26 25	30 30 30 31 32	52 59 62 83 80	786 780 539 486 536	96 91 88 77 74	9.0 8.5 7.6 7.3 7.0	18 18 16 15	13 11 11 11 10
6 7 8 9 10	90 92 89 86 83	57 61 53 35 49	30 30 29 28 23	27 27 24 23 23	25 25 26 26 26	33 35 39 40 42	79 95 97 136 177	530 536 467 438 410	67 55 53 58 51	6.4 6.4 5.8 5.1 5.1	11 11 11 11 13	10 9.8 9.8 10 10
11 12 13 14 15	104 106 90 91 89	37 44 35 35 35	20 22 23 24 25	24 25 25 25 24	26 26 27 27 27	41 39 38 39 40	213 261 204 204 257	372 360 355 312 324	42 38 35 32 29	5.1 5.4 4.8 4.5 4.3	13 11 11 11 11	9.8 9.4 8.9 9.4 12
16 17 18 19 20	86 84 84 85 87	35 35 36 36 35	26 26 25 26 26	24 23 24 25 25	26 26 26 26 26	43 41 39 38 37	377 489 587 557 415	288 256 238 214 183	24 24 22 18 17	4.1 4.1 4.8 5.1 4.1	10 10 10 9.8 9.8	11 11 10 10 9.4
21 22 23 24 25	84 80 77 72 67	35 34 32 32 33	26 25 26 27 26	24 23 25 27 27	26 27 27 27 28	37 43 34 34 39	341 367 459 617 671	204 266 178 136 122	15 13 11 9.2 7.8	4.1 4.1 4.1 3.7 3.2	12 13 15 74 52	9.4 9.4 8.7 8.0
26 27 28 29 30 31	65 62 57 56 54 52	32 31 31 31 31	25 26 26 26 25 25	27 27 26 26 26 26	29 29 29 	40 47 43 43 38 47	641 702 758 755 720	118 133 123 111 107 97	7.3 6.7 6.4 6.7	3.0 98 26 21 22 18	25 18 16 15 14 14	8.0 8.7 8.9 8.5 5.2
TOTAL MEAN MAX MIN AC-FT	2580 83.2 140 52 5120	1284 42.8 88 31 2550	816 26.3 30 20 1620	783 25.3 28 23 1550	742 26.5 29 25 1470	1182 38.1 47 30 2340	10515 350 758 52 20860	10005 323 786 97 19840	1085.1 36.2 96 6.4 2150	321.7 10.4 98 3.0 638	510.6 16.5 74 9.8 1010	289.3 9.64 13 5.2 574

CAL YR 1986 TOTAL 35906.5 MEAN 98.4 MAX 641 MIN 2.1 AC-FT 71220 WTR YR 1987 TOTAL 30113.7 MEAN 82.5 MAX 786 MIN 3.0 AC-FT 59730

09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO

LOCATION.--Lat 38°59'00", long 108°27'00", in NELSWL of sec.14, T.2 S., R .1 E., Ute Meridian, Mesa County, Hydrologic Unit 14020005, on right bank 180 ft upstream from bridge on State Highway 141, 0.4 mi downstream from Whitewater Creek, 0.5 mi south of Whitewater, and 8 mi southeast of Grand Junction.

DRAINAGE AREA . -- 7,928 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1894 to December 1895 (gage heights only), October 1896 to September 1899, October 1901 to October 1906, October 1916 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Whitewater" 1901-6.

REVISED RECORDS. -- WSP 509: Drainage area at former site. WSP 2124: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,628.12 ft above National Geodetic Vertical Datum of 1929. See WSP 1733 or 1924 for history of changes prior to October 1959.

REMARKS.--Estimated daily discharges: Oct. 23, 24. Records good. Records show flow that enters Colorado River from Gunnison River basin except for about 60 ft³/s diverted downstream from gage during irrigation season. Natural flow of river affected by diversions for irrigation of about 233,000 acres upstream from station, storage reservoirs, and return flow from irrigated lands.

AVERAGE DISCHARGE. -- 79 years (water years 1897-99, 1902-06, 1917-87), 2,630 ft³/s; 1,905,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge observed, 35,700 ft³/s, May 23, 1920, gage height, 14.95 ft, site and datum then in use, from rating curve extended above 22,000 ft³/s; minimum daily, 106 ft³/s, July 20, 1934.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,360 ft³/s at 1300 May 2, gage height, 8.06 ft; minimum daily, 1,480 ft³/s, Aug. 22.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DISCHA	RGE, IN C	DRIC FEET	PER SECO	MEAN VAL		DBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1	3520	3950	3020	3190	2910	3200	2880	8590	3630	2730	2400	2100
2	3580	4560	2910	3250	2920	3220	2870	9120	3660	2670	2340	1960
3	3830	3550	2990	3200	2970	3240	2930	8580	3780	2600	2280	1950
4	4150	3390	3270	3210	3050	3260	2930	7450	3790	2510	2170	1980
5	3880	3290	3290	3300	3080	3290	3010	6350	3920	2460	2050	2030
6	3670	2990	3380	3290	3010	3330	3000	6120	4030	2420	2030	2080
7	3650	3150	3590	3170	3000	3450	3050	6210	4080	2280	2100	2120
8	3640	3250	3490	3260	3020	3650	3150	6450	4220	2240	2350	2150
9	3600	3100	3420	3180	3040	3750	3530	6220	4660	2220	2290	2160
10	3540	3130	3250	3080	3020	4030	3750	6180	4980	2130	2310	2100
11	4400	3110	3090	3050	3060	4030	3880	6210	4380	2040	2200	2130
12	5060	3090	3200	3090	3080	4020	4110	6280	4020	2070	2100	2110
13	4540	3000	3230	3020	3140	3990	4080	6540	3740	2130	2000	2070
14	4430	2970	3280	2950	3400	4060	3660	6400	3570	2100	2120	2140
15	4400	2970	3290	2920	3430	4020	3740	6660	3710	1980	2120	2200
16	4250	3070	3300	2950	3190	4020	4610	7030	3730	2000	2100	2180
17	4110	3060	3290	2910	3130	3970	5840	7720	3530	2030	2090	2110
18	4110	3040	3260	2890	3200	3890	6940	7890	3310	2280	1790	2070
19	4080	3500	3280	2900	3280	3900	7490	7700	3050	2310	1510	2060
20	4090	4340	3280	2910	3240	3670	7310	7130	2800	2280	1500	2000
21	3350	3660	3250	2820	3230	3520	6210	6630	2630	2230	1490	1970
22	2840	3490	3200	2860	3210	3560	5660	6610	2550	2180	1480	1980
23	2500	3380	3160	2940	3240	3540	6080	5 7 90	2520	2090	1650	1950
24	2300	3200	3230	2950	3210	3470	7410	5400	2420	2030	2220	1940
25	2320	3190	3160	2930	3220	3450	8050	5270	2360	1880	2790	1940
26 27 28 29 30 31	2280 2230 2210 2100 2300 2890	3250 3160 3080 3070 3090	3120 3130 3130 3120 3180 3200	2930 2900 2950 3030 2980 2940	3270 3250 3200 	3350 3230 3260 3240 3210 3170	8110 8120 8340 8430 8470	4930 4700 4250 3990 3870 3660	2280 2260 2200 2310 2720	1770 1820 2000 1810 2070 2270	2690 2480 2400 2360 2290 2230	1950 1940 1910 1900 1910
TOTAL	107850	99080	99990	93950	88000	110990	157640	195930	100840	67630	65930	61090
MEAN	3479	3303	3225	3031	3143	3580	5255	6320	3361	2182	2127	2036
MAX	5060	4560	3590	3300	3430	4060	8470	9120	4980	2730	2790	2200
MIN	2100	2970	2910	2820	2910	3170	2870	3660	2200	1770	1480	1900
AC-FT	213900	196500	198300	186300	174500	220100	312700	388600	200000	134100	130800	121200

CAL YR 1986 TOTAL 1499910 MEAN 4109 MAX 9830 MIN 1980 AC-FT 2975000 WTR YR 1987 TOTAL 1248920 MEAN 3422 MAX 9120 MIN 1480 AC-FT 2477000

09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued (Irrigation network station) (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1931 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: November 1935 to September 1974, September 1975 to current year.
WATER TEMPERATURES: April 1949 to September 1974, September 1975 to current year.

INSTRUMENTATION .-- Water-quality monitor since September 1975

REMARKS .-- Daily maximum and minimum specific-conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum, 3,000 microsiemens several days during July and September 1974; minimum,
194 microsiemens June 6, 1979.
WATER TEMPERATURE: Maximum, 30.0°C Aug. 13, 1958; minimum, 0.0°C on many days during winter months most years.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 1,290 microsiemens Aug. 24; minimum recorded, 341 microsiemens
Apr. 28 (but may have been lower during period of missing record Apr.9-27).
WATER TEMPERATURES: Maximum, 23.5°C Aug. 4; minimum, 0.0°C several days in January.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON- DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
NOV 20	1305	4480	780	8.2	7.0	370	7.2	290	1200	300	69	30
FEB 18	1300	3290	640	8.2	3.5	6.4		к8	K28	250	60	24
APR 29	1000	8730	360	8.2	11.0	37	7.0			130	37	10
JUL 16	1430	1990	838	8.5	18.5	6.3	8.6	K71	к61	340	91	28
AUG 11	1330	2180	908	8.3	19.0	37	7.8	K140	250	380	100	31
SEP 22	1330	1960	1090	8.4	14.0	5.1	9.0	K 1 4	К83	460	120	38
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IN-FLD (MG/L CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 20	52	1	3.5	143	0	117	270	8.1	0.30	14	565	519
FEB 18	39	1	2.6	123	3	106	210	7.3	0.30	13	436	419
APR 29	15	0.6	2.1	102	0	81	78	3.0	0.20	11	209	207
JUL 16	47	1	3.4	139	9	129	280	6.8	0.90	14	569	550
AUG 11	49	1	3.3	155	8	141	320	7.2	0.40	15	640	614
SE P 22	60	1	3.7	174	6	153	410	8.0	0.50	13	767	745
DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
NOV 20	0.77	6830	0.77	0.01	0.78	0.04	0.04	0.86	0.90	0.02	0.02	0.02
FEB 18	0.59	3870		<0.01	0.54	0.04	0.05	0.66	0.70	0.04	<0.01	0.01
APR 29	0.28	4930	0.27	0.01	0.28	0.07	0.01	2.0	2.1	0.23	0.02	0.01
JUL 16	0.77	3060	0.97	0.01	0.98	0.07	0.08	0.53	0.60	0.12	0.01	<0.01
AUG 11	0.87	3770	~-	<0.01	1.10	0.03	0.02	0.57	0.60	0.09	0.02	<0.01
SEP 22	1.04	4060	~-	<0.01	0.94	0.01	<0.01	0.49	0.50	0.03	<0.01	<0.01

K Based on non-ideal colony count

09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TI	IN D: SO: 1E (U	IS- LVED G/L	RSENIC DIS- SOLVED (UG/L AS AS)	BARIUM DIS- SOLVEI (UG/L AS BA	d, LIV	RYL- JM, S- LVED G/L BE)	CADMI DIS SOLV (UG/ AS C	UM MII - DI: ED SO: L (U	RO- UM, S- LVED G/L CR)	COBALT DIS- SOLVED (UG/L AS CO	DIS SOI (U)		IRON, DIS- SOLVE (UG/L AS FE	D SOI (U)	AD, IS- LVED G/L PB)
NOV 20 JUL	13)5	480	1	6	58 ·	<0.5		<1	<1	<	3	9	58)	6
16 AUG	14:	80	20	2	9	53 ·	<0.5		1	<1	<	3	7		9	< 5
11 SEP	13	80	20	2	9	51 .	<0.5		<1	<1	<	3	2		5	< 5
22	13	30	<10	1	Ę	50	<0.5		<1	< 1	<	3	6		5	< 5
I	DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANG NESE DIS SOLVI (UG/ AS MI	, MER - D ED SO L (U	CURY IS- LVED G/L HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	(00		SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ס 20 (ט	VER, IS- LVED G/L	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VAN DIU DI SOL (UG AS	M, : S- VED : /L	ZINC, DIS- SOLVED (UG/L AS ZN)	
NOV 20. JUL 16. AUG		43 49		30 10	<0.1 <0.1	<10 <10		5 3	5 6		<1.0 <1.0	690 920		<6 <6	12 22	
11. SEP 22.		43 55		8 11	<0.1 0.2	<10 <10		4 <1	8 7		<1.0 <1.0	1000 1300		<6 <6	7 9	

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV	4205	1.1.00		44000	
20 FEB	1305	4480	929	11200	93
18 APR	1300	3290	46	409	74
29	1000	8730	911	21500	70
JUL 16	1430	1990	62	333	90
AUG 11	1330	2180	169	995	90
SEP 22	1330	1960	53	280	65

09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					r	MEAN VALUE	.S					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	647 659 657 662 672	747 938 946	664 661 661 649 614	555 572 577 569 564	586 581 574 571 574	474 465 466 470 484	594 661 691 729 669	436 452 467 485 507	667 672 674 679 685	864 868 867 864 861	871 932 934 902 881	1100 1120 1140 1150 1160
6 7 8 9 10	676 683 689 694 698	947 944 937 930 922	620 699 780 723 673	577 589 590 576 573	582 585 575 565 557	495 496 471 461 470	662 696 675 	528 545 558 572 585	687 688 687 682 689	860 859 855 852 847	866 878 896 901 907	1160 1160 1150 1150 1140
11 12 13 14 15	712 767 781 783 780	911 905 896 890 884	630 635 631 619 611	568 569 586 599 6 05	553 548 546 541 592	499 548 575 595 609		594 603 611 617 625	722 747 767 790 803	843 846 846 847 847	916 927 934 928 921	1140 1130 1120 1120 1130
16 17 18 19 20	772 766 776 787 797	882 880 871 866 762	614 616 608 616 611	600 597 598 599 599	631 639 642 605 581	617 624 632 637 634		629 631 635 634 641	812 815 812 812 817	851 870 881 891 886	914 903 877 880 918	1130 1120 1110 1100 1090
21 22 23 24 25	830 902 959 940 947	654 643 670 660 654	606 602 588 592 598	599 595 594 599	555 537 528 526 512	632 629 614 587 575		641 646 651 652 653	825 836 844 846 840	880 892 911 892 871	950 983 1120 1220 1180	1090 1080 1060 1060 1060
26 27 28 29 30 31	943 943 938 941 956 824	669 680 667 661 663	577 571 576 571 556 542	596 587 583 582 581 587	511 508 494 	561 578 649 609 590 576	355 381 413	656 658 657 656 660 665	840 843 841 838 854	863 848 838 811 822 831	1150 1160 1150 1120 1110 1100	1060 1050 1040 1030 1030
MEAN	793		623	586	564	559		598	770	860	978	1106

09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MA X	MIN	MA X	MIN	MA X	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTOR	BER	NOVEME	BE R	DE CE MI	BER	JANUA	A R Y	FEBRU!	ARY	MARO	СН
1 2 3 4 5	13.1 13.4 12.7 12.6 12.7	11.8 12.6 11.6 11.0	9.1 8.1 9.2 9.1 8.9	8.1 7.1 7.8 7.7 7.6	5.4 5.0 5.2 5.6 5.7	4.4 4.0 4.1 4.5 5.0	2.2 2.7 2.3 2.0 3.3	1.3 1.9 1.6 1.3 2.0	3.2 3.9 4.1 4.5 4.0	2.1 2.4 2.9 3.3 2.7	4.1 4.6 5.4 5.6 6.0	2.7 3.0 3.5 4.2 4.2
6 7 8 9 10	12.9 13.6 14.0 13.7 13.0	11.6 12.1 12.8 12.6 11.5	8.5 8.8 6.9 6.3 5.7	7.7 7.1 5.7 4.3 4.0	6.0 6.0 6.0 5.6 3.0	5.3 5.7 5.2 3.2 2.0	3.5 3.4 2.9 2.3 1.9	3.0 2.9 2.4 1.4 1.2	4.0 4.1 4.5 4.6 4.0	2.9 2.8 3.1 3.4	6.6 6.7 6.6 5.8 6.8	4.9 5.2 5.6 5.5 5.2
11 12 13 14 15	11.5 9.4 8.3 9.3 10.1	9.5 6.6 6.4 8.1 8.6	5.9 6.3 6.7 6.8 6.8	5.0 5.1 5.2 5.6 5.7	2.2 2.7 3.1 3.2 3.4	1.5 1.8 2.3 2.6 2.5	1.7 2.1 2.2 2.5 1.8	.9 1.1 1.3 1.3	4.9 5.3 5.6 5.4 4.8	3.4 4.5 4.3 4.9 3.5	6.1 6.3 6.9 6.7 6.2	5.3 4.6 5.3 5.2 5.4
16 17 18 19 20	10.9 11.0 11.3 11.3	9.5 10.0 10.5 10.7 9.9	6.9 7.8 7.9 8.1 8.2	5.7 6.4 7.4 7.4 6.2	4.2 3.8 3.8 4.1 4.4	3.2 2.9 2.9 3.2 3.8	.9 .4 .0 .4	.4	4.4 4.3 4.4 3.7	3.5 3.1 3.2 2.7 2.3	5.6 5.5 6.4 7.4 6.7	4.3 4.6 5.8 4.6
21 22 23 24 25	10.6 11.4 11.1 10.9	9.6 9.1 10.0 9.1 8.9	6.9 7.1 6.2 5.7 5.4	6.2 6.3 5.1 4.8 4.7	4.0 3.7 3.0 3.4 3.2	3.4 3.0 2.4 2.2 2.5	.6 .0 .4 2.0 2.7	.0 .0 .0 .3	4.1 3.9 4.0 3.2 3.5	2.9 2.7 3.2 2.6 2.4	5.3 5.7 5.6 5.8 5.6	4.3 4.6 4.0 4.5 3.8
26 27 28 29 30 31	10.9 10.4 10.7 10.1 10.2 9.9	8.9 8.8 8.6 8.2 9.1	6.7 6.9 6.5 5.8	5.1 5.5 5.5 5.2 4.7	2.6 2.4 2.4 2.6 2.4 2.0	2.0 1.9 1.7 1.9 1.7	2.9 3.2 3.7 3.2 2.3	1.6 2.1 2.5 2.2 1.8 2.0	3.3 3.2 4.0	2.4 2.1 1.8 	6.4 5.6 5.1 5.3 5.0 6.7	4.4 4.9 3.7 3.9 3.2 4.1
MONTH	14.0	6.4	9.2	4.0	6.0	1.5	3.7	.0	5.6	1.8	7.4	2.7
	APRI	L	MA Y	ľ	JUNE	Ξ	JUL	í	AUGUS	ST	SEPTEN	MBER
1 2 3 4 5	8.3 8.9 9.1 8.5 8.5	5.6 6.6 7.0 7.3 7.1	10.9	10.4	17.0 16.7 16.8 17.2 17.5	14.9 14.5 14.4 14.7	20.7 20.8 20.1 19.7 19.5	17.7 17.8 17.4 17.0 16.5	20.2 22.1 23.2 23.3 22.2	17.1 18.7 19.7 19.5 19.1	20.9 21.0 20.4 20.0 18.8	17.3 17.6 18.0 17.8 17.1
6 7 8 9 10	10.4 10.5 10.5 10.5 9.6	7.6 8.3 8.1 8.8 8.4	12.7 13.0 13.1 13.6 13.9	11.5 12.1 12.1 12.2 12.5	17.7 17.3 16.5 16.1 16.8	15.5 16.2 15.8 15.1 14.7	19.5 19.8 19.9 20.2 18.8	16.2 16.6 16.8 16.7 16.5	22.5 22.0 22.7 22.0 21.4	19.1 19.2 19.5 19.1 18.4	18.6 18.4 18.0 18.8 19.2	15.9 15.8 15.6 15.5 15.7
11 12 13 14 15	8.5 7.1 6.9 8.9 10.4	7.2 6.4 5.2 6.2 7.9	13.6 13.2 13.7 14.1 14.4	12.1 12.7 12.2 12.9 12.9	18.2 19.1 19.5 19.9 19.1	15.7 16.7 17.4 17.6 17.4	18.5 19.8 20.7 20.8 21.4	16.1 16.5 17.0 17.0	21.7 21.7 20.0 19.4 19.9	19.0 18.2 18.1 16.6 16.7	19.0 18.4 17.0 16.7 16.5	15.6 15.5 15.4 13.9 14.1
16 17 18 19 20	10.9 10.5 9.8 9.2 8.4	9.4 9.6 8.7 8.4 6.4	14.0 13.4 13.4 12.5 12.8	13.1 12.7 12.4 11.9	18.8 18.7 18.6 18.9 19.3	16.8 16.8 16.6 16.5 16.9	20.4 18.8 18.1 19.6 18.2	17.8 16.9 15.4 16.3 16.5	20.0 20.1 20.5 20.3 19.3	16.4 16.4 16.3 16.6	17.0 17.3 17.5 17.2 17.1	13.9 15.0 14.5 13.9 13.8
21 22 23 24 25	7.6 9.6 10.4 10.3	5.9 7.3 9.0 9.5 9.8	12.6 12.7 14.2 13.0	11.8 11.1 12.8 11.5 11.1	19.9 20.4 20.3 20.3 21.0	16.8 17.1 17.2 17.2 17.5	19.0 21.2 21.6 21.0 21.2	15.8 17.6 17.7 17.5 17.9	19.3 20.4 19.5 19.0 17.5	17.2 18.8 18.5 17.2 16.3	17.2 17.0 17.3 17.1	13.9 13.9 13.7 14.1 14.7
26 27 28 29 30 31	10.4 10.8 10.5 11.6 11.5	10.0 9.9 10.1 10.7 10.3	11.8 11.4 12.6 12.2 14.1 16.4	10.5 11.0 10.9 11.6 11.7	20.6 21.5 20.1 17.8 19.4	17.7 17.8 18.0 16.6 16.9	22.9 22.8 21.9 21.3 21.5 20.2	19.0 19.7 19.8 19.6 19.2 18.5	18.7 19.5 19.3 19.6 20.2 20.5	15.7 16.4 16.5 16.2 16.8 17.0	17.2 18.3 17.2 15.8 15.2	14.4 15.4 14.6 12.8 12.1
MONTH	11.6	5.2	10.4	13.5	21.5	14.4	20.2	15.4	23.3	15.7	21.0	12.1

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09153290 REED WASH NEAR MACK, CO

LOCATION.--Lat 39°12'41", long 108°48'11", in SELSWL sec.27, T.2 N., R.3 W., Ute Meridian, Mesa County, Hydrologic Unit 14010005, on right bank 250 ft upstream from unnamed tributary, 0.4 mi downstream from Peck and Beede Wash, and 3.5 mi east of Mack.

DRAINAGE AREA . -- 15.7 mi2.

PERIOD OF RECORD. -- October 1975 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,505 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Records good. Flow is mostly return flow and waste water from irrigated lands under Government Highline and Grand Valley Canals. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--12 years, 45.1 ft3/s; 32,670 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 390 $\rm ft^3/s$, July 23, 1983, gage height, unknown, maximum recorded gage height, 6.09 $\rm ft$, July 24, 1979; minimum daily discharge, 2.0 $\rm ft^3/s$, Jan. 31, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 137 ft³/s at 1500 Dec. 12, gage height, 4.57 ft; minimum daily, 2.8 ft³/s, April 5-7.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	81 77 87 87 85	78 75 69 24 18	7.8 7.7 7.7 7.7 7.7	5.4 5.3 5.3 5.3	4.1 3.9 3.8 3.8 3.7	3.2 3.2 3.2 3.1	3.0 3.0 2.9 2.9	78 77 77 72 64	67 62 54 55 56	57 53 57 56 57	83 80 87 90 84	80 81 77 81 77
6 7 8 9 10	84 79 77 74 77	16 12 9.8 9.8 9.4	7.7 7.6 7.5 39 74	5.0 5.0 5.0 4.9 4.8	3.6 3.6 3.6 3.6	3.1 3.0 3.0 3.1 3.1	2.8 2.8 23 70 69	52 48 53 52 52	61 63 69 67 71	48 43 44 49 56	78 74 64 61 68	81 83 77 76 74
11 12 13 14 15	83 84 72 75 81	9.0 8.9 8.7 8.5 8.7	67 67 7.5 6.4 6.2	4.7 4.7 4.5 4.6 4.7	3.6 3.6 3.8 3.5	3.1 3.1 3.2 3.2 3.2	73 77 79 92 91	56 49 50 51 55	64 58 43 44 46	66 80 65 71 79	61 62 70 70 75	75 80 84 98 102
16 17 18 19 20	81 83 84 84 82	8.7 8.7 8.7 8.7	6.2 6.1 6.0 6.0	4.7 5.2 5.6 4.7 4.5	3.4 3.4 3.4 3.4	3.2 3.3 3.2 3.3	96 98 91 93 94	50 44 44 58 73	56 56 63 59 62	90 96 75 83 91	81 78 62 62 74	92 88 84 80 77
21 22 23 24 25	75 66 66 68 70	8.8 8.6 8.2 8.4 8.5	6.0 5.9 5.9 5.7 5.4	5.2 5.2 4.5 4.5 4.4	3.3 3.3 3.3 3.3	3.3 3.4 3.3 3.3	99 88 80 78 72	83 73 67 71 74	71 65 63 55 57	93 88 81 77 77	83 84 83 91 82	78 79 77 74 72
26 27 28 29 30 31	72 71 65 67 70 78	8.4 8.2 8.2 8.1	5.4 5.4 5.4 5.4 5.4	4.4 3.7 3.9 4.1 4.1	3.1 3.1 	3.2 3.1 3.1 3.1 3.0	70 62 59 66 73	78 70 65 73 67 68	60 62 66 67 63	74 77 74 84 85	83 80 84 81 78 75	74 75 78 85 81
TOTAL MEAN MAX MIN AC-FT	2385 76.9 87 65 4730	491.9 16.4 78 8.1 976	420.3 13.6 74 5.4 834	147.4 4.75 5.6 3.7 292	98.1 3.50 4.1 3.1 195	98.5 3.18 3.4 3.0 195	1813.2 60.4 99 2.8 3600	1944 62.7 83 44 3860	1805 60.2 71 43 3580	2215 71.5 96 43 4390	2368 76.4 91 61 4700	2420 80.7 102 72 4800

TOTAL 18161.5 MEAN 49.8 MAX 109 MIN 2.6 AC-FT 36020 TOTAL 16206.4 MEAN 44.4 MAX 102 MIN 2.8 AC-FT 32150 CAL YR 1986 WTR YR 1987

09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE

LOCATION.--Lat 39°07'45", long 109°01'36", in SEANWA sec.5, T.11 S., R.104 W., Mesa County, Hydrologic Unit 14010005, on right bank 0.7 mi downstream from McDonald Creek, 12 mi southwest of Mack, Colo., and 1.5 mi upstream from Colorado-Utah State line.

DRAINAGE AREA . -- 17,843 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1951 to current year.

REVISED RECORDS. -- WRD Colo. 1974: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,325 ft above National Geodetic Vertical Datum of 1929, from topographic map. May 1951, to October 1979, water-stage recorder at site 5.7 mi upstream at different datum.

REMARKS.--No estimated daily discharge. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation. (Records include all return flow from irrigated areas).

AVERAGE DISCHARGE.--36 years, 6,407 ft³/s; 4,642,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 69,800 ft³/s, May 27, 1984, gage height, 16.12 ft, (from highwater mark); minimum daily, 960 ft³/s, Sept. 7, 1956.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 22,500 $\rm ft^3/s$ at 0700 May 18, gage height, 7.58 ft; minimum daily, 3,200 $\rm ft^3/s$, Aug. 22.

77. CUARGE TV CUARGE PER CACCUAR AND COMPANY AND COMPANY AND CACCUAR AND COMPANY AND COMPA

		DISCHARGE,	IN CUBI	C FEET PE	R SECOND,	, WATER YI MEAN VALI	EAR OCTOBE: JES	R 1986 T	SEPTEMBE	ER 1987		
DAY	OCT	иол	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	8000	7250	6210	5410	5180	5460	5310	17500	9500	7170	5040	4090
2	7920	9320	5890	5550	5160	5450	5240	18800	10400	6950	4920	3800
3	8340	7930	5890	5490	5200	5480	5340	18400	11600	6780	4760	3700
4	8870	7520	6020	5330	5320	5520	5390	16000	12000	6380	4610	3700
5	8550	7270	6080	5590	5480	5630	5580	13700	12600	6280	4310	3700
6	8190	6900	6150	5690	5250	5700	5520	12500	13100	6120	3960	3800
7	7980	6930	6470	5570	5190	5980	5230	12300	13400	5830	4150	3880
8	7970	7120	6370	5490	5210	6300	5590	13000	14200	5490	4380	3860
9	7930	6850	6240	5270	5260	6750	6040	13700	16000	5280	4550	3840
10	7750	6750	6320	5230	5290	7200	6540	14200	17700	5050	4560	3840
11	8140	6780	5830	5060	5360	7070	6670	14700	16000	4820	4350	3760
12	9590	6630	5440	5040	5610	6800	6970	15000	14600	4940	4090	3720
13	9240	6600	5840	5150	5640	6690	7180	16100	13600	4970	3960	3680
14	8610	6550	5860	5110	6260	6970	6550	16300	13000	4990	3910	3700
15	8530	6480	5970	4980	6670	6800	6240	17100	12900	4840	3870	3930
16	8380	6590	6040	4790	5830	6920	6820	19100	13000	4610	3900	4040
17	8240	6570	6140	4590	5580	6880	8360	21000	12500	4650	3860	4070
18	8130	6580	5990	4560	5530	6610	10400	22000	11600	4740	3750	4100
19	8110	6560	5890	4460	5650	6430	12200	21500	10500	4770	3340	4110
20	8020	8300	5990	4930	5570	6660	12700	20000	9740	4570	3250	4070
21	7650	7580	5990	5430	5510	6400	11800	18400	8990	4520	3220	4060
22	7210	7120	5940	4470	5460	6300	10100	17400	8460	4480	3200	4020
23	6530	7040	5750	4450	5470	6250	9710	15400	8060	4130	3370	3970
24	6430	6680	5650	4700	5550	5990	11300	14500	7830	3980	4070	3870
25	6330	6320	5700	4910	5530	5830	13300	14000	7470	3970	5240	3900
26 27 28 29 30 31	6280 6210 6110 6000 5960 6620	6400 6420 6290 6180 6230	5620 5390 5390 5520 5610 5530	5000 5020 5240 5410 5430 5260	5510 5670 5540	5760 5630 5600 5500 5470 5350	14400 15000 15900 16600 16900	13200 12600 11700 10800 10400 9830	7050 6720 6510 6500 6750	3800 3750 3960 4270 4740 4890	5380 5080 4780 4500 4350 4250	3920 3870 3880 3920 3960
TOTAL MEAN MAX MIN AC-FT	237820 7672 9590 5960 471700	6925 9320 6180	182720 5894 6470 5390 362400	158610 5116 5690 4450 314600	154480 5517 6670 5160 306400		274880 9163 16900 5230 545200	481130 15520 22000 9830 954300	332280 11080 17700 6500 659100	155720 5023 7170 3750 308900	130960 4225 5380 3200 259800	116760 3892 4110 3680 231600

CAL YR 1986 TOTAL 3815830 MEAN 10450 MAX 32800 MIN 4620 AC-FT 7569000 WTR YR 1987 TOTAL 2624480 MEAN 7190 MAX 22000 MIN 3200 AC-FT 5206000

09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National stream-quality accounting network station)

PERIOD OF RECORD. -- October 1979 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: October 1979 to current year. WATER TEMPERATURE: October 1979 to current year.

INSTRUMENTATION .-- Water-quality monitor since October 1979.

REMARKS.--Water-quality data collection was moved 5.5 miles upstream to this site from previous site 09163530. Water-quality records for this site are considered to be equivalent to data obtained at old site. Daily maximum and minimum specific-conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,940 microsiemens Aug. 13, 1981; minimum, 277 microsiemens June 11, 1985.
WATER TEMPERATURE: Maximum, 27.0 C Aug. 7-9, 1981; minimum, 0.0 C on many days during winter months

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 1,500 microsiemens Aug. 25; minimum, 380 microsiemens Apr. 29, May 2-3. WATER TEMPERATURE: Maximum, 26.5°C Aug. 8; minimum, 0.0°C Dec. 29, 30.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
OCT										
29	1230	6120	1100	8.4	9.0	9.8	9.6	K24	86	350
DEC 16 FEB	1300	6100	955	8.3	2.0	2.1	11.5	K2	36	290
25	1300	5650	870	8.1	2.5	30		K10	33	270
APR 21 JUN	1300	12000	561	8.0	8.0	280	9.6	K200	500	180
23	1300	8370	713	8.2	19.0	8.3	7.1	63	K240	260
AUG 25 SEP	1200	5250	1350	8.1	18.0	410	7.3	590	K1100	530
29	1100	3960	1320	8.2	15.0					460

DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY, CARBON- ATE IN-FLD (MG/L CACO3)	ALKA - LINITY LAB (MG/L AS CACO3)
OCT									
29	88	32	85	2	3.2	176	2	142	155
DEC 16 FEB	75	26	79	2	2.9	161	7	141	142
25	67	25	76	2	3.2	162	0	129	133
APR 21 JUN	48	15	39	1	2.6	142	0	112	116
23	72	20	50	1	2.5	152	0	122	121
AUG 25 SE P	140	43	110	2	5.2	207	0	166	175
29	120	40	110	2	4.2				143

K Based on non-ideal colony count

O9163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		:	DATE	SULF DIS SOL (MC AS S	S- VED G/L	CHL RID DIS SOL (MG	E, VED	FLUC RIDE DIS SOLV (MG,	E, S- VED /L	SILI DIS SOL (MC AS	S- VED S/L	DI SOL	DUÉ	SOL	OF STI-	SOLI DI SOL (TO PE AC-	S- VED NS R	SOL (TO PE	S- VED NS	NIT GEI NITR DI: SOL' (MG AS	N, ATE S- VED /L		
		OCT 29		280)	74		0.	.30	c	9.5		680		664	0	.92	11200					
		DE C		200		68			.30	12			590		558		.80	9720					
		FEB		210		71			.30	10			546		543		.74	8330					
		APR		120		31			.20	11			354		337			11500		0.			
		JUN		200		45			.30		9.4		477		475			10800		0.			
		AUG		420		88			.40	14			962		925			13600		1.			
		SEP		400		71			.40		.9				841		.14	8990					
		- ,	•••	400	,	, ,		0.	• 40	3	, , ,				041	•	• 1 7	0,30					
		;	DATE	GE NITF DI	S- VED	GE NO2+ DI	S- VED /L	NITH GEN AMMON TOTA (MG/ AS N	N, NIA AL /L	GE AMMO DI	S- VED 3/L		AL 3/L	NIT GEN, MONI ORGA TOT (MO	A + NIC AL J/L	PHOR PHOR TOT (MG AS	OUS AL /L		OUS S- VED /L	PHORE ORTHORY DISSOLVE (MG/IAS P	DUS HO, ED		
		0 CT	<i>.</i>	<0.	0.1	0.	53	0.0	n 1	0.	01		.49	_	.50	0.	02	0	02	<0.	0.1		
		DE C		<0.			58	0.0			.02		.28		.30	0.			01	<0.			
	1	FEB		<0.			43	0.0			04		.85		.90	0.			01	0.			
		APR			01		36	0.	_		.08		.57		.70	0.			04	<0.			
		JUN	· · ·		.01		49	0.0			.06		0.47		.50	0.	-		05	0.0			
		AUG			.02		20	0.0	-											<0.			
		SEP		0.				0.0		0.	09		1.1	1	.2	0.		0.	36	\0.			
		29	•••			0.	10																
	DATE		TIME	SOL (UC	M, S- VED		S- VED /L	BARIU DIS- SOLVE (UG/ AS E	ED /L	LIU DIS SOL (UC	VED	SOL (UC	S- VED	(UC	M, - VED	COBAL DIS SOLVI (UG	ED /L	COPP DIS SOL (UG	- VED /L	IROI DI: SOL' (UG: AS I	S- VED /L	LEAD DIS SOLVI (UG/I	ED L
OCT			1230		20		< 1		58		0.5		<1		<1		<3		3		15		<5
FEB			1300		<10		<1		56		0.5		1		<1		<3		<1		8		·5 <5
JUN			1300		50		<1		53		0.9		<1		<1		< 3		10		24		6
AUG			1200		60		1		83	<	0.5		<1		<1		<3		10		200		< 5
													·		·						- • •		
		DATE	S (THIUM DIS- SOLVED UG/L S LI)	NE D SO (U	NGA- SE, IS- LVED G/L MN)	SOI (U)	CURY IS- VED G/L HG)	DEN DI SOL (U)	YB- NUM, IS- LVED G/L MO)	DI. SO: (U	KEL, S- LVED G/L NI)	NI D SO U)	LE- UM, IS- LVED G/L SE)	D: SOI U	VER, IS- LVED G/L AG)	T 1 2 2 (U	RON- CIUM, DIS- DLVED IG/L SR)	DI D SO: (U	NA- UM, IS- LVED G/L V)	30L (U)	IS- VED	
	OCT 29	· · ·		41		9		0.1		<10		2		4		<1.0		940		< 6		13	
	FEB	5		33		17		0.1		10		- <1		4		<1.0		670		<6		26	
	JUN	3		32		5		0.1		<10		<1		14		<1.0		660		<6		7	
	AUG	5		57		11		0.3		10		4		10		<1.0		1400		<6		15	
				21				ر. د		10		7		10		, • 0		1700		.0		()	

09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM
(ОСТ					
,	29 DEC	1230	6120	50	826	69
	16	1300	6100	44	725	65
F	FEB 25	1300	5650	33	503	64
F	APR	.5	3-3-	33	3-3	
	21	1300	12000	1020	33000	70
٠	JUN 23	1300	8370	100	2260	74
I	AUG					,
	25	1200	5250	1840	26100	86

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

					P	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	930 938 945 910 910	1000 1000 1170 1030 1000	944 948 943 944 926	899 904 900 904 902	884 889 887 892 883	864 861 862 872 878	893 941 963 952 942	399 393 398 424 459	713 684 632 589 569	885 879 874 875 895	1050 1070 1080 1090 1090	1220 1240 1260 1270 1270
6 7 8 9	910 919 920 899 910	989 1010 1010 991 989	914 919 954 1010 970	900 897 887 861 866	913 905 888 886 890	883 887 882 858 849	962 956 969 963 910	491 508 503 483 474	549 539 533 509 513	904 920 939 942 949	1100 1120 1120 1100 1100	1270 1260 1250 12 70 1310
11 12 13 14 15	902 883 947 931 936	981 987 970 989 977	945 918 949 964 946	877 876 898 929 921	891 885 894 891 879	837 836 833 827 816	867 845 833 897 903	484 493 482 478 463	509 526 545 556 566	974 1000 1000 1020 1020	1090 1100 1130 1150 1170	1320 1320 1320 1320 1330
16 17 18 19 20	921 915 915 911 905	957 950 943 942 957	937 928 923 918 919	876 782 724 704 720	970 933 925 906 875	811 816 853 849 843	878 807 736 663 598	439 416 405 409 436	569 567 576 599 629	1010 1020 1030 1040 1060	1170 1170 1160 1190 1240	1330 1300 1260 1260 1240
21 22 23 24 25	909 973 1030 1080 1080	943 900 906 929 922	921 915 911 913 921	767 761 735 791 887	871 863 865 864 875	857 874 864 876 861	551 558 573 554 506	462 487 522 545 563	661 691 718 735 736	1050 1090 1070 1080 1070	1330 1350 1380 1370 1320	1240 1240 1290 1310 1320
26 27 28 29 30 31	1080 1080 1090 1100 1100	926 933 946 938 944	936 914 915 928 930 903	899 867 855 867 883 891	864 877 872 	852 857 879 918 895 896	466 444 404 396 400	580 600 623 650 675 700	762 784 810 840 874	1070 1100 1150 1110 1090 1070	1260 1210 1200 1190 1200 1210	1320 1320 1320 1320 1300
MEAN	967	971	933	853	890	860	744	498	636	1006	1178	1287

09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	ОСТО	BER	NOVEME	BER	DE CE MI	3ER	JANUA	RY	FEBRU!	ARY	MAR	CH
1 2 3 4 5	12.9 12.9 12.6 12.6 12.8	11.3 12.3 12.0 11.2 11.4	8.8 8.4 8.4 8.6	8.6 8.0 7.1 7.3 7.5	4.5 4.2 3.7 4.0 4.3	3.7 3.2 2.9 3.3 3.8	1.1 .8 1.5	.4	2.7 3.0 3.5 4.5 4.3	1.8 1.9 2.6 3.2 3.2	4.5 4.8 5.8 6.5 7.9	2.1 3.4 4.1 5.1 5.6
6 7 8 9 10	13.0 13.5 13.9 14.2 14.0	11.8 12.3 12.6 12.9 12.7	8.5 7.6 6.6 5.1 4.8	7.6 6.5 5.2 4.1 3.8	4.7 5.2 5.0 5.0 3.5	4.3 4.6 4.3 3.6	1.8 1.7 1.9 1.4	1.4 1.3 1.3 .4	4 · 1 4 · 3 4 · 4 4 · 7 4 · 4	3.0 3.2 3.3 3.8 3.9	9.3 9.1 8.0 8.2 8.0	6.6 7.2 7.6 7.3 6.5
11 12 13 14 15	13.5 10.5 8.1 8.9 9.5	10.7 8.2 6.8 6.9 7.8	4.9 5.6 6.0 6.1	3.6 4.3 4.8 5.0 5.4	1.3 .8 .9 1.2 1.4	•5 •1 •2 •7			5.3 5.1 5.9 6.0 5.3	4.3 4.2 5.2 5.4 4.3	8.1 8.2 8.2 8.2	6.8 6.5 6.7 6.7
16 17 18 19 20	10.2 10.4 11.1 11.0 10.7	8.5 9.1 10.2 10.4 9.7	6.3 7.3 7.9 9.0 8.7	5.5 5.7 7.0 7.9 7.6	2.0 1.7 1.7 2.5 2.6	1.0 1.1 1.0 1.7 2.0		 	4.8 4.6 4.1 3.9	4.3 3.7 3.5 3.2 3.3	6.9 7.0 7.8 7.5 7.7	5.5 5.8 6.7 6.5
21 22 23 24 25	10.3 10.5 10.9 10.4 10.3	9.5 9.2 10.1 9.3 9.1	8.2 8.0 7.5 6.4 5.8	6.9 7.4 6.2 5.3 4.9	2.5 2.3 1.8 1.4	1.9 1.5 1.1 .9			3.7 3.8 4.2 3.8 3.6	2.3 2.4 2.5 2.6 2.4	6.9 7.5 8.1 7.9 7.6	5.1 5.3 6.8 6.5
26 27 28 29 30 31	10.3 10.0 9.8 10.3 10.2	9.1 8.9 8.6 8.9 9.0 8.9	6.2 5.8 6.1 6.0 5.1	5.5 5.0 5.2 5.0 4.6	.9 .7 .9 .6	.1 .1 .2 .0	2.2 1.9 2.6	1.7 1.5 1.4	2.8 3.2 3.5 	2.1 2.2 2.3	7.3 6.8 6.3 5.7 5.4 6.6	5.7 5.1 4.2 4.5 3.2 4.4
MONTH	14.2	6.8	9.0	3.6					6.0	1.8	9.3	2.1
	APRI	IL.	MA Y		JUNE	Ε	JULY	•	AUGUS	ST	SEPTEN	MBER
1 2 3 4 5	8.2 9.3 9.6 10.1 11.0	5.9 7.3 7.6 9.4 9.3	15.0 13.9 12.2 13.1 15.0	13.2 12.5 10.7 10.3 11.6	17.8 17.9 18.3 18.3	15.6 15.8 15.9 15.8 16.3	20.4 20.5 20.2 19.5	18.5 18.8 18.3 17.8	21.8 22.8 23.7 22.8 22.0	19.0 20.4 21.2 21.0 19.8	23.3 22.7 22.7 21.9 21.3	19.9 20.7 20.9 20.1 19.4
6 7 8 9 10	12.0 12.7 13.3 13.3	9.6 10.7 11.4	16.2 17.1 17.3	13.3 14.4	18.8 18.1	16.8 16.8			24.0	19.5	20.5	18.9 18.6
11	12.4	11.8 11.4	17.5 17.6	14.8 14.9 15.2	17.8 17.4 17.4	16.6 16.3 15.4			25.8 26.4 25.3 26.1	22.2 23.4 23.6 23.3	20.2 19.9 19.1 19.8	17.8 17.8 17.0
12 13 14 15	12.4 12.0 10.6 10.1 10.7 12.3		17.5	14.9	17.4	16.6 16.3			26.4 25.3	22.2 23.4 23.6 23.3 23.8 23.2 23.2	19.9 19.1	17.8 17.8
13 14	12.0 10.6 10.1 10.7	11.4 10.7 9.5 8.2 8.6	17.5 17.6 17.4 17.2 17.2	14.9 15.2 15.3 14.9	17.4 17.4 18.0 19.1 19.9 22.1	16.6 16.3 15.4 15.8 16.6 17.5 18.0			26.4 25.3 26.1 25.5 25.7 24.7 23.2	22.2 23.4 23.6 23.3 23.8 23.2 23.2 21.6	19.9 19.1 19.8 20.1 19.5 18.6 16.9	17.8 17.8 17.0 17.7 17.6 16.6 15.0
13 14 15 16 17 18	12.0 10.6 10.1 10.7 12.3 13.8 14.2 14.2	11.4 10.7 9.5 8.2 8.6 10.2 11.7 12.4 12.2 10.8	17.5 17.6 17.4 17.2 17.4 17.0 16.7 16.1 15.3 15.8	14.9 15.2 15.3 14.9 15.4 15.4 15.8 15.2 14.2	17.4 17.4 18.0 19.1 19.9 22.1 20.6 20.7 20.5 20.5 20.2	16.6 16.3 15.4 15.8 16.6 17.5 18.0 18.8 18.4 18.3 18.0			26.4 25.3 26.1 25.5 25.7 23.2 22.2 22.4 22.4 23.1 23.1	22.2 23.4 23.6 23.3 23.8 23.2 21.6 20.4 20.1 20.2 20.7	19.9 19.1 19.8 20.1 19.5 16.9 17.4 18.1 19.8 19.9	17.8 17.8 17.0 17.7 17.6 16.6 15.0 16.4 16.3 16.2 15.6
13 14 15 16 17 18 19 20 21 22 23 24	12.0 10.6 10.1 10.7 12.3 13.8 14.2 14.2 13.1 11.2	11.4 10.7 9.5 8.2 8.6 10.2 11.7 12.4 12.2 10.8 9.6 7.5 9.0 11.1 12.3	17.5 17.6 17.4 17.2 17.4 17.0 16.7 15.3 15.8 14.9 14.7 15.2 15.6 15.4	14.9 15.2 15.3 14.9 15.4 15.8 15.2 13.9 13.7 13.8 13.9 13.9	17.4 17.4 18.0 19.1 19.9 22.1 20.6 20.7 20.5 20.5 20.2 20.8 20.9 21.2 21.1 21.3	16.6 16.3 15.4 15.6 17.5 18.0 18.8 18.4 18.3 18.0 18.3 18.6 19.4 19.4			26.4 25.3 26.1 25.7 24.7 23.2 22.4 22.4 23.1 23.1 22.0 23.3 23.5 22.2 21.0	22.2 23.4 23.6 23.3 23.8 23.2 23.2 21.6 20.4 20.2 20.7 20.7 20.7 20.4 21.5 21.1 19.5	19.9 19.1 19.8 20.1 19.5 18.6 16.9 17.4 18.1 19.9 19.6 18.4 18.6 19.3	17.8 17.8 17.0 17.7 16.6 15.0 15.0 16.4 16.2 15.6 15.8 15.6 15.5

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

LITTLE DOLORES RIVER BASIN

09163570 HAY PRESS CREEK ABOVE FRUITA RESERVOIR NO. 3, NEAR GLADE PARK, CO

LOCATION.--Lat 38°51'03", long 108°46'56", in NE4SW4 sec.10, T.14 S., R.102 W., Mesa County, Hydrologic Unit 14030001, on right bank, 10 mi southwest of Glade Park Post Office

DRAINAGE AREA . - - 0.77 mi2.

PERIOD OF RECORD. -- April 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,885 ft above National Geodetic Vertical Datum of 1929, from topographic map. April 1, 1983 to August 23, 1983, water-stage recorder at site 100 ft upstream, at datum 5 ft, higher.

REMARKS.--Estimated daily discharges: Oct. 13 to May 8, and Aug. 28 to Sept. 2. Records fair except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26 ft³/s, May 14, 1984, gage height, 1.20 ft, from rating curve extended above 9.7 ft³/s; minimum daily, 0.02 ft³/s, Sept. 20, 21, 1986, July 20-30, Aug. 4-6, 11, 12, 16-19, Sept. 7-10, and Sept. 22-30, 1987.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 5.0 ft^3/s , and maximum (*).

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 1 May 15	1400 0100	a8.0	unknown 0.99	May 31	2000	*12.0	*1.08

Minimum daily discharge, 0.02 ft³/s, many days. a observed

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MA Y JUN JUL AUG SEP .13 . 1 o .06 .05 .07 .06 .10 9.5 3.2 .20 .05 .05 2 .15 . 11 - 06 .05 .07 .06 .11 9.0 3.2 3.0 . 18 .03 .05 .16 .03 .05 .05 .07 .06 .17 .09 .06 .12 .08 .07 .06 5.5 5 .13 .08 .06 .05 .07 .06 4.2 2.4 .17 .02 .03 6 .07 .06 .05 .08 4.0 .15 .02 .03 .10 .07 2.2 .15 .08 3.8 .26 .02 . 15 .07 .06 .05 .08 .17 1.9 .10 .07 Ŕ .17 .06 .05 .08 .08 3.6 .18 .06 .02 .19 1.9 .16 .09 9 10 .07 .05 .05 .09 .21 4.1 1.9 . 08 .04 .02 4.5 .08 .03 .07 .05 .05 .09 .09 .24 1.5 .02 5.1 7.3 9.3 9.4 .07 .05 .05 .09 .09 1.5 .10 .02 .03 .05 12 .20 .07 .05 .05 .09 .09 .33 1.1 .10 .02 .18 .07 .03 13 .05 -05 .10 - 09 .36 1.0 .10 14 .07 .48 .03 .06 .16 .05 .05 .10 .09 .92 .10 15 .16 .07 .05 .05 .10 .09 .60 9.6 .74 .03 .05 .70 .02 .05 16 .07 .05 .05 .09 .09 9.4 .10 17 18 .84 8.9 .48 .02 .05 .15 .07 .05 .05 .09 .09 .13 .08 .56 .08 .02 .05 .14 .07 .05 .06 .09 .07 .05 .06 .08 .09 8.6 .03 .02 .05 .13 2.0 19 .13 .07 .09 6.9 .74 .02 .03 .05 20 .05 .06 .07 21 .13 .07 .05 .06 -09 7.5 6.9 .56 .02 .05 .03 .07 1.1 22 .38 .03 .02 .07 .05 .06 .07 .09 .02 1.2 23 .12 .06 .05 .07 .07 .09 1.5 6.1 .29 .02 .08 .02 .02 .07 .08 2.0 5.9 .26 .12 .05 .06 .20 25 .12 .06 .05 .07 .06 .08 2.5 4.7 .20 .02 .46 .02 4.7 .21 .02 26 .06 .05 .07 .06 .08 3.4 3.9 .02 .29 .06 .05 .08 4.4 .29 .02 .02 .11 .07 .06 .17 28 .11 .06 .05 .07 .08 4.5 4.4 .20 .02 .06 .02 .06 29 30 .11 .02 .06 .05 .07 ---.08 6.0 4.2 .20 .06 .02 .02 .05 ---.06 .06 .07 .08 8.0 3.9 .20 31 . 14 ---.05 .07 .09 4.2 .08 .05 ---------1.78 TOTAL 4.45 2.19 1.63 2.17 2.53 43.87 195.9 34.95 2.78 2.13 1.02 6.32 9.6 3.6 .07 MEAN . 14 .07 .05 .06 .08 .08 1.46 1.16 .09 .03 8.0 46 MA X .29 .16 .07 -10 -09 3.2 .20 MIN . 10 .06 .05 .05 .06 .02 .02 .02 .06 AC-FT 8.8 4.3 3.2 3.5 4.3 5.0 87 389 69 4.2 2.0

CAL YR 1986 TOTAL 315.33 MEAN .86 MAX 8.0 MIN .02 AC-FT 625 WTR YR 1987 TOTAL 295.40 MEAN .81 MAX 9.6 MIN .02 AC-FT 586

DOLORES RIVER BASIN

09165000 DOLORES RIVER BELOW RICO, CO

LOCATION.--Lat 37°38'20", long 108°03'35", Dolores County, Hydrologic Unit 14030002, on left bank at upstream side of Montelores bridge northwest of State Highway 145 (relocated), at Dolores-Montezuma County line, 0.5 mi upstream from Ryman Creek, and 4.0 mi southwest of Rico.

DRAINAGE AREA . -- 105 mi2.

WTR YR 1987

PERIOD OF RECORD. -- October 1951 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 8,422.23 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 26, 28, 29, Dec. 2-5, Dec. 11 to Feb. 8, 10, Feb. 15 to Mar. 7, 11, 17, 18, Mar. 23 to Apr. 3, 6-8, July 14 to Aug. 25, and Sept. 7-25, 29, 30. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 36 years, 140 ft 3/s; 101,400 acre-ft/yr.

Discharge

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,170 ft³/s, May 24, 1984, gage height, 5.95 ft; from rating curve extended above 1,620 ft³/s, maximum gage height, 6.15 ft, June 10, 1952; minimum daily discharge, 7.0 ft³/s, Nov. 16-17, 1956, Feb. 6-7, 1961.

Discharge

Gage height

EXTREMES OUTSIDE PERIOD OF RECORD. -- Greatest flood since at least 1885 occurred Oct. 5, 1911.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft3/s, and maximum (*):

Gage height

Date		Time		(ft ³ /s)		gnt	Date	Time	(ft ³ /s)		(ft)	
May 17		2300	1,020		4.97		June 9	2100	*1,150		* 5.18	
Mi	nimum da	aily dischar	ge, 22 ft	³/s, Fe	b. 28.							
		DISCHARGE	, CUBIC F	EET PER	SECOND, W	ATER YEAR EAN VALUE	OCTOBER S	1986 TO S	EPTEMBER 1	1987		
DAY	ост	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	100 100 100 95 95	75 75 75 80 75	55 55 55 55 50	28 30 28 28 30	26 26 26 26 26	26 26 28 28 30	34 40 46 58 51	452 468 361 327 336	422 569 731 793 794	413 375 356 330 303	140 140 120 110	84 84 78 77 73
6 7 8 9 10	95 90 90 85 90	75 75 70 60 60	55 54 52 51 41	30 30 30 28 26	26 26 26 27 26	32 38 45 41 40	42 42 42 48 54	359 434 530 559 564	953 985 915 1050 1010	284 269 245 228 223	110 150 130 110 100	67 65 60 60 60
11 12 13 14	100 100 95 95 95	60 65 65 65	36 38 38 38 38	28 28 30 28 28	27 28 27 29 28	36 39 41 45 44	64 62 56 59 85	591 604 600 672 768	934 891 890 979 953	210 200 188 190 180	90 85 75 70 70	55 55 55 55 55
16 17 18 19 20	95 95 90 90	60 60 65 70 70	38 36 36 36 34	26 26 26 26 26	26 24 24 26	41 40 40 41 40	136 191 227 233 218	832 794 843 777 664	956 821 783 747 675	180 200 190 170 140	65 60 55 55 55	55 50 50 48 48
21 22 23 24 25	90 90 85 80 75	65 70 65 60 60	34 32 32 32 32	26 26 26 26 26	24 24 24 26 24	39 38 36 32 32	200 244 310 317 315	609 549 536 485 441	617 600 604 600 588	130 150 150 140 150	55 60 120 220 260	46 44 44 44
26 27 28 29 30 31	75 70 70 65 65	60 60 55 55 61	30 28 30 28 28 28	26 26 26 26 26 26	24 24 22 	32 32 30 30 28 30	329 376 415 428 432	409 366 336 309 287 308	564 517 481 539 462	150 160 180 160 150 150	230 169 140 121 103 92	44 39 38 36 34
TOTAL MEAN MAX MIN AC-FT	2715 87.6 100 65 5390	1976 65.9 80 55 3920	1225 39.5 55 28 2430	846 27.3 30 26 1680	718 25.6 29 22 1420	1100 35.5 45 26 2180	5154 172 432 34 10220	16170 522 843 287 32070	22423 747 1050 422 44480	6544 211 413 130 12980	3460 112 260 55 6860	1649 55.0 84 34 3270
CAL YR		TOTAL 68841	MEAN 18		1310 MIN		136500					

TOTAL 63980 MEAN 175 MAX 1050 MIN 22 AC-FT 126900

DOLORES RIVER BASIN

09166500 DOLORES RIVER AT DOLORES, CO

LOCATION. -- Lat 37°28'21", long 108°29'49", in SWASWA sec. 10, T.37 N., R.15 W., Montezuma County, Hydrologic Unit 14030002, on left bank 0.25 mi upstream from bridge on State Highway 184 in Dolores and 0.8 mi upstream from Lost Canyon Creek.

DRAINAGE AREA . -- 504 mi2.

PERIOD OF RECORD.--June 1895 to October 1903, August 1910 to November 1912, October 1921 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 859: 1937. WRD Colo. 1972: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,940 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1713 or 1733 for history of changes prior to Oct. 7, 1952. Oct. 7, 1952 to Nov. 16, 1983, at site 0.4 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Dec. 11-19, 21, 26-31, Jan. 1-31, Feb. 1-28, and Mar. 1-7. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,000 acres upstream from station. Flow partly regulated by Ground Hog Reservoir, capacity, 21,710 acre-ft. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--76 years (water years 1896-1903, 1911-12, 1922-87), 442 ft³/s; 320,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 10,000 ft³/s, Oct. 5, 1911, gage height, 10.2 ft, site and datum then in use, from rating curve extended above 2,800 ft³/s; minimum daily, 8.0 ft³/s, Aug. 16, 1896.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1885, that of Oct. 5, 1911.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,800 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 3	1700	2,910	*a6.84	May 18	0200	*3,880	6.12
May 2	0100		5.51	June 7	0400	3,180	5.68

DISCURPCE CUDIC FEET DED CECOND MATER VERD OCTOBER 1084 TO CERTEMBER 1087

a Backwater from ice. Minimum daily discharge, 89 ft³/s, Sept. 23-25.

		DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU		1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1	370	336	263	150	140	120	211	2440	1320	932	398	188
2	378	318	266	170	140	130	240	2610	1750	828	449	178
2 3 4	382	345	266	160	140	140	305	2020	2090	751	416	177
	366	360	270	160	140	150	384	1960	2480	680	402	168
5	366	342	278	170	140	170	343	2080	2390	608	378	165
6 7 8	354	350	282	170	140	190	317	2200	2660	577	354	153 148
7	3581	346	266	170	140	220	314	2320	2860	535	453	
	354	311	236	160	140	258	353	2630	2550	491	509	145
. 9	342	242	241	160	140	241	453	2640	2940	466	408	140
10	338	285	171	150	140	238	538	2600	2800	450	375	135
11	438	266	160	140	140	232	610	2500	2520	426	350	- 123
12	460	289	170	160	150	244	636	2500	2330	406	334	120
13	380	282	180	160	150	254	505	2570	2360	406	322	113
14	390	282	180	160	160	289	527	2750	2440	454	310	127
15	398	286	180	160	150	278	781	3080	2410	445	298	132
16	402	290	180	120	150	256	1140	3410	2410	430	290	120
17	398	286	180	140	140	212	1520	3420	2030	479	282	113
18	398	306	200	150	140	237	1730	3400	1890	568	274	109
19	398	637	190	140	140	244	1700	2760	1800	457	262	105
20	382	503	178	150	140	235	1550	2380	1680	495	258	101
21	370	451	170	150	140	223	1420	2150	1520	490	254	99
22	346	460	158	140	130	229	1640	1860	1440	490	155	93 89
23	326	3 88	143	150	130	210	2010	1790	1450	417	283	89
24	318	366	182	150	140	199	2170	1780	1420	383	585	89 89
25	298	380	187	150	130	202	2140	1590	1410	378	702	89
26	286	382	180	140	140	199	2010	1470	1320	382	537	139 120
27	282 ·	327	160	140	130	205	2260	1290	1220	414	373	120
28	270	330	170	140	110	193	2410	1160	1080	3 87	299	105
29	270	334	160	140		190	2540	1040	1210	386	259	95
30	258	334	160	140		177	2580	964	1050	419	227	91
31	258		150	140		193		970		410	205	
TOTAL	10934	10414	6157	4680	3910	6558	35337	68334	58830	15440	11001	3769
MEAN	353	347	199	151	140	212	1178	2204	1961	498	355	126
MAX	460	637	282	170	160	289	2580	3420	2940	932	702	188
MIN	258	242	143	120	110	120	211	964	1050	378	155	89
AC-FT	21690		12210	9280	7760	13010	70090	135500	116700	30630	21820	7480
-0-F1	21090	20000		,200	1100	1,50,10	10030	. , , , , , ,		30030		

TOTAL 241775 MEAN 662 MAX 4160 MIN 65 AC-FT 479600 TOTAL 235364 MEAN 645 MAX 3420 MIN 89 AC-FT 466800 CAL YR 1986 WTR YR 1987

SAN JUAN RIVER BASIN

09166950 LOST CANYON CREEK NEAR DOLORES, CO

LOCATION.--Lat 37°26'46", long 108°28'07", in SE¹₄SE¹₄ sec.23, T.37N., R.15W., Montezuma County, Hydrologic Unit 14030002, on right bank 3 mi upstream from mouth, and 2.5 mi southeast of Dolores

DRAINAGE AREA. -- 71.3 mi².

PERIOD OF RECORD. -- April 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7,030 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 6, 7, Nov. 9-14, Dec. 8-17, Dec. 20 to Jan. 4, Jan. 7-20, Feb. 8-11, Feb. 14 to Mar. 8, Mar. 13-21, 30, and Apr. 28 to May 1. Records good except for estimated daily discharges, which are poor. Several small storage reservoirs and diversions for irrigation of about 4,700 acres in the San Juan River basin and one diversion for irrigation of about 10 acres in Lost Canyon in the Dolores River basin. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 744 ft³/s, Apr. 2, 1986, gage height, 7.23 ft; no flow many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 609 ft³/s at 2400 Apr. 17, gage height, 6.65 ft; no flow many days.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER Y MEAN V	EAR OCTOBER ALUES	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEI	з м	AR APR	MA	Y JUN	JU	L AUG	SEP
1 2 3 4 5	17 18 19 18 18	28 40 34 35 34	28 35 36 31 28	6.0 5.5 6.0	4.° 4.5 4.°	7 5 5 6 7 7	.6 37 .0 61 .0 107 .5 136	32: 32: 22: 28: 25:	2 32 7 8.3 5 5.0	. 4 . 4 . 2 . 2	.04 .01 .2 .00	.46 .35 .31 .20
6 7 8 9 10	17 16 16 15 12	31 29 21 19 17	23 22 19 17 12	5.9 6.0 5.5 4.6	4.(4.(4.(28 34 50 50	85 117	24 25 27 23 19	3 2.5 3 2.5 0 2.4	.0	.15 0 .13 0 .04	.35 .27 .13 .20
11 12 13 14 15	18 25 20 20 21	17 17 17 16 16	10 10 10 10 11	5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 ·	5.0 5.7	59 7 55	276 191	16/ 16/ 15/ 19/ 17/	5 1.7 3 1.5 2 1.3	.0 .0 .0	00.00	.00 .00 .01
16 17 18 19 20	24 27 28 30 27	17 16 21 239 150	11 12 12 12 11	5.0 4.8 5.0 5.0	7.0 6.0 5.0	46 44 40	377 448 471 375 321	16) 17) 17) 14; 12:	5 1.1 5 .89 2 .80	.0 .0 .0	00.00 00.00	.00 .00 .00
21 22 23 24 25	24 21 17 15 13	95 82 65 56 55	11 10 9.5 9.5 9.5	5 • 1 4 • 7 4 • 5 4 • 5	4.8 4.8 4.1	3 42 5 46 4 40	264 327 403 420 4 05	12 10 91 12 9	.86 .80 .75	.0 .0 .0	0 .00 0 .15 0 .85	.00 .00 .00 .00
26 27 28 29 30 31	12 9.9 8.5 7.7 7.5 7.2	43 36 39 39 33	9.0 9.0 8.5 8.0 8.0	4.0 4.0 4.0 3.8 4.0	4.1 4.0 	33 31 - 28 - 28	346 386 350 360 320	7 6 5 3 3 2	5 .35 3 .40 5 .43 1 .47	.0 .4 .2 .0	8 1.7 1 .72 4 .47 1 .31	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	548.8 17.7 30 7.2 1090	1357 45.2 239 16 2690	460.0 14.8 36 8.0 912	155.0 5.00 6.0 3.8 307	5.11 11 4.0	1 36 1) 4	.6 265 74 471 .6 37	506 16 32 2 1005	3.64 2 32 3 .35	2.4 .0 .4 .0	8 .34 8 4.4 0 .00	2.83 .09 .46 .00 5.6

CAL YR 1986 TOTAL 16847.96 MEAN 46.2 MAX 555 MIN .00 AC-FT 33420 WTR YR 1987 TOTAL 16926.92 MEAN 46.4 MAX 471 MIN .00 AC-FT 33570

09169500 DOLORES RIVER AT BEDROCK, CO

LOCATION.--Lat 38°18'37", long 108°53'05", in NW4SW4 sec.20, T.47 N., R.18 W., Montrose County, Hydrologic Unit 14030002, on right bank at upstream side of bridge, 0.4 mi southeast of Bedrock, and 3.1 mi upstream from East Paradox Creek.

DRAINAGE AREA . -- 2,024 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1917 to September 1922 (monthly discharge only for some periods, published in WSP 1313), August 1971 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 1, 1971, nonrecording gage at different datum.

REMARKS.--Estimated daily discharges: Dec. 13-18, 21, 22, 26-31, Jan. 1-18, 20-31, Feb. 1-13, and Mar. 6-18. Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 5,000 acres upstream from station, and about 74,760 acres in the San Juan River basin. Flow regulated since March 19, 1984, by McPhee Reservoir, capacity 381,000 acre-ft.

AVERAGE DISCHARGE.--17 years (water years 1918-22, 1972-83), 497 ft³/s; 360,100 acre-ft/yr, prior to completion of McPhee Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,280 ft³/s, Apr. 30, 1973, gage height, 12.09 ft, from floodmarks, from rating curve extended above 8,700 ft³/s; no flow, Sept. 13, 1974, Aug. 15 to 18, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 7.15 ft, present datum, from floodmarks (discharge not determined).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,390 ft³/s at 0800 May 21, gage height, 8.58 ft; minimum daily, 50 ft³/s, Sept. 23, 24.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MA R APR MA Y JUN JUL AUG SEP 170 277 '7 14 18 58 582 ---___ ___ TOTAL MEAN 575 684 MAX MIN AC-FT

CAL YR 1986 TOTAL 205280 MEAN 562 MAX 4690 MIN 55 AC-FT 407200 WTR YR 1987 TOTAL 234099 MEAN 641 MAX 3550 MIN 50 AC-FT 464300

DOLORES RIVER BASIN

09169500 DOLORES RIVER AT BEDROCK, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- November 1979 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1979 to current year.
WATER TEMPERATURES: November 1979 to current year.

INSTRUMENTATION. -- Water-quality monitor since November 1979.

REMARKS .-- Daily maximum and minimum specific-conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 6,970 microsiemens Aug. 14, 1987; minimum, 140 microsiemens May 25, 1983.
WATER TEMPERATURES: Maximum, 33.5°C Aug. 7, 1981; minimum, -0.5°C Dec. 3-8, 1982.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 6,970 microsiemens Aug. 14; minimum recorded, 277 microsiemens
June 16 (but may have been less during periods of missing record in May and June).
WATER TEMPERATURES: Maximum recorded, 25.9°C Aug. 5; minimum recorded, 0.0°C many days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

AUG	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON - DUCT -	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	(MC	RD- NE. SS NON TAL WH G/L TOT S MG/	CARB CAL WAT DI FLD SO L AS (M	CIUM S S- I LVED SC G/L (N	DIS- DLVED S MG/L	ODIUM, DIS- OLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
	7	1030	252	1460	7.8	17.	5	580	460 17	0 3	8	86	2
	DATE	S: D: SOI (M)	IUM, LI IS- LVED (G/L	LAB D MG/L S AS (LFATE R IS- D OLVED S MG/L (1	IDE, IS- OLVED : MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	CONSTI-	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	DIS SOLV (TON. PER	- NO2+N ED DIS S SOLV (MG/	N, NO3 S- VED VL
	27	!	5.4 12	6 6	30	35	0.30	5.8	1050	1.42	712	0.2	200
	SPECIF	IC COND	J CTAN CE	(MICROSIE	MENS/CM A	I 25 DEG MEAN V		TER YEAR	OCTOBER	1936 TO S	EPTEMBE	R 1987	
DA Y	OCT	ИОЛ	DE	C JA	N FE'		AR	APR	Y A M	JUN	JUL	AUG	SEP
1 2 3 4 5	1150 1130 1120 1100 1090	602 428 884 1340 832	42 44 46 48 50	0 4 7	 	7'	 7 1 1 4	1240 1120 1060 1060 757			391 434 497 542 593	798 780 859 646 572	7 10 662 626 626 592
6 7 8 9 10	1070 1060 1050 1040 1020	675 629 643 704 701	60 64 65 66	4 3 3	 	- 8: - 8: - 9:	49 05 65 73 42	551 525 544 528 52 7		 403	613 608 580 559 546	544 538 601 476 624	590 599 587 589 754
11 12 13 14 15	933 576 757 1090 1310	685 696 858 962 1160	 	 		- 8 - 8 - 7:	74 04 35 39 63	494 431 415 441 449		393 341 343 324 293	530 500 475 459 451	756 618 1490 2160 521	798 591 560 558 551
16 17 18 19 20	1070 469 419 414 407	1160 1170 1150 884 774	 			- 7: - 7: - 7:	35 73 08 00 35	444 466 467 450 445	 389	286 286 288 290 299	445 452 437 411 405	589 633 687 737 789	553 608 664 748 863
21 22 23 24 25	400 388 369 3 96 423	762 678 694 519 491	 			- 7: - 7: - 7:	76 48 2 7 79 35	440 449 456 463 451	367 	305 305 310 318 327	406 388 385 393 395	843 969 963 1010 1140	1260 1150 1030 983 932
26 27 28 29 30 31	448 496 560 609 643	473 527 552 448 412	 	 		- 78 - 88 - 98 - 10		436 445 441 431 427		335 339 346 350 360	389 401 418 1150 1520 1030	1280 1510 1630 1130 1030 853	1020 985 935 907 872
MEAN	763	750						562			542	897	765

211

09169500 DOLORES RIVER AT BEDROCK, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MA X	MIN	MA X	MIN	MA X	MIN
	OCTOBE	R	NOVEMB	ER	DE CEM	BER	JANUA	RY	FEBRU	ARY	MARC	Н
1 2 3 4 5	13.9 12.9 13.3 13.8 14.4	10.8 12.1 11.8 10.4 10.5	9.7 9.5 9.6 8.2 8.3	8.4 7.9 7.5 6.5 5.8	3.8 3.3 2.8 2.6 3.4	3.1 2.4 2.2 2.0 2.4					3.6 4.2 5.0 5.4 6.4	2.0 2.5 2.7 .6 1.3
6 7 8 9 10	15.0 15.8 16.1 16.2 13.7	11.7 11.8 12.1 12.3 12.1	7.3 6.7 5.5 4.0 4.4	5.8 4.9 3.1 1.9	4.0 4.5 5.2 4.4 2.1	3.4 3.8 4.2 2.3					7.2 7.6 5.7 6.3 7.2	2.1 2.5 4.5 4.6 3.5
11 12 13 14 15	12.2 9.8 8.5 9.1 9.8	9.3 6.9 6.2 5.9 6.7	4.1 4.4 4.7 4.9 5.2	1.8 1.7 1.7 2.0 2.5	.7 .0 .0	.0 .0 .0					6.5 7.7 8.1 7.4 5.7	3.8 4.0 4.4 4.5 5.1
16 17 18 19 20	11.3 10.9 11.3 10.7	7.5 8.2 9.3 9.5 8.7	5.6 6.7 7.0 8.0 8.2	2.8 3.7 4.5 6.6 6.3	.2 .4 .4 1.5 1.7	.0 .0 .0			3.0 3.1 3.0 3.5	1.9 2.1 2.3 2.5	6.0 6.3 7.7 5.6 7.1	3.9 4.0 3.6 4.8 3.7
21 22 23 24 25	10.6 10.4 11.0 11.1 10.8	8.3 8.2 7.9 7.9	6.9 7.2 6.0 5.0 4.5	5.7 5.3 4.1 3.6 3.0	2.2 1.3 .5 1.2	.7 .0 .0			3.5 3.7 4.0 3.9 3.3	2.3 2.4 3.0 3.1 2.5	5.1 4.3 4.5 4.3 5.9	2.9 2.6 1.7 1.6 1.3
26 27 28 29 30 31	10.6 10.4 10.6 10.6 10.9	8.1 8.5 8.3 8.8 8.8	5.6 5.1 4.5 3.9 4.6	4.3 3.9 3.2 3.6 3.8	.0	.0			3.2 3.3 3.3 	2.6 2.0 2.0	6.4 5.2 5.1 5.7 5.9 7.9	1.9 2.5 1.5 1.5 .0
	16 2	5.9	9.7	1.7							8.1	.0
MONTH	16.2	5.9	3 • 1	1 • (0.1	
MONTH	APRIL		MAY	1.4	JUNE		JOF J		AUGUS		SEPTEM	
MONTH 1 2 3 4 5												
1 2 3 4	APRIL 7.7 9.7 10.2 9.0	2.6 3.4 4.0 6.9	MAY		JUNI 	 	JULY 20.2 21.6 22.3 22.9	15.7 16.8 17.0 17.8	AUGU: 23.3 23.8 24.6 25.4	16.9 20.3 21.5 21.3	SEPTEM! 22.3 22.0 21.3 21.0	18.4 18.9 18.7 18.2
1 2 3 4 5 6 7 8	APRIL 7.7 9.7 10.2 9.0 8.5 7.7 9.4 10.3 9.7	2.6 3.4 6.9 6.2 5.9 7.3 8.1	MAY		JUNE	 	JULY 20.2 21.6 22.3 22.9 23.0 23.2 24.1 23.7 23.6	15.7 16.8 17.0 17.8 18.0 18.4 19.0 19.9	AUGU: 23.3 23.8 24.6 25.4 25.9 24.7 25.0 23.9 24.2	16.9 20.3 21.5 21.3 21.4 22.1 21.7 21.7 21.4 20.6	SEPTEMI 22.3 22.0 21.3 21.0 19.6 19.4 19.6 19.1	18.4 18.9 18.7 18.2 17.4 16.6 17.3 16.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14	APRIL 7.7 9.7 10.2 9.0 8.5 7.7 9.4 10.3 9.7 8.7 7.7 6.6 6.6 8.4	234.92 34.92 55.78.9 55.40	MAY		JUNE	13.8 15.5 13.4 13.8	JULY 20.2 21.6 22.3 22.9 23.0 23.2 24.1 23.7 23.6 22.3 22.2 24.4	15.7 16.8 17.0 17.8 18.0 18.4 19.9 19.5 19.1 18.7 18.7 19.0 19.5	AUGU: 23.3 23.8 24.6 25.4 25.9 24.7 25.9 24.2 24.8 23.6 22.6 22.2	16.9 20.3 21.5 21.3 21.4 22.1 21.7 21.4 20.6 20.7 20.9 20.5 20.3 19.5	SEPTEMI 22.3 22.0 21.3 21.0 19.6 19.4 19.1 19.1 19.1 19.1 18.8 18.4 16.8	18.4 18.9 18.7 18.2 17.4 16.6 17.3 16.2 15.9 15.4 15.3 14.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	APRIL 7.7 9.7 10.2 9.0 8.5 7.7 9.4 10.3 9.7 8.7 7.7 6.6 6.6 8.4 9.1 9.8 9.7 8.9	23.4.092 9.99319 6.34.08 5.57.8.19 6.34.08 777.6.8	MAY		JUNE 18.1 16.7 15.8 16.9 16.2 15.8 15.5 15.5	13.8 15.5 13.4 13.3 13.3 13.4	JULY 20.2 21.6 22.3 22.9 23.0 23.2 24.1 23.7 23.6 22.3 22.2 24.4 24.9 24.9 24.9 24.9 22.2	15.7 16.8 17.0 17.8 18.0 18.4 19.9 19.5 19.1 18.7 19.5 20.2 20.5 18.5 18.3	AUGUS 23.3 23.8 24.6 25.4 25.9 24.7 25.0 23.9 24.2 24.8 23.6 22.6 22.2 21.0 22.7 22.9 23.5	16.9 20.3 21.5 21.3 21.4 22.1 21.7 21.4 20.6 20.7 20.9 20.5 18.2 17.8 18.5 19.0	SEPTEMI 22.3 22.0 21.3 21.0 19.6 19.4 19.1 19.1 19.1 18.8 16.8 16.8 17.4 18.1 18.5 17.4	18.4 18.9 18.7 18.2 17.4 16.6 17.3 16.3 16.2 15.9 15.4 12.9 12.5 14.0 14.8 13.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24	APRIL 7.7 9.7 10.2 9.0 8.5 7.7 9.4 10.3 9.7 8.7 7.7 6.6 6.6 8.4 9.1 9.8 7.8 8.6 9.9 10.9 11.1	23.4.092 99.3119 6.3.4.08 5.5.1.08 5.7.7.66 5.7.7.66 5.7.8.9	MAY	10.3	JUNE 18.1 16.7 15.8 16.3 16.9 15.5 15.5 17.4 17.2 17.5 18.6	13.8 15.5 13.4 13.8 15.1 14.7 14.4 13.3 14.3 14.3 14.4	JULY 20.2 21.6 22.3 22.9 23.0 23.2 24.1 23.7 23.6 22.3 22.5 24.0 24.4 24.9 24.9 24.9 24.9 24.9 24.9 24.9	15.7 16.8 17.0 17.8 18.0 19.9 19.5 19.1 18.7 19.5 20.5 18.3 18.0 17.8 19.1 18.5 19.0	AUGU: 23.3 23.8 24.6 25.9 24.7 25.9 24.2 24.8 23.6 22.2 21.0 22.7 22.3 23.4 23.5 22.4 23.6 22.1 20.4	16.9 20.3 21.5 21.3 21.4 22.1 20.6 20.7 20.9 20.3 19.5 18.2 17.8 18.5 19.2 19.8 20.6 20.7	SEPTEMI 22.3 22.0 21.3 21.0 19.6 19.4 19.1 19.1 18.8 16.8 16.8 17.4 18.1 17.8 17.8	18.4 18.9 18.7 18.2 17.4 16.3 16.3 16.2 15.9 15.4 15.3 12.9 12.5 14.0 14.8 13.0 12.9 13.1

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

DOLORES RIVER BASIN

09170800 WEST PARADOX CREEK ABOVE PARADOX, CO

WATER-QUALITY RECORDS

LOCATION.--Latitude 38°19'54", longitude 103°53'59", in NELNWL section 18, T.47N, R.18W, Montrose County. Site is 1,000 ft downstream from former surface water station, 1.3 mi northwest of Bedrock, and 2.6 mi upstream from mouth.

DRAINAGE AREA. -- 53.3 mi².

PERIOD OF RECORD.--Chemical analyses: August to September 1987.

REMARKS.--Natural flow affected by water imported from Roc Creek through Buckeye Reservoir. Diversion for irrigation of about 2,500 acres.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
AUG 27	1000	1030	7.5	14.5	520	0	110	59
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 27	30	0.6	3.5	310	24	0.30	12	0.68

213

SODIUM

AD-

MAGNE -

SIUM, SODIUM,

DOLORES RIVER BASIN

09171070 DOLORES RIVER BELOW WEST PARADOX CREEK NEAR BEDROCK, CO (Previously published as 09171100, Dolores River near Bedrock, Co)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- December 1979 to November 1987 (discontinued).

SPE-

CIFIC

STREAM-

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: December 1979 to November 198
WATER TEMPERATURES: December 1979 to November 1987.

INSTRUMENTATION .-- Water-quality monitor since December 1979.

REMARKS. -- Daily maximum and minimum specific-conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 83,300 microsiemens Aug. 9, 1981; minimum, 103 microsiemens June 4, 1984.
WATER TEMPERATURES: Maximum, 33.5°C July 10, 1981; minimum, -1.5°C several days during November to January 1981 and 1983.

EXTREMES FOR CURRENT YEAR. -SPECIFIC CONDUCTANCE: Maximum recorded, 18,500 microsiemens Sept. 24 (but may have been exceeded during periods of missing record from Sept. 19-23, 25-30); minimum recorded, 358 microsiemens May 22 (but may have been less during periods of missing record June 12 to July 8).
WATER TEMPERATURES: Maximum, 28.6°C July 27; minimum, 0.0°C several days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

HARD-

NESS

HARD-

NON CARB CALCIUM

NESS

	DATE]	FLOW, C INSTAN- I IANEOUS A	OUCT- (S NCE	TAND- ARD	TEMPER- ATURE WATER (DEG C)	TOTAL (MG/L AS CACO3)	WH WA TOT F MG/L CACO	T DI LD SO AS (M	S- LVED S G/L (DIS- DI OLVED SOI MG/L (1	IS- LVED MG/L S NA)	SORP- TION RATIO
AUG 27	7	1230	285	2380	7.7	19.0	660	5	30 19	0	46 29	50	4
	DATE	POTA SIU DIS SOLV (MG/ AS F	JM, LINITY S- LAB VED (MG/L 'L AS	SULFAT DIS- SOLVE (MG/L	DIS- D SOLV (MG)	E, RIDI - DIS JED SOL' /L (MG	E, DI S- SO VED (M /L A	ICA, S-	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLVE (TONS	DIS- D SOLVEI (TONS PER	NO2+N	N, NO3 S- /ED /L
	AUG 27	14	135	700	320	0	.30	6.0	1610	2.1	9 1240	0.2	22
	SPECIF	IC CONDUC	CTANCE (MIC	CROSIEMENS		25 DEG. C		YEAR	OCTOBER	1986 TO	SEPTEMBE	R 1987	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR		MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	4880 5000 5100 5090 5060	1500 1240 1760 2500 1710	849 887 925 973 1020	2610 2300 2310 2610 2270	2850 3090 3170 3220 3280	2900 2860 2840 2710 3180	3980 4020 3930 3150 1470		494 491 480 472 471	451 437 422 413 412		1670 1760 1850 1870 1810	2560 2560 2560 2570 2560
6 7 8 9 10	5050 5040 5050 5040 4990	1000 789 751 732 742	1030 1070 1090 1120 1130	2280 2620 2480 2880 3360	3360 3440 3540 3600 3560	2450 1640 1250 1150 1120	936 826 727 719 712		467 464 463 460 458	401 397 394 401 441	2130 1920	1710 1720 1580 1590 1640	2520 2480 2480 2540 2570
11 12 13 14 15	4730 3860 3700 3660 3630	738 794 983 1540 2250	1160 1480 1690 1680 1690	3770 3120 3010 2720 2870	3520 3480 3450 3410 3390	1060 1020 1020 1040 1050	702 686 670 657 642		453 450 446 440 437	477 	1810 1730 1740 1750 1810	1710 1780 1660 1460 1430	2480 2410 2290 2290 2330
16 17 13 19 20	2150 1050 855 864 865	2040 2010 1980 1420 1030	1630 1700 1680 1740 1760	2740 3170 3910 5160 3090	3370 3340 3310 3280 3240	1080 1100 1090 1100 1100	627 609 588 572 549		433 431 427 419 393		1830 1770 1660 1710 1680	1400 1360 1350 1460 1360	2480 3050 3920
21 22 23 24 25	909 943 963 1170 1440	963 937 855 763 684	1820 1840 1850 1900 1950	3120 3730 3840 3000 2730	3210 3180 3140 3110 3070	1110 1110 1130 1120 1120	529 508 505 506 504		422 458 480 450 440		1680 1740 1810 1810 1830	1420 1400 1410 1320 1630	17800
26 27 28 29 30 31	1180 1160 1160 1250 1480 1630	663 691 726 768 810	1890 1860 1870 1860 1910 2010	2620 2680 2820 2460 2540 2780	3030 2980 2940 	1140 1510 1960 2480 3080 3570	502 502 501 501 497		428 422 492 486 467 462		1830 1770 1450 1290 2040 1900	1950 2300 2430 2510 2540 2550	
MEAN	2869	1179	1520	2955	3270	1679	1061		453			1730	

DOLORES RIVER BASIN

09171070 DOLORES RIVER BELOW WEST PARADOX CREEK NEAR BEDROCK, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MA X	MIN
	OCTOBE	R	NOVEME	BER	DE CE MI	BER	JANUAI	RY	FEBRU	ARY	MARCI	H
1 2 3 4 5	16.0 13.9 14.5 16.1 16.6	9.1 10.5 10.5 9.4 8.9	8.9 10.1 10.4 9.5 8.6	8.0 7.7 7.3 6.4 5.0	4.2 3.4 3.3 2.6 3.0	1.3 .5 .3 .8	1.2 1.6 .2 .2	.0	2.4 2.6 1.3 1.3 2.4	.0 .0 .0	6.5 7.1 7.7 7.7 9.3	.6 1.3 1.9 2.0 2.4
6 7 8 9	16.6 18.0 18.0 18.4 13.5	10.5 10.1 10.5 10.5	7.4 6.6 6.0 4.6 4.5	5.5 5.1 3.4 1.5	3.7 4.4 5.9 4.5 1.9	2.8 3.2 3.7 1.0	1.5 1.0 1.3 .3	.0 .0 .0	2.6 2.4 2.2 2.8	.0 .0 .0	9.0 9.0 7.2 8.0 7.3	3.4 4.2 5.5 5.7 5.1
11 12 13 14	12.0 9.6 9.1 10.1 12.1	9.4 8.1 7.1 6.4 6.5	4.4 5.5 6.4 6.4 7.0	1.0 1.0 1.0 1.5 2.0	.3 .6 .3 .7	.0 .0 .0	1.0 .9 1.4	.0	3.5 1.6 3.6 2.1 2.4	.1 .1 .1 .2	7.0 7.7 9.2 8.4 6.8	5.2 5.4 5.4 5.3 5.8
16 17 18 19 20	11.6 11.4 12.1 10.4 10.6	7.0 7.6 9.0 9.4 8.5	6.9 7.9 6.9 9.1 8.1	2.5 3.0 4.0 6.0 5.1	1.6 1.5 1.0 2.5 2.4	.0 .0 .0	.4 .3 .1 .4	.0 .0 .0	2.7 4.5 5.1 3.4 5.6	.4 .3 .5 .8 1.3	7.6 7.6 8.6 6.7 8.2	5.1 4.6 4.4 5.9
21 22 23 24 25	11.1 10.1 9.8 11.4 10.6	7.6 8.0 6.5 6.3 5.9	7.0 7.1 6.1 5.1 4.1	4.9 4.9 3.5 2.5 2.0	3.4 2.4 .7 2.5	.5 .0 .0	.3 .4 .3 1.1	.0	5.9 5.9 5.7 4.4	.6 1.9 2.0 1.4	6.9 6.4 7.2 6.9 8.0	4.6 4.7 3.2 3.2 3.4
26 27 28 29 30 31	11.1 10.4 11.6 11.2 12.4 10.5	6.6 6.7 6.8 7.7 7.7	5.3 5.5 5.1 3.6	3.5 3.4 2.3 2.4 2.4	.2 .0 .7 .5 .7	.0	1.5 1.7 1.6 .5 .8	.0	2.8 6.2 6.4	1.6 .8 .6	8.6 7.9 8.2 9.6 9.6	3.9 4.7 3.9 4.2 2.5 4.4
MONTH	18.4	5.9	10.4	1.0	5.9	.0	1.7	.0	6.4	.0	11.9	.6
	APRIL		MAY		JUNE	3	JULY	ť	AU GUS	ST	SEPTEM	BE R
1 2 3 4 5	11.7 13.6 13.8 12.5	6.0 6.6	11.7	10.3	17.2 17.3	12.9 13.0			25.4	18.0 20.1	24.8	17.3 18.0
	11.5	6.7 9.9 9.0	10.2 11.4 12.5	3.8 8.1 10.0	17.6 17.7 17.6	13.0 13.4 13.9			26.3 27.5 28.5 28.1	21.6 20.8 20.5	24.7 23.7 22.2 21.7	18.2 18.2 16.9
6 7 8 9 10		9.9	11.4	8.1	17.6 17.7	13.0 13.4	26.0 24.7		27.5 28.5	21.6 20.8	23.7 22.2	18.2
7 8 9	11.5 10.2 10.8 11.4 11.5	9.9 9.0 9.1 8.5 9.4 9.5	11.4 12.5 12.1 12.1 12.9 12.9	8.1 10.0 10.2 9.4 10.0 10.4	17.6 17.7 17.6 18.3 17.8 16.8 16.2	13.0 13.4 13.9 14.7 14.6 14.1 13.0	26.0	 18.5	27.5 28.5 28.1 26.6 27.3 27.0 25.8	21.6 20.8 20.5 21.2 21.4 20.4 19.5	23.7 22.2 21.7 22.3 22.3 21.6 20.7	18.2 16.9 16.1 17.5 16.2 16.1
7 8 9 10 11 12 13 14	11.5 10.2 10.8 11.4 11.5 10.3 9.1 8.3 7.8 9.5	9.9 9.1 9.4 9.8 9.8 9.8 7.6 6.6 5.9	11.4 12.5 12.1 12.1 12.9 12.9 12.8 12.0 11.5 12.2 12.4	8.1 10.0 10.2 9.4 10.0 10.4 10.4 9.9 9.7 9.5 9.9	17.6 17.7 17.6 18.3 17.8 16.8 16.2 16.7	13.0 13.4 13.9 14.7 14.6 14.1 13.0 12.5	26.0 24.7 24.5 25.5 27.3 27.4	18.5 18.0 18.2 18.5 18.5	27.5 28.5 28.1 26.6 27.3 27.0 25.8 27.3 24.9 25.5 25.5 23.7	21.6 20.8 20.5 21.2 21.4 20.4 19.5 19.6 20.0 19.7 19.3 18.3	23.7 22.2 21.7 22.3 22.3 21.6 20.7 22.5 21.9 21.1 17.1 18.8	18.2 16.9 16.1 17.5 16.2 16.1 15.7 14.9 14.9
7 8 9 10 11 12 13 14 15 16 17 18	11.5 10.2 10.8 11.4 11.5 10.3 9.1 8.3 7.8 9.5 10.1 10.4 9.6 9.0 8.5	9.9 9.1 9.1 9.5 9.4 9.5 8.8 7.6 6.6 9.8 7.8 8.8 7.8 7.8	11.4 12.5 12.1 12.9 12.9 12.8 12.0 11.5 12.2 12.4 11.7	8.1 10.0 10.2 9.4 10.0 10.4 10.4 9.7 9.7 9.5 9.9 10.2 9.4 10.9	17.6 17.7 17.6 18.3 17.8 16.8 16.2 16.7	13.0 13.4 13.9 14.7 14.6 14.1 13.0 12.5	26.0 24.7 24.5 25.5 27.3 27.4 28.5 27.4 23.6 24.4 25.4	18.5 18.0 18.2 18.7 18.5 19.3 19.8 20.7 18.2	27.5 28.5 28.1 26.6 27.3 27.0 25.8 27.3 24.9 25.5 23.7 22.9 25.6 26.6 26.3	21.6 20.8 20.5 21.2 21.4 20.4 19.5 19.6 20.0 19.7 19.3 17.5	23.7 22.2 21.7 22.3 21.6 20.7 22.5 21.9 21.1 17.1 18.8 19.5 19.7 20.4 22.0 21.7	18.2 16.9 16.1 17.5 16.1 15.7 14.9 14.2 12.4 13.7 13.9 12.2
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	11.5 10.2 10.8 11.4 11.5 10.3 9.1 8.3 7.8 9.5 10.1 10.4 9.6 9.0 8.5 8.3 8.8 9.4 10.5	9.9 9.8.15458 9.665.9 9.8.2 9.665.9 9.8.8 9.665.9 9.8.8 9.666988 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.666988 9.66698 9.66698 9.66698 9.66698 9.66698 9.66698 9.6669	11.4 12.5 12.1 12.1 12.9 12.9 12.8 12.0 11.5 12.2 12.4 11.7 12.8 12.1 11.9 12.0	8.1 10.0 10.2 9.4 10.0 10.4 10.4 9.9 9.7 9.5 9.9 10.2 9.6 10.3 10.8 10.2 11.0 10.5	17.6 17.7 17.6 18.3 17.8 16.8 16.2 16.7	13.0 13.4 13.9 14.7 14.6 14.1 13.0 12.5	26.0 24.7 24.5 25.5 27.4 28.5 27.4 28.5 27.4 23.4 25.4 25.4 20.4 23.5 26.8	18.5 18.0 18.2 18.7 18.2 18.5 19.3 19.8 20.7 18.2 17.4 17.3	27.5 28.5 28.1 26.6 27.0 25.3 27.0 25.3 24.9 25.0 25.0 26.6 26.3 24.2 26.0 4.2 24.4 22.5 20.2	21.6 20.8 20.5 21.2 21.4 19.5 19.6 20.0 19.7 19.3 18.3 17.5 16.1 17.8 18.7	23.7 22.2 21.7 22.3 21.6 20.7 22.5 21.9 21.1 17.1 18.8 19.5 19.7 20.4 22.0 21.7 21.5 21.6 22.0 22.5 22.0	18.2 16.9 16.1 17.5 16.2 16.1 15.7 14.9 14.2 12.6 12.4 13.7 13.9 10.9 10.8

YOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09171100 DOLORES RIVER NEAR BEDROCK, CO

LOCATION.--Lat 38°21'29", long 108°49'54", in SW4NW4 sec.2, T.47 N., R.18 W., Montrose County, Hydrologic Unit 14030002, on right bank 2.5 mi downstream from West Paradox Creek and 4.3 mi northeast of Bedrock.

DRAINAGE AREA. -- 2, 145 mi².

PERIOD OF RECORD. -- August 1971 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,910 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Feb. 1, 1972, at site 400 ft upstream at datum 1.02 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 24-26, and Jan. 16-26. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation of about 80,000 acres, of which about 74,760 acres are in the San Juan River basin. Flow regulated by McPhee Reservoir, capacity 381,000 acre-ft, since Mar. 19, 1984.

AVERAGE DISCHARGE.--12 years (water years 1972-83), 502 ft³/s; 363,700 acre-ft/yr, prior to completion of McPhee Dam.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,500 ft³/s, Apr. 30, 1973, gage height, 12.88 ft, from floodmarks; minimum daily, 0.12 ft³/s, July 17, 18, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 11.25 ft, site and datum in use prior to Feb. 1, 1972 (discharge, 5,710 ft³/s), by slope-area measurement at site 1,400 ft upstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,040 ft³/s at 1500 Apr. 18, gage height, 10.47 ft; minimum daily, 63 ft³/s, Sept. 22, 23, 24, 25.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA		1986 ТО	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	123 117 114 115 115	291 515 375 272 408	369 360 354 357 360	131 154 139 137 168	178 175 192 217 232	195 202 210 210 186	203 215 264 430 920	2240 2240 2200 2140 2090	1250 1240 1270 1270 1270	641 452 301 249 233	272 226 213 208 205	209 205 203 200 200
6 7 8 9	113 114 110 109 109	522 602 573 513 504	378 396 387 372 357	159 145 153 124 108	201 185 185 185 180	227 279 457 813 918	1250 1230 1290 1500 2110	2060 2080 2100 2120 2120	1260 1240 1240 1260 1240	223 220 218 208 200	203 200 254 240 240	207 210 208 207 200
11 12 13 14 15	282 691 320 222 152	492 270 165 151 153	322 234 206 212 220	102 117 132 145 145	187 165 171 295 275	900 915 729 798 776	3380 3930 3300 2110 2080	2130 2170 2140 2280 2150	1650 1970 1790 1640 1630	195 195 195 195 190	230 232 220 218 203	194 188 195 205 203
16 17 18 19 20	361 428 428 424 440	184 187 192 304 566	213 217 222 220 220	140 140 140 150 150	238 201 210 225 220	731 681 704 602 647	2770 3460 4090 3930 3140	2170 2140 2390 2550 2540	1680 1770 1770 1580 1380	190 200 217 205 193	200 198 190 188 185	193 132 104 77 71
21 22 23 24 25	440 444 440 242 242	820 585 592 720 730	213 210 208 207 193	150 150 150 160 160	210 220 220 220 232	652 632 655 621 604	2350 2180 2170 2410 2820	3360 2200 2140 2100 2070	1260 1270 1190 1150 1070	195 195 193 188 185	192 202 195 1190 792	67 63 63 63
26 27 28 29 30 31	313 312 312 261 228 215	700 399 378 372 372	185 195 193 192 180 161	160 165 171 190 185 185	215 183 180	561 370 351 281 216 208	2590 2380 2360 2320 2310	2060 1680 1350 1330 1310 1280	997 990 990 956 867	192 192 278 287 268 349	399 297 244 228 215 213	109 93 73 67 64
TOTAL MEAN MAX MIN AC-FT	8336 269 691 109 16530	430 820 151	8113 262 396 161 6090	4605 149 190 102 9130	5797 207 295 165 11500	16331 527 918 186 32390	65492 2183 4090 203 129900	64930 2095 3360 1280 128800	40140 1338 1970 867 79620	7442 240 641 185 14760	8492 274 1190 185 16840	4336 145 210 63 8600

CAL YR 1986 TOTAL 215104 MEAN 589 MAX 4550 MIN 60 AC-FT 426700 WTR YR 1987 TOTAL 246921 MEAN 676 MAX 4090 MIN 63 AC-FT 489800

DOLORES RIVER BASIN

09172500 SAN MIGUEL RIVER NEAR PLACERVILLE, CO

LOCATION.--Lat 38°02'33", long 108°07'54", in NW\u00e4NE\u00e4 sec.25, T.44 N., R.12 W., San Miguel County, Hydrologic Unit 14030003, on right bank 1.5 mi downstream from Specie Creek in vicinity of mile marker 88.68 on State Highway 145 and 4.5 mi northwest of Placerville, Co.

DRAINAGE AREA . - - 310 mi2.

PERIOD OF RECORD.--January to December 1909, September 1910 to December 1912, April 1930 to September 1934, April 1942 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Placerville," 1910-12.

GAGE.--Water-stage recorder. Datum of gage is 7,030 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1713 or 1733 for history of changes prior to Oct. 21, 1958.

REMARKS.--Estimated daily discharges: Nov. 28-30, Dec. 1-5,13-15,20-31, Jan. 1-31, and Feb. 1-11, 20-23.
Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,700 acres upstream from station. One diversion from Fall Creek for irrigation of about 2,000 acres in Beaver and Saltado Creek basins. One small ditch diverts water from Leopard Creek to Uncompahyre River basin. Slight regulation by Lake Hope and Trout Lake operated by Colorado Ute Electric Association, combined capacity, 5,040 acre-ft. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--51 years (water years 1911-12, 1931-34, 1943-87), 239 ft3/s; 173,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,000 ft³/s, Sept. 5, 1909 (result of failure of Trout and Middle Reservoir Dams); minimum daily, 26 ft³/s, Jan. 5, 1960.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 900 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 19	2000	971	4.12	May 16	0130	1,380	4.70
Apr. 26	1930	* 1,790	*5.19	June 15	0500	1,530	4.90

DISCULDED. IN CHRIS PERT DER GEGOND, HATER VELD COMODER 1005 TO CERTEMBER 1007

Minimum daily discharge, 70 ft3/s, Jan. 18.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	ост	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	201 195 182 176 166	143 136 134 148 145	110 110 120 120 110	90 95 95 100 100	90 90 95 95	81 82 89 87 91	107 110 116 132 125	1360 1260 1010 911 888	546 716 844 953 895	844 836 814 778 715	362 385 339 312 279	203 192 189 183 182
6 7 8 9 10	157 151 151 149 155	145 138 134 110 127	110 109 107 105 72	100 95 95 95 90	90 90 95 100 95	95 105 105 98 105	122 124 131 158 174	869 877 920 953 954	1000 1140 1050 1280 1220	710 678 634 627 628	270 420 363 300 264	172 172 174 166 139
11 12 13 14 15	175 179 175 174 168	124 124 122 124 124	78 82 100 100 110	90 90 90 85 80	100 107 103 101 102	101 97 109 110 105	204 213 185 195 239	961 1070 1080 1130 1280	1170 1140 1190 1280 1380	601 580 523 529 524	236 220 208 197 184	128 126 124 129 130
16 17 18 19 20	163 163 162 162 160	123 118 126 191 163	117 119 114 105 110	80 75 70 75 80	107 103 96 97 90	100 101 100 109 101	359 549 709 778 731	1320 1310 1310 1190 1030	1380 1230 1210 1170 1110	506 573 521 412 347	180 170 151 146 143	126 119 116 114 110
21 22 23 24 25	158 158 150 149 142	146 147 121 127 136	110 110 110 100 100	80 7 5 80 85 85	90 85 90 94 91	109 107 101 98 96	643 782 989 1070 1120	966 882 837 801 734	1020 1010 1040 1030 1060	370 433 423 387 403	146 156 264 525 635	108 107 105 103 105
26 27 28 29 30 31	136 136 131 127 125 124	132 133 130 120 120	100 95 100 100 95 90	85 90 90 90	84 80 82 	92 105 103 105 90 100	1260 1360 1300 1390 1320	701 625 573 533 501 465	1040 996 914 955 868	406 471 483 424 406 406	484 361 296 271 251 231	105 103 102 100 98
TOTAL MEAN MAX MIN AC-FT	4900 158 201 124 9720	4011 134 191 110 7960	3218 104 120 72 6380	2705 87.3 100 70 5370	2637 94.2 107 80 5230	99.3 110 81	16695 556 1390 107 33110	29301 945 1360 465 58120	31837 1061 1380 546 63150	16992 548 844 347 33700	8749 282 635 143 17350	4030 134 203 98 7990

CAL YR 1986 TOTAL 114159 MEAN 313 MAX 2060 MIN 72 AC-FT 226400 WTR YR 1987 TOTAL 128152 MEAN 351 MAX 1390 MIN 70 AC-FT 254200

DOLORES RIVER BASIN

09177000 SAN MIGUEL RIVER AT URAVAN, CO

LOCATION.--Lat 38°21'26", long 108°42'44", in SW4NE4 sec.2, T.47 N., R.17 W., Montrose County, Hydrologic Unit 14030003, on right bank 20 ft downstream from bridge on State Highway 141, 400 ft downstream from Tabeguache Creek, and 1.5 mi southeast of Uravan.

DRAINAGE AREA. -- 1,499 mi2.

PERIOD OF RECORD.--August 1954 to September 1962, October 1973 to current year.

REVISED RECORDS. -- WRD Colo. 1974: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,000 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 3, 1959, at site 0.5 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Dec. 6-10, 12-22, 24, Dec. 26 to Feb. 8, 22-24, and Feb. 28 to Mar. 3. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 28,000 acres upstream from station, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--22 years (water years 1955-62, 1974-87), 410 ft3/s; 297,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,050 ft³/s, May 10, 1983, gage height, 10.14 ft, from rating curve extended above 4,100 ft³/s; minimum daily, 9.4 ft³/s, Aug. 10, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 12.6 ft, from floodmarks, discharge, 8,910 ft³/s, by slope-area measurement at site 5.5 mi downstream.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 18	0200	*5,470	*8.77	May 14	0800	2,760	6.37
Apr. 27	0400	4,500	7.91	July 30	2300	3,850	7.33

Minimum daily discharge, 104 ft3/s, Sept. 28, 29..

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU		1986 TO	SEPTEMBER	1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	356 364 352 336 312	623 561 408 384 364	264 242 269 269 269	140 140 140 140 150	150 150 170 170 160	170 160 170 178 209	269 323 367 550 572	3220 3380 2830 2240 2150	872 948 1070 1210 1230	952 868 878 819 730	481 429 373 345 301	197 178 163 169 164
6 7 8 9	296 292 277 270 276	360 376 341 285 277	270 270 260 200 160	140 140 140 130	160 160 170 182 178	268 327 457 465 441	554 613 767 1060 1410	2090 2090 2170 2070 1970	1260 1450 1410 1620 1630	716 687 633 620 614	267 358 515 383 294	154 150 150 150 136
11 12 13 14 15	519 577 400 369 380	284 288 296 284 260	135 160 160 160 160	130 130 130 130	190 216 290 386 231	366 344 313 390 376	1690 1730 1220 1140 1560	1960 2020 2100 2300 2270	1510 1420 1400 1450 1640	596 5 7 8 525 506 500	253 235 221 205 191	120 118 118 120 123
16 17 18 19 20	368 348 340 332 355	252 245 242 1040 787	170 170 170 170 170	120 120 110 120 120	199 182 171 165 169	352 285 280 300 351	2360 3180 3940 3510 3000	2290 2200 2190 2060 1940	1690 1550 1430 1370 1300	485 506 635 478 398	174 162 150 142 136	124 118 116 115 115
21 22 23 24 25	344 332 316 304 296	50 1 436 354 293 339	170 170 165 160 163	120 120 130 130 140	160 160 170 170 173	293 319 293 273 259	2220 2420 3110 3490 3390	1830 1760 1540 1540 1410	1220 1140 1140 1180 1210	365 391 429 385 376	134 132 156 691 786	113 111 109 107
26 27 28 29 30 31	284 277 266 263 256 276	375 317 312 328 332	160 150 150 150 140 140	140 140 150 150 150	173 165 170 	249 262 252 255 225 231	3330 3620 3340 3380 3360	1300 1220 1080 976 945 879	1170 1160 1060 1140 1070	414 435 494 512 791 804	623 444 342 281 259 225	107 106 104 104 129
TOTAL MEAN MAX MIN AC-FT	10333 333 577 256 20500	11544 385 1040 242 22900	5816 188 270 135 11540	4150 134 150 110 8230	5190 185 386 150 10290	9113 294 465 160 18080	61475 2049 3940 269 121900	60020 1936 3380 879 119000	38950 1298 1690 872 77260	18120 585 952 365 35940	9688 313 786 132 19220	3895 130 197 104 7730

CAL YR 1986 TOTAL 200418 MEAN 549 MAX 2060 MIN 90 AC-FT 397500 WTR YR 1987 TOTAL 238294 MEAN 653 MAX 3940 MIN 104 AC-FT 472700

09237500 YAMPA RIVER NEAR OAK CREEK, CO.

LOCATION.--Lat 40°17'15", long 106°49'33", in SELNEL sec. 29, T. 4 N., R. 84 W., Routt County, Hydrologic Unit 1405001, on left bank, 1.0 mi upstream from Morrison Creek and 6.5 mi east of Oak Creek, Co.

DRAINAGE AREA. -- 227 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1939 to September 1944 (monthly discharge only for some periods, published in WSP 1313), October 1956 to September 1972, October 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. Sept. 1939 to Nov. 15, 1939, nonrecording gage, Nov. 16 1939, to Sept 1944 and Oct. 1956 to Sept 1972, water-stage recorder at site 0.5 mi upstream, at different datum.

REMARKS.--Estimated daily discharges: Dec. 11 to Mar. 25. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 12,000 acres upstream from station. Natural flow of stream affected by 2 diversions for irrigation to Egeria Creek into Colorado River basin and by storage in Stillwater, Yampa and YamColo Reservoirs (total capacity, 15,820 acre-ft).

AVERAGE DISCHARGE. -- 24 years, 89.9 ft 3/s; 65,130 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,400 ft³/s, Apr. 16, 1962, gage height, 7.56 ft, from rating curve extended above 570 ft³/s, site and datum then in use; maximum gage height, 8.08 ft, Mar. 8, 1987, (backwater from ice); minimum daily discharge, 8.9 ft³/s, May 22, 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 323 ft³/s at 0330 Apr. 17, gage height, 3.11 ft, maximum gage height, 8.08 ft, Mar. 8, (backwater from ice); minimum daily discharge, 31 ft³/s, Sept. 11-12

		DISCHARGE,	IN C	UBIC FEET		WATER AN VAL	YEAR OCTOBER UES	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	129 130 145 149 134	93 90 86 87 91	85 89 100 107 104	54 56 56 56	45 45 47 50 47	45 46 48 49 48	85 105 98 155 186	130 128 120 101 95	86 74 67 69 73	136 107 97 93 90	104 86 79 70 66	69 52 42 41 41
6 7 8 9 10	126 89 89 83 78	92 93 93 95 119	87 82 79 74 62	54 52 50 48 47	44 45 47 50 48	48 47 47 47 45	216 205 203 195 165	93 99 97 92 87	68 78 125 149 130	83 81 84 90 82	62 88 86 73 68	37 39 38 40 32
11 12 13 14 15	109 105 98 99 101	112 132 141 121 102	58 56 54 54	48 50 52 50 46	46 48 45 46 44	45 45 45 44 43	173 131 94 111 169	97 99 101 93 84	110 96 84 82 103	88 126 137 117 107	70 74 68 72 61	31 36 37 40
16 17 18 19 20	103 100 99 97 98	94 93 98 107 98	52 52 52 52 52	45 47 44 46 49	43 44 42 40 40	43 43 43 43	238 246 220 221 186	81 85 87 88 89	97 79 72 70 68	100 102 115 99 92	58 52 47 46 43	50 56 38 37 38
21 22 23 24 25	102 114 118 115 95	98 97 84 100 90	54 52 56 58	48 46 45 46 48	40 41 43 43 43	45 48 50 54 58	129 127 137 161 168	93 97 92 90 89	70 69 72 75 68	92 88 81 81 85	50 60 57 75 77	37 36 34 34 36
26 27 28 29 30 31	85 82 81 80 80 82	87 79 88 88 82	60 58 60 60 60	50 52 52 50 48 46	43 43 	62 69 55 61 53	153 146 137 134 133	89 88 84 80 90 94	66 67 74 87 149	109 114 105 102 129 128	66 60 62 70 55 61	39 42 34 51 44
TOTAL MEAN MAX MIN AC-FT	3195 103 149 78 6340	97 • 7 141 79	2035 65.6 107 52 4040	1537 49.6 56 44 3050	1245 44.5 50 40 2470	1531 49.4 69 43 3040	161 246 85	2932 94.6 130 80 5820	85.9 149 66	3140 101 137 81 5230	2066 66.6 104 43 4100	1212 40.4 69 31 2400

CAL YR 1986 TOTAL 49630 MEAN 136 MAX 419 MIN 38 AC-FT 98440 WTR YR 1987 TOTAL 29227 MEAN 80.1 MAX 246 MIN 31 AC-FT 57970

09237500 YAMPA RIVER NEAR OAK CREEK, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- July 1984 to current year.

PERIOD OF DAILY RECORD.-SUSPENDED SEDIMENT DISCHARGE: May 1985 to current year, (seasonal record May to September).

INSTRUMENTATION. -- Automatic pumping sediment sampler since May 1985.

REMARKS.--This station is part of a hydrologic investigation for a proposed reservoir, data for related stations, Martin Creek, Little Morrison Creek, Middle Creek, and Yampa River, (all located above the dam site) are published elsewhere in this report. Daily sediment discharge not determined after Aug. 23, sampler intake was buried.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	WATER	QUALITY	DATA, WAT	ER YEAR C	CTOBER 19	86 TO SEP	TEMBER 19	187	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)
OCT									
30 FEB	1130	79	367	8.4	6.5	9.5	190	47	17
02 MAR	1115	46	308	8.1	0.5		160	42	14
18 APR	1130	44	434	8.3	1.5		200	52	18
22 MA Y	1245	117	503	8.2	9.5	11.1	230	58	20
20 JUN	1300	94	333	8.3	12.0	9.8	230	57	20
22 JUL	1215	73		8.9	17.5		290	75	24
14	1300	113	495	7.8	15.5	7.9	270	71	23
AUG 19 31	1130 1200	46 61	452 	8.5	14.5 13.0	8.5 8.6	210 220	52 55	19 21
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT	10	0.3	1 0	150	h or	2.1	0 10	4.0	224
30 FEB		0.3	1.8	150	47	2.1	0.10	18	234
02 MAR	8.5	0.3	2.1	140	33	2.3	0.10	20	206
18 APR	12	0.4	4.4	167	67	4.8	0.10	19	278
22 May	14	0.4	3.2	175	100	3.2	0.20	17	321
20 JUN	12	0.4	2.8	174	73	3.0	<0.10	18	291
22 JUL	14	0.4	2.2	244	74	2.1	0.20	20	358
14 AUG	13	0.4	2.2	227	61	1.5	0.20	19	327
19 31	11 13	0.3 0.4	1.9 2.2	186 159	47 63	1.9 1.9	0.20 0.20	19 19	264 271
DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
OCT 30	0.32	49.8	<0.010	<0.100	<0.010		0.30	0.030	0.020
FEB 02	0.28	25.6	<0.010	0.170	0.060	0.44	0.50	0.030	0.030
MAR 18			<0.010					0.030	
APR	0.38	33.0		<0.100	0.040	0.56	0.60		0.020
22 MA Y	0.44	101	<0.010	0.180	0.040	0.56	0.60	0.030	0.010
20 JUN	0.39	73.6	<0.010	<0.100	0.050	0.85	0.90	0.040	0.040
22 JUL	0.49	70.7	<0.010	<0.100	0.020	0.68	0.70	0.030	0.020
14 AUG	0.44	99.8	<0.010	<0.100	0.040	0.56	0.60	0.040	0.020
19 31	0.36 0.37	32.7 44.6	<0.010 <0.010	<0.100 <0.100	0.010 <0.010		<0.20 0.40	0.020 0.020	<0.010 <0.010

GREEN RIVER BASIN

09237500 YAMPA RIVER NEAR OAK CREEK, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BORO DIS SOLV (UG/I AS B	DIS- ED SOLVE L (UG/L	DIS- D SOLV (UG/	I, COBA DIS ED SOLV	- DI ED SO /L (U	PER, S- LVED G/L CU)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 30 MAY	50	1	1	37	<0.5		20	1	<1	<1	3	250
20	80	3	1	50	<0.5		<	1	<1	<1	13	110
JUN 22	<10	<1	1	62	<0.5		30 <	1	1	<1	2	36
DAT	D SO: E (U	IS- D LVED SO G/L (U	HIUM NE IS- D LVED SO G/L (U	DIS- D DLVED SO IG/L (U	CURY DI IS- LVED SO G/L (1	OLYB- ENUM, I DIS- OLVED UG/L S MO)	NICKEL, DIS- SOLVED (UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZIN	S- VED /L
OCT 30		< 5	15	20	<0.1	2	1	1	<1.0	260		7
MAY 20		< 5		21	<0.1	<1	2	<1	<1.0	310		5
JUN 22		< 5		17	<0.1	<1	9	<1	<1.0	400		11
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)			DATE	TI	FL INS ME TAN	EAM- COW, COTAN- DEOUS A	PE- IFIC ON- UCT- NCE S/CM)	TEMPER - ATURE WATER (DEG C)
NOV 18	1030	94	405	2.5			MA Y 15	11	55 8	2	430	14.0
MAR 18 31	1130 1530	44 36	434 436	1.5 1.5			03	13	35 7	1	491	15.0

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	MENT, SUS-	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM
OCT					
30 MAR	1130	79	43	9.2	
18	1130	44	142	17	
31	1530	36	73	7.1	
APR	1245	117	175	55	
22 MA Y	1245	117	175	22	
15	1155	82	43	9.5	
20	1300	94	89	23	
JUN 03	1335	71	23	4.4	
22	1215	73	26	5.1	
JUL					
14	1300	113	66	20	60
23 AUG	1100	81	49	11	
04	0830	70	44	8.3	
14	1330	75	42	8.5	
19	1130	46	23	2.9	62
31 SEP	1200	61	47	7.7	62
17	1230	56	473	72	

09237500 YAMPA RIVER NEAR OAK CREEK, CO--Continued

SUSPENDED SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR MAY 1987 TO SEPTEMBER 1987

221

				(.,,				
DA Y	MEAN DISCHARGE (CFS)	ME CONCEN- TRATION (MG/L)	AN SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	ME CONCEN- TRATION (MG/L)	AN SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	ME/ CONCEN - TRATION (MG/L)	AN SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MA Y			JUNE	
1 2 3 4 5				130 128 120 101 95			86 74 67 69 73	29 24 28 33	6.7 5.6 4.3 5.2 6.5
6 7 8 9 10				93 99 97 92 87			68 78 125 149 130	28 31 67 65 72	5.1 6.5 23 26 25
11 12 13 14 15				97 99 101 93 84	 43	9.8	110 96 84 82 103	35 52 33 58	10 14 5.0 7.5 16
16 17 18 19 20				81 85 87 88 89	35 45 90	7.6 10 15 19 22	97 79 72 70 68	50 41 30 16 15	13 8.7 5.8 3.0 2.8
21 22 23 24 25	127 137 161 168		 	93 97 92 90 89	76 52 54 58 54	19 14 13 14 13	70 69 72 75 68	36 28 142 150 141	6.8 5.2 28 30 26
26 27 28 29 30 31	153 146 137 134 133		 	89 88 84 80 90 94	38 32 48 56 46 32	9.1 7.6 11 12 11 8.1	66 67 74 87 149	90 25 47 39 127	16 4.5 9.4 9.2 51
TOTAL	4827			2932			2577		385.8
		JULY			AUGUST			SEPTEMBE	R
1 2	136 107	84	42 24	104 86	145 88	41 20	69 52		
2 3 4	97	84	22	79	85	18	52 42		
5	93 90	123	23 30	70 66	48 40	9.1 7.1	4 1 4 1		
6	83 81	116	26	62 88	38 35	6.4	· 37		~
6 7 8	8 1 8 4	90 67	20 15	88 86	35 40	8.3 9.3	39 38		
9 10	90 82	96 175	23 39	73 68	35 24	6.9 4.4	40 32		
11	88	243	58	70	30	5.7	31		
12	126	305	104	74	80	16 8.6	31		
13 14	137 117	24 ¹ 4 95	90 30	68 72	47 42	8.6 8.2	36 37		
15	107	80	23	61	24	4.0	40		
16 17	100 102	42 136	11 37	58 52	24 31	3.8 4.4	50 56		
18	115	214	66	47	22	2.8	38		
19 20	99 92	127 105	34 26	46 43	49 18	6.1 2.1	37 38		
21	92 88	75 78	19	50	20	2.7	37 36		
22 23	88 81	78 63	18 14	60 57	29 32	4.7 4.9	36 34		
24 25	8 1 85	77 88	17 20	75 77			34 34 36		
26	109	125	37	66					
27	114	151	46	60			39 42		
28 29	105 102	97 102	27 28	62 70			34 51		
30 31	129 128	286 248	100 86	55 61			44 		
TOTAL	3140		1155	2066			1212		

09238500 WALTON CREEK NEAR STEAMBOAT SPRINGS, CO

LOCATION.--Lat 40°24'29", long 106°47'11", in SW\u00e4NW\u00e4 sec.11, T.5 N., R.84 W., Routt County, Hydrologic Unit 14050001, on left bank, 0.4 mi upstream from Beaver Creek, 0.6 mi downstream from Storm King Creek, 4.5 mi upstream from mouth, and 6.0 mi southeast of Steamboat Springs.

DRAINAGE AREA . -- 42.4 mi2.

PERIOD OF RECORD.--October 1920 to September 1922, monthly discharge only, published in WSP 1313. October 1965 to September 1973, flow of Highline Canal included. Annual maximum discharge, water years 1978-81. May 1982 to September 1987 (discontinued).

REVISED RECORDS. -- WDR-CO-82-3: 1978-81 (M).

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 7,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1965, water-stage recorder at site 0.2 mi downstream at different datum. Supplementary water-stage recorder on Highline Canal, May 18, 1966 to Sept. 30, 1973. Operated as a crest-stage partial-record site, June 1978 to May 1982, at present site and datum. October 1983 to current year.

REMARKS.--Estimated daily discharges: Dec. 8-23, Dec. 26 to Jan. 7, Jan. 18 to Feb. 1, and Feb. 8-16. Records good except for estimated daily discharges, which are poor. Diversion upstream from station by Highline Canal from Beaver and Storm King Creeks for irrigation downstream from station. No other diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--15 years (water years 1921-22, 1966-73, 1984-87), 86.1 ft^3/s ; 62,380 acre-ft/yr, unadjusted for diversion.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 2,800 ft³/s, June 15, 1921; minimum daily, 4.5 ft³/s Oct. 29, Nov. 7, 8, 1921, Aug. 28, 29, 1966.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 600 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
June 5	2130	* 666	*2.22	No other	peak greater	than base	discharge.

Minimum daily, 5.6 ft³/s, Sept. 27-30.

		DISCHAR	GE, IN CU	BIC FEET		D, WATER MEAN VALU	YEAR OCTOB JES	ER 1986 1	O SEPTEM	BER 1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	33 33 41 36 30	29 26 23 25 25	22 21 18 16 15	8.0 8.0 8.0 8.2	9.6 10 10 10	10 10 9.9 10	11 11 12 12 15	375 348 263 222 230	191 178 161 147 141	61 33 26 22 21	18 13 11 9.7 8.9	7.3 7.4 7.4 9.7 9.9
6 7 8 9 10	36 43 46 46 43	24 22 21 20 21	15 14 13 13	8.5 9.0 10 9.3 8.6	10 10 11 10 9.4	10 10 11 11	17 22 26 27 31	294 358 391 442 434	138 132 148 180 165	19 18 17 17	8.7 14 18 14 11	8.4 7.4 6.7 6.6 6.6
11 12 13 14 15	39 28 24 23 22	20 20 18 18	12 12 12 11 11	8.1 7.5 7.3 7.3 7.5	8.8 11 10 10	11 11 11 11	31 29 29 27 33	424 445 493 486 484	131 120 98 87 78	16 35 33 19 16	9.4 9.2 8.8 16	6.3 6.0 5.9 6.5 7.0
16 17 18 19 20	21 21 21 21 23	17 17 17 21 26	11 11 10 10	7.8 8.4 7.5 7.2 7.0	11 11 11 11	11 11 11 11	52 71 96 124 127	488 432 383 355 309	87 68 59 54 48	14 14 19 14	13 12 9.1 7.9 8.1	7.0 7.1 7.1 6.4 6.3
21 22 23 24 25	24 24 27 28 28	29 26 25 24 23	10 9.6 9.6 10	7.8 9.0 9.0 8.0 7.6	1 1 11 11 11	11 11 11 11	103 105 135 187 225	289 280 271 253 241	45 40 38 34 32	12 12 11 10 9.9	9.0 9.4 8.9 11 22	6.3 6.3 6.3 6.3
26 27 28 29 30 31	26 27 28 28 29 32	22 23 22 22 21	9.2 8.5 7.0 7.5 8.0 8.0	7.8 8.4 9.2 9.2 9.2 9.4	11 10 10 	11 12 12 12 12 12	240 265 303 342 343	231 217 192 188 192 193	29 27 25 33 71	15 18 15 14 15 20	19 13 10 9.2 8.6 7.7	5.8 5.6 5.6 5.6
TOTAL MEAN MAX MIN AC-FT	931 30.0 46 21 1850	665 22.2 29 17 1320	366.4 11.8 22 7.0 727	255.8 8.25 10 7.0 507	290.8 10.4 11 8.8 577	337.9 10.9 12 9.9 670	3051 102 343 11 6050	10203 329 493 188 20240	2785 92.8 191 25 5520	593.9 19.2 61 9.9 1180	361.6 11.7 22 7.7 717	202.7 6.76 9.9 5.6 402

CAL YR 1986 TOTAL 29874.6 MEAN 81.8 MAX 741 MIN 7.0 AC-FT 59250 WTR YR 1987 TOTAL 20044.0 MEAN 54.9 MAX 493 MIN 5.6 AC-FT 39760

09238705 LONG LAKE INLET NEAR BUFFALO PASS, CO

LOCATION.--Lat 40°28'25", Long 106'40'46", in SE4NW4 sec. 23, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on left bank 0.1 mi above Long Lake, and 7.5 mi east of Steamboat Springs.

DRAINAGE AREA . -- 0.71 mi2.

PERIOD OF RECORD .-- October 1986 to September 1987.

GAGE.--Water-stage recorder. Elevation of gage is 9,875 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 10 to Apr. 10, and June 7-19. Records fair except for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16 ft³/s, May 11, 1987, gage height, 2.67 ft; minimum daily, 0.05 ft³/s, Sept. 30, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 16 ft³/s at 0130 May 11, gage height, 2.67 ft; minimum daily, 0.05 ft³/s, Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MÉAN VALUES AUG SEP DAY OCT NOV DE C JAN FEB MAR APR MAY JUN JIII. 7.8 .16 .13 .08 .07 .33 .35 2 .17 .12 .12 .08 .07 5.4 7.2 •56 .17 .12 .08 .13 -40 .18 3.6 .12 .12 .07 6.8 .42 . 14 .18 -36 .25 .31 .12 .12 .08 .07 6.6 .35 5 .36 .29 .32 .15 .12 .08 .07 2.2 6.1 .11 .17 .12 .51 .16 .08 .26 6 .27 .12 .12 .07 4.4 5.4 .13 .10 .46 .15 .15 6.5 7.2 8.4 7 8 -95 .27 .12 .12 .08 .08 6.2 .27 .12 .08 .26 .23 .12 1.0 .08 .84 .13 .08 .08 8.0 .26 .11 10 .70 .15 .25 .12 .11 .08 .08 9.4 4.1 .23 . 1 .55 .23 .13 .08 .09 .56 .09 .13 11 .15 .10 10 3.5 12 13 14 .42 . 15 .07 9.9 3.0 1.5 .09 .11 .23 .14 .09 .09 .15 .07 .55 .31 .22 . 14 .09 .09 10 2.5 . 14 .08 .26 .22 12 2.3 .30 . 14 .09 .09 .17 15 .25 .15 .22 .14 .09 .06 13 2.1 .28 .29 .16 .11 .26 .06 16 .15 .22 .14 .09 . 24 12 2.0 . 26 .37 .19 .12 .28 .15 .57 .30 .28 17 .22 . 14 .09 .06 •93 11 1.5 18 . 14 2.0 .32 .22 .09 .19 .09 .06 1.3 11 .34 .10 .21 .14 .06 2.0 19 .09 9.7 1.2 . 14 .08 20 .21 .14 9.1 .09 .14 .10 .16 .09 .06 1.0 .10 21 .10 .13 8.1 .19 .15 .06 .19 - 14 -09 .90 .12 8.3 . 24 .80 .1 .07 22 .10 .13 .13 .09 .06 .74 1.8 .20 23 .20 .09 .06 .70 .24 .19 .06 24 .18 .10 .09 .06 3.5 3.5 .60 .21 .64 .06 25 .16 .10 .12 .13 .08 .06 6.7 .55 .26 .48 .06 26 .17 .10 .12 .13 .08 .06 .43 .67 .24 .08 3.7 5.2 .19 3.8 4.9 .36 .81 .13 .06 27 .10 .12 .13 .08 .06 28 .18 .11 .12 .08 .06 4.9 6.4 .32 .24 .12 .05 29 30 7.5 8.9 .17 .28 .12 .13 ---.06 5.6 1.4 .22 .12 .06 .12 1.8 .29 .05 .17 .33 .12 .13 -07 5.1 8.3 .07 .91 .11 31 .17 .12 .13 ___ ___ ---TOTAL 93.86 12.86 5.85 3.64 11.02 4.42 6.42 4.02 2.79 2.12 41.15 242.5 MEAN MAX .36 .15 .33 .21 .13 .068 1.37 7.82 3.13 .41 .19 .12 .100 .08 .13 13 .08 .06 .07 2.2 .10 .08 .05 MIN .16 .12 .12

4.2

82

481

186

26

12

7.2

WTR YR 1987 TOTAL 430.65 MEAN 1.18 MAX 13 MIN .05 AC-FT 854

8.0

13

5.5

8.8

22

AC-FT

09238710 FISH CREEK TRIBUTARY BELOW LONG LAKE, NEAR BUFFALO PASS, CO.

LOCATION.--Lat 40°28'36", Long 106°41'13", in NE4SE4 sec. 22, T.6N., R.83W., Routt county, Hydrologic Unit 14050001, on right bank, 0.1 mi below Long Lake Spillway, and 7.5 mi east of Steamboat Springs.

DRAINAGE AREA. -- 1.03 mi2.

PERIOD OF RECORD. -- August 29, 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,860 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 28 to May 5. Records fair except for estimated daily discharges, which are poor. Flow regulated by Long Lake Reservoir, capacity 397 acre-ft, 0.1 mi upstream.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 59 ft³/s, June 17, 1986, from rating curve extended above 16 ft³/s; maximum gage height, 3.13 ft, May 16, 1987 (backwater from ice); no flow many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 30 ft³/s at 0800 May 17, from rating curve extended above 16 ft³/s, gage height, 2.07 ft; maximum gage height, 3.13 ft at 1900 May 16 (backwater from ice); no flow many days.

		DISCHARGE,	IN CUBI	C FEET I	PER SECOND,	WATER Y AN VALUE	EAR OCTOBI	ER 1986	TO SEPTEMBE	R 1987		
DAY	OCT	иол	DE C	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	.04 .03 .03 .03	.02 .02 .02 .02 .02	.09 .09 .09 .08	.05 .04 .04 .03	.03 .03 .03 .03	.02 .02 .02 .02	.00 .00 .00 .00	.16 .15 .14 .10	13 11 8.9 8.0 7.5	.72 .59 .39 .24	.00 .00 .00	.00 .00 .00
6 7 8 9 10	.02 .02 .03 .04	.01 .01 .01 .02	.08 .08 .08 .08	.03 .03 .03 .03	.03 .03 .03 .03	.02 .02 .02 .02	.00 .00 .00 .00	.02 .03 .03 .05	6.8 7.0 8.0 9.7 9.8	.05 .02 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.04 .04 .03 .02	.03 .03 .03 .02	.07 .07 .07 .07	.03 .03 .03 .03	.03 .03 .03 .03	.01 .01 .01 .01	.00 .00 .01 .01	2.5 1.2 .69 .45	6.3 5.3 4.4 3.7 3.3	.00 .01 .01 .00	.00	.00 .00 .00
16 17 18 19 20	.01 .01 .01 .01	.02 .02 .03 .04	.06 .06 .06 .06	.03 .03 .03 .03	.03 .02 .02 .02	.01 .01 .00 .01	.01 .01 .01 .01	13 28 18 15	3.6 2.8 2.1 1.6 1.3	.00 .00 .00	.00	.00 .00 .00
21 22 23 24 25	.03 .08 .06 .04	.04 .05 .05 .04 .03	.06 .06 .06 .06	.03 .03 .03 .03	.02 .02 .02 .02	.00 .00 .00	.01 .01 .01 .01	9.3 7.0 7.2 7.2 5.8	1.1 .84 .67 .54	.00 .00 .00	.00	.00
26 27 28 29 30 31	.02 .02 .02 .02 .01	.03 .04 .08	.05 .05 .05 .05	.03 .03 .03 .03	.02	.00 .00 .00 .00	.02 .04 .11 .15 .14	5.1 3.9 2.9 3.4 4.6 9.1	.35 .26 .18 .16	.00 .00 .00 .00	.00	.00
TOTAL MEAN MAX MIN AC-FT	.86 .028 .08 .01		2.07 .067 .09 .05 4.1	.98 .032 .05 .03	.72 .026 .03 .02	.28 .009 .02 .00	.59 .020 .15 .00	171.55 5.53 28 .02 340	129.00 4.30 13 .16 256	2.15 .069 .72 .00	.00	.00

CAL YR 1986 TOTAL 1334.04 MEAN 3.65 MAX 47 MIN .00 AC-FT 2640 WTR YR 1987 TOTAL 309.15 MEAN .85 MAX 28 MIN .00 AC-FT 613

09238750 MIDDLE FORK FISH CREEK NEAR BUFFALO PASS, CO

LOCATION.--Lat 40°26'54", Long 106°41'30", in NE4SE4 sec. 10, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on right bank, 0.25 mi above Fish Creek Reservoir, and 7.5 mi east of Steamboat Springs.

DRAINAGE AREA .-- 1.37 mi2.

PERIOD OF RECORD. -- August 31, 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,955 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 7 to Apr. 16. Records good except for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 146 ft 3 /s, June 9, 1986, from rating curve extended above 24 ft 3 /s; gage height 4.56 ft; minimum daily, 0.02 ft 3 /s, Jan. 18 to Feb. 5, 1986.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 80 $\rm ft^3/s$ at 1700 Apr. 26, gage height, 3.94 ft, from rating curve extended above 24 $\rm ft^3/s$; minimum daily, 0.15 $\rm ft^3/s$, Sept. 28-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

							,					
DAY	OCT	NOA	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	.99 1.2 1.3 1.2	1.4 1.4 1.1 .98	.50 .50 .50 .50	.40 .40 .40 .40	.50 .50 .48 .50	.40 .40 .40 .40	.40 .40 .40 .40	15 16 12 5.4 4.7	19 16 14 13 12	2.3 1.2 .95 .83 .77	.39 .31 .28 .26 .25	.23 .22 .24 .36 .26
6 7 8 9 10	1.4 2.0 2.6 3.1 3.0	.82 .80 .75 .70	.50 .50 .50 .50	.40 .40 .40 .40	.50 .50 .50 .50	.40 .40 .40 .40	.40 .40 .40 .40	7.4 12 15 19 21	11 12 13 15	.67 .63 .59 .56	.26 .57 .39 .27 .26	.23 .20 .20 .20
11 12 13 14 15	2.7 1.5 .68 .71 .88	.70 .70 .70 .70	.45 .45 .45 .45	.40 .40 .40 .40	.50 .50 .50 .50	.35 .35 .35 .35	.50 .50 .50 .50	18 17 22 22 23	7.2 6.0 5.0 4.3 4.1	.73 2.1 .89 .58 .50	.25 .25 .29 .54 .42	.19 .18 .18 .19
16 17 18 19 20	1.0 1.2 1.3 1.5	.60 .60 .60 .60	.45 .45 .45 .45	.45 .45 .45 .45	.40 .40 .40 .40	.35 .35 .35 .35	.50 .89 2.4 12 27	27 26 25 20 17	3.9 2.9 2.5 2.1 1.9	.45 2.9 1.1 .51 .41	.71 .29 .26 .25	.22 .42 .23 .20
21 22 23 24 25	1.2 1.4 1.2 .97	.60 .60 .60 .60	.40 .40 .41 .40	.45 .45 .45 .45	.40 .40 .40 .40	.35 .35 .35 .35	18 7.9 5.5 5.0 30	13 12 13 12 10	1.7 1.5 1.4 1.3	.39 .38 .33 .30	.28 .25 .35 .72 .59	.17 .17 .17 .16
26 27 28 29 30 31	1.1 1.0 1.1 1.1 1.0	.55 .55 .57 .55 .55	.40 .40 .40 .40 .40	.45 .45 .45 .45 .45	.40 .40 .40	.35 .35 .35 .35 .35	66 33 13 14 15	8.5 6.8 8.8 10 14	1.0 .94 .86 3.1 3.8	.65 1.1 .45 .36 .36	.33 .28 .27 .28 .25	.17 .16 .15 .15
TOTAL MEAN MAX MIN AC-FT	42.85 1.38 3.1 .68 85	21.82 .73 1.4 .55 43	13.91 .45 .50 .40 28	13.20 .43 .45 .40 26	12.68 .45 .50 .40 .25	11.35 .37 .40 .35 23	256.69 8.56 66 .40 509	471.6 15.2 27 4.7 935	192.60 6.42 19 .86 382	24.75 .80 2.9 .30 49	10.59 .34 .72 .24 21	6.13 .20 .42 .15

CAL YR 1986 TOTAL 1820.26 MEAN 4.99 MAX 62 MIN .02 AC-FT 3610 WTR YR 1987 TOTAL 1078.16 MEAN 2.95 MAX 66 MIN .15 AC-FT 2140

09238770 GRANITE CREEK NEAR BUFFALO PASS, CO

LOCATION.--Lat 40°29'35", Long 106°41'31", NELNEL sec. 15, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on left bank 0.1 mi upstream from Fish Creek Reservoir, and 7.5 mi east of Steamboat Springs.

DRAINAGE AREA. -- 2.82 mi².

PERIOD OF RECORD. -- August 31, 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,875 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 26 to May 12. Records good except for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 90 $\rm ft^3/s$, June 14, 1985, gage height, 3.90 ft, from highwater marks, from rating curve extended above 29 $\rm ft^3/s$, minimum daily, 0.18 $\rm ft^3/s$, Jan. 21, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 49 ft³/s, May 18; minimum daily, 0.36 ft³/s, Mar. 16-31.

		DISCHARGE	, IN CUI	BIC FEET		D, WATER MEAN VALU	YEAR OCTOI JES	BER 1986 1	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.1 2.2 2.6 2.3 2.3	2.7 2.5 2.3 2.0 1.8	1.0 .96 .94 .92	.65 .65 .65 .65	•55 •55 •55 •55	.40 .40 .40 .40	.40 .40 .40 .40	28 26 24 22 20	42 38 36 34 31	6.8 3.4 2.7 2.4 2.3	1.3 .96 .83 .75	.50 .50 .57 .91
6 7 8 9 10	2.6 3.2 4.5 5.1 4.9	1.7 1.6 1.5 1.4	.90 .90 .90 .90	.65 .65 .65 .65	.50 .50 .50 .50	.40 .40 .40 .40	.40 .40 .40 .40	25 32 35 40 42	30 31 33 37 29	1.9 1.8 1.7 1.6	.85 2.2 1.4 .80	•55 •54 •54 •53
11 12 13 14 15	4.5 3.1 2.1 1.6 1.6	1.4 1.4 1.4 1.4	.85 .80 .80 .80	.65 .65 .65	.50 .50 .50 .50	.40 .40 .40 .40	.40 .40 .40 .40	40 39 41 43 45	22 18 16 14 13	2.4 6.4 2.5 1.6 1.3	.65 .64 .83 1.7	.50 .51 .50 .60
16 17 18 19 20	1.6 1.7 2.1 2.3 2.4	1.3 1.3 1.3 1.3	.80 .80 .80 .75	.60 .60 .60	.50 .50 .50 .50	.36 .36 .36 .36	.50 .60 12 27 20	48 48 49 45 41	12 9.2 7.8 6.8 6.1	1.3 3.4 2.1 1.3	1.4 .71 .62 .59	.65 1.1 .62 .52
21 22 23 24 25	2.2 2.3 2.1 1.8 1.7	1.2 1.2 1.2 1.2	.70 .70 .70 .70 .70	.60 .60 .60 .60	.45 .45 .45 .45	.36 .36 .36 .36	10 7.0 25 35 40	34 31 34 30 25	5.2 4.7 4.2 3.8 3.5	1.1 1.1 1.0 .98	.66 .62 .86 2.1 1.5	.50 .46 .46 .46
26 27 28 29 30 31	2.2 2.0 2.2 2.1 2.0 2.2	1.2 1.2 1.1 1.1	.70 .70 .70 .70 .70	.60 .60 .60 .60	.45 .45 .45	.36 .36 .36 .36 .36	40 35 15 16 17	22 17 21 27 32 41	3.4 3.1 2.8 8.8 10	2.0 2.9 1.8 1.2 1.1 3.8	.77 .61 .59 .59 .55	.46 .45 .45
TOTAL MEAN MAX MIN AC-FT	77.6 2.50 5.1 1.6 154	44.1 1.47 2.7 1.1 87	24.92 .80 1.0 .70 49	19.35 .62 .65 .60	13.85 .49 .55 .45 .27	11.76 .38 .40 .36 23	306.10 10.2 40 .40 607	1047 33.8 49 17 2080	515.4 17.2 42 2.8 1020	67.35 2.17 6.8 .97 134	28.48 .92 2.2 .51 56	16.47 .55 1.1 .45

CAL YR 1986 TOTAL 3008.95 MEAN 8.24 MAX 80 MIN .00 AC-FT 5970 WTR YR 1987 TOTAL 2172.36 MEAN 5.95 MAX 49 MIN .36 AC-FT 4310

2480

.00

1640

76

.00

.00

227

09238800 MIDDLE FORK FISH CREEK TRIBUTARY, BELOW FISH CREEK RESERVOIR, CO

LOCATION.--Lat 40°29'50", Long 106°41'54", in NWdSEd sec. 10, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on right bank, at Fish Creek Reservoir Spillway, and 7.5 mi east of Steamboat Springs.

DRAINAGE AREA .-- 4.78 mi2.

AC-FT

PERIOD OF RECORD. -- August 31, 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 9,855 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: May 9-11. Records excellent except for periods of flow, which are fair. Flow regulated by Fish Creek Reservoir, capacity, 1,840 acre-ft.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 130 $\rm ft^3/s$, June 7, 1985, gage height, 1.75 $\rm ft$, from floodmarks, from rating curve extended above 26 $\rm ft^3/s$; maximum gage height, 3.67 $\rm ft$, May 10, 1987 (ice jam); no flow many days most years.

EXTREMES FOR CURRENT YEAR .-- Maximum daily discharge, 77 ft3/s, May 17, no flow many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 .00 .00 .00 .00 .00 .00 .00 64 12 .00 .00 .00 .00 .00 60 7.7 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 4.5 .00 .00 59 .00 -00 .00 .00 .00 .00 .00 .00 56 2.8 .00 .00 5 .00 .00 .00 .00 52 2.0 .00 .00 .00 .00 .00 .00 6 .00 .00 .00 .00 .00 .00 .00 .09 48 1.4 .00 .00 .00 .00 .00 .00 .00 .00 .00 . 14 48 .95 .00 .00 8 3.8 .00 53 60 .67 .00 .00 .00 .00 .00 .00 .00 .00 45 .00 .00 .00 .00 .00 .00 .00 .00 .00 10 .00 60 .00 .00 .00 .00 .00 .00 57 .31 .00 .00 .00 .00 11 . 00 . 00 .00 . 00 . 00 .00 57 53 41 .23 .00 12 .00 .00 34 .00 .00 .00 .00 .00 .53 .00 .00 13 60 .95 .00 .00 .00 .00 .00 .00 .00 29 .00 .00 .00 .00 .00 .00 .00 .00 65 25 .00 .00 .00 15 .00 .00 .00 .00 .00 .00 .00 66 21 .48 .00 .00 16 .00 .00 .00 .00 .00 .00 .00 75 21 .28 .00 .00 77 76 70 61 .00 .00 .00 .00 .00 .00 .00 17 .36 .00 .00 .00 .00 18 .00 .00 .00 .00 .00 13 .80 .00 .00 .00 19 - 00 - 00 . 00 .00 .00 . nn 11 .56 .00 - 00 .00 8.9 20 .00 .00 .00 .00 .00 .00 .33 .00 .00 21 .00 .00 .00 .00 .00 .00 .00 55 .17 .00 .00 .00 22 .00 .00 .00 .00 .00 .00 46 6.6 .11 .00 .00 23 .00 .00 47 .00 .00 .00 .00 .00 .00 .00 .00 5.6 .00 .00 .00 .00 .00 49 4.8 .00 .00 .00 .00 .00 25 .00 .00 .00 .00 .00 .00 .00 3.9 .00 .00 .00 26 . 00 .00 .00 .00 .00 .00 .00 39 32 3.3 .00 .00 .00 27 .00 .00 .00 .00 .00 .00 .00 2.6 .00 .00 .00 28 28 .00 .00 .00 .00 .00 .00 .00 2.1 .00 .00 .00 38 2.9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 30 .00 .00 .00 .00 44 .00 .00 .00 .00 .00 .00 31 .00 _---.00 .00 .00 60 ___ .00 .00 ___ TOTAL .00 .00 .00 .00 .00 .00 .00 1249.03 824.5 38.34 .00 .00 27.5 64 MEAN 40.3 .00 .00 .00 .00 .00 .00 .00 1.24 .00 .00 MA X .00 .00 .00 .00 .00 .00 .00 12 .00 .00 .00 2.1 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00

CAL YR 1986 TOTAL 3628.74 MEAN 9.94 MAX 120 MIN .00 AC-FT 7200 WTR YR 1987 TOTAL 2111.87 MEAN 5.79 MAX 77 MIN .00 AC-FT 4190

- 00

.00

.00

.00

.00

09238900 FISH CREEK AT UPPER STATION, NEAR STEAMBOAT SPRINGS, CO

LOCATION.--Lat 40°28'30", long 106°47'11", in SELSEL sec.15, T.6 N., R.84 W., Routt County, Hydrologic Unit 14050001, on right bank 2.6 mi upstream from mouth and 2.5 mi east of Steamboat Springs.

DRAINAGE AREA. -- 24.8 mi².

PERIOD OF RECORD. -- October 1966 to September 1972, May 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 7,150 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. Diversions upstream from station by Mount Werner Recreation district and City of Steamboat Springs for domestic use began in 1972 (see table below for figures of diversion). Natural flow of stream affected by storage in Fish Creek and Long Lake Reservoir, combined capacity 2,237 acre-ft.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,110 ft^3/s , June 20, 1968, gage height, 3.14 ft; minimum daily, 0.01 ft^3/s , Aug. 7, 1972.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 641 $\rm ft^3/s$, at 2045 May 16, gage height, 2.53 $\rm ft$; minimum daily, 1.3 $\rm ft^3/s$, July 25.

		DISCHARGE	, IN	CUBIC FEET	PER SECO	ND, WATER MEAN VAL		DBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	11 14 17 15 14	18 16 17 17 16	9.9 9.6 10 10 9.5	5.0 4.8 5.3	4.0 4.3 4.6 5.0 4.9	4.9 5.0 5.8 5.4	7.2 7.3 8.3 9.6	226 195 134 112 116	302 266 245 237 226	46 24 16 10 8.1	7.0 4.5 3.4 1.8	3.3 3.3 6.1 5.4
6 7 8 9 10	15 20 22 24 25	15 12 13 15 14	9.3 9.0 8.7 7.8 7.3	5.6 5.2 4.8	4.8 4.6 4.6 4.9 5.4	6.1 7.3 7.4 7.5 8.1	10 14 17 18 17	161 202 232 268 304	217 223 231 258 231	6.4 5.5 3.7 3.1 2.4	2.2 11 7.4 4.6 3.2	4.1 4.1 3.4 3.2 3.7
11 12 13 14 15	23 18 15 14 13	15 14 14 14 13	7.6 7.2 7.1 6.9 6.7	5.0 5.3 5.2	5.0 5.4 5.6 5.5 5.4	7.7 7.1 7.8 8.5 8.9	17 15 15 15 20	408 352 388 401 430	178 152 130 114 107	4.4 23 10 5.9 3.6	2.2 2.6 3.5 11 6.0	3.0 2.6 3.3 3.7 4.1
16 17 18 19 20	13 13 13 13 15	13 13 13 17 20	6.4 6.2 6.5 6.1 5.6	4.3 4.1 4.6	5.5 5.1 4.6 5.0 5.0	8.5 8.0 8.3 8.4 8.1	30 47 66 74 69	478 471 462 400 353	100 79 66 56 46	2.8 34 23 6.4 4.7	10 5.6 3.9 2.9 3.1	4.3 6.9 5.5 4.7 4.2
21 22 23 24 25	16 16 17 18 17	16 16 17 14 13	6.3 6.0 5.5 5.8	4.1 4.6 4.7	5.2 5.4 4.6 4.4 5.1	8.2 8.0 7.4 7.1 7.5	56 58 82 109 127	315 263 260 252 222	37 30 25 21 19	3.8 2.9 2.2 1.6 1.3	4.6 4.4 4.4 8.7	3.6 3.8 3.2 2.5
26 27 28 29 30 31	17 18 19 18 18	13 12 11 11 11	5.8 5.6 5.0 4.2 4.7 4.9	4.8 4.6 4.7	4.9 4.4 5.0	7.6 7.6 7.3 6.7 7.2 6.9	139 157 175 190 190	202 171 159 177 208 274	16 10 9.6 32 47	8.6 13 6.5 5.5 5.0	7.4 5.8 5.0 4.8 4.4 3.8	2.8 3.0 2.9 2.9 3.8
TOTAL MEAN MAX MIN AC-FT a	520 16.8 25 11 1030 157	433 14.4 20 11 859 157	217.5 7.02 10 4.2 431 185	4.74 5.6 3.7 291	138.2 4.94 5.6 4.0 274 203	224.3 7.24 8.9 4.8 445 214	1770.4 59.0 190 7.2 3510 167	8596 277 478 112 17050 179	3710.6 124 302 9.6 7360 293	304.4 9.82 46 1.3 604 312	164.6 5.31 14 1.4 326 232	114.0 3.80 6.9 2.5 226 204

CAL YR 1986 TOTAL 25621.1 MEAN 70.2 MAX 570 MIN 1.9 AC-FT 50820 WTR YR 1987 TOTAL 16339.7 MEAN 44.8 MAX 478 MIN 1.3 AC-FT 32410

a - Diversions, in acre-feet, by Mount Werner Water & Sanitation District and City of Steamboat Springs.

09239500 YAMPA RIVER AT STEAMBOAT SPRINGS, CO

LOCATION.--Lat 40°29'01", long 106°49'54", in NW\u00e4NE\u00e4 sec.17, T.6 N., R.84W., Routt County, Hydrologic Unit 14050001, on right bank 30 ft downstream from Fifth Street Bridge in Steamboat Springs and 0.6 mi upstream from Soda Creek.

DRAINAGE AREA. -- 604 mi².

PERIOD OF RECORD.--May 1904 to October 1906, October 1909 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 764: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6,695.47 ft above National Geodetic Vertical Datum of 1929.
Prior to May 8, 1905, nonrecording gage at bridge 0.2 mi upstream at datum 4.16 ft, higher. May 8, 1905, to Oct. 31, 1906, nonrecording gage on bridge 30 ft upstream at datum 0.44 ft, higher. Mar. 8, 1910, to Sept. 11, 1934, water-stage recorder at present site at datum 0.44 ft, higher.

REMARKS.--Estimated daily discharges: Dec. 3 to Mar. 6, May 1-8, and July 21-22. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by two diversions for irrigation to Egeria Creek in Colorado River basin, one diversion for irrigation from Trout Creek drainage to Oak Creek drainage, irrigation of about 19,700 acres upstream from station, and by storage reservoirs. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 80 years, 472 ft3/s; 342,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,820 ft³/s, June 14, 1921, gage height, 7.08 ft, present datum, from rating curve extended above 4,800 ft³/s; maximum gage height, 7.12 ft, June 25, 1984; minimum daily discharge, 4.0 ft³/s, Sept. 8, 1934, Sept. 10-13, 1944.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 16	2100	*2,230	*4.92				

Minimum daily, 42 ft3/s, Jan. 21.

		DISCHARGE,	IN C	JBIC FEET P	ER SECONI	D, WATER MEAN VALU	YEAR OCTO ES	BER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	174	239	83	60	46	57	137	1320	832	377	257	83
2	184	187	84	56	48	57	188	1300	772	301	197	80
3	231	179	79	62	53	57	217	1280	714	226	157	75
4	218	164	75	62	56	56	338	1220	665	186	131	82
5	203	152	84	52	55	60	532	1240	640	169	118	84
6	214	148	83	56	54	70	660	1260	621	158	109	83
7	235	142	79	62	52	83	800	1310	612	145	137	79
8	243	144	74	64	54	86	868	1390	704	130	194	76
9	275	153	78	60	57	169	848	1500	878	131	182	72
10	279	119	77	58	60	261	693	1640	840	131	142	73
11	293	104	73	66	58	224	702	1790	706	133	123	73
12	263	180	68	68	60	208	603	1750	623	194	120	73
13	252	309	56	64	63	195	459	1790	525	261	117	71
14	247	303	64	68	62	256	452	1830	463	228	133	68
15	245	262	67	58	62	261	569	1870	434	192	134	68
16	244	243	62	56	60	192	746	1910	452	165	124	67
17	242	263	67	50	59	154	870	1830	388	183	109	74
18	241	221	64	48	54	140	962	1750	333	194	97	75
19	239	202	70	52	58	152	1080	1660	297	166	88	74
20	245	166	70	50	58	178	1120	1490	268	147	84	72
21	255	163	72	42	60	168	905	1410	253	140	80	71
22	272	179	76	47	62	145	858	1280	237	130	88	70
23	260	139	70	50	56	145	965	1160	220	123	97	69
24	255	115	65	50	54	132	1060	1110	202	119	105	68
25	247	91	61	47	58	127	1130	1020	179	115	164	67
26 27 28 29 30 31	234 239 236 240 237 229	90 86 87 86 86	65 70 72 72 69 66	50 55 53 54 47	56 50 58 	124 132 121 111 104 108	1180 1200 1250 1380 1300	934 869 784 760 772 815	167 152 144 201 307	174 189 180 174 203 247	159 127 105 100 93 88	68 70 70 67 64
TOTAL	7471	5002	2215	1720	1583	4333	24072	42044	13829	5611	3959	2186
MEAN	241	167	71.5	55.5	56.5	140	802	1356	461	181	128	72.9
MAX	293	309	84	68	63	261	1380	1910	878	377	257	84
MIN	174	86	56	42	46	56	137	760	144	115	80	64
AC-FT	14820	9920	4390	3410	3140	8590	47750	83390	27430	11130	7850	4340

TOTAL 207392 MEAN 568 MAX 3220 MIN 56 AC-FT 411400 TOTAL 114025 MEAN 312 MAX 1910 MIN 42 AC-FT 226200 WTR YR 1987

09241000 ELK RIVER AT CLARK, CO

LOCATION.--Lat 40°43'03", long 106°54'55", in NW4NW4 sec.27, T.9 N., R.85 W., Routt County, Hydrologic Unit 14050001, on left bank 30 ft downstream from bridge on State Highway 129, 0.8 mi north of Clark, and 2.0 mi upstream from Cottonwood Gulch.

DRAINAGE AREA. -- 216 mi² (revised).

PERIOD OF RECORD.--May 1910 to September 1922 (published as "near Clark"), April 1930 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS .-- WSP 1733: 1956.

GAGE.--Water-stage recorder. Datum of gage is 7,267.75 ft, (State Highway Department bench mark). May 1910 to September 1922, nonrecording gage at site 30 ft upstream at datum 0.15 ft, lower. Apr. 23, 1930, to Sept. 27, 1934, water-stage recorder at present site at datum 0.15 ft, lower.

REMARKS.--Estimated daily discharges: Dec. 10 to Apr. 17. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 230 acres upstream from and about 460 acres downstream from station. Natural flow of stream affected by storage in Lester Creek Reservoir (known also as Pearl Lake), capacity, 5,660 acre-ft, since 1963, and Steamboat Lake, capacity, 23,060 acre-ft, since 1968. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 69 years, 339 ft 3/s; 245,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,910 ft³/s, May 23, 1984, gage height, 6.12 ft; minimum daily determined, 22 ft³/s, Dec. 12, 1963, but a lesser discharge may have occurred during periods of no gage-height record prior to 1939.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,900 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 16	2300	*1,210	*3.52				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 39 ft³/s, Mar. 30.

		210 0	22, 11. 001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		MEAN VALU		JBBN 1700	10 001 10.	.DD.N. 1701		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	177	153	99	90	55	56	60	711	511	247	124	151
2	203	149	107	86	55	55	80	664	538	207	106	150
3	225	145	120	92	55	54	100	519	553	191	96	150
4	204	141	128	90	55	54	130	453	591	180	90	156
5	183	143	134	86	56	54	220	466	636	168	83	161
6	180	137	139	90	55	54	280	541	654	156	82	155
7	197	131	138	94	55	58	330	621	720	145	86	153
8	200	119	128	94	57	60	320	669	793	139	88	153
9	194	126	116	96	59	56	370	674	789	134	80	159
10	200	127	116	98	60	56	300	683	766	127	77	213
11	199	125	130	94	61	60	280	707	724	146	75	207
12	171	131	120	100	62	60	230	760	685	218	74	217
13	166	125	115	86	68	68	200	812	642	181	71	217
14	157	121	115	84	68	60	190	855	612	142	81	207
15	155	129	115	82	63	56	190	930	572	128	78	212
16 17 18 19 20	152 151 154 153 162	124 123 122 174 138	110 110 105 105 105	88 88 90 76 58	60 54 54 60 56	54 55 56 56	194 180 264 379 321	1010 1050 1030 938 867	573 529 470 438 411	120 118 127 111 105	100 78 70 71 109	218 139 186 219 217
21	167	137	105	54	58	56	255	847	380	102	103	142
22	180	137	105	52	58	56	295	756	345	113	63	68
23	170	103	115	54	68	55	452	703	308	104	68	72
24	174	128	110	52	62	56	520	718	288	94	90	75
25	169	117	115	52	58	48	680	724	275	91	98	76
26 27 28 29 30 31	160 162 161 150 151 159	120 98 106 110 111	110 105 100 105 95 92	50 50 50 52 52 54	55 54 55 	50 52 45 43 39 42	730 722 702 658 612	689 614 583 512 502 451	263 246 230 228 239	134 151 167 133 118	92 78 72 129 124 129	76 76 76 76 75
TOTAL	5386	3850	3512	2334	1636	1680	10244	22059	15009	4432	2765	4452
MEAN	174	128	113	75.3	58.4	54.2	341	712	500	143	89.2	148
MAX	225	174	139	100	68	68	730	1050	793	247	129	219
MIN	150	98	92	50	54	39	60	451	228	91	63	68
AC-FT	10680	7640	6970	4630	3250	3330	20320	43750	29770	8790	5480	8830

CAL YR 1986 TOTAL 179146 MEAN 491 MAX 3760 MIN 59 AC-FT 355300 WTR YR 1987 TOTAL 77359 MEAN 212 MAX 1050 MIN 39 AC-FT 153400

231

09243700 MIDDLE CREEK NEAR OAK CREEK, CO

LOCATION.--Lat 40°23'08", long 106°59'33", in SWdSWd sec.13, T.5 N., R.86 W., Routt County, Hydrologic Unit 1450001, on left bank 1.1 mi above mouth of Foidel Creek and 13.5 mi northwest of Oak Creek.

DRAINAGE AREA. -- 23.5 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to September 1981, April 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,720 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 6. Records good except for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--11 years (water years 1976-81, 83-87), 4.93 ft³/s; 3,570 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 329 ft³/s, May 14, 1984, gage height, 4.08 ft, from rating curve extended above 77 ft³/s; no flow many days each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 15 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage heigh (ft)	ht Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 30	2000	*11	*1.78				
No flow	many days.						
	DISC	CHARGE, CUBIC FE	ET PER SECOND.	WATER YEAR OC	TORER 1986 TO	SEPTEMBER 1987	

		DISCHA	RGE, CUB	IC FEET P		, WATER) MEAN VALU	EAR OCTOB JES	ER 1986 1	O SEPTEME	BER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.2 1.6 1.7	1.9 1.9 1.7 1.5	1.9 2.1 1.7 1.5 1.2	1.5 1.4 1.3 1.2	1.0 1.0 1.0 1.0	1.3 1.3 1.4 1.6 2.5	1.8 2.7 2.6 3.1 6.0	11 11 11 9.9 8.7	3.5 3.2 3.0 3.0 2.6	2.5 .94 .60 .46	.89 .46 .17 .11	.04 .00 .03 .00
6 7 8 9	1.1 1.1 1.0 1.1	1.3 1.5 1.4 1.6	1.0 1.1 1.5 1.4 1.3	1.3 1.2 1.1 1.1	1.1 1.1 1.1 1.2 1.3	4.7 3.0 4.1 5.4 4.5	7.1 7.0 7.4 7.3 6.2	8.4 8.0 7.4 6.9 6.6	2.6 2.6 3.1 3.2 3.0	.32 .24 .20 .20 .15	.0 .53 .73 .40 .24	.03 .01 .00 .00
11 12 13 14 15	1.2 1.2 1.1 1.0	1.6 1.3 1.6 2.0	1.3 1.3 1.3 1.3	1.1 1.2 1.1 1.0 .80	1.4 1.6 1.9 1.6	4.4 2.7 5.3 5.4 4.0	6.3 7.4 6.2 6.2 6.3	6.5 6.4 6.0 5.5	2.5 2.2 1.9 1.7	.24 1.0 1.1 .59 .39	.12 .11 .07 .21 .29	.00 .00 .00
16 17 18 19 20	.91 .91 .91 .93	1.5 1.5 1.5 1.9 2.4	1.4 1.6 1.5 1.4	.90 1.0 .90 .80	1.3 1.1 1.0 1.1	2.4 2.3 2.5 3.2 2.3	6.9 6.9 6.9 7.4 8.3	5.5 5.3 5.0 5.3	1.6 1.2 1.1 1.0 .87	.29 .64 1.5 .58 .32	.29 .21 .04 .00	.01 .03 .06 .09
21 22 23 24 25	1.1 2.3 2.5 1.9	2.1 1.7 1.9 1.7 2.1	1.4 1.4 1.4 1.4	.64 .66 .63 .68	1.1 1.2 1.1 1.1	2.4 1.2 1.2 .72 1.0	8.3 8.1 8.6 8.2 8.4	5.3 5.6 4.7 4.7 4.6	.87 .77 .63 .51	.24 .22 .14 .05	.00 .04 .13 .39	.04 .00 .00 .00
26 27 28 29 30 31	1.5 1.4 1.3 1.4 1.4	1.7 1.9 2.6 2.5 1.7	1.4 1.5 1.4 1.4 1.4	.73 .78 .82 .90 .88	1.2	.97 1.1 1.5 1.9 2.3	8.2 8.3 9.3 10	4.4 4.2 3.9 4.2 3.9	.35 .31 .22 .45 1.6	.02 .15 .09 .17 .79	.39 .26 .22 .16 .17	.00 .00 .05 .00
TOTAL MEAN MAX MIN AC-FT	40.95 1.32 2.5 .91 81	53.2 1.77 2.6 1.3 106	44.2 1.43 2.1 1.0 88	30.02 .97 1.5 .63 60	33.5 1.20 1.9 1.0 66	80.49 2.60 5.4 .72 160	208.4 6.95 11 1.8 413	194.6 6.28 11 3.9 386	51.53 1.72 3.5 .22 102	15.48 .50 2.5 .01 31	7.28 .23 .89 .00	.45 .01 .09 .00

CAL YR 1986 TOTAL 2418.21 MEAN 6.63 MAX 45 MIN .35 AC-FT 4800 WTR YR 1987 TOTAL 760.10 MEAN 2.08 MAX 11 MIN .00 AC-FT 1510

09243700 MIDDLE CREEK NEAR OAK CREEK, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- September 1975 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1976 to September 1981.
WATER TEMPERATURES: April 1976 to September 1981.

INSTRUMENTATION. -- Water-quality monitor April 1976 to September 1981.

REMARKS.--Unpublished maximum and minimum specific-conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum, 1,880 microsiemens May 29, 1981; minimum, 117 microsiemens Aug. 10, 1978.
WATER TEMPERATURES: Maximum, 31.5°C July 31, 1976; minimum, freezing point on many days during winter

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS - SIUM, DIS - SOLVED (MG/L AS K)
ост 30	1400	1.0	838	8.6	9.0	9.6	400	93	41	38	0.9	3.1
APR 23	1430	8.2		8.3	14.5	9.4	290	69	29	20	0.5	2.4
JUL 01	1400	2.2	796	8.3	24.0	7.2	350	79	36	34	0.8	4.4
SEP 01	1045	0.42	7 90	8.6	16.0	9.8	400	89	43	47	1	3.8
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 30 APR 23	247 178	220 150	6.0 4.2	0.20	6.8 9.4	550 403	556 391	0. 7 5	1.49 8.39	<1 244	<0.01	<0.10 0.16
JUL 01	207	220	5.0	<0.10	7.8	517	511	0.70	3.02	181	<0.01	<0.10
SEP 01	283	190	5.7	0.20	7.6	494	556	0.67	0.56	5	<0.01	<0.10
DAT OCT 30 APR 23	GE AMMO DI SOL E (MO AS	S- DIS VED SOLV	OUS HO, BOF DI ED SOL L (UC) AS		AL TOT OV- REC BLE ERA /L (UG CD) AS	N, NES AL TOT OV- REC BLE ERA /L (UG FE) AS	AL TOT OV- REC BLE ERA /L (UG MN) AS	URY DEN AL TOT OV- REC BLE ERA // (UG	COV- NIU BLE TOT	M, REC	AL TOTO OV- REC BLE ERA /L (UC	COV - BLE
JUL 01		06 0.		50				.30	<1	<1	<1	20
SEP 01		04 0.	_	70		•	-	.10	< 2	<1	<1	<10

09243700 MIDDLE CREEK NEAR OAK CREEK, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)
NOV					
20	1045	2.6	786		1.0
JAN					
28	1045	0.78	880	8.3	0.5
MAR					
06	1045	2.3	1370	8.2	1.0
31	1035	3.1	800	8.4	0.5
MAY					
08	1230	7.1	550		15.0
JUN					
04	1110	2.9	683	8.8	18.0
AUG					
25	1330	0.51	870	8.6	18.0

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PEN DED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
ост 30	1400	1.0	17	0.05	APR 23	1430	8.2	305	6.7

09243800 FOIDEL CREEK NEAR OAK CREEK, CO

LOCATION.--Lat 40°20'45", long 107°05'04", in NW4SW4 sec.31, T.5 N., R.86 W., Routt County, Hydrologic Unit 14050001, on right bank 2.3 mi downstream from Reservoir No. 1, 6.9 mi upstream from mouth, and 8.7 mi northwest of Oak Creek.

DRAINAGE AREA. -- 8.61 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to October 1981, April 1982 to September 1983, October 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,880 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 2 to Nov. 5, Dec. 28 to Mar. 6, 10-30, and June 29-30. Records fair except for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--10 years (water years 1976-81, 1983, 1987), 1.41 ft3/s; 1,020 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 55 ft³/s, Apr. 21, 1980, gage height, 3.38 ft; no flow many days most years.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 6.5 ft3/s, March 12; minimum daily, 0.18 ft3/s, Dec. 6.

		DISCH	ARGE, CUBIC	FEET	PER SECOND	, WATER Y	EAR OCTOBE ES	ER 1986 T	O SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 1.0 1.1 1.0 .85	.84 .84 .84 .88	.74 .57 .49 .37	.30 .31 .30 .27 .26	.48 .50 .52 .52	.60 1.0 1.6 2.4 4.0	2.5 3.6 3.7 5.1	3.3 3.5 3.4 3.1 3.0	1.7 1.6 1.5 1.5	1.3 1.2 1.1 .97 .86	.82 .65 .53 .43	.42 .35 .32 .32
6 7 8 9 10	.76 .70 .65 .62	.83 .89 .99 1.0 .89	.18 .21 .22 .30 .27	.26 .26 .26 .26	.54 .54 .56 .58	5.6 5.0 4.7 3.6 4.0	4.9 5.2 5.4 4.0	3.0 2.8 2.3 2.1 2.1	1.6 1.6 1.7 1.8	.74 .66 .47 .46	.41 .51 .62 .57	.30 .29 .28 .25
11 12 13 14 15	.64 .70 .87 1.0	.84 .75 .84 .87	.27 .27 .27 .27 .27	.27 .28 .29 .26	.70 .80 1.0 .90 .80	5.0 6.5 3.8 2.5	4.2 4.7 3.6 3.1 2.9	2.2 2.0 2.0 2.0 1.9	1.7 1.6 1.5 1.5	.44 .84 1.1 .87 .57	.44 .38 .31 .41 .45	.24 .25 .47 .60
16 17 18 19 20	.87 .94 .88 .90	.89 .92 1.0 1.2	.27 .27 .29 .29	.26 .26 .29 .32	.70 .60 .54 .54	1.4 1.3 1.6 2.0	3.7 4.1 4.1 3.7 3.2	1.8 1.8 1.7 1.7	1.3 1.2 1.1 1.0	.44 .48 .90 .63	.45 .41 .35 .29	.68 .68 .62 .59
21 22 23 24 25	1.1 1.0 1.4 1.3	1.2 .89 1.1 .63 .75	.29 .29 .29 .29	.31 .30 .36 .36	.54 .56 .58 .58	1.6 1.5 1.6 1.4	2.9 3.5 3.7 3.7	1.7 1.7 1.7 1.7	.98 .91 .82 .74 .67	.40 .35 .29 .25	.23 .28 .34 .55	.51 .53 .53 .48
26 27 28 29 30 31	1.0 .90 .80 .70 .80	.65 .83 .69 .64 .60	.29 .29 .29 .31 .31	.42 .40 .43 .44 .44	.60 .60 .60	1.2 1.3 1.3 1.1 1.0	3.1 3.2 3.3 3.3 3.3	1.7 1.7 1.5 1.5 1.7	.59 .59 .49 .85	.31 .34 .33 .33 .53	.69 .60 .58 .56 .53	.48 .48 .45 .41
TOTAL MEAN MAX MIN AC-FT	27.88 .90 1.4 .60	26.63 .89 1.4 .60	9.65 .31 .74 .18	9.88 .32 .45 .26 20	17.12 .61 1.0 .48 34	74.70 2.41 6.5 .60 148	115.4 3.85 5.4 2.5 229	65.5 2.11 3.5 1.5 130	38.08 1.27 1.8 .49 76	19.13 .62 1.3 .23	14.74 .48 .82 .23 29	13.19 .44 .70 .24 26

CAL YR 1986 TOTAL 1203.75 MEAN 3.30 MAX 24 MIN .18 AC-FT 2390 WTR YR 1987 TOTAL 431.90 MEAN 1.18 MAX 6.5 MIN .18 AC-FT 857

09243800 FOIDEL CREEK NEAR OAK CREEK, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- September 1975 to September 1983, October 1984 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: May 1976 to September 1981, April 1982 to September 1983. March 1986 to current year.
WATER TEMPERATURES: May 1976 to September 1981, April 1982 to September 1983. March 1986 to current year.

INSTRUMENTATION. -- Water-quality monitor May 1976 to September 1981, April 1982 to September 1983. March 1986 to current year.

REMARKS.--Unpublished maximum and minimum specific conductance data for periods of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 2,880 microsiemens Jan. 23, 1983; minimum, 200 microsiemens Apr. 21, 22,

1980. WATER TEMPERATURES: Maximum, 31.5°C July 30, 1983; minimum, 0.0°C during winter period when flowing each year.

EXTREMES FOR CURRENT YEAR. -SPECIFIC CONDUCTANCE: Not determined.
WATER TEMPERATURES: Not determined.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STRE FLO INST TANE (CF:	AM- CI W, CO AN- DU OUS AN	PE- IFIC DN- JCT- JCE JCE JCM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DI SOL		HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUN DIS- SOLVEI (MG/L AS CA	1 S D SO (M	GNE- IUM, IS- LVED G/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)		ON	POTAS - SIUM, DIS - SOLVED (MG/L AS K)
NOV 05	1105	0	.85	2370	8.2	3.5	5 1	2.7	1500	270	19	0	62	-	0.7	6.0
APR 23	1100	3	.2	1500	8.2	10.5		9.8	860	180	9	9	40		0.6	4.2
JUL 01	1130		. 4	2400	8.1	18.0		10.0	1400	270	17		51		0.6	4.9
SEP 01	1245		.05	2670	8.3	22.0		8.2	1200	230	16		160		2	6.0
	,	· ·		20,0	313			•••	1250		, ,	•	, 0 0		-	
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULF DIS SOL (MG AS S	ATE RI - DI VED SO /L (1	HLO- IDE, IS- DLVED 4G/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVEI (MG/L AS SI02)	AT 1 DEC DI SOL	DUE S	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS DIS- SOLVE) (TONS PER AC-FT)	D SO (T P	IDS, IS- LVED ONS ER AY)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	GE NITR DI SOL (MG	S- VED I/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
NOV 05	270	1200	2	29	0.10	8.8	1	1980	1930	2.69)	4.54	8	0.	010	0.420
APR 23	262	640		12	0.20	7.5	1	1210	1140	1.65	5 1	0.5	52	0.	010	0.500
JUL 01	248	1400		5.0	<0.10	9.4	2	2240	2060	3.05	5	8.71	69	<0.	010	<0.100
SEP 01	234	1600		17	0.20	3.6	2	2380	2320	3.2	ļ	0.32	8	<0.	010	<0.100
DA T	AMM E SC E (M	MONÍA DIS- DLVED MG/L	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORG DIS SOLV (UG/ AS E	S- REC VED ERA VL (UG	AL TO COV - RE BLE EN	RON, DTAL ECOV- RABLE JG/L S FE)	MANGA NESE, TOTAL RECOV ERABL (UG/L AS MN	MERC TOT I REC LE ERA	CURY DECAR STATE OF THE CONTROL OF T	DLYB- ENUM, DTAL ECOV- RABLE JG/L S MO)	SELE NIUN TOTA (UG, AS S	E- TO M, RE AL ER /L (U	VER, TAL COV- ABLE G/L AG)	ZIN TOT. REC ERAI (UG AS	AL DV- BLE /L
NOV 05	O	.100				<1	360	37	70 <0	.10	3		1	1		
APR 23	C	.183	<0.010		70	<1	740	40	0 0	.20	<1		1	<1		20
JUL 01	C	.235	0.010		140	<1	630	15	50 <0	.10	<1		<1	<1		10
SEP 01	0	.114	0.010		160	<1	300	27	70 <0	.10	< 2		<1	<1		<10

09243800 FOIDEL CREEK NEAR OAK CREEK, CO--Continued

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			OUDI ENDED	DEDITION	DISCHARGE	, waich in	in octoben	1900 10	DEL LEND	311 1901		
	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SUS- PENDED	SEDI - MENT, DIS- CHARGE, SUS- PENDED (T/DAY)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
NOV 05	•••	1105	0.85	17	0.04		APR 23.	• •	1100	3.2	147	1.3
	SPECI	FIC CON	DUCTANCE M	ICROSIEME	NS/CM AT	25 DEG C, I MEAN VALUE		OCTOBER	1986 TO	SEPTEMBER	1987	
DAY	OCT	NO	V DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5			- 2520 - 2510 - 2510				1190 1050 1090 855 774	1620 1600 1600 1590 1720	2250 2290 2300 2280 2240	2350 2360 2360 2350 2340	2150 2160 2170 2170 2160	2320 2430 2410 2410 2420
6 7 8 9 10		239 237 238 241 238	0 2480 0 2480 0 2560				775 759 778 814 871	1920 1950 1960 1970 1970	2240 2240 2210 2180 2190	2340 2350 2350 2350 2360	2160 2110 2100 2100 2110	2430 2420 2420 2410 2410
11 12 13 14 15		2440 2390 2470 2450	0 2560 - 2560 0 2590				902 946 1060 1110 1060	1990 2000 2000 2010 2010	2230 2250 2260 2260 2280	2350 2320 2330 2330 2330	2120 2140 2140 2110 2110	2410 2400 2410 2400 2410
16 17 18 19 20		2430 2290 2390 2370 2330	2650 2600 2580				1070 1040 1040 1130 1220	1990 2130 2180 2180 2180	2290 2310 2300 2300 2300	2320 2290 2280 2250 2230	2120 2140 2150 	2400 2400 2420 2430 2450
21 22 23 24 25		2350 2340 2400 2400 2400))		 		1270 1330 1520 1570	2170 2160 2150 2150 2150	2290 2290 2320 2330 2340	2230 2250 2260 2260 2270	2070 2170 2120 2300	2440 2450 2460 2460 2460
26 27 28 29 30 31		2410 2460 2460 2440 2450)))				1590 1620 1640 1650 1650	2160 2170 2190 2200 2180 2220	2360 2370 2370 2370 2360	2230 2250 2250 2250 2210 2150	2250 2370 2330 2300 2290 2280	2460 2460 2480 2490 2490

237

09243800 FOIDEL CREEK NEAR OAK CREEK, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DA Y	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN
	OCTOBE	R	NOVEME	BER	DE CE MI	3ER	JANUA	RY	FEBRU	ARY	MARCH	l
1 2					3.2 2.6	1.6 1.8						
3					4.1	2.0						
4 5					3.8 3.9	1.7						
6 7			6.6 6.3	3.7 3.3	3.9 3.9	2.2 1.7						
8			4.6	3.1	4.4	1.6						
9 10			3.7 4.8	3.1 2.9	2.2 1.4	1.3 1.1						
11 12			3.8 5.5	2.9 3.2	1.3 1.2	1.1 1.0						
13			3.8	•3	1.2	1.0						
14 15			4.8 6.1	2.4 2.5	1.2 1.1	.8 .8						
16 17			6.3 6.3	3.7 .5	.9 .8	.4 .3						
18			6.8	3.4	• 9	- 4			~			
19 20			6.0 8.1	3.9 1.7	1.2 .7	•5 •5						
21 22			6.9 6.3	.7 1.6	1.5 2.2	• 4 • 7						
23			4.3	1.5								
24 25			6.3 4.3	1.7 1.6								
26 27			6.1 4.0	1.6 1.6								
28			4.7	1.3								
29 30			5.0 3.9	1.3 1.6								
31												
	APRIL		Y AM		JUNE		JUL		AUGUS		SEPTEME	
1 2	APRIL		21.5	13.9	21.4	13.2	24.4	15.6	24.2	14.5	19.5	8.6
2			21.5 15.4 17.5	13.9 12.3 11.7								
2 3 4			21.5 15.4 17.5 19.4	12.3 11.7 11.5	21.4 21.5 22.2 22.3	13.2 12.3 13.0 13.2	24.4 25.3 25.2 23.4	15.6 14.4 13.8 13.2	24.2 24.7 24.9 24.4	14.5 15.5 15.9 13.6	19.5 19.2 17.0 15.4	8.6 10.3 9.3 10.2
2 3 4 5			21.5 15.4 17.5 19.4 16.2	12.3 11.7 11.5 9.8	21.4 21.5 22.2 22.3 18.1	13.2 12.3 13.0 13.2 11.2	24.4 25.3 25.2 23.4 23.6	15.6 14.4 13.8 13.2 12.9	24.2 24.7 24.9 24.4 23.8	14.5 15.5 15.9 13.6 13.2	19.5 19.2 17.0 15.4 16.9	8.6 10.3 9.3 10.2 7.8
2 3 4 5			21.5 15.4 17.5 19.4 16.2	12.3 11.7 11.5 9.8	21.4 21.5 22.2 22.3 18.1	13.2 12.3 13.0 13.2 11.2	24.4 25.3 25.2 23.4 23.6	15.6 14.4 13.8 13.2 12.9	24.2 24.7 24.9 24.4 23.8	14.5 15.5 15.9 13.6 13.2	19.5 19.2 17.0 15.4 16.9	8.6 10.3 9.3 10.2 7.8
2 3 4 5 6 7 8	7.6	.1	21.5 15.4 17.5 19.4 16.2 18.9 19.7	12.3 11.7 11.5 9.8 8.1 8.5 9.5	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4	15.6 14.4 13.8 13.2 12.9	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6	14.5 15.5 15.9 13.6 13.2 14.5 16.8 14.9	19.5 19.2 17.0 15.4 16.9 15.7 15.5	8.6 10.3 9.3 10.2 7.8 6.4 7.8 6.4
2 3 4 5 6 7 8 9	7.6	 .1 1.0 1.6	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2	12.3 11.7 11.5 9.8 8.1 8.5 9.5	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0	24.4 25.3 25.2 23.6 22.7 22.9 22.9 22.5	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.4 12.5	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0	14.5 15.5 15.9 13.6 13.2 14.5 16.8 14.9	19.5 19.2 17.0 15.4 16.9 15.7 15.7 16.8	8.6 10.3 9.3 10.2 7.8 6.4 7.8
2 3 4 5 6 7 8 9	7.6 8.0 6.1 8.1	.1	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.4 12.5	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8	14.5 15.9 13.6 13.2 14.5 16.8 14.9 13.8	19.5 19.2 17.0 15.4 16.9 15.7 15.7 16.8	8.6 10.3 9.3 10.2 7.8 6.4 7.8 6.4 8.2 7.0
2 3 4 5 6 7 8 9 10	7.6 8.0 6.1 8.1	.1 1.0 1.6 .5	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9 19.6	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8	14.5 15.5 15.9 13.6 13.2 14.5 16.8 13.7 14.1	19.5 19.2 17.0 15.4 16.9 15.7 15.5 15.7 16.8	8.6 10.3 9.3 10.2 7.8 6.4 7.8 6.4 8.2 7.0
2 3 4 5 6 7 8 9 10 11 12 13	7.6 8.0 6.1 8.1 6.6 7.6	11.0 1.6 .5	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6 10.6	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9 19.6 21.2 21.6 22.7	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5 13.4 12.5	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8 22.1 24.2 21.1	14.5 15.9 13.6 13.2 14.5 16.8 14.9 13.7 14.1 13.2	19.5 19.2 17.0 15.4 16.9 15.7 15.5 15.7 15.5 15.8 15.8	8.6 19.3 10.2 7.8 6.4 7.8 6.4 8.2 7.0 6.1 7.5
2 3 4 5 6 7 8 9 10 11 12 13	7.6 8.0 6.1 8.1 6.6 5.8 7.6	.1 1.0 1.6 .5 1.2 2.2 2.6	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6 10.6	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9 19.6 21.2 21.6 22.7 23.9	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 14.0 13.9 15.3	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5 13.4 12.5 11.4 11.5	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8 22.1 24.2 21.1 24.2	14.5 15.9 13.6 13.2 14.5 16.8 13.7 14.1 13.2 14.7	19.5 19.2 17.0 15.4 16.9 15.7 15.7 16.8 15.5 15.7 15.8 15.7	8.6 10.3 10.2 7.8 6.4 7.8 6.4 7.0 6.1 7.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.6 8.0 6.1 8.1 6.6 7.6 11.4	.1 1.0 1.6 .5 1.2 2.2 2.6 4.4	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6 12.1 12.2 12.0	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9 19.6 21.6 22.7 23.9 23.1	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 14.0 13.9 15.3	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7 25.0	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5 13.4 11.5 11.4 11.5	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8 22.1 24.2 21.1 20.2	14.5 15.5 13.6 13.2 14.5 16.8 14.9 13.7 14.1 13.2 14.7	19.5 19.2 17.0 15.4 16.9 15.7 15.5 15.8 15.5 15.8 15.6	8.6 10.3 9.3 10.2 7.8 6.4 7.0 6.2 7.0 6.2 8.1 8.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5	1.0 1.6 .5 1.2 2.2 2.6 4.4	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 20.5 23.3 22.5	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6 10.6	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9 19.6 21.2 21.6 22.7 23.9 23.1	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 14.0 13.9 15.3 15.3	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1.8 23.7 25.0 24.7	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5 12.5 11.5 11.5 12.2 13.6	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8 22.1 24.2 21.1 24.2 21.1 24.2 21.1	14.5 15.9 13.6 13.2 14.5 14.5 13.8 13.7 14.1 13.2 14.7 13.6	19.5 19.2 17.0 15.4 16.9 15.7 15.7 16.8 15.7 15.8 15.7 15.8 15.7	8.6 10.3 9.3 10.2 7.8 6.4 7.8 6.4 7.0 6.2 7.0 6.1 7.5 8.3 8.9
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.6 8.0 6.1 8.1 6.6 11.4 13.5	1.0 1.6 .5 1.2 2.2 2.6 4.4 5.9 6.7 8.2	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 20.5 23.3 22.5 20.7 20.7 20.1 18.6	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6 12.1 12.2 12.0 13.1	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9 19.6 21.6 22.7 23.9 23.1 22.1 21.2 22.3	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 14.0 13.9 15.3 15.3 15.3	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7 25.0 24.7 19.0 22.4	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5 12.5 11.4 11.5 11.4 11.5 12.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8 22.1 24.2 21.1 20.2 19.7 21.8 22.8	14.5 15.9 13.6 13.2 14.5 16.8 14.9 13.7 14.1 13.2 14.7 13.6 12.1 10.0	19.5 19.2 17.0 15.4 16.9 15.7 15.5 15.5 15.8 13.7 14.1 15.6 14.1 13.4	8.6 10.3 9.3 10.2 7.8 6.4 7.0 6.2 7.0 6.2 7.5 8.1 8.3 8.9 8.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5	1.0 1.6 .5 1.2 2.2 2.6 4.4 5.9 6.7 8.2	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 23.3 22.5 20.7 20.1 18.6 19.7	12.3 11.7 11.5 9.8 8.1 8.5 9.5 10.6 10.6 12.1 12.2 12.0 13.1 15.4 14.5 13.2	21.4 21.5 22.2 22.3 18.1 20.1 19.6 11.2 16.7 17.9 19.6 21.2 21.6 22.7 23.9 23.1 21.2 22.3 22.7	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 14.0 15.3 15.3 15.3	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 23.7 25.0 24.7 19.0 22.4 22.1	15.6 14.4 13.8 13.9 12.9 12.5 12.5 12.5 13.4 12.5 11.5 12.2 13.6 15.8 13.0	24.2 24.7 24.9 24.8 24.2 21.9 23.0 21.8 22.1 24.1 20.2 19.7 21.0 21.8 22.8 24.5	14.5 15.9 13.6 13.2 14.5 14.8 13.7 14.1 13.2 14.7 13.6 12.4 12.1 9.0	19.5 19.2 17.0 15.4 15.7 15.7 16.8 15.7 15.8 15.7 14.1 15.6 14.1 13.6	8.6 10.3 9.3 10.2 7.8 6.4 7.0 6.2 7.0 6.2 7.5 8.1 8.3 8.9 8.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5	1.0 1.0 1.6 .5 1.2 2.2 2.6 4.4 5.9 6.7 8.2 9.1	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 20.5 23.3 22.5 20.7 20.1 18.6 19.7	12.3 11.7 11.7 9.8 8.1 8.5 9.6 10.6 12.1 12.2 12.0 13.1 15.5 13.2 12.1	21.4 21.5 22.2 22.3 18.1 20.1 19.2 16.7 17.9 19.6 21.6 22.7 23.1 22.3 22.7 20.5	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 13.3 15.3 15.3 15.7 14.6	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7 25.0 24.7 19.0 22.4 22.1 21.2	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5 11.5 12.2 13.6 15.4 12.8 13.0	24.2 24.7 24.9 24.4 23.8 24.2 21.6 23.0 21.8 22.1 24.2 21.1 20.2 19.7 21.8 22.8 24.5 17.1	14.5 15.9 13.6 13.2 14.5 16.9 13.7 14.5 13.7 13.2 14.5 13.7 13.6 12.1 10.0 9.7	19.5 19.2 17.0 15.4 16.9 15.7 15.7 15.7 15.8 13.7 14.0 14.1 13.4 13.6	8.6 10.3 10.2 7.8 6.4 7.8 8.4 7.0 6.1 7.5 8.1 8.9 4.6 4.7 5.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5	1.0 1.0 1.6 .5 1.2 2.2 2.6 4.4 5.9 6.7 8.2 9.1 7.2	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 23.3 22.5 20.7 20.1 18.6 19.7 17.5	12.3 11.7 11.5 9.8 8.1 9.5 10.6 12.1 12.2 12.0 13.1 15.4 14.5 12.1 12.5	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.2 21.6.7 17.9 19.6 21.2 22.7 23.9 23.1 22.1 22.3 22.7 20.5	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 14.0 13.3 15.3 15.3 15.3 15.3 14.1 14.6	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 823.7 25.0 24.7 19.2 2.4 22.4 22.1 22.4 22.4 23.6	15.6 14.4 13.8 13.2 12.9 12.3 12.5 12.5 12.5 13.4 12.5 11.5 12.2 13.6 15.8 13.0 11.0	24.2 24.7 24.9 24.4 23.8 24.2 21.9 22.6 23.0 21.8 22.1 24.2 21.1 20.2 19.7 21.0 21.8 22.8 24.5 17.1	14.5 15.9 13.6 13.2 14.5 14.9 13.7 14.1 13.2 14.7 13.6 12.4 110.0 9.0 8.7	19.5 19.2 17.0 15.9 15.7 16.8 15.7 16.8 15.7 16.8 15.7 14.1 14.1 14.0 14.1 14.0 14.2	8.6 10.3 9.3 10.2 7.8 6.4 7.6 6.2 7.6 6.1 7.5 8.3 8.9 4.7 5.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5 15.3 15.3 15.2 13.6 10.8	1.00 1.06 .55 1.22 2.26 4.4 5.7 8.21 7.2 6.44 9.5	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 20.3 22.5 20.7 20.1 18.6 19.7 17.5	12.3 11.7 19.8 8.1 9.6 10.6 12.1 12.2 12.0 13.1 15.4 14.5 12.1 12.5 12.1 12.5 12.0	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.6 22.7 23.1 22.1 22.3 22.3 22.7 20.5 22.6	13.2 12.3 13.0 13.2 11.2 12.2 12.9 13.8 14.0 12.4 12.6 14.0 13.3 15.3 15.7 14.1 14.6 14.2	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7 25.0 24.7 19.0 22.4 22.1 21.2 23.6 23.7 25.2 25.2 26.1 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	15.6 14.4 13.8 13.2 12.9 12.5 12.5 12.5 11.5 12.2 13.6 13.0 13.6 13.2	24.2 24.7 24.9 24.4 23.8 24.2 21.6 23.0 21.8 22.1 24.2 21.1 20.2 19.7 21.8 22.8 24.5 17.1	14.5 15.9 13.6 13.2 14.5 16.9 13.8 13.7 14.1 13.5 13.2 14.1 10.0 9.7 11.9 13.4	19.52 17.04 15.49 15.77 15.77 15.77 15.87 15.87 14.14 13.46 14.14 14.00 14.2	8.6 10.3 10.2 7.8 6.4 8.4 7.0 6.1 7.5 8.3 8.9 4.6 7.7 4.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5 13.8 15.2 13.6 10.8	1.0 1.0 1.6 .5 1.2 2.2 2.6 4.4 5.9 6.7 8.2 9.1 7.2 6.6 7.4 9.1	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 23.3 22.5 20.7 19.7 17.5 15.4 18.9 19.7	12.3 11.7 19.8 8.1 9.5 10.6 12.1 12.2 12.0 13.1 14.5 12.1 12.5 12.1 12.5 12.1 12.5 12.7	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.6 22.7 23.9 23.1 22.7 23.9 23.1 22.3 22.7 20.5 22.6 23.5	13.2 12.3 13.0 13.2 12.2 12.2 12.3 14.0 12.4 12.6 14.0 15.3 15.3 15.3 15.3 15.3 14.1 14.6 14.6 14.6 14.6 14.6 14.6 14.6	24.4 25.3 25.2 23.4 23.6 22.7 22.4 22.5 20.1 16.6 19.1 23.7 25.0 24.7 122.4 21.2 23.6 24.7 25.2	15.6 14.4 13.8 13.9 12.5 12.5 12.5 13.6 15.8 13.0 13.6 15.8 13.0 13.6 14.6 13.2 13.6 14.6 13.2 13.6 14.6 14.6 15.6 16.6	24.2 24.7 24.9 24.8 24.2 21.9 22.6 23.0 21.8 22.1 20.2 19.7 21.0 21.8 22.8 24.5 17.1 20.0 21.8	14.55 15.96 13.62 14.58 13.7 14.5 13.87 14.15 13.27 14.10 10.00 11	19.52 17.04 17.04 17.05	8.6 10.3 10.2 7.8 6.4 8.4 7.0 6.1 7.5 8.3 8.9 4.6 7.7 4.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5 15.3 15.3 15.3 15.3 15.3 15.3 21.9 23.3 22.9	1.0 1.0 1.6 5 1.2 2.2 2.2 2.6 4.4 5.9 6.7 8.2 9.1 7.2 6.4 9.5 11.6	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 20.3 22.5 20.7 20.1 18.6 19.7 17.5 15.7 15.7	12.3 11.7 19.8 8.1 8.5 9.6 10.6 12.1 12.2 12.0 13.1 15.4 14.5 12.1 12.1 12.1 12.1 12.1 12.7	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.6 22.7 23.9 23.1 22.3 22.3 22.7 20.5 22.6 23.5 22.6 23.5 24.2	13.2 12.3 13.0 13.2 12.2 12.9 14.0 14.0 13.3 15.3 15.7 14.6 14.2 14.2 14.5 14.5 14.5 14.5 14.5	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7 25.0 24.7 19.0 22.4 22.1 21.2 23.6 24.7 25.2 27.5	15.6 14.8 13.8 12.9 12.5 12.5 12.5 12.5 11.5 12.6 13.6 13.0 13.6 13.1 13.6 13.1 13.6 13.1 13.6 13.1 13.6 13.1 13.1	24.2 24.7 24.9 24.4 23.8 24.2 21.6 23.0 21.8 22.1 20.2 19.7 21.8 22.8 24.5 17.6 16.1 17.6	14.5 15.9 13.6 13.2 14.5 16.9 13.8 13.7 14.1 13.5 13.2 13.6 12.1 10.0 9.7 11.9 13.4 13.9	19.52 17.04 17.04 17.04 17.05	8.6 10.3 10.2 7.8 6.4 7.6 6.4 7.5 6.1 7.5 8.3 8.9 4.6 7.7 4.4 7.7 7.4 7.7 7.4 7.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 19 20 21 22 32 45 25 26 26 27 26 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5 15.3 15.3 15.2 13.6 10.8 14.7 15.8 23.3 22.9 23.4	1.0 1.0 1.6 .5 1.2 2.2 2.6 4.4 5.9 6.7 8.2 9.1 7.2 6.6 7.4 9.5 11.6 12.2	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 221.0 19.4 18.9 20.5 22.5 20.7 18.6 19.7 17.5 15.4 18.9 19.7 17.5	12.3 11.7 11.7 9.8 8.1 9.5 10.6 12.1 12.2 12.0 13.1 15.4 14.5 12.1 12.5 12.1 12.7 11.0	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.6 22.7 23.1 22.3 22.7 20.5 22.2 23.5 22.6 23.5 24.2 24.7	13.2 12.3 13.0 13.2 11.2 12.2 13.8 14.0 13.3 15.3 15.7 14.6 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.6	24.4 25.3 25.2 23.4 23.6 22.7 22.4 22.5 20.1 16.6 19.1 23.7 25.0 24.7 19.4 21.2 23.6 24.7 25.2 27.5 24.1	15.6 14.4 13.8 13.9 12.5 12.5 12.5 12.5 13.6 15.8 13.0 11.0 13.6 13.1 16.6 17.5	24.2 24.7 24.9 24.4 23.8 24.2 21.6 21.8 22.1 20.2 19.7 21.8 24.2 21.1 20.2 19.7 21.8 24.5 17.1 20.0 21.8 17.6 16.1 17.6	14.55 15.96 13.62 14.58 14.58 14.58 13.7 13.6 12.1 10.0 9.7 11.9 12.9 13.9 12.9 11.3	19.52 17.04 17.04 17.04 17.00	8.6 10.3 10.2 7.8 6.4 7.6 6.4 7.5 6.1 7.5 8.3 8.9 4.6 7.7 4.4 7.7 7.4 7.7 7.4 7.3
2345 6789 10 112345 16789 20 122345 2678	7.6 8.0 6.1 8.1 6.6 5.8 71.4 13.5 13.8 15.3 15.3 15.3 15.3 12.9 23.3 22.9	1.00 1.65 1.22 2.22 2.64 4.4 5.97 8.22 2.65 4.4 5.97 8.17 7.2 6.66 7.4 9.56 11.62 12.99 13.9	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 20.3 22.5 20.7 18.6 7 17.5 18.9 19.7 19.7 19.4 18.9 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19	12.3 11.75 9.8 8.155661 10.6 12.1522 12.2 13.1 15.45 12.2 12.15 12.7 11.0 12.7 11.4 9.6	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.6 22.7 23.1 21.2 22.3 22.3 22.7 22.5 22.6 23.5 24.7 24.7	13.30 13.30 13.22 12.98 14.4 14.6 15.3 15.7 14.6 14	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7 25.0 24.7 19.0 22.1 21.2 23.6 24.7 25.2 27.5 24.7 27.5 24.7 27.5 27.5 24.1 27.5 27.5 24.7 27.5	15.4 13.2 12.3 12.5 12.5 12.5 12.5 13.6	24.2 24.7 24.9 24.4 23.8 24.2 21.6 23.0 21.8 22.1 20.2 21.2 19.7 21.8 22.8 24.5 17.6 16.1 17.6 17.5 17.7	14.5 15.9 13.6 13.2 14.5 16.9 13.8 13.7 14.1 13.5 13.2 14.1 10.0 9.7 11.9 13.9 13.9 11.3 12.9 11.3 19.5	19.52 175.49 15.57 15.57 15.85 15.87 16.0 17.15	8.6 10.3 10.2 7.8 6.4 7.6 6.4 7.5 6.1 7.5 8.3 8.9 4.6 7.7 4.4 7.7 7.4 7.7 7.4 7.3
2345 6789 10 112345 16789 20 122345 2678	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5 15.3 15.3 15.3 15.3 12.9 23.3 22.9 23.4 22.5 24.1 23.3	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	21.54 17.54 17.59 16.2 18.97 19.8 221.0 18.99 20.3 22.5 20.7 18.6 19.7 17.5 18.6 19.7 17.5 18.9 19.7 18.9 19.7 19.4 19.7 19.4 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	12.3 11.75 9.8 8.15 9.66 12.15 12.2 12.0 13.1 14.5 12.15 12.7 11.0 12.7 11.0 12.7 11.0 12.7	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.6 22.7 23.1 22.3 22.3 22.3 22.5 22.3 22.5 23.5 24.2 24.7 24.7 24.7 21.0	13.2 12.3 13.2 12.2 13.0 13.2 12.2 13.8 14.0 14.1 14.6	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.5 20.1 16.6 19.18 23.7 25.0 24.7 19.0 24.7 25.2 27.2 27.5 24.1 27.2	15.4 13.2 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	24.2 24.7 24.9 24.4 23.8 24.2 21.6 23.0 21.8 22.1 20.2 19.7 21.8 22.8 24.1 20.2 19.7 21.8 24.5 17.6 16.1 17.6	14.55 15.96 13.62 14.89 13.7 14.13.27 14.13.6 12.10 12.10 12.10 12.10 13.12 13.13 13	19.52049 175.49 155.5785 155.85 155.8716 15.8716 14.14.8 144.78 144.42 144.22	8.6 10.3 10.2 7.8 6.4 7.6 6.4 7.5 6.1 7.5 8.3 8.9 4.6 7.7 4.4 7.7 7.4 7.7 7.4 7.3
2 3 4 5 6 7 8 9 10 11 2 11 3 14 15 16 17 8 19 20 21 22 3 4 25 26 27	7.6 8.0 6.1 8.1 6.6 5.8 71.4 13.5 13.8 15.3 15.3 15.3 15.3 12.9 23.3 22.9	1.00 1.65 1.22 2.22 2.64 4.4 5.97 8.22 2.65 4.4 5.97 8.17 7.2 6.66 7.4 9.56 11.62 12.99 13.9	21.5 15.4 17.5 19.4 16.2 18.9 19.7 19.8 20.2 21.0 19.4 18.9 20.3 22.5 20.7 18.6 7 17.5 18.9 19.7 19.7 19.4 18.9 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19	12.3 11.75 9.8 8.155661 10.6 12.15201 13.1 15.4512.15 12.15 12.20 13.1 15.4512.15 12.7 11.0 12.7 11.4 9.6	21.4 21.5 22.2 22.3 18.1 20.1 19.6 21.6 22.7 23.1 21.2 22.3 22.3 22.7 22.5 22.6 23.5 24.7 24.7	13.30 13.30 13.22 12.98 14.4 14.6 15.3 15.7 14.6 14	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.4 22.5 20.1 16.6 19.1 21.8 23.7 25.0 24.7 19.0 22.1 21.2 23.6 24.7 25.2 27.5 24.7 27.5 24.7 27.5 27.5 24.1 27.5 27.5 24.7 27.5	15.4 13.2 12.3 12.5 12.5 12.5 12.5 13.6	24.2 24.7 24.9 24.4 23.8 24.2 21.6 23.0 21.8 22.1 20.2 21.2 19.7 21.8 22.8 24.5 17.6 16.1 17.6 17.5 17.7	14.5 15.9 13.6 13.2 14.5 16.9 13.8 13.7 14.1 13.5 13.2 14.1 10.0 9.7 11.9 13.9 13.9 11.3 12.9 11.3 19.5	19.52 175.49 15.57 15.57 15.85 15.87 16.0 17.15	8.6 10.3 10.2 7.8 6.4 8.4 7.0 6.1 7.5 8.3 8.9 4.6 7.7 4.7
2345 678910 1123145 16718920 2122345 22728930	7.6 8.0 6.1 8.1 6.6 5.8 7.6 11.4 13.5 13.6 10.8 14.7 15.8 21.9 22.9 23.3 22.9	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	21.54 17.54 17.54 18.7 19.4 20.2 21.0 19.8 223.3 22.5 20.1 18.9 19.7 17.5 18.9 19.7 17.5 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 18.9 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19	12.3 11.75 19.8 8.15566 12.15201 12.201 13.1 14.52 12.15 12.7 11.0 12.7 11.0 11.0 12.7 11.0 11.0 12.7 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	21.4 21.5 22.2 22.3 18.1 20.1 21.6.7 17.9 19.6 21.2 22.7 23.9 21.2 22.7 23.5 22.7 22.2 23.5 24.7 24.7 24.7 21.9 24.7 21.9	13.3 13.0 13.0 13.0 13.0 12.9 14.0 12.9 14.0 15.3 15.3 15.7 14.6 14.6 14.6 14.9	24.4 25.3 25.2 23.4 23.6 22.7 22.9 22.5 20.1 16.6 19.1.8 23.7 25.0 24.7 19.0 22.1 21.2 23.6 24.7 25.2 27.5 24.7 25.2 27.5	15.4 13.8 13.9 12.5 12.5 12.5 12.5 13.6 13.0 14.6 13.1 16.6 17.5 15.4 15.9 16.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17	24.2 24.7 24.9 24.8 24.2 21.8 22.6 23.0 21.8 22.1 24.2 21.1 20.2 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21	14.55 15.96 13.62 14.18 13.7 14.15 13.7 14.10 14	19.049 175.69 155.785 155.785 155.785 155.785 144.60 144.78 144.8 144.4 144.8 144.4 144.8 146.8 146.8 146.8 146.8 146.8 146.8 146.8 146.8 146.8 146.8 146.8 146.8 146.8	8.33.228 48.42.0 2.1.5.13 9.4.6.7.4 7.7.4.2.3 7.5.9.2.5

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09243900 FOIDEL CREEK AT MOUTH, NEAR OAK CREEK, CO

LOCATION.--Lat 40°23'25", long 106°59'39", in SELSEL sec.14, T.5 N., R.86 W., Routt County, Hydrologic Unit 14050001, on left bank 0.9 mi upstream from mouth and 13.6 mi northwest of Oak Creek.

DRAINAGE AREA .-- 17.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to September 1981, June 1982 to current year.

REVISED RECORDS.--WDR CO-78-3: 1976 (M), 1976.

GAGE.--Water-stage recorder. Elevation of gage is 6,730 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 3 to Mar. 6. Records fair except for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--11 years (water years 1976-81, 83-87), 3.61 ft3/s; 2,620 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 90 ft³/s, Apr. 22, 1980, gage height, 5.18 ft; no flow many days most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 59 $\rm ft^3/s$ at 1830 Apr. 8, gage height, 3.94 ft; minimum daily, 0.03 $\rm ft^3/s$, Sept. 3.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DA Y OCT NOV DE C FEB MA Y JUN JUL AUG SEP JAN MA R APR 2.3 2.3 2.5 .17 2.0 1.2 .74 .76 1.5 1.6 .99 1.2 10 6.2 11 2 2.4 1.2 6.2 4.0 1.0 .10 2.1 1.1 16 2.6 2.4 1.6 16 6.0 1.9 3.1 .98 .90 .70 1.2 .03 4 2.3 .64 1.2 2.0 28 4.5 2.5 .95 .13 1.8 .77 5 2.4 2.2 .42 .62 1.2 3.0 34 4.1 2.1 .27 6 1.9 2.1 .50 .64 1.3 5.8 35 4.2 1.9 .64 .19 .66 1.3 1.3 1.4 1.8 2.1 10 31 4.1 1.6 .67 8 1.7 1.9 .62 .64 12 33 3.6 1.7 1.4 .86 .08 23 3.5 3.3 1.6 1.7 .70 .64 14 1.7 1.3 .92 .11 10 .64 1.5 22 1.5 1.7 .62 15 .64 .06 - 64 1.8 11 1.6 1.6 13 19 3.4 1.0 .70 3.3 3.3 3.6 .68 12 13 .25 1.6 1.6 .64 .66 2.0 9.3 18 1.6 1.0 .70 .68 .64 21 2.2 1.4 2.3 14 1.6 1.1 1.3 2.5 .64 .64 18 1.5 .70 1.9 15 1.3 15 2.0 1.3 .64 1.8 3.2 .78 .40 .64 12 15 1.5 1.3 3.4 3.2 3.3 16 5.5 .86 .40 2.1 1.4 .64 .64 1.6 12 1.4 1.1 2.3 1.3 .70 .64 4.0 12 1.3 .80 .76 1.3 2.0 18 1.4 .70 1.2 5.2 1.3 3.6 .65 2.3 .68 11 .71 .54 19 .70 .78 6.6 10 3.4 2.2 •61 1.5 20 2.5 1.9 .70 .86 1.3 5.3 10 3.3 1.1 1.7 .53 .68 .76 10 3.3 3.8 .49 .45 21 2.7 2.0 1.3 5.1 1.1 1.3 .72 .76 .80 1.4 22 2.6 1.9 .68 4.7 12 1.1 1.1 . 44 - 40 40 1.6 .94 .38 23 24 3.6 3.6 .68 .68 1.3 5.3 11 3.5 3.3 1.0 .98 8.1 .28 .49 1.4 1.3 25 3.4 1.4 .68 .84 1.3 4.0 7.0 3.2 .66 .72 .27 26 2.9 .83 .86 .22 1.5 .68 .90 1.4 3.9 6.9 .57 .83 .76 .73 .71 3.0 .31 .32 27 28 2.5 1.4 .68 .70 .94 1.0 1.4 4.1 6.8 .60 1.3 .69 . 67 1.4 4.1 3.9 29 2.0 1.3 .72 2.7 .69 .31 1.1 ---6.7 30 2.1 1.3 .70 6.4 2.6 1.9 .68 .40 .37 31 2.1 ___ .70 1.1 ___ 4.5 ___ 2.5 .79 .27 TOTAL 71.6 51.0 21.54 23.56 40.1 214.0 465.7 112.9 42.71 55.12 21.79 8.75 1.70 .76 1.1 .62 MEAN 2.31 .69 1.43 6.90 15.5 3.64 1.42 1.78 .70 .29 MAX 3.6 1.2 2.3 21 35 6.2 2.3 11 .03 .57 .27 MIN 1.5 1.3 .42 6.4 2.5 1.2 1.5 AC-FT 101 43 47 424 224 85 109 80 924

CAL YR 1986 TOTAL 2467.13 MEAN 6.76 MAX 43 MIN .38 AC-FT 4890 WTR YR 1987 TOTAL 1128.77 MEAN 3.09 MAX 35 MIN .03 AC-FT 2240

09243900 FOIDEL CREEK AT MOUTH NEAR OAK CREEK, CO--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1976 to September 1981, June 1982 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1976 to September 1981.
WATER TEMPERATURE: April 1976 to September 1981.
SUSPENDED SEDIMENT DISCHARGE: April 1976 to September 1981.

INSTRUMENTATION. -- Water-quality monitor April 1976 to September 1981. Automatic pumping sampler April 1976 to September 1981.

REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 3,520 microsiemens Aug. 10, 11, 1980; minimum, 255 microsiemens July 1, 1980.
WATER TEMPERATURES: Maximum, 28.5°C July 22, 1980; minimum, 0.0°C several days during winter period each

year.

SEDIMENT CONCENTRATIONS: Maximum daily, 3,650 mg/L Apr. 2, 1981; no flow many days most years.

SEDIMENT LOADS: Maximum daily, 702 tons Apr. 23, 1980; no flow many days most years.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
NOV 05	1330	2.1	2270	8.2	2.5	13.4	1200	210	160	110	1	4.9
APR			•		-							-
23	1415	9.8	2230	8.1	16.5	8.5	1100	210	130	79	1	4.8
01 SEP	1330	5.3	2030	7.9	21.0	6.4	930	190	110	88	1	7.2
01	0930	0.28	2740		12.0	8.6	1500	300	190	57	0.7	7.3
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
NOV 05 APR	87	1200	27	0.20	4.7	1780	1770	2.42	10.1	20	0.01	0.71
23	258	1000	28	0.20	7.0	1790	1610	2.43	47.4	138	0.03	1.80
JUL 01	183	990	29	<0.10	6.4	1700	1530	2.31	24.5	163	0.14	3.40
SEP 01	154	1500	12	<0.10	1.0	2350	2160	3.20	1.78	3	<0.01	<0.10
DAT	GE AMMO Di Soi	IS- DIS LVED SOLV G/L (MG/	OUS HO, BOR DI ED SOL L (UG		L TOT V- REC SLE ERA 'L (UG	AL TOT OV- REC BLE ERA /L (UG	E, MERC AL TOT OV- REC BLE ERA /L (UG	URY DEN AL TOT OV- REC BLE ERA /L (UG	COV- NIU BLE TOT	M, REC AL ERA	AL TOT OV - REC BLE ERA /L (UG	AL OV- BLE /L
NOV 05 APR	0.	.06			<1	340	220 <0	.10	3	<1	2	
23	0	.46 0.	01	120	<1 2	700	500 0	.20	1	<1	<1	20
JUL 01 SEP	1	.20 0.	05	140	<1 8	700	7 60 0	.10	<1	<1	<1	50
01	0	.11 <0.	01	140	<1	220	230 <0	. 10	<2	<1	<1	<10

09243900 FOIDEL CREEK AT MOUTH NEAR OAK CREEK, CO--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)
NOA					
20	1000	1.7	2260		1.0
JAN					
28	1010	1.1	2570	7.8	0.5
MA R					
06	1300	4.7		8.2	1.0
31	1120	3.2	2160	8.1	1.0
JUN					
04	1015	1.9	2320	8.5	13.0
AUG					
25	1405	0.74	2460	8.2	17.5

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI - MENT, DIS - CHARGE, SUS - PENDED (T/DAY)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI - MENT, DIS - CHARGE, SUS - PENDED (T/DAY)
NOV 05	1330	2.1	31	0.18	APR 23	1415	9.8	229	6.1

RAINFALL RECORDS

PERIOD OF RECORD. -- July 19, 1978 to current year.

INSTRUMENTATION. -- Belfort weighing bucket rain gage.

.00

MIN

.00

.00

.00

.00

REMARKS.--Unpublished rainfall data for water years 1978-86 are available in district office.

RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DE C JUN JIII. AUG SEP JAN FEB MAR APR MA Y .00 .03 .00 .00 .00 .00 .00 .00 .00 .09 .00 .00 .36 .00 .00 .53 .00 .00 .00 .04 .00 .00 .00 ---3 .06 .00 .00 .01 .00 .00 .00 .10 .00 .00 .00 -00 .00 - 00 - 01 .04 .00 .00 -00 -00 .00 -00 ___ 5 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 6 .00 .10 .10 .07 .00 .00 .03 .00 .00 .00 .00 ___ .00 .14 .53 ---78 .09 .09 .01 .00 .00 .00 .00 .00 .00 .02 .02 .02 -00 .00 -00 .00 -00 .00 .02 .08 .00 .00 9 .02 .01 .00 .06 .00 .12 10 .02 .01 .01 .00 .07 .00 .00 .00 .00 .00 .00 ---11 .24 .00 .00 .00 .06 .07 .00 .00 .13 .00 -07 ___ .34 12 13 .00 .00 .00 .00 .01 .15 .03 .00 .00 .03 .00 .00 .00 .04 .00 .00 .00 .00 .05 ---.00 14 .00 .00 .00 .00 .10 .01 .00 .00 .05 ___ 15 .00 .00 .00 .00 .00 .00 .25 .04 .03 .00 .20 16 .00 .00 .00 .00 .00 .06 .04 .00 .03 .00 .00 .47 .00 .00 .00 .00 .00 .01 .02 .00 .07 ---18 .00 .05 .00 .03 .00 .00 .00 .15 .00 .00 .00 ---.00 . 1 li 19 .00 . 21 .06 - 09 .00 .00 .00 .00 .00 ___ ___ .00 20 .07 .00 .02 .00 .00 .07 .73 .02 .00 .00 21 .30 .03 .00 .01 .00 .00 .00 .24 .00 .00 .00 22 .42 .03 .00 .00 .00 .00 .00 .04 .00 .00 .00 ___ 23 .05 .00 .00 .00 .00 .00 .00 .07 .00 .00 .04 ___ 24 .06 .29 ---.00 .00 .00 .00 .06 .00 .01 .00 .00 25 .00 .00 .00 .05 .00 .00 .00 .07 .00 .00 .11 .05 .00 .00 26 .00 .00 .00 .00 .07 .03 .00 27 28 .00 ___ .00 .00 .00 .03 .06 .00 .06 .00 .00 .00 .00 .00 .00 .00 .00 ___ .00 .01 .00 .00 .00 29 .00 .00 .00 .00 .00 .00 .17 .00 30 .09 .05 .00 .00 .00 .02 .60 .00 ---31 .30 ___ .00 .00 .00 ___ .00 ___ .03 .00 ------TOTAL 1.91 .63 .91 .84 1.34 1.06 1.69 1.56 1.16 .06 .03 MEAN .02 .01 .03 .02 .04 .03 .06 .05 .04 . 14 .73 .73 MAX .21 .10 . 24 -47

.00

.00

.00

.00

241

09245000 ELKHEAD CREEK NEAR ELKHEAD, CO

LOCATION.--Lat 40°40'11", long 107°17'04", in NW1NE1 sec.8, T.8 N., R.88 W., Routt County, Hydrologic Unit 14050001, on right bank 0.2 mi upstream from North Fork Elkhead Creek, 4.5 mi northwest of Elkhead, and 12 mi north of Hayden.

DRAINAGE AREA.--64.2 mi2

PERIOD OF RECORD.--January to November 1910 and May to November 1920 (monthly discharge only, published in WSP 1313; published as "at Hayes Ranch"), April 1953 to current year.

REVISED RECORDS. -- WSP 1733: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,845 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 30, 1920, nonrecording gage or water-stage recorder 675 ft upstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 19 to Feb. 5, 16, 18-19, 21-22, and Mar. 1-17. Records good except for estimated daily discharges, which are fair. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--34 years (water years 1954-87), 57.9 ft3/s; 41,950 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,850 ft³/s, May 20, 1984, gage height, 7.58 ft, from rating curve extended above 1,500 ft³/s, on basis of slope area determination of peak flow; no flow Sept. 1, 1954, Sept. 12-19, 24, 1955, Aug. 27-29, 1961, Aug. 14-19, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 800 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
April 18	2100	*680	*5.33				

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 1.6 ft3/s, Sept. 3.

			, , , ,			MEAN VALUE	S	,				
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	22 28 49 41 29	31 28 25 24 24	16 16 16 16 16	14 14 14 14 14	13 13 13 13 13	10 10 11 11	12 14 17 19 21	307 311 246 198 176	69 61 53 50 44	15 12 9.4 8.0 7.1	8.0 5.4 4.5 3.6 2.9	2.0 1.7 1.6 2.2 3.0
6 7 8 9 10	28 30 28 26 24	25 25 23 32 26	15 15 15 15 15	14 14 14 14 14	13 13 13 13 13	11 11 11 11	25 34 43 83 83	167 163 155 146 140	42 39 40 55 56	6.4 5.8 5.5 5.5	2.5 2.7 3.1 3.3 2.9	2.8 2.3 2.2 2.1 2.1
11 12 13 14 15	25 21 18 17 16	35 21 31 27 27	15 1 5 15 15 15	13 13 13 13 13	13 16 14 14 13	12 12 12 12 12	87 81 61 71 141	133 138 151 1 5 0 145	43 35 32 28 25	5.6 18 15 9.2 7.6	2.5 2.3 2.1 2.5 3.2	2.1 1.9 1.9 1.9 2.0
16 17 18 19 20	14 14 14 14 17	19 19 20 17 17	15 15 15 15 15	13 13 13 13 13	13 12 12 13 13	12 12 12 12 12	293 400 472 466 323	135 129 122 124 107	23 21 20 18 17	6.2 5.8 6.4 5.8 4.9	3.5 3.7 3.1 2.5 2.0	2.2 3.0 3.7 3.1 2.9
21 22 23 24 25	20 28 28 32 33	16 16 16 16 16	14 14 14 14 14	13 13 13 13 13	13 12 11 11 10	17 13 15 16 15	237 283 383 443 444	129 119 110 95 90	16 15 14 13	4.5 5.0 5.3 4.3 3.6	1.7 1.9 3.2 3.6 4.6	2.7 2.6 2.5 2.5
26 27 28 29 30 31	32 32 31 27 26 29	16 16 16 16 16	14 14 14 14 14	13 13 13 13 13	9.8 10 9.7 	15 12 16 15 20 15	391 380 424 370 321	98 106 104 90 111 82	11 10 9.5 11 15	3.2 2.9 3.0 3.6 4.9 8.4	4.1 3.7 3.4 3.0 2.7 2.4	2.5 2.7 2.6 2.6 2.7
TOTAL MEAN MAX MIN AC-FT	793 25.6 49 14 1570	656 21.9 35 16 1300	459 14.8 16 14 910	413 13.3 14 13 819	349.5 12.5 16 9.7 693	397 12.8 20 10 787	6422 214 472 12 12740	4477 144 311 82 8880	897.5 29.9 69 9.5 1780	213.7 6.89 18 2.9 424	100.6 3.25 8.0 1.7 200	72.6 2.42 3.7 1.6 144

CAL YR 1986 TOTAL 34599.8 MEAN 94.8 MAX 1060 MIN 3.9 AC-FT 68630 WTR YR 1987 TOTAL 15250.9 MEAN 41.8 MAX 472 MIN 1.6 AC-FT 30250

09246920 FORTIFICATION CREEK NEAR FORTIFICATION, CO

LOCATION.--Lat 40°41'38", long 107°32'25", in NWANWA sec. 18, T.9 N., R.90 W., Moffat County, Hydrologic Unit 14050001, on right bank, 4.5 mi south of Fortification.

DRAINAGE AREA. -- 40.0 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,520 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 31 to Nov. 15, 18 to Mar. 7, Apr. 27, 29 to May 8, and May 28 to June 4. Records fair except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 465 $\rm ft^3/s$, March 25, 1985, gage height, 4.64 ft; minimum daily, 0.01 $\rm ft^3/s$, Aug. 5, 19-22, and Sept. 1-4, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 224 $\rm ft^3/s$ at 1900 Apr. 1, gage height 3.47 ft; minimum daily, 0.01 $\rm ft^3/s$, Aug. 5, 19-22, and Sept. 1-4.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 3.0 7.0 2.0 1.5 1.5 98 10 .96 .01 6.5 70 1.9 2 4.8 6.5 2.0 2.0 43 10 .71 .01 .01 1.5 9.0 6.0 5.5 5.0 2.5 2.0 10 52 60 1.3 . 24 2.0 62 .01 9.0 .02 25 60 8.6 5 3.8 5.0 2.5 2.0 1.5 52 55 .01 .20 35 6 3.8 8.8 .88 .28 6.0 3.0 2.0 1.5 45 47 55 .02 5.0 75 111 50 14 .03 7 3.9 3.0 2.0 1.5 46 .73 . 1 8 4.0 1.5 12 .35 .01 2.5 49 50 .68 1.5 4.8 2.0 1.5 78 45 40 20 .57 .08 3.5 1Ó 2.5 1.5 1.5 1.5 32 24 .29 .06 32 41 .05 .07 5.5 2.5 1.5 1.5 1.5 47 15 .56 11 1.5 1.5 12 4.8 2.0 38 10 2.4 .03 .02 19 39 2.5 1.5 12 47 8.6 2.2 • o 4 .01 13 2.0 66 4.4 3.0 2.0 1.5 1.5 35 17 14 41 7.0 1.0 . 04 .01 5.8 .74 15 1.5 41 .04 4.2 4.0 2.0 1.5 39 . 1 16 4.4 1.5 85 43 .48 .66 .43 2.0 17 4.7 5.0 2.0 1.5 1.5 9.1 113 39 4.1 .12 . 48 .97 18 5.0 4.0 2.0 1.5 1.5 23 30 101 35 38 3.6 3.1 .08 1.0 .01 5.1 6.0 2.0 104 .16 19 2.7 5.6 5.0 2.0 1.5 1.5 13 44 30 .09 .01 21 22 7.5 1.5 22 25 27 2.7 .36 .01 .72 4.0 2.0 1.5 13 25 23 2.4 .49 .01 .74 4.0 1.5 1.5 16 2.0 11 9.7 2.0 57 2.2 .73 23 2.5 12 .39 .23 2.0 21 2.0 .17 1.2 1.5 1.5 .78 25 6.9 2.5 2.0 8.7 90 19 1.9 .15 1.3 .21 .74 26 5.8 2.0 1.5 1.5 9.1 83 20 1.7 1.1 2.5 .84 9.9 27 5.9 2.0 2.0 1.5 1.5 80 19 1.6 .14 .69 28 6.1 2.5 2.0 1.5 1.5 9.6 80 16 1.2 .16 .68 .69 .53 29 6.1 2.0 1.5 ---9.0 70 12 1.3 -90 .68 .83 30 6.0 2.0 2.0 1.5 1.5 ___ 9.1 60 12 1.7 31 28 10 .93 .09 2.0 7.0 1153 24.44 11.08 12.30 TOTAL 116.5 176.4 64.5 50.0 42.0 862.5 1737 209.1 3.88 27.8 MEAN 5.69 2.08 1.61 1.50 57.9 113 37.2 75 6.97 24 .79 3.1 .36 1.3 .41 6.5 MAX 16 3.0 1.5 3.8 10 ·09 .01 .01 AC-FT 350 231 128 99 83 1710 3450 2290 415 22 24

CAL YR 1986 TOTAL 7965.57 MEAN 21.8 MAX 143 MIN .00 AC-FT 15800 WTR YR 1987 TOTAL 4458.77 MEAN 12.2 MAX 113 MIN .01 AC-FT 8840

243

09246920 FORTIFICATION CREEK NEAR FORTIFICATION, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--December 1985 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 10	1245	2.6	598	7.6	1.5	12.6	200	52	16	50
MAR 06	0010	78	134	7.2	0.0	11.6	41	11	3.3	16
JUL 28	1355	0.30	950	8.5	31.0	14.3	350	88	31	74
SEP 09	0945	0.02	925	8.4	10.0	8.9	330	81	30	84
DATE	A SOF T I	RP- DI	UM, LINI S- LA VED (MG /L AS	TY SULF B DIS /L SOL (MG	- DIS VED SOL /L (MG	E, RID - DI VED SOL	E, DIS S- SOL VED (MG /L AS	- CONS VED TUEN /L DI SOL	OF SOLI	S- VED NS R
NOV 10		2 1	.8 186	11	0 18	0	. 20 1	6	380 0	.51
MAR 06			.6 50	2				5.9		.14
JUL 28			.9 392		2 31	-		6		•75
SEP 09		2 2	.2 403	6	6 14	0	.50 1	3	530 0	.72
DATE	SOL (TC PE	S- GEN VED NO2+1 ONS TOT	N, NO2+ NO3 DI AL SOL /L (MG	N, NIT NO3 GE S- AMMO VED TOT /L (MG	N, GE NIA ORGA AL TOT /L (MG	NIC ORGANIAL TOT	AM- A + PHO NIC PHOR AL TOT /L (MG	US, ORT	US, CARB HO, ORGA AL TOT K/L (MG	NIC AL /L
NOV 10	2	2.6 0.	10 0.	13 0.	03 0	.47 0	.50 0.	09 0.	04 5	•5
MAR 06	21	0.	20 <0.	10 0.	17 1	.6 1	.8 0.	43 0.	30 20	
JUL 28	C).45 <0.	10 <0.	10 0.	02 0	.78 0	.80 0.	09 0.	03 9	•3
SEP 09	C	.03 <0.	10 <0.	10 0.	04	<0	.20 0.	09 0.	03	
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ANTI- MONY, TOTAL (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV - ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 10	1500	<1	1	100	<10	<1	<1	2	8	1500
MAR 06	26000	<1	1	100	<10	<1	<1	8	27	20000
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
NOV 10	12	10	330	<0.10	3	19	4	<1	460	20
MAR 06	13	20	260	0.10	<1	21	2	<1	210	80
	. 5		200		•		_	•		

09246920 FORTIFICATION CREEK NEAR FORTIFICATION, CO--Continued WATER QUALITY DATA. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		WATE	ER QUALITY	DATA, WATE	R YEAR	OCTOBER 198	6 TO SEP	TEMBER 1	987		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT				, -		MA Y		44.05	22		411 0
03 DEC	1105	6.6	410	6.5		JUL 18	• • •	1435	33	113	14.0
09 FEB	1615	2.2	616	0.0		15 AUG	• • •	1940	0.66	562	25.0
10 MAR	1100	1.8	482	0.5			• • •	1105	0.01	898	14.5
17 APR	1210	11	547	0.5			• • •	1540	1.2	705	20.0
08 24 27 28	1715 1555 1040 1550	38 52 72 57	158 127 519	9.5 10.0 5.0 14.0							
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDIMENT SEDI- MENT, SUS- PENDED (MG/L)	DISCHARGE, SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	WATER Y		1986 TO	SEPTEMB!	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI - MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
10	1245	2.6	59	0.41		JUL 15.		1940	0.66	39	0.07
MAR 05	2350	78	843	176		28. AUG	• •	1355	0.30	65	0.05
APR 08	1655	38	1230	126		19. SEP	• •	1105	0.01	52	0.00
00	1033	33	(230	120		09. 17.		0945 1610	0.02 1.2	13 54	0.00 0.17
	PARTICLE.	-SIZE DIST	RIBUTION C	F SUSPENDED	SEDIME	NT, WATER Y	EAR OCTO	BER 1986	TO SEPTEM	BER 1987	
				STREAM- FLOW,	SEDI- MENT,	SEDI- MENT, DIS- CHARGE,	SED. SUSP. FALL DIAM.	SED. SUSP. FALL DIAM.	SED. SUSP. FALL DIAM.		

DATE	TIME	STREAD FLOW INSTAD TANEOU (CFS	, MEI N- SUS US PEI	DI- NT, S- NDED G/L)	SEDI MENT DIS CHARI SUS PENI (T/DI	r, S- GE, S- % DED	SED. SUSP FALL DIAM FINE THAN 002 MI	. SU FA . DI R % FI TH	AN	SEL SUS FAL DIA % FIN THA .008	P. L M. IER
MAR 05 17 APR	2355 1205	78 11		799 526	167 16		74 4:		90 53		91 66
24 27 MAY	1600 1045	52 72		1420 16 7 0	199 325		28 1		36 21		44
18 21 JUN	1515 1550	33 26		331 260	29 18			-			
04	1525 1350	10 21		144 709	3 40	• 9	4	1	 50		 59
DATE	5 1 16 17 18	THAN	SED. SUSP. FALL DIAM. % FINER THAN .062 MM	S F D % F T	ED. USP. ALL IAM. INER HAN 5 MM	SEC SUS FAL DIA % FIN THA .250	P. L M. ER %	SED. SUSP. FALL DIAM. FINER THAN 500 MM	SI SIE DI % FI TH	ED. JSP. EVE IAM. INER HAN 2 MM	
MAR 05 17 APR		92 81	95 		96 		98 	100		 99	
24 27 MA Y		52 32	76 43		88 62		96 85	100 100			
18 21 JUN			67 		80		95 	100		60	
04 10		 71	93		98	1	00			79 	

09247600 YAMPA RIVER BELOW CRAIG, CO.

LOCATION.--Lat 40°28'51", long 107°36'49", in SW4NW4 sec. 16, T.6 N., R.91 W., Moffat County, Hydrologic Unit 14050001, on left bank 0.5 mi downstream from state highway 13-789 bridge, and 3.3 mi southwest of Craig.

DRAINAGE AREA. -- 1750 mi²

PERIOD OF RECORD .-- June 1975 to September 1980 (discharge measurements only), October 1984 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 6,100 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 1 to Mar. 26, July 7-12, and 17-24. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions for irrigation, transbasin diversion, storage reservoirs, and return flow from irrigated areas.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,300 ft³/s, May 6, 1985, gage height, 9.68 ft; minimum daily, 90 ft³/s, Aug. 21, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $4,780 \text{ ft}^3/\text{s}$ at 1500 June 17, gage height, 7.20 ft; minimum daily, 90 ft³/s, Aug. 21.

		DISCHARGE,	IN CUBI	C FEET		, WATER MEAN VAL	YEAR OCTOBEF JES	1986 1	O SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	577 591 624 698 676	620 602 585 531 508	325 300 310 325 325	225 225 200 200 225	200 200 200 200 175	225 250 275 375 600	477 886 929 1120 1490	4000 4170 3670 2860 2500	1930 1980 1850 1810 1810	798 850 674 542 465	453 429 351 288 240	160 155 162 169 181
6 7 8 9 10	616 591 632 618 632	491 498 495 431 437	340 300 275 275 250	250 225 225 175 175	175 175 175 200 200	1200 1500 1900 2000 1800	1670 1830 1830 1940 1570	2450 2750 3100 3260 3450	1790 1820 1950 2220 2520	431 350 300 280 270	215 209 200 268 273	178 173 183 182 175
11 12 13 14 15	675 690 628 603 562	400 431 427 413 425	180 275 275 300 325	175 200 225 200 200	250 300 325 425 300	1500 1400 1600 2000 1600	1530 1490 1320 1070 1100	3580 3680 3830 4010 4170	2280 2000 1760 1580 1470	260 250 498 532 435	233 184 172 183 176	194 192 204 218 247
16 17 18 19 20	548 538 533 549 536	425 425 425 425 375	350 350 325 300 300	175 150 150 150 150	275 275 275 275 275	1200 800 600 650 600		4300 4410 4370 4200 3680	1380 1320 1130 1010 915	376 300 300 350 300	195 186 205 170 122	240 249 272 230 232
21 22 23 24 25	544 609 710 684 665	400 425 450 468 493	300 275 275 275 275 225	150 175 175 200 200	250 250 250 275 300	450 450 450 450	2090 2350	3470 3270 2830 2720 2620	863 815 746 710 655	275 250 225 225 234	90 114 139 147 178	268 264 202 137 128
26 27 28 29 30 31	635 583 571 575 560 578	458 433 342 349 357	225 225 275 275 275 250	200 225 225 225 200 175	275 225 225 	479 474 465 421 379 374	3600 3830 4030 3990	2440 2360 2150 2020 1940 1920	617 581 531 506 554	235 308 365 400 372 408	290 246 187 166 165 180	128 115 118 122 120
TOTAL MEAN MAX MIN AC-FT	18831 607 710 533 37350	451 620 342	8880 286 350 180 7610	6050 195 250 150 12000	6925 247 425 175 13740	26917 868 2000 225 53390	2170 4030 477	0180 3232 4410 1920 8700	1370 2520 506	1858 383 850 225 3520	6654 215 453 90 13200	5598 187 272 115 11100

CAL YR 1986 TOTAL 698129 MEAN 1913 MAX 9340 MIN 180 AC-FT 1385000 WTR YR 1987 TOTAL 311652 MEAN 854 MAX 4410 MIN 90 AC-FT 618200

09249750 WILLIAMS FORK RIVER AT MOUTH NEAR HAMILTON, CO.

LOCATION.--Lat 40°26'14", Long 107°38'50", in SEiNWi sec.31, T.6 N., R.91 W., Moffat County, Hydrologic Unit 14050001, on left bank at coal mine service road crossing, 2,300 ft upstream from confluence with Yampa River, and 6.1 mi north-northeast of Hamilton, Co.

DRAINAGE AREA. -- 419 mi2.

PERIOD OF RECORD. -- February 1984 to current year.

GAGE.--Water stage recorder. Elevation of gage is 6,170 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 12, 14, 15, 19-27, Dec. 12, 16-18, 22-25, 29-31, Jan. 4, 9, Feb. 5-14, 17-28, and Mar. 1-7. Records good except for estimated daily discharges, which are fair.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 4,750 ft $^3/s$, May 16, 1984, gage height, 9.96 ft; minimum daily, 42 ft $^3/s$, Aug. 20-21, 1987.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 29	0700	*1,200	*5.94	No oth	er peak grea	ater than base	discharge.

Minimum daily, 42 ft 3 /s, Aug. 20-21.

		DISCHARGE,	IN C	UBIC FEET	PER SECOND,	WATER	YEAR OCTOBI UES	ER 1986	TO SEPTEMBE	R 1987		
DAY	OCT	VOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	119 125 158 152 125	127 119 110 93 99	71 80 93 95 93	55 55 55 60 72	66 68 71 71 65	65 70 75 75 80	113 135 114 141 159	1110 1130 897 723 653	414 430 399 377 376	143 130 106 98 93	116 84 70 62 57	47 45 44 47 51
6 7 8 9 10	118 122 121 121 119	112 120 101 101 104	105 102 91 85 54	75 72 71 70 67	65 60 65 70 76	120 160 228 224 175	167 177 192 213 182	662 785 865 853 870	372 404 567 543 531	90 88 84 75 73	55 60 99 92 66	49 48 48 49
11 12 13 14 15	124 123 106 99 99	90 105 95 90 105	49 50 75 78 73	65 66 66 67 66	80 85 90 95 82	152 121 166 223 132	209 228 171 154 193	871 838 855 822 875	452 385 346 320 294	69 96 136 104 83	59 54 53 56 60	45 43 45 44 46
16 17 18 19 20	94 94 94 94	114 108 110 110	70 70 70 72 81	65 65 62 59	76 75 75 65 60	104 90 91 117 106	287 385 473 589 573	862 907 828 783 738	28 1 253 225 204 188	73 68 72 73 66	62 55 48 44 42	49 52 53 49 48
21 22 23 24 25	99 118 123 105 99	105 115 90 85 85	79 75 70 70 70	60 62 62 61 62	60 55 65 70 70	78 94 79 79 76	442 426 491 659 783	704 640 578 552 533	176 165 154 147 136	64 62 59 54 52	42 43 48 61 84	46 45 44 44 43
26 27 28 29 30 31	97 93 93 92 92 108	85 75 86 106 108	71 61 67 70 65 65	64 65 67 71 70 64	70 70 70 	75 89 71 77 73 83	819 896 956 1100 1050	478 439 389 369 376 370	122 113 106 110 135	54 76 83 82 87 102	105 76 58 55 53 49	43 44 43 43
TOTAL MEAN MAX MIN AC-FT	3420 110 158 92 6780	102 127 75	2320 74.8 105 49 4600	2006 64.7 75 55 3980	1990 71.1 95 55 3950	3448 111 228 65 6840	12477 416 1100 113 24750	22355 721 1130 369 44340	8725 291 567 106 17310	2595 83.7 143 52 5150	1968 63.5 116 42 3900	1387 46.2 53 43 2750

CAL YR 1986 TOTAL 108541 MEAN 297 MAX 1720 MIN 49 AC-FT 215300 WTR YR 1987 TOTAL 65754 MEAN 180 MAX 1130 MIN 42 AC-FT 130400

09249750 WILLIAMS FORK AT MOUTH NEAR HAMILTON, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1975 to September 1980, December 1985 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DIS. SOLVE	- (MG/L ED AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	
	NOV 10	1600	108	759	8.5	2.0	11.	.6 360	73	42	
	JUL 28	1130	75	586	8.6	23.0	7 -	.0 270	55	33	
	SEP 09	1310	49	632	8.8	16.5	8	.7 310	62	38	
	DATE	SODIUM DIS- SOLVED (MG/L AS NA	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE ; DIS- SOLVE (MG/L AS CL	RIDE, DIS- DIS- DIS- MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
	NOV 10	36	0.9	2.2	215	200	8.1	0.20	14	500	
	JUL 28	23	0.6	2.5	173	120	5.2			350	
	SEP 09	27	0.7	2.0	194	180	6.5	0.20	11	440	
	NOV 10 JUL	DATE	DIS- I SOLVED SO (TONS (T PER F AC-FT) I	JIDS, CONTROL OF THE PROPERTY	GEN, CRITE NC DIS- DLVED S 4G/L (S N) A	GEN, 2+NO3 AM DIS- OLVED S MG/L ((SN) A	GEN, (MONÍA + PH DRGANIC DIS. S (MG/L (AS N) A	HOS- PHOORUS, OF DIS- OF MG/L (MCS P) AS		
	SEP						0.02			.01	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	TEMPER - ATURE WATER (DEG C)
OCT 03	1540	170	623	8.0			19	1145	874	250	9.0
10 28	1430 1515	118 106	610 688	11.5 8.5			22	1645	61	630	24.0
DEC 12 FEB	1020	43	1040	0.0			05 21	1320 1550	57 43	666 735	24.5 22.5
11 MAR	1130	82	757	0.5		SE		1310	47	684	16.5
26 APR	1500	66	854	7.0			18	1435 1515	53 43	686 684	15.0 14.5
24	1025	709	392	9.0			J	1,71,7	. ,	004	17.5

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
APR 24 MAY	1245	709	3000	5740	
19 JUL	1340	874	461	1090	
28 SEP	1130	75	10	2.0	
09	1310	49	29	3.8	9

09250507 WILSON CREEK ABOVE TAYLOR CREEK, NEAR AXIAL, CO

LOCATION.--Lat 40°18'53", long 107°47'58", in NW4SW4 sec.14, T.4 N., R.93 W., Moffatt County, Hydrologic Unit 14050002, on left bank about 200 ft upstream from Moffat County Road 17, about 50 ft upstream from confluence of Taylor Creek, and 2.4 mi north of Axial.

DRAINAGE AREA . - - 20.0 mi2.

PERIOD OF RECORD. -- October 1980 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,315 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 4-14, 19-21, 23, Nov. 28 to Dec. 5, Dec. 8-14, 17, 18, Dec. 20 to Jan. 1, Jan. 9-23, Jan. 28 to Feb. 1, Feb. 5-8, 12, 16, Feb. 18 to Mar. 4, Mar. 20-31, Apr. 12, 21, 22, June 22-28, and July 20. Records fair.

AVERAGE DISCHARGE. -- 7 years, 6.71 ft3/s; 4,860 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 352 ft³/s, May 14, 1984, gage height, 8.71 ft, on basis of indirect measurement of peak flow; minimum daily, 0.15 ft³/s, Mar. 20, 21, 1982.

DISCHARGE CURIC FEET DER SECOND WATER VEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 43 ft³/s at 0430 May 1, gage height, 2.67 ft; minimum daily discharge, 0.40 ft³/s, Jan. 17, 18.

		DISCHA	ARGE, CUB	IC FEET P	ER SECOND,	, WATER Y IEAN VALU:	EAR OCTOBI ES	ER 1986 I	O SEPTEMB	ER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	2.0 2.1 2.4 2.3 2.0	4.5 4.4 4.3 4.6 4.5	1.2 1.3 1.3 1.4 1.5	.90 1.0 1.1 1.1	1.5 1.6 2.1 1.5 2.0	1.0 1.3 1.5 3.0 4.5	4.3 4.1 4.4 4.3 4.5	37 38 34 29 26	9.5 8.4 8.2 6.1 4.1	4.1 3.9 3.6 3.9 3.6	1.8 1.7 1.7 1.7	1.1 1.1 1.1 1.1
6 7 8 9 10	2.2 2.2 2.1 2.0 2.1	4.5 4.0 3.7 3.0 2.0	1.4 1.5 1.4 1.2	1.0 1.0 .98 .60	2.0 2.0 2.0 1.9 2.5	9.4 9.3 5.6 2.6 2.5	4.2 4.1 3.7 3.7 3.4	25 28 23 18 15	4.1 3.2 2.6 2.3 2.0	3.4 3.2 3.0 3.4 2.8	1.5 2.0 1.6 1.6	1.1 1.1 1.0 1.0
11 12 13 14 15	2.6 2.5 2.5 2.5 2.3	2.0 1.5 1.8 1.5	1.5 1.7 2.0 2.0	.50 .60 .70 .90	2.6 2.6 3.0 2.8 2.5	2.4 2.3 2.4 1.9 1.6	3.2 3.5 3.8 8.5 4.2	13 12 12 12 11	1.9 1.9 1.8 1.7	3.2 4.0 3.0 2.8 2.7	1.7 1.7 1.7 1.6	1.0 1.0 .96 1.0
16 17 18 19 20	2.6 2.5 2.6 2.8 2.9	1.7 1.7 1.9 2.5 2.6	1.5 1.4 1.3 1.3	.60 .40 .40 .50	2.2 1.9 2.0 1.9 2.0	1.6 1.6 1.5 1.6	5.1 7.7 12 13 11	13 12 12 13 12	1.4 1.4 1.3 1.3	2.2 4.5 2.5 2.2 1.9	1.5 1.4 1.3 1.4	1.4 1.5 1.3 1.4
21 22 23 24 25	3.2 3.6 3.4 3.3	2.5 2.8 2.0 2.0 3.0	1.2 1.0 1.0 1.0	.60 .80 1.4 1.6	1.8 1.9 2.1 2.2 2.0	1.2 1.5 1.7 1.7	12 18 24 27 29	13 13 13 13	1.0 .90 .70 .60	2.0 2.0 1.9 1.9	1.4 1.7 1.6 1.5	1.3 1.2 1.2 1.2 1.1
26 27 28 29 30 31	3.3 3.4 3.5 3.6 3.8 4.7	2.5 2.0 1.7 1.4 1.5	1.0 1.0 1.0 1.2 1.3	2.3 1.7 2.4 2.0 1.5	1.7 1.3 1.0	1.7 1.8 1.4 1.2 1.5 2.5	33 35 37 35 32	13 12 12 11 11 9.8	.50 .60 2.4 5.0 4.6	1.8 1.8 1.9 1.8	1.4 1.2 1.2 1.1 1.1	1.1 1.1 1.1 1.1
TOTAL MEAN MAX MIN AC-FT	86.3 2.78 4.7 2.0 171	79.7 2.66 4.6 1.4 158	40.7 1.31 2.0 1.0 81	32.58 1.05 2.4 .40 65	56.6 2.02 3.0 1.0 112	76.9 2.48 9.4 1.0 153	394.7 13.2 37 3.2 783	528.8 17.1 38 9.8 1050	82.80 2.76 9.5 .50 164	84.5 2.73 4.5 1.8 168	46.7 1.51 2.0 1.1 93	34.26 1.14 1.5 .96 68

CAL YR 1986 TOTAL 2754.60 MEAN 7.55 MAX 48 MIN 1.0 AC-FT 5460 WTR YR 1987 TOTAL 1544.54 MEAN 4.23 MAX 38 MIN .40 AC-FT 3060

249

09250510 TAYLOR CREEK AT MOUTH, NEAR AXIAL, CO

LOCATION.--Lat 40°18'48", long 107°47'57", in NW4SW4 sec.14, T.4 N., R.93 W., Moffatt County, Hydrologic Unit 14050002, on right bank 475 ft upstream from confluence with Wilson Creek, about 1,000 ft southwest of Gossard ranch house, and 2 mi north of Axial.

DRAINAGE AREA . -- 7.22 mi2.

PERIOD OF RECORD.--Streamflow records, July 1975 to current year. Water-quality data available, July 1975 to September 1981.

GAGE.--Water-stage recorder. Elevation of gage is 6,300 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Mar. 28, 1980, gage 25 ft upstream at datum 1.00 ft, higher, Mar. 28, 1980 to Apr. 1, 1985 at same site at datum 1.08 ft, higher, Apr. 1, 1985 to Sept. 17, 1986 at same site at datum 1.00 ft, higher.

REMARKS.--Estimated daily discharges: Oct. 12, Nov. 8-11, 14-16, 26 to Apr. 7, May 24 to June 4, and July 17-20. Records good except for estimated daily discharges, which are poor. No diversions upstream from station. Low dam to prevent erosion, 75 ft upstream. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 12 years, 0.68 ft3/s; 493 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 41 ft³/s, May 15, 1984, gage height, 3.33 ft, present datum; no flow many days most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 22 ft³/s at 1800 July 17, gage height, 2.89 ft; no flow many days.

REVISIONS.--The maximum discharge for the 1986 water year has been revised to 38 $\rm ft^3/s$ at 1945 August 20, gage height, 3.27 ft, superseding figure published in report, WDR CO-86-2.

DISCHARGE, CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DISCHA	RGE, CUBI	C FEET P		, WATER Y MEAN VALU	EAR OCTOBE ES	R 1986 T) SEPTEMB	ER 1987		
DAY	OCT	иол	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	.28 .44 .93 .40	.52 .34 .28 .24 .29	.15 .15 .15 .15	.10 .10 .10 .10	.15 .15 .20 .25	.25 .30 .40 .50	.30 .40 .40 .70	2.5 2.9 2.7 2.9 3.0	1.7 1.6 1.5 1.5	.90 .80 .76 .81	.20 .00 .00 .00	.00 .00 .00
6 7 8 9 10	.22 .12 .02 .01	.32 .35 .30 .15	.20 .15 .15 .15	.15 .15 .15 .10	.10 .15 .25 .50 .75	1.0 1.0 1.2 1.0 .75	.75 .90 .95 .85	3.1 3.0 3.0 3.2 3.2	.43 1.1 1.1 1.2 1.0	.71 .69 .67 .73	.00 .15 .02 .00	.00 .00 .00
11 12 13 14 15	.03 .05 .05 .01	.15 .16 .14 .15	.10 .10 .10 .15	.05 .05 .05 .05	.75 .60 .75 1.0 .75	.75 1.0 1.0 1.4 1.0	.93 1.3 1.1 .87	3.2 3.1 3.1 3.1 3.1	.91 .84 .77 .86 .84	.72 .98 .71 .49	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.00 .44 .53 .58	.15 .14 .17 .33 .27	.15 .15 .10 .10	.01 .01 .01 .01	•75 •75 •75 •75	1.0 1.0 .80 1.0 .80	.81 .88 .80 1.4 1.7	2.9 2.8 2.5 2.4 2.5	.79 .77 .75 .74 .70	.34 2.0 .30 .05	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.20 .39 .30 .25	.27 .31 .26 .19	.15 .15 .15 .15	.01 .01 .01 .05	.50 .50 .50 .75	.70 .60 .50 .50	1.5 1.9 1.9 1.8 1.9	2.7 2.7 2.7 2.5 2.4	.68 .65 .59 .59	.00 .00 .00 .00	.00 .03 .11 .15 .29	.00 .00 .00
26 27 28 29 30 31	.12 .13 .04 .01 .01	.15 .15 .15 .20	.10 .10 .15 .15 .15	.10 .15 .10 .10 .10	.50 .25 .25	.40 .50 .20 .20 .10	2.1 2.4 2.9 2.8 2.5	2.3 2.2 2.1 2.0 1.9 1.8	.50 .51 .39 1.1 .92	.00 .00 .00 .00	.22 .10 .00 .00	.00
TOTAL MEAN MAX MIN AC-FT	6.80 .22 .93 .00	6.77 .23 .52 .14	4.30 .14 .20 .10 8.5	2.23 .07 .15 .01 4.4	14.20 .51 1.0 .10 28	21.30 .69 1.4 .10 42	39.35 1.31 2.9 .30 78	83.5 2.69 3.2 1.8 166	26.95 .90 1.7 .39 53	13.55 .44 2.0 .00 27	1.27 .04 .29 .00 2.5	.00 .00 .00

CAL YR 1986 TOTAL 404.42 MEAN 1.11 MAX 6.1 MIN .00 AC-FT 802 WTR YR 1987 TOTAL 220.22 MEAN .60 MAX 3.2 MIN .00 AC-FT 437

09251000 YAMPA RIVER NEAR MAYBELL, CO

LOCATION.--Lat 40°30'10", long 108°01'45", in NWd sec.2, T.6 N., R.95 W., Moffat County, Hydrologic Unit 14050002, on left bank 100 ft downstream from bridge on U.S. Highway 40, 2.0 mi downstream from Lay Creek, and 3.0 mi east of Maybell.

DRAINAGE AREA. -- 3,410 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1904 to October 1905, June 1910 to November 1912, April 1916 to current year. Monthly discharge only for some periods, published in WSP 1313. No winter records prior to 1917.

GAGE.--Water-stage recorder. Datum of gage is 5,900.23 ft above National Geodetic Vertical Datum of 1929. See WSP 1733 for history of changes prior to Mar. 9, 1937.

REMARKS.--Estimated daily discharges: Oct. 7, 8, 18-29, Dec. 8-9, 13, Feb. 10, and Feb. 15 to Mar. 5. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions, numerous storage reservoirs, and diversions upstream from station for irrigation of about 65,000 acres upstream from, and about 800 acres downstream from station.

AVERAGE DISCHARGE. -- 71 years (water years 1917-87), 1,588 ft3/s; 1,151,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,100 ft 3 /s, May 17, 1984, gage height, 12.42 ft; minimum daily, 2.0 ft 3 /s, July 17-19, 1934.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 2 May 6	1330 0000	* 6 , 140	*6.49 6.45	Ν	lo peak great	ter than base dis	charge.

Minimum daily, 124 ft3/s, Aug. 22.

		DISCHARGE,	IN CU	BIC FEET		WATER AN VAL		BER 1986	TO SEPTEMBE	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	933	859	539	275	300	300	569	5500	2400	640	440	196
2	951	900	399	275	300	325	941	5970	2520	950	502	181
3	853	850	423	250	300	350	1320	5560	2450	891	475	162
4	754	774	514	300	300	400	1350	4420	2250	693	385	175
5	745	700	529	300	275	750	1720	3770	2200	566	334	173
6	779	708	544	325	275	1330	2120	3580	2260	456	287	188
7	775	718	620	300	275	1620	2250	3810	2210	410	278	193
8	775	707	500	275	275	1990	2390	4270	2510	376	285	185
9	779	647	400	250	300	2210	2360	4460	2770	336	279	191
10	797	583	305	250	400	1920	2350	4690	3210	300	349	195
11	827	642	234	275	672	1620	1790	4890	3180	250	325	190
12	895	561	304	275	715	1710	1960	4680	2720	294	293	189
13	824	656	398	300	1280	1800	1820	5220	2370	366	227	202
14	734	583	450	275	1380	2300	1440	5410	2020	684	227	215
15	689	611	475	250	1100	2030	1230	5520	1850	646	212	219
16	643	767	500	250	800	1540	1470	5670	1690	506	200	251
17	623	826	450	250	700	1170	2270	5890	1650	418	212	251
18	625	796	450	250	500	921	3050	5790	1470	347	192	249
19	625	854	425	250	400	921	3540	5610	1270	328	199	262
20	650	911	400	250	350	1130	3890	5110	1140	368	182	247
21	650	1110	400	250	325	1020	3470	4590	1020	312	155	219
22	700	918	400	275	300	772	2700	4380	946	250	124	253
23	800	874	375	275	325	807	2740	3980	864	220	127	253
24	850	767	350	300	300	775	3450	3630	764	206	161	225
25	800	638	325	300	300	697	4250	3500	700	189	193	170
26 27 28 29 30 31	750 700 700 700 713 752	693 650 564 477 525	300 325 300 325 325 300	300 300 300 275 275 275	325 275 275 	625 630 642 554 508 487	4750 4860 4980 5630 5690	3290 3100 2860 2610 2510 2420	625 569 526 501 515	181 178 252 377 399 374	238 355 297 216 187 188	147 151 143 143 148
TOTAL MEAN MAX MIN AC-FT	23391 755 951 623 46400	729 1110 477	2584 406 620 234 4960	8550 276 325 250 16960	476 1380 275	33854 1092 2300 300 67150	82350 2745 5690 569 163300	136690 4409 5970 2420 271100	1706 3210 501	2763 412 950 178 5320	8124 262 502 124 16110	5966 199 262 143 11830

CAL YR 1986 TOTAL 863211 MEAN 2365 MAX 10400 MIN 234 AC-FT 1712000 WTR YR 1987 TOTAL 410633 MEAN 1125 MAX 5970 MIN 124 AC-FT 814500

09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued (National Stream-Quality Accounting Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- November 1950 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: November 1950 to August 1973, July 1975 to current year.
WATER TEMPERATURES: November 1950 to August 1973, July 1975 to current year.
SUSPENDED-SEDIMENT DISCHARGE: December 1950 to May 1958, October 1975 to September 1976, October 1977 to September 1978, October 1981 to September 1982.

INSTRUMENTATION: -- Water-quality monitor since July 1975.

REMARKS. -- Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 1260 microsiemens Nov. 17, 1985; minimum, 89 microsiemens June 27, 1983. WATER TEMPERATURES: Maximum, 33.0°C Aug. 29, 1976; minimum, freezing point on many days during winter months

each year.

SEDIMENT CONCENTRATIONS: Maximum daily, 6,180 mg/l, Aug. 16, 1981; minimum daily, 1 mg/l, several days during December 1975 to February 1976, Jan. 6, 1980.

SEDIMENT LOADS: Maximum daily, 47,100 tons May 9, 1958; minimum daily, 0.04 ton Oct. 2, 3, 1982

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Not determined. WATER TEMPERATURES: Not determined.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREA FLOW INSTA TANEO (CFS	I, COI IN- DU OUS AN	FIC N- CT- (S CE	PH TAND- ARD ITS)	TEMP ATU WAT (DEG	RE ER	TUR- BID- ITY NTU)	D SO	GEN, IS- LVED G/L)	COL FOR FEC 0.7 UM- (COL 100	M, I CAL, MF (STREP TOCOCC FECAL KF AGA (COLS. PER 100 ML	I HA	ARD- ESS AG/L AS ACO3)	DIS SOI (M	CIUM S- LVED S G/L (MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)
ост 15	1245	687		595	8.8		7.5	7.0		10.4		K2	17	0	230	4	3	29
MAR 23	1000	822		1120	8.4		2.0 1	150		11.2		K4	24	0	420	7	6	56
JUN 03	1145	2480		27 5	8.2	1	6.5	18		8.2			_	-	110	2	3	12
AUG 06	1200	284		552	8.5	2	22.5	6.1		7.5		K9	K	7	200	4:	2	24
DATE OCT	SODI DIS SOLV (MC AS 42 94 15	ED S/L NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 2.0 4.1 1.4 2.8	WATE DISSO FIEL AS HC (MG/L	E R DLV D	CAR-BONATE WATER DISSOLV FIELD AS CO3 (MG/L)	FLD. CAC (MG/	TY ER OLV AS	SULFA DIS- SOLV (MG/ AS SC 170 420 63	ED L (L)4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CI 11 29 4-7	ED S	LUO-, IDE, DIS-, OLVED MG/L S F) 0.20 0.30 0.10	1	VED /L 2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVEI (MG/L) 445 808	5 5 5
DATE	SOL	OF S	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITE GEN NITRA DIS SOLV (MG/ AS N	I, TE S- VED 'L	NITRO- GEN, NITRITE DIS- SOLVEI (MG/L AS N)	GE NO2+ DI	S- VED	NITF GEN AMMON TOTA (MG/ AS N	I, IIA L 'L	NITRO GEN, AMMONI DIS- SOLVE (MG/L AS N)	, N IA - OR ED T	ITRO- GEN, GANIC OTAL MG/L S N)	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	PHOS - PHORUS TOTAL (MG/L AS P)	,
OCT 15 MAR		380	0.61	825			<0.01	0.	44	0.0)3	<0.0	1		<0	.20	<0.20	
23 JUN		800	1.1	1790	1.9	8	0.02	2.	00	0.1	1	0.08	В	1.2	1	• 3	0.20	
03 AUG		170	0.24	1170			<0.01	<0.	10	0.0)3	0.03	3	1.1	1	. 1	0.09	
06		330	0.47	263			<0.01	<0.	10	<0.0	1	<0.0	1		0	.90	0.03	

K BASED ON NON-IDEAL COLONY COUNT.

GREEN RIVER BASIN

09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 15	<0.20	0.01	20	< 1	43	<0.5	<1	<1	< 3	2	21
MAR 23	0.06	0.05	<10	<1	58	<0.5	· <1	<1	<3	9	34
JUN	0.00	0.05	110	1	-	-		*1	_		_
03 AUG	0.03	<0.01	70	<1	26	<0.5	<1	1	<3	2	100
06	0.06	<0.01	10	1	58	<0.5	<1	<1	<3	7	22
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT 15	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L	DIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L
OCT 15 MAR 23	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 15	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT						
	5	1245	687	9	17	
MAR 2: APR	3	1000	822	130	289	96
1.	4	1645	1330	194	697	
MAY 1. JUN	4	1615	5 2 20	378	5330	60
0	3	1145	2480	81	542	71
JUL 14 AUG	6	1935	458	9	11	
	6	1200	284	14	11	

09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5		671 734 768 853 883	997 987 956 968 1020				1160 1140 1040 965 872		335 299 265 265 266		531 524 519 546 539	629 630 630 620 638
6 7 8 9		898 902 886 901 904	996 977 964 961 991			752 776	765 704 619 613 586		256 253 248 253 246		539 546 570 587 600	630 619 614 611 604
11 12 13 14 15		890 928 907 890 899	1040 1050 1030 1100 1110			795 815 782 776 747	592 627 632 662 723	192 195 189 182	238 236 244 255 267		609 570 553 560 604	595 599 595 595 585
16 17 18 19 20		922 886 877 877 917	1030 949 909 902 892			774 825 946 1030 1060	731 610 490 421 395	175 172 169 175 189	275 277 281 298 314	510 503 528 552 561	605 616 644 639 640	570 566 559 560 557
21 22 23 24 25		934 902 897 931 896	902 917 881 864 871			1030 1070 1090 1090 1120	398 434 490 457 347	211 220 234 254 263	330	559 561 575 584 607	625 626 637 652 695	564 554 560 551 573
26 27 28 29 30 31	655 643	946 975 931 940 976	888 890 875 884 			1140 1150 1130 1120 1140 1190	299 285 260 	266 274 281 302 325 350		625 638 651 632 594 546	725 690 646 611 613 619	576 596 624 661 685

GREEN RIVER BASIN 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued TEMPERATURE, WATER, (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

MTN MA X MIN DAY MAX MIN MA X MTN MA X MIN MA X MTN MA X OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH •5 •5 5.5 5.0 4.5 4.5 3.5 3.5 .5 .0 ٠.0 . 0 . 0 .0 .0 ---.0 ---.0 .0 .5 .0 -0 .0 3 ---.0 .0 .0 .0 ---.0 .0 4.0 2.5 1.0 .0 .0 .0 .0 .0 2.0 5 ---4.5 1.0 .0 .0 .0 .0 .0 .0 .0 6 .0 .0 .5 .0 ------4.5 2.5 1.0 .0 .0 .0 ------3.5 2.0 1.5 .5 .0 .0 .0 .0 1.0 .0 1.5 2.5 1.5 1.5 8 .5 .0 .0 .0 .0 .0 1.0 .0 ------.0 .0 .0 .0 .0 1.0 .0 ---10 .0 .0 .0 .0 .0 1.0 .0 • 5 .0 ---.5 .0 .0 .0 .0 .0 .0 1.0 .0 1.5 .0 12 ---2.5 1.0 .0 .0 .0 .0 .0 2.0 13 14 ---.0 .0 .0 .0 .0 .0 .0 2.5 ------.0 .0 .0 .0 .5 .0 .0 .0 15 3.0 1.5 .õ .ŏ .0 .0 .0 .o 2.0 3.5 3.5 3.5 2.5 1.5 .0 .0 .0 3.0 16 ------.5 .0 - 0 ---3.0 .0 .0 .5 .0 .0 .0 18 ---5.0 ---.0 .0 .0 .0 .0 1.5 4.0 3.0 .0 .0 .0 .0 .0 .0 4.5 3.0 20 ------3.5 2.0 .5 .0 .0 ٠0 .0 .0 4.0 2.5 4.0 1.0 21 ------3.5 2.0 .0 .0 ٠0 .0 .0 ٠.0 ---3.5 4.0 2.0 ---2.5 .0 .0 .0 .0 .0 .0 23 24 2.5 ---1.5 .0 .0 .0 .0 .0 .0 5.5 1.0 ------1.0 .0 .0 .0 .0 .0 .0 4.5 2.5 5.0 2.0 25 ---.0 .0 .0 .0 1.5 1.0 .0 .0 ------26 2.0 1.0 .0 .0 .0 .0 .0 6.0 2.0 .0 27 28 ---.5 .0 .0 .0 .0 .0 .0 5.0 2.5 ---2.0 - 5 .0 .0 4.0 .5 .0 .0 .0 .0 29 ---1.0 2.5 .0 ___ - 0 - 0 30 8.0 7.0 2.0 -5 .ŏ .0 .0 ------4.0 31 7.0 5.5 .0 .0 .0 .0 ___ ---APRIL MA Y JUNE JULY AUGUST SEPTEMBER 8.0 4.5 17.0 14.0 23.5 18.5 4.5 ------17.0 17.5 18.5 2 8.0 ---14.0 _------24.5 20.0 ___ 9.5 ---___ 14.5 ------24.5 20.5 8.5 6.0 ___ ---24.0 20.0 ------___ 14.5 5 6.0 18.5 23.0 15.5 ---19.5 18.5 18.5 24.0 19.5 6 7 8.0 5.5 16.0 ---___ _------------------22.5 9.5 20.0 ---___ 16.0 7.5 9.5 18.5 18.5 ------16.5 ------9.5 ------24.0 19.0 ---___ 6.5 ---------___ ___ 10 9.0 18.0 14.5 ---24.0 19.5 8.0 7.0 18.0 15.0 22.5 19.5 ---12 7.5 6.0 14.5 13.5 16.0 23.0 18.0 ---19.0 ------20.5 16.5 17.5 18.5 5.5 5.0 ------13 7.5 14.5 12.5 ---21.5 18.0 ---15.0 9.5 17.5 16.5 14 13.0 ------21.0 15 7.0 ------___ 21.0 ---20.0 13.5 14.5 14.0 16 13.0 9.0 14.0 21.0 18.5 21.0 15.5 13.0 17 18 17.5 17.0 17.5 17.0 13.0 12.0 21.5 19.0 17.0 21.5 22.0 15.5 15.0 10.0 13.0 20.5 20.5 10.0 13.0 12.0 10.5 8.5 12.0 10.5 20.0 16.5 22.0 16.0 16.5 11.5 17.0 20 8.5 6.0 12.5 11.5 17.5 19.0 16.5 17.0 12.0 8.0 5.0 11.0 21.5 17.5 12.0 21 11.5 17.0 21.0 16.0 17.5 21.5 22 6.0 12.0 10.5 22.5 18.5 17.0 12.0 9.5 ------------23 12.5 8.5 13.0 10.5 ---23.0 17.0 ___ ---16.5 11.5 ---13.0 10.5 13.5 12.0 ---24.5 17.5 ___ ___ 17.5 18.5 12.0 25 ------13.5 12.5 10.0 13.5 11.5 25.5 20.5 26 12.0 18.5 10.5 26.0 ---27 12.0 10.0 11.5 26.5 21.5 ------18.0 13.0 28 10.0 ---26.0 24.0 ---11.0 12.5 10.5 12.0 21.5 17.0 21.5 ___ ---16.5 29 30 12.0 ---------___ 10.0 ---___ 14.0 ---16.5 10.5

23.5

22.0

20.0

20.0

10.0

12.0

255

09253000 LITTLE SNAKE RIVER NEAR SLATER, CO

LOCATION.--Lat 40°59'58", long 107°08'34", in SW4NW4 sec.15, T.12 N., R.87 W., Routt County, Hydrologic Unit 14050003, on left bank just downstream from highway bridge at Focus Ranch, 0.2 mi downstream from Spring Creek, and 12 mi east of Slater.

DRAINAGE AREA. -- 285 mi².

PERIOD OF RECORD. -- October 1942 to September 1947, October 1950 to current year.

REVISED RECORDS .-- WSP 1733: 1960.

GAGE. -- Water-stage recorder. Datum of gage is 6,831.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 24-28, 31 to Mar. 14, 23, 26, 28, 30. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,000 acres upstream from station.

AVERAGE DISCHARGE .-- 42 years, 237 ft 3/s; 171,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,780 ft³/s, May 23, 1984, gage height, 8.78 ft; maximum gage height, 8.95 ft, Apr. 25, 1974; minimum daily discharge, 8.6 ft³/s, Sept. 10, 1944.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,600 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 1	2200	*1,050	* 5.83				

Minimum daily, 13 ft³/s, Aug. 20.

		DISCHARGE,	IN CUBI	C FEET	PER SECOND, ME	WATER AN VALU	YEAR OCTOBER JES	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	68 85 120 103 80	65 60 50 50 55	45 45 45 45 50	40 40 40 40 40	30 35 35 35 30	35 40 45 50 55	53 59 67 85 108	855 831 637 561 596	335 317 302 293 282	105 67 54 52 54	50 32 25 20 18	18 16 16 20 26
6 7 8 9 10	78 86 91 84 84	50 45 40 45 50	55 50 45 40 30	40 35 35 30 35	30 35 35 35 35	55 60 65 65 60	144 149 164 148 131	633 655 659 666 693	270 259 269 316 302	45 41 39 40 38	18 21 31 26 19	23 19 18 19 18
11 12 13 14 15	83 62 68 63 62	50 55 60 60 65	35 35 35 35 35	35 40 40 35 35	35 35 40 35 35	60 65 65 70 72	130 120 93 107 179	702 754 737 722 724	243 210 186 167 152	47 92 74 48 39	18 20 19 19 23	17 17 17 16 18
16 17 18 19 20	60 60 61 61 67	60 60 55 50	35 35 40 40 40	30 30 30 25 25	35 35 35 30 30	64 59 56 58 56	272 360 487 492 378	759 744 719 671 594	140 127 126 121 112	35 33 38 32 29	42 31 21 16 13	18 19 19 18 17
21 22 23 24 25	77 91 80 75 70	55 55 50 55	40 40 40 40 40	25 30 30 35 35	30 30 35 35 35	61 60 50 53	299 374 522 632 666	589 517 516 470 485	107 97 90 85 77	28 29 28 23 22	17 40 33 48 47	16 16 16 15
26 27 28 29 30 31	70 70 70 70 70 60	50 45 45 45 40	40 40 35 35 45	35 30 30 30 30 30	35 35 35 	65 47 45 45 47	664 694 771 794 766	443 421 413 408 432 347	71 66 63 64 80	29 30 27 38 34 54	45 32 30 30 26 21	16 17 16 16 18
TOTAL MEAN MAX MIN AC-FT	2329 75.1 120 60 4620	52.2 65 40	1250 40.3 55 30 2480	1040 33.5 40 25 2060	950 33.9 40 30 1880	1726 55.7 72 35 3420	330 794 53	8953 611 855 347 7590	178 335 63	1344 43.4 105 22 2670	851 27.5 50 13 1690	530 17.7 26 15 1050

CAL YR 1986 TOTAL 108330 MEAN 297 MAX 2030 MIN 26 AC-FT 214900 WTR YR 1987 TOTAL 45775 MEAN 125 MAX 855 MIN 13 AC-FT 90790

09255000 SLATER FORK NEAR SLATER, CO

LOCATION.--Lat 40°58'57", long 107°22'56", in SW4NE4 sec.21, T.12 N., R.89 W., Moffat County, Hydrologic Unit 14050003, on right bank 15 ft downstream from highway bridge, 1.0 mi upstream from mouth, and 1.5 mi south of Slater.

DRAINAGE AREA .-- 161 mi2.

PERIOD OF RECORD.--May to October, December 1910, March to October 1911, and April to May 1912 (published as Slater Creek), July 1931 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 618: 1910-11. WSP 764: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,600 ft, from river-profile map. May 28, 1910, to May 25, 1912, nonrecording gage at site 1.5 mi upstream at different datum. July 9, 1931, to May 6, 1932, nonrecording gage at site 0.2 mi downstream at different datum.

REMARKS.-Estimated daily discharges: Nov. 19-22, 24-26, 28, Dec. 2-5, 9-18, 22-26, 28 to Jan. 1, 3, 8-10, 16 to Feb. 24, Feb. 28 to Mar. 5, Mar. 10-13, and 15. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 500 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--56 years (water years 1932-87), 78.8 ft3/s; 57,090 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,250 ft³/s May 16, 1984, gage height, 11.78 ft (from floodmark), from rating curve extended above 1,000 ft³/s.; no flow Aug. 2-10, 1934, Aug. 18, 25-27, 1936, Aug. 29 to Sept. 3, 1954, Aug. 3, 4, 15, 16, 1977.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 430 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 18 Apr. 29	2200 0030	528 *599	6.38 *6.73	May 13	0230	492	6.19

Minimum daily discharge, 4.1 ft3/s, Aug. 20, 21.

		DISCHARGE,	IN CU	BIC FEET	PER SECON	D, WATER MEAN VALU	YEAR OCTO	BER 1986 1	TO SEPTEM	BER 1987		
DAY	OCT	иол	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	41 43 55 43 33	64 57 52 50 42	39 43 40 40 43	18 17 18 19 23	30 31 30 30 27	13 17 17 20 25	51 61 62 77 81	426 399 292 242 231	128 118 107 99 97	36 27 19 15 16	12 12 8.3 6.7 5.5	8.4 8.0 6.6 9.3
6 7 8 9	37 47 55 54 55	47 40 38 44 41	43 42 43 25 15	24 24 23 22 21	26 28 30 30 30	40 62 62 47 37	87 93 100 99 91	265 290 296 303 321	99 100 96 119 142	16 14 13 12 13	4.3 5.8 8.6 8.9	12 10 8.6 7.8 7.3
11 12 13 14 15	62 43 43 50 44	49 41 49 48 41	20 25 24 23 23	23 23 24 24 24	30 29 31 31 28	40 35 40 48 37	94 93 81 81 119	306 318 416 361 350	105 90 78 75 6 6	14 35 43 26 18	7.3 5.6 4.3 5.0 7.4	6.9 7.1 7.1 7.1 9.7
16 17 18 19 20	41 40 44 46 65	4 1 4 1 4 1 38 38	25 23 25 29 29	23 21 22 23 19	24 23 20 15 14	37 33 34 37 35	183 255 344 379 258	374 335 303 324 257	63 55 45 45	14 13 12 11 9.6	14 14 8.4 5.6 4.1	11 12 14 12 12
21 22 23 24 25	94 111 94 88 88	40 42 44 42 40	29 25 25 23 22	20 21 23 25 27	12 16 20 25 27	35 37 31 34 31	183 206 308 408 415	247 218 201 184 177	44 43 37 28 21	9.0 9.1 8.8 7.0 5.8	4.1 4.9 8.2 12	11 10 9.6 9.6 9.7
26 27 28 29 30 31	83 86 89 85 67	42 43 45 43 43	21 20 21 20 23 20	28 28 30 31 30 30	23 24 23 	30 30 29 30 30 33	392 399 464 456 380	178 169 155 139 164 137	19 16 16 21	6.1 7.0 7.4 9.3 11	13 11 11 11 10 9.0	11 11 11 13 14
TOTAL MEAN MAX MIN AC-FT	1893 61.1 111 33 3750	64 38	868 28.0 43 15 1720	728 23.5 31 17 1440	707 25.2 31 12 1400	1066 34.4 62 13 2110	6300 210 464 51 12500	8378 270 426 137 16620	2037 67.9 142 16 4040	467.1 15.1 43 5.8 926	260.9 8.42 14 4.1 517	298.8 9.96 14 6.6 593

CAL YR 1986 TOTAL 48853.5 MEAN 134 MAX 871 MIN 2.0 AC-FT 96900 WTR YR 1987 TOTAL 24329.7 MEAN 66.7 MAX 464 MIN 4.1 AC-FT 48260

257

09257000 LITTLE SNAKE RIVER NEAR DIXON, WY

LOCATION.--Lat 41°01'42", long 107°32'55", in SE¹4 NW¹4 sec.8, T.12 N., R.90 W., Carbon County, Hydrologic Unit 14050003, on left bank 200 ft upstream from highway bridge, 1,000 ft upstream from Willow Creek, and 0.8 mi west of Dixon.

DRAINAGE AREA. -- 988 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1910 to September 1923, March 1938 to current year (no winter records since 1971). Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 1243: 1920(M). WDR CO-85-3: 1984 (M).

GAGE.--Water-stage recorder. Datum of gage is 6,331.22 ft above National Geodetic Vertical Datum of 1929.
May 27, 1910, to Sept. 30, 1923, nonrecording gage on highway bridge 200 ft downstream at datum 2.98 ft,
higher. Mar. 15, 1938, to Sept. 30, 1957, water-stage recorder at site 225 ft downstream at datum 2.98 ft,
higher; Oct. 1, 1957, to June 6, 1968, at site 850 ft downstream at present datum, and June 7 to Sept. 30,
1968, at site 225 ft downstream at present datum.

REMARKS.--No estimated daily discharges. Records good except those for August and September, which are fair. Diversions for irrigation of about 9,500 acres upstream from station. One diversion upstream from station for irrigation of about 3,000 acres downstream. Transbasin diversions upstream from station.

AVERAGE DISCHARGE.--46 years (water years 1911-23, 1939-71), 514 ft3/s, 372,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft³/s, May 16, 1984, gage height, 13.56 ft, from floodmark, from rating curve extended above 10,000 ft³/s, some increase in peak due to dam failure; no flow Sept. 19, 20, 22, 1977, Aug. 7, 17, 18, 27-29, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,200 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 29	0530	*2,520	*7.17				

Minimum daily discharge during current period, 0.05 ft³/s, Aug. 13, Sept. 24, 28.

		DISCHARGE,	IN CUBIC	FEET P	ER SECOND, MEAN VAI	WATER LUES	YEAR OCTOBER	1986 T	SEPTEMBE:	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	193 219 317 259 198						336 467 482 879 1110	2120 2130 1760 1430 1310	508 440 400 376 340	2.4 8.1 2.2 1.2	.46 .23 .15 .11	.19 .14 .07 .15
6 7 8 9 10	188 200 212 209 206						1170 1220 1070 1130 656	1450 1480 1480 1440 1500	331 327 322 367 515	1.2 1.2 1.2 .89 .78	.09 .09 .09 .08	.39 .28 .15 .21
11 12 13 14 15	206 136 162 168 162						700 682 456 405 762	1500 1630 1760 1650 1570	355 274 229 177 137	2.0 .68 49 26 13	.06 .06 .05 .10	20 20 25 19 1.9
16 17 18 19 20	152 142 151 149 170						1490 1710 1810 2000 1480	1670 1630 1560 1540 1310	111 70 30 28 23	3.6 2.6 2.6 2.6 1.7	.19 1.3 .64 .21	.84 .39 .28 .25
21 22 23 24 25	221 309 289 269 243						919 1110 1490 1900 2040	1260 1170 989 921 905	18 17 10 5.6 2.5	1.3 1.3 1.4 1.3	.10 .10 .15 .46 3.3	.15 .10 .07 .05
26 27 28 29 30 31	219 203 200 200 191 233					137 176 125 137 117 165	2030 1880 2100 2200 2010	884 821 747 689 752 616	1.5 1.2 1.2 1.2 1.2	.83 .89 1.3 1.2 .29	4.3 3.2 1.2 .59 .46	.12 .08 .05 .11 .15
TOTAL MEAN MAX MIN AC-FT	6376 206 317 136 12650						1256 2200 336	41674 1344 2130 616 82660	5419.4 181 515 1.2 10750	135.06 4.36 49 .25 268	18.58 .60 4.3 .05	116.68 3.89 26 .05 231

258

GREEN RIVER BASIN

09257000 LITTLE SNAKE RIVER NEAR DIXON, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1975 to current year.

PESTICIDE ANALYSIS, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE WATER (DEG C)	DICAMBA (MED- IBEN) (BAN- VEL D) TOTAL (UG/L)	PICLO- RAM (TOR- DON) (AMDON) TOTAL (UG/L)	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JUL 06 AUG	1430	1.0	22.0	<0.01	0.01	0.01	<0.01	<0.01	<0.01
17	1200	1.8	17.0	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

09258000 WILLOW CREEK NEAR DIXON, WY

LOCATION.--Lat 40°54'56", long 107°31'16", on line between secs. 8 and 17, T.11 N., R.90 W., Moffat County, Co., Hydrologic Unit 14050003, on right bank 6.2 mi south of Colorado-Wyoming State line, 8.0 mi upstream from mouth, and 8.3 mi south of Dixon.

DRAINAGE AREA. -- 24 mi², approximately.

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,700 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1-17, and Nov. 8 to Apr. 7. Records fair except for estimated daily discharges, which are poor. One small ditch diverts water upstream from station for irrigation. Regulation by Elk Lake, capacity, 400 acre-ft.

AVERAGE DISCHARGE. -- 34 years, 10.8 ft 3/s; 7,820 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 476 ft³/s, May 10, 1984, gage height, 6.02 ft, from rating curve extended above 160 ft³/s; Maximum gage height, 7.08 ft, Apr.18, 1984 (backwater from ice); no flow Sept. 17-19, 1955, many days July through September 1977, and Aug. 8-16, 1982.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 70 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 15	1900	*230	*4.88	No othe	r peak great	er than base	discharge.

Minimum daily, 0.10 ft³/s, July 10.

		DISCHARGE,	IN CUBI	C FEET	PER SECON	D, WATER MEAN VALU	YEAR OCTOBER JES	1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	7.0 7.5 8.0 7.5 7.0	8.4 6.7 6.1 6.5 6.6	3.0 3.0 2.5 2.5 3.0	2.5 2.5 2.5 2.5 2.5	3.5 3.5 4.0 4.0 3.5	3.5 3.5 3.5 3.5	10 15 10 15 20	35 36 25 18 16	18 18 17 17	4.5 2.5 2.3 2.2 1.8	•53 •53 •53 •53	1.3 1.2 1.1 1.7 2.3
6 7 8 9 10	6.5 6.0 6.0 5.5	6.6 6.2 4.0 4.0 4.5	3.0 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5	3.5 4.0 4.0 4.0	3.5 3.5 3.5 3.5 3.5	15 30 51 35 35	17 18 15 17 20	21 24 24 44 52	.82 .69 .43 .11	.50 .50 .50 1.1 .84	1.7 1.5 1.4 1.5
11 12 13 14 15	5.0 4.0 3.5 3.5	4.5 4.5 5.0 6.0 7.5	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5	4.0 4.0 4.0 4.0 3.5	3.5 3.5 3.5 3.5	26 19 11 29 77	26 30 40 34 35	31 18 14 12 8.5	1.9 12 6.0 2.5 1.2	1.0 1.2 1.3 1.7 2.4	1.5 1.5 1.4 1.6
16 17 18 19 20	3.5 4.0 4.7 5.0 5.9	7.0 6.6 6.0 5.0 5.0	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5	3.5 3.5 3.5 3.5 3.5	3.5 3.5 3.5 3.5	83 69 67 43 22	46 41 37 38 29	7.2 5.8 4.8 4.2 4.2	.80 2.1 4.4 .66	3.5 2.0 1.5 1.4	1.7 2.0 1.9 1.6 1.7
21 22 23 24 25	7.7 17 12 9.2 7.9	5.0 4.5 4.0 4.0	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5	3.5 3.5 3.5 3.5 3.5	3.5 3.5 3.5 3.5	19 23 33 37 35	25 21 26 25 23	5.1 4.4 4.8 2.8 2.2	.55 .54 .54 .54	1.9 2.9 2.4 5.0 5.0	1.8 1.9 1.9 2.1 2.3
26 27 28 29 30 31	7.2 6.5 6.3 6.1 6.1 8.2	4.5 5.0 5.0 4.5 3.5	2.5 2.5 2.5 2.5 2.5 2.5	3.0 3.0 3.0 3.0 3.0	3.5 3.5 3.5 	3.5 3.5 3.5 3.5 5.0	34 33 33 33 28	26 19 14 13 16 15	2.3 2.2 2.2 2.6 2.8	.53 .53 .53 .53 .53	3.9 2.5 2.0 1.8 1.5	2.1 2.1 2.1 2.1
TOTAL MEAN MAX MIN AC-FT	203.3 6.56 17 3.5 403		79.5 2.56 3.0 2.5 158	80.5 2.60 3.0 2.5 160	103.0 3.68 4.0 3.5 204	110.0 3.55 5.0 3.5 218	990 33.0 83 10 1960	796 25.7 46 13 1580	395.1 13.2 52 2.2 784	53.48 1.73 12 .10 106	53.79 1.74 5.0 .50 107	52.4 1.75 2.3 1.1 104

CAL YR 1986 TOTAL 5238.5 MEAN 14.4 MAX 116 MIN 1.8 AC-FT 10390 WTR YR 1987 TOTAL 3077.75 MEAN 8.43 MAX 83 MIN .10 AC-FT 6100

09259050 LITTLE SNAKE RIVER BELOW BAGGS, WY

WATER QUALITY RECORDS

LOCATION.--Lat 41°01'43", long 107°41'14", in SE4NW4NW4 sec.7, T.12 N., R.92 W., Carbon County, Hydrologic Unit 14050003, 0.8 mi downstream from Ledford Slough, 1.5 mi southwest of Baggs, and 3.5 mi downstream from bridge on State Highway 789 in Baggs.

PERIOD OF RECORD. -- October 1980 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)
OCT 28	1800	241	435	8.3	10.0	610	9.7
JAN 15	0930	160	415	7.7	0.0	598	11.3
APR 21	1245	1220	300	8.6	5.5	610	10.1
JUL 06	1200	2.3	390	8.3	22.0	605	9.2
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
OCT 28	DIS- SOLVED (PER- CENT SATUR-	FORM, FECAL, 0.7 UM-MF (COLS./	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHORUS, TOTAL (MG/L
OCT 28 JAN 15	DIS- SOLVED (PER- CENT SATUR- ATION)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)
OCT 28 JAN	DIS- SOLVED (PER- CENT SATUR- ATION)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS, TOTAL (MG/L AS P)

 ${\tt K-Results}$ based on colony count outside the acceptable range (non-ideal colony count).

PESTICIDE ANALYSIS, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER - ATURE WATER (DEG C)	DICAMBA (MED- IBEN) (BAN- VEL D) TOTAL (UG/L)	PICLO- RAM (TOR- DON) (AMDON) TOTAL (UG/L)	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JUL 06 AUG	1200	2.3	22.0	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
17	1000	1.2	16.0	<0.01	0.02	<0.01	<0.01	<0.01	<0.01

261

09260000 LITTLE SNAKE RIVER NEAR LILY, CO

LOCATION.--Lat 40°32'50", long 108°25'25", in NW\u00e4NE\u00e4 sec.20, T.7 N., R.98 W., Moffat County, Hydrologic Unit 14050003, on left bank 170 ft downstream from highway bridge, 6.0 mi north of Lily, and 10 mi upstream from mouth.

DRAINAGE AREA. -- 3,730 mi², approximately.

PERIOD OF RECORD.--June to August 1904 (published as "near Maybell"), October 1921 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 1713: 1959.

GAGE.--Water-stage recorder. Elevation of gage is 5,685 ft, from river-profile map. June 9 to Aug. 14, 1904, nonrecording gage, and May 5, 1922, to Nov. 30, 1935, water-stage recorder, at site 300 ft upstream at different datums.

REMARKS.--Estimated daily discharges: Nov. 13, 21-25, 27, Dec. 2, 6 to Feb. 22, 28, Mar. 1, 21, 23, 26, 28-30, Apr. 3, and Aug. 9, 11-15. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 21,000 acres upstream from station.

AVERAGE DISCHARGE. -- 66 years, 593 ft 3/s; 429,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,700 ft³/s, May 18, 1984, gage height, 9.85 ft; maximum gage height, 11.1 ft, Feb. 13, 1962, from floodmark (backwater from ice); no flow at times in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,500 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 20	1230	*2,540	*4.53				

Minimum daily, 2.0 ft³/s, Aug. 12, 13.

		DISCHARGE,	IN C	UBIC FEET	PER SECO	ND, WATER MEAN VAL		OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	NOA	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	313 322 592 681 406	280 290 315 290 264	199 180 177 142 196	135 135 135 135 140	140 140 150 160 160	275 309 291 253 267	307 380 1300 1390 1710	1950 1950 2040 1880 1570	804 680 587 527 503	27 24 17 15 14	16 12 9.1 8.1 6.9	21 17 12 15 19
6 7 8 9	374 328 288 269 264	262 265 263 283 230	200 190 180 150 120	150 150 140 130 120	160 170 180 190 200	373 974 1560 1740 1530	2090 1870 1830 1490 1420	1310 1260 1290 1270 1260	478 440 429 453 478	20 16 9.4 9.3 12	8.0 9.0 6.0 3.5 8.7	20 22 31 22 17
11 12 13 14 15	268 252 250 256 224	213 194 250 244 241	100 110 120 130 140	110 115 120 120 110	210 220 250 300 275	1260 910 690 540 559	1140 895 867 798 615	1230 1260 1300 1480 1460	750 694 526 441 378	18 25 22 17 15	3.0 2.0 2.0 2.5 3.5	21 22 16 16 14
16 17 18 19 20	225 230 225 223 217	272 274 269 275 262	140 140 141 140 140	100 80 80 85 85	300 300 300 290 285	801 604 494 481 458	562 1080 1540 1780 2170	1360 1370 1430 1380 1350	330 286 253 232 197	16 31 42 33 27	7.3 9.2 12 14 12	12 12 12 9.8 9.2
21 22 23 24 25	220 242 273 594 478	260 260 240 240 240	140 140 140 140 140	80 85 90 100 110	257 275 261 270 278	375 357 330 318 304	1850 1450 1110 1200 1630	1300 1170 1120 996 936	165 133 104 93 94	25 28 35 22 18	9.0 6.0 6.3 10 20	9.1 8.8 9.1 9.3 8.0
26 27 28 29 30 31	359 330 304 279 269 279	236 240 245 233 219	140 140 140 140 140 140	120 130 130 130 130 130	219 154 200 	300 297 275 280 280 280	1870 1930 1830 1920 2030	906 911 877 835 814 799	74 54 38 34 27	16 18 20 23 18 16	16 16 20 29 25 21	7.5 6.7 6.1 6.4 7.6
TOTAL MEAN MAX MIN AC-FT	9834 317 681 217 19510	255 315 194	4575 148 200 100 9070	3610 116 150 80 7160	6294 225 300 140 12480	17765 573 1740 253 35240	42054 1402 2170 307 83410	40064 1292 2040 799 79470	10282 343 804 27 20390	648.7 20.9 42 9.3 1290	333.1 10.7 29 2.0 661	418.6 14.0 31 6.1 830

CAL YR 1986 TOTAL 302485.0 MEAN 829 MAX 4800 MIN 46 AC-FT 600000 WTR YR 1987 TOTAL 143527.1 MEAN 393 MAX 2170 MIN 2.0 AC-FT 284700

09260050 YAMPA RIVER AT DEERLODGE PARK, CO

LOCATION.--Lat 40°27'02", long 108°31'20" (corrected), in SE4SW4 sec.21, T.6 N., R.99 W., Moffat County, Hydrologic Unit 1405002, in Dinosaur National Monument, on left bank at Deerlodge Park, 1,250 ft upstream from Disappointment Draw, and 5.5 mi downstream from Little Snake River.

DRAINAGE AREA. -- 7,660 mi², approximately.

PERIOD OF RECORD. -- August 1975 and January 1978 (discharge measurements only), April 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,600 ft above National Geodetic Vertical Datum of 1929, from topographic map.

AVERAGE DISCHARGE. -- 5 years, 3,145 ft³/s; 2,279,000 acre-ft/yr.

REMARKS.--Estimated daily discharges: Dec. 13-22, Jan. 11 to Mar. 24, July 26-28, Aug. 15-26, and Sept. 1-6, 26-30. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions, numerous storage reservoirs, and diversions for irrigation of about 86,800 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,200 ft 3 /s, May 18, 1984, gage height, 19.13 ft; minimum daily, 140 ft 3 /s, Aug. 23-24, 1987.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 10,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 2	2300	* 7,990	*8.01				

Minimum daily, 140 ft³/s, Aug. 23-24.

		DISCHARGE	, IN C	UBIC FEET		ID, WATER MEAN VAL		OBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	Nov	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	1040	986	860	456	450	425	839	7450	3330	934	458	230
2	984	1060	804	458	450	425	1020	7590	3320	1120	506	240
3	1080	1130	668	385	450	450	2180	7800	3340	1450	571	210
4	1720	1110	647	405	450	500	2670	6810	3100	1350	518	190
5	1320	993	744	448	400	800	2960	5510	2940	1090	407	205
6	1270	918	816	525	400	1500	4050	4770	2920	927	342	220
7	1140	916	883	527	400	2000	3980	4600	2870	800	306	231
8	1040	892	881	544	400	2200	4110	5060	2880	729	298	249
9	1040	896	779	467	450	2500	3750	5430	3200	642	297	243
10	1070	832	437	434	600	3000	3670	5600	3560	601	296	240
11	1110	788	298	450	850	2500	3220	5720	4070	589	434	244
12	1100	798	402	450	950	2200	2650	5890	4530	557	647	220
13	1150	829	475	450	1500	2300	2670	6000	3970	512	635	210
14	1090	913	550	425	1600	2500	2420	6350	3420	625	410	230
15	996	854	650	400	1700	2800	1900	6450	3040	745	300	240
16	939	935	650	400	1400	2300	1740	6480	2660	602	250	262
17	913	1100	650	400	1100	1900	2510	6590	2500	479	205	291
18	890	1150	600	400	900	1600	3970	6800	2300	443	200	305
19	880	1100	625	400	800	1300	4680	6690	2150	381	200	304
20	889	1120	600	400	600	1400	5580	6420	1900	325	200	325
21	899	1230	575	400	500	1600	5300	5950	1760	384	180	313
22	930	1430	600	425	475	1300	4260	5640	1640	375	160	256
23	1020	1220	628	425	450	1100	3490	5360	1500	311	140	308
24	1390	1170	600	450	500	1100	3830	4840	1210	257	140	321
25	1490	1060	527	450	450	1030	5010	4490	1120	240	180	282
26 27 28 29 30 31	1220 1120 1030 953 919 959	899 952 911 851 779	503 501 514 484 495 479	450 450 450 400 400 400	450 500 425 	939 926 911 866 756 761	6060 6460 6470 7030 7620	4350 4090 3930 3630 3440 3350	1060 1000 916 847 903	230 210 200 300 491 497	230 275 393 373 292 244	220 160 170 165 170
TOTAL MEAN MAX MIN AC-FT	33591 1084 1720 880 66630	994 1430 779	18925 610 883 298 37540	13524 436 544 385 26820	19600 700 1700 400 38880	45889 1480 3000 425 91020	116099 3870 7620 839 230300	173080 5583 7800 3350 343300	73956 2465 4530 847 146700	18396 593 1450 200 36490	10087 325 647 140 20010	7254 242 325 160 14390

CAL YR 1986 TOTAL 1223181 MEAN 3351 MAX 15000 MIN 298 AC-FT 2426000 WTR YR 1987 TOTAL 560223 MEAN 1535 MAX 7800 MIN 140 AC-FT 1111000

09302450 LOST CREEK NEAR BUFORD, CO

LOCATION.--Lat 40°03'01", long 107°28'06", in SE4SE4 sec.15, T.1 N., R.90 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 15 ft downstream from highway bridge, 540 ft upstream from mouth, 0.5 mi downstream from Long Park Creek, and 9 mi northeast of Buford.

DRAINAGE AREA. -- 21.5 mi2.

PERIOD OF RECORD. -- October 1964 to current year.

REVISED RECORDS. -- WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,560 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1973, to Sept. 30, 1975, at site 150 ft upstream at present datum.

REMARKS.--Estimated daily discharges: Oct. 20 to Nov. 30, and Dec. 10 to Feb. 4. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 23 years, 23.8 ft3/s; 17,240 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 944 ft³/s, May 9, 1974, gage height, 7.53 ft, from rating curve extended above 260 ft³/s; minimum daily, 0.30 ft³/s, Jan. 9, 1977.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 28	1730	*465	*3.81	No other	peak greater	r than base disch	arge.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 2.1 ft3/s, Sept. 2.

		DISCHAR	JE, IN CO.	BIC LEEI	PER SECON	MEAN VALU	JES	BER 1900 .	IO SEPIEM	IDEN 1901		
DAY	OCT	иол	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	6.6 8.9 12 10 7.1	5.0 4.8 5.2 4.4 4.5	4.7 5.2 5.2 4.8 4.7	4.1 4.2 4.0 3.9 3.7	3.8 3.8 3.8 3.8	4.5 4.3 4.3 4.8	6.4 6.7 8.1 7.7 7.7	190 146 105 89 92	21 20 19 18 17	8.8 5.4 4.6 4.3 4.1	4.9 3.5 3.2 2.6 2.5	2.5 2.1 2.2 2.7 2.5
6 7 8 9 10	7.7 8.6 8.4 8.3 8.0	4.4 4.2 4.1 4.3 4.1	4.6 4.6 4.6 4.0 4.1	3.3 3.2 3.1 3.0 3.1	3.9 3.9 3.9 3.9	5.3 5.7 5.9 5.8 5.7	8.5 9.9 11 12 13	101 103 95 87 82	17 18 18 24 22	3.9 3.7 3.6 3.5 3.4	2.7 5.2 5.6 3.3 2.8	2.4 2.5 2.6 2.3 2.3
11 12 13 14 15	8.6 6.6 5.6 5.9 5.5	3.8 3.6 3.4 3.7 3.6	4.0 4.1 4.2 4.1 4.2	3.3 3.5 3.8 3.9	4.0 4.0 4.1 3.8	5.7 5.6 6.1 6.2 6.0	17 17 16 17 20	76 72 70 68 65	17 14 12 11	4.7 7.6 5.7 4.1 3.5	2.7 3.1 2.9 4.4 3.3	2.4 2.2 2.2 2.5 2.4
16 17 18 19 20	5.2 5.3 5.2 5.0 4.7	3.6 3.8 4.0 5.4	4.5 4.4 4.2 4.1 4.2	4.0 4.0 4.0 4.0	3.9 3.8 3.9 4.1 4.1	6.0 5.2 5.8 6.0 5.9	37 66 110 114 81	61 58 53 49	9.5 8.3 7.5 7.2 6.7	3.3 3.7 4.3 3.3 3.2	3.2 2.8 2.5 2.5 2.3	2.5 2.9 2.7 2.5 2.4
21 22 23 24 25	4.4 4.2 4.2 4.3 4.2	5.0 5.0 5.0 4.8 4.5	4.3 4.2 4.0 3.2 3.3	4.0 3.9 4.0 3.9 3.8	4.3 4.3 4.5 4.6 4.4	6.4 5.8 6.0 5.9	67 81 131 167 179	50 42 37 34 32	6.3 5.9 5.7 5.5 5.0	3.1 3.2 3.0 2.9	2.8 3.1 3.3 4.1 8.3	2.4 2.5 2.4 2.6 2.7
26 27 28 29 30 31	4.3 4.4 4.5 4.3 4.2 4.8	4.5 4.6 4.5 4.6	3.9 3.7 4.0 4.6 4.1	3.7 3.6 3.7 3.6 3.9 3.8	4.4 4.5 4.5 	6.1 5.6 6.3 5.5 6.0 5.9	190 216 274 215 189	31 29 27 26 25 23	4.8 4.5 4.4 5.9 7.6	4.7 3.7 3.6 4.0 4.2 4.4	5.1 3.6 2.9 2.7 2.6 2.5	2.8 2.7 2.7 2.7 2.7
TOTAL MEAN MAX MIN AC-FT	191.0 6.16 12 4.2 379	130.6 4.35 5.4 3.4 259	131.7 4.25 5.2 3.2 261	116.0 3.74 4.2 3.0 230	113.8 4.06 4.6 3.8 226	174.5 5.63 6.4 4.3 346	2295.0 76.5 274 6.4 4550	2067 66.7 190 23 4100	352.8 11.8 24 4.4 700	128.4 4.14 8.8 2.9 255	107.0 3.45 8.3 2.3 212	75.0 2.50 2.9 2.1 149

CAL YR 1986 TOTAL 12159.6 MEAN 33.3 MAX 548 MIN 3.1 AC-FT 24100 WTR YR 1987 TOTAL 5882.7 MEAN 16.1 MAX 274 MIN 2.1 AC-FT 11670

09303000 NORTH FORK WHITE RIVER AT BUFORD, CO

LOCATION.--Lat 39°59'15", long 107°36'50", in NW4NW4 sec.9, T.1 S., R.91 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank 600 ft east of Buford and 1.2 mi upstream from South Fork White River.

DRAINAGE AREA .-- 260 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1910 to December 1915, July 1919 to December 1920, October 1951 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as North Fork White River near Buford prior to 1951 and as White River at Buford 1951-67. Records for July 1903 to December 1906 at site 6.5 mi upstream not equivalent because of inflow between sites.

REVISED RECORDS.--WSP 1343: 1912. WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,010 ft above National Geodetic Vertical Datum of 1929, from topographic map. May 24, 1910, to May 27, 1914, nonrecording gage at site 1.5 mi upstream at different datum. May 28, 1914, to Dec. 7, 1915, and July 1, 1919, to Oct. 9, 1920, nonrecording gage at present site at different datum.

REMARKS.--Estimated daily discharges: Dec. 26 to Mar. 10, and Mar. 30 to Apr. 9. Records good except those for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 900 acres upstream from, and 300 acres downstream from station.

AVERAGE DISCHARGE.--42 years (water years 1911-15, 1920, 1952-87), 322 ft3/s; 233,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,550 ft³/s, May 24, 1984, gage height, 6.76 ft; maximum gage height, 7.22 ft, Jan. 9, 1961 (backwater from ice); minimum daily discharge, 90 ft³/s, Feb. 21, 1955.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 28	2030	*1,330	*5.38	May 16	2200	1,000	5.05

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 170 ft³/s, Feb. 18,19.

						MEAN VALU	JES	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
DAY	OCT	иои	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	300 306 328 301 291	274 260 254 265 255	230 231 232 230 231	195 200 205 210 210	180 180 175 180 190	190 190 190 195 190	195 185 185 195 205	940 856 686 608 613	591 591 572 566 566	259 232 253 290 284	245 229 215 207 207	192 191 193 196 189
6 7 8 9 10	291 299 296 294 291	260 260 255 253 255	231 232 229 222 189	205 195 190 190 185	190 190 195 190 185	190 190 190 190	205 215 225 240 250	681 762 780 776 793	554 602 723 801 823	275 274 272 259 244	206 248 250 214 207	185 187 190 187 188
11 12 13 14 15	304 285 271 272 269	250 250 247 247 246	213 220 230 221 232	190 200 210 205 200	180 190 180 180 180	200 205 203 210 205	257 258 240 245 282	792 769 774 813 861	718 645 631 596 562	250 290 270 267 262	206 211 213 220 209	186 183 185 186 188
16 17 18 19 20	266 267 273 269 270	246 247 251 288 263	228 215 214 224 218	195 190 190 195 190	180 175 170 170 180	205 201 202 203 206	339 407 504 525 444	882 894 882 870 909	553 500 458 418 382	258 263 257 244 234	214 205 197 196 195	185 192 185 182 180
21 22 23 24 25	265 281 272 265 265	257 255 235 249 245	214 210 213 216 210	185 190 195 195	190 195 190 185 180	205 204 200 200 199	387 429 562 687 735	880 789 756 741 708	361 340 308 284 265	228 227 222 219 219	198 199 207 222 274	180 179 178 177 177
26 27 28 29 30 31	257 260 260 258 256 268	244 235 239 238 240	205 200 205 200 200 200	185 190 200 200 190 185	175 180 185 	201 202 205 195 200 210	767 828 990 966 910	676 608 562 554 547 553	256 246 237 244 251	238 227 234 234 231 246	230 207 207 198 196 195	180 180 178 178 177
TOTAL MEAN MAX MIN AC-FT	8650 279 328 256 17160	7563 252 288 235 15000	6745 218 232 189 13380	6055 195 210 185 12010	5120 183 195 170 10160	6171 199 210 190 12240	12862 429 990 185 25510	23315 752 940 547 46250	14644 488 823 237 29050	7762 250 290 219 15400	6627 214 274 195 13140	5534 184 196 177 10980

CAL YR 1986 TOTAL 152184 MEAN 417 MAX 1340 MIN 180 AC-FT 301900 WTR YR 1987 TOTAL 111048 MEAN 304 MAX 990 MIN 170 AC-FT 220300

09303000 NORTH FORK WHITE RIVER AT BUFORD, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIN	FL INS IE TAN	EAM- CI OW, CO TAN- DU EOUS AN	E- FIC N- CT- CE /CM)	PH (STAND- ARD UNITS)	TEMPE ATUI WATE (DE G	RE ER	DXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS	JM, S- /ED /L
	NOV 04	153	30 26	3	230	8.6	1	4.0	10.3	150	44	8.	• 7
	MAY 16	100		3	182	8.1		6.0	9.8	84			.2
	JUN 30	103		_	277	8.4		9.5	9.1	130	-		.9
	SEP 01	132			310	8.5		4.0	10.6	160	50		•5
		SODIU	so	DIUM PO	TAS-	ALKA- LINITY	SULF	ATE	CHLO- RIDE,	FLUO- RIDE,	SILICA, DIS-	SOLII SUM (CONST	DS, DF
	DATE	DIS- SOLVE (MG/ AS N	D T	ION SC TIO (N	IS- LVED IG/L K)	LAB (MG/L AS CACO3)	DIS- SOLV (MG/ AS SO	VED /L	DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS F)	SOLVED (MG/L AS SIO2)	TUENT DIS SOLV (MG/	S- VED
	NOV 04	2.	. 8	0.1	1.0	88	64		0.40	0.10	18		192
	MAY 16	2.	2	0.1	1.1	62	28		0.40	<0.10	17		116
	JUN 30	2.	7	0.1	0.90	85	55		0.30	0.20	17		176
	SEP 01	3 .	0	0.1	1.0	92	87		0.20	0.10	18	2	224
	DATE	SOLII DIS SOLV (TON PEF AC-F	ED SO	IDS, C IS- NIT LVED I DNS SC ER (M	TRO- EN, RITE DIS- LVED IG/L N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITI GEN AMMON DIS SOLV (MG/	N, NIA (S- VED /L	NITRO- GEN, DRGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS	DIS-	ous Ho, ED
	NOV 04	0.	26 13	9 <0	.010	<0.100	<0.0	010		1.0	0.030	<0.0	010
	MAY 16	0.	16 26	5 (.010	<0.100	0.0	060	0.54	0.60	0.020	0.0	020
	JUN 30	0.	.24 11	o <0	.010	<0.100	0.0	010	0.39	0.40	0.010	0.0	010
	SEP 01	0.	30 11	8 <0	.010	<0.100	0.0	020	0.28	0.30	0.020	<0.0	010
	DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ANTI- MONY, TOTAL (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	ERA (U	IUM, LI FAL TO COV- RI ABLE EI G/L (1	ERYL- IUM, DTAL ECOV- RABLE UG/L S BE)	CADMI TOTA RECO ERAR (UG/ AS (IUM MI AL TO OV- RE BLE EF /L (U	TAL T COV- R RABLE E IG/L (OTAL T ECOV- R RABLE E UG/L (PPER, OTAL ECOV- RABLE UG/L S CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
	04	80	<1	<	•	<100	<10		<1	<1	<1	3	220
	16	850	<1	<1	•	<100	<10		<1	<1	1	13	860
SEF	01	100	< 1	<	•	<100	<10		<1	< 1	<1	<1	130
	DA TE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERO TOT REO ER/	CURY DI FAL TO COV- RI ABLE E G/L (OLYB- ENUM, OTAL ECOV- RABLE UG/L S MO)	NICKE TOTA RECO ERAH (UG,	AL SE OV- NI BLE TO /L (U	LE- T LUM, R DTAL E JG/L (LVER, OTAL T ECOV- R RABLE E UG/L (TRON- TIUM, OTAL ECOV- RABLE UG/L S SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
иои	J 04	5	<10	20) <r< td=""><td>0.10</td><td>1</td><td></td><td><1</td><td><1</td><td><1</td><td>400</td><td>10</td></r<>	0.10	1		<1	<1	<1	400	10
MA		< 5	<10	20		0.10	2		3	<1	4	260	<10
SE		< ₅	<10	10		0.10	1		<1	1	<1	500	<10
·	-	,				· · ·				•	•	2	, ,

09303000 NORTH FORK WHITE RIVER AT BUFORD, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					JUN				
01	1615	275	275	8.5	02	1100	569	205	7.0
DEC 08	1150	224	240	4 -	JUL	411.00	0.05	0110	47.0
MAR	1150	231	312	1.5	06 AUG	1400	285	240	17.0
12	1415	209	327		13	1055	216	315	15.0
Ma y	,5	,	3-7		SEP	,,,,,	_,,,	3.5	.500
01	1230	860	193	5.5	11	1320	188	330	10.0

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
APR						
22	1505	406		41	45	66
MAY	.,,,,			• •		
01	0945	860		71	165	69
08	1015	752		51	104	69
16	1000	843		52	118	57
20	1515	908		40	98	58
27	1000	604	i	13	21	68
JUN						
12	1030	629		19	32	52
30	1030	231		13	8.1	49
JUL	1000	024		10		
28 SEP	1020	231		12	7.5	56
01	1320	195		8	4.2	52
01	1320	195		o	4.2	26

09303300 SOUTH FORK WHITE RIVER AT BUDGE'S RESORT, CO

LOCATION.--Lat 39°50'36", long 107°20'03", in NW2 sec.36, T.2 S., R.89 W., Garfield County, Hydrologic Unit 14050005, on right bank 20 ft upstream from Forest Service trail bridge, 0.2 mi upstream from Wagonwheel Creek, and 0.3 mi northeast of Budge's Resort.

DRAINAGE AREA .-- 52.3 mi2.

TOTAL

MEAN

MAX

MIN

AC-FT

83.5

 76.9

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1975 to current year.

REVISED RECORDS.--WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 8,980 ft above National Geodetic Vertical Datum of 1929, from topographic map. June 1, 1975, to July 7, 1976, at site on left bank 50 ft upstream at datum 1.3 ft, lower.

REMARKS.--Estimated daily discharge: Dec. 1-5, 9 to Jan. 3, 11 to Feb. 7, 18-26, Mar. 28-31. Records good except for estimated daily discharges, which are poor. No diversion upstream from station.

AVERAGE DISCHARGE. -- 12 years, 112 ft3/s; 81,140 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,750 ft³/s, June 25, 1983, gage height, 6.57 ft, from rating curve extended above 850 ft³/s; minimum daily, 21 ft³/s, Sept. 29, 30, 1977.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 531 ft³/s at 2100 May 17, gage height, 4.85 ft; minimum daily, 53 ft³/s, Sept. 18-26.

DAY OCT NOV JUN JUL AUG SEP DE C JAN FEB MA R APR MA Y 81 64 56 85 58 73 56 92 78 69 66 62 163 240 67 8 78 72 87 72 72 62 56 73 58 18 55 53 8 1 75 72 61 73 78 58 88 64 60 53 78 54 76 73 72 56 78 58 ___

59.3

78.1

77.5

61.1

54.5

CAL YR 1986 TOTAL 52916 MEAN 145 MAX 859 MIN 48 AC-FT 105000 WTR YR 1987 TOTAL 32471 MEAN 89.0 MAX 476 MIN 53 AC-FT 64410

64.1

 58.8

09303300 SOUTH FORK WHITE RIVER AT BUDGE'S RESORT, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	
	OCT 20	1440	76	125	8.4	6.0	9.0	71	19	5.6	
	MAY 13	1030	228	154	7.8	4.5	9.8	83	22	6.9	
	JUL 09	1230	71	147	8.4	13.0		72	19	5.9	
	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
	OCT 20	1.8	0.1	2.4	72	4.8	0.50	<0.10	17	94	
	MAY 13	1.3	0.1	0.70	85	4.0	0.20	<0.10	11	97	
	JUL 09	1.8	0.1	0.90	76	4.3	<0.10	0.10	17		
	DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	
	20 MAY	0.13	19.3		<0.100						
	13 JUL	0.13	59.8	<0.010	0.120	<0.010	- 1.6	0.50	0.020	0.010	
	09			<0.010	<0.100	0.040	0.46	0.50	0.020	<0.010	
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ANTI- MONY, TOTAL (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 20	<10	<1	<1	<100	<10	<10	<1	10	<1	2	60
MAY 13	60	<1	<1	<100	<10		<1	10	<1	6	70
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV - ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON - TIUM, TOTAL RECOV - ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
OCT 20	20	< 5	<10	10	<0.10	<1	2	<1	<1	120	270
MAY 13		< 5	<10	<10	<0.10	<1	1	<1	<1	60	<10

09303300 SOUTH FORK WHITE RIVER AT BUDGE'S RESORT, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
DEC 04	1140	74	145	0.5	AUG	1350	60	154	14.0
JAN 22 MAR	1245	54	144	0.0	SEP 18	0830	52	160	0.5
25	0920	56	147	0.5					

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MA Y					
13	1030	228	1	0.62	36
JUL 09	1230	71	5	0.96	

09303320 WAGONWHEEL CREEK AT BUDGE'S RESORT, CO

LOCATION.--Lat 39°50'40", long 107°20'10", in SW4SW4 sec.25, T.2 S., R.89 W., Garfield County, Hydrologic Unit 14050005, on right bank 60 ft upstream from mouth and confluence of South Fork White River, about 800 ft downstream from private road bridge, and 0.2 mi north-northeast of Budge's Resort.

DRAINAGE AREA. -- 7.36 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1975 to current year.

REVISED RECORDS. -- WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 8,980 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 4 to May 12, and July 3 to Sept 30. Records fair except for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--12 years, 11.3 ft3/s; 8,190 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 336 ft³/s, June 8, 1985, gage height 4.64 ft; no flow many days each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 55 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 18	1900	* 128	*3.47				

Minimum daily discharge, 0.03 ft3/s, Sept. 30.

		DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEA	R OCTOBER	1986 TO	SEPTEMBEF	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1.8 1.9 2.0 1.9	2.0 2.0 2.1 2.1 2.0	.90 .85 .85 .80	.60 .90 .60 .60	.38 .38 .36 .42	.18 .16 .16 .14	.06 .08 .08 .08	28 30 24 28 32	55 66 66 65	5.8 5.3 5.2 5.0 4.9	1.0 .95 .88 .80	.17 .16 .15 .19
6 7 8 9	1.8 1.9 1.9 2.0 2.0	2.0 1.9 1.9 1.8	.90 1.0 .90 .80 .86	.70 .60 .75 .60	.34 .34 .32 .32	.12 .12 .10 .13	.10 .10 .10 .12	36 40 44 46 50	64 67 65 60 54	4.8 4.6 4.6 4.4 4.2	.70 .91 .66 .60	.14 .13 .13 .12
11 12 13 14 15	2.1 2.0 2.0 1.9	1.9 1.9 1.8 1.6	.80 .80 .80 .80	.55 .55 .55 .55	.40 .32 .36 .40	.15 .10 .08 .08	.14 .28 .14 .16	55 60 62 69 80	46 41 37 34 31	4.8 6.2 4.6 4.4 4.2	.54 .52 .55 .53	.12 .11 .10 .22 .14
16 17 18 19 20	2.0 2.2 2.3 2.3 2.4	1.4 1.4 1.4 1.5	.75 .75 .75 .90	.50 .50 .50 .55 .45	.26 .26 .24 .24	.06 .06 .06 .06	.20 .20 .80 1.5 2.0	101 114 115 104 96	28 24 21 18 15	4.2 4.0 3.8 3.3 2.8	.46 .44 .38 .36	.13 .11 .12 .10
21 22 23 24 25	2.4 3.1 2.8 2.4 2.4	1.6 1.2 1.2 1.4 1.0	.75 .75 .70 .70	.45 .41 .40 .50	.22 .22 .26 .20	.06 .10 .08 .06	3.0 6.0 10 12	80 67 61 61 62	14 14 13 12 11	2.5 2.2 2.0 1.8 1.6	.49 .34 .44 .54	.08 .07 .07 .06
26 27 28 29 30 31	2.3 2.3 2.2 2.2 2.4 2.1	.85 1.0 1.2 .90 .85	.70 .65 .65 .65 .65	.40 .40 .48 .40 .40	.28 .22 .18	.04 .04 .04 .04 .06	14 15 16 20 22	53 47 41 37 35 38	11 11 7.2 8.0 7.0	1.5 1.4 1.2 1.1 1.5	.37 .30 .24 .22 .20	.05 .07 .06 .04 .03
TOTAL MEAN MAX MIN AC-FT	66.7 2.15 3.1 1.8 132	46.70 1.56 2.1 .85 93	24.06 .78 1.0 .60 48	16.46 .53 .90 .40 33	8.28 .30 .42 .18 16	2.78 .09 .18 .04 5.5	136.60 4.55 22 .06 271	1796 57•9 115 24 3560	1031.2 34.4 67 7.0 2050	109.1 3.52 6.2 1.1 216	16.45 •53 1.0 •18 33	3.28 .11 .22 .03 6.5

CAL YR 1986 TOTAL 6726.54 MEAN 18.4 MAX 179 MIN .20 AC-FT 13340 WTR YR 1987 TOTAL 3257.58 MEAN 8.92 MAX 115 MIN .03 AC-FT 6460

271

GREEN RIVER BASIN

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1983 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

09303320 WAGONWHEEL CREEK AT BUDGES RESORT, CO--Continued

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	
	0 CT 20	1500	2.4	280	8.5	2.0	10.0	150	40	13	
	MAY 13	1120	63	240	8.2	3.0	10.0	140	38	11	
	JUL 09	1345	4.4	282	8.6	12.0		160	42	13	
	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
	OCT 20 MAY	0.40	0.0	1.0	158	2.5	0.50	<0.10	2.8	155	
	13 JUL	0.50	0.0	0.40	143	2.5	0.40	<0.10	2.7	141	
	09	0.50	0.0	0.40	161	2.4	<0.10	<0.10	2.9		
	DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	
	OCT 20	0.21	1.00		0.120						
	MAY 13	0.19	23.8	<0.010	0.150	0.070	1.0	1.1	0.010	<0.010	
	JUL 09			<0.010	<0.100	0.050	0.45	0.50	<0.010	<0.010	
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ANTI- MONY, TOTAL (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV - ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 20	<10	<1	<1	<100	<10	<10	<1	6	3	5	40
MAY 13	40	<1	<1	<100	<10		<1	4	<1	6	80
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
0CT 20	< 3	< 5	<10	<10	<0.10	13	4	<1	<1	70	180
MA Y 13		< 5	<10	20	<0.10	<1	<1	<1	<1	30	<10

09303320 WAGONWHEEL CREEK AT BUDGES RESORT, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER - ATURE WATER (DEG C)	DATE TIN	STREAM- FLOW, INSTAN- E TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
DEC 04 JAN 22 MAR	1158 1310	0.80	300 291	0.0	AUG 14 151 SEP 18 093	-	312 295	16.0 3.5
25	1000	0.04	283	0.5				

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

D A TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MA Y					
13 JUL	1120	63	7	1.2	69
09	1345	4.4	11	0.13	

WHITE RIVER BASIN 273

09303400 SOUTH FORK WHITE RIVER NEAR BUDGE'S RESORT, CO

LOCATION.--Lat 39°51'51", long 107°32'00", in NW4SE4 sec.19, T.2 S., R.90 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank on downstream side of Forest Service bridge, 300 ft upstream from South Fork Campground, 10 mi above mouth, and about 10.5 mi southeast of Buford.

DRAINAGE AREA. -- 128 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1976 to current year.

REVISED RECORDS.--WDR CO-79-3: 1976 (M), 1977, 78 (P), 1978.

GAGE.--Water-stage recorder. Elevation of gage is 7,600 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 4 to Dec. 21, Dec. 28 to Jan. 29, Feb. 5-8, 16-27, Mar. 2-7, 20, 27-30, May 7-14, May 27 to July 7. Records fair except for estimated daily discharges, which are poor. No regulation or diversions upstream from station.

AVERAGE DISCHARGE. -- 11 years, 219 ft3/s; 158,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,770 ft³/s, June 22, 1983, gage height, 6.18 ft; minimum daily, 40 ft³/s, Feb. 1 to Mar. 10, 1980, Dec. 30, 1980, Jan. 10, 15, 1981.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ (revised), and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 18	unknown	*1,210	*4.82				

Minimum daily discharge, 73 ft3/s, Feb. 4.

CORRECTIONS.--The maximum daily discharge figure of 1,900 ${\rm ft}^3/{\rm s}$, June 7, should have been listed as the peak for water year 1986, this figure supersedes that published in WDR CO-86-2.

		DISCHARGE,	IN C	UBIC FEET	PER SECOND,	WATER	YEAR OCTOBER UES	1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	148 152 164 148 144	141 131 128 130 130	120 120 120 120 120	95 100 100 105 105	75 75 77 73 75	80 82 80 82 80	85 87 87 85 87	461 512 450 404 361	480 550 555 560 600	230 200 195 185 180	129 119 114 107 106	105 112 109 110 107
6 7 8 9 10	149 159 163 164 163	130 135 130 135 130	115 115 115 110 110	110 105 100 95 90	80 75 80 84 84	84 88 91 87 87	85 89 92 96 97	368 420 480 520 540	600 630 660 777 650	180 175 174 167 162	106 126 116 107 103	100 101 102 97 95
11 12 13 14 15	172 158 150 151 147	140 135 135 135 125	110 110 105 105 110	95 98 102 88 83	78 86 84 78 81	89 88 88 87 85	96 98 96 92 98	580 590 600 610 621	600 610 600 550 440	177 218 186 165 157	101 99 98 100 98	94 92 93 93
16 17 18 19 20	143 143 146 145	120 125 130 125 130	115 105 100 105 110	86 83 83 90 86	78 75 75 78 80	84 82 86 90 95	113 137 166 186 171	711 832 945 891 886	400 350 300 270 250	152 147 142 136 134	101 96 96 92 93	92 93 90 89 88
21 22 23 24 25	141 150 142 138 139	130 130 125 130 130	110 115 116 119 99	83 83 83 83	78 80 80 80 80	85 90 90 97 95	153 160 179 179 234	661 594 569 492 398	240 225 210 200 195	131 129 125 122 121	95 104 109 119 137	88 88 87 85 85
26 27 28 29 30 31	136 132 131 128 131 138	125 125 125 125 120	96 103 100 98 100 100	78 74 77 80 76 76	75 78 82 	91 85 87 80 82 83	278 277 323 378 402	370 360 355 350 340 355	190 180 200 235 245	132 130 130 137 128 140	120 114 115 113 107 104	86 87 85 85 85
TOTAL MEAN MAX MIN AC-FT	4560 147 172 128 9040	129 141 120	3391 109 120 96 6730	2775 89.5 110 74 5500	2204 78.7 86 73 4370	2680 86.5 97 80 5320	157 402 85	6626 536 945 340 2980	12552 418 777 180 24900	4887 158 230 121 9690	3344 108 137 92 6630	2815 93.8 112 85 5580

CAL YR 1986 TOTAL 102003 MEAN 279 MAX 1900 MIN 90 AC-FT 202300 WTR YR 1987 TOTAL 64425 MEAN 177 MAX 945 MIN 73 AC-FT 127800

09303400 SOUTH FORK WHITE RIVER NEAR BUDGES RESORT, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1983 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	Т]	STRE. FLO' INST. IANE (CF:	W, N- SUC	SPE CIF CON DUC ANC	IC T- E	PH (STA AF UNIT	ND- RD	TEMP ATU WAT (DEC	RE ER	OXYG DI SOL (MG	EN, S- VED	HARD NESS TOTAI (MG/I AS CACO	CALC L DIS L SOL (MG	IUM S - I VED SO E/L (N	GNE- GIUM, DIS- DLVED MG/L G MG)
NOV 04		1	045	118			188	8	3.4		1.0	1	0.1	10	00 29		7.7
MAY 12			530	590			183		3.2		7.0		1.7		10 32		7.4
SEP 03		1	100	111			198	8	3.5		9.5		8.2	10	00 28		7.6
				SOD			AS-	ALK	A –			CHL	0-	FLUO.	- SILI	CA, SUN	.IDS,
	DATE	DI SOL (M	IUM, S- VED G/L NA)	SORI TIO RAT	NC	DI		LINI LA (MG AS CAC	B }/L	SULF DIS SOL (MG AS S	VED	RID DIS SOL (MG AS	- VED /L	RIDE DIS SOLVI (MG/I AS F	- SOL ED (MG L AS	VED TUE /L I	STI- CNTS, DIS- DLVED MG/L)
NOV O4			1.9		0.1	0	.90	101		5	.0	0	.60	<0.	10 15		121
MAY 12			1.0		0.0		.60	115		6	.6	0	•50	<0.	10 8	. 3	125
SEP			2.0		0.1		.0	103			.2		.50	0.	1 0 15		121
DATE NOV 04	NOV OF MAY 12 SEP	DATE ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	SOLIE DIS SOLV (TON PEF AC-F 0. 0. ANTI MONY TOTA AS S	OS, 63- WED US R RTT) 16 17 16 17 16 17 16 17 16	SOLII DIS SOLV (TOI PE) DA 38 200 36 ARSEI TOTI (UG, AS I	DS, 3- VED VED RR YY) .4	NII GG NIT D SO (MM AS <0 <0 <0 ERROR TO REE CU AS	TRO-EN, LYED G/L N) .010 .010 .010 .010 .010 .010 .010	GINO2- DISOIN AS SOIN AS SOIN AS SOIN AS SOIN AS SOIN AS SOIN AS	IRO-EN, HN03 IS- LVED G/L N) .100 .140 .140 .100 RYL- TAL COV- BE)	NIT GE AMMO DI SOL (MC AS <0.	FRO-IN, MINIA SI-IVED AVED AVED AVED AVED AVED AVED AVED A	NITRGEN, AIMONIA ORGANI DIS. (MG/) AS N CHROMIUM TOTAL RECOVERABLE ERABLE (UG/) AS CI	0- M- + I I I I I I I I I I I I I I I I I I I	PHOS-PHOROUS DIS-SOLVED (MG/L AS P) 0.020 0.040 0.020 COBALT, TOTAL RECOV-ERABLE (UG/L AS CO)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P) <0.010 0.030 <0.010 COPPER, TOTAL RECOV-ERACU (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
MAY		40		<1		<1		<100	•	10		<1		<1	<1	3	_
12 DATE		LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHI TOTA RECO ERAB (UG/ AS L	LL DV - BLE 'L	MANO NESE TOTA RECO ERAE (UG,	E, AL DV- BLE /L	TO' RE ER.	CURY FAL COV- ABLE G/L HG)	DEN TO: RE(ER/	LYB- NUM, FAL COV- ABLE G/L MO)	ERA (UC	AL COV- BLE	SELE NIUM TOTAI (UG/I AS SE	- L L	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L
NOV 04		< 5	<	10		20	<	0.10		< 1		< 1		< 1	1	120	30
MAY 12								0.10						<1			

09303400 SOUTH FORK WHITE RIVER NEAR BUDGES RESORT, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

275

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MA Y				
01	0955	147	188	3.5	22	1105	603	190	5.0
DEC 08	1300	105	205	1.5	JUN 01	1130	531	185	7.0
JAN					JUL				
15	1220	91	194	0.5	07	1230	182	158	14.0
FEB	1000	0.1	210	0 =	AUG	1210	00	206	12.0
27 APR	1000	81	210	0.5	13	1210	99	306	12.0
06	0955	86	300	1.5					

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM
MAY 12 SEP	1530	590	66	105	22
03	1100	111	15	4.5	28

09303500 SOUTH FORK WHITE RIVER NEAR BUFORD, CO

LOCATION.--Lat 39°55'18", long 107°33'04", in NW\[18E\frac{1}{4}\] sec.36, T.1 S., R.91 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank at upstream side of county bridge, 10 ft downstream from Peltier Creek, and 5.6 mi southeast of Buford.

DRAINAGE AREA. -- 157 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1903 to October 1906, June 1910 to December 1915, October 1942 to September 1947, April 1967 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 1057: 1944-45, WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,480 ft above National Geodetic Vertical Datum of 1929, from topographic map. July 26, 1903, to Oct. 31, 1906, nonrecording gage, and Oct. 1, 1942, to Sept. 30, 1947, water-stage recorder, at site 60 ft upstream at different datums. Records for 1919-20 at site 6.0 mi downstream not equivalent.

REMARKS.--Estimated daily discharges: Nov. 14-25, 27-29, Dec. 1-7, 10-11, 22-23, Feb. 1-2, 5-10, 18-23, Mar. 2-4. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of about 600 acres of hay meadows upstream from station.

AVERAGE DISCHARGE.--33 years (water years 1904-06, 1911-15, 1943-47, 1968-87), 271 ft³/s; 196,300 acre-ft.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,620 ft³/s, June 24, 1983, gage height, 7.73 ft; maximum gage height 8.2 ft, June 17, 1906, site and datum then in use; minimum discharge recorded, 56 ft³/s, Dec. 18, 1946, gage height, 1.01 ft, site and datum then in use, but may have been less during periods of no gage-height record.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,200 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 18	0500	*1,450	* 5.49	No oth	er peak grea	ter than base o	lischarge.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily, 116 ft³/s, Mar. 29, Apr. 2-3.

		22201111102	, 11, 0021		M BEGONE	MEAN VALU	ES COTO			55 1701		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	190	179	150	131	135	138	121	523	676	297	178	126
2	193	173	150	138	135	135	116	534	812	260	167	127
3	204	167	150	140	129	135	116	465	817	237	159	129
4	196	169	150	142	130	130	122	411	827	228	154	129
5	191	168	145	150	135	130	120	391	871	222	150	131
6	192	171	145	151	140	126	122	398	877	215	150	127
7	195	172	145	148	135	129	128	472	893	209	170	125
8	196	164	143	138	140	128	133	569	1030	204	168	127
9	199	176	142	129	140	128	137	657	1060	197	158	127
10	200	163	140	127	135	124	136	725	993	191	152	125
11	204	186	140	133	130	122	138	754	830	199	151	123
12	198	171	139	144	146	123	139	823	747	241	149	123
13	187	178	132	144	129	122	130	856	770	222	146	123
14	189	179	130	141	131	128	129	956	725	198	146	124
15	186	162	132	130	130	123	147	1100	661	190	143	123
16	183	158	141	136	128	123	164	1260	618	185	143	126
17	182	157	131	122	124	120	187	1370	533	184	139	128
18	183	158	132	123	125	120	209	1390	464	185	136	123
19	180	166	148	136	130	121	222	1290	417	181	134	122
20	180	157	151	132	135	123	212	1210	384	175	131	121
21	181	157	144	126	130	118	191	1050	359	173	132	120
22	186	162	140	127	135	125	199	864	334	169	135	119
23	181	163	140	134	135	117	225	784	313	165	140	119
24	178	160	140	138	136	121	273	788	294	162	146	118
25	179	155	142	138	131	125	315	745	278	160	166	119
26 27 28 29 30 31	173 172 172 169 169 175	157 155 155 155 152	141 136 140 135 135	135 129 134 150 143 134	121 126 134 	125 117 125 116 122 133	316 341 391 421 451	706 623 553 525 492 502	265 254 246 286 303	172 173 169 182 175 181	153 141 136 137 132 128	121 122 119 118 117
TOTAL	5763	4945	4363	4223	3710	3872	6051	23786	17937	6101	4570	3701
MEAN	186	165	141	136	132	125	202	767	598	197	147	123
MAX	204	186	151	151	146	138	451	1390	1060	297	178	131
MIN	169	152	130	122	121	116	116	391	246	160	128	117
AC-FT	11430	9810	8650	8380	7360	7680	12000	47180	35580	12100	9060	7340

CAL YR 1986 TOTAL 131657 MEAN 361 MAX 2360 MIN 118 AC-FT 261100 WTR YR 1987 TOTAL 89022 MEAN 244 MAX 1390 MIN 116 AC-FT 176600

09303500 SOUTH FORK WHITE RIVER NEAR BUFORD, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

I	DATE	ΤI	FL INS ME TAN	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE US/CM)	PH (STA AH UNIT	ND- RD	EMPER ATURE WATER DEG C	DI SOL	S- (MC VED AS	SS CALC CAL DIS G/L SOI G (MC	CIUM S. S- D. LVED SOI G/L (M	GNE - IUM, IS - LVED G/L MG)
NOV 04.		12	45 14	4		8	3.0	2.	0 1	2,2	130 36	5	8.8
MAY 12.		17	30 81	6	204	8	3.2	6.	5 1	1.3	100 30)	7.3
SEP 03.		12	30 13	0	229	8	3.2	9.	5	8.9	110 32	2	8.1
ī	DATE	SODI DIS SOLVI (MG AS	UM, - SO ED T /L RA'	AD- RP- ION : TIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALK LINI LA (MC AS CAC	TY S B J/L	ULFAT DIS- SOLVE (MG/L S SO4	DIS D SOL (MG	E, RII - DI VED SOI	DE, DIS IS- SOL LVED (MO I/L AS	S- CONS VED TUES G/L D S SOI	OF STI-
NOV 04.		1	.9	0.1	0.90	110		16	0	.60 <0).10 1 ¹	ŀ	144
MAY 12.			. 1	0.0	0.60	105		3.8				3.9	115
SEP 03.		2	. 1	0.1	1.0	112		11	0	.60).10 1 ¹	1	136
DATE	NOV 04 MAY 12 SEP 03	DATE ALUM- INUM, TOTAL RECOV- EAGL (UG/L AS AL)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) 0.20 0.16 0.19 ANTI- MONY, TOTAL (UG/L AS SB)	SOLIDI DISSOLVI (TON:PER DAY 56.0 254 47.1	NICON	TRO- EN, FRITE IIS- DLVED IG/L N) 0.010 0.010 0.010 CCOV- LABLE IG/L BA)	NITR GEN NO2+N D1S SOLV (MG/ AS N <0.1 <0.1 EERY LIUM TOTA RECO ERAB (UG/ AS B	0- 03 A ED L) 00 00 00 00	NITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N) <0.010 <0.010 <0.010 ADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) 0.60 0.40 CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	PHOS-PHOROUS DIS-SOLVED (MG/L AS P) 0.010 0.010 0.020 COBALT, TOTAL RECOV-ERABLE (UG/L AS CO)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P) <0.010 0.020 <0.010 COPPER, TOTAL RECOVERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
04 May		40	<1	•	< 1	<100	<10		<1	<1	<1	4	180
12		860	<1		<1	<100	<10		<1		<1	<1	950
DATE	1	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA NESE TOTAI RECOV ERABI (UG/I AS MI	, MER L TC /- RE LE ER L (U	CURY TAL COV- ABLE IG/L HG)	MOLY DENU TOTA RECO ERAB (UG/ AS M	M, N L V- LE L	ICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
NOV 04		< 5	<10	:	20	0.10		1	<1	< 1	<1	180	10
MAY 12		< 5	<10	:	30 <	0.10			<1	<1	<1	80	<10

278

GREEN RIVER BASIN

09303500 SOUTH FORK WHITE RIVER NEAR BUFORD, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
01	1125	186	224	3.5	06	1150	118	290	0.0
DE C					JUN				
08	1400	132	240	1.5	01	1335	666	202	8.5
JAN					JUL				
15	1055	124	280		17	1235	192	230	13.0
FEB					AUG				
27	1305	149	220	0.5	13	1550	148	240	13.0

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MAY					
14	1510	956	45	116	7 5
SEP_					
03	1230	130	3	1.1	40

09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO

LOCATION.--Lat 39°58'28", long 107°37'30", in NW4NE4 sec.17, T.1 S., R.91 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank 30 ft downstream from highway bridge, 0.8 mi upstream from mouth, and 1.0 mi south of Buford.

DRAINAGE AREA . -- 177 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1919 to December 1920 (monthly discharge only, published in WSP 1313), October 1951 to current year.

REVISED RECORDS.--WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,970 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 30, 1920, nonrecording gage at site 200 ft downstream, at different datum. Oct. 1951 to Apr. 1981, at site 500 ft downstream, at different datum.

REMARKS.--Estimated daily discharges: Nov. 23, 27, Dec. 1-2, 5-7, 13-20, Dec. 23 to Jan. 5, 11-24, Feb. 13 to Mar. 11, Apr. 8-10, 26-30, and July 18 to Aug 25. Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 1,100 acres upstream from station, and a small area downstream from station.

AVERAGE DISCHARGE.--37 years, 264 ft³/s; 191,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,150 ft³/s, June 26, 1983; gage height, 6.27 ft; maximum gage height, 7.07 ft, June 30, 1957, site and datum then in use, minimum daily discharge, 47 ft³/s, Jan. 15, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,300 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 18	1030	*1,320	*4.48	No oth	er peak grea	ter than base di	scharge.

Minimum daily, 120 ft³/s, Mar. 23.

		DISCHARGE,	IN C	UBIC FEET		D, WATER MEAN VALU		R 1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	204 211 230 212 202	192 181 174 175 179	170 170 167 157 150	145 150 150 155 160	155 146 134 143 138	140 140 135 135 130	126 132 131 138 150	560 576 549 482 446	668 795 802 817 857	327 280 253 238 235	180 180 1 75 170 160	123 121 129 129 130
6 7 8 9 10	204 211 211 216 221	184 187 173 167 174	150 150 152 138 140	167 156 149 149	144 149 149 149 145	130 130 130 130 125	157 165 165 170 165	432 509 600 731 720	866 882 1000 1020 992	237 236 232 227 219	155 160 180 175 165	125 121 125 124 121
11 12 13 14 15	227 212 197 203 197	176 190 168 174 174	136 146 150 150	150 150 150 145 145	141 140 135 135 130	125 125 129 137 129	164 157 148 168 198	758 801 827 899 1010	847 758 778 742 681	230 294 267 234 227	155 150 150 150 145	120 121 120 125 140
16 17 18 19 20	191 195 192 192 192	171 169 172 188 175	155 150 150 155 155	140 140 135 130 135	130 130 125 130 135	128 123 132 133 132	214 229 257 249 219	1130 1240 1270 1220 1150	636 561 488 437 393	225 222 220 210 200	145 145 140 135 135	140 148 139 135 134
21 22 23 24 25	192 196 194 186 190	176 178 170 170 175	143 147 150 150 150	140 145 150 155 159	135 135 135 135 130	139 129 120 135 138	218 259 314 367 370	1020 882 783 775 754	373 342 319 300 287	190 185 180 175 170	135 140 150 160 170	132 130 129 127 126
26 27 28 29 30 31	181 183 182 178 179 183	172 170 169 173 173	150 150 145 150 145 145	156 163 148 163 159	125 130 135 	125 132 129 130 143 132	370 380 420 450 530	700 626 571 549 514 526	273 258 250 297 351	180 175 180 190 185 185	160 149 136 134 134 125	129 132 125 124 124
TOTAL MEAN MAX MIN AC-FT	6164 199 230 178 12230	176 192 167	4666 151 170 136 9260	4638 150 167 130 9200	3843 137 155 125 7620	4070 131 143 120 8070	239 530 126	23610 762 1270 432 46830	602 1020 250	6808 220 327 170 3500	4743 153 180 125 9410	3848 128 148 120 7630

CAL YR 1986 TOTAL 132927 MEAN 364 MAX 2100 MIN 117 AC-FT 263700 WTR YR 1987 TOTAL 92909 MEAN 255 MAX 1270 MIN 120 AC-FT 184300

09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1984 to current year.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE CIF CON DUC ANCI (US/	IC - I I- (S) E /	PH TAND- ARD ITS)	TEMP ATU WAT (DEG	RE ER	S 0 [HARD NESS TOTAL (MG/) AS CACO	CAL L DI L SO (M	CIUM S- LVED : G/L	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIO DIS- SOLVI (MG/ AS I	- ED /L
	ó	1045	1170	;	215	8.2	6	.0	9	9.6	11	0 32		7.2	1.0)
	o	1110	314		250	8.6	10	.0	9	9.3	13	0 38		8.4	1.	7
SEP 0	1	1415	123	;	273	8.7	16	.0	9	9.1	14	0 42		9.7	2.	4
	DATE	A Sof	AD- S RP- D CON SO CON (M	TAS- IUM, I IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLORIDIS- SOLV (MG.	E, VED /L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	ILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	SOLI - DI , SOL (TO	S- VED NS	
	MAY 16		0.0	1.0	108	7.	. 4	0	.40	<0.1	0	9.2	12	3 0	.17	
	JUN 30		0.1	0.80	113	22		0	.50	0.1	0	13	15	2 0	.21	
	01		0.1	1.0	116	31		0	•50	0.1	0	16	17	2 0	.23	
	DATE	SOL (TO	DS, GSS- NIT.VED DONS SO	TRO- EN, RATE ! IS- LVED G/L N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITF GEN NO2+N DIS SOLV (MG/ AS N	I, 103 5- 7ED 'L	NITI GEI AMMOI DIS SOLV (MG.	N, NIA S- VED /L	NITRO GEN, ORGANI DIS- SOLVE (MG/L AS N)	G C M O	NITRO- EN,AM- ONIA + RGANIC DIS. (MG/L AS N)	PHOS-PHOROUS DIS-SOLVE (MG/LAS P)	S ORT	ROUS THO, S- VED 'L	
	MAY 16	389) 0	.120	0.030	0.1	150	0.0	050	0.4	5	0.50	0.01	0.	030	
	JUN 30	129)		<0.010	<0.1	100	0.0	020	0.1	8	0.20	0.01	0.	020	
	SEP 01	57	.2		<0.010	<0.1	00	0.0	020	0.2	28	0.30	0.01	0 <0.	010	
DATE	ALUM- INUM, TOTAL RECOV ERABL; (UG/L AS AL	ror ou)	IY, ARS TAL TO B/L (U	ENIC TAL G/L AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERY LIUM TOTA RECC ERAE (UG/ AS E	1, LL DV - BLE 'L	CADMI TOTA RECO ERAI (UG.	AL OV- BLE /L	CHRO-MIUM, TOTAL RECOV ERABL (UG/L AS CR	C .E	OBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER TOTAL RECOV ERABLI (UG/L AS CU	TO T	CAL COV- LBLE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)
MAY 16 SEP	180	0	<1	< 1	100	<10)		<1		9	< 1	1	o 1	1700	< 5
01	6	0	< 1	<1	<100	<10)		<1		1	<1	<	1	90	< 5
	DATE	ITHIUM FOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MAN NES DI SOL (UG AS	E, TO S- RE VED EI /L (U	RCURY DTAL ECOV- RABLE UG/L S HG)	DEN TOT REC ERA (UG	OV- BLE	RE (ER / (U)		SELE NIUM TOTA (UG/ AS S	- TO, REL ERL (U	VER, TAL COV- ABLE I	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINO TOTA RECO ERAI (UG.	AĹ OV- BLE /L
	6	<10	60			<0.10		4		6		<1	<1	70		20
SEP 0	1	<10	20		20	<0.10		1		<1		2	<1	270		<10

09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MA R				
01 NOV	1200	209	255	5.0	12 JUN	1130	132	264	
04 DEC	1430	152	266	3.0	01 JUL	1520	668	210	11.0
08 JAN	1050	167	270	2.0	07 AUG	1530	226	240	17.5
15	0950	110	285	0.0	25	1510	174	200	16.5

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
APR					
22	1600	225	20	12	65
MA Y					
01	1020	549	90	13 3	58
08	1045	602	54	88	59
16	1045	1170	79	250	63
20	1540	1140	57	175	56
27	1030	622	13	22	44
JUN					
12	1100	737	19	38	53
30	1110	314	11	9.3	48
JUL		-			
28	1045	222	10	6.0	52
SEP					,-
01	1415	123	4	1.3	36

09304200 WHITE RIVER ABOVE COAL CREEK, NEAR MEEKER, CO

LOCATION.--Lat 40°00'18", long 107°49'29", in NW4NW4 sec.3, T.1 S., R.93 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 40 ft downstream from county road bridge, 2.3 mi upstream from Coal Creek, and 5.0 mi southeast of Meeker.

DRAINAGE AREA. -- 648 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1961 to current year.

REVISED RECORDS. -- WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,400 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1961, to Sept. 30, 1976, at site 76 ft upstream at datum 2.00 ft, higher.

REMARKS.--Estimated daily discharges: Dec. 11-14, 27-30, Jan. 21-27, Feb. 15-23, Mar. 19 to May 11, May 23 to June 5. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 8,000 acres and about 4,000 acres downstream from station.

AVERAGE DISCHARGE. -- 26 years, 591 ft3/s; 428,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,740 $\rm ft^3/s$, June 26, 1983, gage height, 7.07 $\rm ft$; minimum daily, 6.5 $\rm ft^3/s$, July 19-21, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 17	0930	*2,280	*4.64	No other	peak greater	than base disc	narge.

Minimum daily, $176 \text{ ft}^3/\text{s}$, Sept. 25, 26, and 29.

		DISCHARG	GE, CUBIC	FEET PER	SECOND,	WATER YEAR EAN VALUES	ROCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	482	532	436	361	368	305	400	1600	1000	410	334	281
2	484	532	463	390	377	359	410	1650	1150	367	314	277
3	549	517	478	378	381	367	410	1420	1120	336	326	282
4	545	503	473	410	364	351	445	1270	1100	315	367	272
5	495	506	469	389	357	349	445	1140	1130	332	363	242
6	491	518	451	390	379	359	460	1180	1110	329	372	233
7	520	527	450	390	369	359	490	1230	1140	323	395	230
8	554	523	434	390	371	356	500	1460	1240	324	359	240
9	550	486	418	380	381	337	510	1550	1400	379	312	247
10	558	490	365	357	384	352	485	1600	1560	391	296	256
11	580	484	360	380	384	340	500	1690	1260	324	293	261
12	588	506	360	415	365	366	515	1670	1140	409	368	245
13	532	474	380	396	389	359	465	1710	1150	368	359	234
14	525	479	390	385	369	357	450	1780	1090	349	411	242
15	509	488	424	367	380	367	500	1940	987	330	440	252
16	505	481	444	380	370	375	580	2030	889	326	396	248
17	511	474	405	322	360	372	660	2190	770	320	411	243
18	520	473	411	320	350	393	780	2160	675	342	347	229
19	522	510	432	374	340	420	890	2060	600	328	317	234
20	522	498	409	362	340	420	830	2000	559	297	268	228
21	522	480	411	330	340	380	700	1930	519	293	274	219
22	540	496	393	300	340	410	720	1730	459	309	253	196
23	553	444	392	330	350	390	840	1420	422	314	248	189
24	521	461	431	350	357	390	1030	1390	384	305	344	181
25	513	474	361	350	378	380	1150	1360	358	310	495	176
26 27 28 29 30 31	513 513 508 502 493 512	472 438 469 457 461	361 370 380 370 370 374	350 350 371 366 366 375	371 353 377 	380 400 360 380 350 380	1200 1260 1440 1520 1460	1220 1140 980 960 990	346 334 344 408 472	331 337 300 312 310 321	423 314 300 291 277 277	176 178 178 176 181
TOTAL	16232	14653	12665	11374	10244	11463	22045	47350	25116	10341	10544	6826
MEAN	524	488	409	367	366	370	735	1527	837	334	340	228
MAX	588	532	478	415	389	420	1520	2190	1560	410	495	282
MIN	482	438	360	300	340	305	400	900	334	293	248	176
AC-FT	32200	29060	25120	22560	20320	22740	43730	93920	49820	20510	20910	13540

CAL YR 1986 TOTAL 318413 MEAN 872 MAX 4030 MIN 305 AC-FT 631600 WTR YR 1987 TOTAL 198853 MEAN 545 MAX 2190 MIN 176 AC-FT 394400

09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- July 1978 to September 1984, October 1986 to September 1987.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: July 1978 to September 1984.
WATER TEMPERATURES: July 1978 to September 1984.

INSTRUMENTATION .-- Water-quality monitor July 1978 to September 1984.

REMARKS.--Daily maximum and minimum specific conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 511 micromhos Dec. 24, 1981; minimum 152 micromhos June 14,1980.
WATER TEMPERATURES: Maximum, 22.0°C July 8, 1981; minimum, 0.0°C on many days during winter months.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
16	1215	2070	230	8.2	8.0	9.1	120	35	6.8	1.9
JUN 30	1200	380	350	8.4	12.0	9.3	170	53	10	4.4
SEP 01	1500	282	410	8.7	17.0	9.4	220	67	12	5.1
DATE	SOF TI	AD- SI RP- DI ION SOL		TY SULF B DIS J/L SOI	S- DIS LVED SOL G/L (MO	DE, RII S- DI LVED SOI G/L (M		S- CONS VED TUEN G/L DI S SOL	OF SOLI STI- DI NTS, SOL IS- (TO VED PE	S- Ved NS
MAY 16		0.1 1	.1 95	25	5 (0.70 <	0.10 12	2	140 0	.19
JUN 30		0.2 1	.0 121	65	5 2	2.1	0.20 19	5	223 0	.30
SEP 01		0.2 1	.0 119	100)	1.8	0.20 10	5	274 0	.37
DATE	SOL (TC PE	DS, GE S- NITF VED DI DNS SOL	N, GE ATE NITH S- DI VED SOL E/L (MC	IN, GERITE NO24 IS- DI VED SOL G/L (MO	EN, GE NO3 AMMO IS- DI VED SOI G/L (MO	EN, GI ONIA ORG IS- DI LVED SOI G/L (M	EN, GEN ANIC MONI IS- ORGA LVED DIS G/L (MO	ÍA + PHOF ANIC DI	IS- DIS .VED SOLV G/L (MG/	OUS HO, ED
MAY 16 JUN	781	0.	100 0.	.030 0.	.130 0	.060	0.74	0.80 0.	.020 0.	020
30 SEP	229)	<0	.010 <0.	100 0	.020	0.38	0.40 0.	.010 0.	020
01	209)	<0.	.010 <0.	.100 0	.020	0.68	0.70 0.	.010 <0.	010
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ANTI- MONY, TOTAL (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
MAY 16	1900	<1	<1	100	<10	<1	<1	2	3	1800
SEP 01	50	<1	<1	<100	<10	<1	<1	<1	1	40
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MA Y 16	< 5	<10	60	<0.10	4	5	<1	50	240	10
SEP 01	< 5	<10	<10	<0.10	2	<1	1	<1	600	<10

GREEN RIVER BASIN
09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER - ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
01 NOV	1710	464	344	9.5	01 JUN	1305	331	399	7.0
03 DEC	1130	535	360	3.0	02 JUL	1415	1130	248	11.0
05	1415	427	388	3.0	27	1445	373	490	23.0
JAN 21	1350	330	422		SEP 08	1530	243	430	13.5
FEB 23	1230	326	440	2.0					

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
APR					
23	0900	843	88	200	82
MAY		3			
01	1130	1600	94	406	76
08	1140	1460	87	343	76
16	1215	2070	112	626	67
20	1610	1960	75	397	46
27	1115	1160	35	110	51
JUN					
12	1150	1120	26	79	54
30	1200	380	12	12	58
JUL		-			
28	1130	292	8	6.3	52
SEP					
01	1500	282	6	4.6	49

09304500 WHITE RIVER NEAR MEEKER, CO

LOCATION.--Lat 40°02'01", long 107°51'42", in NE4 sec.30, T.1 N., R.93 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 1.0 mi upstream from Curtis Creek and 2.5 mi east of Meeker.

DRAINAGE AREA . - - 755 mi2.

PERIOD OF RECORD.--June 1901 to December 1906, October 1909 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Meeker" 1901-13.

REVISED RECORDS.--WDR CO-79-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,300 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 31, 1906, and May 7 to Aug. 13, 1910, nonrecording gage, and Aug. 14, 1910, to Oct. 19, 1913, water-stage recorder, at site 2.5 mi downstream, at different datum. Oct. 20, 1913, to Sept. 30, 1971, water-stage recorder at present site, at datum 3.00 ft, higher, prior to Oct. 1, 1933, and at datum 2.00 ft, higher, thereafter.

REMARKS.--Estimated daily discharges: Oct. 10-29, Dec. 11-16, 26 to Feb. 9, 19-20, 22-23. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 12,000 acres upstream from station, and about 3,000 acres downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 83 years, 633 ft3/s; 458,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,950 ft³/s, May 25, 1984, gage height, 6.12 ft, maximum gage height, 7.60 ft, June 16, 1921; minimum daily discharge, 78 ft³/s, July 16, 1977.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,100 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0430	*2,160	*4.41	No other	peak greater	than base	discharge.

Minimum daily, 252 ft3/s, Sept. 25.

		DISCHARGE	, IN C	UBIC FEET	PER SECON	ID, WATER MEAN VALU	YEAR OCTOBE	R 1986	TO SEPTEMBE	1987		
DAY	ост	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	572	578	488	370	370	373	418	1620	1130	590	427	282
2	566	560	487	390	370	388	429	1670	1240	527	407	280
3	639	547	503	390	370	392	425	1440	1160	492	413	283
4	596	542	501	390	370	401	457	1240	1160	476	454	296
5	558	543	491	390	360	416	457	1150	1200	478	450	290
6	552	560	516	390	350	443	472	1230	1190	488	449	277
7	565	568	519	390	370	462	506	1390	1230	475	479	275
8	586	551	500	380	380	477	513	1490	1470	459	439	284
9	588	522	486	360	380	519	530	1560	1580	484	386	284
10	590	530	408	330	399	473	504	1630	1600	528	366	298
11	630	518	410	350	412	447	519	1650	1420	444	360	298
12	610	543	410	360	402	435	537	1630	1240	531	424	284
13	580	519	420	380	419	452	488	1650	1250	502	411	278
14	570	529	440	370	437	515	471	1730	1200	478	459	286
15	560	533	450	360	417	452	520	1880	1110	459	478	295
16	540	530	450	350	401	435	600	1980	1050	453	429	289
17	550	529	457	340	397	415	687	2080	954	455	438	291
18	550	532	443	330	373	418	795	2020	850	468	372	281
19	545	579	468	350	360	441	904	1940	769	437	346	278
20	540	553	462	360	360	444	841	1970	712	401	299	278
21	550	538	452	310	364	395	723	1820	678	409	307	271
22	580	554	434	310	360	428	748	1580	645	441	292	255
23	570	495	445	340	370	402	862	1420	591	419	297	266
24	550	514	459	360	392	404	1050	1390	553	403	397	258
25	540	526	428	360	399	395	1180	1330	520	416	531	252
26 27 28 29 30 31	535 530 530 530 525 564	530 489 509 519 526	400 400 420 390 390 380	360 360 380 370 370 380	392 390 391 	390 420 382 401 368 402	1210 1280 1460 1540 1480	1290 1160 1020 1040 1030 969	486 473 469 503 571	423 417 380 397 405 420	467 398 386 376 330 284	256 267 270 275 275
TOTAL MEAN MAX MIN AC-FT	17491 564 639 525 34690	536 579 4 8 9	13907 449 519 380 27580	11230 362 390 310 22270	10755 384 437 350 21330	13185 425 519 368 26150	22606 754 1540 418 44840	46999 1516 2080 969 93220	967 1600 469	4155 457 590 380 28080	12351 398 531 284 24500	8352 278 298 252 16570

CAL YR 1986 TOTAL 335903 MEAN 920 MAX 4240 MIN 260 AC-FT 666300 WTR YR 1987 TOTAL 216101 MEAN 592 MAX 2080 MIN 252 AC-FT 428600

Date

GREEN RIVER BASIN

09304800 WHITE RIVER BELOW MEEKER, CO

LOCATION.--Lat 40°00'48", long 108°05'33", in center of sec.31, T.1 N., R.95 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 30 ft downstream from county bridge, 4.5 mi downstream from Strawberry Creek, and 10 mi west of Meeker.

DRAINAGE AREA. -- 1,024 mi2.

Time

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1961 to current year.

REVISED RECORDS.--WDR CO-79-3: Drainage area. WDR CO-86-2: 1985.

GAGE.--Water-stage recorder. Elevation of gage is 5,928 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Jan. 24-31. Records good except for estimated daily discharges, which are poor. Diversion upstream from station for irrigation of about 22,000 acres upstream from station, and a few small hay meadows downstream from station.

AVERAGE DISCHARGE. -- 26 years, 681 ft 3/s; 493,400 acre-ft/yr.

Discharge (ft 3/s)

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,590 ft³/s, June 26, 1983, gage height, 4.97 ft; minimum daily, 85 ft³/s, June 28, 1977.

Date

Gage height

(ft)

Discharge (ft³/s)

Time

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s, and maximum (*):

Gage height (ft)

Dave	7	rine	(10 /3)		(10)		Dave	1 11116	(1	0 /3)	(-	,
May 1	7 10	000	*2,370		*3.07		June 10	1145	2	,250	2.	87
Mir	nimum dail	y dischar	ge, 323 ft	³/s, Se	ept. 25.							
		DISCH	ARGE, CUBI	C FEET	PER SECOND	, WATER MEAN VAL	YEAR OCT	OBER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1	697	678	520	407	412	405	457	1820	1210	799	558	397
2	680	651	534	446	411	405	486	1920	1360	688	523	403
3	806	628	568	448	422	418	463	1630	1300	638	510	403
4	769	611	570	449	424	451	502	1360	1300	604	552	405
5	694	609	549	464	407	487	525	1250	1350	609	527	394
6	675	619	571	457	394	566	537	1300	1360	619	506	376
7	682	640	586	446	397	623	583	1440	1420	595	549	370
8	710	621	558	435	411	641	563	1540	1720	575	529	372
9	692	584	525	423	416	721	577	1610	1950	572	458	374
10	690	593	426	385	419	636	553	1680	2100	581	419	361
11	738	571	422	406	446	540	554	1710	1900	519	412	364
12	719	616	456	440	445	501	574	1690	1690	641	475	356
13	674	580	491	451	475	517	538	1700	1650	632	462	337
14	658	594	512	445	514	616	499	1800	1590	585	589	358
15	650	608	510	419	476	550	522	1990	1450	559	565	371
16	627	602	524	410	442	496	587	2120	1340	554	492	367
17	636	590	506	389	429	469	657	2240	1220	540	528	399
18	637	586	480	373	401	457	763	2180	1080	556	428	371
19	635	618	496	418	396	494	915	2090	960	506	420	372
20	633	629	501	430	398	496	933	2090	845	447	349	368
21	636	595	517	391	394	445	792	2050	820	444	365	370
22	665	604	457	377	383	464	808	1800	789	493	352	345
23	661	555	452	427	417	444	892	1550	727	454	361	347
24	632	548	476	430	418	440	1100	1510	665	434	474	329
25	623	574	437	420	424	429	1260	1500	610	441	642	323
26 27 28 29 30 31	613 610 605 600 596 633	579 529 554 574 578	412 430 465 447 438 440	400 410 420 400 390 400	419 396 410 	419 453 410 421 392 420	1310 1390 1590 1760 1670	1470 1380 1190 1190 1230 1100	602 580 580 608 702	459 472 442 494 509 518	607 507 475 459 431 377	325 340 340 347 350
TOTAL	20576	17918	15276	13006	11796	15226	24360	51130	35478	16979	14901	10934
MEAN	664	597	493	420	421	491	812	1649	1183	548	481	364
MAX	806	678	586	464	514	721	1760	2240	2100	799	642	405
MIN	596	529	412	373	383	392	457	1100	580	434	349	323
AC-FT	40810	35540	30300	25800	23400	30200	48320	101400	70370	33680	29560	21690

CAL YR 1986 TOTAL 380305 MEAN 1042 MAX 4220 MIN 355 AC-FT 754300 WTR YR 1987 TOTAL 247580 MEAN 678 MAX 2240 MIN 323 AC-FT 491100

09304800 WHITE RIVER BELOW MEEKER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1974 to September 1984, October 1985 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 1978 to September 1983. WATER TEMPERATURES: July 1978 to September 1983.

INSTRUMENTATION. -- Water-quality monitor July 1978 to September 1983.

REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 908 micromhos Aug. 30, 1981; minimum, 221 micromhos June 13, 1980.
WATER TEMPERATURES: Maximum, 25.0°C Aug. 7, 1978, Aug. 7, 1980; minimum, 0.0°C many days during winter

DATE MAY	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
16	1340	2220	300	8.1	11.0	8.6	140	39	9.8	6.6
JUN 30	1320	710	590	8.5	16.0	9.4	280	73	23	20
SEP 01	1620	412	600	8.7	19.0	9.5	290	74	25	22
DATE	SOD A SOR TI RAT	D- SI P- DI ON SOL	UM, LINI S- LA VED (MG /L AS	TY SULF B DIS /L SOL (MG	- DIS VED SOL /L (MG	E, RID - DI VED SOL /L (MG	E, DIS S- SOL VED (MG /L AS	- CONS VED TUEN I/L DI SOL	OF SOLI TI- DI TS, SOL S- (TO VED PE	S- VED NS R
MAY 16		0.3 1	.0 103	49	2	.7 <0	.10 12	!	182 0	.25
JUN 30		0.5 1	.7 183	130	8	.0 0	.30 16	i	382 0	.52
SEP 01		0.6 1	.4 146	160	9	.1 0	.20 15	i	394 0	.54
DATE	SOLI DI SOL (TO PE DA	S- NITR VED DI NS SOL R (MG	N, GE ATE NITR S- DI VED SOL /L (MG	N, GE ITE NO2+ S- DI VED SOL /L (MG	N, GE NO3 AMMO S- DI VED SOL /L (MG	N, GE NIA ORGA S- DI VED SOL /L (MG	N, GEN, NIC MONI S- ORGA VED DIS /L (MG	A + PHOR NIC DI SOL MG/L (MG	OUS ORT S- DIS VED SOLV /L (MG/	OUS HO, ED L
MAY 16 JUN 30	1090 732			030 0. 010 <0.		-				030 020
SEP 01	439									010
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ANTI- MONY, TOTAL (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
MAY 16	3000	1	<1	100	<10	<1	5	3	12	3100
SEP 01	330	<1	<1	<100	<10	<1	7	<1	1	370
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MA Y 16	< 5	<10	100	<0.10	4	8	<1	<1	320	20
SEP 01	< 5	10	30	<0.10	1	<1	3	<1	730	<10

09304800 WHITE RIVER BELOW MEEKER, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
02	0750	648	553	8.5	01	1420	467 .	620	10.0
DE C 01	1450	528	496	0.5	Մ Ա 2 7	1605	459	519	24.0
JAN			_	_	SEP	_			
21	1530	400	558	0.0	08	1300	373	630	14.0
FEB 23	1345	426	550	2.5					

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM
1110	920	217	539	72
	1600			68
	2220			63
1700		122		53
1245	1380	89	332	70
				47
1320	710	30	58	44
1340	455	42	52	53
1620	412	34	38	48
	1110 1350 1340 1700	TIME TANEOUS (CFS) 1110 920 1350 1600 1340 2220 1700 2080 1245 1380 1340 1760 1320 710 1340 455	TIME TANEOUS (CFS) MENT, SUS- TANEOUS PENDED (MG/L) 1110 920 217 1350 1600 197 1340 2220 258 1700 2080 122 1245 1380 89 1340 1760 54 1320 710 30 1340 455 42	STREAM- SEDI- FLOW, MENT, DIS- CHARGE, SUS- SUS- TANEOUS PENDED (MG/L) (T/DAY) 1110 920 217 539 1350 1600 197 851 1550 1700 2080 122 685 1245 1380 89 332 1340 1760 54 257 1320 710 30 58 1340 455 42 52

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .062 MM	SED. SUSP. FALL DIAM. % FINER THAN .125 MM	SED. SUSP. FALL DIAM. % FINER THAN .250 MM	SED. SUSP. FALL DIAM. % FINER THAN .500 MM
MA Y 01	1330	1880	246	1250	24	32	50	74	85	95	100

09306007 PICEANCE CREEK BELOW RIO BLANCO, CO

LOCATION.--Lat 39°49'34", long 108°10'57", in SE4SE4 sec.32, T.2 S., R.96 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 20 ft downstream from private bridge, 1,100 ft upstream from Stewart Gulch, and 14.3 mi west of Rio Blanco.

DRAINAGE AREA. -- 177 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1974 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,366 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 9 to Jan. 25 and Feb. 15-17. Records good except for estimated daily discharges, which are poor. Several diversions upstream from station for irrigation of hay meadows.

AVERAGE DISCHARGE. -- 13 years, 24.0 ft 3/s; 17,390 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 520 ft³/s July 19, 1977, gage height, 7.01 ft, from rating curve based on indirect measurement of peak flow, maximum gage height, 7.47 ft, May 16, 1984; minimum daily discharge, 0.47 ft³/s, Apr. 25, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 14	1300	*77	*3.12				

Minimum daily, 4.6 ft³/s, Jan. 26.

		DISCHARGE	, CUBIC	FEET PER		WATER YEAR EAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	ма у	JUN	JUL	AUG	SEP
1 2 3 4 5	10 11 14 13	19 19 18 19	20 18 15 15 16	11 10 11 10 10	7.0 7.0 7.2 7.0 7.8	11 9.6 9.7 10 18	17 22 26 35 31	59 61 64 57 52	17 16 18 23 22	18 18 15 13	27 22 19 20 20	15 13 12 11 11
6 7 8 9 10	14 12 9.1 11	24 23 22 21 18	17 17 17 16 14	9.8 9.6 11 10 11	8.8 8.4 7.9 8.1 7.8	28 33 35 29 28	29 41 43 45 35	50 49 49 48 47	22 21 20 25 26	13 14 12 13 12	19 22 20 17 18	11 11 12 11 12
11 12 13 14 15	12 12 11 10 11	17 16 11 13 15	19 15 14 14 14	12 11 10 9.5 9.0	8.0 8.8 11 11	26 22 29 53 30	38 30 27 25 30	46 44 44 64 45	21 17 16 15	12 12 11 11 9.8	18 18 18 18	12 12 12 11 8.7
16 17 18 19 20	11 11 11 14 14	16 17 19 21 19	15 14 14 13 12	8.6 8.4 8.0 7.8 7.6	12 11 11 11 10	23 18 16 22 16	36 36 37 39 39	37 35 34 30 27	16 15 14 14 16	9.2 9.1 9.4 9.7	18 18 18 18	7.3 7.5 7.5 9.1 9.6
21 22 23 24 25	17 18 17 14 15	19 20 15 18 18	12 11 11 11	7.8 7.4 6.6 6.0 5.5	12 12 9.7 9.8 10	14 14 12 12 13	38 37 38 40 43	26 28 28 31 34	16 18 19 17 18	10 9.1 8.3 12 14	17 17 18 21 26	10 9.9 9.3 9.9 9.7
26 27 28 29 30 31	14 14 13 13 14	20 16 16 18 17	12 11 11 11 11	4.6 5.4 6.4 7.7 7.3 6.6	10 9.7 10 	12 12 13 13 14 13	49 50 50 57 60	35 26 21 21 21 20	17 17 18 19 18	14 16 23 30 27 28	22 19 18 16 16	9.5 7.2 6.4 7.8 7.9
TOTAL MEAN MAX MIN AC-FT	402.1 13.0 18 9.1 798	543 18.1 24 11 1080	431 13.9 20 10 855	266.6 8.60 12 4.6 529	265.0 9.46 12 7.0 526	608.3 19.6 53 9.6 1210	1123 37.4 60 17 2230	1233 39.8 64 20 2450	546 18.2 26 14 1080	435.0 14.0 30 8.3 863	589 19.0 27 16 1170	303.3 10.1 15 6.4 602

CAL YR 1986 TOTAL 15554.0 MEAN 42.6 MAX 188 MIN 9.1 AC-FT 30850 WTR YR 1987 TOTAL 6745.3 MEAN 18.5 MAX 64 MIN 4.6 AC-FT 13380

09306007 PICEANCE CREEK BELOW RIO BLANCO, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1974 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: December 1974 to September 1985.
pH: December 1974 to September 1984.
WATER TEMPERATURE: December 1974 to September 1985.
DISSOLVED OXYGEN: December 1974 to September 1984.
SUSPENDED SEDIMENT DISCHARGE: April 1974 to September 1985.

INSTRUMENTATION.--Automatic pumping sediment sampler April 1974 to September 1985. Water-quality monitor December 1974 to September 1985.

REMARKS .-- Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 1,690 microsiemens June 21, 1976; minimum, 344 microsiemens Apr. 13, 1976. pH: Maximum, 9.0 units June 21, 1976; minimum, 7.0 units May 24, 1976. WATER TEMPERATURES: Maximum, 29.5°C July 25, 1977; minimum, freezing point on many days during winter months

each year.

DISSOLVED OXYGEN: Maximum, 15.7 mg/L Oct. 8, 1975; minimum, 5.1 mg/L July 17, 1979.

SEDIMENT CONCENTRATIONS: Maximum daily, 20,300 mg/L July 20, 1974; minimum daily, 6 mg/L several days during

SEDIMENT LOADS: Maximum daily, 18,600 tons May 16, 1984; minimum daily, 0.02 ton Apr. 20, 1981.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
FEB 18	1000	11	1200	8.2	1.5	11.2	430	84	52	110
MAY 04	0930	56	936	8.6	6.0	10.5	390	84	44	77
JUL 08	1145	12	1380	8.3	16.0	6.8	480	91	60	130
SEP 02	1045	13	1250	8.5		9.9	450	84	58	120
02	1045	13	1250	0.0	12.0	9.9	450	04	20	120
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
FEB 18	2	2.4	353	290	21	0.90	13	787	1.07	23.4
MAY 04	2	2.0	303	220	14	0.50	15	640	0.87	96.7
JUL 08 SEP	3	3.3	394	320	21	0.80	16	880	1.19	28.5
02	3	2.5	314	310	21	0.70	13	800	1.08	28.1
DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
FEB 18 MAY	2.08	0.02	2.10	0.04	1.4	1.4	0.02	0.02	160	1600
04 JUL		<0.01	1.90	0.02	1.1	1.1	0.030	0.02	100	1000
08 SEP		<0.01	0.62	0.09	0.71	0.80	0.02	<0.01	210	1800
02	1.38	0.02	1.40	<0.01		0.70	0.01	<0.01	170	1800

09306007 PICEANCE CREEK BELOW RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

291

	DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	COBALT, DIS- SOLVED (UG/L AS CO)	IRON, DIS- SOLVED (UG/L AS FE)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA - NESE, DIS - SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	FEB 18 MAY 04	2	120 100	<1 <1	10 20	22 10	35 < 10	3 5	1 <1	9 10	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT 07 NOV	1550	15	1150	12.0		API JUN	22	1010	37	1040	3.5
17 DEC	1125	17	1220	6.5			03	1150	18	1300	12.0
18 MAR	1055	14	1240	0.5			7	1055	22	1250	15.5
19	1530	19	1070	7.0							

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB					
18 MAR	1000	11	96	2.9	40
19	1600	19	501	25	79
MAY O4 JUL	0930	56	870	132	63
08 SEP	1145	12	62	2.0	31
02	1045	13	42	1.5	41

09306022 STEWART GULCH ABOVE WEST FORK NEAR RIO BLANCO, CO

LOCATION.--Lat 39°49'09", long 108°11'08", in SEANEA sec.5, T.3 S., R.96 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 0.6 mi upstream from mouth, about 300 ft above confluence with West Fork Stewart Gulch, and 14.2 mi west of Rio Blanco.

DRAINAGE AREA . - - 44.0 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1974 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1974 to September 1982.

pH: October 1974 to March 1982. WATER TEMPERATURE: October 1974 to September 1982. DISSOLVED OXYGEN: October 1974 to March 1982.

SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1982.

INSTRUMENTATION. -- Water-quality monitor October 1974 to September 1982. Pumping sediment sampler October 1974 to September 1982.

REMARKS .-- Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 2,200 microsiemens Nov. 10, 1975; minimum, 583 microsiemens Feb. 22, 1982.
pH: Maximum, 8.9 units Dec. 9, 11, 1979; minimum, 7.6 units Oct. 7, 1975.
WATER TEMPERATURES: Maximum, 20.5°C July 3, 1976, June 3, 1977; minimum, 0.0°C Jan. 9, Dec. 17, 1977,
Mar. 3, Dec. 2, 3, 1978, Jan. 29, 1979.
DISSOLVED OXYGEN: Maximum, 16.6 mg/L Jan. 13, 1976; minimum, 3.6 mg/L Aug. 19, 20, 1977.
SEDIMENT CONCENTRATIONS: Maximum daily, 1,350 mg/L June 8, 1975; minimum daily, no flow Aug. 7-9, 1975.
SEDIMENT LOADS: Maximum daily, 10 tons estimated June 8, 1975; minimum daily, no flow Aug. 7-9, 1975.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 01	1030	3.6	1350	8.3	7.0	11.1	540	93	74	120
MA Y 11	1115	3.4	1390	8.4	14.5	8.9	520	85	74	120
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
APR O1 MAY	2	1.4	346	400	11	0.20	14	924	1.25	8.98
11	2	1.1	347	400	13	0.30	13	917	1.24	8.42
DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	STRON - TIUM, DIS- SOLVED (UG/L AS SR)
APR 01	2.78	0.02	2.80	0.04	0.36	0.40	0.02	<0.01	80	2500
MAY 11	3.69	0.01	3.70	0.03	1.1	1.1	0.02	<0.01	80	2600

09306022 STEWART GULCH ABOVE WEST FORK NEAR RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)
AUG						
12	1045	0.70	1360	8.3	12.5	8.4
SEP						
30	1515	5.2	1350	8.4	12.0	10.4

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DA	TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
APR 01		1030	3.6	391	3.8

09306042 PICEANCE CREEK TRIBUTARY NEAR RIO BLANCO, CO

LOCATION.--Lat 39°50'01", long 108°13'12", in SELNEL sec.36, T.2 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 600 ft upstream from mouth and 16.2 mi west of Rio Blanco.

DRAINAGE AREA .-- 1.06 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1974 to August 1984, May 1985 to current year.

REVISED RECORDS.--WDR CO-79-3: 1977(M). WDR CO-86-2: 1984-85 (M).

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,335 ft above National Geodetic Vertical Datum of 1929, from topographic map. Nov. 10, 1980 to June 10, 1981 at datum 0.21 ft, lower.

REMARKS.--Estimated daily discharges: Nov. 10, 23, Dec. 1 to Jan. 19, Feb. 13, and Feb. 19 to Mar. 10. Records fair except for estimated daily discharges, which are poor. Most flow this year due to discharge from settling ponds on tract Cb, except for summer thunderstorms.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $506~{\rm ft}^3/{\rm s}$, Aug. 1, 1984, gage height, $6.38~{\rm ft}$, on basis of slope-area measurement of peak flow; no flow many days each year.

EXTREMES FOR CURRENT YEAR, --Maximum discharge, 27 ft³/s at 2300 July 27, gage height, 2.64 ft, from rating curve extended above 0.35 ft³/s, on basis of slope-area measurement of peak flow, at gage height, 6.38 ft; no flow many days.

		DISCHA	ARGE, CUBI	C FEET P		, WATER Y MEAN VALU		R 1986 T	O SEPTEMBE	R 1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	.39 .35 .15 .14	.12 .16 .11 .10	.12 .18 .16 .18	.18 .07 .15 .36	.44 .69 .58 .49	.06 .16 .22 .16	.10 .00 .00 .00	.35 .41 .31 .00	.18 .24 .20 .20	.24 .24 .25 .41 .44	.12 .22 .19 .36 .90	.16 .13 .14 .21
6 7 8 9 10	.11 .00 .00 .16 .16	.17 .12 .10 .10	.18 .20 .16 .18 .20	.16 .22 .20 .12 .06	.32 .42 .51 .44 .41	.22 .12 .16 .10	.00 .00 .00 .00	.00 .00 .00 .00	.20 .17 .18 .24 .13	.49 .49 .49 .49	1.2 1.2 .91 .42	.11 .14 .21 .15
11 12 13 14 15	.41 .46 .21 .10	.10 .12 .11 .17	.16 .26 .20 .22	.16 .12 .06 .22	.49 .31 .22 .31 .25	.00 .10 .16 .00	.00 .00 .00 .00	.00 .00 .00 .13	.21 .21 .30 .51 .66	.50 .45 .46 .41	.11 .10 .23 .23	.20 .16 .19 .13
16 17 18 19 20	.10 .10 .10 .10	.14 .12 .22 .16 .22	.06 .21 .20 .63 .57	.22 .20 .16 .12	.34 .39 .34 .20	.00 .00 .00 .00	.00 .00 .00 .00	.10 .00 .10 .10	.58 .57 .73 .73	.29 .27 .27 .27 .27	.22 .18 .14 .21	.27 .24 .14 .14
21 22 23 24 25	.10 .10 .10 .10	.20 .16 .15 .11	.50 .01 .13 .15	.30 .46 .83 .81	.12 .22 .18 .16	.00 .00 .10 .00	.00 .00 .24 .18	.18 .27 .25 .13 .24	.42 .25 .21 .38 .20	.29 .30 .32 .33	.13 .14 .17 .22	.18 .18 .20 .17
26 27 28 29 30 31	.10 .10 .10 .13 .12	.13 .10 .17 .18 .12	.18 .03 .12 .14 .20	.84 .88 .55 .49 .41	.22 .20 .16	.00 .00 .00 .00	.41 .39 .30 .32 .29	.21 .24 .16 .15 .24	.20 .20 .18 .25 .29	.29 1.9 8.3 1.1 .29	.10 .10 .17 .16 .13	.18 .20 .18 .18
TOTAL MEAN MAX MIN AC-FT	4.64 .15 .46 .00 9.2	4.16 .14 .22 .10 8.3	6.16 .20 .63 .01	10.12 •33 •88 •06 20	9.05 .32 .69 .12 18	1.77 .06 .22 .00 3.5	2.59 .09 .41 .00 5.1	3.94 .13 .41 .00 7.8	9.40 .31 .73 .13	21.17 .68 8.3 .21 42	9.20 .30 1.2 .10 18	5.43 .18 .32 .11

CAL YR 1986 TOTAL 82.88 MEAN .23 MAX 4.3 MIN .00 AC-FT 164 WTR YR 1987 TOTAL 87.63 MEAN .24 MAX 8.3 MIN .00 AC-FT 174

09306042 PICEANCE CREEK TRIBUTARY NEAR RIO BLANCO, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1974 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1974 to August 1984, April 1985 to February 1986.
pH: February to September 1981.
WATER TEMPERATURE: April 1974 to August 1984, April 1985 to February 1986.
SUSPENDED-SEDIMENT DISCHARGE: April 1974 to September 1982.

INSTRUMENTATION. -- Water-quality monitor April 1974 to February 1986. Pumping sediment sampler April 1974 to September 1982.

REMARKS.--Unpublished maximum and minimum values of specific conductance for periods of daily record are available in the district office. Water-quality monitor was moved February 21, 1986 to the discharge pipe of a settling pond on Occidental Petroleum's tract C-b oil shale lease. Daily monitor data subsequent to February 20 are site specific and not published in this report.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum, 2,570 microsiemens Sept. 16, 1980; minimum observed, 220 microsiemens Jan. 26, 1982.

WATER TEMPERATURES: Maximum, 35.0°C Aug. 6, 1985; minimum, 0.0°C many days during winter months.

SEDIMENT CONCENTRATIONS: Maximum daily, 28,000 mg/L estimated Sept. 3, 1978; no flow many days dry years.

SEDIMENT LOADS: Maximum daily, 900 tons, estimated, Sept. 3, 1978; no flow many days dry years.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER - ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
	18	0850	0.32	2160		0.5	13.0	64	10	9.0	570	32
	18	1100	0.08	2340	9.0	23.5	6.4	61	9.6	8.6	590	34
	02	1230	0.20	2470	9.0	29.0	5.8	55	8.9	7.6	610	37
AU	27	1430	0.02	2440	9.0	27.5	6.9	50	7.9	7.2	610	39
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)
FE	В 18	1.6	1240	35	12	20	0.13	16	1420	1.93	1.23	0.83
MA	Y 18	1.6	1240	51	16	20	0.015	48	1490	2.02	0.32	0.49
	02	1.7	1300	65	10	20	~-	17	1520	2.07	0.82	0.45
AU	G 27	1.8	1290	66	8.4	20		9.4	1510	2.05	0.08	
	DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	BORON, DIS- SOLVED (UG/L AS B)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
	18	0.03	0.86	0.01	0.99	1.0	0.05	0/02	3.3	1	770	1200
	18	0.03	0.52	0.03	0.87	0.90	0.01	0/02	4.9	<1	730	1100
JU	02	0/02	0.47	0.03	0.87	0.90	0.01	<0.01			780	1100
AU	27	<0.01	0.35	<0.01		1.1	0.01	0.01			770	920

09306042 PICEANCE CREEK TRIBUTARY NEAR RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	
	FEB 18	10	1	600		<1	<10	<1	4	30	
	MAY 18	20	1	700	<10	<1	<10	<1	<1	20	
	DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA - NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOL YB - DENUM, DIS - SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	FEB 18 MAY	< 5	50	<10	<0.1	1	1	<1		<10	
	18	<5	40	<10		2	<1	<1	5	<10	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER - ATURE WATER (DEG C)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT 06	1530	0.04	2240	21.5		ИО	V 17	1200	0.13	2280	8.5

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MAY 18 JUL	1100	0.08	106	0.02	16
02	1230	0.20	68	0.04	31
AUG 27	1430	0.02	566	0.03	29

09306058 WILLOW CREEK NEAR RIO BLANCO, CO

LOCATION.--Lat 39°50'14", long 108°14'37", in NW\(\frac{1}{4}\) sec.35, T.2 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on right bank 1,500 ft upstream from mouth and 17.4 mi west of Rio Blanco.

DRAINAGE AREA. -- 48.4 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1974 to September 1985, October 1986 to September 1987.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: November 1974 to September 1982.

SPECIFIC COMPUCTANCE: November 1974 to September 1902.

ph: March 1976 to February 1982.

WATER TEMPERATURE: November 1974 to September 1982.

DISSOLVED OXYGEN: March 1976 to February 1982.

SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1982.

INSTRUMENTATION. -- Water-quality monitor November 1974 to September 1982. Pumping sediment sampler October 1974 to September 1982.

REMARKS.--Unpublished daily maximum and minimum specific conductance data for period of daily record are available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,920 microsiemens July 14, 1976; minimum, 528 microsiemens Mar. 18, 1976.
pH: Maximum, 8.8 units Mar. 11, 1980; minimum, 7.4 units June 4, 6, 1980.
WATER TEMPERATURES: Maximum, 30.5°C July 4, 1982; minimum, 0.0°C on many days during winter months each

DISSOLVED OXYGEN: Maximum, 12.9 mg/L Mar. 29, 1979; minimum, 3.6 mg/L Sept. 29, 1978. SEDIMENT CONCENTRATIONS: Maximum daily, 7,030 mg/L July 29, 1979; no flow many days during 1978. SEDIMENT LOADS: Maximum daily, 61 tons July 29, 30, 1979; no flow many days during 1978.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 01	1300	4.2	1240	8.4	11.5	9.9	500	95	64	110
MA Y 11	1315	8.8	1140	8.4	16.0	7.4	450	85	58	97
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA - LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
APR 01 MAY	2	1.7	333	330	13	0.40	17	833	1.13	9.45
11	2	1.1	325	300	14	0.40	17	770	1.04	18.3
DATE	NIT GE NITR DI SOL (MG AS	N, GE ITE NO2+ S- DI VED SOL /L (MG	N, GE NO3 AMMO S- DI VED SOL //L (MO	N, GE NIA ORGA S- DI VED SOL	N, GEN, NIC MONI S- ORGA VED DIS	A + PHOD NIC DO S. SOD G/L (Market	PHO OS - PHOF ROUS ORT IS - DIS LVED SOLV G/L (MG/ P) AS F	ROUS THO, BOR S- DI VED SOL VL (UG	ON, TI S- DI VED SOL	ON - UM, S- VED :/L SR)
APR 01 MAY	<0.	01 1.	20 0.	04 0).36	0.40 0	.02 <0.	.01	130 2	400
11	<0.	01 1.	50 0.	04 1	1.2	1.2 0	.04 <0.	.01	110 2	100

298

GREEN RIVER BASIN

09306058 WILLOW CREEK NEAR RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)
AUG 12	1400	5.2	1360	8.1	14.0	7.6
SEP	1400	٥.٠	1,500	0.1	14.0	1.0
30	1230	4.4	1320	8.4	10.5	8.2

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
APR 01	1300	4.2	1540	17

09306061 PICEANCE CREEK ABOVE HUNTER CREEK, NEAR RIO BLANCO, CO

LOCATION.--Lat 39°51'02", long 108°15'31", in SE4NE4 sec.27, T.2 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 120 ft downstream from private bridge, 0.4 mi upstream from Hunter Creek, and 18.7 mi west of Rio Blanco.

DRAINAGE AREA . - - 309 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1974 to September 1987 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 6,214 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Mar. 26, 1982, at site 75 ft upstream at datum 0.98 ft, lower.

REMARKS.--Estimated daily discharges: Jan. 15-24. Records good except for estimated daily discharges, which are poor.

AVERAGE DISCHARGE. -- 13 years, 32.8 ft3/s; 23,760 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 612 ft^3/s , May 7, 1985, gage height, 5.65 ft , maximum gage height, 5.85 ft , May 16, 1984; no flow Oct. 4, 5, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 98 $\rm ft^3/s$ at 2030 Mar. 6, gage height, 3.52 $\rm ft$; minimum daily, 7.4 $\rm ft^3/s$, May 23.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MEAN VALUES

NOV DEC JAN REB MAR APR MAY JUN JU

DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	46 46 45 44	36 37 36 35 35	29 28 30 30 31	20 19 19 20 19	23 23 23 22 21	23 23 21 24 34	35 43 42 57 53	75 76 75 69 65	10 11 11 14 14	9.2 11 11 9.0 9.0	33 31 30 29 30	29 27 28 27 27
6 7 8 9 10	45 48 45 46 47	37 36 34 31 32	31 32 33 31 26	19 18 17 20 18	20 19 22 22 22	47 55 55 51 47	48 57 59 58 49	65 62 59 58 56	13 12 17 21 28	8.8 8.7 9.3 15	29 30 28 26 30	26 26 26 25 23
11 12 13 14 15	44 41 40 40 39	31 31 32 31 32	35 30 27 27 27	21 22 19 17 16	19 20 27 28 23	43 36 49 59	52 42 38 36 44	54 45 41 34 26	24 19 17 14 12	15 18 18 19 17	32 40 40 41 42	21 22 22 20 19
16 17 18 19 20	38 38 37 38 38	34 38 40 37	28 26 25 23 22	15 15 14 14 13	23 23 21 20 24	42 35 31 39 32	50 52 53 57 58	17 13 12 8.5 7.9	19 14 10 9.6 8.9	15 13 12 11 10	42 40 39 38 36	19 19 17 17 18
21 22 23 24 25	38 38 39 37 37	37 37 33 35 35	22 20 20 20 20	14 13 13 14 15	21 22 22 22 23	27 30 27 27 27	54 58 58 60 64	8.0 7.8 7.4 8.4 9.3	8.0 8.2 9.7 10	13 14 15 17 18	34 34 38 39 43	17 19 18 19 20
26 27 28 29 30 31	36 36 35 34 33 36	35 28 28 31 33	21 20 20 19 20 18	15 14 25 24 23 23	23 23 23 	26 29 25 27 23 29	68 69 71 75 74	9.6 13 9.1 9.7 11	10 9.1 8.1 9.7	18 19 30 34 32 33	40 36 34 32 31 30	19 18 17 18 17
TOTAL MEAN MAX MIN AC-FT	1250 40.3 48 33 2480	1021 34.0 40 28 2030	791 25.5 35 18 1570	548 17.7 25 13 1090	624 22.3 28 19 1240	1093 35.3 59 21 2170	1634 54.5 75 35 3240	1022.7 33.0 76 7.4 2030	392.3 13.1 28 8.0 778	498.0 16.1 34 8.7 988	1077 34.7 43 26 2140	640 21.3 29 17 1270

CAL YR 1986 TOTAL 22513.0 MEAN 61.7 MAX 227 MIN 18 AC-FT 44650 WTR YR 1987 TOTAL 10591.0 MEAN 29.0 MAX 76 MIN 7.4 AC-FT 21010

09306061 PICEANCE CREEK ABOVE HUNTER CREEK NEAR RIO BLANCO, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1974 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1974 to September 1985.
pH: October 1974 to September 1984.
WATER TEMPERATURE: October 1974 to September 1985.
DISSOLVED OXYGEN: October 1974 to September 1984.
SUSPENDED-SEDIMENT DISCHARGE: April 1974 to September 1985.

INSTRUMENTATION.--Automatic pumping sediment sampler April 1974 to September 1985. Water-quality monitor October 1974 to September 1985.

REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum 1,980 microsiemens Jan. 15, 1976; minimum, 440 microsiemens Apr. 19, 1985. pH: Maximum, 8.9 units Dec. 7, 1977; minimum, 7.4 units Apr. 18, 1979. WATER TEMPERATURES: Maximum, 26.5°C June 26, 1977; minimum, freezing point on many days during winter

DISSOLVED OXYGEN: Maximum, 16.5 mg/L Mar. 21, 22, 1976; minimum, 3.1 mg/L Sept. 10, 1978.

SEDIMENT CONCENTRATIONS: Maximum daily, 15,000 mg/L May 2, 1986; minimum daily, no flow Oct. 4, 5, 1977.

SEDIMENT LOADS: Maximum daily, 27,000 tons estimated Sept. 3, 1977; minimum daily, no flow Oct. 4, 5, 1977.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
FEB 18	1340	22	1310	8.5	5.5	10.7	470	84	62	130
MA Y , 04	1130	70	1070	8.5	9.5	8.5	410	84	49	90
JUL 08 SEP	1400	9.0	1670	8.2	18.5	11.6	570	88	85	190
02	1430	26	1380	8.4	17.5	8.6	480	80	67	140
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
FEB 18	3	2.1	369	350	15	1.0	14	882	1.20	52.4
MAY 04	2	2.0	326	260	14	0.4	15	712	0.97	134
JUL 08	4	3.8	518	410	18	0.7	16	1130	1.53	27.3
SEP 02	3	2.3	278	350	17	0.8	15	841	1.14	59.1
DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	STRON - TIUM, DIS- SOLVED (UG/L AS SR)
FEB 18	2.19	0.01	2.20	0.02	1.8	1.8	0.03	0.02	150	2000
MAY 04 JUL		<0.01	1.90	0.02	0.58	0.60	0.03	0.02	110	1400
08 SEP		<0.01	<0.10	0.05	0.65	0.70	<0.01	<0.01	2 50	2600
02	1.59	0.01	1.60	0.01	0.29	0.30	0.01	<0.01	160	2300

09306061 PICEANCE CREEK ABOVE HUNTER CREEK NEAR RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	COBALT, DIS- SOLVED (UG/L AS CO)	IRON, DIS- SOLVED (UG/L AS FE)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	FEB 18 MAY	2	85	<1	9	20	16	4	1	10	
	04	3	100	<1	20	10	10	4	<1	<10	
DATE	E TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	TEMPER - ATURE WATER (DEG C)
OCT O6 DEC	1405	47	1280	11.5		API JUN	22	1140	58	1170	6.0
18 MAR	1455	25	1340	3.0			3	1350	11	1570	17.0
30	1100	23	1390	4.5							

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS- PENDED (MG/L)	SE DI - MENT, DIS - CHARGE, SUS - PEN DE D (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
F	EB					
	18	1340	22	149	8.9	58
4	1A R 30	1100	23	454	28	58
ŀ	1A Y		-5			,,,
	04	1130	70	1120	212	59
J	IUL	41100	2.0			
	08 SEP	1400	9.0	71	1.7	29
	02	1430	26	122	8.6	36
						5.

09306200 PICEANCE CREEK BELOW RYAN GULCH, NEAR RIO BLANCO, CO

LOCATION.--Lat 39°55'16", long 108°17'49", in sec.32, T.1 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank at downstream side of bridge, 40 ft downstream from Ryan Gulch, and 23 mi northwest of Rio Blanco.

DRAINAGE AREA. -- 506 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1964 to current year.

REVISED RECORDS. -- WDR CO-79-3: 1977 (M).

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,070 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 11, 12, Jan. 11, 12, 17-27, and Feb. 22 to Mar. 24. Records good except for estimated daily discharges, which are fair. Diversions for irrigation upstream from station.

AVERAGE DISCHARGE. -- 23 years, 32.7 ft 3/s; 23,690 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 550 ft³/s, May 5, 1985, gage height, 7.70 ft; maximum gage height, 7.81 ft, May 28, 1983; minimum daily discharge, 0.15 ft³/s, June 7, 1981.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 100 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 2	2300	*134	* 5.52	No ot	her peak gre	eater than base d	ischarge.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 18 ft³/s, June 28.

		DISCHA	NGE, CODI	J PERI TEI	ME ME	EAN VALUES	S COLORE	K 1900 10	SEI TEMBE	11 1901		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	66	57	36	31	25	36	53	116	25	23	67	37
2	63	55	39	28	25	40	69	125	24	25	61	36
3	73	55	40	27	27	37	61	131	25	26	58	33
4	71	54	41	34	27	38	77	121	25	25	56	32
5	64	55	40	28	25	48	78	113	26	24	56	33
6	62	58	42	28	24	66	67	111	23	24	55	32
7	60	59	47	28	25	80	80	107	20	24	57	32
8	59	54	44	28	27	78	84	104	23	22	53	33
9	58	47	43	27	28	70	86	101	27	21	49	30
10	58	50	30	26	27	65	78	98	41	21	50	31
11	60	46	32	28	29	58	83	96	38	22	52	30
12	60	50	34	30	31	52	77	85	32	23	51	29
13	59	48	36	28	42	76	68	78	27	25	49	30
14	58	49	33	28	56	85	63	67	23	27	50	30
15	56	51	32	25	45	75	70	58	21	28	49	28
16	55	53	33	24	43	68	81	49	24	28	49	27
17	54	53	33	25	42	60	82	44	24	28	47	28
18	53	53	33	26	41	50	83	42	21	29	47	27
19	53	55	35	25	38	60	87	28	19	28	45	25
20	54	53	32	24	40	50	93	24	20	30	43	24
21	55	50	33	25	36	43	87	23	20	28	42	25
22	57	52	31	26	38	48	87	23	20	37	40	25
23	57	46	31	25	41	45	84	24	20	36	38	27
24	54	46	32	26	39	45	89	24	20	35	42	28
25	53	47	29	26	34	50	92	25	21	39	50	28
26 27 28 29 30 31	52 51 51 50 49 54	48 42 43 45 46	32 30 29 28 30 28	25 26 26 24 24	35 34 35 	48 51 43 45 41 47	99 102 104 110 112	24 26 22 24 25 27	20 19 18 19 23	43 45 60 67 62 64	48 44 43 40 38 38	27 27 27 28 29
TOTAL	1779	1520	1068	827	959	1698	2486	1965	708	1019	1507	878
MEAN	57.4	50.7	34.5	26.7	34.2	54.8	82.9	63.4	23.6	32.9	48.6	29.3
MAX	73	59	47	34	56	85	112	131	41	67	67	37
MIN	49	42	28	24	24	36	53	22	18	21	38	24
AC-FT	3530	3010	2120	1640	1900	3370	4930	3900	1400	2020	2990	1740

CAL YR 1986 TOTAL 30945 MEAN 84.8 MAX 278 MIN 28 AC-FT 61380 WTR YR 1987 TOTAL 16414 MEAN 45.0 MAX 131 MIN 18 AC-FT 32560

09306200 PICEANCE CREEK BELOW RYAN GULCH NEAR RIO BLANCO, CO--Continued

303

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- December 1970 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: December 1979 to September 1982, November 1985 to current year. WATER TEMPERATURE: December 1979 to September 1982, November 1985 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1972 to September 1983.

INSTRUMENTATION.--Automatic pumping sediment sampler October 1972 to September 1983. Water-quality monitor December 1979 to September 1982, November 1985 to current year.

REMARKS.--Unpublished maximum and minimum specific conductance data for the periods of daily record are available in the district office. Interruptions in the daily record are due to instrument malfunctions.

EXTREMES FOR PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: Maximum 2,920 microsiemens July 18, 1981; minimum, 520 microsiemens July 18, 1981. WATER TEMPERATURES: Maximum 26.5°C June 22, 1981; minimum, 0.0°C on many days during the winter period. SEDIMENT CONCENTRATIONS: Maximum daily, 21,700 mg/L July 20, 1977; minimum daily, 8 mg/L Oct. 14, 1979, several days in Sept. 1981. SEDIMENT LOADS: Maximum daily, 5,390 tons July 23, 1983; minimum daily, 0.05 ton Sept. 27, 30, 1981.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Not determined. WATER TEMPERATURES: Not determined.

DA TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
FEB 17	1500	44	1400	8.5	6.0	9.7	530	92	72	140
MA Y 04	1500	123	1110	8.5	11.5	8.5	450	88	56	88
JUL 10	1230	21	1910	8.4	15.0	8.1	630	86	100	230
SEP 02	1545	36	1510	8.4	18.0	7.9	520	79	78	160
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS S102)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
FEB 17	3	2.3	409	400	12	0.70	16	983	1.33	117
MAY 04 JUL	2	1.9	335	280	13	0.40	16	746	1.01	248
10 SEP	14	3.5	570	500	19	0.70	17	1300	1.77	73.8
02	3	2.6	312	420	16	0.70	16	962	1.30	93.6
DATE	NIT GE NITR DI SOL (MG AS	N, GE ITE NO2+ S- DI VED SOL /L (MG	N, GE NO3 AMMO S- DI VED SOL	N, GE NIA ORGA S- DI VED SOL	S- ORGA VED DIS /L (MG	AM- PHOF A + PHOF NIC DI . SOL /L (MC	ROUS ORT S- DIS VED SOLV	OUS HO, BOF ED SOL	RON, TI SS- DI VED SOL	RON - UM, S- VED G/L SR)
FEB 17 MAY	<0.			020 2			030 0.	030	140 2	2800
04 JUL	<0.	010 1.	90 0.	010 0	.59 0	.60 0.	030 0.	020	100 1	1800
10 SEP	<0.	010 <0.	100 0.	050 0	.65 0	.70 0.	030 0.	020	280	3500
02	<0.	010 1.	00 0.	010 0	.39 0	.40 0.	030 0.	010	180 2	2900

09306200 PICEANCE CREEK BELOW RYAN GULCH NEAR RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	COBALT, DIS- SOLVED (UG/L AS CO)	IRON, DIS- SOLVED (UG/L AS FE)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, DIS- SOLVED (UG/L AS ZN)
MAY 04 JUL	3	100	<1	20	10	10	7	<1	10
10	3	89	<1	24	22	45	< 1	<1	8

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB					
17 MAR	1500	44	274	33	58
24	1515	45	2460	299	10
MA Y					
04 JUL	1500	123	1910	634	60
10	1230	21	68	3.9	38
SEP					
02	1545	36	155	15	46

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1350 1360 1330 1360 1370	1390 1420 1420 1430 1420	1330 1300 1290 1300 1310					1080 1070 1090 1110 1130		1950 1950 1970 1960 1930		1510 1500 1500 1500 1500
6 7 8 9 10	1390 1400 1400 1390 1400	1410 1400 1420 1440 1420	1310 1310 1330 1350 1440					1130 1130 1130 1130 1140		1920 1900 1900 1890 1890	1560 1580 1570	1480 1480 1450 1460 1470
11 12 13 14 15	1380 1400 1410 1410 1410	1430 1420 1430 1420 1430	1410 1400 1360 1390					1150 1180 1200 1220 1240		1890 1920 1910 1910 1850	1530 1510 1500 1490 1470	1460 1480 1490 1490 1510
16 17 18 19 20	1410 1410 1410 1410 1410	1420 1420 1420 1410 1390						1260 1270 1320 		1820 1810 1780 1760 1770	1460 1460 1460 1440 1430	1520 1520 1540 1550 1590
21 22 23 24 25	1410 1410 1410 1420 1420	1390 1410 1420 1450 1450					1230 1190 1150		1800	1690 1490 	1440 1450 1460 1450 1410	1600 1620 1600 1610 1620
26 27 28 29 30 31	1420 1410 1410 1420 1420 1380	1420 1460 1450 1390 1330					1120 1110 1110 1090 1080		1810 1840 1870 1870 1890		1430 1460 1480 1490 1500 1510	1610 1600 1610 1600 1600

GREEN RIVER BASIN

09306200 PICEANCE CREEK BELOW RYAN GULCH NEAR RIO BLANCO, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			DARIOND,	WAIDN (DI	3G, C), W	AIDN IDAN	OCIOBER .	1900 10 3	SFIEMBER	1901		
DAY	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN
	OCT	OBER	NOV	EMBER	DE	CEMBER	JAN	IUARY	FE	BRUARY	M	ARCH
1	11.1	6.2	5.0	2.9	1.6	.0						
2	10.9 8.3	8.4	6.3	3.9	2.8	.0						
4	11.7	5.2 5.7	5.3 7.6	3.2 2.9	4.0 4.5	.0 1.0						
5	11.2	5.5	7.1	2.3	5.1	2.4						
6	12.0	5.3	5.2	2.5	5.4	4.1						
7 8	12.6 11.8	6.6 6.2	4.9 3.9	1.8	4.5 5.1	2.9 2.4						
9	11.2	5.9	2.8	.0	3.2	.0						
10	10.0	5.4	5.1	1.9	.0	.0						
11	8.3	4.4	4.5	.0	.0	.0						
12 13	6.9 8.4	2.7 1.6	5.6 5.4	2.6 •9	.0 2.0	.0						
14	9.6	3.2	6.1	1.5	3.1	.0						
15	10.1	3.7	6.4	2.5	2.4	.0						
16	10.0	3.9	5.7	2.8								
17 18	9.8 10.0	4.1 5.8	6.2 6.6	4.2 3.2								
19 20	9.8 9.8	6.4	7.8	5.0								
20	9.0	5.4	6.1	2.1								
21 22	8.1 8.6	6.5 6.3	6.4 6.3	2.1								
23	10.9	7.1	3.8	3.2 .0								
24 25	9.4 9.7	4.9 4.5	4.9 3.8	1.1 1.4								
26 27	9.3 9.8	3.9 4.3	4.6 3.6	1.4								
28	9.8	4.7	4.7	. 4								
29 30	9.3 9.2	4.8 5.1	4.1 3.7	1.9 .7								
31	7.1	2.9										
MONTH	12.6	1.6	7.8	•0								
	APR	IL	MA	У	Jl	JNE	JU	JLY	AUG	GUST	SEPTI	EMBER
1	APR	IL	MA	Y 								
2					20.6 21.1	8.0 6. 6	20.5 21.9	10.8 10.6	21.6 21.6	11.5 12.2	20.1 17.8	10.5 11.7
					20.6 21.1 21.3	8.0 6.6 7.2	20.5 21.9 21.3	10.8 10.6 9.9	21.6 21.6 22.0	11.5 12.2 13.4	20.1 17.8 19.9	10.5
2 3					20.6 21.1	8.0 6. 6	20.5 21.9	10.8 10.6	21.6 21.6	11.5 12.2	20.1 17.8	10.5 11.7 11.9
2 3 4 5			15.4 16.4	7.1 8.0	20.6 21.1 21.3 21.7	8.0 6.6 7.2 7.2	20.5 21.9 21.3 19.9	10.8 10.6 9.9 9.8	21.6 21.6 22.0 21.2	11.5 12.2 13.4 11.6	20.1 17.8 19.9 17.7	10.5 11.7 11.9 11.8
2 3 4 5 6 7			15.4 16.4 17.2	7.1 8.0 8.1	20.6 21.1 21.3 21.7 20.3	8.0 6.6 7.2 7.2 9.3	20.5 21.9 21.3 19.9 20.0	10.8 10.6 9.9 9.8 9.7	21.6 21.6 22.0 21.2 18.4 20.1 20.4	11.5 12.2 13.4 11.6 11.4	20.1 17.8 19.9 17.7 18.2	10.5 11.7 11.9 11.8 8.9
2 3 4 5 6 7 8 9			15.4 16.4 17.2 14.4 15.4	7.1 8.0 8.1 8.0 7.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1	20.5 21.9 21.3 19.9 20.0	10.8 10.6 9.9 9.8 9.7	21.6 21.6 22.0 21.2 18.4	11.5 12.2 13.4 11.6 11.4	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6
2 3 4 5 6 7 8			15.4 16.4 17.2 14.4	7.1 8.0 8.1 8.0	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5	8.0 6.6 7.2 7.2 9.3 10.1 10.7	20.5 21.9 21.3 19.9 20.0	10.8 10.6 9.9 9.8 9.7 9.5 10.5	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1	20.1 17.8 19.9 17.7 18.2 17.2 17.6 15.2	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0
2 3 4 5 6 7 8 9 10			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.9 10.8	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8
2 3 4 5 6 7 8 9 10 11 12			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 17.5 17.5 19.3	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.9 10.4	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8
2 3 4 5 6 7 8 9 10 11 12 13 14			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 23.4	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7 10.3 9.9	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.5	10.8 10.6 9.9 9.8 9.7 9.5 10.9 10.8 10.4	21.6 21.6 22.0 21.2 18.4 20.1 22.0 21.4 19.8 19.4 20.6 17.3 19.2	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5	20.1 17.8 19.9 17.7 18.2 17.2 17.6 15.2 17.7 17.3	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.7
2 3 4 5 6 7 8 9 10 11 12 13			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 17.5 19.3 18.9 21.3 22.4	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 17.0 14.6 19.8 20.8	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.9 10.4	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5	20.1 17.8 19.9 17.7 18.2 17.2 17.6 15.2 17.7 17.3	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2
2 3 4 5 6 7 8 9 10 11 12 13 14 15			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 23.4 20.0	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7 10.3 9.9 10.1	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.5 21.7	10.8 10.6 9.9 9.8 9.7 9.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9	21.6 21.6 22.0 21.2 18.4 20.1 22.0 21.4 19.8 19.4 20.6 17.3 19.2 18.3	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5 12.3 11.56 12.5 12.3	20.1 17.8 19.9 17.7 18.2 17.2 17.6 15.2 17.7 17.3 17.7 15.8 13.2 15.2 17.2	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.7 7.6
2 3 4 5 6 7 8 9 10 11 12 13 14 15			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 23.4 20.0	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7 10.3 9.9 10.1 10.3	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.7 21.7	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.4 20.6 17.3 19.2 18.3	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5 12.3 11.5 12.5 12.3	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.8 13.2 15.2 17.2	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 8.2 7.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19			15.4 16.4 17.2 14.4 16.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 23.4 20.0	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7 10.3 10.1 10.3 10.4 8.9 8.1	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 21.5 21.7	10.8 10.6 9.9 9.8 9.7 9.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.4 20.6 17.3 19.2 18.3 18.8 20.0 19.4	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5 12.3 11.56 12.5 12.3 10.7 10.1 9.6 10.2	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.8 13.2 17.2 15.2 17.2	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.7 7.6 9.6 8.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 23.4 20.0 20.1 21.3 21.3 21.4 20.7	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7 10.3 9.9 10.1 10.3	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.7 21.7 21.3 17.1 18.4 19.9	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.8 10.4 11.1 10.7 9.8 9.9 9.9	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.4 20.6 17.3 19.2 18.3	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5 12.5 12.5 12.5 12.7	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.8 13.2 15.2 17.2 15.0 17.2 16.1 16.7	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.7 7.6 9.6 8.7 6.3 6.6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21			15.4 16.4 17.2 14.5 16.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.1 19.5 15.7 19.3 18.9 21.3 22.4 23.4 20.0 20.1 21.3 21.4 20.7	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7 10.3 10.4 8.9 8.1 8.7 9.0	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 21.5 21.7 21.3 17.1 18.4 19.9 14.2	10.8 10.6 9.9 9.8 9.7 9.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9 10.8 12.8 10.0 9.0 8.8	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.4 20.6 17.3 19.2 18.3 18.8 20.0 19.4 19.6 15.5	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5 12.3 11.56 12.5 12.3 10.7 10.2 11.1	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.8 13.2 17.2 15.2 17.2 16.1 16.7 16.6	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.7 7.6 9.6 8.7 6.0 6.6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 17.5 15.7 19.3 18.9 21.3 22.4 23.4 20.0 20.1 21.3 21.4 20.7 21.6 21.3	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.5 9.9 9.7 10.3 9.9 10.3 10.4 8.5 8.7 9.3 8.4	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.7 21.7 21.3 17.1 18.4 19.9 14.2 20.0 21.9 21.1	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9 10.8 12.8 10.0 9.0 8.8	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.4 20.6 17.3 18.3 18.8 20.0 19.4 19.5 19.5	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5 12.3 11.5 12.5 12.3 10.7 10.1 9.6 10.2 11.1	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.8 13.2 15.2 17.2 15.0 17.2 16.1 16.6	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.6 9.6 6.6 6.6 6.6 6.6 6.6
2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 32 4			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 21.3 22.4 23.4 20.0 20.1 21.3 21.4 20.7 21.6 21.6 21.3 21.0	8.0 6.6 7.2 7.2 9.3 10.1 10.7 10.1 11.5 9.9 9.7 10.3 10.4 8.9 8.1 10.4 8.9 8.1 8.7 9.3	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.7 21.7 21.3 17.1 18.4 19.9 14.2 20.0 21.9 21.9	10.8 10.6 9.9 9.8 9.7 9.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9 10.8 12.8 10.0 9.0 8.8	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.4 22.6 17.3 19.2 18.3 19.5 19.5 19.5 19.5	11.5 12.2 13.4 11.6 11.4 13.3 13.6 13.1 11.9 12.5 12.5 12.6 12.5 12.7 10.1 9.6 10.2 11.1	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.2 17.2 15.2 17.2 16.1 16.6 16.6	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.7 7.6 9.6 6.6 6.6 6.6 6.3 6.7
2345 678910 112133145 16718819 2022345			15.4 16.4 17.2 14.4 15.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 23.4 20.0 20.1 21.3 21.3 21.4 20.7 21.6 21.3 21.6 21.3	8.0 6.6 7.2 9.3 10.1 10.7 11.5 9.9 9.7 10.3 9.1 10.3 10.4 8.5 10.3 8.4 9.8 8.4 9.8 8.8	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 21.5 21.7 21.3 17.1 18.4 19.9 14.2 20.0 21.9 21.1 20.5	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.8 10.4 11.1 10.7 9.9 9.9 10.8 10.0 8.8 10.0 9.0 8.8	21.6 21.6 22.0 21.2 18.4 20.1 22.0 21.4 19.8 19.4 20.6 317.3 19.4 19.5 19.4 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5 12.5 12.5 12.5 12.3 10.7 10.1 9.6 10.2 11.1	20.1 17.8 19.9 17.7 18.2 17.2 17.2 17.3 17.7 17.3 17.7 15.8 13.2 15.2 17.2 16.1 16.6 16.6 16.6 16.6	10.5 11.7 11.9 11.8 8.9 8.7 10.7 9.0 8.6 8.8 7.9 8.2 7.6 9.6 6.6 6.6 6.6 6.3 6.7 9.2
2345 678910 1121345 16718 19920 2122345 26			15.4 16.4 17.2 14.4 15.4 16.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 20.0 20.1 21.3 21.3 21.4 20.7 21.6 21.3 21.6 21.3 22.2 22.2	8.66 7.22 9.3 10.1 10.7 11.5 9.9 9.7 10.3 10.4 9.9 10.3 10.4 8.5 8.1 9.0 8.3 8.3 9.2	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.7 21.7 21.3 17.1 18.4 19.9 21.9 21.1 20.0 21.9 21.1 20.5	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.8 10.4 11.1 10.7 9.8 9.9 10.8 11.6 10.1 9.5 13.6 12.4	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.4 20.6 17.3 19.2 18.3 19.4 19.5 19.5 19.5 19.5 19.5 19.6 17.6	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5 12.3 11.56 12.5 12.3 10.7 10.2 11.1 12.0 13.3 11.9 10.7	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.2 17.2 15.2 17.2 16.6 16.6 16.6 14.8	10.5 11.7 11.9 11.8 8.9 10.7 9.0 8.6 8.8 7.9 8.6 8.2 7.7 7.6 6.6 6.6 6.6 6.3 6.6 6.6 6.3 6.6 6.3 6.3
2345 67899 10 1123145 167899 202345 26728			15.4 16.4 17.2 14.4 15.4 16.4 16.4 16.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 20.0 20.1 21.3 21.3 21.4 20.7 21.6 21.3 21.6 21.3 21.6	8.0 6.6 7.2 9.3 10.1 10.7 11.5 9.9 9.7 10.3 9.9 10.3 10.4 8.9 8.1 9.8 8.4 9.8 8.4 9.8 8.4 9.8 9.2 10.3	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.5 21.7 21.3 17.1 18.4 19.9 14.2 20.0 21.9 21.1 20.9 20.8	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.8 10.4 11.1 10.7 9.9 9.9 10.8 10.0 9.8 10.0 9.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	21.6 21.6 22.0 21.2 18.4 20.1 22.0 21.4 19.8 19.4 20.6 317.3 18.3 18.3 19.4 19.5 19.5 19.5 19.6 15.4 17.6 17.0	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5 12.3 11.5 12.5 12.3 10.7 10.1 12.3 11.9 12.3 11.1 12.3 11.9 12.3 11.9	20.1 17.8 19.9 17.7 18.2 17.2 17.2 17.3 17.7 17.3 17.7 15.8 13.2 17.2 16.1 16.6 16.6 16.6 16.6 16.6 14.8	10.5 11.7 11.9 11.8 8.9 10.7 9.0 8.6 8.8 7.9 8.2 2.7 7.6 6.6 6.6 6.3 6.7 9.2 8.3 6.6 8.3 6.6 8.3 6.6 8.3 6.6 8.3 6.6 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3
2345 678910 112345 16718 190 2122345 267829			15.4 16.4 17.2 14.4 15.4 16.4 16.4 16.4 16.4 16.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1 	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 20.0 20.1 21.3 21.4 20.7 21.6 21.3 21.4 20.7	8.0 6.6 7.2 9.3 10.1 10.7 11.5 9.9 10.3 9.7 10.3 10.4 8.5 11.8	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.5 21.7 21.3 17.1 18.4 19.9 14.2 20.0 21.9 21.1 20.5 21.1 20.5	10.8 10.6 9.9 9.7 9.5 10.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9 10.8 10.0 9.0 8.8 10.1 9.5 13.6 13.6 13.7	21.6 21.6 22.0 21.2 18.4 20.1 20.4 22.0 21.4 19.8 19.6 17.2 18.3 18.8 20.6 17.3 19.5 19.5 19.5 19.6 15.4 17.6 17.0 19.4	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5 12.5 12.5 12.5 12.3 10.7 19.6 2 11.1 12.3 11.9 12.5 12.3 10.7 10.1 12.3 11.9 10.7	20.1 17.8 19.9 17.7 18.2 17.6 15.2 17.7 17.3 17.7 15.8 13.2 17.2 15.0 17.2 16.1 16.6 16.6 16.6 14.8 14.9 16.6 14.5	10.5 11.7 11.9 11.8 8.9 7.0 8.6 8.7 7.6 8.8 7.9 8.2 7.6 6.6 6.6 6.6 6.7 9.3 8.7 9.2 8.7 7.6 8.7 9.6 8.7 9.6 8.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6
2345 67899 10 1123145 167899 202345 26728			15.4 16.4 17.2 14.4 15.4 16.4 16.4 16.4 16.4	7.1 8.0 8.1 8.0 7.4 8.4 9.1	20.6 21.1 21.3 21.7 20.3 21.1 19.5 17.5 15.7 19.3 18.9 21.3 22.4 20.0 20.1 21.3 21.3 21.4 20.7 21.6 21.3 21.6 21.3 21.6	8.0 6.6 7.2 9.3 10.1 10.7 11.5 9.9 9.7 10.3 9.9 10.3 10.4 8.9 8.1 9.8 8.4 9.8 8.4 9.8 8.4 9.8 9.2 10.3	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 19.8 20.8 21.5 21.7 21.3 17.1 18.4 19.9 14.2 20.0 21.9 21.1 20.9 20.8	10.8 10.6 9.9 9.8 9.7 9.5 10.5 10.8 10.4 11.1 10.7 9.9 9.9 10.8 10.0 9.8 10.0 9.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	21.6 21.6 22.0 21.2 18.4 20.1 22.0 21.4 19.8 19.4 20.6 317.3 18.3 18.3 19.4 19.5 19.5 19.5 19.6 15.4 17.6 17.0	11.5 12.2 13.4 11.6 11.4 13.3 13.6 11.9 12.5 12.3 11.5 12.5 12.3 10.7 10.1 12.3 11.9 12.3 11.1 12.3 11.9 12.3 11.9	20.1 17.8 19.9 17.7 18.2 17.2 17.2 17.3 17.7 17.3 17.7 15.8 13.2 17.2 16.1 16.6 16.6 16.6 16.6 16.6 14.8	10.5 11.7 11.9 11.8 8.9 10.7 9.0 8.6 8.8 7.9 8.2 2.7 7.6 6.6 6.6 6.3 6.7 9.2 8.3 6.6 8.3 6.6 8.3 6.6 8.3 6.6 8.3 6.6 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3
2345 678910 1112345 1671892 2122345 2678930			15.4 16.4 17.2 14.4 15.4 16.4 16.4 16.4 11.2 11.2 11.2 11.2 11.3 11.3 11.3 11.3	7.1 8.0 8.1 8.0 7.4 8.4 9.1 7.1 5.8 6.0 5.8 6.3	20.6 21.1 21.3 21.7 20.3 21.1 17.5 15.7 19.3 18.9 21.3 22.4 20.0 20.1 21.3 21.4 20.7 21.6 21.6 21.6 21.6 21.6 22.2 22.6 19.3 20.3	8.66 7.22 9.3 10.17 11.59 9.73 9.10.3 10.3 10.4 9.9 10.3 8.5 11.2	20.5 21.9 21.3 19.9 20.0 19.6 20.6 18.9 19.2 17.0 14.6 821.5 21.7 21.3 17.1 18.4 19.9 14.2 20.0 21.9 21.1 20.5 21.1 20.9 21.1 20.9 20.8	10.8 9.9 9.8 9.7 9.5 10.9 10.8 10.4 11.1 10.7 9.9 9.9 10.8 11.1 10.7 9.9 10.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	21.6 21.6 22.0 21.2 18.4 20.1 22.0 21.4 20.1 21.4 19.8 19.4 19.3 19.2 19.5 19.3 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	11.5 12.2 13.4 11.6 11.4 13.3 13.1 11.9 12.5 12.3 11.5 12.5 12.3 10.7 10.1 12.0 13.3 11.9 10.2 11.1 12.0 13.3 11.9 10.2	20.1 17.8 19.9 17.7 18.2 17.6 17.7 17.3 17.7 15.2 17.7 15.2 17.7 16.6 16.6 16.6 16.6 14.8	10.7 11.9 11.8 8.7 10.7 9.6 8.8 7.9 8.2 7.7 7.6 6.6 6.6 6.6 6.3 7.9 8.7 9.6 8.7 9.6 6.6 6.6 6.6 6.6 6.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09306222 PICEANCE CREEK AT WHITE RIVER, CO

LOCATION.--Lat 40°05'16", long 108°14'35", in SWANE4 sec.2, T.1 N., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 900 ft upstream from mouth, 1.0 mi west of White River City, and 17 mi west of Meeker.

DRAINAGE AREA. -- 652 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1964 to September 1966, October 1970 to current year.

REVISED RECORDS.--WDR-CO-82-3: drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,705 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1964, to Sept. 30, 1966, and Oct. 1, 1970, to July 12, 1974, at several sites 1.1 mi upstream at different datums.

REMARKS.--Estimated daily discharges: Oct. 7-8, 24, and Dec. 3 to Mar. 19. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 5,500 acres upstream from station.

AVERAGE DISCHARGE.--19 years, 42.1 ft³/s; 30,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 628 ft³/s, Sept. 7, 1978, gage height, 7.04 ft, on basis of slope-area measurement of peak flow; minimum daily, 0.50 ft³/s, July 21, 22, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 03 Apr. 09	1300 1300	141 109	* 3.87 3.35	May 02	1300	*148	3.71

Minimum daily discharge, 18 ft³/s, June 8.

		DISCHARG	E, CUBIC	FEET PER		WATER YEAR EAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1	96	58	44	27	31	35	73	140	19	28	81	33
2	98	54	48	26	31	43	84	146	19	27	75	35
3	123	53	52	27	31	50	80	147	23	26	67	34
4	106	52	50	27	30	59	90	138	25	26	62	34
5	87	51	51	26	28	65	92	132	24	26	62	34
6	73	52	49	26	27	70	86	127	20	24	72	35
7	68	56	46	24	26	86	86	123	19	24	65	37
8	65	51	43	24	27	94	94	117	18	23	60	41
9	63	47	43	27	28	96	100	118	21	21	54	41
10	65	49	38	26	29	88	99	117	33	20	53	41
11	64	47	50	29	26	76	94	115	37	22	57	42
12	63	47	45	30	30	70	92	108	35	24	57	39
13	62	48	40	26	36	80	89	100	30	25	54	38
14	59	47	37	23	37	94	80	91	23	32	51	40
15	59	48	38	24	31	100	78	81	21	34	50	36
16	58	48	39	24	31	92	85	73	23	32	49	34
17	56	49	37	23	30	84	94	64	27	30	47	34
18	56	50	35	23	27	75	95	61	24	32	46	32
19	57	50	32	23	29	86	98	54	24	30	46	31
20	58	53	30	23	31	78	104	46	22	33	44	29
21	58	52	30	22	29	65	103	38	22	32	44	27
22	58	52	28	22	29	70	102	34	21	35	42	28
23	57	50	27	23	29	66	104	31	21	36	39	30
24	55	49	27	24	29	64	112	27	21	35	43	29
25	53	51	28	25	30	63	124	26	22	35	48	30
26 27 28 29 30 31	52 52 51 51 51 58	52 48 48 47 48	29 28 27 26 27 26	26 27 28 29 30 31	30 30 30 	63 69 57 62 60 65	129 129 131 135 136	24 24 27 26 23 21	22 23 24 24 24	37 40 59 65 74 81	47 42 40 38 34 33	29 27 25 26 27
TOTAL	2032	1507	1150	795	832	2225	2998	2399	711	1068	1602	998
MEAN	65.5	50.2	37.1	25.6	29.7	71.8	99.9	77.4	23.7	34.5	51.7	33.3
MAX	123	58	52	31	37	100	136	147	37	81	81	42
MIN	51	47	26	22	26	35	73	21	18	20	33	25
AC-FT	4030	2990	2280	1580	1650	4410	5950	4760	1410	2120	3180	1980

CAL YR 1986 TOTAL 35581 MEAN 97.5 MAX 343 MIN 26 AC-FT 70570 WTR YR 1987 TOTAL 18317 MEAN 50.2 MAX 147 MIN 18 AC-FT 36330

09306222 PICEANCE CREEK AT WHITE RIVER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- December 1970 to July 1986, March 1987, discontinued.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1971 to June 1974, May 1975 to September 1983.
WATER TEMPERATURES: January 1971 to September 1974, May 1975 to September 1983.
SUSPENDED-SEDIMENT DISCHARGE: March 1974 to September 1983.

INSTRUMENTATION. -- Water-quality monitor May 1975 to September 1983. Pumping sediment sampler March 1974 to September 1983.

REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. The maximum extreme specific conductance value of 10,000 microsiemens represents a value of 10,000 microsiemens or higher due to instrument limitations.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum, 10,000 microsiemens June 18, 1981; minimum, 460 microsiemens Feb. 28

and Mar. 2, 1983.
WATER TEMPERATURES: Maximum, 32.0°C July 14, 1978; minimum, 0.0°C many days during winter months.
SEDIMENT CONCENTRATIONS: Maximum daily, 25,000 mg/L estimated Sept. 7, 1978; 4 mg/L Oct. 2, 1977.
SEDIMENT LOADS: Maximum daily, 6,095 tons estimated May 28, 1983; minimum daily, 0.10 ton June 22, 1978.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
MAR 19	1205	83	1720	8.5	5.5	10.2	490	76	73	220	4
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 19	3.1	541	420	32	0.80	15	1170	1.58	262	<0.01	1.50
DATE	0 1 1 2 2 1) E	GEN, COMONIA ORCO DIS- I OLVED SC MG/L (N	GEN, GEN GANIC MON DIS- ORG DLVED DI 1G/L (M	IÍA + PHO GANIC D SS. SO IG/L (M	OS- PHO ROUS OR IS- DI	S- 1 VED SC //L (U	DRON, T DIS- E DLVED SC JG/L (U	DIS- ME DLVED SU IG/L PE	DI- DOINT, CHAIS- SINDED PER	NT, SIS- SIRGE, DUS- %F	ED. USP. EVE IAM. INER HAN 2 MM
MA R 19	(0.06	0.74	0.80 0	.06 0	.07	190	2300	1460 32	7	66
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT O6 APR	1000	72	1580	6.5		JU	JL 01 JG	1115	27	2030	15.5
22 Ma Y	1630	100	1350	12.5		SI	06 EP	1225	66	1690	-
28	1450	26	2120	15.0			10	1040	3 7	1880	11.5

308

GREEN RIVER BASIN

09306224 WHITE RIVER ABOVE CROOKED WASH, NEAR WHITE RIVER CITY, CO

LOCATION.--Lat 40°09'44", long 108°20'33", in NW4NW4 sec.12, T.2 N., R.98 W., Rio Blanco county, Hydrologic Unit 14050005, on right bank 15 ft upstream from County Road 77 bridge, 2.8 mi upstream from Crooked Wash, 9.8 mi downstream from Piceance Creek and 8.0 mi northwest of White River City.

DRAINAGE AREA. -- 1,821 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,590 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1982 to Aug. 15, 1983, at site 0.25 mi upstream, at datum 3.12 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 23 to Feb. 14. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 31,900 acres.

AVERAGE DISCHARGE. -- 5 years, 1,092 ft3/s; 791,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,370 ft 3 /s, June 7, 1984, gage height, 8.05 ft; minimum daily, 300 ft 3 /s, Jan. 1-7, 1982.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,730 ft³/s at 1400 May 17, gage height, 5.47 ft; maximum gage height, 7.88 ft, Jan. 25 (backwater from ice); minimum daily discharge, 352 ft³/s, Sept. 29.

DISCHARGE IN CURIC FEET DER SECOND. WATER VEAR OCTORER 1986 TO SEPTEMBER 1987

		DISCHARGE,	IN CUBIC	FEET PE		, WATER : EAN VALUE	ÆAR OCTOBE ES	R 1986 TO	SEPTEMBER	1987		
DAY	OCT	иол	DE C	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	741 728 971 841 741	761 713 681 667 661	560 540 580 600 580	470 480 500 510 520	440 460 470 460 450	484 478 485 518 576	588 638 605 672 716	2060 2240 2020 1700 1540	1150 1310 1230 1210 1230	689 636 5 77 558 553	599 561 549 572 552	465 469 467 466 456
6 7 8 9 10	725 723 751 737 734	680 720 688 653 642	600 580 560 560 500	510 490 460 470 490	450 440 440 450 470	640 660 700 740 720	717 765 779 794 756	1550 1660 1800 1890 1970	1240 1280 1460 1670 1930	567 556 534 535 529	545 575 576 510 488	440 421 422 424 413
11 12 13 14 15	768 767 721 706 700	627 664 653 656 687	470 500 540 570 570	520 530 500 500 480	500 530 570 600 552	649 615 661 819 700	752 796 715 649 691	2020 1930 1980 2050 2220	1690 1510 1420 1370 1280	505 573 617 562 559	475 508 511 616 597	413 402 386 397 403
16 17 18 19 20	685 666 679 684 676	686 672 677 706 735	580 560 540 560 560	450 430 460 480 470	505 490 476 463 475	632 600 593 642 651	798 913 1060 1280 1300	2380 2520 2520 2420 2290	1180 1070 958 857 749	547 527 548 526 485	548 575 496 488 439	401 418 401 395 393
21 22 23 24 25	676 712 716 679 665	694 697 665 600	570 560 540 510 480	460 480 470 450 460	477 474 487 493 436	579 589 564 557 545	1080 988 1100 1320 1510	2280 2020 1700 1640 1590	714 688 638 582 526	476 501 495 477 479	442 438 431 524 677	387 373 370 363 360
26 27 28 29 30 31	660 651 652 644 644 687	590 580 560 580 580	500 520 510 500 500 490	430 470 440 450 440 450	498 506 530 	528 574 529 535 503 532	1590 1630 1780 1930 1900	1520 1450 1240 1170 1260 1090	512 497 485 514 591	499 511 519 530 581 558	746 578 540 528 510 453	359 362 353 352 359
TOTAL MEAN MAX MIN AC-FT	22130 714 971 644 43890	659 761 560	542 600 470	476 530 430	13647 487 600 440 27070	18598 600 819 478 36890	102 7 1930 588	1862 2520 1090	1051 1930 485	6809 542 689 476 3 3 40	16647 537 746 431 33020	12090 403 469 352 23980

TOTAL 422261 MEAN 1157 MAX 4450 MIN 410 AC-FT 837600 TOTAL 271329 MEAN 743 MAX 2520 MIN 352 AC-FT 538200 CAL YR 1986 WTR YR 1987

09306224 WHITE RIVER ABOVE CROOKED WASH NEAR WHITE RIVER CITY, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED	DIS-
NOV 17	1610	672	743	8.6	5.5	12.0	330	76	33	43
MAY 16	1430	2630	370	8.2	13.0	8.2	160	42	13	14
JUN 30	1415	627	680	8.5	19.0	8.2	290	74	26	35
SEP 01	1710	422	715	8.7	20.5	10.5	290	64	32	48
DAT	A SOF TI	ID- SI RP- DI ION SOL		TY SULF B DIS J/L SOL	VED SOL	DE, RII S- DI LVED SOI G/L (MO	E, DIS	CA, SUM CONS VED TUE!	STI- DI NTS, SOL IS- (TO LVED PE	S- VED ONS
NOV 17		1 1	.6 187	200) 12	> ().20 12)	490 0	.67
MAY 16			.6 120	75),10 13		•	.32
JUN 30			.7 208	150		-	.30 16	;		.60
SEP 01		1 1	.6 165	230) 11	1 0	.30 13	3	499 0	.68
DATI	SOL (TO PE	DS, GES- NITE VED DI ONS SOL	S- DI VED SOL I/L (MO	CN, GE RITE NO2+ SS- DI VED SOL G/L (MO	N, GE NO3 AMMO S- DI VED SOL	EN, GE DNIA ORGA IS- DI .VED SOL G/L (MO	N, GEN, NIC MONI S- ORGA VED DIS G/L (MG	NIC DI S. SOI I/L (MC	PHODS - PHOF ROUS ORT IS - DIS LVED SOLV G/L (MG/P) AS P	OUS HO, ED
NOV 17	C	. 0	<0.	010 0.	230 <0.	.010	0	1.70 <0.	.010 <0.	010
MA Y 16	1670				_					030
JUN 30	741			_						020
SEP 01	568									010
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ANTI- MONY, TOTAL (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)		BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	TOTAL RECOV- ERABLE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 17	460	<1	<1	<100	<10	< 1	<1	<1	8	500
MAY 16 SEP	6800	< 1	2	100	<10	< 1	<1	6	5	7400
01	190	< 1	1	<100	<10	< 1	2	< 1	1	190
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOL YB - DE NUM, TOTAL RE COV - ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
NOV 17	< 5	10	30	<0.10	8	5	3	<1	760	<10
MAY 16	6	10	220	<0.10	5	13	<1	<1	470	40
SEP 01	< 5	20	<10	<0.10	3	<1	2	<1	910	<10

09306224 WHITE RIVER ABOVE CROOKED WASH NEAR WHITE RIVER CITY, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT 02 MAR	0950	716	680	8.5	JUN 11 AUG	1130	1770	408	11.5
11 APR	1145	673	800	5.0	06 SEP	1410	546	689	21.5
21	1415	1070	605	7.5	08	1225	415	760	14.0

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MA Y						
08		1430	1880	652	3310	49
16		1430	2630	651	4620	64
20		1745	2520	361	2460	47
27	·	1320	1560	89	375	76
JUN						
12		1430	1560	145	611	54
30		1415	627	54	91	49
JUL						
28		1420	474	1880	2410	98
SEP						
01		1710	422	25	2 8	60

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

				SEDI- MENT,	SED. SUSP.							
		STREAM- FLOW, INSTAN-	SEDI- MENT, SUS-	DIS- CHARGE, SUS-	FALL DIAM. % FINER							
DATE	TIME	TANEOUS (CFS)	PENDED (MG/L)	PENDED (T/DAY)	THAN .002 MM	THAN .004 MM	THAN .016 MM	THAN .062 MM	THAN .125 MM	THAN .250 MM	THAN .500 MM	THAN 1.00 MM
MAY 01	1415	2210	1030	6150	16	23	37	61	81	92	98	100

09306235 CORRAL GULCH BELOW WATER GULCH, NEAR RANGELY, CO

LOCATION.--Lat 39°54'22", long 108°31'56", in SE 1_4 NW 1_4 sec.5, T.2 S., R.99 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 0.1 mi downstream from Water Gulch and 19 mi southeast of Rangely.

DRAINAGE AREA. -- 8.61 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1974 to current year.

GAGE.--Water-stage recorder. Concrete control since Aug. 1, 1974. Prior to Aug. 1, 1974, water-stage recorder at different datum. Elevation of gage is 6,975 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 30, Dec. 1, 9-10, 18, 25-26, 29, 31, Feb. 15, Apr. 12-23, and May 10-27. Records good except those above 28 ft³/s, which are fair, and estimated daily discharges, which are poor.

AVERAGE DISCHARGE. -- 13 years, 1.07 ft3/s; 775 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge determined, 272 ft³/s, July 23, 1977, gage height, 3.20 ft, maximum gage height, 13.50 ft, May 31, 1983 (from mud flow); no flow many days most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14 ${\rm ft}^3/{\rm s}$ at 1600 Apr. 11, gage height, 2.02 ft; minimum daily, 0.16 ${\rm ft}^3/{\rm s}$, Feb. 27.

		DISCHARGE	, CUBIC	C FEET PER	SECOND,	WATER YEAR EAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 1.1 1.2 1.1	.71 .71 .64 .64	.50 .52 .52 .52 .55	.41 .41 .37 .37	.26 .25 .25 .25	.27 .30 .29 .34 .40	.56 .52 .63 .72	3.9 4.2 4.4 4.3 4.1	3.2 3.2 3.2 3.2 2.7	1.6 1.6 1.5 1.5	1.0 1.0 1.0 1.1	.85 .85 .85 .85
6 7 8 9 10	1.1 1.1 1.0 1.0	.70 .71 .71 .71	.58 .58 .58 .50	.37 .37 .37 .53	.21 .22 .22 .21 .23	. 44 . 52 . 46 . 46 . 41	1.7 1.8 2.8 3.2 2.4	4.4 4.5 5.1 4.9 4.6	2.7 2.6 2.6 2.6 2.7	1.4 1.4 1.5 1.4	1.2 1.6 1.2 1.1	.85 .85 .85 .85
11 12 13 14 15	1.0 .94 .93 .87	.60 .64 .64 .64	.41 .46 .46 .42	•33 •33 •33 •38 •41	.23 .23 .19 .18 .23	.38 .39 .63 .59	4.9 4.0 2.7 2.2 1.8	4.5 4.2 3.6 3.3 4.0	2.4 2.1 1.8 1.9	1.5 1.4 1.4 1.3	1.0 .98 1.1 .99 .96	.80 .79 .85 .83
16 17 18 19 20	.85 .82 .78 .78	.64 .64 .64 .67	.41 .41 .38 .46	.44 .46 .44 .32 .29	.29 .38 .69 .51	.58 .58 .62 .52 .46	1.3 2.0 1.8 2.0 2.1	4.2 3.5 3.3 3.5 3.3	1.9 1.9 1.9 1.9	1.3 1.3 1.3 1.3	.93 .93 .93 .93	.84 .85 .85 .87
21 22 23 24 25	.78 .78 .78 .78	.71 .71 .71 .71	.41 .41 .41 .26	.28 .23 .22 .22	.42 .22 .22 .18 .17	•55 •63 •28 •58 •54	2.2 2.3 2.4 2.5 2.6	3.3 3.4 3.2 3.3	1.8 1.9 1.9 2.0 2.0	1.2 1.1 1.0 .94 .89	.93 .93 .93 .99	.93 .93 .93 .93
26 27 28 29 30 31	.71 .69 .64 .64 .70	.64 .60 .64 .58 .56	.36 .41 .41 .41 .41	.25 .26 .27 .27 .29	.17 .16 .25	.54 .53 1.0 1.3 1.2 .48	2.7 3.0 3.3 3.5 3.6	3.2 3.3 3.3 3.2 3.0 3.2	1.9 1.9 1.8 1.9	.92 .87 .89 .86 .96	.93 .93 .93 .90 .85	.94 .93 .93 .93
TOTAL MEAN MAX MIN AC-FT	27.46 .89 1.2 .64 54	19.91 1 .66 .71 .56	3.75 .44 .58 .26	10.47 .34 .53 .22 21	7.40 .26 .69 .16	16.87 .54 1.3 .27	58.01 2.27 4.9 .52 135	117.5 3.79 5.1 3.0 233	67.0 2.23 3.2 1.7 133	39.03 1.26 1.6 .86 77	31.33 1.01 1.6 .85 62	26.23 .87 .96 .78 52

CAL YR 1986 TOTAL 574.80 MEAN 1.57 MAX 7.1 MIN .25 AC-FT 1140 WTR YR 1987 TOTAL 444.96 MEAN 1.22 MAX 5.1 MIN .16 AC-FT 883

09306235 CORRAL GULCH BELOW WATER GULCH, NEAR RANGELY, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1974 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1974 to September 1985.
WATER TEMPERATURE: April 1974 to September 1985.
SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1982.

INSTRUMENTATION .-- Water-quality monitor April 1974 to September 1985. Pumping sediment sampler October 1974 to September 1982.

REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 6,490 microsiemens Dec. 19, 1981; minimum, 230 microsiemens Mar. 20, 1978.
WATER TEMPERATURES: Maximum, 33.5°C June 11, 1981; minimum, freezing point many days during winter months

each year.

SEDIMENT CONCENTRATIONS: Maximum daily, 17,800 mg/L July 26, 1981; no flow many days during 1974-78, 1981.

SEDIMENT LOADS: Maximum daily, 162 tons May 20, 1979; no flow many days during 1974-78, Dec. 15, 1979, 1981.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987											
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER - ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
NOV 03	0945	0.69	1450	8.2	1.5	12.2	660	130	80	110	2
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
NOV 03	1.2	3 22	510	27	0.2	20	1070	1.46	2.00	<0.01	5.8
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS HYDRO. ORTHO DIS. (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	BORON, DIS- SOLVED (UG/L AS B)	LITHIUM DIS- SOLVED (UG/L AS LI)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	STRON - TIUM, DIS- SOLVED (UG/L AS SR)
NOV 03	0.02	0.58	0.60	<0.01	<0.01	0.03	11	90	28	21	2500
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON - DUCT -	TEMPER- ATURE WATER (DEG C)			DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON - DUCT -	TEMPER- ATURE WATER (DEG C)
OCT 10 DEC	1210	1.3	1590	13.0		A	10 23	1100 1230	1.4	1370 1470	
05 JAN	1200	0.63		5.5		M	1A Y 08	1015	4.8	1410	9.0
05 FEB 17	1405 0940	0.38		4.5 0.0		J	28 UL 01	1040	3.2 1.8	1460 13 3 0	
MAR 24	0940	0.58				S	SEP 09	1325 1400	82	1570	

09306242 CORRAL GULCH NEAR RANGELY, CO

LOCATION.--Lat 39°55'13", long 108°28'20", in SE4NW4 sec.35, T.1 S., R.99 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 5 ft downstream from Boxelder Creek, and 3.5 mi upstream from confluence with Stake Springs Draw, and 21 mi southeast of Rangely.

DRAINAGE AREA. -- 31.6 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1974 to current year.

GAGE.--Water-stage recorder. Concrete control since July 20, 1974. Elevation of gage is 6,570 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- No estimated daily discharges. Records good. No diversions upstream from station.

AVERAGE DISCHARGE.--13 years, 3.31 ft^3/s ; 2,060 acre-ft/yr. The figure published in the 1986 report was in error; the correct figure is, 12 years, 2.81 ft^3/s ; 2,040 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 1,780 ft³/s, Aug. 18, 1984, gage height, 6.12 ft, from rating curve extended above 70 ft³/s, on basis of slope-area measurements at gage heights 3.89 ft, 4.08 ft, and 6.12 ft; minimum daily, 0.06 ft³/s, Apr. 10-14, 1974.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 22 $\rm ft^3/s$ at 0600 May 3, gage height, 2.94 ft; minimum daily, 0.77 $\rm ft^3/s$, Dec. 10-12.

		DISCHARGE	, in cu	BIC FEET I	PER SECONI	O, WATER I	YEAR OCTOB	ER 1986	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.4 1.8 1.6	2.0 2.0 1.8 1.8	1.3 1.4 1.4 1.4	.94 .94 .94 1.0	1.3 1.2 1.3 1.3	.91 .95 1.2 1.6 4.5	2.2 1.2 2.5 2.2 2.5	15 17 18 15 13	6.7 6.5 6.2 5.9 6.3	4.0 3.9 4.1 3.9 3.9	3.3 3.2 3.1 3.2 3.3	2.7 2.7 2.5 2.7 2.5
6 7 8 9 10	1.6 1.6 1.5 1.5	1.8 1.7 1.5 1.3	1.3 1.2 1.1 1.0 .77	1.2 1.2 1.2 1.1	1.2 1.3 1.3 1.3	4.4 4.3 3.5 1.1	2.6 5.8 4.9 4.4 5.3	15 15 14 13	6.1 6.0 5.8 5.9	3.9 3.9 3.7 3.7	3.1 4.2 4.1 3.7 3.5	2.7 2.5 2.4 2.5 2.4
11 12 13 14 15	1.3 1.2 1.1 1.3 1.4	1.3 1.6 1.5 1.5	.77 .77 .86 .94	1.2 1.2 1.3 1.3	1.6 1.7 1.8 1.6	1.5 1.7 4.1 1.2	6.4 5.3 3.7 4.0 4.4	13 12 11 10 11	5.6 5.3 5.4 5.1 5.0	3.9 3.5 3.5 3.5	3.5 3.5 3.5 3.5	2.2 2.4 2.4 2.8 2.7
16 17 18 19 20	1.3 1.4 1.5 1.5	1.5 1.5 1.5 1.5	1.0 1.0 .94 1.0 1.1	1.2 1.2 1.2 1.1	1.6 1.5 1.3 1.2	1.0 .93 1.1 1.2 1.0	5.3 5.7 5.3 6.0 6.9	10 8.4 7.9 8.2 7.8	5.0 5.1 5.0 5.2 5.1	3.3 3.1 3.0 3.1	3.3 3.3 3.2 3.3	2.7 2.7 2.7 2.5 2.5
21 22 23 24 25	1.5 1.8 1.8 1.8	1.4 1.4 1.3 1.4	1.2 1.1 1.1 1.2 1.2	1.2 1.2 1.2 1.3	1.1 1.0 1.0 1.0	1.0 1.1 1.1 1.2 1.2	7.9 8.1 8.3 8.4 9.7	7.8 7.8 7.8 7.5 7.6	5.0 4.9 4.9 4.5	3.0 2.8 3.0 2.6 2.7	3.1 3.0 3.3 3.5	2.4 2.4 2.2 2.2 2.2
26 27 28 29 30 31	1.8 1.8 1.7 1.7 1.9 2.0	1.4 1.4 1.5 1.6	1.1 1.2 1.2 1.0 1.0	1.2 1.3 1.4 1.5 1.3	.93 .87 .82 	1.1 1.0 1.0 1.1 1.1	11 11 12 13 11	7.5 7.5 7.4 7.3 7.1 6.9	4.3 4.1 4.2 4.2 4.2	2.7 2.7 2.8 3.0 3.2 3.4	3.3 3.1 3.0 2.8 2.8 2.7	2.2 2.4 2.4 2.2
TOTAL MEAN MAX MIN AC-FT	48.9 1.58 2.0 1.1 97	46.4 1.55 2.0 1.3 92	33.89 1.09 1.4 .77 67	37.02 1.19 1.5 .94 73	35.82 1.28 1.8 .82 71	50.89 1.64 4.5 .91 101	187.0 6.23 13 1.2 371	329.5 10.6 18 6.9 654	158.2 5.27 6.7 4.1 314	104.5 3.37 4.1 2.6 207	102.5 3.31 4.2 2.7 203	74.0 2.47 2.8 2.2 147

CAL YR 1986 TOTAL 1167.15 MEAN 3.20 MAX 15 MIN .41 AC-FT 2320 WTR YR 1987 TOTAL 1208.62 MEAN 3.31 MAX 18 MIN .77 AC-FT 2400

09306242 CORRAL GULCH NEAR RANGELY, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1974 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1975 to current year.
WATER TEMPERATURE: January 1975 to current year.
SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1985.

INSTRUMENTATION. -- Water-quality monitor since October 1974. Pumping sediment sampler October 1974 to September 1985.

REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 3,000 microsiemens July 17, 1976; minimum, 271 microsiemens Feb. 18, 1980.
WATER TEMPERATURES: Maximum, 29.0°C Aug. 5, 1979; minimum, 0.0°C on several days during winter months some

SEDÍMENT CONCENTRATIONS: Maximum daily, 35,800 mg/L Aug. 2, 1982; minimum daily, 2 mg/L May 24, 1981.

SEDIMENT LOADS: Maximum daily, 43,600 tons August 18, 1984; minimum daily, 0.00 ton on many days during 1981.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Not determined.
WATER TEMPERATURES: Maximum, 21.5°C Aug. 1; minimum, 0.0°C April 20.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO
NOV 03	1145	1.7	1540	8.1	7.0	10.8	640	110	88	140	2
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
NOV 03	1.3	420	520	20	0.3	19	1150	1.56	5.29	<0.01	2.40
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS - PHOROUS DIS - SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS HYDRO. + ORTHO DIS. (MG/L AS P)	PHOS- PHOROUS ORGANIC DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	BORON, DIS- SOLVED (UG/L AS B)	LITHIUM DIS- SOLVED (UG/L AS LI)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	STRON - TIUM, DIS- SOLVED (UG/L AS SR)
NOV 03	<0.01	0.30	0.01	<0.01	0.02	0.0	8.8	150	24	27	2600

09306242 CORRAL GULCH NEAR RANGELY, CO--Continued

315

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DA Y	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1690 1690 1600 1700 1730	1530 1540 1540 1550 1550	1680 1660 1650 1640 1620	1640 1640 1650 1630 1610	1590 1590 1590 1580 1590	1590 1580 1470 1360 1100			1500 1520 1540 1570 1540	1560 1560 1570 1560 1560	1590 1530 1590 1590 1580	1600 1600 1600 1580 1580
6 7 8 9 10	1720 1710 1710 1710 1690	1540 1550 1590 1590 1560	1590 1610 1630 1670 1700	1610 1620 1620 1630 1640	1590 1580 1570 1560 1520	998 985 961 1240 1340	 		1530 1530 1510 1510 1490	1550 1550 1550 1560 1570	1590 1550 	1570 1520 1520 1560 1630
11 12 13 14 15	1580 1570 1600 1570 1570	1580 1550 1580 1580 1610	1690 1680 1670 1650 1640	1640 1620 1620 1620 1630	1530 1510 1410 1510 1540	1630 1630 1230 1500 1630	 		1520 1530 1530 1540 1540	1570 1580 1570 1570 1570		1630 1640 1660 1650 1640
16 17 18 19 20	1580 1540 1510 1490 1500	1630 1620 1610 1600 1630	1660 1650 1650 1640 1650	1610 1620 1600 1590 1600	1540 1560 1590 1600 1590	1640 1630 1620 1610 1610			1540 1540 1540 1540 1550	1560 1580 1590 		1640 1640 1640 1640 1640
21 22 23 24 25	1550 1550 1550 1550 1550	1630 1620 1660 1640 1620	1640 1650 1650 1640 1660	1600 1610 1610 1600 1600	1600 1600 1590 1580 1570	1610 1610 1610 1610 1600	 		1540 1530 1550 1550 1560	 	 	1640 1640 1640 1630 1620
26 27 28 29 30 31	1560 1550 1550 1540 1540 1490	1630 1660 1650 1630 1640	1660 1640 1640 1660 1650 1660	1600 1610 1600 1600 1600	1560 1590 1590 	1590 1600 1600 		 1470 1420 1470	1560 1560 1560 1560 1570	 1580 1600	1630 1630 1590 1590	1620 1640 1630 1610 1600

09306242 CORRAL GULCH NEAR RANGELY, CO--Continued

TEMPERATURE WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN
	OCT	OBER	NOA	EMBER	DE C	EMBER	JAN	IUARY	FEB		М	IA R CH
1 2 3 4 5	12.7 11.9 8.6 12.0 13.3	5·3 7·2 4·0 5·4 5·7	7.6 10.1 8.7 9.1 9.4	5.2 4.8 5.0 4.9	7.5 7.6 7.5 7.7 8.2	4.3 4.4 4.3 5.1	6.9 7.1 7.1 7.0 7.7	4.0 3.7 3.6 4.4 5.5	9.3 9.3 8.7 8.9 9.3	5.6 5.7 6.3 5.9 5.5	9.8 9.9 10.4 9.5 8.3	4.3 4.7 4.5 3.4 2.2
6 7 8 9	14.3 15.3 13.6 14.0 13.4	5.6 6.3 6.1 6.1 5.9	8.0 7.6 6.6 8.1 7.8	5.0 4.8 4.7 5.0 4.8	7.4 6.9 7.9 6.3 7.1	5.4 4.1 4.0 3.5 3.4	7.3 7.2 6.6 7.6 7.6	5.3 4.5 4.4 4.3	9.4 9.7 9.6 9.5 9.9	5.5 5.6 5.8 5.8 6.0	8.1 8.2 8.2 7.2 8.3	.9 1.8 2.3 3.6 4.1
11 12 13 14 15	8.4 10.1 10.8 11.9	3.8 4.9 4.9 5.1 5.2	7.4 8.6 8.1 8.7 8.8	5.3 4.9 5.0 4.8 5.0	6.9 7.4 7.6 7.5 7.3	3.7 3.7 4.0 4.1 4.3	8.1 7.9 8.2 7.3 6.6	4.4 4.5 4.4 4.2 3.9	9.1 9.3 9.0 8.5 9.3	6.3 6.0 4.9 4.5 5.0	5.3 5.1 	3.6 3.0
16 17 18 19 20	12.4 11.9 11.7 11.2	5.4 5.4 6.8 6.0	8.4 10.2 8.4 8.7 8.1	4.8 5.6 5.1 5.7 5.3	7.4 7.0 6.7 7.3 7.3	4.1 3.6 3.7 4.7 3.9	5.9 6.9 7.8 6.6 7.1	4.5 4.1 4.3 4.9	8.6 8.6 9.1 7.6 8.9	5.8 5.0 4.8 5.1 4.7		
21 22 23 24 25	10.1 9.9 11.7 11.5	6.9 7.2 6.6 5.8 5.9	8.4 7.9 8.0 7.8 7.3	5.1 4.7 4.9 4.6 3.9	7.5 6.7 6.5 6.6 7.2	3.9 3.7 3.6 3.6 3.7	7.8 8.0 8.3 8.5	4.4 4.3 5.4 5.6 5.7	9.5 9.1 9.3 7.9 8.7	4.6 4.6 4.9 4.8 5.1	10.0	4.6
26 27 28 29 30 31	11.5 11.6 11.4 11.4 11.0 6.5	5.4 6.0 6.0 6.3 5.4 4.1	7.4 7.9 7.6 7.8 7.6	4.5 4.6 4.6 4.9 4.2	6.9 7.1 7.4 7.1 6.6 6.9	3.5 4.3 4.0 3.7 3.7 3.5	9.0 8.4 8.4 8.3 9.0	5.8 5.5 5.4 5.7 5.7	6.7 8.1 9.8 	4.7 4.3 4.2	11.2 7.8 9.1 8.4 8.4 8.3	3.7 4.3 3.7 3.7 3.6 3.4
14011771	15.3	2 Ω	10 2	2.0	8.2	2 li	9.0	2.6	9.9	4.2		
MONTH	15.5	3.0	10.2	3.9	0.2	3.4	9.0	3.0	9.9	4.2		
	RIL			_		_						
		MA		_		_			GUST		EMBER	6.8 8.1 8.3 7.6 5.9
APR 1 2 3	7.1 13.5 12.4 11.2	3.4 4.6 3.6 4.5	13.0 9.6 13.8 14.7 16.1 18.3 17.6	5.3 4.1 4.2 5.4 5.6		5.8 4.4 5.0 4.4 6.9		6.8 7.3 6.3 6.9 6.5	GUST	SEPTI 8.1 8.0 9.0 7.4	EMBER 19.4 18.3 18.7 16.7	8.1 8.3 7.6
APR 1 2 3 4 5 6 7 8 9 10 11 12 13	7.1 13.5 12.4 11.2 10.8 15.2 13.9 14.7 13.2 12.4	3.4 4.6 3.65 4.55 4.55 2.2 2.5 3.05 3.1 2.2	13.0 9.6 13.8 14.7 16.1 18.3 17.6 15.5 15.4 16.4	5.124 65.124 65.286 55.386 55.534 55.555	18.6 19.6 20.2 20.5 20.9 17.5 16.3 17.0 14.7 18.5	54.049 95835 848 54546 66575 454	20.8 20.9 20.4 20.0 20.3 20.8 19.8 18.9 18.4 16.3 16.2 19.7	6.8 6.3 6.9 6.9 6.0 7.2 6.9 8.4 6.5	21.5 19.5 19.5 19.5 19.9 19.0 20.0 20.9	SEPTI 8.1 9.0 7.4 7.1 9.8 9.9	EMBER 19.4 18.3 18.7 16.7 17.6 15.8 16.2 13.3 16.4 16.3	8.1 8.3 7.6 5.9 5.6 7.7 5.9
APR 1 2 3 4 5 6 7 8 9 10 11 12 13 14	7.1 13.5 12.4 11.2 10.8 15.2 13.9 14.7 13.2 12.4 11.8 9.6 12.0 15.6	M/ 3.466555 4.55 4.55 4.25 3.2 3.1 1.2 1.4	13.0 9.6 13.8 14.7 16.1 18.3 17.6 15.5 15.4 16.4 12.6 13.2 13.7 19.1	13124 60286 5629 654.4 555534 55554.9	18.6 19.6 20.2 20.5 20.9 17.5 16.3 17.0 14.7 18.5 17.3 19.3 18.8	54.049 95835 8486 54546 66575 4544	20.8 20.9 20.4 20.0 20.3 20.8 19.8 18.9 18.4 16.3 19.3 19.3	6.83 6.95 6.95 6.01 77.29 8.65 8.65 6.8	21.5 19.5 19.5 19.9 19.0 20.0 20.9	SEPTI 8.1 9.0 7.4 7.1 9.8 9.9	19.4 18.3 16.7 17.6 15.8 16.2 13.3 16.3 16.3 16.3	8.1.36.9 6.7.9.98 5.9.1.6 5.75.55 5.65.65
APR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	7.1 13.5 12.4 11.2 10.8 15.2 13.9 14.7 13.2 12.4 11.8 9.6 12.0 15.6 16.0	3.4663.6554.554.5554.5554.5554.5554.5554	13.0 9.6 13.8 14.7 16.1 18.3 17.6 15.5 15.4 16.4 12.6 13.7 19.1 12.2	13124 60286 56292 411	18.6 19.6 20.2 20.5 20.9 17.5 16.3 17.0 14.7 18.5 17.3 19.3 18.8 18.7 17.4	54.049 95835 84862 1 54.546 66575 45445 5	20.8 20.9 20.4 20.03 20.3 20.8 19.8 18.9 16.3 19.7 19.8 19.7	6.83 6.95 6.95 6.12 7.29 8.46 6.58 7.1 8.4 9.1	21.5 19.5 19.5 19.9 19.0 20.0 20.9 	SEPTI 8.1 9.0 7.4 7.1 9.8 9.9	EMBER 19.4 18.7 16.7 17.6 15.8 16.3 16.3 16.3 16.3 16.2 13.4 17.3	8.8.7.5 5.7.5.5.5 5.5.6.5.5 7.5.3.4.6.1
APR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20 21 22 3 24	7.1 13.5 12.4 11.2 10.8 15.2 13.9 14.7 13.2 12.4 11.8 9.6 16.0 15.6 16.0 15.6 17.9 11.4 7.2	3.46 3.66 3.65 3.4.5 3.1 2.2 3.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	13.0 9.6 13.8 14.7 16.1 18.3 17.6 15.5 15.4 16.4 12.6 13.2 13.7 19.1 12.2	J1 6.131.24 6.02.86 5.62.92 4.1 5.55.34 6.41	18.6 19.6 20.2 20.5 20.9 17.5 16.3 17.0 14.7 18.5 17.3 19.3 18.8 18.7 17.4	54.049 95835 84862 1	20.8 20.9 20.4 20.0 20.3 20.8 19.8 16.2 19.3 19.7 19.5 18.8 16.4 16.9	6.8 6.3 6.95 6.0 7.2 6.9 8.4 6.5 8.4 9.1 1	21.5 19.5 19.5 19.9 19.0 20.0 20.9 	SEPTI 8.1 9.0 7.4 7.1 9.8 9.9	EMBER 19.4 18.7 16.7 17.6 15.8 16.23 13.4 15.4 17.3 15.66.2 15.7 16.1 15.8	8875 57555 55655 75344 4344

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

GREEN RIVER BASIN 317

09306290 WHITE RIVER BELOW BOISE CREEK, NEAR RANGELY, CO

LOCATION.--Lat 40°10'47", long 108°33'53", in SW4SE4 sec.36, T.3 N., R.100 W., Rio Blanco County, Hydrologic Unit 14050007, on left bank 60 ft downstream from bridge on County Road 73, 0.5 mi below Boise Creek, and 16.4 mi east of Rangely.

WATER-DISCHARGE RECORDS

DRAINAGE AREA .-- 2,530 mi2.

PERIOD OF RECORD. -- August 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,395 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 24 to Mar. 10. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 31,500 acres.

AVERAGE DISCHARGE. -- 5 years, 1,099 ft3/s; 796,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,440 ft 3/s, June 7, 1984, gage height, 8.45 ft; minimum daily, 305 ft 3/s, Sept. 26-29, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,520 $\rm ft^3/s$ at 1700 May 18, gage height, 5.54 ft; minimum daily, 305 $\rm ft^3/s$, Sept. 26-29.

		DISCHARGE,	, IN CUB	IC FEET	PER SECONI), WATER MEAN VALU	YEAR OCTOBE ES	R 1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	749	827	603	520	480	460	562	1840	1200	727	613	417
2	741	765	583	540	490	470	686	2010	1290	709	576	425
3	980	720	633	540	500	500	667	1940	1270	632	557	423
4	908	681	652	550	510	600	744	1710	1240	600	569	423
5	780	683	629	560	480	670	786	1560	1260	591	565	422
6	748	691	647	550	480	690	804	1560	1250	602	555	416
7	760	730	674	540	470	720	849	1640	1130	601	567	392
8	788	717	627	520	480	770	861	1740	1360	584	615	392
9	760	683	611	500	490	860	882	1800	1530	567	519	392
10	763	653	580	490	500	820	832	1890	1660	560	464	382
11	798	649	473	520	540	777	807	1950	1550	544	438	371
12	805	673	529	560	560	701	828	1970	1400	582	464	367
13	756	690	555	570	600	738	781	1980	1300	669	498	346
14	726	666	617	550	640	958	682	1980	1270	592	603	341
15	719	680	670	530	580	828	699	2090	1200	582	601	361
16	701	683	630	510	540	718	821	2220	1130	567	563	367
17	680	670	645	470	510	670	918	2240	1060	543	554	380
18	704	666	631	500	480	629	1010	2260	961	559	494	373
19	708	695	604	520	460	729	1200	2150	874	542	444	354
20	703	723	623	525	460	725	1560	2070	785	474	405	354
21	704	679	629	500	450	658	1210	2090	745	448	389	354
22	736	674	626	520	460	657	1040	1940	731	481	430	344
23	766	665	600	530	470	613	1100	1690	701	488	408	327
24	723	610	600	520	470	568	1240	1610	653	453	482	323
25	702	641	540	480	480	564	1360	1570	593	435	652	312
26 27 28 29 30 31	697 693 689 690 701 735	646 628 594 617 634	520 550 570 540 540 540	490 510 520 500 480 490	460 450 460	541 551 520 526 496 494	1450 1510 1610 1740 1730	1490 1470 1320 1230 1310 1200	567 544 520 542 621	473 489 519 584 623 582	745 573 518 501 477 416	305 305 305 305 321
TOTAL MEAN MAX MIN AC-FT	23113 746 980 680 45840	678 827 594	18471 596 674 4 73 36640	16105 520 570 470 31940	13950 498 640 450 27670	20221 652 958 460 40110	1032 1740 562	55520 1791 2260 1200 10100	1031 1660 520	7402 561 727 435 4520	16255 524 745 389 32240	10899 363 425 305 21620

CAL YR 1986 TOTAL 420419 MEAN 1152 MAX 3980 MIN 430 AC-FT 833900 WTR YR 1987 TOTAL 274175 MEAN 751 MAX 2260 MIN 305 AC-FT 543800

09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 02	1400	729	760	8.6	10.0	9.9	310	69	33	49
03	1500	716	780	8.6	5.0	12.2	320	70	35	51
DE C 04	1515	654	788	8.7	0.5	12.5	320	7 3	34	56
MA R 11	0930	774	752	8.0	7.0	8.4	300	65	33	64
APR 01 16	1515 1445	650 786	963 866	8.3 8.3	9.0 13.0	10.6 8.1	290 330	62 73	32 35	72 58
MAY 12	1000	1910	440	8.3	13.5	9.6	180	44	17	22
JUN 23 AUG	1340	691	630	8.8	20.0	10.4	280	66	27	43
06 SEP	1500	548		8.5	21.5	8.0	270	48	36	54
03	1445	430	815	8.4	18.0	8.4	310	69	34	57
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA - LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)
OCT 02	1	1.9	173	200	11	0.30	14	482	0.66	949
NOV 03	1	1.7	192	210	14	0.20	14	512	0.69	990
DEC 04	1	1.4	195	210	13	0.30	15	520	0.71	918
MAR 11	2	3.6	196	230	18	0.30	13	545	0.74	1140
APR 01 16 MAY	2 1	1.5 2.3	228 206	280 240	16 15	0.30 0.30	12 13	613 560	0.83 0.76	1080 1190
12 JUN	0.7	1.0	135	92	5.1	0.20	12	274	0.37	1410
23 AUG	1	1.5	166	170	10	0.20	14	431	0.59	805
06 SEP	1	1.6	179	190	11	0.30	13	461	0.63	683
03	1	1.8	180	210	13	0.30	12	505	0.69	586
DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 02		<0.010	0.270	0.030	0.47	0.50	0.050	<0.010	60	15
03		<0.010	0.260	<0.010		0.20	<0.010	<0.010	50	22
DEC 04		<0.010	0.430	<0.010		0.30	<0.010	<0.010	60	10
MAR 11	0.460	0.020	0.480	0.110	0.79	0.90	0.070	0.050	50	31
APR 01 16		<0.010 <0.010	0.390 0.530	0.050 0.030	0.25 0.67	0.30 0.70	0.020 <0.010	<0.010 0.030	80 70	8 15
MAY 12 JUN		<0.010	0.260	0.010	1.1	1.1	0.020	<0.010	30	11
23 AUG		<0.010	<0.100	0.020	1.5	1.5	0.620	<0.010	50	13
06 SEP		<0.010	0.130	<0.010		0.50	0.020	<0.010	70	<10
03		<0.010	<0.100	0.010	0.29	0.30	0.030	<0.010	60	10

319

09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	I	DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)		
	иол 03.		0.300	<0.010		<0.20		<0.010	3.9	3.5		
	APR 01.		0.500	0.050	1.7	1.8	2.3	0.400	11	4.5		
	MA Y 12.		0.300	0.070	1.2	1.3	1.6	0.300	9.7	3.6		
	SEP 03.		<0.100	0.020		<0.20		0.020	3.1	5.5		
	05.		0.100	0.020		.0.20		0.020	J. (J. J		
DATE	TOTAL RECOV- ERABLE S (UG/L	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL - LIUM, DIS - SOLVED (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
NOV 03	650	10	<1	1	1	<100	100	<10	<10	<1	<1	<10
03	050	10	~1	'		\100	100	~10	~10	`1	~1	10
DATE	CHRO- MIUM, DIS- SOLVE (UG/L AS CR)	(UG/	AL COBA DV- DIS BLE SOLV L (UC	JED ERA	TAL COPP COV- DIS ABLE SOL	- REC VED ERA	AL LEA COV- DI BLE SOL	S- REC VED ERA	AL TOT COV- REC BLE ERA L/L (UG	E, MANG AL NESE OV- DIS BLE SOLV /L (UG/	E, TOTA S- RECO VED ERAI VL (UG.	AL OV- BLE /L
NOV												
03	<	1	<1	<1	4	2	<5	<5	10	50	<10 <0	. 10
DATE	MERCURY DIS- SOLVEI (UG/L AS HG)	RECC ERAE (UG/	JM, MOI AL DEN DV- DI BLE SOI 'L (UC	.VED ERA	CAL NICK COV- DIS BLE SOL G/L (UG	VED TOT	M, DI AL SOL L/L (UG	M, SILV S- DI VED SOL //L (UG	S- DI VED SOL	UM, TOTA S- RECO VED ERAE /L (UG/	LL ZING DV- DIS BLE SOLV 'L (UG.	S- VED /L
NOV 03	0.	1	5	5	6	< 1	3	3 <	1.0	920	60	30
	I	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	OXYGEN DEMAND, BIOCHEM 20 DAY, 20 DEG (MG/L)		
	OCT 02.		1415	729	760		10.0					
	APR 21.		1130	1070	650		6.0					
	JUN 11.		1345	1540	456		15.0					
	19. JUL		1045	843	560	8.70	16.0	13	1.0	2.5		
	AUG		1615	554	780	8.50	22.5	18	2.1	4.9		
	13. SEP		1630	487	733	8.50	20.0	17	1.5	3.8		
	03.	• • •	1345	426	795	8.40	18.0	15	1.0	2.5		

GREEN RIVER BASIN

09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO--Continued
SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS- PENDED (MG/L)	SE DI - MENT, DIS - CHARGE, SUS - PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
02 05 11 17 25 NOV	1400 1820 1200 1000 1800	729 754 767 714 727	140 270 197 65 22	276 550 408 125 43	
03 05 15 24	1500 1700 1536 1519	716 700 687 642	83 113 75 109	160 214 139 189	74
04 07 15 22 JAN	1515 1710 1355 1345	654 668 636 573	193 260 146 177	341 469 251 274	73
07 FEB	1600	540	139	203	
27 MAR	1606	450	338	411	
11 12 21 30	0930 1515 1650 1750	774 687 604 542	996 664 442 233	2080 1230 721 341	86
01 04 13 16 20 23	1515 1815 1758 1445 1605 1230 1550	650 815 740 786 1280 973	914 2880 671 1590 876 703 4270	1600 6340 1340 3370 3030 1850	93 87 72
MAY 08 11 12 13 20 25 27 JUN	1600 1515 1615 1000 1720 1820 1645 1400	1700 1830 2010 1910 2390 2130 1570 1480	865 903 1230 586 1560 669 299 262	3970 4460 6680 3010 10100 3850 1270 1050	48 52 45 45
01 06 12 13 20 23 27	1800 1010 1515 2000 2030 1340 2030 1500	1230 1180 1380 1390 754 691 512 629	238 106 251 141 70 53 24 88	790 338 935 529 143 99 33	52 49
JUL 04 10 20 26	2030 0900 1925 2000 1500	585 530 420 477 477	94 91 59 96 151	148 130 67 124 194	 89
AUG 04 11 15 24 31 SEP	0630 1500 1605 1617 1622 1840	530 548 431 623 500 398	204 117 136 299 2 38	292 173 158 503 2.7 41	
01 03 08 15 21	1745 1445 1957 1315 1818 1900	426 430 409 381 360 354	42 40 36 55 30 19	48 46 40 57 29 18	78 62

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .062 MM	SED. SUSP. FALL DIAM. % FINER THAN .125 MM	SED. SUSP. FALL DIAM. % FINER THAN .250 MM	SED. SUSP. FALL DIAM. % FINER THAN .500 MM	SED. SUSP. FALL DIAM. FINER THAN 1.00 MM
01	1500 1510	2000	1460	7880 4920	16	20	32 32	62 50	8 1 7 8	96 93	100	100

09339900 EAST FORK SAN JUAN RIVER ABOVE SAND CREEK, NEAR PAGOSA SPRINGS, CO

LOCATION.--Lat 37°23'23", long 106°50'26", Archuleta County, Hydrologic Unit 14080101, on right bank 0.3 mi upstream from Sand Creek, 4.0 mi upstream from West Fork San Juan River, and 13 mi northeast of Pagosa Springs.

DRAINAGE AREA. -- 64.1 mi2.

PERIOD OF RECORD.--October 1956 to current year. Prior to October 1959, published as San Juan River above Sand Creek, near Pagosa Springs.

REVISED RECORDS .-- WSP 1713: 1957.

GAGE.--Water-stage recorder. Elevation of gage is 8,900 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 24. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 500 acres of hay meadows upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 31 years, 91.3 ft3/s; 66,150 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,260 ft³/s, Sept. 14, 1970, gage height, 6.75 ft, from rating curve extended above 460 ft³/s, on basis of slope-area measurement at gage height, 6.13 ft; minimum daily determined, 3.4 ft³/s, Dec. 26, 1958.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Greatest flood since at least 1885 occurred Oct. 5, 1911.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 16	2300	*848	*5.02	June 9	2000	744	4.82

Minimum daily discharge, 13 ft3/s, Feb. 28.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	77 87 117 108 112	106 108 112 102 100	50 50 50 50 47	18 20 18 19 20	16 16 16 16 16	14 16 16 18 20	26 30 35 41 36	389 361 289 237 221	267 346 409 474 470	195 188 175 160 148	44 43 61 46 43	31 31 32 30 28
6 7 8 9 10	112 114 116 116 116	98 87 81 74 76	45 37 36 34 28	20 20 20 19 18	16 16 16 16 16	30 40 42 40 40	35 32 35 39 48	215 236 271 280 284	492 551 587 675 620	140 130 123 118 110	39 60 51 42 41	27 27 26 25 23
11 12 13 14 15	122 114 108 106 116	74 74 72 70 70	24 24 26 28 28	17 19 20 20 19	17 18 19 19	42 38 42 44 42	58 63 53 57 80	327 398 417 593 653	500 446 440 455 497	104 96 89 84 80	38 38 38 33 29	22 21 20 22 21
16 17 18 19 20	118 114 114 116 134	68 64 63 73 70	28 28 30 28 26	15 17 18 17 18	17 16 16 16 16	36 32 32 32 32	125 179 214 221 206	718 666 575 538 432	551 499 431 386 357	79 104 84 72 66	28 25 23 22 21	20 18 18 17 16
21 22 23 24 25	130 114 112 108 102	70 72 66 60 60	26 24 22 24 24	18 17 18 18	16 15 15 16 16	28 30 26 26 26	188 203 232 259 285	375 319 293 266 243	340 316 308 298 292	66 70 66 66 64	21 22 29 92 90	16 15 15 15
26 27 28 29 30 31	94 89 84 79 79 84	60 53 56 55 54	24 20 20 20 19 18	17 16 16 16 16 16	16 16 13 	25 24 24 22 21 23	308 296 323 328 355	235 215 208 194 190 207	284 268 237 217 206	67 67 61 57 52 47	80 56 49 43 38 34	15 16 15 15 14
TOTAL MEAN MAX MIN AC-FT	3312 107 134 77 6570	2248 74.9 112 53 4460	938 30.3 50 18 1860	558 18.0 20 15 1110	454 16.2 19 13 901	923 29.8 44 14 1830	4390 146 355 26 8710	10845 350 718 190 21510	12219 407 675 206 24240	3028 97.7 195 47 6010	1319 42.5 92 21 2620	626 20.9 32 14 1240

CAL YR 1986 TOTAL 55755 MEAN 153 MAX 963 MIN 14 AC-FT 110600 WTR YR 1987 TOTAL 40860 MEAN 112 MAX 718 MIN 13 AC-FT 81050

09340800 WEST FORK SAN JUAN RIVER AT WEST FORK CAMPGROUND NEAR PAGOSA SPRINGS, CO

LOCATION.--Lat 37°27'01", long 106°54'40", Mineral County, Hydrologic Unit 14080101, on right bank 1.8 mi upstream from Wolf Creek, 30 ft upstream from West Fork bridge and 15 mi northeast of Pagosa Springs, Co.

DRAINAGE AREA . -- 50.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1984 to September 1987 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 7,935 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 9-11, 24-30, Dec. 1-4, 9-18, 22-24, 26-31, Jan. 1-4, 9-11, 16-28, Feb. 7, 8, 21-23, 25-28, Mar. 1, 2, 4-7, 21-23, 28-31. Records good except for estimated daily discharges, which are poor. No regulation or diversions.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,050 $\rm ft^3/s$, May 8, 1985, gage height 5.25 $\rm ft$; minimum daily,11 $\rm ft^3/s$, Feb. 2, 1985.

EXTREMES OUTSIDE PERIOD OF RECORD .-- A flood on October 5, 1911, has not yet been exceeded.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 936 $\rm ft^3/s$ at 2100 June 7, gage height, 5.05 $\rm ft$; minimum daily, 16 $\rm ft^3/s$, Feb. 28.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE		1986 TO	SEPTEMBER	1987		
DAY	OCT	NON	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	80	80	42	22	21	19	21	230	310	395	72	61
2	85	88	42	24	21	19	24	232	425	385	76	60
3	100	90	40	24	21	21	29	182	506	368	100	57
4	90	87	40	24	21	22	30	146	561	341	78	54
5	90	83	42	23	20	24	25	139	608	311	67	55
6	88	80	41	23	20	26	24	151	650	286	73	55
7	87	73	40	23	19	32	24	182	733	264	108	55
8	87	70	38	23	20	40	24	223	803	244	102	55
9	87	55	34	20	21	31	24	217	807	234	84	50
10	88	55	30	20	21	29	31	230	725	217	80	46
11	94	55	28	20	21	29	41	283	670	205	72	43
12	87	63	30	23	22	25	40	378	704	186	71	41
13	85	58	30	23	21	29	34	353	714	172	83	40
14	88	59	30	23	22	29	36	497	717	160	67	44
15	96	61	30	22	20	30	56	529	737	151	57	39
16	98	57	30	20	20	28	81	540	820	142	54	35
17	94	55	28	19	19	25	104	525	710	216	50	33
18	94	55	28	19	19	24	129	518	608	155	48	31
19	94	65	29	20	19	24	127	481	585	133	44	30
20	106	62	29	20	19	24	116	411	570	120	43	30
21 22 23 24 25	10 1 90 87 87 83	64 65 58 50 48	29 26 26 26 28	19 19 20 20 20	18 18 18 19	22 22 22 23 21	98 116 156 172 178	364 306 284 262 233	553 535 545 552 550	126 141 115 106 106	44 45 61 182 139	29 29 29 29 29
26 27 28 29 30 31	80 78 78 76 75 78	48 46 44 44 42	24 22 24 22 22 22	19 19 18 18 18	18 17 16	20 20 18 18 18	213 217 232 232 220	219 205 199 186 187 213	535 508 451 421 393	102 108 93 98 84 78	118 112 92 83 73 66	29 29 28 26 25
TOTAL	2731	1860	952	644	550	752	2854	9105	18006	5842	2444	1196
MEAN	88.1	62.0	30.7	20.8	19.6	24.3	95•1	294	600	188	78.8	39.9
MAX	106	90	42	24	22	40	232	540	820	395	182	61
MIN	75	42	22	18	16	18	21	139	310	78	43	25
AC-FT	5420	3690	1890	1280	1090	1490	5660	18060	35710	11590	4850	2370

CAL YR 1986 TOTAL 54589 MEAN 150 MAX 802 MIN 12 AC-FT 108300 WTR YR 1987 TOTAL 46936 MEAN 129 MAX 820 MIN 16 AC-FT 93100

09340800 WEST FORK SAN JUAN RIVER AT WEST FORK CAMPGROUND NEAR PAGOSA SPRINGS, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: November 1984 to September 30, 1987 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	E IN TIME TA	CREAM- COLOW, COUSTAN- DANEOUS A	UCT - (ST	TAND- AT ARD WA	URE B	ID- TY S	D XYGEN, DIS- SOLVED	BIO- CHEM- ICAL,	OXYGEN DEMAND, BIOCHEM 20 DAY, 20 DEG (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FE CAL, KF AGAR (COLS. PER 100 ML)
JUN 02	1300	364	33	7.4	6.5	3.1	9.6	0.4	0.9	КО	K19
SEP 01	1230	62	53	7.5	11.0	0.60	8.5	0.4	0.7	ко	25
	HARD- NESS NO TOTAL WHO (MG/L TO AS MC	J/L AS (DITY SO	CIUM S S- D DLVED SO MG/L (M	IS- DI LVED SOL G/L (M	IUM, S- S VED	AD- SORP- TION RATIO	SIUM, DIS- SOLVED	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
02 SEP	13	0	<0.1	4.4	0.60	1.9	0.2	0.70	19	7.1	0.20
01	20	2	<0.1	6.3	0.95	3.3	0.3	1.0	18	5.1	0.30
JUN 02 SEP 01	AS F) <0.1 0.1 NITRO GEN, AMMONI TOTAL	DIS- SOLVE DIS- SOLVE DIS- MAS SI02) 15 0 18 NITRO GEN, AMMONI DIS-	AT 180 DEG. 0 DIS- SOLVEI (MG/L) 4 50 NITRO A GEN, ORGANIO	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 41 6 46 NITRO- GEN, ORGANIC	SOLVEE (TONS PER AC-FT) 0.06 0.08 NITRO- GEN,AM-	(TONS PER DAY) 40.3 9.3 NITRO GEN,AM MONIA	GEN NITRI TOTA (MG/ AS N 3 <0.0 36 <0.0	, NITR TE DI L SOLL (MG) AS 1 <0. 1 <0. PHO PHOR US DI	N, NI' ITE GI SS- NO2.2 VED TO' /L (M' N) AS 01 <0 01 <0 01 <0 0US PHO OUS POR	TRO- CEN, NOSE NOSE NOSE NOSE NOSE NOSE NOSE NOSE	TRO- EN, 2+NO3 1IS- DLVED IG/L S N) 0.10 0.10
DATE	(MG/L AS N)		(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)				G/L (MC P) AS	
JUN 02 SEP	0.02	0.02	0.58	0.38	0.60	0.4	10 0.0	3 0.	02 0	.01 <0	0.01
01	0.03	0.02	0.37	0.28	0.40	0.3	30 0.0	2 0.	01 0	.01 <0	0.01
DATE	ALUM- INUM, DIS- SOLVE (UG/L AS AL	ARSENI DIS- DIS- O SOLVE (UG/L	DIS- D SOLVEI (UG/L	DIS- SOLVED (UG/L	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVE (UG/L AS FE	DIS ED SOLV UG/	- DI: ED SOL' L (UG	E, NICI S- DIS VED SOI /L (U	S- I LVED SC G/L (U	NC, DIS- DLVED IG/L S ZN)
JUN 02	1	10 <	1 <	1 7	180	3	30	< 5	2	<1	10
SEP 01			1 <	•	50	_		< 5	3	<1	<3

K Based on non-ideal colony count

09340800 WEST FORK SAN JUAN RIVER AT WEST FORK CAMPGROUND NEAR PAGOSA SPRINGS, CO--Continued
SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MA Y					
06	1515	138	16	6.0	39
19	1150	500	15	20	61
JUN 02	1300	364	40	0 0	
23	1345	504 506	10 10	9.8 14	51 47
JUL	1515	500	10	17	* *
16	1130	140	8	3.0	38
SEP					
23	0915	30	1	0.08	

09341300 WOLF CREEK AT WOLF CREEK CAMPGROUND NEAR PAGOSA SPRINGS, CO

LOCATION.--Lat 37°26'31", long 106°53'11", Mineral County, Hydrologic Unit 14080101, on left bank 10 ft downstream from bridge at Wolf Creek Campground, 0.8 mi upstream from mouth, and 14 mi northeast of Pagosa Springs, Co.

DRAINAGE AREA. -- 18.0 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1968 to September 1975, October 1984 to September 1987 (discontinued). Streamflow and water quality records for October 1968 to September 1975 at site 0.3 mi upstream not equivalent because of inflow between sites.

GAGE.--Water-stage recorder. Elevation of gage is 7,830 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 11, 23, 26-31, Jan. 1-6, 9, 10, 16-20, Mar. 28. Records good except for estimated daily discharges, which are fair. No regulation. Small transmountain diversion upstream from station by Treasure Pass diversion ditch to South Fork Rio Grande drainage and small diversion by U.S. Forest Service for fish pond 0.3 mi upstream from gage.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 526 ft³/s, June 7, 1985, gage height, 3.79 ft; minimum daily,3.1 ft³/s, Jan. 25, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 331 ft 3/s at 2000 June 6, gage height, 3.15 ft; minimum daily, 3.1 ft 3/s, Jan. 25.

DISCHARGE CURIC FEET PER SECOND WATER YEAR OCTOBER 1086 TO SEPTEMBER 1087

		DISCHARGE,	CUBIC	FEET PER	SECOND,	MEAN VALU	R OCTOBER ES	1986 TO	SEPTEMBER	1987		
DAY	OCT	иои	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	28 32 40 36 40	31 34 36 32 30	12 12 11 11	5.0 5.5 5.0 5.5	3.5 3.7 3.7 3.7 3.5	6.0 6.3 5.7 6.0 7.7	7.7 9.5 11 10 9.6	108 106 79 64 61	164 214 247 262 274	96 88 79 70 65	11 12 27 17 14	16 15 14 13
6 7 8 9 10	42 45 49 48 47	29 25 24 22 21	11 11 9.9 9.2 8.1	5.0 4.2 3.5 3.2 3.2	3.5 3.9 4.4 4.4	10 13 14 12 11	8.1 8.5 9.9	63 84 106 100 108	287 262 244 259 262	59 52 48 45 40	13 24 18 15 17	13 13 14 12 11
11 12 13 14 15	46 42 38 38 40	20 19 18 19 18	7.5 7.8 7.8 7.4 7.1	3.3 3.3 3.5 3.5	4.4 4.6 4.6 4.4	9.6 8.1 8.8 8.8 9.4	13 12 12 12 16	147 184 187 237 226	247 238 238 253 259	38 35 31 28 26	15 13 18 17 14	10 10 9.6 9.6 9.6
16 17 18 19 20	42 42 42 42 46	18 17 15 19 18	7.1 6.8 6.8 6.8	3.4 3.4 3.4 3.4	4.4 4.2 4.2 4.0 4.4	8.5 7.4 7.8 7.8 6.9	27 47 63 66 58	238 226 223 200 176	265 241 211 188 173	25 37 27 22 20	12 11 10 9.9 9.2	9.2 8.5 7.8 7.4 7.3
21 22 23 24 25	43 38 34 34 32	18 18 18 15	6.3 6.0 6.0 6.0	3.4 3.3 3.3 3.1	4.4 4.4 4.6 5.1 4.9	6.6 6.8 6.6 5.5	49 59 77 86 87	155 135 133 125 110	165 160 156 153 148	21 33 21 18 18	9.2 8.5 10 62 53	7.1 6.8 6.3 6.3
26 27 28 29 30 31	31 30 30 30 30	15 14 15 13 13	5.0 5.5 5.0 5.0	3.5 3.5 3.7 3.5 3.3	4.9 5.7 5.7 	5.2 4.8 4.6 5.7	96 94 102 108 104	104 96 96 84 92 117	143 138 118 112 104	18 18 16 16 14 12	46 34 29 25 21 18	6.3 6.4 6.3 6.3
TOTAL MEAN MAX MIN AC-FT	1189 38.4 49 28 2360	620 20.7 36 13 1230	238.9 7.71 12 5.0 474	116.4 3.75 5.5 3.1 231	122.2 4.36 5.7 3.5 242	238.6 7.70 14 4.6 473	1283.4 42.8 108 7.7 2550	4170 135 238 61 8270	6185 206 · 287 104 12270	1136 36.6 96 12 2250	612.8 19.8 62 8.5 1220	286.8 9.56 16 5.7 569

CAL YR 1986 TOTAL 21857.6 MEAN 59.9 MAX 320 MIN 3.9 AC-FT 43350 WTR YR 1987 TOTAL 16199.1 MEAN 44.4 MAX 287 MIN 3.1 AC-FT 32130

09341300 WOLF CREEK AT WOLF CREEK CAMPGROUND NEAR PAGOSA SPRINGS, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: November 1984 to September 30, 1987 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		WAIL	n dour	JIII DAIA	, WAIGH I	SAR OCI	ODEN I	900 10	DEF TEMPE	21 1901			
DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE CIF CON DU(AN(US)	FIC N- PH CT- (STA CE AH	AND- ATU	JRE CER	TUR- BID- ITY FTU)	OXYG DI: SOL (MG	S- ICA VED 5 I	ND, OXY D= DEM EM- BIO AL, 20 DAY 20	GEN F AND, F CHEM O DAY, U DEG (C	OLI- ORM, ECAL, .7 M-MF OLS./ O ML)	STREP- TOCOCCI FE CAL, KF AGAR (COLS. PE R 100 ML)
JUN 02	1430	190		49	7.4	8.5	2.8	;	8.9	0.4	0.9	K 1	ко
SEP 01	1030	17		41	7.9	8.0	0.90	,	9.2	0.5	1.0	КО	49
DATE	TOTAL (MG/L	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	ACII (MC AS	DIS DITY SOL DITY (MO	CIUM SI S- DI LVED SOL G/L (MO	IS- .VED S I/L	ODIUM, DIS- OLVED (MG/L AS NA)	SOD A SORI TIC RAT	D- SI P- DI ON SOL	CAS- LIN CUM, WH CS- TO CVED FI COLUMN	WAT SU TAL D ELD S L AS (LFATE IS- OLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUN 02	12	0	<	(0.1 L	1.0	.50	1.9	(0.2 0	.70	21	5.8	0.20
SEP 01	16	0	<	·0.1	5.2	70	2.8	(0.3 0	.90	18	4.4	0.10
JUN 02 SEP 01	AS I <o ammoi="" ge:="" nit:="" o="" td="" tot.<=""><td>E, DES . SS . SS . SS . SS . SS . SS . SS</td><td>LICA, IS- DLVED MG/L AS IO2) 14 16 ITRO- GEN, MONIA DIS- DLVED MG/L S N)</td><td>SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 35 40 NITRO- GEN, ORGANIC TOTAL (MG/L AS N)</td><td>SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 40 41 NITRO- GEN, ORGANIC DIS- SOLVED (MG/L)</td><td>SOLID DIS SOLV (TON. PER AC-F O. O. NITR GEN, A MONIA ORGAN TOTAL (MG/AS N</td><td>- ED S S (T) 05 05 0- N M- GE + MO IC OR L L ()</td><td>LIDS, DIS- OLVED TONS PER DAY) 18.0 1.84 ITRO- N,AM- NIA + GANIC IS. MG/L S N)</td><td>NITRO-GEN, NITRITE TOTAL (MG/L AS N) <0.01 <0.01 PHOS-PHOROUS TOTAL (MG/L AS P)</td><td>NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 PHOS- PHOROUS DIS- SOLVED (MG/L AS P)</td><td>NITRO GEN, NO2+NO TOTAL (MG/L AS N) <0.10 PHOS- PHORUS ORTHO TOTAL (MG/L AS P)</td><td>- 00 NO23 D SOO (MM ASS <0 <0 PH PHO, OR</td><td>/L</td></o>	E, DES . SS	LICA, IS- DLVED MG/L AS IO2) 14 16 ITRO- GEN, MONIA DIS- DLVED MG/L S N)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 35 40 NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 40 41 NITRO- GEN, ORGANIC DIS- SOLVED (MG/L)	SOLID DIS SOLV (TON. PER AC-F O. O. NITR GEN, A MONIA ORGAN TOTAL (MG/AS N	- ED S S (T) 05 05 0- N M- GE + MO IC OR L L ()	LIDS, DIS- OLVED TONS PER DAY) 18.0 1.84 ITRO- N,AM- NIA + GANIC IS. MG/L S N)	NITRO-GEN, NITRITE TOTAL (MG/L AS N) <0.01 <0.01 PHOS-PHOROUS TOTAL (MG/L AS P)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	NITRO GEN, NO2+NO TOTAL (MG/L AS N) <0.10 PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	- 00 NO23 D SOO (MM ASS <0 <0 PH PHO, OR	/L
JUN 02 SEP	<0.0	01 (0.01		0.39	1.	7	0.40	0.03	0.02	0.02	<0	.01
01	0.0	01 (0.02	0.29	0.58	0.	30	0.60	0.02	0.02	0.02	<0	.01
DATE	ALUI INUI DI: SOLV (UG.	M, ARS S- I VED SO /L (I	SENIC DIS- DLVED JG/L S AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON TOTA RECO ERAB (UG/I	L I V- LE S L (1	RON, DIS- OLVED UG/L S FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	NICKEL DIS- SOLVE (UG/L AS NI	D D SO (U	NC, IS- LVED G/L ZN)
JUN 02		50	<1	<1	3	2	50	35	10	2	<	1	7
SEP 01		10	1	<1	1		60	17	< 5	1	<	1	< 3

K Based on non-ideal colony count

09341300 WOLF CREEK AT WOLF CREEK CAMPGROUND NEAR PAGOSA SPRINGS, CO--Continued

327

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MAY					
06	1640	65	13	2.3	73
19	1250	180	19	9.2	62
JUN					
02	1430	190	22	11	52 61
23	1600	148	14	5.6	61
JUL					
16	1300	25	5	0.34	46
SEP				_	
23	0945	5.7	4	0.06	

09341350 WINDY PASS CREEK NEAR PAGOSA SPRINGS, CO

LOCATION.--Lat 37°26'21", long 106°52'46", Mineral County, Hydrologic Unit 14080101, on left bank 0.6 mi upstream from mouth, 40 ft upstream from U.S. Highway 160, and 14 mi northeast of Pagosa Springs, Co.

DRAINAGE AREA. -- 1.41 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1, 1984 to September 30, 1987 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 8,030 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 9 to Apr. 13. Records good except for estimated daily discharges, which are poor. No diversions upstream from station. Small diversion for domestic use of guest ranch downstream from station.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge observed, 16 ft³/s, May 8, 1985, gage height, unknown, maximum gage-height recorded, 4.90 ft, May 4, 1985, backwater from plugged culvert; no flow many days each year

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10 ft³/s at 2200, May 15, gage height, 1.92 ft; no flow, July 14-15.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE	R OCTOBER ES	1986 TO	SEPTEMBER	1987		
DAY	OCT	иои	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	.26 .36 .52 .63	1.3 1.5 1.5 1.4 1.3	.55 .55 .50 .50	.24 .26 .24 .24	.17 .18 .18 .17	.30 .28 .28 .32 .40	.42 .50 .55 .48	8.0 7.5 6.2 5.5 4.6	2.3 2.6 3.0 3.2 3.2	.13 .09 .09 .07	.01 .01 .01 .01	.02 .02 .02 .02
6 7 8 9 10	.63 .63 .63 .63	1.2 1.1 .98 .95	.50 .50 .46 .42	.24 .19 .17 .15	.18 .19 .20 .22	.55 .65 .70 .55	.42 .42 .48 .60	4.0 4.1 4.1 4.0 4.2	3.0 2.9 3.0 2.9 2.7	.04 .01 .01 .01	.01 .01 .02 .02	.02 .02 .02 .02
11 12 13 14 15	.74 .69 .64 .63	.90 .85 .85 .85	.36 .36 .36 .34	.16 .16 .16 .16	.22 .22 .22 .22	.46 .42 .44 .44	.60 .60 .70 .98	5.4 6.2 7.6 9.4 9.6	2.3 1.9 1.7 1.3	.01 .01 .01 .0	.01 .01 .01 .01	.02 .02 .02 .02
16 17 18 19 20	.74 .74 .89 1.1	.80 .75 .75 .85	.34 .32 .32 .30	.16 .16 .16 .16	.20 .20 .20 .20	.40 .36 .38 .38	1.9 2.8 4.3 5.4 5.0	9.2 9.0 6.9 5.3	.89 .75 .58 .53	.01 .02 .01 .01	.01 .01 .01 .01	.01 .01 .01 .01
21 22 23 24 25	1.5 1.3 1.2 1.1	.85 .85 .80 .70	.30 .28 .28 .28	.16 .16 .15 .15	.22 .22 .24 .24	.34 .34 .32 .28	4.6 5.0 5.5 5.6 6.3	4.9 4.6 4.3 4.1 3.5	.36 .31 .23 .20	.01 .01 .01 .01	.01 .01 .01 .05	.01 .01 .01 .01
26 27 28 29 30 31	.89 .80 .75 .69	.70 .65 .70 .60 .60	.26 .24 .24 .24 .24	.17 .17 .17 .18 .17	.26 .28 .28	.26 .24 .24 .28 .34	8.1 7.5 7.8 7.8 7.7	3.3 2.9 2.7 2.5 2.3 2.2	.18 .15 .13 .16 .14	.01 .01 .01 .02 .01	.07 .07 .07 .07 .04	.01 .01 .01 .01
TOTAL MEAN MAX MIN AC-FT	24.71 .80 1.5 .26 49	27.63 .92 1.5 .60	11.08 .36 .55 .24 22	5.54 .18 .26 .15	5.98 .21 .28 .17	11.77 .38 .70 .24 23	94.44 3.15 8.1 .42 187	164.0 5.29 9.6 2.2 325	42.31 1.41 3.2 .13 84	.72 .02 .13 .00	.73 .02 .09 .01	.45 .01 .02 .01

CAL YR 1986 TOTAL 470.98 MEAN 1.29 MAX 10 MIN .00 AC-FT 934 WTR YR 1987 TOTAL 389.36 MEAN 1.07 MAX 9.6 MIN .00 AC-FT 772

09341350 WINDY PASS CREEK NEAR PAGOSA SPRINGS, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: November 1984 to September 1987 (discontinued).

PERIOD OF DAILY RECORD . --

SUSPENDED-SEDIMENT DISCHARGE: April 9,1986 to September 30,1986.

INSTRUMENTATION.--Pumping-sediment sampler since April 1986.

REMARKS.--Daily-sediment discharge was not published this year because of insufficient data.

EXTREMES FOR PERIOD OF RECORD.-SEDIMENT CONCENTRATION: Maximum daily mean, 62 mg/L May 6, 1986 (but may have been exceeded during periods when daily samples not collected during May); minimum daily mean, 0 mg/L several days during August and September, 1986.

SEDIMENT LOADS: Maximum daily, 1.5 tons May 6; minimum daily, .00 tons many days during June through

September.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

D.	ATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	OXYGEN DEMAND, BIOCHEM 20 DAY, 20 DEG (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN 02.		1600	2.6	91	7.8	7.5	5.2	8.6	0.3	0.7	K1	100
SEP 01.		1000	0.03	117	8.0	5.0	0.70	9.9	0.6	1.2	ко	K350
	ATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	ACIDITY (MG/L AS H)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUN 02.		26	0	<0.1	7.5	1.7	3.7	0.3	1.0	30	9.9	0.40
SEP 01.		48	0	<0.1	14	3.2	6.3	0.4	1.5	54	6.3	0.30
D	ATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS DIS- SOLVE: (TONS PER DAY)	GEN,	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
JUN 02.	• •	<0.10	22	65	65	0.09	0.4	6 <0.010	<0.010	<0.100	<0.100	0.020
SEP 01.		0.10	25	97	89	0.13	0.0	1 <0.010	<0.010	<0.100	<0.100	<0.010
	DATE JUN	G AMM D SC (M AS	ONÍA (1) OIS- OR(OLVED TO IG/L (1) ON AS	ITRO- GEN, ORG GANIC I DTAL SO MG/L (I S N) AS	GEN, GEN GANIC MON DIS- ORC DLVED TC MG/L (N S N) AS	I,AM- GENIA + MONGANIC OROUTAL DOMAG/L (15 N) AS	GANIC PI IS. 1G/L S N)	PHOS- PHO HOROUS I TOTAL SC (MG/L (N AS P) AS	OROUS PHODIS- OR OLVED TO AG/L (M S P) AS	OS- PHO ORUS, OR OTHO, DI OTAL SOL OG/L (MG	ROUS PH THO, OF S- I VED SO I/L (MP) AS	OS- ATE, TTHO, IS- DLVED IG/L PO4)
:	02 SEP		.020	0.98	0.48	1.0	0.50				.010	0.03
	01	0	.020		0.28	3.1	0.30	0.040	0.040 0	0.030 0	.020	0.06

K Based on non-ideal colony count

330

SAN JUAN RIVER BASIN

09341350 WINDY PASS CREEK NEAR PAGOSA SPRINGS, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, DIS- SOLVED (UG/L AS ZN)
JUN 02 SEP	170	<1	<1	2	420	89	< 5	2	<1	9
01	<10	1	<1	2	30	26	< 5	1	<1	4

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
MA Y					
07	1215	3.8	12	0.12	66
18	1230	6.7	30	0.54	59
JUN					
02	1600	2.6	12	0.08	41

09341500 WEST FORK SAN JUAN RIVER NEAR PAGOSA SPRINGS, CO

LOCATION.--Lat 37°23'31", long 106°54'24" T.36 N., R.1 W., Archuleta County, Hydrologic Unit 14080101, on right bank 1.9 mi upstream from mouth, 400 ft. downstream from Archuleta-Mineral County line and 11 mi northeast of Pagosa Springs, CO.

DRAINAGE AREA. -- 85.4 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1984 to September 1987 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 7,645 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1733 for history of changes prior to Sept. 28, 1984.

REMARKS.--Estimated daily discharges: Nov. 9-14, 24, 25, Nov. 27 to Dec. 7, 10-17, Dec. 20 to Mar. 7, 16, 20-23, 25, 27-31, and July 17 to Aug. 13. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 550 acres upstream and 220 acres downstream from station. Treasure Pass ditch upstream from station exports water to Rio Grande basin.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,040 ft³/s, June 8, 1985, gage height, 4.85 ft; minimum daily, 20 ft³/s, Feb. 1, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,460 $\rm ft^3/s$ at 2400 June 15, gage height, 4.56 $\rm ft$; minimum daily, 30 $\rm ft^3/s$, Feb. 28.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU		1986 TO	SEPTEMBER	1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	126	176	75	40	36	34	50	473	533	520	95	83
2	135	177	75	42	36	36	54	468	693	504	95	80
3	164	177	75	40	38	38	62	368	798	463	140	78
4	150	165	75	40	38	40	66	316	916	427	110	70
5	150	153	70	42	36	44	58	308	982	391	95	74
6 7 8 9 10	153 150 153 153 156	150 135 126 100 95	75 70 70 68 60	42 42 42 38 38	36 38 38 38 38	50 65 77 64 58	54 54 58 70 82	310 365 431 423 432	1090 1190 1270 1270 1200	356 326 305 285 265	100 140 130 110	75 75 77 68 64
11	174	95	50	40	38	58	97	526	1120	248	100	58
12	159	95	55	42	38	56	102	645	1130	228	95	57
13	150	95	55	42	40	58	88	624	1140	208	110	54
14	150	95	55	40	40	62	97	816	1150	196	97	62
15	165	103	55	40	38	62	125	884	1240	177	85	58
16	168	100	55	38	38	55	174	923	1320	171	78	52
17	168	95	55	36	36	58	250	900	1160	260	73	50
18	168	107	56	36	36	56	299	861	1020	190	66	48
19	168	131	53	38	36	56	305	801	938	160	62	46
20	207	118	50	38	36	55	276	710	881	150	60	43
21	192	115	50	36	34	50	239	641	831	160	58	44
22	166	117	48	36	34	50	264	554	801	180	62	42
23	153	105	46	38	34	50	324	513	800	150	82	42
24	150	90	46	38	36	50	349	475	800	130	249	42
25	147	90	42	38	36	46	363	424	784	130	199	42
26 27 28 29 30 31	141 138 135 132 132 135	95 85 80 80 80	42 40 42 40 40	36 36 36 36 36 36	34 32 30 	44 40 40 38 38 40	431 432 450 456 447	408 379 372 346 347 389	737 697 618 600 529	130 140 120 120 110	169 153 132 115 100 90	42 41 40 38 36
TOTAL	4788	3425	1728	1198	1018	1568	6176	16432	28238	7300	3360	1681
MEAN	154	114	55.7	38.6	36.4	50.6	206	530	941	235	108	56.0
MAX	207	177	75	42	40	77	456	923	1320	520	249	83
MIN	126	80	40	36	30	34	50	308	529	100	58	36
AC-FT	9500	6790	3430	2380	2020	3110	12250	32590	56010	14480	6660	3330

CAL YR 1986 TOTAL 90076 MEAN 247 MAX 1370 MIN 26 AC-FT 178700 WTR YR 1987 TOTAL 76912 MEAN 211 MAX 1320 MIN 30 AC-FT 152600

09341500 WEST FORK SAN JUAN RIVER NEAR PAGOSA SPRINGS, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- December 1984 to September 1987 (discontinued).

PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: April 19,1985 to September 30,1987 (discontinued).

INSTRUMENTATION. -- Pumping sediment sampler since April 1985.

REMARKS.--Daily-sediment discharge based on once daily samples collected April 14 through September 30.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SEDIMENT CONCENTRATION: Maximum daily mean, 2,630 mg/L May 16,1985; minimum daily mean, 1 mg/L several days during 1985 and 1986.
SEDIMENT LOADS: Maximum daily, 3,550 tons May 16,1985; minimum daily, .12 tons Sept.1,1985.

EXTREMES FOR CURRENT YEAR .--

SEDIMENT CONCENTRATION: Maximum daily mean, 33 mg/L June 20; minimum daily mean, 2 mg/L Aug. 20-23, 31, and Sept 1. SEDIMENT LOADS: Maximum daily, 114 tons June 16; minimum daily, .31 tons Aug.21.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	OXYGEN DEMAND, BIOCHEM 20 DAY, 20 DEG (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
DEC 08	1250	77	84	7 F		2.1	11.0				
MA R	-			7.5	1.5						
05 JUN	1030	79	73	7.7	1.0	3.2	11.5				
02 SEP	0945	634	53	7.0	7.0	1.6	9.5	0.6	1.1	K 1 4	К9
01	1345	82	54	8.4	15.0	0.70	7.9	0.4	0.9	Ko	K19
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	ACIDITY (MG/L AS H)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
DEC 08 MAR	28	5	<0.1	8.8	1.4	4.9	0.4	1.0	23	7.5	1.8
05 JUN	28	0	<0.1	8.9	1.5	5.3	0.5	1.1	30	7.7	0.80
02	15	0	<0.1	4.8	0.70	2.1	0.2	0.70	22	6.6	0.20
SEP 01	16	0	<0.1	5.2	0.82	3.0	0.3	1.0	24	4.9	0.20
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
DEC 08 MAR	<0.10	20	59	59	0.08	12.3					
05	0.10	20	63	63	0.09	13.5					
JUN 02	<0.10	15	38	43	0.05	65.0	<0.010	<0.010	<0.100	<0.100	<0.010
SEP 01	0.10	18	34	48	0.05	7.55	<0.010	<0.010	<0.100	<0.100	0.010

K Based on non-ideal colony count

09341500 WEST FORK SAN JUAN RIVER NEAR PAGOSA SPRINGS, CO--Continued

333

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	AMI [SC 1	ITRO- GEN, MONIA DIS- OLVED MG/L S N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIO DIS- SOLVEI (MG/L AS N)	GEN,A MONIA ORGAN	M- GEI + MOI IC OR L DI	ITRO- N,AM- NIA + GANIC IS. MG/L S N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROU DIS- SOLVE (MG/L AS P)	S PHORU ORTH D TOTA	S- PHO JS, OF HO, DI AL SOL /L (MO	ROUS THO, S- VED	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L S PO4)
DEC 08 MAR				_	-				-	-			
05 JUN									<u>-</u>	-			
02 SEP	(0.020		0.4	3 0.	50	0.50	0.040	0.02	0 0.0	010 <0	0.010	
01	(0.020	0.29	0.2	0.	30	0.30	0.020	0.02	0.0	020 0	.020	0.06
DATE	TIME	ALUM INUM DIS SOLV (UG/ AS A	i, ARSE 5- DI 'ED SOL 'L (UC	S- VED SO	DIS- DLVED JG/L	OPPER, DIS- SOLVED (UG/L AS CU)	IRON TOTA RECO ERAI (UG,	AL IR OV- D BLE SO /L (U	IS- LVED S G/L (EAD, DIS- OLVED UG/L S PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	NICKEL DIS- SOLVE (UG/L AS NI	DIS- D SOLVED (UG/L
JUN 02	0945		60	1	<1	4		380	33	< 5	3	<	1 7
SEP 01	1345		20	1	< 1	3		20	24	< 5	<1	<	1 7

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
APR					
14	1000	91	13	3.2	86
MAY	1000	930	25	5.6	46
19 JUN	1000	830	25	56	40
02	0945	634	22	38	47
23	0940	743	17	34	46
SEP					
23	1115	38	6	0.62	

09341500 WEST FORK SAN JUAN RIVER NEAR PAGOSA SPRINGS, CO--Continued

SUSPENDED SEDIMENT DISCHARGE (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DA Y	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SE DI MENT DIS CHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MA Y			JUNE	
1 2 3 4 5	50 54 62 66 58	 	.85 .96 1.2 1.3	473 468 368 316 308	27 31 27 24 22	34 39 27 20 18	533 693 798 916 982	19 19 17 29 22	27 36 37 72 58
6 7 8 9 10	54 54 58 70 82	 	.96 .96 1.1 1.4 1.8	310 365 431 423 432	21 21 23 27 28	18 21 27 31 33	1090 1190 1270 1270 1200	17 22 29 27 23	50 71 99 93 75
11 12 13 14 15	97 102 88 97 125	12 12	2.3 2.5 2.0 3.1 4.0	526 645 624 816 884	29 32 29 27 28	41 56 49 59 67	1120 1130 1140 1150 1240	23 24 25 27 31	70 73 77 84 104
16 17 18 19 20	174 250 299 305 276	14 17 18 19 20	6.6 11 15 16 15	923 900 861 801 710	27 26 25 22 19	67 63 58 48 36	1320 1160 1020 938 881	32 32 29 30 33	114 100 80 76 78
21 22 23 24 25	239 264 324 349 363	19 18 20 22 23	12 13 17 21 23	641 554 513 475 424	22 22 20 20 20	38 33 28 26 23	831 801 800 800 784	29 26 14 11 12	65 56 30 24 25
26 27 28 29 30 31	431 432 450 456 447	26 27 26 26 24	30 31 32 32 32 29	408 379 372 346 347 389	18 17 18 17 16	20 17 18 16 15	737 697 618 600 529	11 12 11 11 10	22 23 18 18 14
TOTAL	6176		329.13	16432		1063	28238		1769
		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	520 504 463 427 391	13 13 12 12 15	18 18 15 14 16	95 95 140 110 95	6 6 7 6 3	1.5 1.5 2.6 1.8	83 80 78 70 74	2 4 5 5 5	.45 .86 1.1 .94 1.0
6 7 8 9 10	356 326 305 285 265	17 18 20 17 15	16 16 16 13 11	100 140 130 110 110	3 6 7 	.81 2.3 2.5 2.8 2.8	75 75 77 68 64	6 6 	1.2 1.2 1.2 1.4 1.2
11 12 13 14 15	248 228 208 196 177	12 12 9 7 6	8.0 7.4 5.1 3.7 2.9	100 95 110 97 85	 5 3	2.4 2.2 2.8 1.3 .69	58 57 54 62 58		1.1 1.0 .96 1.2 1.1
16 17 18 19 20	171 260 190 160 150	5 5 6 4 3	2.3 3.5 3.1 1.7 1.2	78 73 66 62 60	3 3 3 3 2	.63 .59 .53 .50	52 50 48 46 43		.91 .86 .80 .76
21 22 23 24 25	160 180 150 130 130	3 7 4 4 4	1.3 3.4 1.6 1.4	58 62 82 249 199	2 2 2 14 11	.31 .33 .44 10 5.9	44 42 42 42 42	 6 5 4	.71 .66 .68 .57
26 27 28 29 30 31	130 140 120 120 110	4 5 4 4 5	1.4 1.9 1.3 1.3 1.2	169 153 132 115 100 90	8 6 4 3 2	3.7 2.5 1.4 .93 .81	42 41 40 38 36		.66 .64 .61 .57
TOTAL	7300		209.5	3360		58.15	1681		25.99

335

09342500 SAN JUAN RIVER AT PAGOSA SPRINGS, CO

LOCATION.--Lat 37°15'58", long 107°00'37", in NELSW sec.13, T.35 N., R.2 W., Archuleta County, Hydrologic Unit 14080101, on right bank at former bridge site in Pagosa Springs, 0.2 mi upstream from McCabe Creek, 0.6 mi downstream from bridge on U.S. Highway 160, and 2.0 mi upstream from Mill Creek.

DRAINAGE AREA .-- 298 mi2.

PERIOD OF RECORD.--October 1910 to December 1914, May 1935 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS .-- WSP 1313: 1914(M).

GAGE.--Water-stage recorder. Datum of gage is 7,052.04 ft above National Geodetic Vertical Datum of 1929.

Jan 29 to Mar. 6, 1911, nonrecording gage at site 0.5 mi upstream, at different datum. Mar. 7 to Oct. 4,

1911, nonrecording gage at present site, at different datum. Nov. 23, 1911, to Nov. 14, 1914, nonrecording
gage at site 300 ft downstream, at different datum.

REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of large areas upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 56 years, 384 ft3/s; 278,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,000 ft³/s, Oct. 5, 1911, gage height, 17.8 ft, from floodmarks, from velocity-area study; minimum daily, 9.7 ft³/s, Oct. 5, 6, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1885, that of Oct. 5, 1911. Flood of June 29, 1927, reached a stage of 13.5 ft, discharge about 16,000 ft /s, from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 1 May 16	2400 2400	1,790 2,710	4.67 5.53	June 7	2300	*3,190	*5.93

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 51 ft³/s, Sept. 30.

		DISCHARGE,	IN CUBIC	C FEET PE	R SECOND,	WATER YE MEAN VALU	AR OCTOBE	R 1986 TO) SEPTEMBE	ir 1987		
DAY	OCT	ИОЛ	DEC	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1	380	729	233	101	94	83	160	1670	1090	880	145	123
2	415	780	216	116	95	93	182	1610	1450	845	139	113
3	493	657	219	105	95	94	220	1250	1730	775	190	115
4	466	591	221	110	94	106	268	1040	2010	690	168	103
5	480	521	221	116	95	131	219	971	2140	617	142	105
6 7 8 9 10	480 465 480 480 475	500 466 425 350 348	219 216 188 195 150	116 116 112 107 101	95 95 94 94	187 237 256 225 238	206 203 233 278 335	956 1090 1250 1260 1240	2280 2490 2760 2770 2580	556 506 456 435 399	119 178 188 146 133	107 105 109 105 101
11	553	340	132	99	99	242	393	1440	2320	372	131	87
12	540	328	142	108	103	221	478	1750	2240	333	125	82
13	491	320	156	114	105	244	383	1760	2190	305	143	78
14	490	316	151	114	110	261	372	2290	2250	286	129	82
15	534	300	156	109	99	243	488	2420	2350	269	117	81
16	550	297	156	82	101	210	707	2540	2570	255	105	76
17	530	283	158	99	94	183	992	2450	2250	413	97	72
18	525	279	167	106	94	182	1160	2290	1960	346	87	70
19	530	500	161	99	94	191	1210	2100	1770	260	82	67
20	693	418	147	104	95	182	1130	1810	1650	231	79	63
21	690	385	143	106	95	165	946	1610	1550	218	78	58
22	582	380	132	99	89	174	997	1360	1470	267	80	57
23	531	360	122	101	88	160	1170	1240	1440	222	106	55
24	501	321	138	106	95	150	1250	1160	1410	200	390	55
25	480	320	140	106	90	162	1320	1020	1400	203	332	55
26 27 28 29 30 31	456 440 428 416 408	320 280 293 286 279	130 111 116 110 107 106	100 95 94 95 95 95	95 92 76 	158 153 139 139 123 137	1570 1550 1570 1580 1550	985 867 851 750 724 807	1320 1240 1080 1010 916	188 214 206 194 173 160	280 202 171 160 148 114	55 56 55 53 51
TOTAL	15390	11972	4959	3226	2659	5469	23120	44561	55686	11474	4704	2394
MEAN	496	399	160	104	95.0	176	771	1437	1856	370	152	79.8
MAX	693	780	233	116	110	261	1580	2540	2770	880	390	123
MIN	380	279	106	82	76	83	160	724	916	160	78	51
AC-FT	30530	23750	9840	6400	5270	10850	45860	88390	110500	22760	9330	4750

CAL YR 1986 TOTAL 245333 MEAN 672 MAX 3260 MIN 73 AC-FT 486600 WTR YR 1987 TOTAL 185614 MEAN 509 MAX 2770 MIN 51 AC-FT 368200

09343300 RIO BLANCO BELOW BLANCO DIVERSION DAM, NEAR PAGOSA SPRINGS, CO

LOCATION. --Lat 37°12'11", long 106°48'45", in NW4 sec.11, T.34 N., R.1 E., Archuleta County, Hydrologic Unit 14080101, on left bank 250 ft downstream from Blanco Diversion Dam, 1.1 mi downstream from Leche Creek, and 12 mi southeast of Pagosa Springs.

DRAINAGE AREA. -- 69.1 mi2.

PERIOD OF RECORD. -- March 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is 7,848.81 ft above National Geodetic Vertical Datum of 1929 (levels by U. S. Bureau of Reclamation).

REMARKS.--Estimated daily discharges: Oct. 1 to Dec. 19, Dec. 21 to Jan. 6, Jan. 9 to Feb. 2, Feb. 5-10, 21-23, Feb. 28 to Mar. 2, 30, and Aug. 25-27. Records good except for estimated daily discharges, which are fair. Flows controlled by diversion dam upstream.

AVERAGE DISCHARGE. -- 16 years, 51.6 ft3/s; 37,380 acre-ft/yr.

COOPERATION.--Records collected by U.S. Bureau of Reclamation, computed by Colorado Division of Water Resources, and reviewed by Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,810 ft³/s June 8, 1985, gage height, 4.75 ft; minimum daily, 6.9 ft³/s, Dec. 29, 1976.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,040 $\rm ft^3/s$ at 2000 May 15, gage height, 4.42 ft; minimum daily, 16 $\rm ft^3/s$, Aug. 20.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		DISCHA	KGE, CUBIC	FEET PE	R SECOND,	WATER YEA SAN VALUES	AR OCTOBE	K 1986 10	SEPTEMBE.	K 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	130 140 180 170 170	135 135 135 135 135	65 65 60 52	20 20 22 22 22	22 22 25 24 22	21 23 25 34 43	39 42 53 57 46	320 280 200 160 155	90 74 68 75 61	194 181 160 145 129	38 38 67 50 42	31 32 29 28 28
6	165	125	50	22	22	66	43	160	61	117	38	28
7	165	115	50	24	22	81	43	200	109	107	85	26
8	165	95	50	24	24	66	46	226	124	104	52	25
9	160	80	46	20	24	48	52	218	176	99	42	26
10	165	80	44	20	24	44	73	197	97	93	43	26
11	165	80	36	20	25	40	97	254	60	88	39	23
12	160	80	28	20	25	39	93	315	53	84	35	21
13	150	80	28	22	25	44	56	336	54	80	36	20
14	155	80	30	22	27	46	37	477	58	68	32	25
15	160	75	30	20	24	45	38	546	63	60	28	23
16	165	75	30	20	24	42	48	595	64	60	23	21
17	160	70	30	20	24	38	57	502	45	170	21	21
18	155	80	32	20	23	38	50	432	42	90	21	21
19	150	130	30	18	24	40	53	291	42	70	18	19
20	160	110	30	18	21	37	43	174	41	64	16	19
21	150	110	26	18	18	35	40	160	41	58	19	18
22	140	110	24	18	18	35	55	155	42	60	21	18
23	130	100	24	20	18	34	143	152	41	50	43	18
24	125	90	24	20	23	33	233	152	41	46	230	18
25	120	95	26	20	24	32	246	152	72	44	160	21
26 27 28 29 30 31	115 110 105 105 100 105	95 85 85 80 70	24 20 22 22 20 20	20 22 24 22 20 22	24 22 20 	31 30 28 28 26 30	285 315 285 267 267	129 107 101 99 99	139 178 174 190 194	43 51 53 43 41 39	80 60 51 43 37 32	20 20 18 18 17
TOTAL	4495	2950	1103	642	640	1202	3202	7443	2569	2691	1540	678
MEAN	145	98.3	35.6	20.7	22.9	38.8	107	240	85.6	86.8	49.7	22.6
MAX	180	135	65	24	27	81	315	595	194	194	230	32
MIN	100	70	20	18	18	21	37	99	41	39	16	17
AC-FT	8920	5850	2190	1270	1270	2380	6350	14760	5100	5340	3050	1340

CAL YR 1986 TOTAL 38623 MEAN 106 MAX 624 MIN 13 AC-FT 76610 WTR YR 1987 TOTAL 29155 MEAN 79.9 MAX 595 MIN 16 AC-FT 57830

337

09344000 NAVAJO RIVER AT BANDED PEAK RANCH, NEAR CHROMO, CO

LOCATION.--Lat 37°05'07", long 106°41'20", in NWL sec.24, T.33 N., R.2 E., Archuleta County, Hydrologic Unit 14080101, on left bank at downstream side of private bridge on Banded Peak Ranch, 0.5 mi downstream from Aspen Creek, 4.0 mi downstream from East Fork, and 9 mi northeast of Chromo.

DRAINAGE AREA .-- 69.8 mi2.

PERIOD OF RECORD. -- October 1936 to current year. Monthly discharge only for some periods, published in WSP 1313.

GAGE.--Water-stage recorder. Datum of gage is 7,940.6 ft above National Geodetic Vertical Datum of 1929 (river-profile survey). Prior to Oct. 1, 1949, at datum 3.00 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 27 to Dec. 15, Dec. 22-24, Dec. 27 to Jan. 1, Jan. 4, 11-14, 16, 17, 19, 20, 22-27, and Feb. 20. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of about 430 acres upstream from station.

COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.

AVERAGE DISCHARGE. -- 51 years, 110 ft3/s; 79,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,480 ft³/s, June 9, 1980, gage height, 4.55 ft, from rating curve extended above 840 ft³/s, on basis of float—area measurement at gage height 4.44 ft; maximum gage height, 7.02 ft, May 13, 1941, present datum; minimum daily discharge, 8.4 ft³/s, Sept. 29, 1960, result of temporary blockage by channel alteration upstream.

EXTREMES OUTSIDE PERIOD OF RECORD .-- A major flood occurred Oct. 5, 1911.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 14	2000	796	2.97	June 7	2200	*1,090	*3.42

Minimum daily discharge, 36 ft³/s, Sept. 23, 24, 29, 30.

		DIS CH!	RGE, CUBI	C FEET		, WATER :	YEAR OCTOBE JES	R 1986 1	TO SEPTEMB	ER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	122 133 124 142 140	126 135 137 133 120	80 78 76 74 72	42 43 48 46 46	41 41 41 42 42	46 48 49 49 55	58 60 64 70 64	406 374 302 254 244	290 374 446 500 530	261 235 216 200 181	62 61 67 64 60	52 50 49 48 48
6 7 8 9 10	140 137 142 13 7 140	120 112 102 93 97	72 72 62 62 56	47 47 47 46 46	42 46 47 44 46	64 71 71 62 60	60 57 57 6 1 68	248 283 314 310 310	550 620 740 873 824	168 158 146 137 129	55 87 74 62 62	47 44 43 43
11 12 13 14 15	158 146 135 142 149	93 93 93 95	54 50 52 52 54	44 42 43 44 44	44 44 46 48 47	55 54 55 58 60	84 88 76 78 102	358 379 402 505 632	680 620 584 584 644	120 114 112 112 108	60 62 60 58 54	41 40 40 43 42
16 17 18 19 20	149 149 151 149 163	95 93 97 133 118	54 55 55 55 55	43 42 42 42 42	46 46 44 44 42	58 54 57 57 55	151 202 228 238 232	644 614 590 555 470	644 566 505 475 451	104 155 122 104 95	49 48 43 43	40 38 38 38 38
21 22 23 24 25	151 135 129 122 120	114 116 110 102 102	55 54 53 52 52	42 40 40 41 41	42 42 43 44 44	54 58 53 53 53	205 228 265 272 276	406 346 330 310 272	420 406 402 406 402	89 89 84 81 76	46 46 52 108 113	37 37 36 36 37
26 27 28 29 30 31	118 116 114 108 97 98	100 90 94 92 90	50 48 46 44 44	40 41 42 42 41 42	43 49 43 	53 53 54 52 54	314 342 354 342 342	254 232 225 205 205 232	370 358 330 306 283	76 78 74 74 68 65	79 65 61 57 54 54	40 41 38 36 36
TOTAL MEAN MAX MIN AC-FT	4156 134 163 97 8240	3190 106 137 90 6330	1780 57.4 80 42 3530	1338 43.2 48 40 2650	1233 44.0 49 41 2450	1728 55.7 71 46 3430	5038 168 354 57 9990	11211 362 644 205 22240	15183 506 873 283 30120	3831 124 261 65 7600	1910 61.6 113 43 3790	1239 41.3 52 36 2460

CAL YR 1986 TOTAL 62317 MEAN 171 MAX 866 MIN 38 AC-FT 123600 WTR YR 1987 TOTAL 51837 MEAN 142 MAX 873 MIN 36 AC-FT 102800

09344400 NAVAJO RIVER BELOW OSO DIVERSION DAM, NEAR CHROMO, CO

LOCATION.--Lat 37°01'48", long 106°44'16", in NE¹/₄ sec.9, T.32 N., R.2 E., Archuleta County, Hydrologic Unit 14080101, on left bank 600 ft downstream from Oso Diversion Dam, 5.5 mi east of Chromo, and 6 mi upstream from Little Navajo River.

DRAINAGE AREA .-- 100.5 mi2.

PERIOD OF RECORD. -- March 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is 7,647.71 ft above National Geodetic Vertical Datum of 1929 (levels by U. S. Bureau of Reclamation).

REMARKS.--Estimated daily discharges: Dec. 11, 12, Dec. 30 to Jan. 3, 10-14, 16-27, 30, Feb. 28, and Mar. 1. Flows controlled by diversion dam upstream.

AVERAGE DISCHARGE.--16 years, 70.5 ft³/s; 51,080 acre-ft/yr.

COOPERATION. -- Records collected by U.S. Bureau of Reclamation, computed by Colorado Division of Water Resources, and reviewed by Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,330 ft³/s, May 24, 1984, gage height, 4.92 ft; minimum daily, 10 ft³/s, Oct. 10, 11, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 588 ft³/s at 2100 June 7, gage height, 3.96 ft; minimum daily, 28 ft³/s, Sept. 29.

		DISCH	ARGE, CUBIC	FEET	PER SECOND	, WATER YEAR MEAN VALUES	OCTOBER	1986	TO SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	AP R	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	137 149 169 160 154	192 217 209 186 164	91 89 88 87 86	56 56 58 55	47 46 47 46 46	44 46 49 54 64	76 86 98 103 88	240 240 240 240 240	114 67 70 70 69	146 145 145 144 144	61 60 67 65 63	49 48 47 45 45
6 7 8 9	153 153 154 148 150	157 147 129 109 110	88 88 82 82 68	56 58 57 54 54	45 46 48 48	80 96 97 86 32	83 82 61 48 48	240 238 235 235 238	70 140 289 405 288	125 94 94 93 94	58 82 76 65 63	45 44 42 40 42
11 12 13 14 15	185 177 160 163 182	109 111 110 110 110	64 62 66 67 67	52 50 52 52 52	49 51 52 55 48	76 73 79 83 80	48 48 48 49	238 238 238 240 238	133 84 85 85 96	94 95 88 82 84	61 63 65 61 58	45 46 46 47 48
16 17 18 4 9 20	190 185 186 183 235	107 105 108 177 147	70 71 72 72 71	45 46 48 48	51 49 47 44	74 66 70 75 70	49 49 49 49	238 238 238 238 235	148 70 70 70 70	73 102 116 95 86	54 52 51 49 48	46 45 43 42
21 22 23 24 25	198 171 159 151 145	137 135 125 114 114	70 68 66 67 68	50 48 48 50 50	43 41 41 46 46	64 67 65 65	49 65 119 167 203	219 191 191 191 191	69 70 70 70 68	91 89 84 79 75	50 49 45 88 123	41 41 41 41 42
26 27 28 29 30 31	141 136 133 132 129 132	114 104 106 105 102	66 59 61 60 58 56	48 49 48 46 48	48 44 42 	65 63 60 60 54 61	203 209 228 250 245	175 143 145 149 150	95 143 144 146 146	72 77 72 70 66 64	88 71 58 55 52 51	44 44 34 28 32
TOTAL MEAN MAX MIN AC-FT	5000 161 235 129 9920	3970 132 217 102 7870	2230 71.9 91 56 4420	1585 51.1 58 45 3140	1313 46.9 55 41 2600	68.8 97 44	2997 99•9 250 48 5940	6660 215 240 143 13210	3514 117 405 67 6970	2978 96.1 146 64 5910	1952 63.0 123 45 3870	1288 42.9 49 28 2550

CAL YR 1986 TOTAL 46656 MEAN 128 MAX 576 MIN 40 AC-FT 92540 WTR YR 1987 TOTAL 35620 MEAN 97.6 MAX 405 MIN 28 AC-FT 70650

SEP

3.1

3.1 2.6 2.6

09345200 LITTLE NAVAJO RIVER BELOW LITTLE OSO DIVERSION DAM, NEAR CHROMO, CO

LOCATION.--Lat 37°04'32", long 106°48'38", in SW4 sec.23, T.33 N., R.1 E., Archuleta County, Hydrologic Unit 14080101, on right bank at Little Oso Diversion Dam, 3.5 mi northeast of Chromo, and 4.0 mi upstream from confluence with Navajo River.

DRAINAGE AREA . -- 14.2 mi2.

PERIOD OF RECORD. -- June 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is 7,756.10 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation).

REMARKS.--Flows controlled by diversion dam upstream.

AVERAGE DISCHARGE. -- 16 years, 8.66 ft3/s; 6,270 acre-ft/yr.

COOPERATION. -- Records collected and computed by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 235 ft3/s, May 30, 1979; no flow Apr. 14, 1974.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, not determined; minimum daily, 2.1 ft3/s, Sept.21.

OCT DAY NOV DEC JAN FEB Ma R APR MA Y JUN JUL AHG 37 54 59 56 55 11 3.2 5.1 5.1 18 23 29 12 4.1 43 52 5.1 5.1 31 31 234 19 18 6.8 22 21 11 3.9 6.5 27 21 11 4.1 52 53 6.3 27 21 30 10 4.3 29 30 10

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

				- ·				-				
6 7 8 9 10	45 44 43 40 42	55 55 55 55 55	19 18 13 11 5.8	6.9 6.7 6.5 6.3	5.1 5.6 5.6 5.6	17 22 21 19 20	18 19 23 26 29	29 29 28 28 28	31 31 28 30 29	9.0 8.6 8.2 7.6 7.4	3.6 6.1 4.4 3.8 3.6	2.6 2.4 2.2 2.2 2.2
11 12 13 14 15	54 53 50 51 54	56 56 56 56	7.2 9.2 9.0 8.2 8.2	4.4 6.3 6.5 6.3 6.1	6.0 6.3 6.9 6.9	17 17 21 22 19	29 29 29 29 30	29 29 29 29 29	30 30 30 31 29	7.1 6.9 6.7 6.1	3.6 3.6 3.6 3.5	2.2 2.2 2.2 2.2 2.2
16 17 18 19 20	55 55 55 56 59	56 56 56 51	8.2 7.8 7.4 6.9 6.3	6.1 6.0 5.8 5.6	6.3 6.1 6.0 5.6 5.8	15 16 15 16 15	30 36 36 30 26	29 29 29 29 29	30 28 26 24 24	6.1 6.3 6.3 6.3	3.2 3.2 3.2 2.9 3.1	2.5 2.4 2.2 2.2 2.2
21 22 23 24 25	56 52 51 98 47	47 46 36 31 27	6.0 5.4 5.1 5.1 4.9	5.6 5.4 5.4 5.4 5.3	5.4 5.4 5.3 5.1 5.1	13 13 12 11	29 30 27 22 22	29 29 29 29 29	22 20 21 18 17	5.6 4.9 4.9 4.9	3.2 2.9 2.9 7.1 9.7	2.2 2.1 2.2 2.2 2.2
26 27 28 29 30 31	45 44 40 39 40	24 21 18 15 13	4.6 4.1 3.9 3.8 3.8	5.3 5.4 5.3 5.1 5.1	5.1 5.1 4.9 	11 10 9.7 9.4 9.0	22 22 22 22 22 	29 29 30 29 27 29	16 15 15 16 13	4.9 4.9 4.9 4.6 4.3	5.3 4.1 3.6 3.6 3.3	2.2 2.4 2.4 2.2
TOTAL MEAN MAX MIN AC-FT	1547 49.9 98 37 3070	1391 46.4 59 13 2760	273.4 8.82 19 3.5 542	180.4 5.82 6.9 3.2 358	157.1 5.61 6.9 4.9 312	426.5 13.8 22 5.1 846	773 25.8 36 18 1530	865 27.9 30 21 1720	755 25.2 31 13 1500	212.5 6.85 12 4.3 421	124.5 4.02 9.7 2.9 247	70.9 2.36 3.1 2.1 141

CAL YR 1986 TOTAL 7711.7 MEAN 21.1 MAX 165 MIN 2.8 AC-FT 15300 WTR YR 1987 TOTAL 6776.2 MEAN 18.6 MAX 98 MIN 2.1 AC-FT 13440

09346000 NAVAJO RIVER AT EDITH, CO

LOCATION.--Lat 37°00'10", long 106°54'25", in NW4NW4 sec.24, T.32 N., R.1 W., Archuleta County, Hydrologic Unit 14080101, on right bank 290 ft downstream from highway bridge, 0.2 mi southeast of Edith, 0.5 mi upstream from Colorado-New Mexico State line, and 1.3 mi upstream from Coyote Creek.

DRAINAGE AREA . -- 172 mi2.

PERIOD OF RECORD.--Streamflow records, September 1912 to current year. Monthly or yearly discharge only for some periods, published in WSP 1313. Water-quality data available, November 1970 to September 1974. Sediment data available April 1973 to September 1974.

REVISED RECORDS. -- WSP 1243: 1943, 1945. WSP 1633: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,033.00 ft above National Geodetic Vertical Datum of 1929 (levels by U. S. Bureau of Reclamation). Prior to Jan. 1, 1929, nonrecording gage at site 240 ft upstream, at different datum. June 2, 1935, to June 27, 1941, water-stage recorder at sites 200 and 240 ft upstream, at datum 2.0 ft, higher. June 28, 1941, to June 20, 1961, at site 50 ft downstream at present datum.

REMARKS.--Estimated daily discharges: Dec. 16 to Jan. 18, Jan. 23 to Feb. 8, and Feb. 21-27. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,700 acres upstream from station. Highwater diversions upstream from station into Heron Reservoir through Azotea tunnel began in March 1971. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--58 years (water years 1913-70), 155 ft³/s; 112,300 acre-ft/yr, prior to diversions through Azotea tunnel: 17 years (water years 1971-87), 86.3 ft³/s; 62,520 acre-ft/yr, subsequent to diversion through Azotea tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,840 ft³/s, Apr. 23, 1942, gage height, 6.55 ft, from rating curve extended above 1,100 ft³/s; minimum daily, 8.0 ft³/s, Sept. 25, 1953, Aug. 7, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of Oct. 5, 1911, exceeded all other observed floods at this location.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 544 ft³/s at 2200 June 7, gage height, 4.24 ft; minimum daily, 37 ft³/s, Sept. 29.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU	R OCTOBER ES	19 8 6 TO	SEPTEMBER	1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	165 183 201 192 189	267 339 289 253 214	115 113 115 113 112	55 55 55 56 60	55 55 55 55 55	58 63 68 79 107	152 174 193 201 160	324 312 304 296 300	165 101 102 93 89	156 156 156 159 156	62 60 66 62 65	57 58 55 51 46
6 7 8 9 10	183 180 183 174 177	201 195 171 145 150	115 115 108 107 85	60 60 60 55 55	55 60 60 66 66	140 182 195 177 180	165 162 162 165 174	296 292 288 288 288	95 137 308 369 304	141 101 105 98 97	58 81 81 68 68	45 47 47 47 47
11 12 13 14 15	247 255 218 217 244	144 144 141 141 141	74 81 81 79 79	55 55 55 55 55	73 75 93 100 77	152 147 165 177 159	177 216 172 156 174	280 270 269 269 273	175 116 113 115 115	97 97 91 79 79	72 70 75 67 60	47 47 47 49 50
16 17 18 19 20	245 235 234 234 287	135 132 135 281 203	75 75 75 70 70	50 50 50 55 58	75 72 67 66 60	135 126 132 144 132	189 201 198 186 168	273 270 273 273 270	170 106 110 112 108	77 101 133 101 87	57 49 48 42	49 48 47 46 46
21 22 23 24 25	260 221 204 195 186	183 177 171 150 150	70 65 65 65	62 51 50 50 50	55 55 50 55 55	118 120 115 115 117	144 156 197 247 283	256 225 231 234 234	103 102 91 85 81	87 87 85 79 75	44 46 49 81 136	45 44 44 42 44
26 27 28 29 30 31	180 174 171 171 165 168	153 135 141 141 135	60 60 55 55	50 50 50 50 50 50	50 50 57 	117 110 105 103 102 115	284 284 296 323 308	221 175 180 186 183 183	95 152 156 156 156	77 85 79 77 68 68	96 77 63 61 60 58	46 46 43 37 42
TOTAL MEAN MAX MIN AC-FT	6338 204 287 165 12570	5357 179 339 132 10630	2532 81.7 115 55 5020	1671 53.9 62 50 3310	1767 63.1 100 50 3500	3955 128 195 58 7840	6067 202 323 144 12030	8016 259 324 175 15900	4180 139 369 81 8290	3134 101 159 68 6220	2031 65.5 136 42 4030	1409 47.0 58 37 2790

CAL YR 1986 TOTAL 61347 MEAN 168 MAX 644 MIN 42 AC-FT 121700 WTR YR 1987 TOTAL 46457 MEAN 127 MAX 369 MIN 37 AC-FT 92150

341

09346400 SAN JUAN RIVER NEAR CARRACAS, CO

LOCATION.--Lat 37°00'49", long 107°18'42", in SE4SW4 sec.17, T.32 N., R.4 W., Archuleta County, Hydrologic Unit 14080101, on right bank just upstream from flow line of Navajo Reservoir, 3 mi northwest of Carracas, 7.2 mi upstream from Piedra River, and at mile 332.8.

DRAINAGE AREA.--1,230 mi², approximately.

PERIOD OF RECORD.--Streamflow records, October 1961 to current year. Water-quality data available, July 1969 to August 1973. Sediment data available, August 1973.

GAGE.--Water-stage recorder and crest stage gage. Elevation of gage is 6,090 ft above National Geodetic Vertical Datum of 1929, from river-profile map.

REMARKS.--Estimated daily discharges: Dec. 3-8, and Dec. 12 to Feb. 14. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 11,000 acres upstream from station. Highwater diversions upstream from station into Rio Grande basin through Azotea tunnel (station 08284160) began in March 1971. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--9 years (water years 1962-70), 632 ft³/s; 457,900 acre-ft/yr, prior to completion of Azotea tunnel: 17 years (water years 1971-87), 670 ft³/s; 485,400 acre-ft/yr, since completion of Azotea tunnel.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,730 ft³/s, Sept. 6, 1970, gage height, 8.34 ft, from rating curve extended above 6,000 ft³/s, on basis of slope-area measurement of peak flow; minimum daily, about 5 ft³/s, Dec. 10, 1961, result of freezeup.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Major floods occurred Sept. 5 or 6, 1909; Oct. 5, 1911; June 29, 1927.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,500 ft3/s, and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 2	0400	*5,650	6.49	May 2	0500	3,060	5.31
Nov. 19	1500	2,640	4.88	May 17	1100	4,370	6.12
Jan. 15	2400	ice jam	*9.29	June 8	0700	4,490	6.07

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 130 ft³/s, Sept. 30.

		DIO ONANGE	, 00010	, 1001 101	BECOMB,	MEAN VALU		1905 10	OUI ILIIDLI	1 1901		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	AP R	MA Y	JUN	JUL	AUG	SEP
1	722	1300	554	300	300	260	718	2920	1260	1250	279	257
2	780	3390	524	320	300	287	800	2890	1430	1200	264	246
3	815	1930	520	320	300	324	942	2440	1750	1120	307	238
4	874	1610	520	310	300	455	1160	1790	2150	1030	324	221
5	853	1290	510	320	300	545	862	1660	2400	962	292	211
6	875	1140	520	320	290	670	920	1540	2540	918	254	211
7	860	1160	500	320	300	806	968	1540	2670	791	271	207
8	889	1010	500	310	300	9 26	973	1610	3580	729	430	211
9	853	772	501	290	310	902	1170	1750	3520	699	323	211
10	864	754	424	290	310	983	1290	1700	3290	657	284	211
11	1130	731	384	290	310	969	1370	1840	2700	629	283	203
12	1490	727	400	300	310	881	1540	2280	2400	565	264	189
13	1120	715	400	320	320	959	1560	2520	2330	527	271	185
14	996	695	390	300	420	1070	1240	2900	2400	491	279	187
15	1040	676	400	300	651	948	1310	3360	2570	441	257	198
16	1050	663	400	290	482	729	1600	3520	2930	423	235	189
17	986	641	390	280	428	621	1760	3710	2660	494	215	178
18	985	607	390	280	375	656	2040	3360	2240	806	211	170
19	985	1620	380	290	347	723	1990	2880	2010	518	201	165
20	1240	1070	370	290	313	721	2110	2300	1820	437	189	158
21	1280	842	360	280	304	597	1700	1990	1740	398	179	151
22	1080	789	350	280	284	690	1630	1790	1680	454	191	148
23	960	778	340	290	2 7 9	608	1890	1590	1670	413	230	146
24	877	678	350	290	289	619	2340	1540	1570	366	438	143
25	831	663	350	290	295	668	2550	1420	1590	356	760	139
26 27 28 29 30 31	796 774 748 731 708 702	701 645 607 643 641	320 310 320 310 300 300	280 280 280 280 290 290	283 279 250 	641 638 571 556 524 599	2730 2800 2830 2810 2750	1330 1220 1190 1130 1090	1560 1580 1480 1390 1320	338 385 370 365 326 296	604 431 366 330 302 276	150 151 147 140 130
TOTAL MEAN MAX MIN AC-FT	28894 932 1490 702 57310	983 3390 607	12587 406 554 300 24970	9170 296 320 280 18190	9229 330 651 250 18310	21146 682 1070 260 41940	50353 1678 2830 718 99880	63890 2061 3710 1090 126700	64230 2141 3580 1260 127400	18754 605 1250 296 37200	9540 308 760 179 18920	5491 183 257 130 10890

CAL YR 1986 TOTAL 416305 MEAN 1141 MAX 5010 MIN 210 AC-FT 825700 WTR YR 1987 TOTAL 322772 MEAN 884 MAX 3710 MIN 130 AC-FT 640200

09349800 PIEDRA RIVER NEAR ARBOLES. CO

LOCATION.--Lat 37°05'18", long 107°23'50", in NE4SW4 sec.21, T.33 N., R.5 W., Archuleta County, Hydrologic Unit 14080102, on left bank 3 mi downstream from Ignacio Creek, 4.6 mi northeast of Arboles Post Office, and 2.5 mi upstream from Navajo Reservoir.

DRAINAGE AREA . - - 629 mi2.

PERIOD OF RECORD.--Streamflow records, August 1962 to current year. Gage operated 1895-99 and 1910-27 at site 7.5 mi downstream at altitude 6,000 ft. Low-flow records probably not equivalent. Water-quality data available, November to August 1973.

GAGE.--Water-stage recorder. Elevation of gage is 6,147.52 ft above National Geodetic Vertical Datum of 1929, Colorado State Highway Department benchmark.

REMARKS.--Estimated daily discharges: Oct. 17 to Dec. 8, Dec. 11, 12, Jan. 11, 12, 16, 17, 19-27, Feb. 28, July 21-27. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,800 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 25 years, 419 ft3/s; 303,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,370 ft³/s, Sept. 6, 1970, gage height, 6.38 ft, recorded, 7.55 ft, from floodmarks, from rating curve extended above 4,400 ft³/s, on basis of slope-area measurement of peak flow; minimum discharge, 11 ft³/s, Dec. 9, 1963, Oct. 1, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Major floods occurred Sept. 5 or 6, 1909, and Oct. 5, 1911.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr 18 May 15	0300 0600	*3,140 2,780	*4.41 4.10	June 9	0600	2,460	3.87

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 93 ft3/s, Sept. 30.

		DISCHARGE,	IN CODI	O FEET	IEN DECONI	MEAN VALU		1900	IO DEL LEME	1501		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	368	790	360	160	148	202	529	2830	1120	925	192	202
2	365	900	340	174	151	226	565	2670	1410	916	219	188
3	438	800	340	171	160	253	642	2200	1630	877	202	181
4	437	740	340	167	163	319	753	1850	1810	819	223	174
5	432	650	340	174	174	393	659	1860	1890	749	185	171
6	415	600	340	174	171	468	688	1840	2030	707	167	170
7	405	560	340	164	167	582	754	1860	2160	665	181	160
8	385	500	330	167	184	697	837	2060	2270	609	252	160
9	380	460	345	157	198	675	1030	2070	2390	579	207	163
10	365	460	268	131	198	699	1230	1930	2300	549	182	151
11	562	440	220	130	222	706	1480	1890	2110	519	164	136
12	867	420	230	140	269	672	1690	2460	2020	483	154	128
13	637	420	262	160	319	726	1500	2380	2020	443	163	123
14	585	400	250	157	479	816	1340	2360	2080	411	160	120
15	643	400	246	160	372	797	1630	2660	2090	381	145	125
16	657	380	250	120	360	704	2090	2520	2130	356	136	123
17	630	360	246	140	294	610	2460	2490	1990	389	123	118
18	610	460	266	160	267	608	2720	2340	1760	486	113	113
19	640	640	262	140	252	614	2720	2100	1660	363	105	108
20	800	600	246	150	242	602	2630	1860	1550	326	99	103
21	850	550	223	150	227	537	2130	1720	1480	270	95	101
22	750	530	209	140	216	559	2130	1570	1410	310	99	99
23	650	490	197	150	223	510	2380	1470	1380	280	150	97
24	600	450	216	150	238	488	2530	1420	1360	250	474	97
25	560	450	226	150	234	482	2530	1260	1330	250	711	97
26 27 28 29 30 31	550 530 520 500 500 500	440 390 420 420 400	209 178 181 174 166 160	150 150 157 157 151 148	223 226 170 	470 443 421 415 393 458	2680 2790 2710 2760 2550	1200 1090 1030 965 933 940	1310 1240 1120 1090 998	240 260 262 235 227 209	540 388 321 289 251 220	99 99 95 93
TOTAL	17131	15520	7960	4749	6547	16545	53137	57828	51138	14345	6910	3893
MEAN	553	517	257	153	234	534	1771	1865	1705	463	223	130
MAX	867	900	360	174	479	816	2790	2830	2390	925	711	202
MIN	365	360	160	120	148	202	529	933	998	209	95	93
AC-FT	33980	30780	15790	9420	12990	32820	105400	114700	101400	28450	13710	7720

CAL YR 1986 TOTAL 252667 MEAN 692 MAX 3240 MIN 125 AC-FT 501200 WTR YR 1987 TOTAL 255703 MEAN 701 MAX 2830 MIN 93 AC-FT 507200

09352900 VALLECITO CREEK NEAR BAYFIELD, CO (Hydrologic bench-mark station)

LOCATION.--Lat 37°28'39", long 107°32'35", in NE4NW4 sec.16, T.37 N., R.6 W., La Plata County, Hydrologic Unit 14080101, on right bank 60 ft upstream from Fall Creek, 0.8 mi downstream from Bear Creek, 6.7 mi north of Vallecito Dam, and 18 mi north of Bayfield.

DRAINAGE AREA. -- 72.1 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1962 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 7,906.80 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Dec. 3, 4, 8, 11-17, Dec. 27 to Jan. 6, Jan. 8-21, 25, 28, Feb. 6-8, 11, 13-26, Feb. 28 to Mar. 7, Mar. 17-19, 21, 23, 24, and Mar. 29-31. Records good except for estimated daily discharges, which are poor. No diversion upstream from station.

AVERAGE DISCHARGE.--25 years, 150 ft³/s; 108,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,050 ft³/s, Sept. 6, 1970, gage height, 5.51 ft, from water-stage recorder, 6.76 ft, from floodmarks, from rating curve extended above 1,400 ft³/s, on basis of slope-area measurement of peak flow; minimum daily, 6.7 ft³/s, Dec. 28, 1976.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Major floods occurred in October 1911 and June 1927.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 16	0500	*1,160	*3.01	No oth	er peak grea	ter than base di	scharge.

Minimum daily, 13 ft3/s, Feb. 27.

		DISCHARGE,	IN CUBI	C FEET F	er seconi	D, WATER MEAN VAL		BER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	МА У	JUN	JUL	AUG	SEP
1 2 3 4 5	164 160 168 160 164	120 133 130 130 127	76 76 60 69	26 30 28 30 32	24 23 22 23 23	20 22 22 26 32	43 44 51 57 54	438 411 310 266 296	371 587 700 750 800	536 520 520 474 432	224 228 208 196 184	96 96 94 88 82
6 7 8 9	172 168 176 176 176	125 120 112 110 109	71 68 55 61 51	32 33 30 28 28	22 22 22 24 24	40 50 63 58 54	53 53 54 63 74	337 391 471 488 446	864 864 825 914 898	417 393 351 368 386	180 235 226 193 168	79 74 74 69 66
11 12 13 14 15	180 176 160 168 176	109 102 100 98 98	38 40 42 42 42	26 30 30 28 24	24 25 24 24 22	53 52 52 53 53	86 84 79 79 100	459 589 5 7 6 693 782	841 863 944 943 952	368 339 314 314 296	157 160 154 140 127	61 58 56 56 54
16 17 18 19 20	180 180 180 180 176	98 96 94 100 98	44 44 49 48 45	22 26 26 24 26	22 22 20 20 20	52 44 44 44 49	133 179 211 212 196	682 696 657 5 7 0 458	1030 836 816 761 791	266 354 315 271 255	117 112 107 102 98	50 48 45 43
21 22 23 24 25	160 154 150 144 137	100 100 94 90 90	44 44 39 43 42	26 26 24 24 24	20 20 20 18 14	42 50 42 38 44	180 196 249 313 337	418 369 339 314 286	706 727 728 755 736	265 295 290 268 265	100 107 183 627 377	38 36 35 36 36
26 27 28 29 30 31	137 130 127 125 122 122	90 86 88 84 80	38 30 30 30 28 28	24 24 22 24 24 24	14 13 16 	43 43 42 36 32 36	344 397 380 403 451	275 251 232 224 216 236	712 626 553 591 537	270 290 266 237 220 220	262 186 151 127 117 105	37 41 37 35 33
TOTAL MEAN MAX MIN AC-FT	4948 160 180 122 9810	3111 104 133 80 6170	1477 47.6 76 28 2930	825 26.6 33 22 1640	587 21.0 25 13 1160	1331 42.9 63 20 2640	5155 172 451 43 10220	13176 425 782 216 26130	23021 767 1030 371 45660	10375 335 536 220 20580	5658 183 627 98 11220	1693 56.4 96 33 3360

CAL YR 1986 TOTAL 74910 MEAN 205 MAX 999 MIN 28 AC-FT 148600 WTR YR 1987 TOTAL 71357 MEAN 195 MAX 1030 MIN 13 AC-FT 141500

09352900 VALLECITO CREEK NEAR BAYFIELD, CO--Continued (Hydrologic Bench-Mark Station)

WATER-QUALITY RECORDS

PERIOD.OF RECORD. -- Chemical analyses: October 1963 to September 1968; October 1969 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: November 1962 to September 1982.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: (Water years 1963-82) Maximum, 20.0°C July 10, 1974; minimum, 0.0°C on many days during winter months each year

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		•		,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J 0010	<i>D D</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	S		COLI- FORM, FECAL, 0.7 UM-MF COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE - SIUM, DIS - SOLVED (MG/L AS MG)
OCT 21	1045	158	66	6.9	3.0	0.8	0	10.6	K 1	K13	33	10	2.0
FEB 02 JUN	1100	24	146	7.6	0.0	0.1	0	11.0	KO	ко	43	13	2.5
03 AUG	1200	654	79	7.2	3.5	1.8		10.2	KO	K12	26	7.8	1.6
31	1000	108	54	6.5	6.5	0.3	0	9.1	КО	к6	24	7.1	1.5
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE WATER WHOLE IT-FLD (MG/L)	CAR- BONATE WATER WHOLE IT-FLD (MG/L)	ALKA- LINITY CARBON ATE IN-FLD (MG/L CACO3)	SUI DI S(FATE IS- DLVED 4G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 21	0.90	0.1	0.70	34	0	2	8	6.8	0.50	0.20	4.0	54	42
FEB 02	1.3	0.1	0.70	52	0	4	3	8.8	0.40	0.20	4.4	52	58
JUN 03 AUG	0.50	0.0	0.40	26	0	2	1	7.9	0.10	0.30	2.9	33	35
31	0.80	0.1	0.60	12	0	1	0	6.6	0.10	0.20	3.2	25	26
DAT	SOLI DI SOL (TO E PE AC-	S- DI VED SOL NS (TO R PE	DS, GES- NITE VED DO NS SOI	EN, GE RITE NO2+ IS- DI LVED SOL G/L (MO	-NÓ3 GI IS- AMMO JVED TO' J/L (MO	FRO- EN, AM ONIA FAL S G/L (ITRO- GEN, MONIA DIS- OLVED MG/L S N)	NITRO GEN, ORGANI TOTAL (MG/L AS N)	GEN, MONI C ORGA TOT	A + PHO NIC PHOF AL TOT	ROUS DI CAL SOL S/L (MC	OUS ORT S- DIS VED SOLV	OUS HO, ED L
OCT 21 FEB	0	.07 23	.0 <0	.01 <0.	. 10 <0	.01 <	0.01		· - 0	.40 0.	02 0.	01 <0.	01
02 JUN	0			.01 0.	. 15 0	.03	0.02	0.9	7 1	.0 0.	.01 0.	03 <0.	01
03 AUG	0	.05 58	.3 <0	.01 0.	. 15 0		0.01	0.3	39 0	.40 0.	.01 0.	03 <0.	01
31	0	.03 7	.29 <0	.01 <0.	. 10 0	.02	0.03	0.4	18 0	.50 <0.	01 <0.	01 <0.	01

K Based on non-ideal colony count

345

09352900 VALLECITO CREEK NEAR BAYFIELD, CO--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT		1045	50	<1	17	<0.5	<1	<1	<3	2	22	< 5
FEB		1100	20	<1	20	0.9	<1	<1	\ 3	2	4	< 5
JUN		1100	20	•	20	-	`1	-1	_	2		_
03 AUG	• • •	1200	80	<1	16	<0.5	1	1	< 3	1	< 3	< 5
	• • •	1000	40	1	15	<0.5	<1	10	< 3	10	24	< 5
	DATE	D: SO: (U)	HIUM NE IS- I LVED SO G/L (U	DIS- D DLVED SO IG/L (U	CURY DE IS- D LVED SO G/L (U	IS- DI LVED SC G/L (U	KEL, NI S- D LVED SO G/L (U	IS- D LVED SC G/L (U	VER, I DIS- I DLVED SO IG/L (U	TIUM, DI DIS- D DLVED SO UG/L (U	IS- D LVED SOI G/L (U	NC, IS- LVED G/L ZN)
	OCT 21 FEB		4	4	<0.1	<10	3	<1	<1.0	24	< 6	13
	02 JUN		5	<1	<0.1	<10	<1	<1	2.0	34	< 6	5
	03 AUG		<4	13	<0.1	<10	1	<1	<1.0	20	< 6	14
	31		<4	3		<10	1	<1	<1.0	21	< 6	7
			RADIOC	IEMICAL AN	ALYSES, W	ATER YEAR	OCTOBER	1986 TO S	EPTEMBER	1987		
	:	DATE	TIME	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)	
	JUN		1100 1200	0.7	<0.4 <0.4	0.9	<0.4 <0.4	0.8	<0.4 <0.4	0.05	0.42	
			•	271			0.71	3.0	3.1	3.3 2	3.20	

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI - MENT, SUS - PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 21	1045	158	8	3.4	44
FEB 02	1100	24	2	0.13	68
JUN 03 AUG	1200	654	356	629	1
31	1000	108	5	1.5	43

09353000 VALLECITO RESERVOIR NEAR BAYFIELD, CO

LOCATION.--Lat 37°23'00", long 107°34'30", in SW4SW4 sec.18, T.36 N., R.6 W., La Plata County, Hydrologic Unit 14080101, in gatehouse above outlet gates at Vallecito Dam on Los Pinos (Pine) River, 300 ft left of spillway, 0.4 mi upstream from Jack Creek, and 11 mi northeast of Bayfield.

PERIOD OF RECORD. -- April 1941 to current year.

REVISED RECORDS. -- WSP 959: 1941. WSP 1513: 1956.

GAGE.--Water-stage recorder. Elevation of gage is 7,580 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum.

REMARKS.--Reservoir is formed by earth and rockfill dam; dam completed in March 1941. Capacity of reservoir, 126,300 acre-ft between elevations 7,580 ft, sill of outlet gate, and 7,665 ft, top of spillway gates. Dead storage, 3,395 acre-ft. Figures given are usable contents. Reservoir is used to store water for irrigation in Los Pinos (Pine) River basin.

COOPERATION. -- Records provided by Pine River Irrigation District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 128,200 acre-ft, July 27, 1957, elevation, 7,665.72 ft; minimum, 1,520 acre-ft, Oct. 24, 25, 1944, elevation, 7,584.10 ft. No usable storage prior to April 1941.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 122,330 acre-ft, June 17, elevation, 7,663.78 ft; minimum, 52,270 acre-ft, Dec. 23, elevation, 7,633.98 ft.

MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0900, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Elevation	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30.	7,644.97 7,640.00 7,634.78 7,634.19	75,390 64,460 53,820 52,680	-17,270 -10,930 -10,640 -1,140
CAL YR 1986	-	-	-1,370
Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30.	7,635.18 7,636.75 7,638.51 7,643.51 7,650.75 7,663.08 7,660.81 7,653.10 7,644.05	54,600 57,720 61,330 72,110 88,960 120,440 114,410 94,710 73,320	+1,920 +3,120 +3,610 +10,780 +16,850 +31,480 -6,030 -19,700 -21,390
WTR YR 1987	-	-	-19,340

09354500 LOS PINOS RIVER AT LA BOCA, CO

LOCATION.--Lat 37°00'34", long 107°35'56", in NE4NW4 sec.22, T.32 N., R.7 W., La Plata County, Hydrologic Unit 14080101, on downstream end of right abutment of the Denver & Rio Grande Western Railroad Co. bridge, at southeast edge of La Boca, 0.1 mi upstream from Spring Creek, and 2 mi upstream from maximum elevation of Navajo Reservoir.

DRAINAGE AREA. -- 510 mi², approximately.

PERIOD OF RECORD.--Streamflow records, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1733. Water-quality data available, July 1969 to August 1973.

GAGE.--Water-stage recorder. Datum of gage is 6,143.59 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 1-6, Nov. 3, Dec. 1-3, Dec. 18 to Jan. 4, Jan. 10, 16, 17, and Jan. 19 to Feb. 1. Records good except for estimated daily discharges, which are poor. Flow regulated by Vallecito Reservoir (station 09353000) 24 mi upstream since April 1941. Diversions for irrigation of about 33,000 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 37 years, 242 ft3/s; 175,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,400 ft³/s, July 27, 1957, gage height, 8.95 ft, from rating curve extended above 5,100 ft³/s; minimum daily, 6.1 ft³/s, May 1, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD .-- A flood on Oct. 5, 1911 has not yet been exceeded.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,520 ft^3/s at 0400 Nov. 2, gage height, 6.90 ft; minimum daily, 89 ft^3/s , Jan. 14.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEA MEAN VALU		1986 TO	SEPTEMBER	1987		
DA Y	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	640	1240	420	140	120	103	267	1620	231	925	268	336
2	640	1730	370	150	122	110	308	1580	207	904	255	309
3	640	1200	320	140	121	112	379	1480	180	867	259	287
4	600	904	331	150	122	144	455	1380	164	866	248	283
5	590	846	329	150	118	225	386	1310	182	880	231	271
6	570	783	357	150	122	368	395	1310	185	818	213	255
7	550	845	399	150	140	558	376	1260	199	567	274	241
8	550	787	395	152	169	644	434	1220	289	380	275	207
9	544	734	376	145	212	570	518	1180	591	350	252	171
10	573	719	319	130	223	544	626	1120	911	277	241	158
11	730	712	317	137	329	470	690	1070	1570	197	220	176
12	1170	712	317	140	433	378	787	1050	1630	176	206	173
13	825	698	313	98	207	4 19	714	1010	1730	192	233	161
14	728	691	306	89	649	456	665	898	1790	185	220	164
15	692	684	264	93	301	406	718	757	1800	179	217	161
16	665	684	241	90	215	363	815	816	1810	192	203	153
17	664	680	241	110	196	349	1020	762	1840	302	196	148
18	670	483	240	147	165	331	1230	727	1830	291	199	150
19	664	607	230	140	150	335	1180	705	1830	264	192	150
20	690	610	210	120	138	313	1180	719	1810	245	233	152
21	684	534	200	120	120	309	1030	712	1800	244	244	150
22	670	508	190	130	115	357	1020	726	1740	307	244	150
23	677	508	180	140	122	332	1040	747	1500	256	356	152
24	691	480	190	140	125	375	1060	795	1310	245	575	161
25	684	468	200	140	123	332	1060	762	1300	248	609	170
26 27 28 29 30 31	684 677 664 664 670	487 496 479 479 479	180 160 160 160 150	130 120 120 120 120 120	126 120 99 	280 271 252 248 231 244	1050 1020 953 1120 1560	754 684 351 288 249 248	1300 1280 1270 1280 1150	248 329 257 252 263 316	471 401 390 381 376 367	185 185 182 173 179
TOTAL	20824	21267	8215	4021	5202	10429	24056	28290	34709	12022	9049	5793
MEAN	672	709	265	130	186	336	802	913	1157	388	292	193
MAX	1170	1730	420	152	649	644	1560	1620	1840	925	609	336
MIN	544	468	150	89	99	103	267	248	164	176	192	148
AC-FT	41300	42180	16290	7980	10320	20690	47720	56110	68850	23850	17950	11490

CAL YR 1986 TOTAL 183826 MEAN 504 MAX 1730 MIN 48 AC-FT 364600 WTR YR 1987 TOTAL 183877 MEAN 504 MAX 1840 MIN 89 AC-FT 364700

09355000 SPRING CREEK AT LA BOCA. CO

LOCATION.--Lat 37°00'40", long 107°35'47", in SEtSWt sec.15, T.32 N., R.7 W., La Plata County, Hydrologic Unit 14080101, on right bank in an excavated channel, 0.2 mi upstream from mouth, and 0.2 mi east of La Boca.

DRAINAGE AREA. -- 58 mi², approximately.

PERIOD OF RECORD.--Streamflow records, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1733. Water-quality data available, May 1974.

GAGE.--Water-stage recorder. Elevation of gage is 6,160 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 30, Dec. 1-5, Dec. 10 to Jan. 14, and Jan. 16 to Mar. 4. Records good except those for flows above 200 ft³/s, which are fair, and those for estimated daily discharges, which are poor. Part of flow is return waste from irrigation. Nearly all irrigation in this basin is water diverted from Los Pinos River which causes a considerable change in the annual pattern and natural flow. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 37 years, 32.0 ft3/s; 23,180 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,980 ft³/s, Sept. 6, 1970, gage height, 4.62 ft, from rating curve extended above 160 ft³/s, on basis of field estimate of peak flow; maximum gage height, 5.98 ft, Mar. 9, 1960 (backwater from ice); minimum daily discharge, 0.6 ft³/s, Nov. 27, 1959.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 730 ft³/s at 0300 Nov. 2, gage height, 2.81 ft; minimum daily, 4.0 ft³/s, Jan. 16.

		DISCHARGE.	IN CUBIC	FEET PE	R SECOND.	, WATER YEAR	OCTOBER	1986 TO	SEPTEMBER	1987		
		- ,				MEAN VALUES	•	,,				
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	39 36 36 34 32	119 284 33 30 24	6.0 6.0 6.0 6.0 5.5	5.0 5.5 5.5 5.5	4.8 5.0 5.5 5.5	6.5 9.0 14 28 111	22 22 25 31 27	37 20 18 35 38	78 64 59 54 60	79 84 79 76 75	102 100 100 100 112	84 76 78 82 80
6 7 8 9 10	33 32 32 32 34	14 46 20 13 11	24 61 35 14 9.0	5.5 5.5 5.0 4.8 4.2	5.5 5.0 6.5 6.5	172 154 138 143 101	24 24 26 37 40	36 39 30 36 48	69 77 88 108 84	84 83 82 81 84	104 133 112 108 110	78 76 67 66 61
11 12 13 14 15	70 326 85 37 25	10 9.3 9.2 8.5 8.5	7.5 7.5 8.0 8.0	4.4 4.6 4.8 5.0 5.3	7.5 8.5 12 15	73 51 44 48 38	43 61 36 23 29	60 60 60 47 50	74 69 71 73 80	82 72 74 71 76	108 100 110 100 96	64 72 71 72 69
16 17 18 19 20	21 18 13 9.3 16	7.6 7.4 7.8 74 18	8.0 8.0 8.5 8.5	4.0 4.6 5.0 4.6 5.0	11 9.5 8.5 8.0 7.5	40 42 40 33 33	43 53 55 45 42	65 65 65 64 74	76 72 72 72 74	79 120 85 71 76	90 88 90 88 86	66 62 60 62 64
21 22 23 24 25	13 11 14 13 9.3	11 16 13 8.6 7.8	7.0 6.5 6.5 7.0 7.0	5.0 4.6 5.0 5.0	7.0 7.0 7.5 7.5 7.0	30 29 38 50 29	21 16 15 15 14	67 67 72 95 86	81 80 72 74 74	96 152 90 80 92	86 88 140 182 161	64 62 62 69 72
26 27 28 29 30 31	9.2 9.2 7.8 7.8 7.4 7.4	16 18 13 16 7.0	6.5 6.0 5.5 5.5 5.0	5.0 5.0 5.0 5.0 4.8 4.6	7.0 7.0 5.5 	26 26 26 26 24 22	13 11 46 13 13	78 72 66 65 69 79	83 86 91 98 88	90 131 112 106 112 118	111 96 96 94 90 88	78 78 78 67 66
TOTAL MEAN MAX MIN AC-FT	1069.4 34.5 326 7.4 2120	880.7 29.4 284 7.0 1750	320.0 10.3 61 5.0 635	153.3 4.95 5.5 4.0 304	210.8 7.53 15 4.8 418	172 6.5	885 29.5 61 11 1760	1763 56.9 95 18 3500	2301 76.7 108 54 4560	2792 90.1 152 71 5540	3269 105 1 82 86 6480	2106 70.2 84 60 4180

CAL YR 1986 TOTAL 14749.5 MEAN 40.4 MAX 326 MIN 4.2 AC-FT 29260 WTR YR 1987 TOTAL 17394.7 MEAN 47.7 MAX 326 MIN 4.0 AC-FT 34500

09361500 ANIMAS RIVER AT DURANGO, CO

LOCATION.--Lat 37°16'45", long 107°52'47", in SW4SW4 sec.20, T.35 N., R.9 W., La Plata County, Hydrologic Unit 14080104, on left bank at abandoned power plant at Durango, 0.8 mi upstream from Lightner Creek.

DRAINAGE AREA . -- 692 mi2.

PERIOD OF RECORD.--June to December 1895, April 1896 to December 1898, April 1899 to December 1900, March to May 1901, April to November 1902, March to April 1903 (gage heights only, erroneously stated as discredited in WSP 1563), May to October 1903, July 1904 to December 1905, January to December 1910 (gage heights only), January to September 1911, January 1912 to current year. Monthly or yearly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 764: Drainage area. WSP 929: 1927(M). WSP 1243: 1911, 1918(M). WSP 1563: 1911-25 (monthly figures only).

GAGE.--Water-stage recorder. Datum of gage is 6,501.57 ft above National Geodetic Vertical Datum of 1929. See WSP 1713 or 1733 for history of changes prior to Mar. 2, 1921.

REMARKS.--Estimated daily discharges: Dec. 11, Jan. 9-11, 16, 17, 22. Records good. Diversions for irrigation of about 4,000 acres upstream from station. Natural regulation by many lakes and regulation for power upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE.--82 years (water years 1897-1900, 1905, 1911-87), 852 ft3/s; 617,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,000 ft³/s, Oct. 5, 1911, gage height, 11 ft, present site and datum, from rating curve extended above 13,000 ft³/s; minimum daily, 94 ft³/s, Mar. 2, 1913.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1885, that of Oct. 5, 1911.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,000 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0900	5,140	6.08	June 7	1100	*5,530	*6.27

Minimum daily discharge, 244 ft³/s, Feb. 28.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND	, WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	1020 1020 1010 941 930	748 745 750 770 741	539 522 514 522 498	290 310 305 295 315	270 270 275 275 275	279 275 280 295 315	415 442 489 584 594	3460 3570 2810 2230 2170	1790 2510 3240 3890 3920	2490 2430 2350 2280 2070	940 979 882 797 780	555 530 514 498 490
6 7 8 9	930 915 900 871 880	740 740 692 612 610	514 506 482 474 409	310 305 310 280 280	266 266 275 280 280	364 456 528 506 475	563 546 554 577 618	2260 2480 2960 3200 3270	4510 5220 4860 5020 5060	2000 1910 1730 1610 1650	731 799 1050 835 737	474 458 458 450 429
11 12 13 14 15	988 1050 942 911 959	602 636 646 637 619	380 401 401 394 394	280 295 310 290 290	278 275 275 295 290	462 458 458 497 506	698 778 741 711 798	3290 3760 3770 3980 4490	4670 4480 4730 4970 5150	1600 1510 1390 1360 1360	683 664 646 603 578	415 408 394 394 394
16 17 18 19 20	965 940 920 900 900	619 610 610 672 673	408 387 387 380 368	270 260 263 266 275	285 280 270 266 275	506 471 474 490 498	1110 1530 1860 1820 1740	4850 4980 4800 4150 3540	5120 4440 4100 3960 3740	1290 1320 1500 1220 1140	504 467 423 388 380	380 368 356 350 332
21 22 23 24 25	920 881 831 796 751	655 673 655 595 602	362 350 332 338 344	266 260 275 275 275	266 254 262 266 270	467 482 470 450 443	1530 1590 1930 2230 2430	3200 2860 2620 2570 2350	3470 3340 3450 3420 3530	1090 1150 1260 1200 1110	390 402 521 1080 1500	315 286 275 275 275
26 27 28 29 30 31	740 701 682 656 664 638	619 571 570 570 570	320 296 310 305 295 285	270 262 266 266 262 270	262 246 244 	443 443 436 429 402 408	2480 2930 3250 3300 3510	2150 1920 1740 1600 1490 1460	3420 3210 2800 2780 2660	1140 1250 1110 1020 937 930	1310 977 823 722 656 587	309 295 275 275 275
TOTAL MEAN MAX MIN AC-FT	27152 876 1050 638 53860	19552 652 770 570 38780	12417 401 539 285 24630	8746 282 315 260 17350	7591 271 295 244 15060	434 528 2 7 5	42348 1412 3510 415 84000	93980 3032 4980 1460 186400	117460 3915 5220 1790 233000	46407 1497 2490 930 92050	22834 737 1500 380 45290	11502 383 555 275 22810

CAL YR 1986 TOTAL 427480 MEAN 1171 MAX 5750 MIN 235 AC-FT 847900 WTR YR 1987 TOTAL 423455 MEAN 1160 MAX 5220 MIN 244 AC-FT 839900

LOCATION.--Lat 37°02,17", long 107°52,25", in sec.7, T.32 N., R.9 W., La Plata County, Colorado, Hydrologic Unit 14080104, on right bank 0.8 mi downstream from Florida River, 2.5 mi upstream from Colorado-New Mexico State line, 8.5 mi north of Cedar Hill, and at mile 32.9.

09363500 ANIMAS RIVER NEAR CEDAR HILL, NM

DRAINAGE AREA .-- 1,090 mi², approximately.

PERIOD OF RECORD.--October 1933 to current year. Monthly discharge only for October and November 1933, published in WSP 1313.

REVISED RECORDS. -- WSP 1563: 1940 and 1946 (monthly figures only).

GAGE.--Water-stage recorder. Elevation of gage is 5,960 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 14, 1937, at datum between 1.52 ft and 1.36 ft, higher. Sept. 15, 1937, to Sept. 30, 1946, at datum 1.36 ft, higher.

REMARKS.--Estimated daily discharges: Jan. 11, 17-26. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 20,000 acres upstream from station. During water years 1944-49, Twin Rocks Canal diverted upstream from station for irrigation downstream. Slight regulation by Lemon Dam about 30 mi upstream on Florida River since November 1963 (capacity, 40,100 acre-ft).

AVERAGE DISCHARGE. -- 54 years, 929 ft 3/s, 673,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,100 ft³/s, June 19, 1949, gage height, 11.45 ft; minimum, 63 ft³/s, Jan. 21, 1935.

EXTREMES OUTSIDE PERIOD OF RECORD .-- A major flood occurred in October 1911 at this location.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage Height (ft)
May 2 May 17	1145 1045	4,160 5.150	7.41	June 15	1630	* 5,580	*8.25

Minimum daily discharge, 320 ft³/s, Jan. 23.

		DIS	SCHARGE,	IN CUBIC	FEET PER	SECOND, MEAN VAL	WATER YEA	R OCTOBER	1986 TO	SEPTEMBER	1987	
DAY	ОСТ	NOV	DE C	JAN	FEB	MA F	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1370 1350 1340 1290 1230	1490 1700 1140 1180 1080	768 721 684 669 659	377 396 387 382 390	374 375 384 399 412	396 421 440 489 589	691 869 1030	3910 3990 3400 2850 2750	2060 2640 3250 3740 3890	2480 2390 2280	1040 1030 984 890 870	670 642 622 603 580
6 7 8 9 10	1220 1100 1070 1030 1070	1030 1060 962 878 830	696 726 686 659 598	393 378 387 359 350	411 426 459 496 490	729 907 1000 948 931	987 1050 1280	2800 2920 3120 3310 3370	4220 4780 4620 4740 5170	1930 1780 1660	849 864 1160 933 856	572 574 560 558 541
11 12 13 14 15	1460 1640 1280 1140 1140	836 846 861 850 844	555 560 568 553 548	370 390 390 367 358	545 612 648 866 620	871 771 752 783 756	1680 1580 1510	3330 3750 3790 3890 4280	4900 4680 4900 5270 5270	1530 1440 1370	797 754 733 691 651	517 513 502 497 503
16 17 18 19 20	1160 1120 1100 1090 1100	837 839 827 1100 977	569 557 550 539 525	367 350 350 360 380	514 505 461 443 438	737 677 678 708 711	2240 2570 2590	4700 4900 4760 4250 3680	4850 4440 4210 4210 4010	1350 1500 1250	586 512 471 428 411	496 477 460 437 421
21 22 23 24 25	1130 1120 1070 1030 990	922 928 916 850 828	510 508 481 457 456	350 330 320 340 370	418 397 397 406 426	665 704 686 708 669	2200 2480 2860	3310 3060 2820 2760 2610	3690 3400 3470 3560 3700	1250 1350 1340	422 448 563 1130 1560	409 389 344 348 357
26 27 28 29 30 31	963 933 915 881 881 869	860 837 790 794 794	435 389 402 403 380 381	350 340 337 346 329 341	407 392 365 	627 627 614 600 562 581	3390 3650 3730 3860	2440 2240 2080 1940 1850 1810	3610 3390 2910 2800 2760	1300 1240 1180 1050	1390 1100 932 846 786 726	386 398 366 354 366
TOTAL MEAN MAX MIN AC-FT	35082 1132 1640 869 69590	28686 956 1700 790 56900	17192 555 768 380 34100	11234 362 396 320 22280	13086 467 866 365 25960	21337 688 1000 396 42320	2014 3860 612	100670 3247 4900 1810 199700	119140 3971 5270 2060 236300	1559 2620 1030	25413 820 1560 411 50410	14462 482 670 344 28690
CAL YR WTR YR			14290 15051	MEAN MEAN	1354 1356	MA X MA X	5290 5270	MIN MIN	271 320	AC-FT 9		

AUG

SEP

09365500 LA PLATA RIVER AT HESPERUS, CO

LOCATION.--Lat 37°17'23", long 108°02'24", in NELSWL sec.14, T.35 N., R.11 W., La Plata County, Hydrologic Unit 14080105, on right bank at Hesperus 700 ft downstream from U.S. Highway 160.

DRAINAGE AREA. -- 37 mi², approximately.

PERIOD OF RECORD.--June to August 1904, May 1905 to September 1906, August to November 1910, June 1917 to current year. Monthly discharge only for some periods, published in WSP 1313. Records for Nov. 11 to Dec. 31, 1910, published in WSP 289, have been found to be unreliable and should not be used.

REVISED RECORDS. -- WSP 1243: 1906(M). WSP 1563: 1923 (monthly figures only). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 8,104.71 ft above National Geodetic Vertical Datum of 1929.
Prior to May 1, 1920, nonrecording gage, and May 1, 1920, to May 24, 1927, water-stage recorder, at several sites about 600 ft downstream at different datums. May 25, 1927, to Sept. 30, 1938, water-stage recorder at site 60 ft downstream and Oct. 1, 1938, to Sept. 30, 1941, at present site at datum 1.00 ft, higher.

REMARKS.--Estimated daily discharges: Nov. 9, Dec. 1-3, 10-15, Dec. 19 to Jan. 4, Jan. 6-27, Feb. 2, 5-8, 14, 15, Feb. 18 to Mar. 7, Mar. 16-18, 20-21, 23-26, abd Mar. 30-31. Records good except for estimated daily discharges, which are fair. Cherry Creek ditch exports water upstream from station for irrigation of about 2,000 acres in Cherry Creek drainage.

COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.

AVERAGE DISCHARGE.--71 years (water years 1906, 1918-87), 45.5 ft3/s; 32,960 acre-ft/yr.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum flood observed occurred Oct. 5, 1911.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 230 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
May 17	0530	438	3.38	June 7	0200	*506	*3.58

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 5.5 ft3/s, Sept. 25.

D.

		MEAN VALUES										
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL		
1	37	48	31	13	10	12	23	254	117	90		

1 2 3 4 5	37 46 46 43 44	40 44 48	31 31 29 28 29	13 13 12 13 13	10 10 10 10 10	12 13 14 14 14	23 24 24 28 27	254 258 180 148 145	117 205 268 305 340	90 68 58 54 47	16 17 15 16 14	20 18 19 18 18
6 7 8 9	51 51 48 47 50	40 36 30 24 23	31 30 28 26 16	12 10 9.0 8.0 9.0	10 10 10 10	15 16 17 20 21	26 27 30 35 46	145 158 209 209 188	360 408 340 330 325	43 38 31 28 26	14 27 30 25 21	17 16 14 14 13
11 12 13 14 15	60 56 48 50 56	23 24 31 33 35	17 18 18 19	10 11 11 10 10	11 12 12 12 12	22 22 24 24 26	56 63 56 65 84	184 225 229 233 295	290 310 263 225 250	24 22 22 25 23	19 16 14 14	12 12 12 11 8.6
16 17 18 19 20	61 64 66 68 63	36 35 38 50 44	19 19 19 18 18	9.0 8.0 7.0 7.0 8.0	13 13 12 12 13	26 26 27 27 26	139 225 250 225 225	335 385 350 286 209	250 188 174 167 154	23 35 28 21 23	14 14 12 12 13	6.2 6.9 7.8 7.3
21 22 23 24 25	58 53 47 44 42	44 44 43 38 38	18 17 16 16	7.0 6.0 7.0 8.0 8.0	11 11 12 13 13	26 26 25 25 25	177 205 263 276 272	177 142 136 134 120	136 131 126 128 128	21 27 24 21 25	15 14 18 55 60	6.9 6.9 7.3 6.6 5.5
26 27 28 29 30 31	39 38 36 36 39	39 33 33 34	15 15 15 14 14 13	9.0 9.0 10 10 10	13 12 10 	24 24 23 22 22	245 258 290 290 254	102 88 80 70 66 74	117 112 100 128 102	22 23 20 21 19 18	47 36 32 26 24 22	6.2 8.2 10 12 11
TOTAL MEAN MAX MIN AC-FT	1523 49.1 68 36 3020	1101 36.7 50 23 2180	631 20.4 31 13 1250	297.0 9.58 13 6.0 589	318 11.4 13 10 631	672 21.7 27 12 1330	4208 140 290 23 8350	5814 188 385 66 11530	6477 216 408 100 12850	970 31.3 90 18 1920	686 22.1 60 12 1360	338.7 11.3 20 5.5 672

CAL YR 1986 TOTAL 23579.0 MEAN 64.6 MAX 464 MIN 10 AC-FT 46770 WTR YR 1987 TOTAL 23035.7 MEAN 63.1 MAX 408 MIN 5.5 AC-FT 45690

09366500 LA PLATA RIVER AT COLORADO-NEW MEXICO STATE LINE

LOCATION.--Lat 36°59'51", long 108°11'17", in NW4SE4 sec.10, T.32 N., R.13 W., La Plata County, CO, Hydrologic Unit 14080105, on right bank at Colorado-New Mexico State line, 0.2 mi downstream from Ponds Arroyo, and 4.8 mi north of La Plata, NM.

DRAINAGE AREA. -- 331 mi².

PERIOD OF RECORD. -- January 1920 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 1313: 1934(M), 1936(M).

GAGE.--Water-stage recorder. Datum of gage is 5,975.15 ft above National Geodetic Vertical Datum of 1929. See WSP 1713 or 1733 for history of changes prior to Mar. 17, 1934.

REMARKS.--Estimated daily discharges: Jan. 10-14, 16-30, and Feb. 28 to Mar. 3. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation of about 15,000 acres, mostly upstream from station.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.

AVERAGE DISCHARGE.--67 years, 36.6 ft^3/s ; 26,520 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,750 ft³/s, Aug. 24, 1927, gage height, 11.36 ft, present datum, from rating curve extended above 750 ft³/s, on basis of slope-area measurement of peak flow; no flow at times in many years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 669 $\rm ft^3/s$ at 0900 Apr. 18, gage height, 5.06 $\rm ft$; minimum daily, 8.6 $\rm ft^3/s$, Sept. 15, 20, 21, 23-25.

		DISCHA	RGE, CUBI	C FEET PE	R SECOND,	, WATER YEA MEAN VALUES	R OCTOBER	1986 TC	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MA R	APR	Y AM	JUN	JUL	AUG	SEP
1 2 3 4 5	40 44 47 46 45	91 118 120 112 104	68 67 65 58 57	46 40 32 35 35	35 34 35 40 43	40 45 50 58 63	86 108 157 185 140	341 308 226 200 183	33 42 60 105 127	51 52 56 56 54	14 12 12 12 12	11 11 11 10 10
6 7 8 9 10	46 50 51 51 59	91 92 70 62 57	74 74 68 64 49	32 31 32 28 26	45 50 56 58 5 7	72 92 125 136 140	141 141 177 243 310	179 167 175 193 169	169 191 145 143	47 40 33 30 26	12 16 23 18 14	10 10 9.5 9.0 9.0
11 12 13 14 15	94 183 113 97 88	53 54 59 60	53 64 58 57	28 30 30 30 30	68 77 72 99 62	151 151 159 175 155	356 380 333 303 346	147 155 171 153 167	131 124 115 94 81	24 24 24 24 22	12 13 12 13 13	9.0 9.0 9.0 9.0 8.6
16 17 18 19 20	84 86 88 86 84	67 68 68 145 118	57 54 53 52 50	28 26 26 26 26	56 37 30 31 34	140 117 115 131 120	420 526 571 534 478	196 204 215 185 143	88 72 80 91 71	21 28 43 28 22	12 11 11 10 10	9.0 9.0 9.0 9.6
21 22 23 24 25	77 74 77 74 71	89 84 80 74 72	51 47 45 49 45	24 20 24 26 28	30 43 52 52 47	108 115 99 104 102	406 414 453 473 490	110 97 78 100 78	68 89 79 77 75	20 20 19 18 13	11 10 11 15 23	8.6 9.5 8.6 8.6
26 27 28 29 30 31	64 64 67 40	80 74 71 72 74	40 40 40 39 40 36	30 34 32 34 36	45 45 42 	100 94 88 80 72 80	456 476 470 425 372	64 59 54 46 42 35	62 70 65 7 2 60	13 17 27 28 19	19 17 15 14 13	10 12 12 10 11
TOTAL MEAN MAX MIN AC-FT	2184 70.5 183 40 4330	2433 81.1 145 53 4830	1672 53.9 74 36 3320	935 30.2 46 20 1850	1375 49.1 99 30 2730	3277 106 175 40 6500	10370 346 571 86 20570	4640 150 341 35 9200	2822 94.1 191 33 5600	914 29.5 56 13 1810	422 13.6 23 10 837	288.6 9.62 12 8.6 572

CAL YR 1986 TOTAL 22184.4 MEAN 60.8 MAX 450 MIN 5.2 AC-FT 44000 WTR YR 1987 TOTAL 31332.6 MEAN 85.8 MAX 571 MIN 8.6 AC-FT 62150

09371000 MANCOS RIVER NEAR TOWAOC, CO

LOCATION.--Lat 37°01'39", long 108°44'27", Ute Indian Reservation, Montezuma County, Hydrologic Unit 14080107, on left bank 700 ft upstream from bridge on U.S. Highway 666, 2.0 mi north of Colorado-New Mexico State line, 6.0 mi upstream from Aztec Creek, and 12 mi south of Towacc.

DRAINAGE AREA. -- 526 mi2.

PERIOD OF RECORD.--Streamflow records, October 1920 to September 1943, February 1951 to current year. Monthly discharge only for some periods, published in WSP 1313. Water-quality data available, August 1969 to June 1972, October 1983 to current year. Sediment data available, April to December 1961.

REVISED RECORDS .-- WSP 1733: 1924 (monthly figures only). WDR-CO-83-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,055.98 ft above National Geodetic Vertical Datum of 1929. See WSP 1713 or 1733 for history of changes prior to Mar. 11, 1954.

REMARKS.--Estimated daily discharges: Dec. 12 to Feb. 1, and Aug. 14-25. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 10,000 acres upstream from station. One diversion upstream from station for irrigation of about 100 acres downstream from station. Flow regulated by Jackson Gulch Reservoir, capacity, 10,000 acre-ft since March 1949.

AVERAGE DISCHARGE. -- 59 years, 54.6 ft 3/s; 39,560 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,300 ft³/s, Oct. 14, 1941, gage height, 7.30 ft, present site and datum, from rating curve extended above 200 ft³/s, on basis of slope-area measurement of peak flow; maximum gage height, 8.50 ft, Sept. 6, 1970; no flow at times in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 1	2000	740	4.27	Aug. 8	0800	*1900	* 5.69

Minimum daily discharge, 8.9 ft³/s, Sept. 23, 24.

		DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE	OCTOBER S	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	54 49 47 49 47	248 421 129 101 137	75 64 64 62	22 20 20 20 22	44 59 64 67 73	41 44 46 50 64	80 100 136 190 201	442 472 405 343 354	71 85 123 199 237	69 61 53 51 41	44 35 31 28 22	35 32 35 40 39
6 7 8 9	44 48 54 52 54	83 100 91 72 60	70 85 79 67 53	24 24 24 18 15	68 58 59 63 57	95 150 212 204 233	164 150 165 218 244	373 369 390 408 370	247 270 265 243 235	35 30 28 24 19	19 141 499 170 151	37 37 36 33 31
11 12 13 14 15	108 197 136 94 82	56 55 53 51 52	27 28 28 28 30	16 17 17 17 17	59 72 91 109 126	198 183 181 222 190	293 278 265 228 268	328 301 326 309 283	222 205 199 203 193	14 11 9.0 11	178 155 144 130 120	30 24 22 20 21
16 17 18 19 20	76 75 74 74 75	49 46 44 293 253	32 32 32 32 32	16 15 15 16 16	80 71 58 53 46	156 133 117 127 126	370 378 522 479 409	332 351 342 320 261	185 167 137 129 121	10 11 19 34 21	110 100 85 80 75	21 20 19 17 16
21 22 23 24 25	71 66 60 56 54	138 118 112 94 85	30 30 28 26 26	16 16 18 22 24	47 44 43 44 44	114 111 103 113 122	346 363 426 475 490	236 223 192 249 212	114 103 99 96 94	15 17 42 32 24	75 90 140 460 250	12 9.0 8.9 8.9 9.3
26 27 28 29 30 31	51 50 49 45 35	94 90 83 87 82	26 26 28 26 24 22	24 26 28 32 34 36	43 38 43 	103 94 87 81 74 65	459 486 521 525 497	187 179 150 122 102 80	94 86 75 69 84	19 16 78 132 58 43	124 81 60 51 45 39	9.3 9.0 10 14 13
TOTAL MEAN MAX MIN AC-FT	2074 66.9 197 35 4110	3377 113 421 44 6700	1276 41.2 85 22 2530	647 20.9 36 15 1280	1723 61.5 126 38 3420	3839 124 233 41 7610	9726 324 525 80 19290	9011 291 472 80 17870	4650 155 270 69 9220	1039.0 33.5 132 9.0 2060	3732 120 499 19 7400	668.4 22.3 40 8.9 1330

CAL YR 1986 TOTAL 34707.5 MEAN 95.1 MAX 1300 MIN 1.3 AC-FT 68840 WTR YR 1987 TOTAL 41762.4 MEAN 114 MAX 525 MIN 8.9 AC-FT 82840

09371002 NAVAJO WASH NEAR TOWAOC, CO

LOCATION.--Lat 37°12'03", long 108°41'50", Ute Mountain Ute Indian Reservation, Montezuma County, Hydrologic Unit 14080107, on left bank 150 ft upstream from Towaoc Road crossing, 0.2 mi downstream from Ismay Draw and 1.6 mi east of Towaoc, Co.

DRAINAGE AREA. -- 26.3 mi².

PERIOD OF RECORD. -- October 1986 to September 1987.

GAGE.--Water-stage recorder. Elevation of gage is 5,600 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 30, 1986, (fragmentary) USBR operated staff gage or water-stage recorder at same site and datum.

REMARKS.--Estimated daily discharges: Oct. 11, 12, Nov. 10, 11, Dec. 3, 4, 22 to Jan. 1, 10-12, 17, 18, 22, 28, 29, 31 to Feb. 10 and Aug. 26 to Sept. 23. Records good except for estimated daily discharges, which are poor, and flows above 30 ft //s, which are fair. Flow regulated by Montezuma Valley Irrigation District through series of canals and ditches from Dolores Project. Most of water is return flow. Diversions from Dolores River basin to San Juan River basin for irrigation of about 2450 acres upstream from station. No diversions upstream for irrigation downstream from station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 62 ft³/s, Nov. 18, 1987, gage height, 1.99 ft, from rating curve extended above 25 ft³/s; minimum daily, 1.0 ft³/s, Dec. 29, Jan. 1, 2, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 62 ${\rm ft}^3/{\rm s}$ at 2300 Nov. 18, gage height, 1.99 ft; minimum daily, 1.0 ${\rm ft}^3/{\rm s}$, Dec. 29, Jan. 1, 2.

		DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUE		1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	5.6 9.5 11 12 11	31 38 15 11 8.6	14 13 12 11	1.0 1.0 1.1 1.2 1.5	2.8 2.2 2.2 2.0 1.8	2.8 3.7 3.9 4.2 4.6	1.9 1.6 1.5 1.5	17 17 19 14 12	17 17 17 15 14	8.9 6.2 8.8 12	15 17 16 19 15	10 12 12 14 20
6 7 8 9 10	8.9 11 10 8.3 5.9	9.0 15 13 8.4 7.5	18 25 17 5.4 2.4	1.5 1.5 1.6 1.6	1.6 1.5 1.5 1.5	3.4 2.9 5.3 19 9.0	5.9 4.9 9.9 8.3 6.4	14 12 14 13 14	15 17 20 16 21	12 8.6 5.7 8.2 12	15 19 25 24 24	28 24 22 20 20
11 12 13 14 15	14 22 15 12	7.0 6.8 5.9 2.4 3.0	1.8 1.7 1.5 1.5	1.5 1.5 1.5 1.5	1.8 1.8 1.9 8.0 5.2	4.5 2.9 2.2 2.0 2.2	6.1 11 13 9.0 8.9	15 15 13 13 20	24 21 20 21 24	17 18 14 12 12	20 16 13 13	20 24 26 30 32
16 17 18 19 20	14 14 13 9.0 8.6	3.9 4.6 15 32 22	1.7 1.7 2.0 2.2 2.0	1.4 1.3 1.3 1.5	4.0 4.4 2.9 2.2 2.0	2.7 3.0 2.2 1.8 1.9	11 12 11 10 9.6	16 14 14 19 22	21 24 25 24 24	11 9.6 16 17 17	13 12 6.5 7.0	30 26 24 24 24
21 22 23 24 25	8.6 11 10 9.2 8.3	13 15 17 15	2.0 1.8 1.8 1.8	1.5 1.5 1.6 1.4	2.8 2.7 2.6 2.5 2.5	2.0 2.2 2.8 3.9 5.3	10 12 11 13 15	23 21 21 24 22	24 21 19 15 15	21 20 16 13	19 16 23 27 13	26 26 26 27 34
26 27 28 29 30 31	8.0 9.5 8.9 8.6 8.0	16 19 15 15 15	1.5 1.3 1.1 1.0 1.1	1.4 1.5 1.7 1.9 2.0 2.4	2.7 2.7 2.3	6.4 3.4 2.4 2.3 2.0	14 13 21 22 14	26 20 22 17 12 13	12 12 12 9.3 10	13 12 16 23 20 13	10 9.5 9.5 9.5 10	24 18 17 21 21
TOTAL MEAN MAX MIN AC-FT	324.5 10.5 22 5.6 644	414.1 13.8 38 2.4 821	162.6 5.25 25 1.0 323	46.0 1.48 2.4 1.0 91	73.7 2.63 8.0 1.5 146	118.8 3.83 19 1.8 236	294.3 9.81 22 1.5 584	528 17.0 26 12 1050	546.3 18.2 25 9.3 1080	419.0 13.5 23 5.7 831	478.0 15.4 27 6.5 948	682 22.7 34 10 1350

WTR YR 1987 TOTAL 4087.3 MEAN 11.2 MAX 38 MIN 1.0 AC-FT 8110

09371500 McELMO CREEK NEAR CORTEZ, CO

LOCATION.--Lat 37°19'23", long 108°40'22", in NE4 sec.1, T.35N., R.71 W., Montezuma County, Hydrologic Unit 14080202, on left bank 150 ft downstream from mouth of Mud Creek, and 4 mi southwest of Cortez.

DRAINAGE AREA. -- 230 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1926 to September 1929, April 1940 to September 1945, October 1950 to September 1954 (monthly discharge only for some periods, published in WSP 1313), January 1982 to current year.

REVISED RECORDS. -- WSP 1313: 1927, 1927 (M).

GAGE.--Water-stage recorder. Elevation of gage is 5,700 ft above National Geodetic Vertical Datum of 1929, by barometer. Prior to Sept. 30, 1929, at site 3 mi downstream at different datum. Mar. 29, 1940 to Nov. 2, 1941, at site 150 ft upstream at datum 4.20 ft, higher. Nov. 3, 1941 to Sept. 30, 1945, at present site at datum 4.00 ft, higher. Oct. 1, 1950 to Sept. 30, 1954, at present site at datum 2.50 ft, higher, Jan. 1, 1982, to present, at former site at same datum.

REMARKS.--Estimated daily discharges: Dec. 11-15, Dec. 27 to Jan. 6, and Jan. 9 to Feb. 11. Records good except for those above 150 ft³/s, which are fair, and estimated daily discharges, which are poor. Diversions for irrigation of about 200 acres upstream from station. Flow is mainly return flows from irrigated lands for Montezuma Irrigation District (water imported from Dolores River basin).

AVERAGE DISCHARGE.--17 years (water years 1927-29, 1941-45, 1951-54, 1983-87), 56.2 ft³/s; 40,720 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,560 ft³/s, Sept. 9, 1927, gage height, 6.45 ft, from rating curve extended above 240 ft³/s, on basis of slope-area measurement at gage height, 5.72 ft; minimum not determined.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 735 $\rm ft^3/s$ at 2200 Aug. 23, gage height, 6.65 ft; minimum daily, 22 $\rm ft^3/s$, Jan. 10.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND,	WATER YEAR MEAN VALUES	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	54 50 50 61 5 2	293 191 89 77 70	52 50 50 50 52	36 32 32 32 38	70 60 55 50 50	44 50 60 74 81	42 43 42 45 51	51 58 59 63 53	62 52 58 65 65	63 61 56 56 59	113 110 107 112 113	102 99 101 92 98
6 7 8 9 10	50 52 55 59 7 4	61 105 82 66 65	75 92 70 63 45	38 40 41 30 22	44 38 40 40	83 95 154 209 142	48 51 42 42 42	67 73 69 65 59	66 66 83 113 94	58 64 65 68 74	108 167 234 134 128	89 87 84 85 76
11 12 13 14 15	227 267 152 100 85	60 60 60 60 62	44 44 44 48	26 26 26 26 26	42 44 47 101 85	92 77 71 72 60	41 51 53 47 46	59 48 51 55 7 5	87 85 79 79 72	60 50 55 53 54	115 108 104 100 103	71 79 83 97 91
16 17 18 19 20	80 74 70 73 78	62 58 65 211 100	49 46 48 48	24 24 24 24 24	62 59 47 42 43	65 62 53 52 57	41 38 41 47 46	70 66 64 78 81	80 77 76 78 76	58 75 87 73 67	96 79 79 78 67	89 79 80 83 84
21 22 23 24 25	72 66 67 68 69	73 71 66 58 57	45 44 45 45 42	24 24 28 34 38	44 43 44 42 44	55 55 55 68 57	45 47 54 53 48	87 99 96 113 109	70 66 57 59 63	63 66 65 67 65	81 83 201 420 285	82 78 79 77 66
26 27 28 29 30 31	66 64 55 52 55 55	69 72 60 59 57	41 38 38 36 36 38	38 40 44 55 50 55	45 45 42 	59 58 48 45 42 44	52 56 59 61 59	108 100 97 94 87 67	68 80 77 82 71	69 81 108 169 101	180 129 119 119 116 108	64 59 57 52 52
TOTAL MEAN MAX MIN AC-FT	2452 79.1 267 50 4860	2539 84.6 293 57 5040	1509 48.7 92 36 2990	1021 32.9 55 22 2030	1408 50.3 101 38 2790	2239 72.2 209 42 4440	1433 47.8 61 38 2840	2321 74.9 113 48 4600	2206 73.5 113 52 4380	2217 71.5 169 50 4400	4096 132 420 67 8120	2415 80.5 102 52 4790

CAL YR 1986 TOTAL 25998 MEAN 71.2 MAX 456 MIN 22 AC-FT 51570 WTR YR 1987 TOTAL 25856 MEAN 70.8 MAX 420 MIN 22 AC-FT 51290

09371500 McELMO CREEK NEAR CORTEZ, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Jan. 1, 1982 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Feb. 6, 1982 to current year.
WATER TEMPERATURES: Feb. 6, 1982 to current year.

INSTRUMENTATION. -- Water-quality monitor since January 1982.

REMARKS. -- Daily maximum and minimum specific conductance data available in district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum 4,180 microsiemens Jan. 31, 1985; minimum, 847 microsiemens Aug. 24, 1982.
WATER TEMPERATURES: Maximum 26.5°C July 18,19 1985; minimum, 0.0°C many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum 4,010 microsiemens Jan. 10 and 29; minimum recorded, 1,040 microsiemens

May 21.
WATER TEMPERATURES: Maximum 14.1°C Oct.7 (but may have been exceeded during period of missing record Apr. 14 to Sept. 30); minimum 0.0°C, many days during December and January.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DATE	IN TIME TA	CREAM- CLOW, ISTAN- INEOUS	DUCT- (ST	AND- AT	PER- TO URE (M TER A	TAL WH W G/L TOT S MG/L	SS CARB CALC WAT DIS FLD SOI LAS (MO	CIUM S S- D LVED SOI G/L (MO		S- SOR	D- P- ON
	·	0930	133	1820	8.0	15.5	920	700 210	o 9'	7 85	5	1
SEP 24	• • •	1530	85	1630	8.4	15.0	840	630 200	o 8:	3 72	2	1
	DATE	POTAS SIUN DIS- SOLVE (MG/I AS K)	A, LINIT - LAB ID (MG/I . AS	Y SULFATE DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	
	AUG 27	4.7	7 226	830	16	0.30	11	1390	1.89	499	1.00	
	SEP 24	3.1	210	780	12	0.30	9.3	1290	1.75	295	0.72	
	SPECIF	C CONDUCT	CANCE (MI	CROSIEMENS/		DEG. C), N VALUES	WATER YEAR	R OCTOBER	1986 TO S	SEPTEMBER	1987	
DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5	2110 2140 2150 2110 2120	2490 2460 2550 2600 2650	2850 2790 2760 2740 2720	3150 3330 3310 3390 3350	2980 3150 3160 3240 3050	3160 3280 3320 3180 3060	3450 3480 3460 3510 3470	1730 1620 1570 1380 1460	1520 1650 1610 1600 1560	1790 1830 1820 1840 1830	1720 1690 1610	1690 1700 1690 1630 1690
6 7 8 9	2150 2150 2120 2090 2060	2630 2650 2670 2620 2660	2810 2970 2890 2970 2810	3340 3380 3350 3490 3620	3180 3270 3320 3340 3370	2970 2920 2920 2870 2790	3470 3440 3440 3490 3470	1500 1610 1690 1580 1170	1560 1560 1550 1640 1570	1820 1800 1820 1800 1770	1700 1700 1390	1610 1590 1570 1570 1630
11 12 13 14 15	2160 2230 2250 2200 2190	2680 2680 2700 2760 2710	2840 2800 2900 3020 3070	3550 3490 3260 3280 3340	3390 3360 3330 3390 3320	2840 2920 2990 3040 3140	3420 3470 3320 3180 2420	1170 1310 2230 2230 1670	1560 1570 1560 1610 1770	1790 1780 1760 1770 1830	1410 1400 1380	1650 1600 1620 1620 1610
16 17 18 19 20	2220 2220 2270 2190 2180	2650 2700 2710 2700 2630	3210 3260 3300 3310 3330	3400 3410 2620 2900 3410	3320 3400 3350 3310 3290	3250 3330 3330 3370 3290	2930 3220 2390 2300 2100	1320 1170 1160 1830 1120	1790 1790 1800 1810 1860	1840 1780 1810 1790 1760	1330 1320 1320	1590 1540 1580 1600 1580
21 22 23 24 25	2180 2230 2210 2180 2150	2750 2760 2840 2760 2760	3340 3250 3210 3310 3320	3410 3500 3460 3370 3280	3390 3340 3390 3360 3340	3230 3430 3490 3570 3570	2190 1520 1870 2370 2470	1310 1580 1600 1510 1470	1870 1920 1900 1810 1830	1780 1770 1780 1750 1750	1370 1420 1350	1570 1580 1570 1580 1480
26 27 28 29 30 31	2170 2170 2410 2550 2510 2520	2750 2830 2800 2820 2850	3070 2990 3150 3100 3190 2970	3190 3220 3270 3560 2610 3110	3310 3230 3180 	3270 3100 3320 3400 3420 3440	2420 2140 2100 1270 1640	1570 1540 1510 1520 1570 1580	1790 1740 1710 1720 1770	1740 1720 1860 1850 1810 1760	1740 1700 1700	1490 1590 1600 1650 1670
MEAN	2213	2694	3040	3302	3288	3200	2781	1525	1700	1794	1514	1605

357

09371500 McELMO CREEK NEAR CORTEZ, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MA X	MIN	MAX	MIN
	OCTOBE	R	NOVEMB	ER	DE CEMB	ER	JANUAR	Y	FEBRUA	RY	MARCH	
1 2 3 4 5	13.6 12.0 11.3 12.3 13.3	8.4 9.5 9.6 7.1 7.9	8.3 7.8 9.1 9.5 8.8	7.1 6.4 6.8 7.7 5.6	3.0 2.5 2.5 2.6 4.5	.2 .0 .0 .0	.1 .1 .1 .1	.0 .0 .0	.3 .8 1.7 2.2 2.6	.0 .0 .3 .8	4.2 5.7 6.6 7.2 7.5	.5 .8 1.7 2.5
6 7 8 9 10	13.4 14.1 14.0 14.1 12.4	10.7 9.3 9.0 9.1 11.1	7.9 6.4 4.8 3.9 4.5	5.3 3.8 2.6 .9	4.4 4.8 4.0 3.2	3.8 3.5 2.6 .0	.2 .3 .3	.0 .0 .0	3.8 3.6 4.3 4.9 5.4	.0 .0 .9 1.3	8.2 8.3 7.2 6.4 7.8	2.6 3.4 5.6 4.3 3.7
11 12 13 14 15	11.5 9.6 9.1 10.1 11.4	9.7 7.9 5.9 5.7	4.8 5.7 6.2 5.2 5.5	1.1 2.0 2.6 3.0 2.2	.0 .1 .1 .1	.0 .0 .0	.1 .1 .1 .1	.0	7.1 6.0 6.1 5.6 3.7	3.6 3.5 3.6 2.9	8.6 9.7 9.3 8.5 6.4	4.3 5.0 5.1 4.2 4.5
16 17 18 19 20	11.6 11.3 12.2 11.0 10.1	8.1 7.1 8.7 9.4 7.6	5.4 6.1 6.8 6.8	3.2 2.8 3.7 5.8 3.9	.9 1.8 3.2 3.6 2.3	.0 .1 1.8 1.3	.0	.0	4.2 4.6 3.6 1.9	2.3 1.3 .6 .5	6.4 5.7 8.3 6.6 5.7	2.7 1.5 2.0 4.7 2.5
21 22 23 24 25	10.3 9.8 9.7 9.9 9.8	7.0 5.9 5.4 5.7	6.3 6.6 4.3 3.8	3.3 4.2 2.0 1.2 1.0	2.4 .9 .2 .4	.3 .0 .0	.0 .2 .1 .1	.0	4.2 4.3 3.2 3.0 3.5	.2 .3 .7 1.4	7.5 5.7 7.5 6.8 6.3	2.4 2.9 .9 2.3 1.4
26 27 28 29 30 31	9.6 9.2 9.6 10.2 10.2 8.8	5.6 5.7 5.0 6.4 5.9 7.1	4.8 3.6 3.9 3.5 4.1	3.1 1.4 .9 1.6 2.1	.0 .1 .1 .1	.0	.1 .1 .1 .2 .3	.0	2.2 4.5 3.5	.8 .4 .4	8.0 6.7 4.2 2.9 6.6 9.4	1.4 2.7 1.4 .1
MONTH	14.1	5.0	9.5	.9	4.8	.0	•3	.0	7.1	.0	9.7	.0
HONTH		• • • • • • • • • • • • • • • • • • • •	, , ,	• • •		• •	• • •				• •	
HONTH	APRIL		MA Y		JUNE		JULY		A U GUS			ER
1 2 3 4 5												ER
1 2 3 4	APRIL 10.2 11.3 11.6 8.2	2.9 3.8 3.2 6.1	MA Y		JUNE 		JULY		AUGUS	T 	SEPTEMB	
1 2 3 4 5 6 7 8 9	APRIL 10.2 11.3 11.6 8.2 7.8 8.7 11.0 13.1	2.9 3.8 3.2 6.1 4.6 4.2 4.6 6.4	MAY		JUNE		 2nr A	==== ==== ==== ====	AUGUS	T	SEPTEMB	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	APRIL 10.2 11.3 11.6 8.2 7.8 8.7 11.0 13.1 11.3 13.1 10.0 9.9	2.99 3.83 3.21 4.66 4.22 4.66 5.5 6.33	MAY		JUNE	 	 		AUGUS	T	SEPTEMB	
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 17 8 19	APRIL 10.2 11.3 11.6 8.2 7.8 8.7 11.0 13.1 11.3 13.1 10.0 9.9 11.5	2.99 3.8 3.2 6.1 4.6 4.2 4.6 6.4 5.5 6.2 6.3 4.0	MAY		JUNE		 		AUGUS	T	SEPTEMB	
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 3 4	APRIL 10.2 11.3 11.6 8.2 7.8 8.7 11.0 13.1 11.3 13.1 10.0 9.9 11.5	2.99 3.88 3.22 6.11 4.6 4.2 4.6 6.4 5.5 6.2 6.3 4.0	MAY		JUNE				AUGUS	T	SEPTEMB	

NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C.

09372000 McELMO CREEK NEAR COLORADO-UTAH STATE LINE

LOCATION.--Lat 37°19'27", long 109°00'54", in NE¼ sec.2, T.35 N., R.20 W., Montezuma County, Hydrologic Unit 14080202, on right bank 1.5 mi upstream from Colorado-Utah State line, 2.0 mi upstream from Yellowjacket Creek, and 2.0 mi west of former town of McElmo.

DRAINAGE AREA. -- 346 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1951 to current year.

REVISED RECORDS.--WSP 1925: 1951-52 (M), 1957 (M). WRD CO-1972: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,890 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1-21, Nov. 20 to Dec. 4, Dec. 12-15, 23-25, 28, 29, Jan. 1, 2, 5, 11-16, and Jan. 20-23. Records good except for those above 600 ft³/s, which are fair, and estimated daily discharges, which are poor. Diversions for irrigation of about 1,780 acres upstream from station. One diversion upstream from station for irrigation of about 60 acres downstream from station. Part of flow is return water from irrigated lands of Montezuma Irrigation District (water imported from Dolores River basin). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report.

AVERAGE DISCHARGE. -- 36 years, 48.9 ft3/s; 35,430 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,040 ft³/s, Aug. 7, 1967, gage height, 7.58 ft, from floodmark in gage well, from rating curve extended above 2,100 ft³/s; maximum gage height, 8.13 ft, Sept. 6, 1970; minimum daily discharge, 0.08 ft³/s, Sept. 9, 10, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 620 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Aug. 8	0100	*770	* 5.67	Aug. 24	0600	678	5.50

Minimum daily discharge, 22 ft³/s, May 2.

		DISCHARGE,	IN CUBI	C FEET PER	R SECOND,	WATER YEA MEAN VALUE	R OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	OCT	NOA	DE C	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1	80	101	65	36	76	46	42	23	51	64	129	91
2	70	345	60	34	61	53	40	22	36	59	124	81
3	65	159	60	35	60	62	42	34	31	52	114	83
4	75	110	60	34	53	79	42	31	36	48	117	76
5	70	99	62	38	52	87	47	33	37	50	115	76
6	65	91	77	42	43	89	47	41	48	40	104	89
7	65	114	118	39	40	94	49	57	65	36	174	72
8	70	124	90	40	42	110	42	50	65	34	350	65
9	75	101	78	33	42	212	35	53	100	34	165	64
10	85	86	54	23	42	88	34	49	94	35	133	62
11	240	81	46	28	44	108	34	49	80	35	119	59
12	330	78	46	28	51	88	36	40	76	33	104	66
13	250	78	46	28	56	76	50	32	64	29	96	79
14	150	76	46	28	84	75	39	40	73	29	92	93
15	120	76	50	28	120	73	37	54	68	27	84	97
16	100	78	53	26	79	67	34	49	71	31	86	94
17	95	78	53	25	76	67	33	57	73	44	74	80
18	90	75	54	25	61	62	29	47	70	69	58	73
19	90	166	54	27	52	56	37	53	62	73	57	71
20	95	250	54	26	50	56	40	57	62	55	52	76
21	90	100	52	26	50	60	42	63	63	52	51	78
22	83	90	49	26	50	65	40	79	52	57	56	78
23	84	85	46	30	50	67	40	78	43	49	109	79
24	84	75	46	40	46	74	44	89	38	49	420	81
25	86	70	44	39	49	59	38	94	44	53	354	79
26 27 28 29 30 31	83 81 72 65 65 68	80 85 85 75 70	44 42 40 38 40 39	40 46 57 53 54	56 50 43 	60 63 52 47 42 43	31 35 35 39 31	95 88 86 83 82 76	44 58 73 70 67	57 66 103 163 180 127	231 165 130 121 118 107	75 79 70 64 58
TOTAL	3141	3181	1706	1074	1578	2280	1164	1784	1814	1833	4209	2288
MEAN	101	106	55.0	34.6	56.4	73.5	38.8	57•5	60.5	59.1	136	76.3
MAX	330	345	118	57	120	212	50	95	100	180	420	97
MIN	65	70	38	23	40	42	29	22	31	27	51	58
AC-FT	6230	6310	3380	2130	3130	4520	2310	3540	3600	3640	8350	4540

CAL YR 1986 TOTAL 29981 MEAN 82.1 MAX 900 MIN 12 AC-FT 59470 WTR YR 1987 TOTAL 26052 MEAN 71.4 MAX 420 MIN 22 AC-FT 51670

09372000 MCELMO CREEK NEAR COLORADO-UTAH STATE LINE CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: November 1977 to September 1981, August 1987 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	TANE	DW, CO TAN- DU EOUS AN	FIC N- CT-	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG ((MC	SS TAL G/L	HARD- NESS NON CARE WH WAT TOT FLI MG/L AS CACO3	DIS D SOL S (MG	IUM SI - DI VED SOL /L (MC	IS- DIS VED SOLV	
AUG 27	1200	155	5	1830	7.8	18.	0	920	660	210	96	5 89	9 1
SEP 24	1330	75	5	2000	7.6	16.	0	980	750	210	110) 98	3 1
DA	TE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)		FATE R S- D LVED S G/L (HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		CA, SU S- CO VED TU	DLIDS, JM OF DNSTI- JENTS, DIS- GOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 27 SEP	•	5.0	259	870)	18	0.40	12	2	1460	1.98	609	0.60
24		3.9	224	950)	18	0.40	10)	1530	2.09	309	0.57

TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO

There are 24 tunnels or ditches, all of which are equipped with water-stage recorders and Parshall flumes or sharp-crested weirs. Records provided by Colorado Division of Water Resources. The locations and diversions of 8 selected diversions are given in the following list.

09010000 Grand River ditch diverts water from tributaries of Colorado River to La Poudre Pass Creek (tributary to Cache la Poudre River) in NW½ sec.21, T.6 N., R.75 W., in Platte River basin. Two collection ditches beginning at headgates located in sec.28, T.5 N., R.76 W., and sec.29, T.6 N., R.75 W., intercept all tributaries upstream on each side of the Colorado River and converge at La Poudre Pass. REVISIONS (WATER YEARS) .-- WSP 1313: 1912-27.

09013000 Alva B. Adams tunnel diverts water from Grand Lake and Shadow Mountain Lake in NW $^{1}_{4}$ sec.9, T.3 N., R.75 W., in Colorado River basin, to Lake Estes (Big Thompson River) in sec.30, T.5 N., R.72 W., in Platte River basin. For daily discharge, see elsewhere in this report.

09021500 Berthoud Pass ditch diverts water from tributaries of Fraser River between headgate in sec.33, T.2 S., R.75 W., and Berthoud Pass, in Colorado River basin, to Hoop Creek (tributary to West Fork Clear Creek) in sec.10, T.3 S., R.75 W., in Platte River basin.

09042000 Hoosier Pass tunnel diverts water from tributaries of Blue River in Colorado River basin to Montgomery Reservoir (Middle Fork South Platte River) in sec.14, T.8 S., R.78 W., in Platte River basin; this water is again diverted to South Catamount Creek (tributary to Catamount Creek) in SE4 sec.14, T.13 S., R.69 W., in the Arkansas River basin. Collection conduits extending from the right bank of Crystal Creek (tributary to Spruce Creek) in sec.14, T.7 S., R.78 W., right bank of Spruce Creek in sec.23, T.7 S., R.78 W., right bank of McCullough Gulch in sec.26, T.7 S., R.78 W., right bank of Monte Cristo Creek in SW4NE4 sec.2, T.8 S., R.78 W., left bank of Bemrose Creek in SW4SW4 sec.6, T.8 S., R.77 W., and intercepting intermediate tributaries, transport diversions to north portal of the tunnel.

REVISIONS (WATER YEARS).--WDR CO-86-1, WDR CO-86-2: 1984, 1985.

09050590 Harold D. Roberts tunnel diverts water from Dillon Reservoir (Blue River) in sec.18, T.5 S., R.77 W., in Blue River basin, to North Fork South Platte River (tributary to South Platte, River) in SWASWA sec. 4, T.7 S., R.74 W., in Platte River basin. Figures include a small amount of ground-water inflow between Dillon Reservoir and east portal of tunnel.

09063700 Homestake tunnel diverts water from Homestake Lake (Middle Fork Homestake Creek), in sec.17, T.8 S., R.81 W., in Eagle River basin, to Lake Fork in sec.9, T.9 S., R.81 W., in Arkansas River basin. Water is imported to Homestake Lake from tributaries of Homestake Creek by collection conduits that extend from right bank of French Creek in sec.28, T.7 S., R.81 W., and left bank of East Fork Homestake Creek in sec.9, T.8 S., R.81 W., and intercept intermediate tributaries.

09077160 Charles H. Bousted tunnel diverts water from the main stem and tributaries of Fryingpan River (tributary to Roaring Fork River), in Colorado River basin, to Lake Fork in sec.10, T.9 S., R.81 W., in Arkansas River basin. Water is transported to west portal of tunnel (at lat 39°14'4", long 106°31'47"), by a series of collection conduits extending between headgates on right bank of Sawyer Creek at lat 39°15'58", long 106°31'19" and right bank of Fryingpan River at lat 39°14'40", long 106°31'19", and intercepting intermediate tributaries.

09077500 Busk-Ivanhoe tunnel diverts water from Ivanhoe Lake (Ivanhoe Creek), tributary to Fryingpan River in sec.13, T.9 S., R.82 W., in Roaring Fork River basin, to Busk Creek (tributary to Lake Fork) in sec. 20, T.9 S., R.81 W., in Arkansas River basin.

DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 (SOME PREVIOUSLY UNPUBLISHED DIVERSIONS TO THE PLATTE AND ARKANSAS RIVER BASINS ARE INCLUDED IN THIS TABLE)

											-		
Diversion	00	et.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
						TO PLAT	TE RIVER	BASIN					
09010000	Ι	oiversi	ons d	uring wa	ter year	1987 f o	r this t	unnel wi	ll be pu	blished	in a sub	sequent r	eport.
09013000	10,9	30 17	,060	24,490	24,060	22,110	26,260	32,580	32,870	19,750	32,920	18,570	12,650
Water	year	1986,	274	,200									
09013000	14,8	190 17	,080	30,480	25,630	18,410	13,580	31,380	24,350	12,920	23,970	27,520	5,990
Water	year	1987,	246	,200									
09021500		0	0	0	0	0	0	0	0	182	83	6	0
Water	year	1987,	271										
09050590		0	518	3,630	4,480	4,420	726	842	26	0	0	0	0
Water	year	1987,	14,	640									

TO ARKANSAS RIVER BASIN

09042000 Diversions during water year 1987 for this tunnel will be published in a subsequent report. 09063700 Diversions during water year 1986-87 for this tunnel will be published in a subsequent report.

09077160 Diversions during water year 1987 for this tunnel will be published in a subsequent report.

TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO--Continued

TO	ARKANSAS	RIVER	BASINContinued
----	----------	-------	----------------

09077500	0	0	0	0	0	0	0	547	4,170	3,520	993	373
Water year	1984	, 9,7	60									
09077500	248	0	0	0	0	0	0	819	4,020	739	305	134
Water year	1985	, 62,2	70									
09077500	212	0	0	0	0	0	68	1,090	2,510	934	518	175
Water year	1986	, 5,4	90									

09077500 Diversions during water year 1987 for this tunnel will be published in a subsequent report.

TRANSMOUNTAIN DIVERSIONS NO LONGER PUBLISHED

Following is a list of Transmountain Diversions no longer being published in this report. Diversions, in acre-feet, for these sites are available from the State of Colorado, Division of Water Resources.

TO PLA	TTE RIVER BASIN	TO ARKAN	ISAS RIVER BASIN	TO RIO GRANDE BASIN				
09012000 09022500	Eureka ditch Moffat Water tunnel	09061500 09062000	Columbine ditch Ewing ditch	09118200 09121000 09341000	Tarbell ditch Tabor ditch Treasure Pass ditch			
09046000	Boreas Pass ditch	09062500	Wurtz ditch	09347000	Don LaFont ditches 1&2			
09047300	Vidler tunnel	09073000	Twin Lakes tunnel	09348000	Williams Cr- Squaw Pass			
		09115000	Larkspur ditch		ditch			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	09351000	Pine River- Weminuche Pass ditch			
				09351500	Weminuche Pass ditch			

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in three tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and discharge at crest-stage stations; and the third is a table containing discharge measurements made at miscellaneous sites for both low flow and high flow are given in a fourth table.

LOW-FLOW PARTIAL-RECORD STATIONS

Measurements of streamflow in the area covered by this report made at low-flow, partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simulataneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

DISCHARGE MEASUREMENTS MADE AT LOW-FLOW PARTIAL-RECORD STATIONS DURING WATER YEAR 1987

Station no.	Station name	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
*09058900	Moniger Creek near Minturn, CO	Lat 39°43'37", long 106°28'50", in Eagle County, on left bank 1.5 mi upstream from mouth, 7.5 mi north of Minturn.	0.76	1965-87	6-11-87 8-21-87 9-02-87	.09

^{*}Also a crest-stage partial-record station.

Dis

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device which vill register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed rom discharge measurements made by indirect measurements of peak flow or by current meter.

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS DURING WATER YEAR 1987

Drainage

Non-

Period

Station no.	Station name	Location	area (mi²)	contrib- uting				charge (ft³/s)
		PINEY R	RIVER BASIN					
`C9058900	Moniger Creek near Manturn, CO	Lat 39°43'37", long 106°28'50" in Eagle County, on left ba 1.5 mi upstream from mouth, 7.5 mi north of Minturn.	ink	-		6-11-87 unknown		1.20
		COLORADO	RIVER BASI	N				
↑9061450	Sweetwater Creek at mouth near Dotsero, CO	Lat 39°43'20", long 107°02'22" in NW4NE4 sec.9, T.4 S., R. Eagle County, 5.3 mi north Dotsero.	.86 W.,	-	1979-87	6-9-87	8.70	245
€9091100	Mamm Creek near Silt, CO	Lat 39°43'54", long 107°42'48" in NW4NW4 sec.18, T.6 S., R.92 W., Garfield County, 3.3 mi southeast of Silt.	63.3	-	1979-87	unknown	10.43	unknown
		GUNNISON	RIVER BASI	N				
149450	Dry Creek near Olathe, CO	Lat 39°33'19", long 108°02'43", SW4NE4 sec. 36, T.50 N., R.11 W., Montrose County, 4.9 mi southwest of Olathe.		-	1979-87	unknown	2.74	3.6
		SAN JUAN	RIVER BASI	N				
^9361400	Junction Creek near Durango, CO	Lat 37°20'04", long 107°54'35" sec.36, T.36N., R.10 W., La Plata County, on left bank 4.5 mi upstream from mouth and 4.5 mi northwest of Durango.	26.3	-	1959-65, 1972, 1979-87	6-7-87	3.23	255

^{*}Also a low-flow partial-record station. a Maximum gage height, discharge not determined.

DATE

NOV 24...

DATE

NOV 24...

DISCHARGE AND SELECTED WATER-QUALITY DATA AT SITES ON UPPER WILLIAMS FORK WILLIAMS FORK BASIN

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
09035870 - SOUTH FORK WILLIAMS FORK BELOW SHORT CREEK NEAR PTARMIGAN PASS, CO

DAT		TIME	STRE FLO INST TANE (CF	W, CON AN- DU OUS AN S) (US	FIC N- PI CT- (STA CE AI /CM) UNIC	AND- AT RD WA (S) (DE	URE D TER SO G C) (M	GEN, DI IS- SO LVED (M G/L) AS	CIUM SI S- DI DLVED SOL IG/L (MG CA) AS	MG) AS	S- VED G/L NA)	
24		1145	9	. 9	80 '	7.0	0.0	10.2 1	0 2	2.3 1	.8	
NO		S	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L AS F)	AS SIO2)	AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)		
	24		0.80	33	6.6	<0.10	0.40	6.3	0.03	0.14		
	DATE	GE MC O F	NITRO- EN, AM- DNIA + RGANIC DIS. (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	(UG/L	ZINC, DIS- SOLVED (UG/L AS ZN)		
NO	24		<0.20	<0.01	<0.01	<0.01	<10	12	2	10		
394		20101	1 - SOU	TH FORK (WILLIAMS I	FORK ABOV			IN NEAR LE	•		
TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM	- (s	PH STAND- ARD NITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS-	DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
1045	8	32	6.9	0.0	10.8	9.9	2.3	1.8	0.80	34	6.6	<0.10
FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA DIS- SOLVE (MG/L AS SIO2)	AN CD	NITRO- GEN, 4MONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS DIS-	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)		IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, DIS- SOLVED (UG/L AS ZN)

0.40 6.1 0.03 0.14 <0.20 <0.01 <0.01 <0.01 10 15 3

10

DISCHARGE AND SELECTED WATER-QUALITY DATA AT SITES ON UPPER WILLIAMS FORK--Continued

WILLIAMS FORK BASIN

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 09035880 - SOUTH FORK WILLIAMS FORK BELOW OLD BALDY MOUNTAIN NEAR LEAL, CO

DATE NOV 24	TIME 1050	STRE FLO INST TANE (CF:	AM- CI W, CC AN- DU SUS AN	E- FIC N- CT- CE /CM)	PH (STA AF UNIT	ND-	TEMP ATU WAT (DEC	RE ER	SOL (MG	S- VED	CALC DIS SOL (MG AS	- VED /L CA)	DI SOL (MG AS	UM, S S- VED S /L	SODIU DIS- SOLVE (MG. AS 1	ED /L
27777	.030	•		٥٥	'	• •		•••		•••	• •		_	• .		• ,
DATE	S D SO (M	TAS- IUM, IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3)	DI SO (M	FATE S- LVED (G/L SO4)	RI DI SO (M	LO- DE, S- LVED G/L CL)	RII D: SOI (M)	JO- DE, IS- LVED G/L F)	SILI DIS SOL (MC AS	VED	NITI GEN AMMON DIS SOLV (MG,	N, NIA S- VED /L	NITI GEN NO2+N DIS SOLV (MG,	N, NO3 S- VED /L	
NOV 24		1.2	35		6.8	<	0.10	(0.40	6	. 6	0.0	23	0.	1 1	
DATE NOV	NI GEN MON ORG DI (M	TRO- ,AM- IA + ANIC	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	PHO PHO SO (M	OS- ROUS IS- LVED IG/L P)	PH PHO	OS- ROUS THO, S- VED /L	ALI INI DI SOI (UC	JM- JM, IS- LVED G/L AL)	IRO DI SOL (UC	N, S- VED	MANO NESI DIS SOLV (UG,	GA - E, S- VED /L	ZING DIS SOLV (UG)	C, S- /ED	
24		0.40	<0.01	0	.01	<0	.01		<10		38		6		11	

METEOROLOGICAL DATA AT MISCELLANEOUS SITES

GREEN RIVER BASIN

401751107062000 UPPER FOIDEL CREEK PRECIPITATION GAGE, NEAR OAK CREEK, CO

LOCATION.--Lat $40^{\circ}17^{\circ}51^{\circ}$, long $107^{\circ}06^{\circ}20^{\circ}$, in SE $_{4}^{\circ}$ SE $_{4}^{\downarrow}$ sec. 24, T.4 N., R.87 W., Routt County, Hydrologic Unit 14050001, and 8.7 mi northwest of Oak Creek.

METEOROLOGICAL DATA

GAGE.--Rain-gage recorder and snow-course. Altitude of gage is 8,050 ft above National Geodetic Vertical Datum of 1929, from topographic map.

SNOW-COURSE DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Date	Depth (inches)	Water content (inches)	Density (percent)
Feb 12 Mar	24.3	5.4	22.2
10	23.4	7.3	31.2
Apr 02	34.4	9.6	27.9

RAINFALL RECORDS

PERIOD OF RECORD. -- January 1976 to current year.

INSTRUMENTATION. -- Belfort weighing bucket rain-gage.

REMARKS.--Unpublished rainfall data for water years 1976-86 are available in district office.

RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DE C	JAN	FEB	MA R	APR	MA Y	JUN	JUL	AUG	SEP
1	.00	.00				.00	.00	.12	.00	.00		.00
ż	.39	.00				.00	.03	.13	.00	.00		.00
3	.00	.00				.00	.00	.00	.00	.00		.04
Ĭ.	.00	.00				.00	.00	.00	.00	.00		.00
5	.27	.00				.00	.16	.00	.00	.00		.00
,	• - 1	•00				.00	• 10	•00	•00	•00		•00
6	.46	.00				.00	.00	.00		.00		.00
7	.02	.00				.00	.00	.00		.00		.00
8	.00	.00				. 17	.05	.00		.00		.00
9	.00	.00				.04	.00	.00		.00		.00
10	.00	.00				.00	.00	.13		.00		.00
								• .5				
11	.00	.00				.24	.15	.00		.60		.00
12	.01	.00			.02	.00	•33	.00		.23		.00
13	.00	•00			.05	.23	.03	.00		.00		.00
14	.10	.00			.47	.20	,00	.00		.00		.02
15	. 47	.00			00	.00	.00	.01		.00		.00
. ,	• • •	•00			• • • •	•00	•00	• • • •		•••		• • • •
16	.11	.00			.00	.12	.00	.02		.00		.16
17	.00	.00			.00	.03	.00	.00		.30		.00
18	.00	.00			.00	.01	.00	.22		.00		.00
19	.00	.41			.00	.16	.00	.10		.00		.00
20	.00	.00			.00	•35	.76	.02		.00		.00
21	.25	.20			.00	.04	.00	.41		.00		.00
22	.30	.21			.00	.03	.00	.00		.00		.00
23	.25				.00	.00	.00	.18		.00		.00
24	.00				.00	.00	.00	.13		.00		.00
25	.07				.24	.00	.00	.00		•23	.02	.00
26	.02				•54	.10	.00	.09		.06	.00	.00
27	.03				.08	.15	.00	.00		.00	.00	.00
28	.00				.01	.00	.00	.00		.00	.00	.00
29	.00					.01	.00	.19		.64	.00	.00
30	.00					.00	. 10	.00		.37	.00	.00
31	.00					.00		.00		.00	.00	
TOTAL	2.75					1,88	1.61	1.75		2.43		.22
MEAN	.09					.06	.05	.06		∠.43 .08		.01
MAX	.47									.64		.16
MIN						•35	.76	.41				
1-1 T IA	.00					.00	.00	.00		.00		.00

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	SEDI - MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
401540106502801 L	. MORRIS	ON C AB D	AM SITE N	R OAK CREE	K, CO (L#	AT 40 15 4	ON LONG 1	06 50 28W)
APR 1987 22 MAY	1030	6.0	123	7.6	2.5	12.7	479	7.7
20 JUN	1045	2.0	134	8.0	9.5	8.7	35	0.19
22 JUL	1100	0.79	286	8.7	15.0		22	0.05
13 AUG	1030	0.27	285	8.2	14.5	8.2	13	0.01
19	1040	0.25	266	8.3	12.5	8.0	24	0.02
40160810651300	1 MIDDLE	C AB DAM	SITE NR	OAK CREEK,	CO (LAT	40 16 08N	LONG 106	51 30W)
APR 1987 22 MAY	0945	0.48	384	7.8	1.0	12.4	24	0.03
20 JUN	1010	0.26	315	8.1	7.0	9.9	41	0.03
22	1040	0.16	463	8.8	10.0	8.7	40	0.02
JUL 14	1000	0.04	439	8.1	8.0	9.2	183	0.02
40160910652520	1 YAMPA	R AB DAM S	SITE NR O	AK CREEK,	CO (LAT 1	10 16 09N	LONG 106	52 52W)
APR 1987 22 MAY	1445	107	512	8.2	11.0	10.4	114	33
20 JUN	1345	86	339	8.4	11.5	8.7	64	15
22 JUL	1400	51	506	8.8	17.5		25	3.5
14 AUG	1345	100	484	7.8	17.0	6.8	103	28
19	1015	50	455	8.1	28.0	7.6	25	3.4
40172910651460	1 MARTIN	C AB DAM	SITE NR	OAK CREEK,	CO (LAT	40 17 29N	LONG 106	51 46W)
APR 1987 22 MAY	1120	0.09	307	7.4	7.5	10.3	9	0.00
20 JUN	1110	0.03	271	7.9	10.0	9.2	5	0.00
22	1345	0.01	450	8.1	16.5		58	0.00
JUL 14	1330	0.04	364	8.0	20.0	5.6	8	0.00
AUG 19	1145	0.05	414	7.7	14.5	6.0	49	0.01

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
09010500)	COLORADO	R BELOW B	AKER GULCH,	NR GRAND LAKE, CO.	(LAT	40 19 33N	LONG 105	51 22
OCT 1986 10	1000	37	80	2.0	MAY 1987 27	1020	138	52	3.0
NOV 25	0920	17	68	0.0	JUL 10	1015	36	66	11.0
JAN 1987 15	1115	11		0.0	AUG 04	1800	18	70	19.5
MAR 05	1100	8.9	95	0.0	SEP 03	0945	14	85	9.5
APR 28	1100	96	56	3.0					
	090195	00	COLORADO	RIVER NEAR	GRANBY, CO. (LAT 40	07 15	N LONG 105	5 54 00 W)	
OCT 1986 09	1230	29	72	9.0	JUL 1987 10	1220	61	65	12.0
APR 1987 29	1700	30	88	7.0	AUG 04	1510	37	72	17.0
MAY 27	1330	69	72	10.0	SEP 03	1230	15	85	12.0
									h
09022000)	FRASER R	IVER AT UP	PER STA, NE.	AR WINTER PARK, CO.	(LAT	39 50 45N	LONG 105	45 05
OCT 1986 07 NOV	1145	7.8	70	4.5	JUL 1987 08 AUG	1205	17	65	7.0
24 APR 1987	1100	4.1	75	0.5	03 SEP	1330	17	62	9.0
27 MAY	1115	12	90		01	1315	7.6	72	9.5
26	1200	32	56	4.0					
(09024000	F	RASER RIVE	R NEAR WINT	ER PARK, CO. (LAT	39 54 0	OON LONG 1	05 46 34W)	!
OCT 1986 07	1420	7.9	87	7.0	MAY 1987 28	1110	50	61	5.5
NOV 26	1230	5.9	92	0.5	JUL 08	1455	5.7	85	13.0
JAN 1987 13	1400	5.3	94	0.0	AUG 05	1630	35	68	12.5
MAR 04	1515	7.4	220	0.0	SEP 04	1145	21	75	8.0
APR 27	1520	21	95	3.0					
(09025000	₹.	ASQUEZ CRE	EK NEAR WIN	TER PARK, CO. (LAT	39 55	13N LONG	105 47 05W	i)
OCT 1986 07	1635	5.2	54	6.0	MAY 1987 28	0930	36	42	2.0
NOV 26	1010	2.0	49	0.5	JUL 09	1410	7.3	46	11.0
JAN 1987 13	1610	0.36	50	0.0	AUG 05	1310	6.9	48	13.0
APR 29	1440	6.6	60	5.0	SEP 02	1515	7.6	50	10.5
	0902	5400	ELK CRE	EK NEAR FRA	SER, CO. (LAT 39 55	5 09N I	ONG 105 4	9 31W)	
OCT 1986 08	1250	0.72	54	7.0	JUL 1987 09	1215	1.1	42	13.0
NOV 25	1500	0.58	58	0.5	AUG 04	1135	1.1	50	12.5
APR 1987 29	1230	4.4	49	4.0	SEP 04	0945	1.2	52	9.0
MAY 28	1500	5.6	38	7.0					
	0902650	0	ST. LOUIS	CREEK NEAR	FRASER, CO. (LAT 39	9 54 36	5n Long 10	5 52 40W)	
OCT 1986 08	1000	10	94	4.0	MAY 1987 28	1750	62	74	5.5
JAN 1987 14	1000	5.9	65	0.0	JUL 09	1000	21	76	7.0
MAR 05	1650	5.2	1650	0.0	AUG 04	0940	19	75	8.5
APR 29	1020	11	95	4.0	SEP 01	1440	11	85	13.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	090320	000	RANCH CRE	EK NEAR F	RASER, CO. (LAT 39	57 00N 1	ONG 105 4	5 54 W)	
OCT 1986 08	1520	3.6	54	5.5	MAY 1987 26	1645	14	42	6.5
NOV 24	1330	3.5	56	0.5	JUL 10	1730	4.1	44	11.0
JAN 1987 14	1325	2.0	54	0.0	AUG 03	1830	5.8	46	12.0
MAR O6 APR	0845	1.9	54	0.0	SEP 02	1005	4.4	50	8.0
30	1100	6.6	55	4.0					
	09032	100	CABIN CRE	EK NEAR F	RASER, CO. (LAT 39	59 09N I	ONG 105 4	4 40W)	
OCT 1986 08	1655	3.5	44	7.0	JUL 1987 09	1715	7.4	44	13.5
FEB 1987	1120	1.0	56	0.0	AUG 03	1605	5.1	45	15.0
MAY 13	1630	2.3	30	7.0	SEP 02	1300	3.4	50	12.0
14 26	1230 1500	1.8 19	30 34	8.0 8.0					
09034	250	COLORAD	O RIVER AT	' WINDY GA	P, NEAR GRANBY, CO	. (LAT 40) 06 30N L	ONG 106 0	0 13W
OCT 1986					MAY 1987				
09 NOV	1020	113	145	7.0	27 JUL	1830	233	108	10.0
25 JAN 1987	1240	92	145	2.0	10 AUG	1430	176	145	15.5
14 MAR 05	1615 1350	73 83	125 170	0.0	05 SEP 03	1005 1450	160 84	150 125	16.0 17.0
APR 28	1520	291	140	5.0	03	1430	04	123	11.0
					NES BASS CO /LAT	20 lis 2:	7N 1/NIC 10	E EN 2141)	
OCT 1986	09034900	ВО	DIAIL CREE	K NEAR JU	NES PASS, CO. (LAT JUN 1987	39 40 3	IN BONG 10	5 54 ZIW)	
09 NOV	0925	2.9		0.0	08 JUL	0925	41	45	5.0
25 FEB 1987	1110	1.5		0.0	30 AUG	1020	8.7	51	8.0
11 MAY	1115	0.77		0.0	28	1330	4.7	60	9.0
05	1630	5.2	55	0.0					
09	035500	WILL	IAMS FORK	BELOW STE	ELMAN CREEK, CO. (LAT 39 46	5 44N LONG	105 55 4	OW)
OCT 1986	1030	0.96		1.5	JUL 1987 30	1210	22	52	10.5
MAY 1987 05	1315	19	80	0.5	AUG 28	1140	12	65	5.5
090357	00	WILLIAMS	FORK ABOV	E DARLING	CREEK, NR LEAL, C	O. (LAT	39 47 22N	LONG 106	01 18
DEC 1986	10.40	7 0	67	0.0	JUN 1987	1 /1 20	102	11.2	10 0
₽3B 1987	1030	7.8	67	0.0	24 JUL 37	1430 1640	102 33	43 58	10.0 14.0
03 MAR 12	1100 1030	7.1 6.1	100 69	0.0	27 AUG 25	1055	28	65	10.0
MA Y 19	1750	58	44	6.0	SEP 24	1335	8.3	65	10.5
.,									
200 4204	090358	300	DARLING C	REEK NEAR	LEAL, CO. (LAT 39	48 17N I	ONG 106 0	(אוו ו	
OCT 1986 07 DEC	1200	4.3		2.5	JUN 1987 25 JUL	1150	21	52	6.0
19 FEB 1987	1200	2.7	7 5	0.0	28 AUG	1045	7.7	66	8.5
03 MAR	1420	2.3	110	0.0	26 SEP	1020	7.3	65	7.0
12 MA Y	1545	2.4	80	0.0	25	1210	5.3	74	5.0
20	1330	26	50	3.0					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
09035820		SO FK WIL	LIAMS FK	AT UP STA	NR PTARMIGAN PASS,	C (LAT	39 42 30N	LONG 105	56 49
OCT 1986	1200	2.0	67	5.5	JUN 1987 11	0915	28	43	3.0
NOV 24	1015	1.0	58	0.0	յս <u>լ</u> ՝ 01	0930	11	52	5.0
JAN 1987 13	1105	0.67		0.0	30 SEP	0905	3.4	62	8.5
MAR 10	1000				02	0925	1.6 0.93	73 	8.5 1.0
MAY		0.41		0.0	30	0900	0.93		7.0
05 26	1030 0900	2.9 10	55 48	1.5 1.5					
090359	900	SOUTH	FORK OF W	ILLIAMS F	ORK NEAR LEAL, CO.	(LAT 39	47 44N LON	NG 106 01	49W)
OCT 1986 07	1530	17	83	5.5	APR 1987 16	1600	17	69	0.0
NOV 24	1515	17	83	0.0	MAY 19	1434	95	51	5.5
DEC 23	1600	9.3	44	0.0	JUN 24	1215	68	55	7.5
JAN 1987 16	1050	8.5		0.0	ՄԱ 27	1455	21	75	15.0
FEB 03	1250	8.8	120	0.0	AUG 25	0925	19	80	8.5
MAR 12	1150	9.0	92	0.0	SEP 24	1000	12	84	6.5
	09036	000	WILLIAMS	FORK NEA	R LEAL, CO. (LAT 39	49 53N	LONG 106 ()3 15W)	
OCT 1986	1715	43	72	7.0	MAY 1987 20	1720	225	50	7.0
DE C 23	1745	22	52	0.0	JUN 25	1530	213	53	12.5
JAN 1987	1030	18		0.0	JUL 28	1345	78	65	14.0
FEB 03	1630	20	90	1.0	AUG 26	1250	56	65	11.5
MAR 13	1235	18	120	3.0	SEP 25	1525	28	80	9. 5
090	39000	TRO	UBLESOME	CREEK NEA	R PEARMONT, CO. (LA'	T 40 13	O3N LONG	106 18 45W	1)
OCT 1986	1320	20	92	7.0	MAY 1987	1805	118	82	10.0
NOV 13	1415	24	92	0.0	JUN 04	1620	53	85	
DEC 11	1120	10	105	0.0	JUL 17	1125	17	88	11.5
FEB 1987 26	0920	13	104	0.0	AUG 13	1040	13	111	11.0
MAR 25	1600	16		0.5	SEP 18	1025	7.7	97	5.0
APR 22	1335	27	87	7.0					
	09046	490	BLUE RIV	ER AT BLU	E RIVER, CO. (LAT 3	9 27 211	LONG 106	01 52 W)	
OCT 1986 06	1330	19	134	8.0	MAY 1987 19	1000	91	133	6.0
NOV 05	1425	14	144	2.5	JUN 23	1545	106	97	10.0
DEC 16	1155	9.5	166	0.5	JUL 17	0855	52	126	11.0
FEB 1987 06	1130	5.2	220	0.5	AUG 11	1050	27	116	12.5
MAR 10	0940	6.4	182	0.5	SEP 15	0840	22	126	7.5
APR 27	1330	24	162	2.5					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	TEMPER- ATURE WATER (DEG C)
	09046	5600	BLUE RI	VER NEAR	DILLON, CO. (LAT 39	32 55N I	ONG 106 0	2 19W)	
OCT 1986 06	1520	64	137	9.0	MAY 1987 19	1120	260	127	5.0
NOV 11	1700	41	152	4.0	JUN 23	1725	286	110	6.5
DEC 16	1000	32	151	3.0	JUL 17	1030	109	125	9.5
FEB 1987 06	1330	23	155	1.5	AUG 11	1420	79	125	10.0
MAR 10	1115	27	166	3.5	SEP 15	1020	56	142	7.5
APR 27	1510	86	154	3.5	1,5000		,,		,,,,
-,	13,0		13.	3.7					
	0904750	00	SNAKE RIV	ER NEAR 1	MONTEZUMA, CO. (LAT	39 36 201	N LONG 105	56 33W)	
OCT 1986	1040	33	96	3.0	MAY 1987 18	1240	217	56	5.0
NOV 11	1200	28	82	0.0	JUN 10	1210	300	58	5.0
DEC 15	1405	18	87	0.0	JUL 14	1235	79	75	7.0
FEB 1987 02	1405	17	90	0.0	AUG 10	1315	56	83	10.0
MAR 09	1415	15	105	0.5	SEP 14	1115	30	99	5.0
APR 29	1035	61	92	2.0					
	0904770	00	KE YSTONE	GULCH NE	R DILLON, CO. (LAT	39 35 40 1	N LONG 105	58 19W)	
OCT 1986 08	1640	4.6	77	5.5	MAY 1987	1500	17	63	5.0
иои					18 JUN		18	61	
11 DEC	1500 1655	4.0 2.8	79 80	0.0	JUL JUL	1510	6.0		7.0
15 FEB 1987				0.0	14 AUG	1410		70	10.0
02 MAR	1500	2.3	83	0.0	10 SEP	1440	3.9	73	11.5
09 APR 29	1630 1310	2.3 6.3	87 81	0.0 3.5	14	1240	2.9	80	6.0
27	1510	0.5	01	3.9					
09050100		TENMILE (CREEK BL N	ORTH TENI	MILE C, AT FRISCO, C	O. (LAT	39 34 37N	LONG 106	06 33
OCT 1986 07	1330	53	690	7.0	MAY 1987 12	1530	317	388	7.0
NOV 17	1005	31	510	1.0	JUN 02	1405	337	450	9.0
DEC 10	1045	24	525	0.0	JUL 14	1330	7 9	520	10.5
FEB 1987 25	1315	18		1.0	AUG 11	1245	60	7 15	12.0
MAR 24	1745	32	1240	1.0	SEP 14	1040	40	830	6.0
APR 21	1340	55	950	5.5					
	090507	700	BLUE RIV	ER BELOW	DILLON, CO. (LAT 39	37 32N I	ONG 106 0	3 57W)	
OCT 1986 07	1150	199	220	5.5	MAY 1987 12	1325	51	397	3.5
DEC 10	1210	51	240	4.5	JUN 02	1230	710	211	8.0
FEB 1987 25	1000	53	260	3.0	JUL 14	1125	314	206	14.5
MA R 24	1520	47	282	3.0	AUG 11	1355	189	265	5.0
APR		51	280	4.0	SEP 15	1235	67	255	4.0
21	1225	١ر	200	4.0	12	ررے،	91	ر ر ے	7.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
090510	050	STRAIG	HT CR BLW	LASKEY GU	CH NR DILLON, C	O (LAT 39	38 23N LON	IG 106 02	23W)
OCT 1986 02	1245	9.5	94	5.0	MAY 1987 12	1120	24	123	4.0
07 NOV	1050	9.6	93	2.5	JUN 02	1005	31	79	2.5
17 DEC	1250	6.6	99	1.0	JUL 14	1000	15	87	5.5
10 FEB 1987	1345	6.5	105		AUG 11	1050	9.5	106	9.0
25 MAR	1200	4.1	120	0.0	SEP 15	1355	8.7	105	5.0
24 APR	1230	3.7	165	0.0					
21	1105	5.4	174	0.0					
	09052	2000	ROCK CRE	EK NEAR D	ILLON, CO. (LAT	39 43 23N	LONG 106 0	17 41W)	
OCT 1986	0925	10	50	3.0	MAY 1987 19	1320	62	28	4.0
NOV 13	1645	7.1	58	0.0	JUN 12	1205	64	24	6.5
DEC 18	1530	5.2	71	0.0	JUL 15	1655	19	34	10.5
FEB 1987 05	0900	4.1	75	0.0	AUG 19	1105	12	45	8.0
MAR 13	1410	5.1	70	1.0	SEP 14	1530	8.6	51	7.0
APR 17	1230	7.6	60	3.0					
09052400		BOULDER C	REEK AT U	PER STATIO	ON, NEAR DILLON,	CO. (LAT	39 43 41N	LONG 106	10 22
OCT 1986					MAY 1987				
08 Nov	1400	7.1	43	3.0	21 JUN	1420	31	32	4.0
12 DEC	1655	6.7	60	0.0	24 JUL	0935	43	28	6.0
18 FEB 1987	1420	3.4	68	0.0	16 AUG	1630	17	33	14.0
06 MAR	1200	1.7	72	0.0	19 SEP_	0920	7 • 4	42	6.0
13 APR	1135	3.0	74	0.0	15	1430	7.0	46	4.0
28	1150	17	42	1.0					
09052800)	SLATE CR	EEK AT UP	ER STATION	, NEAR DILLON,	CO. (LAT	39 45 47N L	ONG 106 1	1 31W
OCT 1986 09 NOV	1240	14	38	4.0	MAY 1987 27 JUN		26	32	5.5
14 DEC	1155	5.5	53	0.0	25	1220	56	21	10.0
18 FEB 1987	1130	4.5	63	0.0	JUL 16 AUG	1100	29	27	10.0
05 APR	1240	3.0	67	0.0	12	1020	17	34	11.0
15	1345	6.3	72	0.0	SEP 17	1035	17	41	6.5
09054000)	BLACK CR	EEK BELOW	BLACK LAKE	C, NEAR DILLON,	CO. (LAT 3	39 47 59N L	ONG 106 1	6 04W
OCT 1986 08	1030	21	21	7.5	MAY 1987 27	1015	35	27	5.0
NOV 19	1630	5.0	26	3.0	JUN 25	0950	81	21	9.0
DEC 17	1435	3.8	29	1.0	JUL 15	1450	4 1	19	12.0
FEB 1987 04	1300	2.3	<50	1.0	AUG 12	1450	33	21	15.0
MAR 11	1435	2.7	37	1.0	SEP 16	1505	10	23	12.0
APR 15	1650	3.0	41	2.0					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	09055300	CA	TARACT CR	EEK NEAR	KREMMLING, CO. (LAT	39 50 07	N LONG 10	6 18 57W)	
OCT 1986	1035	8.6	38	7.0	MAY 1987 20	1235	83	35	6.0
NOV 12	1420	4.1	44	2.0	JUN 12	1010	116	26	8.0
DEC 17	1210	2.2	49	1.0	JUL 15	0955	17	29	13.5
FEB 1987 04	1045	1.0	80	1.0	AUG 13	1130	8.1	34	16.0
MAR 10	1 7 05	1.1	60	1.0	SEP 16	0950	3.0	41	10.0
APR 13	1610	1.8	73	1.0					
	09058000	СО	LORADO RI	VER NEAR	KREMMLING, CO. (LAT	40 02 12	2N LONG 100	6 26 22W)	
OCT 1986	1630	020	220	10 E	MAY 1987	1725	1250	277	111.0
NOV 14	1620	930	220 240	10.5	13 JUN 03	1 73 5 1610	1250	277	14.0
FEB 1987	1110	792		1.0	JUL		1250	273	15.0
26 MAR 26	1230	674	210	2.0	15 AUG	1730	77 5 7 84	360	20.0
APR 23	1555	672	240	5.5	14 SEP 16	1305		222	14.5
23	1 7 05	983	270	11.0	10	1625	732	222	14.0
09058	500	PINEY RI	VER BELOW	PINEY L	AKE, NEAR MINTURN, CO	O. (LAT 3	39 42 29N I	LONG 106	25 38
OCT 1986	1255	0 0	20	1 5	MAY 1987	1500	106	0.2	F 0
15 NOV	1355	8.2	28	1.5	14 JUN	1500	106	92	5.0
18 JAN 1987	1130	7.1		0.5	10 JUL	1418	7 9	22	9.5
27 MAR	1200	1.6	67	0.0	15 AUG	1402	14	44	18.0
03 APR	1200	2.8	74	0.5	31	1439	6.0	59	18.5
22	1400	18	54	4.0					
	090586	10	DICKSON	CREEK NE	AR VAIL, CO. (LAT 39	42 14N L	ONG 106 27	7 25W)	
OCT_1986					JUN 1987				
15 NOV	1045				10 JUL_	1226	2.7	291	11.5
18 APR 1987	0950	1.0		0.5	15 AUG	1514	1.3	366	17.5
21 MAY	1420	1.6	328	1.0	21	1333	1.3	367	15.0
21	1320	4.6	252	7.5					
	09058 7 0	0	FREEMAN C	REEK NEA	R MINTURN, CO. (LAT	39 41 55N	LONG 106	26 41W)	
OCT 1986 15	1150	0.28	280	0.5	JUN 1987 10	1530	1.1	205	10.0
NOV 18	1045	0.23		0.0	JUL 15	1621	0.26	195	19.5
APR 1987 21	1630	0.89	195	0.5	AUG 31	1200	0.14	196	16.0
MAY 21	1725	5.8	209	6.5					
	09058800	EA	ST MEADOW	CREEK NE	EAR MINTURN CO. (LAT	39 43 51	N LONG 106	5 25 36W)	
OCT 1986 15	1500	3.2	90		JUN 1987 11	1138	15	85	11.5
NOV 18	1330	1.5	93	0.5	JUL 15	1158	2.0	205	10.5
APR 1987 22	1150	1.1	85	1.5	SE P 02	1320	1.0	185	10.5
MAY 21	1440	18	266	5.0					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	09059500	PI	NEY RIVER	NEAR STATE	BRIDGE, CO. (LAT	39 48 00	ON LONG 10	6 35 00W)	
OCT 1986 15	0935	28	272	0.5	JUN 1987 02	1635	220	130	12.5
29 NOV	1250	30	279	3.5	JUL 09	0955	41	210	11.5
19 MAR 1987	1330	28	296	2.0	AUG 05	1705	22	265	18.5
10 APR	0900	22	362	0.5	SEP 01	1645	16	315	17.5
23 MAY	1100	96	217	3.0					
20	1615	379	125	7.5					
0.00	090630	00	EAGLE RI	VER AT RED	CLIFF, CO. (LAT 39	9 30 34N	LONG 106	22 00W)	
OCT 1986	1540	17	218	6.0	MAY 1987 01	1407	99	156	4.5
NOV 17 DEC	1630	16	189	2.5	13 JUN	1549	145	195 154	8.0 13.0
15 JAN 1987	1430	19	213	0.5	02 AUG	1715	103 26	228	14.0
23 MAR	1345	16	214	0.0	16 19	1635 1710	12	236	16.0
04	1110	14	223	0.5					
	09063200	WE	ARYMAN CRI	EEK NEAR RE	D CLIFF, CO. (LAT	39 31 14	N LONG 10	6 19 06W)	
OCT 1986					MAY 1987				
14 NOV	1330	4.0	289	0.0	12 JUN	1245	12	236	5.0
17 JAN 1987	1540	2.5	265	2.5	JUL 02	1632	24	220	6.5
23 MAR	1020	1.3	258	0.0	16 AUG_	1550	9.3	119	12.0
04 APR	0900	1.0	286	0.5	19	1500	4.7	278	9.0
23	1240	3.2	264	2.0					
	09063400	T	URKEY CRE	EK NEAR REI	CLIFF, CO. (LAT 3	39 31 228	LONG 106	20 15W)	
OCT 1986 14	1250	6.7	280	1.0	MAY 1987 12	1430	45	220	6.0
NOV 17	1445	5.5	280	2.0	JUN 02	1430	63	200	8.0
JAN 1987 23	1115	1.9	245	0.0	JUL 16	1617	17	256	12.5
MAR 04	0955	3.3	283	0.5	AUG 19	1600	8.0	207	9.0
APR 23	1015	13	268	0.5					
	09063900	MI	SSOURI CRE	EEK NEAR GO	LD PARK, CO. (LAT	39 23 25	SN LONG 10	6 28 10W)	
OCT_1986					MAY 1987				-
07 NOV	1140	7.1	31	4.0	JUN _ 20	1255	20	31	3.5
17 JAN 1987	1100	2.5	36	1.0	JNF 05	1035	13	25	4.0
27 MAR	1210	0.91	52	0.0	16 AUG	1140	10	27	12.0
04 APR	1515	0.62	40	0.5	19	1150	2.4	36	11.5
09	1205	0.75	35	0.5					
	09064000	Н	OMESTAKE (CREEK AT GO	LD PARK, CO. (LAT	39 24 20	N LONG 10	6 25 58W)	
OCT 1986	1315	25	36	8.0	MAY 1987 20	1440	5 5	29	5.0
NOV 17	1200	13	0	0.5	JUN	1235	33	27	9.0
JAN 1987 27	1110	10	34	0.0	JUL 16	1200	30	30	13.5
MAR 03	1600	4.5	30	0.0	AUG 19	1310	16	37	13.0
APR 09	1300	8.8	38	0.5					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	TEMPER- ATURE WATER (DEG C)
	09064500	нс	MESTAKE C	REEK NEAR	RED CLIFF, CO. (LA	т 39 28 2	24n Long 1	06 22 02W)
OCT 1986 07	1550	37	36	10.0	MAY 1987 01	1320	108	24	4.5
NOV 17	1330	20	34	3.0	20 JUN	1600	110	40	4.5
DEC 15	1340	13	57	0.5	JUL 02	1200	64	32	12.0
JAN 1987 27	1240	3.1	37	0.0	16 AUG	1440	36	31	14.0
MAR 03	1620	8.0	31	0.0	19	1410	20	45	13.5
APR 09	1510	14	49	1.0					
	090651	00	CROSS CR	EEK NEAR 1	MINTURN, CO. (LAT 3	9 34 05N	LONG 106	24 45W)	
OCT 1986	1650	30	3.1	h 0	MAY 1987	1650	157	27	6.0
14 NOV	1650	30	31	4.0	20 JUN	1650	157	27	6.0
26 DEC 15	1225	10	44	0.5	10 JUL	1824	202	22 34	9.0
JAN 1987	1630 1430	5.3 1.5	55 24	0.5	30 AUG 31	1135 1630	93 27	49	13.0 16.5
MAR 04	1200	2.0	78	0.0	31	1030	41	79	10.5
3	7200		10	0.9					
09065	500	GORE CRE	EK AT UPP	ER STATIO	N, NEAR MINTURN, CO	. (LAT 3	9 37 40N L	ONG 106 1	6 24W
OCT 1986 08	1030	12	60	6.0	APR 1987 08	0930	5.2	30	0.0
NOV 19	1015	6.8	< 50	0.0	JUN 03	1220	97	65	6.0
DEC 18	0815	5.5	< 50	0.0	JUL 15	0925	18	45	7.0
FEB 1987 25	0915	4.0	<50	0.0	AUG 19	1020	8.7	60	5.0
	09066000	ВІ	ACK GORE	CREEK NEAL	R MINTURN, CO. (LAT	39 35 4'	7N LONG 10	6 15 52₩)	
OCT 1986	3,300303	J.			APR 1987	33 33 .	=		
08 NOV	1350	5.8	120	8.0	29 30	1000 1000	5.6 26	85 68	0.0 1.0
20 DEC	1350	5.9	< 50	0.0	JUN 03	0850	40	120	7.0
17 FEB 1987	1650	4.4	< 50	0.0	JՄ∟ 15	1450	8.6	75	7.0
25	1425	3.0	< 50	0.0	AUG 18	0850	4.3	70	5.0
	0906610	00	BIGHORN C	REEK NEAR	MINTURN, CO. (LAT	39 38 241	N LONG 106	17 34W)	
0CI 1986 09	1050	2 0	.	7. 0	APR 1987 08	1205	2.0	25	0.0
NOA	1250	3.8	<50	7.0	30	1205 1130	2.0 17	35 45	0.0 1.0
20 DEC 17	1105	2.5	< 50	0.0	JUN 03	1500	27	45	6.0
FEB 1987	1355	1.7	< 50	0.0	JUL 16	1310	8.8	40	7.0
26	1515	1.7	<50	0.0	AUG 18	1605	3.7	70	5.0
	0906615	50	PITKIN CR	EEK NEAR	MINTURN, CO. (LAT 3	9 38 37N	LONG 106	18 07W)	
OCT 1986	1010	7.8	< 50	6.0	APR 1987 08	1515	1.5	45	0.0
NOV 19	1410	2.6	< 50	0.0	JUN 04	1010	35	60	6.0
DEC 17	1110	1.0	< 50	0.0	JUL 16	0850	7.5	60	7.0
FEB 1987 25	1710	1.7	< 50	0.0	AUG 19	1150	3.4	40	5.0
۵,۰۰۰	1110	1 • 1	. , 0	.	1,7 • • •	. , , , ,	٠	. •	,.,

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON- DUCT- ANCE (US/CM)	TEMPER - ATURE WATER (DEG C)
	090662	100	BOOTH CR	EEK NEAR	MINTURN,	CO. (LAT	39 39 02N	LONG 106	19 16W)	
OCT 1986 09	1500	5.8	65	7.0		APR 1987 09	1430	1.8	35	0.0
NOV 20	1630	6.3	<50	0.0		JUN 03	1805	42	45	6.0
DEC 18	1315	1.9	<50	0.0		JUL 16	1655	6.9	60	7.0
FEB 1987 26	0930	0.80	< 50	0.0		AUG 18	1240	1.7	40	5.0
	0906630	0	MIDDLE CR	EEK NEAR	MINTURN,	CO. (LAT	39 38 50N	LONG 106	22 48W)	
OCT 1986	1725	2.0	< 50	7.0		APR 1987	1225	0.61	40	0.0
NOV 20	1740	1.7	<50	0.0		JUN 03	1240	22	40	5.0
DEC 18	1705	0.74	<50	0.0		JUL 16	1415	4.1	30	7.0
FEB 1987 26	1205	0.40	< 50	0.0		AUG 19	1450	1.0	30	5.0
!	09066400	REI	SANDSTON	E CREEK 1	VEAR MINT	URN, CO.	(LAT 39 40	58N LONG	106 24 03	W)
OCT 1986	1200	2.0	0.4	۰ ۲		APR 1987	1650	F 2		1 5
NOV 18	1200	3.0	81	0.5		22 MAY	1650	5.2 33	54	1.5 4.5
DEC 16	1530	1.1	60	0.5		14 JUN	1215 1640	33 29	57	9.0
JAN 1987 28	1030 1630	2.5 0.63	84	0.5		JUL JUL	1802	3.3	. 96	12.5
MAR 03	1300	0.46	87	0.0		15 AUG 21	1444	1.1	105	11.5
03	1,000	0.40	01	0.7		21	1777	,	103	1,1.5
	090700	00	EAGLE RI	VER BELO	GYPSUM,	CO. (LAT	39 38 58N	LONG 106	57 11W)	
OCT 1986 14	1520	408	834	7.5		MAY 1987 19	1625	2030	198	9.0
NOV 17	1515	292	849	6.5		JUN 01	1605	1150	268	13.5
DEC 15	1425	231	996	0.0		JUL 06	1605	596		18.5
JAN 1987 20	1345	195	1110	0.0		AUG 04	1550	353	585	21.0
MAR 09	1525	222	950	0.0		31	1535	284	874	18.0
APR 13	1525	205	946	7.5						
	09070500	. (COLORADO R	IVER NEAL	R DOTSERO	, CO. (LA	r 39 38 401	I LONG 107	7 04 40W)	
OCT 1986 14	1200	1720	489	5.5		JUN 1987 01	1420	3220	336	12.5
NOV 17	1310	1530	475	4.5		JUL 06	1345	1730	469	17.0
MAR 1987 09	1330	1290	483	3.0		AUG 04	1400	1410	500	19.5
APR 13	1400	1300	527	5.5		31	1400	1220	504	15.5
MAY 19	1425	5040	214	9.5						
096	071300	GRIZZ	LLY CREEK	NEAR GLE	IWOOD SPRI	INGS, CO.	(LAT 39 4)	3 04N LONG	3 107 18 5	1W)
OCT 1986 16 DEC	1230	5.9		4.5		JUL 1987 08 22	1020 1450	3.6 2.1	219 220	9.0 16.0
04 JAN 1987	0950	3.2	291	0.0		AUG 06	1030	1.3	255	9.5
22 MAY	1105	1.5		0.0		SEP 02	1050	1.4	212	10.0
27	1005	50	206	0.0		J	10,0	1 • 7	-1-	, 5 . 0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT - ANCE	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
09073	300	ROARING	FORK RIVER	AB DIFFICUL	T C NR ASPEN,	CO. (LAT	39 08 28N	LONG 106	46 25
DEC 1986 09	1012	27	55	2.0	JUN 1987 03	0730	579	92	7.0
JAN 1987 13	1010	21	60	1.0	30	0932	366	120	7.0
MAR 03	1310	15	73	3.0	28 AUG	0950	45	50	13.0
APR 15	0850	17	68	3.0	25	1039	46	45	13.0
MAY 05	1217	74	57	6.0					
	09073400	RC	DARING FORK	RIVER NEAR	ASPEN, CO. (LA	T 39 10 4	8n Long 10)6 48 05 W)	
NOV 1986 04	1220	47	75	3.0	MAY 1987 05	1412	107	65	6.0
DEC 09	0809	45	65	2.0	03	1102	606	98	7.0
JAN 1987	1131	42	60	2.0	23	1036	551	87	9.0
MAR 03	1455	34	72	3.0	28 AUG	1115	75	56 65	13.0 14.0
APR 16	0720	44	87	4.0	25	1153	70	05	14.0
	090740	00	HUNTER CR	EEK NEAR ASE	PEN, CO. (LAT 3	9 12 21N	LONG 106	47 49W)	
OCT 1986	1005	17		1.0	MAY 1987 06	0725	58	63	4.0
04	1400	11	65	3.0	JUN 02	1440	189	35	9.0
09	1409	13	68	2.0	10r 30	0835	50	80	7.0
JAN 1987	0945	11	50	0.5	28 AUG	0805	36	50 38	12.5
MAR 03 APR	1025	5.7	72	0.5	25	0757	30	30	12.0
14	0920	5.3	67	1.0					
	090748	00	CASTLE CR	EEK ABOVE AS	SPEN, CO. (LAT	39 05 15N	LONG 106	48 42W)	
OCT 1986 16 NOV	0835	28	350	1.0	MAY 1987 05 JUN	0840	53	320	5.0
05 DEC	1343	26	300	2.0	03 30	1350 1232	121 115	320 345	6.0 9.0
10 JAN 1987	1108	16	270	1.0	JUL 28	1345	74	250	10.0
13 MAR	1508	15	230	1.0	AUG 25	1530	57	280	14.0
04 APR	0903	11	330	4.0					
14	1134	15	280	3.0					
V. 0.0.6	090757	00	MAROON CR	EEK ABOVE AS	SPEN, CO. (LAT	39 07 25N	LONG 106	54 17W)	
NOV 1986 05	1155	47	400	3.0	JUN 1987 02	0755	116 160	393 370	5.0 7.0
JAN 1987 13 APR	1329	24	320	2.0	30 JUL 28	1355 1520	109	340	10.0
15 MAY	1130	15	375	4.0	AUG 25	1705	70	387	13.0
05	1025	52	2 7 0	6.0	-37	,,,,,	, -		
	0907	6520	OWL CRE	EK NEAR ASPE	EN, CO. (LAT 39	13 25N L	ONG 106 5	2 45W)	
DEC 1986	1319	0.66	480	1.0	JUN 1987 04	0733	0.97	470 530	12 0
JAN 1987 14	1540	0.26	530	0.5	30 JUL 37	1520 1642	1.9 0.56	530 580	12.0
APR 14 MAY	1316	1.9	470	7.0	27 AUG 26	1400	0.50	560	16.0
06	0935	16	270	9.0	20	, 400	J.71	,,,,	. 3 . 3

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON- DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	090804	00	FRYINGPAN	RIVER NEAR	RUEDI, CO. (LAT 39	21 56	n LONG 106	49 30W)	
OCT 1986 16	1232	154	120	7.0	MAY 1987 04	1614	M324	134	6.0
NOV 05	0920	<151	210	4.0	JUN 04	0927	379	87	4.0
DEC 11	0802	>274	80	4.0	JUL 01	1232	213	120	7.0
JAN 1987 14	1250	<187	200	4.0	27 AUG 26	1420	149	120	8.5
MAR O4 APR	1310	<192	270	4.0	20	0859	121	137	7.0
15	1510	<175	120	8.0					
09081600		CRYSTAL	RIVER AB AV	VALANCHE C,	NEAR REDSTONE, CO.	(LAT	39 13 56N	LONG 107	13 36
OCT 1986	1532	194	450	10.0	MAY 1987 04	1415	519	320	
NOV 03	1214	191	480	9.0	JUN 01	1420	621	290	9.0
DEC 08 JAN 1987	1249	101		10.0	JUL 01 27	1045 1207	608 265	330 330	9.0 18.5
12 MAR	1454	80	510	7.0	AUG 26	1143	204	380	17.0
02 APR	1440	85	560	8.0	2000	, , , ,		311	.,
14	1630	121	420	7.0					
09085	000	ROARI	NG FORK RIV	ER AT GLEN	NOOD SPRINGS, CO. (LAT 39	32 37N LO	NG 107 19	44W)
OCT 1986 17	1105	1160	490	12.0	MAY 1987 07	1120	1790	430	12.0
NOV 06	0730	896	470	8.0	JUN 04	1210	3660	370	12.0
DEC 11	1043	685	520	1.0	JUL 01	1238	2610	390	13.0
JAN 1987 15	1118	643	490	1.0	29 AUG	0840	1130	430	11.0
MAR 02	1135	547	610	7.0	27	0845	909	520	14.0
APR 16	1345	791	580	9.0					
09085	100	COLOR	ADO RIVER E	BELOW GLENWO	OOD SPRINGS, CO. (L	AT 39	33 18N LON	G 107 20	13W)
OCT 1986	0820	3010	730	12.0	MAY 1987 07	1100	5050	420	11.0
NOV 06	1000	2700	700	6.0	JUN 05	0950	7960	370	12.0
DEC 11 JAN 1987	1250	1890	750	3.0	JUL 02 29	0940 1206	4330 3210	540 520	11.0 17.0
15 MAR	0855	1790	690	3.0	AUG 27	1045	2370	630	16.0
05 APR	1039	1760	780	6.0	21	1045	2310	0 30	,0.0
16	1200	2210	620	9.0					
	09089500)	WEST DIVIDE	CREEK NEAF	R RAVEN, CO. (LAT 3	9 19 5	2N LONG 10	7 34 46W)	
OCT 1986 07 07	1125 1130	14 14	360 360	6.0 6.0	JUN 1987 08 08	1155 1300	138 138	180 180	9.0 9.0
NOV 20	1155	14	398	0.5	JUL 10	1055	14	340	13.0
DEC 17	1105	6.6	455	0.0	10	1100	14 5.0	340 389	13.0
JAN 1987 23	1155	4.5	501	0.0	AUG 14	1215	4.2	445	14.5
APR 08 08	1155 1205	30 30	440 440	1.5 1.5	14 SEP 03	1245 1110	4.6 2.1	495 500	14.5 13.5
MAY 04 04 13	1230 1330 1135 1245	186 186 223 223	267 267 221 221	6.5 6.5 7.5 7.5	03	1110	2.1	500	13.5

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON- DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	09093700		COLORADO F	RIVER NEAR	DE BEQU	E, CO. (LAT	39 21 45	5N LONG 10	8 09 07W)	
OCT 1986 07	1200	3640	780	11.5		APR 1987 16	1200	2460	967	12.0
NOV 13	1200	2940	912	4.0		MAY 21	1200	9540	391	11.5
DEC 11	1100	1360	982	0.0		JUN 25	1100	5260	596	16.5
FEB 1987	1200	2160	1050	4.0		JUL 16	1100	2740	881	20.0
MAR 23	1100	2190	1100	7.0		AUG 13	1100	2250	929	20.0
	0909550	0	COLORADO	RIVER NEAR	CAMEO,	CO. (LAT 3	9 14 20N	LONG 108	16 00W)	
OCT 1936	1100	2(50	0.70	40.0		APR 1987	1200	o h h o	0.07	0.0
03 08 08	1100 0900 1200	3650 3700 3610	958 853 853	10.0 12.0 12.0		15 22 28	1300 1200 1000	2440 3960 6610	987 678 495	9.0 10.0 11.5
08 15	1205 1300	3450	904	8.0		MA Y 07	0900	6130	578	12.5
30 VOИ	1200	3120	900	8.0		07 13	1300 1200	5920 8640	578 436	12.5 12.5 12.5
05 12	1200 1000	3170 2840	860 916	6.0 3.0		20	0900 1400	9860 10400	372 372	12.0
12	1300 1305	2900 2840	916 916	4.0		26 JUN	1300	7390	480	10.5
20 26 DEC	1200 1100	3170 2880	945 938	6.0 4.5		03 03 10	1100 1300 1100	7530 7160 12000	485 485 410	14.0 14.0
03 10	1200 0900	2710 2520	945 936	1.5 0.0		10	1200 0955	11900 8420	410 430	12.5 12.5 14.5
10 17	1300 1200	2680 2550	936 927	0.0		24	1000 1300	5570 5410	562 562	16.0
30 JAN 1987	1300	2210	1030	1.0		JUL 01	1200	4310	670	16.0
07 14	1200 1200	2400 2340	937 1 090	2.0 0.0		08 15	1200 0900	3390 31 7 0	760 860	18.0 18.5
31 FEB	1200	2210	1010	0.5		15 23	1300 1000	2990 2550	860 963	18.5 19.0
04	1200 1100	2170 2170	1050 1140	3.0 4.0		29 AUG	1200	3260	902	22.0
11	1400 1200	2250 2400	1140 1070	4.0 3.0		06	1000 1100	2440 2550	946 920	19.5 19.5
26 MAR	1100	2190	1170	3.5		12	1000 1400	2440 2380	946 946	19.5 19.5 16.0
04 11 11	1100 0900 1400	2170 2480 2600	1090 963 963	4.0 6.5 6.5		19 26 SEP	0930 1100	2150 2 7 50	1130 978	16.0
18	1000	2380 2320	1030 1060	5.5 6.0		02	1300 1100	2320 2330	1050 1070	19.0 15.5
APR 01	0935	2130	1240	5.5		09	1100 1045	1900 2210	1120 1130	12.0
08 15	1300 1000	2440 2330	1010 987	11.0		23	1230 1000	2010 1900	1240 1120	14.0
						30	1200	2030	1120	12.0
	391050	00	PLATEAU	CREEK NEAR	CAMEO,	CO. (LAT 39	9 11 00N	LONG 108	16 10W)	
OCT 1986 03	1300	356	658	11.5		APR 1987 08	1400	220	588	9.5
NOV 05	1300	198	694	5.0		27 MAY	1000	889	328	9.0
DEC 12	1100	138	793	0.0		19 JUN	0900	1970	208	9.0
JAN 1987 14 FEB	1500	165		0.0		25 JUL 16	0800	219	484	15.5
04 MAR	1300	123	708	4.0		16 SEP 02	0800 1100	120 132	662 718	17.5 16.5
04	1200	89	746	3.5		J	1100	ے ر	110	10.9

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - AN CE (US/CM)	TEMPER- ATURE WATER (DEG C)
09109	000	TAYLOR	RIVER BEL	OW TAYLOR	PARK RESERVOIR, O	CO. (LAT 3	3 49 06N L	ong 106 3	6 31W
OCT 1986 06 DEC	1245	196	140	10.0	MAY 1987 19 JUN	0920	353	120	6.0
16	1105	69	120	1.0	09 JUL	0826	267	90	8.0
JAN 1987 27 MAR	1150	122	80	3.0	14 AUG	1013	316	110	7.0
09 APR	1200	314	100	4.0	11 SEP	0837	285	80	8.0
21	1350	205	100	3.0	09	1126	306	90	9.0
	09110	0000	TAYLOR	RIVER AT	ALMONT, CO. (LAT 3	38 39 52N 1	LONG 106 5	50 41W)	
OCT 1986 06	1510	285	150	11.0	MAY 1987 19	1208	1000	130	8.0
NOV 04	1305	230	180	5.0	JUN 09	1033	1060	120	8.0
DEC 16	1230	113	80	1.0	JUL 14	1211	46 1	145	11.0
JAN 1987 27	1320	179	120	2.0	AUG 11	1011	370	180	10.0
MAR 09	1255	344	120	4.0	SEP 09	1258	374	190	12.0
APR 21	1015	317	140	4.5					
	0911	12500	EAST R	IVER AT A	LMONT CO. (LAT 38	39 52N LO	NG 106 50	50W)	
OCT 1986 06	1545	253	240	9.0	MAY 1987 19	1434	1390	205	8.0
NOV 04	1407	176	290	6.0	JUN 09	1250	1720	250	8.0
DEC 16	1325	118	290	1.0	JUL 14	1315	273	235	10.0
JAN 1987 27	1355	75	290	1.0	AUG 11	1131	246	430	12.0
MAR 09	1350	102	180	5.0	SEP 09	1407	147	370	13.0
APR 21	0807	381	240	9.0	3,111	, , , ,		3,-	.3
	09114500)	GUNNISON R	IVER NEAR	GUNNISON, CO. (LA	T 38 32 3	IN LONG 10	16 56 57W)	
OCT 1986					MAY 1987	0-20			0.0
07 NOV	1205	662	260	10.0	20 JUN	0938	2530	170	8.0
04 DEC	1500	467	380	5.0	JUL 09	1515	3250	170	6.0
16 JAN 1987	1425	277	190	1.0	14 AUG	1536	801	280	10.0
27 MAR	1450	350	190	0.0	12 SEP	0926	684	200	11.0
09 APR	1540	684	140	3.5	10	0740	581	230	10.0
22	0820	1050	198	2.5					
091184	50	COCHETO	PA CREEK B	ELOW ROCK	CREEK NR PARLIN,	CO. (LAT	38 20 08N	LONG 106	46 18
OCT 1986 07	0915	41	220	6.0	JUN 1987 09	1 7 55	2 27	155	8.0
NOV 05	1000	41	130	7.0	JUL 14	0725	46	240	
APR 1987 20	1350	198	150	4.0	AUG 10	1452	69	190	13.0
MAY 18	1545	241	137	7.0	SEP 09	0852	48	210	14.0
	0911900	00	TOMICHI C	REEK AT GU	JNNISON, CO. (LAT	38 31 18N	LONG 106	56 25W)	
OCT 1986	1030	141	340	10.0	MAY 1987 20	0725	1270	132	6.0
04	1630	185	240	5.0	JUN 10	0730	1300	220	
DEC 16	1550	105	250	1.0	JՄL 15•••	0735	173	310	
JAN 1987	1635	95	250	0.0	AUG 11	1318	176	300	14.0
MAR 10	1125	223	160	5.0	SEP 09	1556	104	330	16.0

DA TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	0912	1500	LAKE FO	RK AT GATI	EVIEW, CO. (LAT 38	17 56N L	ONG 107 13	46W)	
OCT 1986 07	1800	157	185	10.0	MAY 1987 20	1245	889	150	7.0
NOV 05	1300	126	260	4.0	JUN 10	1035	1600	100	10.0
DE C 17	1215	72	120	1.0	JUL 15	1027	441	165	12.0
JAN 1987 28	1035	63	240	1.0	AUG 12	1028	242	150	13.0
MAR 10	1305	93	150	5.0	SEP 10	1010	125	270	11.0
APR 22	1115	185	178	10.0					
	09126000) (IMARRON R	IVER NEAR	CIMARRON, CO. (LAT	38 15 4	5N LONG 10	7 32 39W)	
OCT_1986					MAY 1987				
08 NOV	0920	30	210	5.0	19 JUN	1145	521	117	5.5
05 DEC	1500	26	240	5.0	JUL 04	0925	516	85	8.0
17 MAR 1987	1430	29	130	1.0	09 AUG	0910	150	155	7.0
11 APR	1100	25	140	3.5	06 SEP	0905	111	125	10.0
23	1050	51	120	3.5	03	0905	92	160	13.0
-	28000	GUNNI	SON RIVER	BELOW GUI	NNISON TUNNEL, CO.	(LAT 38	31 45N LON	G 107 38	54W)
OCT 1986 08	1405	1730	240	10.0	MAY 1987 13	1415	1480	210	8.0
NOV 06	1110	1010	200	6.0	JUN 04	1330	907	195	9.0
DEC 18	1110	2090	180	2.0	JUL 09	1710	1460	200	10.0
JAN 1987 28 MAR	1550	2040	190	2.0	15 AUG	1140	1450 1280	215 190	10.0
12 APR	0900	2440	180	4.0	06 SEP 03	1310 1320	566	205	11.0
23	1245	1120	240	6.0	03	1320	500	203	11.0
	09128	500	SMITH FO	RK NEAR C	RAWFORD, CO. (LAT 3	38 43 40N	LONG 107	30 22W)	
OCT 1986 07	1540	32	150	23.5	MAY 1987 07	1040	249	135	6.0
NOV 04	1140	27	180	15.0	JUN 02	0845	107	130	5.5
DEC 09	1145	22	190	10.5	JUL 07	1140	24	160	14.0
JAN 1987 13	1050	13	220	12.5	AUG 04	1110	8.2	220	17.0
MAR 03	1130	19	245	14.0	SEP 01	1055	6.4	205	14.0
APR 14	1210	57	215	4.0					
	0912	9600	SMITH F	ORK NEAR I	LAZEAR, CO. (LAT 38	3 42 27N 1	LONG 107 4	2 35 W)	
OCT 1986 08	0855	7 2	2970	16.5	MAY 1987 07	1320	194	845	15.0
NOA		7.3			JUN		61		14.0
04 DEC 09	1405 1405	9.8 42	3250 1640	16.5 12.0	02 JUL 10	1105 0920	2.1	1710 2880	14.0
JAN 1987 13	1345	33	1650	16.0	AUG 04	1330	9.8	2940	24.0
MAR 03	1405	31	1640	19.5	SEP 01	1320	2.5	3110	22.0
APR 14	1445	105	910	10.0	01	, , , , 0	2.0	٠,١٥	22.0
		, 0)	,,,	10.0					

382 DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
09132	2500	NORTH	FORK GUNNI	SON RIVER	NEAR SOMERSET, CO.	(LAT 38	55 45N LO	NG 107 26	53W)
OCT 1986	0900	342	195	14.5	MAY 1987 06	1155	1560	170	7.5
03	1335	355	225	17.0	JUN 01	1410	1160	180	12.0
DEC 08 JAN 1987	1340	206	250	12.0	JUL O6 AUG	1355	327	135	17.0
12 MAR	1330	166	210	13.0	03 31	1325 1330	262 223	190 210	17.0 18.0
02 APR	1345	100	295	19.0	21	1550	223	210	10.0
13	1435	626	285	6.0					
	09134000		MINNESOTA	CREEK NEA	R PAONIA, CO. (LAT	38 52 131	N LONG 107	30 06W)	
OCT 1986 07	1220	9.5	725	19.0	MAY 1987 06	1420	116	345	10.0
NOV 04	0915	11	865	15.5	JUN 01	1640	80	305	13.0
DE C 09	0900	9.0	860	13.5	JUL 07	0845	38	415	17.0
JAN 1987 13	0835	5.5	880		AUG 04	0845	21	525	13.0
MAR 03	0900	3.4	1250	12.5	SEP 01	0825	16	415	11.0
APR 14	0905	14	1180	1.0					
	0913590	0	I E DOLLY CD	בבה עב חט	TCHKISS, CO. (LAT 3	Q 117 52N	IONG 107)12 52W)	
OCT 1986	0913390	o	LE ROOX CR	DE A A I NO	MAY 1987	אכל וף ט	LONG 107	7)), ()	
08	1035	83	630	16.5	08	0935	117	330	7.0
06 DEC	0825	50	710	13.5	02 JUL	1320	39	695	14.0
10 JAN 1987	1400	20	1160	9.5	10 AUG	1125	3.9	1530	14.0
15 MAR	0820	14	1390		05 SEP	1430	7.6	1440	20.0
05 APR	0835	17	1250	16.5	01	1510	6.0	1540	18.0
16	0845	113	330	2.5					
	09143000		SURFACE CR	EEK NEAR	CEDAREDGE, CO. (LAT	38 59 0	5N LONG 10	7 51 13 W)	
OCT 1986 08	1310	24	150	17.0	MAY 1987 08	1225	173	97	5.0
NOV 05	0850	18	165	12.5	JUN 03	0845	202	145	4.5
JAN 1987	1045	15	145	12.0	JUL 08	0840	85	90	8.0
MAR 04	0910	13	180	16.5	AUG 05	0840	66	115	12.0
APR 15	0900	27	175	1.0	SEP 02	0825	42	97	9.0
	0914350	0	SURFACE C	REEK AT C	EDAREDGE, CO. (LAT	38 54 061	N LONG 107	55 14W)	
OCT 1986 08	1440	27	160	20.5	MAY 1987 08	1425	99	155	10.0
NOV 05	1040	17	200	12.5	JUN 03	1045	86	135	7.5
DE C 10	0945	2.8	265	8.0	JUL 08	1045	29	80	11.5
JAN 1987 14	0845	17	235	11.0	AUG 05	1020	34	105	13.0
APR 15	1110	40	355	3.0	SEP 02	1020	11	125	13.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	0914	4200	TONGUE	CREEK AT	CORY, CO.	(LAT 38	47 16N LC	ONG 107 59	41W)	
OCT 1986 09	0950	116	1130	17.5		Y 1987 04	1120	178	785	9.0
NOV 05	1335	116	1270	12.5	JU	N 03	1255	141	980	14.5
DEC 10	1135	47	1540	8.0		08	1455	14	2110	24.0
JAN 1987 14	1325	57	1670	16.0	AU		1200	24	2180	18.0
MAR 04	1355	57	1470	20.0	SE		1230	18	2240	22.0
APR 07 15	1300 1320	92 153	930 790	7.0 8.0		02	1300	38	1440	19.0
	091442	:50	GUNNISON	RIVER AT	DELTA, CO.	(LAT 3	8 45 01N L	ONG 108 0	4 06W)	
OCT 1986 10	0820	2830	720	15.0		Y 1987 12	1035	4800	465	12.0
NOV 06	1135	3190	765	13.5	JU		0710	3200	670	13.0
DEC 11	0900	2970	590	8.0	JU		1245	1880	875	17.0
JAN 1987 15	0920	2770	540	11.0	AU		0710	1720	885	16.0
MAR 05	1135	3330	620	16.5	SE	P 04	0705	1050	1230	17.0
APR 16	1340	3220	515	9.0						
	09146200	UN	COMPAHGRE	RIVER NE	AR RIDGWAY,	CO. (L	AT 38 11 0	OZN LONG 1	07 44 43W)
OCT 1986 14 NOV	1335	115	580	8.0		Y 1987 20	1205	495	286	9.0
25 JAN 1987	1040	81	720	3.0		09	1800	812	288	12.0
13 MAR	0840	48	858	0.0		09	0915	345	452	8.5
04 APR	0900	44	937	0.5		27	0800	194	493	8.0
09	0830	80	708	4.0						
	0914700	10	DALLAS CRI	EEK NEAR	RIDGWAY, CO		38 10 40N	LONG 107	45 28W)	
OCT 1986 14	1430	42	580	7.0		Y 1987 20	1320	195	363	10.0
NOV 25	1130	39	671	0.5		09	1605	7 5	484	12.0
JAN 1987	0815	19	751	0.0		09	1050	69	581	9.0
MAR 04	1020	22	776	0.0	AU	g 26	1930	79	516	14.0
APR 09	0720	65	503	2.0						
17 27	0700 1800	166 277	323	2.0 11.0						
	09147500) (JN COMP AHGR	E RIVER A	T COLONA, C	O. (LAT	38 19 531	LONG 107	46 44W)	
OCT 1986 08	1530	85	725	11.0		Y 1987	1040	919	350	7.0
NOV _06		104	750	5.0		04	1740	566	370	12.0
DEC 18	0850	95	750	0.0		09	1305	367	455	15.5
JAN 1987	1410	97	800	2.0		06	1555	495	485	16.0
MAR 12	1305	117	900	5.0	SE	10	1040	411	680	15.0
APR 14 22	1140 1705	56 445	880 680	6.0 11.0						

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)		DATE		TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	091495	00	UN COMPAHG	RE RIVER	AT DELTA	, CO. (LAT	38	44 31N	LONG 108	04 49 W)	
OCT 1986 09	1315	529	1360	24.5		MAY 1987 04		1425	1060	840	13.0
NOV 05	1505	262	235	19.5		JUN 05		1045	525	875	9.0
DE C 11	0810	67	3080	11.0		JUL 10		1410	223	1170	21.0
JAN 1987 14	1540	194	2500	14.0		AUG 07		1110	514	1460	19.0
MAR 04	1540	106	2860	20.0		SEP 04		1050	575	1390	17.0
APR 16	1135	1140	905	9.5							
	0915150	00	ESCALANTE	CREEK NE	AR DELTA	, CO. (LAT	38	45 24N	LONG 108	15 34W)	
OCT 1986						MAY 1987		-			
10 NOV	1205	87	295	17.0		14 JUN		1435	309	245	15.0
07 DEC	0945	61	375	13.5		05 26		1200 0900	78 7.6	349 576	17.0 18.5
11 JAN 1987	1330	20	570	1.0		02		1000	8.6	595	18.5
15 MAR	1400	25	565	12.5		28 AUG		0900	26	333	15.0
O6 APR	0935	33	550			27		1100	16	514	18.0
28	1410	601	175	8.5							
	0915	53290	REED W	ASH NEAR	MACK, CO	. (LAT 39	12 4	IN LONG	G 108 48	11W)	
OCT 1986	1000	73	1570	12.5		MAY 1987 06		0800	58	1170	11.0
NOV 06	1300	17	3530	8.0		JUN 22		1500	59	1600	21.5
14 JAN 1987	1100	8.4	4470	7.0		JUL 24		0800	80	1750	17.0
14 FEB	0800	4.6	5030	2.5		AUG 27		0900	78		16.0
18 MAR	0900	3.6	4720	3.5		SEP 25		0900	75	2630	14.5
24 APR 09	0800	3.3	4980	5.0							
09	1100	66	1380	11.5							
09163570		HAY PRESS	C AB FRU	ITA RES #	3, NR GL	ADE PARK,	co.	(LAT 38	3 51 03N I	ONG 108	46 56
OCT 1986	1300	0.10	116	5.0		MAY 1987 01		1400	8.0	60	0.5
NOV 06	1000	0.07	135	1.0		08		1300 1300	4.1 4.7	62	4.0 3.0
DEC 15	1200	0.05	142	0.5		JUN 22		1200	0.44	90	14.0
JAN 1987 27	1200	0.07	152	0.5		JUL 24		1200	0.02	153	18.5
MAR 03	1200	0.06	167	0.0		AJG 04		1400	0.02		21.5
APR 17	1000	0.76	116	0.0		03		0900	0.04		11.5
						25		1200	0.02	202	11.0
	091650	000	DOLORES	RIVER BEL	OW RICO,	CO. (LAT	37 3	8 20N I	ONG 108	3 35W)	
OCT 1986	1100	95	260	1.0		MAY 1987 21		1750	596	101	5.0
NOV 26	1545	70	373	0.5		JUN 09		1130	1030	154	5.5
JAN 1987	1400	34	420	0.0		JUL 07		1440	257	202	12.0
MAR 04	1425	43	519	0.0		AUG 26		1045	236	205	7.5
APR 09	1650	49	377	2.0							

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	091665	500	DOLORES	RIVER AT	DOLORES, CO.	. (LAT 37	7 28 16N	LONG 108	30 15W)	
OCT 1986	1315	398	250	9.0	2	Y 1987	1445	1250	223	7.0
DE C 05	1400	252	367	2.0		09	0835	3250	147	6.0
JAN 1987 27	1320	132	438	0.0		07	1200	570	219	13.0
MAR 13	1135	231	347	2.0	SEF (94	1130	163	304	10.0
APR 17	1030	1310	235	4.0						
	09166950	LO	ST CANYON	CREEK NE	AR DOLORES,	CO. (LAT	r 37 26 ^L	15N LONG 1	108 28 03W)
OCT 1986 22	0940	20	105	4.0		1987 17	1030	244	62	5.0
DEC 05	1500	26	133	2.0	JUN		0955	148	63	7.0
JAN 1987 27	1445	4.1	173	0.0	JUL		1835	1.9	394	22.0
MAR 13	1005	60	156	0.0	SER		0940	0.14	976	17.0
APR 16	2030	406	91	8.0	(04	1010	0.18	582	12.0
09	172500	SAN	MIGUEL RI	VER NEAR	PLACERVILLE,	, CO. (LA	T 38 02	05N LONG	108 07 15	W)
OCT 1986	1620	164	360	7.0		(1987 20	0905	1060	270	5.5
NOV 25	1305	123	436	0.5	JUN		1410	1240	220	9.0
JAN 1987 13	1145	98	437	0.0	JUL		1245	637	242	11.0
MAR 04	1210	73	449	2.0	AUC		1755	437	234	14.0
APR 09	1020	154	391	4.0						
27	1 5 55	1210	286	8.5						
	0917700	0	SAN MIGUE	L RIVER A	T URAVAN, CO). (LAT 3	38 21 26N	LONG 108	42 44W)	
OCT 1986	1835	369	750	9.0		1987	1025	3280	265	10.0
NOV 25	1535	334	803	3.0		21	0930	1800	495	10.0
JAN 1987 12	1545	162	733	0.0		10	0950	1710	412	12.0
MAR 03	1720	176	1110	7.0		08	1745	670	432	21.0
APR 09	1320	1120	420	7.0		26	1435	664	503	18.0
0.9	238705	LONG	I.AKE TNI.	ET NEAR P	UFFALO PASS,	. CO. (1.4	T 40 28	25N LONG	106 40 46	w)
NOV 1986		50.13	55 1ND	DI WOMN D	·	1 1987	10 20	2511 2011 4	100 10 10	,
28 FEB 1987	1050	0.15	40	0.5		25	1415	0.55	27	
03 MAR	0945	0.01	3	0.5		13	1030	0.11		15.0
24	1100	0.06	54	0.5						
09238	3710	FISH C	TRIB BL L	ONG LK, N	R BUFFLAO PA	•	(LAT 40	28 36N LC	NG 106 41	13W)
OCT 1986 03	1045	0.03	20	1.0	2	R 1987	0905	0.11	10	0.5
NOV 28	0915	0.05	25	0.5	JUN 2	I 25	1500	0.40	18	12.5
FEB 1987 03	1000	0.03	3	0.5						
	09238750	м	D FK FISH	C NR BUF	FALO PASS, C	CO. (LAT	40 29 54	N LONG 10	6 41 30W)	
OCT 1986 03	1300	1.3	25	7.0		R 1987	1400	0.35	48	0.5
NOV 28					JUN				26	
DEC 23	1140	0.57	31	6.5	JUL	,	1130	1.2 0.42	32	12.0
FEB 1987	1200	0.41	5 2	0.5	AUC		0940	0.42	32 37	11.0
03	1130	0.48	2	0.5	ı	13	0945	0.25	21	11.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	0923877	70	GRANITE C	NR BUFFALO	PASS, CO. (LAT 40	29 35N	LONG 106	41 31W)	
OCT 1986 03	1110	2.4	38	7.0	MAY 1987 13	1520	41	10	3.0
NOV 28	1130	1.1	42	0.5	JUN 25	1200	4.6	24	12.5
DEC 23	0930	0.70	5	0.5	JUL 22	1150	1.2	33	16.0
FEB 1987 03	1020	0.56	2	0.5	AUG 13	1235	0.64	36	14.5
MA R 24	1300	0.36	45	0.5					
09238	8800	MID FK	FISH CR T	RIB BL FISH	CR RESERVOIR, CO	(LAT 40	29 50N LO	NG 106 41	54W)
JUN 1987 25	1300	3.8	16	10.0	JUL 1987 22	1040	0.11	18	18.0
C	9239500	YAN	MPA RIVER	AT STEAMBOAT	SPRINGS, CO. (LA	T 40 29	O1N LONG	106 49 54	W)
OCT 1986 24	1240	236	231	5.0	APR 1987 27	1655	1270	140	10.0
NOV 25	0930	80	289	2.5	MA Y 26	1050	919	7 5	8.5
JAN 1987 23	1040	53	248	0.5	JUN 24	1030	201	172	14.0
FEB 24	1015	56	26	2.0	JUL 23	1225	126	310	23.0
MAR 23	1040	139	260	1.5	AUG 24	1120	100	270	>0.0
	092	241000	ELK R	IVER AT CLAI	RK, CO. (LAT 40 43	03N LON	NG 106 54	55W)	
NOV 1986 18	1415	113	90	2.5	MAY 1987 19	1545	873	39	9.0
FEB 1987 02	1540	55	94	1.0	JUL 23	1405	108	64	18.0
MAR 23	1115	54	112	1.0	AUG 18	1410	71	76	14.0
APR 27	1410	613	73	7.5	,		, .	,	
OCT 1986	0924500	00	ELKHEAD C	REEK NEAR EI	.KHEAD, CO. (LAT 4	0 40 111	LONG 107	17 05W)	
01 NOV	1530	20		9.0	MAY 1987 14	1215	137	160	8.5
18 JAN 1987	1600	17		1.0	JUN 05	1335	45	209	17.0
14 MAR	1340	13	396	0.5	JUL 15 AUG	1335	7.4	252	23.0
05 APR	1105	11	383	1.0	11 SEP	1320	2.6	286	19.5
07	1130	35	366	0.5	04	1005	1.8	250	15.0
	092476	500	YAMPA RI	VER BELOW C	RAIG, CO. (LAT 40	28 51N I	ONG 107 3	6 49W)	
OCT 1986 03	1435	601	462	9.0	JUN 1987 05	0955	1790		13.5
10	0945	640 579	402 507	9.0 6.5	JUL 22	1105	238	378	20.0
DEC 12	1250	292	844	0.5	AUG 05	0905	257	405	20.0
FEB 1987	1430	211	771	0.0	21 SEP	0955	93	443	17.0
MAR 26	1150	464	930	3.0	10	0915 1120	181 274	388 325	14.5 13.0
APR 21	1315	2300	346	6.0	30	1215	129	442	11.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	DUCT - AN CE	TEMPER- ATURE WATER (DEG C)		DATE		TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
09250	507	WILSON C	REEK ABOVE	TAYLOR	CREEK	NEAR AXIAL,	co.	(LAT	40 18 53N	LONG 107	47 58
OCT 1986 06	1350	2.1	1560	12.0		MAY 1987 18		0955	12		10.5
NOV 21	1345	2.8	1630	7.0		JUL 20		1030	1.9	1510	13.5
DE C	1425	2.2	1970	0.5		AUG 19		1430	1.2	1620	22.5
FEB 1987 11	1355	3.9	1360	4.0		SEP 15		1215	1.2	1610	14.5
APR 07	0910	3.8	1500	3.0							
21 28	0930 1745	5.6 35	1380 845	0.0 14.0							
	09250510	TAY	LOR CREEK	AT MOUTE	H NEAR	AXIAL, CO.	(LAT	40 18	3 48N LONG	107 47 57	γW)
OCT 1986 06	1520	0.22	1670	12.5		APR 1987		1115	0.90		5.5
NOV 21	1450	0.16	1810	5.5		07 21 28		1105	1.5	1630 1390	1.0 13.5
DEC 11	1525	0.11	2170	0.5		JUN 04		1025	1.5	1420	9.5
FEB 1987	1530	1.5	476	0.0		04		1025	1.03	1120	,,,
	09253000	LI	TTLE SNAKE	RIVER 1	NEAR SI	ATER, CO. (I	LAT 4	10 59	58N LONG	107 08 341	vi)
OCT 1986						APR 1987					
08 NOV	1050	95	114	4.5		28 Ma Y		1205	645	71	5.0
13 DEC	1455	100	133	0.0		21 JUL		0910	507	58	6.0
09 FEB 1987	1220	39	172	0.0		16 AUG		1255	35	122	20.5
O3 MAR	1520	34	172	0.0		18 SEP		1315	19	167	17.5
25	1300	58	183	0.5		21		1020	17	193	8.0
	092550	00	SLATER FO	RK NEAR	SLATE	R, CO. (LAT	40 58	3 54N	LONG 107	22 58W)	
OCT 1986 08	1230	62	204	7.5		APR 1987 28		0820	439	108	4.0
NOV 13	1220	39	261	0.5		MAY 21		1245	232	96	8.5
DE C 09	1450	27	270	0.0		JUL 16		1000	15	321	17.5
FEB 1987 03 MAR	1130	31	260	0.5		AUG 18 SEP		1545	6.4	312	20.5
25	1430	44	303	3.5		21		1350	11	250	13.5
	092580	00	WILLOW CR	EEK NEAI	R DIXO	, WY. (LAT	40 54	56N	LONG 107	31 16W)	
OCT 1986 08	1415	6.2	185	10.0		JUN 1987 04		1415	14	113	15.5
NOV 13	1035	5.5	296	0.0		JUL 16		0815	0.47	292	14.0
DE C 09	1020	2.6	303	0.0		AUG 19		0855	1.5	181	11.5
FEB 1987 03	0935	4.0	283	0.0		SEP 21		1535	1.8	210	15.0
APR 08	1435	25 32	363	6.0							
27	1915	34	189	14.5							
	09260050	AY	MPA RIVER	AT DEERI	LODGE I	PARK, CO. (L.	AT 40	27 (O2N LONG 1	08 31 20W))
OCT 1986 09 NOV	1100	1040	680	12.0		APR 1987 16 MAY		1340	1780	725	13.5
19 DEC	1115	1060	822	4.0		22 JUL		1405	5730	220	13.0
10 FEB 1987	1345	353	1000	0.5		15 AUG		1225	701	700	24.0
18 MAR	1140	918	995	0.5		17 SEP		1640	204	672	23.0
24	1130	1120	1070	4.5		15		1450	252	695	19.5

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE - CIFIC CON - DUCT - ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	0930	2450	LOST CR	EEK NEAR E	BUFORD, CO. (LAT 40)	03 01N I	.ONG 107 2	8 06W)	
OCT 1986 01	1450	5.5	346	8.5	MAY 1987 01	1425	175	159	7.0
NOV 03	0940	2.7	344	0.0	JUN 02	0945	20	185	7.0
DE C 04	1345	6.8	324	0.5	JUL 06	1200	4.0	308	17.0
JAN 1987 22	1115	3.7	344	0.0	AUG 13	1035	2.6	398	13.0
MAR 12	1000	6.6	351	0.5	SEP 11	1150	2.4	415	8.5
09	303320	WA GC	NWHEEL CR	EEK AT BUI	DGES RESORT, CO. (LA	r 39 50	34N LONG	107 20 10	W)
OCT 1986 20	1500	2.4	280	2.0	MAY 1987 13	1120	63	240	3.0
DE C 04	1158	0.80		0.0	09	1345	4.4	282	12.0
JAN 1987 22	1310	0.41	291	0.0	AUG 14	1515	0.51	312	16.0
MA R 25	1000	0.04	283	0.5	SEP 18	0930	0.11	295	3.5
	,,,,,		3		,				
093042	00	WHITE RI	VER ABOVE	COAL CREE	EK, NEAR MEEKER, CO.	(LAT 40	00 18N L	ONG 107 4	9 29W
OCT 1986 01	1710	464	344	9.5	MAY 1987 08	1140	1460	260	7.5
03	1130	535	360	3.0	16 20	1215 1610	2070 1960	230 242	8.0 8.0
DEC 05	1415	427	388	3.0	27 JUN	1115	1160	282	5.0
JAN 1987 21	1350	330	422		02 12	1415 1150	1130 1120	248 255	11.0
FEB 23	1230	326	440	2.0	10r 30	1200	380	350	12.0
APR 01	1305	331	399	7.0	27 28	1445 1130	373 292	490 415	23.0 16.0
23 MAY 01	0900 1130	843 1600	320 255	5.0 7.5	SEP 01 08	1500 1530	282 243	410 430	17.0 13.5
01	09304				MEEKER, CO. (LAT 40 (13.9
OCT 1986		,			MAY 1987			,,	
29 DEC	1550	559	468	8.0	22 JUN	1445	1530	265	10.5
05 JAN 1937	1300	455	502	3.0	յս∟ յս∟	1210	533	386	16.5
21 FEB	1245	309	520	0.0	27 SEP	1200	428	490	20.0
23 APR	1100	350	560	2.0	01	1500	282	520	19.0
01	1130	388	555	8.0					
0	9342500	SAN	JUAN RIV	ER AT PAGO	OSA SPRINGS, CO. (LA	r 37 1 5	58N LONG	107 00 37	W)
OCT 1986 06	1635	470	113	10.0	MAY 1987 06	1030	914	107	11.0
DEC 09	0835	203	97	0.5	20 JUN	0915	1830	69	9.5
JAN 1987 26	1 210	93	17 5	0.5	05 11	1325 1045	1930 2300	78 64	10.0 7.0
MAR 06		148	175	0.5	24 JUL	0915	1460	53	7.0
26 APR	0800	152		1.0	24 SEP	1345	247	100	17.0
09 24	1205 1 215	255 1200	215 129	5.5 6.0	09	1330	108	170	13.0
	09346	5000	NAVAJO	RIVER AT E	EDITH, CO. (LAT 37 OC) 10N LC	ONG 106 54	25W)	
OCT 1986 06	1135	190	184	9.0	MAY 1987 06	1255	293	222	9.0
DEC 08 JAN 1987	1040	95	300	0.0	19 JUN 08	1545 1300	272 258	148 150	11.0
26 MAR	1025	52	186	0.0	08 24 JUL	1055	95 95	255	13.0
05 APR	1615	110	320	8.5	22 SEP	1545	89	275	23.0
09	1025	129	418	4.0	09	0945	48	326	9.5

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON - DUCT -	TEMPER- ATURE WATER (DEG C)	D. l	ATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
	09346400	1	SAN JUAN R	IVER NEAR	CARRACAS, CO	. (LAT 37	7 00 49	N LONG 10	7 18 42W)	
OCT_1986					JUN .					
07 DEC	1135	875	196	11.0	11 - 24 -		1235 1410	2750 1620	111 119	12.0 13.0
09 MAR 1987	1315	505	428	2.5	JUL 28.	• • •	1020	376	286	21.5
04	1455 1050	372 1490	240 556	7.0 7.0	SEP 10	• • •	0935	205	326	13.0
MAY 13	1105	2590	180	10.0						
	0934980	0	PIEDRA RI	VER NEAR	ARBOLES, CO.	(LAT 37 C)5 18N	LONG 107	23 50W)	
OCT 1986 07	0925	411	196	9.0	MA Y 20		1205	1840	150	13.0
DEC 09	1135	352	323	2.0	JUN 11.		1050	2160	126	9.0
JAN 1987 26	1355	203	449	0.5	25. JUL	• • •	1515	1370	108	15.0
MAR 06	1145	4 1 5	439	4.5	28. SEP	• • •	1140	261	258	21.0
APR 09	1450	960	354	8.5	09.	• • •	1520	165	316	15.0
24	1600	2260	224	10.0						
	0935450	0	LOS PINOS	RIVER AT	LA BOCA, CO.	(LAT 37	00 341	LONG 107	35 56W)	
OCT 1986 07	1400	557	122	14.5	MA Y 1		1425	729	170	16.0
NOV 04	1055	888	198	8.0	JUN 25.		1105	1310	108	14.5
JAN 1987 05	1255	149	294	0.0	JUL 28.		1355	253	222	24.5
MAR 04	1025	124	343	2.5	SEP 10.		1130	162	242	15.0
APR 10	1325	601	238	9.5						
	093615	00	ANIMAS R	IVER AT D	URANGO, CO. (I	.AT 37 16	5 45N L	.ong 107 5	2 47W)	
OCT 1986					MAY	1987				
28 DEC	1105	700	380	7.0	14. 27.		1140 1005	4090 1910	230	6.0 6.0
18 JAN 1987	1135	406	780	3.0	JUN 04.		1430	4080	130	8.0
28 FEB	0900	263	790	2.0	11. 25.		1610 1450	4790 3610	170 157	8.5 10.0
25 MAR	1355	267	750	2.0	JUL 27.		1140	1370	333	13.0
26 APR	1030	454		6.0	AUG 24.		1505	1220	350	14.5
24	1515	2320	280	4.0	SEP 25.		1325	280	700	15.0
	09371	002	NAVAJO	WASH NEAR	TOWAOC, CO (L	AT 37 12	9 03N L	ONG 108 4	1 50W)	
OCT 1986	1030	2.0	4000		MAY 1		1000	1.2	1950	16.0
08 30	1230 0940	9.2 8.5	1820 20 7 0	12.0 7.0	O8. JUN		1220	17	1850	16.0
NOV 14	1005	2.2	3840	3.0	23. JUL		1200	23	1270	18.0
DEC 23	1215	2.2	6900	0.0	23. AUG		1205	19	766	20.0
FEB 1987	1430	1.7	2270	8.0	26.	• • •	1320	10	2120	19.5
MAR 24	1435	2.8	6680							

	Page		Page
Access to WATSTORE DATA	18-19	Control, definition of	20
Accuracy of the records, explanation of	16	Control Structure, definition of	20
Acre-foot, definition of	19	Corral Gulch, below Water Gulch, near Rangely,	
Alva B. Adams tunnel at east portal, near	20	gaging-station record	31° 318
Estes Park, diversion bywater-quality record	30 31 - 32	water-quality recordnear Rangely, gaging-station record	313
Andenosine triphosphate, definition of	19	water-quality record	314-316
Algae, definition of	19	Cooperation	200
Algal-growth potential, definition of	19 349,389	Crest-stage partial-record stations	36; 129,37
Animas River at Durangonear Cedar Hill, NM	350	Cross Creek near Minturn	129,51.
Annual maximum discharge at crest-stage	55-	Redstone	157,378
partial-record stations during	262	Cubic foot per second, definition of	20
water year 1987	363 62	Cubic foot per second per square mile, definition of	20
Aquifer, definition of	19	Currant Creek near Read	18
Artesian, definition of	19		
Artificial Substrate, definition of	23	Dallas Creek near Ridgway	190,383
Ash mass, definition of	19	Darling Creek near Leal Data Collection and Computation,	55,369
Bacteria, definition of	19	explanation of	12
Beaver Creek (tributary to Eagle River) at	_	Definition of terms	19-2
Avon, gaging-station record	137	Diatoms, definition of	100.37
Water-quality record Bed load, definition of	138-139 22	Dickson Creek near Vail	109,37
Bed load discharge, definition of	22	Discharge and Selected Water-Quality at sites	•
Bed material, definition of	19	on upper Williams Fork	364 - 369
Bemrose-Hoosier diversion near Hoosier Pass	81	Discharge at partial-record stations and	26'
Berthoud Pass ditch at Berthoud Pass, diversion by	360	miscellaneous sites Discharge, definition of	362 20
Bighorn Creek near Minturn	132,375	Discharge measurements made at low-flow	
Biochemical oxygen demand (BOD), definition of	19	partial-record stations	362
Biomass, definition of	19	Dissolved, definition of	20 20
Black Creek below Black Lake, near Dillon Black Gore Creek near Minturn	95,372 131,375	Dissolved-solids concentration, definition of Divide Creek basin, gaging-station records in	160
Blue-Green Algae, definition of	22	Dolores River basin,	
Blue River above Green Mountain Reservoir,		gaging station records in	206
gaging-station record	93 94	Dolores River, at Bedrock,	209
water-quality record at Blue River	83,370	gaging-station recordwater-quality record	210-21
near Dillon	84,371	at Dolores	207,385
basin, gaging-station records in	80	below Rico	206,38
below Dillonbelow Green Mountain Reservoir, gaging-	88,371	below West Paradox Creek, near Bedrock,	213-21
station record	98	water-quality recordnear Bedrock	215
water-quality record	99-101	Downstream order system	13
Bobtail Creek near Jones Pass	51,369	Drainage area, definition of	20
Booth Creek near Minturn Boulder Creek at upper station, near Dillon	134,376 91,372	Drainage basin, definition of Dry mass, definition of	20 19
Busk-Ivanhoe Tunnel, diversion by	360	by mass, acrimition of the second sec	٠.
•	•	Eagle River at Gypsum, water-quality record	140-143
Cabin Creek near Fraser	45,369	at Red Cliff	123,37
Castle Creek above Aspen	151,377 96,373	below Gypsum Eagle River basin, gaging-station records in	143,376 123
Cells/volume, definition of	19	East Fork San Juan River, above Sand Creek,	,- <u>-</u> .
Cfs-day, definition of	20	near Pagosa Springs	32
Charles H. Boustead Tunnel, diversion by	360	East Meadow Creek near Minturn	111,373
Chemical oxygen demand (COD), definition of Chemical quality of streamflow	20 8 - 12	East River at Almont Elk Creek near Fraser	172,380 42,368
Chlorophyll, definition of	20	Elk River at Clark	230,386
Cimarron River near Cimarron	177,381	Elkhead Creek near Elkhead	241,386
Classification of Records, explanation of	151, 280	Escalante Creek near Delta Explanation of the records	193,381 13 - 18
Cochetopa Creek below Rock Creek, near Parlin Colorado River above Glenwood Springs, water-	174,380	Explanation of the records	15-10
quality record	146-147	Fecal Coliform bacteria, definition of	19
at Hot Sulphur Springs, gaging-station		Fecal Streptococcal bacteria, definition of	19
recordwater-quality record	47 48 – 50	Fish Creek at upper station near Steamboat Springs	228
at Windy Gap, near Granby	46,369	Tributary below Long Lake, near Buffalo Pass	224,385
below Baker Gulch, near Grand Lake	29,368	Foidel Creek, at mouth, near Oak Creek,	
below Glenwood Springs	159,378	gaging-station record	238
near Cameo, gaging-station record water-quality record	164 165-167	water-quality recordnear Oak Creek, gaging-station record	239 - 240 231
near CO-UT State line, gaging-station record	200	water-quality record	235-23
water-quality record	201-204	Fortification Creek near Fortification, gaging-	
near De Beque,	163,379	station record	242 243 – 241
near Dotseronear Granby	144,376 37,368	water-quality recordFraser River basin, gaging-station records in	243 - 244 39
near Kremmling	102,373	Fraser River at upper station,	٥.
near Radium, gaging-station record	103	near Winter Park	39,368
water-quality record	104-107	Fraser River near Winter Park	40,368
Colorado River basin, crest-stage partial record stations in	363	Freeman Creek near MinturnFryingpan River near Ruedi	110,373 156,378
Colorado River basin,	202	near Thomasville	15
gaging-station records in	29		
Color unit, definition of	20	Gage height, definition of	20 20
Contents, definition of	20	Gaging station, definition of	20

December Communication C		Page		Page
General Lake Dullst Busin, gaging-station		130,375		366
Decem Algine, definition of 22	quality recordGrand Lake Outlet basin, gaging-station		Pass McElmo Creek, near Colorado-Utah State line	
Second Communication	Green algae, definition of		water-quality record	359
December New Process	diversion by		water-quality record	356 - 357
Grizzin Creek near Clemond Springs 145, 776 Metholy Countion Name, at Delta. 183, 383 Metholy Countion Name, at Delta. 183, 384 Metholy Countion Name, at Delta. 183, 384 Metholy Countion Name, at Delta 183, 384 Middle Creek, near Oak Creek, saging-station record (Green Name Total) Passin. 232 againg-station records in. 159, 376 Middle Creek, near Duk Creek, saging-station record (Green Name Total) Passin. 232 againg-station records in. 159, 376 Mardenso, definition of. 223 Mardenso, definition of. 225, 385 Mardenso, definition of. 227 Mardenso, defin	Green River basin,	97	Mean discharge, definition of	20
below Gunnian tumnel	Grizzly Creek near Glenwood Springs	145,376	Methlylene blue active substances,	
Description 173,380 Middle Creek, near Oak Creek, gaging-station 223-233	below Gunnison tunnel	178,381	Micrograms per gram, definition of	21 21
gaging-station in. 169 Module Fork Fish Creek near Buffalo Pass. 223,233 gaging-station records in. 169 Module Fork Fish Creek Reasurpoir. 227,365 Cunsison Tunnel, diversion by. 178 Module Fork Fish Creek Reasurpoir. 227,365 Module Fish Creek Reasurpoir. 227,365 Millingrous per liber, definition of. 22,362 Millingrous per liber, definition of. 22,362 Module Fish Creek Reasurpoir. 237,364 Module Fish Creek Reasurpoir. 237,364 Module Fish Creek Reasurpoir. 237,365 Module Fish Creek Reasurpoir. 237,365 Module Fish Creek Reasurpoir. 238,367 Module Fish Creek Reasurpoir. 239,368 Module Fish Creek Rea	near Gunnison		Middle Creek, near Oak Creek, gaging-station	
Sundison Tunnel, diversion by 178	record stations in		water-quality record	232-233
Harold D. Roberts tunnel at Grant,			Milligrams of carbon, definition of	22
Hay Press Creek above Fruits Reservoir No. 3, near Clade Park. 205,339 Missouri Greek near Gold Park. 126,374 Moniger Creek, at Cold Park. 126,374 Moniger Creek, near Gold Park. 126,374 Moniger Creek, near Minturn. 136,374 Moniger Creek, near Aspen. 136,374 Moniger Creek, near Minturn. 136,374 Moniger Creek, near Minturn. 136,374 Moniger Creek, near Aspen. 74,779 Moniger Creek, near Minturn. 74,779 Moniger Creek, near Minturn. 74,779 Moniger Creek, near Aspen. 74,779 Moniger Creek, near Aspen. 74,779 Moniger Creek, near Aspen. 74,779 Moniger Creek, near Minturn. 74,779 Moniger Creek, near	Harold D. Roberts tunnel at Grant,		Milligrams per liter, definition of	21
near Red Cliff. 128,375	Hay Press Creek above Fruita Reservoir No. 3, near Glade Park	205,384	Miscellaneous station analyses Missouri Creek near Gold Park	367 126,374
Hoosier Pass tunnel at east portal, at Hoosier Pass	near Red Cliff	128,375	Monte Cristo diversion near Hoosier Pass	80
Hydrologic bench-mark network, explanation of. 20 Phydrologic bloth, definition of. 20 20 20 20 20 20 20 2	Hoosier Pass tunnel at east portal, at Hoosier Pass	360	Muddy Creek at Kremmling, gaging-station record	73
Identifying Satimated Daily Discharge, explanation of	Hydrologic bench-mark network, explanation of	20		74-79
Instantaneous discharge, definition of. 20		16	definition of	21
Navajo River, at Banded Peak Ranch, near Chronom 337	Instantaneous discharge, definition of	20	(NASQAN) explanation of	21
Keystone Gulch near Dillon. 86,371 at Edith. 340,383 Laboratory Measurements, explanation of. 18 Navajo Wash near Towacc. 351,389 Lakes and reservoirs: 97 North Fork Gunnion River near Somerset. 181,382 Dillon Reservoir. 97 Station necord. 264 Lake Granby. 35 water-quality record. 265-266 Paonia Reservoir. 155 Organic Mass, definition of. 19 Shadow Mountain Lake. 33 Organism count/varea, definition of. 21 Taylor Park Reservoir. 169 Organism count/valume, definition of. 21 Vallector Reservoir. 36 Organism count/valume, definition of. 21 Williams Fork Reservoir. 67 Other records available. 16 Willow Creek Reservoir. 33 Overview of water year 1987. 5-12 Lake Graby near Graby. 35 Auter-quality record. 16 Water-quality record. 20 Parameter Code, definition of. 21 Lar Jata River, at Colorado-New Mexico 22 Particle-size, classification. <td< td=""><td>Junction Creek near Durango</td><td>363</td><td>Navajo River, at Banded Peak Ranch,</td><td>23</td></td<>	Junction Creek near Durango	363	Navajo River, at Banded Peak Ranch,	23
Lakes and reservoirs: 97	Keystone Gulch near Dillon	86,371	at Edith	338
Green Mountain Reservoir. 97 station record. 264	Lakes and reservoirs:		North Fork Gunnison River near Somerset	
Panula Reservoir.	Green Mountain Reservoir	97	station record	
Taylor Park Reservoir.	Paonia Reservoir	181		19
Williams Fork Reservoir. 67 Other records available. 16 Willow Creek Reservoir. 38 Overview of water year 1987. 5-12 Lake Fork at Gateview. 176,381 Owl Creek near Aspen. 153,377 Lake Fork at Gateview. 176,381 Owl Creek near Aspen. 153,377 Lake Granby near Granby. 35 Pannia Reservoir, contents of. 181 Land-surface datum, definition of. 20 Parameter Code, definition of. 21 La Plata River, at Colorado-New Mexico Partial-record station, definition of. 21 Lat Heaperus. 352 Particle-size, classification. 21 Latitude-Longtitude System, explanation of. 13 Prence composition, definition of. 21 Latitude-Longtitude System, explanation of. 13 Percent composition, definition of. 21 Leroux Creek at Hotchkiss. 183,382 Periphyton, definition of. 21 Little Navajo River below Little Oso Diversion Phytoplankton, definition of. 22 Little Snake River, below Baggs, WY, water-quality record. 26 Rio Blanco, gaging-station record. 29 nea			Organism count/area, definition of	21
Lake Fork at Gateview	Williams Fork Reservoir		Other records available	16
water-quality record. 36 Paonia Reservoir, contents of. 181 Land-surface datum, definition of. 20 Parameter Code, definition of. 21 La Plata River, at Colorado-New Mexico Partial-record station, definition of. 21 State line. 352 Particle-size, classification. 21 at Hesperus. 351 Particle size, definition of. 21 Latitude-Longtitude System, explanation of. 13 Percent composition, definition of. 21 Leroux Creek at Hotchkiss. 183,382 Periphyton, definition of. 21 Little Navajo River below Little Oso Diversion Dam, near Chromo. 339 Phytoplankton, definition of. 22 Little Snake River, below Baggs, WY, waterquality record. 26 Rio Blanco, gaging-station record. 22 Little Snake River, below Baggs, WY, waterquality record. 25 water-quality record. 29 near Dixon, WY, gaging-station record. 25 at White River, gaging-station record. 29 near Slater. 255,387 below Rio Blanco, gaging-station record. 289 Los Finos River, at La Boca. 347,389 below Rio Blanco, gaging	Lake Fork at Gateview	176,381		
La Plata River, at Colorado-New Mexico State line	water-quality record	36		
at Hesperus	La Plata River, at Colorado-New Mexico		Partial-record station, definition of	21
Leroux Creek at Hotchkiss	at Hesperus	351	Particle size, definition of	21
Dam, near Chromo.	Leroux Creek at Hotchkiss		Periphyton, definition of	21
Quality record	Dam, near Chromo	339	Phytoplankton, definition of	
near Lily	quality record		Rio Blanco, gaging-station record	
near Slater. 255,387 below Rio Blanco, gaging-station record. 289 Long Lake Inlet near Buffalo Pass. 223,385 water-quality record. 290-291 Los Pinos River, at La Boca. 347,389 below Ryan Gulch, near Rio Blanco, gaging-station record. 302 Lost Creek near Buford. 263,388 water-quality record. 303-305 Low-flow partial-record stations, discharge measurements at. 362 record. 294 Mancos River near Towaoc. 353 Picocurie, definition of. 21 Map of Colorado, crest-stage partial-record. 3 Piedra River, near Arboles. 342,389 lake, stream-gaging and water-quality Piney River basin, crest-stage partial-record 363 stations in. 363			at White River, gaging-station record	
Los Pinos River, at La Boca	near Slater	255,387	below Rio Blanco, gaging-station record	289
Lost Creek near Buford	Los Pinos River, at La Boca	347,389	below Ryan Gulch, near Rio Blanco, gaging-	
Mancos River near Towaoc. 353 Picocurie, definition of. 21 Map of Colorado, crest-stage partial-record. 3 Piedra River, near Arboles. 342,389 lake, stream-gaging and water-quality Piney River basin, crest-stage partial-record stations. 2 stations in. 363	Lost Creek near BufordLow-flow partial-record stations, discharge	263,388.	water-quality recordtributary, near Rio Blanco, gaging-station	303-305
Map of Colorado, crest-stage partial-record			water-quality record	295-296
stations	Map of Colorado, crest-stage partial-record		Piedra River, near Arboles	
	stations		stations in	

	Page		Page
Piney River, below Piney Lake, near Minturn	108,373	Streamflow	5 - 8
near State Bridge	112,374	Streamflow, definition of	23
Pitkin Creek near Minturn	133,375	Substrate, definition of	23
Plateau Creek basin, gaging-station records in	168	Supplemental Water-Quality Data for	260 200
Plateau Creek near CameoPlankton, definition of	168,379 21	Gaging StationsSurface area, definition of	368 - 389 23
Precipitation during water year 1987 and	21	Surface Creek, at Cedaredge	186,382
departures from normal precipitation		near Cedaredge	185,382
(water years 1951-80), in inches	5	Surficial bed material, definition of	23
Primary productivity, definition of	22	Suspended, definition of	23 23
Publications on techniques of water-resource investigations	27 -28	Suspended recoverable, definition of Suspended sediment, definition of	22
=======================================	-,	Suspended, Sediment concentration,	
Radiochemical program, definition of	22	definition of	22
Ranch Creek near Fraser	44,369	Suspended Sediment discharge,	22
Records of Stage and Water Discharge, definition of	14	definition of	22 22
explanation of	14-16	Suspended total, definition of	23
Surface-Water Quality, definition of	16	System for numbering wells, springs, and	
explanation of	16-18	miscellaneous sites	13
Red Sandstone Creek near Minturn	136 , 376 199	Taxonomy, definition of	23
Reed Wash near Mack	199,384	Taylor Creek at mouth, near Axial	249,387
Recoverable from bottom material,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Taylor Park Reservoir at Taylor Park	169
definition of	22	Taylor River, at Almont	171,380
Reservoirs in Blue River basin	97 22	below Taylor Park Reservoir	170,380
Return period, definition of	22	Tenmile Creek below North Tenmile Creek at Frisco	87,371
near Pagosa Springs	336	Thermograph, definition of	23
Roaring Fork River, above Difficult Creek,		Time-weighted average, explanation of	24
near Aspen	148,377	Tomichi Creek at Gunnison	175,380
at Glenwood Springsnear Aspen	158,377	Tongue Creek at Cory Tons per acre-foot, explanation of	187,383 24
Roaring Fork River basin, gaging-station	149	Tons per day, definition of	24
records in	148	Total Coliform bacteria, definition of	19
Rock Creek at Crater (tributary to		Total, definition of	24
Colorado River), gaging-station record	113	Total, discharge, definition of	24 24
water-quality recordat McCoy, gaging-station record	114 – 118 119	Total recoverable, definition of Total organism count, definition of	21
water-quality record	120-122	Total sediment discharge, definition of	22
basin, gaging-station records in	113	Total sediment load, definition of	23
Rock Creek (tributary to Blue River)	00 370	Transmountain diversions from Colorado River	260
near Dillon	90,372 155	basin in Colorado Transmountain diversions no longer published	360 361
Runoff in inches, definition of	22	Tritium Network, definition of	24
		Troublesome Creek basin, gaging-station	
San Juan River basin,	224	records in	72
gaging-station records in	321 335,388	Troublesome Creek near Pearmont Turkey Creek near Red Cliff	72,370 125,374
near Carracas	341,389	Tarkey of con float float officers	120,51
San Miguel River, at Uravan	217,385	Uncompangre River, at Colona	191,383
near Placerville	216,385	at Delta	192,384
St. Louis Creek near Fraser	43,368 22	near Ridgway	189,383
Selected references	25 - 26	Vallecito Creek near Bayfield, gaging-station	
7-day 10-year low flow, definition of	23	record	343
Shadow Mountain Lake near Grand Lake	33	water-quality record	344-345
Slate Creek at upper station, near Dillon Slater Fork near Slater	92,372 256,387	Vallecito Reservoir near Bayfield Vasquez Creek near Winter Park	346 41 , 368
Smith Fork, near Crawford	179,381	rangana or ook hom manoot I dikititititititititi	. , , 500
near Lazear	180,381	Wagonwheel Creek at Budge's Resort, gaging-	
Snake River near Montezuma	85,371	station recordwater-quality record	270 271 – 272
Sodium adsorption ratio, definition of Solute, definition of	23 23	Walton Creek near Steamboat Springs	222
South Fork White River, at Budge's Resort,		Water year, definition of	24
gaging-station record	267	Wearyman Creek near Red Cliff	124,374
water-quality record	268-269	WDR, definition of	24
at Buford, gaging-station record water-quality record	279 280 - 281	Weighted average, definition of	24
near Budge's Resort, gaging-station record	273	station record gaging	160
water-quality record	274-275	water-quality record	161-162
near Buford, gaging-station record	276	West Fork San Juan River at West Fork	
water-quality record	277 - 278	Campground, near Pagosa Springs, gaging-station record	322
near Ptarmigan Pass	58	water-quality record	323-324
above Tributary near Ptarmigan Pass	57	near Pagosa Springs, gaging-station record	331
at upper station near Ptarmigan Pass	56,370	water-quality record	332 - 334
below Old Baldy Mountain, near leal below Short Creek near Ptarmigan Pass	60 59	West Paradox Creek above Bedrock, water- quality record	212
near Leal	61,370	Wet mass, definition of	19
Specific conductance, definition of	23	White River, above Coal Creek near Meeker,	
Spring Creek at La Boca	348	gaging-station record	282
Stage-discharge relation, definition of	23 13	water-quality recordabove Crooked Wash, gaging-station record	283 284 308
Station Identification Numbers, explanation of Stewart Gulch above West Fork, near	13	water-quality record	309-310
Rio Blanco, water-quality record	292-293	White River, below Boise Creek, gaging-	
Straight Creek below Laskey Gulch, near Dillon	89,372	station record	317

	Page		Page
White River, below Boise Creek, water-		Willow Creek (tributary to Little Snake River)	
quality record	318-320	near Dixon, WY	259,387
below Meeker, gaging-station record	289	Willow Creek basin, gaging-station,	
water-quality record	290-291	records in	38 38
near Meeker	285,388	Willow Creek Reservoir near Granby	38
Willow Creek near Rio Blanco, water-quality		Wilson Creek above Taylor Creek, near Axial	248,387
record	297 – 298	Windy Pass Creek near Pagosa Springs, gaging-	_
Williams Fork (tributary to Colorado River)		station record	328
above Darling Creek, near Leal	53 , 369	water-quality record	329-330
Williams Fork basin, gaging-station		Wolf Creek at Wolf Creek Campground, near	
records in	51	Pagosa Springs, gaging-station record	325
Williams Fork, below Steelman Creek	52,369	water-quality record	326-327
below Williams Fork Reservoir, gaging-		WSP, definition of	24
station record	68		
water-quality record	69-71	Yampa River, at Deerlodge Park	262,387
near Leal	62,370	at Steamboat Springs	229,386
near Parshall, gaging-station record	63	below Craig	245,386
water-quality record	64-66	near Maybell, gaging-station record	250
Reservoir near Parshall	67	water-quality record	251-254
Williams Fork River at mouth, near Hamilton,		near Oak Creek, gaging-station record	218
(tributary to Yampa River), gaging-station	246	water-quality record	219 – 221
record	246 247	Zeenlankton definition of	22
water-quality record	24/	Zooplankton, definition of	~ ~

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x101	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047×10^3	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047x10 ⁻³	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785x10 ³	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447x10 ³	cubic meters (m ³)
	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233x10 ³	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x101	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x101	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Mail Stop 415 Box 25046, Denver Federal Center Denver, CO 80225

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE

MS 419
12201 SUNRISE VALLEY DR
RESTON, VA 22092

01 01