


# Water Resources Data New Jersey Water Year 1987

Volume 1. Atlantic Slope Basins, Hudson River to Cape May



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-87-1 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

## CALENDAR FOR WATER YEAR 1987

## 

|    | OCTOBER |    |    |    |    | NOVEMBER |  |  |     |    |    |    | DECEMBER |    |    |  |    |    |    |    |    |    |    |
|----|---------|----|----|----|----|----------|--|--|-----|----|----|----|----------|----|----|--|----|----|----|----|----|----|----|
| S  | M       | T  | W  | T  | F  | S        |  |  | S   | М  | T  | W  | Т        | F  | S  |  | S  | М  | Т  | W  | T  | F  | S  |
|    |         |    | 1  | 2  | 3  | 4        |  |  |     |    |    |    |          |    | 1  |  |    | 1  | 2  | 3  | 4  | 5  | 6  |
| 5  | 6       | 7  | 8  | 9  | 10 | 11       |  |  | 2   | 3  | 4  | 5  | 6        | 7  | 8  |  | 7  |    |    | 10 |    |    |    |
| 12 | 13      | 14 | 15 | 16 | 17 | 18       |  |  | . 9 | 10 | 11 | 12 | 13       | 14 | 15 |  | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 19 | 20      | 21 | 22 | 23 | 24 | 25       |  |  | 16  | 17 | 18 | 19 | 20       | 21 | 22 |  |    |    |    | 24 |    |    |    |
| 26 | 27      | 28 | 29 | 30 | 31 |          |  |  | 23  | 24 | 25 | 26 | 27       | 28 | 29 |  |    | 29 |    |    |    |    |    |

## 

|     |    | J  | ANU | ARY |    |    |    |    | F  | EBRI | UAR | Y  |    |    |    |      | MAR  | СН  |    |    |  |
|-----|----|----|-----|-----|----|----|----|----|----|------|-----|----|----|----|----|------|------|-----|----|----|--|
| S   | M  | Т  | W   | T   | F  | S  | S  | M  | Т  | W    | Т   | F  | S  | S  | M  | Т    | W    | T   | F  | S  |  |
|     |    |    |     | 1   |    | 3  | 1  |    | 3  |      | 5   |    | 7  | 1  | 2  | 3    | 4    | 5   | 6  | 7  |  |
| 4   |    |    | 7   |     |    |    |    |    |    |      |     |    | 14 | 8  | 9  | 10   | 11   | 12  | 13 | 14 |  |
|     |    |    |     |     |    | 17 |    |    |    |      |     |    |    | 15 | 16 | 17   | 18   | 19  | 20 | 21 |  |
|     |    |    |     |     |    | 24 | 22 | 23 | 24 | 25   | 26  | 27 | 28 |    | 23 |      |      | 26  | 27 | 28 |  |
| 2.5 | 26 | 27 | 28  | 29  | 30 | 31 |    |    |    |      |     |    |    | 29 | 30 | 31   |      |     |    |    |  |
|     |    |    | APR | IL  |    |    |    |    |    | MA   | Y   |    |    |    |    |      | JUN  | E   |    |    |  |
| S   | M  | Т  | W   | Т   | F  | S  | S  | M  | Т  | W    | Т   | F  | S  | S  | M  | Т    | W    | T   | F  | S  |  |
|     |    |    | 1   | 2   | 3  | 4  |    |    |    |      |     | 1  | 2  |    | 1  | 2    | 3    | 4   | 5  | 6  |  |
| 5   | 6  | 7  | 8   | 9   | 10 | 11 | 3  | 4  | 5  | 6    | 7   | 8  | 9  | 7  |    |      |      |     | 12 | -  |  |
| 2   | 13 | 14 | 15  | 16  | 17 | 18 |    | 11 | 12 | 13   | 14  |    | 16 |    | 15 |      |      |     |    |    |  |
|     |    |    |     |     |    | 25 |    |    |    |      |     |    | 23 |    | 22 |      |      |     |    |    |  |
| 2.6 | 27 | 28 | 29  | 30  |    |    |    |    |    |      |     |    | 30 |    | 29 |      |      |     | 20 |    |  |
|     |    |    |     |     |    |    | 31 |    |    |      |     |    |    |    | -  | -    |      |     |    |    |  |
|     |    | ,  | JUL | Y   |    |    |    |    | AU | JGUS | ST  |    |    |    |    | SEP: | rem) | BER |    |    |  |
| S   | M  | Т  | W   | Т   | F  | S  | S  | M  | T  | W    | Т   | F  | S  | S  | М  | Т    | W    | Т   | F  | S  |  |
|     |    |    | 1   | 2   | 3  | 4  |    |    |    |      |     |    | 1  |    |    | 1    | 2    | 3   | 4  | 5  |  |
| 5   | 6  | 7  |     |     |    | 11 | 2  | 3  | 4  | 5    | 6   | 7  | 8  | 6  | 7  | 8    |      |     | 11 |    |  |
|     |    |    |     |     |    | 18 |    |    |    | -    |     |    |    |    | 14 |      |      |     |    |    |  |
|     |    |    | 22  |     |    |    |    |    |    |      |     |    | 22 |    | 21 |      |      |     |    |    |  |
|     |    |    | 29  |     |    |    |    |    |    |      |     |    |    |    | 28 |      |      | 24  | 25 | 20 |  |
|     |    |    |     |     | -  |    | 30 |    | 43 | 20   | 41  | 20 | 29 | 21 | 20 | 23   | 30   |     |    |    |  |



# United States Department of the Interior



#### GEOLOGICAL SURVEY

Water Resources Division Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

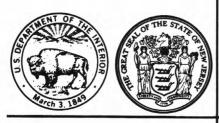
I am pleased to announce the release of our Annual Report, "Water Resources Data for New Jersey, Water Year 1987". This report was prepared by the U.S. Geological Survey, in cooperation with the State of New Jersey and several local and federal government agencies.

Once again this year, the report is issued in two volumes:

Volume 1.--Atlantic Slope Basins, Hudson River to Cape May.
Volume 2.--Delaware River Basin and tributaries to Delaware Bay.

The report contains records of stream discharge and water-quality measurements, elevations of lakes and reservoirs, major water-supply diversions, and tidal elevations. Also included are records of sediment concentrations and records of ground-water quality and ground-water levels. Special sections are devoted to low-flow and crest-stage data and summaries of tidal crest elevations in the New Jersey estuaries and intracoastal waterways.

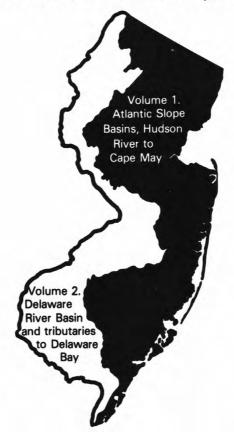
This year, items under the heading "Special Networks and Programs" have been modified to include identification of District stations which are part of each network. Also, a new table using frequency symbols has been included in Summary of Hydrologic Conditions as "Frequency of Detection of Bottom Materials at New Jersey streams for water years 1976-1987". There is also a new graph of monthly precipitation.


Copies of this report in paper or microfiche are for sale through the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-87-1 (for volume 1) and NJ-87-2 (for volume 2). For further information on this report, or to change or remove your address from our mailing list, please contact me at the above address or telephone (609) 771-3900.

Sincerely,

William R. Bauersfeld, Chief

Hydrologic Data Assessment Program


um of Bawers



# Water Resources Data New Jersey Water Year 1987

Volume 1. Atlantic Slope Basins, Hudson River to Cape May

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and W.D. Jones



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-87-1
Prepared in cooperation with the New Jersey
Department of Environmental Protection
and with other agencies

### UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in New Jersey write to

District Chief, Water Resources Division U.S. Geological Survey Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

#### PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report.

Eugene Dorr Mark A. Hardy Robert D. Schopp

K.L. Laubach word processed the text of the report, and G.L. Simpson drafted the illustrations.

The data were collected, computed, and processed by the following personnel:

| G. Carleton    | M.J. DeLuca | E. Rodgers    |
|----------------|-------------|---------------|
| J.P. Campbell  | J.F. Dudek  | R.D. Sachs    |
| G.L. Centinaro | C.E. Gurney | F.L. Schaefer |
| R.S. Cole      | R.G. Reiser |               |

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of Mark A. Ayers, Associate District Chief for Hydrologic Data Assessment and Information Management; Donald E. Vaupel, District Chief, New Jersey; and Stanley P. Sauer, Regional Hydrologist, Northeastern Region.

|   | • | • | 72 | - |   | • |
|---|---|---|----|---|---|---|
| 3 | u | 4 | ,, | • | w |   |

| REPORT DOCUMENTATION PAGE                                                                                      | 1. REPORT NO.<br>USGS/WRD/HD-88/271               | 2.                 | 3. Recipient's Accession No.                                                     |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|----------------------------------------------------------------------------------|
|                                                                                                                | ta - New Jersey, Water<br>C Slope Basins, Hudson  |                    | 5. Report Date August 1988 6.                                                    |
| 7. Author(s) W. R. Bauersfeld,                                                                                 | E. W. Moshinsky, E. A.                            | Pustay, W. D. Jone | 8. Performing Organization Rept. No. USGS-WDR-NJ-87-1                            |
| 9. Performing Organization Name a<br>U.S. Geological Su                                                        | nd Address<br>rvey, Water Resources               | Division           | 10. Project/Task/Work Unit No.                                                   |
| Mountain View Offic<br>810 Bear Tavern Ro.<br>West Trenton, New                                                | ad, Suite 206                                     |                    | 11. Contract(C) or Grant(G) No. (C) (G)                                          |
| 12. Sponsoring Organization Name U.S. Geological Su: Mountain View Offic 810 Bear Tavern Row West Trenton, New | rvey, Water Resources<br>ce Park<br>ad, Suite 206 | Division           | 13. Type of Report & Period Covered  Annual - Oct. 1, 1986 to Sept. 30, 1987 14. |

#### 15. Supplementary Notes

Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies.

#### 16. Abstract (Limit: 200 words)

Water Resources data for the 1987 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 77 gaging stations; tide summaries for 1 station; stage and contents for 15 lakes and reservoirs; water quality for 62 surfacewater sites and 160 wells; and water levels for 39 observation wells. Also included are data for 40 crest-stage partial-record stations, 12 tidal crest-stage gages, and 49 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the national water data system operated by U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

#### 17. Document Analysis a. Descriptors

\*New Jersey, \*Hydrologic data, \*Surface water, \*Ground water, \*Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water Levels, Water Analyses.

#### b. Identifiers/Open-Ended Terms

#### c. COSATI Field/Group

| 18. Availability Statemen: No restriction on distribution. | 19. Security Class (This Report)            | 21. No. of Pages |
|------------------------------------------------------------|---------------------------------------------|------------------|
| This report may be purchased from: National                | Unclassified                                | 355              |
| Technical Information Service, Springfield, VA 22161       | 20. Security Class (This Page) Unclassified | 22. Price        |

| - | 240 | - | - |     | - |
|---|-----|---|---|-----|---|
| u | ON  | п | ы | 1 W | 3 |

|                                                                                                                                                                               | Page       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Preface                                                                                                                                                                       | iii        |
| List of surface water stations, in downstream order, for which records are published                                                                                          | vi         |
| List of surface-water stations, in downstream order, for which records are published<br>List of ground-water wells, by county, for which records are published                | vii        |
| Introduction                                                                                                                                                                  | 1          |
| Cooperation                                                                                                                                                                   | 1          |
| Summary of hydrologic conditions                                                                                                                                              | 2 2 2 3    |
| StreamflowWater quality                                                                                                                                                       | 5          |
| Ground-water levels                                                                                                                                                           | 3          |
| Special networks and programs                                                                                                                                                 | 11         |
| Explanation of records                                                                                                                                                        | 11         |
| Station identification numbers                                                                                                                                                | 11         |
| Downstream order system                                                                                                                                                       | 11         |
| Latitude-longitude system                                                                                                                                                     | 11         |
| Records of stage and water discharge                                                                                                                                          | 12<br>12   |
| Data collection and computation                                                                                                                                               | 13         |
| Data presentation Identifying estimated daily discharge                                                                                                                       | 14         |
| Accuracy of the records                                                                                                                                                       | 14         |
| Other records available                                                                                                                                                       | 15         |
| Records of surface-water quality                                                                                                                                              | 15         |
| Classification of records                                                                                                                                                     | 15         |
| Arrangement of records                                                                                                                                                        | 15<br>15   |
| On-site measurements and sample collection                                                                                                                                    | 15         |
| Sediment.                                                                                                                                                                     | 16         |
| Laboratory measurements.                                                                                                                                                      | 16         |
| Data presentation.                                                                                                                                                            | 16         |
| Remark codes                                                                                                                                                                  | 17         |
| Records of ground-water levels                                                                                                                                                | 17         |
| Data collection and computation                                                                                                                                               | 17         |
| Data presentation                                                                                                                                                             | 17<br>18   |
| Records of ground-water quality                                                                                                                                               | 18         |
| Data presentation                                                                                                                                                             | 18         |
| Data presentation                                                                                                                                                             | 18         |
| Water-related reports for New Jersey completed during 1986, 1987                                                                                                              | 19         |
| Access to WAISTORE data                                                                                                                                                       | 20         |
| Definition of terms                                                                                                                                                           | 20<br>28   |
| Selected references                                                                                                                                                           | 31         |
| List of discontinued gaging stations                                                                                                                                          | 33         |
| List of discontinued gaging stations                                                                                                                                          | 34         |
| Station records, surface water                                                                                                                                                | 44         |
| Discharge at partial-record stations and miscellaneous sites                                                                                                                  | 256        |
| Crest-stage partial-record stations                                                                                                                                           | 256<br>262 |
| Low-flow partial-record stations                                                                                                                                              | 268        |
| Tidal crest-stage stations                                                                                                                                                    | 276        |
| Station records, ground water                                                                                                                                                 | 278        |
| Ground-water levels                                                                                                                                                           | 278        |
| Secondary observation wells                                                                                                                                                   | 317        |
| Quality of ground water                                                                                                                                                       | 318        |
| Index                                                                                                                                                                         | 343        |
| ILLUSTRATIONS                                                                                                                                                                 |            |
| ILLUSTRATIONS                                                                                                                                                                 |            |
| Figure 1. Monthly streamflow at key gaging stations                                                                                                                           | 4          |
| 2. Annual mean discharge at key gaging stations                                                                                                                               | 5          |
| 3. Monthly precipitation at three National Weather Service locations                                                                                                          | 6          |
| 4. Monthly mean specific conductance at Delaware River at Trenton                                                                                                             | 7          |
| <ol> <li>Occurrence of chlordane, DDT, DDE, DDD and PCB's in stream bottom material</li> <li>Map showing locations of sites with concentrations of Chlordane, DDD,</li> </ol> |            |
| DDE. DDT. or PCB's in bottom material greater than 20 µg/kg 1987                                                                                                              | 8          |
| DDE, DDT, or PCB's in bottom material greater than 20 µg/kg, 1987                                                                                                             | 9          |
| <ol><li>Twenty-year hydrographs of one artesian and one water-table observation well</li></ol>                                                                                | 10         |
| 9. System for numbering wells and miscellaneous sites                                                                                                                         | 12         |
| 10. Map showing location of gaging stations and surface-water quality stations 11. Map showing location of low-flow and crest-stage partial-record stations                   | 36         |
| 11. Map showing location of low-flow and crest-stage partial-record stations                                                                                                  | 38<br>40   |
| 13. Map showing location of ground-water observation wells                                                                                                                    | 42         |
| Oldering toods of ground mater quarity stations                                                                                                                               | 72         |
| TABLES                                                                                                                                                                        |            |
| Table 1. Frequency of detection of organochlorine and organophosphorus compounds in bottom                                                                                    |            |
| materials of New Jersey streams for water years. 1976 to 1987                                                                                                                 | 3          |
| materials of New Jersey streams for water years, 1976 to 1987                                                                                                                 | cover      |

Note.--Data for partial-record stations and miscellaneous sites for surface-water quantity are published in a separate section of the data report. See references at the end of this list for page numbers for this section.

[Letter after station name designates type of data: (d) discharge, (c) chemical, (s) sediment, (m) microbiological, (t) water temperature, (e) elevation, gage height or contents]

|                                                                                                       | Page                                         |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------|
| HUDSON RIVER BASIN                                                                                    |                                              |
| Rondout Creek: Wallkill River at Franklin (cm)                                                        | edri;                                        |
| Wallkill River at Franklin (cm)                                                                       | 44                                           |
| Papakating Creek at Sussex (cm)                                                                       | 48                                           |
|                                                                                                       | 50                                           |
| HACKENSACK RIVER BASIN Hackensack River at West Nyack, NY (d)                                         | 52                                           |
| Hackeneack Piver at Pivervale (dcm)                                                                   | 53                                           |
| Pascack Brook at Westwood (d)                                                                         | 57                                           |
| Reservoirs in Hackensack River basin (e)                                                              | 52<br>53<br>56<br>57<br>58<br>59             |
| Diversions in Hackensack River basin                                                                  | 59                                           |
| Passaic River near Millington (dcm)                                                                   | 60<br>63                                     |
| Passaic River near Chatham (dcm)                                                                      | 63                                           |
| ROCKBHBY RIVER AT BERKSHIPE VALLEY (d). Green Pond Brook at Diretinny Arsenal (d)                     | 67                                           |
| Green Pond Brook at Picatinny Arsenal (d)                                                             | 65<br>67<br>68<br>69<br>70<br>71<br>72<br>74 |
| Green Pond Brook at Wharton (d)                                                                       | 69                                           |
| ROCKAMAY RIVER ADOVE PESERVOIR, At BOONTON (d)                                                        | 71                                           |
| Rockaway River at Pine Brook (cm)                                                                     | 72                                           |
| Whippany River at Morristown (dcm)                                                                    | 77                                           |
| Passaic River at Pine Brook (d)                                                                       | 77<br>78<br>79                               |
| Passaic River at Two Bridges (cm)                                                                     | 79                                           |
| Pompton River: Pequannock River (head of Pompton River) at Macopin intake dam (d)                     | 82                                           |
| Wanague River at Awosting (d)                                                                         | 82<br>83<br>84<br>85<br>88<br>89             |
| Ringwood Creek near Wanague (d)                                                                       | 84                                           |
| Ramapo River near Suffern. NY (d)                                                                     | 88                                           |
| Wanaque River at Wanaque (dcm). Ramapo River near Suffern, NY (d). Mahwah River near Suffern, NY (d). | 89                                           |
| Ramapo River near Mahwah (dcm)                                                                        | 91                                           |
| Pomoton River at Pomoton Plains (d)                                                                   | 91<br>93<br>95<br>96<br>99                   |
| Pompton River at Packanack Lake (cm). Passaic River below Pompton River at Two Bridges (c)            | 96                                           |
| Passaic Kiver at Little Falls (dcms)                                                                  | 100                                          |
| Saddle River at Ridgewood (d)                                                                         | 105                                          |
| Saddle River at Ridgewood (d).  Hohokus Brook at Ho-Ho-Kus (d).  Saddle River at Fair Lawn (cm).      | 106<br>107                                   |
| Saddle Kiver at Lodi (dcm)                                                                            | 109                                          |
| Third River at Passaic (d)                                                                            | 112<br>113                                   |
| Diversions in Passaic River basin                                                                     | 121                                          |
| ELIZABETH RIVER BASIN                                                                                 |                                              |
| Elizabeth River at Ursino Lake, at Elizabeth (dcm)                                                    | 117                                          |
| West Branch Rahway River at West Orange (cm)                                                          | 120                                          |
| Rahway River near Springfield (dcm)                                                                   | 122                                          |
| Rahway River at Rahway (dcm)                                                                          | 125<br>128                                   |
| RARITAN RIVER BASIN                                                                                   |                                              |
| South Branch Raritan River at Middle Valley (cm)                                                      | 129<br>131                                   |
| South Branch Raritan River at Arch Street, at High Bridge (cm)                                        | 132                                          |
| Spruce Run at Glen Gardner (d)                                                                        | 134<br>135                                   |
| Spruce Run near Glen Gardner (cm)                                                                     | 137                                          |
| Spruce Run at Clinton (dcm)                                                                           | 140                                          |
| South Branch Raritan River at Stanton (d)                                                             | 143<br>144                                   |
| Neshanic River at Reaville (dcm)                                                                      | 146                                          |
| Back Brook: Back Brook tributary near Ringoes (d)                                                     | 149                                          |
| Holland Brook at Readington (d)                                                                       | 150                                          |
| North Branch Raritan River near Chester (cm)                                                          | 151                                          |
| North Branch Raritan River near Far Hills (d)                                                         | 153<br>154                                   |
| Lamington (Black) River at Succasunna (d)                                                             | 156                                          |
| Lamington (Black) River near Ironia (dcm)                                                             | 157                                          |

| SURFACE WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED   | vii        |
|--------------------------------------------------------------------------------|------------|
|                                                                                | Page       |
| Raritan River BasinContinued                                                   |            |
| North Propos Positon Divon                                                     | 140        |
| Lamington (Black) River near Pottersville (dcm)                                | 160<br>163 |
| Axle Brook near Pottersville (d)                                               | 164        |
| Rockaway Creek: South Branch Rockaway Creek at Whitehouse Station (d)          | 165        |
| Rockaway Creek at Whitehouse (cm)                                              | 166        |
| Lamington (Black) River at Burnt Mills (cm)                                    | 168<br>170 |
| North Branch Raritan River near Raritan (d)                                    | 171        |
| Peters Brook near Raritan (d)                                                  | 173        |
| Macs Brook at Somerville (d)                                                   | 174<br>175 |
| Millstone River near Manalapan (cm)                                            | 178        |
| Millstone River at Grovers Mill (cm)                                           | 180<br>182 |
| Stony Brook at Princeton (dcm)                                                 | 183        |
| Millstone River at Kingston (cm)                                               | 186<br>188 |
| Pike Run at Belle Mead (d).                                                    | 190        |
| Pike Run at Belle Mead (d)                                                     | 191<br>193 |
| Millstone River at Weston (cm)                                                 | 173        |
| Royce Brook tributary near Belle Mead (d)                                      | 194        |
| Raritan River below Calco Dam, at Bound Brook (d)                              | 195        |
| West Branch Middle Brook near Martinsville (d)                                 | 196        |
| Raritan River at Queens Bridge at Bound Brook (cms)                            | 197        |
| Green Brook at Seeley Mills (d)                                                | 199        |
| Stony Brook: East Branch Stony Brook at Best Lake, at Watchung (d)             | 201        |
| Stony Brook at Watchung (d)                                                    | 202        |
| Raritan River near South Bound Brook (cms)                                     | 203<br>204 |
| Lawrence Brook at Farrington Dam (d)                                           | 204        |
| Matchaponix Brook at Mundy Avenue, at Spotswood (cm)                           | 205<br>207 |
| Manalanan Krook at Spotswood (d)                                               | 209        |
| Manalapan Brook at Bridge Street, at Spotswood (cm)                            | 210        |
| South River at Old Bridge (d)                                                  | 212<br>213 |
| Diversions in Raritan River basin                                              | 214        |
| NAVESINK RIVER BASIN Swimming River (head of Navesink River) near Red Bank (d) | 215        |
| SHARK RIVER RASIN                                                              |            |
| Shark River near Neptune City (dcm)                                            | 216<br>219 |
| MANASQUAN RIVER BASIN                                                          | 217        |
| Manasquan River: Marsh Bog Brook at Squankum (cm)                              | 222        |
| Manasquan River at Squankum (d)                                                | 224        |
| METEDECONK RIVER BASIN                                                         | 225        |
| North Branch Metedeconk River near Lakewood (d)                                | 225        |
| Toms River near Toms River (dcms)                                              | 226        |
| WESTECUNK CREEK BASIN Westecunk Creek at Stafford Forge (d)                    | 229        |
| MULLICA RIVER BASIN                                                            |            |
| Mullica River at outlet of Atsion Lake, at Atsion (cm)                         | 230<br>232 |
| Hammonton Creek at Wescoatville (cm)                                           | 233<br>235 |
| Batsto River at Batsto (dcm)                                                   | 235        |
| Batsto River at Pleasant Mills (e)                                             | 238<br>239 |
| West Branch Wading River at Maxwell (cms)                                      | 240        |
| Oswego River at Harrisville (dcm)                                              | 242        |
| East Branch Bass River near New Gretna (dcm)                                   | 245        |
| GREAT EGG HARBOR RIVER BASIN Great Egg Harbor River near Sicklerville (cm)     | 248        |
| Great Egg Harbor River near Blue Anchor (cm)                                   | 250        |
| Great Egg Harbor River at Folsom (d). Great Egg Harbor River at Weymouth (cm)  | 252<br>253 |
| TUCKAHUE RIVER BASIN                                                           | 2,3        |
| Tuckahoe River at Head of River (d)                                            | 255        |
|                                                                                |            |
| Discharge at partial-record stations and miscellaneous sites                   | 256        |
| Crest-stage partial-record stations                                            | 256<br>262 |
| Miscellaneous sites                                                            | 268        |
| Elevation at tidal crest-stage partial-record stations                         | 276        |

| GROUND-WATER LEVEL RECORDS                                                                                                                                                                                                         | Page                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| ATLANTIC COUNTY                                                                                                                                                                                                                    |                                                                                  |
| Jobs Point ACOW1. Galen Hall Oceanville 1. FAA-TW Pomona. Scholler 1                                                                                                                                                               | 278<br>279<br>280<br>281<br>282<br>283                                           |
| BURLINGTON COUNTY Butler Place 1 Butler Place 2 CAMDEN COUNTY                                                                                                                                                                      | 284<br>285                                                                       |
| New Brooklyn Park 1                                                                                                                                                                                                                | 286<br>287<br>288<br>289                                                         |
| CUMBERLAND COUNTY Ragovin 2100                                                                                                                                                                                                     | 290                                                                              |
| Forsgate 4 Forsgate 3 Morrell Fischer South River 2                                                                                                                                                                                | 291<br>292<br>293<br>294<br>295                                                  |
| MONMOUTH COUNTY DOE - Sea Girt Allaire State Park C. Ft. Monmouth 1-NCO. Marlboro 1. Keyport Borough WD 4.                                                                                                                         | 296<br>297<br>298<br>299<br>300                                                  |
| MORRIS COUNTY  Briarwood School Troy Meadows 1.  Berkshire Valley TW 9.  Green Pond TW 5.                                                                                                                                          | 301<br>302<br>303<br>304                                                         |
| OCEAN COUNTY  Island Beach 3 Island Beach 1. DOE - Forked River. Crammer  Toms River TW 2. Toms River Chemical 84 Mantoloking 6. Colliers Mills TW 1 Colliers Mills TW 3 Colliers Mills TW 2. UNION COUNTY                         | 305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314               |
| Union County Park                                                                                                                                                                                                                  | 316<br>317                                                                       |
| QUALITY OF GROUND-WATER RECORDS                                                                                                                                                                                                    |                                                                                  |
| Atlantic County. Bergen County. Burlington County. Cape May County. Essex County. Hudson County. Hunterdon County. Mercer County. Middlesex County. Monmouth County. Morris County. Morris County. Passaic County. Passaic County. | 318<br>319<br>321<br>322<br>323<br>325<br>326<br>327<br>335<br>337<br>338<br>339 |

#### INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of New Jersey each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - New Jersey."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 77 gaging stations; tide summaries at 1 gaging station; stage and content at 15 lakes and reservoirs; water quality at 62 surface-water stations and 160 wells; and water levels at 39 observation wells. Records included for ground-water levels are only a part of those obtained during the year. Also included are data for 40 crest-stage partial-record stations and stage only at 12 tidal crest-stage gages. Locations of these sites are shown on figures 10, 11, 12, and 13. Additional water data were collected at various sites not involved in the systematic data-collection program. Discharge measurements were made at 49 low-flow partial-record stations. Miscellaneous data were collected at 90 measuring sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

This series of annual reports for New Jersey began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1977 water year, these data were published in two volumes.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for New Jersey were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Part 18." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Books and Open-file Reports Section, Federal Center, Building 41, Box 25425, Denver, CO 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NJ-87-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information, Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 771-3900.

#### COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Richard T. Dewling, Commissioner.
Division of Water Resources, George McCann, Director.
New Jersey Water Supply Authority, Rocco Ricci, Executive Director.
North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.
Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.
County of Bergen, Edward R. Ranuska, Director of Public Works and County Engineer.
County of Camden, Barton Harrison, Chairman of Camden County Planning Board.
County of Gloucester, Robert V. Scoltino, Director of Planning.
County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.
Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.

Assistance in the form of funds was given by the U.S. Army Corps of Engineers, in collecting records for 17 surface water stations, and by the U.S. Army Armament Research and Development Center for the collection of records at 3 surface-water stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Funding was also supplied by the following Federal Energy Regulating Commission licensee: Jersey Central Power and Light Company and Independent Hydro Developers Inc. Assistance was provided by the National Weather Service and the National Ocean Service.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Commonwealth Water Co.; Elizabethown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; New Jersey--American Water Company (formerly Monmouth Consolidated Water Co.); and Jersey Central Power and Light Co.

Organizations that supplied data are acknowledged in station descriptions.

#### SUMMARY OF HYDROLOGIC CONDITIONS

#### Streamflow

Streamflow for the 1987 water year was above normal throughout the State. Precipitation ranged from 63.3 inches (149 percent of normal), at Trenton to 48.08 inches (115 percent of normal), at Atlantic City. Figure 3 shows monthly precipitation compared with a 30-year mean. Reservoir contents were above average for most of the year and above spillway elevations from March through

Water year 1987 began with streamflow below normal, ranging from 86 percent of normal in the north to 61 percent of normal in the south. Increased streamflow began in November when very high precipitation (262 percent in Trenton to 135 percent in Atlantic City) was recorded and above average streamflow resulted through the end of December. During the winter months, streamflow was about average. Storms on April 1, 4, 5 caused up to 4 to 5 inches of precipitation in northern New Jersey. The stream runoff reflected this and the peak discharge for the year in this area was recorded. Streamflow returned to normal through August. Some severe summer storms were recorded. On July 3, in Hightstown, 3.98 in. fell in a 24-hour period; on August 6, Woodstown recorded 3.56 in.; and on September 14, Canestear Reservoir reported 5.90 in. Precipitation in July, August, and September was slightly above normal so that by the end of September, streamflow was above normal in the north (158 percent of normal) and below normal in the south (77 percent of normal). The Delaware River at Trenton recorded flow 382 percent of normal in September due mainly to the heavy precipitation in the headwaters. precipitation in the headwaters.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 133  $\rm ft^3/s$  for the water year; this flow is 109 percent of the 69-year average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 91.1  ${\rm ft}^3/{\rm s}$  for the water year; this flow is 106 percent of the 62-year average. The observed annual mean discharge of the Delaware River at Trenton was

22,820 ft<sup>3</sup>/s, which is 101 percent of normal. The Delaware River is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for upstream storage and diversion) was 111 percent of normal for the year. Figures 1 and 2 compare the monthly and annual discharges with past records at these index gaging stations.

Storage in the 13 major water-supply reservoirs in New Jersey increased from 55.6 billion gallons (74 percent of capacity) on October 1, 1986, to 70.5 billion gallons (93 percent of capacity) on September 30, 1987. Storage in Wanaque Reservoir increased from 20.8 billion gallons (75 percent of capacity) on October 1, 1986 to 23.5 billion gallons (85 percent of capacity) on September 30, 1987. Pumped storage in Round Valley Reservoir, the largest reservoir capacity in the State, increased from 50.6 billion gallons (92 percent of capacity) on October 1, 1986, to 53.1 billion gallons (96 percent of capacity) on September 30, 1987.

#### Water Quality

Periods of above-normal streamflow in northern portions of the State during November, December, April and September caused increased dilution of dissolved solids in many northern and central streams for those months. Dilution of dissolved solids is generally regarded as an improvement in water quality because concentrations of undesirable substances, such as trace elements, organic compounds, nutrients, bacteria and nuisance aquatic organisms, usually also are diluted. The degree of dilution is especially apparent if monthly mean values of specific conductance, which are directly related to dissolved solids concentrations, for 1987 are compared with those for the period 1981-86. Figure 4 compares specific conductances for the Delaware River at Trenton, a large drainage in central New Jersey as well as parts of New York and Pennsylvania, for 1987, 1986, and the mean for 1981-86. The years' lowest instantaneous value, 82 \(\mu \) \(\mu \)/cm, (microsiemens per centimeter at 25 degrees Celsius) occurred on April 6, caused by the storms of the first days of the month. The effects of above normal streamflows of November and December, as well as the effect of very high flows caused by heavy headwater precipitation in September, are apparent in difference between the 1987 values and the mean values for those months. Relatively high conductivities during February were probably caused by greater amounts of road salt reaching the river than in the past. Over the course of the entire year, periods of higher than normal dilution were balanced by periods of lower than normal dilution. The mean specific conductance for the Delaware River at Trenton was within 5 percent of the mean for the period 1981-86.

PCB's and a number of pesticides are commonly detected in New Jersey streams. Table 1 summarizes the frequency of detection of these compounds in bottom materials from 1976 through 1987. Detection limits for the period covered by Table 1 were 1.0  $\mu$ g/kg (micrograms per kilogram) for PCN, chlordane, and PCB, 1.0 TO 10  $\mu$ g/kg for toxaphene and 0.1  $\mu$ g/kg for the other compounds. The number of sites at which samples were collected ranged from 13 to 35 per year, with a median of 27. Sites sampled more than once in a year were counted one time. The organochlorine compounds chlordane, dieldrin, DDT (and its decomposition products DDD and DDE), and PCB's are the most commonly detected ones in stream bottoms of the State. Chlordane and dieldrin have been widely used against soil pests as well as termites and ants. DDT was a common, low cost, broad spectrum pesticide, but its production and use in the United States has been banned since 1972. PCB's have been used in many industrial and manufactured items (for example lubricants, dyes, hydraulic fluids, and so forth), but their use has been restricted to environmentally closed systems (for example, electrical capacitors and transformers) since 1971. Common sources of PCB's include industrial and municipal effluents, landfills and other soil disposal sites, and incineration of material containing PCB's (Natural Resources Council, 1979). All of these organochlorine compounds are persistent in the environment and even though their use may be restricted or prohibited, they are still found in the surface and ground waters in the State.

Figure 5 summarizes the concentrations of chlordane, DDT, DDD, DDE, and PCB's, in New Jersey stream-bottom samples for 1976-87. Only those sites were included for which water-quality data are presented in either volume of this report. Figure 5 includes the percentage of samples collected in which at least one compound exceeded a concentration of 20  $\mu$ g/kg (micrograms per kilogram)--a level selected to include the highest 15 to 20 percent of values nationwide (Cragwall Jr., J. S. U.S.Geological Survey, written commun., 1977). Dieldrin, even though frequently detected, has not been included in Figure 5 because its concentration has been measured as greater than 20  $\mu$ g/kg

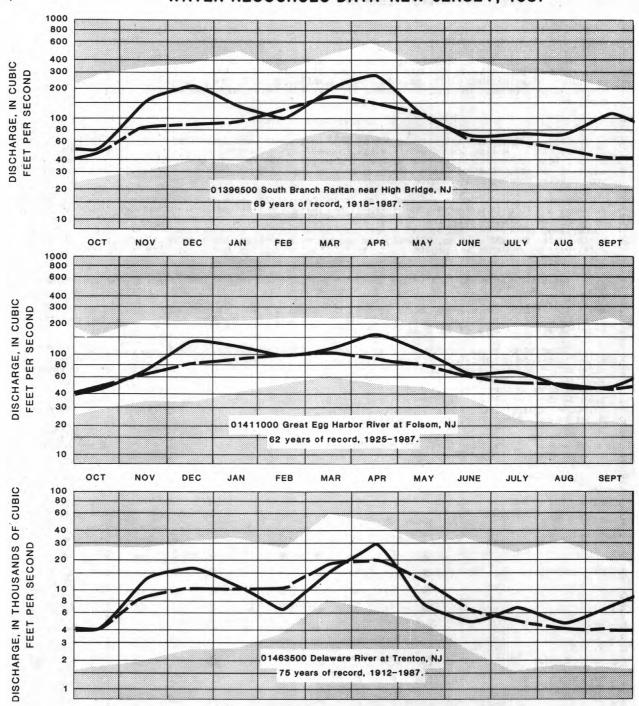
only three times in this period. Figure 6 shows the locations of sites sampled during the 1987 water year at which at least one of these compounds exceeded a concentration of 20  $\mu g/kg$ .

The U.S. Geological Survey maintains a saltwater monitoring network in the Coastal Plain of New Jersey to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. The results of the sampling of wells are presented in the quality of ground water tables in these reports. In the 1987 water year, 250 samples were collected in 8 counties.

#### Ground-Water levels

Changes in ground-water levels during 1987 water year were determined from a statewide network of observation wells. Ground-water levels in water-table observation wells recovered somewhat from the previous two years. Water levels in most observation wells tapping the heavily stressed confined aquifers of the Coastal Plain continued to show long-term net declines. Increasing withdrawals of ground water contributed to these declines.

Monthly water levels for two water-table observation wells in 1987 are compared with monthly extremes and long-term averages in figure 7. The wells are the Bird well (NJ-WRD well no. 19-0002) in Hunterdon County and the Crammer well (NJ-WRD well no. 29-0486) in Ocean County. For further comparison, twenty-year hydrographs are presented in figure 8 for two Coastal Plain wells, one water table well (NJ-WRD well no. 05-0689) and one artesian well (NJ-WRD well no. 07-0413). In addition, multi-year hydrographs are provided with the 1987 water-level data for all the wells included in this report.


The water-table aquifers in the Coastal Plain were near record low levels at the beginning of the 1987 water year. Water-levels in most water-table observation wells recovered from January through June, then leveled off or declined slightly through the remainder of the water year. The most significant recoveries occurred in the Winslow 5 well (NJ-WRD well no. 07-0503) in Camden County and the Lebanon State Forest 23-D well (NJ-WRD well no. 05-0689) in Burlington County, where water-levels rose by 4.02 and 3.86 ft, respectively.

Observation wells tapping the heavily stressed Coastal Plain confined aquifers continued to show long-term net declines in many areas. New lows of record were set in 21 Coastal Plain artesian observation wells. The most significant water-level declines occurred in the Potomac-Raritan-Magothy aquifer system where 12 network observation wells exceeded their previous lows of record. The largest drop in water level in the Potomac-Raritan-Magothy aquifer system occurred in the Toms River Chem 84 observation well (NJ-WRD well no. 29-0085) where the previous record low was exceeded by 4.6 ft. Other aquifers, where previous lows of record were exceeded include the Englishtown, Wenonah-Mount Laurel, Piney Point and the Atlantic City 800-foot sand.

Table 1.--Frequency of detection of organochlorine and organophosphorus compounds in bottom materials of New Jersey streams, for water years, 1976-87.

| COMPOUND                                                                                                         | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987     |
|------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|----------|
| (Organochlorine compounds)                                                                                       | 7    |      |      |      |      |      |      |      |      |      |      |          |
| Chlordane                                                                                                        | •    | Θ    | 0    | •    | •    | 0    | 0    | 0    | 0    | 0    | 0    | $\Theta$ |
| DDD                                                                                                              | •    | 0    | 0    | •    | •    | •    | 0    | •    | 0    | 0    | 0    | •        |
| DDE                                                                                                              | •    |      | 0    | 0    | 0    | 0    | •    | 0    | 0    | 0    | •    | •        |
| DDT                                                                                                              |      | 0    | 0    | •    | 0    | •    | 0    | 0    | 0    | 0    | 0    | •        |
| РСВ                                                                                                              | •    | 0    | •    | 0    | •    | 0    | •    | 0    | 0    | 0    | 0    | 0        |
| Dieldrin                                                                                                         | •    | 0    | 0    | •    | 0    | 0    | •    | 0    | 0    | 0    | 0    | 0        |
| Endosul fane                                                                                                     |      | 0    |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Heptachlor Epoxide                                                                                               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Aldrin, Lindane, Endrin<br>Toxaphene, Heptachlor                                                                 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| PCN                                                                                                              |      |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Mirex                                                                                                            |      |      |      |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| (Organophosphorus compounds)                                                                                     |      |      |      |      |      |      |      |      |      |      |      |          |
| Methoxychlor, Malathion,<br>Parathion, Diazanon, Methyl<br>Parathion, Ethyl Trithion,<br>Methyl Trithion, Ethion |      |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        |





Unshaded area. -- Indicates range between highest and lowest mean recorded for the month, prior to 1987 water year.

Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

Solid line.--Indicates observed monthly mean flow for the 1987 water year.

Figure 1.--Monthly streamflow at key gaging stations.

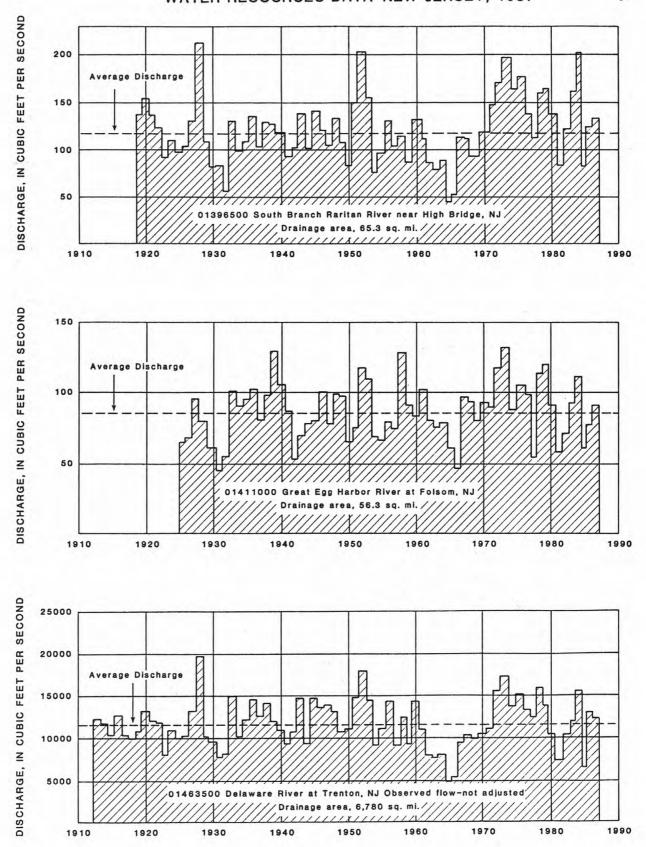
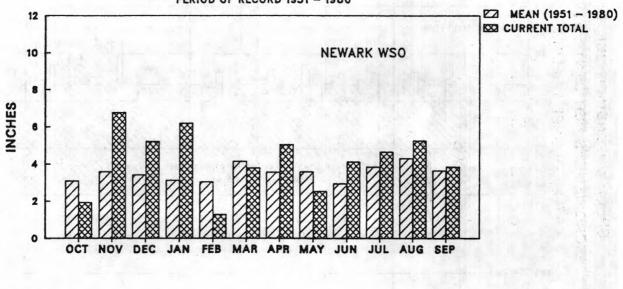
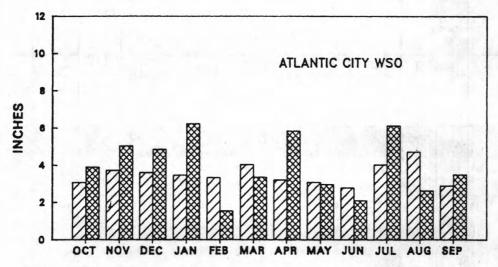





Figure 2.--Annual mean discharge at key gaging stations.

# 6 WATER RESOURCES DATA-NEW JERSEY, 1987

MONTHLY PRECIPITATION AT THREE SELECTED SITES
PERIOD OF RECORD 1951 - 1980





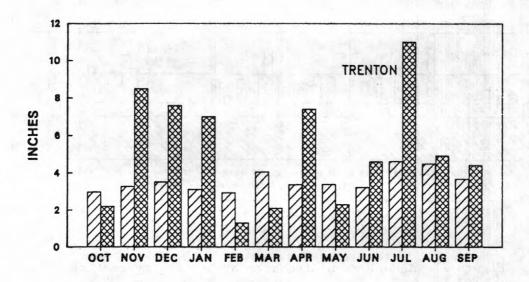



Figure 3. -- Monthly precipitation at three National Weather Service locations.

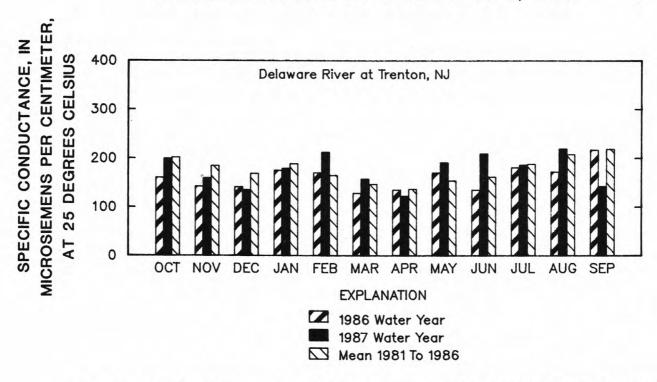



Figure 4. -- Monthly mean specific conductance at Delaware River at Trenton.

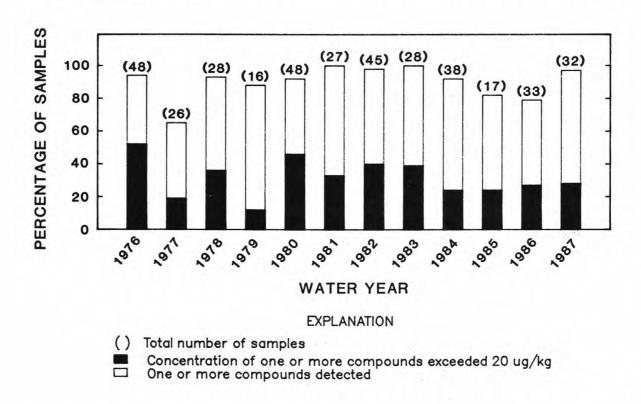



Figure 5.--Occurrence of chlordane, DDT, DDE, DDD and PCB's in stream bottom material.

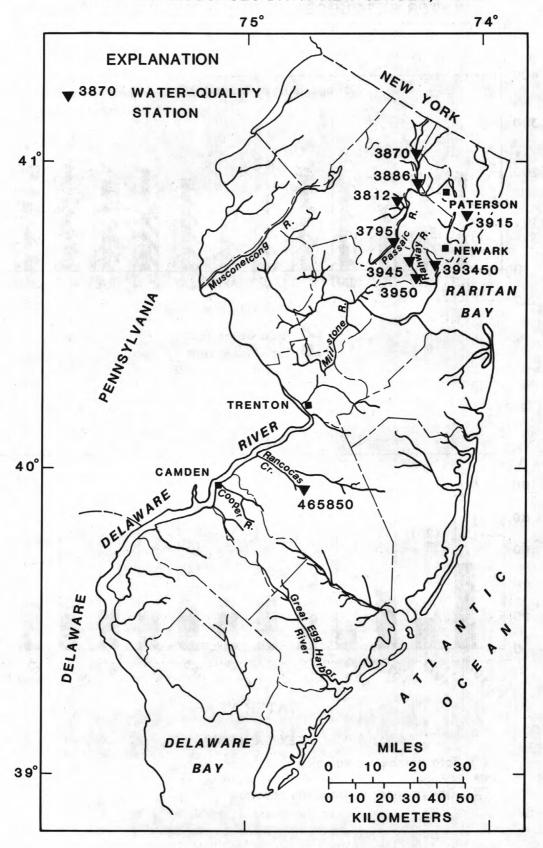
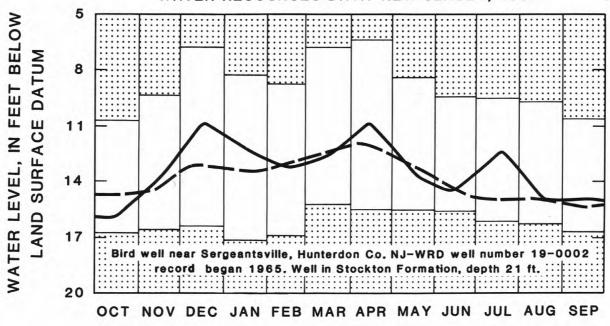
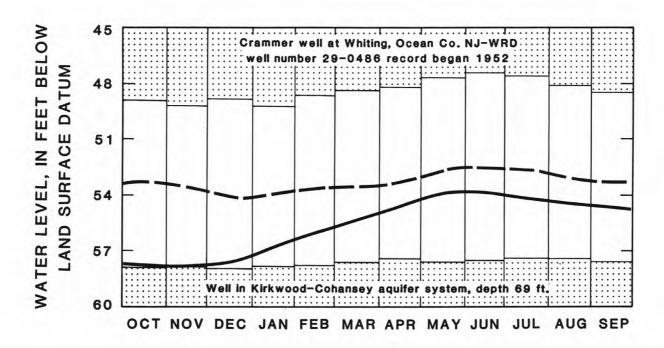
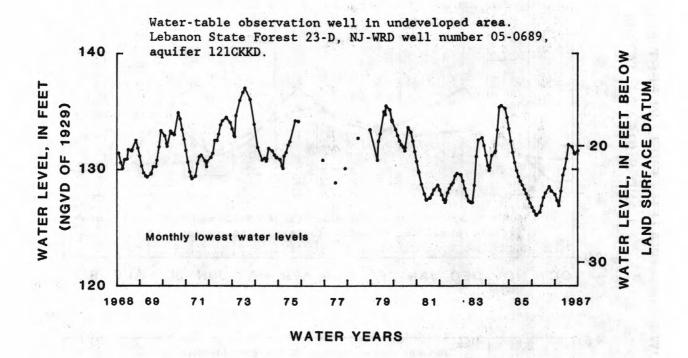





Figure 6.--Map showing locations of sites with concentrations of Chlordane, DDD, DDE, DDT, or PCB's in bottom material greater than 20  $\mu g/kg$ , 1987.






Unshaded area. -- Indicates range between highest and lowest recorded monthly water levels, prior to current year.

Dashed line. -- Indicates average of monthly water levels, prior to current year.

Solid line. -- Indicates monthly mean water level for the current year.

Figure 7. -- Monthly ground-water levels at key water-table observation wells.



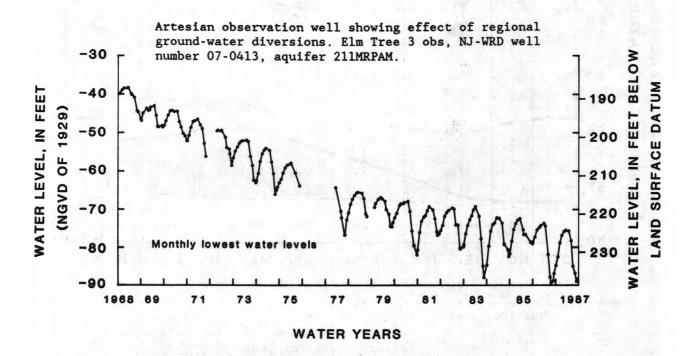



Figure 8.--Twenty-year hydrographs of one artesian and one water-table observation well.

#### SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. The Bench-mark Network station published in this report is McDonalds Branch in Lebanon State Forest, NJ (01466500).

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network igned by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. NASQAN stations published in this report are: Passaic River at Little Falls, NJ (01389500), Raritan River, at Queens Bridge, at Bound Brook, NJ (01403300), Toms River near Toms River, NJ (01408500), West Branch Wading River at Maxwell, NJ (01409815), Maurice River at Norma, NJ (01411500), and Delaware River at Trenton, NJ (01463500).

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). No NTN stations are published in this report.

Radiochemical Program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. The Radiochemical Program station published in this report is Delaware River at Trenton, NJ (01463500).

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information or the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. No Tritium Network stations are published in this report.

#### EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1987 water year that began October 1, 1986, and ended September 30, 1987. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 10, 11, 12, and 13. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

#### Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. Generally the "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

#### Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 01396500, which appears just to the left of the station name, includes the two-digit Part number "01" plus the 6-digit downstream-order number "396500". The Part number designates the major drainage basin; for example, Part "01" covers the North Atlantic slope basins.

#### Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The

first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

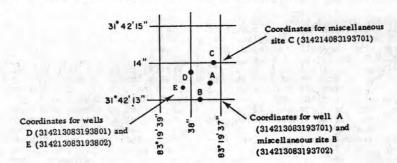



Figure 9.--System for numbering wells and miscellaneous sites (latitude and longitude).

#### Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reservoir accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 10 and 11.

#### Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some

stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

#### Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers or the Delaware River Basin Commission.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(M)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

 ${\tt COOPERATION.--Records\ provided\ by\ a\ cooperating\ organization\ or\ obtained\ for\ the\ Geological\ Survey\ by\ a\ cooperating\ organization\ are\ identified\ here.}$ 

AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge

or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

#### Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated" or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

#### Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft $^3$ /s; to the nearest tenth between 1.0 and 10 ft $^3$ /s; to whole numbers between 10 and 1,000 ft $^3$ /s; and to 3 significant figures for more than 1,000 ft $^3$ /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

#### Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the New Jersey District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

#### Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 10.

#### Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

#### Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites which are not at a surface-water daily record station appear in separate tables following the table of discharge measurements at miscellaneous sites.

#### On-site Measurements and Sample Collection

Water-quality data must represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made onsite when the samples are collected. In addition, specific procedures must be used in collecting, treating, and shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. These references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey, New Jersey District office.

In streams, concentrations of various constituents may vary within the cross section depending on variables such as flow rate, the sources of the constituents, and mixing. Generally, constituents in solid phases are more variable in the cross section than are dissolved constituents. In many cases, samples must integrate several parts of the stream cross section to be representative, especially if loads will be calculated. One sample may be representative of the cross section when the distribution of constituents is homogeneous. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from several verticals.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. In some instances, apparent inconsistencies may exist in the data. For example, the orthophosphate-phosphorus concentration may exceed total phosphorus concentration. However, the difference in the inconsistent values normally is smaller than the precision of the analytical techniques. Inconsistencies between pH and carbonate and bicarbonate concentrations are commonly caused by intake or loss of carbon dioxide by the sample before it can be analyzed.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Geological Survey, New Jersey District Office whose address is given on the back of the title page of this report.

#### Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, maximum, minimum and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the New Jersey District Office.

#### Sediment

Suspended-sediment concentrations are determined from samples collected by using depthintegrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspenced-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

#### Laboratory Measurments

Samples for biochemical-oxygen demand and for fecal coliform and fecal streptococcal bacteria are analyzed at the District laboratory or at the New Jersey Department of Health, Division of Laboratories and Epidemiology. Samples for nutrients are analyzed at the New Jersey Department of Health or at the Geological Survey Laboratory in Arvada, Colorado. Sediment samples are analyzed in the Geological Survey Laboratory in Harrisburg, Pennsylvania. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

#### Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceeding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION...See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites which are not at a surface-water daily record station are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for

these records. Each station is published with its own station number and name in the regular downstream-order sequence.

#### Remark Codes

The following remark codes may appear with the water-quality data in this report: PRINTED OUTPUT REMARK

| THIED COIPOI | REMARK                                                                                         |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| E            | Estimated value                                                                                |  |  |  |  |  |
| >            | Actual value is known to be greater than the value shown                                       |  |  |  |  |  |
| <            | Actual value is known to be less than the value shown                                          |  |  |  |  |  |
| K            | Results based on colony count outside the acceptance range (non-ideal colony count)            |  |  |  |  |  |
| L            | Biological organism count less than 0.5 percent (organism may be observed rather than counted) |  |  |  |  |  |
| D            | Biological organism count equal to or greater than 15 percent (dominant)                       |  |  |  |  |  |
| &            | Biological organism estimated as dominant                                                      |  |  |  |  |  |
|              |                                                                                                |  |  |  |  |  |

#### Records of Ground-Water Levels

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in New Jersey are shown in figure 12.

#### Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the NJ-WRD well number, a hyphenated 6 digit identification number assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. The first two digits are a code for the county in which the well is located and the last four digits are a sequence number. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water quality analyses, and on the corresponding location maps in these reports.

Water-level records are obtained from direct measurments with a steel tape, from the punched tape of a water-level recorder, or from water-level extremes recorder. Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of these extremes (highest and lowest water levels) are unknown. In these reports, the water-level extremes are given together with the manually measured water levels.

Most water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

#### Data Presentation

Each well record consists of three parts, the station description, the data table of water levels observed during the water year, and a multi-year hydrograph. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; (a landline location designation); the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum or elevation of water level. For wells equipped with recorders, only abbreviated tables are published. Mean daily water-levels are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

#### Records of Ground-Water Quality

Records of ground-water quality in this report consist of only one set of measurements for the water year. Because ground-water movement is normally slow compared to surface water, frequent measurements are not necessary for monitoring purposes. More frequent measurements may be necessary for studying ground-water problems, trends, or processes. Locations of wells for which water-quality data are published are shown in figure 13.

#### Data Collection and Computation

The records of ground-water quality in this report were obtained from water-quality monitoring studies in specific areas. Consequently, chemical analyses are presented for some counties but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

In ground-water observation wells, water in the casing may not be representative of aquifer water quality. To collect samples representative of aquifer water, samples are collected only after at least three casing volumes of water have been pumped from the well and measurements of temperature, specific conductance, and pH have stabilized during the pumping.

#### Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County and are identified by NJ-WRD well number. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

#### CURRENT WATER RESOURCES PROJECTS IN NEW JERSEY

The Geological Survey is currently involved in a number of hydrologic investigations in the State of New Jersey. The following is a list of these investigations. Results are published at the conclusion of short-term projects or periodically in the case of long-term projects. Hydrologic data from these projects are entered into the WATSTORE data base. Subsequent sections contain information on recent publications and on WATSTORE.

Assessment of ground-water resources in the vicinity of ground-water contamination sites in Greenwich Township, New Jersey. \*

Evaluation of field sampling techniques and analytical methods for organic compounds in ground water.

Geochemical effects on the corrosivity of ground water in the Kirkwood-Cohansey aquifer in the New Jersey Coastal Plain. \*

Geochemical processes controlling aluminum and sulfate transport in acidic surface, ground and soil waters in a watershed in the New Jersey Coastal Plain.\*

Geohydrologic investigations at United States Environmental Protection Agency Superfund sites.

Geohydrology at Picatinny Arsenal in Morris County, New Jersey.

Geohydrology in the vicinity of a fusion test reactor, Plainsboro Township, Middlesex County, New Jersey.

Geophysical characteristics of aquifers in New Jersey. \*

Ground-water contamination by light chlorinated hydrocarbons at Picatinny Arsenal.

Ground-water quality and its relationship to geohydrology and land use in the outcrop area of the Potomac-Raritan-Magothy aquifer system, Mercer and Middlesex Counties, New Jersey.

Ground-water data collection network. \*

Ground-water withdrawals and use in South River area of New Jersey. \*

Ground-water resources investigation of the Rockaway River buried valley.\*

Ground-water resources of northern Mercer County and southeastern Somerset County, New Jersey. \*

Mydrologic processes with special emphasis on ground-water quality near Atlantic City, New Jersey. \*

Hydrologic processes with special emphasis on ground-water quality near Camden, New Jersey. \*

Hydrologic processes with special emphasis on ground-water quality near South River, New Jersey. \*

Hydrology of buried valleys of Central Passaic River basin.\*

Hydrology of the Kirkwood-Cohansey-Aquifer system in Gloucester County and the Upper Maurice River Basin.\*

Mydrology of the Kirkwood-Cohansey-Aquifer system in Metedeconk and Toms River basin.\*

Investigation of naturally occurring radioactive substances in ground water of the Triassic formations in New Jersey. \*\*

Land subsidence related to ground-water withdrawals in the Coastal Plain of New Jersey. \*

New Jersey water-use data system. \*

Optimal withdrawals from a coastal aquifer subject to salt-water encroachment: Numerical analysis and case study.\*\*

Quality of water data collection network. \*

Regionalization of flood frequency for New Jersey streams.\*

Regionalization of low flows for New Jersey streams. \*

Simulation of multilayer Coastal Plain aquifer system of New Jersey.

Somerset County flood monitoring system, phase 2.

Surface-water data collection network. \*

Water-use data system for the Delaware River basin.

\*In cooperation with New Jersey Department of Environmental Protection, Division of Water Resources.

## WATER-RELATED REPORTS FOR NEW JERSEY COMPLETED BY THE GEOLOGICAL SURVEY DURING 1986-87

- Campbell, J.B., 1987, Rainfall-runoff data for Somerset County, New Jersey: U.S. Geological Survey Open-File Report 87-384, 161 p.
- Eckel, J.A., and Walker R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations Report 86-4028, 62 p.
- Harte, P.T., Sargent, B.P., and Vowinkel, E.F., 1986, Description and results of test-drilling program at Picatinny Arsenal, New Jersey, 1982-84: U.S. Geological Survey Open-File Report 86-316, 54 p.
- Kish, G.R., Macy, J., and Mueller, R.T., 1987, Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4146, 19 p.
- Lacombe, P., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Lewis, J.C., and Spitz, F.J., 1987, Hydrogeology, ground-water quality, and the possible effects of a hypothetical radioactive-water spill, Plainsboro Township, New Jersey: U.S. Geological Survey Water-Resources Investigation Report 87-4092, 45 p.
- Philips, M.O., and Schopp, R.D., 1986, Flood of April 5-7, 1984 in northeastern New Jersey: U.S. Geological Survey Open-File Report 86-423W, 112 p.
- Sargent, B.P., Green, J.W., Harte, P.T., and Vowinkel, E.F., 1986, Ground-water-quality data for Picatinny Arsenal, New Jersey, 1958-85: U.S. Geological Survey Open-File Report 86-58, 66 p.
- Schaefer, F.L., 1987, Selected literature on the water resources of New Jersey by the U.S. Geological Survey, through 1986: U.S. Geological Survey Open-File Report 87-767, 45 p.

- Szabo, Z., and Zapecza, O.S., 1987, Relation between radionuclide concentrations and other chemical constituents in ground water in the Newark Basin, New Jersey in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium, and other radioactivity in ground water-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers Inc., p. 283-308.
- U.S. Geological Survey, 1987, Water Resources data for New Jersey, 1987--part 1: U.S. Geological Survey Water-Data Report NJ-87-1, 335 p.
- U.S. Geological Survey, 1987, Water Resources data for New Jersey, 1987--part 2: U.S. Geological Survey Water-Data Report NJ-87-2, 197 p.
- Witkowski, P.J., Smith, J.A., Fusillo, T.V., and Chiou, C.T., 1987, A review of surface-water sediment fractions and their interactions with persistent anthropogenic organic compounds: U.S. Geological Survey Circular 993, 39 p.
- Zapecza, O.S., and Szabo, Z., 1987, Source and distribution of natural radioactivity in ground water in the Newark Basin, New Jersey, in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium and other radioactivity-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers., p. 31-46.
- Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p.

#### ACCESS TO WATSTORE DATA

The National <u>WATer Data STO</u>rage and <u>RE</u>trieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Geological Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the offices whose addresses are given on the back of the title page.

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

#### DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

#### Aquifer codes and geologic names:

The following list shows the aquifer unit codes and geologic names of the formations in which the sampled wells are finished. The aquifer unit codes also appear in the ground-water quality tables.

125VNCN Vincentown Formation 211MLRW 211EGLS 211MRPA 211MRPAU Wenonah-Mount Laurel aguifer Wenonan-Mount Lauret aquirer
Englishtown aquifer
Potomac-Raritan-Magothy aquifer system, undifferentiated
Upper aquifer, Potomac-Raritan-Magothy aquifer system
Middle aquifer, Potomac-Raritan-Magothy aquifer system
Lower aquifer, Potomac-Raritan-Magothy aquifer system
Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system

\*\*Common System\*\*
\*\*Commo 211MRPAM 211MRPAL 2110DBG Monmouth Counties) Farrington aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex, 211FRNG Monmouth Counties) Brunswick Group, undifferentiated Passaic Formation of Olsen (1980) **231BRCK** 231PSSC **231SCKN** Stockton Formation 400PCMB Precambrian Erathem

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bedload</u> is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Benthic invertebrates are invertebrate animals inhabiting the bottoms of lakes, streams, and other water bodies. They are useful as indicators of water quality.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as

<u>Biomass</u> is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m°), and periphyton and benthic organisms in grams per square mile (g/m\).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

 $\frac{\text{Organic mass}}{\text{mass and ash mass}} \text{ or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.}$ 

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

 $\frac{\text{Cfs-day}}{\text{cfs-day}}$  is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll  $\underline{a}$  and  $\underline{b}$  are the two most common green pigments in plants.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> ( $ft^3/s$ ) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

 $\underline{\text{Discharge}}$  is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

 $\frac{\text{Gage height}}{\text{Gage height is}} \text{ (G.H.) is the water-surface elevation referred to some arbitrary gage datum.} \\ \text{Gage height is} \text{ often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.} \\$ 

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCo ).

High tide is the maximum height reached by each rising tide.

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

<u>Land-surface datum</u> (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Low-tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

<u>Micrograms per gram</u> (?g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, ?g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

<u>Multiple-plate samplers</u> are artificial substrates of known surface area used for obtaining benthic-invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information or the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The <u>National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the <u>United States</u>. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Deposition Program (NADP).

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m\), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

| Classification                 | Size (mm)                                              | Method of analysis                                       |
|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|
| Clay<br>Silt<br>Sand<br>Gravel | 0.00024 - 0.004<br>.004062<br>.062 - 2.0<br>2.0 - 64.0 | Sedimentation Sedimentation Sedimentation or sieve Sieve |

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

 $\frac{\text{Picocurie}}{\text{(Ci).}} \text{ (PC, pCi) is one trillionth (l x l0) of the amount of radioactivity represented by a curie <math>\frac{\text{(Ci).}}{\text{A}} \text{ curie}$  is the amount of radioactivity that yields 3.7 x 10 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).}

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and ar commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg  $C/(m^2/time)$ ] for periphyton and macrophytes and [mg  $C/(m^3/time)$ ] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg 0  $/(m^2/time)$ ] for periphyton and macrophytes and [mg 0  $/(m^3 time)$ ] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Return period</u> is the average time interval between occurrences of a hydrological event of a given or greater mangitude, usually expressed in years. May also be called recurrence interval.

<u>River mile</u> as used herein, is the distance above the mouth of Delaware Bay, measured along the center <u>line</u> of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

<u>Runoff in inches</u> (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval is the length of well screen through which water enters a well, in feet below land surface.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

 $\underline{\text{Bed load}}$  is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

 $\underline{\text{Bed load discharge}}$  (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration  $(mg/L) \times discharge$  (ft /s) x 0.0027.

 $\underline{\textbf{Suspended-sediment load}} \ \ \text{is a general term that refers to material in suspension.} \ \ \text{It is not synonymous with either discharge or concentration.}$ 

<u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus <u>suspended-sediment load</u>) that is in transport. It is not synonymous with total-sediment discharge.

7-day 10-year low flow (MA7CD10) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low).

<u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artifical substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

Surficial bed material is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended recoverable"

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filer or, more commonly, by difference, based on determinations of (1) <a href="mailto:dissolved">dissolved</a> and (2) <a href="mailto:total recoverable">total recoverable</a> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <a href="Hexagenia Limbata">Hexagenia Limbata</a>, is the following:

 Kingdom.
 Animal

 Phylum.
 Arthropoda

 Class.
 Insecta

 Order.
 Ephemeroptera

 Family.
 Ephemeridae

 Genus.
 Hexacenia

 Species.
 Hexacenia

 $\frac{\text{Thermograph}}{\text{The more general term}} \text{ is an instrument that continuously records variations of temperature on a chart.} \\ \text{The more general term} \text{ "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.} \\$ 

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

 $\underline{\text{Tons per day}}$  (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

<u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water table is that surface in an unconfined ground-water body at which the pressure is atmospheric.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

#### SELECTED REFERENCES

- Anderson, P.W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water-Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S.D., 1973 Characteristics of water quality and stream flow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- \_\_\_\_\_ 1974, Water-quality and stream flow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water-Resources Investigations 14-74, 82 p.
- Anderson, P.W., and George, J.R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Campbell, J.B., 1987, Rainfall-runoff data for Somerset County, New Jersey, U.S. Geological Survey Open-File Report 87-384, 161 p.
- Eckel, J.A., and Walker, R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations 86-4028, 62 p.
- Fusillo, T.V., 1982, Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T.V., Hochreiter, J.J., Jr., and Lord, D.G., 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p, 1 pl.
- Fusillo, T.V., and Voronin, L.M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 pls.
- Fusillo, T.V., Schornick, J.C., Jr., Koester, H.E., and Harriman, D.A., 1980, Investigation of acidity and other water-quality characteristics of upper Oyster Creek, Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B.D., and Schopp, R.D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Harriman, D.A., and Velnich, A.J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report 82-434.
- Harriman, D.A., and Voronin, L.M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Harte, P.T., Sargent, B.P., and Vowinkel, E.F., 1986, Description and results of test-drilling program at Picatinny Arsenal, new Jersey, 1982-84: U.S. Geological Survey Open-File Report 86-316, 54 p.
- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hindall, S.M., and Jungblut, D.W., 1980, Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J.J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Hochreiter, J.J., Jr., Kozinski, J., and Lewis, J.C., 1986, Characterization of organic ground-water contamination at a waste-oil disposal site, Bridgeport, N.J.: EOS, v. 67, no. 44, p. 945.
- Keith, L.H., and Telliard, W.A., 1979, Priority Pollutants I a perspective view: Environmental Science and Technology, v. 13, no. 4, p. 416-423.
- Kish, G.R., Macy, J.A., and Mueller, R.T., 1987, Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4146, 19 p.
- Lacombe, P., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Langbein, W.B., and Iseri, K.T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S.L., 1970, Statistical summaries of New Jersey stream flow records: New Jersey Division of Water Policy and Supply, Water-Resources Circular 23, 264 p.
- Leahy, P.P., Paulachok, G.N., Navoy, A.S., and Pucci, A.A., Jr., 1987, Plan of study for the New Jersey Bond Issue ground-water supply investigations: New Jersey Geological Survey Open-File Report 87-1, 53 p.

- Lewis, J.C., and Spitz, F.J., 1987, Hydrogeology, ground-water quality, and the possible effects of a hypothetical radioactive-water spill, Plainsboro Township, New Jersey: U.S. Geological Survey Water-Resources Investigation Report 87-4092, 45 p.
- Lohman, S.W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Lord, D.G., Barringer, J., Johnsson, P., and Schuster, P., Effects of Acid precipitation on surface and ground waters in the New Jersey Pinelands [abs]: EOS, Transactions, American Geophysical Union, v. 67, no. 16., April 22, 1986, p. 282.
- Lord, D.G., Johnsson, P.A., Barringer, J.L., and Schuster, P.F., 1987, Results of an acidic deposition study in McDonalds Branch watershed, New Jersey Pinelands [abs]: New Jersey Academy of Science Bulletin, v. 32, no. 1, p. 45.
- Luzier, J.E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L.J., and Anderson, P.W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- National Research Council, 1979, Polychlorinated biphenyls: Washington D.C., National Academy of Sciences, 182 p.
- Olsen, P.E., 1980, The latest Triassic and Early Jurassic Formations of the Newark Basin (eastern North America, Newark Supergroup)--Stratigraphy, structure and correlation: New Jersey Academy of Science, The Bulletin, V. 25, p. 25-51.
- Paulachok, G.N., Walker, R.L., Barton, G.J., Clark, J.S., Duran, P.B., and Hochreiter, J.J., Jr., 1985, Marine well-drilling program for estimation the seaward extent of fresh ground water and evaluating the likelihood of seawater intrusion near Atlantic City, New Jersey [abs.]: EOS, Transactions, American Geophysical Union, v. 66, no. 46, Nov. 12, 1985, p. 889-890.
- Philips, M.O., and Schopp, R.D., Flood of April 5-7, 1984, in northeastern New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-423W, 112 p.
- Rantz, S.E., and others, 1982, Measurement and computation of stream flow; Volume 1. Measurement of stage and discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Sargent, B.P., Green, J.W., Harte, P.T., and Vowinkel, E.F., 1986, Ground-water-quality data for Picatinny Arsenal, new Jersey, 1958-85: U.S. Geological Survey Open-File Report 86-58, 66 p.
- Schaefer, F.L., and Walker, R.L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Schaefer, F.L., 1983, Distribution of chloride concentrations in the principal aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schaefer, F.L., 1987, Selected literature on the water resources of New Jersey by the U.S. Geological Survey, through 1986: U.S. Geological Survey Open-File Report 87-767, 45 p.
- Schornick, J.C., and Ram, N.M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J.C., and Fishel, D.K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R.D., and Gillespie, B.D., 1979, Selected stream flow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R.D., and Ulery, R.L., 1984, Cost-effectiveness of the stream-gaging program in New Jersey: U.S. Geological Survey Water-Resources Investigations Report 84-4108, 97 p.
- Schopp, R.D., and Velnich, A.J., 1979, Flood of November 8-10, 1977 in northeastern and central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P.R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Stankowski, S.J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S.J., and Velnich, A.J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S.J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S.J., Schopp, R.D., and Velnich, A.J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.

- Szabo, Z., and Zapecza, O.S., 1987, Relation between radionuclide concentrations and other chemical constituents in ground water in the Newark Basin, New Jersey in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium, and other radioactivity in ground water-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers Inc., p. 283-308.
- U.S. Environmental Protection Agency, 1976, National interim primary drinking water regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- \_\_\_\_\_1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E.G., 1973, Water resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Velnich, A.J., 1982, Drainage areas in New Jersey: Delaware River basin and streams tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.
- Velnich, A.J., 1984, Drainage areas in New Jersey: Atlantic Coastal basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vickers, A.A., and McCall, J.E., 1968, Surface water supply of New Jersey, stream flow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A.A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.
- Vickers, A.A., Farsett, H.A., and Green, J.W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R.L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.
- Witkowski, P.J., Smith, J.A., Fusillo, T.V., and Chiou, C.T., 1987, A review of surface-water sediment fractions and their interactions with persistent anthropogenic organic compounds: U.S. Geological Survey Circular 993, 39 p.
- Zapecza, O.S., and Szabo, Z., 1987, Source and distribution of natural radioactivity in ground water in the Newark Basin, New Jersey, in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium and other radioactivity-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers., p. 31-46.
- Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p.

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

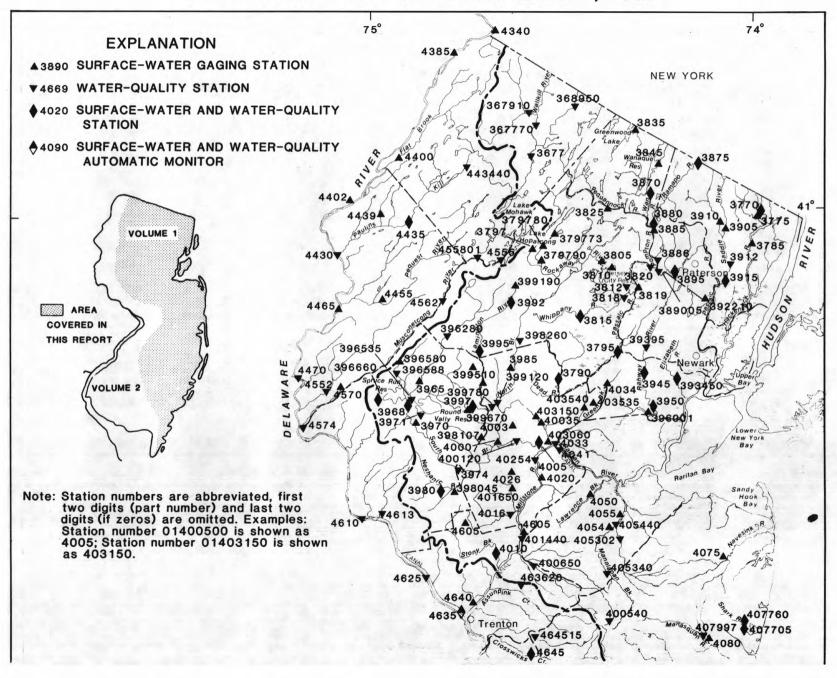
The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics. by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter A1. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy. by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples. edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments. by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells. by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

# DISCONTINUED GAGING STATIONS

The following continuous-record streamflow stations in New Jersey have been discontinued or converted to partial-record stations. Daily streamflow records were collected and published for the period of record shown for each station.


| Station<br>number                                        | Station name                                                                                                                                                                                            | Drainage<br>area<br>(sq mi)  | Period of record<br>(water years)                            |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|
| 01368720<br>01378690<br>01379630<br>01384000<br>01385000 | Auxiliary outlet of Upper Greenwood Lake at Moe, NJ<br>Passaic River near Bernardsville, NJ<br>Russia Brook tributary at Milton, NJ<br>Wanaque River at Monks, NJ<br>Cupsaw Brook near Wanaque, NJ      | 8.83<br>2.51<br>40.4<br>4.37 | 1968-80<br>1968-77<br>1969-71<br>1935-85<br>1935-58          |
| 01385500                                                 | Erskine Brook near Wanaque, NJ                                                                                                                                                                          | 1.14                         | 1934-38                                                      |
| 01386000                                                 | West Brook near Wanaque, NJ                                                                                                                                                                             | 11.8                         | 1935-78                                                      |
| 01386500                                                 | Blue Mine Brook near Wanaque, NJ                                                                                                                                                                        | 1.01                         | 1935-58                                                      |
| 01389800                                                 | Passaic River at Paterson, NJ                                                                                                                                                                           | 785                          | 1897-1955                                                    |
| 01392000                                                 | Weasel Brook at Clifton, NJ                                                                                                                                                                             | 4.45                         | 1937-62                                                      |
| 01392500                                                 | Second River at Belleville, NJ                                                                                                                                                                          | 11.6                         | 1938-64                                                      |
| 01393000                                                 | Elizabeth River at Irvington, NJ                                                                                                                                                                        | 2.90                         | 1931-38                                                      |
| 01393500                                                 | Elizabeth River at Elizabeth, NJ                                                                                                                                                                        | 20.2                         | 1922-73                                                      |
| 01393800                                                 | EF EB Rahway River at West Orange, NJ                                                                                                                                                                   | .83                          | 1972-74                                                      |
| 01394000                                                 | WB Rahway River at Millburn, NJ                                                                                                                                                                         | 7.10                         | 1940-50                                                      |
| 01395500                                                 | Robinsons Branch Rahway River at Goodmans, NJ                                                                                                                                                           | 12.7                         | 1921-24                                                      |
| 01397500                                                 | Walnut Brook near Flemington, NJ                                                                                                                                                                        | 2.24                         | 1936-61                                                      |
| 01399000                                                 | NB Raritan River at Pluckimen, NJ                                                                                                                                                                       | 52.0                         | 1903-06                                                      |
| 01399690                                                 | SB Rockaway Creek at Whitehouse, NJ                                                                                                                                                                     | 13.2                         | 1964-67                                                      |
| 01399830                                                 | NB Raritan River at North Branch, NJ                                                                                                                                                                    | 174                          | 1977-81                                                      |
| 01400730                                                 | Millstone River at Plainsboro, NJ                                                                                                                                                                       | 65.8                         | 1964-75                                                      |
| 01400932                                                 | Baldwin Creek at Baldwin Lake, near Pennington, NJ                                                                                                                                                      | 2.52                         | 1963-70                                                      |
| 01400953                                                 | Honey Branch near Pennington, NJ                                                                                                                                                                        | .70                          | 1967-75                                                      |
| 01401301                                                 | Millstone River at Carnegie Lake, at Princeton, NJ                                                                                                                                                      | 159                          | 1972-74                                                      |
| 01401500                                                 | Millstone River near Kingston, NJ                                                                                                                                                                       | 171                          | 1934-49                                                      |
| 01402590<br>01403000<br>01403500<br>01403900<br>01404000 | Royce Brook tributary at Frankfort, NJ<br>Raritan River at Bound Brook, NJ<br>Green Brook at Plainfield, NJ<br>Bound Brook at Middlesex, NJ<br>Bound Brook at Bound Brook, NJ                           | 779<br>9.75<br>48.4<br>49.0  | 1969-74<br>1903-09, 1945-66<br>1938-84<br>1972-77<br>1923-30 |
| 01404500                                                 | Lawrence Brook at Patricks Corner, NJ Matchaponix Brook at Spotswood, NJ Deep Run near Browntown, NJ Tennent Brook near Browntown, NJ Matawan Creek at Matawan, NJ                                      | 29.0                         | 1922-26                                                      |
| 01405300                                                 |                                                                                                                                                                                                         | 43.9                         | 1957-67                                                      |
| 01406000                                                 |                                                                                                                                                                                                         | 8.07                         | 1932-40                                                      |
| 01406500                                                 |                                                                                                                                                                                                         | 5.25                         | 1932-41                                                      |
| 01407000                                                 |                                                                                                                                                                                                         | 6.11                         | 1932-55                                                      |
| 01408140                                                 | SB Metedeconk River at Lakewood, NJ                                                                                                                                                                     | 26.0                         | 1973-76                                                      |
| 01409000                                                 | Cedar Creek at Lanoka Harbor, NJ                                                                                                                                                                        | 55.3                         | 1933-58, 1971                                                |
| 01409095                                                 | Oyster Creek near Brookville, NJ                                                                                                                                                                        | 7.43                         | 1965-84                                                      |
| 01410500                                                 | Absecon Creek at Absecon, NJ                                                                                                                                                                            | 17.9                         | 1946-85                                                      |
| 01410787                                                 | Great Egg Harbor River tributary at Sicklerville, NJ                                                                                                                                                    | 1.64                         | 1972-79                                                      |
| 01410810                                                 | Fourmile Branch at New Brooklyn, NJ                                                                                                                                                                     | 7.74                         | 1973-79                                                      |
| 01410820                                                 | Great Egg Harbor River near Blue Anchor, NJ                                                                                                                                                             | 37.3                         | 1972-79                                                      |
| 01412000                                                 | Menantico Creek near Millville, NJ                                                                                                                                                                      | 23.2                         | 1931-57, 1978-85                                             |
| 01412500                                                 | WB Cohansey River at Seeley, NJ                                                                                                                                                                         | 2.58                         | 1951-67                                                      |
| 01413000                                                 | Loper Run near Bridgeton, NJ                                                                                                                                                                            | 2.34                         | 1937-59                                                      |
| 01444000                                                 | Paulins Kill at Columbia, NJ Pequest River at Huntsville, NJ Pequest River at Townsbury, NJ Beaver Brook near Belvidere, NJ Brass Castle Creek near Washington, NJ                                      | 179                          | 1908-09                                                      |
| 01445000                                                 |                                                                                                                                                                                                         | 31.0                         | 1940-62                                                      |
| 01445430                                                 |                                                                                                                                                                                                         | 92.5                         | 1977-80                                                      |
| 01446000                                                 |                                                                                                                                                                                                         | 36.7                         | 1923-61                                                      |
| 01455160                                                 |                                                                                                                                                                                                         | 2.34                         | 1970-83                                                      |
| 01455200                                                 | Pohatcong Creek at New Village, NJ Beaver Brook near Weldon, NJ Musconetcong River at outlet of Lake Hopatcong, NJ Musconetcong River near Hackettstown, NJ Delaware River at Riegelsville, NJ          | 33.3                         | 1960-70                                                      |
| 01455355                                                 |                                                                                                                                                                                                         | 1.72                         | 1969-71                                                      |
| 01455500                                                 |                                                                                                                                                                                                         | 25.3                         | 1961-75                                                      |
| 01456000                                                 |                                                                                                                                                                                                         | 68.9                         | 1922-74                                                      |
| 01457500                                                 |                                                                                                                                                                                                         | 6328                         | 1906-71                                                      |
| 01462000                                                 | Delaware River at Lambertville, NJ                                                                                                                                                                      | 6680                         | 1898-1906                                                    |
| 01463587                                                 | New Sharon Run at Carsons Mills, NJ                                                                                                                                                                     | 6.63                         | 1976-77                                                      |
| 01463620                                                 | Assunpink Creek near Clarksville, NJ                                                                                                                                                                    | 34.3                         | 1972-82                                                      |
| 01463657                                                 | Shipetaukin Creek tributary at Lawrenceville, NJ                                                                                                                                                        | .78                          | 1976-77                                                      |
| 01463690                                                 | Little Shabakunk Creek at Bakersville, NJ                                                                                                                                                               | 3.98                         | 1976-77                                                      |
| 01464525                                                 | Thornton Creek at Bordentown, NJ SB Rancocas Creek at Vincentown, NJ MB Mount Misery Brook in Lebanon State Forest, NJ Mill Creek near Willingboro, NJ Mill Creek at Levitt Parkway, at Willingboro, NJ | .84                          | 1976-77                                                      |
| 01465850                                                 |                                                                                                                                                                                                         | 64.5                         | 1961-75                                                      |
| 01466000                                                 |                                                                                                                                                                                                         | 2.82                         | 1953-65, 1977                                                |
| 01467019                                                 |                                                                                                                                                                                                         | 4.12                         | 1975-78                                                      |
| 01467021                                                 |                                                                                                                                                                                                         | 9.12                         | 1975-77                                                      |
| 01476600                                                 | Still Run near Mickleton, NJ                                                                                                                                                                            | 3.98                         | 1957-66                                                      |
| 01477500                                                 | Oldmans Creek near Woodstown, NJ                                                                                                                                                                        | 18.5                         | 1932-40                                                      |
| 01482500                                                 | Salem River at Woodstown, NJ                                                                                                                                                                            | 14.6                         | 1940, 1941-85                                                |
| 01483000                                                 | Alloway Creek at Alloway, NJ                                                                                                                                                                            | 20.3                         | 1953-72                                                      |

# DISCONTINUED CONTINUOUS WATER-QUALITY STATIONS

The following stations were discontinued as continuous water-quality stations prior to the 1987 water year. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station.

| Station<br>number    | Station name                                                                | Drainage<br>area<br>(sq mi) | Type of record          | Period of record<br>(water years) |
|----------------------|-----------------------------------------------------------------------------|-----------------------------|-------------------------|-----------------------------------|
| 01379500<br>01379773 | Passaic River near Chatham, NJ<br>Green Pond Brook at Picatinny Arsenal, NJ | 100                         | Sed.<br>Temp., S.C.,    | 1964-68<br>pH. D.O. 1983-86       |
| 01382000             | Passaic River at Two Bridges, NJ                                            | 361                         | Temp., S.C.,            | pH, D.O. 1969-74                  |
| 01387500             | Ramapo River near Mahwah, NJ                                                | 118                         | Sed.                    | 1964-65                           |
| 01389000             | Pompton River near Two Bridges, NJ                                          | 372                         | Temp., S.C.,            | pH, D.O. 1969-74                  |
| 01389500             | Passaic River at Little Falls, NJ                                           | 762                         | Sed.                    | 1964-65                           |
| 0470/500             |                                                                             |                             | Temp., S.C.             | 1981 - 86                         |
| 01396500             | SB Raritan River near High Bridge, NJ                                       | 65.3                        | Temp.                   | 1961-79                           |
| 01397000             | CD Denites Diver at Ctentes NI                                              | 147                         | S.C.                    | 1969-79<br>1969-79                |
| 01397000             | SB Raritan River at Stanton, NJ                                             | 147                         | Temp., S.C.<br>Sed.     | 1960-63                           |
| 01399690             | SB Rockaway Creek at Whitehouse, NJ                                         | 13.2                        | Temp., S.C.             | 1977-78                           |
| 01377070             | SB ROCKANAY CIECK AT MITTERIOUSE, NO                                        | 13.2                        | Sed.                    | 1977                              |
| 01399700             | Rockaway Creek at Whitehouse, NJ                                            | 37.1                        | Temp., S.C.             | 1977-78                           |
| 01400510             | Raritan River near Manville, NJ                                             | 497                         | Temp., S.C.,            |                                   |
| 01400932             | Baldwin Creek at Baldwin Lake, near Pennington, NJ                          |                             | Temp.                   | 1963-66                           |
|                      |                                                                             |                             | Sed.                    | 1963-69                           |
| 01401000             | Stony Brook at Princeton, NJ                                                | 44.5                        | Sed.                    | 1959-70                           |
| 01402900             | Millstone River near Manville, NJ                                           | 287                         | Temp., S.C.,            | pH, D.O. 1968-74                  |
| 01404100             | Raritan River near South Bound Brook, NJ                                    | 862                         | Temp., S.C.,            | pH, D.O. 1969-77                  |
| 01408000             | Manasquan River at Squankum, NJ                                             | 44                          | Temp., S.C.,            | pH, D.O. 1969-74                  |
| 01408500             | Toms River near Toms River, NJ                                              | 123                         | Temp., S.C.             | 1964-66, 1975-8                   |
| 01409095             | Overton Court was Paralastita Ni                                            | 7 /7                        | S.C.                    | 1975-81                           |
| 01409095             | Oyster Creek near Brookville, NJ                                            | 7.43                        | Temp., D.O.             | 1975 - 76<br>1975 - 77            |
| 01409810             | WB Wading River near Jenkins, NJ                                            | 84.1                        | S.C., pH<br>Temp., S.C. | 1978-81                           |
| 01410787             | Great Egg Harbor River trib. at Sicklerville, NJ                            | 1.64                        | Sed.                    | 1974-78                           |
| 01410810             | Fourmile Branch at New Brooklyn, NJ                                         | 7.74                        | Sed.                    | 1974-78                           |
| 01411000             | Great Egg Harbor River at Folsom, NJ                                        | 57.1                        | Temp.                   | 1961-80                           |
| 01411500             | Maurice River at Norma, NJ                                                  |                             | Temp., S.C.             | 1980-86                           |
| 01440200             | Delaware River near Delaware Water Gap, Pa.                                 | 3850                        | Sed.                    | 1964-65, 1972                     |
| 01442750             | Delaware River at Dunnfield, NJ                                             | 4150                        | Sed.                    | 1966-76                           |
| 01463500             | Delaware River at Trenton, NJ                                               | 6780                        | Sed.                    | 1949-82                           |
| 01464040             | Delaware River at Marine Terminal, at Trenton, NJ                           | 6870                        | Temp., S.C.             | 1973-76                           |
| 01464500<br>01467016 | Crosswicks Creek near Extonville, NJ                                        | 81.5                        | Sed.                    | 1965 - 70                         |
| 0140/010             | Rancocas Creek at Willingboro, NJ                                           | 315                         | Temp., S.C.,<br>D.O.    | pH 1969-74<br>1970-72             |
|                      |                                                                             |                             | pH                      | 1970-74                           |
| 01467150             | Cooper River at Haddonfield, NJ                                             | 17.0                        | Sed.                    | 1968-69                           |
| 01477120             | Raccoon Creek near Swedesboro, NJ                                           | 26.9                        | Temp.<br>Sed.           | 1966-73<br>1966-69                |
|                      |                                                                             |                             |                         |                                   |

Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment).



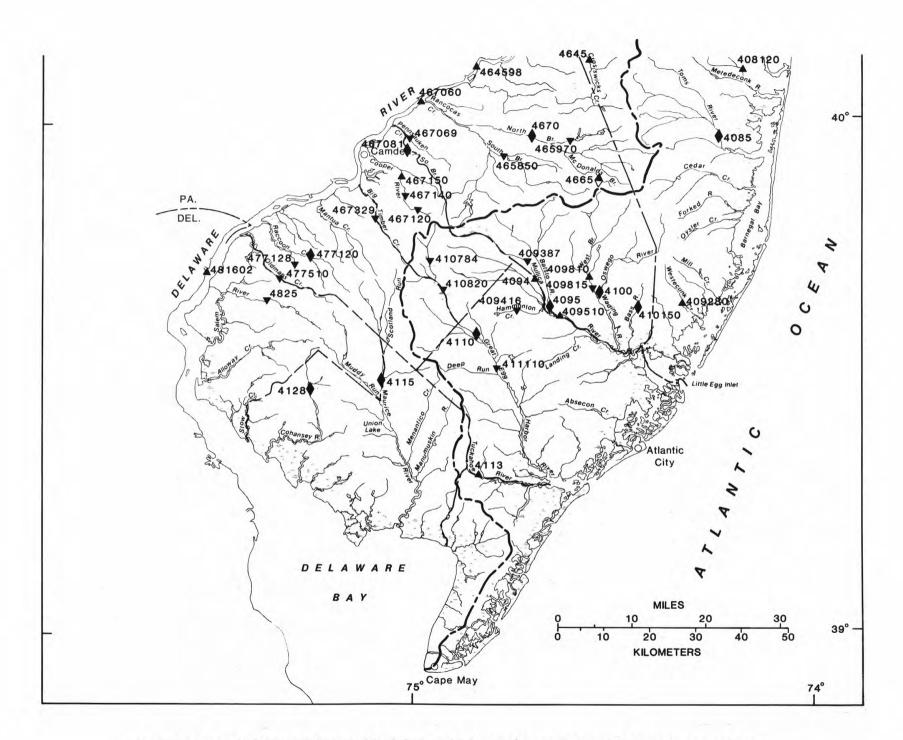
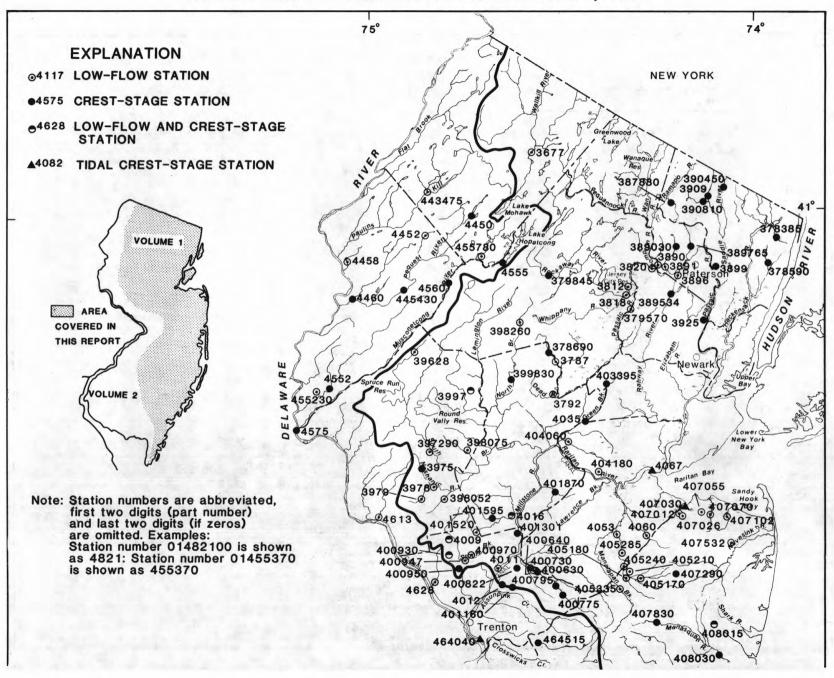




Figure 10.--Map showing location of gaging stations and surface-water quality stations.



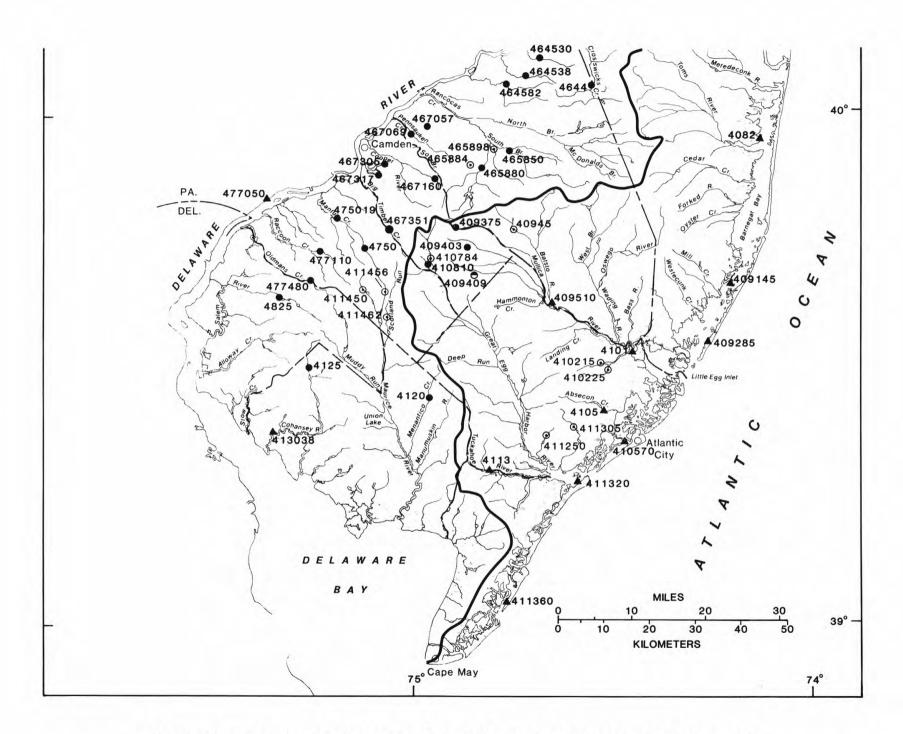
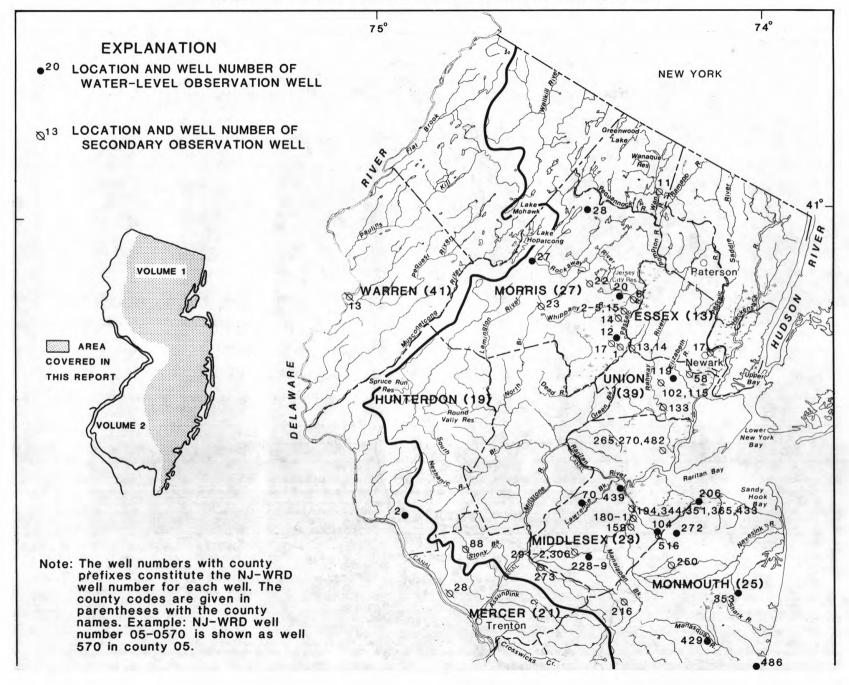




Figure 11.--Map showing location of low-flow and crest-stage partial-record stations.



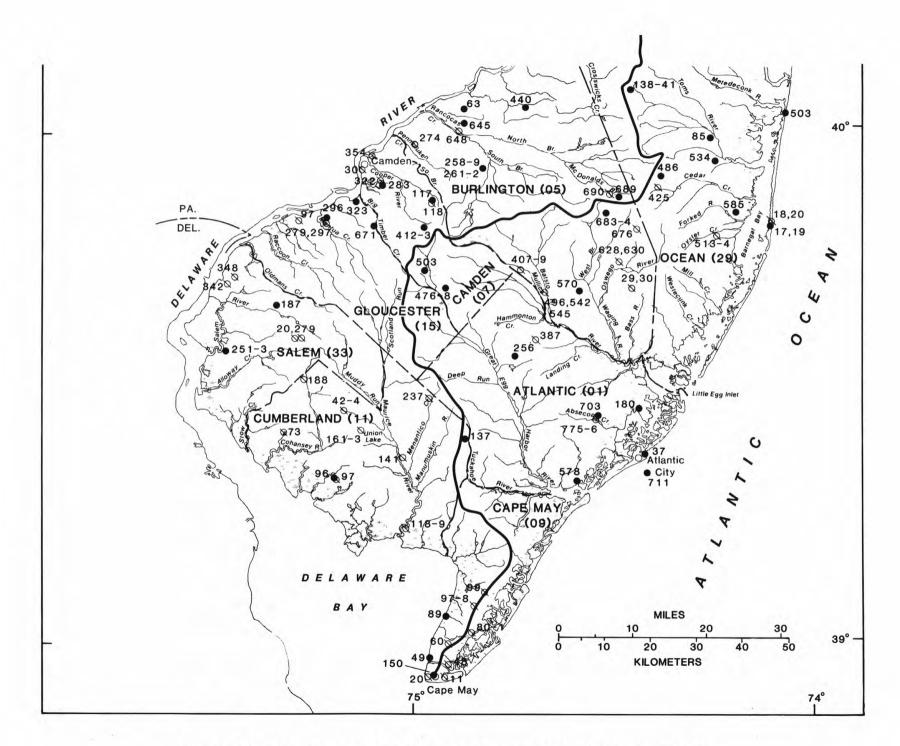
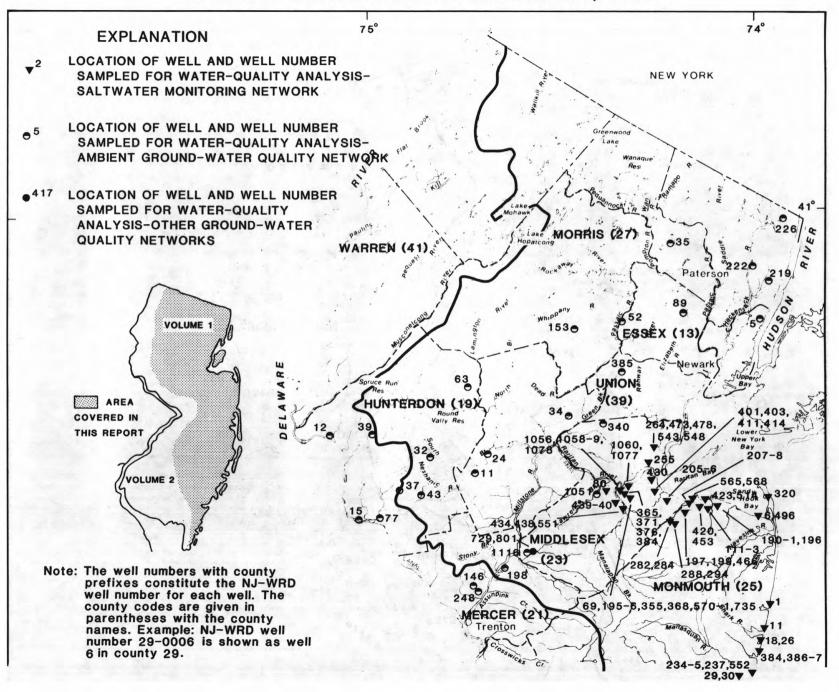




Figure 12.--Map showing location of ground-water observation wells.



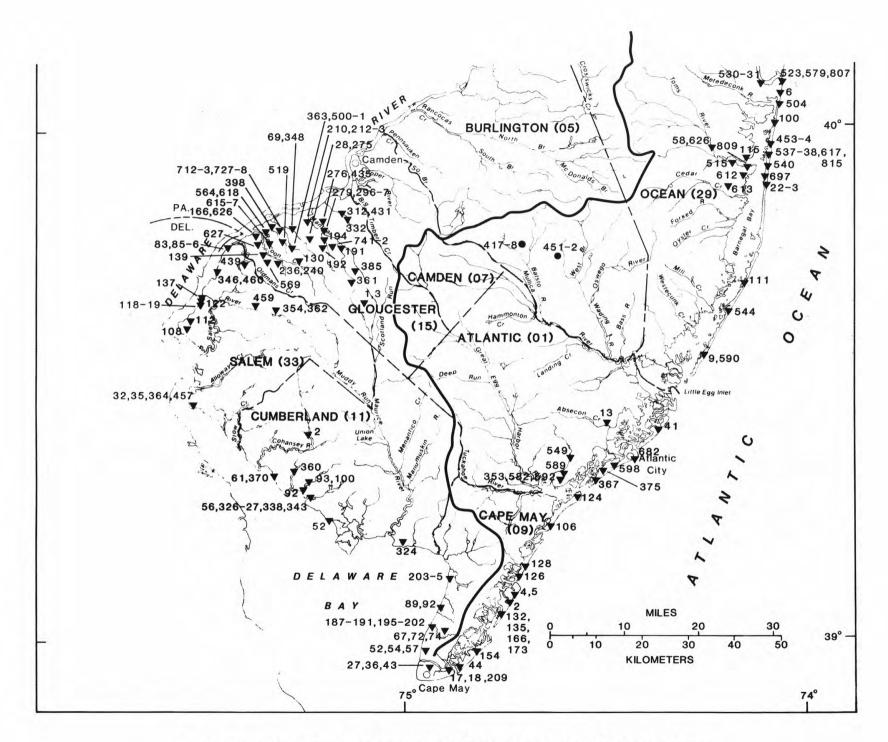



Figure 13, -- Map showing locations of ground-water quality stations.

# HYDROLOGIC-DATA STATION RECORDS

#### HUDSON RIVER BASIN

# 01367700 WALLKILL RIVER AT FRANKLIN, NJ

LOCATION.--Lat 41°06'43", long 74°35'21", Sussex County, Hydrologic Unit 02020007, at bridge 120 ft downstream from dam at outlet of Franklin Pond in Franklin, and 0.8 mi upstream from Wildcat Brook.

DRAINAGE AREA .-- 29.4 mi2.

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPM method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

# WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME       | STRE.<br>FLO<br>INST.<br>TANE<br>(CF | AM- C<br>W, C<br>AN- D<br>OUS A                                     | PE-<br>IFIC<br>ON-<br>UCT-<br>NCE<br>IS/CM) | (ST                                  | H<br>AND-<br>ARD<br>TS) | AT                                      | PER-<br>URE<br>TER<br>G C) | S                                       | (GEN,<br>) IS-<br>DLVED<br>(G/L)          | SC        | GEN,<br>DIS-<br>DLVED<br>PER-<br>CENT<br>ATUR-<br>TION) | BI<br>CH<br>IC | GEN<br>IAND,<br>O-<br>IEM-<br>CAL,<br>DAY<br>IG/L) | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL,<br>TH                           | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------------------|------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------|-----------------------------------------|----------------------------|-----------------------------------------|-------------------------------------------|-----------|---------------------------------------------------------|----------------|----------------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------|
| 1986                       | 1230       |                                      |                                                                     | 77/                                         |                                      |                         |                                         |                            |                                         |                                           |           | 90                                                      |                |                                                    | 790                                   |                                           | 920                                 |
| 13<br>14R 1987             |            | E30                                  |                                                                     | 336                                         |                                      | 8.1                     |                                         | 5.0                        |                                         | 11.4                                      |           |                                                         | ٠              | 2.3                                                | 20                                    |                                           |                                     |
| 04<br>APR                  | 1245       | E162                                 |                                                                     | 402                                         |                                      | 8.1                     |                                         | 1.0                        |                                         | 15.3                                      |           | 109                                                     |                |                                                    |                                       |                                           | 46                                  |
| 07<br>JUN                  | 1045       | E515                                 |                                                                     | 223                                         |                                      | 7.7                     |                                         | 7.5                        |                                         | 11.9                                      |           | 103                                                     |                | <0.9                                               | 2200                                  | 314                                       | 540                                 |
| 11<br>JUL                  | 1245       | E15                                  |                                                                     | 364                                         |                                      | 8.0                     | 1.11                                    | 9.0                        |                                         | 9.1                                       |           | 100                                                     |                | 2.0                                                | 5400                                  |                                           | 920                                 |
| 21                         | 1330       | E15                                  |                                                                     | 361                                         |                                      | 7.8                     | 2                                       | 2.5                        |                                         | 8.9                                       |           | 105                                                     | E              | 1.3                                                | 330                                   | 100                                       | 220                                 |
| 27                         | 1300       | E13                                  | 4                                                                   | 490                                         |                                      | 7.8                     | 1                                       | 9.0                        |                                         | 8.5                                       |           | 93                                                      |                | 2.3                                                | 20                                    |                                           | 43                                  |
| DATE                       | AS         | SS<br>G/L                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | DI<br>SOL<br>(MG                            | NE-<br>UM,<br>S-<br>VED<br>/L<br>MG) |                         | S- '                                    | SOI<br>(MI                 | IAS-<br>IUM,<br>IS-<br>VED<br>G/L<br>K) | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC     | TY<br>B   | SULF<br>DIS<br>SOL<br>(MG<br>AS S                       | VED<br>/L      | (MC                                                | E,                                    | FLUC<br>RIDI<br>DIS<br>SOLV<br>(MG,<br>AS | E,<br>S-<br>VED<br>/L               |
| NOV 1986<br>13<br>MAR 1987 |            | 110                                  | 26                                                                  | 11                                          |                                      | 23                      | 5                                       |                            | 1.4                                     | 79                                        |           | 1                                                       | 9              | 43                                                 | 5                                     | <0                                        | .1                                  |
| 04<br>APR                  |            | 97                                   | 24                                                                  | 8                                           | .9                                   | 29                      | 9                                       |                            | 1.0                                     | 68                                        |           | 1                                                       | 8              | 57                                                 | 7                                     | 0                                         | .1                                  |
| 07                         |            | 70                                   | 18                                                                  | 6                                           | .2                                   | 17                      | 7                                       |                            | 0.9                                     | 52                                        |           | 1                                                       | 3              | 29                                                 | ,                                     | <0                                        | .1                                  |
| JUN 11                     |            | 140                                  | 33                                                                  | 13                                          |                                      | 24                      | 4                                       | . 1                        | 1.4                                     | 111                                       |           | 1                                                       | 4              | 47                                                 | 7                                     | 0                                         | .1                                  |
| JUL<br>21                  |            | 140                                  | 33                                                                  | 14                                          |                                      | 28                      | 3                                       |                            | 1.4                                     | 110                                       |           | 1                                                       | 4              | 5                                                  | 1.53                                  | 0                                         | .2                                  |
| AUG<br>27                  |            | 160                                  | 36                                                                  | 17                                          |                                      | 3                       | 1                                       |                            | 1.9                                     | 133                                       |           | 1                                                       | 6              | 60                                                 | )                                     | 0                                         | .2                                  |
| DATE                       | SOI<br>(MC | ICA,<br>S-<br>LVED<br>G/L            | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NIT<br>GE<br>NITR<br>TOT<br>(MG             | AL /L                                | NO2-<br>TO              | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | AMM<br>TO                  | TRO-<br>EN,<br>ONÍA<br>TAL<br>G/L<br>N) | MIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | NIC<br>AL | NIT<br>GE<br>TOT<br>(MG<br>AS                           | N,<br>AL<br>/L |                                                    | RUS,<br>TAL                           | CARBO<br>ORGAI<br>TOTA<br>(MG,            | NIĆ<br>Al<br>/L                     |
| NOV 1986<br>13<br>MAR 1987 |            | 6.7                                  | 180                                                                 | 0.                                          | 005                                  | 1                       | .83                                     | 0.                         | 06                                      | 0.9                                       | 95        | 2.8                                                     |                | 0.0                                                | 38                                    | 6.7                                       |                                     |
| 04<br>APR                  |            | 7.6                                  | 190                                                                 | 0.                                          | 009                                  | 0                       | .57                                     | 0.                         | 05                                      | 0.4                                       | 2         | 0.9                                                     | 9              | 0.0                                                | 27                                    | 3.4                                       |                                     |
| 07                         |            | 6.4                                  | 120                                                                 | 0.                                          | 011                                  | 0                       | .21                                     | 0.                         | 07                                      | 0.4                                       | 9         | 0.7                                                     | 0              | <0.0                                               | 20                                    | 4.9                                       |                                     |
| 11                         |            | 5.6                                  | 200                                                                 | 0.                                          | 016                                  | 0                       | .36                                     | <0.                        | 05                                      | 0.6                                       | 4         | 1.0                                                     |                | 0.0                                                | 35                                    | 4.1                                       |                                     |
| JUL<br>21                  |            | 7.0                                  | 210                                                                 | 0.                                          | 012                                  | 0                       | .35                                     | 0.                         | 11                                      | 0.7                                       | 7         | 1.1                                                     |                | 0.0                                                | 90.                                   | 6.1                                       |                                     |
| AUG<br>27                  |            | 5.6                                  | 250                                                                 | 0.                                          | 012                                  | 0                       | .18                                     | 0.                         | 06                                      | 0.6                                       | 55        | 0.8                                                     | 3              | 0.0                                                | 30                                    | 4.3                                       |                                     |

HUDSON RIVER BASIN

# 01367700 WALLKILL RIVER AT FRANKLIN, NJ--Continued

| DATE    | TIME           | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)     | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|---------|----------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| NOV 198 | . 1230         | <0.5                                                                |                                                                     |                                                                      |                                                                       | 10                                                                   | 5                                                                  | ::                                                                  | <10                                                                 | 40                                                                 | <1                                                                  | -2                                                                   |
| 13      | . 1230         |                                                                     | 90                                                                  | 32                                                                   | 38                                                                    |                                                                      | •                                                                  | 21                                                                  | •••                                                                 |                                                                    | ••                                                                  | 7                                                                    |
|         | DATE           | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)               | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|         | NOV 1986       |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    | 100                                                                 |                                                                      |
|         | 13             | <10                                                                 | 4                                                                   | 10                                                                   | 6                                                                     | 10                                                                   | 330                                                                | 5200                                                                | 73                                                                  | 150                                                                | 60                                                                  | 3500                                                                 |
|         | 13             |                                                                     | -                                                                   |                                                                      |                                                                       | 10                                                                   |                                                                    | 3200                                                                |                                                                     | 150                                                                |                                                                     | 3300                                                                 |
|         | DATE           | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                               | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                        | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                 | SELE-<br>NIUM,<br>TOTAL<br>(UG/L                                     | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ERABLE (UG/L                                                        | TERIAL<br>(UG/G                                                     | . PHENOLS                                                          | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | TOM MA-<br>TERIAL                                                    |
|         | NOV 1986       |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
|         | 13             | <0.10                                                               |                                                                     | .1                                                                   |                                                                       |                                                                      |                                                                    | 20                                                                  |                                                                     |                                                                    | <1                                                                  | <1.0                                                                 |
|         | DATE           | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | TOTAL<br>IN BOT-                                                    | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|         | NOV 1986<br>13 |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
|         | 13             | <0.1                                                                | <1.0                                                                | <0.1                                                                 | 0.1                                                                   | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                | <0.1                                                               | <0.1                                                                | <0.1                                                                 |
|         | DATE           | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
|         | NOV_1986       |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
|         | 13             | <0.1                                                                | <0.1                                                                | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                | <1.00                                                              | <10                                                                 | <0.1                                                                 |

#### HUDSON RIVER BASIN

#### 01367770 WALLKILL RIVER NEAR SUSSEX, NJ

LOCATION.--41°11'38", long 74°34'32", Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.8 mi upstream of Papakating Creek, 1.7 mi southwest of Independence Corner, 2.0 mi southeast of Sussex, and 2.1 mi northwest of McAfee.

DRAINAGE AREA .-- 60.8 mi 2.

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

OXYGEN, OXYGEN SPE-DEMAND COLI-DIS-STREAM-CIFIC SOLVED FORM BIO-PH TEMPER-OXYGEN, (PER-CHEM-FECAL STREP-FLOW, INSTAN-CON-DUCT-(STAND-ATURE DIS-CENT ICAL EC TOCOCCI 5 DAY SATUR BROTH FECAL DATE TIME **TANEOUS** ANCE SOLVED ARD (MG/L) (US/CM) ATION) (MPN) (MPN) (CFS) UNITS) (DEG C) (MG/L) **NOV 1986** 13... 1030 E62 398 8.1 4.5 11.4 88 E1.8 490 540 MAR 1987 1100 E174 435 8.1 1.0 13.0 92 <0.7 170 540 APR 07... 1215 E355 224 7.5 8.5 10.0 88 <0.8 700 240 JUN 1100 1700 E40 445 8.0 16.0 8.8 90 E1.9 540 JUL <0.7 21 ... 1200 E40 407 7.8 22.0 7.5 87 230 920 AUG 27... 1100 >2400 **E37** 562 7.7 16.5 8.2 85 E1.5 3500 FLUO-MAGNE -POTAS-CHLO-SOD IUM, HARD-CALCIUM SULFATE RIDE, RIDE, SIUM, SIUM, LINITY NESS DIS-DIS. DIS-DIS-LAB DIS-SOLVED (MG/L AS SO4) SOLVED SOLVED SOLVED (MG/L AS MG) SOLVED SOLVED (MG/L SOLVED (MG/L DATE (MG/L (MG/L (MG/L AS NA) (MG/L (MG/L AS K) AS CACO3) CACO3) AS CA) AS CL) AS F) 10V 13... MAR 1987 04... 140 33 <0.1 14 21 2.1 116 23 40 140 33 13 23 107 20 44 0.1 1.3 07... 82 20 7.9 14 1.0 15 22 <0.1 66 JUN 11.. JUL 21.. 190 44 20 24 2.0 164 18 46 0.2 180 41 18 25 2.1 149 17 0.1 AUG 27... 45 200 22 29 26 53 0.1 4.5 164 SOLIDS, SUM OF CONSTI-NITRO SILICA, NITRO-NITRO-GEN, AM-MONIA + NITRO-DIS-SOLVED (MG/L GEN GEN GEN, AMMONÍA NITRO-PHOS-CARRON TUENTS, NITRITE NO2+NO3 ORGANIC ORGANIC GEN, TOTAL PHORUS, TOTAL TOTAL TOTAL DIS-TOTAL TOTAL TOTAL DATE AS SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L \$102) (MG/L) AS N) AS N) AS N) AS N) AS N) AS P) AS C) NOV 1986 13... MAR 1987 7.6 210 0.015 0.56 0.15 1.0 1.6 0.038 5.3 04... 7.5 210 0.010 0.85 0.18 0.64 1.5 0.033 3.5 APR 07... 7.3 130 0.012 0.27 0.07 0.34 0.61 <0.020 5.2 JUN 11... 7.6 260 0.018 1.70 0.12 0.65 2.4 0.051 3.8 JUL 21... 7.1 240 0.033 1.07 0.08 0.77 1.8 0.100 4.9 AUG 27... 280 0.021 6.6 3.17 0.08 1.0 4.2 0.130 6.2

HUDSON RIVER BASIN

# 01367770 WALLKILL RIVER NEAR SUSSEX, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME         | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N)  | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------------|--------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| NOV 1986<br>13 | 1030         |                                                                     | 230                                                                  | 2.0                                                                  | 5.7                                                                   |                                                                      |                                                                    | 6                                                                   |                                                                      |                                                                    |                                                                 | <1                                                                   |
| JUN 1987<br>11 | 1100         | <0.5                                                                |                                                                      |                                                                      |                                                                       | <10                                                                  | 2                                                                  |                                                                     | <10                                                                  | 30                                                                 | <1                                                              |                                                                      |
|                | 1100         | 10.5                                                                |                                                                      | 15.5                                                                 |                                                                       | 110                                                                  | _                                                                  |                                                                     | 110                                                                  | 30                                                                 |                                                                 |                                                                      |
|                | DATE         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|                | V 1986       |                                                                     | 6                                                                    | <10                                                                  |                                                                       | 3                                                                    |                                                                    | 4100                                                                |                                                                      | 10                                                                 |                                                                 | 310                                                                  |
| JUI            | N 1987       | 40                                                                  |                                                                      | 110                                                                  |                                                                       |                                                                      |                                                                    | 45.4.5%                                                             |                                                                      | 37                                                                 | 400                                                             | 310                                                                  |
|                | 11           | 10                                                                  |                                                                      | •••                                                                  | 3                                                                     |                                                                      | 620                                                                |                                                                     | 7                                                                    |                                                                    | 120                                                             |                                                                      |
|                | DATE         | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | (UG/G                                                                 | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ERABLE<br>(UG/L                                                     | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
|                | V 1986       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| JU             | 13<br>N 1987 |                                                                     | 0.08                                                                 |                                                                      | <10                                                                   |                                                                      | <1                                                                 | ••                                                                  | 220                                                                  |                                                                    | 14                                                              | <1.0                                                                 |
|                | 11           | <0.10                                                               |                                                                      | 3                                                                    |                                                                       | <1                                                                   |                                                                    | 30                                                                  |                                                                      | 3                                                                  |                                                                 | 300                                                                  |
|                | DATE         | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|                | 1986         |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| JUN            | 3<br>1987    | <0.1                                                                | <1.0                                                                 | 0.2                                                                  | 0.3                                                                   | <0.1                                                                 | <0.1                                                               | 0.2                                                                 | <0.1                                                                 | <0.1                                                               | <0.1                                                            | <0.1                                                                 |
| 1              | 1            | ••                                                                  | ••                                                                   |                                                                      | ••                                                                    |                                                                      | •••                                                                | **                                                                  | •••                                                                  |                                                                    |                                                                 |                                                                      |
|                | DATE         | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | IN BOT-<br>TOM MA-<br>TERIAL                                         | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | BOTTOM<br>MATL.                                                    | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOM MA-<br>TERIAL                                               | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
| NO             | V 1986       |                                                                     | 100                                                                  |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| JU             | 13<br>N 1987 | <0.1                                                                | <0.1                                                                 | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <1.00                                                              | <10                                                             | <0.1                                                                 |
|                | 11           |                                                                     | •••                                                                  |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |

# HUDSON RIVER BASIN

# 01367910 PAPAKATING CREEK AT SUSSEX, NJ

LOCATION.--41°12'02", long 74°35'59", Sussex County, Hydrologic Unit 02020007, at bridge on State Route 23 in Sussex, 0.7 mi downstream from Clove Brook, 2.6 mi southwest of Independence Corner, and 3.4 mi northwest of McAfee.

DRAINAGE AREA .-- 59.4 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME  | STRE<br>FLO<br>INST<br>TANE<br>(CF | W, CO<br>AN- DU<br>OUS AN                                           | FIC<br>N-<br>CT-<br>CE                      | PH<br>(STAND-<br>ARD<br>UNITS) | ATU                                            | PER-<br>URE<br>TER<br>G C)                   | OXYG<br>DI<br>SOL<br>(MG | EN,<br>S-<br>VED                                               | XYGEN,<br>DIS-<br>SOLVEI<br>(PER-<br>CENT<br>SATUR<br>ATION) | DEI<br>DEI<br>CI                      | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL, STR<br>TOCO<br>TH FEO                    | CCI |
|----------------|-------|------------------------------------|---------------------------------------------------------------------|---------------------------------------------|--------------------------------|------------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|------------------------------------------------------|---------------------------------------|----------------------------------------------------|-----|
| 05             | 1100  | FO                                 | .6                                                                  | 332                                         | 7.8                            |                                                | 6.0                                          |                          | .5                                                             | 77                                                           |                                       | E2.0                                                 | 460                                   | 70                                                 |     |
| B 1987<br>05   | 1330  | E58                                |                                                                     | 327                                         | 7.5                            |                                                | 0.0                                          | 11                       |                                                                | 77                                                           |                                       | <0.8                                                 | 330                                   |                                                    |     |
| R<br>17        | 1300  | E102                               |                                                                     | 252                                         | 7.6                            |                                                | 3.5                                          | 12                       |                                                                | 94                                                           |                                       | <0.7                                                 | 80                                    |                                                    |     |
| N<br>10        | 1230  | E23                                |                                                                     | 316                                         | 7.5                            |                                                | 7.0                                          |                          | .4                                                             | 77                                                           |                                       | E1.8                                                 | 1400                                  |                                                    |     |
| L<br>22        |       | -                                  |                                                                     |                                             |                                |                                                |                                              |                          |                                                                |                                                              |                                       |                                                      |                                       |                                                    |     |
| G              | 1300  | E18                                |                                                                     | 338                                         | 7.1                            |                                                | 4.0                                          |                          | .4                                                             | 65                                                           | 450                                   | E1.2                                                 | 3500                                  |                                                    |     |
| 27             | 1000  | E18                                | 116                                                                 | 262                                         | 7.2                            | 1                                              | 7.0                                          | 1                        | .3                                                             | 76                                                           |                                       | 4.8                                                  | 9200                                  | >2400                                              | ,   |
| DATE           | AS    | SS<br>G/L                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M  | M, SOC<br>ED SOL               | IUM,<br>S-<br>VED<br>IG/L<br>S NA)             | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS K   | M,<br>ED<br>L            | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | Si (I                                                        | LFATE<br>IS-<br>OLVED<br>MG/L<br>SO4) | SOI (MC                                              | E,                                    | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |     |
| NOV 1986<br>05 |       | 120                                | 37                                                                  | 5.                                          | 5 1                            | 15                                             | 2.                                           | 6                        | 80                                                             |                                                              | 24                                    | 30                                                   | )                                     | <0.1                                               |     |
| FEB 1987<br>05 |       | 85                                 | 27                                                                  | 4.                                          |                                | 20                                             | 1.                                           |                          | 47                                                             |                                                              | 24                                    | 41                                                   |                                       | <0.1                                               |     |
| MAR<br>17      |       | 70                                 | 22                                                                  | 3.                                          |                                | 13                                             | 1.                                           |                          | 40                                                             |                                                              | 23                                    | 2                                                    |                                       | <0.1                                               |     |
| JUN<br>10      |       | 120                                | 38                                                                  | 5.                                          |                                | 16                                             | 2.                                           | A.                       | 78                                                             |                                                              | 23                                    | 3                                                    | - 123                                 | <0.1                                               |     |
| JUL 22         |       | 120                                | 40                                                                  | 5.                                          |                                | 18                                             | 2.                                           |                          | 85                                                             |                                                              | 29                                    | 30                                                   |                                       | 0.1                                                |     |
| AUG<br>27      |       | 85                                 | 27                                                                  | 4.                                          |                                | 12                                             |                                              |                          |                                                                |                                                              | 10071                                 | 2                                                    | 5300                                  |                                                    |     |
| 21             |       | 05                                 | 21                                                                  | 4.                                          |                                | 12                                             | 3.                                           | 2                        | 51                                                             |                                                              | 28                                    | 2                                                    |                                       | 0.1                                                |     |
| DATE           | SO (M | LVED<br>G/L                        | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>GEI<br>NITE<br>TOT/<br>(MG,<br>AS I | TE NO                          | ITRO-<br>GEN,<br>2+NO3<br>DTAL<br>MG/L<br>S N) | NITR<br>GEN<br>AMMON<br>TOTA<br>(MG/<br>AS A | ÍA<br>L                  | NITRO<br>GEN, AM<br>MONIA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | -<br>+ N<br>C                                                | ITRO-<br>GEN,<br>OTAL<br>MG/L<br>S N) | PHO<br>TO<br>(M                                      | OS-<br>RUS,<br>TAL<br>G/L<br>P)       | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |     |
| NOV 1986       |       |                                    |                                                                     |                                             |                                |                                                |                                              | 20                       | 10                                                             |                                                              | 151                                   | 4                                                    |                                       |                                                    |     |
| 05<br>FEB_1987 |       | 5.7                                | 170                                                                 |                                             |                                | 0.57                                           | 0.1                                          |                          | 1.2                                                            |                                                              | 1.8                                   |                                                      | 110                                   | 4.2                                                |     |
| 05             |       | 7.5                                | 150                                                                 |                                             |                                | 1.21                                           | 0.2                                          |                          | 0.74                                                           |                                                              | 2.0                                   |                                                      | 049                                   | 5.2                                                |     |
| 17<br>JUN      |       | 5.5                                | 120                                                                 | 0.0                                         |                                | 1.33                                           | 0.1                                          | 5                        | 0.61                                                           |                                                              | 1.9                                   | 0.                                                   | 027                                   | 3.0                                                |     |
| 10             |       | 8.0                                | 170                                                                 | 0.0                                         | 079                            | 1.30                                           | 0.4                                          | 9                        | 0.50                                                           |                                                              | 1.8                                   | <0.                                                  | 020                                   | 4.1                                                |     |
| 22             |       | 5.9                                | 180                                                                 | 0.0                                         | 080                            | 1.10                                           | 0.1                                          | 9                        | 1.0                                                            |                                                              | 2.1                                   | 0.                                                   | 220                                   | 6.8                                                |     |
| 27             |       | 3.0                                | 130                                                                 | 0.                                          | 106                            | 1.13                                           | 0.7                                          | 6                        | 1.9                                                            |                                                              | 3.0                                   | 0.                                                   | 660                                   | 8.7                                                |     |

HUDSON RIVER BASIN
01367910 PAPAKATING CREEK AT SUSSEX, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| JUN 1987<br>10 | 1230                                                  | <10                                                   | <1                                                              | <10                                                             | 20                                                      | <1                                                      | <10                                                            | 8                                                       |
| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)          | PHENOLS<br>TOTAL<br>(UG/L)                              |
| JUN 1987       | 480                                                   | 12                                                    | 160                                                             | <0.10                                                           | 3                                                       | <1                                                      | <10                                                            | 2                                                       |

# HUDSON RIVER BASIN

# 01368950 BLACK CREEK NEAR VERNON, NJ

LOCATION.--Lat 41°13'21", long 74°28'33", Sussex County, Hydrologic Unit 02020007, at bridge on Maple Grange road, 0.6 mi upstream of confluence with Wawayanda Creek, 0.7 mi northwest of Maple Grange, and 1.7 mi northeast of Vernon.

DRAINAGE AREA. -- 17.3 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME  | STRE.<br>FLO<br>INST.<br>TANE<br>(CF | M, CO<br>AN- DU<br>OUS AN                                           | FIC<br>N-<br>CT- (<br>CE                         | PH<br>STAND-<br>ARD<br>INITS) | TEMPER<br>ATURE<br>WATER<br>(DEG C | SO                                         | GEN,<br>IS-<br>LVED                                            | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L, STREP-<br>TOCOCCI<br>H FECAL                    |
|----------------|-------|--------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-------------------------------|------------------------------------|--------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| NOV 1986<br>05 | 1300  | E6                                   |                                                                     | 806                                              | 8.1                           | 5.0                                | 2.5                                        | 1.0                                                            | 87                                                            | 4.6                                                            | 490                                        | 540                                                |
| FEB 1987<br>05 | 1100  | E22                                  | .0                                                                  | 706                                              |                               |                                    |                                            |                                                                | 82                                                            |                                                                | 50                                         | 79                                                 |
| MAR            |       |                                      |                                                                     |                                                  | 7.7                           | 0.5                                |                                            | 1.8                                                            |                                                               | <0.5                                                           |                                            |                                                    |
| 17<br>JUN      | 1100  | E33                                  |                                                                     | 536                                              | 7.9                           | 3.5                                |                                            | 2.5                                                            | 95                                                            | E1.4                                                           | 80                                         | 79                                                 |
| 10<br>JUL      | 1045  | E11                                  |                                                                     | 525                                              | 7.5                           | 17.5                               |                                            | 6.1                                                            | 64                                                            | <1.1                                                           | 2400                                       | 920                                                |
| 22<br>AUG      | 1100  | E9                                   | .5                                                                  | ••                                               | 7.5                           | 25.0                               | )                                          | 6.4                                                            |                                                               | <0.8                                                           | 790                                        | 210                                                |
| 27             | 1200  | E9                                   | .5                                                                  | 678                                              | 6.9                           | 17.0                               | )                                          | 6.8                                                            | 71                                                            | E2.0                                                           | 16000                                      | >2400                                              |
| DATE           | (M    | SS<br>G/L                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/I<br>AS MG | DIS<br>D SOLV                 | UM,<br>S-<br>/ED S<br>S/L (        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | DIS-<br>SOLV<br>(MG/                                          | TE RI<br>DI<br>ED SO<br>L (M                                   | LVED<br>G/L                                | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| NOV 1986       |       |                                      |                                                                     |                                                  |                               |                                    |                                            |                                                                |                                                               |                                                                |                                            |                                                    |
| 05<br>FEB 1987 |       | 280                                  | 65                                                                  | 28                                               | 48                            | 3                                  | 2.1                                        | 232                                                            | 24                                                            | 8                                                              | 7                                          | 0.1                                                |
| 05<br>MAR      |       | 240                                  | 56                                                                  | 24                                               | 44                            |                                    | 1.5                                        | 189                                                            | 26                                                            | 8                                                              | 2                                          | 0.1                                                |
| 17             |       | 190                                  | 44                                                                  | 20                                               | 25                            | 5                                  | 1.2                                        | 159                                                            | 19                                                            | 4                                                              | 8                                          | 0.1                                                |
| 10             |       | 230                                  | 55                                                                  | 23                                               | 33                            | 5                                  | 1.1                                        | 208                                                            | 14                                                            | 6                                                              | 2                                          | 0.2                                                |
| JUL<br>22      |       | 230                                  | 51                                                                  | 24                                               | 39                            |                                    | 2.0                                        | 192                                                            | 16                                                            | 7                                                              | 2                                          | 0.2                                                |
| AUG<br>27      |       | 220                                  | 48                                                                  | 24                                               | 44                            |                                    | 3.1                                        | 183                                                            | 22                                                            | 2 8                                                            | 4                                          | 0.2                                                |
| DATE           | SO (M | S-<br>LVED<br>G/L                    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN<br>NITRI<br>TOTAL<br>(MG/I<br>AS N  | GE NO2-1                      | NO3 AN                             | IITRO-<br>GEN,<br>IMONÍA<br>OTAL<br>(MG/L  | NITRO<br>GEN, AM<br>MONÍA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | + NITE<br>C GEN<br>TOTA<br>(MG/                               | L TO                                                           |                                            | ARBON,<br>RGANIC<br>TOTAL<br>(MG/L<br>AS C)        |
| NOV 1986       |       |                                      |                                                                     |                                                  |                               |                                    |                                            |                                                                |                                                               |                                                                |                                            |                                                    |
| 05<br>FEB_1987 |       | 6.4                                  | 400                                                                 | 0.0                                              | 19 0.                         | .68 (                              | 0.09                                       | 0.68                                                           | 1.4                                                           | 0.2                                                            | 00                                         | 6.1                                                |
| 05<br>MAR      |       | 8.1                                  | 360                                                                 | 0.0                                              | 13 1.                         | .08 0                              | 10                                         | 0.61                                                           | 1.7                                                           | 0.0                                                            | 31                                         | 4.8                                                |
| 17<br>JUN      |       | 5.3                                  | 260                                                                 | 0.0                                              | 13 0.                         | .75 (                              | .10                                        | 0.70                                                           | 1.5                                                           | <0.0                                                           | 20                                         | 3.6                                                |
| 10             |       | 8.3                                  | 320                                                                 | 0.0                                              | 29 0.                         | .56 (                              | 1.16                                       | 0.88                                                           | 1.4                                                           | 0.0                                                            | 77                                         | 5.8                                                |
| 22<br>AUG      |       | 9.0                                  | 330                                                                 | 0.0                                              | 17 0.                         | .71 (                              | .13                                        | 0.92                                                           | 1.6                                                           | 0.1                                                            | 40                                         | 6.3                                                |
| 27             |       | 6.5                                  | 340                                                                 | 0.0                                              | 33 1.                         | .03 (                              | 1.14                                       | 1.0                                                            | 2.1                                                           | 0.1                                                            | 30                                         | 5.7                                                |

HUDSON RIVER BASIN

01368950 BLACK CREEK NEAR VERNON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME        | SULFII<br>TOTA<br>(MG/<br>AS S                  | L SOL                                                 | JM,<br>IS- AI<br>LVED<br>G/L                         | RSENIC<br>TOTAL<br>(UG/L<br>AS AS) | BERY<br>LIUM<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS B | , BOR<br>L TOT.<br>V- REC<br>LE ERA<br>L (UG            | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG     | AL TOTO OV- RECORDE ER/                               | JM, COP<br>TAL TO<br>COV- RE<br>ABLE ER<br>G/L (U | PER,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CU) |
|----------------|-------------|-------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------------------------------|
| NOV 1986<br>05 | 1300        | <0                                              | .5                                                    | 10                                                   | <1                                 | <10                                                  |                                                         | 10                                         | <1                                                    | <10                                               | 13                                        |
| DATE           | T<br>R<br>E | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANG<br>NESE<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS M | L TO'V- REG<br>LE ER/L             | CURY<br>TAL<br>COV-<br>ABLE<br>G/L<br>HG)            | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                        | 1                                         |
| NOV 1986<br>05 | 5           | 460                                             | 25                                                    |                                                      | 70 <                               | 0.10                                                 | 4                                                       | <1                                         | 20                                                    | 3                                                 |                                           |

#### 01376800 HACKENSACK RIVER AT WEST NYACK, NY

LOCATION.--Lat 41°05'44", long 73°57'52", Rockland County, Hydrologic Unit 02030103, on right bank 20 ft downstream from Penn Central Transportation Co. railroad bridge at West Nyack, 1,000 ft upstream from State Highway 59, and 1.0 mi downstream from DeForest Lake.

DRAINAGE AREA . -- 29 . 4 mi2 .

PERIOD OF RECORD .-- December 1958 to current year.

GAGE.--Water-stage recorder, stop-log control, and crest-stage gage. Datum of gage is 53.50 ft above National Geodetic Vertical Datum of 1929 (levels by Hackensack Water Co.).

REMARKS.--No estimated daily discharges. Records good except those for periods of sluggish intake action, Dec. 4-July 15, which are poor. Flow regulated by DeForest Lake (see Reservoirs in Hackensack River Basin). Diversion from gaging station pool for municipal supply for village of Nyack (see Diversions in Hackensack River Basin). Discharge given for this station represents the flow of Hackensack River downstream from this diversion. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft<sup>3</sup>/s, Feb. 3, 1973, gage height, 9.38 ft, from floodmarks, from rating curve extended above 840 ft<sup>3</sup>/s; maximum gage height, 10.52 ft, May 30, 1984; minimum daily discharge, 2.6 ft<sup>3</sup>/s, June 12, 1965, Sept. 25, 26, 30, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,170 ft<sup>3</sup>/s, Apr. 4, gage height, 9.81 ft; minimum daily, 9.9 ft<sup>3</sup>/s, Oct. 23.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                |          |            |                            |             | ME         | AN VALUES      |            | 0DBN 1700  | 10 00110. |          |          |                |
|----------------|----------|------------|----------------------------|-------------|------------|----------------|------------|------------|-----------|----------|----------|----------------|
| DAY            | OCT      | NOV        | DEC                        | JAN         | FEB        | MAR            | APR        | MAY        | JUN       | JUL      | AUG      | SEP            |
| 1 2            | 16<br>16 | 11<br>11   | 24<br>18                   | 38<br>115   | 46<br>44   | 159<br>284     | 375<br>114 | 55<br>50   | 15<br>14  | 12<br>16 | 13<br>16 | 16<br>15<br>16 |
| 2<br>3<br>4    | 16       | 11         | 130                        | 143         | 47         | 124            | 89         | 51         | 14        | 15       | 21       | 16             |
| 5              | 21<br>14 | 11         | 123<br>82                  | 91<br>72    | 52<br>51   | 90<br>75       | 595<br>577 | 87<br>94   | 15<br>16  | 13<br>13 | 15<br>51 | 16<br>18       |
| 6              | 14       | 18         | 66                         | 55<br>49    | 47         | 64             | 335<br>283 | 71         | 14        | 13<br>15 | 62<br>21 | 18<br>24       |
| 7              | 13<br>13 | 12<br>20   | 57<br>54                   | 49          | 45<br>49   | 62<br>63       | 163        | 63         | 13<br>13  | 20       | 17       | 29             |
| 9              | 13<br>13 | 16         | 57                         | 43          | 55         | 64             | 121        | 56<br>47   | 13        | 14       | 18       | 29<br>41       |
| 9<br>10        | 13       | 13         | 65                         | 43          | 49         | 55             | 103        | 43         | 13        | 13       | 29       | 18             |
| 11<br>12       | 12       | 22<br>17   | 59<br>58<br>55<br>43<br>38 | 64<br>64    | 44         | 45<br>42       | 92<br>85   | 39<br>37   | 13<br>14  | 13<br>13 | 17<br>16 | 17<br>18       |
| 13             | 13       | 12         | 55                         | 60          | 43<br>41   | 42             | 188        | 31         | 14        | 13       | 16       | 50             |
| 13<br>14       | 13<br>18 | 11         | 43                         | 51          | 33         | 41             | 109        | 33<br>28   | 13        | 21       | 16       | 50<br>25<br>16 |
| 15             | 15       | 10         | 38                         | 51          | 33<br>32   | 39             | 85         | 30         | 13        | 19       | 15       | 16             |
| 16             | 14       | 11         | 36<br>35                   | 54<br>49    | 30<br>28   | 40             | 78         | 32<br>24   | 12        | 12<br>12 | 15<br>15 | 15<br>20       |
| 17<br>18       | 13<br>13 | 11<br>12   | 44                         | . 49        | 27         | 37             | 110<br>199 | 24         | 12<br>12  | 12       | 15       | 23             |
| 19             | 13       | 21         | 95                         | 72          | 25         | 35<br>32       | 109        | 29         | 14        | 13       | 16       | 23<br>22       |
| 20             | 13       | 16         | 80                         | 77          | 24         | 32             | 89         | 27         | 14        | 15       | 15       | 17             |
| 21             | 15       | 78         | 65                         | 65          | 24         | 30<br>33<br>28 | 77         | 26         | 26        | 12       | 16<br>16 | 17<br>16       |
| 22             | 9.9      | 18<br>15   | 52<br>45                   | 65<br>70    | 25<br>30   | 33             | 70<br>58   | 21<br>17   | 14<br>13  | 12<br>11 | 15       | 15             |
| 23<br>24<br>25 | 11       | 15         | 41                         | 60          | 31         | 23             | 79         | 16         | 13        | 12       | 16       | 15<br>16       |
| 25             | 11       | 15         | 95                         | 50          | 31         | 23<br>22       | 158        | 12         | 11        | 12       | 15       | 16             |
| 26             | 14       | 45         | 99                         | 48          | 30         | 23             | 101        | 11         | 13        | 13       | 16<br>27 | 15<br>15       |
| 27<br>28       | 13<br>12 | 45<br>19   | 72<br>60                   | 42<br>38    | 30<br>29   | 24<br>31       | 76<br>76   | 10<br>13   | 23<br>16  | 13<br>13 | 25       | 16             |
| 29             | 11       | 16         | 51                         | 36          |            | 32             | 70         | 13         | 13        | 13       | 24       | 16             |
| 29<br>30<br>31 | 11       | 17         | 49                         | 38<br>47    |            | 31             | 65         | 13         | 13        | 12       | 17       | 17             |
| 31             | 11       |            | 44                         | 47          |            | 459            |            | 13         |           | 13       | 16       |                |
| TOTAL          | 416.9    | 560        | 1892                       | 1846        | 1042       | 2163           | 4729       | 1085       | 426       | 423      | 622      | 592            |
| MEAN<br>MAX    | 13.4     | 18.7<br>78 | 61.0                       | 59.5<br>143 | 37.2<br>55 | 69.8<br>459    | 158<br>595 | 35.0<br>94 | 14.2      | 13.6     | 20.1     | 19.7<br>50     |
| MIN            | 9.9      | 10         | 18                         | 36          | 24         | 22             | 58         | 10         | 11        | 11       | 13       | 15             |
|                |          |            |                            | -           |            |                |            |            |           |          |          |                |

CAL YR 1986 TOTAL 12430.9 MEAN 34.1 MAX 304 MIN 9.9 WTR YR 1987 TOTAL 15796.9 MEAN 43.3 MAX 595 MIN 9.9

# 01377000 HACKENSACK RIVER AT RIVERVALE, NJ

LOCATION.--Lat 40°59'55", long 73°59'27", Bergen County, Hydrologic Unit 02030103, on upstream right bank at bridge on Westwood Avenue in Rivervale, 1.5 mi upstream from Pascack Brook, 4.6 mi upstream from Oradell Dam, and 27.2 mi upstream from mouth.

DRAINAGE AREA .- - 58.0 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1941 to current year.

REVISED RECORDS .-- WDR-NJ-80-1: 1968-79(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 22.51 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by De Forest Lake and Lake Tappan (see Hackensack River basin, reservoirs in). Diversions from De Forest Lake and West Nyack, NY, for municipal water supply (see Hackensack River basin, diversions). Water occasionally diverted from Oradell Reservoir to Lake Tappan. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION. - Gage height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 46 years, 88.7 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,440 ft<sup>3</sup>/s, May 30, 1984, gage height, 7.85 ft; no flow part of Jan. 16, 1970 and May 30, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,800 ft<sup>3</sup>/s, Apr. 4, 5, gage height, 6.24 ft; minimum, 18 ft<sup>3</sup>/s, Oct. 7, gage height 1.56 ft.

|                                  |                                  | DISCHARG                        | E, IN                            | CUBIC FEET                       | PER SECON                    | D, WATER<br>MEAN VAL              | YEAR OCTO                         | OBER 1986                        | TO SEPTER                    | MBER 1987                              |                                   |                             |
|----------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------------------------|-----------------------------------|----------------------------------|------------------------------|----------------------------------------|-----------------------------------|-----------------------------|
| DAY                              | ОСТ                              | NOV                             | DEC                              | JAN                              | FEB                          | MAR                               | APR                               | MAY                              | JUN                          | JUL                                    | AUG                               | SEP                         |
| 1<br>2<br>3<br>4<br>5            | 87<br>87<br>89<br>65<br>24       | 103<br>103<br>104<br>103<br>104 | 37<br>40<br>109<br>42<br>38      | 69<br>275<br>297<br>190<br>146   | 86<br>84<br>92<br>103<br>100 | 214<br>547<br>314<br>179<br>147   | 1060<br>386<br>176<br>752<br>1600 | 101<br>91<br>90<br>155<br>174    | 32<br>32<br>33<br>36<br>38   | 44<br>46<br>51<br>46<br>45             | 127<br>123<br>116<br>73<br>128    | 43<br>39<br>38<br>37<br>37  |
| 6<br>7<br>8<br>9                 | 23<br>27<br>65<br>63<br>61       | 76<br>46<br>54<br>38<br>34      | 36<br>36<br>35<br>42<br>42       | 117<br>100<br>91<br>80<br>79     | 92<br>87<br>87<br>101<br>95  | 129<br>115<br>112<br>113<br>102   | 878<br>662<br>387<br>239<br>185   | 148<br>126<br>107<br>92<br>82    | 32<br>31<br>32<br>33<br>32   | 45<br>59<br>98<br>53<br>49             | 98<br>58<br>56<br>59<br>106       | 37<br>52<br>57<br>78<br>42  |
| 11<br>12<br>13<br>14<br>15       | 47<br>47<br>38<br>29<br>24       | 49<br>41<br>34<br>33<br>32      | 37<br>40<br>36<br>34<br>34       | 114<br>117<br>108<br>96<br>95    | 85<br>80<br>78<br>69<br>62   | 84<br>76<br>79<br>76<br>70        | 166<br>150<br>259<br>245<br>164   | 75<br>69<br>64<br>53<br>55       | 58<br>88<br>88<br>85<br>81   | 90<br>141<br>104<br>75<br>64           | 60<br>48<br>35<br>34<br>34        | 40<br>40<br>118<br>58<br>44 |
| 16<br>17<br>18<br>19<br>20       | 21<br>20<br>20<br>20<br>39       | 40<br>86<br>86<br>108<br>71     | 34<br>34<br>46<br>50<br>38       | 96<br>91<br>93<br>132<br>143     | 56<br>53<br>50<br>48<br>46   | 69<br>64<br>60<br>56<br>54        | 145<br>160<br>344<br>248<br>170   | 57<br>49<br>46<br>54<br>51       | 80<br>85<br>94<br>118<br>139 | 50<br>48<br>47<br>47<br>48             | 34<br>33<br>33<br>33<br>33<br>32  | 42<br>57<br>61<br>53<br>45  |
| 21<br>22<br>23<br>24<br>25       | 63<br>65<br>65<br>63<br>65       | 129<br>39<br>36<br>38<br>36     | 36<br>35<br>34<br>35<br>66       | 125<br>122<br>134<br>112<br>124  | 45<br>46<br>54<br>58<br>56   | 52<br>52<br>51<br>47<br>44        | 147<br>130<br>113<br>113<br>217   | 48<br>45<br>43<br>42<br>39       | 137<br>81<br>55<br>54<br>78  | 48<br>47<br>47<br>47<br>53             | 32<br>35<br>71<br>71<br>90        | 44<br>43<br>42<br>42<br>43  |
| 26<br>27<br>28<br>29<br>30<br>31 | 66<br>50<br>48<br>53<br>84<br>93 | 96<br>110<br>41<br>39<br>38     | 39<br>43<br>60<br>71<br>74<br>73 | 86<br>96<br>86<br>71<br>71<br>88 | 55<br>54<br>54               | 43<br>42<br>53<br>56<br>53<br>438 | 208<br>150<br>141<br>129<br>117   | 37<br>36<br>35<br>34<br>33<br>31 | 113<br>115<br>53<br>47<br>45 | 129<br>112<br>112<br>114<br>132<br>131 | 110<br>95<br>64<br>48<br>40<br>39 | 41<br>41<br>40<br>41        |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 1611<br>52.0<br>93<br>20         | 1947<br>64.9<br>129<br>32       | 1406<br>45.4<br>109<br>34        | 3644<br>118<br>297<br>69         | 1976<br>70.6<br>103<br>45    | 3591<br>116<br>547<br>42          | 9841<br>328<br>1600<br>113        | 2162<br>69.7<br>174<br>31        | 2025<br>67.5<br>139<br>31    | 2222<br>71.7<br>141<br>44              | 2015<br>65.0<br>128<br>32         | 1436<br>47.9<br>118<br>37   |

CAL YR 1986 TOTAL 26651 MEAN 73.0 MAX 552 MIN 15 WTR YR 1987 TOTAL 33876 MEAN 92.8 MAX 1600 MIN 20

# 01377000 HACKENSACK RIVER AT RIVERVALE, NJ -- Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1964 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                                                                                 | TIME                           | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- C<br>W, C<br>AN- D<br>OUS A                                                  | PE-<br>IFIC<br>ON-<br>UCT-<br>NCE<br>S/CM) | (ST                                   | PH<br>AND-<br>ARD<br>TS)                                       | WA                      | PER-<br>JRE<br>TER<br>G C) | SO        | GEN,<br>IS-<br>LVED<br>G/L)                                   | SO (P            | IS- DI<br>LVED<br>ER-<br>ENT<br>TUR-                                     | XYGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL,<br>TH          | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|--------------------------------------------------------------------------------------|--------------------------------|------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------------------------|-------------------------|----------------------------|-----------|---------------------------------------------------------------|------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|--------------------------|-------------------------------------|
| OCT 1986<br>23                                                                       | 1100                           | 47                                 |                                                                                  | 7/7                                        |                                       | 7.0                                                            | Pau                     | , .                        |           | 0.7                                                           |                  | 93                                                                       | 4.5                                                          | 320                                   |                          | 240                                 |
| FEB 1987                                                                             | 1100                           | 63                                 |                                                                                  | 343                                        |                                       | 7.9                                                            |                         | 3.5                        |           | 9.7                                                           |                  |                                                                          |                                                              |                                       |                          |                                     |
| 04<br>APR                                                                            | 1100                           | 101                                |                                                                                  | 473                                        |                                       | 7.6                                                            |                         | 2.5                        | 1         | 3.6                                                           |                  | 100                                                                      | 2.1                                                          | 170                                   |                          | 1600                                |
| 15<br>JUN                                                                            | 1130                           | 163                                |                                                                                  | 349                                        |                                       | 8.0                                                            | 1                       | 2.0                        | - 1       | 0.8                                                           |                  | 101                                                                      | 3.9                                                          | 130                                   | l proj                   | 130                                 |
| 15<br>JUL                                                                            | 1130                           | 82                                 | 1 - 19 ×                                                                         | 372                                        |                                       | 7.6                                                            | 2                       | 2.5                        |           | 7.0                                                           |                  | 82                                                                       | 3.0                                                          | 80                                    | 17                       | 1700                                |
| 20                                                                                   | 1100                           | 47                                 |                                                                                  | 370                                        |                                       | 7.5                                                            | 2                       | 4.5                        |           | 6.7                                                           |                  | 80                                                                       | 1.5                                                          | 490                                   |                          | 790                                 |
| AUG 26                                                                               | 1100                           | 110                                | 1.                                                                               |                                            |                                       | 7.9                                                            | 2                       | 2.0                        |           | 8.3                                                           |                  |                                                                          | 4.2                                                          | 220                                   |                          | 490                                 |
| OCT 1986<br>23<br>FEB 1987<br>04<br>APR<br>15<br>JUN<br>15<br>JUL<br>20<br>AUG<br>26 | HAR<br>NES<br>(MC<br>AS<br>CAC | SS<br>G/L                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>31<br>34<br>29<br>32<br>34<br>27 | SI DI SOL (MG AS                           | NE-<br>UM,<br>S-<br>VED<br>S/L<br>MG) | SODI<br>DIS<br>SOLV<br>(MG<br>AS<br>24<br>45<br>31<br>30<br>31 | S-<br>/ED<br>G/L<br>NA) | SI<br>SOI<br>(MC<br>AS     |           | ALK<br>LINI<br>(MG<br>AS<br>CAC<br>81<br>75<br>64<br>77<br>81 | TY<br>B<br>i/L   | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4<br>17<br>22<br>18<br>18<br>16 | D SOI                                                        | DE,<br>S-LVED<br>G/L<br>CL)           | 0<0                      | E,<br>                              |
| DATE                                                                                 |                                | VED<br>G/L                         | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)              | NITE<br>TOT<br>(MG                         | AL<br>C/L                             |                                                                | AL<br>G/L               | AMMO<br>TO                 | AL<br>S/L | MIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG                     | A +<br>NIC<br>AL | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                                 | PHOI<br>TO                                                   |                                       | CARBORGA<br>TOTA<br>(MG, | NIĈ<br>Al<br>/L                     |
| OCT 1986                                                                             |                                | 1.6                                | 180                                                                              | 0.                                         | 017                                   | 0.                                                             | 16                      | 0.2                        | 200       | 1.                                                            | 3                | 1.5                                                                      | 0.0                                                          | 060                                   | 6.                       | 4                                   |
| FEB 1987<br>04                                                                       |                                | 3.5                                | 250                                                                              | 0.                                         | 009                                   | 0.                                                             | .67                     | 0.2                        | 210       | 0.                                                            | 88               | 1.5                                                                      | 0.0                                                          | 061                                   | 7.                       | 0                                   |
| APR<br>15                                                                            |                                | 1.1                                | 170                                                                              | 0.                                         | 014                                   | 0.                                                             | 48                      | 0.                         | 30        | 0.                                                            | 99               | 1.5                                                                      | 0.0                                                          | 057                                   | 7.                       | 5                                   |
| JUN<br>15                                                                            |                                | 2.1                                | 190                                                                              |                                            | 040                                   |                                                                | .35                     | 0.0                        |           | 1.                                                            |                  | 1.3                                                                      | 0.0                                                          |                                       | 5.                       |                                     |
| JUL 20                                                                               |                                | 4.3                                | 200                                                                              |                                            |                                       |                                                                |                         |                            |           |                                                               |                  |                                                                          |                                                              |                                       |                          |                                     |
| AUG                                                                                  |                                |                                    |                                                                                  |                                            | 026                                   |                                                                | .40                     | 0.                         |           | 1.                                                            |                  | 1.5                                                                      |                                                              | 070                                   | 6.                       |                                     |
| 26                                                                                   |                                | 3.6                                | 180                                                                              | 0.                                         | 009                                   | U.                                                             | .13                     | 0.0                        | 1/0       | 1.                                                            | U                | 1.2                                                                      | 0.0                                                          | 080                                   | 7.                       | 9                                   |

# 01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                               | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  |
|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
| OCT 1986       |                                                                    |                                                                     |                                                                      |                                                                       |                                                                     |                                                                      |                                                                     |                                                                      |                                                                      |                                                                     |
| 23             | 1100                                                               | 110                                                                 | 0.1                                                                  | 1.4                                                                   | 2                                                                   | <1                                                                   | 3                                                                   | <10                                                                  | 5                                                                    | 2900                                                                |
| DATE           | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986       |                                                                    |                                                                     |                                                                      |                                                                       |                                                                     |                                                                      |                                                                     |                                                                      |                                                                      |                                                                     |
| 23             | 20                                                                 | 100                                                                 | 0.02                                                                 | <10                                                                   | <1                                                                  | 20                                                                   | <1                                                                  | <1.0                                                                 | <0.1                                                                 | <1.0                                                                |
| DATE           | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) |
| OCT 1986       |                                                                    |                                                                     |                                                                      |                                                                       |                                                                     |                                                                      |                                                                     |                                                                      |                                                                      |                                                                     |
| 23             | <0.1                                                               | 0.2                                                                 | <0.1                                                                 | <0.1                                                                  | <0.1                                                                | <0.1                                                                 | <0.1                                                                | <0.1                                                                 | <0.1                                                                 | <0.1                                                                |
| DATE           | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)     | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  |
| OCT 1986<br>23 | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <0.1                                                                  | <0.1                                                                | <0.1                                                                 | <0.1                                                                | <1.00                                                                | <10                                                                  | <0.1                                                                |

#### 01377500 PASCACK BROOK AT WESTWOOD, NJ

LOCATION.--Lat 40°59'33", long 74°01'19", Bergen County, Hydrologic Unit 02030103, on right bank 75 ft upstream from Harrington Avenue in Westwood, 500 ft downstream from Musquapsink Brook, and 2.3 mi upstream from mouth.

DRAINAGE AREA . - - 29.6 mi 2 .

PERIOD OF RECORD. -- October 1934 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 28.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Woodcliff Lake 3.0 mi above station (see Hackensack River basin, reservoirs in). Water diverted for municipal supply by Spring Valley Water Co., by pumpage from well fields in headwater area of Pascack Brook in vicinity of Spring Valley, NY, and by Park Ridge Water Department by pumping from wells above Woodcliff Lake probably reduces flow past this station. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 53 years, 55.2 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,440 ft<sup>3</sup>/s, Sept. 12, 1971, gage height, 7.57 ft; minimum, 5.6 ft<sup>3</sup>/s, June 29, 1965.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|----------|------|-----------------------------------|---------------------|
| Nov. 26 | 2045 | 407                               | 3.36             | Apr. 4   | 2145 | *1,250                            | *5.36               |
| Dec. 25 | 1300 | 407                               | 3.36             | Apr. 6   | 1515 | 400                               | 3.34                |
| Mar. 1  | 2200 | 431                               | 3.43             | Sept. 9  | 0215 | 707                               | 4.17                |
| Mar. 31 | 1915 | 867                               | 4.55             | Sept. 13 | 2100 | 798                               | 4.39                |

Minimum discharge, 10 ft3/s, Nov. 1, gage height, 1.39 ft.

REVISIONS.--The peak discharge for May 30, 1984 has been revised to 927  $\rm ft^3/s$  and for July 7, 1984 to 1,070  $\rm ft^3/s$ . They supercede figures published in the report for 1984.

| DISCHARGE, | IN | CUBIC | FEET | PER | SECOND, | WATER    | YEAR | OCTOBER | 1985 | TO | SEPTEMBER | 1986 |
|------------|----|-------|------|-----|---------|----------|------|---------|------|----|-----------|------|
|            |    |       |      |     | MÉ      | IAN VALL | IEC  |         |      |    |           |      |

| DAY                              | ОСТ                              | NOV                          | DEC                              | JAN                              | FEB                        | MAR                               | APR                           | MAY                              | JUN                        | JUL                              | AUG                              | SEP                          |
|----------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------|-----------------------------------|-------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|------------------------------|
| 1 2 3 4 5                        | 22                               | 11                           | 54                               | 30                               | 51                         | 152                               | 199                           | 45                               | 38                         | 34                               | 14                               | 39                           |
|                                  | 20                               | 12                           | 76                               | 198                              | 30                         | 203                               | 69                            | 43                               | 40                         | 39                               | 14                               | 29                           |
|                                  | 25                               | 14                           | 175                              | 88                               | 35                         | 83                                | 83                            | 48                               | 39                         | 55                               | 35                               | 23                           |
|                                  | 78                               | 18                           | 69                               | 58                               | 93                         | 60                                | 671                           | 112                              | 44                         | 40                               | 36                               | 18                           |
|                                  | 52                               | 21                           | 45                               | 43                               | 54                         | 63                                | 371                           | 78                               | 45                         | 34                               | 110                              | 18                           |
| 6<br>7<br>8<br>9                 | 36<br>46<br>79<br>78<br>77       | 44<br>25<br>44<br>49         | 38<br>35<br>33<br>47<br>65       | 35<br>56<br>73<br>65<br>26       | 49<br>26<br>26<br>29<br>26 | 55<br>52<br>52<br>52<br>52<br>44  | 278<br>208<br>121<br>83<br>83 | 36<br>42<br>42<br>40<br>38       | 37<br>37<br>38<br>39<br>37 | 33<br>34<br>54<br>40<br>29       | 202<br>57<br>38<br>56<br>168     | 18<br>53<br>103<br>245<br>51 |
| 11                               | 75                               | 69                           | 43                               | 46                               | 24                         | 38                                | 75                            | 36                               | 36                         | 29                               | 53                               | 35                           |
| 12                               | 75                               | 43                           | 45                               | 83                               | 26                         | 28                                | 69                            | 36                               | 36                         | 33                               | 41                               | 28                           |
| 13                               | 74                               | 29                           | 39                               | 73                               | 33                         | 50                                | 99                            | 36                               | 36                         | 54                               | 30                               | 351                          |
| 14                               | 88                               | 25                           | 31                               | 25                               | 31                         | 28                                | 74                            | 38                               | 36                         | 113                              | 22                               | 128                          |
| 15                               | 83                               | 23                           | 31                               | 25                               | 30                         | 36                                | 64                            | 43                               | 35                         | 123                              | 21                               | 43                           |
| 16                               | 73                               | 23                           | 30                               | 24                               | 28                         | 41                                | 77                            | 38                               | 35                         | 62                               | 21                               | 40                           |
| 17                               | 69                               | 22                           | 29                               | 23                               | 29                         | 41                                | 125                           | 34                               | 34                         | 46                               | 19                               | 85                           |
| 18                               | 67                               | 21                           | 60                               | 35                               | 30                         | 40                                | 106                           | 33                               | 34                         | 44                               | 19                               | 91                           |
| 19                               | 66                               | 53                           | 120                              | 136                              | 30                         | 36                                | 58                            | 41                               | 33                         | 33                               | 18                               | 76                           |
| 20                               | 65                               | 47                           | 54                               | 92                               | 28                         | 24                                | 62                            | 38                               | 33                         | 25                               | 18                               | 41                           |
| 21                               | 64                               | 139                          | 39                               | 27                               | 28                         | 22                                | 57                            | 34                               | 54                         | 28                               | 18                               | 35                           |
| 22                               | 62                               | 31                           | 34                               | 30                               | 29                         | 22                                | 57                            | 32                               | 47                         | 20                               | 19                               | 32                           |
| 23                               | 61                               | 38                           | 48                               | 47                               | 66                         | 23                                | 64                            | 32                               | 40                         | 17                               | 51                               | 31                           |
| 24                               | 55                               | 44                           | 26                               | 41                               | 96                         | 22                                | 61                            | 31                               | 35                         | 16                               | 54                               | 29                           |
| 25                               | 49                               | 42                           | 171                              | 39                               | 60                         | 26                                | 138                           | 30                               | 33                         | 17                               | 80                               | 35                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 61<br>54<br>33<br>27<br>21<br>14 | 125<br>113<br>42<br>44<br>50 | 49<br>28<br>33<br>33<br>33<br>31 | 39<br>38<br>36<br>28<br>25<br>59 | 22<br>22<br>22             | 29<br>30<br>41<br>38<br>32<br>540 | 52<br>51<br>94<br>66<br>51    | 34<br>39<br>39<br>39<br>38<br>38 | 34<br>99<br>58<br>43<br>35 | 17<br>15<br>15<br>14<br>14<br>14 | 81<br>97<br>85<br>57<br>35<br>29 | 28<br>25<br>23<br>23<br>52   |
| TOTAL                            | 1749                             | 1310                         | 1644                             | 1643                             | 1053                       | 2003                              | 3666                          | 1283                             | 1220                       | 1142                             | 1598                             | 1828                         |
| MEAN                             | 56.4                             | 43.7                         | 53.0                             | 53.0                             | 37.6                       | 64.6                              | 122                           | 41.4                             | 40.7                       | 36.8                             | 51.5                             | 60.9                         |
| MAX                              | 88                               | 139                          | 175                              | 198                              | 96                         | 540                               | 671                           | 112                              | 99                         | 123                              | 202                              | 351                          |
| MIN                              | 14                               | 11                           | 26                               | 23                               | 22                         | 22                                | 51                            | 30                               | 33                         | 14                               | 14                               | 18                           |

CAL YR 1986 TOTAL 18319 MEAN 50.2 MAX 335 MIN 11 WTR YR 1987 TOTAL 20139 MEAN 55.2 MAX 671 MIN 11

#### 01378500 HACKENSACK RIVER AT NEW MILFORD, NJ

LOCATION.--Lat 40°56'52", long 74°01'34", Bergen County, Hydrologic Unit 02030103, on right bank upstream from two masonry dams and two lift gates at pumping plant of Hackensack Water Co., New Milford, 4.0 mi downstream from Pascack Brook, and 21.8 mi upstream from mouth.

DRAINAGE AREA. -- 113 mi 2

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302.

REVISED RECORDS: WSP 601: Drainage area. WSP 711: 1927-28(M). WRD-NJ 1970: 1969. WDR-NJ 1977: 1975(M). WDR-NJ 1984: 1983.

GAGE.--Water-stage recorder above south dam. Datum of gage is 6.25 ft above National Geodetic Vertical Datum of 1929. October 1921 to November 23, 1923, nonrecording gage and Nov. 23, 1923, to Sept. 25, 1934, water-stage recorder at same site at datum 0.05 ft lower.

REMARKS.--No estimated daily discharge. Records poor. Records given herein do not include diversion at gage. Flow regulated by DeForest Lake, Lake Tappan, Woodcliff Lake 9.0 mi upstream from station, and Oradell Reservoir 0.6 mi upstream from station (see Hackensack River basin, reservoirs in). Water pumped into basin above gage from Sparkill Creek (Hudson River basin) and Saddle River (Passaic River basin) by Hackensack Water Company for municipal supply (see Hackensack River basin, diversions). Water diverted at gage, De Forest Lake, and West Nyack, NY, for municipal supply (see Hackensack River basin, diversions). Several measurements of water temperature were made during the year.

COOPERATION.--Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 66 years, 99.5 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge,  $4,500 \text{ ft}^3/\text{s}$ , Nov. 9, 1977 and Apr. 5, 1984; maximum gage height, 7.96 ft, April 5, 1984; no flow many days during most years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,840 ft<sup>3</sup>/s, Apr. 5, gage height, 6.76 ft; minimum daily, 0.54 ft<sup>3</sup>/s, Oct. 4.

|                                  |                                 |                                 | 1444                            |                                  |                                 | MĚAN VAL                               | UES                                |                                      |                                 |                                        |                                        |                                 |
|----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------------|------------------------------------|--------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | OCT                             | NOV                             | DEC                             | JAN                              | FEB                             | MAR                                    | APR                                | MAY                                  | JUN                             | JUL                                    | AUG                                    | SEP                             |
| 1 2 3 4 5                        | .67<br>.60<br>.60<br>.54        | .98<br>1.2<br>.99<br>1.0<br>1.1 | 1.0<br>1.0<br>412<br>21<br>22   | .76<br>231<br>365<br>203<br>106  | 101<br>43<br>.64<br>.73<br>.65  | 37<br>833<br>409<br>221<br>159         | 1340<br>478<br>449<br>1760<br>2870 | 58<br>48<br>35<br>172<br>226         | 7.9<br>6.1<br>9.2<br>4.6<br>9.5 | 2.6<br>1.1<br>1.7<br>1.4<br>1.5        | 2.2<br>2.1<br>2.1<br>2.5<br>6.3        | 1.8<br>1.9<br>2.0<br>1.8<br>3.0 |
| 6<br>7<br>8<br>9                 | .78<br>.98<br>1.0<br>1.1<br>1.3 | .92<br>1.2<br>1.2<br>1.1<br>1.2 | 20<br>19<br>19<br>19            | 70<br>49<br>54<br>49<br>27       | 1.4<br>2.3<br>2.4<br>2.3<br>1.7 | 75<br>32<br>180<br>137<br>224          | 1390<br>999<br>477<br>327<br>511   | 98<br>72<br>54<br>42<br>32           | 5.0<br>4.3<br>5.2<br>6.6<br>4.8 | 1.5<br>1.1<br>2.2<br>1.5<br>1.8        | 2.5<br>2.2<br>2.7<br>2.9<br>6.8        | 2.0<br>5.6<br>4.8<br>2.8<br>2.9 |
| 11<br>12<br>13<br>14<br>15       | 1.1<br>1.2<br>1.2<br>.90<br>1.0 | 1.8<br>.77<br>.97<br>1.2<br>1.0 | 20<br>21<br>20<br>19<br>137     | 50<br>80<br>88<br>54<br>62       | 1.8<br>1.9<br>1.6<br>3.3<br>2.2 | 188<br>143<br>156<br>136<br>142        | 406<br>49<br>169<br>298<br>138     | 17<br>14<br>12<br>15<br>14           | 4.5<br>3.4<br>3.6<br>4.1<br>3.6 | 2.2<br>5.1<br>2.9<br>5.2<br>2.4        | 2.0<br>2.9<br>3.2<br>1.9               | 2.0<br>2.0<br>2.8<br>2.7<br>3.8 |
| 16<br>17<br>18<br>19<br>20       | .96<br>1.1<br>1.3<br>1.3<br>1.0 | 1.1<br>1.4<br>1.1<br>1.4        | 163<br>18<br>.67<br>.76<br>.86  | 1.6<br>4.3<br>413<br>111         | 3.0<br>3.9<br>1.4<br>1.7<br>2.9 | 138<br>112<br>124<br>127<br>126        | 256<br>310<br>109<br>243<br>190    | 18<br>18<br>15<br>15<br>12           | 3.7<br>2.4<br>3.5<br>4.3<br>2.5 | 2.7<br>2.2<br>1.6<br>2.3<br>2.0        | 2.0<br>2.5<br>2.3<br>2.3<br>1.8        | 2.4<br>2.7<br>323<br>198<br>43  |
| 21<br>22<br>23<br>24<br>25       | 1.1<br>.98<br>.88<br>1.1<br>1.1 | 1.1<br>1.6<br>1.0<br>1.6<br>.73 | .83<br>.65<br>.70<br>.80<br>.79 | 88<br>82<br>100<br>89<br>87      | 1.6<br>2.2<br>2.3<br>2.4<br>2.9 | 132<br>126<br>132<br>130<br>131        | 135<br>85<br>91<br>86<br>293       | 14<br>16<br>19<br>20<br>15           | 3.6<br>3.8<br>2.8<br>2.3<br>2.3 | 1.6<br>1.8<br>3.6<br>1.9<br>1.8        | 1.8<br>1.9<br>2.5<br>2.2<br>2.3        | 35<br>38<br>37<br>31<br>27      |
| 26<br>27<br>28<br>29<br>30<br>31 | 1.1<br>1.0<br>1.1<br>1.0<br>1.0 | .96<br>1.3<br>1.1<br>1.3<br>1.0 | .72<br>.73<br>.76<br>.84<br>.73 | 84<br>79<br>79<br>87<br>91<br>96 | 2.8<br>1.9<br>1.8               | 135<br>129<br>137<br>143<br>151<br>584 | 224<br>135<br>138<br>131<br>88     | 15<br>11<br>7.9<br>9.3<br>8.7<br>5.9 | 3.2<br>3.0<br>1.5<br>2.1<br>2.4 | 2.5<br>3.3<br>2.8<br>1.6<br>1.7<br>2.1 | 2.0<br>1.8<br>1.8<br>1.7<br>1.6<br>2.3 | 25<br>27<br>29<br>13<br>4.0     |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 30.76<br>.99<br>1.3<br>.54      | 34.42<br>1.15<br>1.8<br>.73     | 961.48<br>31.0<br>412<br>.64    | 3024.66<br>97.6<br>413<br>.76    | 197.72<br>7.06<br>101<br>.64    | 5629<br>182<br>833<br>32               | 14175<br>472<br>2870<br>49         | 1128.8<br>36.4<br>226<br>5.9         | 125.8<br>4.19<br>9.5<br>1.5     | 69.7<br>2.25<br>5.2<br>1.1             | 76.7<br>2.47<br>6.8<br>1.6             | 877.0<br>29.2<br>323<br>1.8     |

CAL YR 1986 TOTAL 10953.62 MEAN 30.0 MAX 699 MIN .14 WTR YR 1987 TOTAL 26330.84 MEAN 72.1 MAX 2870 MIN .54

# RESERVOIRS IN HACKENSACK RIVER BASIN

- 01376700 DE FOREST LAKE.--Lat 41°06'23", long 73°58'01, Rockland County, NY, Hydrologic Unit 02030103, at dam on Hackensack River, 0.8 mi north of West Nyack, NY. DRAINAGE AREA, 27.5 mi². PERIOD OF RECORD, February 1956 to current year. REVISED RECORDS.--WDR NJ-84-1: Drainage area. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by earthfill dam with sheet piling cutoff and concrete spillway; dam completed and storage began in February 1956. Crest of dam topped by two 50 ft Bascule Gates, 5ft high. Capacity 5,670,500 gal, elevation, 85.00 ft, top of Bascule Gates. Flow regulated by 12-inch Howell-Bunger valve at elevation, 59.25 ft and 24-inch Howell-Bunger valve at elevation, 61.25 ft. Reservoir used for storage and water released by Hackensack Water Co., for municipal water supply.

  COOPERATION.--Records provided by Hackensack Water Company.
- 01376950 LAKE TAPPAN.--Lat 41°01'05", long 74°00'05", Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River, 0.5 mi north of Old Tappan. DRAINAGE AREA, about 49.0 mi². PERIOD OF RECORD, October 1966 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earthfill dam, completed in 1966. Capacity at spillway level, 3,378,000,000 gal, elevation, 55.00 ft. Flow regulated by four Bascule gates and one sluice gate. Water is released by Hackensack Water Co., for municipal water supply.

  COOPERATION.--Records provided by Hackensack Water Company.
- 01377450 WOODCLIFF LAKE.--Lat 41°01', long 74°03', Bergen County, Hydrologic Unit 02030103, at dam on Pascack Brook, 0.7 mi north of Hillsdale. DRAINAGE AREA, 19.4 mi². PERIOD OF RECORD, December 1929 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earthfill dam, completed about 1905. Capacity at spillway level, 835,000,000 gal, elevation, 94.33 ft. Flow is regulated by flashboards and one 36-inch gate in center of dam. Water is released for diversion at New Milford by Hackensack Water Co., for municipal supply.

  COOPERATION.--Records provided by Hackensack Water Company.
- 01378480 ORADELL RESERVOIR.--Lat 40°57', long 74°02', Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River at Oradell. DRAINAGE AREA, 113 mi². PERIOD OF RECORD, December 1922 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. REVISED RECORDS.--WDR NJ-84-1: Spillway elevation. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by hollow concrete dam, completed in 1922. Capacity at spillway level, 3,267,000,000 gal, elevation, 23.16 ft. Flow regulated by seven sluice gates (7 by 9 ft). Water is released for diversion by Hackensack Water Co., 1 mi downstream from dam for municipal supply. COOPERATION.--Records provided by Hackensack Water Company.

|                                           | MONTHEND EL                                                          | EVATION AND C                                                                 | ONTENTS, WATER YEA                                                      | R OCTOBER 1986 TO S                                                           | SEPTEMBER 1987                                                                | 1885.4                                                                  |
|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Date                                      | Elevation<br>(feet)†                                                 | Contents<br>(million<br>gallons)                                              | Change in contents (equivalent in ft /s)                                | Elevation<br>(feet)†                                                          | Contents<br>(million<br>gallons)                                              | Change in contents (equivalent in ft <sup>3</sup> /s)                   |
|                                           | 013767                                                               | 00 DE FOREST                                                                  | LAKE                                                                    | 0                                                                             | 1376950 LAKE TAPE                                                             | AN                                                                      |
| Sept. 30<br>Oct. 31<br>Nov. 30<br>Dec. 31 | 83.31<br>82.08<br>84.84<br>85.10                                     | 5,127<br>4,745<br>5,617<br>5,703                                              | -19.1<br>+45.0<br>+4.3                                                  | 50.90<br>48.95<br>50.85<br>55.20                                              | 2,477<br>1,905<br>2,462<br>3,924                                              | -28.5<br>+28.7<br>+73.0                                                 |
| CAL YR 1986                               |                                                                      |                                                                               | +2.4                                                                    |                                                                               |                                                                               | +.3                                                                     |
| Jan. 31                                   | 85.14<br>85.65<br>84.27<br>85.89<br>84.03<br>82.90<br>82.33<br>84.00 | 5,716<br>5,683<br>5,885<br>5,759<br>5,634<br>5,356<br>4,999<br>4,822<br>5,347 | +.6<br>-1.8<br>+10.1<br>-6.5<br>-6.2<br>-14.3<br>-17.8<br>-8.8<br>+27.1 | 55.29<br>55.14<br>55.53<br>55.28<br>55.00<br>53.08<br>50.72<br>51.09<br>52.80 | 3,957<br>3,902<br>4,044<br>3,953<br>3,852<br>3,181<br>2,422<br>2,536<br>3,087 | +1.6<br>-3.0<br>+7.1<br>-4.7<br>-5.0<br>-34.6<br>-37.9<br>+5.7<br>+28.4 |
| WTR YR 1987                               |                                                                      |                                                                               | +.9                                                                     |                                                                               |                                                                               | +2.6                                                                    |

| Date                                      | Elevation<br>(feet)†                                                          | Contents<br>(million<br>gallons)                            | Change in contents (equivalent in ft 3/s)                         | Elevation<br>(feet)†                                                          | Contents<br>(million<br>gallons)                                              | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)   |
|-------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
|                                           | 013774                                                                        | 50 WOODCLIFE                                                | LAKE                                                              | 0137848                                                                       | O ORADELL RES                                                                 | ERVOIR                                                           |
| Sept. 30<br>Oct. 31<br>Nov. 30<br>Dec. 31 | 95.10<br>80.60<br>94.05<br>95.10                                              | 876<br>202<br>818<br>876                                    | -33.6<br>+31.8<br>+2.9                                            | 18.89<br>18.51<br>22.21<br>22.19                                              | 2,440<br>2,352<br>3,252<br>3,247                                              | -4.4<br>+46.4<br>2                                               |
| CAL YR 1986                               |                                                                               |                                                             | +3.2                                                              |                                                                               |                                                                               | +.05                                                             |
| Jan. 31                                   | 94.20<br>93.93<br>95.75<br>94.92<br>94.33<br>91.56<br>91.59<br>94.29<br>94.63 | 826<br>811<br>913<br>866<br>833<br>682<br>683<br>831<br>850 | -2.5<br>8<br>+5.1<br>-2.4<br>-1.6<br>-7.8<br>+.05<br>+7.4<br>+1.0 | 21.69<br>21.95<br>23.75<br>23.18<br>19.69<br>19.19<br>18.66<br>19.66<br>21.14 | 3,118<br>3,185<br>3,670<br>3,512<br>2,627<br>2,509<br>2,387<br>2,620<br>2,979 | -6.4<br>+3.7<br>+24.2<br>-8.2<br>-44.2<br>-6.1<br>+11.6<br>+18.5 |
| WR YR 1987                                |                                                                               |                                                             | 11                                                                |                                                                               |                                                                               | +2.3                                                             |

<sup>†</sup> Elevation at 2400 of the last day of each month.

#### DIVERSIONS INTO AND FROM HACKENSACK RIVER BASIN

- 01376272 Hackensack Water Co., diverts water from Sparkill Creek at foot of Danny Lane in Northvale, 300 ft south of New York-New Jersey state line and 0.6 mi upstream of Sparkill Brook. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.
- 01376699 Spring Valley Water Co., diverts water at De Forest Lake for municipal supply in Rockland County, NY. Records provided by Spring Valley Water Co.
- 01376810 Village of Nyack, NY, diverts water from Hackensack River 100 ft downstream from gaging station on Hackensack River at West Nyack, NY (station 01376800) for municipal supply. Records provided by Board of Water Commissioners of Nyack, NY.
- 01378490 Hackensack Water Co., diverts water for municipal supply from Oradell Reservoir at Haworth pumping station 2.0 mi upstream from gaging station on Hackensack River at New Milford and from Hackensack River about 50 ft above gaging station on Hackensack River at New Milford, NJ (station 01378500).
- 01378520 Hackensack Water Co., diverts water from Hirshfeld Brook, a tributary of the Hackensack River, below the gaging station on Hackensack River at New Milford, NJ, for municipal supply. Records provided by Hackensack Water Co.
- 01387991 Hackensack Water Co. diverts water from the Ramapo River by pumping from Pompton Lake above the gaging station into Oradell Reservoir on the Hackensack River, for municipal supply. Pumping began Feb. 14, 1985. Records provided by Hackensack Water Co.
- 01391210 Hackensack Water Co., diverts water from Saddle River just north of bridge on State Route 4 at Arcola.
  Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 01376699 01376810 01378490 HACKENSACK WATER CO. MONTH SPRING VALLEY WATER CO WEST NYACK, NY October..... 10.9 November..... 4.88 2.81 143 0 December..... CAL YR 1986..... 150 5.62 3.01 2.95 January..... 0 February..... 0 3.04 145 2.69 2.53 2.77 142 143 158 March..... 0 0 3.84 April...... May.... 15.2 15.7 3.15 3.15 2.88 182 180 June..... July..... August...... 178 157 16.7 . 11 WTR YR 1987..... 6.44 3.51 155

The following are diversions by pumpage from sources other than the Hackensack River into Oradell Reservoir. These figures are included in diversions from Hackensack River as noted above (station 01378490).

| MONTH                                                       | 01376272<br>SPARKILL CREEK<br>(HUDSON RIVER<br>BASIN) | 01378520<br>HIRSHFELD BROOK<br>(HACKENSACK RIVER<br>BASIN) | 01387991<br>RAMAPO RIVER<br>(PASSAIC RIVER<br>BASIN)  | 01391210<br>SADDLE RIVER<br>(PASSAIC RIVER<br>BASIN) | WELLS TO SURFACE<br>SUPPLY                            |
|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| October<br>November<br>December                             | 0                                                     | 1.66<br>2.42<br>.82                                        | 15.3<br>16.1<br>1.13                                  | 9.42<br>1.18                                         | 0.17<br>.02<br>0                                      |
| CAL YR 1986                                                 | .04                                                   | 1.21                                                       | 6.96                                                  | 7.61                                                 | 0.55                                                  |
| January February March April May June July August September | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               | 0<br>0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0<br>36.1<br>38.0<br>34.8<br>25.0 | 0<br>0<br>0<br>0<br>1.69<br>3.81<br>6.69<br>4.41     | 0<br>0<br>0<br>.11<br>.08<br>.28<br>.24<br>.28<br>.28 |
| WTR YR 1987                                                 | 0                                                     | 0.41                                                       | 13.9                                                  | 2.27                                                 | 0.12                                                  |

#### PASSAIC RIVER BASIN

#### 01379000 PASSAIC RIVER NEAR MILLINGTON, NJ

LOCATION.--Lat 40°40'48", long 74°31'45", Somerset County, Hydrologic Unit 02030103, on right bank 200 ft downstream from Davis Bridge on Maple Avenue, 0.7 mi northwest of Millington, and 1.8 mi downstream from Black Brook.

DRAINAGE AREA .-- 55.4 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1903 to June 1906 (published as "at Millington"), October 1921 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1552: 1905(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete-block control. Datum of gage is 215.60 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Nov. 25, 1903 to July 15, 1906, nonrecording gage at bridge 0.8 mi downstream at different datum. Nov. 10, 1921 to Sept. 1, 1923, nonrecording gage at site 200 ft downstream at present datum. Oct. 31, 1923 to July 3, 1925, nonrecording gage and concrete control at present site and datum.

REMARKS.--No estimated daily discharges. Records good. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, was discontinued in April 1979 and the installation dismantled. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE.--67 years (water years 1905, 1921-87) 91.0 ft<sup>3</sup>/s, 22.30 in/yr, adjusted for diversion water years 1970-1979.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft<sup>3</sup>/s, Jan. 9, 1905, gage height, 7.8 ft, from graph based on gage readings, site and datum then in use, from rating curve extended above 1,400 ft<sup>3</sup>/s on basis of velocity-area study; maximum gage height, 9.73 ft, Aug. 29, 1971; minimum discharge, 0.2 ft<sup>3</sup>/s, Sept. 12, 13, 1966, gage height, 3.76 ft.

EXTREMES FOR CURRENT YEAR .- - Peak discharges greater than base discharge of 500 ft3/s and maximum (\*):

| Date                         | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)     | Date             | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|------------------------------|----------------------|-----------------------------------|----------------------|------------------|--------------|-----------------------------------|---------------------|
| Nov. 21<br>Nov. 27<br>Dec. 3 | 1730<br>1045<br>1915 | 532<br>768<br>621                 | 6.76<br>7.29<br>6.96 | Mar. 2<br>Apr. 5 | 1630<br>0145 | 580<br>*996                       | 6.87<br>*7.81       |

Minimum discharge, 12 ft3/s, Aug. 25, gage height, 4.37 ft.

|                                            |                                       | DISCHARGE,                               | IN CUBIC                                 | FEET PER                                 | SECOND,                           | WATER YEAR<br>N VALUES            | OCTOBER                         | 1986 TO                                   | SEPTEMBER                              | 1987                                      |                                           |                                           |
|--------------------------------------------|---------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| DAY                                        | OCT                                   | NOV                                      | DEC                                      | JAN                                      | FEB                               | MAR                               | APR                             | MAY                                       | JUN                                    | JUL                                       | AUG                                       | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 23<br>21<br>20<br>29<br>27            | 24<br>24<br>24<br>21<br>25               | 195<br>154<br>493<br>499<br>379          | 108<br>142<br>218<br>217<br>180          | 80<br>85<br>105<br>133<br>137     | 249<br>573<br>547<br>423<br>291   | 250<br>202<br>161<br>502<br>951 | 87<br>78<br>75<br>113<br>137              | 24<br>30<br>37<br>44<br>92             | 26<br>34<br>85<br>92<br>47                | 38<br>33<br>31<br>29<br>63                | 46<br>39<br>30<br>26<br>23                |
| 6<br>7<br>8<br>9                           | 22<br>22<br>21<br>20<br>18            | 51<br>55<br>69<br>113<br>87              | 276<br>191<br>145<br>143<br>222          | 150<br>129<br>117<br>105<br>102          | 126<br>122<br>123<br>123<br>116   | 216<br>190<br>176<br>163<br>143   | 890<br>731<br>477<br>285<br>205 | 130<br>116<br>100<br>87<br>76             | 70<br>52<br>48<br>41<br>34             | 40<br>35<br>46<br>107<br>91               | 176<br>134<br>93<br>76<br>149             | 22<br>29<br>61<br>117<br>92               |
| 11<br>12<br>13<br>14<br>15                 | 17<br>16<br>17<br>23<br>30            | 94<br>162<br>128<br>103<br>86            | 200<br>179<br>158<br>116<br>102          | 126<br>131<br>121<br>114<br>119          | 100<br>91<br>81<br>74<br>70       | 120<br>112<br>107<br>103<br>96    | 165<br>141<br>129<br>120<br>108 | 65<br>56<br>49<br>44<br>46                | 28<br>26<br>28<br>27<br>24             | 62<br>55<br>61<br>83<br>196               | 155<br>106<br>88<br>67<br>53              | 61<br>55<br>84<br>192<br>140              |
| 16<br>17<br>18<br>19<br>20                 | 23<br>22<br>22<br>20<br>19            | 75<br>65<br>55<br>110<br>140             | 89<br>84<br>121<br>270<br>221            | 121<br>106<br>98<br>137<br>149           | 56<br>55<br>55<br>54<br>52        | 90<br>82<br>76<br>71<br>68        | 100<br>104<br>131<br>126<br>115 | 46<br>40<br>38<br>46<br>48                | 21<br>20<br>18<br>18<br>17             | 175<br>139<br>112<br>103<br>144           | 42<br>35<br>32<br>28<br>24                | 106<br>88<br>99<br>103<br>95              |
| 21<br>22<br>23<br>24<br>25                 | 18<br>18<br>18<br>17<br>17            | 430<br>439<br>357<br>281<br>203          | 184<br>144<br>117<br>101<br>349          | 154<br>117<br>98<br>123<br>90            | 51<br>53<br>58<br>63<br>68        | 66<br>63<br>60<br>57<br>55        | 104<br>91<br>80<br>83<br>138    | 49<br>47<br>42<br>39<br>35                | 22<br>42<br>59<br>36<br>31             | 98<br>65<br>53<br>48<br>65                | 20<br>18<br>18<br>15<br>13                | 82<br>72<br>64<br>53<br>45                |
| 26<br>27<br>28<br>29<br>30<br>31           | 22<br>39<br>32<br>29<br>28<br>26      | 250<br>696<br>590<br>459<br>312          | 398<br>314<br>244<br>178<br>140<br>120   | 83<br>78<br>74<br>72<br>67<br>75         | 72<br>73<br>72<br>                | 55<br>54<br>61<br>65<br>65<br>165 | 140<br>118<br>111<br>109<br>100 | 34<br>35<br>35<br>33<br>28<br>25          | 28<br>63<br>60<br>36<br>33             | 81<br>129<br>84<br>64<br>54<br>45         | 13<br>29<br>52<br>62<br>51<br>42          | 38<br>34<br>31<br>28<br>29                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 696<br>22.5<br>39<br>16<br>.41<br>.47 | 5528<br>184<br>696<br>21<br>3.33<br>3.71 | 6526<br>211<br>499<br>84<br>3.80<br>4.38 | 3721<br>120<br>218<br>67<br>2.17<br>2.50 | 2348<br>83.9<br>137<br>51<br>1.51 | 54                                | 951                             | 1879<br>60.6<br>137<br>25<br>1.09<br>1.26 | 1109<br>37.0<br>92<br>17<br>.67<br>.74 | 2519<br>81.3<br>196<br>26<br>1.47<br>1.69 | 1785<br>57.6<br>176<br>13<br>1.04<br>1.20 | 1984<br>66.1<br>192<br>22<br>1.19<br>1.33 |

CAL YR 1986 TOTAL 37662 MEAN 103 MAX 1050 MIN 12 CFSM 1.86 IN. 25.27 WTR YR 1987 TOTAL 39724 MEAN 109 MAX 951 MIN 13 CFSM 1.96 IN. 26.66

# 01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME                            | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT<br>ANCE<br>(US/CI | - (s                                                 | PH<br>TAND -<br>ARD<br>ITS)          | AT  | IPER-<br>TURE<br>TER<br>(G C)   | SO              | GEN,<br>IS-<br>DLVED<br>IG/L)                            | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEM<br>BI<br>CH<br>IC             | GEN<br>IAND,<br>O-<br>IEM-<br>IAL,<br>DAY<br>IG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L, STREP-<br>TOCOCCI<br>H FECAL                    |
|----------------------------|---------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------|-----|---------------------------------|-----------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| OCT 1986                   | 4070                            | -40                                             |                                                 |                                                      |                                      |     |                                 |                 |                                                          | 74                                                             |                                   |                                                    | 470                                        | 270                                                |
| 20<br>FEB 1987             | 1030                            | E19                                             | - 2                                             | 68                                                   | 7.2                                  |     | 9.0                             |                 | 8.2                                                      | 71                                                             |                                   | 1.2                                                | 170                                        | 230                                                |
| 09<br>APR                  | 1030                            | 123                                             | 2                                               | 77                                                   | 7.4                                  |     | 0.0                             | . 1             | 1.2                                                      | 78                                                             |                                   | 1.1                                                | 110                                        | 130                                                |
| 02<br>JUN                  | 1115                            | 203                                             | 2                                               | 15                                                   | 7.5                                  |     | 9.0                             |                 | 8.4                                                      | 74                                                             |                                   | 1.6                                                | 110                                        | 130                                                |
| 08                         | 1030                            | 50                                              | 2                                               | 28                                                   | 7.1                                  | 2   | 20.0                            |                 | 4.3                                                      | 48                                                             |                                   | 1.2                                                | 260                                        | 1100                                               |
| JUL<br>13                  | 1030                            | 63                                              | 2                                               | 29                                                   | 7.0                                  | . 2 | 4.5                             |                 | 2.3                                                      | 28                                                             |                                   | 2.4                                                | 130                                        | 3500                                               |
| AUG<br>31                  | 1130                            | 42                                              | 2                                               | 46                                                   | 7.3                                  | 1   | 9.0                             |                 | 5.7                                                      | 62                                                             |                                   | 0.9                                                | 70                                         | 110                                                |
| DATE                       | HAR<br>NES<br>(MG<br>AS<br>CAC  | S DIS                                           | IUM<br>-<br>VED<br>5/L                          | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SOD I<br>D I S<br>SOL V<br>(MG<br>AS | ED  | SI                              |                 | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y SUL<br>DI<br>L SO                                            | FATE<br>S-<br>LVED<br>G/L<br>SO4) | CHLC<br>RIDE<br>DIS-<br>SOLV<br>(MG,               | /ED<br>/L                                  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986<br>20             |                                 | 79 19                                           | ,                                               | 7.7                                                  | 22                                   | ,   | 2                               | .7              | 63                                                       |                                                                | 20                                | 38                                                 |                                            | <0.1                                               |
| FEB 1987<br>09             |                                 |                                                 |                                                 |                                                      |                                      |     |                                 |                 |                                                          |                                                                |                                   |                                                    |                                            |                                                    |
| APR                        |                                 | 66 16                                           |                                                 | 6.4                                                  | 28                                   |     |                                 | .4              | 38                                                       |                                                                | 21                                | 56                                                 |                                            | <0.1                                               |
| 02<br>JUN                  |                                 | 59 14                                           |                                                 | 5.8                                                  | 19                                   |     | 1                               | .8              | 41                                                       |                                                                | 13                                | 32                                                 |                                            | <0.1                                               |
| 08<br>JUL                  |                                 | 74 18                                           | 3                                               | 7.0                                                  | 16                                   | 5   | 0                               | 8.              | 61                                                       |                                                                | 12                                | 24                                                 |                                            | 0.1                                                |
| 13<br>AUG                  |                                 | 79 20                                           | )                                               | 7.1                                                  | 17                                   | ,   | 1                               | .7              | 66                                                       |                                                                | 10                                | 25                                                 |                                            | 0.1                                                |
| 31                         |                                 | 68 17                                           | 7                                               | 6.3                                                  | 20                                   | )   | 2                               | .4              | 53                                                       |                                                                | 22                                | 26                                                 |                                            | 0.1                                                |
| DATE                       | SILI<br>DIS<br>SOL<br>(MG<br>AS | VED TUE                                         | OF<br>STI-<br>ITS, N<br>IS-<br>VED              | NITRO-<br>GEN,<br>ITRITE<br>TOTAL<br>(MG/L<br>AS N)  | GE                                   | NÓ3 | NIT<br>GE<br>AMMO<br>TOT<br>(MG | NIA<br>AL<br>/L | NITE<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ NI<br>IIC G<br>L TO<br>'L (M                           | TRO-<br>EN,<br>TAL<br>G/L<br>N)   | PHOS<br>PHORU<br>TOT/<br>(MG/<br>AS I              | JS, C<br>AL<br>/L                          | CARBON,<br>RGANIC<br>TOTAL<br>(MG/L<br>AS C)       |
| OCT 1986<br>20<br>FEB 1987 | 1                               | 5                                               | 160                                             | 0.008                                                | 0.                                   | .09 | 0.2                             | 8               |                                                          |                                                                | ••                                | 0.130                                              | 0                                          | 5.9                                                |
| 09<br>APR                  |                                 | 6.7                                             | 160                                             | 0.004                                                | 0.                                   | 25  | <0.0                            | 15              | 0.56                                                     | 0.                                                             | 81                                | 0.060                                              | 0                                          | 7.5                                                |
| Ĵ Ô2<br>JUN                |                                 | 4.9                                             | 120                                             | 0.013                                                | 0.                                   | .22 | 0.0                             | 19              | 0.83                                                     | 1.                                                             | 0                                 | 0.11                                               | 2 1                                        | 12                                                 |
| 08                         | 1                               | 7                                               | 130                                             | 0.018                                                | 0.                                   | .18 | 0.1                             | 1               | 0.96                                                     | 1.                                                             | 1                                 | 0.16                                               | 2 1                                        | 10                                                 |
| JUL<br>13                  | 1                               | 8                                               | 140                                             | 0.022                                                | 0.                                   | .18 | 0.1                             | 6               | 0.93                                                     | 1.                                                             | 1                                 | 0.44                                               | 0 1                                        | 14                                                 |
| AUG<br>31                  | 1                               | 6                                               | 140                                             | 0.014                                                | 0.                                   | .89 | 0.1                             | 3               | 0.81                                                     | 1.                                                             | 7                                 | 0.14                                               | 0                                          | 8.9                                                |

PASSAIC RIVER BASIN

# 01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | Maratime (                                              | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                    | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) |
|----------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
| JUN 1987<br>08 | 1030                                                    | <0.5                                                  | <10                                                   | 2                                                               | <10                                                             | 80                                                      | <1                                                      | <10                                                            |
| DATE           | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)          |
| JUN 1987<br>08 | 2                                                       | 820                                                   | <5                                                    | 110                                                             | <0.10                                                           | <1                                                      | <1                                                      | 10                                                             |

#### 01379500 PASSAIC RIVER NEAR CHATHAM, NJ

LOCATION.--Lat 40°43'31", long 74°23'23", Morris County, Hydrologic Unit 02030103, on left bank 150 ft downstream from Stanley Avenue bridge in Chatham, and 3.0 mi upstream from Canoe Brook.

DRAINAGE AREA . - - 100 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1903 to December 1911, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WDR NJ-86-1: 1984 (M).

GAGE.--Water-stage recorder. Concrete control since Sept. 19, 1938. Datum of gage is 193.51 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1911, nonrecording gage at bridge 150 ft upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, during water years 1903-79. Several measurements of water-temperature, other than those published, were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--58 years (water years 1904-11, 1938-87), 172 ft<sup>8</sup>/s, 23.36 in./yr, adjusted for diversion water years 1970-79.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,380 ft<sup>3</sup>/s, Aug. 2, 1973, gage height, 9.36 ft, from floodmark; minimum, 2.0 ft<sup>3</sup>/s, many days in May and June 1903, August and October 1905, September and October 1906, and September 11, 1944.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft<sup>3</sup>/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------|
| Nov. 26 | 2130 | 972                               | 5.64             | Mar. 3 | 0130 | *1,210                            | 5.54                |
| Dec. 4  | 1100 | 867                               | 5.47             | Apr. 4 | 1330 |                                   | *6.04               |

Minimum discharge, 26 ft<sup>3</sup>/s, Aug. 26, gage height, 3.28 ft.

|                                  |                                  | DISCHARGE                       | , IN C                                 | CUBIC FEET                                   | PER SECOND                      | AN VALUES                         | YEAR OCTOE                           | BER 1986                               | TO SEPTEMBER                      | 1987                                 |                                    |                              |
|----------------------------------|----------------------------------|---------------------------------|----------------------------------------|----------------------------------------------|---------------------------------|-----------------------------------|--------------------------------------|----------------------------------------|-----------------------------------|--------------------------------------|------------------------------------|------------------------------|
| DAY                              | ОСТ                              | NOV                             | DEC                                    | JAN                                          | FEB                             | MAR                               | APR                                  | MAY                                    | JUN                               | JUL                                  | AUG                                | SEP                          |
| 1 2 3 4 5                        | e45                              | 35                              | 523                                    | 175                                          | e150                            | 537                               | 509                                  | e145                                   | e42                               | 51                                   | 61                                 | 62                           |
|                                  | e41                              | 34                              | 399                                    | 373                                          | e145                            | 829                               | 415                                  | e130                                   | e43                               | 58                                   | 53                                 | 61                           |
|                                  | e42                              | 33                              | 753                                    | 459                                          | e194                            | 903                               | 298                                  | e120                                   | e66                               | 178                                  | 49                                 | 50                           |
|                                  | e60                              | 35                              | 850                                    | 424                                          | 270                             | 849                               | 796                                  | e185                                   | e80                               | 167                                  | 47                                 | 43                           |
|                                  | e54                              | 42                              | 784                                    | 343                                          | 291                             | 721                               | 990                                  | e290                                   | e250                              | 102                                  | 108                                | 39                           |
| 6<br>7<br>8<br>9                 | e40<br>36<br>34<br>31<br>e30     | 98<br>92<br>133<br>200<br>159   | 630<br>479<br>324<br>300<br>444        | 265<br>220<br>e194<br>e167<br>e142           | 239<br>214<br>218<br>234<br>201 | 566<br>441<br>366<br>303<br>248   | 1140<br>1110<br>1010<br>826<br>609   | e250<br>e210<br>e175<br>e140<br>e120   | e200<br>e120<br>e76<br>e73<br>e70 | 66<br>56<br>104<br>282<br>196        | 392<br>319<br>182<br>120<br>336    | 36<br>60<br>80<br>158<br>154 |
| 11                               | e28                              | 171                             | 421                                    | e220                                         | 186                             | 197                               | 414                                  | e100                                   | e52                               | 125                                  | 344                                | 100                          |
| 12                               | e27                              | 273                             | 366                                    | e250                                         | 155                             | 171                               | 258                                  | e95                                    | e45                               | 196                                  | 211                                | 76                           |
| 13                               | e34                              | 228                             | 310                                    | e210                                         | 140                             | 170                               | 212                                  | e85                                    | 47                                | 210                                  | 136                                | 253                          |
| 14                               | 47                               | 160                             | 220                                    | e195                                         | 137                             | 170                               | 185                                  | e75                                    | 47                                | 256                                  | 106                                | 328                          |
| 15                               | 47                               | 127                             | 190                                    | e188                                         | 133                             | 154                               | 161                                  | e76                                    | 43                                | 512                                  | 84                                 | 254                          |
| 16                               | 43                               | 108                             | 158                                    | e210                                         | e115                            | 136                               | 146                                  | 81                                     | 39                                | 448                                  | 67                                 | 168                          |
| 17                               | 34                               | 97                              | 143                                    | e180                                         | e105                            | 124                               | 171                                  | 68                                     | 36                                | 300                                  | 56                                 | 133                          |
| 18                               | e34                              | 87                              | 286                                    | e170                                         | 93                              | 113                               | 255                                  | 62                                     | 34                                | 185                                  | 51                                 | 193                          |
| 19                               | e33                              | 249                             | 509                                    | e280                                         | 87                              | 105                               | 224                                  | 87                                     | 31                                | 181                                  | 46                                 | 183                          |
| 20                               | e32                              | 302                             | 489                                    | e320                                         | 82                              | 101                               | 183                                  | 84                                     | 31                                | 222                                  | 43                                 | 166                          |
| 21                               | 31                               | 634                             | 388                                    | e300                                         | 77                              | 95                                | 161                                  | 80                                     | 67                                | 180                                  | 38                                 | 130                          |
| 22                               | 30                               | 678                             | 280                                    | e260                                         | 77                              | 90                                | 142                                  | 77                                     | 148                               | 114                                  | 35                                 | 110                          |
| 23                               | 28                               | 633                             | 212                                    | e200                                         | 88                              | 85                                | 122                                  | e70                                    | 248                               | 82                                   | 34                                 | 96                           |
| 24                               | 27                               | 541                             | 176                                    | e190                                         | 106                             | 81                                | 139                                  | e65                                    | 111                               | 78                                   | 32                                 | 84                           |
| 25                               | 46                               | 441                             | 596                                    | e180                                         | 103                             | 77                                | 350                                  | e60                                    | 62                                | 205                                  | 29                                 | 71                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 47<br>53<br>52<br>44<br>39<br>37 | 520<br>787<br>915<br>830<br>687 | 706<br>658<br>530<br>403<br>281<br>220 | e160<br>e155<br>e150<br>e135<br>e120<br>e130 | 109<br>113<br>111               | 75<br>74<br>89<br>93<br>89<br>437 | e297<br>e220<br>e180<br>e190<br>e170 | e55<br>e56<br>e57<br>e55<br>e52<br>e50 | 49<br>116<br>143<br>83<br>57      | 253<br>380<br>255<br>130<br>88<br>71 | 26<br>72<br>103<br>112<br>96<br>66 | 60<br>53<br>48<br>45<br>47   |
| TOTAL                            | 1206                             | 9329                            | 13028                                  | 6965                                         | 4173                            | 8489                              | 11883                                | 3255                                   | 31                                | 5731                                 | 3454                               | 3341                         |
| MEAN                             | 38.9                             | 311                             | 420                                    | 225                                          | 149                             | 274                               | 396                                  | 105                                    |                                   | 185                                  | 111                                | 111                          |
| MAX                              | 60                               | 915                             | 850                                    | 459                                          | 291                             | 903                               | 1140                                 | 290                                    |                                   | 512                                  | 392                                | 328                          |
| MIN                              | 27                               | 33                              | 143                                    | 120                                          | 77                              | 74                                | 122                                  | 50                                     |                                   | 51                                   | 26                                 | 36                           |
| CFSM                             | .39                              | 3.11                            | 4.20                                   | 2.25                                         | 1.49                            | 2.74                              | 3.96                                 | 1.05                                   |                                   | 1.85                                 | 1.11                               | 1.11                         |
| IN.                              | .45                              | 3.47                            | 4.85                                   | 2.59                                         | 1.55                            | 3.16                              | 4.42                                 | 1.21                                   |                                   | 2.13                                 | 1.28                               | 1.24                         |

CAL YR 1986 TOTAL 71100 MEAN 195 MAX 1520 MIN 24 CFSM 1.95 IN. 26.44 WTR YR 1987 TOTAL 73363 MEAN 201 MAX 1140 MIN 26 CFSM 2.01 IN. 27.28

e Estimated

# 01379500 PASSAIC RIVER NEAR CHATHAM, NJ -- Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to September 1968.
SUSPENDED-SEDIMENT DISCHARGE: July 1963 to September 1968.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME  | STREATINSTANE | AM- CI<br>W, CO<br>AN- DU<br>DUS AN                                 | FIC<br>N-<br>ICT-<br>ICE | (ST              | H<br>AND-<br>RD<br>TS) | AT                                      | PER-<br>URE<br>TER<br>G C) | SO                                       | GEN,<br>IS-<br>LVED<br>G/L)               | SOI<br>(PI<br>CI<br>SA | IS- D                                      | XYGEN<br>EMAND<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L | FOR<br>FEC<br>EC<br>BRC                        | AL,                                  | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------|-------|---------------|---------------------------------------------------------------------|--------------------------|------------------|------------------------|-----------------------------------------|----------------------------|------------------------------------------|-------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------------------|------------------------------------------------|--------------------------------------|-------------------------------------|
| OCT 1986       | 1-1   |               | , B                                                                 |                          |                  |                        |                                         |                            |                                          |                                           | . 3-                   |                                            |                                                            |                                                |                                      |                                     |
| 21<br>FEB 1987 | 1100  | E31           |                                                                     | 422                      |                  | 7.4                    | 1                                       | 1.0                        |                                          | 7.8                                       |                        | 71                                         | 4.4                                                        | 330                                            | )                                    | 20                                  |
| 10<br>APR      | 1100  | E30           |                                                                     | 554                      |                  | 7.5                    |                                         | 0.5                        | 1                                        | 4.0                                       |                        | 98                                         | 1.4                                                        | 400                                            | )                                    | 200                                 |
| 07             | 1030  | 1120          |                                                                     | 157                      |                  | 7.3                    |                                         | 9.0                        |                                          | 8.6                                       |                        | 76                                         | 3.3                                                        | 1300                                           | )                                    | 9200                                |
| JUN<br>10      | 1030  | E70           |                                                                     | 362                      |                  | 7.4                    | 2                                       | 2.0                        |                                          | 6.1                                       |                        | 70                                         | 4.0                                                        | 2100                                           | )                                    | 4300                                |
| JUL 13         | 1300  | E210          |                                                                     | 229                      |                  | 7.1                    | 2                                       | 5.5                        |                                          | 4.4                                       |                        | 54                                         | 5.7                                                        | 11000                                          | 0                                    | 13000                               |
| AUG 25         | 1300  | 29            |                                                                     |                          |                  | 7.8                    | S. 1.                                   | 9.5                        |                                          | 6.0                                       |                        |                                            | 2.2                                                        | 800                                            | )                                    | <200                                |
| DATE           | NE:   | SS<br>G/L     | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | SOL<br>(MG               | UM,<br>S-<br>VED | SOL'                   |                                         | SO<br>(M                   | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K) | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC     | TY<br>B<br>/L          | SULFAT<br>DIS-<br>SOLVE<br>(MG/I<br>AS SOA | TE R                                                       | HLO-<br>IDE,<br>IS-<br>OLVED<br>MG/L<br>IS CL) | FLU<br>RID<br>DI<br>SOL<br>(MG<br>AS | E,<br>S-<br>VED<br>/L               |
| 21             |       | 110           | 27                                                                  | 9                        | .7               | 4                      | 0                                       |                            | 4.6                                      | 70                                        | *                      | 36                                         |                                                            | 54                                             | 0                                    | .1                                  |
| FEB 1987       |       | 92            | 23                                                                  | . 8                      | 3.5              | 6                      | 8                                       |                            | 1.7                                      | 46                                        | 1 44                   | 32                                         | 44 1                                                       | 30                                             |                                      | .1                                  |
| APR 07         |       | 42            | 10                                                                  | 4                        | .1               | 1                      | 4                                       |                            | 1.5                                      | 26                                        |                        | 14                                         |                                                            | 20                                             | <0                                   | .1                                  |
| JUN<br>10      |       | 93            | 23                                                                  | 8                        | 3.7              | 3                      | 4                                       |                            | 2.0                                      | 66                                        |                        | 23                                         |                                                            | 52                                             | (                                    | 0.1                                 |
| JUL<br>13      |       | 70            | 18                                                                  |                          | 5.2              | 1                      | 9                                       |                            | 2.0                                      | 49                                        |                        | 17                                         |                                                            | 24                                             | <(                                   | 0.1                                 |
| AUG 25         |       | 120           | 29                                                                  | 11                       | 8                | 5                      | 5                                       |                            | 3.3                                      | 98                                        |                        | 35                                         |                                                            | 72                                             | (                                    | 0.2                                 |
| DATE           | SO (M |               | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) |                          | AL<br>S/L        | NO2<br>TO              | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | AMM<br>TO                  | TRO-<br>EN,<br>ONIA<br>TAL<br>(G/L       | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | A +<br>NIC<br>AL       | NITR<br>GEN<br>TOTA<br>(MG/<br>AS N        | , PI<br>L                                                  | PHOS-<br>HORUS,<br>FOTAL<br>(MG/L<br>AS P)     | CARE<br>ORG/<br>TOT<br>(MC<br>AS     | NIČ<br>AL<br>S/L                    |
| OCT 1986       |       | 15            | 230                                                                 | 0.                       | .129             | 2                      | .74                                     | 0                          | .90                                      | 2.                                        | 0                      | 4.7                                        | die<br>die                                                 | 0.950                                          | 8                                    | .0                                  |
| FEB 1987<br>10 |       | 11            | 300                                                                 | 0.                       | .018             | . 0                    | .85                                     | 0                          | .23                                      | 0.                                        | 97                     | 1.8                                        | 48100                                                      | 0.158                                          | 7                                    | .3                                  |
| APR 07         |       | 7.4           | 87                                                                  |                          | .023             |                        | .46                                     |                            | .12                                      |                                           | 63                     | 1.1                                        |                                                            | 0.114                                          | 11                                   | 150                                 |
| JUN<br>10      |       | 18            | 200                                                                 |                          | .184             |                        | .10                                     |                            | .53                                      | 1.                                        | 30                     | 2.2                                        |                                                            | 0.550                                          | 8                                    | 2                                   |
| JUL 13         |       | 13            | 130                                                                 |                          | .095             |                        | .24                                     |                            | .31                                      |                                           | 92                     | 2.2                                        |                                                            | 0.430                                          | 13                                   | 25                                  |
| AUG 25         |       | 9.5           | 270                                                                 |                          | . 290            |                        | .73                                     |                            | .39                                      | 1.                                        |                        | 5.3                                        |                                                            | 0.670                                          | 9                                    | 51                                  |
| 763            |       | 7.3           | 2/0                                                                 | 0.                       | 270              | 3                      | .13                                     |                            | .37                                      |                                           | .0                     | 2.3                                        |                                                            | .010                                           | 7                                    |                                     |

# 01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE     | TIME         | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------|--------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986 | 1.11         |                                                                     | 122                                                                  | 7.5.3                                                                | 1402                                                                  |                                                                      |                                                                   | 4.2                                                                 |                                                                      |                                                                    |                                                                 | 412                                                                  |
| 21       | 1100<br>1100 | <0.5                                                                | 220                                                                  | <0.1                                                                 | 8.9                                                                   | <10                                                                  | <1                                                                | 11                                                                  | <10                                                                  | 210                                                                | <1                                                              | <1                                                                   |
|          | DATE         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|          | OCT 1986     |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|          | 21           | <10                                                                 |                                                                      | 10                                                                   | 11                                                                    | 40                                                                   | 670                                                               | 5000                                                                | <5                                                                   | 80                                                                 | 60                                                              | 230                                                                  |
|          | DATE         | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                        | (UG/G                                                                 | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
|          | OCT 1986     |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|          | 21           | 0.10                                                                |                                                                      | 5                                                                    | <10                                                                   | ···<br><1                                                            | <1                                                                |                                                                     | 90                                                                   | 4                                                                  | 30                                                              | <1.0                                                                 |
|          | DATE         | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | TOM MA-<br>TERIAL                                                    | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                        | TERIAL                                                                | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |                                                                   | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                               | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | TOM MA-<br>TERIAL                                               | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|          | OCT 1986     |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|          | 21           | <0.1                                                                | 170                                                                  | 6.9                                                                  |                                                                       | 3.4                                                                  | 0.3                                                               | 0.2                                                                 | <0.1                                                                 | <0.1                                                               | <0.1                                                            | 0.1                                                                  |
|          | DATE         | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                | BOTTOM<br>MATL.                                                       | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | BOTTOM<br>MATL.                                                   | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TERIAL                                                          | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
|          | OCT 1986     |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      | (N. 2-3-14)                                                       |                                                                     | The Party                                                            |                                                                    |                                                                 |                                                                      |
|          | 21           | <0.1                                                                |                                                                      |                                                                      |                                                                       | <0.1                                                                 |                                                                   |                                                                     | <0.1                                                                 | <1.00                                                              |                                                                 | <0.1                                                                 |

#### 01379700 ROCKAWAY RIVER AT BERKSHIRE VALLEY, NJ

LOCATION.--Lat 40°55'51", long 74°35'42", Morris County, Hydrologic Unit 02030103, on left bank 60 ft downstream from bridge on Berkshire Valley Road in Berkshire Valley, 2.7 mi upstream from Stephens Brook, and 3.8 mi northwest of Dover.

DRAINAGE AREA . - - 24.4 mi 2.

PERIOD OF RECORD. -- Low-flow partial-record station water years 1960-72. May 1985 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 682.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Some regulation from lakes and reservoirs upstream. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 744 ft<sup>3</sup>/s, Sept. 14, 1987, gage height, 7.23 ft; minimum, 7.5 ft<sup>3</sup>/s, July 5, gage height, 2.83 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 11, 1936, reached a stage of 6.72 ft, present datum, discharge not determined. Flood of April 5, 1984, reached a stage of 9.05 ft, from floodmarks, discharge 1,290 ft<sup>3</sup>/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft 3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Nov. 21 | 2245 | 164                               | 5.39             | Apr. 1  | 1245 | 184                               | 5.35                |
| Dec. 4  | 0300 | 211                               | 5.52             | Apr. 5  | 0830 | 597                               | 6.89                |
| Dec. 26 | 0130 | 165                               | 5.21             | Sep. 14 | 0900 | *744                              | *7.23               |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 7.5 ft3/s, July 5, gage height, 2.83 ft.

|                                            |                                       |                                           |                                           |                                          | 107119                                  | MEAN VALL                                 | JES                                      | 100                                      | - a miles                        |                                            |                                          |                                          |
|--------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|
| DAY                                        | ОСТ                                   | NOV                                       | DEC                                       | JAN                                      | FEB                                     | MAR                                       | APR                                      | MAY                                      | JUN                              | JUL                                        | AUG                                      | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | 15<br>15<br>16<br>20<br>18            | 13<br>14<br>14<br>13<br>14                | 65<br>58<br>169<br>197<br>154             | 69<br>75<br>74<br>62<br>54               | 34<br>33<br>34<br>36<br>e34             | 51<br>105<br>96<br>79<br>68               | 177<br>153<br>122<br>253<br>551          | 70<br>63<br>59<br>77<br>81               | 20<br>21<br>21<br>22<br>22<br>25 | 14<br>13<br>17<br>9.9<br>7.8               | 11<br>10<br>13<br>12<br>20               | 22<br>20<br>18<br>17<br>12               |
| 6<br>7<br>8<br>9                           | 16<br>14<br>17<br>22<br>21            | 23<br>22<br>25<br>28<br>23                | 123<br>104<br>90<br>89<br>105             | 49<br>46<br>45<br>42<br>41               | e32<br>31<br>31<br>29<br>e28            | 65<br>76<br>110<br>148<br>163             | 415<br>326<br>257<br>204<br>174          | 77<br>68<br>59<br>53<br>49               | 23<br>20<br>19<br>18<br>18       | 9.8<br>11<br>22<br>30<br>60                | 41<br>33<br>24<br>19<br>36               | 10<br>15<br>28<br>89<br>87               |
| 11<br>12<br>13<br>14<br>15                 | 20<br>20<br>19<br>20<br>17            | 25<br>32<br>25<br>23<br>25                | 113<br>91<br>76<br>63<br>57               | 44<br>42<br>38<br>36<br>39               | 26<br>26<br>e25<br>e24<br>e23           | 147<br>129<br>112<br>98<br>87             | 146<br>123<br>119<br>120<br>101          | 45<br>41<br>38<br>35<br>36               | 21<br>22<br>22<br>21<br>18       | 42<br>31<br>32<br>40<br>85                 | 24<br>19<br>15<br>13                     | 54<br>38<br>198<br>630<br>393            |
| 16<br>17<br>18<br>19<br>20                 | 15<br>14<br>14<br>14<br>14            | 25<br>25<br>24<br>34<br>33                | 54<br>53<br>68<br>105<br>97               | 47<br>45<br>43<br>50<br>50               | e22<br>23<br>23<br>25<br>24             | 79<br>70<br>63<br>58<br>55                | 86<br>88<br>97<br>89<br>76               | 37<br>33<br>30<br>38<br>47               | 16<br>15<br>14<br>17<br>20       | 63<br>42<br>37<br>25<br>21                 | 11<br>10<br>9.9<br>9.9                   | 223<br>167<br>156<br>137<br>119          |
| 21<br>22<br>23<br>24<br>25                 | 14<br>13<br>12<br>12<br>12            | 148<br>149<br>107<br>83<br>67             | 81<br>68<br>60<br>57<br>140               | 44<br>41<br>67<br>48<br>43               | 22<br>22<br>24<br>23<br>22              | 52<br>50<br>48<br>45<br>43                | 67<br>60<br>56<br>72<br>135              | 43<br>38<br>34<br>31<br>28               | 23<br>21<br>19<br>18<br>18       | 19<br>16<br>14<br>12<br>13                 | 11<br>12<br>15<br>16                     | 94<br>78<br>65<br>60<br>59               |
| 26<br>27<br>28<br>29<br>30<br>31           | 15<br>19<br>17<br>15<br>14<br>13      | 75<br>134<br>115<br>93<br>85              | 160<br>135<br>114<br>98<br>86<br>78       | 41<br>39<br>38<br>37<br>37<br>37         | 21<br>21<br>21                          | 41<br>38<br>38<br>38<br>36<br>104         | 124<br>98<br>91<br>94<br>76              | 27<br>26<br>25<br>24<br>23<br>21         | 17<br>22<br>20<br>17<br>13       | 17<br>15<br>14<br>13<br>11                 | 14<br>25<br>24<br>24<br>18<br>24         | 54<br>47<br>42<br>36<br>39               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 497<br>16.0<br>22<br>12<br>.66<br>.76 | 1516<br>50.5<br>149<br>13<br>2.07<br>2.31 | 3008<br>97.0<br>197<br>53<br>3.98<br>4.59 | 1463<br>47.2<br>75<br>36<br>1.93<br>2.23 | 739<br>26.4<br>36<br>21<br>1.08<br>1.13 | 2392<br>77.2<br>163<br>36<br>3.16<br>3.65 | 4550<br>152<br>551<br>56<br>6.22<br>6.94 | 1356<br>43.7<br>81<br>21<br>1.79<br>2.07 | 581<br>19.4<br>25<br>13<br>.79   | 767.5<br>24.8<br>85<br>7.8<br>1.01<br>1.17 | 550.8<br>17.8<br>41<br>9.9<br>.73<br>.84 | 3007<br>100<br>630<br>10<br>4.11<br>4.58 |

CAL YR 1986 TOTAL 19339.6 MEAN 53.0 MAX 331 MIN 9.6 CFSM 2.17 IN. 29.49 WTR YR 1987 TOTAL 20427.3 MEAN 56.0 MAX 630 MIN 7.8 CFSM 2.29 IN. 31.15

e Estimated

#### 01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°57'34", long 74°32'24", Morris County, Hydrologic Unit 02030103, on left bank at Picatinny Arsenal, 500 ft upstream from Picatinny Lake, and 0.55 mi downstream from Burnt Meadow Brook.

DRAINAGE AREA .- - 7.65 mi 2 .

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 712.54 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--No estimated daily discharges. Records good. Some regulation by Lake Denmark and Green Pond. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 5 years, 15.3 ft3/s, 27.16 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 333  $ft^3/s$ , Apr. 5, 1984, gage height, 3.51 ft; minimum, 1.4  $ft^3/s$ , June 25, 26, 27, July 1, 1987, gage height, 1.25 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 75 ft3/s and maximum (\*):

| Date |       | Time     | Di<br>( | scharge<br>ft <sup>3</sup> /s) | Gag      | e height<br>(ft) |                       | Date             | Time     | Dis<br>(f | charge<br>(3/s) |     | e height<br>(ft) |
|------|-------|----------|---------|--------------------------------|----------|------------------|-----------------------|------------------|----------|-----------|-----------------|-----|------------------|
| Apr. | 4     | 1500     |         | 161                            |          | 2.91             |                       | Sept. 13         | 1645     | *2        | 70              | *   | 3.32             |
| Mir  | nimum | discharg |         |                                |          |                  |                       | height, 1        |          |           |                 |     |                  |
|      |       |          | DISCHAR | GE, IN CU                      | BIC FEET | PER SECO         | ND, WATER<br>MEAN VAL | YEAR OCTO<br>UES | BER 1986 | TO SEPTEM | BER 1987        |     |                  |
| DAY  |       | OCT      | NOV     | DEC                            | JAN      | FEB              | MAR                   | APR              | MAY      | JUN       | JUL             | AUG | SEP              |
| 1    |       | 4.9      | 4.0     | 37                             | 24       | 14               | 18                    | 38               | 19       | 2.9       | 1.4             | 2.1 | 5.5              |

| DAY                                        | OCT                                    | NOV                                        | DEC                                      | JAN                                     | FEB                                        | MAR                                        | APR                                       | MAY                                        | JUN                                | JUL                                      | AUG                                      | SEP                                         |
|--------------------------------------------|----------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|
| 1<br>2<br>3<br>4<br>5                      | 4.9<br>4.9<br>5.1<br>6.2<br>5.7        | 4.0<br>4.0<br>4.0<br>4.0                   | 37<br>36<br>62<br>57<br>51               | 24<br>26<br>26<br>22<br>20              | 14<br>13<br>14<br>14<br>13                 | 18<br>25<br>25<br>26<br>26                 | 38<br>35<br>31<br>88<br>104               | 19<br>17<br>17<br>20<br>21                 | 2.9<br>2.9<br>3.0<br>3.1<br>3.3    | 1.4<br>1.9<br>3.4<br>2.1<br>1.7          | 2.1<br>2.1<br>2.5<br>2.3<br>4.9          | 5.5<br>4.6<br>4.1<br>3.5<br>3.3             |
| 6<br>7<br>8<br>9                           | 5.1<br>4.9<br>4.7<br>4.5<br>4.4        | 6.8<br>5.5<br>7.1<br>7.4<br>6.6            | 45<br>39<br>35<br>35<br>35               | 19<br>18<br>16<br>15<br>15              | 12<br>12<br>12<br>13<br>13                 | 26<br>27<br>32<br>35<br>34                 | 86<br>79<br>68<br>57<br>48                | 20<br>19<br>17<br>15<br>14                 | 2.8<br>2.6<br>2.6<br>2.5<br>2.4    | 1.5<br>1.5<br>3.8<br>2.9<br>3.0          | 13<br>9.9<br>8.6<br>7.9                  | 3.2<br>5.6<br>14<br>25<br>22                |
| 11<br>12<br>13<br>14<br>15                 | 4.3<br>4.3<br>4.9<br>4.7               | 8.4<br>9.5<br>8.8<br>8.2<br>8.0            | 33<br>31<br>28<br>25<br>23               | 16<br>15<br>14<br>14<br>15              | 12<br>12<br>12<br>11<br>10                 | 30<br>26<br>23<br>21<br>18                 | 41<br>35<br>35<br>30<br>26                | 13<br>12<br>11<br>8.3<br>6.0               | 2.2<br>4.7<br>7.0<br>7.2<br>7.0    | 2.0<br>2.1<br>2.2<br>8.2<br>13           | 13<br>10<br>8.0<br>6.6<br>5.4            | 19<br>17<br>81<br>101<br>77                 |
| 16<br>17<br>18<br>19<br>20                 | 4.5<br>4.4<br>4.3<br>4.3               | 8.0<br>7.8<br>8.1<br>11                    | 21<br>20<br>25<br>31<br>31               | 16<br>15<br>16<br>18<br>19              | 9.6<br>9.2<br>9.0<br>8.7<br>8.3            | 16<br>15<br>13<br>13                       | 24<br>25<br>25<br>23<br>21                | 5.7<br>5.2<br>4.9<br>6.0<br>5.8            | 6.8<br>6.6<br>6.5<br>5.6           | 10<br>9.1<br>7.6<br>7.3<br>7.7           | 4.3<br>3.5<br>3.0<br>2.5<br>2.3          | 63<br>55<br>49<br>43<br>36                  |
| 21<br>22<br>23<br>24<br>25                 | 4.0<br>4.0<br>4.0<br>4.0               | 49<br>44<br>40<br>36<br>32                 | 30<br>27<br>25<br>23<br>45               | 19<br>18<br>19<br>20<br>18              | 8.1<br>8.0<br>8.4<br>8.5<br>8.2            | 11<br>11<br>11<br>9.8<br>8.6               | 19<br>18<br>16<br>21<br>31                | 5.4<br>5.0<br>4.8<br>5.2<br>4.9            | 2.8<br>2.4<br>1.9<br>1.6<br>1.4    | 6.5<br>5.1<br>4.1<br>3.3<br>3.3          | 2.3<br>2.3<br>2.2<br>2.1<br>2.1          | 31<br>26<br>23<br>20<br>18                  |
| 26<br>27<br>28<br>29<br>30<br>31           | 4.7<br>5.1<br>4.6<br>4.3<br>4.2<br>4.0 | 37<br>48<br>45<br>40<br>42                 | 43<br>41<br>37<br>32<br>29<br>26         | 17<br>16<br>14<br>14<br>14<br>15        | 8.1<br>8.0<br>8.0                          | 7.5<br>5.4<br>6.7<br>6.5<br>6.9            | 30<br>28<br>27<br>25<br>22                | 4.529.63<br>3.53<br>3.1                    | 1.3<br>2.0<br>1.7<br>1.5<br>1.3    | 3.5<br>3.5<br>2.2<br>2.1                 | 2.1<br>4.6<br>6.8<br>7.8<br>6.3          | 16<br>14<br>12<br>12<br>12                  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 141.5<br>4.56<br>6.2<br>4.0<br>.60     | 558.6<br>18.6<br>49<br>4.0<br>2.43<br>2.72 | 1058<br>34.1<br>62<br>20<br>4.46<br>5.14 | 543<br>17.5<br>26<br>14<br>2.29<br>2.64 | 296.1<br>10.6<br>14<br>8.0<br>1.38<br>1.44 | 576.4<br>18.6<br>35<br>5.4<br>2.43<br>2.80 | 1156<br>38.5<br>104<br>16<br>5.04<br>5.62 | 304.8<br>9.83<br>21<br>3.1<br>1.29<br>1.48 | 106.2<br>3.54<br>7.2<br>1.3<br>.46 | 130.2<br>4.20<br>13<br>1.4<br>.55<br>.63 | 173.0<br>5.58<br>17<br>2.1<br>.73<br>.84 | 815.8<br>27.2<br>101<br>3.2<br>3.55<br>3.97 |

CAL YR 1986 TOTAL 5688.6 MEAN 15.6 MAX 68 MIN 3.0 CFSM 2.04 IN. 27.65 WTR YR 1987 TOTAL 5859.6 MEAN 16.1 MAX 104 MIN 1.3 CFSM 2.10 IN. 28.50

#### 01379780 GREEN POND BROOK BELOW PICATINNY LAKE AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°56'56", long 74°33'29", Morris County, Hydrologic Unit 02030103, on left bank 100 ft upstream from bridge on Whitmore Avenue at Picatinny Arsenal, and 200 ft downstream from dam on Picatinny Lake.

DRAINAGE AREA ... 9.16 mi 2.

PERIOD OF RECORD .-- October 1984 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 694.91 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, benchmark).

REMARKS.--Records good except for period of ice effect, Jan. 23-28, which are fair. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 309 ft<sup>3</sup>/s, Sept. 13, 1987, gage height, 3.70 ft; minimum daily, 0.20 ft<sup>3</sup>/s, Nov. 20-23, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 5, 1984 reached an elevation of 699.0 ft above NGVD, 200 ft upstream of bridge on Whitmore Avenue.

EXTREMES FOR CURRENT YEAR. -- Peak discharge greater than base discharge of 70 ft3/s and maximum (\*):

|         |      | Discharge                         | Gage height |                    |              | Discharge                         | Gage height   |
|---------|------|-----------------------------------|-------------|--------------------|--------------|-----------------------------------|---------------|
| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | (ft)        | Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | (ft)          |
| Nov. 21 | 1115 | 104                               | 3.15        | Apr. 4<br>Sept. 13 | 1745<br>1730 | 256<br>*309                       | 3.51<br>*3.70 |
| Dec. 3  | 0630 | 90                                | 3.10        | Sept. 15           | 1/30         | ~309                              | -5.70         |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 0.56 ft<sup>3</sup>/s, June 23, 24, 25, 26, gage height, 2.16 ft.

|                                            |                                          | DISCHAR                                    | IGE, IN CC                               | BIC PEET                                | PER SECO                                   | MEAN VALL                                  | JES JES                                   | OBER 1900                                  | 10 SEPTE                                  | MBER 1907                                 |                                           |                                              |
|--------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|
| DAY                                        | OCT                                      | NOV                                        | DEC                                      | JAN                                     | FEB                                        | MAR                                        | APR                                       | MAY                                        | JUN                                       | JUL                                       | AUG                                       | SEP                                          |
| 1 2 3 4 5                                  | 3.5<br>3.5<br>3.5<br>3.5<br>3.5          | 2.8<br>2.8<br>2.7<br>2.5<br>2.3            | 47<br>45<br>86<br>78<br>68               | 29<br>31<br>30<br>28<br>25              | 16<br>16<br>15<br>15                       | 11<br>18<br>21<br>22<br>25                 | 43<br>45<br>44<br>126<br>165              | 22<br>21<br>20<br>20<br>21                 | 4.6<br>4.3<br>3.6<br>3.2<br>3.3           | 1.6<br>1.8<br>1.8<br>1.9<br>2.0           | 2.7<br>2.6<br>2.7<br>2.7<br>3.3           | 5.4<br>5.0<br>4.1<br>3.6<br>3.4              |
| 6<br>7<br>8<br>9                           | 3.5<br>3.5<br>3.5<br>3.5<br>3.5          | 2.2<br>2.1<br>2.0<br>3.8<br>5.0            | 59<br>51<br>45<br>44<br>45               | 24<br>23<br>22<br>21<br>20              | 15<br>14<br>14<br>14<br>14                 | 26<br>28<br>33<br>41<br>42                 | 128<br>111<br>95<br>77<br>63              | 22<br>21<br>20<br>19<br>18                 | 3.2<br>2.8<br>2.7<br>2.6<br>2.0           | 2.1<br>2.2<br>2.4<br>2.3<br>2.1           | 4.3<br>4.8<br>4.9<br>4.7<br>5.5           | 3.1<br>3.7<br>6.4<br>11<br>13                |
| 11<br>12<br>13<br>14<br>15                 | 3.0<br>3.0<br>3.0<br>3.1<br>3.3          | 7.8<br>11<br>9.2<br>8.1<br>7.8             | 41<br>38<br>34<br>30<br>27               | 20<br>19<br>18<br>17<br>17              | 13<br>13<br>13<br>12<br>12                 | 37<br>33<br>35<br>37<br>32                 | 53<br>45<br>43<br>38<br>32                | 17<br>16<br>15<br>12<br>11                 | 1.9<br>1.9<br>2.0<br>2.1<br>2.2           | 2.3<br>2.3<br>2.6<br>3.4<br>4.8           | 7.2<br>8.0<br>8.1<br>8.3<br>8.9           | 14<br>14<br>132<br>173<br>114                |
| 16<br>17<br>18<br>19<br>20                 | 3.3<br>3.3<br>3.1<br>3.0<br>3.0          | 7.8<br>7.5<br>8.0<br>12<br>14              | 25<br>24<br>25<br>35<br>38               | 17<br>16<br>17<br>19<br>19              | 12<br>11<br>10<br>9.1<br>8.7               | 26<br>21<br>18<br>12<br>6.9                | 29<br>27<br>29<br>27<br>25                | 10<br>9.2<br>8.6<br>7.9<br>7.6             | 2.4<br>2.0<br>1.9<br>1.9<br>2.0           | 4.4<br>4.2<br>4.0<br>4.0<br>4.3           | 9.1<br>9.2<br>9.3<br>9.5<br>9.0           | 86<br>75<br>68<br>55<br>46                   |
| 21<br>22<br>23<br>24<br>25                 | 3.0<br>2.9<br>2.8<br>2.8<br>2.8          | 77<br>60<br>53<br>47<br>41                 | 36<br>33<br>31<br>30<br>52               | 20<br>20<br>e18<br>e19<br>e19           | 8.3<br>7.9<br>8.6<br>8.4<br>8.1            | 7.1<br>7.1<br>6.9<br>6.8<br>6.6            | 22<br>20<br>19<br>19<br>30                | 7.1<br>6.3<br>5.7<br>4.7                   | 2.0<br>2.0<br>1.5<br>.64<br>.66           | 5.3<br>6.8<br>7.4<br>7.7<br>6.7           | 7.7<br>6.6<br>5.4<br>4.8<br>4.4           | 40<br>34<br>30<br>29<br>27                   |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.8<br>2.8<br>2.9<br>2.9<br>3.0<br>2.9   | 44<br>64<br>59<br>53<br>51                 | 58<br>52<br>48<br>42<br>37<br>32         | e20<br>e19<br>e18<br>18<br>17           | 7.8<br>7.6<br>7.7                          | 6.6<br>6.4<br>6.1<br>6.2<br>6.0            | 34<br>33<br>31<br>29<br>25                | 8.3<br>11<br>7.6<br>5.8<br>4.9<br>4.7      | 1.1<br>1.5<br>1.6<br>1.6                  | 4.8<br>4.9<br>5.0<br>3.7<br>3.3<br>3.0    | 4.1<br>4.0<br>4.1<br>4.9<br>5.4<br>5.4    | 25<br>23<br>21<br>19<br>18                   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 97.4<br>3.14<br>3.5<br>2.8<br>.34<br>.40 | 670.4<br>22.3<br>77<br>2.0<br>2.44<br>2.72 | 1336<br>43.1<br>86<br>24<br>4.70<br>5.43 | 637<br>20.5<br>31<br>16<br>2.24<br>2.59 | 326.2<br>11.6<br>16<br>7.6<br>1.27<br>1.32 | 601.7<br>19.4<br>42<br>6.0<br>2.12<br>2.44 | 1507<br>50.2<br>165<br>19<br>5.48<br>6.12 | 389.1<br>12.6<br>22<br>4.7<br>1.37<br>1.58 | 66.80<br>2.23<br>4.6<br>.64<br>.24<br>.27 | 115.1<br>3.71<br>7.7<br>1.6<br>.41<br>.47 | 181.6<br>5.86<br>9.5<br>2.6<br>.64<br>.74 | 1101.7<br>36.7<br>173<br>3.1<br>4.01<br>4.47 |

CAL YR 1986 TOTAL 6414.46 MEAN 17.6 MAX 95 MIN 2.0 CFSM 1.92 IN. 26.04 WTR YR 1987 TOTAL 7029.95 MEAN 19.3 MAX 173 MIN .64 CFSM 2.10 IN. 28.54

e Estimated

#### 01379790 GREEN POND BROOK AT WHARTON, NJ

LOCATION.--Lat 40°55'04", long 74°35'02", Morris County, Hydrologic Unit 02030103, on left bank 600 ft upstream from bridge on northbound lane of State Route 15, 0.2 mi northwest of Wharton, and 1.7 mi upstream from mouth.

DRAINAGE AREA .-- 12.6 mi 2.

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 679.50 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--Records good except for estimated daily discharges, which are fair. Some regulation from Lake Picatinny, Picatinny Arsenal sewage treatment plant, and flood gates located about 800 ft upstream of gage. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 5 years, 28.1 ft3/s, 30.29 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 572 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 5.11 ft; minimum, 2.4 ft<sup>3</sup>/s, Sept. 29, 1983, gage height, 2.28 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 130 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time    | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|----------|---------|-----------------------------------|------------------|
| Nov. 21 | 1345 | 192                               | 3.77             | Apr. 4   | 1530    | 320                               | 4.10             |
| Dec. 3  | 0745 | 165                               | 3.67             | Sept. 13 | unknown | *382                              | *4.31            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 3.9 ft<sup>3</sup>/s, June 24, 25, gage height, 2.38 ft.

|                                            |                                          | DISCHA                                      | de, in co                                 | DIC FEET                                | PER SECON                               | MEAN VALL                                | JES OCTO                                  | DEK 1700                                | 10 SEFTE                          | MDER 1707                            |                                            |                                              |
|--------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------------|
| DAY                                        | ОСТ                                      | NOV                                         | DEC                                       | JAN                                     | FEB                                     | MAR                                      | APR                                       | MAY                                     | JUN                               | JUL                                  | AUG                                        | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | 8.3<br>8.6<br>8.4<br>10<br>9.1           | 6.1<br>6.0<br>6.0<br>5.9<br>6.0             | 54<br>56<br>136<br>99<br>84               | 38<br>41<br>40<br>37<br>35              | 24<br>24<br>24<br>25<br>23              | 42<br>43<br>39<br>37<br>37               | 62<br>60<br>55<br>202<br>247              | 32<br>30<br>28<br>34<br>34              | 9.7<br>10<br>8.9<br>9.5           | 6.9<br>9.3<br>9.7<br>7.3<br>6.4      | 7.2<br>6.9<br>7.5<br>7.1                   | 11<br>10<br>9.5<br>8.7<br>8.2                |
| 6<br>7<br>8<br>9                           | 8.0<br>7.4<br>7.4<br>7.6<br>7.2          | 12<br>8.2<br>11<br>11<br>11                 | 73<br>63<br>55<br>59<br>62                | 33<br>32<br>31<br>29<br>29              | 22<br>22<br>22<br>22<br>22<br>22        | 38<br>48<br>56<br>59<br>54               | 175<br>145<br>121<br>100<br>84            | 33<br>31<br>29<br>27<br>26              | 8.4<br>7.5<br>7.4<br>7.2<br>6.4   | 5.9<br>6.0<br>13<br>9.4<br>7.8       | 27<br>15<br>12<br>11<br>26                 | 8.0<br>11<br>23<br>30<br>25                  |
| 11<br>12<br>13<br>14<br>15                 | 6.7<br>6.7<br>6.9<br>8.2<br>7.5          | 17<br>22<br>17<br>15<br>14                  | 52<br>49<br>43<br>38<br>36                | 30<br>29<br>28<br>27<br>29              | 21<br>21<br>20<br>20<br>19              | 49<br>45<br>44<br>47<br>41               | 71<br>62<br>64<br>53<br>45                | 25<br>24<br>22<br>19<br>19              | 5.8<br>6.0<br>6.2<br>6.5<br>6.0   | 7.0<br>7.3<br>7.9<br>19<br>24        | 16<br>15<br>14<br>14<br>14                 | e23<br>e22<br>e216<br>e301<br>159            |
| 16<br>17<br>18<br>19<br>20                 | 6.8<br>6.7<br>6.4<br>6.4                 | 13<br>13<br>13<br>23<br>25                  | 35<br>34<br>50<br>54<br>49                | 29<br>26<br>27<br>29<br>29              | 18<br>17<br>17<br>16<br>15              | 37<br>32<br>29<br>25<br>17               | 42<br>45<br>46<br>40<br>37                | 17<br>16<br>16<br>18<br>16              | 6.2<br>6.2<br>5.6<br>5.5<br>5.6   | 13<br>11<br>9.7<br>11                | 14<br>14<br>14<br>14<br>13                 | 104<br>93<br>91<br>70<br>56                  |
| 21<br>22<br>23<br>24<br>25                 | 6.4<br>6.5<br>6.6<br>6.5<br>6.2          | 120<br>83<br>65<br>58<br>49                 | 46<br>42<br>39<br>39<br>98                | 29<br>29<br>29<br>29<br>29<br>28        | 15<br>15<br>16<br>15<br>15              | 17<br>16<br>16<br>16<br>15               | 34<br>31<br>29<br>37<br>50                | 15<br>14<br>13<br>12<br>11              | 6.4<br>6.4<br>5.8<br>4.5<br>4.1   | 10<br>11<br>12<br>12<br>12           | 12<br>11<br>10<br>9.3<br>8.5               | 48<br>42<br>39<br>36<br>35                   |
| 26<br>27<br>28<br>29<br>30<br>31           | 7.8<br>8.6<br>7.7<br>6.8<br>6.4<br>6.4   | 68<br>92<br>75<br>64<br>59                  | 77<br>68<br>60<br>53<br>48<br>42          | 28<br>27<br>26<br>25<br>24<br>24        | 15<br>14<br>14                          | 14<br>14<br>15<br>14<br>15<br>64         | 45<br>43<br>42<br>40<br>35                | 12<br>17<br>14<br>12<br>11              | 4.2<br>6.7<br>6.0<br>5.4<br>5.3   | 12<br>11<br>9.9<br>9.2<br>7.8<br>7.6 | 8.0<br>13<br>17<br>14<br>11                | 32<br>29<br>28<br>26<br>27                   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 226.6<br>7.31<br>10<br>6.2<br>.58<br>.67 | 988.2<br>32.9<br>120<br>5.9<br>2.61<br>2.92 | 1793<br>57.8<br>136<br>34<br>4.59<br>5.29 | 926<br>29.9<br>41<br>24<br>2.37<br>2.73 | 533<br>19.0<br>25<br>14<br>1.51<br>1.57 | 1035<br>33.4<br>64<br>14<br>2.65<br>3.06 | 2142<br>71.4<br>247<br>29<br>5.67<br>6.32 | 637<br>20.5<br>34<br>10<br>1.63<br>1.88 | 199.4<br>6.65<br>10<br>4.1<br>.53 | 317.1<br>10.2<br>24<br>5.9<br>.81    | 401.5<br>13.0<br>27<br>6.9<br>1.03<br>1.19 | 1621.4<br>54.0<br>301<br>8.0<br>4.29<br>4.79 |

CAL YR 1986 TOTAL 10158.9 MEAN 27.8 MAX 159 MIN 5.9 CFSM 2.21 IN. 29.98 WTR YR 1987 TOTAL 10820.2 MEAN 29.6 MAX 301 MIN 4.1 CFSM 2.35 IN. 31.94

e Estimated

#### 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°54'06", long 74°24'40", Morris County, Hydrologic Unit 02030103, on right bank, under CONRAIL railroad bridge, just downstream of bridge on Morris Avenue in Boonton, 1.8 mi upstream from dam at Boonton Reservoir.

DRAINAGE AREA . - - 116 mi 2 .

PERIOD OF RECORD. -- October 1937 to current year. Monthly discharge only for October 1937, published in WSP 1302.

REVISED RECORDS.--WRD-NJ 1974: 1938(M). WDR NJ-78-1: 1949(M), 1952(M), 1968(M), 1971(M), 1973(P), 1974(M), 1977(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 364.47 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Splitrock Reservoir on Beaver Brook, 14.5 mi above station (see Passaic River basin, reservoirs in). Town of Boonton diverts water for municipal supply from Taylortown Reservoir on Stony Brook, capacity, 75,000,000 gal and by pumping from wells in vicinity of Boonton. The mean diversion during the water year from Taylortown Reservoir was 0.78 ft<sup>3</sup>/s. Rockaway Valley trunk sewer bypasses the station (see station 01381000). Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with Jersey City, Bureau of Water.

AVERAGE DISCHARGE .-- 50 years, 226 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,590 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 7.23 ft; minimum daily, 10 ft<sup>3</sup>/s, Aug. 10, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 950 ft3/s and maximum (\*):

| Date                                    | Time                         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)             | Date                          | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)      |
|-----------------------------------------|------------------------------|-----------------------------------|------------------------------|-------------------------------|----------------------|-----------------------------------|-----------------------|
| Nov. 21<br>Nov. 27<br>Dec. 3<br>Dec. 25 | 1130<br>0630<br>1430<br>1545 | 1,290<br>1,100<br>1,370<br>1,080  | 4.39<br>4.09<br>4.51<br>4.06 | Mar. 31<br>Apr. 5<br>Sept. 14 | 2400<br>0315<br>0630 | 1,040<br>*2,530<br>1,360          | 4.00<br>*5.74<br>4.50 |

Minimum discharge, 3.9 ft<sup>3</sup>/s, Oct. 24, gage height, 1.92 ft.

|                                  |                                  | DISCHA                           | RGE, IN C                              | UBIC FEET                              | PER SECON                       | D, WATER<br>MEAN VAL                   | YEAR OCTO                          | DBER 1986                           | TO SEPTEM                   | 1BER 1987                        |                                      |                                   |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|------------------------------------|-------------------------------------|-----------------------------|----------------------------------|--------------------------------------|-----------------------------------|
| DAY                              | ОСТ                              | NOV                              | DEC                                    | JAN                                    | FEB                             | MAR                                    | APR                                | MAY                                 | JUN                         | JUL                              | AUG                                  | SEP                               |
| 1 2 3 4 5                        | 92<br>76<br>83<br>139<br>122     | 49<br>48<br>48<br>49<br>60       | 343<br>319<br>1100<br>893<br>618       | 286<br>345<br>367<br>307<br>255        | 173<br>176<br>207<br>230<br>204 | 410<br>695<br>500<br>394<br>329        | 843<br>535<br>428<br>1100<br>2130  | 259<br>243<br>239<br>337<br>347     | 79<br>81<br>82<br>88<br>127 | 52<br>139<br>161<br>92<br>63     | 44<br>41<br>57<br>55<br>80           | 89<br>74<br>65<br>59<br>55        |
| 6<br>7<br>8<br>9                 | 83<br>63<br>56<br>57<br>59       | 168<br>131<br>159<br>201<br>156  | 486<br>411<br>364<br>379<br>502        | 235<br>226<br>219<br>205<br>204        | 186<br>181<br>180<br>183<br>164 | 303<br>350<br>459<br>494<br>468        | 1540<br>1300<br>1010<br>820<br>672 | 318<br>281<br>246<br>220<br>199     | 96<br>81<br>77<br>74<br>68  | 51<br>50<br>220<br>168<br>118    | 474<br>234<br>128<br>97<br>332       | 51<br>110<br>290<br>592<br>352    |
| 11<br>12<br>13<br>14<br>15       | 57<br>57<br>58<br>87<br>78       | 185<br>288<br>200<br>152<br>136  | 421<br>380<br>323<br>264<br>252        | 246<br>228<br>202<br>189<br>220        | 166<br>157<br>154<br>141<br>130 | 415<br>384<br>356<br>334<br>300        | 547<br>471<br>466<br>455<br>400    | 186<br>173<br>161<br>152<br>168     | 62<br>67<br>73<br>68<br>62  | 113<br>109<br>116<br>152<br>432  | 210<br>121<br>92<br>77<br>69         | 231<br>160<br>473<br>1320<br>1130 |
| 16<br>17<br>18<br>19<br>20       | 62<br>55<br>52<br>49<br>48       | 130<br>124<br>118<br>218<br>213  | 231<br>227<br>365<br>680<br>480        | 268<br>225<br>217<br>287<br>275        | 127<br>133<br>125<br>116<br>115 | 274<br>249<br>228<br>213<br>196        | 354<br>389<br>488<br>406<br>345    | 161<br>142<br>131<br>177<br>171     | 57<br>52<br>49<br>47<br>49  | 220<br>139<br>104<br>94<br>97    | 63<br>58<br>55<br>51<br>48           | 739<br>524<br>576<br>488<br>379   |
| 21<br>22<br>23<br>24<br>25       | 47<br>45<br>45<br>42<br>43       | 1030<br>766<br>505<br>407<br>344 | 376<br>321<br>287<br>270<br>839        | 247<br>202<br>217<br>226<br>204        | 115<br>115<br>135<br>133<br>123 | 188<br>182<br>176<br>172<br>167        | 308<br>279<br>256<br>290<br>481    | 171<br>148<br>134<br>124<br>113     | 53<br>69<br>69<br>57<br>52  | 76<br>66<br>59<br>56<br>55       | 46<br>46<br>45<br>45                 | 303<br>250<br>220<br>195<br>187   |
| 26<br>27<br>28<br>29<br>30<br>31 | 60<br>92<br>71<br>61<br>55<br>52 | 437<br>985<br>649<br>468<br>393  | 759<br>527<br>442<br>388<br>355<br>318 | 200<br>182<br>166<br>168<br>169<br>184 | 118<br>116<br>114               | 165<br>156<br>173<br>168<br>162<br>627 | 436<br>364<br>342<br>340<br>304    | 107<br>109<br>108<br>99<br>90<br>84 | 50<br>119<br>89<br>65<br>56 | 96<br>90<br>60<br>52<br>48<br>54 | 45<br>111<br>240<br>224<br>118<br>82 | 168<br>152<br>141<br>131<br>139   |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 2046<br>66.0<br>139<br>42        | 8817<br>294<br>1030<br>48        | 13920<br>449<br>1100<br>227            | 7171<br>231<br>367<br>166              | 4217<br>151<br>230<br>114       | 9687<br>312<br>695<br>156              | 18099<br>603<br>2130<br>256        | 5598<br>181<br>347<br>84            | 2118<br>70.6<br>127<br>47   | 3402<br>110<br>432<br>48         | 3434<br>111<br>474<br>41             | 9643<br>321<br>1320<br>51         |

CAL YR 1986 TOTAL 87647 MEAN 240 MAX 1590 MIN 41 WTR YR 1987 TOTAL 88152 MEAN 242 MAX 2130 MIN 41

### 01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°53'47", long 74°23'36", Morris County, Hydrologic Unit 02030103, on right bank 2,000 ft downstream from Boonton Reservoir Dam at Boonton.

DRAINAGE AREA . - - 119 mi 2.

PERIOD OF RECORD.--March to December 1903; January, February 1904 (gage height only); January 1906 to September 1950 (monthly discharge only, published in WSP 1302) October 1950 to current year (figures of daily discharge for October 1950 to September 1954 published in Special Report 16 of New Jersey Department of Environmental Protection). Published as "near Boonton" 1903-4, and as "at Boonton" 1906-37.

REVISED RECORDS.--WSP 1902: 1951-54. WDR NJ-79-1: 1949(M), 1952(M), 1968(M), 1970-74(M), 1977(M).

GAGE.--Water-stage recorder. Concrete control since Nov. 5, 1936. Datum of gage is 195.68 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Mar. 15, 1903 to Feb. 2, 1904, nonrecording gage at site 1.9 mi downstream at different datum. Jan. 1, 1906 to Mar. 3, 1918, nonrecording gage on Boonton Dam 2,000 ft upstream at datum 305.25 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Records represent flow in river only. Sewage effluent enters river about 600 ft below station (records given herein). Flow regulated by Boonton Reservoir (see Passaic River basin, reservoirs in) 2,000 ft above station, and by Splitrock Reservoir (see Passaic River basin, reservoirs in) 16.5 mi above station. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with and record of sewage effluent furnished by Jersey City, Bureau of Water.

AVERAGE DISCHARGE.--81 years (water years 1907-87), 139 ft3/s, adjusted for sewage effluent since October 1930.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 7,560 ft<sup>3</sup>/s, Oct. 10, 1903; no flow many days in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,930  $\rm ft^3/s$ , Apr. 5, gage height, 6.76 ft; minimum, 9.6  $\rm ft^3/s$ , Nov. 6, 7, 8, 9, 10, 11, 12 and June 9, 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                    |                                  |                                     | ,                                      |                                      | ME                                | AN VALUE                          | S                                  | - 1700 I                            |                             |                                  |                                  |                                   |
|------------------------------------|----------------------------------|-------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|-----------------------------|----------------------------------|----------------------------------|-----------------------------------|
| DAY                                | OCT                              | NOV                                 | DEC                                    | JAN                                  | FEB                               | MAR                               | APR                                | MAY                                 | JUN                         | JUL                              | AUG                              | SEP                               |
| 1 2 3 4 5                          | 11<br>11<br>12<br>11<br>11       | 10<br>10<br>10<br>10<br>10          | 293<br>262<br>936<br>1110<br>691       | 241<br>316<br>326<br>277<br>212      | 98<br>92<br>114<br>142<br>135     | 188<br>644<br>531<br>376<br>288   | 901<br>607<br>422<br>902<br>2660   | 210<br>186<br>175<br>264<br>308     | 83<br>92<br>87<br>93<br>119 | 11<br>12<br>12<br>11<br>11       | 11<br>11<br>12<br>11<br>13       | 12<br>12<br>12<br>12<br>12        |
| 6<br>7<br>8<br>9                   | 11<br>11<br>11<br>11<br>10       | 10<br>9.6<br>11<br>9.7<br>9.6       | 495<br>386<br>319<br>315<br>437        | 176<br>164<br>150<br>136<br>133      | 115<br>107<br>104<br>114<br>96    | 242<br>253<br>356<br>434<br>432   | 2020<br>1640<br>1230<br>912<br>707 | 284<br>240<br>197<br>170<br>139     | 58<br>21<br>21<br>12<br>11  | 11<br>11<br>13<br>12<br>11       | 13<br>11<br>11<br>12<br>15       | 12<br>14<br>15<br>78<br>301       |
| 11<br>12<br>13<br>14<br>15         | 10<br>10<br>11<br>11<br>10       | 11<br>9.7<br>57<br>80<br>60         | 403<br>339<br>276<br>212<br>192        | 167<br>165<br>138<br>122<br>130      | 91<br>84<br>84<br>67<br>59        | 378<br>334<br>299<br>273<br>241   | 563<br>465<br>274<br>16<br>163     | 123<br>111<br>93<br>83<br>91        | 11<br>11<br>11<br>11<br>11  | 11<br>11<br>11<br>15<br>12       | 12<br>13<br>13<br>13<br>13       | 201<br>114<br>250<br>1350<br>1350 |
| 16<br>17<br>18<br>19<br>20         | 10<br>15<br>11<br>10<br>10       | 53<br>48<br>43<br>99<br>144         | 168<br>157<br>221<br>625<br>522        | 176<br>172<br>160<br>221<br>225      | 42<br>52<br>52<br>41<br>35        | 210<br>183<br>159<br>144<br>128   | 302<br>330<br>453<br>402<br>319    | 96<br>80<br>61<br>86<br>104         | 11<br>11<br>11<br>11<br>11  | 12<br>12<br>12<br>12<br>12       | 13<br>12<br>12<br>12<br>12       | 849<br>561<br>544<br>479<br>362   |
| 21<br>22<br>23<br>24<br>25         | 10<br>10<br>10<br>10<br>10       | 808<br>913<br>543<br>386<br>301     | 363<br>283<br>234<br>210<br>672        | 193<br>179<br>133<br>146<br>153      | 33<br>34<br>53<br>58<br>46        | 116<br>108<br>102<br>98<br>96     | 271<br>232<br>199<br>221<br>396    | 110<br>96<br>72<br>60<br>49         | 11<br>12<br>11<br>66<br>115 | 12<br>12<br>11<br>11<br>11       | 12<br>12<br>12<br>12<br>12       | 269<br>198<br>160<br>129<br>111   |
| 26<br>27<br>28<br>29<br>30<br>31   | 10<br>10<br>10<br>10<br>10<br>10 | 352<br>945<br>757<br>481<br>360     | 920<br>596<br>448<br>366<br>315<br>274 | 137<br>115<br>104<br>99<br>99<br>107 | 38<br>36<br>36<br>                | 94<br>84<br>93<br>99<br>93<br>391 | 426<br>336<br>303<br>305<br>263    | 52<br>97<br>116<br>111<br>101<br>94 | 60<br>12<br>11<br>11<br>11  | 12<br>11<br>11<br>11<br>11<br>11 | 12<br>13<br>14<br>12<br>12<br>12 | 96<br>81<br>71<br>59<br>57        |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†) | 328<br>10.6<br>15<br>10<br>9.7   | 6550.6<br>218<br>945<br>9.6<br>11.1 | 13040<br>421<br>1110<br>157<br>13.6    | 5272<br>170<br>326<br>99<br>12.1     | 2058<br>73.5<br>142<br>33<br>11.4 | 7467<br>241<br>644<br>84<br>13.0  | 18240<br>608<br>2660<br>16<br>16.1 | 4059<br>131<br>308<br>49<br>12.4    | 1027<br>34.2<br>119<br>11   | 360<br>11.6<br>15<br>11<br>11.1  | 380<br>12.3<br>15<br>11<br>11.6  | 7771<br>259<br>1350<br>12<br>13.3 |

CAL YR 1986 TOTAL 59148.3 MEAN 162 MAX 1670 MIN 3.5 † 11.8 WTR YR 1987 TOTAL 66552.6 MEAN 182 MAX 2660 MIN 9.6 † 12.2

<sup>†</sup> Sewage effluent, in cubic feet per second, from plant of Rockaway Valley Regional Sewage Authority.

## 01381200 ROCKAWAY RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'29", long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at intersection with New Road in Pine Brook, and 1.1 mi upstream of mouth.

DRAINAGE AREA . - - 136 mi 2 .

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                            | West of the second              | STREA<br>FLOW<br>INSTA | M- CI                                                               | FIC<br>ON-                                   | PH<br>(STAND                  |                                                | PER-<br>URE                            | OXYGE                    | EN, C                                                           | YGEN,<br>DIS-<br>OLVED<br>PER-<br>CENT | OXYG<br>DEMA<br>BIO<br>CHE<br>ICA | ND,<br>-<br>M-                               | COLI<br>FORM<br>FECAL<br>EC | 11 X 24 31                                         |       |
|----------------------------|---------------------------------|------------------------|---------------------------------------------------------------------|----------------------------------------------|-------------------------------|------------------------------------------------|----------------------------------------|--------------------------|-----------------------------------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------------|-----------------------------|----------------------------------------------------|-------|
| DATE                       | TIME                            | TANEC<br>(CFS          | DUS AN                                                              | ICE                                          | ARD<br>UNITS)                 | WA                                             | TER<br>G C)                            | SOLV<br>(MG/             | /ED S                                                           | ATUR-                                  | 5 D                               | AY                                           | BROTI<br>(MPN)              | H FEC                                              | AL    |
| OCT 1986<br>28<br>FEB 1987 | 1100                            | E26                    |                                                                     | 408                                          | 7.5                           | 1                                              | 4.0                                    | 8.                       | .5                                                              | 83                                     | 3                                 | .3                                           | <200                        | 200                                                |       |
| 03                         | 1300                            | E121                   |                                                                     | 280                                          | 7.5                           |                                                | 3.5                                    | 13.                      | .4                                                              | 103                                    | 0                                 | .6                                           | 49                          | 22                                                 |       |
| APR 14                     | 1300                            | E36                    |                                                                     | 293                                          | 7.4                           | 1                                              | 0.5                                    | 9.                       | .6                                                              | 86                                     | 3                                 | .6                                           | 220                         | 350                                                |       |
| JUN<br>30                  | 1300                            | E28                    |                                                                     | 403                                          | 7.6                           | 2                                              | 2.0                                    | 8.                       | 4                                                               | 96                                     | 5                                 | .1                                           | 920                         | 170                                                | 12-01 |
| JUL<br>27                  | 1030                            | E28                    |                                                                     | 414                                          | 7.5                           | 2                                              | 2.5                                    | 8.                       | .2                                                              | 96                                     |                                   |                                              | 2400                        | 230                                                |       |
| 01                         | 1300                            | E30                    |                                                                     | 372                                          | 7.5                           | 2                                              | 0.0                                    | 7.                       | .8                                                              | 86                                     | 1                                 | .8                                           | 3300                        | 500                                                | ľ     |
| DATE                       | HAR<br>NES<br>(MG<br>AS         | S<br>/L                | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M   | M, SOI<br>- D<br>ED SO<br>L ( | DIUM,<br>IS-<br>LVED<br>MG/L<br>S NA)          | POTA<br>SII<br>DII<br>SOL<br>(MG<br>AS | JM, L<br>S-<br>VED<br>/L | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                 | (MG                                    | VED /L                            | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/<br>AS C | ED :                        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |       |
| OCT_1986                   |                                 |                        |                                                                     |                                              |                               |                                                |                                        | - 1                      |                                                                 |                                        |                                   |                                              |                             |                                                    |       |
| 28<br>FEB 1987             |                                 | 120                    | 30                                                                  | - 11                                         |                               | 32                                             | 4                                      | .0                       | 68                                                              | •                                      | 27                                | 47                                           |                             | 0.2                                                |       |
| 03<br>APR                  |                                 | 70                     | 18                                                                  | 6.                                           | 2                             | 26                                             | 1                                      | .5                       | 40                                                              | 2                                      | 20                                | 52                                           |                             | 0.1                                                |       |
| 14<br>JUN                  |                                 | 83                     | 21                                                                  | 7.                                           | 3                             | 22                                             | 2                                      | .0                       | 53                                                              | 2                                      | 23                                | 40                                           |                             | 0.2                                                |       |
| 30<br>JUL                  |                                 | 110                    | 28                                                                  | 10                                           |                               | 34                                             | 3                                      | .9                       | 67                                                              | 2                                      | 26                                | 55                                           |                             | 0.2                                                |       |
| 27<br>SEP                  |                                 | 120                    | 29                                                                  | 11                                           |                               | 37                                             | 4                                      | .7                       | 70                                                              | 2                                      | 25                                | 52                                           |                             | 0.3                                                |       |
| 01                         |                                 | 110                    | 27                                                                  | 9.                                           | 5                             | 28                                             | 3                                      | .7                       | 73                                                              | 2                                      | 21                                | 45                                           |                             | 0.2                                                |       |
| DATE                       | SILI<br>DIS<br>SOI<br>(MO<br>AS | CA,                    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | TE NO                         | ITRO-<br>GEN,<br>2+NO3<br>OTAL<br>MG/L<br>S N) | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS  | NIA AL                   | NITRO<br>GEN, AM<br>MONIA<br>ORGANIO<br>TOTAL<br>(MG/L<br>AS N) | H NIT<br>C GE<br>TOT<br>(MC            | TRO-<br>EN,<br>TAL<br>G/L<br>N)   | PHOS<br>PHORU<br>TOTA<br>(MG/<br>AS F        | IS, O<br>L<br>L             | ARBON,<br>RGANIC<br>TOTAL<br>(MG/L<br>AS C)        |       |
| OCT 1986<br>28<br>FEB 1987 |                                 | 12                     | 200                                                                 | 0.0                                          | 31                            | 6.19                                           | 0.                                     | 09                       | 0.30                                                            | 6.                                     | .5                                | 1.01                                         | 1                           | 4.0                                                |       |
| 03<br>APR                  |                                 | 9.1                    | 160                                                                 | 0.0                                          | 005                           | 1.21                                           | 0.                                     | 11                       | 0.59                                                            | 1.                                     | .8                                | 0.11                                         | 16                          | 5.3                                                |       |
| 14                         | 1                               | 12                     | 160                                                                 | 0.0                                          | 800                           | 1.93                                           | 0.                                     | 77                       | 0.85                                                            | 2                                      | .8                                | 0.22                                         | 29                          | 2.9                                                |       |
| JUN<br>30                  |                                 | 13                     | 210                                                                 | 0.0                                          | 24                            | 6.15                                           | 0.                                     | 29                       | 0.62                                                            | 6                                      | .8                                | 0.91                                         | 10                          | 4.1                                                |       |
| JUL<br>27                  |                                 | 13                     | 210                                                                 | 0.0                                          | 22                            | 5.73                                           | 0.                                     | 13                       | 0.29                                                            | 6                                      | .0                                | 0.91                                         | 18                          | 4.3                                                |       |
| SEP<br>01                  |                                 | 11                     | 190                                                                 | 0.0                                          | 27                            |                                                |                                        |                          |                                                                 |                                        |                                   |                                              |                             |                                                    |       |

# 01381200 ROCKAWAY RIVER AT PINE BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE         | т                   | IME        | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N)  | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|--------------|---------------------|------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 19       |                     |            | 2.2                                                                 |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 28<br>28     | : 1                 | 100<br>100 | <0.5                                                                | 290                                                                  | 0.1                                                                  | 9.2                                                                   | 30                                                                   | <1                                                                 | 1                                                                   | <10                                                                  | 140                                                                | <1                                                              | <1                                                                   |
| JUN 19<br>30 | 87                  | 300        | <0.5                                                                |                                                                      |                                                                      |                                                                       | 20                                                                   | <1                                                                 |                                                                     | <10                                                                  | 70                                                                 | <1                                                              |                                                                      |
|              |                     |            |                                                                     |                                                                      |                                                                      |                                                                       | 1077                                                                 |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|              | DAT                 | Έ          | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | MIUM,<br>RECOV.                                                      | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL                                                      | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) |                                                                    | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| C            | OCT 198             | 6          | 470                                                                 |                                                                      |                                                                      | 40                                                                    |                                                                      | 7/0                                                                |                                                                     | -                                                                    |                                                                    | 70                                                              |                                                                      |
|              | 28<br>28            |            | 170                                                                 | 8                                                                    | <10                                                                  | 19                                                                    | 10                                                                   | 360                                                                | 5100                                                                | <5                                                                   | 20                                                                 | 70                                                              | 88                                                                   |
|              | JUN 198<br>30       | 37         | 20                                                                  |                                                                      |                                                                      | 6                                                                     |                                                                      | 360                                                                |                                                                     | 16                                                                   |                                                                    | 90                                                              |                                                                      |
|              | 100000              |            |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|              | DAT                 | E          | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  |                                                                      | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |                                                                     | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
|              | OCT 198             | 36         |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|              | 28                  |            | 0.10                                                                | 0.07                                                                 |                                                                      | 10                                                                    | <1                                                                   | <1                                                                 | 20                                                                  | 70                                                                   |                                                                    | 65                                                              | <1.0                                                                 |
|              | JUN 198<br>30       | 37         | <0.10                                                               |                                                                      | <1                                                                   |                                                                       | <1                                                                   |                                                                    | <10                                                                 |                                                                      | 3                                                                  |                                                                 |                                                                      |
|              | 30                  |            | 10.10                                                               |                                                                      | - 1                                                                  | 188                                                                   | ~1                                                                   |                                                                    | 110                                                                 |                                                                      | ,                                                                  | -                                                               |                                                                      |
|              | DA                  | <b>NTE</b> | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| (            | OCT 198             |            |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|              | 28                  |            | <0.1                                                                | 12                                                                   | 2.0                                                                  | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | 0.7                                                                 | <0.1                                                                 | <0.1                                                               | <0.1                                                            | <0.1                                                                 |
|              | JUN 198<br>30       | 37         |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|              |                     |            |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|              | D                   | ATE        | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | IN BOT                                                               | CHLOR, TOT. IN BOTTOM MATL.                                           | TOT. IN<br>BOTTOM<br>MATL.                                           | BOTTOM<br>MATL.                                                    | MIREX,<br>TOTAL<br>I IN BOT-<br>I TOM MA-<br>TERIAL                 | TOM MA-                                                              | THANE IN BOT- TOM MA- TERIAL                                       | TOM MA-                                                         | IN BOT-<br>TOM MA-<br>TERIAL                                         |
|              | OCT 1               |            |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|              | 28.<br>28.<br>JUN 1 |            | 1.0                                                                 |                                                                      |                                                                      |                                                                       |                                                                      | <0.1                                                               |                                                                     | <0.1                                                                 | <1.00                                                              |                                                                 | <0.1                                                                 |
|              | 30.                 |            |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      | -                                                                  |                                                                 |                                                                      |

### 01381500 WHIPPANY RIVER AT MORRISTOWN, NJ

LOCATION.--Lat 40°48'21", long 74°27'22", Morris County, Hydrologic Unit 02030103, on left bank at Morristown sewage-disposal plant, 0.8 mi downstream from Morristown, and 9.0 mi upstream from mouth.

DRAINAGE AREA .-- 29.4 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1925-27(M) 1928-29, 1930-32(M), 1933-34. WRD-NJ 1974: 1965. WDR NJ-84-1: 1971(M).

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since July 1, 1936. Datum of gage is 260.01 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 16, 1930, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow occasionally regulated by operation of gates in Pocahontas Dam, 2.5 mi above station. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 66 years, 53.0 ft3/s, 24.39 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,800  $\rm ft^3/s$ , Aug. 28, 1971, gage height, 8.60 ft; minimum, 2.8  $\rm ft^3/s$ , Aug. 27, 1932, gage height, 0.73 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft<sup>3</sup>/s and maximum (\*):

| Date                                             | Time                                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)                      | Date                                                | Time                                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)                     |
|--------------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| Nov. 21<br>Nov. 26<br>Dec. 3<br>Apr. 4<br>July 3 | 1000<br>2300<br>0330<br>1715<br>0030 | 504<br>671<br>629<br>*1,150       | 3.92<br>4.38<br>4.27<br>*5.54<br>4.03 | July 8<br>July 14<br>Aug. 10<br>Sept. 8<br>Sept. 13 | 2400<br>1630<br>0200<br>2045<br>1045 | 542<br>525<br>726<br>467<br>467   | 4.03<br>3.98<br>4.52<br>3.81<br>3.81 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 15 ft<sup>3</sup>/s, Oct. 11, 24, 25; minimum gage height, 1.80 ft, Aug. 25.

|                                            |                                  | DIOGIANO                                  | L, IN 00                                 | 010 1221                                  | TER SECON                                | MEAN VALL                                 | JES DETE                                 | DER 1700                                  | TO OLI TEN                               | (3)                                       |                                           |                                           |
|--------------------------------------------|----------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| DAY                                        | OCT                              | NOV                                       | DEC                                      | JAN                                       | FEB                                      | MAR                                       | APR                                      | MAY                                       | JUN                                      | JUL                                       | AUG                                       | SEP                                       |
| 1 2 3 4 5                                  | 20<br>23<br>32<br>43<br>24       | 18<br>21<br>20<br>20<br>28                | 48<br>79<br>488<br>146<br>85             | 62<br>121<br>104<br>75<br>66              | 43<br>48<br>66<br>76<br>64               | 262<br>251<br>129<br>88<br>75             | 166<br>71<br>62<br>679<br>462            | 59<br>57<br>65<br>113<br>95               | 31<br>51<br>39<br>57<br>69               | 26<br>69<br>229<br>48<br>30               | 22<br>21<br>29<br>26<br>41                | 41<br>24<br>22<br>21<br>21                |
| 6<br>7<br>8<br>9                           | 21<br>18<br>18<br>18<br>18       | 61<br>29<br>76<br>52<br>29                | 71<br>65<br>61<br>99<br>135              | 61<br>62<br>61<br>56<br>63                | 57<br>58<br>59<br>62<br>54               | 73<br>85<br>94<br>83<br>71                | 268<br>235<br>176<br>145<br>130          | 74<br>64<br>57<br>54<br>52                | 37<br>32<br>32<br>31<br>29               | 27<br>26<br>69<br>129<br>37               | 99<br>32<br>25<br>42<br>197               | 22<br>74<br>237<br>233<br>52              |
| 11<br>12<br>13<br>14<br>15                 | 17<br>17<br>19<br>39<br>24       | 77<br>84<br>33<br>26<br>24                | 75<br>73<br>62<br>53<br>52               | 80<br>65<br>57<br>55<br>67                | 52<br>52<br>51<br>46<br>42               | 65<br>67<br>69<br>66<br>62                | 118<br>108<br>110<br>96<br>87            | 49<br>54<br>46<br>44<br>55                | 28<br>29<br>30<br>29<br>27               | 28<br>34<br>44<br>101<br>128              | 40<br>28<br>24<br>23<br>22                | 33<br>32<br>187<br>144<br>47              |
| 16<br>17<br>18<br>19<br>20                 | 19<br>19<br>18<br>17             | 24<br>24<br>27<br>81<br>77                | 52<br>53<br>136<br>201<br>85             | 67<br>53<br>70<br>104<br>83               | 43<br>44<br>44<br>43<br>41               | 59<br>57<br>54<br>52<br>51                | 82<br>124<br>141<br>93<br>79             | 48<br>43<br>51<br>69<br>55                | 26<br>25<br>24<br>24<br>24               | 36<br>28<br>26<br>36<br>50                | 21<br>21<br>21<br>20<br>19                | 37<br>67<br>155<br>70<br>46               |
| 21<br>22<br>23<br>24<br>25                 | 18<br>17<br>18<br>17<br>17       | 384<br>83<br>46<br>46<br>39               | 68<br>61<br>59<br>66<br>363              | 66<br>56<br>63<br>53<br>50                | 41<br>43<br>52<br>48<br>45               | 50<br>49<br>49<br>50<br>48                | 74<br>70<br>66<br>91<br>162              | 51<br>44<br>42<br>40<br>38                | 31<br>34<br>31<br>26<br>24               | 28<br>26<br>24<br>24<br>23                | 19<br>19<br>19<br>18<br>18                | 39<br>37<br>34<br>31<br>30                |
| 26<br>27<br>28<br>29<br>30<br>31           | 34<br>32<br>23<br>20<br>19<br>18 | 207<br>397<br>93<br>63<br>54              | 139<br>87<br>78<br>73<br>70<br>66        | 45<br>49<br>43<br>39<br>44<br>52          | 43<br>43<br>43                           | 51<br>43<br>59<br>48<br>54<br>227         | 84<br>69<br>78<br>73<br>65               | 37<br>39<br>37<br>35<br>33<br>31          | 23<br>77<br>34<br>26<br>24               | 45<br>36<br>25<br>22<br>23<br>26          | 18<br>64<br>92<br>49<br>27<br>23          | 28<br>27<br>28<br>27<br>35                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 674<br>21.7<br>43<br>17<br>.74   | 2243<br>74.8<br>397<br>18<br>2.54<br>2.84 | 3249<br>105<br>488<br>48<br>3.56<br>4.11 | 1992<br>64.3<br>121<br>39<br>2.19<br>2.52 | 1403<br>50.1<br>76<br>41<br>1.70<br>1.78 | 2541<br>82.0<br>262<br>43<br>2.79<br>3.22 | 4264<br>142<br>679<br>62<br>4.83<br>5.40 | 1631<br>52.6<br>113<br>31<br>1.79<br>2.06 | 1004<br>33.5<br>77<br>23<br>1.14<br>1.27 | 1503<br>48.5<br>229<br>22<br>1.65<br>1.90 | 1139<br>36.7<br>197<br>18<br>1.25<br>1.44 | 1881<br>62.7<br>237<br>21<br>2.13<br>2.38 |
| CAL YR<br>WTR YR                           | 1986<br>1987                     | TOTAL 23396<br>TOTAL 23524                | MEAN 64                                  |                                           |                                          | 7 CFSM                                    | 2.18 IN.<br>2.19 IN.                     | 29.59<br>29.76                            |                                          |                                           |                                           |                                           |

## 01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1926, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE             | TIME                            | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS) | TEMPER-<br>ATURE<br>WATER<br>(DEG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                     |                                                        | DXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL<br>EC<br>BROTH<br>(MPN) | , STREP-<br>TOCOCCI<br>FECAL<br>(MPN)         |
|------------------|---------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------|--------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| OCT 1986         |                                 |                                                 |                                                   |                                |                                      |                                                         |                                                        |                                                                |                                                 |                                               |
| 09<br>JAN 1987   | 1100                            | 18                                              | 358                                               | 7.9                            | 17.0                                 | 10.7                                                    | 111                                                    | 3.6                                                            | <200                                            | 500                                           |
| 21               | 1100                            | 67                                              | 560                                               | 7.9                            | 3.0                                  | 14.8                                                    | 111                                                    | 2.4                                                            | 700                                             | 500                                           |
| MAR<br>30<br>JUN | 1100                            | 130                                             | 293                                               | 8.2                            | 13.0                                 | 9.7                                                     | 93                                                     | 3.0                                                            | 330                                             | 330                                           |
| 11               | 1030                            | 27                                              | 339                                               | 7.9                            | 21.5                                 | 9.2                                                     | 105                                                    | 3.3                                                            | 200                                             | 700                                           |
| JUL<br>15<br>AUG | 1030                            | 161                                             | 150                                               | 7.4                            | 22.0                                 | 7.8                                                     | 90                                                     | 3.9                                                            | 24000                                           | 13000                                         |
| 12               | 1030                            | 125                                             | 261                                               | 7.9                            | 23.0                                 | 9.1                                                     | 107                                                    | 2.4                                                            | 1400                                            | 200                                           |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC  | S DIS<br>/L SOL<br>(MG                          | IUM SI<br>- DI<br>VED SOI<br>/L (MC               | S- DI<br>VED SOL               | IUM, SI                              | VED (MC                                                 | AB DIS-<br>S/L SOLVI                                   | ED SOL                                                         | E, R<br>S-<br>VED S<br>S/L (                    | LUO-<br>IDE,<br>DIS-<br>OLVED<br>MG/L<br>S F) |
| OCT 1986         |                                 |                                                 |                                                   |                                |                                      |                                                         |                                                        |                                                                |                                                 |                                               |
| 09               |                                 | 110 29                                          | 10                                                | 2                              | 5 3                                  | 3.4 75                                                  | 23                                                     | 43                                                             | 3                                               | 0.1                                           |
| JAN 1987<br>21   |                                 | 85 22                                           |                                                   | 7.2 6                          | 7 :                                  | 2.1 46                                                  | 19                                                     | 130                                                            | )                                               | <0.1                                          |
| MAR<br>30        |                                 | 84 21                                           |                                                   |                                |                                      |                                                         | 20                                                     | 41                                                             |                                                 |                                               |
| JUN              |                                 |                                                 |                                                   | 7.6 2                          |                                      | 1.9 53                                                  | 20                                                     | 4                                                              |                                                 | <0.1                                          |
| 11<br>JUL        |                                 | 110 27                                          |                                                   | 2.3                            | 3 2                                  | 2.5 66                                                  | 21                                                     | 44                                                             |                                                 | 0.2                                           |
| 15               |                                 | 50 13                                           |                                                   | .3                             | 9.7                                  | 1.6 33                                                  | 12                                                     | 24                                                             |                                                 | <0.1                                          |
| 12               |                                 | 82 21                                           |                                                   | 7.2 1                          | 7 7                                  | 2.3 54                                                  | 16                                                     | 30                                                             | )                                               | 0.1                                           |
| DATE             | SILI<br>DIS<br>SOL<br>(MG<br>AS | VED TUEN                                        | OF NIT<br>TI- GI<br>TS, NITI<br>S- TO<br>VED (MO  | EN, GRITE NO2                  | EN, GI<br>+NO3 AMMO<br>TAL TO        | TRO- GEN<br>EN, MONI<br>ONIA ORGA<br>TAL TOI<br>G/L (MO | TRO- ,AM- IA + NITR ANIC GEN TAL TOTA G/L (MG/ N) AS N | , PHOF<br>L TOT<br>L (MC                                       | RUS, OR<br>TAL T<br>G/L (                       | RBON,<br>GANIC<br>OTAL<br>MG/L<br>S C)        |
| OCT 1986<br>09   |                                 |                                                 | 200 0                                             | 405 0                          | 75 0                                 | ~ ^                                                     | 00 7.7                                                 |                                                                | 200                                             | 7.0                                           |
| JAN 1987         |                                 | 8                                               | 200 0                                             | .125 2                         | .35 0                                | .24 0                                                   | .92 3.3                                                | 0.3                                                            | 390                                             | 3.9                                           |
| 21<br>MAR        | 1                               | 6                                               | 290 0                                             | .018 1                         | .32 0                                | .43 0                                                   | .80 2.1                                                | 0.2                                                            | 282                                             | 3.9                                           |
| 30               | 1                               | 5                                               | 160 0                                             | .056 1                         | .11 0                                | .23 0                                                   | .81 1.9                                                | 0.3                                                            | 299                                             | 3.3                                           |
| JUN<br>11        | 1                               | 8                                               | 180 0                                             | 142 1                          | .96 <0                               | .05 0                                                   | .90 2.9                                                | 0.3                                                            | 536                                             |                                               |
| JUL<br>15        | 1                               | 1                                               | 95 0                                              | .052 0                         | .770 0                               | .15 1                                                   | .3 2.0                                                 | 0.2                                                            | 280                                             | 9.7                                           |
| AUG<br>12        |                                 | 4                                               |                                                   | 0.5                            |                                      |                                                         |                                                        |                                                                |                                                 |                                               |
| 12               |                                 | 7                                               | 140 0                                             | 1001                           | .44 0                                | .11 1                                                   | .0 2.4                                                 | 0.4                                                            | 240                                             | 6.0                                           |

PASSAIC RIVER BASIN

# 01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| 2.<br>2.<br>1. | DATE     | TIME        | SULFI<br>TOTA<br>(MG/<br>AS \$                  | IDE I                                           | LUM-<br>IUM,<br>) IS-<br>DLVED<br>JG/L<br>S AL) | ARSE<br>TOT<br>(UG<br>AS                              | AL         | BER<br>LIU<br>TOT<br>REC<br>ERA<br>(UG<br>AS | M,<br>AL<br>OV-<br>BLE<br>/L | BORG<br>TOTA<br>RECO<br>ERAB<br>(UG)<br>AS | NL TOTON                                   | OV-                                   | CHRO-<br>MIUM,<br>TOTAL<br>RECOVERABLI<br>(UG/L<br>AS CR | ERA<br>(UG               | AL<br>OV-<br>BLE |
|----------------|----------|-------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|------------|----------------------------------------------|------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------|------------------|
| JUN<br>11      | 1987     | 1030        | <(                                              | 0.5                                             | 10                                              |                                                       | <1         | <1                                           | 0                            |                                            | 40                                         | <1                                    | 10                                                       | )                        | 6                |
| Te. in         | DATE     | T<br>R<br>E | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOVERABLI<br>(UG/L<br>AS PB | NE<br>TC<br>RE<br>EF                            | NGA-<br>SE,<br>OTAL<br>COV-<br>RABLE<br>JG/L<br>S MN) | REC<br>ER/ | CURY<br>TAL<br>COV-<br>ABLE<br>G/L<br>HG)    | REC<br>ER/                   | (EL,<br>TAL<br>COV-<br>ABLE<br>G/L<br>NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZIN<br>TOT<br>REC<br>ERA<br>(UG<br>AS | AĹ<br>OV-<br>BLE PI<br>/L                                | HENOLS<br>FOTAL<br>JG/L) |                  |
|                | JUN 1987 |             | 780                                             |                                                 |                                                 | 90                                                    | <          | 0.10                                         |                              | 1                                          | <1                                         |                                       | 10                                                       | 2                        |                  |

## 01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ

LOCATION.--Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on New Road, 0.3 mi southwest of overpass of Interstate 280, 0.4 mi upstream of Rockaway River, and 1.4 mi southwest of Pine Brook.

DRAINAGE AREA.--68.5 mi<sup>2</sup>.

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                              | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | DUC<br>AND                                      | FIC<br>N-<br>CT- (<br>CE                           | PH<br>STAND-<br>ARD<br>INITS) | TEMPER<br>ATURE<br>WATER<br>(DEG C | R SC                                                | YGEN,<br>DIS-<br>DLVED<br>MG/L)                             | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COL<br>FORI<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL, STREP-<br>TOCOCCI<br>TH FECAL            |
|----------------|-----------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------|------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------------------------------------|
| OCT_1986       | 4122                              |                                                 |                                                 | 2.4                                                | 2.2                           | 2.2.2                              |                                                     |                                                             |                                                                | 12.2                                                           |                                        |                                                    |
| 27<br>FEB 1987 | 1030                              | E62                                             |                                                 | 349                                                | 7.3                           | 11.5                               | 5                                                   | 6.7                                                         | 62                                                             | 7.0                                                            | 1700                                   | 1700                                               |
| 03             | 1030                              | E111                                            |                                                 | 776                                                | 7.5                           | 2.0                                | ) 1                                                 | 11.4                                                        | 84                                                             | 4.2                                                            | >2400                                  | 540                                                |
| APR 14         | 1030                              | E151                                            |                                                 | 287                                                | 7.3                           | 10.5                               | 5                                                   | 8.5                                                         | 76                                                             | 3.6                                                            | 240                                    | 70                                                 |
| JUN<br>30      | 1030                              | E49                                             |                                                 | 410                                                | 7.6                           | 24.0                               | 0                                                   | 4.8                                                         | 57                                                             | 9.9                                                            | 790                                    | 2400                                               |
| JUL<br>22      | 1030                              | E52                                             |                                                 | 378                                                | 7.2                           | 26.0                               | 0                                                   | 4.7                                                         | 58                                                             | 6.3                                                            | 460                                    | 230                                                |
| 01             | 1030                              | E75                                             |                                                 | 323                                                | 7.4                           | 19.5                               |                                                     | 6.5                                                         | 71                                                             | 5.4                                                            | 9200                                   | 3500                                               |
| DATE           | HARI<br>NES:<br>(MG,<br>AS<br>CAC | S D1<br>/L S0<br>(N                             | CIUM<br>IS-<br>DLVED<br>IG/L<br>S CA)           | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L            | DIS<br>D SOLV                 | UM,<br>ED                          | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO                  | Y SULFA<br>DIS<br>L SOL'<br>(MG                                | ATE RI<br>- DI<br>VED SO<br>/L (M                              | LO-<br>DE,<br>S-<br>DLVED<br>IG/L      | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986<br>27 |                                   | 110 2                                           | 28                                              | 9.5                                                | 25                            |                                    | 3.7                                                 | 70                                                          | 2                                                              | 6 4                                                            | 1                                      | <0.1                                               |
| FEB 1987<br>03 |                                   | 120 3                                           | 34                                              | 9.4                                                | 96                            |                                    | 2.5                                                 | 69                                                          | 2                                                              | 8 18                                                           | 20                                     | <0.1                                               |
| APR            |                                   |                                                 | 21                                              |                                                    |                               |                                    |                                                     |                                                             | 10.3                                                           |                                                                |                                        | 1333                                               |
| 14<br>JUN      |                                   |                                                 |                                                 | 7.2                                                |                               |                                    | 1.9                                                 | 55                                                          |                                                                |                                                                | 0                                      | 0.1                                                |
| 30<br>JUL      |                                   | 130 3                                           | 32                                              | 11                                                 | 30                            | 1                                  | 3.1                                                 | 84                                                          | 2                                                              | 9 5                                                            | 2                                      | 0.1                                                |
| 22<br>SEP      |                                   | 120 3                                           | 50                                              | 10                                                 | 26                            | 1                                  | 3.6                                                 | 80                                                          | 2                                                              | 8 4                                                            | 0                                      | 0.2                                                |
| 01             | 3                                 | 100 2                                           | 27                                              | 8.9                                                | 21                            |                                    | 2.6                                                 | 69                                                          | 2                                                              | 8 3                                                            | 3                                      | 0.1                                                |
| DATE           | SILII<br>DIS<br>SOL<br>(MG,<br>AS | CA, SUN<br>- CON<br>VED TUE<br>/L C             | IDS,<br>4 OF<br>ISTI-<br>ENTS,<br>DIS-<br>DLVED | NITRO<br>GEN,<br>NITRII<br>TOTAL<br>(MG/L<br>AS N) | GE NO2+                       | NO3 AN                             | NITRO-<br>GEN,<br>MMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITR<br>GEN, AI<br>MONIA<br>ORGAN<br>TOTAI<br>(MG/I<br>AS N | M-<br>+ NITI<br>IC GEI<br>L TOTA<br>L (MG                      | N, PHO<br>AL TO<br>/L (M                                       |                                        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT_1986       | 4.                                | ,                                               | 100                                             |                                                    | ,                             | -                                  |                                                     |                                                             |                                                                |                                                                | 400                                    |                                                    |
| 27<br>FEB_1987 | 1:                                |                                                 | 190                                             | 0.11                                               |                               | 77                                 | 0.75                                                | 2.1                                                         |                                                                |                                                                | 600                                    | 8.7                                                |
| 03<br>APR      | 1:                                | 3                                               | 400                                             | 0.03                                               | 7 1.                          | 07                                 | 1.45                                                | 2.0                                                         | 3.                                                             | 1 0.                                                           | 405                                    | 8.0                                                |
| 14<br>JUN      | 1                                 | 1                                               | 140                                             | 0.03                                               | 9 0.                          | 860                                | 0.64                                                | 1.2                                                         | 2.                                                             | 0 0.                                                           | 328                                    | 4.9                                                |
| 30             | 1                                 | 5                                               | 220                                             | 0.02                                               | 23 2.                         | 58                                 | 1.12                                                | 1.3                                                         | 3.                                                             | 9 0.                                                           | 560                                    | 6.1                                                |
| JUL<br>22      | 1                                 | 5                                               | 200                                             | 0.22                                               | 20 2.                         | 44                                 | 0.62                                                | 1.8                                                         | 4.:                                                            | 2 0.                                                           | 520                                    | 11                                                 |
| SEP<br>01      |                                   |                                                 |                                                 |                                                    |                               |                                    |                                                     |                                                             |                                                                |                                                                |                                        |                                                    |

#### 01381900 PASSAIC RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'45", long 74°19'18", Morris County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on U.S. Route 46, 0.5 mi east of Pine Brook, and 1.3 mi downstream from Rockaway River.

DRAINAGE AREA.--349 mi .

PRRIDO OF RECORD.--Occasional low-flow measurements, water years 1963-69, 1973, and annual maximum, water years 1966-75, 1978-79. October 1979 to current year. Feb. 19 to Aug. 24, 1939 in files of U.S. Army Corps of Engineers, New York District.

REVISED RECORDS.--WOR NJ-77-1: 1967(M).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 149.26 ft above National Geodetic Vertical Datum of 1929. December 1965 to September 1979, crest-stage gage at same site at datum 10.00 ft higher. Feb. 19 to Aug. 24, 1939, water-stage recorder at present NJ Route 506 bridge, 1,600 ft upstream from gage, operated by U.S. Army Corps of Engineers, New York District at datum 13.05 ft higher.

REMARKS.--Records fair except those above 1,000 ft 's's, and periods of estimated daily discharges, which are poor. Flow regulated by Boonton and Splitrock Reservoirs (see Passaic River basin, reservoirs in) and many small lakes. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE.--8 years, 609 ft 's, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,000 ft 's, Apr. 7, 1984, gage height, 22.90 ft, affected by backwater; minimum observed, 70 ft 's, Sept. 29, 1980, gage height, 10.15 ft.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,000 ft 's, Apr. 7, 1984, gage height, 22.90 ft, affected by backwater; minimum observed, 70 ft 's, Sept. 29, 1980, gage height, 10.15 ft.

EXTREMES FOR PERIOD OF RECORD.--Maximum stage since at least 1810, according to State Geologist's report for 1904, 23.2 ft, Oct. 10, 1903, present datum, from King Survey of highwater marks at present NJ Route 506 bridge, 1,600 ft upstream from gage. Floods of Ma

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s and maximum (\*):

| Date                         | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)        | Date             | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|------------------------------|----------------------|-----------------------------------|-------------------------|------------------|--------------|-----------------------------------|---------------------|
| Nov. 23<br>Nov. 28<br>Dec. 4 | 0800<br>1500<br>2215 | 2,030<br>2,530<br>2,540           | 17.91<br>18.47<br>18.48 | Mar. 4<br>Apr. 7 | 0015<br>0730 | 2,060<br>*4,290                   | 17.95<br>*19.99     |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 114 ft<sup>3</sup>/s, Aug. 25, 26.

|                                  |                                        |                                      |                                              |                                              |                                 | MEAN VAL                               | UES                                  |                                        |                                 |                                        |                                        |                                 |
|----------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | ОСТ                                    | NOV                                  | DEC                                          | JAN                                          | FEB                             | MAR                                    | APR                                  | MAY                                    | JUN                             | JUL                                    | AUG                                    | SEP                             |
| 1                                | 153                                    | 143                                  | 1930                                         | 1130                                         | e527                            | 703                                    | 1320                                 | 671                                    | 236                             | 180                                    | 191                                    | 255                             |
| 2                                | 142                                    | 143                                  | 1660                                         | 1110                                         | e531                            | 1430                                   | 1610                                 | 554                                    | 243                             | 253                                    | 168                                    | 214                             |
| 3                                | 150                                    | 144                                  | 1900                                         | 1260                                         | 543                             | 1940                                   | 1520                                 | 494                                    | 277                             | 411                                    | 172                                    | 174                             |
| 4                                | 292                                    | 142                                  | 2400                                         | 1310                                         | 702                             | 2040                                   | 1720                                 | 649                                    | 300                             | 459                                    | 186                                    | 156                             |
| 5                                | 244                                    | 151                                  | 2510                                         | 1270                                         | 770                             | 1890                                   | 2960                                 | 842                                    | 474                             | 329                                    | 182                                    | 146                             |
| 6<br>7<br>8<br>9                 | 187<br>156<br>143<br>140<br>138        | 331<br>319<br>341<br>492<br>408      | 2310<br>2030<br>1730<br>1500<br>1440         | 1150<br>995<br>808<br>663<br>580             | 733<br>682<br>652<br>658<br>657 | 1670<br>1480<br>1380<br>1330<br>1260   | 3980<br>4250<br>3950<br>3410<br>2860 | 919<br>854<br>715<br>579<br>489        | 491<br>350<br>246<br>216<br>195 | 230<br>189<br>307<br>519<br>552        | 514<br>570<br>469<br>342<br>641        | 140<br>185<br>429<br>591<br>673 |
| 11                               | 129                                    | 367                                  | 1440                                         | 688                                          | 573                             | 1180                                   | 2360                                 | 423                                    | 179                             | 396                                    | 710                                    | 658                             |
| 12                               | 122                                    | 588                                  | 1400                                         | 755                                          | 513                             | 1060                                   | 1930                                 | 386                                    | 169                             | 299                                    | 624                                    | 467                             |
| 13                               | 121                                    | 554                                  | 1320                                         | 714                                          | e551                            | 945                                    | 1590                                 | 350                                    | 171                             | 432                                    | 439                                    | 512                             |
| 14                               | 187                                    | 449                                  | 1190                                         | 637                                          | e516                            | 838                                    | 1300                                 | 314                                    | 168                             | 479                                    | 307                                    | 907                             |
| 15                               | 213                                    | 355                                  | 1000                                         | 603                                          | e483                            | 740                                    | 1050                                 | 314                                    | 160                             | 878                                    | 239                                    | 1290                            |
| 16                               | 167                                    | 288                                  | 775                                          | 641                                          | e442                            | 658                                    | 903                                  | 336                                    | 158                             | 920                                    | 200                                    | 1460                            |
| 17                               | 151                                    | 255                                  | 627                                          | 644                                          | e409                            | 588                                    | 829                                  | 309                                    | 150                             | 816                                    | 174                                    | 1400                            |
| 18                               | 142                                    | 232                                  | 649                                          | 598                                          | e381                            | 527                                    | 959                                  | 277                                    | 142                             | 646                                    | 162                                    | 1340                            |
| 19                               | 128                                    | 451                                  | 1090                                         | 775                                          | e367                            | 481                                    | 1030                                 | 344                                    | 140                             | 458                                    | 151                                    | 1310                            |
| 20                               | 126                                    | 627                                  | 1330                                         | 953                                          | e342                            | 444                                    | 993                                  | 367                                    | 137                             | 470                                    | 142                                    | 1180                            |
| 21                               | 125                                    | 1150                                 | 1400                                         | 982                                          | e319                            | 415                                    | 882                                  | 357                                    | 148                             | 403                                    | 136                                    | 962                             |
| 22                               | 124                                    | 1740                                 | 1320                                         | e920                                         | 278                             | 391                                    | 736                                  | 332                                    | 191                             | 324                                    | 127                                    | 735                             |
| 23                               | 122                                    | 2010                                 | 1190                                         | e803                                         | 308                             | 373                                    | 616                                  | 305                                    | 306                             | 255                                    | 120                                    | 551                             |
| 24                               | 125                                    | 1900                                 | 1020                                         | e736                                         | 369                             | 360                                    | 561                                  | 282                                    | 319                             | 218                                    | 115                                    | 433                             |
| 25                               | 120                                    | 1680                                 | 1200                                         | e674                                         | 367                             | 350                                    | 808                                  | 247                                    | 299                             | 239                                    | 114                                    | 372                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 158<br>257<br>204<br>178<br>163<br>152 | 1540<br>2080<br>2500<br>2440<br>2210 | 1610<br>1900<br>1830<br>1640<br>1440<br>1290 | e631<br>e603<br>e570<br>e523<br>e489<br>e502 | 343<br>339<br>335               | 347<br>334<br>352<br>390<br>360<br>768 | 1030<br>1050<br>966<br>903<br>796    | 228<br>245<br>280<br>284<br>271<br>252 | 265<br>305<br>340<br>261<br>200 | 322<br>430<br>441<br>364<br>263<br>223 | 114<br>223<br>441<br>484<br>349<br>236 | 344<br>310<br>284<br>264<br>258 |
| TOTAL                            | 4959                                   | 26030                                | 46071                                        | 24717                                        | 13690                           | 27024                                  | 48872                                | 13269                                  | 7236                            | 12705                                  | 9042                                   | 18000                           |
| MEAN                             | 160                                    | 868                                  | 1486                                         | 797                                          | 489                             | 872                                    | 1629                                 | 428                                    | 241                             | 410                                    | 292                                    | 600                             |
| MAX                              | 292                                    | 2500                                 | 2510                                         | 1310                                         | 770                             | 2040                                   | 4250                                 | 919                                    | 491                             | 920                                    | 710                                    | 1460                            |
| MIN                              | 120                                    | 142                                  | 627                                          | 489                                          | 278                             | 334                                    | 561                                  | 228                                    | 137                             | 180                                    | 114                                    | 140                             |

TOTAL 241503 TOTAL 251615 MAX 3690 MAX 4250 WTR YR 1987 **MEAN 689** 

e Estimated

## 01382000 PASSAIC RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'40", long 74°16'23", Passaic County, Hydrologic Unit 02030103, at bridge on Two Bridges Road in Two Bridges, 50 ft upstream from Pompton River.

DRAINAGE AREA . - - 361 mi 2 .

PERIOD OF RECORD. -- Water years 1962 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: June 1969 to September 1974. pH: June 1969 to September 1974. WATER TEMPERATURES: October 1962 to September 1974. DISSOLVED OXYGEN: June 1969 to September 1974.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME         | STRE<br>FLO<br>INST<br>TANE<br>(CI | AM- CO<br>AN- DO<br>OUS AI                   | PE-<br>IFIC<br>DN-<br>JCT-<br>NCE<br>S/CM) | PH<br>(STAND-<br>ARD<br>UNITS) | TEMPER<br>ATURE<br>WATER<br>(DEG ( | E                                                   | YGEN,<br>DIS-<br>DLVED<br>MG/L)           |                                       | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL<br>EC<br>BROTH<br>(MPN) | , STREP-<br>TOCOCCI<br>FECAL<br>(MPN)         |
|----------------------------|--------------|------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|-----------------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| OCT 1986<br>30             | 1100         | E194                               |                                              | 524                                        | 7.3                            | 13.0                               | 0                                                   | 4.1                                       | 39                                    | 5.7                                                            | >350                                            | 11                                            |
| FEB 1987                   | 1300         | E73                                | 2                                            | 614                                        | 7.5                            | 1.0                                | )                                                   | 12.5                                      | 88                                    | 2.0                                                            | >2400                                           | 1600                                          |
| APR 22                     | 1300         | E954                               |                                              | 290                                        | 7.4                            | 18.5                               | 5                                                   | 9.1                                       | 97                                    | 4.2                                                            | 2200                                            | 80                                            |
| JUN<br>09<br>22<br>JUL     | 1100<br>1030 | E26                                |                                              | 408<br>624                                 | 7.3<br>7.4                     | 21.5                               |                                                     | 2.9                                       | 33<br>28                              | 4.6<br>5.3                                                     | 80                                              | 490                                           |
| 14                         | 1010         | E606                               | 5                                            | 327                                        | 7.2                            | 26.                                | 5                                                   | 1.9                                       | 24                                    | 8.7                                                            | 490                                             | 130                                           |
| AUG<br>11<br>SEP           | 0915         | E918                               | 3                                            | 260                                        | 7.0                            | 22.0                               | )                                                   | 4.2                                       | 49                                    | 4.5                                                            | 3500                                            | 2200                                          |
| 03<br>22                   | 1045<br>0910 | E208                               |                                              | 388<br>275                                 | 7.4<br>6.9                     | 20.0<br>17.5                       |                                                     | 3.0<br>4.9                                | 33<br>52                              | 3.9<br>3.0                                                     | ::                                              | ::                                            |
| DATE                       | (M           | G/L                                | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | MAGN<br>SIL<br>DIS<br>SOLV<br>(MG/<br>AS N | JM, SODI<br>S- DIS<br>/ED SOLV | UM,<br>S-<br>/ED S                 | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALK/<br>LINIT<br>LAI<br>(MG/<br>AS<br>CAC | TY SULFA<br>B DIS-<br>/L SOLV<br>(MG/ | TE RI                                                          | DE, R<br>S-<br>LVED S<br>G/L (                  | LUO-<br>IDE,<br>DIS-<br>OLVED<br>MG/L<br>S F) |
| OCT 1986<br>30<br>FEB 1987 |              | 130                                | 32                                           | 11                                         | 48                             | 3                                  | 6.4                                                 | 88                                        | 40                                    | 7                                                              | 1                                               | 0.2                                           |
| 11<br>APR                  |              | 110                                | 28                                           | 8.                                         | .8 74                          |                                    | 2.2                                                 | 61                                        | 27                                    | 15                                                             | 0                                               | 0.1                                           |
| 22<br>JUN                  |              | 75                                 | 19                                           | 6.                                         | .7 23                          | 3                                  | 2.7                                                 | 51                                        | 22                                    | 2 4                                                            | 0                                               | 0.1                                           |
| 09<br>22<br>JUL            |              | 110<br>140                         | 27<br>36                                     | 13                                         |                                | 3                                  | 3.9<br>6.2                                          | 68<br>93                                  | 31<br>43                              |                                                                | 6                                               | 0.1                                           |
| 14                         |              | 75                                 | 19                                           | 6.                                         | .6 30                          | )                                  | 3.2                                                 | 49                                        | 26                                    | 5 4                                                            | 9                                               | 0.5                                           |
| AUG<br>11                  |              | 63                                 | 16                                           | 5.                                         | .6 22                          | 2                                  | 2.4                                                 | 42                                        | 19                                    | 3                                                              | 2                                               | 0.1                                           |
| 03<br>22                   |              | 110<br>62                          | 27<br>17                                     |                                            | .4 32<br>.8 18                 |                                    | 3.8                                                 | 65<br>44                                  | 33<br>17                              | 3 4                                                            | 5                                               | 0.1<br>0.1                                    |

PASSAIC RIVER BASIN

# 01382000 PASSAIC RIVER AT TWO BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                |            | DATI                                                           | DI<br>SO<br>(M                                                      | ICA, S<br>S- C<br>LVED T<br>IG/L<br>S                         | OLIDS,<br>UM OF<br>ONSTI-<br>UENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO<br>GEN,<br>NITRIT<br>DIS-<br>SOLVE<br>(MG/L<br>AS N) | NITR<br>GEN<br>NO2+N<br>D TOTA<br>(MG/                | 1, NO2-<br>103 DI<br>1L SOI<br>1L (MC                               | +NÖ3<br>IS- AM<br>LVED T<br>G/L (                            | ITRO-<br>GEN,<br>MONÍA<br>OTAL<br>MG/L<br>S N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>IC<br>L                                                        |
|----------------|------------|----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|
|                |            | OCT 198                                                        |                                                                     | 14                                                            | 280                                                             | 0.165                                                | -                                                          | . 2.7                                                 | 9                                                                   |                                                              | 2.60                                           | EU LYXI                                                       | 4.1                                                      |                                                                      |
|                |            | FEB 198                                                        | STEWN                                                               | 12                                                            | 340                                                             | 0.020                                                |                                                            | . 1.1                                                 | 0                                                                   | V. 145                                                       | 1.20                                           |                                                               | 2.1                                                      |                                                                      |
|                |            | APR 22                                                         |                                                                     | 9.5                                                           | 150                                                             | 0.061                                                |                                                            | - 0.8                                                 | 90                                                                  |                                                              | 0.70                                           |                                                               | 1.5                                                      |                                                                      |
|                |            | JUN<br>09<br>22                                                |                                                                     | 16<br>17                                                      | 220<br>330                                                      | 0.180<br>0.230                                       | 0.18                                                       | 0 2.0                                                 |                                                                     | .90<br>.00                                                   | 1.40                                           | 1.40<br>3.10                                                  | 2.0                                                      |                                                                      |
|                |            | JUL<br>14                                                      |                                                                     | 11                                                            | 180                                                             | 0.190                                                | 0.19                                                       | 0 1.9                                                 | 0 1                                                                 | .90                                                          | 0.64                                           | 0.60                                                          | 1.4                                                      |                                                                      |
|                |            | AUG<br>11                                                      |                                                                     | 10                                                            | 130                                                             | 0.100                                                | 0.10                                                       | 0 1.4                                                 | 0 1                                                                 | .40                                                          | 0.35                                           | 0.35                                                          | 1.3                                                      |                                                                      |
|                |            | 03<br>22                                                       |                                                                     | 13<br>8.7                                                     | 210<br>130                                                      | 0.170<br>0.040                                       |                                                            |                                                       | 70 2                                                                | .50<br>.78                                                   | 0.94<br>0.16                                   | 0.94                                                          | 2.1<br>0.70                                              | A . T                                                                |
|                |            | DAT                                                            | GEN<br>MON<br>ORG<br>DI<br>E (N                                     | TRO-<br>I,AM-<br>IIA +<br>GANIC<br>IS.<br>IG/L<br>G N)        | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                       | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)          | PHOS-<br>PHORUS<br>DIS-<br>SOLVE<br>(MG/L<br>AS P)         | D TOTAL                                               | S- PHO<br>JS, OR<br>HO, DI<br>AL SOL<br>/L (MG                      | S- OF<br>VED 1                                               | RBON,<br>RGANIC<br>TOTAL<br>MG/L               | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C)        | CARBO<br>ORGAN<br>SUS-<br>PENDE<br>TOTA<br>(MG/<br>AS C  | IIČ<br>ED<br>AL<br>'L                                                |
|                |            | OCT 198                                                        | 6                                                                   |                                                               |                                                                 |                                                      |                                                            |                                                       |                                                                     |                                                              |                                                |                                                               |                                                          |                                                                      |
|                |            | 30<br>FEB 198                                                  |                                                                     |                                                               | 6.9                                                             | 1.06                                                 |                                                            | •                                                     |                                                                     |                                                              | 7.7                                            | 17                                                            |                                                          | 4.0                                                                  |
|                |            | APR                                                            |                                                                     |                                                               | 3.2                                                             | 0.250                                                |                                                            |                                                       | **                                                                  |                                                              | 7.3                                            | 32.                                                           |                                                          |                                                                      |
|                |            | 22                                                             |                                                                     |                                                               | 2.4                                                             | 0.420                                                |                                                            | •                                                     | ****                                                                |                                                              | 7.7                                            |                                                               | 11                                                       | Nat-                                                                 |
|                |            | 09<br>22                                                       |                                                                     | 2.1<br>3.2                                                    | 6.9                                                             | 0.700<br>1.10                                        | 0.46                                                       |                                                       |                                                                     | .370<br>.790                                                 | ::                                             | 4.8<br>7.2                                                    |                                                          | .1                                                                   |
|                |            | JUL<br>14                                                      |                                                                     | 1.6                                                           | 3.3                                                             | 0.510                                                | 0.38                                                       | 30 0.                                                 | 370 0                                                               | .340                                                         |                                                | 8.4                                                           | 0                                                        | .8                                                                   |
|                |            | AUG<br>11                                                      |                                                                     | 1.3                                                           | 2.7                                                             | 0.360                                                | 0.3                                                        | 50 0.                                                 | 310 0                                                               | .300                                                         |                                                | 8.0                                                           | 1                                                        | .7                                                                   |
|                |            | SEP<br>03<br>22                                                |                                                                     | 2.2                                                           | 4.8                                                             | 0.550                                                |                                                            | 10 0.                                                 | 490 0                                                               | 0.460<br>0.050                                               |                                                | 6.3                                                           | 0                                                        | .8                                                                   |
|                |            |                                                                |                                                                     |                                                               |                                                                 | 0.120                                                | 0.0                                                        |                                                       | 0,0                                                                 |                                                              |                                                | 4.2                                                           |                                                          |                                                                      |
| DATE           | TIME       |                                                                | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON<br>INOR<br>GANIC<br>TOT IN<br>BOT M/<br>(G/KC<br>AS C) | I NOI<br>C, ORGA<br>TOT<br>AT BOT<br>G (G,                      | ANIC IN<br>. IN D<br>MAT SO<br>/KG (L                | JG/L                                                       |                                                       | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL<br>LIUM,<br>TOTAL<br>RECOV<br>ERABLI<br>(UG/L<br>AS BE | BOF<br>TOT<br>REC<br>E ER/                     | TAL TO<br>COV- RE<br>ABLE ER<br>G/L (U                        | MIUM<br>TAL                                              | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
| OCT 1986<br>30 | 1100       | 200                                                            | 280                                                                 | 0.2                                                           | 2 :                                                             | 3.2                                                  | V.                                                         |                                                       | 1                                                                   |                                                              |                                                |                                                               |                                                          | <1                                                                   |
| JUN 1987<br>22 | 1030       | <0.5                                                           |                                                                     | . 3                                                           |                                                                 |                                                      | <10                                                        | 2                                                     | 74                                                                  | <10                                                          |                                                | 160                                                           | <1                                                       |                                                                      |
|                | DATE       | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | COBALTRECON FM BOTTOM MTERIA (UG/O                            | T- TO'<br>A- REG<br>AL ERA<br>G (U                              | PER, RETAL FM COV- TON ABLE TE                       | BOT-                                                       | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV<br>ERABLI<br>(UG/L<br>AS PB          | FM E<br>TOM<br>TEF<br>(UC                      | COV. NE<br>BOT- TO<br>MA- RE<br>RIAL ER<br>G/G (U             |                                                          | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|                | T 1986     |                                                                | 8                                                                   | 10                                                            |                                                                 |                                                      | 10                                                         |                                                       | 5900                                                                |                                                              | 1                                              | 20                                                            |                                                          | 100                                                                  |
| JUI            | 1987<br>22 |                                                                |                                                                     | 10                                                            |                                                                 |                                                      |                                                            | 450                                                   |                                                                     |                                                              | ALC:                                           |                                                               | 170                                                      |                                                                      |
| •              |            | 20                                                             | ••                                                                  |                                                               |                                                                 | 8                                                    | **                                                         | 650                                                   | **                                                                  | 1!                                                           | - HALL                                         | ••                                                            | 170                                                      | ••                                                                   |

# 01382000 PASSAIC RIVER AT TWO BRIDGES, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)             | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)       | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)      | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)  | PHENOLS<br>TOTAL<br>(UG/L)                               | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
|----------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986       |                                                                     |                                                                      |                                                                     |                                                                      |                                                  |                                                                   |                                                            |                                                                     |                                                          |                                                                     |                                                                      |
| 30<br>JUN 1987 | ••                                                                  | 0.10                                                                 |                                                                     | 10                                                                   |                                                  | <1                                                                | ••                                                         | 80                                                                  |                                                          | 2                                                                   | <1.0                                                                 |
| 22             | <0.10                                                               | •••                                                                  | 6                                                                   |                                                                      | <1                                               | ••                                                                | 10                                                         |                                                                     | 3                                                        |                                                                     | ••                                                                   |
| DATE           | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                       | TOM MA-                                                              | TOM MA-                                          | TOM MA-<br>TERIAL                                                 | IN BOT-<br>TOM MA-<br>TERIAL                               | IN BOT-<br>TOM MA-<br>TERIAL                                        | IN BOT-<br>TOM MA-<br>TERIAL                             | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                               | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986       |                                                                     |                                                                      |                                                                     |                                                                      |                                                  |                                                                   |                                                            |                                                                     |                                                          |                                                                     |                                                                      |
| 30<br>JUN 1987 | <0.1                                                                | 11                                                                   | 3.3                                                                 | 2.1                                                                  | <0.1                                             | 0.2                                                               | 0.5                                                        | <0.1                                                                | <0.1                                                     | <0.1                                                                | <0.1                                                                 |
| 22             | ••                                                                  |                                                                      | ••                                                                  |                                                                      | ••                                               |                                                                   | ••                                                         | ••                                                                  |                                                          |                                                                     |                                                                      |
| DATE           | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)     | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
| OCT 1986       |                                                                     |                                                                      |                                                                     |                                                                      |                                                  |                                                                   |                                                            |                                                                     |                                                          |                                                                     |                                                                      |
| 30<br>JUN 1987 | 0.2                                                                 | 0.1                                                                  | 0.1                                                                 | <0.1                                                                 | <0.1                                             | <0.1                                                              | <0.1                                                       | <0.1                                                                | <1.00                                                    | <10                                                                 | <0.1                                                                 |
| 22             | ••                                                                  |                                                                      |                                                                     |                                                                      |                                                  |                                                                   |                                                            |                                                                     |                                                          |                                                                     |                                                                      |

#### 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ

LOCATION.--Lat 41°01'00", long 74°23'47", Morris County, Hydrologic Unit 02030103, on left bank at Macopin intake dam of Newark water-works, 0.4 mi downstream from Macopin River, and 3.0 mi northwest of Butler.

DRAINAGE AREA ... 63.7 mi 2.

PERIOD OF RECORD.--January 1898 to current year. Monthly discharge only for some periods, published in WSP 1302.

Records for January 1892 to December 1897, published in WSP 541, have been found to be unreliable and should not be used.

GAGE.--Water-stage recorder above hewn-rock dam. Datum of gage is 570.00 ft above National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey). Prior to May 22, 1970, at datum 13.55 ft higher.

REMARKS.--No estimated daily discharges. Records good above 10 ft<sup>3</sup>/s, and poor below. Records given herein represent flow over intake dam only. Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg Reservoirs, and Echo Lake (see Passaic River basin, reservoirs in). Water diverted at Charlotteburg Reservoir for municipal supply of city of Newark (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with the Department of Public Affairs, Division of Water Supply, city of Newark. Prior to May 22, 1970, discharge figures furnished by city of Newark.

AVERAGE DISCHARGE. -- 89 years, 50.7 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 6,100 ft<sup>3</sup>/s, Oct. 10, 1903, gage height, 17.4 ft, present datum; no flow over dam during several months of most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,570  $\rm ft^3/s$ , Apr. 5, gage height, 15.16 ft; minimum, 0.50  $\rm ft^3/s$ , Oct. 6, Aug. 23, 24, 25, 26.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

| DAY                              | OCT                                    | NOV                             | DEC                              | JAN                               | FEB                             | MAR                              | APR                              | MAY                                    | JUN                             | JUL                                    | AUG                             | SEP                             |
|----------------------------------|----------------------------------------|---------------------------------|----------------------------------|-----------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|
| 1<br>2<br>3<br>4<br>5            | 2.1<br>1.8<br>3.2<br>3.3<br>.98        | 1.9<br>2.0<br>2.0<br>2.1<br>2.9 | 21<br>25<br>104<br>53<br>40      | 17<br>22<br>19<br>17<br>15        | 26<br>24<br>23<br>18<br>16      | 29<br>32<br>24<br>21<br>20       | 41<br>28<br>25<br>171<br>408     | 48<br>38<br>31<br>72<br>104            | 2.6<br>2.9<br>3.4<br>4.3<br>5.5 | .88<br>1.1<br>2.3<br>1.0<br>1.9        | .81<br>.55<br>2.1<br>3.0<br>7.6 | 1.2<br>.93<br>1.1<br>1.4<br>1.6 |
| 6<br>7<br>8<br>9                 | .59<br>.53<br>.54<br>.54               | 9.6<br>4.3<br>8.0<br>8.4<br>4.9 | 32<br>26<br>23<br>26<br>30       | 14<br>14<br>12<br>9.9<br>9.9      | 13<br>12<br>12<br>14<br>14      | 20<br>27<br>37<br>36<br>29       | 1000<br>726<br>533<br>389<br>293 | 104<br>80<br>50<br>32<br>22            | 2.3<br>2.2<br>2.0<br>2.5<br>2.0 | 1.7<br>.55<br>7.4<br>3.8<br>2.2        | 22<br>5.4<br>2.4<br>3.7<br>9.4  | 2.4<br>13<br>34<br>43<br>16     |
| 11<br>12<br>13<br>14<br>15       | .55<br>.55<br>.55<br>1.1<br>.75        | 7.5<br>10<br>6.0<br>1.9<br>1.5  | 24<br>23<br>19<br>15<br>15       | 13<br>11<br>9.9<br>8.8<br>14      | 12<br>12<br>13<br>17<br>20      | 24<br>23<br>22<br>20<br>19       | 254<br>219<br>214<br>207<br>164  | 17<br>17<br>14<br>14                   | 1.4<br>1.6<br>2.0<br>2.3<br>.86 | 1.7<br>1.6<br>1.6<br>11<br>8.7         | 3.6<br>2.4<br>2.4<br>2.4<br>1.8 | 11<br>7.0<br>114<br>109<br>49   |
| 16<br>17<br>18<br>19<br>20       | .55<br>.55<br>.79<br>.99               | 1.6<br>1.5<br>1.7<br>5.4        | 14<br>14<br>26<br>41<br>30       | 17<br>13<br>13<br>18<br>18        | 24<br>13<br>10<br>10<br>9.8     | 18<br>17<br>17<br>16<br>16       | 101<br>115<br>171<br>134<br>96   | 11<br>9.9<br>9.4<br>12<br>9.9          | .88<br>.55<br>.55<br>.58        | 1.6<br>1.6<br>1.2<br>1.0               | 1.6<br>1.4<br>.63<br>.60        | 30<br>29<br>30<br>29<br>25      |
| 21<br>22<br>23<br>24<br>25       | 1.6<br>2.2<br>2.5<br>1.2<br>1.6        | 115<br>49<br>37<br>35<br>29     | 25<br>20<br>20<br>18<br>75       | 16<br>16<br>26<br>43<br>136       | 9.8<br>9.8<br>9.9<br>9.5<br>9.8 | 15<br>15<br>14<br>14<br>15       | 76<br>62<br>46<br>101<br>293     | 9.4<br>9.0<br>9.2<br>7.9<br>7.9        | 1.8<br>1.1<br>1.1<br>.72<br>.60 | 1.2<br>.60<br>.97<br>.99               | .55<br>.59<br>.52<br>.51        | 20<br>17<br>16<br>15<br>14      |
| 26<br>27<br>28<br>29<br>30<br>31 | 2.9<br>4.7<br>3.2<br>2.4<br>2.6<br>1.8 | 50<br>55<br>37<br>30<br>25      | 43<br>35<br>29<br>25<br>23<br>20 | 120<br>81<br>71<br>55<br>35<br>33 | 9.6<br>9.7<br>9.5               | 13<br>12<br>14<br>14<br>14<br>71 | 203<br>131<br>106<br>105<br>80   | 7.9<br>6.5<br>5.4<br>3.6<br>2.4<br>2.4 | 1.8<br>.88<br>.55<br>.71        | 1.3<br>.74<br>.75<br>1.1<br>1.2<br>.99 | 1.3<br>5.0<br>6.6<br>1.8<br>1.0 | 11<br>12<br>12<br>13<br>16      |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 48.70<br>1.57<br>4.7<br>.53            | 557.2<br>18.6<br>115<br>1.5     | 934<br>30.1<br>104<br>14         | 917.5<br>29.6<br>136<br>8.8       | 388.4<br>13.9<br>26<br>9.5      | 678<br>21.9<br>71<br>12          | 6492<br>216<br>1000<br>25        | 780.8<br>25.2<br>104<br>2.4            | 50.95<br>1.70<br>5.5<br>.55     | 64.97<br>2.10<br>11<br>.55             | 93.21<br>3.01<br>22<br>.50      | 693.63<br>23.1<br>114<br>.93    |

CAL YR 1986 TOTAL 16878.79 MEAN 46.2 MAX 976 MIN .53 WTR YR 1987 TOTAL 11699.26 MEAN 32.1 MAX 1000 MIN .50

### 01383500 WANAQUE RIVER AT AWOSTING, NJ

LOCATION.--Lat 41°09'31", long 74°20'00", Passaic County, Hydrologic Unit 02030103, on right bank 700 ft downstream from dam at outlet of Greenwood Lake at Awosting.

DRAINAGE AREA . - - 27.1 mi 2.

PERIOD OF RECORD. -- May 1919 to current year. Prior to October 1940, published as "at Greenwood Lake".

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922(M), 1928(M), 1936. WDR NJ-79-1: 1933(M), 1936(M), 1945(M), 1948(P), 1951(P), 1952(P), 1953(M), 1955(P), 1956(M), 1957(M), 1958(M), 1960(P), 1961(M), 1968(P), 1969(P). WDR NJ-80-1: 1960(P).

GAGE.--Water-stage recorder. Concrete control since Oct. 31, 1938. Datum of gage is 601.32 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Apr. 1, 1926, nonrecording gage and Apr. 1, 1926, to Oct. 31, 1938, water-stage recorder at site 100 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records fair. Flow completely regulated by Greenwood Lake (see Passaic River basin, reservoirs in). Water diverted into basin above gage from Upper Greenwood Lake (Hudson River basin) by North Jersey District Water Supply Commission since 1968. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE. -- 68 years, 54.5 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 2,800 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 6.65 ft, from rating curve extended above 750 ft<sup>3</sup>/s based on theoretical weir formula; no flow at times when gates at Greenwood Lake were closed and water below the spillway.

EXTREMES FOR CURRENT YEAR .- - Peak discharges greater than base discharge of 200 ft3/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Dec. 4 | 0115 | 209                               | 3.02             | Apr. 5  | 0515 | *1,020                            | *4.62               |
| Apr. 1 | 0915 | 239                               | 3.15             | Sep. 14 | 0515 | 995                               | 4.58                |

Minimum discharge, 3.1 ft3/s Nov. 19, 20, June 12.

|                                  |                              | DISCHARGE,                      | IN CUBIC                               | FEET PER                         | SECOND,                    | WATER YEAR                        | R OCTOBER                       | 1986 TO                          | SEPTEMBE                        | R 1987                                 |                                        |                                 |
|----------------------------------|------------------------------|---------------------------------|----------------------------------------|----------------------------------|----------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | ОСТ                          | NOV                             | DEC                                    | JAN                              | FEB                        | MAR                               | APR                             | MAY                              | JUN                             | JUL                                    | AUG                                    | SEP                             |
| 1<br>2<br>3<br>4<br>5            | 18<br>18<br>18<br>18         | 5.4<br>5.8<br>6.1<br>5.9<br>6.0 | 122<br>112<br>189<br>199<br>179        | 84<br>105<br>106<br>94<br>78     | 32<br>30<br>30<br>30<br>30 | 51<br>93<br>110<br>112<br>106     | 228<br>206<br>178<br>476<br>969 | 69<br>61<br>61<br>75<br>79       | 11<br>11<br>11<br>10<br>13      | 24<br>24<br>24<br>24<br>24             | 7.3<br>7.3<br>7.1<br>7.0<br>7.3        | 7.0<br>7.0<br>7.0<br>7.0<br>7.0 |
| 6<br>7<br>8<br>9<br>10           | 19<br>19<br>19<br>19         | 5.5<br>5.1<br>5.3<br>5.6<br>5.6 | 154<br>136<br>126<br>122<br>125        | 64<br>56<br>50<br>44<br>43       | 30<br>31<br>32<br>42<br>41 | 98<br>99<br>125<br>166<br>171     | 790<br>642<br>462<br>329<br>245 | 79<br>76<br>69<br>61<br>57       | 9.0<br>5.9<br>5.5<br>5.8<br>5.5 | 24<br>24<br>24<br>24<br>24<br>24       | 7.3<br>7.3<br>7.3<br>7.3<br>7.3        | 7.0<br>7.0<br>6.8<br>6.9<br>7.6 |
| 11<br>12<br>13<br>14<br>15       | 19<br>19<br>19<br>19         | 5.7<br>5.6<br>5.3<br>5.1<br>5.1 | 119<br>115<br>103<br>80<br>70          | 46<br>35<br>40<br>34<br>40       | 39<br>39<br>41<br>38<br>36 | 154<br>135<br>120<br>106<br>94    | 188<br>153<br>136<br>112<br>96  | 51<br>50<br>42<br>36<br>37       | 3.4<br>9.6<br>25<br>24          | 24<br>24<br>21<br>17                   | 7.3<br>7.2<br>7.0<br>7.0               | 7.6<br>8.0<br>267<br>929<br>625 |
| 16<br>17<br>18<br>19<br>20       | 19<br>19<br>19<br>19         | 5.0<br>4.2<br>3.5<br>3.2<br>3.3 | 64<br>58<br>64<br>107<br>99            | 51<br>54<br>62<br>75<br>82       | 34<br>32<br>31<br>29<br>28 | 83<br>74<br>66<br>60<br>55        | 82<br>77<br>76<br>70<br>65      | 33<br>29<br>29<br>32<br>29       | 24<br>24<br>24<br>24<br>24      | 17<br>14<br>7.6<br>7.6<br>7.6          | 7.0<br>7.0<br>7.0<br>7.0               | 391<br>279<br>226<br>203<br>167 |
| 21<br>22<br>23<br>24<br>25       | 19<br>19<br>19<br>19         | 34<br>84<br>97<br>102<br>94     | 92<br>80<br>72<br>67<br>119            | 72<br>73<br>83<br>69<br>58       | 27<br>28<br>33<br>33<br>29 | 54<br>55<br>53<br>50<br>47        | 59<br>56<br>48<br>62<br>94      | 26<br>24<br>24<br>24<br>21       | 24<br>24<br>24<br>24<br>24      | 7.6<br>7.3<br>7.3<br>7.3<br>6.8        | 7.0<br>7.0<br>7.0<br>7.0<br>7.0        | 136<br>116<br>101<br>86<br>79   |
| 26<br>27<br>28<br>29<br>30<br>31 | 19<br>19<br>12<br>5.4<br>5.4 | 102<br>158<br>157<br>149<br>135 | 144<br>138<br>127<br>117<br>110<br>102 | 51<br>44<br>39<br>35<br>34<br>37 | 29<br>28<br>27<br>         | 46<br>44<br>45<br>44<br>43<br>122 | 94<br>86<br>87<br>84<br>80      | 18<br>16<br>15<br>17<br>15<br>13 | 24<br>24<br>24<br>24<br>24      | 7.1<br>7.3<br>7.3<br>7.3<br>7.3<br>7.3 | 7.0<br>7.0<br>7.0<br>7.1<br>7.0<br>7.0 | 65<br>57<br>50<br>44<br>47      |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 537.2<br>17.3<br>19<br>5.4   | 1214.3<br>40.5<br>158<br>3.2    | 3511<br>113<br>199<br>58               | 1838<br>59.3<br>106<br>34        | 909<br>32.5<br>42<br>27    | 2681<br>86.5<br>171<br>43         | 6330<br>211<br>969<br>48        | 1268<br>40.9<br>79<br>13         | 533.7<br>17.8<br>25<br>3.4      | 476.7<br>15.4<br>24<br>6.8             | 220.1<br>7.10<br>7.3<br>7.0            | 3953.9<br>132<br>929<br>6.8     |

CAL YR 1986 TOTAL 21613.0 MEAN 59.2 MAX 379 MIN 3.2 WTR YR 1987 TOTAL 23472.8 MEAN 64.3 MAX 969 MIN 3.2

Date

#### PASSAIC RIVER BASIN

#### 01384500 RINGWOOD CREEK NEAR WANAQUE, NJ

LOCATION.--Lat 41°07'36", long 74°15'52", Passaic County, Hydrologic Unit 02030103, on right bank 500 ft upstream from Wanaque Reservoir, 0.7 mi downstream from Ringwood Mill Pond dam, and 6.5 mi north of Wanaque.

DRAINAGE AREA. -- 19.1 mi 2.

Time

PERIOD OF RECORD.--October 1934 to September 1978, October 1985 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WDR NJ-82-1: 1935-77(P).

Discharge (ft<sup>3</sup>/s)

GAGE.--Water-stage recorder and concrete control. Datum of gage is 292.67 ft above National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey). Prior to Sept. 30, 1978, at datum 10.0 ft higher.

REMARKS.--Records fair except for periods of estimated daily discharges, which are poor. Records given herein include flow over spillway and through ports in dam when open or through waste gate in dam. No flow through ports or waste gates this year. Flow slightly regulated by Ringwood Mill Pond, Sterling, and Sterling Forest Lakes, and several smaller lakes above station.

COOPERATION ... - Gage-height record collected in cooperation with North Jersey Water Supply Commission.

AVERAGE DISCHARGE.--46 years (water years 1935-78, 1986-87) 33.5 ft3/s, 23.89 in./yr, unadjusted.

Gage Height

(ft)

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,150 ft<sup>3</sup>/s, Mar. 30, 1951, gage height, 13.74 ft, present datum, from floodmark; no flow part of day in most years just after waste gate was closed and water was below ports.

Date

Time

Discharge (ft<sup>3</sup>/s)

Gage Height

(ft)

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 230 ft3/s and maximum (\*):

| Nov. 21                                    | 0245                                     |                                              | 264                                       |                                          | 11.86                                   |                                           | Apr. 4                                   | 1600                                       |                                          | 749                               |                                           | *13.22                                       |
|--------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------------|
| Minimum                                    | discha                                   | rge, 0.48                                    | ft <sup>3</sup> /s, A                     | ug. 23, 2                                | 4, 25, gag                              | e height                                  | 10.06 ft                                 |                                            |                                          |                                   | A late Ange                               | 1                                            |
|                                            |                                          | DISCHAR                                      | RGE, IN CL                                | BIC FEET                                 | PER SECON                               | D, WATER                                  | YEAR OCT                                 | OBER 1986                                  | TO SEPTE                                 | 4BER 1987                         | Portspil                                  |                                              |
| DAY                                        | OCT                                      | NOV                                          | DEC                                       | JAN                                      | FEB                                     | MAR                                       | APR                                      | MAY                                        | JUN                                      | JUL                               | AUG                                       | SEP                                          |
| 1 2 3 4 5                                  | 2.4<br>2.5<br>3.4<br>12<br>7.4           | 2.8<br>2.7<br>2.9<br>2.8<br>3.1              | 56<br>58<br>166<br>114<br>89              | 45<br>59<br>53<br>44<br>38               | 23<br>23<br>25<br>26<br>23              | 33<br>90<br>88<br>83<br>77                | 175<br>130<br>110<br>424<br>419          | 39<br>36<br>36<br>57<br>51                 | 7.7<br>6.7<br>5.7<br>6.7                 | 2.8<br>2.9<br>5.3<br>4.7<br>3.7   | 1.5<br>1.5<br>1.8<br>1.7<br>4.1           | 4.4<br>4.0<br>3.3<br>2.6<br>2.2              |
| 6<br>7<br>8<br>9                           | 4.7<br>3.7<br>3.2<br>3.2<br>2.8          | 11<br>8.5<br>12<br>14<br>9.7                 | 74<br>65<br>57<br>59<br>68                | 33<br>32<br>30<br>28<br>26               | 22<br>22<br>22<br>23<br>21              | 73<br>74<br>97<br>115<br>114              | 307<br>255<br>207<br>166<br>136          | 48<br>42<br>37<br>33<br>31                 | 7.7<br>6.0<br>5.9<br>5.1<br>4.3          | 3.2<br>2.9<br>4.8<br>5.8<br>4.1   | 12<br>6.7<br>4.0<br>3.1<br>7.0            | 2.1<br>15<br>58<br>71<br>28                  |
| 11<br>12<br>13<br>14<br>15                 | 2.7<br>2.6<br>2.9<br>4.3<br>4.5          | 17<br>22<br>14<br>11<br>9.2                  | 57<br>53<br>46<br>38<br>35                | 29<br>27<br>25<br>24<br>27               | 21<br>20<br>20<br>31<br>25              | 102<br>91<br>82<br>75<br>69               | 113<br>97<br>90<br>73<br>62              | 27<br>25<br>22<br>20<br>22                 | 4.0<br>4.9<br>6.5<br>4.5                 | 4.6<br>9.4<br>15<br>23<br>26      | 5.0<br>3.3<br>2.6<br>2.2<br>1.9           | 17<br>16<br>90<br>164<br>105                 |
| 16<br>17<br>18<br>19<br>20                 | 3.8<br>3.3<br>2.9<br>2.8<br>2.1          | 8.9<br>8.5<br>8.3<br>17<br>20                | 34<br>33<br>47<br>99<br>74                | 34<br>28<br>28<br>34<br>34               | 28<br>26<br>22<br>20<br>20              | 62<br>56<br>50<br>45<br>40                | 53<br>63<br>72<br>61<br>55               | e23<br>e20<br>e19<br>e21<br>17             | 4.1<br>3.3<br>3.2<br>3.0<br>2.6          | 11<br>8.0<br>5.8<br>4.8<br>4.4    | 1.6<br>1.4<br>1.2<br>.90<br>.75           | 80<br>75<br>72<br>71<br>58                   |
| 21<br>22<br>23<br>24<br>25                 | 3.0<br>2.5<br>2.5<br>2.7<br>2.6          | 208<br>103<br>63<br>52<br>42                 | 62<br>54<br>49<br>46<br>141               | 33<br>30<br>32<br>42<br>48               | 19<br>19<br>20<br>20<br>20              | 36<br>35<br>35<br>32<br>30                | 48<br>43<br>38<br>54<br>78               | 16<br>15<br>14<br>13                       | 2.9<br>2.5<br>2.6<br>2.7<br>2.8          | 4.1<br>3.8<br>3.5<br>2.9<br>2.6   | .60<br>.61<br>.49<br>.52                  | 49<br>41<br>38<br>35<br>35                   |
| 26<br>27<br>28<br>29<br>30<br>31           | 3.5<br>5.2<br>4.2<br>3.6<br>3.2<br>2.7   | 74<br>133<br>96<br>79<br>66                  | 100<br>82<br>71<br>63<br>57<br>51         | 33<br>22<br>33<br>36<br>29<br>26         | 19<br>19<br>19                          | 28<br>27<br>27<br>27<br>26<br>146         | 59<br>51<br>53<br>51<br>45               | 11<br>11<br>11<br>9.9<br>8.9<br>8.5        | 2.5<br>3.6<br>3.8<br>3.5<br>3.3          | 2.5<br>2.3<br>2.2<br>1.8<br>1.5   | .63<br>2.5<br>8.4<br>16<br>8.7<br>4.8     | 28<br>24<br>21<br>19<br>21                   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 112.9<br>3.64<br>12<br>2.1<br>.19<br>.22 | 1121.4<br>37.4<br>208<br>2.7<br>1.96<br>2.18 | 2098<br>67.7<br>166<br>33<br>3.54<br>4.09 | 1042<br>33.6<br>59<br>22<br>1.76<br>2.03 | 618<br>22.1<br>31<br>19<br>1.16<br>1.20 | 1965<br>63.4<br>146<br>26<br>3.32<br>3.83 | 3588<br>120<br>424<br>38<br>6.26<br>6.99 | 756.3<br>24.4<br>57<br>8.5<br>1.28<br>1.47 | 136.1<br>4.54<br>10<br>2.5<br>.24<br>.27 | 180.9<br>5.84<br>26<br>1.5<br>.31 | 108.06<br>3.49<br>16<br>.49<br>.18<br>.21 | 1249.6<br>41.7<br>164<br>2.1<br>2.18<br>2.43 |

CAL YR 1986 TOTAL 12224.00 MEAN 33.5 MAX 213 MIN 1.2 CFSM 1.75 IN. 23.80 WTR YR 1987 TOTAL 12976.19 MEAN 35.6 MAX 424 MIN .49 CFSM 1.86 IN. 25.27

e Estimated

#### 01387000 WANAQUE RIVER AT WANAQUE, NJ

LOCATION.--Lat 41°02'33", long 74°17'36", Passaic County, Hydrologic Unit 02030103, on left bank 750 ft downstream from Raymond Dam in Wanaque, and 50 ft upstream from bridge on State Highway 511.

DRAINAGE AREA. -- 90.4 mi<sup>2</sup>, considered as 94 mi<sup>2</sup> Oct. 1, 1928 to Sept. 30, 1934.

#### WATER DISCHARGE RECORDS

PERIOD OF RECORD.--December 1903 to December 1905 (gage heights only), September 1912 to April 1915, May 1919 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 210.00 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Dec. 16, 1903, to Dec. 31, 1905, nonrecording gage on highway bridge at site 50 ft downstream at different datum. Sept. 15, 1912, to Apr. 1, 1922, nonrecording gage at site 200 ft downstream from present concrete control at different datum. Apr. 1, 1922 to Mar. 14, 1931, water-stage recorder at site 400 ft downstream from present concrete control at present datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Greenwood Lake (see Passaic River basin, reservoirs in) 11 mi above station, and since 1928 by Wanaque Reservoir (see Passaic River basin, reservoirs in). North Jersey Water Supply Commission diverts water for municipal supply from Wanaque Reservoir. Water is diverted to Wanaque Reservoir from Posts Brook at Wanaque and from Ramapo River at Pompton Lakes (see Passaic River basin, diversions). Water diverted into basin above gage from Upper Greenwood Lake (Hudson River basin) by North Jersey District Water Supply Commission since 1968. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE. -- 70 years, (water years 1913, 1914, 1920-87), 78.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,500 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 10.82 ft, from rating curve extended above 5,000 ft<sup>3</sup>/s; minimum daily, 0.06 ft<sup>3</sup>/s, Oct. 11, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,040 ft<sup>3</sup>/s, Apr. 4, gage height, 7.49 ft; minimum daily, 17 ft<sup>3</sup>/s, many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC SEP JAN **FEB** MAR APR MAY JUN JUL AUG 23 22 22 22 22 21 25 21 20 158 18 17 17 17 20 19 1470 18 20 20 20 19 73 79 71 17 23 23 23 22 45 42 45 20 20 17 212 87 22 19 18 20 21 22 22 22 21 22 19 87 20 20 19 20 20 21 21 24 61 91 19 19 18 18 18 25 85 17 20 21 19 20 20 147 134 197 29 ... 20.3 23 TOTAL 19.3 21.6 25 19 99.4 213 19.7 26 17 17.9 MEAN 18.4 30.3 18.5 56.0 18.0 MAX MIN 

CAL YR 1986 TOTAL 26802 MEAN 73.4 MAX 817 MIN 17 WTR YR 1987 TOTAL 24516 MEAN 67.2 MAX 2530 MIN 17

## 01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1963 to September 1980.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                           | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS | N- DU<br>DUS AN                                                     | FIC<br>N-<br>CT- (<br>CE                           | PH<br>STAND-<br>ARD<br>NITS)   | TEMPI<br>ATUI<br>WATI<br>(DEG | RE<br>ER S                                          | (YGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYG<br>DI<br>SOL<br>(PE<br>CE<br>SATI | S- DEI<br>VED B:<br>R- CI<br>NT I(<br>UR- 5   | IO-<br>HEM-<br>CAL,                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------|--------------------------------|-----------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------|-------------------------------|-----------------------------------------------------|------------------------------------|----------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT 1986       |                                |                                         |                                                                     | Transfer of                                        |                                | 15 14                         | 240                                                 | -                                  |                                        |                                               |                                            | 300                                              | 100                                 |
| 29<br>FEB 1987 | 1130                           | E19                                     |                                                                     | 140                                                | 6.9                            |                               | .5                                                  | 3.2                                |                                        | - V Y                                         | 1.6                                        | 17                                               | 17                                  |
| 12<br>APR      | 1130                           | 17                                      |                                                                     | 127                                                | 7.4                            | 2                             | .0                                                  | 12.5                               |                                        | 92                                            | 1.5                                        | ••                                               | CD - 3000 -                         |
| 27<br>JUN      | 1100                           | 147                                     |                                                                     | 111                                                | 7.5                            | 11                            | .5                                                  | 9.5                                |                                        | 87                                            | 1.2                                        |                                                  |                                     |
| 17             | 1045                           | 22                                      |                                                                     | 149                                                | 7.6                            | 21                            | .0                                                  | 8.8                                |                                        | 99                                            | 2.4                                        | 33                                               | 49                                  |
| JUL<br>29      | 1030                           | 17                                      |                                                                     | 121                                                | 7.4                            | 21                            | .0                                                  | 8.4                                |                                        | 95                                            | 1.5                                        | 2                                                | 170                                 |
| SEP 08         | 1030                           | 17                                      |                                                                     | 125                                                | 7.4                            | 19                            | .0                                                  | 8.7                                |                                        | 94                                            | 0.9                                        | 130                                              | 350                                 |
| DATE           | HAR<br>NES<br>(MG<br>AS<br>CAC | SS<br>S/L                               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | , SODI<br>DIS<br>D SOLV<br>(MG | ED                            | POTAS:<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K) | LINI<br>LA<br>(MG                  | TY<br>B<br>/L                          | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | DIS-<br>SOLVE<br>(MG/L                     | RIC<br>DI<br>D SOL<br>(MC                        | DE ,<br>(S -<br>.VED<br>G/L         |
| OCT 1986<br>29 |                                | 37                                      | 10                                                                  | 3.0                                                |                                | .4                            | 1.0                                                 |                                    | 31                                     | 5.4                                           | 13                                         | 0.                                               | 1                                   |
| FEB 1987       |                                | 381                                     |                                                                     | 100                                                |                                |                               |                                                     |                                    |                                        |                                               |                                            | 1171                                             | 1                                   |
| 12<br>APR_     |                                | 37                                      | 10                                                                  | 3.0                                                |                                |                               | 0.6                                                 |                                    | 24                                     | 14                                            | 18                                         | 0.                                               |                                     |
| 27<br>JUN      |                                | 31                                      | 8.2                                                                 | 2.6                                                | 8                              | 3.8                           | 0.6                                                 | Carrier I                          | 19                                     | 12                                            | 18                                         | <0.                                              |                                     |
| 17             |                                | 33                                      | 8.8                                                                 | 2.7                                                | 5                              | 2.2                           | 0.8                                                 | 2                                  | 20                                     | 11                                            | 18                                         | <0.                                              | 1 100                               |
| 29<br>SEP      |                                | 33                                      | 8.8                                                                 | 2.7                                                | 9                              | 2.3                           | 0.7                                                 | 2                                  | 20                                     | 11                                            | 12                                         | 0.                                               | .1                                  |
| 08             |                                | 35                                      | 9.4                                                                 | 2.7                                                | 9                              | 0.0                           | 0.8                                                 |                                    | 21                                     | 13                                            | 18                                         | 0.                                               | .1                                  |
| DATE           | (MC                            | ICA,<br>S-<br>LVED<br>G/L               | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | E NO24                         | TAL<br>G/L                    | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N)  | MON ORGA                           | ANIC<br>TAL                            | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/I<br>AS P) | ORG/                                             | ANIC                                |
| OCT 1986       |                                | 2 435                                   | 52                                                                  |                                                    |                                |                               | 112                                                 |                                    |                                        |                                               |                                            |                                                  | 1.5                                 |
| 29<br>FEB 1987 |                                | 7.2                                     | 68                                                                  | 0.01                                               |                                |                               | 0.57                                                | 0.9                                |                                        |                                               | 0.080                                      | 3.                                               |                                     |
| 12<br>APR      |                                | 3.7                                     | 75                                                                  | 0.00                                               | 2 0.                           | .19                           | 0.03                                                | 0.9                                | 90                                     | 1.1                                           | <0.010                                     | 2.4                                              | •                                   |
| 27<br>JUN      |                                | 3.2                                     | 65                                                                  | 0.00                                               | 7 0.                           | .08                           | 0.11                                                | 0.2                                | 29                                     | 0.37                                          | <0.020                                     | 2.4                                              |                                     |
| 17<br>JUL      |                                | 1.7                                     | 64                                                                  | 0.00                                               | 8 <0.                          | .05                           | <0.05                                               | 0.4                                | 9                                      | 19                                            | 0.012                                      | 3.0                                              | )                                   |
| 29             |                                | 2.1                                     | 59                                                                  | <0.00                                              | 3 0.                           | .07                           | 0.05                                                | 0.5                                | 53                                     | 0.60                                          | <0.020                                     | 3.2                                              | 2                                   |
| SEP<br>08      |                                | 2.4                                     | 68                                                                  | 0.00                                               | 4 0.                           | .08                           | 0.08                                                | 0.6                                | 51                                     | 0.69                                          | <0.020                                     | 3.3                                              | 3                                   |

# 01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE               | TIME                 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)     | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|--------------------|----------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 19             | 86                   |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
| 29<br>29<br>JUN 19 | . 1130<br>. 1130     | <0.5                                                                | 130                                                                 | 6.0                                                                  | 9.9                                                                   | 10                                                                   |                                                                    | 3                                                                   | <10                                                                 | 30                                                                 | <1<br>                                                              | <1                                                                   |
| 17                 | . 1045               | <0.5                                                                |                                                                     |                                                                      |                                                                       | 10                                                                   | <1                                                                 | ••                                                                  | <10                                                                 | 20                                                                 | <1                                                                  | ••                                                                   |
|                    | DATE                 |                                                                     | MIUM,<br>RECOV.                                                     | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL                                                      | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) |                                                                    | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  |                                                                     | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) |                                                                     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|                    | OCT 1986             |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     | _                                                                   |                                                                    | 0400                                                                |                                                                      |
|                    | 29                   | <10                                                                 | 9                                                                   | 10                                                                   |                                                                       | 20                                                                   | 2200                                                               | 8000                                                                | <5                                                                  | 130                                                                | 2600                                                                | 390                                                                  |
|                    | JUN 1987             |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
|                    | 17                   | 30                                                                  | ••                                                                  | ••                                                                   | 3                                                                     | •••                                                                  | 20                                                                 | ••                                                                  | <5                                                                  | ••                                                                 | 40                                                                  | ••                                                                   |
|                    | DATE                 | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                               | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                        | (UG/G                                                                 | SELE-<br>NIUM,<br>TOTAL<br>(UG/L                                     | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |                                                                     | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)  | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | TOM MA-<br>TERIAL                                                    |
|                    | OCT 1986             |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
|                    | 29<br>29<br>JUN 1987 | <0.10                                                               |                                                                     |                                                                      | 10                                                                    |                                                                      | <1                                                                 |                                                                     | 100                                                                 | <1                                                                 | 40                                                                  | <1.0                                                                 |
|                    | 17                   | <0.10                                                               | ••                                                                  | 3                                                                    |                                                                       | <1                                                                   | ••                                                                 | <10                                                                 | ••                                                                  | 2                                                                  | ••                                                                  |                                                                      |
|                    | DATE                 | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | TOM MA-<br>TERIAL                                                   | TOM MA-<br>TERIAL                                                    | TOM MA-<br>TERIAL                                                     | TOM MA-<br>TERIAL                                                    | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TOM MA-<br>TERIAL                                                   | TOM MA-<br>TERIAL                                                   | TOM MA-<br>TERIAL                                                  | TOM MA-<br>TERIAL                                                   | TOM MA-<br>TERIAL                                                    |
|                    | OCT 1986             |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
|                    | 29<br>29             | 1.9                                                                 | <1.0                                                                | <0.1                                                                 | 2.5                                                                   | 0.4                                                                  | <0.1                                                               | <0.1                                                                | 4.6                                                                 | <0.1                                                               | <0.1                                                                | 0.2                                                                  |
|                    | JUN 1987             |                                                                     | 11.0                                                                |                                                                      | 2.5                                                                   | 0.4                                                                  | 10.1                                                               | 10.1                                                                | 4.0                                                                 | ٠٠.١                                                               | ١٠.١                                                                | 0.2                                                                  |
|                    | 17                   | •••                                                                 |                                                                     | •••                                                                  | ••                                                                    | ••                                                                   | ••                                                                 | ••                                                                  | ••                                                                  | ••                                                                 |                                                                     | ••                                                                   |
|                    | DATE                 | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
|                    | OCT 1986             |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                     |                                                                    |                                                                     |                                                                      |
|                    | 29<br>29<br>JUN_1987 | <0.1                                                                | <0.1                                                                | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                | <1.00                                                              | <10                                                                 | <0.1                                                                 |
|                    | 17                   | - 15                                                                | ••                                                                  |                                                                      |                                                                       |                                                                      | ••                                                                 |                                                                     |                                                                     | ••                                                                 |                                                                     |                                                                      |

### 01387420 RAMAPO RIVER AT SUFFERN, NY

LOCATION.--Lat 41°07'06", long 74°09'38", Rockland County, Hydrologic Unit 02030103, on left bank, 145 ft downstream from highway bridge on New York State Thruway at Suffern, and 1.1 mi upstream from Mahwah River.

DRAINAGE AREA .-- 93.0 mi2.

PERIOD OF RECORD .-- June 1979 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 264.44 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Flow affected by diversion from Spring Valley Water Company well field upstream from station and by occasional regulation by Lake Sebago. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE.--8 years, 173 ft3/s, unadjusted.

COOPERATION .-- Figures of pumpage from well field provided by Spring Valley Water Company.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,300 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 15.38 ft, from rating curve extended above 5,400 ft<sup>3</sup>/s; minimum discharge, 2.6 ft<sup>3</sup>/s, Sept. 30, 1981, gage height, 1.23 ft.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,100 ft3/s and maximum(\*):

| Date              | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|-------------------|------|-----------------------------------|------------------|--------------------|--------------|-----------------------------------|------------------|
| Nov. 21<br>Apr. 1 | 0430 | 1,620<br>2,150                    | 6.64             | Apr. 5<br>Sept. 14 | 0030<br>0700 | *5,920<br>1,760                   | *11.72<br>6.92   |

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 9.2 ft3/s, Aug. 16, gage height, 1.40 ft.

|          |          |       |       | .,   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ME         | AN VALUES | IBAN OOTOE   | DR 1900  | 10 00110 |          |          |             |
|----------|----------|-------|-------|------|-----------------------------------------|------------|-----------|--------------|----------|----------|----------|----------|-------------|
| DAY      | OCT      | N     | OA    | DEC  | JAN                                     | FEB        | MAR       | APR          | MAY      | JUN      | JUL      | AUG      | SEP         |
| 1        | 20       |       | 22    | 223  | 196                                     | 114        | 222       | 1720         | 154      | 27       | 16       | 13       | 33          |
| 2        | 22       |       | 22    | 210  | 267                                     | 108        | 491       | 818          | 135      | 25       | 17       | 13       | 33<br>28    |
| 3        | 25       |       | 22    | 782  | 264                                     | 118        | 414       | 526          | 128      | 32       | 28       | 18       | 23          |
|          | 67       |       | 22    | 659  | e220                                    | 130<br>123 | 332       | 2800         | 227      | 29       | 22       | 16       | 19          |
| 5        | 57       | е     | 25    | 398  | e200                                    | 123        | 273       | 4250         | 230      | 40       | 18       | 22       | 16          |
| 6        | 38       |       | 40    | 297  | e180                                    | 111        | 248       | 2030         | 217      | 39       | 15       | 47       | 16          |
| 7 8      | 28       |       | 50    | 250  | e160                                    | 110        | 296       | 1480         | 197      | 30       | 16       | 29       | 37          |
|          | 24       |       | 70    | 221  | e150                                    | 110        | 564       | 1010         | 166      | 27       | 24       | 22       | 265         |
| 9        | 22       |       | 10    | 219  | 130                                     | 120        | 798       | 704          | 139      | 23       | 24       | 18       | 431         |
| 10       | 19       | е     | 78    | 248  | 130                                     | 122        | 621       | 509          | 123      | 20       | 19       | 29       | 244         |
| 11       | 18       |       | 80    | 227  | 156                                     | 106        | 409       | 396          | 110      | 18       | 18       | 26       | 152         |
| 12       | 18       | e1    |       | 213  | 142                                     | 102        | 323       | 317          | 97       | 18       | 35       | 20       | 103         |
| 13       | 19       | e1    |       | 192  | 126                                     | 102        | 274       | 295          | 87       | 21       | 94       | 16       | 513         |
| 14       | 28       |       | 90    | 156  | 114                                     | 100        | 240       | 247          | 77       | 23       | 60       | 16       | 1560<br>648 |
| 15       | 28       | е     | 68    | 141  | 143                                     | 89         | 215       | 210          | 78       | 20       | 97       | 15       | 040         |
| 16       | 26       | е     | 60    | 139  | 210                                     | 86         | 199       | 191          | 78       | 18       | 52       | 12       | 289         |
| 17       | 27       |       | 54    | 139  | 198                                     | 86         | 185       | 198          | 69       | 16       | 34       | 11       | 242         |
| 18       | 27       |       | 50    | 181  | 184                                     | 80         | 170       | 238          | 61       | 16       | 27       | 11       | 237         |
| 19       | 25       |       | 86    | 439  | 209                                     | 81         | 160       | 217          | 69       | 16       | 21       |          | 264         |
| 20       | 25       | е     | 88    | 428  | 209                                     | 75         | 154       | 187          | 69       | 16       | 20       | 11       | 228         |
| 21       | 24       |       |       | 312  | 185                                     | 70         | 148       | 163          | 63       | 19       | 22       | 11       | 197         |
| 22       | 20       |       | 00    | 249  | e170                                    | 68         | 160       | 145          | 57       | 39       | 20       | 11       | 166         |
| 23       | 18       |       | 40    | 219  | e200                                    | 78         | 157       | 122          | 56       | 25       | 16       | 11       | 161         |
| 24       | 18       |       | 50    | 202  | e190                                    | 81         | 148       | 163          | 65       | 19       | 15       | 11       | 141         |
| 25       | 18       | 2     | 29    | 602  | e170                                    | 75         | 138       | 298          | 56       | 17       | 15       | 11       | 137         |
| 26       | 24       |       | 20    | 617  | e140                                    | 71         | 133       | 258          | 50       | 15       | 15       | 11       | 107         |
| 27       | 32       |       | 76    | 404  | 137                                     | 69         | 124       | 212          | 45       | 26       | 13       | 25       | 88          |
| 28       | 30       |       | 03    | 314  | 130                                     | 68         | 122       | 204          | 43       | 30       | 12       | 41       | 76          |
| 29       | 27       |       | 41    | 267  | 122                                     |            | 122       | 206          | 40       | 22       | 12       | 55       | 67          |
| 30<br>31 | 25<br>23 |       | 68    | 237  | 123<br>131                              |            | 115       | 185          | 37<br>32 | 17       | 12<br>12 | 51<br>30 | 71          |
| 31       | 23       | 37    |       | 210  | 131                                     |            | 1140      |              | 32       |          |          | 30       |             |
| TOTAL    | 822      |       | 104   | 9401 | 5286                                    | 2653       | 9095      | 20299        | 3055     | 703      | 821      | 644      | 6559        |
| MEAN     | 26.5     |       | 27    | 303  | 171                                     | 94.7       | 293       | 677          | 98.5     | 23.4     | 26.5     | 20.8     | 219         |
| MAX      | 67       |       | 00    | 782  | 267                                     | 130        | 1140      | 4250         | 230      | 40       | 97       | 55       | 1560        |
| MIN      | 18       |       | 22    | 139  | 114                                     | 68         | 115       | 122          | 32       | 15       | 12       | 11       | 16          |
| +        | 0.0      | .8    | 1.4   | 13   | 14                                      | 14         | 15        | 14           | 15       | 7.2      | 4.7      | 2.1      | 9.2         |
| CAL YR   |          | TOTAL | 61706 | MEAN |                                         | IAX 1640   | MIN 12    | <b>+</b> 11  |          |          |          |          |             |
| WTR YR   | 1987     | TOTAL | 66142 | MEAN | N 181 N                                 | IAX 4250   | MIN 11    | <b>#</b> 9.7 |          |          |          |          |             |

e Estimated

<sup>+</sup> Diversion, in cubic feet per second, by pumpage from well field upstream of station.

#### 01387450 MAHWAH RIVER NEAR SUFFERN. NY

LOCATION.--Lat 41°08'27", long 74°07'01", Rockland County, Hydrologic Unit 02030103, on left bank 13 ft upstream from bridge on U.S. Highway 202, 2.5 mi northeast of Suffern, and 4.8 mi upstream from mouth.

DRAINAGE AREA .-- 12.3 mi2.

PERIOD OF RECORD .-- August 1958 to current year.

REVISED RECORDS .-- WDR NY-79-1: 1977.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 321.57 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 18, 1976, water-stage recorder at site on right bank 13 ft downstream, at present datum.

REMARKS.--No estimated daily discharges. Records fair. Occasional regulation from unknown source. Several measurements of water temperature were made during the year. Telephone gage-height telemeter at station.

AVERAGE DISCHARGE .-- 29 years, 24.9 ft3/s, 27.49 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840  $\rm ft^3/s$ , Nov. 8, 1977, gage height, 9.91 ft, from rating curve extended above 850  $\rm ft^3/s$  on basis of contracted-opening measurement at gage height 9.91 ft; minimum discharge, 0.05  $\rm ft^3/s$ , Oct. 20, 21, 1970, result of temporary pumping from gage pool.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (\*):

| Date               | Time         | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date               | Time         | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|--------------------|--------------|--------------------------------|------------------|--------------------|--------------|--------------------------------|------------------|
| Nov. 21<br>Nov. 27 | 0445<br>0030 | 623<br>272                     | 5.34             | Apr. 4             | 1700<br>1315 | *1,070<br>336                  | *6.71<br>4.37    |
| Dec. 3             | 0615         | 239                            | 4.09<br>3.93     | Apr. 6<br>Sept. 13 | 2100         | 303                            | 4.23             |
| Mar. 31            | 1730         | 436                            | 4.75             |                    |              | -                              | - 1              |

Minimum discharge, 1.0 ft3/s, Aug. 26, 27, gage height, 1.30 ft.

REVISIONS.--The minimum daily discharge for water year 1986 has been revised to 3.4 ft<sup>3</sup>/s, Sept. 18, 20; revised daily discharges, in cubic feet per second, for September 1986, are given below. These figures supersede those published in the report for 1986.

| Sept. 5                       | 10<br>7.9<br>5.8<br>4.8<br>4.6 | Sept. | 13<br>14<br>15<br>16<br>17<br>18 | 3.8<br>3.6<br>3.7<br>3.6 | Sept. | 19<br>20<br>21<br>22<br>23<br>24 | 3.4<br>5.0<br>4.3<br>3.7 | 25 | 3.5<br>3.6<br>6.8<br>5.0<br>3.7<br>3.7 |
|-------------------------------|--------------------------------|-------|----------------------------------|--------------------------|-------|----------------------------------|--------------------------|----|----------------------------------------|
|                               | TOTAL                          |       | MEAN                             | MAX                      | MI    | N CFSM                           | IN                       |    |                                        |
| September 1986<br>Wtr Yr 1986 | 151.2<br>8991.3                |       | 5.04<br>24.6                     | 10<br>304                | 3.    | 4 .41 2.00                       | .46<br>27.2              |    |                                        |

90

PASSAIC RIVER BASIN

01387450 MAHWAH RIVER NEAR SUFFERN, NY--Continued

|                                            |                                   | DISCHARG                                     | E, IN CUE                                 | IC FEET                                 |                                         | , WATE                                    | R YEAR OCTO                               | BER 198                                    | 6 TO SEPTEM                              | BER 1987                                 |                                      |                                             |
|--------------------------------------------|-----------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------------|
| DAY                                        | OCT                               | NOV                                          | DEC                                       | JAN                                     | FEB                                     | MAR                                       | APR                                       | MAY                                        | JUN                                      | JUL                                      | AUG                                  | SEP                                         |
| 1<br>2<br>3<br>4<br>5                      | 4.4<br>4.4<br>4.4<br>12<br>4.8    | 3.5<br>3.2<br>3.2<br>3.1<br>3.1              | 33<br>33<br>162<br>87<br>58               | 27<br>58<br>50<br>38<br>32              | 20<br>19<br>21<br>24<br>21              | 73<br>88<br>64<br>52<br>44                | 162<br>79<br>56<br>469<br>378             | 26<br>24<br>24<br>39<br>36                 | 6.3<br>6.4<br>6.6<br>7.1                 | 2.7<br>3.6<br>9.3<br>4.7<br>3.4          | 1.4<br>1.3<br>4.3<br>3.9<br>7.5      | 6.7<br>4.5<br>3.3<br>2.7<br>2.4             |
| 6<br>7<br>8<br>9                           | 3.6<br>3.0<br>2.7<br>2.9<br>2.6   | 9.6<br>5.8<br>13<br>15                       | 46<br>40<br>36<br>37<br>42                | 29<br>28<br>27<br>24<br>24              | 19<br>19<br>20<br>21<br>18              | 40<br>48<br>61<br>65<br>53                | 245<br>175<br>112<br>83<br>67             | 30<br>27<br>24<br>22<br>20                 | 7.4<br>6.5<br>6.4<br>5.9<br>5.3          | 2.7<br>3.7<br>8.2<br>4.8<br>3.3          | 33<br>7.6<br>5.1<br>4.2              | 2.2<br>7.1<br>28<br>62<br>23                |
| 11<br>12<br>13<br>14<br>15                 | 2.5<br>2.4<br>2.6<br>5.9<br>4.5   | 18<br>24<br>17<br>13                         | 35<br>32<br>28<br>24<br>22                | 30<br>27<br>24<br>22<br>28              | 18<br>18<br>17<br>15                    | 42<br>38<br>35<br>31<br>28                | 57<br>49<br>51<br>43<br>38                | 19<br>17<br>16<br>15<br>16                 | 4.8<br>4.9<br>6.0<br>5.7<br>4.6          | 2.7<br>3.8<br>8.1<br>10<br>16            | 5.5<br>3.9<br>3.2<br>2.8<br>2.6      | 15<br>11<br>101<br>126<br>50                |
| 16<br>17<br>18<br>19<br>20                 | 3.3<br>2.9<br>2.6<br>2.6<br>2.7   | 9.7<br>10<br>8.6<br>16                       | 22<br>22<br>33<br>73<br>53                | 35<br>29<br>30<br>39<br>33              | 14<br>14<br>13<br>13                    | 26<br>24<br>22<br>21<br>20                | 34<br>42<br>54<br>41<br>35                | 15<br>14<br>13<br>15<br>13                 | 3.8<br>3.3<br>3.0<br>2.9<br>2.8          | 6.7<br>4.8<br>3.9<br>3.5<br>3.6          | 2.4<br>2.2<br>2.0<br>1.8<br>1.7      | 30<br>27<br>28<br>32<br>27                  |
| 21<br>22<br>23<br>24<br>25                 | 2.6<br>2.7<br>2.9<br>3.1<br>3.0   | 295<br>97<br>53<br>41<br>33                  | 42<br>35<br>31<br>29<br>100               | 29<br>27<br>29<br>25<br>22              | 12<br>13<br>14<br>14<br>13              | 19<br>19<br>18<br>17<br>16                | 32<br>29<br>27<br>40<br>55                | 13<br>12<br>11<br>10<br>9.8                | 7.5<br>5.2<br>4.2<br>3.5<br>3.0          | 4.6<br>3.5<br>2.9<br>2.7<br>2.4          | 1.5<br>1.3<br>1.3<br>1.1             | 23<br>20<br>18<br>17                        |
| 26<br>27<br>28<br>29<br>30<br>31           | 3.7<br>5.9<br>4.2<br>3.5<br>3.9   | 69<br>147<br>72<br>51<br>40                  | 68<br>52<br>43<br>37<br>33<br>30          | 22<br>20<br>19<br>18<br>19<br>22        | 13<br>13<br>13<br>                      | 16<br>15<br>18<br>16<br>16<br>209         | 41<br>35<br>36<br>33<br>30                | 9.4<br>9.3<br>9.2<br>8.7<br>7.7            | 2.7<br>9.1<br>5.5<br>3.7<br>3.0          | 2.2<br>2.1<br>2.0<br>1.9<br>1.7          | 1.1<br>8.9<br>12<br>12<br>6.3<br>4.3 | 14<br>13<br>12<br>11<br>12                  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 116.3<br>3.75<br>12<br>2.4<br>.31 | 1110.8<br>37.0<br>295<br>3.1<br>3.01<br>3.36 | 1418<br>45.7<br>162<br>22<br>3.72<br>4.29 | 886<br>28.6<br>58<br>18<br>2.32<br>2.68 | 457<br>16.3<br>24<br>12<br>1.33<br>1.38 | 1254<br>40.5<br>209<br>15<br>3.29<br>3.79 | 2628<br>87.6<br>469<br>27<br>7.12<br>7.95 | 532.1<br>17.2<br>39<br>7.0<br>1.40<br>1.61 | 158.1<br>5.27<br>11<br>2.7<br>.43<br>.48 | 137.1<br>4.42<br>16<br>1.6<br>.36<br>.41 | 157.3<br>5.07<br>33<br>1.1<br>.41    | 745.9<br>24.9<br>126<br>2.2<br>2.02<br>2.26 |
| CAL YR<br>WTR YR                           |                                   | TOTAL 9120 .                                 |                                           | 25.0<br>26.3                            | MAX 304<br>MAX 469                      |                                           | 2.4 CFSM<br>1.1 CFSM                      | 2.03                                       | IN. 27.6<br>IN. 29.0                     |                                          |                                      |                                             |

#### 01387500 RAMAPO RIVER NEAR MAHWAH, NJ

LOCATION.--Lat 41°05'51", long 74°09'48", Bergen County, Hydrologic Unit 02030103, on left bank 350 ft downstream from State Highway 17, 0.6 mi downstream from Mahwah River, and 1.0 mi west of Mahwah. Water-quality samples collected at bridge, 350 ft upstream from gage, at high flows.

DRAINAGE AREA.--120 mi.<sup>2</sup>

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1902 to December 1906, September 1922 to current year. October 1902 to February 1905 monthly discharge only, published in WSP 1302. Figures of daily discharge Feb. 10, 1903, to Dec. 31, 1904, published in WSP 97, 125, are unreliable and should not be used. Gage-height records for 1903-14 are contained in reports of the National Weather Service.

REVISED RECORDS. --WSP 781: 1904(M). WSP 1031: 1938, 1940. WSP 1552: 1923(M), 1924, 1925-26(M), 1927-28, 1933, 1937. WRD-NJ 1971: 1968(M). WDR NJ-82-1: Drainage area.

GAGE. --Water-discharge recorder. Datum of gage is 253.10 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1906, nonrecording gage on former bridge at site 250 ft downstream at different datum. Sept. 1, 1922 to Dec. 23, 1936, water-stage recorder just below former bridge at present datum.

REMARKS. --No estimated daily discharges. Records fair. Flow affected by diversion from Spring Valley (NY) Water Company well field upstream from station (see station 01387420). Occasional regulation from lakes and ponds upstream from the station. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

Jan. 26...1,500

during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--69 years (water years 1903-06,1923-87), 230 ft<sup>3</sup>/s, 26.03 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,500 ft<sup>3</sup>/s, April 5, 1984, gage height, 13.35 ft, from rating curve extended above 1,400 ft<sup>3</sup>/s; minimum, 4.6 ft<sup>3</sup>/s, Sept. 30, 1981 (possible regulation); minimum daily, 6.1 ft<sup>3</sup>/s, Sept. 30, 1981 (possible regulation).

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,400 ft<sup>3</sup>/s and maximum (\*):

| Date    | Time | Discharge                                           | Gage Height  | Date               | Time         | Discharge                                   | Gage height   |
|---------|------|-----------------------------------------------------|--------------|--------------------|--------------|---------------------------------------------|---------------|
| Nov. 21 | 1145 | Discharge<br>(ft <sup>3</sup> /s)<br>1,960<br>2,600 | (ft)<br>7.08 | Apr. 5             | 0130         | Discharge<br>(ft <sup>3</sup> /s)<br>*6,410 | (ft)<br>*9.96 |
| Apr. 1  | 0130 | 2,600                                               | 7.68         | Apr. 5<br>Sept. 14 | 0130<br>0845 | 1,960                                       | 7.08          |

Minimum discharge, 19 ft<sup>3</sup>/s, Aug. 24, 25, 26.
REVISIONS.--The peak discharge, previously not published, for Jan. 27, 1986, is 2,300 ft<sup>3</sup>/s; revised daily discharges, in cubic feet per second, for periods in January 1986 are given below. These figures supersede those published in the report for 1986.

Jan. 28...1,100

Jan. 27...2,100

| January<br>WTR YR                | 1986<br>1986                     | TOTAL<br>8688<br>86350           | MEAN<br>280<br>237                     | MAX<br>2100<br>2100                    | MIN<br>51<br>28                 | (FT <sup>3</sup> /<br>2<br>1            | (S)/MI <sup>2</sup><br>.34<br>.98  | IN.<br>2.69<br>26.82             |                            |                                  |                                   |                                |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------------|----------------------------------------|---------------------------------|-----------------------------------------|------------------------------------|----------------------------------|----------------------------|----------------------------------|-----------------------------------|--------------------------------|
|                                  |                                  | DISCHARGE                        | , IN CUB                               | IC FEET                                | PER SECOND                      | WATER                                   | YEAR OCTUES                        | TOBER 1986                       | TO SEPTEM                  | IBER 1987                        |                                   |                                |
| DAY                              | OCT                              | NOV                              | DEC                                    | JAN                                    | FEB                             | MAR                                     | APR                                | MAY                              | JUN                        | JUL                              | AUG                               | SEP                            |
| 1                                | 29                               | 28                               | 308                                    | 262                                    | 167                             | 380                                     | 2080                               | 252                              | 51                         | 30                               | 21                                | 51                             |
| 2                                | 31                               | 29                               | 298                                    | 413                                    | 160                             | 689                                     | 999                                | 232                              | 47                         | 41                               | 21                                | 39                             |
| 3                                | 41                               | 28                               | 1030                                   | 405                                    | 178                             | 561                                     | 641                                | 231                              | 54                         | 58                               | 52                                | 32                             |
| 4                                | 113                              | 28                               | 828                                    | 316                                    | 195                             | 468                                     | 3100                               | 347                              | 51                         | 41                               | 30                                | 28                             |
| 5                                | 79                               | 31                               | 532                                    | 265                                    | 179                             | 400                                     | 4900                               | 341                              | 75                         | 33                               | 107                               | 26                             |
| 6<br>7<br>8<br>9                 | 48<br>37<br>32<br>29<br>28       | 81<br>63<br>112<br>148<br>111    | 417<br>355<br>311<br>317<br>363        | 237<br>224<br>217<br>198<br>193        | 160<br>162<br>161<br>173<br>161 | 364<br>409<br>654<br>893<br>722         | 2530<br>1870<br>1290<br>928<br>707 | 316<br>289<br>256<br>227<br>207  | 63<br>50<br>47<br>43<br>39 | 30<br>34<br>68<br>46<br>36       | 205<br>57<br>40<br>35<br>75       | 25<br>65<br>355<br>531<br>315  |
| 11                               | 27                               | 146                              | 323                                    | 231                                    | 152                             | 514                                     | 567                                | 188                              | 36                         | 32                               | 43                                | 193                            |
| 12                               | 27                               | 219                              | 301                                    | 216                                    | 147                             | 432                                     | 476                                | 171                              | 39                         | 41                               | 34                                | 131                            |
| 13                               | 27                               | 160                              | 263                                    | 189                                    | 143                             | 383                                     | 452                                | 153                              | 41                         | 124                              | 29                                | 595                            |
| 14                               | 53                               | 122                              | 218                                    | 174                                    | 132                             | 344                                     | 404                                | 135                              | 42                         | 123                              | 28                                | 1700                           |
| 15                               | 42                               | 98                               | 201                                    | 204                                    | 121                             | 307                                     | 356                                | 138                              | 38                         | 162                              | 28                                | 734                            |
| 16                               | 35                               | 82                               | 198                                    | 287                                    | 131                             | 278                                     | 326                                | 131                              | 35                         | 77                               | 24                                | 368                            |
| 17                               | 36                               | 73                               | 199                                    | 268                                    | 115                             | 255                                     | 344                                | 113                              | 32                         | 51                               | 22                                | 328                            |
| 18                               | 35                               | 66                               | 273                                    | 255                                    | 111                             | 237                                     | 403                                | 106                              | 31                         | 41                               | 22                                | 323                            |
| 19                               | 32                               | 142                              | 592                                    | 303                                    | 109                             | 223                                     | 360                                | 121                              | 31                         | 36                               | 22                                | 346                            |
| 20                               | 30                               | 153                              | 551                                    | 298                                    | 102                             | 214                                     | 317                                | 113                              | 30                         | 35                               | 21                                | 298                            |
| 21                               | 29                               | 1750                             | 422                                    | 259                                    | 100                             | 204                                     | 288                                | 104                              | 61                         | 36                               | 21                                | 255                            |
| 22                               | 27                               | 1000                             | 346                                    | 329                                    | 101                             | 215                                     | 268                                | 97                               | 61                         | 33                               | 21                                | 219                            |
| 23                               | 26                               | 530                              | 300                                    | 431                                    | 114                             | 211                                     | 244                                | 91                               | 44                         | 28                               | 20                                | 207                            |
| 24                               | 25                               | 408                              | 278                                    | 320                                    | 115                             | 199                                     | 303                                | 100                              | 36                         | 26                               | 20                                | 188                            |
| 25                               | 25                               | 342                              | 790                                    | 333                                    | 107                             | 187                                     | 461                                | 89                               | 33                         | 26                               | 20                                | 181                            |
| 26<br>27<br>28<br>29<br>30<br>31 | 40<br>44<br>39<br>35<br>32<br>29 | 498<br>1000<br>650<br>463<br>374 | 753<br>519<br>422<br>367<br>326<br>292 | 218<br>202<br>191<br>159<br>162<br>191 | 104<br>103<br>102               | 179<br>168<br>174<br>170<br>162<br>1390 | 388<br>321<br>316<br>313<br>284    | 81<br>76<br>75<br>70<br>64<br>57 | 30<br>71<br>57<br>38<br>32 | 25<br>24<br>22<br>21<br>21<br>21 | 20<br>83<br>101<br>94<br>66<br>40 | 143<br>118<br>104<br>92<br>105 |
| TOTAL                            | 1162                             | 8935                             | 12693                                  | 7950                                   | 3805                            | 11986                                   | 26236                              | 4971                             | 1338                       | 1422                             | 1422                              | 8095                           |
| MEAN                             | 37.5                             | 298                              | 409                                    | 256                                    | 136                             | 387                                     | 875                                | 160                              | 44.6                       | 45.9                             | 45.9                              | 270                            |
| MAX                              | 113                              | 1750                             | 1030                                   | 431                                    | 195                             | 1390                                    | 4900                               | 347                              | 75                         | 162                              | 205                               | 1700                           |
| MIN                              | 25                               | 28                               | 198                                    | 159                                    | 100                             | 162                                     | 244                                | 57                               | 30                         | 21                               | 20                                | 25                             |
| CFSM                             | .31                              | 2.48                             | 3.41                                   | 2.14                                   | 1.13                            | 3.22                                    | 7.29                               | 1.34                             | .37                        | .38                              | .38                               | 2.25                           |
| IN.                              | .36                              | 2.77                             | 3.93                                   | 2.46                                   | 1.18                            | 3.72                                    | 8.13                               | 1.54                             | .41                        | .44                              | .44                               | 2.51                           |

TOTAL 83535 MEAN 229 MAX 2100 MIN 25 CFSM 1.91 IN. 25.89 TOTAL 90015 MEAN 247 MAX 4900 MIN 20 CFSM 2.06 IN. 27.90 **CAL YR 1986** WTR YR 1987

# 01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD...
SUSPENDED-SEDIMENT DISCHARGE: February 1964 to June 1965.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|          | DATE           | TIME       | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- CI<br>W, CC<br>AN- DU<br>OUS AN                                 | ICE                                          | PH<br>(STAND-<br>ARD<br>UNITS)     | TEMP<br>ATU<br>WAT<br>(DEG              | RE<br>ER                                           | XYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEM<br>BI<br>CH<br>IC                | GEN<br>MAND,<br>IO-<br>IEM-<br>CAL,<br>DAY<br>MG/L) | COLI<br>FORI<br>FECA<br>EC<br>BROT<br>(MPI | AL, STREP-<br>TOCOCCI<br>TH FECAL                  |
|----------|----------------|------------|------------------------------------|---------------------------------------------------------------------|----------------------------------------------|------------------------------------|-----------------------------------------|----------------------------------------------------|------------------------------------|----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| NOV      | 1986           |            |                                    |                                                                     |                                              |                                    |                                         |                                                    | 1096                               |                                                                |                                      |                                                     |                                            |                                                    |
| 0        | 1987           | 1300       | E28                                |                                                                     | 454                                          | 7.6                                | 9                                       | .0                                                 | 10.2                               | 88                                                             |                                      | 3.7                                                 | 811                                        | 0.000                                              |
| 0        | 5              | 1130       | E179                               |                                                                     | 482                                          | 8.0                                | 2                                       | .0                                                 | 16.1                               | 116                                                            |                                      | 1.5                                                 | <200                                       | 20                                                 |
| APR<br>2 | 3              | 1130       | 244                                |                                                                     | 307                                          | 7.9                                | 14                                      | .5                                                 | 9.9                                | 97                                                             |                                      | 2.4                                                 | 5400                                       | 1700                                               |
| JUN<br>1 | 6              | 1130       | 35                                 |                                                                     | 486                                          | 7.7                                | 22                                      | .0                                                 |                                    | Transfer.                                                      |                                      | 3.0                                                 | 1300                                       | 80                                                 |
| JUL      | 1              | 1100       | 35                                 |                                                                     | 423                                          | 7.6                                | 23                                      |                                                    | 7.8                                | 92                                                             |                                      | 1.2                                                 | 3300                                       | <200                                               |
| AUG      | 7              | 1130       | 102                                |                                                                     |                                              |                                    |                                         |                                                    |                                    |                                                                |                                      |                                                     | 22000                                      | 24000                                              |
| -        |                | 1130       | 102                                |                                                                     |                                              | 7.7                                | 10                                      | .0                                                 | 7.9                                |                                                                |                                      | 0.2                                                 | 22000                                      | 24000                                              |
|          | DATE           | MES<br>(MC | SS<br>G/L                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M   | M, SOD<br>- DIS<br>ED SOL'<br>L (M |                                         | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K)   | LINI<br>LAI<br>D (MG<br>AS         | TY SUL<br>B DI<br>/L SO                                        | FATE<br>S-<br>DLVED<br>IG/L<br>SO4)  | DIS<br>SOI                                          | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL)     | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
|          | NOV 1986<br>03 |            | 120                                | 32                                                                  |                                              | • /                                |                                         | 2.5                                                | 77                                 |                                                                | 2/                                   | 4                                                   |                                            | 0.1                                                |
|          | FEB 1987       |            |                                    |                                                                     | 8.                                           |                                    |                                         | 2.5                                                |                                    |                                                                | 24                                   | 6                                                   |                                            | 0.1                                                |
|          | 05<br>APR      |            | 93                                 | 26                                                                  | 6.                                           | 9 5                                | 6                                       | 1.4                                                | 56                                 |                                                                | 22                                   | 11                                                  | 0                                          | 0.1                                                |
|          | 23<br>JUN      |            | 85                                 | 23                                                                  | 6.                                           | 6 2                                | 5                                       | 1.1                                                | 57                                 |                                                                | 17                                   | 4                                                   | 5                                          | 0.1                                                |
|          | 16             |            | 140                                | 38                                                                  | 11                                           | 4                                  | 1                                       | 2.2                                                | 95                                 |                                                                | 23                                   | 6                                                   | 8                                          | 0.1                                                |
|          | 21             |            | 110                                | 29                                                                  | 8.                                           | 1 3                                | 7                                       | 2.2                                                | 78                                 |                                                                | 20                                   | 6                                                   | 4                                          | 0.2                                                |
|          | AUG<br>27      |            | 92                                 | 25                                                                  | 7.                                           | 3 2                                | 8                                       | 2.1                                                | 68                                 |                                                                | 20                                   | 4                                                   | 2                                          | 0.1                                                |
|          | DATE           | SO (M      | LVED<br>G/L                        | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | TE NO2                             | TRO-<br>EN,<br>+NÓ3<br>TAL<br>G/L<br>N) | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N) | MONI<br>A ORGA<br>TOT<br>(MG       | AM-<br>A + NI<br>NIC (<br>AL TO<br>/L (N                       | TRO-<br>SEN,<br>OTAL<br>IG/L<br>S N) | PHO<br>TO<br>(M                                     |                                            | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
|          | NOV 1986       |            | 7.9                                | 230                                                                 |                                              |                                    |                                         | 0.15                                               | 0.                                 | 01                                                             |                                      | •                                                   | 240                                        | 3.5                                                |
|          | FEB 1987       |            | 1000                               |                                                                     |                                              |                                    |                                         |                                                    | 1. 3                               |                                                                |                                      |                                                     |                                            |                                                    |
|          | 05<br>APR      |            | 7.1                                | 260                                                                 | 0.0                                          |                                    | .08                                     | 0.29                                               |                                    |                                                                | 1.9                                  |                                                     | 116                                        | 4.3                                                |
|          | 23<br>JUN      |            | 5.1                                | 160                                                                 | 0.0                                          | 043                                | .760                                    | 0.47                                               | 0.                                 | 86 1                                                           | 1.6                                  | 0.                                                  | 110                                        | 3.1                                                |
|          | 16<br>JUL      |            | 9.1                                | 250                                                                 | 0.0                                          | 78 2                               | .36                                     | 0.16                                               | 0.                                 | 94 3                                                           | 3.3                                  | 0.                                                  | 183                                        | 3.8                                                |
|          | 21             |            | 7.4                                | 210                                                                 | 0.0                                          | 124                                | .78                                     | 0.10                                               | 0.                                 | 82 2                                                           | 2.6                                  | 0.                                                  | 240                                        | 3.6                                                |
|          | AUG 27         |            | 5.3                                | 170                                                                 | 0.0                                          | 146 1                              | .42                                     | 0.20                                               | 1                                  | 1 2                                                            | 2.6                                  | 0.                                                  | 270                                        | 7.9                                                |

#### 01388000 RAMAPO RIVER AT POMPTON LAKES, NJ

LOCATION.--Lat 40°59'33", long 74°16'44", Passaic County, Hydrologic Unit 02030103, on right end of dam at pumping station in Pompton Lakes and 2.0 mi upstream from mouth.

DRAINAGE AREA . - - 160 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: 1922(M), 1924-25, 1929-31(M), 1934-35(M). WRD-NJ 1970: 1968-69.

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 190.96 ft above National Geodetic Vertical Datum of 1929. Prior to October 1, 1981, at datum 10.00 ft higher.

REMARKS.--No estimated daily discharges. Records good. Diversion by North Jersey District Water Supply Commission to Wanaque Reservoir since December 1953 (see Passaic River basin, diversions) and to Oradell Reservoir by Hackensack Water Company since February 1985 (see Hackensack River basin, diversions) for municipal supply (records given herein). Slight regulation by Pompton Lake, capacity, 300,000,000 gal. Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE. -- 66 years, 303 ft 3/s, 25.72 in./yr, adjusted for diversion since Dec. 1, 1953.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,400 ft<sup>3</sup>/s, April 5, 1984, gage height, 15.21 ft, in gage well, 15.33 ft, from flood marks, present datum; no flow part of September 30, 1980 and many days in 1981, 1982, 1985.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,600 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|----------|------|-----------------------------------|------------------|
| Nov. 21 | 1145 | 2,030                             | 11.49            | Apr. 5   | 0800 | *6,490                            | *13.07           |
| Apr. 1  | 0915 | 2,540                             | 11.71            | Sept. 14 | 1600 | 1,790                             | 11.38            |

DISCHARGE IN CURIC EEET DED SECOND. MATER VEAR OCTORER 1086 TO SERTEMBER 1087

Minimum discharge, 23 ft<sup>3</sup>/s, Aug. 1, 2, 25, gage height, 10.08 ft.

|                                                              |                                                         | DISCHA                                                    | RGE, IN C                                                | UBIC FEET                                              | PER SECO                                              | ND, WATER<br>MEAN VAL                                  | YEAR OCTO                                                 | OBER 1986                                            | TO SEPTEN                                            | 4BER 1987                                            |                                                      |                                                       |
|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| DAY                                                          | ОСТ                                                     | NOV                                                       | DEC                                                      | JAN                                                    | FEB                                                   | MAR                                                    | APR                                                       | MAY                                                  | JUN                                                  | JUL                                                  | AUG                                                  | SEP                                                   |
| 1<br>2<br>3<br>4<br>5                                        | 48<br>47<br>53<br>114<br>128                            | 55<br>84<br>57<br>46<br>50                                | 202<br>166<br>1010<br>969<br>567                         | 366<br>558<br>588<br>460<br>381                        | 247<br>222<br>243<br>281<br>264                       | 413<br>928<br>789<br>637<br>539                        | 2300<br>1390<br>880<br>2350<br>5710                       | 342<br>312<br>311<br>443<br>482                      | 76<br>69<br>71<br>84<br>92                           | 47<br>52<br>82<br>67<br>52                           | 31<br>24<br>37<br>38<br>38                           | 71<br>63<br>56<br>49<br>47                            |
| 6<br>7<br>8<br>9                                             | 87<br>65<br>55<br>53<br>43                              | 108<br>113<br>135<br>212<br>168                           | 382<br>286<br>222<br>209<br>292                          | 334<br>311<br>299<br>293<br>259                        | 238<br>226<br>245<br>256<br>239                       | 473<br>503<br>706<br>978<br>922                        | 3330<br>2340<br>1680<br>1250<br>975                       | 430<br>388<br>338<br>304<br>276                      | 87<br>74<br>71<br>81<br>64                           | 47<br>48<br>110<br>96<br>72                          | 52<br>185<br>200<br>210<br>196                       | 71<br>286<br>678<br>435                               |
| 11<br>12<br>13<br>14<br>15                                   | 44<br>42<br>66<br>77                                    | 169<br>299<br>240<br>189<br>158                           | 238<br>182<br>134<br>156<br>109                          | 311<br>309<br>274<br>251<br>267                        | 233<br>224<br>217<br>193<br>181                       | 681<br>557<br>489<br>445<br>398                        | 786<br>653<br>604<br>550<br>480                           | 264<br>234<br>208<br>193<br>200                      | 55<br>57<br>60<br>55<br>55                           | 57<br>55<br>98<br>172<br>298                         | 92<br>69<br>57<br>54<br>49                           | 268<br>193<br>428<br>1580<br>1160                     |
| 16<br>17<br>18<br>19<br>20                                   | 61<br>53<br>54<br>52<br>47                              | 132<br>119<br>107<br>180<br>199                           | 82<br>101<br>169<br>630<br>744                           | 345<br>358<br>339<br>423<br>419                        | 159<br>169<br>172<br>158<br>154                       | 359<br>335<br>303<br>282<br>273                        | 419<br>443<br>533<br>493<br>435                           | 192<br>169<br>149<br>167<br>167                      | 49<br>45<br>38<br>38<br>39                           | 147<br>91<br>74<br>67<br>63                          | 45<br>38<br>33<br>31<br>31                           | 539<br>433<br>469<br>503<br>402                       |
| 21<br>22<br>23<br>24<br>25                                   | 43<br>48<br>43<br>46<br>41                              | 1660<br>1420<br>775<br>545<br>375                         | 582<br>475<br>400<br>379<br>968                          | 367<br>338<br>343<br>324<br>284                        | 151<br>151<br>169<br>170<br>156                       | 262<br>264<br>261<br>245<br>234                        | 403<br>355<br>315<br>358<br>630                           | 154<br>141<br>137<br>132<br>124                      | 84<br>92<br>79<br>59<br>50                           | 60<br>55<br>46<br>32<br>37                           | 31<br>31<br>30<br>28<br>26                           | 324<br>269<br>247<br>219<br>224                       |
| 26<br>27<br>28<br>29<br>30<br>31                             | 54<br>70<br>60<br>54<br>59<br>49                        | 458<br>1240<br>941<br>464<br>303                          | 1030<br>744<br>589<br>504<br>446<br>404                  | 277<br>244<br>228<br>229<br>229<br>266                 | 157<br>154<br>143<br>                                 | 219<br>218<br>222<br>224<br>207<br>899                 | 571<br>449<br>427<br>437<br>392                           | 121<br>104<br>106<br>102<br>93<br>83                 | 51<br>99<br>102<br>67<br>51                          | 41<br>36<br>32<br>34<br>33<br>33                     | 28<br>79<br>160<br>192<br>116<br>76                  | 186<br>158<br>142<br>139<br>144                       |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†)<br>MEAN‡<br>CFSM‡<br>IN.‡ | 1800<br>58.1<br>128<br>41<br>15.3<br>73.4<br>.45<br>.53 | 11001<br>367<br>1660<br>46<br>33.9<br>401<br>2.50<br>2.79 | 13371<br>431<br>1030<br>82<br>122<br>553<br>3.46<br>3.98 | 10274<br>331<br>588<br>228<br>0<br>331<br>2.07<br>2.39 | 5572<br>199<br>281<br>143<br>0<br>199<br>1.24<br>1.30 | 14265<br>460<br>978<br>207<br>0<br>460<br>2.88<br>3.32 | 31938<br>1065<br>5710<br>315<br>0<br>1065<br>6.65<br>7.43 | 6866<br>221<br>482<br>83<br>0<br>221<br>1.38<br>1.60 | 1994<br>66.5<br>102<br>38<br>0<br>66.5<br>.42<br>.46 | 2234<br>72.1<br>298<br>32<br>0<br>72.1<br>.45<br>.52 | 2307<br>74.4<br>210<br>24<br>0<br>74.4<br>.47<br>.54 | 9827<br>328<br>1580<br>44<br>0<br>328<br>2.05<br>2.28 |

CAL YR 1986 TOTAL 103837 MEAN 284 MAX 2270 MIN 41 MEAN 304 CFSM 1.90 IN. 25.79 WTR YR 1987 TOTAL 111449 MEAN 305 MAX 5710 MIN 24 MEAN 320 CFSM 2.00 IN. 27.14

<sup>†</sup> Diversion, in cubic feet per second, at station to Wanaque and Oradell Reservoirs. Records of diversion furnished by North Jersey District Water Supply Commission and Hackensack Water Company. ‡ Adjusted for diversion.

# 01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1962-67, 1982, 1987.

| DATE                | TIME                 | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)      | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)             | PH<br>(STAND-<br>ARD<br>UNITS)                                     | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                               | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                   | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                    |
|---------------------|----------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| JUN 198<br>09<br>22 | 1320                 | 68<br>77                                             | 373<br>393                                                    | 8.2<br>8.0                                                         | 22.5<br>24.5                                                       | 11.9                                               | 140<br>98                                                      | 2.5<br>7.2                                                     | 120<br>120                                           | 32<br>31                                                       | 8.8<br>9.3                                             | 28<br>29                                                        |
| JUL<br>14           | . 1130               | 90                                                   | 375                                                           | 8.2                                                                | 27.0                                                               | 9.7                                                | 124                                                            | 3.6                                                            | 110                                                  | 31                                                             | 8.7                                                    | 29                                                              |
| AUG<br>11           | . 1100               | 0.90                                                 | 311                                                           | 8.9                                                                | 24.5                                                               | 10.7                                               | 130                                                            | 5.7                                                            | 91                                                   | 25                                                             | 7.0                                                    | 24                                                              |
| 03<br>22            | 1150<br>1200         | 56<br>266                                            | 353<br>235                                                    | 8.1<br>7.5                                                         | 21.0<br>17.5                                                       | 10.1<br>8.7                                        | 113<br>92                                                      | 3.0<br>1.5                                                     | 100<br>62                                            | 29<br>17                                                       | 7.9<br>4.7                                             | 28<br>18                                                        |
|                     | DATE                 | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)               | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-                                                | CONSTI-                                                        | NITRO-<br>GEN,<br>ITRITÉ<br>TOTAL<br>(MG/L<br>AS N)  | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)  | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)   | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)   |
|                     | UN 1987<br>09<br>22  | 1.7                                                  | 81<br>83                                                      | 20<br>20                                                           | 56<br>60                                                           | 0.1                                                | 4.5                                                            | 200                                                            | 0.050<br>0.020                                       | 0.050<br>0.030                                                 | 1.00                                                   | 0.95<br>0.55                                                    |
|                     | JL<br>14             | 1.7                                                  | 80                                                            | 19                                                                 | 57                                                                 | 0.1                                                | 6.7                                                            | 200                                                            | 0.020                                                | 0.020                                                          | 0.50                                                   | 0.48                                                            |
|                     | JG<br>               | 1.6                                                  | 64                                                            | 16                                                                 | 43                                                                 | 0.1                                                | 6.3                                                            | 160                                                            | 0.020                                                | 0.020                                                          | 0.40                                                   | 0.36                                                            |
|                     | 03<br>22             | 1.7                                                  | 69<br>43                                                      | 20<br>17                                                           | 53<br>32                                                           | 0.1<br>0.1                                         | 7.6<br>8.7                                                     | 190<br>130                                                     | 0.030<br>0.010                                       | 0.020<br><0.010                                                | 0.90<br>0.80                                           | 0.88                                                            |
|                     | DATE                 | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)          | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)                     | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)           | PHOS-<br>PHORUS,<br>ORTHO<br>TOTAL<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | CARBON,<br>ORGANIC<br>SUS-<br>PENDED<br>TOTAL<br>(MG/L<br>AS C) |
|                     | JUN 1987<br>09<br>22 | 0.07                                                 | 0.05                                                          | 1.1                                                                | 0.50<br>0.90                                                       | 2.1                                                | 0.110                                                          | 0.030<br>0.050                                                 | 0.010<br>0.030                                       | <0.010<br>0.030                                                | 2.6                                                    | 0.4                                                             |
|                     | JUL 14               | 0.12                                                 | 0.10                                                          | 1.3                                                                | 1.0                                                                | 1.8                                                | 0.100                                                          | 0.020                                                          | 0.030                                                | 0.020                                                          | 4.2                                                    | 1.3                                                             |
|                     | AUG 11               | <0.01                                                | 0.01                                                          | 1.5                                                                | 0.50                                                               | 1.9                                                | 0.180                                                          | 0.020                                                          | 0.020                                                | 0.020                                                          | 2.2                                                    | 3.3                                                             |
|                     | 03<br>22             | 0.03                                                 | 0.04                                                          | 1.0                                                                | 0.80                                                               | 1.9                                                | 0.090                                                          | 0.040<br>0.030                                                 | 0.040                                                | 0.020                                                          | 4.0                                                    | 0.4                                                             |

## 01388500 POMPTON RIVER AT POMPTON PLAINS, NJ

LOCATION.--Lat 40°58'09", long 74°16'56", Passaic County, Hydrologic Unit 02030103, on left bank in Passaic Valley Water Commission pumping station, 800 ft below confluence of Pequannock and Ramapo Rivers, 100 ft upstream from bridge on Jackson Avenue (Pompton Plains Cross Road), and 0.7 mi east of Pompton Plains.

DRAINAGE AREA. -- 355 mi 2.

PERIOD OF RECORD.--March 1903 to December 1904, May 1940 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WSP 1202: 1945(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 160.00 ft above National Geodetic Vertical Datum of 1929. March 1903 to December 1904, nonrecording gage on main spillway of dam 2,000 ft upstream at different datum. May 1940 to September 1964 two water-stage recorders, each above a concrete dam about 2,000 ft upstream at datum 14.46 ft higher.

REMARKS.--Records fair. Water diverted from reservoirs on Pequannock and Wanaque Rivers, from Pompton River to Point View Reservoir, and from Ramapo River to Wanaque Reservoir and Oradell Reservoir (from February 1985) for municipal supply (see Hackensack River basin, diversions into and from and Passaic River basin, diversions). Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg and Echo Lake Reservoirs on Pequannock River and by Greenwood Lake and Wanaque Reservior on Wanaque River (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with Passaic Valley Water Commission.

AVERAGE DISCHARGE. -- 47 years, (water years 1904, 1941-87), 485 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 28,340 ft<sup>3</sup>/s, Oct. 10, 1903, gage height, 14.3 ft, site and datum then in use, by computation of peak flow over dam; no flow Aug. 18-20, 1904.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,200 ft3/s, and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date   | Time    | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|--------|---------|-----------------------------------|------------------|
| Nov. 21 | 1300 | 3,010<br>3,800                    | 11.60            | Apr. 5 | unknown | *12,600                           | *18.91           |
| Apr. 1  |      | 3 800                             |                  |        |         |                                   |                  |

Minimum discharge, 54 ft<sup>3</sup>/s, Aug. 25, gage height, 7.33 ft.

|                                  |                                      | DISCHARGE                         | , IN C                                         | UBIC FEET                              | PER SECON         | D, WATER<br>EÁN VALU                          | YEAR OCTOBER<br>ES               | 1986 1                                 | O SEPTEMBER                   | 1987                             |                                       |                                 |
|----------------------------------|--------------------------------------|-----------------------------------|------------------------------------------------|----------------------------------------|-------------------|-----------------------------------------------|----------------------------------|----------------------------------------|-------------------------------|----------------------------------|---------------------------------------|---------------------------------|
| DAY                              | ОСТ                                  | NOV                               | DEC                                            | JAN                                    | FEB               | MAR                                           | APR                              | MAY                                    | JUN                           | JUL                              | AUG                                   | SEP                             |
| 1                                | 96                                   | 90                                | 324                                            | e613                                   | 390               | 708                                           | e3400                            | 585                                    | 128                           | 90                               | 62                                    | 117                             |
| 2                                | 92                                   | 120                               | 297                                            | e829                                   | 418               | e1410                                         | 2460                             | 491                                    | 114                           | 99                               | 60                                    | 106                             |
| 3                                | 100                                  | 100                               | 1750                                           | 848                                    | 515               | e1090                                         | 2040                             | 473                                    | 111                           | 141                              | 85                                    | 95                              |
| 4                                | 176                                  | 87                                | 1540                                           | 653                                    | 415               | e942                                          | e5500                            | 741                                    | 129                           | 112                              | 98                                    | 86                              |
| 5                                | 178                                  | 88                                | 948                                            | 527                                    | 356               | e836                                          | e11700                           | 878                                    | 162                           | 94                               | 181                                   | 79                              |
| 6                                | 133                                  | 185                               | 644                                            | 453                                    | 323               | 680                                           | e9000                            | 788                                    | 139                           | 91                               | 657                                   | 77                              |
| 7                                | 113                                  | 162                               | 473                                            | 430                                    | 314               | 704                                           | 6610                             | 710                                    | 119                           | 90                               | 227                                   | 136                             |
| 8                                | 97                                   | 199                               | 378                                            | 452                                    | 314               | 951                                           | 4670                             | 598                                    | 112                           | 226                              | 134                                   | 531                             |
| 9                                | 94                                   | 292                               | 376                                            | 427                                    | 328               | e1390                                         | 3120                             | 489                                    | 138                           | 154                              | 116                                   | 1030                            |
| 10                               | 88                                   | 237                               | 517                                            | 409                                    | 316               | e1230                                         | 2250                             | 423                                    | 119                           | 124                              | 234                                   | 623                             |
| 11                               | 84                                   | 262                               | 418                                            | 477                                    | 309               | e1000                                         | 1720                             | 363                                    | 96                            | 97                               | 148                                   | 357                             |
| 12                               | 86                                   | 402                               | 339                                            | 472                                    | 298               | e772                                          | 1440                             | 322                                    | 99                            | 112                              | 113                                   | 272                             |
| 13                               | 89                                   | 321                               | 284                                            | 421                                    | 294               | e666                                          | 1350                             | 294                                    | 100                           | 124                              | 95                                    | 842                             |
| 14                               | 123                                  | 264                               | 281                                            | 394                                    | 261               | e605                                          | 1170                             | 270                                    | 96                            | 351                              | 88                                    | 2280                            |
| 15                               | 125                                  | 213                               | 227                                            | 420                                    | 244               | e551                                          | 991                              | 272                                    | 93                            | 486                              | 83                                    | 1530                            |
| 16                               | 108                                  | 189                               | 190                                            | 540                                    | 219               | e497                                          | 851                              | 266                                    | 88                            | 229                              | 79                                    | 765                             |
| 17                               | 100                                  | 173                               | 210                                            | 548                                    | 235               | e451                                          | 878                              | 229                                    | 82                            | 147                              | 74                                    | 640                             |
| 18                               | 99                                   | 166                               | e285                                           | 529                                    | 237               | e388                                          | 1050                             | 202                                    | 78                            | 114                              | 69                                    | 645                             |
| 19                               | 95                                   | 275                               | e930                                           | 682                                    | 219               | e360                                          | 960                              | 247                                    | 74                            | 122                              | 64                                    | 698                             |
| 20                               | 94                                   | 300                               | e937                                           | 714                                    | 216               | 343                                           | 827                              | 251                                    | 73                            | 115                              | 63                                    | 552                             |
| 21                               | 92                                   | 2550                              | e886                                           | 729                                    | 205               | 328                                           | 720                              | 232                                    | 141                           | 106                              | 61                                    | 439                             |
| 22                               | 90                                   | 2000                              | e762                                           | 697                                    | 203               | 319                                           | 617                              | 210                                    | 134                           | 96                               | 61                                    | 356                             |
| 23                               | 88                                   | 1120                              | e670                                           | 691                                    | 231               | 320                                           | 517                              | 199                                    | 118                           | 88                               | 62                                    | 320                             |
| 24                               | 82                                   | 772                               | e548                                           | 507                                    | 240               | 320                                           | 643                              | 196                                    | 95                            | 78                               | 59                                    | 298                             |
| 25                               | 78                                   | 516                               | e1210                                          | 425                                    | 223               | 320                                           | 1280                             | 186                                    | 91                            | 77                               | 55                                    | 306                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 112<br>133<br>114<br>99<br>100<br>90 | 753<br>1870<br>1370<br>723<br>459 | e1320<br>e1050<br>e888<br>e793<br>e723<br>e668 | 467<br>522<br>491<br>500<br>471<br>416 | 213<br>208<br>205 | e314<br>e309<br>e313<br>e314<br>e297<br>e1300 | 1120<br>921<br>843<br>839<br>767 | 176<br>167<br>165<br>159<br>151<br>141 | 91<br>157<br>139<br>102<br>90 | 78<br>77<br>68<br>65<br>64<br>65 | 57<br>153<br>279<br>309<br>171<br>122 | 275<br>231<br>196<br>191<br>202 |
| TOTAL                            | 3248                                 | 16258                             | 20866                                          | 16754                                  | 7949              | 20028                                         | 70254 1                          | 0874                                   | 3308                          | 3980                             | 4119                                  | 14275                           |
| MEAN                             | 105                                  | 542                               | 673                                            | 540                                    | 284               | 646                                           | 2342                             | 351                                    | 110                           | 128                              | 133                                   | 476                             |
| MAX                              | 178                                  | 2550                              | 1750                                           | 848                                    | 515               | 1410                                          | 11700                            | 878                                    | 162                           | 486                              | 657                                   | 2280                            |
| MIN                              | 78                                   | 87                                | 190                                            | 394                                    | 203               | 297                                           | 517                              | 141                                    | 73                            | 64                               | 55                                    | 77                              |

CAL YR 1986 TOTAL 204787 MEAN 561 MAX 3870 MIN 47 WTR YR 1987 TOTAL 191913 MEAN 526 MAX 11700 MIN 55

e Estimated

## 01388600 POMPTON RIVER AT PACKANACK LAKE, NJ

LOCATION.--Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on State Highway 504 in Packanack Lake, and 2.2 mi downstream from confluence of Pequannock and Wanaque Rivers.

DRAINAGE AREA. -- 361 mi 2.

PERIOD OF RECORD .-- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                  |              | STRE.                              | W, CO                                                               | FIC                                | PH<br>(STAND                        |                                                         | TEMPER-<br>ATURE |                                         | OXYGEN,<br>DIS-                |                                                | IS- I<br>LVED<br>ER-<br>ENT | DEM<br>BI<br>CH                        | GEN<br>IAND,<br>O-<br>IEM- | COL<br>FOR<br>FEG                               | RM,<br>CAL,                               | STREP-<br>TOCOCCI       |
|------------------|--------------|------------------------------------|---------------------------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------------------------------|------------------|-----------------------------------------|--------------------------------|------------------------------------------------|-----------------------------|----------------------------------------|----------------------------|-------------------------------------------------|-------------------------------------------|-------------------------|
| DATE             | TIME         | TANE                               |                                                                     | CE<br>/CM)                         | UNITS)                              |                                                         | TER<br>G C)      |                                         | LVED<br>G/L)                   |                                                | TUR-<br>ION)                |                                        | DAY<br>IG/L)               | BRC<br>(MF                                      | OTH<br>PN)                                | FECAL<br>(MPN)          |
| 0V 1986<br>03    | 1030         | E102                               |                                                                     | 356                                | 7.5                                 | 10                                                      | 0.5              |                                         | 9.5                            |                                                | 85                          |                                        | 3.0                        |                                                 | 7 107                                     |                         |
| EB 1987<br>11    | 1030         | E315                               |                                                                     | 387                                | 7.6                                 |                                                         | 2.0              | 1                                       | 5.0                            |                                                | 109                         |                                        | 1.5                        | >920                                            | )                                         | 540                     |
| PR 22            | 1030         | E629                               |                                                                     | 238                                | 7.8                                 |                                                         | 6.5              |                                         | 1.1                            |                                                | 114                         |                                        | 3.0                        | 1600                                            |                                           | 180                     |
| UN<br>09<br>23   | 1045<br>1100 | E141<br>E120                       |                                                                     | 343<br>357                         | 7.5<br>7.6                          |                                                         | 2.0              |                                         | 6.1                            |                                                | 71<br>78                    |                                        | 4.9                        | 170                                             |                                           | 400                     |
| 14               | 1030         | E358                               |                                                                     | 354                                | 7.5                                 | 1.5                                                     | 6.0              |                                         | 5.4                            |                                                | 68                          |                                        | 5.0                        | 230                                             | 0                                         | 170                     |
| UG<br>11         | 1100         | E151                               |                                                                     | 1.                                 | 8.0                                 |                                                         | 3.5              |                                         | 8.0                            |                                                |                             |                                        | 5.1                        | 490                                             | 0                                         | 230                     |
| 03<br>22         | 1030<br>1215 | E97                                |                                                                     | 327<br>237                         | 7.7                                 | 1                                                       | 9.0<br>8.0       |                                         | 7.0<br>9.4                     |                                                | 76<br>100                   | ta i                                   | 3.8<br>3.3                 | 0.5                                             | ::                                        |                         |
| DATE             | NE<br>(M     | RD -<br>SS<br>IG/L<br>IS<br>ICO3)  | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGI<br>SIL<br>SOL<br>(MG,<br>AS I | JM, SO<br>S- D<br>VED SO<br>/L (    | DIUM,<br>IS-<br>LVED<br>MG/L<br>S NA)                   | SI<br>SOL<br>(MC | AS-<br>IUM,<br>IS-<br>VED<br>G/L<br>K)  | ALK<br>LINI<br>LA<br>(MG<br>AS | TY<br>B                                        | SULF<br>DIS<br>SOL<br>(MC   | VED                                    | SOI<br>(M                  | E,                                              | FLU<br>RID<br>DI<br>SOL<br>(MG<br>AS      | E,<br>S-<br>VED<br>/L   |
| NOV 1986<br>03   |              | 100                                | 28                                                                  | 7                                  | .9                                  | 27                                                      |                  | 2.2                                     | 69                             |                                                |                             | 22                                     | 4                          |                                                 |                                           | .1                      |
| FEB 1987         |              | 88                                 | 24                                                                  | w.                                 |                                     | 39                                                      |                  | 1.4                                     | 54                             |                                                |                             | 20                                     | 70                         |                                                 |                                           | .1                      |
| APR 22           |              | 67                                 | 18                                                                  |                                    | .3                                  | 18                                                      |                  | 1.1                                     | 44                             |                                                |                             | 8                                      | 3                          |                                                 |                                           | .1                      |
| JUN 09           |              | 100                                |                                                                     |                                    |                                     | 26                                                      |                  | 2.0                                     | 64                             |                                                |                             | 21                                     | 4                          |                                                 |                                           | .1                      |
| 23<br>JUL        |              | 100                                | 28<br>27                                                            | 8                                  | .1                                  | 27                                                      |                  | 2.1                                     | 66                             |                                                |                             | 21                                     | 5                          | ő                                               |                                           | .1                      |
| 14               | 150          | 110                                | 29                                                                  | 8                                  | .0                                  | 26                                                      |                  | 1.9                                     | 71                             |                                                | Mar 1                       | 19                                     | 5                          | 7                                               | <0                                        | 1.1                     |
| 11<br>SEP        |              | 81                                 | 22                                                                  | 6                                  | .3                                  | 21                                                      |                  | 1.7                                     | 56                             |                                                |                             | 18                                     | 3                          | 7                                               | 0                                         | 1.1                     |
| 03               |              | 97<br>75                           | 27<br>19                                                            |                                    | .3                                  | 25<br>21                                                |                  | 1.8                                     | 61<br>53                       |                                                |                             | 21                                     | 3                          |                                                 |                                           | 1.1                     |
| DATE             | SC<br>(N     | ICA,<br>IS-<br>DLVED<br>IG/L<br>AS | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITI<br>GE<br>NITR<br>TOTA<br>(MG  | RO-<br>N, NI<br>ITE<br>AL S<br>/L ( | ITRO-<br>GEN,<br>TRITE<br>DIS-<br>OLVED<br>MG/L<br>S N) | NO2-<br>TO       | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | NO2-<br>DI<br>SOI<br>(MC       | RO-<br>EN,<br>HNO3<br>IS-<br>LVED<br>G/L<br>N) | AMMO<br>TO<br>(MO           | RO-<br>EN,<br>ONIA<br>FAL<br>G/L<br>N) | AMM<br>D<br>SO<br>(M       | TRO-<br>EN,<br>ONIA<br>IS-<br>LVED<br>G/L<br>N) | MIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | A +<br>NIC<br>AL<br>S/L |
| NOV 1986         | 1 1          |                                    | 400                                                                 |                                    |                                     |                                                         |                  |                                         |                                |                                                |                             |                                        |                            |                                                 | 1.1                                       | 2.17                    |
| 03<br>FEB 1987   |              | 7.5                                | 180                                                                 | 6.                                 |                                     | **                                                      |                  |                                         |                                | •                                              |                             | 470                                    |                            |                                                 |                                           | .3                      |
| 11<br>APR        |              | 7.3                                | 210                                                                 |                                    | 016                                 | 1                                                       |                  | .980                                    |                                |                                                |                             | 270                                    |                            | •                                               |                                           | .1                      |
| 22<br>JUN        |              | 6.1                                | 120                                                                 |                                    | 021                                 |                                                         |                  | .580                                    |                                |                                                |                             | 200                                    |                            |                                                 |                                           | 1.72                    |
| 23               |              | 6.8                                | 180<br>180                                                          | 0.                                 | 140<br>130                          | 0.140                                                   | 1                | .20                                     | 1.                             | .20                                            | 0                           | 620<br>520                             | 0                          | .610<br>.480                                    | 2                                         | .4                      |
| JUL<br>14<br>AUG |              | 6.0                                | 190                                                                 | 0.                                 | 080                                 | 0.080                                                   | 0                | .800                                    | 0.                             | 720                                            | 0.                          | 290                                    | 0                          | .240                                            | 1                                         | .8                      |
| 11               |              | 6.8                                | 150                                                                 | 0.                                 | 060                                 | 0.050                                                   | 0                | .700                                    | 0.                             | .630                                           | 0.                          | 160                                    | 0                          | .150                                            | 1                                         | .5                      |
| 03<br>22         |              | 7.9                                | 170<br>150                                                          | 0.                                 | 080<br>080                          | 0.080                                                   | 1                | .20                                     | 1:                             | 10                                             | 0.                          | 390<br>410                             | 0                          | .370<br>.400                                    | 2                                         | .7                      |

PASSAIC RIVER BASIN

# 01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|          |              | DA                                                             | GEN<br>MON<br>ORC<br>DI<br>TE (N                                     | GANIC G<br>IS. TO<br>IG/L (M                                         | EN, PHO<br>TAL TO<br>G/L (M                                           | OS- PH<br>RUS,<br>TAL S<br>IG/L (                                    | ORUS, PHO<br>DIS- OR<br>OLVED TO<br>MG/L (N                       | IOS- PHO<br>PRUS, OF<br>THO, DI<br>TAL SOI                         | S- ORG<br>VED TO<br>G/L (M                                           | BON, ORG<br>ANIC DI<br>TAL SOL<br>G/L (M                           | BON, ORG<br>ANIC SU<br>S- PEN<br>VED TO<br>G/L (M               | BON,<br>BANIC<br>IS-<br>IDED<br>OTAL<br>IG/L<br>IG/L                 |
|----------|--------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
|          |              | NOV_198                                                        | 86                                                                   |                                                                      |                                                                       |                                                                      |                                                                   |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
|          |              | 03<br>FEB 198                                                  | 87                                                                   | ••                                                                   |                                                                       | .240                                                                 | ••                                                                |                                                                    |                                                                      | 4.2                                                                |                                                                 |                                                                      |
|          |              | 11<br>APR<br>22                                                |                                                                      |                                                                      |                                                                       | .060                                                                 |                                                                   |                                                                    |                                                                      | 4.6<br>4.3                                                         |                                                                 |                                                                      |
|          |              | JUN 09                                                         |                                                                      |                                                                      |                                                                       | .070                                                                 | 0.170                                                             |                                                                    | .130                                                                 |                                                                    |                                                                 |                                                                      |
|          |              | 23<br>JUL                                                      |                                                                      | 1.5                                                                  |                                                                       |                                                                      | 0.150                                                             |                                                                    | 110                                                                  |                                                                    | 6.0                                                             | 0.5<br>0.2                                                           |
|          |              | 14                                                             |                                                                      | 1.3                                                                  | 2.6 0                                                                 | .220                                                                 | 0.090                                                             | .100                                                               | 0.080                                                                | ••                                                                 | 4.1                                                             | 0.1                                                                  |
|          |              | 11<br>SEP                                                      |                                                                      | 0.70                                                                 | 2.2 0                                                                 | .180                                                                 | 0.060                                                             | .060                                                               | 0.050                                                                | ••                                                                 | 4.5                                                             | 0.2                                                                  |
|          |              | 03                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                    | ).140<br>).160                                                       | ::                                                                 |                                                                 | 0.1<br>0.5                                                           |
| DATE     | TIME         | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N)  | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | (UG/L                                                             | ARSENIC<br>TOTAL<br>IN BOT<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
| NOV 1986 | 4070         |                                                                |                                                                      |                                                                      |                                                                       |                                                                      | 32                                                                |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
| 03       | 1030<br>1030 | <0.5                                                           | 170                                                                  | 0.2                                                                  | 1.7                                                                   | 20                                                                   | <1<br>                                                            | 2                                                                  | <10                                                                  | 80                                                                 | <1<br>                                                          | <1                                                                   |
|          | DATE         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | RECOV-<br>ERABLE<br>(UG/L                                         | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|          | V 1986       | <10                                                            |                                                                      |                                                                      | 10                                                                    |                                                                      | 410                                                               |                                                                    | 35                                                                   |                                                                    | 130                                                             |                                                                      |
|          | 03<br>03     | 110                                                            | 5                                                                    | 10                                                                   |                                                                       | 9                                                                    | 410                                                               | 6200                                                               |                                                                      | 10                                                                 |                                                                 | 210                                                                  |
|          | DATE         | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)        | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)              | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| NOV      | 1986         | 0.10                                                           |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
| ò        | )3<br>)3     | 0.10                                                           | 0.03                                                                 | <1                                                                   | <10                                                                   | <1                                                                   | <1                                                                | 20                                                                 | 80                                                                   |                                                                    | 48                                                              | <1.0                                                                 |
|          | DATE         | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG   | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>) (UG/KG)           | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG              | TOM MA-<br>TERIAL                                                 | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|          | / 1986<br>)3 | <0.1                                                           | <1.0                                                                 | 0.3                                                                  | 0.2                                                                   | 0.7                                                                  | <0.1                                                              | <0.1                                                               | <0.1                                                                 | <0.1                                                               | <0.1                                                            | <0.1                                                                 |
|          |              |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |

# 01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|----------------|---------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| NOV 1986<br>03 |                                                                     |                                                             | 100                                                                 |                                                                  |                                                                    |                                                                   |                                                            |                                                                     | er And                                                   |                                                                     |                                                                    |
| 03             | 0.1                                                                 | <0.1                                                        | <0.1                                                                | <0.1                                                             | <0.1                                                               | <0.1                                                              | <0.1                                                       | <0.1                                                                | State Minds                                              | <10                                                                 | <0.1                                                               |

## 01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'47", long 074°16'10", Passaic County, Hydrologic Unit 02030103, on right bank, in Two Bridges and 400 ft downstream from the Pompton River.

DRAINAGE AREA . - - 734 mi 2 .

PERIOD OF RECORD. -- June to September 1987.

#### WATER QUALITY DATA

|          |                     |                                                      |                                                               |                                                                    |                                                                   | *****                                              |                                                                |                                                                     |                                                       |                                                               |                                                        |                                                                 |
|----------|---------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| DATE     | TIME                | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)      | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)             | PH<br>(STAND-<br>ARD<br>UNITS)                                     | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                              | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L)      | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                  | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                    |
| JUN 198  | 7<br>0930<br>0900   | E478<br>E425                                         | 396<br>515                                                    | 7.5<br>7.4                                                         | 21.5<br>25.0                                                      | 3.6<br>3.2                                         | 41<br>39                                                       | 3.9<br>5.8                                                          | 110<br>120                                            | 28<br>31                                                      | 9.1<br>11                                              | 33<br>44                                                        |
| JUL 14   | 0830                | E1070                                                | 327                                                           | 7.2                                                                | 26.5                                                              | 2.5                                                | 32                                                             | 6.6                                                                 | 78                                                    | 20                                                            | 6.8                                                    | 30                                                              |
| 03<br>22 | 0845<br>0915        | E402<br>E1180                                        | 370<br>275                                                    | 7.5<br>7.2                                                         | 19.5<br>17.5                                                      | 4.5<br>5.0                                         | 49<br>53                                                       | 2.8<br>3.9                                                          | 100<br>75                                             | 27<br>19                                                      | 8.5                                                    | 29<br>21                                                        |
|          | DATE                | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)               | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)               | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)              | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)  | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)   | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)   |
|          | UN 1987<br>09<br>22 | 3.2<br>4.9                                           | 67<br>81                                                      | 29<br>36                                                           | 54<br>75                                                          | 0.1                                                | 13<br>12                                                       | 210<br>260                                                          | 0.16<br>0.21                                          | 0.16                                                          | 1.80<br>2.20                                           | 1.70                                                            |
|          | UL<br>14<br>EP      | 2.9                                                  | 51                                                            | 25                                                                 | 51                                                                | <0.1                                               | 10                                                             | 180                                                                 | 0.19                                                  | 0.19                                                          | 1.70                                                   | 1.70                                                            |
| 3        | 03                  | 2.9                                                  | 64<br>52                                                      | 29<br>21                                                           | 45<br>34                                                          | 0.1<br>0.1                                         | 11<br>12                                                       | 190<br>150                                                          | 0.13<br>0.07                                          | 0.13<br>0.06                                                  | 2.10<br>1.10                                           | 2.00<br>1.00                                                    |
|          | DATE                | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)          | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                    | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)                | PHOS-<br>PHORUS,<br>ORTHO,<br>TOTAL<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | CARBON,<br>ORGANIO<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | CARBON,<br>ORGANIC<br>SUS-<br>PENDED<br>TOTAL<br>(MG/L<br>AS C) |
|          | UN 1987<br>09<br>22 | 1.00<br>1.90                                         | 1.10                                                          | 1.9                                                                | 1.7                                                               | 3.7<br>5.4                                         | 0.580<br>0.640                                                 | 0.380                                                               | 0.360<br>0.610                                        | 0.310                                                         | 5.0<br>7.0                                             | 0.7                                                             |
|          | 14                  | 0.54                                                 | 0.49                                                          | 1.7                                                                | 1.5                                                               | 3.4                                                | 0.480                                                          | 0.310                                                               | 0.320                                                 | 0.280                                                         | 7.0                                                    | 0.9                                                             |
| 5        | 03<br>22            | 0.58<br>0.36                                         | 0.60<br>0.36                                                  | 1.4                                                                | 0.60                                                              | 3.5<br>3.1                                         | 0.360<br>0.400                                                 | 0.330<br>0.160                                                      | 0.320<br>0.230                                        | 0.300<br>0.170                                                | 5.8<br>8.3                                             | 0.9                                                             |

#### 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ (National stream quality accounting network station)

LOCATION.--Lat 40°53'05", long 74°13'35", Passaic County, Hydrologic Unit 02030103, on left bank 0.6 mi downstream from Beattie's Dam in Little Falls, and 1.0 mi upstream from Peckman River. Water-quality monitor located 0.5 mi upstream from gaging station.

DRAINAGE AREA . - - 762 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1897 to current year. Monthly discharge only for September 1897, published in WSP 1302. Published as "at Paterson" September 1897 to September 1955.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 120.00 ft above National Geodetic Vertical Datum of 1929 (levels by Passaic Valley Water Commission). Prior to Jan. 8, 1933, nonrecording gage and Jan. 8, 1933, to Sept. 30, 1955, water-stage recorder, at site 3.7 mi downstream at National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records good. Diurnal fluctuation at medium and low flow caused by hydroelectric plant at Beattie's Dam. Flow regulated by reservoirs in Rockaway, Pequannock, Wanaque, and Ramapo River subbasins (see Passaic River basin, reservoirs in). Large diversions for municipal supply from Passaic River above Beattie's Dam, and from Rockaway, Pequannock, Ramapo, and Wanaque Rivers (see Passaic River basin, diversions and Hackensack River basin, diversions). In addition, the Commonwealth Water Co., diverts from Canoe Brook near Summit and from Passaic River (see Passaic River basin, diversions); that company and the city of East Orange also divert water for municipal supply by pumping wells. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with the Passaic Valley Water Commission.

AVERAGE DISCHARGE. -- 90 years, 1,160 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,700 ft<sup>3</sup>/s, Oct. 10, 1903, present site; no flow July 3-5, 1904, July 16, 23, 1905.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,400 ft3/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time       | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|--------|------|-----------------------------------|------------------|----------|------------|-----------------------------------|------------------|
| Apr. 6 | 2245 | *10,300                           | *9.29            | No other | peak great | er than base disch                | narge.           |

Minimum discharge, 119 ft<sup>3</sup>/s, Sept. 29, gage height, 0.52 ft; minimum daily, 130 ft<sup>3</sup>/s, Aug. 25.

|                                  |                                        | DISCHARGE                            | , IN CU                                      | BIC FEET                                | PER SECON                            | D, WATER<br>EAN VALUE                   | YEAR OCTO                             | BER 1986 1                             | TO SEPTEMBER                    | 1987                                   |                                        |                                   |
|----------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|-----------------------------------|
| DAY                              | OCT                                    | NOV                                  | DEC                                          | JAN                                     | FEB                                  | MAR                                     | APR                                   | MAY                                    | JUN                             | JUL                                    | AUG                                    | SEP                               |
| 1 2 3 4 5                        | 235                                    | 202                                  | 2550                                         | 1720                                    | 923                                  | 1330                                    | 3300                                  | 1360                                   | 361                             | 228                                    | 227                                    | 411                               |
|                                  | 213                                    | 225                                  | 2370                                         | 1970                                    | 892                                  | 2420                                    | 3560                                  | 1140                                   | 328                             | 317                                    | 193                                    | 358                               |
|                                  | 237                                    | 215                                  | 3400                                         | 2080                                    | 1050                                 | 2570                                    | 3180                                  | 1030                                   | 345                             | 546                                    | 209                                    | 277                               |
|                                  | 461                                    | 197                                  | 3370                                         | 1920                                    | 1170                                 | 2680                                    | 4280                                  | 1290                                   | 370                             | 614                                    | 261                                    | 233                               |
|                                  | 450                                    | 209                                  | 3200                                         | 1770                                    | 1180                                 | 2670                                    | 7340                                  | 1580                                   | 507                             | 488                                    | 399                                    | 198                               |
| 6<br>7<br>8<br>9                 | 335<br>255<br>218<br>202<br>197        | 450<br>528<br>561<br>801<br>712      | 3000<br>2730<br>2460<br>2270<br>2170         | 1610<br>1470<br>1330<br>1160<br>1070    | 1120<br>1070<br>1040<br>1080<br>1080 | 2530<br>2360<br>2330<br>2430<br>2400    | 9880<br>10200<br>9210<br>7680<br>6260 | 1610<br>1540<br>1370<br>1160<br>997    | 672<br>637<br>471<br>353<br>334 | 335<br>261<br>534<br>672<br>766        | 1090<br>976<br>742<br>577<br>1120      | 198<br>312<br>811<br>1380<br>1220 |
| 11                               | 181                                    | 680                                  | 1970                                         | 1190                                    | 985                                  | 2120                                    | 5050                                  | 877                                    | 307                             | 604                                    | 1010                                   | 1000                              |
| 12                               | 174                                    | 1040                                 | 1830                                         | 1220                                    | 864                                  | 1830                                    | 4070                                  | 776                                    | 255                             | 437                                    | 869                                    | 707                               |
| 13                               | 176                                    | 1010                                 | 1700                                         | 1130                                    | 816                                  | 1640                                    | 3420                                  | 679                                    | 242                             | 483                                    | 646                                    | 1060                              |
| 14                               | 294                                    | 787                                  | 1510                                         | 1030                                    | 737                                  | 1470                                    | 2990                                  | 608                                    | 190                             | 946                                    | 447                                    | 2200                              |
| 15                               | 355                                    | 630                                  | 1310                                         | 982                                     | 674                                  | 1320                                    | 2430                                  | 599                                    | 170                             | 1530                                   | 337                                    | 2400                              |
| 16                               | 277                                    | 516                                  | 1130                                         | 1060                                    | 580                                  | 1170                                    | 1920                                  | 616                                    | 176                             | 1280                                   | 288                                    | 1910                              |
| 17                               | 234                                    | 462                                  | 900                                          | 1170                                    | 602                                  | 1070                                    | 1780                                  | 569                                    | e180                            | 1120                                   | 234                                    | 1750                              |
| 18                               | 216                                    | 419                                  | 980                                          | 1160                                    | 599                                  | 969                                     | 1990                                  | 519                                    | e170                            | 911                                    | 207                                    | 1810                              |
| 19                               | 199                                    | 734                                  | 1740                                         | 1370                                    | 570                                  | 895                                     | 1960                                  | 587                                    | e160                            | 782                                    | 185                                    | 1680                              |
| 20                               | 191                                    | 992                                  | 2140                                         | 1500                                    | 548                                  | 842                                     | 1830                                  | 626                                    | e160                            | 681                                    | 177                                    | 1510                              |
| 21                               | 192                                    | 2910                                 | 2160                                         | 1520                                    | 522                                  | 794                                     | 1650                                  | 604                                    | e250                            | 567                                    | 163                                    | 1330                              |
| 22                               | 187                                    | 3220                                 | 2000                                         | 1490                                    | 523                                  | 734                                     | 1440                                  | 570                                    | e300                            | 434                                    | 154                                    | 1060                              |
| 23                               | 226                                    | 2840                                 | 1870                                         | 1430                                    | 580                                  | 742                                     | 1230                                  | 529                                    | 377                             | 343                                    | 158                                    | 767                               |
| 24                               | 179                                    | 2680                                 | 1650                                         | 1230                                    | 643                                  | 716                                     | 1180                                  | 498                                    | 409                             | 285                                    | 141                                    | 567                               |
| 25                               | 171                                    | 2420                                 | 2610                                         | 1000                                    | 642                                  | 696                                     | 1820                                  | 458                                    | 360                             | 267                                    | 130                                    | 460                               |
| 26<br>27<br>28<br>29<br>30<br>31 | 239<br>388<br>325<br>270<br>239<br>217 | 2590<br>3470<br>3380<br>3160<br>2850 | 2720<br>2650<br>2590<br>2490<br>2320<br>2110 | 1050<br>979<br>925<br>876<br>884<br>933 | 608<br>599<br>593                    | 674<br>657<br>678<br>724<br>694<br>1750 | 2040<br>1920<br>1790<br>1710<br>1570  | 423<br>405<br>447<br>454<br>422<br>394 | 329<br>516<br>534<br>396<br>321 | 344<br>452<br>489<br>451<br>323<br>276 | 131<br>368<br>799<br>917<br>654<br>426 | 384<br>320<br>248<br>204<br>278   |
| TOTAL                            | 7733                                   | 40890                                | 67900                                        | 40229                                   | 22290                                | 45905                                   | 108680                                | 24737                                  | 10180                           | 7766                                   | 14235                                  | 27043                             |
| MEAN                             | 249                                    | 1363                                 | 2190                                         | 1298                                    | 796                                  | 1481                                    | 3623                                  | 798                                    | 339                             | 573                                    | 459                                    | 901                               |
| MAX                              | 461                                    | 3470                                 | 3400                                         | 2080                                    | 1180                                 | 2680                                    | 10200                                 | 1610                                   | 672                             | 1530                                   | 1120                                   | 2400                              |
| MIN                              | 171                                    | 197                                  | 900                                          | 876                                     | 522                                  | 657                                     | 1180                                  | 394                                    | 160                             | 228                                    | 130                                    | 198                               |

CAL YR 1986 TOTAL 428026 MEAN 1173 MAX 6090 MIN 149 WTR YR 1987 TOTAL 427588 MEAN 1171 MAX 10200 MIN 130

e Estimated

# 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ -- Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to November 1986 (discontinued).
WATER TEMPERATURE: Water years 1963 to 1980 (once daily), September 1980 to November 1986 (discontinued).
DISSOLVED OXYGEN: October 1970 to September 1980 (once daily).
SUSPENDED-SEDIMENT DISCHARGE: August 1963 to July 1965.

INSTRUMENTATION .- - Water-quality monitor since October 1980.

REMARKS. -- Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD . - -SPECIFIC CONDUCTANCE: Maximum, 965 microsiemens, Feb. 4, 1985; minimum, 99 microsiemens, April 6, 1984. WATER TEMPERATURE: Maximum, 29.5°C, July 12, 1981; minimum, 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum daily, 14.4 mg/L, Jan. 7, 1973; minimum daily, 1.7 mg/L, June 23, 1976.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 535 microsiemens, Feb. 18; minimum 149 microsiemens, Aug. 4.
WATER TEMPERATURE: Maximum, 28.0, July 8; minimum, 0.0°C on many days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                        | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)    | PH<br>(STAND-<br>ARD<br>UNITS)               | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                | TUR-<br>BID-<br>ITY<br>(NTU)                    | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)    | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L)  | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|-----------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| NOV 1986                    | 4700                                   |                                                 | 7/4                                                  |                                              |                                                     |                                                 | 40.7                                               | 400                                                               |                                                                 | w77                                                            | 200                                                                |
| 18                          | 1300<br>1300                           | 415<br>873                                      | 361<br>321                                           | 7.8<br>7.9                                   | 7.0<br>4.5                                          | 5.2                                             | 12.3<br>12.5                                       | 102<br>97                                                         | 4.8<br>5.8                                                      | K33<br>930                                                     | 280<br>3400                                                        |
| 04<br>19<br>JAN 1987        | 1330<br>1230                           | 2040<br>1090                                    | 171<br>295                                           | 7.5<br>7.4                                   | 5.5<br>4.5                                          | 5.6                                             | 12.5<br>12.6                                       | 99<br>98                                                          | 3.9                                                             | 140<br>820                                                     | 820<br>2400                                                        |
| 13                          | 1300                                   | 1130                                            | 352                                                  | 7.5                                          | 2.5                                                 | 3.5                                             | 14.3                                               | 106                                                               | 3.6                                                             | K360                                                           | 310                                                                |
| 27<br>APR                   | 1230                                   | 665                                             | 374                                                  | 7.9                                          | 12.5                                                | 2.2                                             | 9.0                                                | 85                                                                | 4.6                                                             | K130                                                           | K150                                                               |
| 01<br>29<br>JUN             | 1315<br>1230                           | 3390<br>1710                                    | 206<br>254                                           | 7.6<br>7.7                                   | 10.0                                                | 30<br>5.8                                       | 11.0<br>10.3                                       | 98<br>97                                                          | 3.9<br>3.6                                                      | 500                                                            | 240                                                                |
| 09<br>22<br>JUL             | 1500<br>1200                           | 346<br>315                                      | 379<br>489                                           | 7.8<br>8.6                                   | 22.0<br>24.5                                        | 17                                              | 8.0<br>7.6                                         | 93<br>92                                                          | 4.2<br>7.4                                                      | 1700                                                           | 1700                                                               |
| 14                          | 1300                                   | 536                                             | 326                                                  | 7.5                                          | 27.0                                                | ••                                              | 7.6                                                | 97                                                                | 3.7                                                             | • •                                                            |                                                                    |
| 10<br>SEP                   | 1300                                   | 1130                                            |                                                      | 7.4                                          | 23.0                                                | 22                                              | 7.9                                                |                                                                   | 3.8                                                             | K700                                                           | K360                                                               |
| 03                          | 1330<br>1130                           | 272<br>743                                      | 378<br>293                                           | 8.0<br>7.8                                   | 20.5<br>18.0                                        | 6.7                                             | 8.7<br>9.1                                         | 97<br>97                                                          | 3.3<br>3.0                                                      | 230                                                            | 160                                                                |
| DATE                        | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)    | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3) | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3) | ALKA-<br>LINITY,<br>CARBON-<br>ATE<br>IT-FLD<br>(MG/L -<br>CACO3) | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1986                    | 440                                    |                                                 |                                                      |                                              |                                                     |                                                 | 144                                                |                                                                   |                                                                 |                                                                |                                                                    |
| 18                          | 110<br>89                              | 28<br>23                                        | 8.6<br>7.6                                           | 29<br>27                                     | 2.9                                                 | -:-                                             | 99<br>56                                           | 81<br>46                                                          | 81<br>48                                                        | 30<br>28                                                       | 48<br>42                                                           |
| DEC<br>04<br>19<br>JAN 1987 | 50<br>76                               | 13<br>20                                        | 4.3<br>6.3                                           | 13<br>27                                     | 1.7                                                 | ::                                              | 65                                                 | 53                                                                | 53                                                              | 22<br>24                                                       | 23<br>46                                                           |
| 13<br>MAR                   | 82                                     | 21                                              | 7.1                                                  | 33                                           | 1.7                                                 |                                                 | 70                                                 | 57                                                                | 59                                                              | 24                                                             | 51                                                                 |
| 27<br>APR                   | 97                                     | 25                                              | 8.3                                                  | 33                                           | 2.7                                                 |                                                 | 79                                                 | 65                                                                | 67                                                              | 25                                                             | 58                                                                 |
| 01<br>29<br>JUN             | 55<br>73                               | 15<br>19                                        | 4.2<br>6.3                                           | 19<br>20                                     | 1.6<br>1.6                                          | ::                                              | 36<br>74                                           | 30<br>61                                                          | 33<br>62                                                        | 17<br>19                                                       | 31<br>34                                                           |
| 09<br>22<br>JUL             | 110<br>140                             | 28<br>38                                        | 8.6                                                  | 32<br>41                                     | 3.2<br>4.5                                          | 18                                              | 87                                                 | 102                                                               | 100                                                             | 28<br>34                                                       | 51<br>69                                                           |
| 14                          | 91                                     | 24                                              | 7.5                                                  | 29                                           | 3.2                                                 |                                                 |                                                    | •••                                                               | ••                                                              | 25                                                             | 44                                                                 |
| AUG<br>10                   | 79                                     | 21                                              | 6.5                                                  | 24                                           | 2.3                                                 |                                                 |                                                    |                                                                   |                                                                 | 20                                                             | 33                                                                 |
| SEP<br>03<br>23             | 110<br>89                              | 30<br>23                                        | 9.4<br>7.6                                           | 30<br>22                                     | 3.0<br>2.6                                          | ::                                              | 74                                                 | 61                                                                | 61                                                              | 29<br>21                                                       | 46<br>30                                                           |

PASSAIC RIVER BASIN

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)                          | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)     | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)           | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |                                                                 |
|-----------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| NOV 1986        | 0.1                                                | 12                                                   | 210                                                                 | 17                                                                  | 19                                                                 | 88                                                            | alvert Ha                                            | 0.050                                                         |                                                                | 2.20                                                          |                                                                 |
| DEC             | 0.1                                                | 11                                                   | 170                                                                 | 25                                                                  | 59                                                                 | 88                                                            |                                                      | 0.040                                                         | the news                                                       | 1.80                                                          |                                                                 |
| 19              | 0.1<br><0.1                                        | 8.3<br>11                                            | 100<br>170                                                          | 27<br>33                                                            | 149                                                                | 89<br>94                                                      |                                                      | 0.010<br>0.010                                                | No. 22 and                                                     | 0.68                                                          |                                                                 |
| JAN 1987<br>13  | 0.2                                                | 11                                                   | 180                                                                 | 10                                                                  | 31                                                                 | 87                                                            | ••                                                   | 0.020                                                         |                                                                | 1.20                                                          |                                                                 |
| 27              | 0.1                                                | 8.5                                                  | 200                                                                 | 27                                                                  | 48                                                                 | 80                                                            | -                                                    | 0.040                                                         | 4.64                                                           | 1.30                                                          |                                                                 |
| 01<br>29<br>JUN | 0.1<br>0.1                                         | 6.3<br>8.3                                           | 110<br>150                                                          | 79<br>17                                                            | 723<br>78                                                          | 87<br>94                                                      |                                                      | 0.030<br>0.050                                                |                                                                | 0.61<br>0.75                                                  |                                                                 |
| 09              | 0.1                                                | 12 9.9                                               | 200<br>290                                                          | 49                                                                  | 42                                                                 | 98                                                            | 0.160<br>0.210                                       | 0.160<br>0.210                                                | 2.10<br>2.30                                                   | 2.10 2.30                                                     |                                                                 |
| JUL 14          | 0.1                                                | 9.9                                                  | 180                                                                 | .,                                                                  |                                                                    |                                                               | 0.180                                                | 0.180                                                         | 1.90                                                           | 1.80                                                          |                                                                 |
| AUG<br>10       | 0.6                                                | 0.7                                                  | 140                                                                 |                                                                     |                                                                    |                                                               | 0.090                                                | 0.080                                                         | 1.40                                                           | 1.30                                                          |                                                                 |
| 03<br>23        | 0.2                                                | 12<br>13                                             | 200<br>160                                                          | 26                                                                  | 52                                                                 | 95                                                            | 0.130<br>0.070                                       | 0.130<br>0.060                                                | 2.50<br>1.30                                                   | 2.40<br>1.30                                                  |                                                                 |
|                 | DATE                                               | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)       | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                   | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO,<br>TOTAL<br>(MG/L<br>AS P)         | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C)        | CARBON,<br>ORGANIC<br>SUS-<br>PENDED<br>TOTAL<br>(MG/L<br>AS C) |
|                 | NOV 1986<br>18<br>20                               | 1.10                                                 | 1.00                                                                | 1.9                                                                 | :                                                                  | 0.570<br>0.470                                                | 0.430<br>0.380                                       | 200                                                           | 0.390<br>0.350                                                 | :                                                             | :                                                               |
|                 | 04<br>19                                           | 0.16<br>0.61                                         | 0.150<br>0.620                                                      | 0.90                                                                | ::                                                                 | 0.160<br>0.260                                                | 0.090<br>0.170                                       | ::                                                            | 0.070<br>0.140                                                 | ::                                                            | ::                                                              |
|                 | JAN 1987                                           | 0.80                                                 | 0.780                                                               | 1.3                                                                 | 1.2                                                                | 0.240                                                         | 0.190                                                | 100                                                           | 0.160                                                          |                                                               |                                                                 |
|                 | MAR 27                                             | 0.96                                                 | 0.920                                                               | 2.1                                                                 | 1                                                                  | 0.400                                                         | 0.220                                                | 78.1                                                          | 0.170                                                          |                                                               |                                                                 |
|                 | APR<br>01<br>29                                    | 0.29                                                 | 0.280<br>0.280                                                      | 1.2                                                                 | ::                                                                 | 0.240                                                         | 0.070<br>0.120                                       |                                                               | 0.050<br>0.100                                                 | ::                                                            | 782                                                             |
|                 | JUN<br>09<br>22                                    | 0.74<br>0.64                                         | 0.720<br>0.860                                                      | 2.1<br>4.8                                                          | 2.2                                                                | 0.550<br>1.10                                                 | 0.360<br>0.650                                       | 0.340<br>0.500                                                | 0.290<br>0.600                                                 | 4.2<br>7.2                                                    | 0.6                                                             |
|                 | JUL 14                                             | 0.43                                                 | 0.400                                                               | 3.9                                                                 | 1.1                                                                | 0.730                                                         | 0.290                                                | 0.340                                                         | 0.280                                                          | 6.8                                                           | 0.1                                                             |
|                 | AUG<br>10                                          | 0.43                                                 | 0.240                                                               | 1.5                                                                 | 1.2                                                                | 0.440                                                         | 0.220                                                | 0.250                                                         | 0.170                                                          |                                                               |                                                                 |
|                 | 03<br>23                                           | 0.44                                                 | 0.440                                                               | 1.5                                                                 | 1.0                                                                | 0.350<br>0.360                                                | 0.310<br>0.180                                       | 0.310<br>0.220                                                | 0.290<br>0.150                                                 | 5.1<br>7.8                                                    | 0.9                                                             |

103

# 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE             | TIME                                         | ALUM-<br>INUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AL) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                     | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS) | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) |
|------------------|----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| NOV 1986         |                                              |                                                                |                                                     |                                                         |                                              |                                                         |                                              |                                                                 |                                                      |                                                         |
| 18               | 1300<br>1300                                 | :-                                                             | 10<br>10                                            | ::                                                      | <1<br><1                                     | :-                                                      | 17<br>19                                     | :-                                                              | <0.5<br><0.5                                         | ::                                                      |
| 04<br>19         | 1330<br>1230                                 | 390                                                            | 30<br>20                                            | <1<br>                                                  | <1<br><1                                     | <100                                                    | 19<br>20                                     | <10                                                             | <0.5<br><0.5                                         | <1                                                      |
| JAN 1987         | 1300                                         |                                                                |                                                     |                                                         |                                              |                                                         |                                              |                                                                 |                                                      |                                                         |
| MAR<br>27<br>APR | 1230                                         |                                                                | 10                                                  |                                                         | <1                                           | -                                                       | 22                                           | ••                                                              | <0.5                                                 | 3.4                                                     |
| 01<br>29         | 1315<br>1230                                 | 980                                                            | 10<br>20                                            | .1                                                      | <1<br><1                                     | 100                                                     | 12<br>14                                     | <10                                                             | <0.5<br><0.5                                         | <1                                                      |
| 09               | 1500<br>1200                                 | ::                                                             |                                                     | ::                                                      |                                              | ::                                                      | ::                                           | ::                                                              |                                                      | ::                                                      |
| JUL 14           | 1300                                         |                                                                |                                                     |                                                         |                                              | ••                                                      |                                              |                                                                 |                                                      |                                                         |
| AUG<br>10<br>SEP | 1300                                         | 530                                                            | 20                                                  | 1                                                       | 1                                            | <100                                                    | 15                                           | <10                                                             | <0.5                                                 | <1                                                      |
| 03<br>23         | 1330<br>1130                                 | ::                                                             | 10                                                  | ::                                                      | 1                                            | ::                                                      | 19                                           | ::                                                              | <0.5                                                 | ::                                                      |
| DATE             | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CO) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)           | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)           | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)   |
| NOV 1986         |                                              |                                                                |                                                     |                                                         |                                              |                                                         |                                              |                                                                 |                                                      |                                                         |
| 18<br>20<br>DEC  | <1<br>1                                      | ::                                                             | <1                                                  | :                                                       | <3<br><3                                     | ::                                                      | 5                                            | ::                                                              | 61<br>94                                             | ::                                                      |
| 04               | 1                                            | <10                                                            | <1<br><1                                            | <1<br>                                                  | <3<br><3                                     | 10                                                      | 6                                            | 880                                                             | 72<br>48                                             | <5<br>···                                               |
| JAN 1987<br>13   |                                              |                                                                |                                                     |                                                         |                                              |                                                         |                                              |                                                                 |                                                      |                                                         |
| 27<br>APR        | <1                                           |                                                                | <1                                                  |                                                         | <3                                           | - 66                                                    | 2                                            |                                                                 | 21                                                   |                                                         |
| 01               | <1<br>2                                      | <10                                                            | <1<br><1                                            | <1<br>                                                  | <3<br><3                                     | 11                                                      | 3 4                                          | 1700                                                            | 36<br>54                                             | 30                                                      |
| JUN<br>09<br>22  |                                              |                                                                | ::                                                  |                                                         |                                              | ::                                                      |                                              | ::                                                              |                                                      |                                                         |
|                  |                                              |                                                                |                                                     | •••                                                     |                                              | •••                                                     |                                              | •••                                                             |                                                      | •••                                                     |
| JUL<br>14        |                                              |                                                                |                                                     |                                                         |                                              |                                                         |                                              |                                                                 |                                                      |                                                         |
| 14<br>AUG<br>10  | ··<br><1                                     | 10                                                             | ··<br><1                                            |                                                         | <br><3                                       | 10                                                      |                                              |                                                                 | 23                                                   |                                                         |
| 14<br>AUG        |                                              |                                                                |                                                     | <br>7<br>::                                             |                                              |                                                         | 3                                            | 1100                                                            |                                                      | 6<br>                                                   |

## 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                 | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)   | LITHIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS LI) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)        | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)         | MOLYB-<br>DENUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MO) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) |
|----------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| NOV 1986             |                                              |                                                         |                                                     |                                                                 |                                                      |                                                                 |                                                      |                                                                  |                                                       |                                                         |
| 18                   | <5<br>7                                      |                                                         | <4                                                  |                                                                 | 82<br>73                                             | 2 65                                                            | 0.1<br><0.1                                          |                                                                  | <10<br><10                                            |                                                         |
| DEC                  |                                              |                                                         |                                                     |                                                                 |                                                      |                                                                 | 300127                                               |                                                                  |                                                       | 1                                                       |
| 19                   | <5<br><5                                     | <10                                                     | 5 4                                                 | 50                                                              | 19<br>80                                             | 0.10                                                            | <0.1<br><0.1                                         | 2                                                                | <10<br><10                                            | <b>&lt;1</b>                                            |
| JAN 1987<br>13       |                                              |                                                         |                                                     |                                                                 |                                                      |                                                                 | mod a                                                | THE HALL                                                         |                                                       | 1.482                                                   |
| MAR 27               | <5                                           |                                                         | 6                                                   | 4                                                               | 160                                                  |                                                                 | <0.1                                                 | No.                                                              | <10                                                   |                                                         |
| APR 01               | <5                                           | <10                                                     | 8                                                   | 170                                                             | 84                                                   | 0.20                                                            | <0.1                                                 | <1                                                               | <10                                                   | 2                                                       |
| 29                   | ₹5                                           | 110                                                     | <4                                                  | 170                                                             | 62                                                   | 0.20                                                            | 0.1                                                  |                                                                  | <10                                                   |                                                         |
| JUN<br>09            |                                              |                                                         |                                                     |                                                                 |                                                      |                                                                 |                                                      |                                                                  |                                                       |                                                         |
| 22<br>JUL            | ••                                           |                                                         | ••                                                  |                                                                 | ••                                                   |                                                                 |                                                      | 4.401                                                            |                                                       | •                                                       |
| 14                   |                                              |                                                         |                                                     |                                                                 |                                                      |                                                                 |                                                      |                                                                  |                                                       |                                                         |
| 10                   | <5                                           | <10                                                     | 5                                                   | 100                                                             | 49                                                   |                                                                 | eneral is                                            | 5                                                                | <10                                                   | 4                                                       |
| 03                   |                                              |                                                         | 1000                                                |                                                                 |                                                      |                                                                 |                                                      |                                                                  |                                                       | 754                                                     |
| 23                   | <5                                           |                                                         | <4                                                  | ••                                                              | 110                                                  | ••                                                              | <0.1                                                 |                                                                  | <10                                                   |                                                         |
| DATE                 | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG)         | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)         | STRON-<br>TIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS SR) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)               | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)              |
| NOV 1986<br>18       | 2                                            |                                                         | <1                                                  |                                                                 | <1                                                   |                                                                 | 91                                                   | <6                                                               | 54                                                    | 12                                                      |
| 20                   | 1                                            | ••                                                      | <1                                                  |                                                                 | ₹1                                                   |                                                                 | 83                                                   | <6                                                               |                                                       | 12<br>13                                                |
| 04<br>19<br>JAN 1987 | <1                                           | <1                                                      | <1<br><1                                            | <1                                                              | <1<br><1                                             |                                                                 | 47<br>72                                             | <6<br><6                                                         | 30                                                    | 10                                                      |
| 13                   | ••                                           |                                                         |                                                     | den de                                                          | 11 .                                                 |                                                                 |                                                      | 3.20 LA.                                                         | •                                                     | •                                                       |
| 27<br>APR            | 1                                            |                                                         | <1                                                  | 4                                                               | <1                                                   |                                                                 | 89                                                   | <6                                                               |                                                       | 12                                                      |
| 01<br>29<br>JUN      | 3 2                                          | <1                                                      | <1<br><1                                            | <1                                                              | <1<br><1                                             | ::                                                              | 51<br>67                                             | <6<br><6                                                         | 30                                                    | 3<br>18                                                 |
| 09<br>22             |                                              | ::                                                      | 1                                                   |                                                                 | ::                                                   | :                                                               | 6.                                                   | Age of the second                                                |                                                       |                                                         |
| JUL 14               | 18 23                                        | 1.7                                                     |                                                     |                                                                 |                                                      |                                                                 |                                                      |                                                                  |                                                       | San A                                                   |
| AUG                  |                                              |                                                         | 25.                                                 |                                                                 | 18 19                                                |                                                                 |                                                      | A SATE OF                                                        |                                                       |                                                         |
| 10<br>SEP            | <1                                           | <1                                                      | <1                                                  | <1                                                              | <1                                                   | 110                                                             | 80                                                   | <6                                                               | <10                                                   | 7                                                       |
| 03                   | 2                                            |                                                         | ï                                                   |                                                                 | <1                                                   |                                                                 | 87                                                   | <6                                                               |                                                       | 6                                                       |
|                      |                                              |                                                         |                                                     |                                                                 |                                                      |                                                                 |                                                      |                                                                  |                                                       |                                                         |

#### 01390500 SADDLE RIVER AT RIDGEWOOD, NJ

LOCATION.--Lat 40°59'05", long 74°05'30", Bergen County, Hydrologic Unit 02030103, on left bank 15 ft upstream from bridge on State Highway 17 in Ridgewood and 2.8 mi upstream from Hohokus Brook.

DRAINAGE AREA .-- 21.6 mi 2.

PERIOD OF RECORD.--October 1954 to September 1974, October 1977 to current year. Operated as a maximum-stage gage water years 1975-77.

REVISED RECORDS .-- WRD-NJ 1974: 1971.

GAGE.--Water-stage recorder. Datum of gage is 71.74 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records fair. The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--29 years (water years 1955-74, 1978-87), 35.3 ft3/s, 22.19 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,650 ft $^3$ /s, Nov. 8, 1977, gage height, 12.25 ft; minimum daily, 0.2 ft $^3$ /s, Sept. 17, 18, 1966.

EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of July 23, 1945, reached a discharge of 6,400  $\rm ft^3/s$ , at site 1.6 mi upstream, drainage area, 19.1  $\rm mi^2$ , by slope-area measurement.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 380 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|----------|------|-----------------------------------|---------------------|
| Nov. 21 | 0430 | 837                               | 5.22             | Apr. 4   | 1915 | *1,420                            | *6.64               |
| Nov. 26 | 2315 | 689                               | 4.80             | July 14  | 1930 | 452                               | 4.05                |
| Dec. 3  | 0415 | 421                               | 3.93             | Aug. 5   | 1800 | 558                               | 4.40                |
| Mar. 1  | 1545 | 452                               | 4.05             | Sept. 9  | 0100 | 381                               | 3.79                |
| Mar. 31 | 1745 | 706                               | 4.86             | Sept. 13 | 1730 | 539                               | 4.34                |

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 3.9 ft3/s, Aug. 26.

|                                            |                                          | DISCHAP                                      | IGE, IN CO                                | DBIC FEET                                 | PER SECUR                               | MEAN VALU                                 | JES OCT                                   | JBEK 1900                               | IU SEPIE                                 | MBER 1907                                 |                                             |                                              |
|--------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------|----------------------------------------------|
| DAY                                        | OCT                                      | NOV                                          | DEC                                       | JAN                                       | FEB                                     | MAR                                       | APR                                       | MAY                                     | JUN                                      | JUL                                       | AUG                                         | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | 7.5<br>7.3<br>11<br>35<br>12             | 8.3<br>8.7<br>8.4<br>8.6<br>9.7              | 21<br>30<br>207<br>50<br>36               | 23<br>122<br>56<br>33<br>26               | 31<br>32<br>41<br>45<br>36              | 205<br>113<br>62<br>49<br>42              | 96<br>53<br>44<br>656<br>176              | 36<br>35<br>41<br>84<br>55              | 11<br>12<br>11<br>15<br>22               | 9.6<br>14<br>21<br>11<br>9.7              | e6.0<br>e5.8<br>9.5<br>15<br>140            | 13<br>9.4<br>8.0<br>7.3<br>6.4               |
| 6<br>7<br>8<br>9                           | 9.8<br>8.6<br>8.1<br>7.8<br>7.3          | 41<br>15<br>52<br>43<br>26                   | 30<br>27<br>26<br>39<br>45                | 23<br>25<br>23<br>21<br>23                | 30<br>29<br>31<br>34<br>27              | 40<br>44<br>45<br>41<br>35                | 200<br>156<br>102<br>87<br>78             | 40<br>37<br>32<br>30<br>28              | 9.7<br>11<br>11<br>11                    | 8.9<br>9.4<br>34<br>18<br>12              | 170<br>29<br>18<br>25<br>78                 | 6.5<br>28<br>73<br>113<br>20                 |
| 11<br>12<br>13<br>14<br>15                 | 7.3<br>7.5<br>7.2<br>20                  | 81<br>68<br>34<br>27<br>27                   | 30<br>33<br>27<br>21<br>21                | 46<br>32<br>26<br>25<br>39                | 25<br>25<br>24<br>22<br>19              | 32<br>33<br>35<br>34<br>31                | 71<br>66<br>75<br>60<br>55                | 26<br>25<br>23<br>22<br>29              | 8.5<br>8.1<br>10<br>8.1<br>7.8           | 9.8<br>16<br>16<br>101<br>49              | 19<br>14<br>11<br>9.0<br>9.0                | 14<br>12<br>211<br>66<br>27                  |
| 16<br>17<br>18<br>19<br>20                 | 8.4<br>8.0<br>8.2<br>7.5<br>7.0          | 25<br>23<br>24<br>84<br>70                   | 20<br>20<br>53<br>88<br>39                | 53<br>26<br>43<br>66<br>39                | 22<br>22<br>19<br>18<br>18              | 29<br>28<br>28<br>27<br>27                | 54<br>81<br>84<br>56<br>49                | 23<br>21<br>20<br>30<br>21              | 6.8<br>6.1<br>6.2<br>5.7<br>6.3          | 15<br>12<br>10<br>9.3<br>9.4              | 8.4<br>7.7<br>7.2<br>6.1<br>5.6             | 22<br>49<br>56<br>45<br>28                   |
| 21<br>22<br>23<br>24<br>25                 | 6.6<br>6.7<br>6.8<br>7.1<br>7.1          | 317<br>45<br>29<br>27<br>21                  | 30<br>25<br>24<br>24<br>120               | 34<br>44<br>76<br>34<br>36                | 18<br>19<br>24<br>22<br>20              | 27<br>26<br>25<br>24<br>24                | 46<br>43<br>40<br>56<br>93                | 20<br>19<br>18<br>18<br>17              | 45<br>16<br>13<br>10<br>8.2              | 10<br>7.9<br>7.3<br>6.9<br>6.4            | 5.1<br>5.2<br>5.5<br>4.2<br>4.9             | 23<br>21<br>21<br>21<br>21<br>24             |
| 26<br>27<br>28<br>29<br>30<br>31           | 13<br>17<br>10<br>9.2<br>9.1<br>8.2      | 177<br>126<br>40<br>30<br>25                 | 43<br>32<br>29<br>27<br>25<br>24          | 35<br>34<br>32<br>30<br>35<br>41          | 19<br>19<br>19                          | 25<br>25<br>44<br>29<br>26<br>369         | 51<br>43<br>59<br>49<br>40                | 16<br>16<br>16<br>14<br>13              | 7.6<br>49<br>29<br>13<br>11              | 6.6<br>6.5<br>6.1<br>e6.0<br>e6.4<br>e6.2 | 3.9<br>53<br>69<br>39<br>15                 | 18<br>16<br>15<br>15<br>18                   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 308.3<br>9.95<br>35<br>6.6<br>.46<br>.53 | 1520.7<br>50.7<br>317<br>8.3<br>2.35<br>2.62 | 1266<br>40.8<br>207<br>20<br>1.89<br>2.18 | 1201<br>38.7<br>122<br>21<br>1.79<br>2.07 | 710<br>25.4<br>45<br>18<br>1.17<br>1.22 | 1624<br>52.4<br>369<br>24<br>2.43<br>2.80 | 2819<br>94.0<br>656<br>40<br>4.35<br>4.85 | 837<br>27.0<br>84<br>12<br>1.25<br>1.44 | 401.1<br>13.4<br>49<br>5.7<br>.62<br>.69 | 471.4<br>15.2<br>101<br>6.0<br>.70<br>.81 | 809.1<br>26.1<br>170<br>3.9<br>1.21<br>1.39 | 1006.6<br>33.6<br>211<br>6.4<br>1.55<br>1.73 |

CAL YR 1986 TOTAL 12349.8 MEAN 33.8 MAX 423 MIN 6.2 CFSM 1.57 IN. 21.26 WTR YR 1987 TOTAL 12974.2 MEAN 35.5 MAX 656 MIN 3.9 CFSM 1.65 IN. 22.34

e Estimated

#### 01391000 HOHOKUS BROOK AT HO-HO-KUS, NJ

LOCATION.--Lat 40°59'52", long 74°06'48", Bergen County, Hydrologic Unit 02030103, on left bank 500 ft upstream from bridge on Maple Avenue in Ho-Ho-Kus, and 3.5 mi upstream from mouth.

DRAINAGE AREA . - - 16.4 mi 2.

PERIOD OF RECORD.--April 1954 to September 1973, October 1977 to current year. Operated as a crest-stage partial-record station, water years 1974-77.

REVISED RECORDS. -- WDR NJ-77-1: 1955(M), 1968(M), 1976(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 120.09 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records good below 300 ft<sup>3</sup>/s and fair above. Some regulation and diurnal fluctuation at low and medium flows caused by unknown sources, possibly sewage treatment plant upstream of gage. Several measurements of water temperature were made during the year. Gage height telemeter at station.

AVERAGE DISCHARGE.--29 years (water years 1955-73, 1978-87), 33.5 ft3/s, 27.74 in./yr.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 3,700 ft<sup>3</sup>/s, Nov. 8, 1977, gage height, 7.06 ft, from rating curve extended above 750 ft<sup>3</sup>/s by computation of peak-flow over dam; minimum, 1.9 ft<sup>3</sup>/s, Aug. 2, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft3/s and maximum (\*):

| Date                          | Time                       | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)           | Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|-------------------------------|----------------------------|-----------------------------------|----------------------------|--------------------|--------------|-----------------------------------|---------------------|
| Nov. 21<br>Nov. 26<br>Mar. 31 | unknown<br>unknown<br>1430 | e700<br>e600<br>471               | unknown<br>unknown<br>2.79 | Apr. 4<br>Sept. 13 | 1800<br>1700 | *1,050<br>530                     | *3.61<br>2.89       |

Minimum discharge, 8.6 ft<sup>3</sup>/s, Aug. 26, gage height, 1.25 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

| DAY                              | OCT                        | NOV                               | DEC                              | JAN                              | FEB                        | MAR                               | APR                           | MAY                              | JUN                        | JUL                        | AUG                              | SEP                              |
|----------------------------------|----------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------|-----------------------------------|-------------------------------|----------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|
| 1                                | 19                         | 17                                | e31                              | 33                               | 39                         | 180                               | 105                           | 40                               | 22                         | 19                         | 15                               | 23                               |
| 2                                | 21                         | 16                                | e49                              | 104                              | 41                         | 118                               | 58                            | 38                               | 21                         | 27                         | 14                               | 19                               |
| 3                                | 29                         | 16                                | 209                              | 70                               | 48                         | 69                                | 47                            | 46                               | 21                         | 36                         | 21                               | 16                               |
| 4                                | 45                         | 15                                | 65                               | 49                               | 50                         | 56                                | e550                          | 79                               | 26                         | 22                         | 18                               | 16                               |
| 5                                | 23                         | 18                                | 46                               | 42                               | 44                         | 50                                | e175                          | 56                               | 36                         | 18                         | 69                               | 16                               |
| 6<br>7<br>8<br>9                 | 19<br>18<br>18<br>18<br>17 | 48<br>24<br>44<br>35<br>23        | 40<br>37<br>35<br>50<br>56       | 38<br>38<br>38<br>35<br>38       | 41<br>41<br>42<br>44<br>40 | 47<br>51<br>54<br>49<br>40        | e144<br>143<br>92<br>76<br>68 | 46<br>42<br>39<br>37<br>35       | 24<br>21<br>22<br>24<br>24 | 18<br>20<br>51<br>38<br>24 | 135<br>34<br>24<br>30<br>73      | 15<br>39<br>85<br>88<br>33       |
| 11                               | 17                         | 52                                | 42                               | 53                               | 38                         | 37                                | 61                            | 34                               | 20                         | 20                         | 31                               | 26                               |
| 12                               | 16                         | 44                                | 46                               | 43                               | 38                         | 37                                | 57                            | 33                               | 21                         | 22                         | 23                               | 24                               |
| 13                               | 18                         | 25                                | 38                               | 38                               | 37                         | 40                                | 62                            | 31                               | 21                         | 19                         | 21                               | 173                              |
| 14                               | 35                         | 20                                | 32                               | 36                               | 35                         | 40                                | 54                            | 31                               | 20                         | 88                         | 20                               | 82                               |
| 15                               | 23                         | 20                                | 31                               | 42                               | 30                         | 38                                | 50                            | 38                               | 19                         | 74                         | 19                               | 39                               |
| 16<br>17<br>18<br>19<br>20       | 19<br>18<br>18<br>17       | 19<br>19<br>19<br>50<br>63        | 32<br>31<br>69<br>96<br>50       | 43<br>37<br>49<br>64<br>49       | 34<br>39<br>29<br>24<br>22 | 36<br>34<br>33<br>33<br>33        | 49<br>73<br>76<br>53<br>49    | 33<br>29<br>29<br>39<br>31       | 18<br>17<br>17<br>17<br>17 | 27<br>22<br>20<br>18<br>20 | 18<br>18<br>19<br>17<br>17       | 32<br>62<br>65<br>50<br>34       |
| 21                               | 17                         | e227                              | 40                               | 43                               | 23                         | 32                                | 46                            | 29                               | 60                         | 21                         | 16                               | 30                               |
| 22                               | 17                         | e64                               | 36                               | 43                               | 24                         | 32                                | 42                            | 29                               | 30                         | 18                         | 15                               | 27                               |
| 23                               | 17                         | e39                               | 34                               | 46                               | 36                         | 31                                | 40                            | 29                               | 23                         | 18                         | 15                               | 25                               |
| 24                               | 17                         | e35                               | 35                               | 38                               | 35                         | 29                                | 52                            | 27                               | 20                         | 17                         | 15                               | 27                               |
| 25                               | 17                         | e31                               | 147                              | 36                               | 33                         | 29                                | 84                            | 26                               | 18                         | 16                         | 15                               | 29                               |
| 26<br>27<br>28<br>29<br>30<br>31 | 30<br>29<br>20<br>18<br>18 | e122<br>e139<br>e57<br>e38<br>e34 | 60<br>45<br>40<br>38<br>37<br>35 | 36<br>35<br>35<br>34<br>34<br>44 | 32<br>32<br>33             | 29<br>29<br>40<br>34<br>34<br>246 | 49<br>42<br>55<br>49<br>43    | 26<br>26<br>27<br>26<br>24<br>22 | 18<br>64<br>43<br>23<br>20 | 16<br>17<br>16<br>15<br>15 | 13<br>65<br>86<br>58<br>26<br>21 | 23<br>22<br>22<br>22<br>22<br>26 |
| TOTAL                            | 642                        | 1373                              | 1632                             | 1363                             | 1004                       | 1640                              | 2544                          | 1077                             | 747                        | 788                        | 981                              | 1190                             |
| MEAN                             | 20.7                       | 45.8                              | 52.6                             | 44.0                             | 35.9                       | 52.9                              | 84.8                          | 34.7                             | 24.9                       | 25.4                       | 31.6                             | 39.7                             |
| MAX                              | 45                         | 227                               | 209                              | 104                              | 50                         | 246                               | 550                           | 79                               | 64                         | 88                         | 135                              | 173                              |
| MIN                              | 16                         | 15                                | 31                               | 33                               | 22                         | 29                                | 40                            | 22                               | 17                         | 15                         | 13                               | 15                               |
| CFSM                             | 1.26                       | 2.79                              | 3.21                             | 2.68                             | 2.19                       | 3.23                              | 5.17                          | 2.12                             | 1.52                       | 1.55                       | 1.93                             | 2.42                             |
| IN.                              | 1.46                       | 3.11                              | 3.70                             | 3.09                             | 2.28                       | 3.72                              | 5.77                          | 2.44                             | 1.69                       | 1.79                       | 2.23                             | 2.70                             |

CAL YR 1986 TOTAL 14179 MEAN 38.8 MAX 266 MIN 15 CFSM 2.37 IN. 32.15 WTR YR 1987 TOTAL 14981 MEAN 41.0 MAX 550 MIN 13 CFSM 2.50 IN. 33.97

e Estimated

#### 01391200 SADDLE RIVER AT FAIR LAWN, NJ

LOCATION.--Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road in Fair Lawn, and 0.8 mi downstream from Hohokus Brook.

DRAINAGE AREA .-- 45.2 mi 2.

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                      | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFI<br>CON-<br>DUCT<br>ANCE<br>(US/C | - (S                                                 | PH<br>TAND-<br>ARD<br>ITS)            | TEMP<br>ATU<br>WAT<br>(DEG | RE<br>ER                                     | DXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYG<br>DI<br>SOL<br>(PE<br>CE<br>SAT<br>ATI    | S- DE<br>VED B<br>R- C<br>NT I<br>UR- 5       | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COL<br>FORI<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL, ST<br>TOO<br>TH FE                       | TREP-<br>COCCI<br>ECAL<br>MPN) |
|----------------|-------------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------|----------------------------|----------------------------------------------|-------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------|
| OCT 1986       | 0950                                      | E32                                             |                                               | 05                                                   |                                       | 40                         |                                              |                                     |                                                 | 79                                            | 3.9                                                  | 490                                    | 33                                                 | 20                             |
| 08<br>FEB 1987 |                                           | 377                                             |                                               | 85                                                   | 7.7                                   |                            | .0                                           | 8.6                                 |                                                 |                                               |                                                      | 22.7                                   |                                                    |                                |
| 17<br>APR      | 1100                                      | E102                                            | 6                                             | 18                                                   | 7.8                                   | 3                          | .5                                           | 14.0                                | 1                                               | 06                                            | 3.0                                                  | 80                                     | 2                                                  | 20                             |
| 08<br>JUN      | 0900                                      | E362                                            | 3                                             | 65                                                   | 7.7                                   | 9                          | .0                                           | 10.0                                |                                                 | 87                                            | 3.8                                                  | 1300                                   | 230                                                | 00                             |
| 09             | 1230                                      | E50                                             | 5                                             | 78                                                   | 7.8                                   | 20                         | .0                                           | 6.7                                 |                                                 | 74                                            | 5.8                                                  | 2400                                   | 540                                                | 00                             |
| JUL<br>14      | 1100                                      | E339                                            | 5                                             | 38                                                   | 7.9                                   | 24                         | .0                                           | 6.0                                 |                                                 | 72                                            | 2.6                                                  | 1100                                   | 230                                                | 00                             |
| AUG<br>12      | 1130                                      | E47                                             |                                               | 49                                                   | 7.9                                   |                            | .0                                           | 7.7                                 |                                                 | 86                                            | 7.2                                                  | 4900                                   |                                                    | 00                             |
| 12             | 1130                                      | E41                                             | ,                                             | 47                                                   | 1.7                                   | 21                         | .0                                           | 1.1                                 |                                                 | <b>30</b>                                     | 1.2                                                  | 4700                                   | ,                                                  |                                |
| DATE           | HARI<br>NESS<br>(MG,<br>AS<br>CAC         | S DI:                                           | CIUM<br>S-<br>LVED<br>G/L                     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SOD II<br>DIS<br>SOLV<br>(MG<br>AS    | ED<br>/L                   | POTA<br>SIUI<br>DIS<br>SOLVI<br>(MG/<br>AS K | I, LIN                              | AB<br>G/L<br>S                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | SOI (M                                               | E,                                     | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                                |
| OCT 1986       |                                           |                                                 |                                               |                                                      |                                       |                            |                                              |                                     |                                                 |                                               |                                                      |                                        |                                                    |                                |
| 08<br>FEB 1987 |                                           | 180 4                                           | В                                             | 14                                                   | 42                                    |                            | 5.                                           | 112                                 |                                                 | 39                                            | 6                                                    | 7                                      | 0.1                                                |                                |
| 17             | -                                         | 180 4                                           | 9                                             | 13                                                   | 49                                    |                            | 2.                                           | 133                                 |                                                 | 32                                            | 9                                                    | 2                                      | 0.2                                                |                                |
| APR<br>08      |                                           | 110 3                                           | 1                                             | 7.2                                                  | 29                                    |                            | 2.                                           | 70                                  |                                                 | 23                                            | 5                                                    | 2                                      | <0.1                                               |                                |
| JUN<br>09      |                                           | 180 4                                           | R                                             | 14                                                   | 42                                    |                            | 4.                                           | 122                                 |                                                 | 34                                            | 69                                                   | ,                                      | 0.2                                                |                                |
| JUL<br>14      |                                           | 180 4                                           |                                               | 14                                                   | 38                                    |                            | 4.                                           |                                     |                                                 | 32                                            | 6                                                    |                                        | 0.2                                                |                                |
| AUG            |                                           |                                                 |                                               |                                                      |                                       |                            |                                              |                                     |                                                 |                                               |                                                      |                                        |                                                    |                                |
| 12             |                                           | 160 4                                           | 1                                             | 13                                                   | 42                                    |                            | 4.                                           | 7 104                               |                                                 | 34                                            | 6                                                    | 5                                      | 0.3                                                |                                |
| DATE           | SILII<br>DIS<br>SOL'<br>(MG,<br>AS<br>SIO | CA, SUM<br>CON-<br>VED TUE<br>/L D<br>SO        | STI-<br>NTS, N<br>IS-<br>LVED                 | NITRO-<br>GEN,<br>ITRITE<br>TOTAL<br>(MG/L<br>AS N)  | NIT<br>GE<br>NO2+<br>TOT<br>(MG<br>AS | N<br>NÓ3<br>AL<br>/L       | NITR<br>GEN<br>AMMON<br>TOTA<br>(MG/<br>AS N | O- GEN<br>MON<br>IA ORGA<br>TO      | TRO-<br>AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOI<br>TO                                           | OS-<br>RUS,<br>TAL<br>G/L<br>P)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                                |
| OCT 1986       |                                           |                                                 | 700                                           |                                                      |                                       |                            |                                              |                                     | ~~                                              |                                               |                                                      |                                        |                                                    |                                |
| 08<br>FEB_1987 | 1:                                        |                                                 | 300                                           | 2.05                                                 | 8.                                    |                            | 0.4                                          |                                     | .99                                             | 9.1                                           | 1.                                                   |                                        | 4.8                                                |                                |
| 17             | 11                                        | 0                                               | 330                                           | 0.155                                                | 1.                                    | 92                         | 2.2                                          | 8 3                                 | .1                                              | 5.0                                           | 0.                                                   | 509                                    | 4.1                                                |                                |
| 08<br>JUN      |                                           | 9.5                                             | 200                                           | E0.017                                               | 1.                                    | 44                         | 0.5                                          | 7 1                                 | .2                                              | 2.6                                           | 0.                                                   | 219                                    | 7.1                                                |                                |
| 09             | 1                                         | 4                                               | 300                                           | 0.375                                                | 3.                                    | 74                         | 1.1                                          | 7 1                                 | .7                                              | 5.4                                           | 1.                                                   | 80                                     | 5.6                                                |                                |
| JUL<br>14      | 1                                         | 0                                               | 280                                           | 0.400                                                | 5.                                    | 46                         | 0.3                                          | B 1                                 | .2                                              | 6.7                                           | 1.                                                   | 08                                     | 6.2                                                |                                |
| AUG<br>12      | 1.                                        | 2                                               | 280                                           | 0.024                                                | 5.                                    | 72                         | 0.3                                          | 0 0                                 | .93                                             | 6.7                                           | 1.                                                   | 14                                     | 7.0                                                |                                |
|                |                                           |                                                 |                                               | 11 1 1000                                            |                                       | 191                        | 13.413                                       |                                     | 0.00                                            | 0.5                                           |                                                      | 12.                                    |                                                    |                                |

# 01391200 SADDLE RIVER AT FAIR LAWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME           | SULFI<br>TOTA<br>(MG/<br>AS S                   | L SOL                                                 | IM,<br>S- ARSI<br>VED TO                                        | L<br>TIENIC R<br>TAL E<br>G/L (                     | ERYL- IUM, OTAL ECOV- RABLE UG/L S BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|----------------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT 1986<br>08 | 0950           | <0                                              | .5                                                    | 10                                                              | 2                                                   | <10                                    | 190                                                   | <1                                                      | <10                                                            | 23                                                      |
| DATÉ           | RE<br>ER<br>(L | RON,<br>DTAL<br>ECOV-<br>RABLE<br>JG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCUR<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS HG | - REC<br>E ER/                         | TAL SE<br>COV- NI<br>ABLE TO                          | UM, REC<br>TAL ER/                                      | TAL<br>COV-<br>ABLE PHE<br>G/L TO                              | NOLS<br>OTAL<br>G/L)                                    |
| OCT 1986<br>08 |                | 360                                             | 5                                                     | 80                                                              | <0.1                                                | 0                                      | 4                                                     | <1                                                      | 10                                                             | 3                                                       |

#### 01391500 SADDLE RIVER AT LODI, NJ

LOCATION.--Lat 40°53'25", long 74°04'51", Bergen County, Hydrologic Unit 02030103, on left bank 560 ft upstream from bridge on Outwater Lane in Lodi and 3.2 mi upstream from mouth. Water-quality samples collected at bridge on Outwater Lane at high flows. DRAINAGE AREA.--54.6 mi<sup>2</sup>.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1923 to current year.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1031: 1940(M). WSP 1552: 1929(M), 1936(M), 1938. WRD-NJ 1969: 1967. WRD-NJ 1970: 1968, 1969.

GAGE. -- WATER -- Stage recorder. Concrete control since Nov. 2, 1938. Datum of gage is 25.00 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 2, 1938, at site 560 ft downstream at datum 2.54 ft lower.

REMARKS. -- Records fair. Occasional regulation at low flow. Diversion above station at Arcola by Hackensack Water Co., for municipal supply (records given herein). The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature, other then those published, were made during the year. National Weather Service gage-height telemeter at station.

during the year. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE.--64 years, 101 ft³/s, 25.12 in./yr, adjusted for diversion since 1966.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 ft³/s, Nov. 9, 1977, gage height, 12.36 ft, from highwater mark in gage house; minimum, 1.0 ft³/s, May 25, 1938, gage height, 1.03 ft, site and datum then in use; minimum daily, 6.0 ft³/s, Aug. 23, 1934.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,200 ft³/s and maximum (\*):

| Date                         | Time                    | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)     | Date              | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|------------------------------|-------------------------|-----------------------------------|----------------------|-------------------|--------------|-----------------------------------|---------------------|
| Nov. 21<br>Nov. 26<br>Dec. 3 | 0600<br>2330<br>unknown | 1,390<br>1,490<br>2,310           | 4.96<br>5.14<br>6.91 | Mar. 31<br>Apr. 4 | 1745<br>2315 | 1,280<br>*2,320                   | 4.77<br>*6.94       |

DISCHARGE IN CURIC EEET DED SECOND LATED YEAR OCTORED 1984 TO SEPTEMBER 1987

Minimum discharge, 29 ft3/s, Aug. 2, 26, gage height 1.80 ft.

|                                                              |                                                          |                                                        | DISCHARGE,                                             | IN CUBIC                                             | FEET PER                                               | SECOND,                                              | WATER YEAR<br>AN VALUES                                | OCTOBER                                              | 1986 TO                                                  | SEPTEMBER                                                | 1987                                                     |                                                        |  |
|--------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--|
| DAY                                                          | OCT                                                      | NOV                                                    | DEC                                                    | JAN                                                  | FEB                                                    | MAR                                                  | APR                                                    | MAY                                                  | JUN                                                      | JUL                                                      | AUG                                                      | SEP                                                    |  |
| 1<br>2<br>3<br>4<br>5                                        | 41<br>41<br>70<br>111<br>47                              | 39<br>39<br>38<br>38<br>49                             | e74<br>e130<br>e930<br>e160<br>116                     | 91<br>399<br>218<br>144<br>120                       | 109<br>114<br>136<br>143<br>121                        | 585<br>380<br>194<br>156<br>138                      | 293<br>152<br>126<br>1300<br>693                       | 116<br>112<br>123<br>239<br>169                      | 61<br>62<br>95<br>107                                    | 48<br>63<br>90<br>54<br>48                               | 35<br>34<br>48<br>43<br>227                              | 73<br>41<br>41<br>42<br>43                             |  |
| 6<br>7<br>8<br>9                                             | 44<br>43<br>41<br>41<br>39                               | 113<br>50<br>111<br>81<br>46                           | 101<br>94<br>90<br>131<br>151                          | 112<br>113<br>111<br>104<br>110                      | 110<br>111<br>113<br>130<br>108                        | 129<br>134<br>143<br>133<br>114                      | 424<br>386<br>265<br>223<br>203                        | 131<br>121<br>111<br>106<br>101                      | 69<br>62<br>65<br>69<br>65                               | 45<br>48<br>158<br>124<br>56                             | 482<br>93<br>60<br>95<br>352                             | 41<br>151<br>234<br>347<br>80                          |  |
| 11<br>12<br>13<br>14<br>15                                   | 39<br>39<br>e41<br>e94<br>e58                            | 115<br>113<br>55<br>44<br>43                           | 110<br>120<br>101<br>87<br>84                          | 161<br>128<br>111<br>105<br>114                      | 101<br>101<br>99<br>91<br>85                           | 105<br>108<br>113<br>110<br>106                      | 186<br>177<br>199<br>168<br>157                        | 97<br>94<br>89<br>87<br>109                          | 56<br>56<br>71<br>61<br>53                               | 58<br>74<br>91<br>272<br>278                             | 71<br>47<br>48<br>48<br>47                               | 67<br>70<br>509<br>284<br>113                          |  |
| 16<br>17<br>18<br>19<br>20                                   | e44<br>e42<br>e42<br>e40<br>38                           | 41<br>39<br>42<br>136<br>97                            | 84<br>82<br>186<br>265<br>139                          | 120<br>103<br>140<br>188<br>143                      | 81<br>84<br>84<br>81<br>80                             | 101<br>97<br>94<br>93<br>93                          | 153<br>210<br>240<br>164<br>149                        | 96<br>85<br>90<br>118<br>89                          | 49<br>46<br>45<br>44<br>44                               | 72<br>49<br>44<br>46<br>54                               | 43<br>42<br>41<br>41<br>38                               | 89<br>186<br>257<br>165<br>103                         |  |
| 21<br>22<br>23<br>24<br>25                                   | 38<br>37<br>38<br>38<br>37                               | 689<br>133<br>86<br>81<br>69                           | 110<br>97<br>91<br>92<br>395                           | 123<br>107<br>131<br>104<br>95                       | 81<br>82<br>106<br>96<br>86                            | 92<br>90<br>87<br>85<br>82                           | 142<br>135<br>127<br>155<br>260                        | 83<br>82<br>80<br>78<br>75                           | 130<br>77<br>56<br>50<br>46                              | 51<br>46<br>44<br>44<br>41                               | 37<br>36<br>36<br>34<br>34                               | 89<br>82<br>76<br>79<br>85                             |  |
| 26<br>27<br>28<br>29<br>30<br>31                             | 73<br>62<br>44<br>40<br>38<br>36                         | 346<br>486<br>124<br>94<br>80                          | 159<br>120<br>108<br>103<br>100<br>95                  | 100<br>93<br>91<br>90<br>108<br>134                  | 83<br>84<br>85                                         | 84<br>82<br>117<br>95<br>88<br>835                   | 151<br>129<br>163<br>144<br>125                        | 73<br>72<br>75<br>72<br>67<br>62                     | 217<br>107<br>69<br>59                                   | 43<br>44<br>39<br>37<br>41<br>38                         | 34<br>196<br>249<br>150<br>59<br>46                      | 70<br>65<br>63<br>62<br>70                             |  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†)<br>MEAN‡<br>CFSM‡<br>IN.‡ | 1476<br>47.6<br>111<br>36<br>.02<br>47.6<br>0.87<br>1.01 | 3517<br>117<br>689<br>38<br>9.4<br>126<br>2.31<br>2.57 | 4705<br>152<br>930<br>74<br>1.2<br>153<br>2.80<br>3.23 | 4011<br>129<br>399<br>90<br>0<br>129<br>2.36<br>2.72 | 2785<br>99.5<br>143<br>80<br>0<br>99.5<br>1.82<br>1.90 | 4863<br>157<br>835<br>82<br>0<br>157<br>2.88<br>3.32 | 7399<br>247<br>1300<br>125<br>0<br>247<br>4.52<br>5.05 | 3102<br>100<br>239<br>62<br>0<br>100<br>1.83<br>2.11 | 2096<br>69.9<br>217<br>44<br>1.7<br>71.6<br>1.31<br>1.46 | 2240<br>72.3<br>278<br>37<br>3.8<br>76.1<br>1.39<br>1.61 | 2846<br>91.8<br>482<br>34<br>6.7<br>98.5<br>1.80<br>2.08 | 3677<br>123<br>509<br>41<br>4.4<br>127<br>2.33<br>2.59 |  |

TOTAL 38196 MEAN 105 MAX 1200 MIN 35 MEAN 112 CFSM# 2.05 IN.# 27.91 TOTAL 42717 MEAN 117 MAX 1300 MIN 34 MEAN 119 CFSM# 2.18 IN.# 29.64 CAL YR 1986 WTR YR 1987

e Estimated

Diversion, equivalent in cubic feet per second, above station by Hackensack Water Co. Records of diversion furnished by Hackensack Water Co.

Adjusted for diversion.

#### 01391500 SADDLE RIVER AT LODI, NJ -- Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

COOPERATION.--Analysis of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by t New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME              | STRE<br>FLO<br>INST<br>TANE<br>(CF | W, CO<br>AN- DU<br>OUS AN                                           | FIC<br>N-<br>CT- (S<br>CE                          | PH<br>STAND-<br>ARD<br>NITS) | TEMPE<br>ATUR<br>WATE<br>(DEG | E I                                                  | YGEN,<br>DIS-<br>DLVED<br>MG/L)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEM<br>BI<br>CH<br>IC                | GEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | FORI<br>FECA<br>EC<br>BRO<br>(MPI | AL, STREP-<br>TOCOCCI<br>TH FECAL                  |
|----------------|-------------------|------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|------------------------------|-------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|-----------------------------------|----------------------------------------------------|
| OCT 1986       |                   |                                    |                                                                     |                                                    |                              |                               |                                                      |                                                 |                                                                |                                      |                                                     |                                   |                                                    |
| 08<br>FEB 1987 | 1200              | E41                                |                                                                     | 607                                                | 7.7                          | 12.                           | 0                                                    | 7.6                                             | 70                                                             |                                      | 3.3                                                 | 3300                              | 600                                                |
| 18             | 1100              | 81                                 |                                                                     | 641                                                | 7.8                          | 4.                            | 0                                                    | 13.0                                            | 100                                                            |                                      | 2.4                                                 | 130                               | 33                                                 |
| APR<br>08      | 1110              | 130                                |                                                                     | 383                                                | 7.6                          | 10.                           | 0                                                    | 9.4                                             | 84                                                             |                                      | 3.6                                                 | 330                               | 330                                                |
| JUN<br>09      | 1030              | 53                                 |                                                                     | 603                                                | 7.6                          | 20.                           | 0                                                    | 4.4                                             | 49                                                             |                                      | 4.9                                                 | 9200                              | 1300                                               |
| JUL 14         | 0915              | 47                                 |                                                                     | 583                                                | 7.7                          | 24.                           | 10.0                                                 | 3.4                                             | 41                                                             |                                      | 4.8                                                 | 4900                              | 4900                                               |
| AUG            |                   |                                    |                                                                     |                                                    |                              |                               |                                                      | 7                                               | 60                                                             |                                      | 3.9                                                 | 4900                              | 800                                                |
| 12             | 1000              | 125                                | 111                                                                 | 573                                                | 7.8                          | 20.                           | U                                                    | 5.5                                             | 60                                                             |                                      | 3.9                                                 | 4900                              | 800                                                |
| DATE           | NES<br>(MC        | SS<br>G/L                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | , SODI<br>DIS<br>D SOLV      | /ED                           | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALK<br>LINI<br>LAI<br>(MG<br>AS<br>CAC          | TY SUL<br>B DI<br>/L SC                                        | FATE<br>S-<br>DLVED<br>IG/L<br>SO4)  | (MC                                                 | DE,                               | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986       |                   |                                    |                                                                     |                                                    |                              |                               |                                                      |                                                 |                                                                |                                      |                                                     |                                   |                                                    |
| 08<br>FEB 1987 |                   | 190                                | 51                                                                  | 15                                                 | 45                           | 5                             | 5.1                                                  | 123                                             |                                                                | 42                                   | 74                                                  | t chi                             | 0.1                                                |
| 18             |                   | 190                                | 53                                                                  | 13                                                 | 49                           | •                             | 3.2                                                  | 140                                             |                                                                | 38                                   | 90                                                  | 0                                 | 0.1                                                |
| APR<br>08      |                   | 120                                | 34                                                                  | 7.8                                                | 30                           | )                             | 2.1                                                  | 77                                              |                                                                | 25                                   | 54                                                  | 4                                 | <0.1                                               |
| JUN<br>09      |                   | 190                                | 52                                                                  | 14                                                 | 42                           | 2                             | 4.2                                                  | 129                                             |                                                                | 36                                   | 7.                                                  | 3                                 | 0.1                                                |
| JUL 14         |                   | 190                                | 52                                                                  | 15                                                 | 42                           |                               | 4.4                                                  | 123                                             |                                                                | 32                                   | 69                                                  |                                   | 0.1                                                |
| AUG<br>12      |                   |                                    |                                                                     |                                                    |                              |                               |                                                      |                                                 |                                                                |                                      |                                                     |                                   |                                                    |
| 12             |                   | 170                                | 45                                                                  | 13                                                 | 40                           |                               | 4.3                                                  | 114                                             |                                                                | 35                                   | 7                                                   | •                                 | 0.2                                                |
| DATE           | DI:<br>SOI<br>(MI | LVED<br>G/L                        | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GE NO24                      | TAL<br>G/L                    | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A + NI<br>NIC C<br>AL TC<br>/L (N                       | TRO-<br>SEN,<br>STAL<br>IG/L<br>S N) | TO (M                                               |                                   | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986       |                   |                                    |                                                                     |                                                    |                              | 10                            |                                                      |                                                 | V                                                              | Pin                                  |                                                     |                                   |                                                    |
| 08<br>FEB 1987 |                   | 14                                 | 320                                                                 | 0.35                                               |                              | .87                           | 0.44                                                 | 1.                                              |                                                                | 3.2                                  | 1.4                                                 |                                   | 5.2                                                |
| 18             |                   | 11.                                | 340                                                                 | 0.18                                               | 0 2.                         | .14                           | 1.90                                                 | 3.                                              | 0 5                                                            | 5.1                                  | 0.                                                  | 500                               | 4.0                                                |
| Ö8             |                   | 9.9                                | 210                                                                 | E0.01                                              | 3 1.                         | .60                           | 0.57                                                 | 1.                                              | 2 2                                                            | 8.5                                  | 0.                                                  | 206                               | 7.0                                                |
| 09             |                   | 14                                 | 310                                                                 | 0.34                                               | 5 3.                         | .34                           | 1.05                                                 | 1.                                              | 2 4                                                            | .5                                   | 1.0                                                 | 08                                | 5.0                                                |
| JUL<br>14      |                   | 13                                 | 300                                                                 | 0.37                                               | 0 4.                         | .80                           | 0.77                                                 | 1.                                              | 7 6                                                            | 6.6                                  | 0.9                                                 | 970                               | 4.5                                                |
| AUG<br>12      |                   | 12                                 | 290                                                                 | 0.02                                               | 1 4.                         | .71                           | 0.42                                                 | 1.                                              | 5 6                                                            | 5.2                                  | 0.                                                  | 860                               | 7.7                                                |
|                |                   |                                    |                                                                     |                                                    |                              |                               |                                                      |                                                 |                                                                |                                      |                                                     |                                   |                                                    |

# 01391500 SADDLE RIVER AT LODI, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                                  | TIME                                                        | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)    | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C) | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|---------------------------------------|-------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986                              | 1200                                                        |                                       | 0.5                                                               |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 | <1                                                                   |
| 08<br>JUN 1987                        |                                                             |                                       | 0.5                                                               | 11                                                                    |                                                                      | ••                                                                 | 2                                                                   |                                                                      |                                                                    |                                                                 | - 1                                                                  |
| 09                                    | 1030                                                        | <0.                                   | 5                                                                 |                                                                       | <10                                                                  | 1                                                                  | ••                                                                  | <10                                                                  | 110                                                                | <1                                                              |                                                                      |
| DATE                                  | CHRO-<br>MIUM,<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS CR | E TOM MA                              | TOM MA-<br>TERIAL<br>UG/G                                         | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT 1986                              |                                                             |                                       |                                                                   |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 08<br>JUN 1987                        |                                                             | •                                     | 5 <10                                                             | ••                                                                    | 20                                                                   | •••                                                                | 2300                                                                | •••                                                                  | 50                                                                 | •••                                                             | 72                                                                   |
| 09                                    | <1                                                          | 0 -                                   |                                                                   | 9                                                                     | ••                                                                   | 430                                                                | ••                                                                  | 6                                                                    | ••                                                                 | 190                                                             | ••                                                                   |
| DATE                                  | MERCUR<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS HG         | FM BOT<br>TOM MA<br>E TERIAL<br>(UG/G | NICKEL,<br>TOTAL<br>RECOV-<br>L ERABLE<br>(UG/L                   | (UG/G                                                                 | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT 1986                              |                                                             |                                       |                                                                   |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 08<br>JUN 1987                        | •                                                           | - 0.04                                | 4                                                                 | <10                                                                   |                                                                      | <1                                                                 |                                                                     | 70                                                                   |                                                                    | <110                                                            | <1.0                                                                 |
| 09                                    | <0.1                                                        | 0 -                                   | - 6                                                               |                                                                       | <1                                                                   |                                                                    | 10                                                                  |                                                                      | 3                                                                  |                                                                 | ••                                                                   |
| DATE                                  | ALDRIN<br>TOTAL<br>IN BOT<br>TOM MA<br>TERIA<br>(UG/KG      | TOTAL IN BOT TOM MA L TERIA           | DDD,<br>TOTAL<br>- IN BOT-<br>- TOM MA-<br>L TERIAL               |                                                                       | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986                              |                                                             |                                       | 1                                                                 |                                                                       | 22.0                                                                 | 14.75                                                              | 3.2                                                                 |                                                                      |                                                                    |                                                                 |                                                                      |
| 08<br>JUN 1987<br>09                  | <0.                                                         | 1 57                                  | 5.0                                                               | 40                                                                    | 14                                                                   | 0.1                                                                | 1.3                                                                 | <0.1                                                                 | <0.1                                                               | <0.1                                                            | <0.1                                                                 |
| · · · · · · · · · · · · · · · · · · · | E                                                           | POXIDE<br>OT. IN II<br>BOTTOM TO      | INDANE T<br>TOTAL T<br>N BOT- IN<br>OM MA- TO                     | HION, OX<br>OTAL CI<br>BOT- TO<br>M MA- BO                            | XY- P/<br>HLOR, TI<br>T. IN TOT<br>OTTOM BO                          | ARA- 1<br>HION, TH<br>I IN TO1<br>DITTOM BO                        | HION, TO<br>F. IN IN<br>OTTOM TO                                    | IREX, THOTAL TO<br>BOT- IN<br>4 MA- TOM                              | IION, PHOTAL TO<br>BOT- IN<br>I MA- TON                            | HENE, TH<br>DTAL TO<br>BOT- IN<br>MA- TOP                       | RI-<br>IION,<br>DTAL<br>BOT-<br>I MA-                                |
|                                       | DATE (                                                      |                                       |                                                                   |                                                                       |                                                                      | MATL. N                                                            | MATL. TE                                                            |                                                                      |                                                                    |                                                                 | RIAL<br>G/KG)                                                        |
| OCT                                   | 1986                                                        | 0.4                                   | -0.4                                                              | -0.4                                                                  | -0.1                                                                 | .0.4                                                               |                                                                     | .0.1                                                                 |                                                                    |                                                                 | .0.4                                                                 |
| JUN                                   | 1987                                                        | 0.1                                   | <0.1                                                              | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <0.1 <1                                                            | 10                                                              | <0.1                                                                 |
| 0                                     | 9                                                           |                                       |                                                                   |                                                                       | ••                                                                   |                                                                    | ••                                                                  | ••                                                                   | ••                                                                 | ••                                                              |                                                                      |

#### 01392210 THIRD RIVER AT PASSAIC, NJ

LOCATION.--Lat 40°49'47", long 74°08'32", Passaic County, Hydrologic Unit 02030103, on right bank 400 ft upstream from bridge on State Highway 3, 0.8 mi south of Passaic, 1.2 mi upstream from Passaic River.

DRAINAGE AREA .-- 11.8 mi 2.

PERIOD OF RECORD. -- May 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 22.15 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Some regulation from ponds upstream. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 10 years, 21.6 ft3/s, 24.86 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,300 ft<sup>3</sup>/s, Nov. 8, 1977, gage height, 8.25 ft, from rating curve extended above 300 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; minimum, 0.84 ft<sup>3</sup>/s, July 3, 1981, gage height, 1.39 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 550 ft<sup>3</sup>/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Nov. 21 | 0030 | 621                               | 4.39             | Dec. 3  | 0130 | 587                               | 4.31                |
| Nov. 26 | 2030 | *784                              |                  | July 14 | 1715 | 760                               | 4.73                |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 4.7 ft3/s, July 6.

|                                            |                                      | 5.00                                        | ,                                        |                                          |                                         | MEAN VALL                                   | IES                                      |                                            |                                          |                                             |                                             |                                             |
|--------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| DAY                                        | ОСТ                                  | NOV                                         | DEC                                      | JAN                                      | FEB                                     | MAR                                         | APR                                      | MAY                                        | JUN                                      | JUL                                         | AUG                                         | SEP                                         |
| 1 2 3 4 5                                  | 7.5<br>7.5<br>33<br>27<br>11         | 5.5<br>6.8<br>6.6<br>6.8                    | 13<br>48<br>155<br>25<br>21              | 14<br>105<br>38<br>22<br>18              | e15<br>e18<br>e23<br>e22<br>e17         | 187<br>46<br>26<br>21<br>18                 | 29<br>18<br>16<br>221<br>45              | 12<br>13<br>16<br>49<br>27                 | 7.8<br>10<br>8.3<br>33<br>33             | 30<br>22<br>23<br>6.1<br>5.1                | 5.7<br>5.6<br>9.0<br>6.3                    | 18<br>7.7<br>7.4<br>6.9<br>6.6              |
| 6<br>7<br>8<br>9                           | 7.4<br>6.5<br>7.4<br>6.6<br>6.4      | 42<br>7.1<br>57<br>12<br>8.4                | 17<br>16<br>15<br>47<br>26               | 17<br>17<br>15<br>15<br>23               | e16<br>e17<br>e18<br>e20<br>e16         | 17<br>17<br>17<br>15<br>13                  | 62<br>38<br>24<br>21<br>18               | 16<br>14<br>13<br>12<br>12                 | 9.4<br>7.5<br>7.4<br>7.5<br>6.9          | 4.7<br>5.6<br>53<br>13<br>7.0               | 79<br>9.4<br>12<br>26<br>113                | 6.6<br>64<br>89<br>36<br>12                 |
| 11<br>12<br>13<br>14<br>15                 | 6.0<br>6.0<br>7.7<br>28<br>7.6       | 57<br>16<br>9.0<br>8.1<br>7.8               | 20<br>25<br>16<br>14<br>14               | 27<br>17<br>16<br>14<br>e17              | e15<br>e16<br>e16<br>e14<br>e13         | 13<br>14<br>15<br>14<br>12                  | 17<br>16<br>22<br>16<br>14               | 12<br>12<br>12<br>12<br>12                 | 6.6<br>6.9<br>6.5<br>6.3                 | 8.6<br>7.7<br>4.9<br>187<br>23              | 9.1<br>8.3<br>7.8<br>7.2                    | 11<br>12<br>130<br>20<br>13                 |
| 16<br>17<br>18<br>19<br>20                 | 6.7<br>5.9<br>5.7<br>5.9<br>5.8      | 7.9<br>8.9<br>14<br>62<br>69                | 14<br>14<br>73<br>32<br>18               | e18<br>e13<br>e23<br>e30<br>e18          | e14<br>e15<br>e12<br>e11<br>e11         | 12<br>12<br>11<br>11<br>11                  | 14<br>34<br>27<br>15<br>14               | 13<br>11<br>12<br>22<br>16                 | 6.2<br>5.6<br>5.2<br>5.0<br>4.8          | 12<br>9.2<br>8.2<br>39<br>14                | 6.7<br>5.9<br>5.5<br>5.7<br>5.9             | 12<br>35<br>53<br>17<br>13                  |
| 21<br>22<br>23<br>24<br>25                 | 5.8<br>6.3<br>6.1<br>5.3<br>5.5      | 143<br>17<br>14<br>18<br>13                 | 15<br>15<br>14<br>17<br>18               | e18<br>e18<br>e23<br>e13<br>e15          | e10<br>e11<br>e17<br>e14<br>e13         | 11<br>11<br>10<br>9.6                       | 14<br>13<br>12<br>17<br>50               | 14<br>13<br>13<br>12<br>12                 | 11<br>7.5<br>7.7<br>6.4<br>6.0           | 9.2<br>8.1<br>7.3<br>7.5                    | 5.2<br>5.6<br>5.3<br>5.5<br>5.0             | 12<br>13<br>12<br>14<br>13                  |
| 26<br>27<br>28<br>29<br>30<br>31           | 35<br>10<br>6.7<br>6.3<br>5.8<br>5.4 | 180<br>60<br>21<br>17<br>15                 | 22<br>19<br>17<br>16<br>15               | e15<br>e14<br>e14<br>e14<br>e16<br>e21   | e13<br>e14<br>e14                       | 9.4<br>20<br>9.9<br>13<br>173               | 15<br>14<br>23<br>15<br>13               | 13<br>13<br>13<br>11<br>9.7<br>8.6         | 5.5<br>22<br>16<br>8.9<br>6.7            | 14<br>7.0<br>6.6<br>6.7<br>6.3              | 5.1<br>57<br>68<br>16<br>9.0<br>7.7         | 9.6<br>9.2<br>8.9<br>8.9                    |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 303.8<br>9.80<br>35<br>5.3<br>.83    | 925.9<br>30.9<br>180<br>5.5<br>2.62<br>2.92 | 905<br>29.2<br>155<br>13<br>2.47<br>2.85 | 658<br>21.2<br>105<br>13<br>1.80<br>2.07 | 425<br>15.2<br>23<br>10<br>1.29<br>1.34 | 790.9<br>25.5<br>187<br>9.4<br>2.16<br>2.49 | 867<br>28.9<br>221<br>12<br>2.45<br>2.73 | 451.3<br>14.6<br>49<br>8.6<br>1.23<br>1.42 | 288.2<br>9.61<br>33<br>4.8<br>.81<br>.91 | 577.2<br>18.6<br>187<br>4.7<br>1.58<br>1.82 | 559.5<br>18.0<br>113<br>5.0<br>1.53<br>1.76 | 681.8<br>22.7<br>130<br>6.6<br>1.93<br>2.15 |

CAL YR 1986 TOTAL 7679.4 MEAN 21.0 MAX 254 MIN 4.1 CFSM 1.78 IN. 24.20 WTR YR 1987 TOTAL 7433.6 MEAN 20.4 MAX 221 MIN 4.7 CFSM 1.73 IN. 23.43

e Estimated

#### RESERVOIRS IN PASSAIC RIVER BASIN

01379990 SPLITROCK RESERVOIR.--Lat 40°57'40", long 74°27'45", Morris County, Hydrologic Unit 02030103, at dam on Beaver Brook, 2 mi northeast of Hibernia. DRAINAGE AREA, 5.50 mi². PERIOD OF RECORD, September 1925 to September 1931, December 1948 to September 1950, October 1953 to current year. Monthend contents only 1925-31, 1948-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by a concrete gravity dam with earth embankment; present dam constructed 1946-48 and sluice gate first closed Dec. 22, 1948. Prior to 1946, reservoir was formed by earthfill dam with crest about 20 ft lower. Capacity of spillway level, 3,310,000,000 gal, elevation, 835 ft. Flow is regulated by two 30-inch sluice gates. Flow is released for diversion for municipal supply of Jersey City.

COOPERATION.--Records provided by Jersey City, Bureau of Water.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 3,652,500,000 gal, Apr. 5, 1973, elevation, 836.75 ft; minimum, 1,522,800,000 gal, Jan. 4, 1954, elevation, 824.20 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,474,000,000 gal, Apr. 5, elevation, 835.85 ft; minimum, 3,256,000,000 gal, July 7, elevation, 834.75 ft.

01380900 BOONTON RESERVOIR.--Lat 40°53'. long 74°24', Morris County, Hydrologic Unit 02030103, at dam on Rockaway River at Boonton. DRAINAGE AREA, 119 mi². PERIOD OF RECORD, April 1904 to September 1950, October 1953 to current year. Monthend contents only 1904-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. REVISED RECORDS.--WDR NJ-85-1: 1984. GAGE, hook gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by a cyclopean masonry dam with earth wings; dam completed and storage began in 1904. Total capacity at spillway level, 7,620,000,000 gal elevation, 305.25 ft of which 7,366,000,000 gal is usable contents above elevation 259.75 ft, sill of lowest outlet gate. Flow regulated by flashboards, 3 outlets in gatehouse at head of conduit and by two 48-inch pipes (bottom of sluice pipes at elevation 205 ft). Water is diverted from reservoir for municipal supply of Jersey City.

COOPERATION.--Records provided by Jersey City, Bureau of Water.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,545,600,000 gal, May 31, 1984, elevation, 308.81 ft; minimum, 1,445,000,000 gal, Jan. 31, 1981, elevation 274.71 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,395,000,000 gal, Sept. 15, elevation, 308.23 ft; minimum, 7,127,000,000 gal, Nov. 5, elevation, 303.35 ft.

01382100 CANISTEAR RESERVOIR.--Lat 41°06'30", long 74°29'30", Sussex County, Hydrologic Unit 02030103, at dam on Pacock Brook, 1.8 mi northeast of Stockholm. DRAINAGE AREA, 5.6 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earth-embankment type dam, completed about 1896. Capacity at spillway level, 2,407,000,000 gal, elevation, 1,086.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply for City of Newark. Outflow is controlled mostly by operation of

gates in pipes through dam.
COOPERATION.--Records provided by City of Newark, Division of Water Supply.

01382200 OAK RIDGE RESERVOIR.--Lat 41°02'30", long 74°30'10", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 0.9 mi southwest of Oak Ridge. DRAINAGE AREA, 27.3 mi<sup>2</sup>. PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1924-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam with concrete-core wall and ogee overflow section; dam constructed between 1880-92; dam raised 10 ft during 1917-19. Capacity at spillway level, 3,895,000,000 gal, elevation, 846.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

COOPERATION.--Records provided by City of Newark. Division of Mater Supply

COOPERATION. -- Records provided by City of Newark, Division of Water Supply.

01382300 CLINTON RESERVOIR.--Lat 41°04'30", long 74°27'00", Passaic County, Hydrologic Unit 02030103, at dam on Clinton Brook, 2.0 mi north of Newfoundland. DRAINAGE AREA, 10.5 mi<sup>2</sup>. PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam constructed between 1889-92. Capacity at spillway level, 3,518,000,000 gal, elevation, 992.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

COOPERATION.--Records provided by City of Newark. Division of Mater Supply

COOPERATION. -- Records provided by City of Newark, Division of Water Supply.

01382380 CHARLOTTEBURG RESERVOIR.--Lat 41°01'34", long 74°25'30", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 1.1 mi upstream from Macopin River, and 1.5 mi southeast of Newfoundland, NJ. DRAINAGE AREA, 56.2 mi². PERIOD OF RECORD, May 1961 to current year. REVISED RECORDS.--WRD NJ-74: Station number. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by concrete-masonry dam and earth embankment, with concrete spillway at elevation 738.00 ft; storage began May 19, 1961. Spillway equipped with Bascule gate 5 ft high. Capacity, 2,964,000,000 gal, elevation, 743.00 ft, top of Bascule gate. No dead storage. Outflow is controlled by sluice and automatic Bascule gates. Water diverted from reservoir since May 21, 1961, for municipal supply of City of Newark. COOPERATION.--Records provided by City of Newark, Division of Water Supply.

#### RESERVOIRS IN PASSAIC RIVER BASIN -- Continued

01382400 ECHO LAKE.--Lat 41°03'00", long 74°24'30", Passaic County, Hydrologic Unit 02030103, at Echo Lake Dam on Macopin River, 1.6 mi north of Charlotteburg, and 1.9 mi upstream from mouth. DRAINAGE AREA, 4.35 mi². PERIOD OF RECORD, October 1927 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Lake is formed by earth-embankment type dam completed about 1925. Capacity at spillway level, 1,583,000,000 gal, elevation, 893.0 ft, with provision for additional storage of 180,000,000 gal at elevation 894.9 ft with flashboards. Usable contents, 1,045,000,000 gal above elevation 880.0 ft. Lake used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and water diverted to Charlotteburg Reservoir on Pequannock River since M&y 21, 1961, for municipal supply of City of Newark. Outflow to Macopin River controlled by operation of gates in gatehouse at dam and water released through pipe and canal to Charlotteburg Reservoir.

COOPERATION.--Records provided by City of Newark, Division of Water Supply.

01383000 GREENWOOD LAKE.--Lat 41°09'36", long 74°20'03", Passaic County, Hydrologic Unit 02030103, in gatehouse near right end of Greenwood Lake Dam on Wanaque River at Awosting. DRAINAGE AREA, 27.1 mi². PERIOD OF RECORD, June 1898 to November 1903, June 1907 to current year (gage heights only prior to October 1953). GAGE, water-stage recorder. Datum of gage is 608.86 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Oct. 1, 1931, staff gage on former railroad bridge at site 100 ft upstream at datum 89.75 ft lower.

REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed about 1837 and reconstruction completed in 1928 with crest of spillway 0.25 ft lower. Usable capacity, 6,860,000,000 gal between gage heights -4.00 ft, sill of gate, and 10.00 ft, crest of spillway. Dead storage, 7,140,000,000 gal. Outflow mostly regulated by two gates, 3.5 by 5.0 ft. Records given herein represent usable capacity. Lake used for recreation.

recreation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 9,528,000,000 gal, Oct. 9-14, 1903, gage height, 14.25 ft, present datum; minimum, 3,160,000,000 gal, several days in November 1900, gage height, 3.50 ft, present datum. EXTREMES FOR CURRENT YEAR.--Maximum contents, 7,845,000,000 gal, Apr. 5, gage height, 11.58 ft; minimum, 6,028,000,000 gal, Nov. 1, gage height, 8.63 ft.

01386990 WANAQUE RESERVOIR.--Lat 41°02'33", long 74°17'36". Passaic County, Hydrologic Unit 02030103, at Raymond Dam on Wanaque River at Wanaque. DRAINAGE AREA, 90.4 mi². PERIOD OF RECORD, February 1928 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by North Jersey District Water Supply Commission). REMARKS.--Reservoir is formed by earthfill with concrete-core wall main dam and seven secondary dams; dams completed in 1927 and storage began in March 1928. Total capacity of spillway level, 28,010,000,000 gal, revised, elevation, 300.3 ft. Capacity available by gravity at spillway level, 27,030,000,000 gal, revised. Outflow mostly controlled by sluice gates in intake conduits in gage house. Water is diverted from reservoir for municipal supply. Diversion to reservoir from Post Brook and Ramapo River (see Passaic River basin, diversions). COOPERATION.--Records provided by North Jersey District Water Supply Commission. REVISED RECORDS.--WDR NJ-85-1: 1984 (M).

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 30,930,000,000 gal, Apr. 6, 1984, elevation, 304.07 ft; minimum, 5,110,000,000 gal, Dec. 26, 1964, elevation, 256.06 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 30,740,000,000 gal, Apr. 5, elevation, 303.84 ft; minimum, 23,000,000,000 gal, Oct. 19, elevation, 293.30 ft.

| Date                                                                 |                                  | Elevation<br>(feet)*                                               | Contents                                                                      | Change in contents (equivalent                                         | Elevation<br>(feet)*                                                                   | Contents                                                                      | CTOBER 1986 TO<br>Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) | Elevation<br>(feet)†                                                                         | Contents<br>(million<br>gallons)                                              | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s |
|----------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                      |                                  | 01379990                                                           | SPLITROCK                                                                     | RESERVOIR                                                              | 01380900                                                                               | BOONTON F                                                                     | RESERVOIR                                                                        | 01382100                                                                                     | CANISTEAR R                                                                   | ESERVOIR                                                      |
| Sept.<br>Oct.<br>Nov.<br>Dec.                                        | 30<br>31<br>30<br>31             | 835.05<br>834.95                                                   | 3,316<br>3,316<br>3,296<br>3,365                                              | 0<br>-1.02<br>+3.46                                                    | 305.94<br>305.94<br>303.92<br>305.69                                                   | 7,799<br>7,799<br>7,272<br>7,724                                              | 0<br>-27.2<br>+22.6                                                              | 1,085.90<br>1,083.00<br>1,082.20<br>1,086.00                                                 | 2,396<br>2,100<br>2,020<br>2,407                                              | -14.8<br>-4.1<br>+19.3                                        |
| CAL Y                                                                | R 1986                           |                                                                    |                                                                               | +.021                                                                  |                                                                                        |                                                                               | +0.4                                                                             |                                                                                              |                                                                               | 0                                                             |
| Jan.<br>Feb.<br>Mar.<br>Apr.<br>May<br>June<br>July<br>Aug.<br>Sept. | 31<br>31<br>31<br>30<br>31<br>31 | 835.10<br>835.05<br>835.45<br>835.15<br>835.00<br>834.80<br>834.95 | 3,346<br>3,326<br>3,316<br>3,395<br>2,940<br>3,306<br>3,266<br>3,296<br>3,306 | -1.0<br>-1.1<br>-0.5<br>+4.1<br>-22.7<br>+18.9<br>-2.0<br>+1.5<br>+0.5 | 305.65<br>305.37<br>305.44<br>306.49<br>307.52<br>307.37<br>304.18<br>305.02<br>306.25 | 7,724<br>7,651<br>7,669<br>7,864<br>8,210<br>8,171<br>7,342<br>7,560<br>7,880 | 0<br>-4.0<br>+0.9<br>+10.1<br>+17.3<br>-2.0<br>-41.4<br>+10.9<br>+16.5           | 1,086.00<br>1,086.01<br>1,086.20<br>1,086.00<br>1,085.70<br>1,085.70<br>1,085.50<br>1,085.60 | 2,407<br>2,407<br>2,427<br>2,407<br>2,407<br>2,376<br>2,376<br>2,355<br>2,407 | 0<br>0<br>+1.0<br>-1.0<br>0<br>-1.6<br>0<br>-1.1<br>+2.7      |
| WTR Y                                                                | R 1987                           | ,                                                                  |                                                                               | 0                                                                      |                                                                                        |                                                                               | +.3                                                                              | Jin Ting                                                                                     |                                                                               | 0                                                             |

PASSAIC RIVER BASIN RESERVOIRS IN PASSAIC RIVER BASIN -- Continued

| Date                                                                 |                                        | Elevation<br>(feet)†                                     | Contents                                                                      | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)               | Elevation<br>(feet)†                                                                   | Contents                                                                      | contents<br>(equivalent                                                     | O SEPTEMBER 1<br>Elevation<br>(feet)†                                        | Contents<br>(million<br>gallons)                                              | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)           |
|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                      |                                        | 01382200                                                 | OAK RIDGE                                                                     | RESERVOIR                                                                    | 01382300                                                                               | CLINTON F                                                                     | RESERVOIR                                                                   | 01382380 CH                                                                  | ARLOTTEBURG                                                                   | RESERVOIR                                                                |
| Sept.<br>Oct.<br>Nov.<br>Dec.                                        | 30<br>31<br>30<br>31                   | 827.81<br>827.90                                         | 1,170<br>1,371<br>1,623<br>3,006                                              | +10.0<br>+13.0<br>+69.0                                                      | 980.00<br>971.40<br>972.80<br>980.40                                                   | 2,058<br>1,224<br>1,344<br>2,101                                              | -41.6<br>+6.2<br>+37.8                                                      | 732.95<br>733.75<br>733.50<br>731.55                                         | 1,921<br>1,993<br>1,971<br>1,798                                              | +3.6<br>-1.2<br>-8.6                                                     |
| CAL Y                                                                | R 1986                                 |                                                          |                                                                               | -3.8                                                                         |                                                                                        |                                                                               | -6.1                                                                        |                                                                              |                                                                               | -3.5                                                                     |
| Jan.<br>Feb.<br>Mar.<br>Apr.<br>May<br>June<br>July<br>Aug.<br>Sept. | 31<br>28<br>31<br>30<br>31<br>31<br>31 | 833.40<br>844.70<br>846.10<br>846.00<br>844.30<br>838.40 | 3,111<br>2,234<br>3,711<br>3,909<br>3,895<br>3,655<br>2,862<br>1,364<br>2,940 | +5.26<br>-48.5<br>+73.7<br>+10.2<br>-0.7<br>-12.4<br>-39.6<br>-74.8<br>+81.3 | 980.30<br>985.20<br>990.10<br>992.30<br>992.20<br>989.30<br>986.30<br>986.40<br>992.30 | 2,444<br>2,632<br>3,275<br>3,556<br>3,544<br>3,172<br>2,768<br>2,782<br>3,556 | +17.1<br>+10.4<br>+32.1<br>+14.5<br>-0.6<br>-19.1<br>-20.2<br>+0.7<br>+40.0 | 730.40<br>729.00<br>731.55<br>743.15<br>736.75<br>731.95<br>731.90<br>735.25 | 1,700<br>1,582<br>1,798<br>2,983<br>2,279<br>1,833<br>1,807<br>1,828<br>2,134 | -4.9<br>-6.5<br>+10.8<br>+61.1<br>-35.2<br>-23.0<br>-1.3<br>+1.1<br>+0.3 |
| WTR Y                                                                | R 1987                                 |                                                          |                                                                               | +7.5                                                                         |                                                                                        |                                                                               | +6.4                                                                        |                                                                              |                                                                               | +0.9                                                                     |

| Date                                                                                            | Elevation<br>(feet)†                           | Contents<br>(million<br>gallons)                                              | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) | Elevation<br>(feet)**                                                        | Contents<br>(million<br>gallons)                                              | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)          | Elevation<br>(feet)†                                                                   | Contents<br>(million<br>gallons)                                                       | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s            |
|-------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                                 | 01382                                          | 400 ECHO I                                                                    | AKE                                                            | 013830                                                                       | 00 GREENWO                                                                    | DOD LAKE                                                                | 01386990                                                                               | WANAQUE R                                                                              | ESERVOIR                                                                 |
| Sept. 30.<br>Oct. 31.<br>Nov. 30.<br>Dec. 31.                                                   | 892.90<br>893.20                               | 1,574<br>1,574<br>1,601<br>1,592                                              | 0<br>+1.4<br>-0.5                                              | 8.99<br>8.97<br>8.65<br>10.43                                                | 6,244<br>6,232<br>6,040<br>7,127                                              | -49.0<br>-9.9<br>+54.2                                                  | 289.71<br>286.15<br>289.72<br>299.90                                                   | 20,640<br>18,430<br>20,640<br>27,700                                                   | -266<br>+114<br>+352                                                     |
| CAL YR 19                                                                                       | 986                                            |                                                                               | 0                                                              |                                                                              |                                                                               | +0.7                                                                    |                                                                                        |                                                                                        | -6.9                                                                     |
| Jan. 31<br>Feb. 28<br>Mar. 31<br>Apr. 30<br>May 31<br>June 30<br>July 31<br>Aug. 31<br>Sept. 30 | 890.90<br>891.70<br>893.10<br>893.00<br>892.70 | 1,592<br>1,396<br>1,467<br>1,592<br>1,583<br>1,555<br>1,574<br>1,592<br>1,583 | 0<br>-10.8<br>+3.5<br>+6.5<br>-0.5<br>-1.4<br>+0.9<br>+0.9     | e10.41<br>e10.29<br>10.36<br>10.70<br>10.30<br>10.07<br>9.62<br>9.43<br>9.59 | 7,114<br>7,040<br>7,083<br>7,294<br>7,046<br>6,903<br>6,628<br>6,512<br>6,610 | -0.7<br>-4.1<br>+2.2<br>+10.9<br>-12.4<br>-7.4<br>-13.7<br>-5.8<br>+5.1 | 300.20<br>298.63<br>302.09<br>302.55<br>300.69<br>295.85<br>291.61<br>286.82<br>293.98 | 27,930<br>26,750<br>29,390<br>29,750<br>28,310<br>24,790<br>21,880<br>11,820<br>23,470 | +11.5<br>-65.2<br>+132<br>+18.6<br>-71.9<br>-182<br>-145<br>-153<br>+240 |
| WTR YR 19                                                                                       | 987                                            |                                                                               | 0                                                              |                                                                              |                                                                               | +1.6                                                                    |                                                                                        |                                                                                        | +12.0                                                                    |

Gage height estimated. Elevation at 0900. Gage height at 2400. Elevation at 0800 on first day of following month.

#### DIVERSIONS WITHIN PASSAIC RIVER BASIN

- 01368720 North Jersey District Water Supply Commission diverts water from Upper Greenwood Lake (Hudson River basin) near Moe, NJ to the Green Brook, a tributary of Greenwood Lake, for municipal supply. Consult North Jersey District Water Supply Commission for data available.
- 01379510 Commonwealth Water Company diverts water from Passaic River, 1.2 mi upstream from Canoe Brook for municipal supply. These figures also include water diverted from the Passaic River by the Bernards Division of the Commonwealth Water Company. Records provided by Commonwealth Water Company.
- 01379530 Commonwealth Water Company diverts water from Canoe Brook near Summit, 0.5 mi from mouth, for municipal supply. Records provided by Commonwealth Water Company.
- 01380800 Jersey City diverts water from Boonton Reservoir on Rockaway River at Boonton for municipal supply. Records provided by Jersey City, Bureau of Water.
- 01382370 City of Newark diverts water from Charlotteburg Reservoir on Pequannock River since May 21, 1961 for municipal supply. Prior to May 21, 1961 water was diverted from reservoir formed by Macopin intake dam on Pequannock River (former diversion 01382490). Records provided by City of Newark, Division of Water Supply. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01386980 North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir on Wanaque River. Records provided by North Jersey District Water Supply Commission.
- 01387020 North Jersey District Water Supply Commission diverts water from Post Brook near Wanaque into Wanaque Reservoir for municipal supply. Records not available.
- 01387990 North Jersey District Water Supply Commission diverts water from Ramapo River by pumping from Pompton Lakes into Wanaque Reservoir. Records provided by North Jersey District Water Supply Commission.
- 01387991 Hackensack Water Company diverts water from the Ramapo River by pumping from Pompton Lake above the gaging station into Oradell Reservoir in the Hackensack River basin (see Hackensack River basin, diversions). Pumping began Feb. 14, 1985. Records provided by Hackensack Water Company.
- 01388490 Passaic Valley Water Commission supplements the dependable yield of its supply at Little Falls by diverting water at high flows at the Jackson Avenue Pumping Station into Point View Reservoir on Haycock Brook for release as required to sustain minimum flow requirements. Also water may be released into Haycock Brook for maintenance of flow in that stream. These diversions and releases occur upstream of Pompton Plains gaging station. Records provided by Passaic Valley Water Commission. No diversion or release during the year. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01389490 The Passaic Valley Water Commission diverts water from Passaic River above Beattie's Dam at Little Falls for municipal supply. Records provided by Passaic Valley Water Commission.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 01387990 FROM 01386980 FROM 01379530 COMMONWEALTH 01389490 PASSAIC VALLEY WATER 01379510 COMMONWEALTH RAMAPO RIVER TO WANAQUE 01380800 JERSEY 01382370 NEWARK WATER COMPANY WATER COMPANY WANAQUE MONTH FROM PASSAIC RIVER FROM CANOE BROOK RESERVOIR RESERVOIR COMMISSION October..... 77.7 2.48 79.0 80.0 76.5 102 115 111 73.6 112 17.8 November .... December.... 52.5 8.41 121 52.6 127 CAL YR 1986.. 19.0 4.34 80.4 112 130 68.4 66.9 78.4 79.9 81.4 77.7 57.3 55.7 57.6 January..... 108 130 0 4.64 February.... Ó 141 0 111 March..... 19.2 13.3 105 136 0 8.64 7.29 3.38 6.31 5.25 7.89 9.15 2.54 2.64 63.6 78.9 87.8 102 127 ŏ May..... 62.3 110 137 170 Ŏ 115 June..... 00 83.6 81.5 July..... 89 141 84.9 August..... 1.96 109 83.6 September.... 79.6 109 138 WTR YR 1987... 19.2 6.61 78.3 109 137 0.4 70.1

#### ELIZABETH RIVER BASIN

#### 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ

LOCATION.--Lat 40°40'30", long 74°13'20", Union County, Hydrologic Unit 02030104, on left bank at Ursino Lake Dam in Elizabeth, 75 ft upstream of bridge on Trotters Lane and 3.8 mi upstream from mouth.

DRAINAGE AREA. -- 16.9 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: Drainage area, 1922-23, 1927-29(M), 1932, 1933-34(M), 1938(P), 1942(M) 1944(P), 1945(M), 1948(P), 1952-53(M). WDR NJ-84-1: 1974.

GAGE.--Water-stage recorder, crest-stage gages, and concrete control. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1922, nonrecording gage at site 2,800 ft downstream at datum 4.14 ft higher and Oct. 1, 1922 to May 18, 1923, at same site at datum 5.23 ft higher. May 19, 1923 to Dec. 27, 1972, at site 2,800 ft downstream at datum 5.23 ft higher and published as "Elizabeth River at Elizabeth" (station 01393500).

REMARKS.--Records fair. Diversion by pumpage from Hammock Well Field in Union for municipal supply by Elizabethtown Water Co., probably reduces the flow past the station. Some measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 66 years, 25.9 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,110 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 18.7 ft, from floodmark, site and datum then in use, from rating curve extended above 1,100 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; no flow many times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft<sup>3</sup>/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage Height<br>(ft) | Date    | Time        | Discharge<br>(ft <sup>3</sup> /s) | Gage Height<br>(ft) |
|---------|------|-----------------------------------|---------------------|---------|-------------|-----------------------------------|---------------------|
| July 14 | 2000 | *937                              | *18.99              | No peak | greater tha | n base discharge.                 |                     |

Minimum discharge, 5.2 ft<sup>3</sup>/s, Oct. 11, 12, 19, 25, Nov. 1, gage height, 13.15 ft.

| DISCHARGE, | IN | CUBIC | FEET | PER | SECOND, | WATER   | YEAR | OCTOBER | 1986 | TO | SEPTEMBER | 1987 |
|------------|----|-------|------|-----|---------|---------|------|---------|------|----|-----------|------|
|            |    |       |      |     | MĚ      | AN VALU | JES  |         |      |    |           |      |

| DAY                              | ОСТ                                  | NOV                            | DEC                           | JAN                              | FEB                        | MAR                               | APR                         | MAY                              | JUN                            | JUL                                 | AUG                                 | SEP                            |
|----------------------------------|--------------------------------------|--------------------------------|-------------------------------|----------------------------------|----------------------------|-----------------------------------|-----------------------------|----------------------------------|--------------------------------|-------------------------------------|-------------------------------------|--------------------------------|
| 1 2 3 4 5                        | 7.5<br>16<br>43<br>21<br>9.6         | 5.6<br>7.2<br>6.1<br>11<br>43  | 11<br>97.7<br>149<br>26<br>16 | 11<br>202<br>53<br>23<br>17      | 17<br>31<br>43<br>31<br>19 | 294<br>57<br>26<br>19<br>16       | 28<br>17<br>14<br>139<br>50 | 12<br>11<br>12<br>25<br>24       | 10<br>10<br>9.6<br>84<br>36    | 25<br>69<br>81<br>12<br>8.6         | 8.5<br>8.4<br>9.6<br>9.0<br>38      | 31<br>9.2<br>8.5<br>8.2<br>8.1 |
| 6<br>7<br>8<br>9                 | 6.6<br>6.4<br>6.3<br>6.0             | 57<br>9.6<br>90<br>21<br>10    | 14<br>12<br>11<br>101<br>30   | 15<br>15<br>13<br>12<br>32       | 17<br>16<br>15<br>46<br>17 | 15<br>14<br>13<br>13              | 68<br>43<br>21<br>17<br>15  | 16<br>14<br>13<br>12<br>11       | 12<br>9.4<br>9.6<br>12<br>9.8  | 8.3<br>8.2<br>108<br>92<br>18       | 112<br>17<br>11<br>28<br>212        | 7.8<br>46<br>47<br>21<br>9.6   |
| 11<br>12<br>13<br>14<br>15       | 5.6<br>5.4<br>12<br>57<br>9.0        | 93<br>18<br>10<br>8.2<br>7.4   | 28<br>30<br>13<br>11          | 25<br>14<br>12<br>12<br>12       | 14<br>15<br>17<br>13<br>11 | 12<br>16<br>17<br>12<br>11        | 14<br>13<br>17<br>13<br>13  | 11<br>12<br>12<br>12<br>12       | 9.4<br>14<br>10<br>10<br>30    | 9.8<br>9.7<br>251<br>72             | 23<br>13<br>10<br>9.7<br>8.9        | 8.7<br>17<br>188<br>45<br>16   |
| 16<br>17<br>18<br>19<br>20       | 7.6<br>6.9<br>5.8<br>5.4<br>6.0      | 7.0<br>7.4<br>28<br>95<br>e130 | 11<br>10<br>165<br>36<br>17   | 11<br>11<br>82<br>66<br>37       | 11<br>11<br>11<br>11<br>11 | 11<br>11<br>11<br>12<br>12        | 12<br>34<br>28<br>13<br>12  | 11<br>10<br>11<br>20<br>16       | 10<br>9.0<br>8.7<br>8.9<br>9.3 | 27<br>15<br>12<br>37<br>13          | 8.5<br>9.0<br>9.2<br>8.7<br>8.5     | 15<br>56<br>80<br>22<br>14     |
| 21<br>22<br>23<br>24<br>25       | 6.3<br>6.2<br>6.2<br>5.5             | e140<br>23<br>13<br>25<br>12   | 13<br>12<br>11<br>26<br>153   | 24<br>17<br>17<br>14<br>12       | 10<br>10<br>36<br>21<br>13 | 11<br>10<br>9.9<br>10             | 12<br>12<br>12<br>19<br>36  | 12<br>11<br>50<br>13<br>10       | 58<br>62<br>19<br>11<br>9.6    | 11<br>11<br>11<br>28<br>30          | 8.5<br>8.2<br>7.7<br>8.0<br>7.8     | 12<br>16<br>12<br>14<br>11     |
| 26<br>27<br>28<br>29<br>30<br>31 | 62<br>12<br>7.4<br>6.6<br>6.1<br>6.0 | 230<br>60<br>23<br>15<br>12    | 23<br>16<br>13<br>12<br>12    | 12<br>12<br>12<br>13<br>42<br>31 | 12<br>11<br>11<br>         | 13<br>10<br>33<br>11<br>14<br>176 | 17<br>14<br>20<br>15<br>15  | 10<br>12<br>11<br>11<br>11<br>11 | 9.0<br>121<br>15<br>9.5<br>8.4 | 57<br>22<br>12<br>9.9<br>9.4<br>9.1 | 7.8<br>100<br>75<br>37<br>11<br>9.0 | 9.3<br>8.8<br>9.3<br>9.3       |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 380.3<br>12.3<br>62<br>5.4           | 1217.5<br>40.6<br>230<br>5.6   | 1101.7<br>35.5<br>165<br>10   | 881<br>28.4<br>202<br>11         | 501<br>17.9<br>46<br>10    | 911.9<br>29.4<br>294<br>9.9       | 753<br>25.1<br>139<br>12    | 441<br>14.2<br>50<br>10          | 644.2<br>21.5<br>121<br>8.4    | 1098.0<br>35.4<br>251<br>8.2        | 842.0<br>27.2<br>212<br>7.7         | 776.8<br>25.9<br>188<br>7.8    |

CAL YR 1986 TOTAL 9344.2 MEAN 25.7 MAX 371 MIN 5.4 WTR YR 1987 TOTAL 9509.4 MEAN 26.2 MAX 294 MIN 5.4

e Estimated

#### ELIZABETH RIVER BASIN

# 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOER 1986 TO SEPTEMBER 1987

| DATE           | TIME                            | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | (ST                                              | AND-                                               | EMPER<br>ATURE<br>WATER<br>DEG C | S                                                | (GEN,<br>) IS-<br>DLVED<br>(G/L)                        | DXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEN<br>BI<br>CH<br>IC                | GEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY | COLI<br>FORI<br>FECA<br>EC<br>BRO      | AL, STREP-<br>TOCOCCI<br>TH FECAL                  |
|----------------|---------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------|--------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------------------|
|                |                                 | (013)                                           | (US/CM)                                           | UNI                                              | 13) (                                              | DEG C                            | , (                                              | 10/1/                                                   | ATTON                                                          |                                      | 10, 1,                                     | (m)                                    | , thinky                                           |
| OCT 1986<br>09 | 0920                            | 5.9                                             | 545                                               |                                                  | 7.9                                                | 17.0                             |                                                  | 8.5                                                     | 88                                                             |                                      | 2.4                                        | 11000                                  | 1700                                               |
| JAN 1987<br>21 | 1030                            | 18                                              | 3890                                              |                                                  | 7.5                                                | 4.0                              |                                                  | 11.6                                                    | 89                                                             |                                      | 4.8                                        | 9200                                   | 5400                                               |
| APR 07         | 0900                            | 69                                              |                                                   |                                                  | 7.8                                                |                                  |                                                  |                                                         | 85                                                             |                                      |                                            | >24000                                 | 9200                                               |
| JUN            |                                 |                                                 | 48                                                |                                                  |                                                    | 9.5                              |                                                  | 9.5                                                     |                                                                |                                      |                                            |                                        |                                                    |
| 03<br>JUL      | 1115                            | 9.6                                             | 596                                               | 5                                                | 7.9                                                | 19.5                             |                                                  | 7.2                                                     | 78                                                             |                                      | 2.1                                        | 5400                                   | 16000                                              |
| 15<br>AUG      | 1215                            | 69                                              | 203                                               | 5                                                | 7.5                                                | 23.0                             | sec fa                                           | 6.5                                                     | 76                                                             |                                      | 3.9                                        | 5400                                   | 9200                                               |
| 18             | 1115                            | 8.4                                             | 560                                               | )                                                | 8.2                                                | 26.0                             | e, i i                                           | 9.7                                                     | 120                                                            |                                      | 0.7                                        | 24000                                  | 20                                                 |
| DATE           | HARI<br>NES<br>(MG<br>AS<br>CAC | S DIS                                           | CIUM S<br>S- I<br>LVED SG<br>G/L (I               | AGNE-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA         | , s                              | OTAS-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L<br>S K)  | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO              | Y SUL<br>DI<br>L SC                                            | FATE<br>IS-<br>DLVED<br>IG/L<br>SO4) | RI<br>DI<br>SO<br>(M                       | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986       |                                 | ALL PIE                                         |                                                   |                                                  |                                                    |                                  |                                                  |                                                         |                                                                |                                      |                                            |                                        |                                                    |
| 09<br>JAN 1987 |                                 | 200 6                                           | 0                                                 | 12                                               | 32                                                 |                                  | 2.2                                              | 110                                                     |                                                                | 62                                   | 6                                          | 7                                      | <0.1                                               |
| 21<br>APR      |                                 | 210 7                                           | 2                                                 | 7.0                                              | 670                                                |                                  | 4.8                                              | 64                                                      |                                                                | 63                                   | 120                                        | 0                                      | <0.1                                               |
| 07             |                                 | 140 4                                           | 5                                                 | 6.6                                              | 46                                                 |                                  | 2.1                                              | 87                                                      |                                                                | 33                                   | 7                                          | 8                                      | <0.1                                               |
| JUN<br>03      |                                 | 200 6                                           | 0                                                 | 11                                               | 38                                                 |                                  | 1.7                                              | 115                                                     |                                                                | 51                                   | 8                                          | 4                                      | 0.1                                                |
| JUL<br>15      |                                 | 59 1                                            | 9                                                 | 2.9                                              | 14                                                 |                                  | 2.2                                              | 39                                                      |                                                                | 19                                   | 3                                          | 0                                      | 0.2                                                |
| AUG<br>18      |                                 | 190 5                                           | 40                                                | 11                                               | 35                                                 |                                  | 2.0                                              | 111                                                     |                                                                | 47                                   | 1706                                       | 0                                      | 0.1                                                |
|                |                                 | 190 5                                           |                                                   |                                                  | 35                                                 |                                  | 2.0                                              | 111                                                     |                                                                | 41                                   | 9                                          | •                                      | 0.1                                                |
| DATE           | SILI<br>DIS<br>SOL<br>(MG<br>AS | VED TUE                                         | OF N<br>STI-<br>NTS, NI<br>IS- TO<br>LVED (I      | ITRO-<br>GEN,<br>TRITE<br>DTAL<br>MG/L<br>S N)   | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | 3 AM                             | ITRO-<br>GEN,<br>IMONIA<br>OTAL<br>MG/L<br>IS N) | NITR<br>GEN,A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ N1<br>IC (<br>L TC<br>L ()                             | TRO-<br>GEN,<br>OTAL<br>4G/L<br>S N) | PHO<br>TO<br>(M                            |                                        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986       |                                 |                                                 |                                                   |                                                  |                                                    |                                  |                                                  |                                                         |                                                                |                                      |                                            |                                        |                                                    |
| 09<br>JAN 1987 | 1                               | 3                                               | 310                                               | 0.030                                            | 1.08                                               | 3                                | 0.13f                                            | 0.7                                                     | 1                                                              | 1.8                                  | 0.                                         | 110                                    | 3.6                                                |
| 21<br>APR      | WIT 19                          | 8.5                                             | 2100                                              | 0.040                                            | 1.22                                               | M Y                              | 0.19                                             | 0.9                                                     | 4 2                                                            | 2.2                                  | 0.                                         | 102                                    | 6.7                                                |
| 07             | 1                               | 0                                               | 270                                               | 0.042                                            | 1.91                                               |                                  | 0.12                                             | 0.7                                                     | 2 2                                                            | 2.6                                  | 0.                                         | 076                                    | 7.9                                                |
| JUN<br>03      | 1                               | 1                                               | 330                                               | 0.048                                            | 1.04                                               |                                  | 0.18                                             | 0.9                                                     | 9 :                                                            | 2.0                                  | 0.                                         | 068                                    | 2.7                                                |
| JUL<br>15      |                                 | 6.0                                             | 120                                               | 0.047                                            | 1.01                                               |                                  | 0.14                                             | 1.1                                                     |                                                                | 2.1                                  | 0.                                         | 150                                    | 7.9                                                |
| AUG<br>18      |                                 | 3                                               |                                                   | 0.027                                            | 0.96                                               |                                  | 0.05                                             | 0.4                                                     |                                                                | 1.4                                  |                                            | 060                                    | 4.1                                                |
|                |                                 |                                                 | 300                                               |                                                  | 0.70                                               |                                  | 3.33                                             | 0.4                                                     |                                                                |                                      | ٠.                                         |                                        | 7                                                  |

ELIZABETH RIVER BASIN
01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued

| DATE     | TIME                                                                 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N)  | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS)  | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)    | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)               | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)              |
|----------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986 | and the same                                                         |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                      |
| 09<br>09 | 0920<br>0920                                                         | <0.5                                                           | 120                                                                  | 0.6                                                                  | 6.2                                                                   | 20                                                                   | .1                                                                 | 4                                                                    | <10                                                                | 100                                                                 | <1                                                                   |
| DATE     | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)   | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)              | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)  | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)      |
| OCT 1986 |                                                                      | -10                                                            |                                                                      |                                                                      |                                                                       |                                                                      | 222                                                                |                                                                      |                                                                    |                                                                     | F0.                                                                  |
| 09       | 2                                                                    | <10                                                            | 880                                                                  | <10                                                                  | 10                                                                    | 60                                                                   | 220                                                                | 3200                                                                 | <5<br>                                                             | 130                                                                 | 50                                                                   |
|          |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)        | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)                | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                                          | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT 1986 |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                      |
| 09<br>09 | 65                                                                   | <0.10                                                          | 0.12                                                                 |                                                                      | 30                                                                    | 2                                                                    | <1                                                                 | 350                                                                  | 240                                                                |                                                                     | 150                                                                  |
| DATE     | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986 |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                      |
| 09<br>09 | <1.0                                                                 | <0.1                                                           | 54                                                                   | 6.3                                                                  | 4.9                                                                   | 0.4                                                                  | <0.1                                                               | <0.1                                                                 | <0.9                                                               | <0.1                                                                | <0.1                                                                 |
|          | DATE                                                                 | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)     | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
|          | OCT 1986                                                             |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                      |
|          | 09                                                                   | <0.1                                                           | <0.1                                                                 | 8.9                                                                  | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                 | <1.00                                                              | <10                                                                 | <0.1                                                                 |

#### 01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ

LOCATION.--Lat 40°47'01", long 74°16'27", Essex County, Hydrologic Unit 02030104, at bridge on Mountain Avenue, 300 ft downstream of Turtle Brook, and 400 ft southeast of intersection with Pleasant Valley Way in West Orange.

DRAINAGE AREA.--2.52 mi<sup>2</sup>.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- July 1982 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME TA                                          | REAM- CI<br>LOW, CO<br>ISTAN- DI<br>INEOUS AI  | JCT- (S                                              | TAND -                                             | EMPER- (<br>ATURE<br>WATER<br>DEG C) | DXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)      | DIS- DEN<br>SOLVED BY<br>(PER- CI<br>CENT IC<br>SATUR- 5 | GEN MAND, COL TO- FOR HEM- FEC CAL, EC DAY BRO      | RM,<br>CAL, STREP-<br>TOCOCCI<br>OTH FECAL         |
|----------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| OCT_1986                   | 1200                                             | FO 9/                                          | F74                                                  | 7.                                                 | 42.5                                 | 7,100                                    | 70                                                       | 3.3 4900                                            | 1300                                               |
| 15<br>FEB 1987             | 1200                                             | E0.84                                          | 536                                                  | 7.4                                                | 12.5                                 | 7.6                                      | 72                                                       |                                                     |                                                    |
| 10<br>APR                  | 1140                                             | E1.1                                           | 2300                                                 | 7.5                                                | 2.0                                  | 14.4                                     | 105                                                      | 0.6 3500                                            |                                                    |
| 07<br>JUN                  | 1045                                             | E1.4                                           | 500                                                  | 7.4                                                | 8.5                                  | 10.6                                     | 93                                                       | 1.6 4300                                            | 700                                                |
| 02<br>JUL                  | 1200                                             | E0.64                                          | 1040                                                 | 7.5                                                | 21.0                                 | 4.4                                      | 50                                                       | 2.1 1300                                            | 3500                                               |
| 13<br>AUG                  | 1130                                             | E0.91                                          | 472                                                  | 7.6                                                | 23.5                                 | 6.1                                      | 73                                                       | 4.6 5400                                            | 1100                                               |
| 11                         | 1045                                             | E1.0                                           | 663                                                  | 7.6                                                | 18.5                                 | 7.0                                      | 76                                                       | 1.8 3500                                            | 3500                                               |
| DATE                       | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)           | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>) AS CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | (MG/L                                              | DIS<br>SOLV<br>(MG/                  | M, LINITY<br>- LAB<br>ED (MG/L<br>L AS   | SULFATE<br>DIS-<br>SOLVED<br>(MG/L                       | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986<br>15<br>FEB 1987 | 150                                              |                                                | 14                                                   | 44                                                 | 1.                                   |                                          | 26                                                       | 120                                                 | <0.1                                               |
| 10<br>APR                  | 300                                              |                                                | 25                                                   | 380                                                | 2.                                   | 6 51                                     | 42                                                       | 750                                                 | <0.1                                               |
| 07<br>JUN                  | 87                                               | 7 22                                           | 7.8                                                  | 60                                                 | 1.                                   | 2 37                                     | 22                                                       | 120                                                 | <0.1                                               |
| 02<br>JUL                  | 270                                              | 65                                             | 25                                                   | 96                                                 | 1.                                   | 6 82                                     | 31                                                       | 260                                                 | <0.1                                               |
| 13<br>AUG                  | 150                                              | 39                                             | 12                                                   | 37                                                 | 1.                                   | 4 54                                     | 20                                                       | 99                                                  | <0.1                                               |
| 711                        | 160                                              | 0 40                                           | 14                                                   | 58                                                 | 1.                                   | 7 68                                     | 26                                                       | 150                                                 | 0.1                                                |
| DATE                       | SILICA<br>DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO2) | CONSTI-                                        |                                                      | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | GEN<br>3 AMMON<br>TOTA<br>(MG/       | MONÍA<br>ÍA ORGANI<br>L TOTAL<br>L (MG/I | M-<br>+ NITRO-<br>IC GEN,<br>L TOTAL<br>L (MG/L          | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986<br>15<br>FEB 1987 | 12                                               | 290                                            | 0.011                                                | 0.41                                               | 0.01                                 | 0.70                                     | 1.1                                                      | 0.060                                               | 4.9                                                |
| 10                         | 16                                               | 1300                                           | 0.007                                                | 1.52                                               | 0.14                                 | 0.44                                     | 2.0                                                      | <0.020                                              | 4.3                                                |
| APR 07                     | 10                                               | 270                                            | 0.020                                                | 0.96                                               | 0.07                                 | 0.63                                     | 1.6                                                      | <0.020                                              | 6.4                                                |
| JUN<br>02                  | 18                                               | 550                                            | 0.072                                                | 0.85                                               | 0.36                                 | 1.4                                      | 2.2                                                      | 0.089                                               | 3.8                                                |
| JUL<br>13                  | 11                                               | 250                                            | 0.020                                                | 0.40                                               | 0.09                                 | 1.8                                      | 2.3                                                      | 0.150                                               | 12                                                 |
| AUG<br>11                  | 15                                               | 350                                            |                                                      |                                                    | 7 0.11                               |                                          | 2.2                                                      | 0.080                                               | 8.4                                                |

## 121

# RAHWAY RIVER BASIN

01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIM  | SULF<br>TOTA<br>ME (MG,<br>AS                         | AL SOL                                                | IM,<br>IS- ARSE<br>IVED TOT<br>IS/L (UC                         | LII<br>TO<br>ENIC RE<br>TAL ER                          | TAL TO<br>COV- RE<br>ABLE ER<br>G/L (U                  | RON, CADM<br>TAL TOT<br>COV- REC<br>ABLE ERA<br>G/L (UG<br>B) AS | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG                | M, COPPER,<br>TOTAL<br>COV- RECOV-<br>BLE ERABLE |
|----------------|------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|
| OCT 1986<br>15 | 120  | 00 <                                                  | 0.5                                                   | 20                                                              | <1 <                                                    | 10                                                      | 80                                                               | <1                                                    | <10 8                                            |
| c              | DATE | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L                                 | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                       |
| OCT 1          |      | 230                                                   | 5                                                     | 40                                                              | <0.10                                                   | 2                                                       | <1                                                               | 110                                                   | 5                                                |

#### 01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ

LOCATION.--Lat 40°41'11", long 74°18'44", Union County, Hydrologic Unit 02030104, on left bank 50 ft downstream from bridge on eastbound U.S. Highway 22, 100 ft downstream from Pope Brook, and 1.5 mi south of Springfield.

DRAINAGE AREA.--25.5 mi<sup>2</sup>.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1938 to current year.

REVISED RECORDS.--WSP 1622: 1945. WRD-NJ 1973: 1938(M), 1968(M), 1971(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 66.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those above 50 ft<sup>3</sup>/s, which are fair. Water for municipal supply diverted from river by city of Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., and Springfield station of Elizabethtown Water Co. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE .-- 49 years, 28.8 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,430 ft<sup>3</sup>/s, Aug. 2, 1973, gage height, 9.76 ft, from floodmark, from rating curve extended above 1,600 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; minimum, 0.1 ft<sup>3</sup>/s, Sept. 11, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*):

| Date              | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|-------------------|--------------|-----------------------------------|------------------|---------|------|-----------------------------------|------------------|
| Nov. 26<br>Apr. 4 | 2315<br>1700 | 1,120<br>1,050                    | 5.67<br>5.47     | July 14 | 2015 | *1,290                            | *6.06            |

Minimum daily discharge, 3.2 ft3/s, Oct. 29, Nov. 1.

|                                  |                                       | DISCHA                         | RGE, IN CL                       | JBIC FEET                        | PER SECON                  | MEAN V                            | YEAR OCT                     | OBER 1986                              | TO SEPTE                        | MBER 1987                            |                                      |                                 |  |
|----------------------------------|---------------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------|-----------------------------------|------------------------------|----------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|
| DAY                              | OCT                                   | NOV                            | DEC                              | JAN                              | FEB                        | MAR                               | APR                          | MAY                                    | JUN                             | JUL                                  | AUG                                  | SEP                             |  |
| 1<br>2<br>3<br>4<br>5            | 3.8<br>4.2<br>36<br>20<br>5.1         | 3.2<br>4.1<br>3.5<br>3.8<br>19 | 10<br>71<br>353<br>44<br>23      | 14<br>295<br>104<br>44<br>27     | 25<br>37<br>61<br>59<br>35 | 496<br>209<br>77<br>47<br>34      | 87<br>33<br>22<br>551<br>160 | 17<br>15<br>27<br>90<br>46             | 8.5<br>8.8<br>9.4<br>70<br>36   | 10<br>51<br>80<br>6.4<br>5.6         | 7.2<br>7.6<br>8.0<br>62              | 17<br>6.7<br>6.4<br>6.0<br>6.0  |  |
| 6<br>7<br>8<br>9                 | 3.5<br>5.0<br>5.3<br>5.7<br>4.0       | 56<br>6.1<br>87<br>14<br>9.6   | 16<br>12<br>11<br>98<br>73       | 23<br>23<br>21<br>18<br>35       | 27<br>26<br>26<br>55<br>27 | 28<br>29<br>29<br>27<br>18        | 170<br>99<br>52<br>36<br>29  | 27<br>20<br>17<br>15<br>14             | 7.4<br>6.6<br>6.7<br>8.0<br>6.9 | 5.4<br>5.5<br>79<br>104<br>8.8       | 9.2<br>7.9<br>16<br>151              | 6.2<br>106<br>57<br>25<br>7.8   |  |
| 11<br>12<br>13<br>14<br>15       | 5.2<br>6.5<br>9.0<br>42<br>4.2        | 84<br>14<br>5.9<br>7.3<br>8.2  | 30<br>45<br>21<br>13<br>12       | 57<br>30<br>22<br>19<br>20       | 23<br>21<br>21<br>17<br>15 | 17<br>18<br>23<br>18<br>16        | 24<br>22<br>32<br>20<br>17   | 14<br>13<br>12<br>13<br>20             | 8.0<br>9.9<br>8.3<br>7.1<br>6.8 | 7.6<br>7.6<br>6.7<br>437<br>199      | 9.2<br>7.3<br>8.1<br>7.2             | 7.0<br>8.0<br>343<br>79<br>14   |  |
| 16<br>17<br>18<br>19<br>20       | 3.9<br>3.6<br>4.8<br>5.1<br>4.5       | 8.3<br>8.0<br>16<br>92<br>84   | 11<br>11<br>164<br>98<br>28      | 19<br>16<br>77<br>104<br>58      | 14<br>14<br>14<br>13<br>13 | 15<br>14<br>14<br>14<br>14        | 16<br>51<br>49<br>22<br>18   | 11<br>11<br>23<br>33<br>14             | 7.3<br>5.7<br>5.8<br>5.4<br>5.2 | 17<br>11<br>9.5<br>33<br>12          | 6.9<br>7.2<br>7.5<br>6.8<br>6.7      | 13<br>26<br>71<br>23<br>10      |  |
| 21<br>22<br>23<br>24<br>25       | 5.3<br>6.7<br>7.2<br>9.0<br>5.2       | 325<br>23<br>11<br>18<br>9.6   | 19<br>15<br>14<br>17<br>329      | 36<br>28<br>33<br>20<br>16       | 12<br>12<br>27<br>21<br>14 | 14<br>14<br>13<br>13<br>12        | 16<br>15<br>15<br>58<br>111  | 13<br>11<br>45<br>11<br>9.0            | 76<br>74<br>8.7<br>5.9<br>6.9   | 8.8<br>8.3<br>7.9<br>34<br>22        | 6.6<br>6.9<br>7.1<br>7.3<br>7.5      | 8.1<br>8.2<br>9.0<br>8.3<br>8.5 |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 55<br>8.3<br>4.2<br>3.2<br>3.5<br>3.4 | 297<br>295<br>29<br>17<br>12   | 52<br>29<br>23<br>19<br>16<br>15 | 17<br>15<br>15<br>15<br>40<br>43 | 14<br>13<br>12             | 12<br>11<br>28<br>11<br>17<br>350 | 27<br>20<br>37<br>23<br>23   | 7.8<br>9.6<br>8.3<br>9.3<br>8.6<br>8.3 | 5.2<br>71<br>6.2<br>5.9<br>6.4  | 75<br>10<br>7.6<br>7.2<br>7.2<br>7.2 | 7.5<br>100<br>62<br>31<br>7.4<br>6.8 | 6.6<br>6.6<br>6.2<br>6.7        |  |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 292.4<br>9.43<br>55<br>3.2            | 1570.6<br>52.4<br>325<br>3.2   | 1692<br>54.6<br>353<br>10        | 1304<br>42.1<br>295<br>14        | 668<br>23.9<br>61<br>12    | 1652<br>53.3<br>496<br>11         | 1855<br>61.8<br>551<br>15    | 592.9<br>19.1<br>90<br>7.8             | 504.0<br>16.8<br>76<br>5.2      | 1291.3<br>41.7<br>437<br>5.4         | 717.1<br>23.1<br>151<br>6.6          | 918.3<br>30.6<br>343<br>6.0     |  |

CAL YR 1986 TOTAL 11085.8 MEAN 30.4 MAX 858 MIN 3.1 WTR YR 1987 TOTAL 13057.5 MEAN 35.8 MAX 551 MIN 3.2

# 01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1978 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME .                                 | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STA<br>AR<br>UNIT                  | ND- A                                              | MPER-<br>ATURE<br>MATER<br>DEG C) | SO        | GEN,<br>IS-<br>LVED                                            | DIS- DI<br>SOLVED (<br>(PER-<br>CENT<br>SATUR- | (YGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>DAY<br>(MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L, STRE                                            | CI |
|----------------|----------------------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------|-----------|----------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|----|
| OCT 1986       | 4444                                   | 10.0                                            | 1                                                 |                                           |                                                    | 1                                 |           |                                                                | 9                                              |                                                            |                                            |                                                    |    |
| 15<br>FEB 1987 | 1005                                   | 4.9                                             | 240                                               | 7                                         | 7.4                                                | 13.5                              |           | 5.4                                                            | 52                                             | 4.2                                                        | 54000                                      | 54000                                              |    |
| 10<br>APR      | 0950                                   | 26                                              | 2240                                              | 7                                         | 7.5                                                | 0.5                               | 1         | 4.5                                                            | 102                                            | 1.5                                                        | 2400                                       | >2400                                              |    |
| 06             | 1145                                   | 220                                             | 288                                               | 7                                         | 7.4                                                | 9.0                               | 1         | 0.3                                                            | 90                                             | 2.1                                                        | 5400                                       | 9200                                               |    |
| JUN<br>02      | 1000                                   | 8.5                                             | 589                                               | 7                                         | 7.6                                                | 22.5                              |           | 3.4                                                            | 39                                             | 1.6                                                        | 270                                        | 170                                                |    |
| JUL 13         | 1000                                   | 6.6                                             | 506                                               | . 7                                       | 7.7                                                | 23.0                              |           | 4.1                                                            | 48                                             | 1.8                                                        | 3300                                       | 1700                                               |    |
| AUG<br>11      | 0915                                   | 11                                              | 315                                               | 7                                         | 7.5                                                | 20.0                              |           | 5.0                                                            | 55                                             | 1.8                                                        | 3500                                       | 2400                                               |    |
| DATE           | HARI<br>NES<br>(MG,<br>AS<br>CAC       | S DIS<br>/L SOL<br>(MG                          | IUM S<br>VED SO                                   | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)       | SI<br>SOL<br>(MG                  | VED /L    | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | DIS-<br>SOLVEI<br>(MG/L                        | DI SO                                                      | LVED<br>G/L                                | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |    |
| OCT 1986<br>15 |                                        | 81 25                                           |                                                   | 4.5                                       | 13                                                 |                                   |           | 61                                                             | 22                                             | 2                                                          | ,                                          | <0.1                                               |    |
| FEB 1987       |                                        | .27                                             |                                                   |                                           | 13                                                 |                                   | .6        | 01                                                             |                                                |                                                            |                                            | 10.1                                               |    |
| 10<br>APR      |                                        | 170 53                                          | 1                                                 | 0                                         | 410                                                | 2                                 | .5        | 65                                                             | 42                                             | 70                                                         | 0                                          | <0.1                                               |    |
| 06             |                                        | 52 15                                           |                                                   | 3.6                                       | 29                                                 | 1                                 | .2        | 30                                                             | 14                                             | 5                                                          | 5                                          | <0.1                                               |    |
| JUN<br>02      |                                        | 200 61                                          | 1                                                 | 2                                         | 37                                                 | 2                                 | .1        | 115                                                            | 37                                             | 8                                                          | 6                                          | <0.1                                               |    |
| JUL<br>13      |                                        | 180 57                                          | 1                                                 | 0                                         | 30                                                 |                                   | .8        | 112                                                            | 34                                             | 6                                                          | 0                                          | <0.1                                               |    |
| AUG<br>11      |                                        | 100 32                                          |                                                   | 5.6                                       | 17                                                 |                                   | .8        | 74                                                             | 23                                             | 2                                                          | 8                                          | 0.1                                                |    |
| DATE           | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIO | VED TUEN                                        | OF NI<br>STI- G<br>ITS, NIT<br>IS- TO<br>VED (M   | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N)   | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | GE                                | NÍA<br>AL | NITRO<br>GEN, AM<br>MONÍA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | + NITRO C GEN, TOTAL (MG/L                     | PHO<br>TO<br>(M                                            |                                            | ARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)       |    |
| OCT_1986       |                                        |                                                 |                                                   |                                           |                                                    |                                   |           |                                                                |                                                |                                                            |                                            | 2.2                                                |    |
| 15<br>FEB 1987 |                                        | 8.1                                             |                                                   | .020                                      | 0.85                                               |                                   | 13        | 1.1                                                            | 1.9                                            | 0.                                                         | 150                                        | 6.7                                                |    |
| 10<br>APR      | 1                                      | 2                                               | 300 0                                             | .015                                      | 1.41                                               | 0.                                | 12        | 0.48                                                           | 1.9                                            | 0.                                                         | 037                                        | 5.4                                                |    |
| 06<br>JUN      |                                        | 7.2                                             | 140 0                                             | .018                                      | 0.75                                               | 0.                                | 17        | 0.77                                                           | 1.5                                            | 0.                                                         | 086                                        | 7.4                                                |    |
| 02             | 1                                      | 6                                               | 320 0                                             | .104                                      | 1.01                                               | 0.                                | 24        | 1.4                                                            | 2.4                                            | 0.                                                         | 188                                        | 4.5                                                |    |
| JUL<br>13      | 1                                      | 2                                               | 270 0                                             | .065                                      | 1.31                                               | 0.                                | 13        | 0.87                                                           | 2.2                                            | 0.                                                         | 130                                        | 5.9                                                |    |
| AUG<br>11      | 1                                      | 1                                               | 160 0                                             | .032                                      | 1.37                                               | 0.                                | 12        | 1.0                                                            | 2.4                                            | 0.                                                         | 130                                        | 7.2                                                |    |

# 01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                 | TIME                                                    | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C) | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)     | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)       | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)  | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------------------|---------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|
| OCT_1986             | 1005                                                    |                                                                      |                                                                   |                                                                       |                                                                    |                                                                   | Land State                                                          |                                                                     |                                                             | 11 -4                                                    | 10 M 10 M                                                            |
| 15<br>JUN 1987       | 1005                                                    | ••                                                                   | 0.3                                                               | 5.2                                                                   | , AIT                                                              | Harten.                                                           | 4                                                                   |                                                                     |                                                             | •                                                        | <1                                                                   |
| 02                   | 1000                                                    | <0.5                                                                 | ••                                                                | ••                                                                    | 30                                                                 | 1-                                                                | 1.50                                                                | <10                                                                 | 90                                                          | <1                                                       |                                                                      |
| DATE                 | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L    | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL             |                                                                   | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                         | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G         | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                       | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G            | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                         | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G    | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L    | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL            |
|                      | AS CR)                                                  | (UG/G)                                                               | AS CO)                                                            | AS CU)                                                                | AS CU)                                                             | AS FE)                                                            | AS FE)                                                              | AS PB)                                                              | AS PB)                                                      | AS MN)                                                   | (UG/G)                                                               |
| OCT_1986             |                                                         |                                                                      |                                                                   |                                                                       |                                                                    |                                                                   |                                                                     |                                                                     | 700                                                         |                                                          | 440                                                                  |
| 15<br>JUN 1987<br>02 |                                                         | 10                                                                   | 10                                                                | •••                                                                   | 80                                                                 |                                                                   | 5000                                                                |                                                                     | 380                                                         | •••                                                      | 160                                                                  |
| 02                   | <10                                                     |                                                                      |                                                                   | 5                                                                     | ••                                                                 | 460                                                               | ••                                                                  | <5                                                                  |                                                             | 360                                                      | ••                                                                   |
| DATE                 | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                     | TERIAL<br>(UG/G                                                       | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                         | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ERABLE<br>(UG/L                                                     | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)  | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          |
| OCT_1986             |                                                         |                                                                      |                                                                   |                                                                       |                                                                    |                                                                   |                                                                     | -                                                                   | 172                                                         |                                                          |                                                                      |
| 15<br>JUN 1987       |                                                         | 0.07                                                                 |                                                                   | 20                                                                    |                                                                    | <1                                                                |                                                                     | 320                                                                 | 25                                                          | <1.0                                                     | <0.1                                                                 |
| 02                   | <0.10                                                   |                                                                      | 3                                                                 |                                                                       | <1                                                                 |                                                                   | 20                                                                  | ••                                                                  |                                                             | ••                                                       | •••                                                                  |
|                      | DATE                                                    | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | TERIAL                                                                | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOM MA-                                                           | IN BOT-<br>TOM MA-<br>TERIAL                                        | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                    | CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.                       |
|                      | OCT_1986                                                | - 1011                                                               |                                                                   |                                                                       |                                                                    |                                                                   | P 4.4                                                               |                                                                     |                                                             |                                                          | 66                                                                   |
|                      | 15<br>JUN 1987                                          | 25                                                                   | 2.2                                                               | 3.9                                                                   | 5.9                                                                | 0.1                                                               | <0.1                                                                | <0.1                                                                | <0.1                                                        | 0.1                                                      | 0.5                                                                  |
|                      | 02                                                      |                                                                      |                                                                   | ••                                                                    |                                                                    | ••                                                                |                                                                     |                                                                     |                                                             | ••                                                       |                                                                      |
|                      | DATE                                                    | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | IN BOT-<br>TOM MA-<br>TERIAL                                      | CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.                                  | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MAIL.                                                             | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | TERIAL                                                   | TERIAL                                                               |
|                      | OCT 1986                                                | -0.4                                                                 | -0.4                                                              |                                                                       | .0.4                                                               |                                                                   | .0.4                                                                |                                                                     | -4 00                                                       | -40                                                      | -0.6                                                                 |
|                      | 15<br>JUN 1987                                          | <0.1                                                                 | <0.1                                                              | <1.1                                                                  | <0.1                                                               | <0.1                                                              | <0.1                                                                | <0.1                                                                | <1.00                                                       | <10                                                      | <0.1                                                                 |
|                      | 02                                                      |                                                                      |                                                                   |                                                                       |                                                                    |                                                                   |                                                                     |                                                                     |                                                             |                                                          | • • •                                                                |

#### 01395000 RAHWAY RIVER AT RAHWAY, NJ

LOCATION.--Lat 40°37'05", long 74°17'00", Union County, Hydrologic Unit 02030104, on left bank 100 ft upstream from St. Georges Avenue bridge in Rahway and 0.9 ml upstream from Robinsons Branch.

DRAINAGE AREA .-- 40.9 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1908 to April 1915 (gage heights and discharge measurements only), October 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1930-31(M), 1937. WDR NJ-79-1: 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 8.77 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 25, 1934, nonrecording gage at site 40 ft downstream from Church Street and 1,500 ft downstream from present site at datum 2.77 ft lower.

REMARKS.--Records fair. Water for municipal supply diverted from river by Rahway and Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., Springfield station of Elizabethtown Water Co, and by storage in the Lenape Park flood control reservoir (since 1980). Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 66 years (water years 1922-87), 47.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,420 ft<sup>3</sup>/s, Aug. 2, 1973, gage height, 7.88 ft, from rating curve extended above 3,000 ft<sup>3</sup>/s; no flow part or all of some days in many years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft<sup>3</sup>/s and maximum (\*):

| Date                                                        | Time                                         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)                             | Date                                              | Time                                 | Discharge<br>(ft <sup>3</sup> /s)    | Gage height<br>(ft)                   |
|-------------------------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
| Nov. 21<br>Nov. 26<br>Dec. 3<br>Jan. 2<br>Mar. 1<br>Mar. 31 | 0315<br>2230<br>1445<br>1200<br>2215<br>1615 | 779<br>936<br>645<br>607<br>1,010 | 3.50<br>3.74<br>3.27<br>3.19<br>3.84<br>3.38 | Apr. 4<br>July 14<br>Aug. 6<br>Aug. 10<br>Sep. 13 | 1545<br>1900<br>0215<br>0515<br>1715 | *1,280<br>1,110<br>747<br>663<br>609 | *4.29<br>4.02<br>3.45<br>3.32<br>3.23 |

Minimum daily discharge, 0.10 ft<sup>3</sup>/s, Aug. 22,23, Sept. 11, 26, 27.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

| DAY                              | ОСТ                                  | NOV                           | DEC                               | JAN                              | FEB                         | MAR                               | APR                           | MAY                                  | JUN                             | JUL                                | AUG                                 | SEP                             |
|----------------------------------|--------------------------------------|-------------------------------|-----------------------------------|----------------------------------|-----------------------------|-----------------------------------|-------------------------------|--------------------------------------|---------------------------------|------------------------------------|-------------------------------------|---------------------------------|
| 1 2 3 4 5                        | 1.1<br>1.1<br>3.1<br>50<br>8.1       | 6.3<br>10<br>8.7<br>12<br>22  | 23<br>50<br>532<br>180<br>46      | 24<br>405<br>237<br>86<br>38     | 42<br>45<br>87<br>108<br>60 | 568<br>599<br>111<br>73<br>58     | 280<br>64<br>49<br>646<br>539 | 24<br>23<br>23<br>111<br>72          | 4.6<br>21<br>13<br>70<br>99     | 12<br>71<br>128<br>16<br>7.7       | 6.2<br>6.3<br>9.7<br>7.2<br>32      | 28<br>9.8<br>5.6<br>5.1<br>5.0  |
| 6<br>7<br>8<br>9                 | 8.0<br>1.2<br>1.1<br>1.2<br>1.3      | 119<br>35<br>97<br>73<br>24   | 32<br>25<br>21<br>90<br>164       | 32<br>33<br>33<br>31<br>46       | 39<br>37<br>37<br>78<br>51  | 49<br>49<br>47<br>45<br>41        | 173<br>100<br>56<br>41<br>36  | 40<br>32<br>28<br>25<br>22           | 11<br>5.3<br>4.7<br>9.4<br>6.0  | 5.5<br>7.5<br>115<br>155<br>21     | 285<br>26<br>14<br>15<br>323        | 5.2<br>32<br>158<br>66<br>23    |
| 11<br>12<br>13<br>14<br>15       | 1.3<br>1.2<br>1.2<br>44<br>16        | 72<br>115<br>23<br>13         | 63<br>55<br>31<br>26<br>21        | 84<br>45<br>33<br>30<br>31       | 34<br>32<br>33<br>28<br>25  | 35<br>37<br>46<br>41<br>37        | 32<br>28<br>38<br>32<br>27    | 19<br>19<br>17<br>19<br>33           | 4.1<br>5.8<br>9.8<br>12<br>3.8  | 10<br>11<br>18<br>281<br>640       | 30<br>19<br>12<br>8.2               | e1.3<br>6.4<br>281<br>309<br>32 |
| 16<br>17<br>18<br>19<br>20       | 1.8<br>1.4<br>1.2<br>1.2             | 12<br>12<br>15<br>166<br>66   | 21<br>21<br>163<br>253<br>66      | 30<br>25<br>81<br>191<br>107     | 25<br>24<br>21<br>19        | 34<br>34<br>31<br>30<br>32        | 25<br>52<br>57<br>31<br>26    | 21<br>19<br>23<br>61<br>23           | 4.5<br>3.2<br>2.5<br>2.6<br>2.6 | 60<br>14<br>3.0<br>33<br>42        | 7.1<br>22<br>8.7<br>5.3<br>5.6      | 21<br>27<br>100<br>47<br>40     |
| 21<br>22<br>23<br>24<br>25       | 1.1<br>.97<br>1.3<br>1.8<br>1.5      | 568<br>136<br>36<br>35<br>32  | 34<br>27<br>24<br>24<br>445       | 50<br>47<br>43<br>35<br>35       | 19<br>18<br>35<br>42<br>30  | 32<br>32<br>30<br>30<br>30        | 24<br>18<br>13<br>37<br>184   | 21<br>14<br>32<br>19<br>8.9          | 96<br>125<br>43<br>8.3<br>8.4   | 16<br>11<br>6.4<br>9.7             | 2.5<br>e.70<br>e.60<br>e1.8<br>4.9  | 20<br>14<br>18<br>11<br>12      |
| 26<br>27<br>28<br>29<br>30<br>31 | 23<br>45<br>4.1<br>4.2<br>4.2<br>4.9 | 215<br>681<br>130<br>41<br>29 | 134<br>42<br>34<br>30<br>26<br>25 | 34<br>33<br>33<br>32<br>44<br>84 | 23<br>22<br>22<br>          | 31<br>29<br>52<br>34<br>29<br>349 | 44<br>31<br>46<br>34<br>32    | 7.7<br>11<br>11<br>8.0<br>8.1<br>8.3 | 5.6<br>128<br>21<br>7.1<br>7.4  | 116<br>48<br>18<br>13<br>11<br>8.0 | 4.7<br>111<br>76<br>62<br>19<br>7.5 | e1.5<br>e.70<br>e19<br>17<br>13 |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 238.67<br>7.70<br>50<br>.97          | 2815.0<br>93.8<br>681<br>6.3  | 2728<br>88.0<br>532<br>21         | 2092<br>67.5<br>405<br>24        | 1055<br>37.7<br>108<br>18   | 2675<br>86.3<br>599<br>29         | 2795<br>93.2<br>646<br>13     | 803.0<br>25.9<br>111<br>7.7          | 744.7<br>24.8<br>128<br>2.5     | 1975.8<br>63.7<br>640<br>3.0       | 1144.00<br>36.9<br>323<br>.60       | 1328.60<br>44.3<br>309<br>.70   |

CAL YR 1986 TOTAL 18622.85 MEAN 51.0 MAX 1430 MIN .67 WTR YR 1987 TOTAL 20394.71 MEAN 55.9 MAX 681 MIN .60

e Estimated

## 01395000 RAHWAY RIVER AT RAHWAY, NJ -- Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1952, 1962, 1967-70, and February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                            | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM-<br>W,<br>AN-<br>OUS                                    | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>US/CM) | (ST                     | H<br>AND-<br>RD<br>TS)                | TEMP<br>ATU<br>WAT<br>(DEG | RE<br>ER                                     | DXYGI<br>DI:<br>SOL'<br>(MG, | EN,<br>S-<br>VED                                               | DIS<br>SOLVI<br>(PER<br>CEN<br>SATUI<br>ATIO | DED I                                      | (YGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>DAY<br>(MG/L) | FOR<br>FEC<br>EC<br>BRO                        | M,<br>AL,<br>TH | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)    |
|----------------|---------------------------------|------------------------------------|------------------------------------------------------------|--------------------------------------------------|-------------------------|---------------------------------------|----------------------------|----------------------------------------------|------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------|------------------------------------------------|-----------------|----------------------------------------|
| OCT 1986       |                                 |                                    |                                                            |                                                  |                         |                                       |                            |                                              |                              |                                                                |                                              |                                            |                                                            |                                                |                 |                                        |
| 09             | 1140                            | E1                                 | .2                                                         | 305                                              |                         | 7.7                                   | 16                         | .0                                           | 8                            | .1                                                             | 8                                            | 2                                          | 1.8                                                        | 700                                            |                 | 200                                    |
| JAN 1987<br>21 | 1235                            | 49                                 |                                                            | 883                                              |                         | 7.6                                   | 2                          | .5                                           | 13                           | .7                                                             | 10                                           | 0                                          | 2.7                                                        | 790                                            |                 | 790                                    |
| APR 06         | 0945                            | 213                                | wie.                                                       | 328                                              |                         | 7.6                                   | 10                         |                                              | 10                           |                                                                | 9                                            | 7                                          | 2.7                                                        | >2400                                          |                 | >2400                                  |
| JUN            |                                 |                                    |                                                            |                                                  |                         |                                       |                            |                                              |                              |                                                                |                                              |                                            |                                                            |                                                |                 | 2012174                                |
| 03<br>JUL      | 0945                            | 12                                 | 10 1                                                       | 520                                              |                         | 7.8                                   | 21                         | .5                                           | 6                            | .3                                                             | 7                                            | l e                                        | 2.7                                                        | 3500                                           |                 | 5400                                   |
| 15<br>AUG      | 1000                            | 887                                | 100                                                        | 171                                              |                         | 7.4                                   | 22                         | .5                                           | 7                            | .9                                                             | 9                                            | 2                                          | 5.7                                                        | 16000                                          | :               | 24000                                  |
| 18             | 1000                            | 7                                  | .3                                                         | 477                                              |                         | 7.9                                   | 25                         | .5                                           | 6                            | .2                                                             | 7                                            | 6                                          | 1.2                                                        | 330                                            |                 | 230                                    |
| DATE           | HAR<br>NES<br>(MG<br>AS<br>CAC  | S<br>/L                            | CALCIU<br>DIS-<br>SOLVE<br>(MG/L<br>AS CA                  | M SI<br>DI<br>D SOL<br>(MG                       | NE-<br>UM,<br>S-<br>VED | SODI<br>DIS<br>SOLV<br>(MG<br>AS      | ED /L                      | POTA<br>SIUI<br>DIS<br>SOLVI<br>(MG/<br>AS K | M,<br>ED<br>L                | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | . S                                          | ULFATI<br>DIS-<br>SOLVEI<br>(MG/L<br>S SO4 | E RI<br>DI<br>D SC                                         | ILO-<br>IDE,<br>IS-<br>DLVED<br>IG/L<br>IG CL) | SOI<br>(M       | JO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |
| OCT 1986       |                                 | 120                                | 70                                                         | TRADE.                                           |                         | Trans.                                |                            |                                              | 1                            | -                                                              |                                              | 70                                         | hue &                                                      | 118st                                          | .04             | 11.16                                  |
| 09<br>JAN 1987 |                                 | 120                                | 38                                                         |                                                  | .6                      | 15                                    |                            | 2.                                           | 4                            | 82                                                             |                                              | 30                                         |                                                            | 26                                             |                 | 0.1                                    |
| 21             |                                 | 100                                | 32                                                         | 6                                                | 0.0                     | 130                                   |                            | 1.                                           | 8                            | 52                                                             |                                              | 30                                         | 22                                                         | 20                                             | <(              | 0.1                                    |
| 06             |                                 | 72                                 | 21                                                         | 4                                                | .7                      | 30                                    |                            | 1.                                           | 5                            | 41                                                             |                                              | 21                                         | 4                                                          | 9                                              | <(              | 0.1                                    |
| JUN<br>03      |                                 | 180                                | 56                                                         | 10                                               |                         | 27                                    |                            | 1.                                           | 9                            | 119                                                            |                                              | 42                                         | 6                                                          | 51                                             | -               | 0.1                                    |
| JUL<br>15      |                                 | 41                                 | 12                                                         | 2                                                | .6                      | 14                                    |                            | 1.                                           | 8                            | 21                                                             |                                              | 14                                         | 103                                                        | 35                                             | <               | 0.1                                    |
| AUG<br>18      |                                 | 180                                | 54                                                         | 10                                               |                         | 23                                    |                            | 2.                                           |                              | 115                                                            |                                              | 39                                         |                                                            | 4                                              |                 | 0.1                                    |
|                |                                 |                                    | 0.00                                                       | 323                                              | 1                       |                                       |                            |                                              | 1                            |                                                                |                                              |                                            | -                                                          | 100                                            |                 |                                        |
| DATE           | SILI<br>DIS<br>SOL<br>(MG<br>AS | VED<br>/L                          | SOLIDS<br>SUM OF<br>CONSTITUENTS<br>DIS-<br>SOLVE<br>(MG/L | NIT GE                                           | AL<br>/L                | NIT<br>GE<br>NO2+<br>TOT<br>(MG<br>AS | NO3<br>AL<br>/L            | NITR<br>GEN<br>AMMON<br>TOTA<br>(MG/<br>AS N | ÍA                           | NITRO<br>GEN, AM<br>MONIA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | -<br>+<br>C                                  | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHO<br>TO<br>(A                                            | IOS-<br>DRUS,<br>DTAL<br>IG/L<br>S P)          | TO'             | BON,<br>ANIC<br>FAL<br>G/L<br>C)       |
| OCT 1986       | Sec .                           | V                                  |                                                            |                                                  |                         |                                       | 18                         |                                              |                              |                                                                |                                              |                                            |                                                            | 1                                              |                 | 1                                      |
| 09<br>JAN 1987 | 531                             | 10                                 | 18                                                         | 0.                                               | 027                     | 0.                                    | 87                         | 0.11                                         |                              | 0.67                                                           |                                              | 1.5                                        | 0.1                                                        | 100                                            | 4.              |                                        |
| 21<br>APR      |                                 | 9.2                                | 46                                                         | 0.                                               | 023                     | 0.                                    | 93                         | 0.13                                         |                              | 0.53                                                           | 1                                            | 1.5                                        | 0.0                                                        | 96                                             | 5.              | 6                                      |
| 06             |                                 | 8.4                                | 16                                                         | 0.                                               | 029                     | 0.                                    | 84                         | 0.14                                         |                              | 1.0                                                            |                                              | 1.9                                        | 0.1                                                        | 114                                            | 7.              | 7                                      |
| JUN<br>03      |                                 | 14                                 | 28                                                         | so o.                                            | 082                     | 0.                                    | 99                         | 0.58                                         |                              | 1.1                                                            |                                              | 2.1                                        | 0.1                                                        | 117                                            | 4.              | 0                                      |
| JUL 15         |                                 | 4.1                                | 9                                                          | 6 0.                                             | 041                     | 0.                                    | 81                         | 0.15                                         |                              | 1.3                                                            |                                              | 2.1                                        | 0.2                                                        | 270                                            | 13              |                                        |
| AUG<br>18      | 78                              | 14                                 | 26                                                         |                                                  | 017                     |                                       | 00                         | <0.05                                        |                              | 0.59                                                           |                                              | 1.6                                        |                                                            | 080                                            | 4.              | 4                                      |
|                |                                 |                                    | 20                                                         | 0.                                               | 017                     |                                       | 00                         | -0.05                                        |                              | 0.39                                                           |                                              |                                            | 0.0                                                        |                                                | 7.              |                                        |

## 01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE     | TIME                                                                 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)               | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)            |
|----------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| OCT 1986 |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                     |                                                                    |
| 09       | 1140                                                                 |                                                                |                                                                      | 0.2                                                                  | 10                                                                    | ••                                                                   |                                                                    | 6                                                                   |                                                                      | ::                                                                  | • • •                                                              |
| 09       | 1140                                                                 | <0.5                                                           | 1200                                                                 | ••                                                                   | ***                                                                   | <10                                                                  | 2                                                                  | ••                                                                  | <10                                                                  | 90                                                                  | <1                                                                 |
| DATE     | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)  | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)    |
| OCT 1986 |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                     |                                                                    |
| 09       | <1                                                                   | ::                                                             | 9                                                                    | <10                                                                  | •:                                                                    | 30                                                                   | -:                                                                 | 4800                                                                | • • •                                                                | 120                                                                 | 400                                                                |
| 09       |                                                                      | <10                                                            | •••                                                                  | ••                                                                   | 9                                                                     | ••                                                                   | 750                                                                |                                                                     | 9                                                                    |                                                                     | 190                                                                |
| DATE     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)        | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                          | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           |
| OCT 1986 |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                     |                                                                    |
| 09<br>09 | 160                                                                  | <0.10                                                          | 0.07                                                                 | 3                                                                    | <10                                                                   | <1                                                                   | <1                                                                 | 550                                                                 | 130                                                                  | 2                                                                   | 390                                                                |
|          | DATE                                                                 | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)       |                                                                      | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        |
|          | OCT 1986                                                             |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                     |                                                                    |
|          | 09<br>09                                                             | <1.0                                                           |                                                                      | 140                                                                  | 13                                                                    | 24                                                                   | 0.9                                                                | <0.1                                                                | 30                                                                   | 1.6                                                                 | 0.1                                                                |
|          | DATE                                                                 | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                |                                                                      | MATL.                                                                 | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                    | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|          | OCT 1986                                                             |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                     |                                                                    |
|          | 09                                                                   | 0.2                                                            |                                                                      | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <1.00                                                                | <10                                                                 | <0.1                                                               |

#### 01396000 ROBINSONS BRANCH AT RAHWAY, NJ

LOCATION.--Lat 40°36'20", long 74°17'40", Union County, Hydrologic Unit 02030104, on right bank of Milton Lake, 2,000 ft upstream from Maple Avenue in Rahway, 3,200 ft downstream from Middlesex Reservoir Dam, and 1.6 mi upstream from mouth.

DRAINAGE AREA. -- 21.6 mi 2.

PERIOD OF RECORD.--September 1939 to current year. September 1939 to September 1978, published as "Robinsons Branch Rahway River at Rahway." October 1978 to September 1985, published as "Robinsons Branch Rahway River at Maple Avenue, at Rahway" (station 01396001).

REVISED RECORDS .-- WDR-NJ-75-1: 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 19.99 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). From Sept. 26, 1978 to Sept. 30, 1985, water-stage recorder 2,000 ft downstream on Maple Avenue at datum 8.69 ft lower.

REMARKS.--No estimated daily discharges. Records good above 10 ft<sup>3</sup>/s and fair below. Water diverted for municipal supply by Middlesex Water Co., from Middlesex Reservoir, capacity, 89,000,000 gal, 1.0 mi above station. No diversion this year. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 48 years, 25.7 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 3,110 ft<sup>3</sup>/s, July 15, 1975, gage height, 5.85 ft, from rating curve extended above 750 ft<sup>3</sup>/s on basis of flow-over-dam computation, site and datum then in use; maximum gage height, 6.02 ft, Aug. 15, 1969, site and datum then in use; no flow many times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|---------|------|--------------------------------|------------------|
| Nov. 21 | 0115 | 545                               | 4.76             | Apr. 4  | 1445 | *1,110                         | *5.12            |
| Nov. 26 | 2115 | 771                               | 4.92             | July 14 | 1900 | 592                            | 4.80             |
| Dec. 3  | 0130 | 482                               | 4.71             | Aug. 6  | 0115 | 469                            | 4.70             |
| Mar. 1  | 1430 | 676                               | 4.86             | Aug. 10 | 0300 | 528                            | 4.75             |

No flow parts of Oct. 2,3 when the bypass gate was closed and lake was refilling.

CORRECTION: The annual maximum published for water year 1986 as occurring on Oct. 17, 1985, actually occurred Nov. 17, 1985.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MEAN VALUES

| DAY                              | OCT                             | NOV                          | DEC                              | JAN                              | FEB                           | MAR                                | APR                           | MAY                             | JUN                             | JUL                                  | AUG                                 | SEP                             |
|----------------------------------|---------------------------------|------------------------------|----------------------------------|----------------------------------|-------------------------------|------------------------------------|-------------------------------|---------------------------------|---------------------------------|--------------------------------------|-------------------------------------|---------------------------------|
| 1 2 3 4 5                        | .73<br>.21<br>3.0<br>18<br>7.5  | 4.1<br>5.0<br>4.1<br>5.0     | 9.0<br>48<br>310<br>94<br>18     | 12<br>250<br>168<br>49<br>24     | 25<br>28<br>52<br>67<br>39    | 369<br>283<br>72<br>30<br>22       | 108<br>24<br>16<br>434<br>294 | 12<br>11<br>14<br>75<br>61      | 5.5<br>8.3<br>7.3<br>50<br>72   | 16<br>62<br>72<br>15<br>7.2          | 4.3<br>4.3<br>7.9<br>6.4<br>28      | 11<br>5.5<br>4.5<br>3.2<br>3.7  |
| 6<br>7<br>8<br>9                 | 5.8<br>4.2<br>4.5<br>5.4<br>5.1 | 67<br>14<br>76<br>49<br>23   | 12<br>11<br>11<br>86<br>100      | 17<br>15<br>14<br>12<br>23       | 25<br>24<br>24<br>38<br>28    | 19<br>18<br>16<br>15               | 163<br>80<br>43<br>26<br>19   | 28<br>20<br>17<br>14<br>12      | 13<br>6.3<br>5.7<br>8.1<br>7.3  | 5.6<br>5.4<br>85<br>92<br>17         | 190<br>24<br>9.0<br>14<br>262       | 4.2<br>15<br>23<br>19<br>6.6    |
| 11<br>12<br>13<br>14<br>15       | 4.2<br>4.7<br>5.0<br>16<br>6.5  | 78<br>69<br>16<br>11         | 33<br>41<br>22<br>13<br>10       | 40<br>25<br>16<br>13<br>13       | 19<br>18<br>16<br>13          | 9.7<br>12<br>16<br>15              | 17<br>15<br>20<br>17<br>15    | 12<br>12<br>9.0<br>8.7<br>20    | 4.2<br>4.9<br>5.2<br>3.9        | 9.3<br>8.1<br>7.9<br>145<br>151      | 50<br>9.7<br>6.7<br>5.5<br>5.5      | 4.6<br>4.9<br>120<br>57<br>12   |
| 16<br>17<br>18<br>19<br>20       | 4.6<br>4.3<br>4.4<br>4.2<br>4.2 | 9.9<br>10<br>13<br>114<br>59 | 9.1<br>8.9<br>118<br>143<br>33   | 12<br>10<br>39<br>98<br>74       | 9.5<br>9.2<br>13<br>11<br>9.6 | 11<br>9.6<br>8.7<br>9.2<br>9.3     | 14<br>33<br>51<br>24<br>16    | 17<br>9.3<br>11<br>23<br>11     | 3.0<br>3.2<br>2.7<br>2.8<br>3.2 | 8.1<br>5.8<br>21<br>21               | 5.2<br>4.9<br>4.7<br>4.4<br>4.3     | 7.6<br>16<br>67<br>29<br>12     |
| 21<br>22<br>23<br>24<br>25       | 4.4<br>4.6<br>4.7<br>4.1<br>4.1 | 260<br>64<br>14<br>19<br>14  | 16<br>13<br>11<br>13<br>250      | 34<br>26<br>18<br>16<br>12       | 9.5<br>10<br>19<br>23<br>18   | 9.3<br>9.1<br>8.7<br>8.9<br>9.0    | 15<br>13<br>12<br>31<br>196   | 11<br>7.8<br>6.7<br>6.5<br>5.8  | 20<br>54<br>25<br>6.6<br>4.2    | 7.6<br>5.3<br>4.7<br>7.0             | 3.3<br>4.5<br>4.9<br>2.9<br>2.2     | 8.1<br>16<br>20<br>10<br>7.3    |
| 26<br>27<br>28<br>29<br>30<br>31 | 7.6<br>5.0<br>4.0<br>5.3<br>4.0 | 177<br>247<br>68<br>15<br>11 | 91<br>22<br>15<br>12<br>14<br>13 | 13<br>12<br>10<br>10<br>19<br>32 | 16<br>15<br>14                | 10<br>9.2<br>20<br>14<br>11<br>169 | 21<br>29<br>23<br>19          | 5.8<br>6.7<br>6.9<br>6.1<br>5.7 | 3.7<br>83<br>18<br>6.8<br>5.9   | 113<br>68<br>11<br>6.4<br>4.7<br>4.7 | 2.3<br>45<br>25<br>20<br>8.1<br>5.1 | 5.3<br>5.6<br>5.7<br>5.7<br>8.1 |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 174.34<br>5.62<br>18<br>.21     | 1539.1<br>51.3<br>260<br>4.1 | 1600.0<br>51.6<br>310<br>8.9     | 1126<br>36.3<br>250<br>10        | 603.8<br>21.6<br>67<br>9.2    | 1245.7<br>40.2<br>369<br>8.7       | 1832<br>61.1<br>434<br>12     | 471.6<br>15.2<br>75<br>5.6      | 448.0<br>14.9<br>83<br>2.7      | 1026.8<br>33.1<br>151<br>4.7         | 774.1<br>25.0<br>262<br>2.2         | 517.6<br>17.3<br>120<br>3.2     |

CAL YR 1986 TOTAL 10381.60 MEAN 28.4 MAX 817 MIN .21 WTR YR 1987 TOTAL 11358.96 MEAN 31.1 MAX 434 MIN .21

RARITAN RIVER BASIN 129

#### 01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ

LOCATION.--Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030l05, at bridge on Middle Valley Road in Middle Valley, 6.9 mi downstream from Drakes Brook.

DRAINAGE AREA. -- 47.6 mi 2.

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|    | DATE           | TIME                                   | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- C<br>W, C<br>AN- D<br>OUS A                                     | NCE                                              | PH<br>STAND<br>ARD<br>INITS) | - A                                             | APER-<br>TURE<br>ATER<br>EG C) | SC                                       | GEN,<br>OIS-<br>OLVED<br>IG/L)                  | SO (PI                        |                                        | OXYG<br>DEMA<br>BIO<br>CHE<br>ICA<br>5 D<br>(MG | ND,<br>M-<br>L,<br>AY     | COL<br>FOR<br>FEC<br>EC<br>BRC<br>(MF  | M,<br>AL,                        | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |  |
|----|----------------|----------------------------------------|------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|------------------------------|-------------------------------------------------|--------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------|----------------------------------------|-------------------------------------------------|---------------------------|----------------------------------------|----------------------------------|-------------------------------------|--|
|    | T 1986         | 12205                                  | 200                                |                                                                     | 4.7.                                             |                              |                                                 |                                |                                          |                                                 |                               |                                        |                                                 | 4                         |                                        |                                  | 1445                                |  |
|    | 01<br>B 1987   | 1200                                   | E30                                |                                                                     | 254                                              | 8.2                          |                                                 | 14.0                           | 1                                        | 8.0                                             |                               | 107                                    | <0                                              | .7                        | 140                                    | )                                | 350                                 |  |
|    | 17             | 1045                                   | E67                                |                                                                     | 273                                              | 8.0                          |                                                 | 0.5                            | 1                                        | 4.0                                             |                               | 99                                     | E1                                              | .7                        | 130                                    | )                                | 920                                 |  |
|    | 18             | 1045                                   | E99                                |                                                                     | 234                                              | 8.1                          |                                                 | 5.5                            | 1                                        | 3.6                                             |                               | 110                                    | <0                                              | .6                        | <20                                    | )                                | 27                                  |  |
| JU | 18             | 1100                                   | E39                                |                                                                     | 274                                              | 8.1                          |                                                 | 18.0                           | 1                                        | 0.6                                             |                               | 113                                    | 3                                               | .0                        | 330                                    | )                                | 350                                 |  |
| JU | L<br>20        | 1100                                   | E47                                |                                                                     | 223                                              | 7.8                          |                                                 | 19.5                           |                                          | 9.4                                             |                               | 104                                    | <2                                              | .3                        | 1300                                   |                                  | >2400                               |  |
| AU | 19             | 1145                                   | E33                                |                                                                     | 284                                              | 8.4                          |                                                 | 20.0                           |                                          | 8.01                                            |                               | 121                                    | E1                                              | .9                        | 310                                    | )                                | 1600                                |  |
|    | DATE           | HAR<br>NES<br>(MG<br>AS<br>CAC         | S<br>/L                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | SOLVE<br>(MG/I                                   | , so<br>D so                 | DIUM,<br>IS-<br>DLVED<br>MG/L<br>S NA)          | SO (M                          | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K) | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC           | TY<br>B<br>/L                 | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | ED L                                            | RIII<br>DIS<br>SOI<br>(MC | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | FLU<br>RID<br>DI<br>SOL<br>(MG   | E,<br>S-<br>VED                     |  |
|    | OCT 1986       |                                        |                                    |                                                                     |                                                  |                              |                                                 |                                |                                          |                                                 |                               |                                        |                                                 |                           |                                        |                                  |                                     |  |
|    | 01<br>FEB 1987 |                                        | 100                                | 22                                                                  | 11                                               |                              | 11                                              |                                | 1.8                                      | 83                                              |                               | 10                                     | )                                               | 18                        | В                                      | <0                               | 1.1                                 |  |
|    | 17             |                                        | 82                                 | 18                                                                  | 9.                                               |                              | 17                                              |                                | 1.4                                      | 61                                              |                               | 14                                     |                                                 | 30                        | 0                                      | <0                               | 1.1                                 |  |
|    | 18             |                                        | 70                                 | 16                                                                  | 7.4                                              |                              | 12                                              |                                | 1.1                                      | 48                                              |                               | 12                                     | 2                                               | 2                         | 1                                      | <0                               | 1.1                                 |  |
|    | JUN<br>18      |                                        | 100                                | 22                                                                  | 12                                               |                              | 12                                              |                                | 1.8                                      | 86                                              |                               | 10                                     |                                                 | 19                        | 9                                      | <0                               | .1                                  |  |
|    | JUL<br>20      |                                        | 91                                 | 20                                                                  | 10                                               |                              | 13                                              |                                | 1.5                                      | 68                                              |                               | 11                                     |                                                 | 24                        | 4                                      | <0                               | 1.1                                 |  |
|    | AUG<br>19      |                                        | 100                                | 22                                                                  | 12                                               |                              | 12                                              |                                | 1.2                                      | 89                                              |                               | 12                                     |                                                 | 20                        |                                        |                                  | 0.1                                 |  |
|    | 17             |                                        | 100                                | 22                                                                  | 12                                               |                              | 12                                              |                                | 1.2                                      | 09                                              |                               | 12                                     |                                                 | 21                        |                                        |                                  | . 1                                 |  |
|    | DATE           | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIO | VED<br>/L                          | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN<br>NITRI<br>TOTAL<br>(MG/L<br>AS N) | E NO                         | ITRO-<br>GEN,<br>22+NÓ3<br>OTAL<br>MG/L<br>S N) | AMM<br>TO                      | TRO-<br>EN,<br>ONÍA<br>TAL<br>G/L<br>N)  | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NITR<br>GEN<br>TOTA<br>(MG/<br>AS N    | Ĺ                                               | PHOI<br>TO                | OS-<br>RUS,<br>TAL<br>G/L<br>P)        | CARE<br>ORGA<br>TOT<br>(MG<br>AS | NIČ<br>AL<br>S/L                    |  |
|    | OCT 1986       |                                        |                                    | 440                                                                 |                                                  |                              |                                                 | 12                             |                                          |                                                 |                               |                                        |                                                 |                           |                                        |                                  | 4                                   |  |
|    | 01<br>FEB 1987 |                                        | 3                                  | 140                                                                 |                                                  | 55                           | 1.68                                            |                                | .05                                      | 0.                                              | 76                            | 2.4                                    |                                                 | 0.                        | 180                                    | 2.                               | 9                                   |  |
|    | 17<br>MAR      | 1                                      | 3                                  | 140                                                                 | 0.01                                             | 8                            | 2.05                                            | 0                              | . 25                                     | 0.                                              | 55                            | 2.6                                    |                                                 | 0.0                       | 078                                    | 2.                               | 4                                   |  |
|    | 18<br>JUN      | 1                                      | 2                                  | 110                                                                 | E0.02                                            | 7                            | 1.53                                            | 0                              | .12                                      | 0.                                              | 27                            | 1.8                                    | 1                                               | 0.0                       | 056                                    | 1.                               | 6                                   |  |
|    | 18             | 1                                      | 3                                  | 140                                                                 | 0.04                                             | 6                            | 2.10                                            | <0                             | .05                                      | 0.                                              | 34                            | 2.4                                    |                                                 | 0.2                       | 245                                    | 2.                               | 2                                   |  |
|    | 20             | 1                                      | 1                                  | 130                                                                 | 0.02                                             | 7                            | 1.81                                            | 0                              | .08                                      | 0.                                              | 62                            | 2.4                                    |                                                 | 0.1                       | 140                                    | 5.                               | 4                                   |  |
|    | AUG<br>19      |                                        | 7.9                                | 140                                                                 | 0.02                                             | 7                            | 1.54                                            | 0                              | .05                                      | 0.                                              | 85                            | 2.4                                    |                                                 | 0.1                       | 140                                    | 2.                               | 1                                   |  |
|    |                |                                        |                                    |                                                                     |                                                  |                              |                                                 |                                |                                          |                                                 |                               |                                        |                                                 |                           |                                        |                                  |                                     |  |

# RARITAN RIVER BASIN 01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                 | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C) | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  |                                                                   | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986       | 1 44                                                                |                                                                    |                                                                   |                                                                       |                                                                      |                                                                   | 18                                                                  |                                                                 |                                                                    |                                                                 | 3                                                                    |
| 01             | 1200                                                                | <0.5                                                               |                                                                   |                                                                       | 20                                                                   | 1                                                                 | 1.00                                                                |                                                                 | 40                                                                 | <1                                                              |                                                                      |
| 01<br>JUN 1987 | 1200                                                                | •••                                                                | 0.4                                                               | 2.4                                                                   | ••                                                                   |                                                                   | 3                                                                   |                                                                 |                                                                    | •                                                               | <1                                                                   |
| 18             | 1100                                                                | <0.5                                                               |                                                                   |                                                                       | 10                                                                   | 3                                                                 |                                                                     | <10                                                             | <10                                                                | <1                                                              | 11000                                                                |
| DATE           | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) |                                                                   | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | TERIAL<br>(UG/G                                                     | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)           | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | TOM MA-<br>TERIAL                                                    |
| OCT 1986       |                                                                     |                                                                    |                                                                   | _                                                                     |                                                                      | 9                                                                 | 1,08                                                                | 411                                                             |                                                                    |                                                                 | 40 -                                                                 |
| 01<br>01       | <10                                                                 | 5                                                                  | <10                                                               |                                                                       | 5                                                                    | 140                                                               |                                                                     | <5                                                              | <10                                                                | 10                                                              |                                                                      |
| JUN 1987       |                                                                     |                                                                    | -10                                                               |                                                                       |                                                                      |                                                                   |                                                                     |                                                                 | 100                                                                |                                                                 |                                                                      |
| 18             | 20                                                                  |                                                                    |                                                                   | 3                                                                     | •••                                                                  | 190                                                               |                                                                     | <5                                                              | ••                                                                 | 20                                                              |                                                                      |
| DATE           | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                              | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                     | (UG/G                                                                 | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ERABLE (UG/L                                                        | (UG/G                                                           | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | TOM MA-<br>TERIAL                                                    |
| OCT 1986       |                                                                     |                                                                    |                                                                   |                                                                       |                                                                      |                                                                   |                                                                     |                                                                 |                                                                    |                                                                 |                                                                      |
| 01             | <0.10                                                               |                                                                    |                                                                   |                                                                       |                                                                      |                                                                   |                                                                     |                                                                 |                                                                    |                                                                 |                                                                      |
| 01<br>JUN 1987 | •••                                                                 | 0.01                                                               | •••                                                               | <10                                                                   | ••                                                                   | <1                                                                | •••                                                                 | 30                                                              | u 10-                                                              | <1                                                              | <1.0                                                                 |
| 18             | <0.10                                                               |                                                                    | 1                                                                 |                                                                       | <1                                                                   |                                                                   | <10                                                                 |                                                                 | 2                                                                  |                                                                 | - ••                                                                 |
| DATE OF 100/   | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         |                                                                    | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | TERIAL                                                                | TERIAL                                                               |                                                                   | TOTAL IN BOT- TOM MA- TERIAL                                        | IN BOT-<br>TOM MA-<br>TERIAL                                    | TERIAL                                                             | IN BOT-<br>TOM MA-<br>TERIAL                                    | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                |
| OCT 1986<br>01 |                                                                     |                                                                    |                                                                   |                                                                       |                                                                      |                                                                   |                                                                     |                                                                 |                                                                    |                                                                 |                                                                      |
| 01             | <0.1                                                                | 2.0                                                                |                                                                   |                                                                       |                                                                      | <0.                                                               | 1 <0.1                                                              | <0.1                                                            |                                                                    |                                                                 |                                                                      |
| JUN 1987<br>18 |                                                                     |                                                                    | -                                                                 |                                                                       |                                                                      |                                                                   |                                                                     |                                                                 |                                                                    |                                                                 |                                                                      |
|                |                                                                     |                                                                    | 1182                                                              |                                                                       |                                                                      |                                                                   |                                                                     |                                                                 |                                                                    |                                                                 |                                                                      |
| DATE           | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                   | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                             | BOTTOM<br>MATL.                                                       | BOTTOM<br>MATL.                                                      | BOTTO                                                             | MIREX,<br>TOTAL<br>N IN BOT-<br>M TOM MA-<br>TERIAL                 | IN BOT-<br>TOM MA-<br>TERIAL                                    | IN BOT-<br>TOM MA-<br>TERIAL                                       | TOM MA                                                          | IN BOT-<br>TOM MA-<br>TERIAL                                         |
| OCT 1986       |                                                                     |                                                                    |                                                                   |                                                                       | 7 13                                                                 |                                                                   |                                                                     |                                                                 |                                                                    |                                                                 |                                                                      |
| 01             | -0.1                                                                |                                                                    |                                                                   | -0.4                                                                  |                                                                      |                                                                   |                                                                     |                                                                 | 100.4                                                              |                                                                 |                                                                      |
| 01<br>JUN 1987 | <0.1                                                                | <0.1                                                               | 1 <0.1                                                            | <0.1                                                                  | <0.1                                                                 | <0.                                                               | 1 <0.1                                                              | <0.1                                                            | <1.00                                                              | <10                                                             | <0.1                                                                 |
| 18             |                                                                     |                                                                    |                                                                   | 0 10                                                                  |                                                                      |                                                                   |                                                                     |                                                                 |                                                                    |                                                                 |                                                                      |

#### RARITAN RIVER BASIN

#### 01396500 SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, NJ

LOCATION.--Lat 40°40'40", long 74°52'46", Hunterdon County, Hydrologic Unit 02030105, on left bank 1.0 mi northeast of High Bridge, and 4.4 mi upstream from Spruce Run.

DRAINAGE AREA . - - 65.3 mi 2.

PERIOD OF RECORD. -- October 1918 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 601: 1924. WSP 781: Drainage area. WSP 1552: 1919(M), 1920(M), 1921, 1923, 1924(M), 1927-28(M), 1934(M), 1941(M).

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 28, 1930. Datum of gage is 282.10 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Sept. 30, 1921, reference point at same site and datum.

REMARKS.--No estimated daily discharges. Records good except below 30 ft<sup>3</sup>/s, which are fair. Occasional regulation from unknown source. Several measurements of water temperature were made during the year. Satellite telemeter at station.

AVERAGE DISCHARGE. -- 69 years, 122 ft3/s, 25.38 in./yr.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 6,910 ft<sup>3</sup>/s, Jan. 25, 1979, gage height, 12.07 ft; maximum height, 12.23 ft, Feb. 24, 1979 (ice jam); minimum discharge, 6.6 ft<sup>3</sup>/s, Oct. 11, 1930; minimum daily, 13 ft<sup>3</sup>/s, Aug. 11, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods occurred on Feb. 6, 1896, in February 1902, and October 1903. At High Bridge, according to reports of the New Jersey State Geologist, the discharges for these floods respectively were 7,560 ft<sup>3</sup>/s, 3,840 ft<sup>3</sup>/s, and 2,670 ft<sup>3</sup>/s.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*):

| Date                         | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)     | Date              | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|------------------------------|----------------------|-----------------------------------|----------------------|-------------------|--------------|-----------------------------------|---------------------|
| Nov. 21<br>Nov. 27<br>Dec. 3 | 0915<br>0145<br>0845 | 1,560<br>1,040<br>1,010           | 9.06<br>8.49<br>8.45 | Dec. 25<br>Apr. 4 | 1000<br>2015 | 1,010<br>*2,100                   | 8.45<br>*9.53       |

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTORER 1985 TO SEPTEMBER 1986

Minimum discharge, 34 ft<sup>3</sup>/s, Sept. 29, gage height, 5.76 ft.

|                                            |                                        | DISCHA                                   | RGE, IN C                                 | UBIC FEET                                 | PER SECO                                  | ND, WATER<br>MEAN VAL                     | YEAR OCTO                                  | OBER 1985                                | TO SEPTE                                  | MBER 1986                                 |                                           |                                          |
|--------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|
| DAY                                        | ОСТ                                    | NOV                                      | DEC                                       | JAN                                       | FEB                                       | MAR                                       | APR                                        | MAY                                      | JUN                                       | JUL                                       | AUG                                       | SEP                                      |
| 1 2 3 4 5                                  | 43<br>42<br>43<br>69<br>61             | 46<br>47<br>47<br>47<br>50               | 131<br>153<br>677<br>256<br>191           | 154<br>184<br>176<br>158<br>142           | 113<br>114<br>130<br>142<br>124           | 429<br>460<br>289<br>216<br>181           | 387<br>196<br>170<br>1300<br>802           | 140<br>134<br>143<br>225<br>198          | 78<br>91<br>89<br>87<br>101               | 56<br>94<br>104<br>66<br>57               | 48<br>46<br>52<br>54<br>62                | 60<br>53<br>49<br>47<br>46               |
| 6<br>7<br>8<br>9                           | 53<br>48<br>47<br>47<br>46             | 114<br>75<br>112<br>114<br>84            | 169<br>160<br>153<br>221<br>293           | 135<br>134<br>131<br>124<br>128           | 114<br>113<br>114<br>113<br>99            | 177<br>260<br>321<br>285<br>219           | 524<br>446<br>359<br>305<br>272            | 167<br>147<br>134<br>127<br>120          | 78<br>75<br>71<br>70<br>66                | 53<br>51<br>93<br>134<br>83               | 246<br>92<br>64<br>61<br>214              | 48<br>72<br>106<br>227<br>89             |
| 11<br>12<br>13<br>14<br>15                 | 45<br>46<br>47<br>57<br>59             | 115<br>165<br>88<br>72<br>66             | 187<br>174<br>155<br>130<br>134           | 160<br>140<br>125<br>122<br>162           | 104<br>102<br>98<br>93<br>88              | 186<br>181<br>173<br>164<br>156           | 245<br>227<br>234<br>207<br>193            | 115<br>110<br>105<br>101<br>122          | 63<br>64<br>69<br>64<br>61                | 62<br>73<br>162<br>89<br>173              | 93<br>67<br>57<br>56<br>53                | 67<br>62<br>411<br>403<br>129            |
| 16<br>17<br>18<br>19<br>20                 | 50<br>48<br>48<br>46<br>46             | 65<br>63<br>63<br>137<br>125             | 131<br>132<br>325<br>355<br>194           | 186<br>131<br>130<br>180<br>165           | 86<br>93<br>91<br>87<br>86                | 149<br>141<br>135<br>133<br>125           | 183<br>232<br>247<br>194<br>174            | 114<br>102<br>98<br>130<br>122           | 58<br>55<br>54<br>54<br>53                | 79<br>67<br>63<br>59<br>66                | 51<br>50<br>49<br>46<br>45                | 98<br>110<br>284<br>181<br>133           |
| 21<br>22<br>23<br>24<br>25                 | 46<br>45<br>45<br>44<br>44             | 930<br>215<br>144<br>142<br>123          | 168<br>153<br>145<br>144<br>655           | 144<br>130<br>137<br>123<br>121           | 85<br>87<br>94<br>88<br>85                | 121<br>119<br>115<br>111<br>108           | 163<br>155<br>146<br>189<br>322            | 125<br>105<br>98<br>97<br>92             | 56<br>76<br>67<br>56<br>53                | 61<br>56<br>52<br>54<br>52                | 44<br>44<br>43<br>41                      | 106<br>97<br>91<br>84<br>79              |
| 26<br>27<br>28<br>29<br>30<br>31           | 50<br>67<br>55<br>49<br>48<br>47       | 348<br>533<br>206<br>167<br>146          | 278<br>217<br>197<br>182<br>174<br>165    | 126<br>122<br>119<br>e130<br>e128<br>e118 | 84<br>84<br>82                            | 107<br>103<br>112<br>109<br>108<br>597    | 187<br>162<br>167<br>168<br>153            | 90<br>89<br>89<br>84<br>80<br>77         | 52<br>68<br>64<br>54<br>51                | 79<br>82<br>54<br>50<br>49<br>51          | 41<br>71<br>107<br>109<br>67<br>54        | 74<br>71<br>69<br>62<br>70               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1531<br>49.4<br>69<br>42<br>.76<br>.87 | 4649<br>155<br>930<br>46<br>2.37<br>2.65 | 6799<br>219<br>677<br>130<br>3.36<br>3.87 | 4365<br>141<br>186<br>118<br>2.16<br>2.49 | 2793<br>99.7<br>142<br>82<br>1.53<br>1.59 | 6090<br>196<br>597<br>103<br>3.01<br>3.47 | 8709<br>290<br>1300<br>146<br>4.45<br>4.96 | 3680<br>119<br>225<br>77<br>1.82<br>2.10 | 1998<br>66.6<br>101<br>51<br>1.02<br>1.14 | 2324<br>75.0<br>173<br>49<br>1.15<br>1.32 | 2171<br>70.0<br>246<br>41<br>1.07<br>1.24 | 3478<br>116<br>411<br>46<br>1.78<br>1.98 |

CAL YR 1986 TOTAL 51036 MEAN 140 MAX 930 MIN 42 CFSM 2.14 IN. 29.07 WTR YR 1987 TOTAL 48587 MEAN 133 MAX 1300 MIN 41 CFSM 2.04 IN. 27.67

e Estimated

#### RARITAN RIVER BASIN

## 01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ

LOCATION.--Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner, 1.0 mi downstream from Lake Solitude dam, and 4.3 mi northeast of Norton.

DRAINAGE AREA. -- 68.8 mi 2.

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME                                   | STREA<br>FLOW<br>INSTA<br>TANEO | N- DU<br>DUS AN                                                     | FIC<br>N-<br>CT- (1<br>CE                          | PH<br>STAND-<br>ARD<br>NITS) | TEMP<br>ATL<br>WAT                      | JRE<br>TER                                        | XYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGE<br>DIS<br>SOLV<br>(PER<br>CEN<br>SATU<br>ATIO | DEI<br>DED B<br>CI<br>T IO<br>R- 5          | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L, STREP-<br>TOCOCCI<br>H FECAL                    |
|----------------------------|----------------------------------------|---------------------------------|---------------------------------------------------------------------|----------------------------------------------------|------------------------------|-----------------------------------------|---------------------------------------------------|------------------------------------|-----------------------------------------------------|---------------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| OCT 1986                   | 1030                                   | -/4                             |                                                                     | 250                                                |                              | 30-17                                   |                                                   |                                    |                                                     | 10 10 K                                     | -0.0                                                 | 420                                        | 470                                                |
| 02<br>FEB 1987             |                                        | E41                             |                                                                     | 250                                                | 8.3                          |                                         | 0                                                 | 9.8                                | 9                                                   |                                             | E0.8                                                 | 120                                        | 130                                                |
| 17<br>MAR                  | 1215                                   | E97                             |                                                                     | 285                                                | 8.4                          |                                         | 0.0                                               | 15.8                               | 10                                                  |                                             | E1.5                                                 | 80                                         | 33                                                 |
| 18<br>JUN                  | 1215                                   | E147                            |                                                                     | 237                                                | 8.6                          |                                         | 5.5                                               | 14.1                               | 11                                                  |                                             | <0.8                                                 | <20                                        | 11                                                 |
| 18<br>JUL                  | 1330                                   | E53                             |                                                                     | 273                                                | 8.4                          | 21                                      | 1.5                                               | 9.6                                | 10                                                  | 9                                           | E1.7                                                 | 20                                         | 110                                                |
| 20<br>AUG                  | 1300                                   | E67                             |                                                                     | 232                                                | 7.8                          | 22                                      | 2.0                                               | 8.8                                | 10                                                  | 2                                           | E2.0                                                 | 790                                        | 1600                                               |
| 19                         | 1345                                   | E45                             |                                                                     | 253                                                | 8.4                          | 23                                      | 3.5                                               | 9.7                                | 11                                                  | 5                                           | E1.8                                                 | 80                                         | 79                                                 |
| DATE                       | HARI<br>NES<br>(MG<br>AS<br>CAC        | S<br>/L                         | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | , SODI<br>DIS<br>D SOLV      |                                         | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K)  | D (MC                              | ITY S<br>AB<br>G/L                                  | ULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>S SO4) | CHLC<br>RIDE<br>DIS-<br>SOLV<br>(MG,<br>AS (         | VED<br>/L                                  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986<br>02<br>FEB 1987 |                                        | 100                             | 22                                                                  | 12                                                 |                              | 9.4                                     | 1.7                                               | 85                                 |                                                     | 12                                          | 15                                                   |                                            | 0.1                                                |
| 17                         |                                        | 89                              | 19                                                                  | 10                                                 | 10                           | 6                                       | 1.4                                               | 66                                 |                                                     | 15                                          | 27                                                   |                                            | <0.1                                               |
| MAR<br>18                  |                                        | 73                              | 16                                                                  | 8.0                                                | 11                           | 1                                       | 1.1                                               | 52                                 |                                                     | 14                                          | 18                                                   |                                            | <0.1                                               |
| JUN<br>18                  |                                        | 100                             | 22                                                                  | 12                                                 | 10                           |                                         | 1.4                                               |                                    |                                                     | 13                                          | 16                                                   |                                            | <0.1                                               |
| JUL 20                     |                                        | 98                              | 21                                                                  | 11                                                 | 1                            |                                         | 1.4                                               |                                    |                                                     | 11                                          | 19                                                   |                                            | <0.1                                               |
| AUG                        |                                        |                                 | 10.00                                                               |                                                    | 7 - 7                        |                                         |                                                   |                                    |                                                     |                                             |                                                      |                                            |                                                    |
| 19                         |                                        | 100                             | 22                                                                  | 12                                                 | 1                            | 1                                       | 3.1                                               | 91                                 |                                                     | 14                                          | 18                                                   |                                            | 0.2                                                |
| DATE                       | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIO | VED 1                           | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | E NO2-                       | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | NITRO<br>GEN<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N) | O- GEN<br>MON<br>A ORG.<br>TO      | TRO-<br>,AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N)    | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHORI<br>PHORI<br>TOTA<br>(MG,                       | US, C                                      | CARBON,<br>DRGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986<br>02             | 1                                      | 3                               | 140                                                                 | 0.01                                               | 6 1                          | .40                                     | 0.08                                              | 3 0                                | .40                                                 | 1.8                                         | 0.1                                                  | 10                                         | 2.6                                                |
| FEB 1987<br>17             |                                        | 3                               | 140                                                                 | 0.01                                               |                              | .89                                     | 0.16                                              |                                    | .25                                                 | 2.1                                         | 0.04                                                 |                                            | 3.8                                                |
| MAR<br>18                  | 1                                      |                                 | 110                                                                 | E0.02                                              |                              | .40                                     | 0.14                                              | N. S.                              | .25                                                 | 1.7                                         | 0.0                                                  |                                            | 1.2                                                |
| JUN<br>18                  | 1                                      |                                 | 140                                                                 |                                                    |                              |                                         |                                                   |                                    |                                                     |                                             |                                                      |                                            |                                                    |
| JUL                        |                                        |                                 |                                                                     | 0.02                                               |                              | .51                                     | <0.05                                             |                                    | .45                                                 | 2.0                                         | 0.1                                                  |                                            | 2.1                                                |
| ZO                         | 1                                      |                                 | 130                                                                 | 0.01                                               |                              | .37                                     | 0.11                                              |                                    | .72                                                 | 2.1                                         | 0.1                                                  |                                            | 4.5                                                |
| 19                         |                                        | 6.4                             | 140                                                                 | 0.03                                               | 1 1.                         | .07                                     | 0.08                                              | 0                                  | .67                                                 | 1.7                                         | 0.0                                                  | 70                                         | 3.1                                                |

RARITAN RIVER BASIN

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME           | SULFID<br>TOTAL<br>(MG/L<br>AS S) | SOLV<br>(UG/                                          | ARSE<br>ED TOT<br>L (UG                                         | AL         | BERY<br>LIUM<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS B | , BOR<br>L TOT<br>V- REC<br>LE ERA<br>L (UG             | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG     | AL TOTO OV- REC BLE ER/                               | IM, C<br>TAL<br>COV-<br>ABLE<br>G/L | OPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------------------|----------------|-----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------|--------------------------------------------------------|
| OCT 1986                   | 4070           |                                   |                                                       |                                                                 |            |                                                      |                                                         | 70                                         | 1 11 11 11 11 11 11 11 11 11 11 11 11 1               |                                     |                                                        |
| 02<br>JUN 1987             | 1030           | <0.                               |                                                       | 30                                                              | <1         | <10                                                  |                                                         | 30                                         | <1                                                    | 20                                  | 11                                                     |
| 18                         | 1330           | <0.                               | 5                                                     | 20                                                              | 1          | <10                                                  |                                                         | <10                                        | <1                                                    | <10                                 | 2                                                      |
| DATE                       | TO<br>RE<br>EF | DTAĽ<br>ECOV-<br>RABLE<br>UG/L    | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | ERA<br>(UC | COV-                                                 | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENO<br>TOTA<br>(UG/L              | L                                                      |
| OCT 1986<br>02<br>JUN 1987 |                | 260                               | <5                                                    | 30                                                              | <(         | 0.10                                                 | 4                                                       | <1                                         | 40                                                    |                                     | 6                                                      |
| 18                         |                | 270                               | <5                                                    | 40                                                              | <(         | .10                                                  | 2                                                       | <1                                         | <10                                                   |                                     | 3                                                      |

### 01396580 SPRUCE RUN AT GLEN GARDNER, NJ

LOCATION.--Lat 40°41'29", long 74°56'15", Hunterdon County, Hydrologic Unit 02030105, on right downstream wingwall of bridge on Sanatorium Road in Glen Gardner, 0.8 mi downstream from Alpaugh Brook, and 2.0 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA . - 12.3 mi 2 .

PERIOD OF RECORD . - - March 1978 to current year.

REVISED RECORD . -- WDR NJ-86-1: 1983-85(P).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 389.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 9 years, 20.9 ft3/s, 23.08 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,820 ft<sup>3</sup>/s, Jan. 24, 1979, gage height, 7.60 ft, from highwater mark, from rating curve extended above 700 ft<sup>3</sup>/s on basis of slope-conveyance computation; minimum, 1.1 ft<sup>3</sup>/s, Oct. 1, 1982, minimum gage height, 1.76 ft Sept. 8, 1980.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft<sup>3</sup>/s and maximum (\*):

| Date               | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------------------|----------------------|-----------------------------------|------------------|--------------------|--------------|-----------------------------------|---------------------|
| Nov. 20<br>Nov. 26 | 2400<br>1930<br>0145 | 1,030<br>536<br>536               | 4.70<br>3.76     | Apr. 4<br>Sept. 13 | 1345<br>1415 | *1,180<br>711                     | *5.10<br>4.02       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 3.0 ft<sup>3</sup>/s Sept. 5.

|                                            |                                          |                                             |                                           |                                         |                                         | MEAN VALL                                 | JES                                       |                                            |                                          |                                            |                                           |                                             |
|--------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|
| DAY                                        | OCT                                      | NOV                                         | DEC                                       | JAN                                     | FEB                                     | MAR                                       | APR                                       | MAY                                        | JUN                                      | JUL                                        | AUG                                       | SEP                                         |
| 1 2 3 4 5                                  | 4.3<br>4.5<br>5.0<br>8.0<br>7.8          | 5.2<br>5.9<br>6.2<br>6.0<br>7.2             | 16<br>39<br>198<br>39<br>28               | 19<br>25<br>23<br>20<br>18              | e16<br>e18<br>e24<br>e25<br>e19         | 192<br>105<br>57<br>41<br>34              | 39<br>25<br>22<br>433<br>99               | 22<br>20<br>31<br>63<br>42                 | e8.6<br>12<br>11<br>10<br>13             | e9.0<br>13<br>14<br>9.6<br>9.4             | e4.6<br>e4.7<br>e5.8<br>e5.3              | e8.7<br>e5.3<br>3.3<br>3.1<br>3.0           |
| 6<br>7<br>8<br>9                           | 5.7<br>4.6<br>4.3<br>4.4<br>4.3          | 21<br>10<br>24<br>18<br>12                  | 23<br>21<br>20<br>58<br>50                | 18<br>17<br>16<br>15<br>18              | e18<br>e19<br>e19<br>e18<br>e16         | 37<br>67<br>56<br>42<br>30                | 112<br>80<br>57<br>47<br>42               | 31<br>25<br>21<br>20<br>18                 | 10<br>10<br>e9.6<br>e10<br>e8.5          | 8.7<br>8.7<br>14<br>30<br>16               | 21<br>7.7<br>7.6<br>9.4<br>44             | 4.3<br>6.1<br>12<br>25<br>6.2               |
| 11<br>12<br>13<br>14<br>15                 | 4.1<br>4.2<br>4.7<br>9.1<br>7.6          | 36<br>21<br>12<br>8.5<br>7.6                | 27<br>25<br>20<br>17<br>17                | 30<br>21<br>18<br>18<br>34              | e15<br>e16<br>e15<br>e14<br>e12         | 25<br>24<br>23<br>21<br>20                | 37<br>35<br>42<br>32<br>29                | 16<br>16<br>14<br>13<br>21                 | e7.8<br>e8.7<br>e8.8<br>e7.5<br>e6.9     | 7.5<br>7.0<br>6.7<br>16                    | 9.8<br>e7.8<br>e7.2<br>e6.9<br>e6.3       | 4.4<br>4.1<br>188<br>41<br>12               |
| 16<br>17<br>18<br>19<br>20                 | 5.3<br>5.0<br>5.0<br>4.9<br>4.8          | 7.5<br>6.9<br>7.3<br>30<br>88               | 17<br>18<br>91<br>55<br>27                | 28<br>18<br>21<br>37<br>29              | e13<br>e12<br>e13<br>e12<br>e11         | 19<br>18<br>17<br>16<br>15                | 27<br>53<br>49<br>32<br>27                | 17<br>14<br>13<br>16<br>20                 | e6.3<br>e5.9<br>e5.7<br>e5.6<br>e5.5     | 8.1<br>e8.5<br>e7.5<br>e6.9<br>e7.4        | e5.9<br>e5.6<br>e5.4<br>e4.6<br>e4.3      | 9.7<br>19<br>44<br>19<br>13                 |
| 21<br>22<br>23<br>24<br>25                 | 4.8<br>4.8<br>4.8<br>4.9                 | 189<br>27<br>18<br>21<br>16                 | 22<br>19<br>17<br>18<br>165               | 22<br>18<br>e23<br>e18<br>e17           | e11<br>e12<br>e15<br>e13<br>e12         | 15<br>14<br>13<br>13<br>12                | 25<br>23<br>22<br>59<br>102               | 18<br>14<br>13<br>e12<br>e11               | e6.6<br>13<br>11<br>e6.6<br>e5.8         | e6.6<br>e6.2<br>e5.4<br>e5.4<br>e5.3       | e4.0<br>e5.0<br>e4.5<br>e3.8<br>e3.7      | 11<br>10<br>9.1<br>8.2<br>7.4               |
| 26<br>27<br>28<br>29<br>30<br>31           | 7.8<br>10<br>7.4<br>6.2<br>5.7<br>5.4    | 153<br>67<br>29<br>23<br>19                 | 38<br>30<br>26<br>24<br>23<br>21          | e18<br>e17<br>e17<br>e20<br>e20<br>e18  | e11<br>e12<br>e13                       | 12<br>12<br>16<br>14<br>16<br>131         | 35<br>28<br>32<br>31<br>27                | e11<br>e12<br>e11<br>.e9.8<br>e9.1<br>e8.7 | e5.9<br>10<br>e7.3<br>e6.0<br>e6.6       | 11<br>e8.6<br>e5.6<br>e4.9<br>e4.9<br>e5.2 | e3.7<br>e13<br>e12<br>e12<br>e6.3<br>e4.8 | 6.8<br>6.7<br>6.3<br>6.2<br>7.3             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 174.2<br>5.62<br>10<br>4.1<br>.46<br>.53 | 902.3<br>30.1<br>189<br>5.2<br>2.45<br>2.73 | 1209<br>39.0<br>198<br>16<br>3.17<br>3.66 | 651<br>21.0<br>37<br>15<br>1.71<br>1.97 | 424<br>15.1<br>25<br>11<br>1.23<br>1.28 | 1127<br>36.4<br>192<br>12<br>2.96<br>3.41 | 1703<br>56.8<br>433<br>22<br>4.62<br>5.15 | 582.6<br>18.8<br>63<br>8.7<br>1.53<br>1.76 | 250.2<br>8.34<br>13<br>5.5<br>.68<br>.76 | 292.1<br>9.42<br>30<br>4.9<br>.77<br>.88   | 257.7<br>8.31<br>44<br>3.7<br>.68<br>.78  | 510.2<br>17.0<br>188<br>3.0<br>1.38<br>1.54 |

CAL YR 1986 TOTAL 8078.5 MEAN 22.1 MAX 290 MIN 4.1 CFSM 1.80 IN. 24.43 WTR YR 1987 TOTAL 8083.3 MEAN 22.1 MAX 433 MIN 3.0 CFSM 1.80 IN. 24.44

e Estimated

### 01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ

LOCATION.--Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, at site 800 ft downstream of Rocky Run, 0.3 mi above Van Syckel Road bridge, 1.5 mi northwest of High Bridge, and 1.6 mi southeast of Glen Gardner.

DRAINAGE AREA. -- 15.5 mi 2.

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       |                                                 | STREAM-<br>FLOW,<br>INSTAN-<br>IANEOUS | ANCE                                         | PH<br>STAND-<br>ARD<br>NITS) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)  | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | DIS- DI<br>SOLVED I<br>(PER-<br>CENT<br>SATUR- | BIO- F<br>CHEM- F<br>ICAL,<br>5 DAY B       | OLI-<br>ORM, STREP-<br>EC TOCOCCI<br>ROTH FECAL<br>MPN) (MPN) |
|----------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------|---------------------------------------|-------------------------------------|------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|
| OCT_1986                   |                                                 |                                        |                                              |                              |                                       |                                     |                                                |                                             |                                                               |
| 28<br>MAR 1987             | 1245                                            | E11                                    | 162                                          | 7.1                          | 12.0                                  | 10.2                                | 95                                             | E0.9 <                                      | 20 49                                                         |
| 05<br>26<br>JUN            | 1130 E<br>1100                                  | E24                                    | 178<br>140                                   | 7.8<br>8.7                   | 11.0                                  | 15.0<br>12.5                        | 110<br>115                                     | E1.4<br><1.1                                | 50 21<br>20 13                                                |
| 17                         | 1200                                            | E7.2                                   | 180                                          | 7.8                          | 20.0                                  | 9.4                                 | 104                                            | <0.8 9                                      | 40 1600                                                       |
| JUL<br>27                  | 1230                                            | E14                                    | 174                                          | 7.9                          | 21.5                                  | 9.6                                 | 110                                            | <1.1 11                                     | 00 430                                                        |
| AUG<br>27                  | 1030                                            | E27                                    | 164                                          | 7.0                          | 16.0                                  | 9.3                                 | 95                                             | 2.9 92                                      | 200 >2400                                                     |
| DATE                       | HARD<br>NESS<br>(MG/I<br>AS<br>CACO             | DIS-<br>SOLVEI<br>(MG/L                | DIS-<br>D SOLVED<br>(MG/L                    | DIS<br>DIS<br>SOLVI          | UM, SI<br>- DI<br>ED SOL<br>/L (MG    |                                     | TY SULFATI<br>B DIS-<br>/L SOLVEI              | DIS-<br>D SOLVED<br>(MG/L                   | (MG/L                                                         |
| OCT 1986                   |                                                 |                                        |                                              |                              |                                       | 7                                   |                                                |                                             |                                                               |
| 28<br>MAR 1987             |                                                 | 59 14                                  | 5.8                                          | 8                            | .8 1                                  | .8 39                               | 20                                             | 14                                          | 0.1                                                           |
| 05<br>26<br>JUN            |                                                 | 66 11<br>50 12                         | 4.5                                          | 8                            |                                       | .0 22<br>.1 26                      | 21<br>17                                       | 15<br>14                                    | <0.1<br>0.1                                                   |
| 17                         | 5                                               | 58 14                                  | 5.5                                          | 9                            | .8 1                                  | .3 35                               | 19                                             | 18                                          | 0.1                                                           |
| 27                         |                                                 | 52 15                                  | 6.0                                          | 10                           | 1                                     | .9 38                               | 18                                             | 12                                          | 0.2                                                           |
| AUG<br>27                  | 4                                               | 49 12                                  | 4.6                                          | 8                            | .6 2                                  | .2 30                               | 20                                             | 12                                          | 0.2                                                           |
| DATE                       | SILIC/<br>DIS-<br>SOLVE<br>(MG/I<br>AS<br>SIO2) | CONSTI<br>TUENTS<br>DIS-<br>SOLVEI     | NITRO<br>GEN,<br>NITRITE<br>TOTAL<br>O (MG/L | GEI                          | N, GE<br>NO3 AMMO<br>AL TOT<br>/L (MG | NIA ORGA<br>AL TOT<br>/L (MG        | AM- A + NITRO NIC GEN, AL TOTAL /L (MG/L       | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P) | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)                 |
| OCT 1986<br>28<br>MAR 1987 | 18                                              | 11                                     | 0 0.01                                       | 2 0.                         | 50 <0.                                | 05 0.                               | 38 0.88                                        | 0.050                                       | 2.8                                                           |
| 05<br>26<br>JUN            | 14<br>15                                        | 8                                      |                                              |                              |                                       |                                     | 38 1.7<br>36 1.5                               | 0.027<br>0.057                              | 1.5                                                           |
| 17<br>JUL                  | 19                                              | 11                                     | 0.01                                         | 1.                           | 28 0.                                 | 10 0.                               | 24 1.5                                         | 0.069                                       | 1.6                                                           |
| 27                         | 18                                              | 10                                     | 0.004                                        | 0.9                          | 90 0.                                 | 05 0.                               | 48 1.4                                         | 0.111                                       | 2.5                                                           |
| AUG<br>27                  | 14                                              | 9                                      | 2 0.024                                      | 4 1.0                        | 08 0.                                 | 06 0.                               | 66 1.7                                         | 0.160                                       | 4.8                                                           |

# 01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE          | TIME                 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|---------------|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 198       |                      | 100                                                                 |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      | Children Like                                                      | THE STREET                                                      |                                                                      |
| 28            | 1245                 | <0.5                                                                | 400                                                                  |                                                                      |                                                                       | 10                                                                   | <1                                                                 |                                                                     | <10                                                                  | 40                                                                 | <1                                                              | -1                                                                   |
| 28<br>JUN 198 | 1245                 |                                                                     | 100                                                                  | 0.1                                                                  | 1.8                                                                   | WIT-OF TAIL                                                          |                                                                    | <1                                                                  | Car get The                                                          |                                                                    | 4105                                                            | <1                                                                   |
| 17            |                      | <0.5                                                                |                                                                      |                                                                      |                                                                       | <10                                                                  | <1                                                                 |                                                                     | <10                                                                  | <10                                                                | <1                                                              |                                                                      |
|               |                      |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 | +                                                                    |
|               | DATE                 | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| 00            | T 1986               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|               | 28                   | <10                                                                 | 11.5                                                                 | 1.0                                                                  | 7                                                                     | 1 11                                                                 | 330                                                                | ::                                                                  | <5                                                                   | ::                                                                 | 60                                                              |                                                                      |
|               | 28<br>JN 1987        |                                                                     | 8                                                                    | 10                                                                   | E.M                                                                   | 10                                                                   |                                                                    | 5700                                                                | 015.2                                                                | <10                                                                |                                                                 | 230                                                                  |
| 30            | 17                   | 10                                                                  |                                                                      |                                                                      | 3                                                                     |                                                                      | 180                                                                |                                                                     | <5                                                                   |                                                                    | 40                                                              |                                                                      |
|               | - 32                 |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     | 44.4                                                                 |                                                                    | 1207                                                            |                                                                      |
|               | DATE                 | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                                | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ERABLE (UG/L                                                        | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
|               | OCT 1094             |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|               | OCT 1986<br>28       | <0.10                                                               |                                                                      | <1                                                                   |                                                                       | <1                                                                   |                                                                    | 210                                                                 |                                                                      | 3                                                                  |                                                                 |                                                                      |
|               | 28                   | 10.10                                                               |                                                                      | ::                                                                   | <10                                                                   |                                                                      | <1                                                                 |                                                                     | 40                                                                   |                                                                    | <1                                                              | <1.0                                                                 |
|               | JUN_1987             |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|               | 17                   | <0.10                                                               |                                                                      | <1                                                                   |                                                                       | <1                                                                   |                                                                    | <10                                                                 |                                                                      | 2                                                                  |                                                                 |                                                                      |
|               | DATE                 | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | IN BOT-<br>TOM MA-<br>TERIAL                                         | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | IN BOT-<br>TOM MA-<br>TERIAL                                        | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | TOM MA-<br>TERIAL                                               | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|               | OCT 1986             |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     | 4 2                                                                  |                                                                    |                                                                 |                                                                      |
|               | 28                   |                                                                     | . :-                                                                 | HE LATER                                                             |                                                                       |                                                                      |                                                                    | 108                                                                 |                                                                      | 1.5                                                                | 1.5                                                             | •••                                                                  |
|               | 28<br>JUN 1987       | <0.1                                                                | <1.0                                                                 | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <0.1                                                               | <0.1                                                            | <0.1                                                                 |
|               | 17                   |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|               |                      |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|               | DATE                 | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                | BOTTOM<br>MATL.                                                       | BOTTOM<br>MATL.                                                      | BOTTOM<br>MATL.                                                    | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOM MA-<br>TERIAL                                               | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
|               | OCT 1986<br>28<br>28 | <0.1                                                                | <0.1                                                                 | <0.1                                                                 | <br><0.1                                                              | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <br><0.1                                                             | <1.00                                                              | <10                                                             | <br><0.1                                                             |
|               | JUN 1987<br>17       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 | 1                                                                    |
|               |                      |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |

### 01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ

LOCATION.--Lat 40°38'51", long 74°58'09", Hunterdon County, Hydrologic Unit 02030105, on left bank downstream side of bridge on Jutland Road, 0.2 mi south of Van Syckel, 0.8 mi north of Perryville, and 0.3 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA .-- 11.8 mi 2.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1973-77. July 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 280.25 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair except for the period July 15-20, which are poor. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE.--10 years, 20.8 ft3/s, 23.94 in./yr.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 3,950 ft<sup>3</sup>/s, Jan. 24, 1979, gage height, 6.48 ft, from rating curve extended above 200 ft<sup>3</sup>/s; minimum, 1.1 ft<sup>3</sup>/s, Sept. 23, 1980, gage height, 0.66 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|----------|------|-----------------------------------|---------------------|
| Nov. 20 | 2400 | 670                               | 3.73             | Apr. 4   | 1330 | *1,760                            | *5.54               |
| Nov. 26 | 1930 | 387                               | 2.99             | Apr. 25  | 0030 | 336                               | 2.83                |
| Dec. 2  | 2400 | 457                               | 3.20             | Aug. 10  | 0245 | 842                               | 4.09                |
| Dec. 25 | 0215 | 679                               | 3.75             | Sept. 8  | 2045 | 301                               | 2.71                |
| Mar. 1  | 1145 | 351                               | 2.88             | Sept. 13 | 0915 | 546                               | 3.44                |

Minimum discharge, 2.8 ft3/s, Aug. 1,2.

|                                            |                                          | DISCHAR                                     | GE, IN                                   | CUBIC FEET                              | PER SECON                               | ID, WATER<br>MEAN VALU                   | YEAR OCT                                  | OBER 1986                                  | TO SEPTE                                 | MBER 1987                                |                                             |                                             |
|--------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|
| DAY                                        | ОСТ                                      | NOV                                         | DEC                                      | JAN                                     | FEB                                     | MAR                                      | APR                                       | MAY                                        | JUN                                      | JUL                                      | AUG                                         | SEP                                         |
| 1<br>2<br>3<br>4<br>5                      | 3.5<br>4.1<br>5.4<br>6.3<br>5.9          | 3.5<br>4.3<br>3.8<br>4.5<br>8.5             | 12<br>56<br>130<br>27<br>20              | 18<br>25<br>23<br>19<br>17              | 16<br>20<br>27<br>26<br>20              | 157<br>70<br>40<br>31<br>26              | 28<br>21<br>18<br>445<br>75               | 26<br>24<br>35<br>53<br>38                 | 9.1<br>16<br>11<br>14<br>15              | 9.6<br>13<br>17<br>7.0<br>5.6            | 3.1<br>3.3<br>4.2<br>3.7<br>20              | 11<br>5.0<br>4.0<br>3.6<br>3.5              |
| 6<br>7<br>8<br>9                           | 3.9<br>3.5<br>3.6<br>3.7<br>3.4          | 19<br>7.5<br>27<br>13<br>8.0                | 18<br>16<br>15<br>42<br>33               | 16<br>17<br>17<br>16<br>18              | 18<br>19<br>19<br>17<br>16              | 27<br>31<br>29<br>25<br>22               | 89<br>61<br>49<br>43<br>39                | 30<br>26<br>24<br>22<br>21                 | 9.6<br>9.1<br>9.1<br>10<br>8.2           | 5.0<br>5.0<br>17<br>13<br>7.3            | 27<br>9.4<br>8.5<br>17<br>135               | 7.1<br>7.7<br>55<br>35<br>11                |
| 11<br>12<br>13<br>14<br>15                 | 3.5<br>3.7<br>4.5<br>9.6<br>5.1          | 26<br>16<br>9.0<br>7.4<br>7.0               | 21<br>22<br>17<br>14<br>15               | 25<br>19<br>19<br>18<br>22              | 16<br>16<br>15<br>14<br>12              | 20<br>20<br>20<br>19                     | 36<br>36<br>37<br>31<br>30                | 21<br>20<br>18<br>18<br>22                 | 7.6<br>9.3<br>8.7<br>7.5<br>6.8          | 5.6<br>4.8<br>4.5<br>45                  | 15<br>10<br>8.2<br>7.5<br>6.7               | 7.8<br>7.5<br>148<br>28<br>14               |
| 16<br>17<br>18<br>19<br>20                 | 4.1<br>3.9<br>4.2<br>3.8<br>3.8          | 6.2<br>5.7<br>8.4<br>36<br>49               | 15<br>15<br>67<br>33<br>21               | 19<br>15<br>22<br>37<br>27              | 13<br>13<br>13<br>12<br>12              | 18<br>17<br>17<br>16<br>16               | 29<br>55<br>46<br>33<br>29                | 18<br>17<br>17<br>19<br>23                 | 6.1<br>5.7<br>5.5<br>5.3<br>5.2          | 8.0<br>5.5<br>4.9<br>4.5<br>4.6          | 6.1<br>5.5<br>5.3<br>4.1<br>3.8             | 11<br>28<br>33<br>20<br>15                  |
| 21<br>22<br>23<br>24<br>25                 | 3.8<br>3.8<br>3.9<br>4.2<br>4.1          | 100<br>19<br>13<br>17<br>13                 | 18<br>17<br>16<br>21<br>176              | 21<br>17<br>22<br>17<br>16              | 12<br>13<br>16<br>15                    | 16<br>15<br>14<br>14<br>14               | 27<br>25<br>24<br>62<br>102               | 19<br>16<br>16<br>14<br>13                 | 7.1<br>20<br>12<br>7.4<br>6.1            | 4.2<br>4.3<br>3.6<br>3.5<br>3.7          | 3.3<br>4.9<br>4.0<br>3.2<br>3.2             | 13<br>28<br>16<br>11<br>9.9                 |
| 26<br>27<br>28<br>29<br>30<br>31           | 12<br>8.3<br>5.5<br>4.6<br>4.6<br>4.0    | 125<br>41<br>21<br>17<br>14                 | 32<br>25<br>23<br>21<br>20<br>19         | 17<br>15<br>16<br>15<br>16<br>17        | 14<br>14<br>15                          | 14<br>13<br>18<br>15<br>18<br>74         | 37<br>31<br>34<br>33<br>29                | 13<br>14<br>13<br>11<br>10<br>9.5          | 6.1<br>13<br>7.0<br>5.5<br>7.4           | 9.8<br>5.4<br>3.7<br>3.2<br>3.2<br>3.4   | 3.2<br>15<br>8.9<br>11<br>5.4<br>4.3        | 8.9<br>8.4<br>8.1<br>7.9                    |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 148.3<br>4.78<br>12<br>3.4<br>.41<br>.47 | 649.8<br>21.7<br>125<br>3.5<br>1.84<br>2.05 | 997<br>32.2<br>176<br>12<br>2.73<br>3.14 | 598<br>19.3<br>37<br>15<br>1.63<br>1.89 | 447<br>16.0<br>27<br>12<br>1.35<br>1.41 | 865<br>27.9<br>157<br>13<br>2.36<br>2.73 | 1634<br>54.5<br>445<br>18<br>4.62<br>5.15 | 640.5<br>20.7<br>53<br>9.5<br>1.75<br>2.02 | 270.4<br>9.01<br>20<br>5.2<br>.76<br>.85 | 246.9<br>7.96<br>45<br>3.2<br>.67<br>.78 | 369.8<br>11.9<br>135<br>3.1<br>1.01<br>1.17 | 576.4<br>19.2<br>148<br>3.5<br>1.63<br>1.82 |

CAL YR 1986 TOTAL 6933.6 MEAN 19.0 MAX 189 MIN 3.4 CFSM 1.61 IN. 21.85 WTR YR 1987 TOTAL 7443.1 MEAN 20.4 MAX 445 MIN 3.1 CFSM 1.73 IN. 23.46

# 01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM | (S                                               | PH<br>TAND-<br>ARD<br>ITS)       | TEMP<br>ATU<br>WAT<br>(DEG | RE<br>ER                                           | (YGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN<br>DIS-<br>SOLVEI<br>(PER-<br>CENT<br>SATUR<br>ATION | DEN<br>BI<br>CI<br>II                 | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L, STREP-<br>TOCOCCI<br>H FECAL                    |
|----------------------------|----------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------|----------------------------------------------------|------------------------------------|-------------------------------------------------------------|---------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| OCT 1986<br>29             | 0945                                   | 4.6                                             | 204                                              |                                                  | 6.8                              |                            | .0                                                 | 11.4                               | 99                                                          | 70                                    | <1.1                                                 | 230                                        | 130                                                |
| MAR 1987                   |                                        | 100                                             |                                                  | 100                                              |                                  | - 10                       |                                                    |                                    | 100                                                         |                                       |                                                      | 157                                        | 14                                                 |
| 05<br>26<br>JUN            | 1245<br>1215                           | 26<br>14                                        | 18                                               |                                                  | 8.8                              | 13                         | .5                                                 | 13.9                               | 107                                                         | 45                                    | E1.9<br><1.2                                         | <20<br><20                                 | 130                                                |
| 17                         | 1330                                   | 5.9                                             | 20                                               | 1                                                | 7.8                              | 20                         | .0                                                 | 8.6                                | 96                                                          |                                       | <0.7                                                 | 700                                        | 920                                                |
| JUL 27                     | 1130                                   | 5.5                                             | 18                                               | 2                                                | 7.8                              | 20                         | .0                                                 | 9.0                                | 100                                                         |                                       | E1.5                                                 | 2400                                       | 1600                                               |
| AUG<br>27                  | 1130                                   | 24                                              | 22                                               | 0                                                | 7.5                              | 16                         | .5                                                 | 8.8                                | 91                                                          |                                       | 3.0                                                  | 16000                                      | >2400                                              |
| DATE                       | HAR<br>NES<br>(MG<br>AS<br>CAC         | S DIS<br>/L SOL                                 | IUM<br>-<br>VED S                                | AGNE-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S MG) | SODI<br>DIS<br>SOLV<br>(MC<br>AS | /ED                        | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K)   | , LINI                             | TY SU<br>B D<br>/L Si                                       | LFATE<br>IS-<br>OLVED<br>MG/L<br>SO4) | DI:                                                  | DE,                                        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986<br>29<br>MAR 1987 |                                        | 80 20                                           |                                                  | 7.4                                              | . ,                              | 7.7                        | 1.6                                                | 68                                 |                                                             | 17                                    | 1                                                    | 0                                          | 0.1                                                |
| 05<br>26<br>JUN            |                                        | 56 15<br>59 15                                  |                                                  | 4.6<br>5.3                                       | 1                                | 3.8<br>7.3                 | 1.0                                                | 34<br>41                           |                                                             | 20<br>17                              | 1                                                    | 2                                          | <0.1<br><0.1                                       |
| 17                         |                                        | 73 18                                           |                                                  | 6.7                                              | 7                                | 7.4                        | 1.2                                                | 58                                 |                                                             | 16                                    | 1                                                    | 3                                          | <0.1                                               |
| JUL<br>27                  |                                        | 72 18                                           |                                                  | 6.5                                              | 7                                | 7.5                        | 1.5                                                | 60                                 |                                                             | 16                                    |                                                      | 9.8                                        | 0.2                                                |
| AUG<br>27                  |                                        | 58 15                                           |                                                  | 5.1                                              | 9                                | 9.5                        | 2.4                                                | 44                                 |                                                             | 22                                    | 1                                                    | 1                                          | 0.1                                                |
| DATE                       | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIO | VED TUEN                                        | OF N<br>TI-<br>TS, NI<br>S- T<br>VED (           | ITRO-<br>GEN,<br>TRITE<br>OTAL<br>MG/L<br>S N)   |                                  | TAL<br>G/L                 | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N) | MONI                               | AM-<br>A + N<br>NIC<br>AL T                                 | ITRO-<br>GEN,<br>OTAL<br>MG/L<br>S N) | PHO<br>TO<br>(M                                      |                                            | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986<br>29<br>MAR 1987 | 1                                      | 5                                               | 120                                              | 0.007                                            | 0.                               | .62                        | <0.05                                              | 0.5                                | 2 1                                                         | .1                                    | 0.2                                                  | 00                                         | 1.8                                                |
| 05                         | 1                                      | 3                                               |                                                  | 0.012                                            | 1                                | .04                        | <0.05<br>0.24                                      | 0.2                                | 7 1                                                         | .2                                    | 0.0<br><0.0                                          | 38<br>20                                   | 1.2                                                |
| 26<br>JUN<br>17<br>JUL     | 1                                      | 6                                               | 110                                              | 0.010                                            | 1.                               | .08                        | 0.07                                               | 0.2                                |                                                             | .4                                    | 0.0                                                  | 32                                         | 1.7                                                |
| 21                         | 1                                      | 4                                               | 110                                              | 0.005                                            | 0.                               | .87                        | 0.21                                               | 0.5                                | 2 1                                                         | .4                                    | 0.0                                                  | 45                                         | 2.7                                                |
| AUG<br>27                  |                                        | 9.0                                             |                                                  | 0.037                                            | 1                                | .01                        | 0.10                                               | 1.0                                | 2                                                           | .0                                    | 0.1                                                  | 10                                         | 6.5                                                |

# 01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE     | TI   | SULF<br>TOT<br>ME (MG                                 | AL SOL                                                | M,<br>S- ARSE<br>.VED TOT<br>G/L (UG                            | TOT<br>NIC REC<br>AL ERA                                | AL TOT<br>COV- REC<br>BLE ERA                           | AL TOT/<br>OV- RECO<br>BLE ERAI<br>/L (UG/ | AL TOT. DV- REC BLE ERA /L (UG                        | M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE /L (UG/L |
|----------|------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| JUN 1987 |      |                                                       |                                                       |                                                                 |                                                         |                                                         |                                            |                                                       |                                                    |
| 17       | 13   | 30                                                    | 0.5                                                   | 10                                                              | <1 <1                                                   | 0                                                       | 40                                         | <1                                                    | 10 2                                               |
|          | DATE | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                         |
|          | 1987 | 170                                                   | 11                                                    | 20                                                              | 0.20                                                    | <1                                                      | <1                                         | <10                                                   | 2                                                  |

### 01396800 SPRUCE RUN AT CLINTON, NJ

LOCATION.--Lat 40°38'21", long 74°54'58", Hunterdon County, Hydrologic Unit 02030105, 1,800 ft downstream from dam at Spruce Run Reservoir, 0.2 mi north of Clinton, 0.3 mi upstream from mouth, and 2.2 mi southwest of High Bridge.

DRAINAGE AREA .-- 41.3 mi 2.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1959 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Mar. 15, 1964. Datum of gage is 193.5 ft above National Geodetic Vertical Datum of 1929. May to Nov. 24, 1959, nonrecording gage; Nov. 25, 1959 to July 23, 1961, water-stage recorder at site 1,800 ft upstream and at datum 1.41 ft lower; July 24, 1961 to Mar. 14, 1964, water-stage recorder at site 1,500 ft upstream at datum 1.41 ft lower.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Spruce Run Reservoir (see Raritan River basin, reservoirs in). Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 28 years, 63.3 ft3/s, unadjusted.

\*\*TREMES FOR PERIOD OF RECORD. -- Maximum discharge, 6,410 ft<sup>3</sup>/s, Apr. 2, 1970, gage height, 5.17 ft; no flow Aug. 22 to Sept. 17, 1963, Sept. 19, 1963 to Mar. 14, 1964, Mar. 19, 1964, result of filling Spruce Run Reservoir.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,830 ft<sup>3</sup>/s, Apr. 4, gage height, 3.45 ft; minimum daily, 5.1 ft<sup>3</sup>/s, Oct. 28.

MEAN VALUES AUG SEP JUN JUL DAY OCT NOV DEC JAN **FEB** MAR APR MAY 43 13 8.4 7.6 7.4 9.2 9.4 9.7 9.7 9.7 40 21 31 36 27 84 69 55 9.8 62 59 84 185 27 27 27 27 27 22 9.5 26 32 28 34 58 12345 39 39 19 10 9.7 9.7 .2 11 12 9.5 10 13 55 767 10 9.7 28 8.8 55 9.8 535 164 8.8 7.5 6.9 6.2 7.6 8.5 8.3 8.3 9.3 8.9 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.6 367 294 223 179 159 9.6 56 38 9.8 9.8 9.7 127 99 77 51 43 18 67 55 9.0 9.6 9.2 8.9 89 55 36 37 9.9 11 55 9.6 74 67 10 12 10 45 9.4 278 9.7 9.7 9.7 9.7 9.7 9.0 8.6 9.1 8.4 8.3 8.3 9.1 9.3 9.0 7.7 100 30 12 9.7 142 128 55 11 9.0 7.4 8.3 9.7 9.5 9.7 8.3 8.3 8.3 8.3 62 43 42 12 13 14 15 40 24 17 30 10 30 17 15 139 115 53 8.3 102 33 58 16 8.3 8.3 8.3 9.9 8.3 8.9 9.9 9.7 9.7 9.7 9.7 47 34 49 92 116 16 25 39 94 137 55 46 44 47 59 26 26 26 26 26 52 119 25 8.3 8.7 9.7 8.2 8.7 8.7 18 13 12 38 43 54 18 10 19 78 52 130 10 9.6 103 40 53 52 37 21 22 23 24 25 8.8 9.0 6.1 9.8 10 8.6 8.8 8.6 14 44 18 9.6 63 26 26 26 26 27 9.6 91 60 53 45 43 35 9.6 9.9 9.7 66 61 70 95 8.2 7.6 8.1 80 71 21 72 10 8.8 9.0 126 12 9.6 9.0 35 10 313 12 9.7 9.1 9.0 7.9 5.1 17 93 42 9.8 9.7 9.3 9.0 9.0 9.1 9.0 26 27 12 9.7 9.7 10 9.5 9.1 32 33 38 34 32 33 9.6 26 9.0 19 115 9.0 9.0 6.9 9.5 28 29 30 31 9.0 9.6 9.7 9.6 9.6 114 125 13 27 27 22 19 ... 45 8.6 11 28 1357.4 43.8 278 9.3 TOTAL 1056.1 34.1 84 345.7 11.5 27 276.7 306.5 270.1 282.3 5190.2 1959 1070.4 35.7 116 555.4 17.9 72 1078.9 9.11 8.93 36.0 9.89 9.65 MEAN 173 63.2 MAX MIN 5.1 6.2 6.1 9.5 9.2 8.9 7.6 8.2 8.6

CAL YR 1986 TOTAL 32921.1 MEAN 90.2 MAX 530 MIN 5.1 WTR YR 1987 TOTAL 13748.7 MEAN 37.7 MAX 767 MIN 5.1

### 01396800 SPRUCE RUN AT CLINTON, NJ -- Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-62, 1967 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1968 to September 1969, January 1971 to September 1980.
SUSPENDED-SEDIMENT DISCHARGE: October 1960 to April 1961.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE            | TIME                                        | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)        | TEMPER-<br>ATURE<br>WATER<br>(DEG C)   | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                               |                                                     | DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|-----------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT 1986        |                                             |                                                 |                                                   |                                       |                                        |                                                                   |                                                     |                                              |                                                  |                                     |
| 28<br>MAR 1987  | 1045                                        | 3.2                                             | 168                                               | 7.3                                   | 14.0                                   | 9.0                                                               | 88                                                  | E1.7                                         | <20                                              | 5                                   |
| 05<br>26<br>JUN | 1000<br>1315                                | 9.7<br>9.0                                      | 186<br>162                                        | 8.1<br>8.0                            | 2.5<br>11.5                            | 12.6<br>10.5                                                      | 91<br>97                                            | E1.9<br><0.9                                 | <20<br><20                                       | <2                                  |
| 17              | 1015                                        | 31                                              | 173                                               | 7.7                                   | 19.5                                   | 8.0                                                               | 88                                                  | E1.7                                         | 50                                               | 130                                 |
| JUL<br>27       | 1000                                        | 9.7                                             | 175                                               | 7.9                                   | 21.5                                   | 9.0                                                               | 103                                                 | E1.3                                         | <20                                              | 17                                  |
| AUG<br>27       | 1300                                        | 14                                              | 154                                               | 7.4                                   | 18.5                                   | 8.1                                                               | 87                                                  | E1.3                                         | 140                                              | 240                                 |
| DATE            | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | DIS-<br>L SOLV<br>(MG/                          | ED SOL                                            | UM, SODI<br>S- DIS<br>VED SOLV        | IUM, SI<br>S- DI<br>VED SOI<br>G/L (MO | TAS- ALK IUM, LINI IS- LA LVED (MG G/L AS K) CAC                  | TY SULFAT B DIS- /L SOLVE (MG/L                     | DIS-<br>ED SOLVE<br>(MG/L                    | RIDE<br>DIS<br>D SOLV                            | ,-<br>/ED<br>/L                     |
| OCT 1986        |                                             |                                                 |                                                   |                                       |                                        |                                                                   |                                                     |                                              |                                                  |                                     |
| 28<br>MAR 1987  |                                             | 61 15                                           |                                                   |                                       |                                        | 1.6 45                                                            | 17                                                  | 12                                           | <0.                                              | .1                                  |
| 05<br>26<br>JUN |                                             | 58 14<br>63 15                                  | 5                                                 | .5 .2                                 | 7.9                                    | 1.2 40                                                            | 20<br>17                                            | 12<br>14                                     | 0.<br><0.                                        |                                     |
| 17<br>JUL       |                                             | 57 14                                           | 5                                                 | .4 8                                  | 3.0                                    | 1.3 39                                                            | 17                                                  | 11                                           | <0.                                              | .1                                  |
| 27              |                                             | 59 14                                           | 5                                                 | .8 8                                  | 3.4                                    | 1.5 44                                                            | 17                                                  | 12                                           | 0.                                               | .2                                  |
| AUG<br>27       |                                             | 56 14                                           | 5                                                 | .1 7                                  | 7.8                                    | 1.6 40                                                            | 18                                                  | 12                                           | 0.                                               | .1                                  |
| DATE            | SILIO<br>DIS-<br>SOLV<br>(MG,<br>AS-<br>SIO | CONST<br>VED TUENT<br>/L DIS<br>SOLV            | F NIT<br>I- GE<br>S, NITR<br>I- TOT               | N, GE<br>ITE NO2-<br>AL TOT<br>/L (MC | EN, GI<br>HNÓ3 AMM<br>TAL TO<br>G/L (M | TRO- GEN,<br>EN, MONI<br>DNIA ORGA<br>TAL TOT<br>G/L (MG<br>N) AS | AM-<br>A + NITRO<br>NIC GEN<br>AL TOTAL<br>JL (MG/I | , PHORUS<br>L TOTAL<br>L (MG/L               | ORGAN<br>TOTA<br>(MG)                            | NIĆ<br>AL<br>/L                     |
| OCT 1986        |                                             |                                                 |                                                   |                                       |                                        |                                                                   |                                                     |                                              |                                                  |                                     |
| 28<br>MAR 1987  |                                             | 5.5                                             | 91 0.                                             | 026 0.                                | .12 0.                                 | 18 0.8                                                            | 7 0.99                                              | 0.030                                        | 3.1                                              |                                     |
| 05<br>26        |                                             | 7.6<br>8.2                                      |                                                   |                                       | .60 0.<br>.58 0.                       |                                                                   | 3 0.93                                              | <0.020                                       | 2.3                                              |                                     |
| JUN             |                                             |                                                 |                                                   |                                       |                                        |                                                                   |                                                     | <0.020                                       |                                                  |                                     |
| 17<br>JUL       |                                             | 4.2                                             | 84 0.                                             | 014 0.                                | .42 0.:                                | 38 0.5                                                            | 8 1.0                                               | 0.048                                        | 4.6                                              |                                     |
| 27              |                                             | 5.2                                             | 90 0.                                             | 009 0.                                | .30 0.                                 | 0.6                                                               | 0.90                                                | <0.020                                       | 3.2                                              |                                     |
| 27              |                                             | 4.8                                             | 87 0.                                             | 009 0                                 | .13 0.                                 | 11 0.5                                                            | 3 0.66                                              | 0.020                                        | 2.8                                              |                                     |

# 01396800 SPRUCE RUN AT CLINTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME           | SULFI<br>TOTA<br>(MG/<br>AS S                   | L SOL                                                 | M,<br>S- ARS<br>VED TO<br>/L (U                                 | ENIC<br>TAL<br>G/L<br>AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORO<br>TOTA<br>RECO<br>ERAB<br>(UG/                   | V- REC<br>LE ERA<br>L (UG                  | AL TO<br>OV- REG<br>BLE ER/                           | JM, CO<br>FAL TO<br>COV- R<br>ABLE E<br>G/L ( | PPER,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S CU) |
|----------------|----------------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| OCT 1986<br>28 | 1045           | <0                                              | .5                                                    | 10                                                              | <1                        | <10                                                             | er canada                                              | 40                                         | <1                                                    | <10                                           | 7                                                |
| DATE           | TI<br>RI<br>EI | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | ER/                       | TAL TOV- FABLE E                                                | ICKEL,<br>FOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOL<br>TOTAL<br>(UG/L)                     |                                                  |
| OCT 1986<br>28 | 5              | 460                                             | 6                                                     | 420                                                             |                           | 0.10                                                            | 2                                                      | <1                                         | 240                                                   |                                               | 1                                                |

### 01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ

LOCATION.--Lat 40°34'21", long 74°52'10", Hunterdon County, Hydrologic Unit 02030105, on right bank at downstream side of bridge on Stanton Road at Stanton Station, 0.4 mi upstream from Prescott Brook, and 1.4 mi west of Stanton.

DRAINAGE AREA . - - 147 mi 2 .

PERIOD OF RECORD.--July 1903 to December 1906, July 1919 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 561: Drainage area. WSP 1552: 1904, 1922-24(M), 1928-29(M), 1933-35(M).

GAGE.--Water-stage recorder. Datum of gage is 125.01 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1925, nonrecording gage on downstream side of highway bridge at same site and datum.

REMARKS.--Records good. Flow regulated by Spruce Run Reservoir since September 1963 (see Raritan River basin, reservoirs in). Occasional regulation at low flows by ponds above station. Water diverted by Hamden Pumping Station, 4.0 mi upstream, into Round Valley Reservoir since February 1966 (see Raritan River basin, diversions).

AVERAGE DISCHARGE. -- 71 years (water years 1904-06, 1920-87), 245 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,000 ft<sup>3</sup>/s, Aug. 19, 1955, gage height, 15.22 ft, from rating curve extended above 6,400 ft<sup>3</sup>/s on basis of computation of flow over Clinton Dam, 6.5 mi upstream, at gage height 10.72 ft, contracted opening measurement 1.7 mi downstream, and slope-area measurement 0.4 mi downstream at gage height 15.22 ft, adjusted to present site; minimum, 9 ft<sup>3</sup>/s, Nov. 7, 1931; minimum daily, 12 ft<sup>3</sup>/s, Oct. 18, 1963.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,380 ft<sup>3</sup>/s, Apr. 4, gage height, 9.11 ft; minimum daily, 58 ft<sup>3</sup>/s, Mar. 21.

|                                  |                                  | 5,7,57,11                       |                                        |                                           | 7                               | MEAN VAL                           | UES                              |                                        | 42 425 125                      | 1550                                |                                        |                                 |
|----------------------------------|----------------------------------|---------------------------------|----------------------------------------|-------------------------------------------|---------------------------------|------------------------------------|----------------------------------|----------------------------------------|---------------------------------|-------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | OCT                              | NOV                             | DEC                                    | JAN                                       | FEB                             | MAR                                | APR                              | MAY                                    | JUN                             | JUL                                 | AUG                                    | SEP                             |
| 1 2 3 4 5                        | 138                              | 80                              | 207                                    | 231                                       | 176                             | 780                                | 608                              | 267                                    | 123                             | 119                                 | 78                                     | 150                             |
|                                  | 131                              | 83                              | 246                                    | 319                                       | 168                             | 865                                | 237                              | 249                                    | 135                             | 145                                 | 110                                    | 106                             |
|                                  | 113                              | 82                              | 1300                                   | 286                                       | 198                             | 539                                | 221                              | 275                                    | 147                             | 160                                 | 96                                     | 102                             |
|                                  | 133                              | 81                              | 496                                    | 244                                       | 223                             | 387                                | 2730                             | 510                                    | 143                             | 111                                 | 87                                     | 117                             |
|                                  | 134                              | 88                              | 334                                    | 215                                       | 194                             | 314                                | 2040                             | 464                                    | 202                             | 84                                  | 150                                    | 86                              |
| 6<br>7<br>8<br>9                 | 115<br>113<br>118<br>118<br>114  | 153<br>117<br>148<br>177<br>123 | 279<br>252<br>235<br>336<br>472        | 202<br>201<br>199<br>184<br>194           | 175<br>177<br>180<br>178<br>159 | 285<br>331<br>443<br>403<br>311    | 1220<br>990<br>766<br>612<br>525 | 373<br>311<br>271<br>254<br>239        | 147<br>113<br>124<br>127<br>135 | 77<br>76<br>117<br>176<br>147       | 447<br>173<br>117<br>104<br>870        | 137<br>151<br>186<br>366<br>161 |
| 11                               | 85                               | 152                             | 335                                    | 236                                       | 162                             | 258                                | 382                              | 218                                    | 94                              | 94                                  | 310                                    | 116                             |
| 12                               | 83                               | 254                             | 391                                    | 213                                       | 159                             | 251                                | 350                              | 219                                    | 93                              | 89                                  | 168                                    | 103                             |
| 13                               | 85                               | 140                             | 251                                    | 188                                       | 153                             | 240                                | 422                              | 195                                    | 101                             | 207                                 | 129                                    | 439                             |
| 14                               | 98                               | 111                             | 209                                    | 182                                       | 144                             | 228                                | 363                              | 183                                    | 98                              | 156                                 | 113                                    | 808                             |
| 15                               | 82                               | 100                             | 206                                    | 206                                       | 138                             | 216                                | 332                              | 218                                    | 100                             | 300                                 | 107                                    | 277                             |
| 16                               | 75                               | 97                              | 201                                    | 125                                       | 132                             | 204                                | 359                              | 226                                    | 125                             | 142                                 | 100                                    | 191                             |
| 17                               | 84                               | 94                              | 198                                    | 130                                       | 153                             | 191                                | 464                              | 184                                    | 99                              | 107                                 | 102                                    | 208                             |
| 18                               | 83                               | 92                              | 485                                    | 202                                       | 136                             | 136                                | 553                              | 180                                    | 109                             | 97                                  | 121                                    | 559                             |
| 19                               | 81                               | 272                             | 653                                    | 300                                       | 131                             | 131                                | 422                              | 207                                    | 140                             | 92                                  | 118                                    | 368                             |
| 20                               | 80                               | 197                             | 329                                    | 278                                       | 127                             | 125                                | 355                              | 226                                    | 168                             | 91                                  | 130                                    | 270                             |
| 21                               | 78                               | 1390                            | 273                                    | 235                                       | 124                             | 58                                 | 322                              | 227                                    | 150                             | 100                                 | 136                                    | 206                             |
| 22                               | 78                               | 370                             | 243                                    | 220                                       | 126                             | 59                                 | 299                              | 194                                    | 125                             | 83                                  | 148                                    | 212                             |
| 23                               | 77                               | 230                             | 224                                    | 223                                       | 147                             | 102                                | 272                              | 175                                    | 112                             | 82                                  | 138                                    | 196                             |
| 24                               | 77                               | 219                             | 221                                    | 202                                       | 139                             | 103                                | 374                              | 168                                    | 85                              | 117                                 | 137                                    | 165                             |
| 25                               | 75                               | 196                             | 1250                                   | e190                                      | 133                             | 100                                | 914                              | 156                                    | 106                             | 166                                 | 160                                    | 155                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 93<br>89<br>76<br>70<br>83<br>81 | 686<br>966<br>371<br>279<br>236 | 538<br>379<br>325<br>288<br>268<br>251 | e192<br>e185<br>e165<br>199<br>197<br>182 | 123<br>131<br>130               | 98<br>94<br>66<br>64<br>101<br>661 | 493<br>372<br>364<br>386<br>367  | 147<br>145<br>149<br>141<br>131<br>127 | 115<br>119<br>99<br>82<br>100   | 103<br>156<br>89<br>78<br>81<br>102 | 164<br>175<br>155<br>208<br>124<br>106 | 132<br>116<br>111<br>109<br>115 |
| TOTAL                            | 2940                             | 7584                            | 11675                                  | 6525                                      | 4316                            | 8144                               | 18114                            | 7029                                   | 3616                            | 3744                                | 5281                                   | 6418                            |
| MEAN                             | 94.8                             | 253                             | 377                                    | 210                                       | 154                             | 263                                | 604                              | 227                                    | 121                             | 121                                 | 170                                    | 214                             |
| MAX                              | 138                              | 1390                            | 1300                                   | 319                                       | 223                             | 865                                | 2730                             | 510                                    | 202                             | 300                                 | 870                                    | 808                             |
| MIN                              | 70                               | 80                              | 198                                    | 125                                       | 123                             | 58                                 | 221                              | 127                                    | 82                              | 76                                  | 78                                     | 86                              |

CAL YR 1986 TOTAL 106927 MEAN 293 MAX 2290 MIN 70 WTR YR 1987 TOTAL 85386 MEAN 234 MAX 2730 MIN 58

e Estimated

### 01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ

LOCATION.--Lat 40°31'01", long 74°48'12", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 0.4 mi northeast of Voorhees Corner, 1.3 mi downstream of Bushkill Brook, and 2.2 mi southeast of Darts Mills.

DRAINAGE AREA . - - 181 mi 2 .

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                              | TIME    | STREATED INSTANCE (CF     | AM- CI<br>W, CO<br>AN- DU<br>OUS AN                                 | CT-                                         | PH<br>(STAND-<br>ARD<br>UNITS)       | TEMP<br>ATU<br>WAT<br>(DEG                    | RE<br>ER \$                                        | (YGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN<br>DIS-<br>SOLVE<br>(PER-<br>CENT<br>SATUR<br>ATION | DEN<br>D BI<br>CI                          | (GEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COL<br>FORI<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL, STREP-<br>TOCOCCI<br>TH FECAL            |
|-----------------------------------|---------|---------------------------|---------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------------------------|------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------|
| OCT 1986                          | 1400    | E132                      |                                                                     | 260                                         | 7.8                                  | 16                                            | .5                                                 | 9.7                                | 99                                                         |                                            | <0.9                                                 | 330                                    | 170                                                |
| FEB 1987<br>10                    | 1230    | E179                      |                                                                     | 350                                         | 7.7                                  |                                               | .0                                                 | 13.4                               | 95                                                         |                                            | E1.5                                                 | 50                                     | 1871 - 1871 -                                      |
| MAR 18                            | 1045    | E90                       |                                                                     | 224                                         | 8.7                                  |                                               | .5                                                 | 13.1                               | 107                                                        |                                            | E1.2                                                 | <20                                    |                                                    |
| MAY                               |         |                           |                                                                     | 75300                                       | 47 77 60                             |                                               |                                                    |                                    |                                                            |                                            | 311377                                               |                                        |                                                    |
| 28<br>JUL                         | 1200    | E160                      |                                                                     | 222                                         | 8.0                                  |                                               | 0.0                                                | 9.6                                | 104                                                        | 1                                          | E1.3                                                 | 130                                    |                                                    |
| 06<br>AUG                         | 1215    | E92                       |                                                                     | 289                                         | 7.9                                  | 25                                            | 0.0                                                | 9.4                                | 113                                                        |                                            | <1.0                                                 | 330                                    | 130                                                |
| 05                                | 1230    | E103                      |                                                                     | 328                                         | 8.3                                  | 27                                            | 7.0                                                | 9.0                                | 114                                                        |                                            | E2.3                                                 | 1100                                   | 240                                                |
| DATE                              | ME:     | SS<br>G/L                 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIL<br>DIS<br>SOLV<br>(MG)<br>AS N  | JM, SOO<br>S- DI<br>/ED SOL<br>/L (N | IUM,<br>S-<br>VED<br>IG/L<br>S NA)            | POTAS<br>SIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K)  | , LINI<br>LA<br>D (MG<br>AS        | TY SL<br>B C<br>/L S                                       | ILFATE<br>IS-<br>SOLVED<br>(MG/L<br>S SO4) | (MC                                                  | DE,                                    | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986<br>09.<br>FEB 1987<br>10 |         | 92                        | 22                                                                  | 8.                                          |                                      | 15                                            | 2.6                                                | 70<br>57                           |                                                            | 24                                         | 16                                                   |                                        | 0.1                                                |
| MAR<br>18                         |         | 84                        | 20                                                                  |                                             |                                      | 5                                             | 1.5                                                | 59                                 | 216                                                        | 23                                         | 2'                                                   |                                        |                                                    |
| MAY                               |         |                           |                                                                     | 8.                                          |                                      |                                               |                                                    |                                    |                                                            |                                            |                                                      |                                        | 0.1                                                |
| 28<br>JUL                         |         | 86                        | 20                                                                  |                                             | 19                                   | 0                                             | 1.6                                                | 65                                 |                                                            | 18                                         | 18                                                   | -94.                                   | <0.1                                               |
| 06<br>AUG                         |         | 90                        | 21                                                                  |                                             |                                      | 15                                            | 2.1                                                | 71                                 |                                                            | 22                                         | 25                                                   |                                        | <0.1                                               |
| 05                                |         | 110                       | 27                                                                  | 11                                          |                                      | 8                                             | 3.9                                                | 88                                 |                                                            | 34                                         | 25                                                   | 5                                      | 0.2                                                |
| DATE                              | SOI (MI | ICA,<br>S-<br>LVED<br>G/L | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>GEI<br>NITE<br>TOTA<br>(MG,<br>AS I | TE NOZ                               | TRO-<br>SEN,<br>2+NO3<br>DTAL<br>IG/L<br>S N) | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N) | MONI                               | AM-<br>A + I<br>NIC<br>AL I                                | IITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)  |                                                      | RUS,<br>TAL<br>G/L                     | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986<br>09<br>FEB 1987        |         | 8.5                       | 140                                                                 | 0.0                                         | 034 1                                | .04                                           | 0.10                                               | 0.                                 | 61                                                         | 1.7                                        | 0.                                                   | 170                                    | 3.2                                                |
| 10                                | 100     | 11                        | 170                                                                 | 0.0                                         | 013 1                                | .96                                           | 0.23                                               | 0.                                 | 41                                                         | 2.4                                        | 0.0                                                  | 072                                    | 3.6                                                |
| 18                                |         | 8.7                       | 130                                                                 | E0.                                         | 030                                  | .56                                           | 0.13                                               | 0.                                 | 32                                                         | 1.9                                        | 0.0                                                  | 062                                    | 1.7                                                |
| 28                                |         | 9.3                       | 120                                                                 | 0.0                                         | 067                                  | .50                                           | 0.14                                               | 0.                                 | 70                                                         | 2.2                                        | 0.                                                   | 106                                    | 2.8                                                |
| JUL<br>06                         |         | 9.1                       | 150                                                                 | 0.0                                         | 042                                  | 1.51                                          | 0.14                                               | 0.                                 | 60                                                         | 2.1                                        | 0.3                                                  | 200                                    | 3.2                                                |
| AUG<br>05                         |         | 6.1                       | 180                                                                 | 0                                           | 017                                  | 1.40                                          | 0.09                                               | 0                                  | 81                                                         | 2.2                                        | 0                                                    | 220                                    | 3.1                                                |

RARITAN RIVER BASIN

# 01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE     | TIME         | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | TERIAL<br>(UG/G                                                    | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------|--------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986 | 1400         |                                                                     | 130                                                                  | 0.1                                                                  | 0.1                                                                   |                                                                      |                                                                    | 5                                                                  |                                                                      |                                                                    |                                                                 | <1                                                                   |
| MAY 1987 |              |                                                                     |                                                                      |                                                                      | 0.1                                                                   | 100                                                                  |                                                                    |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
| 28       | 1200         | <0.5                                                                | **                                                                   | •                                                                    | •••                                                                   | <10                                                                  | <1                                                                 | •••                                                                | <10                                                                  | <10                                                                | <1                                                              |                                                                      |
|          | DATE         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| oc       | T 1986       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
| МА       | 09<br>Y 1987 | •••                                                                 | 3                                                                    | 10                                                                   | ••                                                                    | 3                                                                    |                                                                    | 2600                                                               | ••                                                                   | <10                                                                | •••                                                             | 460                                                                  |
|          | 28           | <10                                                                 |                                                                      | ••                                                                   | 4                                                                     |                                                                      | 250                                                                | 4.                                                                 | <5                                                                   | ••                                                                 | 20                                                              | ••                                                                   |
|          | DATE         | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-                                                   | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)              | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| 00       | T 1986       |                                                                     | 0.02                                                                 |                                                                      | -10                                                                   |                                                                      |                                                                    |                                                                    | /0                                                                   |                                                                    | -4                                                              | -1.0                                                                 |
| MA       | Y 1987       |                                                                     |                                                                      |                                                                      | <10                                                                   | •                                                                    | <1                                                                 |                                                                    | 40                                                                   |                                                                    | <1                                                              | <1.0                                                                 |
|          | 28           | <0.10                                                               | • •                                                                  | 2                                                                    |                                                                       | <1                                                                   | **                                                                 | 10                                                                 | 45.0                                                                 | 2                                                                  |                                                                 |                                                                      |
|          | DATE         | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | TOM MA-<br>TERIAL                                                    | TOM MA-<br>TERIAL                                                     | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TOM MA-<br>TERIAL                                                  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | TOM MA-<br>TERIAL                                               | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|          | T 1986       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
| MA       | 09<br>Y 1987 | <0.1                                                                | <1.0                                                                 | 0.1                                                                  | 0.4                                                                   | 1.5                                                                  | <0.1                                                               | <0.1                                                               | 0.1                                                                  | <0.1                                                               | <0.1                                                            | <0.1                                                                 |
|          | 28           |                                                                     |                                                                      |                                                                      | ••                                                                    |                                                                      |                                                                    |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
|          | DATE         | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                | CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.                                  | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | MATL.                                                              | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                    | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  |                                                                    | TOM MA-<br>TERIAL                                               | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
| 00       | T 1986       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                    |                                                                      |                                                                    |                                                                 |                                                                      |
|          | 09<br>Y 1987 | <0.1                                                                | <0.1                                                                 | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                               | <0.1                                                                 | <1.00                                                              | <10                                                             | <0.1                                                                 |
|          | 28           |                                                                     |                                                                      |                                                                      | ••                                                                    |                                                                      |                                                                    |                                                                    | **                                                                   | **                                                                 |                                                                 |                                                                      |

### 01398000 NESHANIC RIVER AT REAVILLE, NJ

LOCATION.--Lat 40°28'18", long 74°49'42", Hunterdon County, Hydrologic Unit 02030105, on left bank 50 ft downstream from bridge on Everitts Road, 0.6 mi southwest of Reaville, 1.5 mi downstream from Third Neshanic River, and 2.2 mi upstream from Back Brook.

DRAINAGE AREA .-- 25.7 mi 2.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1930 to current year.

REVISED RECORDS.--WSP 1552: 1933, 1934(M), 1936(M), 1938, 1940(M), 1942(M), 1945-46, 1951, 1952(M).

GAGE. -- Water-stage recorder. Concrete control since Sept. 26, 1935. Datum of gage is 109.46 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 57 years, 36.5 ft3/s, 19.27 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,900 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 13.84 ft, from highwater mark in gage house, from rating curve extended above 1,700 ft<sup>3</sup>/s on basis of slope-area measurement 0.7 mi downstream (adjusted to present site) at gage height 11.90 ft; no flow many days 1965, 1966, and part of July 17, 1968.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,600 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|------------------|
| Nov. 21 | 0145 | 1,840                             | 7.48             | Dec. 25 | 0430 | 2,940                             | 8.73             |
| Nov. 26 | 2200 | e4,500                            | unknown          | Apr. 4  | 1515 | e4,300                            | unknown          |
| Dec. 3  | 0130 | 1,660                             | 7.19             | July 14 | 2000 | 3,280                             | 9.05             |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 0.14 ft3/s, June 26, gage height, 2.07 ft.

|                                            |                                    |                                              |                                          |                                           | TEN OLOG                                | MEAN VALL                                 | JES JES                                   | ODER 1700                                | 10 02.11                                 | INDEK 1701                                   |                                      |                                   |
|--------------------------------------------|------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------|
| DAY                                        | OCT                                | NOV                                          | DEC                                      | JAN                                       | FEB                                     | MAR                                       | APR                                       | MAY                                      | JUN                                      | JUL                                          | AUG                                  | SEP                               |
| 1 2 3 4 5                                  | 1.2<br>1.4<br>1.3<br>2.4<br>1.7    | 1.0<br>1.3<br>1.2<br>1.4<br>3.3              | 36<br>137<br>621<br>102<br>65            | 31<br>91<br>79<br>55<br>42                | 20<br>26<br>50<br>65<br>47              | 646<br>285<br>136<br>91<br>70             | 75<br>49<br>39<br>1640<br>212             | 25<br>23<br>22<br>49<br>42               | 3.6<br>8.8<br>4.9<br>74<br>66            | 30<br>53<br>83<br>21<br>14                   | 6.2<br>6.0<br>11<br>5.9<br>5.4       | 2.5<br>2.1<br>1.9<br>1.6<br>1.6   |
| 6<br>7<br>8<br>9                           | 1.1<br>.86<br>.87<br>.98<br>.87    | 17<br>5.6<br>20<br>14<br>8.5                 | 49<br>42<br>36<br>199<br>124             | 36<br>35<br>33<br>29<br>40                | 39<br>47<br>49<br>42<br>32              | 62<br>64<br>58<br>49<br>37                | 258<br>142<br>90<br>69<br>55              | 31<br>26<br>22<br>19                     | 21<br>15<br>12<br>13<br>9.6              | 10<br>8.4<br>65<br>18<br>13                  | 11<br>5.5<br>4.5<br>4.2<br>81        | 1.8<br>2.9<br>5.4<br>7.3<br>2.9   |
| 11<br>12<br>13<br>14<br>15                 | .78<br>.87<br>1.2<br>4.2<br>2.0    | 41<br>33<br>16<br>11<br>8.8                  | 71<br>78<br>54<br>38<br>35               | 67<br>48<br>43<br>40<br>46                | 30<br>28<br>23<br>21<br>15              | 30<br>29<br>28<br>25<br>22                | 45<br>40<br>36<br>30<br>27                | 15<br>13<br>12<br>11<br>14               | 7.0<br>6.8<br>6.8<br>5.6<br>4.5          | 10<br>95<br>33<br>832<br>215                 | 12<br>7.6<br>5.8<br>4.8<br>4.2       | 2.2<br>2.0<br>21<br>8.0<br>4.1    |
| 16<br>17<br>18<br>19<br>20                 | 1.2<br>1.1<br>1.0<br>.94           | 8.0<br>7.0<br>8.4<br>139<br>e86              | 32<br>32<br>265<br>140<br>72             | 38<br>31<br>58<br>147<br>97               | 16<br>16<br>15<br>13                    | 20<br>19<br>17<br>16<br>15                | 26<br>76<br>55<br>39<br>33                | 10<br>8.8<br>8.0<br>9.6                  | 3.8<br>3.2<br>2.9<br>2.8<br>2.7          | 68<br>42<br>30<br>23<br>18                   | 3.7<br>4.4<br>3.7<br>2.8<br>2.5      | 3.3<br>4.9<br>11<br>6.4<br>4.7    |
| 21<br>22<br>23<br>24<br>25                 | 1.0<br>1.0<br>1.1<br>1.0           | e452<br>66<br>45<br>51<br>37                 | 55<br>42<br>36<br>38<br>904              | 64<br>46<br>54<br>38<br>29                | 12<br>13<br>19<br>18<br>17              | 15<br>14<br>12<br>12<br>11                | 30<br>26<br>23<br>36<br>112               | 11<br>8.1<br>8.2<br>7.5<br>6.4           | 2.8<br>17<br>7.9<br>4.2<br>2.9           | 15<br>12<br>9.7<br>8.5<br>7.4                | 2.2<br>2.8<br>2.5<br>1.8<br>1.6      | 3.9<br>13<br>12<br>5.9<br>4.3     |
| 26<br>27<br>28<br>29<br>30<br>31           | 5.4<br>4.2<br>2.3<br>1.5<br>1.1    | 902<br>342<br>88<br>62<br>45                 | 118<br>78<br>60<br>49<br>44<br>37        | 27<br>23<br>20<br>19<br>22<br>25          | 18<br>19<br>25                          | 11<br>10<br>15<br>11<br>13<br>222         | 48<br>38<br>41<br>41<br>31                | 6.0<br>5.9<br>5.1<br>4.5<br>3.9          | 3.2<br>32<br>7.0<br>4.4<br>3.3           | 105<br>22<br>12<br>8.8<br>7.3<br>8.5         | 1.7<br>13<br>10<br>6.6<br>3.5<br>2.6 | 3.4<br>2.8<br>2.5<br>2.3<br>6.4   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 47.72<br>1.54<br>5.4<br>.78<br>.06 | 2521.5<br>84.0<br>902<br>1.0<br>3.27<br>3.65 | 3689<br>119<br>904<br>32<br>4.63<br>5.34 | 1453<br>46.9<br>147<br>19<br>1.82<br>2.10 | 747<br>26.7<br>65<br>12<br>1.04<br>1.08 | 2065<br>66.6<br>646<br>10<br>2.59<br>2.99 | 3462<br>115<br>1640<br>23<br>4.49<br>5.01 | 460.9<br>14.9<br>49<br>3.9<br>.58<br>.67 | 358.7<br>12.0<br>74<br>2.7<br>.47<br>.52 | 1897.6<br>61.2<br>832<br>7.3<br>2.38<br>2.75 | 240.5<br>7.76<br>81<br>1.6<br>.30    | 154.1<br>5.14<br>21<br>1.6<br>.20 |

CAL YR 1986 TOTAL 15790.65 MEAN 43.3 MAX 936 MIN .49 CFSM 1.68 IN. 22.85 WTR YR 1987 TOTAL 17096.90 MEAN 46.8 MAX 1640 MIN .78 CFSM 1.82 IN. 24.74

e Estimated

### 01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957, 1962, 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                         | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)     | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------|------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT 1986       |                                              |                                                 |                                                   |                                |                                          |                                                      |                                                                |                                              | 1                                                |                                     |
| 02             | 1330                                         | 1.5                                             | 411                                               | 8.7                            | 17.5                                     | 14.0                                                 | 148                                                            | E1.4                                         | 170                                              | 130                                 |
| FEB 1987       | 1345                                         | 20                                              | 355                                               | 8.2                            | 0.5                                      | 16.8                                                 | 117                                                            | 2.9                                          | <20                                              | 7                                   |
| MAR<br>18      | 1345                                         | 17                                              | 554                                               | 9.1                            | 9.0                                      | 11.1                                                 | 96                                                             | <0.9                                         | <20                                              | 7                                   |
| MAY            |                                              |                                                 |                                                   |                                |                                          |                                                      |                                                                | 100                                          |                                                  |                                     |
| 28<br>JUL      | 1330                                         | 5.7                                             | 376                                               | 9.5                            | 22.5                                     | 10.6                                                 | 122                                                            | E2.2                                         | 50                                               | 130                                 |
| 06<br>AUG      | 1345                                         | 10                                              | 317                                               | 8.2                            | 24.5                                     | 11.5                                                 | 138                                                            | 0.9                                          | 790                                              | 920                                 |
| 05             | 1345                                         | 4.6                                             | 405                                               | 9.1                            | 27.5                                     | 14.8                                                 | 190                                                            | E1.4                                         | 790                                              | 540                                 |
| DATE           | HARD<br>NESS<br>(MG/<br>AS<br>CACO           | DIS-<br>L SOLV                                  | UM SI<br>/ED SOL<br>/L (MG                        | S- DI<br>VED SOL               | IUM, S<br>S- D<br>VED SOI                | IUM, LIN<br>IS- L/<br>LVED (MG<br>G/L AS             | AB DIS                                                         | S- DIS<br>VED SOL                            | E, RI<br>S- D<br>VED SO<br>S/L (M                | UO-<br>DE,<br>IS-<br>DLVED          |
| OCT 1986       |                                              |                                                 |                                                   |                                |                                          |                                                      |                                                                |                                              |                                                  |                                     |
| 02<br>FEB 1987 |                                              | 160 42                                          | 14                                                | 1                              | 8                                        | .2 108                                               |                                                                | 6 21                                         |                                                  | 0.1                                 |
| 17             | -                                            | 100 27                                          | 8                                                 | 3.8 1                          | 8                                        | 1.6 41                                               |                                                                | 7 31                                         | <                                                | 0.1                                 |
| MAR<br>18      |                                              | 160 44                                          | 12                                                | 3                              | 1                                        | 1.6 41                                               |                                                                | 0 97                                         | , <                                              | 0.1                                 |
| MAY<br>28      |                                              | 170 45                                          | 13                                                |                                |                                          | .9 66                                                |                                                                | 4 46                                         |                                                  | 0.1                                 |
| JUL            |                                              |                                                 |                                                   |                                |                                          |                                                      |                                                                |                                              |                                                  |                                     |
| 06<br>AUG      |                                              | 110 27                                          | ,                                                 | 2.2 1                          | 4                                        | 2.3 57                                               |                                                                | 39 27                                        | <                                                | 0.1                                 |
| 05             |                                              | 150 39                                          | 12                                                | 2 2                            | 0 7                                      | 2.7 71                                               |                                                                | 55 35                                        |                                                  | 0.2                                 |
| DATE           | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS-<br>SIO2 | CONST<br>/ED TUENT<br>/L DIS<br>SOLV            | OF NIT<br>II- GE<br>IS, NITE<br>S- TOT<br>/ED (MG | N, G<br>RITE NO2<br>TAL TO     | EN, GI<br>+NO3 AMMO<br>TAL TO<br>G/L (MO | RO- GEN<br>EN, MON<br>ONIA ORGA<br>TAL TO<br>G/L (MO |                                                                | /L (MG                                       | US, ORG                                          | BON<br>ANIC<br>ITAL<br>G/L<br>C)    |
| OCT_1986       |                                              |                                                 |                                                   |                                |                                          |                                                      |                                                                | 20.3                                         |                                                  |                                     |
| 02<br>FEB 1987 |                                              |                                                 |                                                   | .010 <0                        | .05 0                                    | .16 0                                                | .64                                                            | 0.1                                          | 60 5                                             | .6                                  |
| 17             | 11                                           | 1 1                                             | 170 0.                                            | .014 2                         | .88 0                                    | .08 0                                                | .28 3.                                                         | .2 0.0                                       | 30 2                                             | .2                                  |
| 18             | 10                                           | ) 2                                             | 270 EO.                                           | .022 2                         | .01 0                                    | .14 0                                                | .28 2.                                                         | .3 0.0                                       | 39 1                                             | .2                                  |
| MAY<br>28      |                                              | 5.0 2                                           | 240 0.                                            | .042 1                         | .20 0                                    | .08 0                                                | .70 1.                                                         | 9 0.0                                        | 53 3                                             | .1                                  |
| JUL<br>06      | 11                                           | 1 1                                             | 160 0.                                            | .046 2                         | .81 0                                    | .10 0                                                | .54 3.                                                         | 4 0.0                                        | 90 3                                             | .7                                  |
| AUG<br>05      |                                              |                                                 |                                                   |                                |                                          |                                                      |                                                                |                                              |                                                  |                                     |
| 05             |                                              | 2.1                                             | 220 0.                                            | .035 1                         | .17 0                                    | .11 0                                                | .83 2.                                                         | .0 0.0                                       | 70 3                                             | .8                                  |

# 01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L                                           | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG             | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG     | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L                            | ARSENIC<br>TOTAL<br>(UG/L                                          | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G          | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                       | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                       | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G           |
|----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| 1                          |                                                                     | AS S)                                                               | AS C)                                                                | AS C)                                                            | AS AL)                                                               | AS AS)                                                             | AS AS)                                                             | AS BE)                                                               | AS B)                                                              | AS CD)                                                              | AS CD)                                                               |
| OCT 1986<br>02<br>MAY 1987 | 1330                                                                |                                                                     | 0.4                                                                  | 8.3                                                              |                                                                      |                                                                    | 14                                                                 | -                                                                    |                                                                    |                                                                     | <1                                                                   |
| 28                         | 1330                                                                | <0.5                                                                |                                                                      |                                                                  | <10                                                                  | 1                                                                  |                                                                    | <10                                                                  | 20                                                                 | <1                                                                  | 1.00                                                                 |
| DATE                       | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)          | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT 1986                   |                                                                     |                                                                     |                                                                      |                                                                  |                                                                      |                                                                    | 47000                                                              |                                                                      |                                                                    |                                                                     | /70                                                                  |
| 02<br>MAY 1987             |                                                                     | 20                                                                  | 20                                                                   |                                                                  | 20                                                                   |                                                                    | 17000                                                              | •                                                                    | 20                                                                 | •                                                                   | 670                                                                  |
| 28                         | 10                                                                  | ••                                                                  | ••                                                                   | 2                                                                | ••                                                                   | 80                                                                 |                                                                    | <5                                                                   |                                                                    | <10                                                                 |                                                                      |
| DATE                       | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG)           | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)        | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)           | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)              | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)            | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT 1986                   |                                                                     |                                                                     |                                                                      |                                                                  |                                                                      | 5 7 7                                                              | 02                                                                 |                                                                      |                                                                    |                                                                     |                                                                      |
| 02<br>MAY 1987             |                                                                     | 0.02                                                                |                                                                      | 30                                                               |                                                                      | <1                                                                 | 2.                                                                 | 120                                                                  |                                                                    | 3                                                                   | <1.0                                                                 |
| 28                         | <0.10                                                               |                                                                     | 2                                                                    |                                                                  | <1                                                                   |                                                                    | 20                                                                 |                                                                      | 3                                                                  |                                                                     |                                                                      |
| DATE                       | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986                   |                                                                     |                                                                     | 2.5                                                                  |                                                                  |                                                                      | 200                                                                | 100                                                                |                                                                      | 3                                                                  |                                                                     |                                                                      |
| 02<br>MAY 1987             | <0.1                                                                | 3.0                                                                 | 0.3                                                                  | 0.7                                                              | 0.5                                                                  | <0.1                                                               | 0.2                                                                | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                 |
| 28                         | ••                                                                  | ••                                                                  |                                                                      | ••                                                               | •••                                                                  | •••                                                                |                                                                    | •                                                                    |                                                                    |                                                                     |                                                                      |
| DATE                       | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
| OCT_1986                   |                                                                     |                                                                     |                                                                      |                                                                  |                                                                      |                                                                    |                                                                    | RN                                                                   |                                                                    |                                                                     |                                                                      |
| 02<br>MAY 1987             | <0.1                                                                | <0.1                                                                | <0.1                                                                 | <0.1                                                             | <0.1                                                                 | <0.1                                                               | <0.1                                                               | <0.1                                                                 | <1.00                                                              | <10                                                                 | <0.1                                                                 |
| 28                         |                                                                     |                                                                     |                                                                      |                                                                  |                                                                      |                                                                    |                                                                    |                                                                      | 1111                                                               |                                                                     |                                                                      |

01398045 BACK BROOK TRIBUTARY NEAR RINGOES, NJ

LOCATION.--Lat 40°25'41", long 74°49'52", Hunterdon County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Wertsville Road, 2.1 mi east of Ringoes, 1.3 mi upstream from Back Brook, and 2.3 mi southwest of Wertsville.

DRAINAGE AREA. -- 1.98 mi 2.

PERIOD OF RECORD .-- October 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 161.6 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair except below 1.0 ft<sup>3</sup>/s, which are poor.

AVERAGE DISCHARGE. -- 10 years, 4.33 ft3/s, 29.70 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,290 ft<sup>3</sup>/s, Aug. 3, 1979, gage height, 5.05 ft, from rating curve extended above 200 ft<sup>3</sup>/s on basis of contracted-opening measurement at gage height 4.64 ft; no flow July 19, 1986, Aug. 26, 31, Sept. 1-6, 1987

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|--------|------|-----------------------------------|------------------|
| Nov. 26 | 1900 | *983                              | *4.30            | Apr. 4 | 1215 | 844                               | 3.91             |
| Dec. 25 | 0230 | 626                               |                  | July 2 | 1945 | 585                               | 3.20             |

DISCHARGE IN CURIC FEET DED SECOND. MATER YEAR OCTORED 1086 TO SEPTEMBER 1987

No flow Aug. 26, 31, Sept. 1-6.

|                                            |                                  | DISCHA                                      | RGE, IN C                                  | UBIC FEET                                  | PER SECO                                   | ND, WATER<br>MEAN VAL                       | LUES OCT                                     | OBER 1986                                | TO SEPTE                                 | MBER 1987                                   |                                          |                                         |
|--------------------------------------------|----------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------|
| DAY                                        | OCT                              | NOV                                         | DEC                                        | JAN                                        | FEB                                        | MAR                                         | APR                                          | MAY                                      | JUN                                      | JUL                                         | AUG                                      | SEP                                     |
| 1 2 3 4 5                                  | .07<br>.08<br>.10<br>.09<br>.08  | .10<br>.11<br>.10<br>.10                    | 1.1<br>40<br>54<br>4.3<br>2.3              | 1.4<br>12<br>5.7<br>3.1<br>2.0             | 1.8<br>2.9<br>8.6<br>8.4<br>4.5            | 75<br>37<br>14<br>7.6<br>5.4                | 5.3<br>2.7<br>2.0<br>149<br>15               | 1.4<br>1.3<br>1.2<br>5.4<br>3.9          | .22<br>.22<br>.22<br>14<br>5.6           | 10<br>39<br>12<br>1.9<br>1.1                | .25<br>.24<br>.23<br>.22<br>.21          | .00<br>.00<br>.00<br>.00                |
| 6<br>7<br>8<br>9<br>10                     | .09<br>.10<br>.13<br>.13         | 1.3<br>.28<br>2.0<br>1.2<br>.68             | 1.6<br>1.4<br>1.3<br>29<br>7.5             | 1.7<br>1.8<br>1.8<br>1.6<br>4.2            | 3.5<br>4.9<br>5.3<br>3.9<br>2.3            | 7.9<br>12<br>7.3<br>4.2<br>2.2              | 28<br>12<br>5.1<br>3.1<br>2.2                | 2.1<br>1.5<br>1.2<br>1.1<br>.94          | .85<br>.63<br>.59<br>.57<br>.48          | .89<br>.80<br>4.8<br>1.2<br>.96             | .23<br>.18<br>.16<br>.58<br>8.5          | .00<br>.01<br>.06<br>.04                |
| 11<br>12<br>13<br>14<br>15                 | .13<br>.13<br>.16<br>.30<br>.18  | 6.0<br>3.3<br>1.7<br>1.1<br>.76             | 3.3<br>4.3<br>2.3<br>1.5<br>1.4            | 6.4<br>3.3<br>3.1<br>3.8<br>6.2            | 2.1<br>2.0<br>2.2<br>1.6<br>1.6            | 1.7<br>1.7<br>1.9<br>1.6<br>1.5             | 1.7<br>1.4<br>1.2<br>1.1                     | .83<br>.76<br>.64<br>.63<br>.68          | .38<br>.35<br>.46<br>.39<br>.30          | .83<br>.77<br>.73<br>47                     | .21<br>.16<br>.13<br>.11                 | .01<br>.01<br>3.0<br>.06<br>.03         |
| 16<br>17<br>18<br>19<br>20                 | .18<br>.18<br>.19<br>.18         | .63<br>.48<br>3.5<br>13<br>33               | 1.4<br>1.4<br>40<br>8.2<br>3.2             | 2.7<br>1.8<br>6.6<br>25<br>9.1             | 1.3<br>1.2<br>1.2<br>1.4<br>1.4            | 1.3<br>1.2<br>1.1<br>1.1<br>1.0             | .95<br>8.2<br>3.8<br>2.0<br>1.5              | .59<br>.54<br>.47<br>.56<br>.63          | .25<br>.21<br>.19<br>.17                 | 2.8<br>1.6<br>1.1<br>.89<br>.78             | .07<br>.06<br>.05<br>.04                 | .02<br>.08<br>.81<br>.10                |
| 21<br>22<br>23<br>24<br>25                 | .15<br>.16<br>.14<br>.10         | 27<br>8.2<br>6.4<br>8.0<br>6.5              | 2.2<br>1.6<br>1.5<br>12<br>94              | 5.0<br>7.6<br>5.8<br>2.5<br>2.4            | 1.4<br>1.3<br>2.9<br>1.4<br>1.7            | 1.0<br>.97<br>.92<br>.87<br>.84             | 1.3<br>1.1<br>1.0<br>13                      | .68<br>.50<br>.49<br>.46                 | .19<br>2.9<br>.68<br>.53<br>.48          | .68<br>.59<br>.52<br>.48<br>.44             | .03<br>.03<br>.02<br>.02<br>.01          | .07<br>.07<br>.07<br>.05<br>.04         |
| 26<br>27<br>28<br>29<br>30<br>31           | .19<br>.12<br>.10<br>.10<br>.11  | 79<br>15<br>3.5<br>2.0<br>1.5               | 5.3<br>3.1<br>2.3<br>1.9<br>1.7            | 2.3<br>2.8<br>2.3<br>2.5<br>2.5            | 1.8<br>1.7<br>2.7                          | .84<br>.80<br>1.1<br>.92<br>1.3             | 3.8<br>2.2<br>3.0<br>3.7<br>1.9              | .34<br>.32<br>.31<br>.28<br>.26<br>.24   | .40<br>.49<br>.36<br>.27<br>.23          | 4.7<br>1.1<br>.42<br>.34<br>.30<br>.29      | .00<br>.07<br>.03<br>.02<br>.01          | .04<br>.04<br>.04<br>.06                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 4.16<br>.13<br>.30<br>.07<br>.07 | 226.72<br>7.56<br>79<br>.10<br>3.82<br>4.26 | 336.6<br>10.9<br>94<br>1.1<br>5.48<br>6.32 | 141.2<br>4.55<br>25<br>1.4<br>2.30<br>2.65 | 77.0<br>2.75<br>8.6<br>1.2<br>1.39<br>1.45 | 225.26<br>7.27<br>75<br>.80<br>3.67<br>4.23 | 297.25<br>9.91<br>149<br>.95<br>5.00<br>5.58 | 30.63<br>.99<br>5.4<br>.24<br>.50<br>.58 | 32.78<br>1.09<br>14<br>.17<br>.55<br>.62 | 150.01<br>4.84<br>47<br>.29<br>2.44<br>2.82 | 12.00<br>.39<br>8.5<br>.00<br>.20<br>.23 | 4.84<br>.16<br>3.0<br>.00<br>.08<br>.09 |

CAL YR 1986 TOTAL 1370.51 MEAN 3.75 MAX 109 MIN .01 CFSM 1.90 IN. 25.74 WTR YR 1987 TOTAL 1538.42 MEAN 4.21 MAX 149 MIN .00 CFSM 2.13 IN. 28.90

### 01398107 HOLLAND BROOK AT READINGTON, NJ

LOCATION.--Lat 40°33'30", long 74°43'50", Somerset County, Hydrologic Unit 02030105, on right bank 15 ft downstream from bridge on Old York Road, 0.9 mi southeast of Readington, and 2.5 mi upstream from mouth.

DRAINAGE AREA . - 9.00 mi 2.

PERIOD OF RECORD. -- June 1978 to current year.

REVISED RECORDS.--WDR NJ-80-1: 1978, 1979(P). WDR NJ-82-1: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 77.65 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Records good except for period of estimated daily discharges, which are fair. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE. -- 9 years, 15.7 ft3/s, 23.12 in./yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,300  $\rm ft^3/s$ , July 7, 1984, gage height, 8.08 ft; minimum, 0.22  $\rm ft^3/s$ , Aug. 28, 1980, gage height, 1.61 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (\*):

| Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|--------------------|--------------|-----------------------------------|------------------|---------|--------------|-----------------------------------|------------------|
| Nov. 21<br>Nov. 26 | 0145<br>2215 | 663<br>740                        | 5.50<br>5.83     | Dec. 25 | 0615<br>1515 | 487<br>*858                       | 4.72<br>*6.32    |
| Dec. 3             | 0230         | 568                               | 5.00             |         |              |                                   |                  |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 1.2 ft<sup>3</sup>/s, Oct. 10, 11, 12, 13, gage height 1.63 ft.

|                                            |                                          |                                             |                                           |                                            |                                            | MEAN VAL                                    | UES                                         |                                          |                                   |                                            |                                          |                                          |
|--------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|
| DAY                                        | ОСТ                                      | NOV                                         | DEC                                       | JAN                                        | FEB                                        | MAR                                         | APR                                         | MAY                                      | JUN                               | JUL                                        | AUG                                      | SEP                                      |
| 1 2 3 4 5                                  | 1.8<br>1.8<br>1.8<br>1.8                 | 1.9<br>2.0<br>1.8<br>2.0<br>3.0             | 15<br>52<br>226<br>48<br>28               | 12<br>33<br>29<br>23<br>19                 | 9.4<br>11<br>16<br>23<br>21                | 159<br>86<br>47<br>31<br>24                 | 22<br>17<br>14<br>351<br>88                 | 10<br>9.7<br>10<br>15<br>15              | 2.4<br>5.5<br>3.0<br>25<br>21     | 3.8<br>10<br>24<br>9.1<br>6.8              | 9.3<br>7.5<br>7.4<br>5.7<br>5.3          | 2.7<br>2.3<br>2.0<br>1.9<br>1.8          |
| 6<br>7<br>8<br>9                           | 1.6<br>1.4<br>1.4<br>1.4<br>1.3          | 10<br>5.2<br>15<br>13<br>9.6                | 21<br>17<br>14<br>51<br>44                | 16<br>15<br>13<br>12<br>14                 | 19<br>20<br>19<br>17<br>14                 | 20<br>18<br>18<br>16<br>13                  | 71<br>55<br>37<br>28<br>22                  | 14<br>13<br>12<br>10<br>9.0              | 10<br>7.5<br>6.0<br>5.1<br>4.1    | 5.3<br>4.7<br>12<br>e14<br>e9.0            | 7.1<br>4.7<br>4.2<br>4.3<br>35           | 1.9<br>2.4<br>3.3<br>4.6<br>2.5          |
| 11<br>12<br>13<br>14<br>15                 | 1.2<br>1.2<br>1.4<br>3.0<br>1.9          | 28<br>22<br>15<br>11<br>9.3                 | 29<br>27<br>20<br>16<br>15                | 19<br>17<br>16<br>15                       | 13<br>13<br>11<br>10<br>7.7                | 11<br>11<br>11<br>9.5<br>8.8                | 18<br>16<br>14<br>12<br>11                  | 8.0<br>7.4<br>6.3<br>5.8<br>7.4          | 3.6<br>3.6<br>3.6<br>3.2<br>3.0   | e6.7<br>e6.1<br>5.4<br>26<br>20            | 9.1<br>7.1<br>5.8<br>5.0<br>4.4          | 2.2<br>2.1<br>24<br>8.6<br>6.3           |
| 16<br>17<br>18<br>19<br>20                 | 1.6<br>1.6<br>1.5<br>1.4                 | 8.5<br>7.6<br>7.9<br>63<br>47               | 13<br>12<br>70<br>50<br>29                | 13<br>12<br>17<br>33<br>31                 | 8.0<br>8.0<br>7.5<br>6.5<br>6.0            | 8.0<br>7.5<br>6.9<br>6.6<br>6.2             | 10<br>15<br>14<br>12<br>11                  | 5.7<br>5.1<br>5.8<br>6.3<br>5.9          | 2.7<br>2.4<br>2.0<br>2.0<br>2.0   | 13<br>9.6<br>7.6<br>6.2<br>5.4             | 3.9<br>4.5<br>3.6<br>3.0<br>2.8          | 5.3<br>6.2<br>8.0<br>8.8<br>8.0          |
| 21<br>22<br>23<br>24<br>25                 | 1.6<br>1.6<br>1.6<br>1.6                 | 170<br>35<br>23<br>21<br>16                 | 22<br>17<br>15<br>15<br>216               | 25<br>21<br>19<br>13<br>13                 | 6.0<br>6.0<br>7.7<br>6.9<br>6.7            | 6.0<br>5.5<br>5.1<br>4.7<br>4.5             | 10<br>9.6<br>8.8<br>11<br>25                | 5.6<br>4.7<br>4.8<br>4.3<br>4.1          | 4.0<br>17<br>5.3<br>3.5<br>3.0    | 4.6<br>4.0<br>3.6<br>6.6                   | 2.5<br>2.8<br>2.5<br>2.1<br>2.0          | 7.2<br>6.6<br>6.0<br>5.0<br>4.4          |
| 26<br>27<br>28<br>29<br>30<br>31           | 3.1<br>3.0<br>2.2<br>2.0<br>2.0          | 201<br>122<br>42<br>27<br>20                | 53<br>32<br>24<br>19<br>17<br>14          | 12<br>10<br>9.3<br>9.0<br>9.9              | 7.1<br>7.8<br>8.7                          | 4.5<br>4.3<br>5.3<br>4.3<br>4.6<br>29       | 17<br>15<br>15<br>14<br>12                  | 3.9<br>3.8<br>3.6<br>3.3<br>3.0<br>2.7   | 2.8<br>18<br>6.2<br>4.6<br>3.8    | 23<br>11<br>7.5<br>5.5<br>32<br>13         | 2.0<br>5.7<br>4.7<br>4.7<br>2.9<br>2.5   | 4.0<br>3.7<br>3.4<br>3.3<br>4.6          |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 54.5<br>1.76<br>3.1<br>1.2<br>.20<br>.23 | 959.8<br>32.0<br>201<br>1.8<br>3.55<br>3.97 | 1241<br>40.0<br>226<br>12<br>4.45<br>5.13 | 525.2<br>16.9<br>33<br>9.0<br>1.88<br>2.17 | 317.0<br>11.3<br>23<br>6.0<br>1.26<br>1.31 | 596.3<br>19.2<br>159<br>4.3<br>2.14<br>2.46 | 975.4<br>32.5<br>351<br>8.8<br>3.61<br>4.03 | 225.2<br>7.26<br>15<br>2.7<br>.81<br>.93 | 185.9<br>6.20<br>25<br>2.0<br>.69 | 326.5<br>10.5<br>32<br>3.6<br>1.17<br>1.35 | 174.1<br>5.62<br>35<br>2.0<br>.62<br>.72 | 153.1<br>5.10<br>24<br>1.8<br>.57<br>.63 |

CAL YR 1986 TOTAL 6229.7 MEAN 17.1 MAX 320 MIN 1.1 CFSM 1.90 IN. 25.74 WTR YR 1987 TOTAL 5734.0 MEAN 15.7 MAX 351 MIN 1.2 CFSM 1.75 IN. 23.69

e Estimated

### 01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ

LOCATION.--Lat 40°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.

DRAINAGE AREA. -- 7.57 mi 2.

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epaidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE             | TIME                                   |           | EAM- C<br>DW, C<br>TAN- D<br>EOUS A                                 | NCE                    | PH<br>STAND-<br>ARD<br>INITS) | TEMPE<br>ATUR<br>WATE<br>(DEG | R S                                                  | YGEN,<br>DIS-<br>OLVED<br>MG/L) |                                                | DXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPM | TOCOCCI<br>TH FECAL                                |
|------------------|----------------------------------------|-----------|---------------------------------------------------------------------|------------------------|-------------------------------|-------------------------------|------------------------------------------------------|---------------------------------|------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| NOV 1986         |                                        |           |                                                                     |                        |                               |                               |                                                      |                                 |                                                |                                                                |                                            |                                                    |
| 12               | 1215                                   | E!        | 5.4                                                                 | 199                    | 7.6                           | 7.                            | .0                                                   | 11.3                            | 93                                             | E2.0                                                           | 230                                        | 350                                                |
| MAR 1987<br>02   | 1030                                   | E16       | 5                                                                   | 229                    | 7.8                           | 3.                            | .0                                                   | 15.2                            | 116                                            | E1.7                                                           | 790                                        | <2400                                              |
| 31               | 1215                                   | E19       |                                                                     | 151                    | 7.2                           | 12.                           |                                                      | 10.5                            | 101                                            | E2.0                                                           | 5400                                       | >2400                                              |
| JUN<br>09<br>JUL | 1200                                   | E         | 4.6                                                                 | 281                    | 7.6                           | 18.                           | .0                                                   | 7.8                             | 84                                             | 4.3                                                            | 270                                        | 1600                                               |
| 13               | 1045                                   | E         | 6.8                                                                 | 196                    | 7.8                           | 21.                           | .5                                                   | 7.4                             | 85                                             | 4.9                                                            | 3500                                       | >2400                                              |
| AUG<br>10        | 1045                                   | E1        | 1                                                                   | 154                    | 7.5                           | 19.                           | .5                                                   | 8.4                             | 94                                             | 2.9                                                            | 920                                        | >2400                                              |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC         | S<br>/L   | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | DIS-<br>SOLVE<br>(MG/L | DIS<br>D SOLV                 | /ED                           | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | LINIT                           | Y SULFAT<br>DIS-<br>L SOLVE<br>(MG/L           | DIS<br>D SOL                                                   | E,                                         | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| NOV 1986         |                                        |           |                                                                     |                        |                               |                               |                                                      |                                 |                                                |                                                                |                                            |                                                    |
| 12               |                                        | 50        | 12                                                                  | 4.8                    | 3 11                          |                               | 1.5                                                  | 35                              | 17                                             | 22                                                             | 2                                          | <0.1                                               |
| MAR 1987<br>02   |                                        | 40        | 9.9                                                                 | 3.6                    | 20                            |                               | 1.3                                                  | 21                              | 15                                             | 7.                                                             |                                            | <0.1                                               |
| 31               |                                        | 32        | 8.1                                                                 | 2.8                    | 17                            | ,                             | 1.4                                                  | 20                              | 11                                             | 32                                                             | 7                                          | 0.1                                                |
| JUN              |                                        | _         |                                                                     |                        |                               |                               |                                                      |                                 |                                                |                                                                |                                            |                                                    |
| 09               |                                        | 73        | 18                                                                  | 6.9                    | 17                            |                               | 2.4                                                  | 47                              | 17                                             | 30                                                             | ,                                          | <0.1                                               |
| 13<br>AUG        |                                        | 51        | 13                                                                  | 4.6                    | 15                            | 5                             | 1.6                                                  | 29                              | 16                                             | 24                                                             |                                            | <0.1                                               |
| 10               |                                        | 30        | 7.4                                                                 | 2.7                    | 7                             | 7.5                           | 1.6                                                  | 25                              | 12                                             | 16                                                             | 5                                          | 0.1                                                |
| DATE             | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIO | VED<br>/L | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) |                        | GE NO24<br>. TO1              | NÓ3 A<br>TAL<br>G/L           | NITRO-<br>GEN,<br>AMMONÍA<br>TOTAL<br>(MG/L<br>AS N) | MONIA                           | M-<br>+ NITRO<br>IC GEN,<br>L TOTAL<br>L (MG/L | PHORE TO TO                                                    | RUS, C                                     | CARBON,<br>RGANIC<br>TOTAL<br>(MG/L<br>AS C)       |
| NOV 1986         |                                        |           |                                                                     |                        |                               |                               |                                                      |                                 |                                                |                                                                |                                            |                                                    |
| 12<br>MAR 1987   | 1                                      | 4         | 100                                                                 | 0.03                   | so o.                         | .72                           | 0.67                                                 | 1.0                             | 1.7                                            | 0.20                                                           | 01                                         | 6.0                                                |
| 02<br>31<br>JUN  |                                        | 0<br>8.5  | 100<br>88                                                           |                        |                               | .74<br>.51                    | 0.44                                                 | 0.90<br>1.8                     | 1.6                                            | 0.13                                                           |                                            | 18                                                 |
| 09               | 1                                      | 9         | 140                                                                 | 0.27                   | 70 2.                         | .09                           | 1.08                                                 | 1.5                             | 3.6                                            | 0.56                                                           | 58                                         | 2.6                                                |
| 13<br>AUG        | 1                                      | 3         | 100                                                                 | 0.18                   | 35 1.                         | .20                           | 0.35                                                 | 1.5                             | 2.8                                            | 0.43                                                           | 30                                         | 7.8                                                |
| 10               |                                        | 8.2       | 70                                                                  | 0.04                   | 6 0.                          | .67                           | 0.41                                                 | 1.1                             | 1.8                                            | 0.22                                                           | 20 1                                       | 11                                                 |

RARITAN RIVER BASIN

# 01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME        | SULFII<br>TOTA<br>(MG/                          | L SOL                                                 | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>NIC REC<br>AL ERA                         | AL TO<br>COV- RE<br>BLE ER<br>G/L (U                    | COV- REC                         | TAL TOT<br>COV- REC<br>ABLE ER/<br>G/L (UC            | JM, COPPER,                |
|----------------|-------------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------|-------------------------------------------------------|----------------------------|
| NOV 1986<br>12 | 1215        | <0                                              | .5                                                    | 60                                                              | <1 <1                                                   | 0                                                       | 30                               | <1                                                    | <10 6                      |
| DATE           | T<br>R<br>E | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L) |
| NOV 1986<br>12 |             | 340                                             | <5                                                    | 20                                                              | <0.10                                                   | 2                                                       | . <1                             | <10                                                   | 5                          |

### 01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ

Operated as crest-stage gage, water

LOCATION.--Lat 40°42'30", long 74°38'11", Somerset County, Hydrologic Unit 02030105, on left bank 75 ft upstream from Ravine Lake Dam, 1.6 mi north of Far Hills, and 2.3 mi upstream from Peapack Brook.

PRAINAGE AREA.--26.2 mi².

PERIOD OF RECORD.--October 1921 to September 1975, October 1977 to current year. Operated as crest-stage gage, wate years 1976-77. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23, 1924-25(M), 1935(M). WSP 1902: 1954.

GAGE.--Water-stage recorder and crest-stage gage above masonry dam. Datum of gage is 224.49 ft above National Geodetic Vertical Datum of 1929 (New Jersey Geological Survey bench mark). Prior to June 18, 1925, nonrecording gage in stilling box at left end of dam at same datum.

REMARKS.--Records good except for periods of estimated daily discharges, which are fair. Records given herein include diversion by small turbine at dam (average discharge, 3.0 ft²/s) and returned to river 1,000 ft downstream from Ravine Lake Dam. Turbine operating from Oct. 1-13, and Apr. 20 to Sept. 30. Flow regulated occasionally by operation of waste gate in dam (no gate opening this year). Recording rain gage, with telemeter, 500 ft downstream of station. Several measurements of water temperature were made during the year. Gage-height telemeter at station. telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with Somerset County.

AVERAGE DISCHARGE.--64 years (water years 1922-75, 1978-87), 48.1 ft<sup>3</sup>/s, 24.93 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,390 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 7.28 ft, from rating curve extended above 2,000 ft<sup>3</sup>/s on basis of computation of peak flow over dam; no flow at times when Ravine

EXTREMES OUTSIDE PERIOD OF RECORD.--Stage of 7.6 ft, from floodmark, occurred July 23, 1919, discharge about 7,000 ft 3/s.

EXTRÉMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s and maximum (\*):

| Date    | Time    | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|---------|-----------------------------------|------------------|----------|------|-----------------------------------|------------------|
| Nov. 21 | 0130    | 1,110                             | 3.84             | Dec. 25  | 0500 | 980                               | 3.70             |
| Nov. 26 | unknown | 1,080                             | 3.81             | Apr. 4   | 1445 | *1,920                            | *4.60            |
| Dec. 2  | 2315    | 738                               | 3.41             | Sept. 13 | 1205 | 1,080                             | 3.81             |

Minimum daily discharge, 11 ft<sup>3</sup>/s, Oct. 7, 8, 9, 11, 12, 13, 17, Aug. 21, 24, 25, 26.

# DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

| DAY                                        | OCT                                    | NOV                                       | DEC                                       | JAN                                       | FEB                                      | MAR                                       | APR                                      | MAY                                       | JUN                            | JUL                                       | AUG                                     | SEP                                       |
|--------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5                      | 14<br>14<br>14<br>24<br>18             | e17<br>e17<br>e17<br>e16<br>e18           | e59<br>110<br>e374<br>86<br>71            | 68<br>112<br>87<br>70<br>63               | 44<br>45<br>53<br>58<br>49               | 245<br>161<br>98<br>80<br>70              | 96<br>64<br>59<br>687<br>212             | 49<br>49<br>57<br>113<br>97               | 26<br>40<br>33<br>40<br>58     | 22<br>54<br>164<br>48<br>43               | 14<br>14<br>17<br>19<br>21              | 27<br>21<br>16<br>12<br>12                |
| 6<br>7<br>8<br>9                           | 14<br>11<br>11<br>11<br>12             | e33<br>e24<br>45<br>40<br>26              | 63<br>60<br>57<br>88<br>90                | 59<br>58<br>57<br>54<br>57                | 45<br>45<br>46<br>47<br>41               | 69<br>88<br>94<br>83<br>70                | 229<br>197<br>178<br>150<br>132          | 72<br>63<br>53<br>49<br>46                | 32<br>27<br>26<br>24<br>21     | 38<br>36<br>50<br>94<br>52                | 65<br>27<br>18<br>16<br>107             | 13<br>28<br>60<br>72<br>35                |
| 11<br>12<br>13<br>14<br>15                 | 11<br>11<br>11<br>16<br>16             | 51<br>51<br>30<br>23<br>20                | 62<br>61<br>54<br>49                      | 71<br>59<br>53<br>53<br>68                | 41<br>41<br>40<br>37<br>33               | 64<br>64<br>63<br>61<br>58                | 129<br>119<br>125<br>116<br>100          | 43<br>42<br>41<br>40<br>47                | 20<br>20<br>22<br>22<br>18     | 47<br>53<br>66<br>50<br>65                | 34<br>24<br>21<br>18<br>17              | 24<br>21<br>372<br>122<br>61              |
| 16<br>17<br>18<br>19<br>20                 | 12<br>11<br>12<br>12<br>12             | 20<br>19<br>19<br>61<br>55                | 49<br>49<br>159<br>102<br>73              | 72<br>53<br>63<br>94<br>74                | 34<br>43<br>41<br>37<br>35               | 56<br>54<br>53<br>51<br>52                | 90<br>124<br>150<br>92<br>75             | 43<br>40<br>39<br>54<br>46                | 17<br>16<br>16<br>16<br>16     | 30<br>23<br>20<br>23<br>40                | 16<br>17<br>17<br>14<br>12              | 54<br>67<br>141<br>99<br>64               |
| 21<br>22<br>23<br>24<br>25                 | 13<br>14<br>13<br>e15<br>e15           | 324<br>67<br>55<br>e65<br>e55             | 65<br>60<br>58<br>58<br>346               | 58<br>54<br>63<br>45<br>45                | 35<br>35<br>41<br>37<br>36               | 49<br>48<br>50<br>46<br>45                | 64<br>57<br>55<br>71<br>156              | 45<br>40<br>38<br>37<br>34                | 25<br>39<br>32<br>22<br>19     | 24<br>19<br>17<br>19<br>21                | 11<br>12<br>14<br>11                    | 53<br>54<br>55<br>48<br>46                |
| 26<br>27<br>28<br>29<br>30<br>31           | e22<br>e23<br>e16<br>e14<br>e17<br>e17 | e251<br>e286<br>e92<br>e82<br>e68         | 111<br>99<br>89<br>82<br>78<br>72         | 51<br>45<br>43<br>51<br>52<br>53          | 35<br>36<br>37<br>                       | 46<br>44<br>51<br>47<br>46<br>244         | 69<br>55<br>64<br>61<br>54               | 32<br>32<br>33<br>31<br>28<br>27          | 18<br>40<br>33<br>25<br>21     | 46<br>34<br>20<br>16<br>15                | 11<br>31<br>42<br>36<br>20<br>15        | 44<br>43<br>42<br>41<br>47                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 446<br>14.4<br>24<br>11<br>.55<br>.63  | 1947<br>64.9<br>324<br>16<br>2.48<br>2.76 | 2883<br>93.0<br>374<br>49<br>3.55<br>4.09 | 1905<br>61.5<br>112<br>43<br>2.35<br>2.70 | 1147<br>41.0<br>58<br>33<br>1.56<br>1.63 | 2350<br>75.8<br>245<br>44<br>2.89<br>3.34 | 3830<br>128<br>687<br>54<br>4.87<br>5.44 | 1460<br>47.1<br>113<br>27<br>1.80<br>2.07 | 784<br>26.1<br>58<br>16<br>.99 | 1264<br>40.8<br>164<br>15<br>1.56<br>1.79 | 722<br>23.3<br>107<br>11<br>.89<br>1.03 | 1794<br>59.8<br>372<br>12<br>2.28<br>2.55 |

TOTAL 19200 MEAN 52.6 MAX 619 MIN 11 CFSM 2.01 IN. 27.25 TOTAL 20532 MEAN 56.3 MAX 687 MIN 11 CFSM 2.15 IN. 29.14 WTR YR 1987

e Estimated

### 01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'09", long 74°40'56", Somerset County, Hydrologic Unit 02030l05, at bridge on Burnt Mills Road in Burnt Mills, 0.1 mi upstream from Lamington River, and 4.0 mi southwest of Far Hills.

DRAINAGE AREA. -- 63.8 mi 2.

PERIOD OF RECORD. -- Water years 1964, 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                                                      | TIME                            | STRE/<br>FLOW<br>INST/<br>TANEO | AN- DU<br>DUS AN                                                                 | FIC<br>N-<br>CT- (<br>CE                                                     | PH<br>STAND-<br>ARD<br>NITS)                                                | TEMPE<br>ATUR<br>WATE<br>(DEG    | E C                                                                                    | GEN,<br>DIS-<br>DLVED                                                    | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COL I<br>FORM<br>FECA<br>EC<br>BROT<br>(MP) | AL, STREP-<br>TOCOCCI<br>TH FECAL                                                        |
|-----------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|
| NOV 1986                                                  |                                 |                                 |                                                                                  |                                                                              |                                                                             |                                  |                                                                                        |                                                                          |                                                                | N                                                              |                                             |                                                                                          |
| 12<br>MAR 1987                                            | 1000                            | E231                            |                                                                                  | 229                                                                          | 6.5                                                                         | 7.                               | 0                                                                                      | 11.4                                                                     | 94                                                             | E2.0                                                           | 1700                                        | <2400                                                                                    |
| 05<br>APR                                                 | 1220                            | E185                            |                                                                                  | 214                                                                          | 7.9                                                                         | 3.                               | 5                                                                                      | 13.4                                                                     | 100                                                            | E1.4                                                           | 130                                         | 49                                                                                       |
| 06                                                        | 1200                            | E805                            |                                                                                  | 149                                                                          | 7.2                                                                         | 8.                               | 0 '                                                                                    | 11.7                                                                     | 100                                                            | E2.0                                                           | 2400                                        | >2400                                                                                    |
| JUN<br>15                                                 | 1200                            | E37                             |                                                                                  | 251                                                                          | 8.8                                                                         | 23.                              | 5                                                                                      | 11.7                                                                     | 139                                                            | E1.8                                                           | 790                                         | 180                                                                                      |
| JUL 22                                                    | 1315                            | E49                             |                                                                                  | A                                                                            | 8.8                                                                         | 27.                              | 0                                                                                      | 8.4                                                                      | 89.72.                                                         | E1.5                                                           | 2400                                        | >2400                                                                                    |
| AUG 25                                                    | 1300                            | E17                             |                                                                                  |                                                                              | 8.3                                                                         | 17.                              | 0                                                                                      | 10.2                                                                     |                                                                | E1.8                                                           | 1100                                        | 540                                                                                      |
| DATE  NOV 1986 12 MAR 1987 05 APR 06 JUN 15 JUL 22 AUG 25 | HAR<br>NES<br>(MG<br>AS<br>CAC  | S<br>I/L                        | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>16<br>16<br>12<br>20<br>20<br>24 | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG<br>5.8<br>4.1<br>7.5<br>7.2 | 7, SODI<br>DIS<br>DIS<br>DIS<br>DIS<br>DIS<br>DIS<br>DIS<br>DIS<br>DIS<br>D | IUM,<br>S-<br>Y/ED<br>G/L<br>NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>1.9<br>1.0<br>1.3<br>1.7<br>2.2 | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACC<br>45<br>38<br>28<br>58<br>58 | Y SUL:<br>DI:<br>C SO<br>(M                                    | FATE RIS- S- DI LVED SO G/L (M SO4) AS 19 2 19 2 15 1 18 2     | ILO-DE, S-DLVED IG/L CL)  22 28 66 26 20 23 | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br><0.1<br><0.1<br><0.1<br>0.1<br>0.1 |
| DATE                                                      | SILI<br>DIS<br>SOL<br>(MO<br>AS | CA,                             | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)              | NITRO<br>GEN,<br>NITRII<br>TOTAL<br>(MG/L<br>AS N)                           | E NOZ-                                                                      | EN,<br>+NO3 A<br>TAL<br>G/L      | NITRO-<br>GEN,<br>MMONÍA<br>TOTAL<br>(MG/L<br>AS N)                                    | MITE<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG,<br>AS I                 | M-<br>IIC G<br>IL TO<br>'L (M                                  | EN, PHOTAL TO                                                  | IOS-<br>DRUS,<br>DTAL<br>IG/L<br>S P)       | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)                                            |
| NOV 1986                                                  |                                 | 12                              | 440                                                                              |                                                                              |                                                                             | 70                               |                                                                                        |                                                                          | 1                                                              |                                                                |                                             |                                                                                          |
| 12<br>MAR 1987                                            |                                 | 12                              | 110                                                                              | 0.02                                                                         |                                                                             | .72                              | 0.12                                                                                   | 0.73                                                                     |                                                                |                                                                |                                             | 5.4                                                                                      |
| 05<br>APR                                                 |                                 | 12                              | 120                                                                              | 0.0                                                                          | 16 0                                                                        | .89                              | 0.07                                                                                   | 0.53                                                                     | 1.                                                             | 4 0.0                                                          | )44                                         | 2.0                                                                                      |
| 06                                                        |                                 | 10                              | 86                                                                               | 0.02                                                                         | 24 0                                                                        | .57                              | 0.11                                                                                   | 0.83                                                                     | 1.                                                             | 4 0.1                                                          | 119                                         | 7.2                                                                                      |
| 15<br>JUL                                                 |                                 | 13                              | 130                                                                              | 0.03                                                                         | <b>50</b> 0                                                                 | .88                              | 0.05                                                                                   | 0.58                                                                     | 1.                                                             | 5 0.0                                                          | 096                                         | 2.6                                                                                      |
| 22                                                        |                                 | 8.3                             | 120                                                                              | 0.0                                                                          | 7 0                                                                         | .69 <                            | 0.05                                                                                   | 0.63                                                                     | 1.                                                             | 3 0.                                                           | 130                                         | 3.7                                                                                      |
| AUG 25                                                    |                                 | 13                              |                                                                                  |                                                                              |                                                                             |                                  |                                                                                        |                                                                          |                                                                |                                                                |                                             |                                                                                          |

RARITAN RIVER BASIN

# 01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C) | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) |                                                                    | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| NOV 1986       |                                                                     |                                                                      |                                                                      |                                                                   |                                                                       |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 12             | 1000<br>1000                                                        | <0.5                                                                 | 1400                                                                 | 0.2                                                               | 12                                                                    | <1                                                                 | 4                                                                   | <10                                                                  | 10                                                                 | <1                                                                  | ī                                                                    |
| DATE           | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)           | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU)  | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| NOV 1986       |                                                                     |                                                                      |                                                                      |                                                                   |                                                                       |                                                                    |                                                                     | 1 1 2                                                                |                                                                    |                                                                     |                                                                      |
| 12             | <10                                                                 | 20                                                                   | 10                                                                   | 11                                                                | 20                                                                    | 760                                                                | 15000                                                               |                                                                      | 40                                                                 | 60                                                                  | 300                                                                  |
| DATE           | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | (UG/G                                                             | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                            | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| NOV 1986<br>12 | 0.10                                                                |                                                                      | 2                                                                    |                                                                   | <1                                                                    |                                                                    | 20                                                                  |                                                                      | <1                                                                 |                                                                     |                                                                      |
| 12             |                                                                     | 0.15                                                                 |                                                                      | 20                                                                | •••                                                                   | <1                                                                 |                                                                     | 90                                                                   |                                                                    | 7                                                                   | <1.0                                                                 |
| DATE           | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| NOV 1986       |                                                                     |                                                                      |                                                                      |                                                                   |                                                                       |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 12             | <0.1                                                                | <1.0                                                                 | 1.6                                                                  | 2.7                                                               | 0.8                                                                   | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                 |
| DATE           | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                                | BOTTOM<br>MATL.                                                   | BOTTOM<br>MATL.                                                       | BOTTOM<br>MATL.                                                    | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
| NOV 1986       |                                                                     |                                                                      |                                                                      |                                                                   |                                                                       |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 12             | <0.1                                                                | 1.6                                                                  | <0.1                                                                 | <0.1                                                              | <0.1                                                                  | <0.1                                                               | <0.1                                                                | 0.1                                                                  | <1.00                                                              | <10                                                                 | <0.1                                                                 |

### 01399190 LAMINGTON (BLACK) RIVER AT SUCCASUNNA, NJ

LOCATION.--Lat 40°51'03", long 74°38'02", Morris County, Hydrologic Unit 02030105, on right bank, 10 ft upstream from bridge on Righter Road, 0.7 mi south of Succasunna, and 0.4 mi upstream from Succasunna Brook.

DRAINAGE AREA . - - 7.37 mi 2.

PERIOD OF RECORD. -- October 1976 to September 1987 (discontinued).

GAGE.--Water-stage recorder, crest-stage gage, and prefabricated concrete bumper-block control. Datum of gage is 692.92 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- Records fair. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 11 years, 11.5 ft3/s, 21.19 in./yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 176  $\rm ft^3/s$ , Jan. 24, 1979, gage height, 5.20 ft; minimum, 1.2  $\rm ft^3/s$ , Sept. 11, 12, 1980, gage height, 2.27 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 40 ft3/s and maximum (\*):

| Date                         | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)     | Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|------------------------------|----------------------|-----------------------------------|----------------------|--------------------|--------------|-----------------------------------|---------------------|
| Nov. 21<br>Dec. 3<br>Dec. 25 | 0200<br>0345<br>0545 | 51<br>43<br>41                    | 3.83<br>3.72<br>3.69 | Apr. 4<br>Sept. 13 | 1530<br>1615 | *123<br>54                        | *4.33<br>3.87       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 2.2 ft3/s, Oct. 22, 23, 24.

|                                            |                                          | DIOUMA                                     | .u.,                                    | 0010 1221                                  | TER SECON                           | MEAN VALU                               | ES                                      | ODER 1700                                  | 10 021 12                           | HOLK 1701                                  |                                           |                                            |
|--------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|
| DAY                                        | OCT                                      | NOV                                        | DEC                                     | JAN                                        | FEB                                 | MAR                                     | APR                                     | MAY                                        | JUN                                 | JUL                                        | AUG                                       | SEP                                        |
| 1 2 3 4 5                                  | 3.2<br>3.2<br>4.0<br>5.3<br>5.4          | 2.5<br>2.9<br>2.8<br>2.5<br>2.9            | 12<br>13<br>32<br>23<br>20              | 14<br>16<br>16<br>15<br>13                 | 9.0<br>9.0<br>9.3<br>9.5<br>9.2     | 17<br>21<br>19<br>17<br>15              | 24<br>21<br>18<br>63<br>71              | 13<br>13<br>14<br>17<br>16                 | e7.0<br>e8.2<br>e7.8<br>e9.0<br>8.8 | 7.7<br>9.2<br>11<br>8.1<br>7.0             | 4.3<br>4.5<br>5.1<br>4.4<br>9.0           | 6.3<br>5.5<br>5.1<br>4.8<br>4.6            |
| 6<br>7<br>8<br>9                           | 4.4<br>3.4<br>3.1<br>2.9<br>2.5          | 5.5<br>4.4<br>6.0<br>6.2<br>5.3            | 17<br>16<br>14<br>16<br>17              | 13<br>12<br>12<br>11<br>11                 | 8.8<br>8.4<br>8.2<br>8.2<br>8.0     | 15<br>16<br>17<br>17<br>16              | 65<br>52<br>43<br>34<br>28              | 15<br>14<br>13<br>13<br>12                 | 8.0<br>7.4<br>6.9<br>6.4<br>6.0     | 6.0<br>5.3<br>11<br>11<br>8.9              | 16<br>11<br>8.7<br>7.7                    | 5.0<br>7.6<br>11<br>13<br>10               |
| 11<br>12<br>13<br>14<br>15                 | 2.4<br>2.5<br>2.6<br>3.4<br>3.2          | 7.5<br>7.4<br>5.8<br>4.8<br>4.5            | 16<br>15<br>14<br>12<br>12              | 12<br>12<br>11<br>11<br>11                 | 7.8<br>7.8<br>7.9<br>7.6<br>7.5     | 15<br>15<br>14<br>14<br>13              | 25<br>24<br>23<br>21<br>20              | 11<br>10<br>9.9<br>9.7                     | 5.8<br>6.0<br>6.4<br>6.4<br>5.9     | 7.9<br>14<br>9.2<br>11                     | 10<br>8.2<br>7.2<br>6.5<br>6.1            | 8.4<br>7.6<br>29<br>37<br>32               |
| 16<br>17<br>18<br>19<br>20                 | 3.0<br>2.9<br>2.6<br>2.9<br>2.8          | 4.4<br>4.1<br>3.9<br>6.7<br>7.9            | 11<br>11<br>17<br>18<br>16              | 12<br>11<br>12<br>13<br>14                 | 7.4<br>7.0<br>7.1<br>7.0<br>6.9     | 13<br>12<br>12<br>11<br>11              | 19<br>20<br>22<br>21<br>19              | 10<br>10<br>9.8<br>11                      | 5.5<br>5.3<br>5.2<br>5.1<br>5.2     | 9.1<br>7.7<br>6.9<br>9.2<br>9.5            | 5.9<br>5.4<br>4.9<br>4.6<br>4.4           | 22<br>21<br>27<br>22<br>18                 |
| 21<br>22<br>23<br>24<br>25                 | 2.3<br>2.2<br>2.2<br>2.2<br>2.3          | 31<br>19<br>17<br>17<br>13                 | 15<br>13<br>12<br>12<br>12<br>30        | 12<br>17<br>14<br>12<br>11                 | 6.8<br>6.7<br>7.6<br>7.4<br>7.0     | 11<br>11<br>11<br>11<br>11              | 17<br>16<br>15<br>16<br>20              | 10<br>10<br>9.8<br>9.7<br>9.4              | 5.5<br>5.8<br>5.5<br>5.2<br>5.0     | 7.9<br>6.9<br>6.1<br>5.7<br>5.4            | 4.2<br>4.3<br>4.1<br>3.7                  | 15<br>13<br>11<br>10<br>10                 |
| 26<br>27<br>28<br>29<br>30<br>31           | 3.3<br>3.7<br>3.3<br>3.1<br>2.9<br>2.5   | 20<br>25<br>20<br>17<br>14                 | 24<br>21<br>18<br>17<br>15<br>14        | 10<br>9.9<br>9.5<br>9.1<br>9.4<br>9.7      | 6.8<br>6.7<br>6.6                   | 10<br>10<br>11<br>10<br>10<br>25        | 18<br>16<br>15<br>15<br>14              | 8.9<br>8.4<br>8.3<br>e8.2<br>e7.7<br>e7.2  | 4.9<br>7.2<br>6.4<br>5.6<br>5.0     | 7.5<br>7.3<br>6.1<br>5.0<br>4.7<br>4.5     | 3.6<br>6.2<br>12<br>11<br>8.5<br>6.9      | 9.4<br>9.0<br>8.2<br>7.6<br>8.7            |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 95.7<br>3.09<br>5.4<br>2.2<br>.42<br>.48 | 291.0<br>9.70<br>31<br>2.5<br>1.32<br>1.47 | 513<br>16.5<br>32<br>11<br>2.25<br>2.59 | 376.6<br>12.1<br>17<br>9.1<br>1.65<br>1.90 | 217.2<br>7.76<br>9.5<br>6.6<br>1.05 | 430<br>13.9<br>25<br>10<br>1.88<br>2.17 | 795<br>26.5<br>71<br>14<br>3.60<br>4.01 | 341.0<br>11.0<br>17<br>7.2<br>1.49<br>1.72 | 188.4<br>6.28<br>9.0<br>4.9<br>.85  | 248.8<br>8.03<br>14<br>4.5<br>1.09<br>1.26 | 216.6<br>6.99<br>16<br>3.6<br>.95<br>1.09 | 398.8<br>13.3<br>37<br>4.6<br>1.80<br>2.01 |

CAL YR 1986 TOTAL 4050.8 MEAN 11.1 MAX 52 MIN 2.2 CFSM 1.51 IN. 20.44 WTR YR 1987 TOTAL 4112.1 MEAN 11.3 MAX 71 MIN 2.2 CFSM 1.53 IN. 20.75

e Estimated

Discharge (ft<sup>3</sup>/s)

100

Gage height

4.16

(ft)

### 01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ

LOCATION.--Lat 40°50'07", long 74°38'40", Morris County, Hydrologic Unit 02030105, on left bank 15 ft upstream from bridge on Ironia Road, 1.0 mi below Succasunna Brook, 1.3 mi northwest of Ironia, and 4.4 mi northeast of Chester.

DRAINAGE AREA .-- 10.9 mi 2.

Time

2045

Date

Apr. 4

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to September 1987 (discontinued).

REVISED RECORDS .-- WDR NJ-82-1: 1981(P).

GAGE.--Water-stage recorder and concrete block control. Datum of gage is 687.4 ft, above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Water for municipal supply pumped from wells upstream of gage by Morris County Municipal Utilities Authority. Several measurements of water temperature, other than those published, were made during the year.

Date

Sept. 14

Time

0230

AVERAGE DISCHARGE .-- 12 years, 19.0 ft3/s, 23.67 in./yr.

Discharge (ft<sup>3</sup>/s)

\*165

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 389 ft<sup>3</sup>/s, July 7, 1984, gage height, 5.15 ft; maximum gage height, 5.27 ft, Jan. 25, 1979; minimum daily discharge, 1.5 ft<sup>3</sup>/s, Oct. 1, 1980.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 80 ft<sup>3</sup>/s and maximum (\*):

Gage height

(ft)

\*4.54

| Minim                            | um daily                               | discharge                       | 3.3 ft <sup>3</sup>              | /s, Oct.                               | 25.                         |                                  |                             |                                  |                                 |                                        |                                     |                                 |
|----------------------------------|----------------------------------------|---------------------------------|----------------------------------|----------------------------------------|-----------------------------|----------------------------------|-----------------------------|----------------------------------|---------------------------------|----------------------------------------|-------------------------------------|---------------------------------|
|                                  |                                        | DISCHAF                         | RGE, IN CU                       | BIC FEET                               | PER SECON                   | ID, WATER<br>MEAN VALU           | YEAR OCTO                   | DBER 1986                        | TO SEPTE                        | MBER 1987                              |                                     |                                 |
| DAY                              | OCT                                    | NOV                             | DEC                              | JAN                                    | FEB                         | MAR                              | APR                         | MAY                              | JUN                             | JUL                                    | AUG                                 | SEP                             |
| 1 2 3 4 5                        | 5.4<br>5.2<br>5.9<br>9.1<br>8.4        | 3.6<br>3.8<br>3.8<br>3.7<br>3.9 | 17<br>16<br>58<br>47<br>32       | 18<br>22<br>23<br>21<br>19             | e13<br>e12<br>e13<br>15     | 26<br>49<br>37<br>26<br>19       | 59<br>34<br>26<br>91<br>125 | 19<br>19<br>20<br>30<br>30       | 12<br>13<br>13<br>12<br>14      | 6.8<br>13<br>16<br>9.8<br>8.6          | 6.6<br>6.6<br>7.5<br>7.0<br>8.9     | 9.4<br>8.6<br>8.1<br>7.6<br>7.4 |
| 6<br>7<br>8<br>9                 | 7.0<br>5.5<br>4.8<br>4.5<br>4.2        | 8.7<br>6.9<br>8.4<br>10<br>8.0  | 25<br>21<br>19<br>21<br>30       | 17<br>16<br>16<br>15<br>16             | 13<br>13<br>13<br>13<br>13  | 18<br>23<br>31<br>30<br>24       | 87<br>75<br>62<br>51<br>43  | 25<br>22<br>20<br>19<br>18       | 11<br>11<br>10<br>9.2<br>8.2    | 7.8<br>7.2<br>15<br>22<br>12           | 34<br>18<br>11<br>9.8<br>21         | 7.5<br>9.9<br>14<br>26<br>18    |
| 11<br>12<br>13<br>14<br>15       | 3.9<br>4.0<br>4.2<br>5.4<br>5.4        | 8.6<br>15<br>9.3<br>6.6<br>5.8  | 25<br>21<br>19<br>17<br>16       | 18<br>17<br>15<br>15<br>17             | 11<br>11<br>11<br>10<br>10  | 20<br>18<br>18<br>17<br>17       | 38<br>36<br>36<br>34<br>31  | 17<br>16<br>15<br>14<br>16       | 7.5<br>7.7<br>8.7<br>8.4<br>7.8 | 9.2<br>13<br>25<br>13<br>29            | 15<br>14<br>14<br>10<br>9.1         | 12<br>10<br>33<br>82<br>46      |
| 16<br>17<br>18<br>19<br>20       | 4.8<br>4.5<br>4.3<br>4.2<br>4.1        | 5.8<br>5.5<br>5.1<br>10<br>9.4  | 15<br>15<br>23<br>40<br>27       | 20<br>16<br>16<br>20<br>21             | 10<br>10<br>10<br>10<br>10  | 16<br>15<br>14<br>14<br>13       | 29<br>30<br>35<br>33<br>30  | 16<br>15<br>15<br>18<br>17       | 6.8<br>6.3<br>6.7<br>7.2        | 14<br>9.7<br>8.9<br>9.5                | 8.6<br>8.3<br>7.7<br>7.4<br>7.1     | 33<br>28<br>42<br>37<br>29      |
| 21<br>22<br>23<br>24<br>25       | 3.8<br>3.6<br>3.5<br>3.4<br>3.3        | 51<br>40<br>26<br>24<br>20      | 21<br>18<br>17<br>16<br>51       | 18<br>15<br>e23<br>e17<br>e16          | 10<br>11<br>11<br>10<br>9.4 | 13<br>13<br>13<br>12<br>12       | 26<br>24<br>22<br>25<br>35  | 17<br>15<br>15<br>15<br>14       | 7.5<br>8.0<br>8.2<br>7.4<br>7.0 | 9.8<br>8.9<br>8.2<br>7.8<br>7.5        | 6.8<br>6.9<br>6.5<br>5.8            | 22<br>17<br>15<br>13<br>12      |
| 26<br>27<br>28<br>29<br>30<br>31 | 4.3<br>5.7<br>5.4<br>4.5<br>4.1<br>3.8 | 24<br>62<br>38<br>26<br>20      | 46<br>32<br>26<br>23<br>21<br>19 | e15<br>e14<br>e13<br>e12<br>e14<br>e15 | 9.0<br>8.8<br>8.7           | 12<br>11<br>13<br>12<br>12<br>47 | 30<br>25<br>24<br>24<br>21  | 13<br>12<br>12<br>11<br>11<br>11 | 6.7<br>8.9<br>8.6<br>7.7<br>6.9 | 9.0<br>9.6<br>8.3<br>7.3<br>7.0<br>6.8 | 5.6<br>8.4<br>16<br>22<br>13<br>9.7 | 11<br>10<br>9.7<br>8.9<br>9.6   |
| TOTAL                            | 150.2                                  | 472.9<br>15.8                   | 794                              | 530<br>17 1                            | 313.9                       | 615                              | 1241                        | 528                              | 263.7                           | 353.7                                  | 339.1                               | 596.7                           |

CAL YR 1986 TOTAL 6376.9 MEAN 17.5 MAX 104 MIN 2.4 CFSM 1.60 IN. 21.76 WTR YR 1987 TOTAL 6198.2 MEAN 17.0 MAX 125 MIN 3.3 CFSM 1.56 IN. 21.15

e Estimated

# 01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                 | TIME                           | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | DU<br>AN                                         | FIC<br>N-<br>CT- (<br>CE                        | PH<br>(STAND-<br>ARD<br>JNITS) | TEMPE<br>ATUR<br>WATE<br>(DEG             | RE I                                                 | YGEN,<br>DIS-<br>OLVED<br>MG/L)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGE<br>DEMAN<br>BIO-<br>CHEM<br>ICAL<br>5 DA<br>(MG/ | D, CO<br>FO<br>FE<br>FE<br>BR                       | LI-<br>RM,<br>CAL, STREP-<br>C TOCOCCI<br>OTH FECAL<br>PN) (MPN) |
|----------------------|--------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|
| NOV 1986             |                                |                                                 |                                                  |                                                 |                                | 11.                                       |                                                      | vi in                                                    |                                                                |                                                        |                                                     | Me some                                                          |
| 12<br>MAR 1987       | 1030                           | 15                                              |                                                  | 303                                             | 7.5                            | 5.                                        | .5                                                   | 9.1                                                      | 73                                                             | 3.                                                     |                                                     | 0 540                                                            |
| 02<br>31<br>JUN      | 1200<br>1045                   | 51<br>40                                        |                                                  | 237                                             | 7.5<br>7.0                     | 12.                                       | .0                                                   | 12.2                                                     | 89<br>72                                                       | 3.<br>7.                                               | 4 110                                               |                                                                  |
| 09                   | 1030                           | 9.3                                             |                                                  | 456                                             | 7.3                            | 20                                        | .0                                                   | 1.0                                                      | 11                                                             | 3.                                                     | 2 11                                                | 0 >2400                                                          |
| JUL<br>13            | 1230                           | 27                                              |                                                  | 289                                             | 7.6                            | 24                                        | .0                                                   | 3.0                                                      | 36                                                             | 2.                                                     | 4 140                                               | 0 >2400                                                          |
| AUG<br>10            | 1215                           | 24                                              |                                                  | 237                                             | 7.1                            | 21                                        | .0                                                   | 4.0                                                      | 46                                                             | 2.                                                     | 6 350                                               | 0 >2400                                                          |
| DATE                 | HAR<br>NES<br>(MG<br>AS<br>CAC | S D                                             | CIUM<br>IS-<br>DLVED<br>IG/L<br>S CA)            | MAGNI<br>SIUI<br>DIS<br>SOLVI<br>(MG/I<br>AS MI | DISED SOLV                     |                                           | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y SUL                                                          | FATE<br>S-<br>LVED<br>G/L<br>SO4)                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)               |
| NOV 1986             |                                |                                                 |                                                  |                                                 |                                |                                           |                                                      |                                                          |                                                                |                                                        |                                                     |                                                                  |
| 12<br>MAR 1987       |                                |                                                 | 17                                               | 7.                                              | 4 2                            | 3                                         | 2.8                                                  | 55                                                       |                                                                | 24                                                     | 32                                                  | 0.1                                                              |
| 02<br>31<br>JUN      |                                |                                                 | 16                                               | 6.                                              | 3 3                            | 2                                         | 1.9                                                  | 45<br>45                                                 |                                                                | 18<br>14                                               | 47<br>37                                            | <0.1<br><0.1                                                     |
| 09                   |                                | 120                                             | 28                                               | 11                                              | 4                              | 1                                         | 3.9                                                  | 80                                                       |                                                                | 23                                                     | 59                                                  | 0.1                                                              |
| JUL<br>13            |                                | 81 2                                            | 20                                               | 7.                                              | 5 20                           | 6                                         | 1.8                                                  | 49                                                       |                                                                | 22                                                     | 33                                                  | <0.1                                                             |
| AUG<br>10            |                                | 59                                              | 14                                               | 5.                                              | 9 20                           | 0                                         | 2.2                                                  | 44                                                       |                                                                | 14                                                     | 25                                                  | 0.1                                                              |
| DATE                 | (MC                            | CA, SUI<br>S- COI<br>VED TUI<br>S/L I           | LIDS,<br>4 OF<br>NSTI-<br>ENTS,<br>DIS-<br>DLVED | NITRI<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N   | TE NO2-                        | TRO-<br>EN,<br>+NO3 /<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>AMMONÍA<br>TOTAL<br>(MG/L<br>AS N) | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ NI<br>IC G<br>L TO<br>L (M                             | TRO-<br>EN, F<br>TAL<br>G/L<br>N)                      | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)                    |
| NOV 1986             |                                | 8.9                                             | 150                                              | 0.0                                             | 58 1                           | .63                                       | 0.27                                                 | 1.4                                                      | 3.                                                             | 0 0                                                    | 0.377                                               | 11                                                               |
| MAR 1987<br>02<br>31 |                                | 8.0<br>7.2                                      | 160<br>130                                       | 0.0                                             |                                | .49                                       | 0.62                                                 | 1.2                                                      | 2.                                                             |                                                        | 0.230                                               | 15                                                               |
| JUN<br>09<br>JUL     | 1                              | 10                                              | 220                                              | 0.2                                             | 85 1                           | .30                                       | 4.30                                                 | 6.0                                                      | 7.:                                                            | 3 1                                                    | .00                                                 | 7.7                                                              |
| 13                   |                                | 9.0                                             | 150                                              | 0.0                                             | 86 0                           | .70                                       | 1.40                                                 | 2.2                                                      | 2.9                                                            | 9 0                                                    | .430                                                | 14                                                               |
| 10                   |                                | 8.3                                             | 120                                              | 0.1                                             | 50 0                           | .78                                       | 0.51                                                 | 2.0                                                      | 2.1                                                            | B 0                                                    | .330                                                | 13                                                               |

### 159

RARITAN RIVER BASIN

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)     | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)        | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|----------------------|----------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| JUN 1987<br>09 | 1030                 | <0.5                                   | <10                                                 | <1                                         | <10                                                             | 90                                                    | <1                                                      | <10                                                            | 18                                                      |
| D/             | T<br>R<br>E<br>ATE ( | OTAL T<br>ECOV- R<br>RABLE E<br>UG/L ( | EAD, NOTAL TO ECOV- RABLE EUG/L (                   | OTAL TO<br>ECOV- RE<br>RABLE ER<br>UG/L (U | TAL TO<br>COV- RE<br>ABLE ER<br>G/L (U                          | COV- NI<br>ABLE TO                                    | IG/L (UG                                                | AĹ<br>OV-<br>BLE PHE                                           | NOLS<br>TAL<br>/L)                                      |
| JUN 19         |                      | 490                                    | <5                                                  | 270 <                                      | 0.10                                                            | 2                                                     | <1                                                      | 10                                                             | 7                                                       |

1

### 01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'39", long 74°43'50", Morris County, Hydrologic Unit 02030105, on right bank 1.1 mi upstream from bridge on State Highway 512, 1.2 mi northwest of Pottersville, and 5.5 mi upstream from Cold Brook. Water-quality samples collected at bridge 1.1 mi downstream from gage at high flows.

DRAINAGE AREA . - - 32.8 mi 2 .

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1921 to current year. Monthly discharge only for October and November 1921, published in WSP 1302. Prior to October 1952, published as "Black River near Pottersville".

REVISED RECORDS.--WSP 741: 1932. WSP 781: Drainage area. WSP 1552: 1922, 1924-29(M), 1931(M), 1933-34(M), 1938(P), 1939(M), 1940, 1941(M), 1942-46(P), 1947(M), 1948-49(P), 1951-52(P), 1953(M). WDR-NJ-80-1: Correction 1979(P).

GAGE.--Water-stage recorder. Concrete control since July 1, 1937. Datum of gage is 284.14 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 1, 1922, nonrecording gage on downstream side of highway bridge at Pottersville, 1.1 mi downstream at different datum.

REMARKS.--Records good except for period May 14 to Sept. 7, which are fair. Flow regulated occasionally by pond above station. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 66 years, 56.1 ft3/s, 23.23 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,460 ft<sup>3</sup>/s, July 7, 1984, gage height, 5.94 ft, from floodmark, from rating curve extended above 380 ft<sup>3</sup>/s on basis of slope-area measurement at gage height 4.71 ft; minimum, 1.3 ft<sup>3</sup>/s, Oct. 4, 1930.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 380 ft3/s and maximum (\*):

| Date               | Time         | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|--------------------|--------------|--------------------------------|------------------|--------|------|-----------------------------------|------------------|
| Nov. 20<br>Nov. 26 | 2345<br>1930 | *633<br>473                    | *3.53            | Apr. 4 | 1400 | 603                               | 3.48             |

Minimum discharge, 15 ft<sup>3</sup>/s, Oct. 23, 24, 25, 26, minimum gage height, 1.53 ft., Aug. 26, 27.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

|                                  |                            |                                 |                                     |                                       |                | HENN AVEC                         | Lo                         |                                  |                            |                                  |                                  |                            |
|----------------------------------|----------------------------|---------------------------------|-------------------------------------|---------------------------------------|----------------|-----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|
| DAY                              | OCT                        | NOV                             | DEC                                 | JAN =                                 | FEB            | MAR                               | APR                        | MAY                              | JUN                        | JUL                              | AUG                              | SEP                        |
| 1 2 3 4 5                        | 20                         | 17                              | 85                                  | 72                                    | 32             | 150                               | 134                        | 70                               | 37                         | 35                               | 28                               | 44                         |
|                                  | 20                         | 18                              | 84                                  | 80                                    | 28             | 157                               | 128                        | 67                               | 43                         | 44                               | 27                               | 40                         |
|                                  | 20                         | 17                              | 192                                 | 74                                    | 37             | 130                               | 112                        | 70                               | 40                         | 51                               | 30                               | 37                         |
|                                  | 23                         | 17                              | 112                                 | 68                                    | 46             | 109                               | 302                        | 88                               | 44                         | 40                               | 26                               | 35                         |
|                                  | 21                         | 19                              | 113                                 | 66                                    | 50             | 92                                | 268                        | 82                               | 48                         | 40                               | 40                               | 32                         |
| 6                                | 18                         | 36                              | 105                                 | 65                                    | 45             | 82                                | 284                        | 79                               | 41                         | 41                               | 59                               | 32                         |
| 7                                | 17                         | 27                              | 92                                  | 65                                    | 48             | 92                                | 230                        | 77                               | 40                         | 40                               | 39                               | 37                         |
| 8                                | 17                         | 37                              | 84                                  | 62                                    | 48             | 101                               | 189                        | 72                               | 40                         | 43                               | 38                               | 48                         |
| 9                                | 17                         | 28                              | 96                                  | 59                                    | 44             | 102                               | 160                        | 66                               | 39                         | 42                               | 44                               | 53                         |
| 10                               | 17                         | 27                              | 103                                 | 60                                    | 44             | 95                                | 138                        | 62                               | 37                         | 39                               | 80                               | 35                         |
| 11                               | 16                         | 31                              | 84                                  | 67                                    | 42             | 84                                | 123                        | 58                               | 35                         | 39                               | 53                               | 35                         |
| 12                               | 16                         | 33                              | 84                                  | 62                                    | 41             | 77                                | 113                        | 55                               | 35                         | 45                               | 46                               | 40                         |
| 13                               | 17                         | 25                              | 78                                  | 59                                    | 35             | 73                                | 109                        | 50                               | 34                         | 53                               | 45                               | 154                        |
| 14                               | 22                         | 23                              | 71                                  | 59                                    | 39             | 68                                | 102                        | 48                               | 32                         | 54                               | 42                               | 110                        |
| 15                               | 20                         | 25                              | 67                                  | 69                                    | 44             | 66                                | 98                         | 54                               | 31                         | 52                               | 40                               | 80                         |
| 16                               | 17                         | 25                              | 62                                  | 68                                    | 32             | 63                                | 95                         | 50                               | 29                         | 50                               | 38                               | 95                         |
| 17                               | 16                         | 22                              | 61                                  | 61                                    | 30             | 61                                | 103                        | 47                               | 28                         | 48                               | 37                               | 98                         |
| 18                               | 17                         | 21                              | 82                                  | 64                                    | 29             | 58                                | 107                        | 46                               | 27                         | 47                               | 35                               | 99                         |
| 19                               | 16                         | 27                              | 113                                 | 73                                    | 27             | 56                                | 96                         | 51                               | 27                         | 44                               | 32                               | 87                         |
| 20                               | 16                         | 58                              | 87                                  | 65                                    | 25             | 54                                | 92                         | 50                               | 26                         | 41                               | 30                               | 78                         |
| 21                               | 16                         | 191                             | 88                                  | 63                                    | 25             | 53                                | 88                         | 50                               | 35                         | 39                               | 27                               | 75                         |
| 22                               | 16                         | 81                              | 78                                  | 59                                    | 24             | 52                                | 82                         | 49                               | 42                         | 37                               | 25                               | 72                         |
| 23                               | 15                         | 86                              | 73                                  | 57                                    | 24             | 50                                | 76                         | 46                               | 38                         | 35                               | 24                               | 65                         |
| 24                               | 15                         | 84                              | 70                                  | 67                                    | 24             | 49                                | 90                         | 43                               | 34                         | 34                               | 22                               | 56                         |
| 25                               | 15                         | 73                              | 179                                 | 65                                    | 25             | 48                                | 118                        | 41                               | 33                         | 33                               | 21                               | 48                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 21<br>23<br>19<br>17<br>17 | 148<br>165<br>116<br>115<br>100 | 112<br>115<br>109<br>95<br>85<br>78 | e53<br>e49<br>e50<br>e56<br>e57<br>49 | 28<br>38<br>39 | 46<br>44<br>46<br>44<br>47<br>179 | 90<br>85<br>87<br>83<br>75 | 40<br>39<br>39<br>39<br>38<br>38 | 33<br>38<br>36<br>33<br>31 | 42<br>38<br>35<br>32<br>31<br>30 | 20<br>34<br>38<br>37<br>35<br>37 | 42<br>38<br>35<br>32<br>35 |
| TOTAL                            | 554                        | 1692                            | 2937                                | 1943                                  | 993            | 2428                              | 3857                       | 1704                             | 1066                       | 1274                             | 1129                             | 1767                       |
| MEAN                             | 17.9                       | 56.4                            | 94.7                                | 62.7                                  | 35.5           | 78.3                              | 129                        | 55.0                             | 35.5                       | 41.1                             | 36.4                             | 58.9                       |
| MAX                              | 23                         | 191                             | 192                                 | 80                                    | 50             | 179                               | 302                        | 88                               | 48                         | 54                               | 80                               | 154                        |
| MIN                              | 15                         | 17                              | 61                                  | 49                                    | 24             | 44                                | 75                         | 38                               | 26                         | 30                               | 20                               | 32                         |
| CFSM                             | .54                        | 1.72                            | 2.89                                | 1.91                                  | 1.08           | 2.39                              | 3.92                       | 1.68                             | 1.08                       | 1.25                             | 1.11                             | 1.80                       |
| IN.                              | .63                        | 1.92                            | 3.33                                | 2.20                                  | 1.13           | 2.75                              | 4.37                       | 1.93                             | 1.21                       | 1.44                             | 1.28                             | 2.00                       |

CAL YR 1986 TOTAL 20444 MEAN 56.0 MAX 263 MIN 14 CFSM 1.71 IN. 23.18 WTR YR 1987 TOTAL 21344 MEAN 58.5 MAX 302 MIN 15 CFSM 1.78 IN. 24.20

e Estimated

# 01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME                    | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | DU<br>AN                                        | FIC<br>N-<br>CT- (<br>CE                           | PH<br>STAND-<br>ARD<br>NITS) | TEMP<br>ATU<br>WAT<br>(DEG              | RE<br>ER                                           | (YGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGE<br>DEMAN<br>BIO-<br>CHEM<br>ICAL<br>5 DA<br>(MG/ | ID, CO<br>FO<br>I- FE<br>Y BR                       | OLI- ORM, CAL, STREP- CC TOCOCCI OTH FECAL IPN) (MPN) |
|----------------------------|-------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------------------------|------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|
| NOV 1986                   | 4770                    |                                                 |                                                 |                                                    |                              |                                         |                                                    |                                    |                                                                | 2.                                                     | ,                                                   |                                                       |
| 12<br>MAR 1987             | 1330                    | 32                                              |                                                 | 203                                                | 7.7                          |                                         | .5                                                 | 12.3                               | 98                                                             | E1.                                                    |                                                     |                                                       |
| 02<br>31                   | 1330<br>1345            | 143<br>295                                      |                                                 | 196<br>122                                         | 8.1<br>7.6                   |                                         | .0                                                 | 15.3<br>11.4                       | 113<br>110                                                     | <1.<br>3.                                              | 1 8                                                 | 0 >2400<br>0 >2400                                    |
| JUN<br>09                  | 1345                    | 39                                              |                                                 |                                                    | 7.7                          | 19                                      | .0                                                 | 8.4                                | 92                                                             | <1.                                                    | 0 <2                                                | 1600                                                  |
| JUL<br>13<br>AUG           | 1345                    | 54                                              |                                                 | 221                                                | 8.2                          | 24                                      | .0                                                 | 8.3                                | 100                                                            | E2.                                                    | 1 23                                                | 540                                                   |
| 10                         | 1345                    | 71                                              |                                                 | 162                                                | 7.7                          | 21                                      | .5                                                 | 8.4                                | 97                                                             | E2.                                                    | 4 220                                               | 0 >2400                                               |
| DATE                       | HAR<br>NES<br>(MG<br>AS | S DI                                            | CIUM<br>S-<br>DLVED<br>IG/L<br>S CA)            | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | , SODI<br>DIS<br>D SOLV      | /ED                                     | POTAS<br>SIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K)  | LINI                               | TY SULI<br>B DIS<br>/L SOI<br>(MG                              | FATE<br>S-<br>LVED<br>G/L                              | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)    |
| NOV 1986                   |                         |                                                 | •                                               |                                                    |                              |                                         |                                                    |                                    |                                                                |                                                        |                                                     |                                                       |
| 12<br>MAR 1987             |                         | 45 1                                            | 0                                               | 4.8                                                | 13                           | 5                                       | 1.8                                                | 30                                 |                                                                | 18                                                     | 24                                                  | 0.1                                                   |
| 02<br>31<br>JUN            |                         | 40<br>36                                        | 9.4<br>8.5                                      | 4.0<br>3.5                                         |                              | 5                                       | 1.5<br>1.6                                         | 24<br>24                           |                                                                | 14<br>13                                               | 23<br>14                                            | <0.1<br><0.1                                          |
| 09                         |                         | 68 1                                            | 6                                               | 6.8                                                | 17                           | 7                                       | 1.0                                                | 56                                 |                                                                | 11                                                     | 28                                                  | 0.1                                                   |
| JUL<br>13                  |                         | 69 1                                            | 7                                               | 6.5                                                | 17                           | 7                                       | 2.1                                                | 57                                 |                                                                | 25                                                     | 26                                                  | <0.1                                                  |
| AUG<br>10                  |                         | 49                                              | 2                                               | 4.6                                                |                              |                                         | 2.4                                                | 33                                 |                                                                | 12                                                     | 19                                                  | 0.1                                                   |
| DATE                       | SOI<br>(MC              | ICA, SUN<br>S- CON<br>LVED TUE<br>G/L [S        | IDS,<br>I OF<br>ISTI-<br>ENTS,<br>DIS-<br>DLVED | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | E NO2-                       | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N) | MONI                               | AM-<br>A + NI'<br>NIC GI<br>AL TO                              | TRO-<br>EN, F<br>TAL<br>G/L<br>N)                      | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)         |
| NOV 1986<br>12<br>MAR 1987 |                         | 11                                              | 100                                             | 0.00                                               | 7 0.                         | .38                                     | 0.06                                               | 0.6                                | 3 1.0                                                          | 0 0                                                    | 0.068                                               | 6.5                                                   |
| 02<br>31                   |                         | 8.3<br>8.1                                      | 90<br>73                                        | 0.00                                               |                              | .05<br>.67                              | 0.26                                               | 0.5                                |                                                                | 6 0                                                    | 0.055<br>0.179                                      | 21                                                    |
| JUN<br>09<br>JUL           |                         | 16                                              | 130                                             | 0.00                                               | 8 0.                         | .54                                     | 0.24                                               | 0.8                                | 2 1.                                                           | 4 (                                                    | 0.116                                               | 5.4                                                   |
| 13<br>AUG                  |                         | 15                                              | 140                                             | 0.02                                               | 2 0                          | .36                                     | 0.12                                               | 0.9                                | 6 1.:                                                          | 3 (                                                    | 0.030                                               | 12                                                    |
| 10                         |                         | 12                                              | 94                                              | <0.02                                              | 0 0                          | .34                                     | 0.07                                               | 1.1                                | 1.5                                                            | 5 (                                                    | 0.240                                               | 11                                                    |

RARITAN RIVER BASIN

# 01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME   | SULFIDE<br>TOTAL<br>(MG/L<br>AS S) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENI<br>TOTAL<br>(UG/L<br>AS AS | ERA (UG                   | M, BO<br>AL TO<br>DV- RE<br>BLE EF<br>/L (U | DRON,<br>DTAL<br>ECOV-<br>RABLE<br>JG/L<br>S B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L | ERAI<br>(UG)             | AL<br>OV-<br>BLE<br>/L |
|----------------------------|--------|------------------------------------|-----------------------------------------------------|-----------------------------------|---------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------------|------------------------------------|--------------------------|------------------------|
| NOV 1986<br>12<br>JUN 1987 | 1330   | <0.5                               | 20                                                  | engan da                          | d ' <b>&lt;</b> 1         | 0 -                                         | <10                                             | <1                                                      | <10                                | j                        | 6                      |
| 09                         | 1345   | <0.5                               | 30                                                  |                                   | 1 <1                      | 0                                           | 20                                              | <1                                                      | <10                                | )                        | 3                      |
| in a second                | T<br>R | OTAL TO                            | AD, NOTAL T                                         | OTAL<br>ECOV-                     | TOTAL RECOV-              | NICKEL<br>TOTAL<br>RECOV                    | - SE                                            | LE- T                                                   | INC,<br>OTAL<br>ECOV-              |                          |                        |
| DATE                       | (      | UG/L (I                            | JG/L (                                              | RABLE<br>UG/L<br>S MN)            | ERABLE<br>(UG/L<br>AS HG) | (UG/L<br>AS NI                              | (1                                              | JG/L (                                                  | UG/L                               | HENOLS<br>FOTAL<br>JG/L) |                        |
| NOV 1986<br>12<br>JUN 1987 | 4.1    | 640                                | 6                                                   | 80                                | <0.10                     |                                             | 3                                               | <1                                                      | <10                                | 2                        |                        |
| 09                         |        | 700                                | <5                                                  | 50                                | <0.10                     | 100                                         | 3                                               | <1                                                      | <10                                |                          | 197                    |

3

#### 01399510 UPPER COLD BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'16", long 74°45'09", Hunterdon County, Hydrologic Unit 02030105, on right bank along a private dirt road, 400 ft downstream from the former Pottersville Reservoir, and 1.5 mi west of Pottersville.

DRAINAGE AREA .-- 2.18 mi 2.

PERIOD OF RECORD . - October 1972 to current year.

REVISED RECORDS. -- WDR-NJ-84-1: 1975(P), 1979-83(P).

GAGE.--Water-stage recorder and rock outcrop control. Datum of gage is 451.57 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharge. Records good above 2.0 ft<sup>3</sup>/s and fair below. Flow regulated by Pottersville Reservoir, 400 ft above station, until August 1982 when dam was demolished. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 15 years, 3.85 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 2,000 ft<sup>3</sup>/s, July 7, 1984, gage height, 3.91 ft, from rating curve extended above 20 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; minimum daily, 0.03 ft<sup>3</sup>/s, Aug. 28 & 29 and Sept. 3 & 8, 1980.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft<sup>3</sup>/s and maximum (\*):

| Date                          | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)      | Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|-------------------------------|----------------------|-----------------------------------|-----------------------|--------------------|--------------|-----------------------------------|------------------|
| Nov. 20<br>Nov. 26<br>Dec. 25 | 2300<br>1930<br>0330 | *178<br>112<br>110                | *1.73<br>1.51<br>1.50 | Apr. 4<br>Sept. 13 | 1315<br>2130 | 118<br>102                        | 1.53<br>1.47     |

Minimum discharge, 0.87 ft<sup>3</sup>/s Oct. 9, 10, 11, 24, Aug. 26, gage height, 0.46 ft.

REVISIONS.--The date and gage height of the revision for water year 1975 as published in MDR NJ-84-1 was found to be in error. The peak occurred on Jan. 24, 1975, and the gage height was 3.17 ft. These figures supercede those published in that report.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                            |                                          | DISCHA                                      | KGE, IN C                                  | OBIC PEET                                   | PER SECU                                   | MEAN VAL                                   | UES OCT                                    | OBEK 1900                                   | IU SEPIE                                  | 10EK 1707                         |                                    |                                           |
|--------------------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------------|
| DAY                                        | ОСТ                                      | NOV                                         | DEC                                        | JAN                                         | FEB                                        | MAR                                        | APR                                        | MAY                                         | JUN                                       | JUL                               | AUG                                | SEP                                       |
| 1 2 3 4 5                                  | .94<br>.95<br>1.1<br>1.1<br>1.0          | .92<br>.98<br>.96<br>.98                    | 3.5<br>7.9<br>25<br>6.2<br>5.2             | 4.7<br>6.4<br>5.2<br>4.6<br>4.2             | 3.2<br>3.7<br>4.2<br>4.1<br>3.5            | 35<br>14<br>8.1<br>6.6<br>5.9              | 6.6<br>5.2<br>4.8<br>52<br>13              | 4.4<br>4.4<br>5.3<br>6.9<br>5.4             | 1.9<br>2.4<br>2.1<br>3.9<br>3.3           | 1.8<br>2.7<br>4.0<br>1.7<br>1.5   | 1.1<br>1.1<br>1.5<br>1.1<br>6.0    | 1.7<br>1.1<br>1.0<br>1.0                  |
| 6<br>7<br>8<br>9                           | .94<br>.92<br>.92<br>.91<br>.88          | 2.4<br>1.2<br>3.4<br>1.4<br>1.1             | 4.8<br>4.4<br>4.3<br>9.5<br>7.0            | 4.1<br>4.1<br>3.9<br>3.8<br>4.3             | 3.3<br>3.6<br>3.5<br>3.3<br>3.9            | 6.1<br>7.2<br>6.4<br>5.7<br>5.0            | 16<br>11<br>8.5<br>7.4<br>6.6              | 4.7<br>4.2<br>4.0<br>3.8<br>3.7             | 2.1<br>2.0<br>1.9<br>1.8<br>1.7           | 1.4<br>1.5<br>2.6<br>2.7<br>1.9   | 5.1<br>1.6<br>1.4<br>1.6<br>6.9    | 1.4<br>1.8<br>4.0<br>2.7<br>1.4           |
| 11<br>12<br>13<br>14<br>15                 | .91<br>.92<br>.96<br>1.4<br>1.0          | 3.3<br>1.6<br>1.2<br>1.1                    | 5.1<br>5.2<br>4.6<br>4.1<br>4.2            | 4.8<br>3.9<br>3.8<br>3.8<br>4.9             | 3.1<br>3.3<br>3.2<br>3.5<br>4.1            | 4.7<br>4.6<br>4.4<br>4.2                   | 6.0<br>6.0<br>5.8<br>5.3<br>5.1            | 3.4<br>3.3<br>3.1<br>3.0<br>4.4             | 1.6<br>1.8<br>1.8<br>1.6<br>1.5           | 1.5<br>2.7<br>1.8<br>4.1<br>2.6   | 1.7<br>1.4<br>1.3<br>1.2           | 1.4<br>1.9<br>22<br>6.2<br>2.8            |
| 16<br>17<br>18<br>19<br>20                 | .95<br>.92<br>.94<br>.92<br>.92          | 1.0<br>1.0<br>1.1<br>2.6                    | 4.2<br>4.1<br>18<br>7.3<br>5.5             | 4.0<br>3.5<br>4.8<br>5.7<br>4.7             | 4.8<br>4.0<br>3.0<br>2.9<br>2.8            | 4.2<br>4.1<br>4.0<br>3.8<br>3.8            | 4.9<br>9.0<br>6.9<br>5.4<br>5.0            | 3.3<br>2.9<br>3.0<br>3.6<br>3.8             | 1.5<br>1.4<br>1.4<br>1.4                  | 1.6<br>1.4<br>1.3<br>1.3          | 1.1<br>1.1<br>1.1<br>1.0<br>1.0    | 2.3<br>3.2<br>3.9<br>3.0<br>2.4           |
| 21<br>22<br>23<br>24<br>25                 | .92<br>.92<br>.92<br>.91<br>.92          | 21<br>4.5<br>3.5<br>3.9<br>3.0              | 5.0<br>4.6<br>4.5<br>5.1<br>29             | 4.3<br>5.1<br>4.5<br>4.5<br>4.6             | 2.9<br>3.0<br>3.3<br>3.0<br>2.9            | 3.8<br>3.7<br>3.5<br>3.4<br>3.2            | 4.8<br>4.6<br>4.4<br>8.8                   | 3.3<br>2.8<br>2.7<br>2.6<br>2.5             | 3.1<br>4.8<br>2.2<br>1.7<br>1.5           | 1.2<br>1.2<br>1.1<br>1.2          | .98<br>1.1<br>1.0<br>.97<br>.96    | 2.2<br>2.2<br>2.0<br>1.8<br>1.7           |
| 26<br>27<br>28<br>29<br>30<br>31           | 1.5<br>1.2<br>1.0<br>.96<br>.94          | 29<br>8.8<br>5.4<br>4.6<br>4.1              | 7.2<br>6.1<br>5.6<br>5.2<br>5.2<br>4.8     | 3.5<br>3.3<br>3.6<br>3.4<br>3.7<br>3.7      | 2.9<br>2.9<br>2.9                          | 3.3<br>3.1<br>3.7<br>3.2<br>4.6<br>27      | 5.5<br>5.0<br>5.7<br>5.1<br>4.7            | 2.5<br>2.5<br>2.4<br>2.1<br>2.0<br>2.1      | 1.6<br>2.4<br>1.6<br>1.5                  | 1.9<br>1.3<br>1.1<br>1.1<br>1.1   | .94<br>2.5<br>2.0<br>1.6<br>1.2    | 1.6<br>1.6<br>1.6<br>2.4                  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 30.61<br>.99<br>1.5<br>.88<br>.45<br>.52 | 131.54<br>4.38<br>29<br>.92<br>2.01<br>2.24 | 222.4<br>7.17<br>29<br>3.5<br>3.29<br>3.80 | 133.4<br>4.30<br>6.4<br>3.3<br>1.97<br>2.28 | 94.8<br>3.39<br>4.8<br>2.8<br>1.55<br>1.62 | 205.0<br>6.61<br>35<br>3.1<br>3.03<br>3.50 | 249.1<br>8.30<br>52<br>4.4<br>3.81<br>4.25 | 108.1<br>3.49<br>6.9<br>2.0<br>1.60<br>1.84 | 60.3<br>2.01<br>4.8<br>1.4<br>.92<br>1.03 | 54.9<br>1.77<br>4.1<br>1.1<br>.81 | 53.85<br>1.74<br>6.9<br>.94<br>.80 | 84.9<br>2.83<br>22<br>1.0<br>1.30<br>1.45 |

CAL YR 1986 TOTAL 1361.34 MEAN 3.73 MAX 51 MIN .88 CFSM 1.71 IN. 23.22 WTR YR 1987 TOTAL 1428.88 MEAN 3.91 MAX 52 MIN .88 CFSM 1.80 IN. 24.38

### 01399525 AXLE BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°41'40", long 74°43'05", Somerset County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Black River Road, 1.3 mi south of Pottersville, and 0.3 mi upstream from mouth.

DRAINAGE AREA .-- 1.22 mi 2.

PERIOD OF RECORD.--October 1977 to current year. Prior to October 1984, published as "Lamington (Black) River tributary No. 2 near Pottersville".

GAGE.--Water-stage recorder. Wooden control since October 1982. Datum of gage is 172.74 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except those below 1.0 ft<sup>3</sup>/s and estimated daily discharges, which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 10 years, 1.92 ft3/s, 24.49 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 955 ft<sup>3</sup>/s, July 7, 1984, gage height, 6.30 ft, from floodmark, from rating extended above 400 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; no flow many days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (\*):

| Date               | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)     | Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------------------|----------------------|-----------------------------------|----------------------|--------------------|--------------|-----------------------------------|---------------------|
| Nov. 20<br>Nov. 26 | 2330<br>1945<br>0330 | 238<br>261<br>294                 | 3.33<br>3.44<br>3.47 | Apr. 4<br>Sept. 13 | 1345<br>1000 | 236<br>*331                       | 3.17<br>*3.64       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 0.06 ft<sup>3</sup>/s, Aug. 25, 26, Sept. 25, 26; minimum gage height, 0.18 ft, Aug. 25, 26.

|                                            |                                   |                                             |                                            |                                            |                                             | MEAN VAL                                   | UES                                         |                                            |                                  |                                          |                                          | renistry.                                  |
|--------------------------------------------|-----------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|
| DAY                                        | ОСТ                               | NOV                                         | DEC                                        | JAN                                        | FEB                                         | MAR                                        | APR                                         | MAY                                        | JUN                              | JUL                                      | AUG                                      | SEP                                        |
| 1 2 3 4 5                                  | .34<br>.38<br>.54<br>.64          | .19<br>.22<br>.21<br>.24<br>.42             | 1.2<br>9.1<br>25<br>2.8<br>2.0             | 1.9<br>7.4<br>4.2<br>2.6<br>2.1            | 1.3<br>1.9<br>5.0<br>3.7<br>1.7             | 36<br>8.0<br>3.1<br>2.2<br>1.8             | 1.8<br>1.3<br>1.2<br>54<br>4.2              | 1.0<br>1.0<br>1.2<br>2.6<br>1.8            | .11<br>.63<br>.24<br>.95<br>.82  | .10<br>.30<br>2.7<br>.20<br>.12          | .10<br>.10<br>.10<br>.10                 | .38<br>.08<br>.07<br>.06                   |
| 6<br>7<br>8<br>9                           | .47<br>.40<br>.35<br>.35          | 2.5<br>.36<br>5.1<br>1.1<br>.57             | 1.7<br>1.5<br>1.3<br>9.2<br>4.2            | 2.0<br>2.1<br>2.0<br>1.9<br>3.2            | 1.6<br>2.3<br>1.7<br>1.5<br>1.2             | 1.7<br>1.7<br>1.6<br>1.5<br>1.2            | 11<br>5.3<br>2.2<br>1.5<br>1.3              | 1.3<br>1.1<br>.97<br>.89<br>.80            | .28<br>.18<br>.16<br>.16         | .11<br>.11<br>.70<br>.44<br>.28          | 2.2<br>.21<br>.13<br>.32<br>5.9          | .14<br>.76<br>2.6<br>1.1<br>.45            |
| 11<br>12<br>13<br>14<br>15                 | .34<br>.39<br>.43<br>.86<br>.34   | 7.9<br>1.7<br>.83<br>.61                    | 2.2<br>2.9<br>1.9<br>1.4<br>1.3            | 3.2<br>2.0<br>1.8<br>1.8                   | 1.2<br>1.1<br>1.1<br>1.0<br>.97             | 1.1<br>1.2<br>1.2<br>1.1                   | 1.2<br>1.1<br>1.0<br>.94                    | .72<br>.68<br>.57<br>.53                   | .11<br>.13<br>.13<br>.11<br>.11  | .15<br>.19<br>.14<br>3.1<br>.72          | .46<br>.27<br>.18<br>.16                 | .38<br>.62<br>26<br>1.0<br>.52             |
| 16<br>17<br>18<br>19<br>20                 | .26<br>.27<br>.27<br>.25<br>.27   | .55<br>.48<br>.59<br>8.0                    | 1.3<br>1.3<br>16<br>3.9<br>2.1             | 1.7<br>1.6<br>3.3<br>6.0<br>2.0            | .95<br>.95<br>.93<br>.85                    | 1.0<br>.98<br>.95<br>.93                   | .88<br>2.3<br>1.5<br>1.1                    | .61<br>.52<br>.51<br>.65                   | .10<br>.10<br>.10<br>.10         | .24<br>.13<br>.11<br>.11                 | .14<br>.13<br>.16<br>.15                 | .53<br>1.0<br>1.3<br>3.0<br>.87            |
| 21<br>22<br>23<br>24<br>25                 | .30<br>.32<br>.34<br>.32<br>.34   | 16<br>1.7<br>1.1<br>1.6<br>.97              | 1.6<br>1.3<br>1.1<br>1.7<br>37             | 1.5<br>1.4<br>1.5<br>1.3                   | .82<br>.87<br>.99<br>1.0<br>1.0             | .88<br>.85<br>.80<br>.79                   | .89<br>.80<br>.72<br>1.3<br>6.2             | .67<br>.52<br>.48<br>.46<br>e.44           | .12<br>.57<br>.19<br>.11         | .11<br>.10<br>.10<br>.13                 | .08<br>.14<br>.15<br>.10                 | .71<br>1.1<br>.76<br>.69                   |
| 26<br>27<br>28<br>29<br>30<br>31           | .79<br>.37<br>.22<br>.20<br>.20   | 42<br>5.6<br>2.3<br>1.9<br>1.5              | 4.0<br>2.9<br>2.6<br>2.2<br>2.1<br>2.0     | 1.3<br>1.2<br>1.1<br>1.1<br>1.2<br>1.5     | 1.0<br>.92<br>.99                           | .71<br>.66<br>.87<br>.69<br>.82            | 1.5<br>1.3<br>1.3<br>1.3                    | e.34<br>e.24<br>e.20<br>e.16<br>.13<br>.12 | .10<br>.54<br>.13<br>.10         | .33<br>.12<br>.10<br>.10<br>.10          | .07<br>.61<br>.47<br>.42<br>.08          | .65<br>.65<br>.65<br>.64                   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 11.69<br>.38<br>.86<br>.17<br>.31 | 124.81<br>4.16<br>42<br>.19<br>3.41<br>3.81 | 150.8<br>4.86<br>37<br>1.1<br>3.99<br>4.60 | 69.0<br>2.23<br>7.4<br>1.1<br>1.82<br>2.10 | 39.35<br>1.41<br>5.0<br>.81<br>1.15<br>1.20 | 91.06<br>2.94<br>36<br>.66<br>2.41<br>2.78 | 112.20<br>3.74<br>54<br>.72<br>3.07<br>3.42 | 22.55<br>.73<br>2.6<br>.12<br>.60          | 6.80<br>.23<br>.95<br>.10<br>.19 | 11.51<br>.37<br>3.1<br>.10<br>.30<br>.35 | 14.54<br>.47<br>5.9<br>.06<br>.38<br>.44 | 48.20<br>1.61<br>26<br>.06<br>1.32<br>1.47 |

CAL YR 1986 - TOTAL 757.72 MEAN 2.08 MAX 43 MIN .01 CFSM 1.70 IN. 23.10 UTR YR 1987 - TOTAL 702.50 MEAN 1.92 MAX 54 MIN .06 CFSM 1.58 IN. 21.41

e Estimated

### 01399670 SOUTH BRANCH ROCKAWAY CREEK AT WHITEHOUSE STATION, NJ

LOCATION.--Lat 40°37'10", long 74°46'30", Hunterdon County, Hydrologic Unit 02030105, on right bank 1,700 ft upstream from bridge on U.S. Route 22, 0.4 mi northeast of Whitehouse Station, and 0.8 mi upstream from mouth.

DRAINAGE AREA . - - 12.3 mi 2.

PERIOD OF RECORD.--October 1986 to September 1987. March 1977 to September 1986, water-stage recorder 1,700 ft downstream, at datum 8.07 ft lower (sta. 01399690).

GAGE. -- Water-stage recorder. Datum of gage is 121.5 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except from Mar. 3-31 and July 26 to Sept. 9, which are fair. Releases from Round Valley Reservoir enter stream directly above station (see Raritan River basin, reservoirs in). Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 10 years, 34.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,190 ft<sup>3</sup>/s, July 7, 1984, gage height, 7.82 ft, present datum; minimum 0.18 ft<sup>3</sup>/s, Oct. 3, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,800 ft<sup>3</sup>/s, Apr. 4, gage height, 7.35 ft; minimum daily, 3.5 ft<sup>3</sup>/s, Aug. 24, 25, 26.

|                                  |                                    | DISCHARGE,                    | IN CUBIC                         | FEET PER                         | SECON                       | D, WATER YEAR<br>EAN VALUES   | CTOBE                       | R 1986 T                            | O SEPTEMBE                      | ER 1987                           |                                      |                                |
|----------------------------------|------------------------------------|-------------------------------|----------------------------------|----------------------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------------------|---------------------------------|-----------------------------------|--------------------------------------|--------------------------------|
| DAY                              | OCT                                | NOV                           | DEC                              | JAN                              | FEB                         | MAR                           | APR                         | MAY                                 | JUN                             | JUL                               | AUG                                  | SEP                            |
| 1<br>2<br>3<br>4<br>5            | 4.9<br>5.2<br>5.2<br>9.0<br>6.4    | 37<br>32<br>34<br>31<br>21    | 19<br>49<br>275<br>40<br>30      | 21<br>54<br>38<br>28<br>24       | 16<br>19<br>30<br>34<br>26  | 195<br>78<br>44<br>32<br>27   | 34<br>25<br>21<br>597<br>76 | 21<br>21<br>24<br>40<br>33          | 8.0<br>14<br>9.3<br>16<br>22    | 17<br>23<br>51<br>15<br>12        | 11<br>11<br>13<br>11<br>45           | 9.0<br>4.7<br>4.1<br>7.1<br>35 |
| 6<br>7<br>8<br>9                 | 5.4<br>4.8<br>5.3<br>5.5<br>8.2    | 7.8<br>33<br>19               | 26<br>23<br>21<br>60<br>48       | 22<br>22<br>21<br>18<br>23       | 23<br>24<br>24<br>23<br>17  | 25<br>25<br>24<br>22<br>17    | 85<br>61<br>43<br>36<br>32  | 28<br>24<br>22<br>20<br>18          | 9.4<br>8.7<br>8.8<br>9.5<br>7.7 | 10<br>10<br>28<br>40<br>17        | 72<br>19<br>13<br>12<br>199          | 4.9<br>6.4<br>14<br>23<br>7.9  |
| 11<br>12<br>13<br>14<br>15       | 30<br>44<br>47<br>24<br>12         | 38<br>28<br>15<br>11<br>9.7   | 29<br>32<br>25<br>19             | 30<br>23<br>20<br>19<br>21       | 17<br>18<br>16<br>14<br>12  | 15<br>16<br>15<br>14<br>13    | 29<br>28<br>28<br>25<br>24  | 17<br>17<br>15<br>15                | 7.0<br>8.8<br>9.1<br>7.5<br>6.8 | 13<br>20<br>21<br>41<br>37        | 22<br>14<br>10<br>8.5<br>7.4         | 6.4<br>6.5<br>63<br>26<br>12   |
| 16<br>17<br>18<br>19<br>20       | 41<br>44<br>53<br>53<br>49         | 9.2<br>8.3<br>9.7<br>58<br>42 | 18<br>18<br>110<br>52<br>31      | 19<br>16<br>24<br>45<br>35       | e10<br>12<br>e10<br>11      | 13<br>12<br>11<br>11<br>11    | 23<br>43<br>37<br>28<br>25  | 15<br>13<br>15<br>19                | 6.5<br>6.2<br>6.2<br>6.6<br>7.2 | 19<br>15<br>14<br>12<br>e7.0      | 6.6<br>6.3<br>5.8<br>4.9<br>4.6      | 9.8<br>18<br>56<br>27<br>19    |
| 21<br>22<br>23<br>24<br>25       | 44<br>44<br>38<br>35<br>35         | 287<br>30<br>23<br>25<br>20   | 27<br>23<br>22<br>22<br>391      | 28<br>25<br>26<br>18<br>18       | 13<br>16<br>22<br>20<br>e17 | 11<br>10<br>9.5<br>9.0<br>8.4 | 23<br>21<br>20<br>28<br>58  | 17<br>13<br>13<br>12<br>11          | 15<br>35<br>15<br>8.2<br>7.1    | e7.5<br>11<br>10<br>14<br>38      | 4.3<br>5.3<br>4.8<br>3.8<br>3.8      | 15<br>16<br>12<br>10<br>8.7    |
| 26<br>27<br>28<br>29<br>30<br>31 | 27<br>8.0<br>5.3<br>20<br>37<br>37 | 265<br>84<br>34<br>28<br>23   | 45<br>34<br>30<br>27<br>25<br>23 | 19<br>16<br>15<br>14<br>17<br>20 | e16<br>e14<br>e13           | 8.8<br>8.2<br>11<br>8.8<br>11 | 28<br>25<br>28<br>27<br>24  | 11<br>11<br>11<br>9.6<br>8.9<br>8.4 | 7.4<br>29<br>11<br>8.4<br>9.8   | 26<br>16<br>10<br>9.0<br>14<br>22 | 3.8<br>16<br>8.3<br>18<br>5.8<br>4.6 | 7.8<br>7.3<br>7.0<br>6.6       |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 787.2<br>25.4<br>53<br>4.8         | 1297.7<br>43.3<br>287<br>7.8  | 1613<br>52.0<br>391<br>18        | 739<br>23.8<br>54<br>14          | 498<br>17.8<br>34<br>10     | 813.7<br>26.2<br>195<br>8.2   | 1582<br>52.7<br>597<br>20   | 540.9<br>17.4<br>40<br>8.4          | 331.2<br>11.0<br>35<br>6.2      | 599.5<br>19.3<br>51<br>7.0        | 574.6<br>18.5<br>199<br>3.8          | 461.2<br>15.4<br>63<br>4.1     |

CAL YR 1986 TOTAL 9732.7 MEAN 26.7 MAX 391 MIN 2.2 WTR YR 1987 TOTAL 9838.0 MEAN 27.0 MAX 597 MIN 3.8

e Estimated

### 01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth.

DRAINAGE AREA. -- 37.1 mi 2.

PERIOD OF RECORD. -- Water years 1977 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1977 to September 1978.
WATER TEMPERATURES: April 1977 to September 1978.
SEDIMENT ANALYSES: October 1976 to September 1978.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           |                                             | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)       | TEMPER-<br>ATURE<br>WATER<br>(DEG C)      | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)     | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-------------------------------------|
| OCT 1986       |                                             |                                                 |                                                   |                                      |                                           |                                                     |                                                                |                                                                |                                                      |                                     |
| 09<br>EB 1987  | 1030                                        | E13                                             | 256                                               | 8.0                                  | 14.0                                      | 10.2                                                | 99                                                             | <1.2                                                           | 170                                                  | 350                                 |
| 10             | 1100                                        | E64                                             | 258                                               | 7.7                                  | 0.0                                       | 15.5                                                | 106                                                            | <0.9                                                           | 20                                                   | 130                                 |
| 18             | 1230                                        |                                                 | 165                                               | 9.2                                  | 8.0                                       | 15.9                                                | 135                                                            | E1.5                                                           | <20                                                  | 7                                   |
| 28             | 1030                                        | E29                                             | 197                                               | 7.9                                  | 17.0                                      | 9.4                                                 | 97                                                             | <0.9                                                           | 170                                                  | 130                                 |
| UL<br>06       | 1045                                        | E17                                             | 259                                               | 7.7                                  | 21.5                                      | 8.9                                                 | 101                                                            | <0.8                                                           | 330                                                  | 920                                 |
| NUG<br>05      | 1030                                        | E14                                             | 260                                               | 7.9                                  | 27.0                                      | 8.9                                                 | 113                                                            | E2.2                                                           | 330                                                  | 350                                 |
| 03             | 1030                                        | E14                                             | 200                                               | 7.9                                  | 27.0                                      | 0.9                                                 | 113                                                            | E2.2                                                           | 330                                                  | 330                                 |
| DATE           | HARD<br>NESS<br>(MG/I<br>AS<br>CACO         | L SOL                                           | VED SOL                                           | UM, SOD<br>S- DI<br>VED SOL<br>/L (M | IUM, S<br>S- D<br>VED SOI<br>IG/L (M      | LVED (MC                                            | ITY SULF<br>AB DIS<br>G/L SOL                                  | VED SOL                                                        | DE, RID<br>S- DI<br>LVED SOL                         | E,<br>S-<br>VED                     |
| OCT 1986       |                                             |                                                 |                                                   |                                      |                                           |                                                     |                                                                |                                                                |                                                      |                                     |
| 09<br>FEB 1987 | 10                                          | 00 25                                           | 9                                                 | 1.4                                  | 1                                         | 2.5 75                                              | 2                                                              | 22 12                                                          | <0                                                   | 0.1                                 |
| 10             |                                             | 82 20                                           | 7                                                 | .8 1                                 | 3                                         | 1.4 51                                              | 2                                                              | 23 25                                                          | <0                                                   | 0.1                                 |
| MAR<br>18      | 200                                         | 68 16                                           |                                                   | .7                                   | 8.4                                       | 1.1 47                                              | 1 12                                                           | 20 10                                                          | ) (                                                  | 0.1                                 |
| MAY 28         | 19                                          | 78 19                                           | 7                                                 | .5                                   | 8.6                                       | 1.4 59                                              |                                                                | 17 12                                                          | 2 <0                                                 | 0.1                                 |
| JUL<br>06      | 45                                          | 85 21                                           |                                                   |                                      |                                           | 1.8 66                                              |                                                                | 20 14                                                          |                                                      | 0.1                                 |
| AUG            |                                             |                                                 |                                                   |                                      | 5 1/4                                     |                                                     | 100 53                                                         |                                                                | 100                                                  | 1000                                |
| 05             |                                             | 96 23                                           | ,                                                 | .3 1                                 | 2                                         | 2.1 73                                              |                                                                | 21 16                                                          | ,                                                    | 0.2                                 |
| DATE           | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CONS<br>ED TUEN<br>L DI<br>SOL                  | OF NIT                                            | N, G<br>RITE NOZ<br>AL TO            | SEN, G<br>2+NO3 AMM<br>DTAL TO<br>NG/L (M | TRO- GEN<br>EN, MON<br>ONIA ORG<br>TAL TO<br>G/L (M | ANIC GE                                                        | G/L (MC                                                        | OS- CARE<br>RUS, ORGA<br>TAL TOT<br>G/L (MG<br>P) AS | NIC<br>FAL<br>G/L                   |
| OCT 1986       |                                             |                                                 |                                                   |                                      | W. 11                                     |                                                     |                                                                |                                                                |                                                      |                                     |
| 09<br>FEB 1987 | 15                                          |                                                 |                                                   |                                      |                                           |                                                     |                                                                |                                                                | 340 2.                                               |                                     |
| 10<br>MAR      | 13                                          |                                                 | 130 0.                                            | .008 1                               | 1.49 0                                    | .08 0                                               | .40 1.                                                         | .9 0.0                                                         | 072 3.                                               | .2                                  |
| 18             | 13                                          |                                                 | 100                                               | 1                                    | 1.34 0                                    | .09 0                                               | .32 1.                                                         | .7 0.0                                                         | 068 1.                                               | .2                                  |
| 28<br>JUL      | 16                                          |                                                 | 120 0.                                            | .022 1                               | .63 0                                     | .08 0                                               | .43 2                                                          | .1 0.0                                                         | 095 2.                                               | .3                                  |
| JUL            |                                             |                                                 |                                                   |                                      |                                           |                                                     |                                                                | 14                                                             |                                                      |                                     |
| 06<br>AUG      | 13                                          |                                                 | 130 0.                                            | .035 1                               | 1.45 0                                    | .06 0                                               | .51 2.                                                         | .0 0.                                                          | 110 3.                                               | .3                                  |

RARITAN RIVER BASIN

# 01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                 | TIME                                                                | SULFIDE                                                             | GEN,NH4<br>+ ORG.<br>TOT IN                                          | INOR-<br>GANIC,<br>TOT IN                                        | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) |                                                                    | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | TOTAL                                                               | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986<br>09       | 1030                                                                | <0.5                                                                |                                                                      |                                                                  |                                                                       | <1                                                                 |                                                                     | 10                                                                   | 70                                                                 | <1                                                                  |                                                                      |
| 09                   | 1030                                                                | •::                                                                 | 100                                                                  | 0.1                                                              | 0.7                                                                   | •                                                                  | 2                                                                   | •••                                                                  | -11                                                                | •••                                                                 | <1                                                                   |
| DATE                 | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | RECOV.                                                              | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL                                                 | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU)  | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  |                                                                      | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) |                                                                     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT 1986             | -10                                                                 |                                                                     |                                                                      |                                                                  |                                                                       | 470                                                                |                                                                     |                                                                      |                                                                    | 20                                                                  |                                                                      |
| 09<br>09             | <10                                                                 | 20                                                                  | 10                                                                   |                                                                  | 6                                                                     | 130                                                                | 5400                                                                | <5<br>···                                                            | <10                                                                | 20                                                                  | 270                                                                  |
| DATE                 | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                               | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                        | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                            | SELE-<br>NIUM,<br>TOTAL<br>(UG/L                                      | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ERABLE (UG/L                                                        | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL                                                   | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | TOM MA-                                                              |
| OCT 1986<br>09<br>09 | 1.3                                                                 | 0.01                                                                |                                                                      |                                                                  |                                                                       |                                                                    | 700                                                                 | 40                                                                   |                                                                    | <br><1                                                              | <1.0                                                                 |
| DATE                 | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986             |                                                                     |                                                                     |                                                                      |                                                                  |                                                                       |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 09<br>09             | <0.1                                                                | <1.0                                                                | <0.1                                                                 | 0.1                                                              | 2.1                                                                   | <0.1                                                               | <0.1                                                                | 0.4                                                                  | <0.1                                                               | <0.1                                                                | <0.1                                                                 |
| DATE                 | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
| OCT 1986             | 4.7                                                                 |                                                                     |                                                                      |                                                                  |                                                                       |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 09                   | 0.1                                                                 | <0.1                                                                | <0.1                                                                 | <0.1                                                             | <0.1                                                                  | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <1.00                                                              | <10                                                                 | <0.1                                                                 |

### 01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'04", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 1,400 ft upstream from mouth, and 2.4 mi southwest of Greater Cross Roads.

DRAINAGE AREA. -- 100 mi 2.

PERIOD OF RECORD. -- Water years 1964, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME     | STRE/<br>FLOI<br>INST/<br>TANE(             | AN- DUI<br>DUS AN                                                   | FIC<br>N-<br>CT-<br>CE                      | PH<br>(STAND<br>ARD<br>UNITS) | - AT                                                | PER- CURE<br>TER<br>G C)                         | DIS-<br>SOLVED<br>(MG/L)                   | OXYGEN<br>DIS-<br>SOLVE<br>(PER-<br>CENT<br>SATUR<br>ATION | DEM<br>D BI<br>CH<br>IC                     | AND,                                         | COL I<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L, STI                                             | REP-<br>OCCI<br>CAL<br>PN) |
|----------------|----------|---------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------|
| NOV 1986       |          |                                             |                                                                     |                                             |                               |                                                     |                                                  |                                            |                                                            |                                             |                                              |                                             |                                                    |                            |
| 12             | 1130     | E65                                         |                                                                     | 169                                         | 7.0                           | )                                                   | 6.0                                              | 11.6                                       | 93                                                         | 5 E                                         | 1.7                                          | 3500                                        | >240                                               | 0                          |
| MAR 1987<br>05 | 1030     | E392                                        |                                                                     | 178                                         | 7.7                           | ,                                                   | 2.0                                              | 14.4                                       | 103                                                        | 3 <                                         | 1.0                                          | 50                                          | 1                                                  | 7                          |
| APR 06         | 1015     | E1310                                       |                                                                     | 122                                         | 7.                            |                                                     | 8.0                                              | 12.2                                       | 104                                                        | . E                                         | 2.1                                          | 1300                                        | >240                                               | 0                          |
| JUN<br>15      | 1000     | E96                                         |                                                                     | 265                                         | 8.8                           |                                                     | 3.5                                              | 10.6                                       | 120                                                        | , F                                         | 1.4                                          | 330                                         | 35                                                 | 0                          |
| JUL 22         | 1130     | E113                                        |                                                                     |                                             | 8.5                           | 3                                                   | 5.5                                              | 8.2                                        |                                                            |                                             | 1.5                                          | 170                                         | 35                                                 |                            |
| AUG            |          |                                             |                                                                     |                                             |                               |                                                     |                                                  |                                            |                                                            |                                             |                                              |                                             |                                                    |                            |
| 25             | 1015     | E56                                         |                                                                     |                                             | 8.0                           | ) 1                                                 | 6.0                                              | 10.5                                       | •                                                          | 10-                                         | 3.7                                          | 130                                         | 24                                                 | 0                          |
| DATE           | NE<br>(N | ARD-<br>ESS<br>MG/L<br>AS<br>ACO3)          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M  | M, SO                         | DDIUM,<br>DIS-<br>DLVED<br>(MG/L<br>AS NA)          | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/I<br>AS K) | I, LINI                                    | TY S                                                       | JLFATE<br>DIS-<br>SOLVED<br>(MG/L<br>S SO4) | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/<br>AS C | ED<br>L                                     | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                            |
| NOV 1986       |          |                                             | 4-                                                                  |                                             |                               |                                                     |                                                  |                                            |                                                            |                                             | 00                                           |                                             |                                                    |                            |
| 12<br>MAR 1987 |          | 54                                          | 13                                                                  | 5.                                          |                               | 8.9                                                 | 2.4                                              |                                            |                                                            | 21                                          | 16                                           |                                             | <0.1                                               |                            |
| 05<br>APR      |          | 53                                          | 13                                                                  | 5.                                          | .0                            | 12                                                  | 1.                                               | 1 34                                       |                                                            | 19                                          | 17                                           |                                             | 0.1                                                |                            |
| 06<br>JUN      |          | 41                                          | 10                                                                  | 3.                                          | 9                             | 8.1                                                 | 1.4                                              | 4 27                                       |                                                            | 14                                          | 9.                                           | 9                                           | <0.1                                               |                            |
| 15             |          | 83                                          | 20                                                                  | 8.                                          | .1                            | 13                                                  | 1.3                                              | 3 68                                       |                                                            | 17                                          | 21                                           |                                             | 0.1                                                |                            |
| JUL<br>22      |          | 82                                          | 20                                                                  | 7.                                          | 7                             | 14                                                  | 2.                                               | 1 69                                       |                                                            | 16                                          | 21                                           |                                             | 0.1                                                |                            |
| AUG<br>25      |          | 94                                          | 23                                                                  | 8.                                          | .8                            | 15                                                  | 1.0                                              | 8 75                                       |                                                            | 21                                          | 21                                           |                                             | 0.2                                                |                            |
| DATE           | Si<br>(I | LICA,<br>IS-<br>OLVED<br>MG/L<br>AS<br>IO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>GEN<br>NITE<br>TOTA<br>(MG/<br>AS ) | ite N                         | NITRO-<br>GEN,<br>O2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO<br>GEN<br>AMMON<br>TOTA<br>(MG/<br>AS N    | O- GEN<br>MONI<br>IA ORGA<br>L TO<br>L (MO | ANIC<br>TAL<br>G/L                                         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHOSE TOTAL                                  | IS,                                         | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                            |
| NOV_1986       |          |                                             |                                                                     |                                             |                               |                                                     |                                                  |                                            | N. W.                                                      |                                             |                                              | 177                                         | 2.2                                                |                            |
| 12<br>MAR 1987 |          | 10                                          | 99                                                                  | 0.0                                         | 017                           | 0.63                                                | 0.08                                             | 0.                                         | 74                                                         | 1.4                                         | 0.121                                        |                                             | 8.3                                                |                            |
| 05<br>APR      |          | 11                                          | 99                                                                  | 0.0                                         | 010                           | 1.11                                                | 0.12                                             | 0.                                         | 50                                                         | 1.6                                         | 0.038                                        | 3                                           | 2.5                                                |                            |
| Ü6             |          | 9.1                                         | 73                                                                  | 0.0                                         | 020                           | 0.69                                                | 0.10                                             | 0.0                                        | 58                                                         | 1.4                                         | 0.097                                        | ,                                           | 8.4                                                |                            |
| 15             |          | 13                                          | 130                                                                 | 0.0                                         | 020                           | 0.90                                                | <0.05                                            | 0.0                                        | 59                                                         | 1.6                                         | 0.074                                        |                                             | 5.4                                                |                            |
| JUL<br>22      |          | 9.0                                         | 130                                                                 | 0.0                                         | 009                           | 0.58                                                | 0.06                                             | 0.                                         | 73                                                         | 1.3                                         | 0.120                                        |                                             | 5.4                                                |                            |
| AUG<br>25      |          | 13                                          | 150                                                                 | 0.0                                         | 014                           | 0.96                                                | 0.06                                             | 0.                                         | 71                                                         | 1.7                                         | 0.070                                        |                                             | 3.0                                                |                            |
|                |          |                                             |                                                                     |                                             |                               |                                                     |                                                  |                                            |                                                            |                                             |                                              |                                             |                                                    |                            |

RARITAN RIVER BASIN

## 01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                 | SULFIDI<br>TOTAL<br>(MG/L<br>AS S) | ALUM-<br>INUM,<br>E DIS-<br>SOLVED<br>(UG/L<br>AS AL) | (UG/L                                      | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM I<br>TOTAL<br>RECOV- I<br>ERABLE I<br>(UG/L | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|----------------------|------------------------------------|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| JUN 1987<br>15 | 1000                 | <0.                                | 5 20                                                  | <1                                         | <10                                                             | 30                                                    | <1                                                  | 10                                                             | 4                                                       |
| Di             | T<br>R<br>E<br>Ate ( | OTAL<br>ECOV- I<br>RABLE I<br>UG/L | LEAD, N<br>TOTAL T<br>RECOV- R<br>ERABLE E<br>(UG/L ( | OTAL TO<br>ECOV- RE<br>RABLE EF<br>UG/L (U | OTAL TO<br>ECOV- RE<br>RABLE ER<br>UG/L (U                      | KEL, TAL SEL COV- NIU ABLE TOT G/L (UG                | M, RECOV                                            | L<br>V-<br>Le phen<br>L tot                                    | AL                                                      |
| JUN 19         |                      | 200                                | <5                                                    | 20                                         | <0.10                                                           | <1                                                    | <1 <                                                | 10                                                             | 3                                                       |

### 01400000 NORTH BRANCH RARITAN RIVER NEAR RARITAN, NJ

LOCATION.--Lat 40°34'10", long 74°40'45", Somerset County, Hydrologic Unit 02030105, on right bank, 400 ft upstream from U.S. Highway 202, 1.4 mi upstream from confluence with South Branch, and 2.7 mi west of Raritan.

DRAINAGE AREA . -- 190 mi 2.

PERIOD OF RECORD.--June 1923 to current year. Monthly discharge only for June 1923, published in WSP 1302. Prior to October 1943, published as "at Milltown".

REVISED RECORDS. -- WSP 1552: 1924-26, 1928-35. WDR NJ-79-1: 1971-78(P).

GAGE.--Water-stage recorder. Concrete control since Sept. 1, 1936. Datum of gage is 50.43 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 17, 1936, nonrecording gage at site 30 ft downstream at same datum.

REMARKS.--Records fair above 5,000 ft<sup>3</sup>/s and good below. Releases from Round Valley Reservoir enter basin upstream of gage. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE ... 64 years, 309 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,600 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 15.47 ft, from highwater mark in gage house, from rating curve extended above 15,000 ft<sup>3</sup>/s; minimum observed, about 3 ft<sup>3</sup>/s, Nov. 28, 1930, gage height, 1.72 ft, result of freezeup, minimum daily, 7.5 ft<sup>3</sup>/s, Sept. 26, 27, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*):

|                              |              | Discharge<br>(ft <sup>3</sup> /s) | Gage height           |         | 100 20       | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|------------------------------|--------------|-----------------------------------|-----------------------|---------|--------------|-----------------------------------|------------------|
| Date                         | Time         | (ft°/s)                           | (ft)                  | Date    | Time         | (ft°/s)                           | (11)             |
| Nov. 21<br>Nov. 27<br>Dec. 3 | 0800<br>0115 | 6,390<br>*9,310<br>6,700          | 8.45<br>*9.80<br>8.61 | Dec. 25 | 1015<br>2045 | 7,090<br>8,200                    | 8.80<br>9.32     |
| Dec. 3                       | 0745         | 6.700                             | 8.61                  |         |              |                                   |                  |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 58 ft3/s, Oct. 10.

|                                  |                                    | D10011A                           | MGE, IN C                              | 0010 1221                              | PER SECO                        | MEAN VAL                                | UES                               | JDER 1700                              | TO SET TE                       | IDER 1701                              |                                      |                                 |
|----------------------------------|------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|---------------------------------|
| DAY                              | OCT                                | NOV                               | DEC                                    | JAN                                    | FEB                             | MAR                                     | APR                               | MAY                                    | JUN                             | JUL                                    | AUG                                  | SEP                             |
| 1 2 3 4 5                        | 71                                 | 90                                | 348                                    | 354                                    | 301                             | 2130                                    | 698                               | 295                                    | 123                             | 115                                    | 95                                   | 136                             |
|                                  | 73                                 | 91                                | 477                                    | 867                                    | 303                             | 1370                                    | 443                               | 284                                    | 182                             | 197                                    | 85                                   | 117                             |
|                                  | 72                                 | 90                                | 3510                                   | 678                                    | 454                             | 798                                     | 384                               | 287                                    | 159                             | 893                                    | 89                                   | 98                              |
|                                  | 111                                | 85                                | 766                                    | 487                                    | 596                             | 606                                     | 4470                              | 578                                    | 356                             | 203                                    | 94                                   | 87                              |
|                                  | 90                                 | e120                              | 567                                    | 387                                    | 436                             | 497                                     | 1750                              | 501                                    | 460                             | 145                                    | 135                                  | 109                             |
| 6<br>7<br>8<br>9                 | 74<br>65<br>63<br>63<br>62         | e400<br>157<br>444<br>319<br>192  | 482<br>423<br>382<br>830<br>900        | 353<br>347<br>334<br>306<br>347        | 345<br>365<br>372<br>365<br>284 | 439<br>467<br>499<br>451<br>380         | 1430<br>1150<br>858<br>704<br>611 | 381<br>329<br>293<br>273<br>251        | 190<br>151<br>145<br>139<br>125 | 125<br>122<br>281<br>434<br>246        | 570<br>182<br>127<br>118<br>992      | 85<br>125<br>195<br>380<br>161  |
| 11                               | 72                                 | 500                               | 519                                    | 504                                    | 277                             | 337                                     | 537                               | 233                                    | 110                             | 151                                    | 251                                  | 123                             |
| 12                               | 82                                 | 528                               | 542                                    | 381                                    | 268                             | 333                                     | 485                               | 221                                    | 112                             | 147                                    | 170                                  | 125                             |
| 13                               | 107                                | 241                               | 451                                    | 322                                    | 292                             | 326                                     | 466                               | 210                                    | 124                             | 221                                    | 141                                  | 1310                            |
| 14                               | 137                                | 182                               | 344                                    | 300                                    | 281                             | 302                                     | 418                               | 199                                    | 112                             | 443                                    | 129                                  | 697                             |
| 15                               | 99                                 | 162                               | 345                                    | 335                                    | 252                             | 282                                     | 386                               | 238                                    | 100                             | 559                                    | 117                                  | 274                             |
| 16                               | 95                                 | 155                               | 303                                    | 349                                    | 188                             | 267                                     | 370                               | 227                                    | 94                              | 205                                    | 106                                  | 242                             |
| 17                               | 97                                 | 143                               | 295                                    | 280                                    | 224                             | 253                                     | 519                               | 193                                    | 87                              | 162                                    | 102                                  | 261                             |
| 18                               | 106                                | 137                               | 1140                                   | 364                                    | 218                             | 242                                     | 566                               | 189                                    | 82                              | 140                                    | 96                                   | 561                             |
| 19                               | 106                                | 869                               | 1020                                   | 713                                    | 194                             | 235                                     | 417                               | 240                                    | 81                              | 129                                    | 84                                   | 464                             |
| 20                               | 102                                | 379                               | 529                                    | 591                                    | 192                             | 231                                     | 364                               | 226                                    | 80                              | 151                                    | 77                                   | 302                             |
| 21                               | 94                                 | 3020                              | 445                                    | 429                                    | 201                             | 226                                     | 339                               | 231                                    | 146                             | 123                                    | 72                                   | 245                             |
| 22                               | 92                                 | 588                               | 385                                    | 360                                    | 186                             | 218                                     | 315                               | 194                                    | 418                             | 103                                    | 74                                   | 240                             |
| 23                               | 89                                 | 412                               | 350                                    | 437                                    | 230                             | 211                                     | 293                               | 181                                    | 228                             | 92                                     | 78                                   | 222                             |
| 24                               | 82                                 | 422                               | 331                                    | 314                                    | 221                             | 205                                     | 358                               | 174                                    | 130                             | 139                                    | 66                                   | 193                             |
| 25                               | 81                                 | 358                               | 3490                                   | 270                                    | 214                             | 195                                     | 951                               | 163                                    | 107                             | 301                                    | 63                                   | 169                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 115<br>126<br>85<br>72<br>95<br>92 | 2290<br>2950<br>646<br>510<br>417 | 809<br>620<br>543<br>475<br>435<br>398 | 312<br>279<br>263<br>318<br>330<br>380 | 218<br>219<br>213               | 198<br>189<br>223<br>206<br>195<br>1240 | 443<br>362<br>392<br>392<br>344   | 157<br>154<br>156<br>144<br>132<br>122 | 98<br>394<br>163<br>118<br>101  | 296<br>223<br>129<br>103<br>135<br>132 | 63<br>174<br>178<br>216<br>120<br>94 | 155<br>141<br>135<br>129<br>162 |
| TOTAL                            | 2770                               | 16897                             | 22454                                  | 12291                                  | 7909                            | 13751                                   | 21215                             | 7456                                   | 4915                            | 6845                                   | 4958                                 | 7643                            |
| MEAN                             | 89.4                               | 563                               | 724                                    | 396                                    | 282                             | 444                                     | 707                               | 241                                    | 164                             | 221                                    | 160                                  | 255                             |
| MAX                              | 137                                | 3020                              | 3510                                   | 867                                    | 596                             | 2130                                    | 4470                              | 578                                    | 460                             | 893                                    | 992                                  | 1310                            |
| MIN                              | 62                                 | 85                                | 295                                    | 263                                    | 186                             | 189                                     | 293                               | 122                                    | 80                              | 92                                     | 63                                   | 85                              |

CAL YR 1986 TOTAL 131503 MEAN 360 MAX 5360 MIN 50 WTR YR 1987 TOTAL 129104 MEAN 354 MAX 4470 MIN 62

e Estimated

## 01400120 RARITAN RIVER AT RARITAN, NJ

LOCATION.--Lat 40°33'52", long 74°38'10", Somerset County, Hydrologic Unit 02030105, at bridge on South Branch-Raritan Road in Raritan, 1.7 mi upstream from Peters Brook, 3.5 mi northeast of South Branch, and 3.6 mi southeast of North Branch.

DRAINAGE AREA . - - 474 mi 2 .

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                           | STRE<br>FLO<br>INST<br>TANE<br>(CF | M, CO<br>AN- DU<br>OUS AN                                           | IFIC<br>DN-<br>JCT- (<br>NCE                     | PH<br>STAND-<br>ARD<br>NITS) | TEMPERATURE WATER (DEG C)          | SO                                              | GEN,                                                           |                               | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL<br>EC<br>BROTH<br>(MPN) | , STF                                          | REP-<br>DCCI<br>CAL<br>PN) |
|----------------|--------------------------------|------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|------------------------------|------------------------------------|-------------------------------------------------|----------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------|
| OCT_1986       |                                |                                    |                                                                     |                                                  |                              |                                    |                                                 |                                                                |                               |                                                                | 474                                             |                                                | 7 7                        |
| 07<br>JAN 1987 | 1030                           | E224                               |                                                                     | 254                                              | 7.9                          | 15.0                               | 1                                               | 0.6                                                            | 105                           | 1.6                                                            | 170                                             | 20                                             |                            |
| 15             | 1100                           | E745                               |                                                                     | 235                                              | 7.5                          | 4.5                                | 1                                               | 3.2                                                            | 103                           | >6.5                                                           | 330                                             | 31                                             | 1                          |
| 25<br>IAY      | 1030                           | E395                               |                                                                     | 237                                              | 8.0                          | 13.0                               | 1                                               | 2.1                                                            | 114                           | 3.2                                                            | <2                                              | 11                                             | 1                          |
| 20             | 1030                           | E532                               |                                                                     | 243                                              | 7.6                          | 15.0                               |                                                 | 9.5                                                            | 93                            | 1.8                                                            | 920                                             | 540                                            | 0                          |
| 01             | 1030                           | E258                               |                                                                     | 289                                              | 8.0                          | 27.0                               |                                                 | 9.2                                                            | 116                           | 2.3                                                            | 240                                             | 240                                            | )                          |
| NUG<br>05      | 1100                           | E233                               |                                                                     | 282                                              | 7.8                          | 27.5                               |                                                 | 7.3                                                            | 93                            | 1.7                                                            | 350                                             | 13                                             | 5                          |
| DATE           | HAF<br>NES<br>(MC<br>AS<br>CAC | SS<br>G/L                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG | DIS<br>D SOLV                | IUM, S<br>S- E<br>/ED SC<br>G/L (! | OTAS-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | SULFA<br>DIS-<br>SOLV<br>(MG/ | ED SOL                                                         | E, R<br>-<br>VED S<br>/L (                      | LUO-<br>IDE,<br>DIS-<br>OLVED<br>MG/L<br>IS F) |                            |
| OCT 1986       |                                | 92                                 | 22                                                                  | 9.1                                              | 13                           |                                    | 2.4                                             | 72                                                             | 23                            | 19                                                             |                                                 | 0.1                                            |                            |
| JAN 1987       |                                |                                    |                                                                     |                                                  |                              |                                    |                                                 |                                                                |                               |                                                                |                                                 |                                                |                            |
| 15<br>MAR      |                                | 75                                 | 18                                                                  | 7.4                                              | 1                            |                                    | 1.6                                             | 44                                                             | 23                            |                                                                |                                                 | <0.1                                           |                            |
| 25             |                                | 83                                 | 20                                                                  | 8.0                                              | 14                           | •                                  | 1.5                                             | 55                                                             | 25                            | 23                                                             |                                                 | 0.1                                            |                            |
| 20<br>JUL      |                                | 83                                 | 20                                                                  | 8.1                                              | 13                           | 3                                  | 1.4                                             | 59                                                             | 21                            | 21                                                             |                                                 | 0.1                                            |                            |
| 01             |                                | 94                                 | 23                                                                  | 9.0                                              | 1:                           | 5                                  | 2.1                                             | 71                                                             | 24                            | 27                                                             |                                                 | 0.1                                            |                            |
| AUG<br>05      |                                | 98                                 | 24                                                                  | 9.3                                              | 1 10                         | 6                                  | 2.5                                             | 67                                                             | 29                            | 24                                                             |                                                 | 0.2                                            |                            |
| DATE           | SO (M                          | LVED<br>G/L                        | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN<br>NITRI<br>TOTAL<br>(MG/I<br>AS N  | GI<br>TE NO2-<br>TO          | EN,<br>+NO3 AM<br>TAL TO<br>G/L (  | ITRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L<br>S N)  | NITRO<br>GEN, AM<br>MONÍA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | + NITR C GEN TOTA             | PHOR<br>L TOT<br>L (MG                                         | AL I                                            | ARBON,<br>RGANIC<br>FOTAL<br>(MG/L<br>AS C)    |                            |
| OCT_1986       |                                |                                    |                                                                     |                                                  |                              |                                    |                                                 | -                                                              |                               |                                                                |                                                 |                                                |                            |
| JAN 1987       |                                | 9.5                                | 140                                                                 |                                                  |                              |                                    | .05                                             | 0.56                                                           | 1.4                           | 0.13                                                           |                                                 | 5.1                                            | 2                          |
| 15<br>MAR      |                                | 12                                 | 130                                                                 | 0.0                                              | 17 2                         | .16 0                              | .17                                             | 0.34                                                           | 2.5                           | 0.14                                                           | 0                                               | ••                                             | $e^{\int d^2 r}$           |
| 25<br>MAY      |                                | 5.8                                | 130                                                                 | 0.0                                              | 3 0                          | .99 0                              | .07                                             | 0.30                                                           | 1.3                           | <0.02                                                          | 20 2                                            | 2.2                                            |                            |
| 20             |                                | 7.9                                | 130                                                                 | 0.0                                              | 36 1                         | .10 0                              | .14                                             | 0.87                                                           | 2.0                           | 0.07                                                           | 3                                               | 7.5                                            |                            |
| JUL<br>01      |                                | 10                                 | 150                                                                 | 0.0                                              | 23 1                         | .23 0                              | .07                                             | 0.67                                                           | 1.9                           | 0.12                                                           | 20                                              | 3.1                                            |                            |
| AUG<br>05      |                                |                                    |                                                                     |                                                  |                              |                                    |                                                 |                                                                |                               |                                                                |                                                 |                                                |                            |

# 01400120 RARITAN RIVER AT RARITAN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE     | TIME           | SULFID<br>TOTAL<br>(MG/L<br>AS S) | SOLV<br>(UG/                                          | ARSE TOT                                                        | NIC RE                                                  | RYL-<br>UM,<br>OTAL<br>COV-<br>RABLE<br>IG/L<br>G BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------|----------------|-----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT 1986 | 1030           | <0.                               | 5                                                     | 10                                                              | <1 -                                                    | :10                                                   | 40                                                    | <1                                                      | <10                                                            | 6                                                       |
| DATE     | TI<br>RI<br>Ei | DTAL<br>ECOV-<br>RABLE<br>UG/L    | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | TOT<br>REC<br>ERA<br>(UG                              | AL SE<br>OV- NI<br>BLE TO<br>/L (U                    | TAL ER                                                  | TAĹ<br>COV-<br>ABLE PHE<br>G/L TO                              | ENOLS<br>OTAL<br>G/L)                                   |
| OCT 1986 | 19,0           | 190                               | 21                                                    | 30                                                              | 0.10                                                    | )                                                     | 2                                                     | <1                                                      | 10                                                             | 2                                                       |

173

## 01400300 PETERS BROOK NEAR RARITAN, NJ

LOCATION.--Lat 40°35'37", long 74°37'51", Revised, Somerset County, Hydrologic Unit 02030105, on left bank 12 ft upstream from bridge on Garretson Road, 1.5 mi north of Raritan, and 2.5 mi from mouth.

DRAINAGE AREA. -- 4.19 mi 2.

PERIOD OF RECORDS. -- May 1978 to current year.

REVISED RECORD .-- WDR NJ-79-1: 1978(P).

GAGE.--Water-stage recorder. Datum of gage is 68.71 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records poor. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE. -- 9 years, 6.36 ft3/s, 20.61 in./yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,090 ft<sup>3</sup>/s, July 7, 1984, gage height, 8.15 ft; no flow part or all of some days in most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft<sup>3</sup>/s and maximum (\*):

| Date               | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date              | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------------------|--------------|-----------------------------------|------------------|-------------------|--------------|-----------------------------------|---------------------|
| Nov. 21<br>Nov. 26 | 0030<br>2015 | 689<br>*966                       | 6.25<br>*7.10    | Dec. 25<br>June 4 | 0415<br>2000 | 726<br>564                        | 6.37<br>5.82        |
| Dec. 3             | 0045         | 606                               | 5.96             | July 3            | 0100         | 573                               | 5.85                |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 0.10 ft<sup>3</sup>/s, Oct. 18, 19, 21, 25, 26, gage height 1.55 ft.

|                                            |                                        |                                              |                                             |                                            |                                            | MEAN VAL                                     | UES                                         |                                          |                                             |                                             |                                            |                                          |
|--------------------------------------------|----------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|
| DAY                                        | ОСТ                                    | NOV                                          | DEC                                         | JAN                                        | FEB                                        | MAR                                          | APR                                         | MAY                                      | JUN                                         | JUL                                         | AUG                                        | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | .18<br>.20<br>3.6<br>2.3<br>.29        | .41<br>.36<br>.34<br>.52                     | 1.8<br>59<br>105<br>6.0<br>3.1              | 1.6<br>63<br>17<br>5.9<br>2.9              | 4.2<br>11<br>30<br>31<br>13                | 105<br>27<br>11<br>7.1<br>5.5                | 8.3<br>3.5<br>2.8<br>149                    | 1.8<br>1.6<br>3.5<br>21<br>9.8           | 5.0<br>.83<br>91<br>21                      | 3.3<br>20<br>67<br>2.9<br>1.6               | .73<br>.71<br>.67<br>.53                   | 1.1<br>.80<br>.55<br>.45<br>.45          |
| 6<br>7<br>8<br>9                           | .05<br>.19<br>.17<br>.15               | 9.0<br>.78<br>18<br>2.6<br>1.1               | 2.3<br>2.0<br>1.8<br>42                     | 2.3<br>2.3<br>2.4<br>2.0<br>9.7            | 8.1<br>10<br>9.8<br>10<br>5.1              | 3.7<br>3.7<br>3.5<br>3.1<br>2.0              | 44<br>20<br>8.8<br>5.1<br>3.7               | 4.0<br>2.5<br>2.4<br>2.0<br>2.1          | 2.5<br>1.5<br>1.2<br>1.5<br>1.0             | 1.5<br>4.3<br>52<br>40<br>3.9               | 16<br>2.9<br>1.9<br>2.3<br>34              | .67<br>1.4<br>5.8<br>6.9<br>1.1          |
| 11<br>12<br>13<br>14<br>15                 | .15<br>.14<br>.34<br>3.1<br>.42        | 32<br>4.4<br>1.3<br>.82<br>.62               | 4.3<br>9.6<br>3.7<br>2.0<br>1.8             | 14<br>4.4<br>2.9<br>2.3<br>2.6             | 4.1<br>3.9<br>3.3<br>2.7<br>1.8            | 1.6<br>1.7<br>2.5<br>2.0<br>1.7              | 2.9<br>2.4<br>2.4<br>2.5                    | 1.5<br>1.5<br>1.3<br>1.1<br>6.1          | .87<br>1.1<br>.87<br>.64<br>.51             | 1.7<br>2.2<br>1.2<br>69                     | 2.9<br>1.8<br>1.3<br>.99<br>.82            | .79<br>.72<br>26<br>3.6<br>1.4           |
| 16<br>17<br>18<br>19<br>20                 | .18<br>.12<br>.11<br>.11               | .60<br>.46<br>6.8<br>54<br>39                | 1.8<br>1.8<br>64<br>12<br>3.5               | 2.0<br>1.5<br>18<br>31                     | 1.4<br>1.6<br>1.8<br>1.5                   | 1.5<br>1.4<br>1.4<br>1.3<br>1.3              | 2.3<br>12<br>6.3<br>2.6<br>2.0              | 1.6<br>1.0<br>2.6<br>3.0<br>2.1          | .42<br>.39<br>.33<br>.35                    | 2.6<br>1.5<br>1.1<br>3.5<br>1.5             | .64<br>.67<br>.89<br>.60<br>.34            | 1.4<br>9.0<br>10<br>3.6<br>2.0           |
| 21<br>22<br>23<br>24<br>25                 | .11<br>.14<br>.23<br>.13               | 80<br>2.7<br>1.5<br>3.6<br>1.8               | 2.4<br>1.9<br>1.7<br>6.1<br>134             | 5.8<br>3.4<br>3.6<br>2.4<br>1.9            | 1.5<br>1.9<br>4.6<br>6.4<br>5.4            | 1.2<br>1.2<br>1.1<br>1.0<br>1.0              | 1.8<br>1.6<br>1.4<br>8.8<br>26              | 2.0<br>1.1<br>1.2<br>.96<br>.82          | 14<br>55<br>6.2<br>1.9<br>1.2               | .65<br>.68<br>.70<br>18<br>9.0              | .32<br>.70<br>.45<br>.43<br>.45            | 1.2<br>1.7<br>1.3<br>.91<br>.78          |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.9<br>.82<br>.37<br>.36<br>.32<br>.61 | 179<br>19<br>4.8<br>3.1<br>2.2               | 6.4<br>3.5<br>2.6<br>2.2<br>2.0<br>1.8      | 1.9<br>1.7<br>1.6<br>1.5<br>4.1<br>6.9     | 6.0<br>4.6<br>6.2                          | .97<br>.98<br>2.7<br>1.3<br>2.8              | 3.8<br>2.2<br>6.4<br>4.5<br>2.7             | .76<br>.68<br>.73<br>.60<br>.62          | .87<br>53<br>3.1<br>1.4<br>2.9              | 27<br>3.1<br>1.3<br>.91<br>2.3<br>1.0       | 9.2<br>4.2<br>4.5<br>1.3                   | .66<br>.61<br>.66<br>.66<br>2.6          |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 18.19<br>.59<br>3.6<br>.05<br>.14      | 475.41<br>15.8<br>179<br>.34<br>3.78<br>4.22 | 503.1<br>16.2<br>134<br>1.7<br>3.87<br>4.47 | 233.6<br>7.54<br>63<br>1.5<br>1.80<br>2.07 | 192.3<br>6.87<br>31<br>1.4<br>1.64<br>1.71 | 245.25<br>7.91<br>105<br>.97<br>1.89<br>2.18 | 356.2<br>11.9<br>149<br>1.4<br>2.83<br>3.16 | 82.57<br>2.66<br>21<br>.60<br>.64<br>.73 | 271.60<br>9.05<br>91<br>.33<br>2.16<br>2.41 | 356.44<br>11.5<br>69<br>.65<br>2.74<br>3.16 | 128.66<br>4.15<br>35<br>.32<br>.99<br>1.14 | 88.81<br>2.96<br>26<br>.45<br>.71<br>.79 |

CAL YR 1986 TOTAL 2858.11 MEAN 7.83 MAX 241 MIN .05 CFSM 1.87 IN. 25.37 WTR YR 1987 TOTAL 2952.09 MEAN 8.09 MAX 179 MIN .05 CFSM 1.93 IN. 26.20

#### 01400350 MACS BROOK AT SOMERVILLE, NJ

LOCATION.--Lat 40°34'26", long 74°37'06", Somerset County, Hydrologic Unit 02030105, on left upstream wingwall of culvert under access road from U.S. Highway 22 west to U.S. Highways 202 and 206, 1,200 ft upstream from Peters Brook, and 0.4 mi north of Somerville.

DRAINAGE AREA . - - 0.77 mi 2.

PERIOD OF RECORD . - - June 1982 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 58.37 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good above 0.5 ft<sup>3</sup>/s and fair below, except for the periods of estimated daily discharges, which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 5 years, 1.62 ft3/s, 28.57 in./yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 549 ft<sup>3</sup>/s, Apr. 16, 1986, gage height 4.66 ft; no flow part or all of many days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft<sup>3</sup>/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Nov. 26 | 1945 | 185                               | 3.94             | July 14 | 1645 | 255                               | 4.58                |
| Dec. 25 | 0315 | 178                               | 3.87             | Aug. 5  | 1530 | *306                              | *4.97               |

No flow part of many days in October and November.

|                                            |                                  | DISCHA                                     | RGE, IN C                                   | UBIC FEET                                  | PER SECO                                    | ND, WATER<br>MEAN VAL                      | YEAR OCTO                                  | OBER 1986                                | TO SEPTE                                   | MBER 1987                                   |                                            |                                          |
|--------------------------------------------|----------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|
| DAY                                        | OCT                              | NOV                                        | DEC                                         | JAN                                        | FEB                                         | MAR                                        | APR                                        | MAY                                      | JUN                                        | JUL                                         | AUG                                        | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | .09<br>.05<br>.08<br>.05<br>.02  | .00<br>.00<br>.04<br>.02<br>.69            | .20<br>13<br>23<br>.93<br>.35               | .17<br>17<br>3.9<br>1.0<br>.53             | .93<br>1.8<br>5.4<br>4.4<br>1.4             | 30<br>5.3<br>1.4<br>.86<br>.58             | 1.1<br>.34<br>.40<br>34<br>2.2             | .50<br>.46<br>.62<br>3.5<br>1.8          | .10<br>.25<br>.12<br>11<br>4.8             | .55<br>6.4<br>7.2<br>.65<br>.37             | .30<br>.38<br>.90<br>.55                   | .27<br>.48<br>.16<br>.11                 |
| 6<br>7<br>8<br>9                           | .05<br>.04<br>.04<br>.04<br>.03  | .86<br>.10<br>2.4<br>.30<br>.14            | .22<br>.18<br>.21<br>11<br>2.0              | .32<br>.32<br>.34<br>.30                   | 1.1<br>1.5<br>1.4<br>1.6<br>.86             | .64<br>.47<br>.49<br>.45<br>.31            | 8.3<br>3.2<br>1.3<br>.87                   | 1.0<br>.52<br>.43<br>.35<br>.33          | .66<br>.36<br>.50<br>.80                   | .35<br>.26<br>9.8<br>9.5<br>1.2             | 10<br>3.8<br>.64<br>1.2                    | .16<br>.22<br>2.5<br>.89<br>.22          |
| 11<br>12<br>13<br>14<br>15                 | .00<br>.00<br>.04<br>.48<br>.03  | 5.4<br>.58<br>.16<br>.08                   | .78<br>1.8<br>.45<br>e.51<br>e.38           | 1.9<br>.75<br>.32<br>.36<br>.33            | .51<br>.46<br>e.32<br>e.30<br>e.30          | .28<br>.42<br>.58<br>.23<br>.25            | .44<br>.46<br>.51<br>.40<br>.39            | .34<br>.29<br>.23<br>.19                 | .57<br>.67<br>.54<br>.44                   | 1.9<br>.87<br>28<br>4.3                     | 1.4<br>.83<br>.54<br>.35                   | .19<br>.16<br>5.6<br>.75<br>.32          |
| 16<br>17<br>18<br>19<br>20                 | .0<br>.03<br>.00<br>.00          | .05<br>.08<br>1.9<br>6.7                   | e.54<br>e.54<br>14<br>2.1<br>.41            | .27<br>.20<br>3.9<br>7.7<br>2.2            | .47<br>.40<br>.46<br>.40                    | .47<br>.31<br>.15<br>.41<br>.27            | .43<br>1.9<br>.88<br>.46<br>.53            | .23<br>.20<br>.47<br>.43<br>.35          | .39<br>.22<br>.21<br>.20<br>.20            | 1.1<br>.61<br>.43<br>1.6<br>.66             | .20<br>.35<br>.20<br>.15                   | .25<br>2.4<br>1.3<br>.29<br>.18          |
| 21<br>22<br>23<br>24<br>25                 | .03<br>.03<br>.02<br>.02         | .42<br>.20<br>.70<br>.26                   | .29<br>.20<br>.18<br>2.3                    |                                            | .27<br>.34<br>.71<br>1.2<br>.97             | .14<br>.14<br>.19<br>.36<br>.22            | .46<br>.46<br>.41<br>2.8<br>5.9            | .30<br>.19<br>.23<br>.16                 | 3.4<br>11<br>1.7<br>.85<br>.45             | .88<br>.41<br>.49<br>9.2<br>3.3             | .14<br>.29<br>.15<br>.13                   | .34<br>.73<br>.27<br>.31<br>.12          |
| 26<br>27<br>28<br>29<br>30<br>31           | .33<br>.05<br>.03<br>.02<br>.02  | 33<br>2.9<br>.52<br>.29<br>.19             | .97<br>.36<br>.30<br>.24<br>.24             | e.60<br>e.47<br>e.48<br>e.44<br>1.3        | .94<br>.59<br>1.0                           | .13<br>.13<br>.33<br>.16<br>.47<br>8.0     | .99<br>.64<br>1.4<br>.98<br>.65            | .13<br>.13<br>.13<br>.13<br>.12          | 2.5<br>.45<br>.31<br>.26                   | 9.9<br>1.9<br>1.3<br>1.1<br>.72<br>.34      | .13<br>2.3<br>1.3<br>.42<br>.19            | .11<br>.11<br>.27<br>.07<br>.31          |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1.68<br>.05<br>.48<br>.00<br>.07 | 82.04<br>2.73<br>33<br>.00<br>3.55<br>3.96 | 107.88<br>3.48<br>30<br>.18<br>4.52<br>5.21 | 52.15<br>1.68<br>17<br>.17<br>2.18<br>2.52 | 30.42<br>1.09<br>5.4<br>.27<br>1.41<br>1.47 | 54.14<br>1.75<br>30<br>.13<br>2.27<br>2.62 | 73.41<br>2.45<br>34<br>.34<br>3.18<br>3.55 | 14.72<br>.47<br>3.5<br>.12<br>.62<br>.71 | 44.38<br>1.48<br>11<br>.10<br>1.92<br>2.14 | 105.79<br>3.41<br>28<br>.26<br>4.43<br>5.11 | 64.59<br>2.08<br>26<br>.13<br>2.71<br>3.12 | 19.21<br>.64<br>5.6<br>.07<br>.83<br>.93 |

CAL YR 1986 TOTAL 686.88 MEAN 1.88 MAX 97 MIN .00 CFSM 2.44 IN. 33.18 WTR YR 1987 TOTAL 650.40 MEAN 1.78 MAX 34 MIN .00 CFSM 2.31 IN. 31.41

e Estimated

### 01400500 RARITAN RIVER AT MANVILLE, NJ

LOCATION.--Lat 40°33'18", long 74°35'02", Somerset County, Hydrologic Unit 02030105, on left bank at downstream side of bridge on North Main Street (Finderne Avenue) at Manville, and 1.4 mi upstream from Millstone River. DRAINAGE AREA.--490 mi<sup>2</sup>.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to March 1907 (published as "at Finderne"), August 1908 to April 1915 (gage heights only, published in WSP 521), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1552: 1904, 1906, 1922, 1923(M), 1924-25, 1926-29(M), 1930, 1932-33(M), 1924-54. WDR NJ-75-1: 1964(M), 1969(M), 1970(P), 1972(P), 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 20.61 ft above National Geodetic Vertical Datum of 1929. Prior to

Aug. 15, 1907(m), 1970(r), 1972(r), 1973(r), 1973(r).

AGGE.--Water-stage recorder. Datum of gage is 20.61 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 15, 1923, nonrecording gage on downstream side of highway bridge at same site and datum. From Oct. 1, 1952 to Sept. 30, 1966, water-stage recorder at station at Bound Brook, above Calco Dam (station 01403000) used as auxiliary gage when stage is above 5.0 ft. In Oct. 1, 1966, water-stage recorder at station at Bound Brook, used as auxiliary gage, was moved downstream to present site (station 01403060). Between June 9, 1978 and June 7, 1979, gage temporarily relocated at site 1.4 mi downstream, just upstream of Millstone River, because of reconstruction of highway bridge.

REMARKS.--No estimated daily discharges. Records good. Records given herein represent flow at gage only. Slight diurnal fluctuation at low flow. Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversion to Round Valley Reservoir since March 1966 (see Raritan River basin, diversions). Prior to Sept. 1, 1986, water diverted 1,500 ft upstream from station by Johns-Manville Corporation and returned to river 600 ft downstream from Millstone River (see Raritan River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

AVERAGE DISCHARGE.--69 years, (water years 1904-06, 1922-87), 766 ft 3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 36,300 ft 3/s, Aug. 28, 1971, gage height, 23.8 ft, from floodmark (backwater from Millstone River), from rating curve extended above 14,000 ft 3/s on basis of slope-area measurements at gage heights, 14.9 and 20.42 ft; minimum daily discharge, 17 ft 3/s, Sept. 19, 1964 (does not include water diverted to Johns-Manville Plant).

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 10,000 ft 3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Nov. 27 | 0700 | 14,400                            | 14.77            | Dec. 25 | 1415 | 13,100                            | 13.99               |
| Dec. 3  | 1145 | 11,600                            | 13.45            | Apr. 4  | 2330 | *17,600                           | *16.17              |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 163 ft<sup>3</sup>/s, Oct. 29, 30, gage height, 3.94 ft.

|                                  |                                        | DISCHA                               | MOL, IN C                                   | ODIC TEET                              | PER SECO                        | MEAN VAL                                | UES                                  | OBER 1700                              | TO SEFTE                        | MOEK 1707                              |                                        |                                 |
|----------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | OCT                                    | NOV                                  | DEC                                         | JAN                                    | FEB                             | MAR                                     | APR                                  | MAY                                    | JUN                             | JUL                                    | AUG                                    | SEP                             |
| 1 2 3 4 5                        | 270                                    | 195                                  | 824                                         | 797                                    | 745                             | 4100                                    | 2230                                 | 749                                    | 282                             | 260                                    | 277                                    | 283                             |
|                                  | 248                                    | 201                                  | 910                                         | 1980                                   | 639                             | 5040                                    | 1010                                 | 664                                    | 359                             | 483                                    | 242                                    | 301                             |
|                                  | 234                                    | 216                                  | 8220                                        | 1820                                   | 953                             | 2450                                    | 805                                  | 650                                    | 390                             | 2040                                   | 334                                    | 230                             |
|                                  | 276                                    | 206                                  | 2570                                        | 1270                                   | 1390                            | 1840                                    | 8250                                 | 1380                                   | 869                             | 547                                    | 282                                    | 220                             |
|                                  | 283                                    | 221                                  | 1560                                        | 958                                    | 1110                            | 1300                                    | 8920                                 | 1420                                   | 1690                            | 328                                    | 448                                    | 244                             |
| 6<br>7<br>8<br>9                 | 243<br>211<br>210<br>215<br>210        | 533<br>414<br>610<br>776<br>445      | 1140<br>981<br>879<br>1770<br>2590          | 833<br>793<br>757<br>685<br>741        | 831<br>844<br>917<br>900<br>664 | 1100<br>1130<br>1280<br>1160<br>958     | 4030<br>3130<br>2470<br>2070<br>1760 | 1010<br>842<br>731<br>646<br>602       | 566<br>400<br>349<br>351<br>337 | 264<br>241<br>758<br>929<br>596        | 1350<br>590<br>336<br>288<br>2630      | 222<br>316<br>427<br>884<br>523 |
| 11                               | 204                                    | 715                                  | 1450                                        | 1150                                   | 663                             | 791                                     | 1270                                 | 558                                    | 289                             | 343                                    | 1090                                   | 311                             |
| 12                               | 187                                    | 1400                                 | 1310                                        | 983                                    | 631                             | 758                                     | 1060                                 | 522                                    | 250                             | 369                                    | 540                                    | 270                             |
| 13                               | 225                                    | 606                                  | 1120                                        | 799                                    | 587                             | 740                                     | 1040                                 | 496                                    | 275                             | 580                                    | 389                                    | 1810                            |
| 14                               | 293                                    | 417                                  | 814                                         | 742                                    | 535                             | 688                                     | 960                                  | 450                                    | 262                             | 1150                                   | 325                                    | 2430                            |
| 15                               | 261                                    | 352                                  | 761                                         | 807                                    | 491                             | 634                                     | 852                                  | 516                                    | 237                             | 3200                                   | 293                                    | 847                             |
| 16                               | 206                                    | 329                                  | 717                                         | 887                                    | 492                             | 589                                     | 859                                  | 598                                    | 238                             | 891                                    | 267                                    | 558                             |
| 17                               | 208                                    | 301                                  | 687                                         | 713                                    | 619                             | 549                                     | 1270                                 | 461                                    | 226                             | 541                                    | 245                                    | 546                             |
| 18                               | 218                                    | 289                                  | 1950                                        | 785                                    | 528                             | 463                                     | 1700                                 | 447                                    | 203                             | 416                                    | 258                                    | 1230                            |
| 19                               | 220                                    | 1860                                 | 3320                                        | 1890                                   | 449                             | 441                                     | 1100                                 | 537                                    | 215                             | 369                                    | 243                                    | 1140                            |
| 20                               | 216                                    | 909                                  | 1560                                        | 1840                                   | 409                             | 427                                     | 919                                  | 558                                    | 263                             | 358                                    | 228                                    | 790                             |
| 21                               | 207                                    | 5560                                 | 1130                                        | 1170                                   | 380                             | 409                                     | 836                                  | 580                                    | 405                             | 319                                    | 228                                    | 593                             |
| 22                               | 203                                    | 1910                                 | 938                                         | 953                                    | 386                             | 333                                     | 768                                  | 475                                    | 894                             | 281                                    | 246                                    | 611                             |
| 23                               | 201                                    | 1060                                 | 826                                         | 921                                    | 480                             | 318                                     | 690                                  | 424                                    | 614                             | 243                                    | 261                                    | 637                             |
| 24                               | 188                                    | 991                                  | 763                                         | 753                                    | 486                             | 356                                     | 815                                  | 402                                    | 272                             | 293                                    | 225                                    | 497                             |
| 25                               | 184                                    | 895                                  | 8180                                        | 725                                    | 452                             | 344                                     | 2700                                 | 369                                    | 219                             | 996                                    | 220                                    | 418                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 231<br>298<br>221<br>177<br>185<br>200 | 2700<br>8320<br>2000<br>1310<br>1010 | 2830<br>1830<br>1340<br>1120<br>1000<br>917 | 754<br>685<br>576<br>617<br>633<br>762 | 449<br>460<br>455<br>           | 337<br>325<br>367<br>329<br>299<br>2130 | 1490<br>1040<br>1020<br>1070<br>924  | 344<br>337<br>338<br>328<br>307<br>287 | 228<br>761<br>362<br>240<br>207 | 924<br>779<br>382<br>277<br>299<br>390 | 248<br>465<br>491<br>530<br>362<br>245 | 375<br>333<br>304<br>293<br>324 |
| TOTAL                            | 6933                                   | 36751                                | 56007                                       | 29779                                  | 17945                           | 31985                                   | 57058                                | 18028                                  | 12253                           | 19846                                  | 14176                                  | 17967                           |
| MEAN                             | 224                                    | 1225                                 | 1807                                        | 961                                    | 641                             | 1032                                    | 1902                                 | 582                                    | 408                             | 640                                    | 457                                    | 599                             |
| MAX                              | 298                                    | 8320                                 | 8220                                        | 1980                                   | 1390                            | 5040                                    | 8920                                 | 1420                                   | 1690                            | 3200                                   | 2630                                   | 2430                            |
| MIN                              | 177                                    | 195                                  | 687                                         | 576                                    | 380                             | 299                                     | 690                                  | 287                                    | 203                             | 241                                    | 220                                    | 220                             |

**CAL YR 1986** TOTAL 329353 MEAN 902 MAX 11900 MIN 177 WTR YR 1987 TOTAL 318728 MEAN 873 MAX 8920 MIN 177

## 01400500 RARITAN RIVER AT MANVILLE, NJ -- Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1959, 1962-73, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME     | STRE<br>FLO<br>INST<br>TANE<br>(CF | W, COI<br>AN- DUI<br>OUS AN                                         | FIC<br>N-<br>CT-<br>CE                       | PH<br>(STAND-<br>ARD<br>JNITS) | TEMP<br>ATU<br>WAT<br>(DEG           | RE<br>ER                                | SOL                    | SEN,<br>S-<br>VED                                            | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGE<br>DEMAN<br>BIO-<br>CHEN<br>ICAL<br>5 DA<br>(MG/ | ID, CO<br>FO<br>I- FE<br>IÝ BF                      | DLI-<br>DRM,<br>ECAL,<br>EC<br>ROTH      | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------|----------|------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------|--------------------------------------|-----------------------------------------|------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|------------------------------------------|-------------------------------------|
| OCT 1986       |          |                                    |                                                                     |                                              |                                |                                      |                                         |                        |                                                              | 22 3440                                                       |                                                        |                                                     |                                          |                                     |
| 08<br>JAN 1987 | 1100     | 209                                |                                                                     | 256                                          | 7.9                            | 14                                   | .5                                      | 10                     | ).3                                                          | 101                                                           | 1.                                                     | .2 1                                                | 10                                       | 23                                  |
| 20<br>MAR      | 1100     | 1830                               |                                                                     | 270                                          | 7.8                            | 1                                    | .0                                      | 14                     | .2                                                           | 100                                                           | 1.                                                     | 4 >240                                              | 00                                       | 1600                                |
| 26             | 1130     | 365                                |                                                                     | 238                                          | 9.8                            | 14                                   | .0                                      | 13                     | 3.0                                                          | 127                                                           | 2.                                                     | .5                                                  | <2                                       | 14                                  |
| JUN<br>01      | 1115     | 295                                |                                                                     | 261                                          | 8.0                            | 28                                   | .0                                      |                        | 3.2                                                          | 105                                                           | 2.                                                     | .0                                                  | 79                                       | 23                                  |
| JUL<br>06      | 1100     | 264                                |                                                                     | 257                                          | 7.9                            | 26                                   | .0                                      |                        | 3.8                                                          | 108                                                           | 3.                                                     | 3 2                                                 | 40                                       | 350                                 |
| AUG 24         | 1030     | 229                                |                                                                     | Tio                                          | 7.9                            | 22                                   | .5                                      |                        | 2.0                                                          | AZ109-2                                                       | 1.                                                     | 1                                                   | 70                                       | 48                                  |
| DATE           | AS       | SS<br>G/L                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNI<br>SIUI<br>DIS<br>SOLVI<br>(MG/I       | M, SOD<br>DISED SOL            |                                      | POTA<br>SIL<br>DIS<br>SOL<br>(MG,<br>AS | JM,<br>S-<br>VED<br>/L | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3               | SULF<br>DIS<br>SOL<br>(MG                                     | VED<br>/L                                              | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUC<br>RIDI<br>DI:<br>SOL<br>(MG,<br>AS | E,<br>S-<br>VED<br>/L               |
| OCT 1986       |          | 95                                 | 23                                                                  | 9.                                           | 2 1                            | 3                                    | 2                                       | .6                     | 72                                                           | 2                                                             | 4                                                      | 19                                                  | <0                                       | .1                                  |
| JAN 1987<br>20 |          | 57                                 | 14                                                                  | 5.                                           | 4 2                            | 4                                    | 1                                       | .6                     | 35                                                           | 2                                                             | 3                                                      | 40                                                  | <0                                       | .1                                  |
| MAR 26         |          | 82                                 | 20                                                                  | 7.                                           | 7 1                            | 4                                    | 1                                       | .6                     | 55                                                           | 2                                                             | 2                                                      | 25                                                  | <0                                       | .1                                  |
| JUN<br>01      |          | 92                                 | 22                                                                  | 8.                                           | 9 1                            | 4                                    | 1                                       | .9                     | 66                                                           | 2                                                             | 4                                                      | 21                                                  | 0                                        | .1                                  |
| JUL<br>06      |          | 86                                 | 21                                                                  | 8.                                           | 1 1                            | 4                                    | 2                                       | .4                     | 60                                                           | 2                                                             | 4                                                      | 25                                                  | <0                                       | .1                                  |
| AUG            |          | 400                                |                                                                     |                                              |                                | 300                                  |                                         |                        |                                                              |                                                               | 1700                                                   |                                                     |                                          |                                     |
| 24             |          | 100                                | 25                                                                  | 10                                           | Paris 1                        | 6                                    | 2                                       | .1                     | 74                                                           |                                                               | 26                                                     | 21                                                  | U                                        | .1                                  |
| DATE           | SO<br>(M | LVED<br>G/L                        | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | TE NO2                         | TRO-<br>EN,<br>2+NO3<br>OTAL<br>IG/L | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS   | N,<br>NIA<br>AL<br>/L  | NITRO<br>GEN, AN<br>MONIA<br>ORGAN<br>TOTAL<br>(MG/I<br>AS N | 4-<br>+ NIT<br>IC GE<br>L TOT<br>L (MC                        | AL<br>S/L                                              | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         | CARB<br>ORGA<br>TOT<br>(MG<br>AS         | NIĊ<br>AL<br>/L                     |
| OCT 1986       |          | 020                                |                                                                     |                                              |                                |                                      |                                         |                        |                                                              |                                                               |                                                        |                                                     |                                          |                                     |
| 08<br>JAN 1987 |          | 9.2                                | 140                                                                 | 0.0                                          | 10 0                           | .73                                  | 0.1                                     | 5                      | 0.61                                                         | 1.3                                                           | 3                                                      | 0.130                                               | 2.9                                      |                                     |
| 20<br>MAR      |          | 9.4                                | 140                                                                 | 0.0                                          | 21 1                           | .58                                  | 0.2                                     | 4                      | 0.78                                                         | 2.4                                                           |                                                        | 0.280                                               | 5.0                                      | 500                                 |
| 26<br>JUN      |          | 4.7                                | 130                                                                 | 0.0                                          | 31 0                           | .81                                  | 0.0                                     | 6                      | 0.82                                                         | 1.6                                                           | 5                                                      | 0.051                                               | 3.4                                      | - D. T                              |
| 01             |          | 11                                 | 140                                                                 | 0.0                                          | 49 1                           | .19                                  | 0.0                                     | 7                      | 0.40                                                         | 1.0                                                           | 5                                                      | 0.123                                               | 3.5                                      | - 5                                 |
| JUL<br>06      |          | 11                                 | 140                                                                 | 0.0                                          | 30 1                           | .56                                  | 0.1                                     | 1                      | 0.98                                                         | 2.5                                                           | 5                                                      | 0.130                                               | 5.0                                      | right t                             |
| AUG<br>24      |          | 6.4                                | 150                                                                 | 0.0                                          | 15 0                           | .67                                  | 0.1                                     | 4                      | 0.63                                                         | 1.3                                                           | 3                                                      | 0.090                                               |                                          |                                     |

177

## 01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                               | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  |
|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
| OCT 1986<br>08 | 1100                                                               | 80                                                                  | 0.1                                                                  | 0.9                                                                   | 4                                                                   | <1                                                                   | 6                                                                   | <10                                                                  | 4                                                                    | 4600                                                                |
| DATE           | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986<br>08 | 10                                                                 | 200                                                                 | 0.03                                                                 | <10                                                                   | <1                                                                  | 30                                                                   | <1                                                                  | <1.0                                                                 | <0.1                                                                 | <1.0                                                                |
| DATE           | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) |
| OCT 1986<br>08 | 0.1                                                                | 0.1                                                                 | 0.1                                                                  | <0.1                                                                  | <0.1                                                                | <0.1                                                                 | <0.1                                                                | <0.1                                                                 | <0.1                                                                 | <0.1                                                                |
| DATE           | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)     | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  |
| OCT 1986<br>08 | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <0.1                                                                  | <0.1                                                                | <0.1                                                                 | <0.1                                                                | <1.00                                                                | <10                                                                  | <0.1                                                                |

## 01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ

LOCATION.--Lat 40°15'44", long 74°25'13", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown, and 8.4 mi above Rocky Brook.

DRAINAGE AREA .- - 7.37 mi 2.

PERIOD OF RECORD. -- Water years 1960 to 1964, June 1981 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                   | TIME     | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- CI<br>W, CO<br>AN- DU<br>OUS AN                                 | FIC<br>N-<br>ICT-<br>ICE<br>S/CM)      | PH<br>(STAND-<br>ARD<br>UNITS)       | TEMPER<br>ATURE<br>WATER<br>(DEG C | SO                                                  | GEN,<br>IS-<br>ILVED<br>IG/L)                            | DXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | CHEM<br>ICAL<br>5 DA        | FOI<br>FEI<br>FEI<br>FEI<br>FEI<br>FEI<br>FEI<br>FEI | CAL, STRE                                          | CI |
|------------------------|----------|------------------------------------|---------------------------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------|------------------------------------------------------|----------------------------------------------------|----|
| OCT_1986               | 4400     |                                    |                                                                     |                                        |                                      |                                    |                                                     |                                                          |                                                                |                             | . ,                                                  |                                                    |    |
| 15<br>FEB 1987         | 1120     | E9                                 | .3                                                                  | 112                                    | 6.7                                  | 13.0                               | 3                                                   | 9.8                                                      | 93                                                             | <0.                         |                                                      |                                                    |    |
| 24<br>MAR              | 1220     | E14                                |                                                                     | 216                                    | 6.7                                  | 2.5                                | 1                                                   | 2.2                                                      | 90                                                             | <0.                         | 1 <2                                                 | 0 9                                                |    |
| 17                     | 1145     | E11                                |                                                                     | 136                                    | 6.5                                  | 5.5                                | 1                                                   | 1.6                                                      | 92                                                             | <0.                         | 8 <2                                                 | 0 5                                                |    |
| JUN<br>22              | 1100     | E5                                 | .7                                                                  | 111                                    | 7.0                                  | 20.0                               |                                                     | 7.9                                                      | 88                                                             | E2.                         | 0 22                                                 | 0 540                                              |    |
| 22<br>JUL<br>29<br>AUG | 1130     | E7                                 | .0                                                                  | 114                                    | 6.5                                  | 20.0                               |                                                     | 8.4                                                      | 93                                                             | <1.                         | 1 8                                                  | 0 920                                              |    |
| AUG 26                 | 1000     | E4                                 | .2                                                                  | 111                                    | 7.1                                  | 16.5                               |                                                     | 7.8                                                      | 80                                                             | E1.                         | 3 2                                                  | 0 350                                              |    |
|                        |          | -                                  |                                                                     | 100                                    | ×                                    |                                    |                                                     |                                                          |                                                                | -                           |                                                      |                                                    |    |
| DATE                   | NE<br>(M | G/L                                | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGI<br>SII<br>SOLV<br>(MG,            | UM, SOD<br>S- DI<br>VED SOL<br>/L (M | IUM,<br>S-<br>VED S                | OTAS-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L<br>(S K)    | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y SUL<br>DI<br>L SC                                            | FATE<br>S-<br>DLVED<br>IG/L | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |    |
| OCT 1986               |          |                                    |                                                                     |                                        |                                      |                                    |                                                     |                                                          |                                                                |                             |                                                      |                                                    |    |
| 15<br>FEB 1987         |          | 31                                 | 6.3                                                                 | 3                                      | .7                                   | 5.7                                | 3.4                                                 | 15                                                       |                                                                | 15                          | 13                                                   | 0.2                                                |    |
| 24<br>MAR              |          | 32                                 | 6.6                                                                 | 3                                      | .7 1                                 | 8                                  | 2.0                                                 | 4.0                                                      |                                                                | 19                          | 33                                                   | 0.1                                                |    |
| 17                     |          | 32                                 | 6.4                                                                 | 3                                      | .8                                   | 7.8                                | 2.0                                                 | 5.0                                                      |                                                                | 20                          | 14                                                   | 0.2                                                |    |
| JUN 22                 |          | 29                                 | 5.8                                                                 | 3                                      | .6                                   | 5.3                                | 2.6                                                 | 13                                                       |                                                                | 10                          | 11                                                   | 0.2                                                |    |
| JUL<br>29              |          | 31                                 | 6.4                                                                 |                                        |                                      | 5.4                                | 2.6                                                 | 15                                                       |                                                                | 12                          | 11                                                   | 0.2                                                |    |
| AUG 26                 |          | 37                                 | 7.9                                                                 |                                        |                                      | 6.5                                | 2.2                                                 | 17                                                       |                                                                | 12                          | 12                                                   | 0.2                                                |    |
|                        |          |                                    |                                                                     |                                        |                                      | 0.5                                |                                                     |                                                          |                                                                |                             |                                                      | 0.2                                                |    |
| DATE                   | SO (M    | ICA,<br>S-<br>LVED<br>IG/L<br>IS   | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>GEI<br>NITE<br>TOTA<br>(MG, AS | N, G<br>ITE NO2<br>AL TO<br>/L (M    | EN,<br>E+NO3 AN<br>TAL 1<br>IG/L ( | IITRO-<br>GEN,<br>IMONÍA<br>TOTAL<br>(MG/L<br>(S N) | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ N1<br>IC C<br>L TC<br>L (N                             | SEN, P<br>STAL<br>IG/L      | PHOS-<br>HORUS,<br>TOTAL<br>(MG/L<br>AS P)           | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |    |
| OCT_1986               |          | Tink.                              |                                                                     |                                        |                                      |                                    |                                                     |                                                          |                                                                |                             |                                                      |                                                    |    |
| 15<br>FEB 1987         |          | 10                                 | 66                                                                  | 0.                                     | 011 0                                | .79                                | 0.07                                                |                                                          |                                                                | ••                          | 0.100                                                | 3.3                                                |    |
| 24                     |          | 8.3                                | 93                                                                  | 0.                                     | 007 1                                | .93                                | 0.13                                                | 0.3                                                      | 2 2                                                            | 2.3                         | 0.040                                                | 1.9                                                |    |
| 17<br>JUN              |          | 8.1                                | 65                                                                  | 0.                                     | 013 2                                | 2.08                               | 0.12                                                | 0.3                                                      | 0 2                                                            | 2.4                         | 0.033                                                | 1.7                                                |    |
| 22                     |          | 9.5                                | 56                                                                  | 0.                                     | 020 1                                | .39                                | 0.08                                                | 0.7                                                      | 9 2                                                            | 2.2                         | 0.128                                                | 3.8                                                |    |
| JUL 29                 |          | 8.8                                | 59                                                                  | 0.                                     | 012 1                                | .14                                | 0.09                                                | 0.8                                                      | 1 2                                                            | 2.0                         | 0.122                                                | 5.4                                                |    |
| AUG                    | 13       | 10                                 | 65                                                                  |                                        | 7.17                                 |                                    |                                                     |                                                          |                                                                |                             |                                                      |                                                    |    |
| 26                     | 17       | 10                                 | 65                                                                  | 0.                                     | 011 1                                | .34                                | 0.05                                                | 0.5                                                      | 6                                                              | 1.9                         | 0.100                                                | 2.6                                                |    |

RARITAN RIVER BASIN

## 01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME           | SULFIDE<br>TOTAL<br>(MG/L<br>AS S) | ALUI<br>INUI<br>DIS<br>SOLY<br>(UG,<br>AS             | 4,<br>S- ARSE<br>VED TOT<br>/L (UG                              | AL                                          | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | RECOV                        | TOTA<br>RECO<br>E ERAB<br>(UG/                        | COPPER,<br>L TOTAL<br>V- RECOV-<br>LE ERABLE<br>L (UG/L |
|----------------|----------------|------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| JUN 1987<br>22 | 1100           | <0.                                | ,                                                     | <10                                                             | 2                                           | <10                                                             | <10                                                   | <                            | 1                                                     | 30 1                                                    |
| DATE           | T(<br>RI<br>EI | DTAL<br>ECOV- I<br>RABLE I<br>UG/L | LEAD,<br>FOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCI<br>TOTA<br>RECO<br>ERAI<br>(UG,<br>AS | AL TO<br>DV- RE<br>BLE ER<br>/L (U                              | COV- N<br>ABLE T<br>IG/L (                            | ELE-<br>IUM,<br>OTAL<br>UG/L | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| JUN 1987<br>22 | 7              | 2900                               | <5                                                    | 60                                                              | <0                                          | .10                                                             | 6                                                     | <1                           | <10                                                   | 1                                                       |

## 01400650 MILLSTONE RIVER AT GROVERS MILL, NJ

LOCATION.--Lat 40°19'19", long 74°36'31", Mercer County, Hydrologic Unit 02030105, at bridge on Millstone Road in Grovers Mill, 0.3 mi upstream from Cranbury Brook, and 2.7 mi north of Dutch Neck.

DRAINAGE AREA. -- 43.4 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                |      | STRE                      |                                                 | E-<br>FIC                              |                     | Cillo              |                                         | (                                       | DIS-<br>SOLVED                  | OXYGEN<br>DEMAND,<br>BIO- | COL                             | ч,                                        |     |
|----------------|------|---------------------------|-------------------------------------------------|----------------------------------------|---------------------|--------------------|-----------------------------------------|-----------------------------------------|---------------------------------|---------------------------|---------------------------------|-------------------------------------------|-----|
| DATE           | TIME | INST.                     | W, CC<br>AN- DU<br>OUS AN                       | ICT - (                                | PH<br>STAND-<br>ARD | TEMPER ATURE WATER | SC                                      | GEN,<br>DIS-<br>DLVED                   | CENT<br>SATUR-                  | CHEM-<br>ICAL,<br>5 DAY   | FEC.<br>EC<br>BRO               | TOCO                                      | CCI |
|                |      | (CF                       | s) (Us                                          | CM) L                                  | INITS)              | (DEG C             | ()                                      | 4G/L)                                   | ATION)                          | (MG/L)                    | (MP                             | N) (MP                                    | N)  |
| OCT 1986       | 4700 |                           |                                                 |                                        | Po II               | 4                  |                                         |                                         |                                 |                           | 270                             | 270                                       |     |
| 16<br>JAN 1987 | 1300 | E27                       |                                                 | 176                                    | 6.8                 | 14.0               |                                         | 7.9                                     | 76                              | 0.5                       | 230                             | 230                                       |     |
| 22<br>APR      | 0910 | E169                      |                                                 | 198                                    | 6.7                 | 1.5                | 0005.                                   | 12.0                                    | 86                              | 1.4                       | 130                             | 350                                       | )   |
| 09             | 1000 | E128                      |                                                 | 162                                    | 6.6                 | 10.0               |                                         | 8.6                                     | 77                              | 2.4                       | 20                              | 110                                       | )   |
| JUN<br>01      | 1100 | E30                       |                                                 | 214                                    | 6.9                 | 24.5               |                                         | 5.1                                     | 61                              | 3.5                       | 230                             | 130                                       | )   |
| JUL<br>07      | 1215 | E59                       |                                                 | 149                                    | 6.8                 | 22.5               |                                         | 4.2                                     | 48                              | 1.9                       | 220                             | 330                                       | ,   |
| AUG            |      |                           |                                                 |                                        |                     |                    |                                         |                                         |                                 |                           |                                 |                                           |     |
| 17             | 1215 | E32                       |                                                 | 158                                    | 6.8                 | 25.5               |                                         | 4.5                                     | 55                              | 1.0                       | 200                             | 500                                       | )   |
| DATE           | NES  | SS<br>G/L                 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L              | MAGNI<br>SIUI<br>DIS<br>SOLVI<br>(MG/I | A, SODI             | UM,<br>S-<br>/ED S | OTAS-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS      | Y SULFA<br>DIS<br>L SOL'<br>(MG | ATE RII                   | LO-<br>DE,<br>S-<br>LVED<br>G/L | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L |     |
|                |      | (203)                     | AS CA)                                          | AS M                                   |                     |                    | S K)                                    | CACO                                    | 3) AS S                         |                           | CL)                             | AS F)                                     |     |
| OCT 1986       |      |                           |                                                 |                                        |                     |                    |                                         |                                         |                                 |                           |                                 |                                           |     |
| 16<br>JAN 1987 |      | 45                        | 11                                              | 4.                                     | 2 13                | 5                  | 5.5                                     | 20                                      | 1                               | 9 1                       | 8                               | 0.3                                       |     |
| 22             |      | 42                        | 9.7                                             | 4.:                                    | 3 18                | 3                  | 3.0                                     | 8.0                                     | 2                               | 3 3                       | 3                               | 0.1                                       |     |
| APR 09         |      | 46                        | 12                                              | 3.                                     | B 10                | )                  | 3.2                                     | 8.0                                     | 2                               | 5 1                       | 9                               | 0.2                                       |     |
| JUN<br>01      |      | 48                        | 11                                              | 5.                                     | 0 14                |                    | 3.3                                     | 15                                      | 1                               | 9 2                       | 4                               | 0.3                                       |     |
| JUL<br>07      |      | 40                        | 9.6                                             | 3.                                     |                     | 3.6                | 3.4                                     | 15                                      | 1                               |                           |                                 | 0.2                                       |     |
| AUG            |      | 19.5                      |                                                 |                                        |                     |                    |                                         |                                         |                                 |                           | 4                               |                                           |     |
| 17             |      | 38                        | 9.1                                             | 3.                                     | 7 9                 | 7.8                | 3.4                                     | 14                                      | 1                               | 6 1                       | 7                               | 0.3                                       |     |
|                | SO   | ICA,<br>S-<br>LVED<br>G/L | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS- | NITR<br>GEN<br>NITRI<br>TOTA           | TE NO2              | N,<br>NO3 AM       | ITRO-<br>GEN,<br>MONÍA<br>OTAL          | NITR<br>GEN,A<br>MONIA<br>ORGAN<br>TOTA | M-<br>+ NIT<br>IC GE            | N, PHO                    | OS-<br>RUS,<br>TAL              | CARBON,<br>ORGANIC<br>TOTAL               |     |
| DATE           | A    |                           | SOLVED<br>(MG/L)                                | (MG/                                   | L (MC               | G/L (              | MG/L<br>S N)                            | (MG/                                    | L (MG                           | /L (M                     | G/L<br>P)                       | (MG/L<br>AS C)                            |     |
| OCT 1986       |      |                           |                                                 |                                        |                     |                    |                                         |                                         |                                 |                           |                                 |                                           |     |
| 16<br>JAN 1987 |      | 3.5                       | 86                                              | 0.0                                    | 10 3.               | .58 <              | 0.05                                    | 0.6                                     | 0 4.                            | 2 0.                      | 410                             | 4.5                                       |     |
| 22<br>APR      |      | 7.3                       | 100                                             | 0.0                                    | 11 1.               | .99                | 0.52                                    | 1.0                                     | 3.                              | 0 0.                      | 219                             | 5.0                                       |     |
| 09             |      | 6.1                       | 84                                              | 0.0                                    | 24 1.               | .63                | 0.46                                    | 1.2                                     | 2.                              | 8 0.                      | 200                             | 5.7                                       |     |
| JUN<br>01      |      | 8.4                       | 94                                              | 0.3                                    | 00 2.               | .79                | 1.44                                    | 1.9                                     | 4.                              | 7 0.                      | 456                             | 6.2                                       |     |
| JUL<br>07      |      | 8.8                       | 76                                              | E0.0                                   |                     |                    | 0.46                                    | 0.8                                     |                                 |                           | 340                             | 7.5                                       |     |
| AUG<br>17      |      | 8.6                       | 76                                              | 0.1                                    |                     |                    | 0.30                                    |                                         |                                 |                           | 380                             | 7.0                                       |     |
|                |      | 0.0                       | 76                                              | 0.1                                    | 40 2.               | .49                | 0.30                                    | 1.0                                     | 3.                              | 0.                        | 300                             | 7.0                                       |     |

RARITAN RIVER BASIN

## 01400650 MILLSTONE RIVER AT GROVERS MILL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME           | SULFID<br>TOTAL<br>(MG/L<br>AS S) | ALUM<br>INUM<br>E DIS<br>SOLVE<br>(UG/I<br>AS AI      | ARSE<br>TOT<br>UG                                               | NIC RE                                                  | TAĽ TO<br>COV- RI<br>ABLE EI<br>G/L (1               | OTAL TO<br>ECOV- RI<br>RABLE E<br>UG/L ( | DMIUM MI<br>OTAL TO<br>ECOV- RE<br>RABLE ER<br>UG/L (U | G/L (UG | AL<br>OV- |
|----------------|----------------|-----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------|--------------------------------------------------------|---------|-----------|
| JUN 1987<br>01 | 1100           | <0.                               | 5 2                                                   | 20                                                              | 1 <                                                     | 10                                                   | 40                                       | <1                                                     | 180     | 9         |
| DATE           | TO<br>RE<br>EF | DTAĹ<br>ECOV-<br>RABLE<br>JG/L    | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL<br>TOTAL<br>RECOV<br>ERABLI<br>(UG/L<br>AS NI | SELE-<br>- NIUM,<br>E TOTAL<br>(UG/L     |                                                        | PHENOLS |           |
| JUN 1987<br>01 |                | 890                               | <5                                                    | 40                                                              | <0.10                                                   |                                                      | 3 <                                      | 1 10                                                   | <1      |           |

## 01400730 Millstone River at Plainsboro, N.J.

LOCATION.--Lat 40°19'27", long 74°36'51", Mercer County, Hydrologic Unit 02030105, on left bank 30 ft upstream from bridge on AMTRAK railroad, 100 ft downstream from Cranbury Road, 0.2 mi upstream from Bear Brook, and 0.9 mi southwest of Plainsboro.

DRAINAGE AREA .- - 65.8 mi 2 .

PERIOD OF RECORD. -- May 1964 to September 1975, March 26 to September 30, 1987.

GAGE.--Water-stage recorder and crest-stage gage. Operated as a crest-stage gage water years 1976-86. Datum of gage is 53.41 ft above National Geodetic Vertical Datum of 1929,

REMARKS. -- Records fair. Occasional diversion for irrigation above station.

AVERAGE DISCHARGE.--11 years (water years 1965-75), 94.5 ft3/s, 19.50 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,970  $\rm ft^3/s$ , July 21, 1975, gage height, 8.96 ft; minimum daily, 1.9  $\rm ft^3/s$ , Aug. 10-13, 1966.

EXTREMES FOR PERIOD MAR. 26 TO SEPT. 30, 1987.--Maximum discharge, 1,860 ft<sup>3</sup>/s, July 3, gage height, 6.14 ft; minimum, 14 ft<sup>3</sup>/s, Aug. 26.

DISCHARGE IN CURIC FEET PER SECOND WATER YEAR OCTORER 1986 TO SEPTEMBER 1987

|                            |     | DISCHARGE, | IN   | CORIC FE | ET PE | R SE | MEAN VALUES | OCTOBE | R 1986 I | O SEPTEMBER | 1987         |          |                      |
|----------------------------|-----|------------|------|----------|-------|------|-------------|--------|----------|-------------|--------------|----------|----------------------|
| DAY                        | OCT | NOV        | DEC  | JA       | N     | FE   | B MAR       | APR    | MAY      | JUN         | JUL          | AUG      | SEP                  |
| 1                          |     |            |      |          |       |      |             | 317    | 107      | 55<br>51    | 139          | 107      | 53<br>65             |
| 2                          |     |            |      |          |       |      |             | 290    | 95       | 51          | 65           | 114      | 65                   |
| 3                          |     |            |      |          |       |      |             | 172    | 90       | 52          | 267          | 88       | e55                  |
| 4                          |     |            |      |          |       |      |             | 360    | 137      | 56          | 1220         | 70       | e48                  |
| 5                          | ••• | •••        | **** |          |       |      |             | 730    | 256      | 93          | 1220<br>1220 | 56       | e48<br>e41           |
| 6                          |     |            |      |          |       |      |             | 475    | 241      | 86          | 486          | 63<br>57 | e38                  |
| 7                          |     |            |      |          |       |      |             | 413    | 169      | 88          | 227          | 57       | e45                  |
| 8                          |     |            |      |          |       |      |             | 274    | 120      | 68          | 125          | 39       | e60                  |
| 9                          |     |            |      |          |       |      |             | 166    | 99       | 61          | 78           | 42       | e70                  |
| 10                         |     | •••        |      |          |       |      |             | 142    | 87       | 74          | 63           | 435      | e55                  |
| 11                         |     |            |      |          |       |      |             | 119    | 78       | 65          | 68           | 791      | 46                   |
| 12                         |     |            |      |          | -     |      |             | 106    | 70       | 62          | 316          | 365      | 46<br>35             |
| 12<br>13                   |     |            |      |          |       |      |             | 98     | 65       | 59          | 553          | 156      | 47                   |
| 14                         |     |            |      |          |       |      |             | 90     | 60       | 78          | 459          | 82       | 106                  |
| 14<br>15                   |     | •••        |      |          | -     |      |             | 85     | 60       | 215         | 317          | 59       | 117                  |
| 16                         |     |            |      |          |       |      |             | 80     | 62       | 297         | 189          | 51       | 109                  |
| 17                         |     |            |      |          |       |      |             | 120    | 64       | 134         | 105          | 43       | 68                   |
| 18                         |     |            |      |          |       |      |             | 228    | 60       | 50          | 70           | 39       | 68<br>98             |
| 19                         |     |            |      |          |       |      |             | 213    | 63       | 31          | 57           | 38       | 142                  |
| 20                         |     | •••        |      |          |       |      |             | 148    | 67       | 26          | 54           | 33       | 152                  |
| 21                         |     |            |      |          |       |      |             | 114    | 77       | 27          | 53           | 28<br>23 | 97                   |
| 22                         |     |            |      |          | -     |      |             | 99     | 75       | 32          | 46           | 23       | 66                   |
| 23                         |     |            |      |          |       |      |             | 90     | 72       | 88          | 48           | 24       | 53                   |
| 24                         |     |            |      |          |       |      |             | 112    | 71       | 80          | 48           | 23       | 49                   |
| 22<br>23<br>24<br>25       |     | •••        |      |          |       |      |             | 387    | 68       | 52          | 31           | 23<br>20 | 66<br>53<br>49<br>52 |
| 26<br>27<br>28<br>29<br>30 |     |            |      |          |       |      | - 67        | 363    | 63       | 41          | 109          | 18       | 44                   |
| 27                         |     |            |      |          | -     |      | - 63        | 244    | 61       | 35          | 79           | 17       | 41                   |
| 28                         |     |            |      |          |       |      |             | 158    | 61       | 35<br>75    | 89           | 31       | 38<br>32<br>22       |
| 29                         |     |            |      |          | -     |      |             | 155    | 62       | 184         | 72           | 64       | 32                   |
| 30                         |     |            |      |          | -     |      |             | 124    | 58       | 205         | 51           | 82       | 22                   |
| 31                         |     | ••••       |      |          |       |      |             |        | 56       | 203         | 88           | 82<br>72 |                      |
| TOTAL                      |     |            |      |          |       |      |             | 5472   | 2774     | 2520        | 6776         | 3130     | 1944                 |
| MEAN                       |     |            |      |          |       |      |             | 216    | 89.5     | 84.0        | 219          | 101      | 64.8                 |
| MAX                        |     |            |      |          |       |      |             | 730    | 256      | 297         | 1220         | 791      | 152                  |
| MIN                        |     |            |      |          |       |      |             | 80     | 56       | 26          | 31           | 17       | 22                   |
| CFSM                       |     |            |      |          |       |      |             | 3.28   | 1.36     | 1.28        | 31<br>3.32   | 1.53     | .98                  |
| IN.                        |     |            |      |          |       |      |             | 3.66   | 1.57     | 1.42        | 3.83         | 1.77     | 1.10                 |
| 14.                        |     |            |      |          | -     |      |             | 0.00   | 1.01     | 1.42        | 3.03         | 1.//     | 1.10                 |

e Estimated

## 01401000 STONY BROOK AT PRINCETON, NJ

LOCATION.--Lat 40°19'59", long 74°40'56", Mercer County, Hydrologic Unit 02030105, at bridge on U.S. Highway 206, 1.6 mi southwest of Princeton, and 4.0 mi upstream from Carnegie Lake.

DRAINAGE AREA . - - 44.5 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 62.23 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Since July 1959 some regulation by several small reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 34 years, 64.6 ft3/s, 19.72 in./yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,960 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 14.26 ft, from rating curve extended above 4,000 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; no flow many days in August and September 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,800 ft3/s and maximum (\*):

| Date                                    | Time                         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)             | Date                        | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)      |
|-----------------------------------------|------------------------------|-----------------------------------|------------------------------|-----------------------------|----------------------|-----------------------------------|-----------------------|
| Nov. 21<br>Nov. 27<br>Dec. 3<br>Dec. 25 | 0445<br>0130<br>0530<br>1000 | 2,060<br>2,250<br>3,070<br>3,220  | 7.02<br>7.39<br>8.73<br>8.94 | Apr. 4<br>July 3<br>July 14 | 1900<br>0430<br>2215 | 3,560<br>*3,680<br>2,280          | 9.40<br>*9.57<br>7.46 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 1.1 ft<sup>3</sup>/s, Oct. 12, 13, gage height, 1.28 ft.

|                                            |                                          |                                              |                                           |                                          |                                           | MEAN VALU                                | JES                                       |                                            |                                    |                                              |                                           |                                          |
|--------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------|
| DAY                                        | OCT                                      | NOV                                          | DEC                                       | JAN                                      | FEB                                       | MAR                                      | APR                                       | MAY                                        | JUN                                | JUL                                          | AUG                                       | SEP                                      |
| 1 2 3 4 5                                  | 1.9<br>2.4<br>2.3<br>4.1<br>5.3          | 2.5<br>2.6<br>2.4<br>2.9<br>4.7              | 39<br>111<br>1370<br>191<br>102           | 51<br>374<br>269<br>150<br>99            | 61<br>59<br>101<br>175<br>123             | 929<br>634<br>295<br>194<br>127          | 176<br>77<br>56<br>1820<br>385            | 53<br>46<br>43<br>112<br>163               | 6.6<br>7.7<br>6.7<br>41<br>357     | 14<br>403<br>1170<br>83<br>39                | 13<br>9.7<br>10<br>9.9<br>7.3             | 3.7<br>2.9<br>2.6<br>2.1<br>1.8          |
| 6<br>7<br>8<br>9                           | 3.8<br>2.7<br>2.1<br>1.8<br>1.4          | 27<br>16<br>18<br>28<br>26                   | 70<br>56<br>50<br>349<br>320              | 75<br>67<br>62<br>55<br>79               | 80<br>84<br>108<br>109<br>65              | 108<br>121<br>123<br>94<br>65            | 545<br>273<br>166<br>117<br>94            | 82<br>60<br>48<br>40<br>35                 | 44<br>20<br>14<br>13<br>13         | 26<br>20<br>26<br>29<br>32                   | 24<br>13<br>8.1<br>8.8<br>179             | 1.8<br>2.4<br>2.9<br>8.7<br>6.1          |
| 11<br>12<br>13<br>14<br>15                 | 1.3<br>1.2<br>1.3<br>4.4<br>4.8          | 75<br>104<br>31<br>19<br>14                  | 128<br>135<br>109<br>62<br>53             | 171<br>114<br>81<br>75<br>79             | 58<br>57<br>49<br>44<br>34                | 49<br>48<br>56<br>58<br>47               | 75<br>62<br>56<br>49<br>43                | 30<br>26<br>25<br>20<br>20                 | 9.5<br>7.6<br>7.3<br>10<br>9.6     | 18<br>20<br>46<br>619<br>420                 | 34<br>16<br>12<br>8.6<br>7.4              | 4.0<br>3.1<br>52<br>31<br>11             |
| 16<br>17<br>18<br>19<br>20                 | 4.3<br>3.1<br>2.4<br>2.1<br>1.8          | 12<br>11<br>11<br>230<br>77                  | 48<br>46<br>319<br>360<br>122             | 73<br>49<br>92<br>402<br>274             | 35<br>35<br>32<br>29<br>27                | 42<br>37<br>34<br>32<br>31               | 40<br>188<br>163<br>95<br>69              | 21<br>17<br>16<br>17<br>20                 | 6.9<br>5.1<br>4.1<br>3.4<br>3.1    | 82<br>46<br>32<br>26<br>20                   | 6.3<br>5.4<br>4.8<br>4.0<br>3.3           | 6.2<br>10<br>34<br>20<br>11              |
| 21<br>22<br>23<br>24<br>25                 | 1.7<br>1.8<br>1.6<br>1.4                 | 746<br>100<br>52<br>63<br>63                 | 86<br>63<br>52<br>52<br>2590              | 147<br>99<br>112<br>73<br>61             | 26<br>28<br>44<br>45<br>41                | 29<br>28<br>26<br>24<br>23               | 57<br>49<br>42<br>100<br>621              | 24<br>19<br>17<br>18<br>14                 | 3.7<br>5.5<br>21<br>11<br>6.3      | 17<br>14<br>12<br>9.9<br>8.5                 | 2.9<br>2.8<br>2.4<br>2.5<br>2.3           | 8.7<br>15<br>40<br>14<br>9.5             |
| 26<br>27<br>28<br>29<br>30<br>31           | 3.9<br>3.5<br>5.4<br>3.7<br>3.1<br>2.7   | 268<br>643<br>114<br>70<br>50                | 235<br>131<br>102<br>79<br>67<br>59       | 67<br>54<br>54<br>50<br>47<br>71         | 42<br>47<br>49                            | 21<br>21<br>32<br>34<br>27<br>308        | 162<br>98<br>91<br>119<br>78              | 12<br>11<br>12<br>11<br>9.0<br>7.6         | 4.9<br>12<br>10<br>6.0<br>4.4      | 45<br>53<br>22<br>14<br>10<br>12             | 2.1<br>9.9<br>12<br>8.3<br>5.9<br>3.9     | 7.2<br>5.9<br>5.0<br>4.7<br>5.3          |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 84.7<br>2.73<br>5.4<br>1.2<br>.06<br>.07 | 2883.1<br>96.1<br>746<br>2.4<br>2.16<br>2.41 | 7556<br>244<br>2590<br>39<br>5.48<br>6.32 | 3526<br>114<br>402<br>47<br>2.56<br>2.95 | 1687<br>60.2<br>175<br>26<br>1.35<br>1.41 | 3697<br>119<br>929<br>21<br>2.68<br>3.09 | 5966<br>199<br>1820<br>40<br>4.47<br>4.99 | 1048.6<br>33.8<br>163<br>7.6<br>.76<br>.88 | 674.4<br>22.5<br>357<br>3.1<br>.51 | 3388.4<br>109<br>1170<br>8.5<br>2.46<br>2.83 | 439.6<br>14.2<br>179<br>2.1<br>.32<br>.37 | 332.6<br>11.1<br>52<br>1.8<br>.25<br>.28 |

TOTAL 26644.9 MEAN 73.0 MAX 2590 MIN .85 CFSM 1.64 IN. 22.27 TOTAL 31283.3 MEAN 85.7 MAX 2590 MIN 1.2 CFSM 1.93 IN. 26.14 **CAL YR 1986** WTR YR 1987

## 01401000 STONY BROOK AT PRINCETON, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956-75, 1978 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1956 to September 1962, October 1963 to September 1964, October 1965 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: January 1956 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE            | TIME         | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)  | DUC<br>AND                                       | IC<br> -<br> T- (S                                 | PH<br>STAND-<br>ARD<br>IITS) | TEMPER-<br>ATURE<br>WATER<br>(DEG C) | OXYGI<br>DI:<br>SOLY<br>(MG)             | EN, (S-VED S                                                        |                               | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MP) | AL, STREP-<br>TOCOCCI<br>TH FECAL                  |
|-----------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------|--------------------------------------|------------------------------------------|---------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| OCT 1986        | 4400         | 1 1 0                                            |                                                  |                                                    | 1 11                         | 44.0                                 |                                          |                                                                     |                               |                                                                | - 2/00                                     | 170                                                |
| 16<br>FEB 1987  | 1100         | 4.4                                              |                                                  | 313                                                | 7.8                          | 11.0                                 | 10                                       |                                                                     | 91                            | 0.4                                                            | >2400                                      | 130                                                |
| 02<br>APR       | 1100         | E61                                              |                                                  | 230                                                | 7.4                          | 0.0                                  | 15                                       | .8                                                                  | 109                           | 0.7                                                            | 23                                         | 21                                                 |
| 02<br>16<br>JUN | 1155<br>1130 | 75<br>40                                         |                                                  | 169<br>183                                         | 7.6<br>8.4                   | 9.5                                  | 12<br>12                                 |                                                                     | 110<br>112                    | 2.1                                                            |                                            | : :                                                |
| 02<br>04<br>JUL | 1430<br>1100 | 9.5                                              |                                                  | 254<br>285                                         | 8.0                          | 24.5<br>19.5                         | 11                                       | .6                                                                  | 141                           | 2.7                                                            | 490                                        | 1300                                               |
| 09              | 1030         | 28                                               |                                                  | 210                                                | 8.1                          | 27.5                                 | 10                                       | .3                                                                  | 131                           | 2.4                                                            | 540                                        | 540                                                |
| 03              | 1330         | 18                                               |                                                  | 228                                                | 8.5                          | 25.0                                 | 11                                       | .0                                                                  | 135                           | 1.8                                                            | 5400                                       | 5400                                               |
| DATE            | (MC          | SS DI<br>G/L SC<br>S (N                          | CIUM<br>S-<br>DLVED<br>IG/L<br>S CA)             | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | , SODI<br>DIS<br>SOLV<br>(MG | UM, S<br>- D<br>ED SO<br>/L (M       | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                     | SULFA<br>DIS-<br>SOLV<br>(MG/ | TE RI<br>DI<br>ED SO<br>L (M                                   | LO-<br>DE,<br>S-<br>DLVED<br>IG/L          | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT_1986        |              |                                                  |                                                  |                                                    |                              |                                      |                                          |                                                                     |                               |                                                                | 15                                         |                                                    |
| 16<br>FEB 1987  |              | 27.54                                            | 24                                               | 10                                                 | 24                           |                                      | 4.2                                      | 84                                                                  | 27                            |                                                                | 0                                          | 0.2                                                |
| 02<br>APR       |              |                                                  | 4                                                | 6.5                                                | 19                           |                                      | 1.5                                      | 28                                                                  | 27                            |                                                                | 5                                          | <0.1                                               |
| 02<br>16<br>JUN |              | 52<br>58                                         | 2                                                | 6.1                                                | 12                           |                                      | 1.6                                      | 28<br>34                                                            | 22                            |                                                                | 6                                          | <0.1<br>0.1                                        |
| 02<br>04<br>JUL |              |                                                  | 9                                                | 8.4                                                | 18<br>19                     |                                      | 2.7                                      | 64                                                                  | 27<br>27                      | 2                                                              | 7                                          | 0.1                                                |
| 09              |              | 59 1                                             | 4                                                | 5.9                                                | 13                           |                                      | 2.8                                      | 40                                                                  | 22                            | 1                                                              | 4                                          | 0.1                                                |
| 03              |              | 72 1                                             | 7                                                | 7.1                                                | 16                           | 7                                    | 2.8                                      | 52                                                                  | 23                            | 2                                                              | :1                                         | 0.1                                                |
| DATE            | SO (M        | ICA, SUN<br>S- CON<br>LVED TUE<br>G/L E<br>S_ SC | IDS,<br>I OF<br>ISTI-<br>INTS,<br>DLVED<br>IG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GE                           | N, G<br>NO3 AMM<br>AL TO<br>JL (M    | EN,                                      | NITRO-<br>GEN, AM-<br>MONIA -<br>ORGANIO<br>TOTAL<br>(MG/L<br>AS N) | NITE                          | L TO                                                           |                                            | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT_1986        |              | 134                                              | 50                                               |                                                    | 6 11                         | 188                                  | 18                                       | 5                                                                   |                               |                                                                | 1.15                                       |                                                    |
| 16<br>FEB 1987  |              | 1.7                                              | 170                                              | 0.00                                               |                              |                                      |                                          | 0.20                                                                |                               | •                                                              |                                            | 5.8                                                |
| 02<br>APR       |              | 13                                               | 130                                              | 0.00                                               | 9 1.                         | 37 0.                                | 11                                       | 0.35                                                                | 1.7                           | 0.0                                                            | 143                                        | 2.2                                                |
| 02<br>16<br>JUN |              | 11<br>10                                         | 97<br>110                                        | 0.00                                               |                              | 82 <0.                               | 01                                       | 0.40                                                                | 1.2                           | 0.0                                                            | 140                                        | 2.9                                                |
| 02<br>04<br>JUL |              | 7.7<br>6.8                                       | 150<br>150                                       | 0.00                                               |                              | 06 0.                                | 10                                       | 0.92                                                                | 0.98                          | 0.0                                                            | )99                                        | 4.8                                                |
| 09              |              | 9.3                                              | 110                                              | E0.00                                              | 2 0.                         | 87 0.                                | 80                                       | 0.75                                                                | 1.6                           | 0.0                                                            | 90                                         | 4.2                                                |
| AUG<br>03       |              | 4.4                                              | 120                                              | 0.01                                               |                              | 33 0.                                |                                          | 0.90                                                                | 1.2                           | 0.1                                                            |                                            |                                                    |

RARITAN RIVER BASIN

## 01401000 STONY BROOK AT PRINCETON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME           | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)         | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)        | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|----------------|--------------------------------------------|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT 1986<br>16 | 1100           | <0.5                                       | 20                                                    | 2                                          | <10                                                             | 120                                                   | <1                                                      | <10                                                            | 7                                                       |
| DAT            | TO<br>RI<br>EI | OTAĽ TO<br>ECOV- RI<br>RABLE EI<br>UG/L (1 | EAD, NE<br>DTAL TO<br>ECOV- RE<br>RABLE EF<br>UG/L (U | DTAL TO<br>ECOV- RE<br>RABLE ER<br>JG/L (U | COV+ REABLE EN                                                  | COV- NI<br>RABLE TO<br>JG/L (U                        | UM, REG<br>DTAL ER/<br>JG/L (U                          | TAĹ<br>COV-<br>ABLE PHE<br>G/L TO                              | NOLS<br>TAL<br>J/L)                                     |
| OCT 198        |                | 60                                         | 6                                                     | 10 <                                       | :0.10                                                           | <1                                                    | <1                                                      | 390                                                            | 4                                                       |

## 01401440 MILLSTONE RIVER AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at bridge on Lincoln Highway in Kingston, 0.2 mi downstream from the outflow of Carnegie Lake, and 3.0 mi northwest of Plainsboro.

DRAINAGE AREA. -- 172 mi<sup>2</sup>, includes 8.0 mi<sup>2</sup> which drains into Delaware and Raritan Canal.

PERIOD OF RECORD .- - Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                  | DATE           | TIME                            | STREA<br>FLOW<br>INSTA | AM- C<br>W, C<br>AN- D<br>OUS A                                     | PE-<br>IFIC<br>ON-<br>UCT-<br>NCE<br>S/CM) | (STA             | ND -                                  | TEMP<br>ATU<br>WAT<br>(DEG | RE<br>ER                                   | SO               | GEN,<br>IS-<br>LVED<br>G/L)                              | DIS<br>SOLV<br>(PER<br>CEN<br>SATU | - DE<br>/ED E<br>!- ()<br>IT !                | YGE<br>MAN<br>BIO-<br>HEM<br>CAL<br>DA | D,<br>-<br>Ý                                      | COLIFORM<br>FECA<br>EC<br>BROT<br>(MPN | I,<br>IL, ST<br>TO<br>TH FI                        | TREP-<br>COCCI<br>ECAL<br>MPN) |
|------------------|----------------|---------------------------------|------------------------|---------------------------------------------------------------------|--------------------------------------------|------------------|---------------------------------------|----------------------------|--------------------------------------------|------------------|----------------------------------------------------------|------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------|
|                  | 12.2.2.3       |                                 | (Cr                    | 3) (0                                                               | S/ CM /                                    | ONT              | 3)                                    | (DEG                       | 0)                                         | (M               | u/L)                                                     | ALIC                               | ,,,                                           | ,mu/                                   | -,                                                | , mr N                                 | , (                                                |                                |
| 15               | 1986           | 1300                            | E27                    |                                                                     | 199                                        | 8                | 3.6                                   | 16                         | .0                                         | 1                | 0.6                                                      | 10                                 | 08                                            | 4.                                     | 8                                                 | 110                                    |                                                    | 70                             |
| 27               | 7              | 1100                            | E232                   |                                                                     | 227                                        | 7                | 7.3                                   | 1                          | .0                                         | 1                | 4.7                                                      | 10                                 | )4                                            | 2.                                     | 7                                                 | 140                                    |                                                    | 79                             |
| APR<br>09<br>JUN | 9              | 1300                            | E461                   |                                                                     | 133                                        | 7                | 7.1                                   | 10                         | .5                                         | 1                | 1.8                                                      | 10                                 | 7                                             | 1.                                     | 8                                                 | 790                                    | 13                                                 | 30                             |
| 02               | 2              | 1030                            | E41                    |                                                                     | 208                                        | 7                | 7.8                                   | 26                         | .0                                         |                  | 7.6                                                      | 9                                  | 94                                            | 5.                                     | 1                                                 | 20                                     | 49                                                 | 90                             |
| JUL<br>08<br>AUG | В              | 1330                            | E121                   |                                                                     | 119                                        | 7                | 7.0                                   | 25                         | .5                                         |                  | 8.1                                                      | 9                                  | 9                                             | 8.                                     | 1                                                 | 330                                    | 1                                                  | 70                             |
| 06               | 6              | 1300                            | E113                   |                                                                     | ••                                         | -                | 5.9                                   | 25                         | .5                                         | *                | 7.2                                                      | , - ,                              | •                                             | 3.                                     | 1                                                 | 490                                    | 3:                                                 | 30                             |
|                  | DATE           | HAR<br>NES<br>(MG<br>AS         | S<br>/L                | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | SOL<br>(MG                                 | UM,<br>S-<br>VED | SODIU<br>DIS<br>SOLVI<br>(MG,<br>AS I | ED<br>/L                   | POTA<br>SIL<br>DIS<br>SOLV<br>(MG/<br>AS I | JM,<br>S-<br>/ED | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y S<br>L                           | SULFATE<br>DIS-<br>SOLVEE<br>(MG/L<br>AS SO4) | )                                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS CL | D                                      | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                                |
|                  | OCT_1986       |                                 |                        | 45                                                                  |                                            | -                |                                       |                            |                                            |                  | 70                                                       |                                    |                                               |                                        |                                                   | ; 10<br>*                              |                                                    |                                |
|                  | 15<br>JAN 1987 |                                 | 61                     | 15                                                                  | ,                                          | .7               | 13                                    |                            | 2.                                         | ,                | 39                                                       |                                    | 21                                            |                                        | 19                                                |                                        | 0.2                                                |                                |
|                  | 27<br>APR      |                                 | 51                     | 12                                                                  | 5                                          | .1               | 21                                    |                            | 2.                                         | .4               | 18                                                       |                                    | 25                                            |                                        | 34                                                |                                        | 0.1                                                |                                |
|                  | 09             |                                 | 45                     | 12                                                                  | 3                                          | .7               | 9                                     | .5                         | 2.                                         | .3               | 15                                                       |                                    | 20                                            |                                        | 13                                                |                                        | 0.1                                                |                                |
|                  | JUN<br>02      |                                 | 60                     | 14                                                                  | 6                                          | .1               | 13                                    |                            | 2.                                         | .6               | 31                                                       |                                    | 19                                            |                                        | 22                                                |                                        | 0.2                                                |                                |
|                  | UL<br>08       |                                 | 31                     | 7.3                                                                 | 3                                          | .0               | 5                                     | .8                         | 3.                                         | .1               | 15                                                       |                                    | 15                                            |                                        | 10                                                |                                        | 0.2                                                |                                |
|                  | 06             |                                 | 46                     | 11                                                                  | 4                                          | .5               | 10                                    |                            | 3                                          | .4               | 25                                                       |                                    | 16                                            |                                        | 15                                                | 15.79                                  | 0.2                                                |                                |
|                  | DATE           | SILI<br>DIS<br>SOL<br>(MG<br>AS | CA,<br>VED             | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>TOT<br>(MG                         | AL<br>/L         | NIT<br>GE<br>NO2+<br>TOT<br>(MG<br>AS | N,<br>NO3<br>AL<br>/L      | NITI<br>GEI<br>AMMOI<br>TOTA<br>(MG,       | NÍA<br>AL        | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>IC                           | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)      |                                        | PHOS-<br>HORUS<br>TOTAL<br>(MG/L<br>AS P)         | , (                                    | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                                |
|                  | OCT 1986       |                                 | 0.9                    | 100                                                                 | 0.                                         | 032              | 1.                                    | 27                         | 0.0                                        | 9                |                                                          |                                    |                                               | 0                                      | .100                                              |                                        | 5.2                                                |                                |
|                  | JAN 1987       | 1                               | 10                     | 120                                                                 | 0.                                         | 016              | 2.                                    | 11                         | 0.2                                        | 5                | 0.87                                                     | 1                                  | 3.0                                           | 0                                      | .121                                              |                                        | 2.7                                                |                                |
|                  | APR<br>09      |                                 | 8.0                    | 78                                                                  | 0.                                         | .023             | 1.                                    | 18                         | 0.1                                        | 2                | 0.72                                                     |                                    | 1.9                                           | 0                                      | .147                                              |                                        | 5.0                                                |                                |
|                  | JUN<br>02      |                                 | 2.8                    | 98                                                                  | 0.                                         | .085             | 1.                                    | 42                         | 0.2                                        | 1                | 1.0                                                      |                                    | 2.5                                           | 0                                      | 0.068                                             |                                        | 5.2                                                |                                |
|                  | JUL<br>08      |                                 | 6.5                    | 60                                                                  | 0.                                         | .032             | 0.                                    | 68                         | 0.1                                        | 3                | 1.2                                                      |                                    | 1.9                                           | (                                      | .220                                              |                                        | 9.2                                                |                                |
|                  | AUG<br>06      |                                 | 6.1                    | 81                                                                  |                                            | 022              | 0.                                    |                            | 0.8                                        |                  | 1.0                                                      |                                    | 1.9                                           |                                        | .270                                              |                                        | 8.5                                                |                                |

RARITAN RIVER BASIN

## 01401440 MILLSTONE RIVER AT KINGSTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                              | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  |                                                                    | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM                                                         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT_1986       | 1300                                                              |                                                                      | 0.1                                                                  | 1.2                                                                   |                                                                      |                                                                    | 3                                                                   |                                                                      |                                                                    |                                                                 | <1                                                                   |
| 15<br>JUN 1987 |                                                                   |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 02             | 1030                                                              | <0.5                                                                 |                                                                      | 1.00                                                                  | <10                                                                  | 1                                                                  |                                                                     | <10                                                                  | 10                                                                 | <1                                                              | ••                                                                   |
| DATE           | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)    | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT_1986       |                                                                   |                                                                      | -10                                                                  |                                                                       | 40                                                                   |                                                                    | 7700                                                                |                                                                      | 20                                                                 | 1921                                                            | 150                                                                  |
| 15<br>JUN 1987 | •••                                                               | 6                                                                    | <10                                                                  | ••                                                                    | 10                                                                   |                                                                    | 3700                                                                | •                                                                    | 20                                                                 |                                                                 | 150                                                                  |
| 02             | 30                                                                | ••                                                                   | ••                                                                   | 3                                                                     |                                                                      | 230                                                                |                                                                     | <5                                                                   | •••                                                                | 40                                                              |                                                                      |
| DATE           | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)           | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  |                                                                      | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | (UG/G                                                                | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT 1986       |                                                                   | 2.61                                                                 |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 15<br>JUN 1987 | - 55                                                              | 0.04                                                                 |                                                                      | <10                                                                   | ••                                                                   | <1                                                                 |                                                                     | 80                                                                   |                                                                    | 3                                                               | <1.0                                                                 |
| 02             | <0.10                                                             |                                                                      | 1                                                                    | ••                                                                    | <1                                                                   | **                                                                 | <10                                                                 | **                                                                   | <1                                                                 |                                                                 | ••                                                                   |
| DATE           | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)       | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 1986       |                                                                   |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 15<br>JUN 1987 | <0.1                                                              | 4.0                                                                  | 2.0                                                                  | 1.8                                                                   | 2.5                                                                  | <0.1                                                               | 0.5                                                                 | <0.1                                                                 | <0.1                                                               | <0.1                                                            | <0.1                                                                 |
| 02             | •••                                                               |                                                                      | ••                                                                   | **                                                                    |                                                                      |                                                                    | ••                                                                  | ••                                                                   |                                                                    |                                                                 |                                                                      |
| DATE           | HEPTA-<br>CHLOR<br>EPOXIDI<br>TOT. II<br>BOTTOI<br>MATL<br>(UG/KG | N IN BOT<br>M TOM MA<br>. TERIA                                      | TOTAL - IN BOT - TOM MA L TERIA                                      | - TOT. IN<br>- BOTTOM<br>L MATL.                                      | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | MATL.                                                              | TERIAL                                                              | . TERIAL                                                             | L TERIAL                                                           | TERIA                                                           | TOM MA-                                                              |
| OCT 1986<br>15 |                                                                   | 1 -0                                                                 | 1 -0                                                                 | 1 .0.1                                                                | .0                                                                   | -0.4                                                               |                                                                     |                                                                      |                                                                    | 0 -10                                                           | 40.4                                                                 |
| JUN 1987       | 0.                                                                | 1 <0.                                                                | 1 <0.                                                                | 1 <0.1                                                                | <0.1                                                                 | <0.1                                                               | 0.0                                                                 | 5 <0.1                                                               | 1 <1.0                                                             | 0 <10                                                           | <0.1                                                                 |
| 02             | •                                                                 |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |

## 01401600 BEDEN BROOK NEAR ROCKY HILL, NJ

LOCATION.--Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206 at State Route 533, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton.

DRAINAGE AREA.--27.6 mi<sup>2</sup>.

PERIOD OF RECORD .-- Water years 1959-63, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE            | TIME         | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- C<br>W, C<br>AN- D<br>OUS A                                     | PE-<br>IFIC<br>ON-<br>UCT-<br>NCE<br>S/CM) | PH<br>(STAND<br>ARD<br>UNITS)    | WAT                                            | JRE<br>ER                                          | XYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | SO (P<br>C<br>SA                                 | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | DEM<br>BI<br>CH<br>IC | GEN<br>IAND,<br>O-<br>IEM-<br>CAL,<br>DAY<br>IG/L) | FOR<br>FEC<br>EC<br>BRO                      | M,<br>AL,<br>TH                   | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|-----------------|--------------|------------------------------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------|-------------------------------------|
| OCT 1986        | 1030         | E3                                 | .4                                                                  | 315                                        | 7.3                              | 16                                             | 5.0                                                | 6.1                                |                                                  | 62                                                |                       | 2.5                                                | 2200                                         |                                   | 2400                                |
| JAN 1987<br>22  | 1100         | E164                               |                                                                     | 160                                        | 7.5                              | (                                              | 0.0                                                | 13.3                               |                                                  | 92                                                |                       | 1.2                                                |                                              |                                   |                                     |
| APR<br>02<br>09 | 0945<br>1030 | E120<br>E202                       | - 1                                                                 | 149                                        | 7.3<br>7.5                       |                                                | 7.5                                                | 12.3                               |                                                  | 103                                               |                       | 1.1                                                | 49                                           |                                   | 70                                  |
| MAY 27          | 1030         | E11                                |                                                                     | 240                                        | 7.5                              |                                                | 5.5                                                | 8.5                                |                                                  | 84                                                |                       | 2.7                                                | 330                                          |                                   | 1300                                |
| JUN 02          | 1030         |                                    | .9                                                                  | 189                                        | 7.1                              |                                                | 1.5                                                | 6.2                                |                                                  | 71                                                |                       |                                                    | 330                                          |                                   |                                     |
| JUL 08          | 1030         | E31                                |                                                                     | 185                                        | 7.5                              |                                                | 1.5                                                | 8.4                                |                                                  | 95                                                | *74                   | 4.2                                                | >2400                                        |                                   | 2400                                |
| AUG<br>03       | 1030         |                                    | .5                                                                  | 150                                        | 6.8                              |                                                | 2.5                                                | 6.2                                |                                                  | 72                                                |                       |                                                    | >24000                                       |                                   | 4000                                |
|                 | 1050         |                                    |                                                                     | 150                                        | 0.0                              | -                                              |                                                    | 0.2                                |                                                  | S                                                 |                       | 4.0                                                | - 24000                                      |                                   | .4000                               |
| DATE            | A            | SS<br>G/L                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | SOL<br>(MG                                 | UM, SO<br>S- D<br>VED SO<br>/L ( | DIUM,<br>IS-<br>LVED<br>MG/L<br>S NA)          | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K)   | D (M                               | AB<br>G/L                                        | SULF<br>DIS<br>SOL<br>(MG<br>AS S                 | VED<br>/L             | RI<br>DI<br>SC<br>(M                               | ILO-<br>IDE,<br>IS-<br>ILVED<br>IG/L<br>IG/L | RIDE<br>DIS<br>SOLV<br>(MG)<br>AS | ,<br>-<br>/ED<br>'L                 |
| OCT_1986        |              | 400                                |                                                                     |                                            |                                  |                                                |                                                    |                                    |                                                  | _                                                 |                       |                                                    |                                              |                                   |                                     |
| JAN 1987        |              | 100                                | 24                                                                  |                                            |                                  | 22                                             | 3.4                                                |                                    |                                                  |                                                   | 6                     |                                                    | 27                                           | 0.                                |                                     |
| 22<br>APR       |              | 49                                 | 11                                                                  |                                            |                                  | 11                                             | 1.4                                                |                                    |                                                  |                                                   | 2                     |                                                    | 16                                           | <0.                               |                                     |
| 02<br>09<br>MAY |              | 48<br>52                           | 11                                                                  | 4                                          | :7                               | 9.7<br>8.9                                     | 1.4                                                |                                    |                                                  | 2                                                 | 2                     |                                                    | 12                                           | <0.                               |                                     |
| 27<br>JUN       |              | 77                                 | 18                                                                  | 7                                          | .8                               | 14                                             | 2.1                                                | 53                                 |                                                  | 3                                                 | 1                     | 1                                                  | 19                                           | <0.                               | .1                                  |
| 02<br>JUL       |              | 68                                 | 17                                                                  | 6                                          | .2                               | 13                                             | 3.3                                                | 41                                 |                                                  | 2                                                 | 4                     | 2                                                  | 20                                           | 0.                                | 1                                   |
| 08              |              | 59                                 | 14                                                                  | 5                                          | .9                               | 9.3                                            | 2.3                                                | 39                                 |                                                  | 2                                                 | 1                     | 1                                                  | 11                                           | 0.                                | .1                                  |
| 03              |              | 39                                 | 9.2                                                                 | 4                                          | .0                               | 7.3                                            | 2.1                                                | 23                                 |                                                  | 1                                                 | 6                     |                                                    | 9.8                                          | 0.                                | .1                                  |
| DATE            | SOI (MI      | LVED<br>G/L                        | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>TOT<br>(MG                         | N ITE NO AL T                    | ITRO-<br>GEN,<br>2+NO3<br>OTAL<br>MG/L<br>S N) | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N) | A ORG                              | TRO-<br>,AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N) | NIT<br>GE<br>TOT<br>(MG<br>AS                     | AL<br>/L              | PHC<br>TC                                          | IOS-<br>DRUS,<br>DTAL<br>IG/L<br>S P)        | CARBO<br>ORGAN<br>TOTA<br>(MG,    | IIĊ<br>\L<br>'L                     |
| OCT 1986        |              | 3.5                                | 170                                                                 |                                            | 004                              | 0.07                                           | 0.17                                               |                                    |                                                  |                                                   |                       |                                                    |                                              |                                   |                                     |
| JAN 1987<br>22  |              | 13                                 | 170<br>93                                                           |                                            |                                  | 0.97                                           | 0.13                                               |                                    | ٠٠.                                              |                                                   | •                     | 0.6                                                |                                              | 5.0                               |                                     |
| APR 02          |              | 13                                 | 88                                                                  |                                            | 006                              | 1.20                                           | 0.03                                               | 0.                                 | 40                                               | 1.6                                               |                       | 0.0                                                | 790                                          | 3.4                               |                                     |
| 09              |              | 13                                 | 88                                                                  | 0.                                         | 010                              | 1.45                                           | 0.08                                               | 0.                                 | 50                                               | 2.0                                               | -                     | 0.0                                                | 70                                           | 2.3                               |                                     |
| 27<br>JUN       |              | 7.7                                | 130                                                                 | 0.                                         | 071                              | 1.37                                           | 0.11                                               |                                    | ••                                               | 1.4                                               |                       | 0.2                                                | 223                                          | 3.6                               |                                     |
| 02<br>JUL       |              | 4.8                                | 110                                                                 |                                            |                                  | ••                                             |                                                    |                                    |                                                  |                                                   | -                     |                                                    |                                              | 6.3                               |                                     |
| 08              |              | 13                                 | 100                                                                 | 0.                                         | 042                              | 1.49                                           | 0.17                                               | 1.                                 | 0                                                | 2.5                                               |                       | 0.1                                                | 90                                           | 5.3                               |                                     |
| 03              |              | 5.3                                | 68                                                                  | 0.                                         | 040                              | 1.30                                           | 0.76                                               | 1.                                 | 5                                                | 2.8                                               | -                     | 0.4                                                | 808                                          |                                   | . 11                                |

RARITAN RIVER BASIN

## 01401600 BEDEN BROOK NEAR ROCKY HILL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                             | TIME         | SULFI<br>TOTA<br>(MG/<br>AS S                   | L SOL                                                 | M,<br>S- ARSE<br>VED TOT<br>/L (UC                              | ENIC<br>FAL<br>G/L<br>AS)                     | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOVERABLE<br>(UG/L<br>AS CD) | TOTA<br>RECO<br>E ERAB<br>(UG/                        | COPPER,<br>L TOTAL<br>V- RECOV-<br>LE ERABLE<br>L (UG/L |  |
|----------------------------------|--------------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--|
| OCT 1986<br>14<br>MAY 1987<br>27 | 1030<br>1030 |                                                 | .8                                                    | 20<br>20                                                        | 2 <1                                          | <10<br><10                                                      | 80<br>50                                              |                                                    |                                                       | 10 11<br>10 4                                           |  |
| DATE                             | RI<br>EI     | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCU<br>TOT/<br>RECO<br>ERAB<br>(UG)<br>AS I | AL TO<br>DV- RE<br>BLE ER<br>/L (U                              | COV- N<br>ABLE T<br>G/L (                             | ELE- 1<br>IUM, F<br>OTAL E<br>UG/L                 | ZINC,<br>FOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |  |
| OCT 1986<br>14<br>MAY 1987<br>27 |              | 210<br>140                                      | <5<br><5                                              | 50<br>20                                                        |                                               | .10                                                             | 5 <1                                                  | <1<br><1                                           | 30<br><10                                             | 3<br><1                                                 |  |

## 01401650 PIKE RUN AT BELLE MEAD, NJ

LOCATION.--Lat 40°28'05", long 74°38'57", Somerset County, Hydrologic Unit 02030105, on right bank 20 ft upstream of bridge on Township Line Road, 0.7 mi east of Belle Mead, 0.8 mi upstream of Cruser Brook, and 1.0 mi downstream of bridge on U.S. Route 206.

DRAINAGE AREA. -- 5.36 mi 2.

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 58.85 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for period of estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeters at station.

AVERAGE DISCHARGE ... 7 years, 10.07 ft/3/s, 22.22 in./yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 2,010 ft<sup>3</sup>/s, July 7, 1984, gage height, 11.76 ft; no flow many days in August and September 1980.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1810, 13.5 ft, from floodmark, present datum, Aug. 28, 1971.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Nov. 21 | 0215 | 607                               | 6.97             | Apr. 4  | 1600 | 747                               | 7.61                |
| Nov. 26 | 2245 | 770                               | 7.71             | July 3  | 0200 | 430                               | 6.11                |
| Dec. 3  | 0300 | 712                               | 7.45             | July 14 | 1945 | *933                              | *8.41               |
| Dec. 25 | 0530 | 712                               | 7.45             | Aug. 10 | 0515 | 410                               | 6.01                |

Minimum discharge, 0.21 ft3/s, Oct. 23, 24, 25, gage height, 2.70 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

| DAY                                        | OCT                                      | NOV                                          | DEC                                         | JAN                                          | FEB                                        | MAR                                         | APR                                         | MAY                                    | JUN                                       | JUL                                         | AUG                                         | SEP                                      |  |
|--------------------------------------------|------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------|--|
| 1 2 3 4 5                                  | .74<br>.66<br>1.0<br>1.7<br>.83          | .38<br>.49<br>.57<br>.65<br>2.5              | 4.2<br>46<br>229<br>15<br>8.4               | 4.0<br>48<br>24<br>12<br>7.5                 | e6.6<br>e7.0<br>17<br>21<br>12             | e150<br>e51<br>e20<br>e12<br>e9.3           | 12<br>6.3<br>5.0<br>262<br>25               | 4.8<br>4.4<br>4.0<br>13                | .65<br>1.8<br>.99<br>49<br>25             | 2.2<br>36<br>77<br>5.4<br>3.0               | 3.1<br>2.8<br>6.2<br>2.8<br>2.1             | .80<br>.61<br>.50<br>.44<br>.44          |  |
| 6<br>7<br>8<br>9                           | .72<br>.60<br>.52<br>.55                 | 12<br>2.7<br>12<br>8.5<br>5.5                | 6.4<br>5.9<br>5.3<br>56<br>22               | 5.9<br>6.0<br>6.5<br>5.5                     | e7.5<br>e7.0<br>e7.7<br>e8.4<br>e6.5       | e7.3<br>e6.7<br>e6.8<br>e5.9<br>e4.6        | 36<br>19<br>10<br>7.4<br>6.2                | 7.6<br>5.5<br>4.5<br>3.7<br>3.2        | 4.5<br>2.8<br>2.1<br>2.9<br>2.2           | 2.0<br>1.6<br>47<br>7.9<br>4.0              | 7.4<br>2.7<br>2.0<br>1.9<br>95              | .47<br>.71<br>1.5<br>5.6<br>1.2          |  |
| 11<br>12<br>13<br>14<br>15                 | .50<br>.46<br>.48<br>3.6<br>1.3          | 23<br>13<br>5.4<br>3.3<br>2.9                | 11<br>14<br>9.4<br>6.0<br>5.3               | 18<br>9.7<br>6.9<br>5.7<br>6.1               | e5.3<br>e5.2<br>e4.7<br>e4.3<br>e3.7       | e3.9<br>e4.1<br>e4.5<br>e3.7<br>e3.4        | 5.3<br>4.7<br>4.6<br>4.0<br>3.7             | 2.8<br>2.6<br>2.3<br>2.1<br>2.3        | 1.3<br>1.2<br>1.2<br>.99<br>.81           | 2.8<br>10<br>3.1<br>193<br>25               | 7.0<br>4.6<br>3.4<br>2.9<br>2.0             | .77<br>.66<br>15<br>3.3<br>1.4           |  |
| 16<br>17<br>18<br>19<br>20                 | .71<br>.61<br>.48<br>.55                 | 2.6<br>2.2<br>2.9<br>48<br>32                | 4.8<br>4.8<br>61<br>23<br>10                | 5.3<br>4.0<br>14<br>38<br>19                 | e3.3<br>e3.2<br>e3.2<br>e3.0<br>e2.8       | e3.1<br>3.6<br>3.4<br>3.2<br>3.0            | 3.5<br>12<br>9.6<br>6.0<br>4.9              | 2.1<br>1.7<br>1.6<br>2.2<br>2.6        | .65<br>.52<br>.44<br>.46<br>.43           | 6.9<br>4.5<br>3.1<br>2.5<br>2.1             | 1.6<br>1.3<br>1.1<br>.94<br>.88             | 1.3<br>1.8<br>7.1<br>6.1<br>3.1          |  |
| 21<br>22<br>23<br>24<br>25                 | .49<br>.40<br>.25<br>.25                 | 145<br>10<br>6.4<br>9.3<br>7.0               | 7.6<br>5.8<br>5.0<br>5.6<br>210             | 12<br>e8.4<br>e7.7<br>e6.7<br>e5.7           | e2.8<br>e2.9<br>e3.6<br>e4.8<br>e4.6       | 2.8<br>2.8<br>2.6<br>2.5<br>2.4             | 4.3<br>3.8<br>3.3<br>10<br>79               | 4.2<br>2.0<br>1.8<br>1.6<br>1.3        | 4.4<br>8.0<br>4.0<br>1.3<br>.82           | 1.7<br>1.3<br>1.1<br>1.1<br>6.9             | .75<br>.86<br>.79<br>.63<br>.60             | 2.2<br>5.4<br>6.1<br>2.5<br>1.8          |  |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.1<br>2.4<br>.95<br>.66<br>.50          | 157<br>76<br>11<br>7.3<br>5.5                | 15<br>8.9<br>7.0<br>5.8<br>5.4<br>4.7       | e5.5<br>e5.3<br>e6.2<br>e6.4<br>e6.0<br>e6.3 | e4.9<br>e5.1<br>e5.8                       | 2.3<br>2.2<br>3.6<br>2.9<br>2.6<br>34       | 11<br>6.9<br>9.7<br>8.7<br>6.2              | 1.1<br>1.1<br>1.1<br>.97<br>.80<br>.67 | .66<br>3.3<br>1.2<br>.71<br>.55           | 23<br>5.6<br>2.6<br>1.6<br>4.4              | 5.2<br>3.4<br>2.4<br>1.1                    | 1.4<br>1.2<br>1.0<br>.91<br>1.4          |  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 25.85<br>.83<br>3.6<br>.25<br>.16<br>.18 | 615.09<br>20.5<br>157<br>.38<br>3.83<br>4.27 | 828.3<br>26.7<br>229<br>4.2<br>4.98<br>5.75 | 336.3<br>10.8<br>48<br>4.0<br>2.02<br>2.33   | 173.9<br>6.21<br>21<br>2.8<br>1.16<br>1.21 | 370.2<br>11.9<br>150<br>2.2<br>2.23<br>2.57 | 590.1<br>19.7<br>262<br>3.3<br>3.67<br>4.10 | 101.64<br>3.28<br>13<br>.67<br>.61     | 124.88<br>4.16<br>49<br>.43<br>.78<br>.87 | 499.4<br>16.1<br>193<br>1.1<br>3.01<br>3.47 | 168.91<br>5.45<br>95<br>.60<br>1.02<br>1.17 | 76.71<br>2.56<br>15<br>.44<br>.48<br>.53 |  |

CAL YR 1986 TOTAL 3587.43 MEAN 9.83 MAX 255 MIN .15 CFSM 1.83 IN. 24.89 WTR YR 1987 TOTAL 3911.23 MEAN 10.7 MAX 262 MIN .25 CFSM 2.00 IN. 27.14

e Estimated

## 01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ

LOCATION.--Lat 40°28'30", long 74°34'34", Somerset County, Hydrologic Unit 02030105, on left bank 30 ft downstream from highway bridge at Blackwells Mills, and 0.3 mi downstream from Six Mile Run.

DRAINAGE AREA. -- 258 mi 2.

PERIOD OF RECORD.--June 1903 to December 1904 (gage heights only), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at Millstone" 1903-04.

REVISED RECORDS. -- WSP 1552: 1924-25(M), 1926.

GAGE.--Water-stage recorder. Concrete control since Nov. 18, 1933. Datum of gage is 26.97 ft above National Geodetic Vertical Datum of 1929. June 27, 1903 to Dec. 31, 1904, nonrecording gage at bridge 2.0 mi downstream at Millstone at different datum. Aug. 4, 1921 to Aug. 16, 1928, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good except those above 1,200 ft<sup>3</sup>/s, which are poor. Inflow from and losses to Delaware and Raritan Canal above station. Flow slightly regulated by Carnegie Lake, capacity, 310,000,000 gal and several smaller reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

AVERAGE DISCHARGE .-- 66 years, 376 ft3/s, 19.79 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,200 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 18.68 ft, from highwater mark; minimum, about 5 ft<sup>3</sup>/s, Sept. 16, 1923.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Dec. 3  | 1730 | 3,820                             | 9.34             | Apr. 5  | 0530 | *5,460                            | *11.02              |
| Dec. 25 | 2215 | 3,750                             | 9.26             | July 3  | 2245 | 3,580                             | 9.01                |
| Mar. 2  | 0845 | 3,310                             | 8.59             | July 15 | 0900 | 3,870                             | 9.40                |

Minimum discharge, 50 ft<sup>3</sup>/s, Sept. 30, gage height, 1.57 ft, Oct. 9, June 18, 20.

|                                  |                                        | DISCHA                            | RGE, IN                                  | CUBIC FEET                             | PER SECO                        | ND, WATER                              | YEAR OCTO                          | OBER 1986                              | TO SEPTE                        | MBER 1987                              |                                       |                              |
|----------------------------------|----------------------------------------|-----------------------------------|------------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------------|------------------------------|
| DAY                              | ОСТ                                    | NOV                               | DEC                                      | JAN                                    | FEB                             | MAR                                    | APR                                | MAY                                    | JUN                             | JUL                                    | AUG                                   | SEP                          |
| 1                                | 117                                    | 157                               | 418                                      | 358                                    | 368                             | 1540                                   | 1030                               | 370                                    | 105                             | 170                                    | 276                                   | 106                          |
| 2                                | 115                                    | 160                               | 455                                      | 1400                                   | 374                             | 3120                                   | 662                                | 318                                    | 119                             | 715                                    | 242                                   | 95                           |
| 3                                | 115                                    | 164                               | 3140                                     | 2010                                   | 512                             | 2330                                   | 450                                | 297                                    | 120                             | 2710                                   | 281                                   | 109                          |
| 4                                | 135                                    | 166                               | 2560                                     | 1640                                   | 749                             | 1270                                   | 2190                               | 472                                    | 213                             | 2910                                   | 226                                   | 101                          |
| 5                                | 143                                    | 175                               | 1080                                     | 866                                    | 697                             | 735                                    | 4540                               | 763                                    | 763                             | 1100                                   | 179                                   | 81                           |
| 6<br>7<br>8<br>9                 | 125<br>112<br>105<br>122<br>128        | 352<br>300<br>335<br>400<br>370   | 612<br>473<br>382<br>932<br>1820         | 584<br>507<br>463<br>425<br>471        | 568<br>503<br>539<br>569<br>465 | 605<br>568<br>551<br>479<br>388        | 2530<br>1930<br>1090<br>667<br>530 | 615<br>463<br>356<br>301<br>262        | 315<br>206<br>174<br>155<br>166 | 388<br>307<br>468<br>376<br>252        | 335<br>247<br>190<br>161<br>960       | 72<br>77<br>81<br>154<br>138 |
| 11                               | 136                                    | 520                               | 1200                                     | 760                                    | 416                             | 325                                    | 434                                | 233                                    | 151                             | 267                                    | 1200                                  | 107                          |
| 12                               | 137                                    | 850                               | 914                                      | 685                                    | 393                             | 301                                    | 370                                | 214                                    | 136                             | 413                                    | 896                                   | 84                           |
| 13                               | 139                                    | 538                               | 721                                      | 540                                    | 365                             | 333                                    | 346                                | 193                                    | 129                             | 706                                    | 391                                   | 320                          |
| 14                               | 176                                    | 452                               | 525                                      | 444                                    | 324                             | 358                                    | 325                                | 180                                    | 139                             | 1480                                   | 236                                   | 330                          |
| 15                               | 180                                    | 325                               | 425                                      | 405                                    | 293                             | 323                                    | 297                                | 176                                    | 155                             | 3540                                   | 178                                   | 243                          |
| 16                               | 173                                    | 270                               | 386                                      | 404                                    | 252                             | 285                                    | 280                                | 172                                    | 286                             | 1940                                   | 153                                   | 206                          |
| 17                               | 172                                    | 241                               | 364                                      | 366                                    | 253                             | 254                                    | 503                                | 165                                    | 161                             | 672                                    | 135                                   | 181                          |
| 18                               | 166                                    | 224                               | 739                                      | 427                                    | 252                             | 235                                    | 754                                | 155                                    | 87                              | 429                                    | 121                                   | 331                          |
| 19                               | 164                                    | 1020                              | 1790                                     | 1100                                   | 241                             | 223                                    | 569                                | 166                                    | 82                              | 300                                    | 106                                   | 325                          |
| 20                               | 164                                    | 714                               | 1030                                     | 1430                                   | 231                             | 206                                    | 436                                | 170                                    | 78                              | 235                                    | 93                                    | 297                          |
| 21                               | 165                                    | 2280                              | 700                                      | 1050                                   | 232                             | 197                                    | 354                                | 197                                    | 91                              | 202                                    | 77                                    | 171                          |
| 22                               | 168                                    | 1640                              | 512                                      | 684                                    | 241                             | 192                                    | 309                                | 180                                    | 181                             | 187                                    | 69                                    | 120                          |
| 23                               | 167                                    | 704                               | 409                                      | 551                                    | 292                             | 186                                    | 273                                | 164                                    | 192                             | 172                                    | 67                                    | 140                          |
| 24                               | 165                                    | 597                               | 361                                      | 480                                    | 335                             | 180                                    | 338                                | 164                                    | 190                             | 161                                    | 60                                    | 101                          |
| 25                               | 162                                    | 524                               | 2670                                     | 482                                    | 335                             | 175                                    | 1950                               | 150                                    | 145                             | 248                                    | 56                                    | 66                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 178<br>213<br>197<br>184<br>170<br>160 | 795<br>2660<br>1600<br>750<br>550 | 2790<br>1200<br>705<br>543<br>453<br>406 | 376<br>334<br>309<br>300<br>307<br>387 | 337<br>341<br>340               | 168<br>161<br>194<br>229<br>223<br>665 | 1590<br>746<br>580<br>558<br>461   | 141<br>135<br>138<br>130<br>121<br>112 | 115<br>184<br>216<br>261<br>234 | 484<br>443<br>287<br>238<br>328<br>379 | 55<br>136<br>169<br>180<br>155<br>124 | 63<br>63<br>59<br>55<br>53   |
| TOTAL                            | 4753                                   | 19833                             | 30715                                    | 20545                                  | 10817                           | 16999                                  | 27092                              | 7673                                   | 5549                            | 22507                                  | 7754                                  | 4329                         |
| MEAN                             | 153                                    | 661                               | 991                                      | 663                                    | 386                             | 548                                    | 903                                | 248                                    | 185                             | 726                                    | 250                                   | 144                          |
| MAX                              | 213                                    | 2660                              | 3140                                     | 2010                                   | 749                             | 3120                                   | 4540                               | 763                                    | 763                             | 3540                                   | 1200                                  | 331                          |
| MIN                              | 105                                    | 157                               | 361                                      | 300                                    | 231                             | 161                                    | 273                                | 112                                    | 78                              | 161                                    | 55                                    | 53                           |
| CFSM                             | .59                                    | 2.56                              | 3.84                                     | 2.57                                   | 1.50                            | 2.13                                   | 3.50                               | .96                                    | .72                             | 2.81                                   | .97                                   | .56                          |
| IN.                              | .69                                    | 2.86                              | 4.43                                     | 2.96                                   | 1.56                            | 2.45                                   | 3.91                               | 1.11                                   | .80                             | 3.25                                   | 1.12                                  | .62                          |

CAL YR 1986 TOTAL 150383 MEAN 412 MAX 5960 MIN 32 CFSM 1.60 IN. 21.67 WTR YR 1987 TOTAL 178566 MEAN 489 MAX 4540 MIN 53 CFSM 1.90 IN. 25.73

## 01402540 MILLSTONE RIVER AT WESTON, NJ

LOCATION.--Lat 40°31'47", long 74°35'19", Somerset County, Hydrologic Unit 02030105, at bridge on Wilhouski Street in Weston, 50 ft upstream from Royce Brook, 0.8 mi southwest of Alma White College, and 1.9 mi north of Millstone.

DRAINAGE AREA.--271 mi<sup>2</sup>, includes approximately 13 mi<sup>2</sup> which drains into Delaware and Raritan canal. PERIOD OF RECORD.--Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           |                                             | STREA<br>FLOW<br>INSTA | AM- CI<br>N, CO<br>AN- DU<br>DUS AN                                 | CE                                           | PH<br>(STAND-<br>ARD<br>UNITS)   | TEMPI<br>ATUI<br>WATI                   | RE I                                                 | YGEN,<br>DIS-<br>OLVED<br>MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGE<br>DEMAN<br>BIO-<br>CHEN<br>ICAL<br>5 D/<br>(MG/ | ND, C<br>F<br>4- F<br>AÝ B                          | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------|---------------------------------------------|------------------------|---------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------------|
| OCT_1986       | Barri I                                     |                        |                                                                     |                                              | 11.00                            | 51                                      | 100                                                  | acr j                           | art court                                                      | 2.71                                                   |                                                     | 1.00                                        |                                     |
| 15<br>JAN 1987 | 1030                                        | E203                   |                                                                     | 250                                          | 7.4                              | 15                                      | .5                                                   | 8.5                             | 85                                                             | 2                                                      | .8 11                                               | 00                                          | 490                                 |
| 26             | 1100                                        | E371                   |                                                                     | 226                                          | 7.4                              | 0                                       | .0                                                   | 14.6                            | 101                                                            | 0                                                      | .9                                                  |                                             |                                     |
| 80<br>NUL      | 1115                                        | E952                   |                                                                     | 135                                          | 7.1                              | 10                                      | .0                                                   | 9.8                             | 88                                                             | 1                                                      | .9 7                                                | 90                                          | 330                                 |
| 03             | 1030                                        | E148                   |                                                                     | 268                                          | 7.3                              | 24                                      | .5                                                   | 5.7                             | 68                                                             | 2                                                      | .0 13                                               | 00                                          | 170                                 |
| JUL<br>07      | 1030                                        | E325                   |                                                                     | 143                                          | 6.9                              | 23                                      | .5                                                   | 6.5                             | 76                                                             | 2                                                      | .7 2                                                | 30                                          | 490                                 |
| AUG<br>06      | 1030                                        | E385                   |                                                                     | 203                                          | 6.9                              | 24                                      |                                                      | 5.7                             | 68                                                             |                                                        |                                                     |                                             | 3500                                |
| 00             | 1030                                        | E303                   |                                                                     | 203                                          | 0.9                              | 24                                      | .0                                                   | 3.1                             | 00                                                             |                                                        | .0 24                                               | 00                                          | 3300                                |
| DATE           | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | L                      | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M   | M, SOD<br>- DI<br>ED SOL<br>L (M |                                         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | LINIT                           | Y SULI<br>DIS<br>L SOI<br>(MC                                  | VED                                                    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | (MG/                                        | :<br>ED<br>L                        |
| OCT 1986       |                                             |                        |                                                                     |                                              |                                  |                                         |                                                      |                                 |                                                                |                                                        |                                                     |                                             |                                     |
| 15<br>JAN 1987 |                                             | 79                     | 18                                                                  | 8.                                           | 3 1                              | 6                                       | 3.5                                                  | 49                              |                                                                | 28                                                     | 23                                                  | 0.                                          | 2                                   |
| 26             |                                             | 51                     | 12                                                                  | 5.                                           | 2 1                              | 9                                       | 2.3                                                  | 23                              |                                                                | 28                                                     | 33                                                  | 0.                                          | 2                                   |
| APR<br>08      |                                             | 38                     | 9.0                                                                 | 3.                                           | 7                                | 9.2                                     | 2.0                                                  | 17                              | -                                                              | 20                                                     | 13                                                  | 0.                                          | 1                                   |
| JUN<br>03      |                                             | 79                     | 17                                                                  | 8.                                           | 9 1                              | 7                                       | 3.0                                                  | 47                              |                                                                | 33                                                     | 25                                                  | 0.                                          | 3                                   |
| JUL<br>07      |                                             | 41                     | 9.2                                                                 | 4.                                           |                                  | 7.6                                     | 3.2                                                  | 21                              |                                                                | 19                                                     | 11                                                  | 0.                                          |                                     |
| AUG 06         |                                             | 62                     | 14                                                                  | 6.                                           |                                  | 3                                       |                                                      | 35                              |                                                                | 24                                                     | 17                                                  |                                             |                                     |
| 00             |                                             | 02                     | 14                                                                  | 0.                                           | <b>5</b> 1                       | 3                                       | 3.5                                                  | 35                              |                                                                | 24                                                     | 17                                                  | 0.                                          | 2                                   |
| DATE           | SILI(<br>DIS-<br>SOL)<br>(MG/<br>AS<br>SIO2 | /ED                    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | TE NO2                           | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | MONTA                           | M-<br>1 + NII<br>IIC GE<br>1L TOI<br>'L (MC                    | TRO-<br>EN,<br>TAL<br>G/L<br>N)                        | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         | CARBO<br>ORGAN<br>TOTA<br>(MG/<br>AS C      | IĊ<br>L<br>L                        |
| OCT_1986       | TT.                                         |                        |                                                                     |                                              |                                  |                                         |                                                      |                                 |                                                                |                                                        |                                                     | H I                                         |                                     |
| 15<br>JAN 1987 |                                             | 2.9                    | 130                                                                 | 0.0                                          | 119 2                            | .26                                     | 0.06                                                 |                                 | TAL .                                                          | ••                                                     | 0.330                                               | 4.6                                         | -                                   |
| 26<br>APR      | 11                                          | 100                    | 120                                                                 |                                              |                                  | •••                                     | ••                                                   |                                 | - 1                                                            | •                                                      | ••                                                  | 4.9                                         |                                     |
| Ü8             |                                             | 0.0                    | 76                                                                  | E0.0                                         | 17 1                             | .18                                     | 0.22                                                 | 1.2                             | 2 2                                                            | .4                                                     | 0.200                                               | 7.4                                         |                                     |
| 03             |                                             | 5.7                    | 140                                                                 | 0.0                                          | 38 1                             | .78                                     | 0.20                                                 | 1.0                             | 2                                                              | .8                                                     | 0.420                                               | 4.2                                         | 1 12                                |
| JUL<br>07      |                                             | 7.6                    | 75                                                                  | E0.0                                         | 15 1                             | .30                                     | 0.17                                                 | 1.1                             | 2                                                              | .4                                                     | 0.280                                               | 7.0                                         | -                                   |
| AUG            |                                             |                        |                                                                     |                                              |                                  |                                         | 0.11                                                 |                                 | -                                                              | • •                                                    |                                                     | 1.0                                         |                                     |

## 01402540 MILLSTONE RIVER AT WESTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME               | SULFID<br>TOTAL<br>(MG/L<br>AS S) | SOLV<br>(UG/                                          | ARSE<br>ED TOT                                                  | NIC RI                                              | ERYL-<br>IUM,<br>DTAL<br>ECOV-<br>RABLE<br>UG/L<br>S BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | TOTAL<br>RECOV<br>ERABL<br>(UG/L | E ERABLE (UG/L           |
|----------------|--------------------|-----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------|--------------------------|
| JUN 1987<br>03 | 1030               | <0.                               | 5                                                     | 10                                                              | 2                                                   | <10                                                      | 60                                                    | <1                                                      | <1                               | 0 6                      |
| DAT            | T(<br>R)<br>E<br>E | RABLE<br>UG/L                     | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCUR<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS HG | TO' REC                                                  | COV- NI<br>ABLE TO<br>G/L (I                          | LE- T<br>IUM, R<br>DTAL E<br>JG/L (                     | UG/L                             | HENOLS<br>TOTAL<br>UG/L) |
| JUN 198        | 7                  | 210                               | <5                                                    | 70                                                              | <0.1                                                | 0                                                        | 4                                                     | <1                                                      | <10                              | <1                       |

## 01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ

LOCATION.--Lat 40°29'56", long 74°39'05", Somerset County, Hydrologic Unit 02030105, on right bank 25 ft upstream from bridge on State Highway 514 (Amwell Road), 1,200 ft upstream from mouth, and 2.0 mi north of Belle Mead.

DRAINAGE AREA . -- 1.20 mi 2.

PERIOD OF RECORD. -- October 1966 to September 1974, January 1980 to current year.

REVISED RECORDS. -- WRD NJ-69: 1967, 1968. WDR NJ-85-1: 1980-84(P).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 66.98 ft above National Geodetic Vertical Datum of 1929. Prior to September 1974 at same site at datum 0.79 ft higher.

REMARKS.--No estimated daily discharges. Records fair. Some regulation from storm-water detention basin 542 ft upstream of gage since 1980. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE.--15 years (water years 1967-74, 1981-87), 2.50 ft<sup>3</sup>/s, 28.30 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,450 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 7.80 ft, present datum, from high-water mark, from rating curve extended above 203 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; no flow part of or all of some days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 125 ft3/s and maximum (\*):

| Date                                                        | Time                                         | Discharge (ft <sup>3</sup> /s)   | Gage height (ft)                              | Date                                              | Time                                 | Discharge (ft <sup>3</sup> /s)  | Gage height<br>(ft)                  |
|-------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|
| Nov. 20<br>Nov. 26<br>Dec. 3<br>Dec. 25<br>Apr. 4<br>July 2 | 2300<br>1930<br>0030<br>0230<br>1230<br>2245 | 207<br>*454<br>180<br>205<br>203 | 4.26<br>*5.38<br>4.08<br>4.25<br>4.24<br>3.95 | July 8<br>July 14<br>July 30<br>Aug. 3<br>Aug. 10 | 0415<br>1615<br>1700<br>0915<br>0230 | 147<br>417<br>138<br>230<br>205 | 3.84<br>5.25<br>3.77<br>4.40<br>4.25 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 0.05 ft3/s, Oct. 10, 11, gage height, 2.00 ft.

|                                            |                                          | DISCHA                                      | IRGE, IN C                                  | OBIC FEET                                  | PER SECO                                    | MEAN VAL                                   | UES                                         | OBEK 1900                                | IU SEPIE                                   | MBER 1907                                   |                                             |                                            |  |
|--------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|--|
| DAY                                        | OCT                                      | NOV                                         | DEC                                         | JAN                                        | FEB                                         | MAR                                        | APR                                         | MAY                                      | JUN                                        | JUL                                         | AUG                                         | SEP                                        |  |
| 1 2 3 4 5                                  | .42<br>.45<br>.70<br>.74<br>.45          | .16<br>.32<br>.20<br>.34<br>2.9             | 1.1<br>22<br>38<br>3.3<br>1.8               | .95<br>16<br>7.2<br>3.3<br>1.8             | 1.3<br>2.2<br>6.3<br>6.8<br>3.3             | 35<br>7.1<br>3.2<br>1.9<br>1.3             | 2.6<br>1.6<br>1.4<br>56<br>5.8              | .79<br>.78<br>.87<br>5.2<br>2.9          | 1.1<br>.51<br>25<br>6.4                    | 4.1<br>14<br>10<br>1.5<br>.86               | 1.5<br>1.9<br>26<br>2.6<br>2.8              | .49<br>.35<br>.24<br>.19<br>.17            |  |
| 6<br>7<br>8<br>9                           | .36<br>.18<br>.15<br>.14                 | 6.4<br>.88<br>7.5<br>2.2<br>1.1             | 1.2<br>1.1<br>.86<br>17<br>4.9              | 1.4<br>1.3<br>1.3<br>1.2<br>4.5            | 2.1<br>2.9<br>2.6<br>2.3<br>1.3             | 1.1<br>1.1<br>1.0<br>.89<br>.72            | 9.5<br>5.3<br>2.7<br>1.8<br>1.4             | 1.6<br>1.0<br>.87<br>.78<br>.72          | 1.6<br>.91<br>.76<br>1.3<br>.66            | .74<br>.65<br>18<br>7.0<br>1.6              | 5.1<br>1.7<br>1.3<br>8.8<br>39              | .34<br>.50<br>3.3<br>3.3<br>.43            |  |
| 11<br>12<br>13<br>14<br>15                 | .08<br>.12<br>.38<br>2.4<br>.46          | 13<br>3.2<br>1.3<br>.88<br>.78              | 2.7<br>3.7<br>1.8<br>1.2<br>1.1             | 5.5<br>2.3<br>1.5<br>1.2<br>1.2            | 1.2<br>1.2<br>1.1<br>1.0<br>.81             | .63<br>.75<br>1.1<br>.84<br>.70            | 1.1<br>.95<br>.94<br>.74                    | .65<br>.63<br>.55<br>.52                 | .51<br>.63<br>.54<br>.53                   | 1.0<br>3.5<br>.94<br>55<br>6.5              | 2.7<br>1.5<br>1.1<br>1.0<br>.92             | .24<br>.21<br>19<br>1.6<br>.66             |  |
| 16<br>17<br>18<br>19<br>20                 | .29<br>.24<br>.22<br>.18<br>.18          | .63<br>.56<br>4.8<br>16<br>20               | 1.0<br>.91<br>18<br>4.8<br>1.8              | 1.0<br>.88<br>5.5<br>12<br>5.3             | .61<br>.64<br>.72<br>.67                    | .58<br>.50<br>.45<br>.45                   | .68<br>3.0<br>2.0<br>1.1<br>.87             | .54<br>.49<br>.64<br>.93                 | .49<br>.46<br>.41<br>.42<br>.42            | 2.0<br>1.1<br>.82<br>.78<br>.75             | .85<br>.68<br>.59<br>.49                    | 2.3<br>3.2<br>3.5<br>1.2                   |  |
| 21<br>22<br>23<br>24<br>25                 | .18<br>.16<br>.17<br>.16<br>.13          | 23<br>2.4<br>1.7<br>3.0<br>1.8              | 1.2<br>1.0<br>.94<br>3.9                    | 2.8<br>2.0<br>1.5<br>1.1                   | .65<br>.70<br>1.4<br>1.5                    | .39<br>.37<br>.37<br>.33<br>.31            | .74<br>.64<br>.59<br>8.7                    | 1.1<br>.59<br>.60<br>.42<br>.36          | 2.5<br>4.3<br>1.2<br>.64<br>.49            | .66<br>.57<br>.55<br>2.7<br>3.0             | .38<br>.73<br>.37<br>.30<br>.28             | 5.0<br>1.9<br>.75<br>.49                   |  |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.3<br>.73<br>.35<br>.25<br>.26          | 61<br>10<br>2.8<br>1.8<br>1.4               | 3.5<br>1.9<br>1.4<br>1.1<br>1.1             | 1.0<br>.85<br>.78<br>.76<br>1.3<br>1.7     | 1.6<br>1.5<br>1.9                           | .32<br>.29<br>.90<br>.47<br>.71            | 2.5<br>1.4<br>2.8<br>1.6<br>1.0             | .31<br>.61<br>.31<br>.26<br>.24          | .48<br>1.8<br>.56<br>.45<br>.44            | 19<br>2.0<br>1.1<br>.85<br>13<br>5.1        | .30<br>5.0<br>3.8<br>1.3<br>.72<br>.54      | .36<br>.26<br>.23<br>.21<br>.92            |  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 13.07<br>.42<br>2.4<br>.08<br>.35<br>.41 | 192.05<br>6.40<br>61<br>.16<br>5.33<br>5.95 | 189.27<br>6.11<br>44<br>.86<br>5.09<br>5.87 | 90.12<br>2.91<br>16<br>.76<br>2.42<br>2.79 | 50.34<br>1.80<br>6.8<br>.61<br>1.50<br>1.56 | 74.19<br>2.39<br>35<br>.29<br>1.99<br>2.30 | 132.16<br>4.41<br>56<br>.59<br>3.67<br>4.10 | 28.11<br>.91<br>5.2<br>.24<br>.76<br>.87 | 56.26<br>1.88<br>25<br>.22<br>1.56<br>1.74 | 179.37<br>5.79<br>55<br>.55<br>4.82<br>5.56 | 114.71<br>3.70<br>39<br>.28<br>3.08<br>3.56 | 52.40<br>1.75<br>19<br>.17<br>1.46<br>1.62 |  |

CAL YR 1986 TOTAL 1068.89 MEAN 2.93 MAX 61 MIN .00 CFSM 2.44 IN. 33.13 WTR YR 1987 TOTAL 1172.03 MEAN 3.21 MAX 61 MIN .08 CFSM 2.68 IN. 36.32

## 01403060 RARITAN RIVER BELOW CALCO DAM, AT BOUND BROOK, NJ

LOCATION.--Lat 40°33'05", long 74°32'54", Somerset County, Hydrologic Unit 02030105, on right bank 1,000 ft downstream from Calco Dam and Cuckold Brook, 1,400 ft upstream of bridge on Interstate 287, 1.2 mi downstream from Millstone River, and 1.2 mi southwest of Bound Brook.

DRAINAGE AREA.--785 mi<sup>2</sup> (includes 11 mi<sup>2</sup> which drains into the Delaware and Raritan Canal).

PERIOD OF RECORD.--September 1903 to March 1909, October 1944 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1966 published as "Raritan River at Bound Brook" (station 01403000).

REVISED RECORDS. -- WSP 1552: 1903-07, 1946(M), 1949, 1952(P).

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Sept. 12, 1903 to Mar. 31, 1909, nonrecording gages at highway bridge, 1.2 mi downstream at different datum. October 1944 to Sept. 30, 1966, water-stage recorder and concrete control at site 1,000 ft upstream at datum 18.06 ft higher.

REMARKS.--No estimated daily discharges. Records good. Water diverted 1.2 mi above station by Elizabethtown Water Co. for municipal supply (see Raritan River basin, diversions). Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversions to and releases from Round Valley Reservoir (see Raritan River basin, diversions and station 01399690). Slight diurnal fluctuations at low flow. Several measurements of water temperature were made during the year. New Jersey Water Supply Authority gage-height telemeter at station.

AVERAGE DISCHARGE.--48 years, (water years 1904-08, 1945-87), 1,282 ft<sup>3</sup>/s, adjusted for diversion by Elizabethtown Water Co. since 1944, and change in contents in Spruce Run Reservoir since 1964 and Round Valley Reservoir since 1966.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,100 ft<sup>3</sup>/s, Aug. 28, 1971, elevation, 37.47 ft, from floodmark; minimum daily, 37 ft<sup>3</sup>/s, Sept. 6, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 12,000 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Elevation<br>(ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Elevation<br>(ft) |
|---------|------|-----------------------------------|-------------------|---------|------|-----------------------------------|-------------------|
| Nov. 27 | 0900 | 16,400                            | 27.56             | Dec. 25 | 1800 | 15,000                            | 26.98             |
| Dec. 3  | 1400 | 15,000                            | 26.97             | Apr. 5  | 0330 | *21,100                           | *29.36            |

Minimum discharge, 101 ft3/s, Oct. 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

|                                  |                                        |                                       |                                              |                                          |                                      | MENN AND                                | UES                                  |                                        |                                 |                                          |                                        |                                 |
|----------------------------------|----------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|------------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | OCT                                    | NOV                                   | DEC                                          | JAN                                      | FEB                                  | MAR                                     | APR                                  | MAY                                    | JUN                             | JUL                                      | AUG                                    | SEP                             |
| 1 2 3 4 5                        | 210                                    | 152                                   | 1220                                         | 1120                                     | 1000                                 | 4970                                    | 3490                                 | 1090                                   | 238                             | 298                                      | 435                                    | 247                             |
|                                  | 172                                    | 173                                   | 1320                                         | 3230                                     | 974                                  | 8360                                    | 1720                                 | 952                                    | 319                             | 1030                                     | 354                                    | 254                             |
|                                  | 166                                    | 206                                   | 11600                                        | 3920                                     | 1390                                 | 5210                                    | 1240                                 | 913                                    | 387                             | 4470                                     | 606                                    | 196                             |
|                                  | 221                                    | 203                                   | 6050                                         | 3070                                     | 2110                                 | 3150                                    | 8300                                 | 1600                                   | 924                             | 4010                                     | 406                                    | 180                             |
|                                  | 243                                    | 227                                   | 2720                                         | 1920                                     | 1830                                 | 2100                                    | 15400                                | 2080                                   | 2470                            | 1700                                     | 479                                    | 188                             |
| 6<br>7<br>8<br>9                 | 194<br>147<br>126<br>135<br>138        | 761<br>564<br>833<br>1170<br>715      | 1800<br>1450<br>1240<br>2370<br>4710         | 1420<br>1280<br>1190<br>1080<br>1170     | 1410<br>1340<br>1440<br>1470<br>1100 | 1720<br>1680<br>1820<br>1630<br>1310    | 7610<br>5600<br>3630<br>2560<br>2050 | 1610<br>1260<br>1040<br>894<br>807     | 893<br>555<br>427<br>390<br>387 | 630<br>475<br>1350<br>1400<br>827        | 1440<br>763<br>421<br>332<br>3770      | 170<br>248<br>345<br>814<br>513 |
| 11                               | 148                                    | 1080                                  | 2730                                         | 1940                                     | 1060                                 | 1080                                    | 1690                                 | 717                                    | 318                             | 571                                      | 2180                                   | 276                             |
| 12                               | 149                                    | 2330                                  | 2310                                         | 1710                                     | 995                                  | 1020                                    | 1430                                 | 650                                    | 265                             | 758                                      | 1440                                   | 231                             |
| 13                               | 189                                    | 1120                                  | 1910                                         | 1330                                     | 922                                  | 1040                                    | 1340                                 | 591                                    | 274                             | 1170                                     | 711                                    | 1780                            |
| 14                               | 308                                    | 784                                   | 1340                                         | 1150                                     | 797                                  | 1020                                    | 1240                                 | 512                                    | 278                             | 3010                                     | 421                                    | 2210                            |
| 15                               | 290                                    | 554                                   | 1150                                         | 1160                                     | 703                                  | 936                                     | 1110                                 | 567                                    | 250                             | 7310                                     | 327                                    | 916                             |
| 16                               | 205                                    | 452                                   | 1050                                         | 1220                                     | 568                                  | 848                                     | 1090                                 | 653                                    | 361                             | 3290                                     | 271                                    | 623                             |
| 17                               | 200                                    | 415                                   | 995                                          | 981                                      | 701                                  | 797                                     | 1500                                 | 490                                    | 267                             | 1220                                     | 238                                    | 592                             |
| 18                               | 213                                    | 376                                   | 2230                                         | 1120                                     | 688                                  | 695                                     | 2310                                 | 440                                    | 153                             | 790                                      | 236                                    | 1220                            |
| 19                               | 201                                    | 2910                                  | 5620                                         | 2690                                     | 608                                  | 666                                     | 1700                                 | 556                                    | 141                             | 587                                      | 217                                    | 1180                            |
| 20                               | 191                                    | 1690                                  | 2620                                         | 3280                                     | 561                                  | 633                                     | 1340                                 | 588                                    | 140                             | 473                                      | 192                                    | 865                             |
| 21                               | 193                                    | 8570                                  | 1870                                         | 2310                                     | 547                                  | 588                                     | 1150                                 | 657                                    | 304                             | 362                                      | 171                                    | 587                             |
| 22                               | 193                                    | 3900                                  | 1440                                         | 1710                                     | 559                                  | 498                                     | 1040                                 | 569                                    | 788                             | 306                                      | 189                                    | 560                             |
| 23                               | 184                                    | 1810                                  | 1200                                         | 1440                                     | 693                                  | 462                                     | 926                                  | 494                                    | 780                             | 252                                      | 207                                    | 623                             |
| 24                               | 186                                    | 1580                                  | 1080                                         | 1080                                     | 777                                  | 494                                     | 1040                                 | 468                                    | 356                             | 304                                      | 157                                    | 424                             |
| 25                               | 183                                    | 1420                                  | 9890                                         | 1030                                     | 750                                  | 472                                     | 4500                                 | 410                                    | 246                             | 1140                                     | 150                                    | 306                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 258<br>371<br>262<br>204<br>198<br>193 | 3390<br>12100<br>3900<br>2120<br>1580 | 6670<br>3030<br>2080<br>1660<br>1430<br>1280 | 1070<br>925<br>790<br>818<br>865<br>1090 | 757<br>764<br>770                    | 460<br>437<br>517<br>524<br>465<br>2470 | 3260<br>1870<br>1610<br>1610<br>1350 | 365<br>343<br>342<br>322<br>278<br>252 | 229<br>807<br>494<br>388<br>319 | 1370<br>1240<br>623<br>382<br>424<br>762 | 175<br>477<br>571<br>591<br>409<br>250 | 249<br>217<br>180<br>168<br>192 |
| TOTAL                            | 6271                                   | 57085                                 | 88065                                        | 49109                                    | 27284                                | 48072                                   | 84706                                | 22510                                  | 14148                           | 42534                                    | 18586                                  | 16554                           |
| MEAN                             | 202                                    | 1903                                  | 2841                                         | 1584                                     | 974                                  | 1551                                    | 2824                                 | 726                                    | 472                             | 1372                                     | 600                                    | 552                             |
| MAX                              | 371                                    | 12100                                 | 11600                                        | 3920                                     | 2110                                 | 8360                                    | 15400                                | 2080                                   | 2470                            | 7310                                     | 3770                                   | 2210                            |
| MIN                              | 126                                    | 152                                   | 995                                          | 790                                      | 547                                  | 437                                     | 926                                  | 252                                    | 140                             | 252                                      | 150                                    | 168                             |

CAL YR 1986 TOTAL 458660 MEAN 1257 MAX 18200 MIN 120 WTR YR 1987 TOTAL 474924 MEAN 1301 MAX 15400 MIN 126

## 01403150 WEST BRANCH MIDDLE BROOK NEAR MARTINSVILLE, NJ

LOCATION.--Lat 40°36'44", long 74°35'28", Somerset County, Hydrologic Unit 02030105, on left bank 150 ft upstream from bridge on Crim Road, 1.4 mi northwest of Martinsville, and 1.8 mi upstream from confluence with East Branch Middle Brook.

DRAINAGE AREA. -- 1.99 mi 2.

PERIOD OF RECORD .-- June 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 240.48 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeters at station.

AVERAGE DISCHARGE .-- 8 years, 3.20 ft 3/s, 21.84 in./yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 816 ft<sup>3</sup>/s, May 11, 1981, gage height, 5.60 ft; no flow part or all of each day Sept. 19-30, 1980 and June 29, 30, July 8.9, 1986.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 225 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------|
| Nov. 20 | 2330 | 384                               | 4.81             | June 4  | 1915 | 240                               | 4.37                |
| Nov. 26 | 1930 | *606                              | *5.32            | June 22 | 1400 | 338                               | 4.68                |
| Dec. 3  | 0030 | 298                               | 4.56             | July 2  | 2330 | 292                               | 4.54                |
| Dec. 25 | 0300 | 439                               | 4.95             | July 14 | 1645 | 373                               | 4.78                |
| Apr. 4  | 1245 | 355                               | 4.73             | July 26 | 1245 | 305                               | 4.58                |

DISCHARGE. IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum, 0.04 ft3/s, Oct. 18, 19, 20, 21.

|                                            |                                         | DISCHA                                      | INGE, IN C                                  | DBIC FEET                                  | PER SECO                                    | MEAN VAL                                    | UES                                        | OBER 1700                                | , TO SEFTE                                  | MBER 1707                                   |                                          |                                  |
|--------------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------|
| DAY                                        | OCT                                     | NOV                                         | DEC                                         | JAN                                        | FEB                                         | MAR                                         | APR                                        | MAY                                      | JUN                                         | JUL                                         | AUG                                      | SEP                              |
| 1 2 3 4 5                                  | .33<br>.44<br>.68<br>.29<br>.23         | .19<br>.20<br>.19<br>.23<br>2.0             | .89<br>33<br>55<br>3.6<br>1.9               | 1.3<br>23<br>7.5<br>3.5<br>2.2             | 1.9<br>2.9<br>6.8<br>6.2<br>3.3             | 66<br>23<br>7.6<br>4.2<br>3.2               | 4.4<br>2.4<br>1.9<br>83<br>7.1             | 1.6<br>1.5<br>2.0<br>11<br>4.6           | .25<br>.53<br>.30<br>37<br>7.1              | .60<br>11<br>20<br>1.1<br>.56               | .37<br>.44<br>.43<br>.34                 | .12<br>.11<br>.12<br>.10         |
| 6<br>7<br>8<br>9                           | .19<br>.23<br>.24<br>.24                | 3.8<br>.49<br>9.4<br>1.5<br>.77             | 1.4<br>1.3<br>1.1<br>20<br>7.1              | 1.8<br>1.9<br>1.8<br>1.5<br>4.8            | 2.5<br>3.3<br>3.0<br>3.0<br>2.0             | 4.0<br>5.5<br>4.1<br>2.9<br>2.0             | 23<br>10<br>4.4<br>3.2<br>2.6              | 2.7<br>2.0<br>1.7<br>1.5<br>1.3          | 1.1<br>.72<br>.60<br>.56                    | .37<br>.33<br>20<br>14<br>1.7               | 7.3<br>.68<br>.46<br>.64                 | .09<br>.14<br>2.9<br>1.8<br>.15  |
| 11<br>12<br>13<br>14<br>15                 | .25<br>.24<br>.33<br>.60<br>.09         | 16<br>2.3<br>1.1<br>.89<br>.85              | 2.8<br>4.4<br>2.1<br>1.3<br>1.3             | 8.0<br>3.2<br>2.5<br>2.6<br>4.4            | 1.7<br>1.7<br>1.4<br>1.3                    | 1.7<br>1.9<br>2.6<br>2.1<br>1.7             | 2.3<br>2.1<br>2.0<br>1.7<br>1.6            | 1.2<br>1.1<br>.96<br>.90<br>2.9          | .33<br>.45<br>.31<br>.24                    | .91<br>.64<br>.56<br>46<br>5.8              | .83<br>.55<br>.46<br>.44                 | .11<br>.08<br>12<br>.49<br>.20   |
| 16<br>17<br>18<br>19<br>20                 | .08<br>.08<br>.04<br>.04                | .79<br>.62<br>5.4<br>28<br>29               | 1.3<br>1.4<br>30<br>7.3<br>2.6              | 2.4<br>1.6<br>8.7<br>15<br>5.7             | 1.2<br>1.1<br>1.1<br>.95                    | 1.5<br>1.4<br>1.3<br>1.3                    | 1.6<br>9.9<br>5.3<br>2.7<br>2.2            | 1.0<br>.77<br>.98<br>1.1<br>.93          | .20<br>.19<br>.19<br>.22<br>.22             | 1.3<br>.76<br>.56<br>.50<br>.49             | .34<br>.30<br>.24<br>.21<br>.20          | 2.2<br>1.5<br>1.3<br>.41         |
| 21<br>22<br>23<br>24<br>25                 | .06<br>.10<br>.12<br>.15<br>.13         | 35<br>2.1<br>1.3<br>2.5<br>1.4              | 1.9<br>1.4<br>1.3<br>4.7                    | 3.2<br>3.6<br>2.8<br>1.8<br>1.8            | 1.0<br>1.2<br>1.8<br>1.6                    | 1.2<br>1.1<br>1.0<br>.97<br>.89             | 1.9<br>1.6<br>1.4<br>7.7                   | .91<br>.64<br>.63<br>.52<br>.45          | 4.8<br>23<br>1.1<br>.34<br>.21              | .52<br>.50<br>.45<br>11<br>2.1              | .18<br>.21<br>.17<br>.17                 | .31<br>.38<br>.31<br>.24<br>.22  |
| 26<br>27<br>28<br>29<br>30<br>31           | .45<br>.14<br>.16<br>.19<br>.19         | 88<br>10<br>2.5<br>1.7<br>1.2               | 4.1<br>2.5<br>2.0<br>1.7<br>1.7             | 1.8<br>1.5<br>1.6<br>1.4<br>2.3<br>2.7     | 1.7<br>1.5<br>2.1                           | .95<br>.82<br>1.6<br>1.0<br>2.1             | 3.2<br>2.2<br>3.5<br>2.9<br>2.2            | .39<br>.38<br>.38<br>.34<br>.30          | 18<br>.87<br>.40<br>.84                     | 19<br>1.3<br>.54<br>.36<br>.37<br>.41       | .17<br>2.2<br>.54<br>1.2<br>.15<br>.10   | .21<br>.19<br>.22<br>.27<br>.52  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 6.79<br>.22<br>.68<br>.04<br>.11<br>.13 | 249.42<br>8.31<br>88<br>.19<br>4.18<br>4.66 | 274.49<br>8.85<br>72<br>.89<br>4.45<br>5.13 | 127.9<br>4.13<br>23<br>1.3<br>2.07<br>2.39 | 59.87<br>2.14<br>6.8<br>.92<br>1.07<br>1.12 | 177.83<br>5.74<br>66<br>.82<br>2.88<br>3.32 | 217.0<br>7.23<br>83<br>1.4<br>3.63<br>4.06 | 46.97<br>1.52<br>11<br>.29<br>.76<br>.88 | 100.84<br>3.36<br>37<br>.17<br>1.69<br>1.89 | 163.73<br>5.28<br>46<br>.33<br>2.65<br>3.06 | 48.90<br>1.58<br>18<br>.10<br>.79<br>.91 | 26.95<br>.90<br>12<br>.08<br>.45 |

CAL YR 1986 TOTAL 1490.11 MEAN 4.08 MAX 139 MIN .04 CFSM 2.05 IN. 27.84 WTR YR 1987 TOTAL 1500.67 MEAN 4.11 MAX 88 MIN .04 CFSM 2.07 IN. 27.03

## 01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ (National stream-quality accounting network)

LOCATION.--Lat 40°33'34", long 74°31'41", Somerset County, Hydrologic Unit 02030105, at Queens Bridge on Main street in Bound Brook, 1.7 mi upstream of Fieldsville Dam.

DRAINAGE AREA . - - 804 mi 2 .

PERIOD OF RECORD.--Water years 1964 to 1969, 1971 to 1973, 1978 and November 1981 to present. Published as "at Bound Brook" (station 01403000) 1964-66, and as "below Calco Dam at Bound Brook" (station 01403060) 1967-69.

REMARKS.--Instantaneous discharges are determined at Raritan River below Calco Dam at Bound Brook (station 01403060).

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|     | DATE | TIM          | STREAM-<br>FLOW,<br>INSTAN-<br>E TANEOUS<br>(CFS)                   | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)    | PH<br>(STAND-<br>ARD<br>UNITS)                                | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | BID-                                                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                               | CENT<br>SATUR-                                                  | DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY                          | FECAL,<br>0.7<br>UM-MF<br>(COLS./                   | (COLS.<br>PER                                      | HARD-<br>R NESS<br>(MG/L<br>AS                                 |
|-----|------|--------------|---------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|
| DE  | 1986 | 1100         | E11800                                                              | 99                                                   | 7.2                                                           | 8.0                                                           | 80                                                            | 11.8                                                              | 101                                                             | 3.5                                                                 | 1500                                                | K37000                                             | 33                                                             |
|     | 1987 | 1130         | E620                                                                | 315                                                  | 7.7                                                           | 2.5                                                           | 3.0                                                           | 15.4                                                              | 112                                                             | 3.1                                                                 | K4                                                  | 130                                                | 92                                                             |
| API | 28   | 1030         | E1640                                                               | 190                                                  | 7.6                                                           | 12.5                                                          | 4.5                                                           | 9.6                                                               | 90                                                              | 2.1                                                                 | 660                                                 | 380                                                | 62                                                             |
| SEI | 04   | 1030         | E184                                                                | 290                                                  | 7.8                                                           | 20.5                                                          | 2.9                                                           | 9.6                                                               | 106                                                             | 3.1                                                                 | 770                                                 | 110                                                | 88                                                             |
|     |      | DATE         | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                  | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | ALKA-<br>LINITY,<br>CARBON-<br>ATE<br>IT-FLD<br>(MG/L -<br>CACO3) | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                       | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>S102)              |
|     |      | C 1986<br>03 | 8.1                                                                 | 3.1                                                  | 4.9                                                           | 2.6                                                           |                                                               |                                                                   |                                                                 | 17                                                                  | 8.1                                                 | 0.1                                                | 6.8                                                            |
|     |      | 19           | 23                                                                  | 8.3                                                  | 26                                                            | 2.2                                                           |                                                               |                                                                   |                                                                 | 41                                                                  | 39                                                  | 0.2                                                | 11                                                             |
|     |      | 28           | 15                                                                  | 5.9                                                  | 12                                                            | 1.8                                                           | 57                                                            | 47                                                                | 50                                                              | 24                                                                  | 17                                                  | 0.1                                                | 9.0                                                            |
|     | SE   | 04           | 21                                                                  | 8.5                                                  | 20                                                            | 3.8                                                           | 65                                                            | 53                                                                | 54                                                              | 42                                                                  | 26                                                  | 0.3                                                | 3.4                                                            |
|     |      | DATE         | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)           | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONÍA<br>TOTAL<br>(MG/L<br>AS N)              | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)   | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         |                                                    | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) |
|     |      | 1986         |                                                                     |                                                      |                                                               |                                                               |                                                               | 2 222                                                             |                                                                 |                                                                     |                                                     |                                                    |                                                                |
|     | FEI  | 03<br>B 1987 | 63                                                                  | 136                                                  | 93                                                            | <0.010                                                        | 0.970                                                         | 0.140                                                             | 0.070                                                           | 0.80                                                                | 0.270                                               | 0.100                                              | 0.070                                                          |
|     | API  | 19<br>R      | 180                                                                 | 11                                                   | 82                                                            | 0.040                                                         | 2.40                                                          | 0.720                                                             | 0.710                                                           | 1.7                                                                 | 0.260                                               | 0.150                                              | 0.120                                                          |
|     | SEI  |              | 110                                                                 | 21                                                   | 90                                                            | 0.030                                                         | 1.20                                                          | 0.100                                                             | 0.090                                                           | 0.90                                                                | 0.110                                               | 0.070                                              | 0.050                                                          |
|     |      | 04           | 160                                                                 | 11                                                   | 90                                                            | 0.020                                                         | 2.20                                                          | 0.330                                                             | 0.340                                                           | 1.3                                                                 | 0.310                                               | 0.280                                              | 0.240                                                          |

RARITAN RIVER BASIN

## 01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|           | DATE | TIME           | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB) |
|-----------|------|----------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|
| 03        | 1986 | 1100           | 180                                                 | 1                                            | 26                                           | <0.5                                                 | <1                                           | <1                                                  | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                            | 130                                        | <5                                         |
| 19        | 1987 | 1130           | 40                                                  | <1                                           | 46                                           | <0.5                                                 | <1                                           | <1                                                  | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                            | 93                                         | <5                                         |
|           | 3    | 1030           | 30                                                  | <1                                           | 31                                           | <0.5                                                 | 1                                            | <1                                                  | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                            | 48                                         | <5                                         |
| SEP<br>04 |      | 1030           | 30                                                  | 1                                            | 36                                           | <0.5                                                 | <1                                           | 2                                                   | <3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                            | 19                                         | <5                                         |
|           |      | DATE           | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)        | DIS:<br>SOLVED<br>(UG/L                      | MERCURY<br>DIS-<br>SOLVED<br>(UG/L           | SOLVEI<br>(UG/L                                      | , NICKEL,<br>DIS-<br>SOLVED<br>(UG/L         | SOLVEI<br>(UG/L                                     | (UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIS-<br>D SOLVED<br>(UG/L                    | DIUM,<br>DIS-<br>SOLVED<br>(UG/L           | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) |
|           |      | DEC 1986<br>03 | <4                                                  | 45                                           | 0.1                                          | <10                                                  | 0 1                                          | <                                                   | , rot <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 41                                         | <6                                         | 6                                          |
|           |      | FEB 1987<br>19 |                                                     |                                              |                                              |                                                      |                                              |                                                     | a de la companya de l |                                              |                                            |                                            |
|           |      | APR 28         | <4                                                  | 52                                           | 2 <0.1                                       | 10                                                   | 0 <1                                         | <                                                   | 1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 91                                         | <6                                         | 10                                         |
|           |      | SEP<br>04      | <4                                                  | 36                                           | 0.1                                          | <10                                                  | 0 <1                                         |                                                     | 5 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 170                                        | <6                                         | 6                                          |
|           |      |                |                                                     |                                              |                                              |                                                      |                                              |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                            |                                            |

### 01403400 GREEN BROOK AT SEELEY MILLS, NJ

LOCATION.--Lat 40°39'53", long 74°24'10", Somerset County, Hydrologic Unit 02030105, on right bank at Seeley Mills, 250 ft downstream from Blue Brook, 300 ft downstream from bridge on Diamond Hill Road, and 0.5 mi northwest of Scotch Plains.

DRAINAGE AREA. -- 6.23 mi. 2

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1959-64, 1969: annual maximum, water years 1969-79.

June 1979 to current year. Fragmentary records 1944-53 in the files of the Geological Survey. Crest-stage data 1927-38, 1958-68 in files of Union County Park Commission.

REVISED RECORDS .-- WDR-NJ 81-1: 1979(M).

GAGE.--Water-stage recorder. Datum of gage is 184.44 ft above National Geodetic Vertical Datum of 1929. From 1944 to 1953, water-stage recorder and masonry dam about 400 ft downstream above lower Seeley Mills dam at different datum. From July 1969 to May 1979, crest-stage gage about 450 ft downstream below lower Seeley Mills dam (washed out May 29, 1968) at different datum.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE. -- 8 years, 11.2 ft3/s, 21.84 in./yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 6,240 ft<sup>3</sup>/s, Aug. 2, 1973, gage height, 16.1 ft, from rating curve extended above 600 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow, site and datum then in use; no flow part or all of some days in September 1981.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 23, 1938 reached an elevation of 196.5 ft, New Jersey Geological Survey datum, above lower Seeley Mills dam.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date                                            | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|-------------------------------------------------|------|-----------------------------------|------------------|
| Nov. 20 | 2345 | 495                               | 3.47             | Apr. 4 July 12 July 14 July 26 Aug. 10 Sept. 13 | 1430 | *848                              | *4.37            |
| Nov. 26 | 2015 | 696                               | 3.99             |                                                 | 1700 | 638                               | 3.85             |
| Dec. 3  | 0045 | 323                               | 2.93             |                                                 | 1700 | 528                               | 3.56             |
| Dec. 25 | 0330 | 386                               | 3.14             |                                                 | 1245 | 347                               | 3.01             |
| Mar. 1  | 1430 | 288                               | 2.82             |                                                 | 0230 | 253                               | 2.70             |
| Mar. 31 | 1300 | 314                               | 2.90             |                                                 | 1215 | 528                               | 3.56             |

Minimum discharge, 1.40 ft3/s Oct. 1, gage height, 0.96 ft.

REVISIONS.--The revised maximum discharges for the water years 1971 and 1975 and the revised maximum gage height (datum then in use) for the water year 1973 are given below. The figures supercede those published in the reports for 1978 and 1980.

| Date          | Discharge<br>(ft <sup>3</sup> /s) | Gage Height<br>(ft) |
|---------------|-----------------------------------|---------------------|
| Aug. 28, 1971 | 2,200                             | 12.32               |
| Aug. 2, 1973  | 6,240                             | 16.1                |
| July 14, 1975 | 1,900                             | 11.91               |

RARITAN RIVER BASIN

## 01403400 GREEN BROOK AT SEELEY MILLS, NJ -- Continued

#### DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY AUG SEP OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL 4.1 38 109 21 10 29 14 9.9 240 53 5.7 56 24 14 9.9 7.0 8.7 16 17 151 74 35 23 18 2.2 4.2 2.6 22 11 2.4 8.3 16 2.7 2.3 2.8 2.1 2.1 2.0 2.0 6.2 5.9 8.2 23 2.3 1.4 2.9 5.1 2.9 1.7 1.7 1.9 1.8 2.0 12345 24 6.4 12 16 18 17 13 9.5 1.5 1.5 1.5 1.5 11 2.7 17 6.2 3.4 8.2 7.8 7.2 6.2 9.0 9.4 9.7 13 9.1 11 7.8 6.5 5.8 5.3 3.5 3.0 2.9 3.5 2.6 2.2 2.2 8.7 19 2.9 28 4.8 3.2 5.2 6.9 5.9 5.1 24 26 2.2 6789 57 38 26 20 16 11 9.2 5.8 2.9 10 46 2.7 52 7.7 13 14 8.6 6.2 5.7 17 11 8.0 7.5 9.1 7.6 7.3 6.6 6.3 5.5 7.3 7.7 9.2 8.1 13 12 13 9.9 5.1 4.7 4.3 3.9 5.5 2.4 2.8 3.2 2.6 2.2 7.1 3.8 3.2 3.0 2.3 2.8 69 1.6 1.5 1.8 5.7 1.8 11 12 13 14 15 21 6.8 3.3 2.6 2.5 74 23 14 5.0 6.8 8.3 7.1 5.9 15 27 17 2.3 2.2 6.0 21 7.2 3.8 3.2 12 5.6 5.5 5.5 42 31 13 9.9 4.5 4.3 4.1 4.0 6.3 5.7 5.5 5.3 5.1 8.1 15 18 11 3.9 3.8 7.0 7.8 1.9 1.9 1.8 1.8 2.6 2.5 2.3 2.2 2.1 3.9 7.9 12 1.6 1.7 1.6 16 17 18 19 20 1.6 6.1 1.6 8.5 42 4.6 7.7 6.7 6.0 15 34 63 8.6 4.1 5.7 3.6 9.1 10 4.1 4.3 5.7 5.0 4.6 5.2 4.9 4.5 4.4 4.2 4.0 3.3 3.7 3.5 3.2 6.3 21 3.3 2.3 2.1 3.2 2.7 2.5 5.2 4.1 2.1 21 22 23 24 25 1.6 1.5 1.5 8.5 6.7 6.1 3.7 4.0 3.4 3.0 2.8 8.4 15 1.9 1.6 1.6 1.8 22 13 9.2 7.7 7.0 7.2 2.4 1.8 1.7 1.8 1.7 2.1 13 2.6 2.2 2.2 2.7 2.6 2.6 2.5 3.5 122 53 13 4.1 3.9 7.0 4.1 13 8.9 12 9.3 8.3 3.0 3.3 2.9 2.8 2.6 2.4 26 27 28 29 30 31 5.8 4.6 32 1.8 14 23 4.8 10 8.4 3.3 2.6 2.4 2.4 11 8.5 7.8 2.4 2.3 4.4 6.8 5.0 ... 6.1 6.0 80 412.3 13.3 56 4.8 2.13 2.46 66.4 2.14 7.2 1.4 .34 .40 588.1 19.0 109 4.1 3.05 3.51 208.5 7.45 17 4.0 1.20 1.24 569.9 18.4 151 3.9 2.95 3.40 196.0 6.32 46 1.8 1.01 1.17 740.6 24.7 240 6.0 3.96 4.42 326.7 10.5 74 2.2 1.69 1.95 182.0 5.87 23 2.4 .94 1.09 137.0 4.57 22 1.8 .73 .82 448.6 200.3 6.68 69 TOTAL MEAN 122 MAX 2.0 1.07 1.20 MIN 2.40 CFSM

CAL YR 1986 TOTAL 3630.2 MEAN 9.95 MAX 286 MIN 1.3 CFSM 1.60 IN. 21.67 WTR YR 1987 TOTAL 4076.4 MEAN 11.2 MAX 240 MIN 1.4 CFSM 1.79 IN. 24.33

## 01403535 EAST BRANCH STONY BROOK AT BEST LAKE AT WATCHUNG, NJ

LOCATION.--Lat 40°38'25", long 74°26'52", Somerset County, Hydrologic Unit 02030105, 700 ft upstream of dam on Best Lake in Watchung, 1,400 ft upstream of mouth, and 0.5 mi northeast of Watchung.

DRAINAGE AREA .-- 1.57 mi 2.

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 193.87 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Records fair above 0.2 ft<sup>3</sup>/s and poor below. Records given herein represent flow over dam and leakage through ports in dam. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

AVERAGE DISCHARGE. -- 7 years, 2.90 ft3/s, 22.49 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 484 ft<sup>3</sup>/s, July 7, 1984, gage height, 2.56 ft; no flow part or all of many days in most years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of August 2, 1973, reached a stage of 5.4 ft, present datum, from floodmarks, discharge, 2,840 ft<sup>3</sup>/s, by computation of flow over dam, embankment, and road.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|------------------|----------|------|-----------------------------------|---------------------|
| Nov. 20 | 2330 | 120                               | 1.73             | July 12  | 1700 | 277                               | 2.14                |
| Nov. 26 | 1945 | *429                              | *2.46            | July 14  | 1645 | 269                               | 2.12                |
| Dec. 25 | 0300 | 173                               | 1.88             | July 26  | 1245 | 148                               | 1.81                |
| Apr. 4  | 1245 | 369                               | 2.34             | Aug. 10  | 0215 | 103                               | 1.68                |
| July 9  | 0045 | 123                               | 1.74             | Sept. 13 | 1200 | 166                               | 1.86                |

No flow many days in October.

|                                            |                                         | DISCHA                                      | RGE, IN C                                  | UBIC FEET                                  | PER SECO                                   | ND, WATER<br>MEAN VAL                       | YEAR OCT                                   | OBER 1986                                   | TO SEPTE                                 | MBER 1987                                  |                                           |                                          |
|--------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|
| DAY                                        | OCT                                     | NOV                                         | DEC                                        | JAN                                        | FEB                                        | MAR                                         | APR                                        | MAY                                         | JUN                                      | JUL                                        | AUG                                       | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | .35<br>.12<br>.06<br>.31<br>.09         | .26<br>.31<br>.32<br>.49<br>2.3             | 3.1<br>13<br>24<br>4.0<br>2.7              | 2.5<br>16<br>5.9<br>3.9<br>3.1             | 1.8<br>2.3<br>4.1<br>4.1<br>3.1            | 36<br>14<br>7.6<br>5.3<br>4.4               | 4.3<br>2.7<br>2.2<br>51<br>7.8             | 2.4<br>2.3<br>2.5<br>4.4<br>3.8             | .39<br>1.6<br>.74<br>5.5<br>3.3          | .40<br>1.9<br>3.6<br>.76<br>.53            | .70<br>.70<br>.67<br>.58<br>4.0           | .34<br>.26<br>.26<br>.26<br>.25          |
| 6<br>7<br>8<br>9                           | .01<br>.00<br>.00<br>.00                | 6.0<br>3.5<br>8.0<br>4.7<br>3.5             | 2.2<br>1.7<br>1.5<br>6.8<br>5.8            | 2.7<br>2.7<br>2.4<br>2.1<br>3.2            | 2.7<br>2.8<br>2.7<br>3.3<br>2.7            | 4.0<br>4.8<br>5.0<br>3.6<br>1.9             | 7.6<br>5.3<br>4.6<br>4.3                   | 3.3<br>2.9<br>2.5<br>2.2<br>1.8             | 1.3<br>.97<br>.84<br>1.0<br>.77          | .36<br>.32<br>4.0<br>7.3<br>1.1            | 6.7<br>1.3<br>1.0<br>3.0                  | .16<br>1.7<br>1.5<br>.94<br>.45          |
| 11<br>12<br>13<br>14<br>15                 | .00<br>.00<br>.00<br>.16<br>.31         | 7.6<br>4.5<br>3.8<br>3.2<br>2.9             | 3.4<br>3.9<br>2.5<br>1.7                   | 4.8<br>3.3<br>2.7<br>2.6<br>3.0            | 2.3<br>2.4<br>1.9<br>1.6<br>1.4            | 2.1<br>2.3<br>2.2<br>2.0<br>1.9             | 3.9<br>3.7<br>3.7<br>3.7                   | 1.7<br>1.9<br>1.4<br>1.2<br>1.7             | .52<br>.62<br>.60<br>.53<br>.43          | .89<br>12<br>2.4<br>24<br>4.7              | 2.1<br>1.3<br>.92<br>.72<br>.65           | .37<br>.26<br>15<br>1.4<br>.67           |
| 16<br>17<br>18<br>19<br>20                 | .14<br>.06<br>.01<br>.00                | 3.2<br>3.6<br>7.7                           | 1.4<br>1.4<br>12<br>5.8<br>3.7             | 2.4<br>2.2<br>5.0<br>8.0<br>4.8            | 1.4<br>1.4<br>1.3<br>1.1                   | 1.8<br>1.6<br>1.5<br>1.4<br>1.2             | 3.5<br>4.2<br>4.4<br>3.7<br>3.7            | 1.3<br>1.1<br>1.5<br>1.7<br>1.3             | .33<br>.25<br>.21<br>.16<br>.15          | 2.0<br>1.5<br>1.2<br>2.5<br>1.4            | .51<br>.45<br>.37<br>.31                  | .61<br>1.1<br>2.0<br>1.3<br>.75          |
| 21<br>22<br>23<br>24<br>25                 | .00<br>.00<br>.00                       | 14<br>1.7<br>1.3<br>2.1<br>1.4              | 2.9<br>2.4<br>1.8<br>2.2<br>28             | 3.6<br>3.4<br>2.8<br>2.2<br>1.6            | 1.1<br>1.1<br>1.5<br>1.2<br>1.2            | 1.2<br>1.1<br>1.0<br>.90<br>.86             | 3.6<br>3.0<br>3.1<br>5.3<br>8.6            | 1.2<br>1.1<br>.98<br>.94<br>.85             | .35<br>3.2<br>.81<br>.35<br>.22          | 1.1<br>.90<br>.80<br>1.6<br>1.5            | .26<br>.33<br>.35<br>.24<br>.21           | .61<br>.71<br>.54<br>.45<br>.38          |
| 26<br>27<br>28<br>29<br>30<br>31           | 1.4<br>1.8<br>1.0<br>.71<br>.52         | 38<br>8.9<br>4.1<br>3.8<br>3.3              | 4.9<br>4.0<br>3.7<br>3.3<br>3.1<br>2.6     | 1.5<br>1.3<br>1.2<br>1.2<br>3.3<br>3.0     | 1.1<br>1.1<br>1.2                          | .85<br>.80<br>1.4<br>.94<br>1.1             | 3.9<br>3.5<br>3.7<br>3.6<br>3.0            | .80<br>.89<br>.79<br>.67<br>.56             | .13<br>2.9<br>.77<br>.45<br>.32          | 7.9<br>1.8<br>1.2<br>.94<br>.83<br>.85     | .26<br>1.7<br>.87<br>1.5<br>.46<br>e.40   | .26<br>.26<br>.33<br>.33<br>.40          |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 7.39<br>.24<br>1.8<br>.00<br>.15<br>.18 | 161.68<br>5.39<br>38<br>.26<br>3.43<br>3.83 | 161.0<br>5.19<br>28<br>1.4<br>3.31<br>3.81 | 108.4<br>3.50<br>16<br>1.2<br>2.23<br>2.57 | 55.0<br>1.96<br>4.1<br>1.1<br>1.25<br>1.30 | 129.75<br>4.19<br>36<br>.80<br>2.67<br>3.07 | 180.3<br>6.01<br>51<br>2.2<br>3.83<br>4.27 | 52.12<br>1.68<br>4.4<br>.44<br>1.07<br>1.23 | 29.71<br>.99<br>5.5<br>.13<br>.63<br>.70 | 92.28<br>2.98<br>24<br>.32<br>1.90<br>2.19 | 46.86<br>1.51<br>14<br>.21<br>.96<br>1.11 | 33.85<br>1.13<br>15<br>.16<br>.72<br>.80 |

CAL YR 1986 TOTAL 990.38 MEAN 2.71 MAX 62 MIN .00 CFSM 1.73 IN. 23.46 WTR YR 1987 TOTAL 1058.32 MEAN 2.90 MAX 51 MIN .00 CFSM 1.85 IN. 25.07

e Estimated

### 01403540 STONY BROOK AT WATCHUNG, NJ

LOCATION.--Lat 40°38'12", long 74°27'06", Somerset County, Hydrologic Unit 02030105, on right bank at Watchung Borough Administration Building, 150 ft downstream from bridge on Watchung Avenue, and 2.9 mi upstream from confluence with Green Brook.

DRAINAGE AREA. -- 5.51 mi 2.

PERIOD OF RECORD. -- October 1974 to current year.

REVISED RECORDS .-- WDR NJ-86-1: 1973 (P).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 172.24 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for period of estimated daily discharge, which are fair. Occasional regulation from Watchung and Best Lakes directly upstream from station. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 13 years, 10.2 ft3/s, 25.14 in./yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 4,420 ft<sup>3</sup>/s, July 14, 1975, gage height, 10.40 ft, from rating curve extended above 500 ft<sup>3</sup>/s on basis of slope-area measurements of peak flow; no flow all or part of Sept. 13, 18-20, 1982.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 2, 1973, reached a stage of 14.5 ft, from floodmark, discharge, 10,500 ft<sup>3</sup>/s, from slope-area measurements of peak flow.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (\*):

| Date                                    | Time                         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)              | Date                           | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)     |
|-----------------------------------------|------------------------------|-----------------------------------|-------------------------------|--------------------------------|----------------------|-----------------------------------|----------------------|
| Nov. 20<br>Nov. 26<br>Apr. 4<br>July 12 | 2345<br>2000<br>1300<br>1715 | 458<br>793<br>*1,110<br>351       | 4.48<br>5.47<br>*6.15<br>4.05 | July 14<br>July 26<br>Sept. 13 | 1700<br>1315<br>1215 | 968<br>448<br>508                 | 5.86<br>4.44<br>4.66 |

Minimum discharge, 0.87 ft<sup>3</sup>/s, Oct. 23, 24, 25, gage height, 0.81 ft.

| DISCHARGE, | IN | CUBIC | FEET | PER | SECOND, | WATER   | YEAR | OCTOBER | 1986 | TO | SEPTEMBER | 1987 |
|------------|----|-------|------|-----|---------|---------|------|---------|------|----|-----------|------|
| •          |    |       |      |     | MĚ      | AN VALI | JES  |         |      |    |           |      |

|                                            |                                           |                                              |                                            |                                            |                                            | MENU AVE                                    | DES                                         |                                   |                                          |                                            |                                           |                                          |
|--------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|
| DAY                                        | OCT                                       | NOV                                          | DEC                                        | JAN                                        | FEB                                        | MAR                                         | APR                                         | MAY                               | JUN                                      | JUL                                        | AUG                                       | SEP                                      |
| 1 2 3 4 5                                  | .93<br>1.6<br>2.0<br>2.5<br>1.7           | .99<br>1.0<br>1.0<br>1.3<br>2.9              | 4.9<br>34<br>81<br>14<br>9.4               | e6.3<br>e50<br>e26<br>e17<br>e11           | e7.8<br>e9.4<br>e15<br>e17                 | 120<br>48<br>24<br>18                       | 16<br>11<br>9.9<br>174<br>29                | 12<br>5.3<br>6.7<br>23<br>23      | 1.8<br>3.7<br>2.6<br>18<br>12            | 2.5<br>5.7<br>16<br>3.2<br>2.3             | 1.8<br>1.7<br>1.9<br>1.8<br>8.2           | 2.3<br>2.0<br>1.7<br>1.6<br>1.6          |
| 6<br>7<br>8<br>9                           | 1.3<br>1.2<br>1.1<br>1.2                  | 8.2<br>2.7<br>11<br>5.6<br>3.6               | 7.4<br>6.5<br>6.0<br>23                    | e9.0<br>e8.4<br>e7.6<br>e6.7               | 9.6<br>9.7<br>9.9<br>12<br>9.5             | 14<br>16<br>15<br>12<br>9.7                 | 42<br>29<br>20<br>16<br>15                  | 7.7<br>3.5<br>3.2<br>3.0<br>2.7   | 4.2<br>3.1<br>3.0<br>2.9<br>2.5          | 1.8<br>1.7<br>16<br>24<br>4.6              | 20<br>5.4<br>4.2<br>7.2<br>45             | 1.7<br>4.0<br>5.4<br>6.1<br>2.7          |
| 11<br>12<br>13<br>14<br>15                 | 1.0<br>1.1<br>1.2<br>3.0<br>2.0           | 15<br>7.3<br>4.1<br>2.9<br>2.5               | 11<br>13<br>9.3<br>7.5<br>7.1              | e16<br>e12<br>e9.0<br>e8.0<br>e9.0         | 8.8<br>8.7<br>7.8<br>7.2<br>7.1            | 8.7<br>9.1<br>9.8<br>9.6<br>8.6             | 13<br>12<br>11<br>10<br>9.3                 | 2.8<br>4.2<br>4.5<br>4.0<br>7.1   | 2.0<br>2.1<br>2.3<br>2.3<br>1.9          | 3.3<br>27<br>7.5<br>92                     | 6.8<br>4.8<br>3.6<br>3.1<br>2.9           | 2.1<br>2.1<br>44<br>6.7<br>4.1           |
| 16<br>17<br>18<br>19<br>20                 | 1.4<br>1.3<br>1.2<br>1.1                  | 2.5<br>2.4<br>3.2<br>19<br>38                | 7.0<br>7.1<br>42<br>22<br>13               | e7.5<br>e6.5<br>e16<br>e26<br>e19          | 6.7<br>6.2<br>5.6<br>5.1<br>5.0            | 7.6<br>7.0<br>6.4<br>6.2<br>5.8             | 8.7<br>12<br>13<br>9.8<br>8.8               | 5.2<br>4.2<br>4.8<br>6.4<br>4.6   | 1.7<br>1.6<br>1.4<br>1.1                 | 7.1<br>5.4<br>4.5<br>9.7<br>6.2            | 2.6<br>2.4<br>2.2<br>2.0<br>1.9           | 3.5<br>4.3<br>9.5<br>6.7<br>4.2          |
| 21<br>22<br>23<br>24<br>25                 | 1.1<br>1.1<br>1.1<br>.87<br>.90           | 56<br>9.1<br>6.4<br>8.1<br>6.7               | 9.5<br>8.7<br>9.4<br>e78                   | e13<br>e11<br>e11<br>e12<br>e15            | 4.9<br>5.0<br>6.4<br>5.6<br>5.4            | 5.5<br>5.2<br>5.1<br>4.8<br>4.4             | 8.1<br>7.5<br>7.0<br>13<br>30               | 4.5<br>3.6<br>3.2<br>3.1<br>2.8   | 1.7<br>10<br>3.8<br>2.0<br>1.7           | 4.2<br>3.2<br>2.9<br>7.0<br>8.0            | 1.8<br>1.9<br>1.8<br>1.7                  | 3.3<br>4.3<br>3.1<br>2.6<br>2.4          |
| 26<br>27<br>28<br>29<br>30<br>31           | 3.2<br>2.5<br>1.3<br>1.1<br>1.1           | 112<br>28<br>10<br>7.2<br>5.7                | e22<br>e17<br>e11<br>e8.6<br>e7.7<br>e6.7  | e6.6<br>e9.1<br>e13<br>e5.3<br>e9.8<br>e10 | 5.3<br>5.3<br>5.4                          | 4.4<br>4.2<br>6.7<br>5.1<br>5.2             | 12<br>10<br>12<br>10<br>9.6                 | 2.7<br>2.8<br>2.7<br>2.4<br>2.0   | 1.6<br>8.0<br>2.8<br>1.9<br>1.8          | 38<br>6.3<br>3.5<br>2.6<br>2.2<br>2.1      | 1.7<br>7.0<br>4.5<br>6.5<br>2.8<br>2.2    | 2.1<br>1.9<br>1.9<br>1.9<br>2.2          |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 44.30<br>1.43<br>3.2<br>.87<br>.26<br>.30 | 384.39<br>12.8<br>112<br>.99<br>2.33<br>2.60 | 533.8<br>17.2<br>81<br>4.9<br>3.13<br>3.60 | 397.8<br>12.8<br>50<br>5.3<br>2.33<br>2.69 | 221.4<br>7.91<br>17<br>4.9<br>1.44<br>1.49 | 469.1<br>15.1<br>120<br>4.2<br>2.75<br>3.17 | 588.7<br>19.6<br>174<br>7.0<br>3.56<br>3.97 | 169.6<br>5.47<br>23<br>1.9<br>.99 | 106.9<br>3.56<br>18<br>1.1<br>.65<br>.72 | 337.5<br>10.9<br>92<br>1.7<br>1.98<br>2.28 | 163.1<br>5.26<br>45<br>1.7<br>.95<br>1.10 | 142.0<br>4.73<br>44<br>1.6<br>.86<br>.96 |

CAL YR 1986 TOTAL 3178.36 MEAN 8.71 MAX 210 MIN .87 CFSM 1.58 IN. 21.45 WTR YR 1987 TOTAL 3558.55 MEAN 9.75 MAX 174 MIN .87 CFSM 1.77 IN. 24.02

e Estimated

## 01404100 RARITAN RIVER NEAR SOUTH BOUND BROOK, NJ

LOCATION.--Lat 40°30'47", long 74°32'24", Somerset County, Hydrologic Unit 02030105, at bridge on Interstate Route 287, 0.2 mi downstream from Fieldsville Dam, and 1.5 mi southeast of South Bound Brook.

DRAINAGE AREA . - - 862 mi 2 .

PERIOD OF RECORD. -- Water years 1966 to September 1981, 1987.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: May 1969 to March 1977.
pH: May 1969 to March 1977.
WATER TEMPERATURES: May 1969 to March 1977.
DISSOLVED OXYGEN: May 1969 to March 1977.

INSTRUMENTATION. -- Water-quality monitor May 1969 to March 1977.

REMARKS.--Instanteous water discharge estimated from discharge at 01403060, Raritan River below Calco Dam, at Bound Brook, and drainage area relationship.

## WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE     | TIME          | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                     | CON-<br>DUCT-                                       | PH<br>(STAND-<br>ARD<br>UNITS)                                | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                | BID-                                                 | OXYGEN,<br>DIS-<br>SOLVEI<br>(MG/L)                                 | CENT<br>SATUR-                      | DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY    | FECAL,<br>0.7<br>UM-MF<br>(COLS./                   | (COLS.<br>PER                                        | (MG/L<br>AS                                       |
|----------|---------------|---------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------|
| SEP 1987 | 1005          | E198                                                                | 339                                                 | 7.4                                                           | 20.0                                                | 4.2                                                  | 8.2                                                                 | 89                                  | 2.3                                           | K8400                                               | 700                                                  | 99                                                |
|          |               |                                                                     | 1000                                                | 2.5.5                                                         |                                                     |                                                      |                                                                     |                                     | 1000                                          | 2002/201                                            |                                                      | , N                                               |
|          | DATE          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | DIS-<br>SOLVED S<br>(MG/L                           | (MG/L                                                         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | AS                                                   | ALKA-<br>LINITY,<br>CARBON-<br>ATE<br>IT-FLD<br>(MG/L - I<br>CACO3) | WH WAT<br>TOTAL<br>FIELD<br>MG/L AS | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | (MG/L                                                | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>S102) |
|          | 1987          | 25                                                                  | 8.9                                                 | 23                                                            | 4.0                                                 | 67                                                   | 55                                                                  | 54                                  | 51                                            | 30                                                  | 0.3                                                  | 4.3                                               |
|          | DATE          | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SEDI-<br>MENT,<br>SUS-<br>PENDED                    | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM | (MG/L                                               | GEN,<br>NO2+NO                                       | NITRO<br>GEN,<br>AMMONIA                                            | AMMONIA                             | GEN, AM-<br>MONÍA +<br>ORGANIO                | PHOS-                                               | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | DIS-                                              |
| SE       | EP 1987<br>04 | 180                                                                 | 11                                                  | 90                                                            | 0.040                                               | 2.20                                                 | 0.41                                                                | 0.440                               | 1.9                                           | 0.400                                               | 0.230                                                | 0.200                                             |
|          | DATE          | TIME                                                                | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)                  | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)        | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L                                  | CHRO-                               | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)  | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)        | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)           | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)        |
| SI       | EP 1987       |                                                                     |                                                     |                                                               |                                                     |                                                      |                                                                     |                                     |                                               |                                                     |                                                      |                                                   |
|          | 04            | 1005                                                                | 30                                                  | 1                                                             | 42                                                  | 0.6                                                  | <1                                                                  | <1                                  | <3                                            | 5                                                   | 60                                                   | <5                                                |
|          |               | DATE                                                                | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)        | DIS-<br>SOLVED<br>(UG/L                                       | (UG/L                                               | DIS-<br>SOLVE<br>(UG/L                               | , NICKEL<br>DIS-<br>D SOLVE<br>(UG/L                                | DIS-<br>D SOLVED<br>(UG/L           | (UG/L                                         | DIS-<br>SOLVEI<br>(UG/L                             | DIUM,<br>DIS-<br>D SOLVED<br>(UG/L                   | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)        |
|          |               | SEP 1987<br>04                                                      | <4                                                  | 56                                                            | <0.1                                                | 1 <1                                                 | 0                                                                   | 3 <                                 | 1 <1                                          | 1 200                                               | 0 <6                                                 | 9                                                 |

### 01405000 LAWRENCE BROOK AT FARRINGTON DAM, NJ

LOCATION.--Lat 40°27'00", long 74°27'05", Middlesex County, Hydrologic Unit 02030105, on left bank 300 ft downstream from Farrington Dam, 0.7 mi southwest of Milltown, and 5.4 mi upstream from mouth.

DRAINAGE AREA .-- 34.4 mi 2.

PERIOD OF RECORD . -- May 1927 to current year.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1432: 1959(P).

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 25.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except those below 15 ft<sup>3</sup>/s, which are poor. Records given herein include flow over dam and through blowoff gates. Gates not open this water year. Flow regulated by Farrington Lake, capacity, 655,250,000 gal. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of gate openings furnished by employees of City of New Brunswick.

AVERAGE DISCHARGE. -- 60 years, 38.6 ft3/s, 15.23 in./yr, adjusted.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 4,920 ft<sup>3</sup>/s, July 21, 1975, gage height, 26.93 ft, from rating curve extended above 1,100 ft<sup>3</sup>/s on basis of weir formula; no flow at times when gates in dam were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft3/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|--------|------|-----------------------------------|------------------|---------|------|-----------------------------------|------------------|
| Apr. 4 | 1700 | 493                               | 25.31            | July 14 | 2300 | *618                              | *25.41           |

Minimum daily discharge, 6.1 ft<sup>3</sup>/s, Oct. 11, 12, 13, 24, 25.

|                                                              |                                                             | DISCHARGE,                                                   | IN CUBIC                                               | FEET PER                                                  | SECOND,<br>MEA                                   | WATER YEA<br>N VALUES                             | R OCTOBER                                                 | 1986 TO                                                  | SEPTEMBER                                                  | 1987                                                      |                                                            |                                                         |
|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| DAY                                                          | ОСТ                                                         | NOV                                                          | DEC                                                    | JAN                                                       | FEB                                              | MAR                                               | APR                                                       | MAY                                                      | JUN                                                        | JUL                                                       | AUG                                                        | SEP                                                     |
| 1 2 3 4 5                                                    | 6.7<br>6.6<br>6.5<br>6.7<br>6.7                             | 6.4<br>6.4<br>6.4<br>6.4<br>6.7                              | 21<br>34<br>196<br>79<br>41                            | 25<br>250<br>140<br>87<br>59                              | 44<br>42<br>64<br>87<br>65                       | 197<br>176<br>106<br>77<br>53                     | 100<br>48<br>35<br>262<br>142                             | 41<br>36<br>35<br>82<br>105                              | 11<br>14<br>14<br>19<br>41                                 | 15<br>101<br>118<br>32<br>20                              | 44<br>28<br>30<br>27<br>21                                 | 14<br>12<br>10<br>9.6<br>9.0                            |
| 6<br>7<br>8<br>9                                             | 6.5<br>6.3<br>6.2<br>6.2                                    | 41<br>20<br>33<br>43<br>45                                   | 31<br>25<br>22<br>107<br>127                           | 46<br>41<br>38<br>34<br>45                                | 51<br>49<br>51<br>59<br>50                       | 44<br>40<br>37<br>34<br>29                        | 145<br>110<br>76<br>53<br>42                              | 65<br>49<br>42<br>35<br>31                               | 16<br>12<br>12<br>12<br>12                                 | 16<br>14<br>37<br>103<br>25                               | 38<br>25<br>19<br>18<br>96                                 | 9.0<br>10<br>13<br>24<br>15                             |
| 11<br>12<br>13<br>14<br>15                                   | 6.1<br>6.1<br>6.2<br>6.4                                    | 71<br>85<br>32<br>21<br>18                                   | 63<br>69<br>47<br>32<br>27                             | 69<br>49<br>38<br>30<br>29                                | 41<br>43<br>37<br>32<br>30                       | 28<br>31<br>35<br>33<br>30                        | 35<br>32<br>30<br>e32<br>e30                              | 27<br>26<br>24<br>23<br>22                               | 11<br>9.6<br>10<br>11<br>9.5                               | 20<br>61<br>90<br>158<br>204                              | 38<br>23<br>19<br>17<br>15                                 | 11<br>10<br>27<br>28<br>15                              |
| 16<br>17<br>18<br>19<br>20                                   | 6.4<br>6.3<br>6.3<br>6.3                                    | 17<br>15<br>15<br>102<br>45                                  | 24<br>23<br>79<br>129<br>58                            | 26<br>24<br>48<br>110<br>108                              | 24<br>23<br>25<br>24<br>23                       | 27<br>25<br>24<br>23<br>22                        | e30<br>e65<br>e74<br>e54<br>e46                           | 22<br>20<br>18<br>19<br>21                               | 9.7<br>8.5<br>7.9<br>7.2<br>7.1                            | 49<br>27<br>20<br>19<br>20                                | 14<br>12<br>11<br>10<br>9.9                                | 15<br>16<br>43<br>28<br>19                              |
| 21<br>22<br>23<br>24<br>25                                   | 6.2<br>6.2<br>6.1<br>6.1                                    | 146<br>55<br>34<br>36<br>32                                  | 38<br>30<br>26<br>25<br>229                            | 68<br>58<br>48<br>36<br>32                                | 23<br>25<br>45<br>46<br>46                       | 22<br>20<br>20<br>20<br>20                        | 41<br>35<br>32<br>58<br>229                               | 24<br>20<br>18<br>17<br>16                               | 7.8<br>16<br>21<br>11<br>9.0                               | 15<br>13<br>11<br>12<br>32                                | 9.2<br>9.2<br>9.2<br>8.8<br>8.5                            | 16<br>15<br>15<br>12<br>11                              |
| 26<br>27<br>28<br>29<br>30<br>31                             | 6.2<br>6.4<br>6.5<br>6.4<br>6.4                             | 70<br>140<br>53<br>34<br>26                                  | 96<br>53<br>40<br>33<br>29<br>26                       | 33<br>30<br>28<br>23<br>31<br>48                          | 41<br>40<br>39                                   | 18<br>18<br>29<br>26<br>22<br>110                 | 103<br>65<br>74<br>67<br>51                               | 14                                                       | 8.3<br>23<br>16<br>10<br>8.6                               | 76<br>66<br>25<br>18<br>54<br>111                         | 8.2<br>27<br>29<br>22<br>15                                | 10<br>9.4<br>9.4<br>9.4<br>11                           |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†)<br>MEAN‡<br>CFSM‡<br>IN.‡ | 196.3<br>6.33<br>6.7<br>6.1<br>-0.3<br>6.05<br>0.18<br>0.20 | 1261.3<br>42.0<br>146<br>6.4<br>+0.9<br>42.9<br>1.25<br>1.39 | 1859<br>60.0<br>229<br>21<br>0<br>60.0<br>1.74<br>2.01 | 1731<br>55.8<br>250<br>23<br>+0.2<br>56.0<br>1.63<br>1.88 | 1169<br>41.7<br>87<br>23<br>+0.1<br>41.8<br>1.22 | 1396<br>45.0<br>197<br>18<br>+0.8<br>45.8<br>1.33 | 2196<br>73.2<br>262<br>30<br>-0.9<br>72.3<br>2.10<br>2.35 | 929<br>30.0<br>105<br>12<br>-0.4<br>29.6<br>0.86<br>0.99 | 387.2<br>12.9<br>41<br>7.1<br>-0.1<br>12.8<br>0.37<br>0.42 | 1582<br>51.0<br>204<br>11<br>+0.7<br>51.7<br>1.50<br>1.73 | 673.0<br>21.7<br>96<br>8.2<br>-0.6<br>21.1<br>0.61<br>0.71 | 455.8<br>15.2<br>43<br>9.0<br>0<br>15.2<br>0.44<br>0.49 |

CAL YR 1986 TOTAL 11064.8 MEAN 30.3 MAX 599 MIN 5.8 MEAN 29.8 CFSM 0.87 IN. 11.77 WTR YR 1987 TOTAL 13835.6 MEAN 37.9 MAX 262 MIN 6.1 MEAN 37.9 CFSM 1.10 IN. 14.96

e Estimated

Change in contents, in cubic feet per second, in Farrington Lake.

#### 01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°22'55", Middlesex County, Hydrologic Unit 02030105, at bridge on Mundy Avenue in Spotswood, 0.2 mi upstream from mouth, 0.5 mi east of De Voe Lake dam, and 3.4 mi southeast of Tanners Corners. DRAINAGE AREA . - - 44.1 mi 2.

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       | TIME T                                          | TREAM- C<br>FLOW, C<br>NSTAN- D<br>ANEOUS A | NCE                                         | PH<br>TAND-<br>ARD<br>ITS)     | TEMPER-<br>ATURE<br>WATER<br>(DEG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)              | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------|--------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT 1004                   |                                                 |                                             |                                             |                                |                                      |                                                  |                                                                |                                                                |                                                  |                                     |
| OCT 1986<br>23<br>FEB 1987 | 1000                                            | E8.4                                        | 316                                         | 6.9                            | 12.0                                 | 9.6                                              | 89                                                             | E1.5                                                           | 50                                               | 110                                 |
| 02                         | 1100                                            | E73                                         | ••                                          | 5.9                            | 2.5                                  | 12.5                                             |                                                                | E1.6                                                           | <20                                              | <2                                  |
| MAR<br>16                  | 0945                                            | E60                                         | 207                                         | 6.2                            | 4.5                                  | 10.5                                             | 81                                                             | <1.2                                                           | <20                                              | 49                                  |
| JUN<br>23                  | 1230                                            | E39                                         | 322                                         | 7.1                            | 22.0                                 | 7.7                                              | 89                                                             | E1.4                                                           | 330                                              | 1600                                |
| JUL<br>29                  | 1245                                            | E31                                         | 208                                         | 6.6                            | 21.5                                 | 7.3                                              | 83                                                             | E1.3                                                           | 490                                              | 350                                 |
| AUG<br>18                  | 1330                                            | E16                                         | 287                                         | 6.8                            | 24.0                                 | 6.7                                              | 80                                                             | E1.5                                                           | 170                                              | 350                                 |
| DATE                       | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3           | DIS-<br>SOLVED<br>(MG/L                     | DIS-<br>SOLVED<br>(MG/L                     | SODIU<br>DIS-<br>SOLVE<br>(MG/ | D SOL                                | UM, LINE<br>S- L/<br>VED (MC<br>/L AS            | ITY SULF<br>AB DIS<br>G/L SOL                                  | VED SOLVED (MG)                                                | E, RID<br>- DI<br>VED SOL<br>/L (MG              | DE,<br>IS-<br>LVED<br>G/L           |
| OCT 1986<br>23             |                                                 | 4 28                                        | 3.5                                         | 20                             |                                      | .3 32                                            |                                                                | 4 25                                                           |                                                  | 0.3                                 |
| FEB 1987                   | ۰                                               |                                             | 3.5                                         | 20                             | ,                                    | .5 32                                            |                                                                | 4 25                                                           |                                                  | ,.5                                 |
| 02<br>MAR                  | 5                                               | 4 15                                        | 4.1                                         | 52                             | 3                                    | .2 2                                             | .0 4                                                           | 5 82                                                           |                                                  | 0.1                                 |
| 16                         | 4                                               | 8 13                                        | 3.8                                         | 18                             | 2                                    | .9 3                                             | .0 4                                                           | 5 25                                                           |                                                  | 0.2                                 |
| JUN<br>23                  | 7                                               | 5 24                                        | 3.7                                         | 21                             | 4                                    | .7 21                                            | 4                                                              | 3 29                                                           |                                                  | 0.2                                 |
| JUL<br>29                  | 5                                               | 1 15                                        | 3.3                                         | 14                             | 3                                    | .5 6                                             | .0 4                                                           | 3 17                                                           |                                                  | 0.2                                 |
| AUG<br>18                  |                                                 | 5 20                                        | 3.7                                         | 17                             |                                      | .9 14                                            |                                                                | 8 25                                                           |                                                  | 0.2                                 |
| 10                         | ۰                                               | 5 20                                        | 3.7                                         | 17                             | 3                                    | .9 14                                            | •                                                              | 10 25                                                          |                                                  | ).2                                 |
| DATE                       | SILICA<br>DIS-<br>SOLVE<br>(MG/L<br>AS<br>SIO2) | CONSTI-<br>D TUENTS,<br>DIS-<br>SOLVED      | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L | CEN                            | GE<br>103 AMMO<br>L TOT<br>L (MG     | RO- GEN<br>N, MON<br>NIA ORG/<br>AL TO<br>/L (MO | IA + NIT                                                       | G/L (MG                                                        | US, ORGA<br>AL TOT<br>/L (MC                     | ANIČ<br>Fal                         |
| OCT 1986                   |                                                 |                                             |                                             |                                |                                      |                                                  |                                                                |                                                                |                                                  |                                     |
| 23<br>FEB 1987             | 11                                              | 160                                         | 0.022                                       | 7.7                            | 9 0.                                 | 08 1                                             | .3 9.                                                          | .1 0.0                                                         | 50 2.                                            | .9                                  |
| 02<br>MAR                  | 9.                                              | 0 210                                       | 0.017                                       | 1.7                            | 79 1.                                | 38 1                                             | .7 3.                                                          | .5 0.2                                                         | 65 2.                                            | .9                                  |
| 16                         | 8.                                              | 9 120                                       | 0.044                                       | 1.7                            | 2 1.                                 | 24 1                                             | .7 3.                                                          | 4 0.1                                                          | 68 4                                             | .6                                  |
| JUN<br>23                  | 12                                              | 150                                         | 0.033                                       | 6.1                            | 1 0.                                 | 08 0                                             | .16 6.                                                         | .3 0.0                                                         | 95 3.                                            | .4                                  |
| JUL<br>29                  | 10                                              | 110                                         | 0.011                                       | 2.7                            | 7 0.                                 | 15 0                                             | .79 3.                                                         | .6 0.0                                                         | 45 4.                                            | .5                                  |
| AUG<br>18                  | 11                                              | 140                                         | 0.03                                        | 5.3                            | s9 0.                                | 12 0                                             | .46 5                                                          | .9 0.0                                                         | 70 4.                                            | .1                                  |
|                            |                                                 |                                             |                                             |                                |                                      |                                                  |                                                                |                                                                |                                                  |                                     |

## 01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                           | SULFII<br>TOTAI<br>(MG/I                                 | L TOT                                                   | NIC REC                                                 | AL TO                                      | TAL 1<br>COV- F<br>ABLE E<br>G/L (             | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS PB | E |
|----------------|--------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------------------|---|
| OCT 1986<br>23 | 1000                           | <0                                                       | .5                                                      | <1                                                      | 90                                         | <1                                             | 1100                                            | 2                                                  | 8 |
| D/             | NI<br>TO<br>RI<br>EI<br>ATE (I | ANGA-<br>ESE,<br>DTAL<br>ECOV-<br>RABLE<br>JG/L<br>S MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOVERABL<br>(UG/L<br>AS ZI | /-<br>LE PHEI<br>L TO                           | NOLS<br>TAL<br>/L)                                 |   |
| OCT 19         |                                | 100                                                      | 0.20                                                    | 10                                                      | <1                                         | 38                                             | 30                                              | 3                                                  |   |

207

#### 01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ

LOCATION.--Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Road, 2.6 mi north of Manalapan, 3.1 mi southwest of Matchaponix, 3.3 mi downstream of Still House Brook, and 4.1 mi northeast of Applegarth.

DRAINAGE AREA . - - 20.9 mi 2.

PERIOD OF RECORD ... Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           |                                             | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)        | TEMPER-<br>ATURE<br>WATER<br>(DEG C)      | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)    |
|----------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|----------------------------------------|
| OCT_1986       |                                             |                                                 |                                                   |                                       |                                           |                                                     |                                                                |                                                                | 470                                              |                                        |
| 15<br>FEB 1987 | 1000                                        | E14                                             | 128                                               | 6.4                                   | 13.0                                      | 9.6                                                 | 91                                                             | <1.2                                                           | 170                                              | 540                                    |
| 24             | 1100                                        | E20                                             | 175                                               | 5.8                                   | 2.0                                       | 12.6                                                | 91                                                             | <0.1                                                           | <20                                              | 17                                     |
| MAR<br>17      | 0945                                        | E19                                             | 121                                               | 6.2                                   | 5.0                                       | 12.9                                                | 101                                                            | <0.2                                                           | <20                                              | 17                                     |
| JUN<br>22      | 1330                                        | E14                                             | 120                                               | 7.2                                   | 21.5                                      | 8.9                                                 | 102                                                            | E1.5                                                           | 80                                               | 1600                                   |
| JUL            |                                             |                                                 |                                                   |                                       |                                           |                                                     |                                                                |                                                                |                                                  |                                        |
| 29<br>AUG      | 1000                                        | E16                                             | ••                                                | 6.5                                   | 20.5                                      | 8.5                                                 | 95                                                             | <1.0                                                           | <20                                              | 540                                    |
| 26             | 1300                                        | E12                                             | 118                                               | 7.0                                   | 18.5                                      | 7.9                                                 | 84                                                             | <1.0                                                           | 1700                                             | 350                                    |
| DATE           | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | L SOL                                           | IUM SI<br>- DI<br>VED SOI<br>/L (MC               | VED SOL                               | IUM, S<br>S- D<br>VED SO<br>IG/L (M       | IUM, LIN<br>IS- L<br>LVED (MI<br>G/L A              | AB DIS<br>G/L SOL                                              | - DIS<br>VED SOL<br>/L (MG                                     | E, RII<br>- D<br>VED SO<br>/L (M                 | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |
| OCT 1986<br>15 |                                             | 36 8                                            | .1 3                                              | 3.8                                   | 7.2                                       | 3.4 13                                              | 1                                                              | 8 15                                                           |                                                  | 0.2                                    |
| FEB 1987<br>24 |                                             | 36 8                                            | .2                                                | 3.7 1                                 | 10                                        | 2.1 3                                               | .0 2                                                           | 4 21                                                           |                                                  | 0.2                                    |
| MAR            |                                             |                                                 |                                                   |                                       |                                           |                                                     |                                                                |                                                                |                                                  |                                        |
| 17<br>JUN      |                                             | 34 7                                            | .6                                                | 3.7                                   | 6.5                                       | 2.2 3                                               | .0 2                                                           | 5 13                                                           |                                                  | 0.2                                    |
| 22<br>JUL      |                                             | 32 7                                            | .2                                                | 3.3                                   | 5.8                                       | 2.9 9                                               | .0 1                                                           | 9 13                                                           |                                                  | 0.3                                    |
| 29             |                                             | 33 7                                            | .6                                                | 3.4                                   | 5.8                                       | 2.8 10                                              | 1                                                              | 9 12                                                           |                                                  | 0.3                                    |
| AUG<br>26      |                                             | 33 7                                            | .3                                                | 3.7                                   | 6.0                                       | 2.5 11                                              | 1                                                              | 7 14                                                           |                                                  | 0.2                                    |
| DATE           | SILIO<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CONS<br>ZED TUEN<br>L DI<br>SOL                 | OF NIT                                            | EN, G<br>RITE NOZ<br>TAL TO<br>G/L (M | GEN, G<br>2+NO3 AMM<br>DTAL TO<br>IG/L (M | TRO- GEN<br>EN, MON<br>ONIA ORG<br>TAL TO<br>G/L (M | TRO- ,AM- IA + NITI ANIC GE TAL TOT. G/L (MG N) AS             | N, PHOR<br>AL TOT<br>/L (MG                                    | US, ORG<br>AL TO<br>/L (M                        | BON,<br>ANIC<br>TAL<br>G/L<br>C)       |
| OCT_1986       |                                             |                                                 |                                                   |                                       |                                           | au a.                                               |                                                                | -                                                              | 5 2                                              |                                        |
| 15<br>FEB 1987 | 9                                           | 7.7                                             | 73 0.                                             | .011 0                                | 0.45 0.                                   | 13 1.                                               | 7 2.2                                                          | 0.10                                                           | 0 3.                                             | 4                                      |
| 24<br>MAR      | 9                                           | .3                                              | 80 0.                                             | .006 1                                | .46 0.                                    | 11 0.4                                              | 42 1.9                                                         | 0.04                                                           | 0 2.                                             | 0                                      |
| 17             | 9                                           | .0                                              | 69 0.                                             | .013 1                                | .38 0.                                    | 12 0.3                                              | 35 1.7                                                         | 0.03                                                           | 3 1.                                             | 0                                      |
| JUN<br>22      | 7                                           | .7                                              | 65 0.                                             | .015 0                                | .81 0.                                    | 20 0.                                               | 59 1.4                                                         | 0.10                                                           | 6 4.                                             | 1                                      |
| JUL<br>29      | 8                                           | .9                                              | 66 0.                                             | .008 <0                               | .05 0.                                    | 09 0.0                                              | 61 -                                                           | - 0.10                                                         | 5 5.                                             | 7                                      |
| AUG<br>26      | 9                                           | .5                                              | 67 0.                                             |                                       | .90 0.                                    |                                                     |                                                                | 0.06                                                           |                                                  |                                        |
|                |                                             |                                                 |                                                   |                                       | 325                                       |                                                     |                                                                | 1111                                                           |                                                  | 7                                      |

## 01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE     | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C) | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)  | TERIAL<br>(UG/G                                          | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | ERABLE<br>(UG/L                                          | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) | MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L   |
|----------|---------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|
| OCT 1986 |                                                                     |                                    |                                                                   |                                                                       |                                      |                                                          |                                                                 |                                                          |                                                         |                                                                      |                                               |
| 15       | 1000                                                                | <0.5                               | 0.2                                                               | 3.7                                                                   | .1                                   | 13                                                       | <10                                                             | 60                                                       | <1                                                      | <1                                                                   | <10                                           |
| 13       | 1000                                                                |                                    | 0.2                                                               | 3.7                                                                   |                                      | 13                                                       | 111                                                             | 4 (4.12)                                                 |                                                         |                                                                      | 3,744                                         |
| DATE     | RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL                              | TOM MA-<br>TERIAL<br>(UG/G         | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                     | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G            | RECOV-<br>ERABLE<br>(UG/L            | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G | RECOV-<br>ERABLE<br>(UG/L                                       | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L   | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL            | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L |
|          | (UG/G)                                                              | AS CO)                             | AS CU)                                                            | AS CU)                                                                | AS FE)                               | AS FE)                                                   | AS PB)                                                          | AS PB)                                                   | AS MN)                                                  | (UG/G)                                                               | AS HG)                                        |
| OCT_1986 |                                                                     |                                    |                                                                   |                                                                       |                                      |                                                          | 4                                                               |                                                          |                                                         |                                                                      |                                               |
| 15<br>15 | 5                                                                   | <10                                | 3                                                                 | 1                                                                     | 3000                                 | 14000                                                    | <5                                                              | <10                                                      | 100                                                     | 59                                                                   | <0.10                                         |
|          |                                                                     | -10                                | 3.45                                                              | Marie Committee                                                       |                                      | 14000                                                    |                                                                 |                                                          |                                                         | -                                                                    |                                               |
|          | MERCURY<br>RECOV.                                                   | NICKEL,                            | NICKEL,<br>RECOV.                                                 |                                                                       | SELE-<br>NIUM,                       | ZINC                                                     | ZINC,<br>RECOV.                                                 |                                                          | PCB,                                                    | PCN                                                                  | ALDRIN,                                       |
|          | FM BOT-<br>TOM MA-<br>TERIAL                                        | RECOV-                             | FM BOT-                                                           | SELE-<br>NIUM,                                                        | TOTAL<br>IN BOT-                     | ZINC,<br>TOTAL<br>RECOV-                                 | FM BOT-<br>TOM MA-                                              | DUENO! O                                                 | TOTAL<br>IN BOT-                                        | PCN,<br>TOTAL<br>IN BOT-                                             | TOTAL<br>IN BOT-                              |
| DATE     | (UG/G<br>AS HG)                                                     | ERABLE<br>(UG/L<br>AS NI)          | TERIAL<br>(UG/G<br>AS NI)                                         | TOTAL<br>(UG/L<br>AS SE)                                              | TOM MA-<br>TERIAL<br>(UG/G)          | ERABLE<br>(UG/L<br>AS ZN)                                | TERIAL<br>(UG/G<br>AS ZN)                                       | PHENOLS<br>TOTAL<br>(UG/L)                               | TOM MA-<br>TERIAL<br>(UG/KG)                            | TOM MA-<br>TERIAL<br>(UG/KG)                                         | TOM MA-<br>TERIAL<br>(UG/KG)                  |
| OCT 1986 |                                                                     |                                    |                                                                   |                                                                       |                                      |                                                          |                                                                 |                                                          |                                                         |                                                                      |                                               |
| 15       | 0.02                                                                | 4                                  |                                                                   | <1                                                                    |                                      |                                                          |                                                                 | 6                                                        |                                                         | 4.0                                                                  |                                               |
| 15       | 0.02                                                                | 100                                | <10                                                               |                                                                       | <1                                   | B.57.11                                                  | 30                                                              | •                                                        | 2                                                       | <1.0                                                                 | <0.1                                          |
| DATE     | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TOM MA-                            | TOM MA-                                                           | TERIAL                                                                | TERIAL                               | TOM MA-<br>TERIAL                                        | SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                | TOM MA-                                                  | TOM MA-                                                 | TOM MA-                                                              | MATL.                                         |
| OCT 1986 |                                                                     |                                    |                                                                   |                                                                       |                                      |                                                          |                                                                 |                                                          |                                                         |                                                                      | 4                                             |
| 15<br>15 | 1.0                                                                 | 2.3                                | 2.0                                                               | 2.3                                                                   | <0.1                                 | 0.3                                                      | 1.6                                                             | <0.1                                                     | <0.1                                                    | <0.1                                                                 | 0.2                                           |
|          |                                                                     | LINDANI                            | MALA-                                                             | METH-                                                                 | METHYL                               | METHYL                                                   | MIDEN                                                           | PARA-                                                    | -                                                       | TOXA-                                                                | TRI-                                          |
|          |                                                                     | TOTAL<br>IN BOT<br>TOM MA          | TOTAL<br>IN BOT                                                   | CHLOR,                                                                | PARA-<br>THION,<br>TOT. IN<br>BOTTOM | TRI-<br>THION,<br>TOT. IN<br>BOTTOM                      | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-                           | IN BOT-                                                  | PER-<br>THANE<br>IN BOT-<br>TOM MA-                     | PHENE<br>TOTAL<br>IN BOT<br>TOM MA                                   | TOTAL<br>IN BOT-                              |
|          | DATE                                                                | TERIA                              | TERIA                                                             | L MATL.                                                               | MATL.                                | MATL.                                                    | TERIAL                                                          | TERIAL                                                   | TERIAL                                                  | TERIA                                                                | TERIAL                                        |
|          |                                                                     | (UG/KG                             | (UG/KG                                                            | ) (UG/KG)                                                             | (UG/KG)                              | (UG/KG)                                                  | (UG/KG)                                                         | (UG/KG)                                                  | (UG/KG)                                                 | (UG/KG                                                               | (UG/KG)                                       |
|          | OCT 1986                                                            | T                                  | - 170                                                             | - 100                                                                 |                                      |                                                          | 100                                                             |                                                          | Saul .                                                  |                                                                      |                                               |
|          | 15                                                                  | <0.                                | <0.                                                               | 1 <0.1                                                                | <0.1                                 | <0.1                                                     | 1.3                                                             | <0.1                                                     | <1.00                                                   | <10                                                                  | <0.1                                          |
|          |                                                                     |                                    | -                                                                 |                                                                       |                                      |                                                          |                                                                 |                                                          |                                                         |                                                                      |                                               |

#### 01405400 MANALAPAN BROOK AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°23'27", Middlesex County, Hydrologic Unit 02030105, on right bank of DeVoe Lake Dam in Spotswood, 0.1 mi upstream from Cedar Brook, and 0.6 mi upstream from confluence with Matchaponix Brook.

DRAINAGE AREA .-- 40.7 mi 2.

PERIOD OF RECORD. -- January 1957 to current year.

REVISED RECORDS .-- WSP 1722: 1957-60.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Duhernal Water System). January 1957 to September 1966 at datum 17.72 ft higher.

REMARKS.--Records good. Discharge given herein includes flow through waste gates when open. Gates open Oct. 10, 11.

Some regulation by Lake Manalapan, Helmetta Pond, and DeVoe Lake. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 30 years, 64.4 ft3/s, 21.49 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,650  ${\rm ft}^3/{\rm s}$ , May 30, 1968, elevation, 19.90 ft, waste gates open; no flow part or all of some days in many years when gates were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 395 ft<sup>3</sup>/s, July 4, elevation, 18.68 ft; no flow Oct. 12 when gates were closed and water was below spillway; minimum daily, 12 ft<sup>3</sup>/s, Oct. 25.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV JUL AUG SEP DEC JAN FEB MAR APR MAY JUN 21 21 99 269 171 272 251 321 35 32 28 79 34 28 27 123 92 27 59 70 63 63 59 58 78 31 73 57 e27 e15 e36 e34 12 13 e16 125 98 80 62 58 53 71 67 e28 .00 105 70 55 95 90 87 52 31 72 67 e26 3.9 e37 25 41 54 57 125 38 e64 e48 34 32 80 124 47 45 44 44 39 32 28 26 e33 54 127 152 38 33 44 133 143 127 38 39 30 28 27 e36 76 84 54 19 20 143 74 57 61 22 23 24 25 97 78 72 60 44 45 30 33 31 26 38 35 26 26 25 24 51 14 13 12 52 26 26 52 52 27 28 29 30 23 23 22 23 74 63 55 51 56 36 33 28 22 18 17 140 73 54 36 50 49 49 52 129 117 52 42 57 35 33 ... ... 548.90 17.7 29 .00 67.5 143 16 67.2 321 25 1.65 TOTAL 85.3 53.0 286 23 1.30 140 95.2 285 46.0 200 26 1.13 36.7 84 22 .90 MEAN 60.3 77.5 54.8 MAX 33 1.35 1.55 MIN 3.45 2.34 2.70 1.90 CFSM 2.10 1.48 1.66 1.85 3.85 1.50 1.01

CAL YR 1986 TOTAL 19626.19 MEAN 53.8 MAX 815 MIN .00 CFSM 1.32 IN. 17.93 WTR YR 1987 TOTAL 24374.90 MEAN 66.8 MAX 321 MIN .00 CFSM 1.64 IN. 22.27

e Estimated

#### 01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'26", long 74°23'26", Middlesex County, Hydrologic Unit 02030105, at bridge on Bridge Street in Spotswood, 150 ft downstream from Cedar Brook, and 400 ft below DeVoe Lake Dam.

DRAINAGE AREA . - - 43.9 mi 2.

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                                                   | TIME    | STREAFLO                   | W, CO<br>AN- DU<br>OUS AN                                                       | FIC<br>N-<br>CT- |                                                     | AND -<br>RD        |                                                |                        | SO                                    | GEN,<br>IS-<br>LVED<br>G/L)                                             | CE<br>SAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S- DE<br>VED E<br>R- (<br>NT !                                            | (YGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>DAY<br>(MG/L) | FOI<br>FEO<br>BRO                           | CAL,               | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|--------------------------------------------------------|---------|----------------------------|---------------------------------------------------------------------------------|------------------|-----------------------------------------------------|--------------------|------------------------------------------------|------------------------|---------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|--------------------|-------------------------------------|
| OCT_1986                                               | 40/5    |                            |                                                                                 |                  |                                                     |                    |                                                |                        |                                       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ••                                                                        |                                                            | -0                                          |                    | 440                                 |
| 23<br>FEB 1987                                         | 1245    | E14                        |                                                                                 | 124              |                                                     | 5.4                | 14                                             | 2.0                    | - 4                                   | 9.6                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89                                                                        | <0.8                                                       | <20                                         | 0                  | 110                                 |
| 02<br>MAR                                              | 1300    | E67                        |                                                                                 | 178              |                                                     | 4.6                |                                                | 2.5                    | 1                                     | 2.3                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91                                                                        | E1.4                                                       | <2                                          | 0                  | 8                                   |
| 16                                                     | 1115    | E63                        |                                                                                 | 155              | -                                                   | 4.8                |                                                | 5.0                    | 1                                     | 1.0                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86                                                                        | E1.3                                                       | <2                                          | 0                  | 6                                   |
| JUN 23                                                 | 1030    |                            |                                                                                 | 123              |                                                     | 6.2                | 2                                              | 1.0                    |                                       | 8.0                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91                                                                        | E1.6                                                       | 14                                          | 0                  | 1600                                |
| JUL<br>29                                              | 1030    | E40                        |                                                                                 | 117              |                                                     | 5.8                | 1                                              | 9.0                    |                                       | 7.8                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84                                                                        | E1.6                                                       | 13                                          | 0                  | 350                                 |
| AUG<br>18                                              | 1200    | E31                        |                                                                                 | 118              |                                                     | 6.0                |                                                | 4.5                    |                                       | 8.0                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96                                                                        | 1.7                                                        | 2                                           |                    | 110                                 |
| DATE  OCT 1986 23 FEB 1987 02 MAR 16 JUN 23 JUL 29 AUG | AS      | 31<br>35<br>31<br>25<br>32 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>6.3<br>7.9<br>6.9<br>5.4<br>7.0 | DI SOL (MG AS    | UM,<br>S-,<br>VED<br>/L<br>MG)<br>3.7<br>3.7<br>3.4 | 14 8 6             | 7.1<br>4<br>3.9<br>5.1<br>8.3                  | SI<br>SOI<br>(MC<br>AS | k)<br>2.9<br>2.1<br>2.1<br>2.2<br>2.6 | ALKA<br>LINIT<br>LAE<br>(MG/<br>AS<br>CACC<br>3.(<br><1.(<br>3.(<br>4.( | 1 Y 3 Y L (1 ) 2 3 ) 1 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 (1 ) 2 | SULFATI<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4<br>21<br>30<br>28<br>21<br>22 | E RI DI DI SCO (MS) AS                                     | DE,<br>S-,<br>S-,<br>DLVED<br>IG/L<br>S CL) | SOL (MG AS         | 0.1<br>0.2<br>0.1<br>0.2            |
| 18                                                     | SOI (MC | LVED<br>G/L                | 7.7 SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)                           | NIT              | AL<br>/L                                            | NIII<br>GE<br>NO2- | 7.3<br>TRO-<br>EN,<br>+NÓ3<br>TAL<br>G/L<br>N) | NI GI                  | TRO-EN, ONIA                          | NITTI<br>GEN,/<br>MONI/<br>ORGAI<br>TOT/<br>(MG,<br>AS I                | RO-<br>AM-<br>A +<br>NIC<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                                  | - PHO                                                      | IOS-<br>DRUS,<br>DTAL<br>IG/L<br>S P)       | CARE<br>ORG/<br>TO | ANIC                                |
| OCT 1986<br>23                                         |         | 5.4                        | 63                                                                              | 0.               | .012                                                | 0                  | .74                                            | 0.                     | 20                                    | 0.40                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                                                                       | 0.0                                                        | 30                                          | 3.9                |                                     |
| FEB 1987<br>02                                         |         | 8.7                        | 88                                                                              |                  | 006                                                 |                    | .27                                            | 0.                     |                                       | 0.39                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7                                                                       | <0.0                                                       |                                             | 1.3                |                                     |
| MAR                                                    |         |                            |                                                                                 |                  |                                                     |                    |                                                |                        |                                       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                                            |                                             |                    |                                     |
| 16<br>JUN                                              |         | 7.8                        | 1                                                                               | 0.               | 012                                                 | 1.                 | .14                                            | 0.                     | 14                                    | 0.47                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                       | 0.1                                                        | 105                                         | 1.6                | •                                   |
| 23                                                     |         | 5.9                        | 60                                                                              | 0.               | 009                                                 | 0.                 | .64                                            | 0.                     | 11                                    | 0.8                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4                                                                       | 0.0                                                        | )53                                         | 4.2                | 2                                   |
| 29                                                     |         | 4.0                        | 61                                                                              | 0.               | 005                                                 | 0.                 | .65                                            | 0.                     | 11                                    | 0.8                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                       | 0.0                                                        | 50                                          | 6.3                | 3                                   |
| AUG<br>18                                              |         | 5.5                        | 61                                                                              | 0.               | 006                                                 | 0.                 | .43                                            | 0.                     | 06                                    | 0.66                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                                                                       | 0.0                                                        | 50                                          | 4.9                | ,                                   |

211

## RARITAN RIVER BASIN

# 01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME | SULFIDE<br>TOTAL<br>(MG/L<br>AS S) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | PHENOLS<br>TOTAL<br>(UG/L) |
|----------------|------|------------------------------------|-----------------------------------------------------|-------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|----------------------------|
| JUN 1987<br>23 | 1030 | <0.5                               | 50                                                  | <1                                  | <1                                                      | <1                                                      | 25                                                    | <0.10                                                   | <1                                                      | <1                                         | 5                          |

#### 01405500 SOUTH RIVER AT OLD BRIDGE, NJ

LOCATION.--Lat 40°24'22", long 74°22'08", Middlesex County, Hydrologic Unit 02030105, on right abutment of Duhernal Dam, 0.6 mi south of Old Bridge, 2.3 mi upstream from Deep Run, and 9.1 mi upstream from mouth.

DRAINAGE AREA .-- 94.6 mi 2.

PERIOD OF RECORD. -- August 1939 to current year.

REVISED RECORDS. -- WSP 1902: 1957. WDR NJ-82-1: 1975-80(P).

GAGE--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for periods when waste gates were open, Oct. 1 to Nov. 10, Apr. 1 to Sept. 20, which are fair. Records include flow over dam and through waste gates when open. Flow past this station is affected by pumpage from well fields for industrial use by Duhernal Water System. Some regulation by Duhernal Lake, capacity, 138,000,000 gal, Lake Manalapan, DeVoe Lake, and several small ponds in headwater tributaries.

AVERAGE DISCHARGE ... 48 years, 142 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.:-Maximum discharge, 4,250 ft<sup>3</sup>/s, Sept. 15, 1944, elevation, 11.71 ft, waste gates open; maximum gage height, 11.73 ft, Aug. 28, 1971; no flow on days when waste gates were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s and maximum (\*):

| Date                                   | Time                         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)                  | Date                                  | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|----------------------------------------|------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|--------------|-----------------------------------|------------------|
| Dec. 4<br>Dec. 10<br>Dec. 26<br>Jan. 3 | 0300<br>1700<br>0700<br>0400 | 1,170<br>805<br>863<br>*1,670     | 10.72<br>10.55<br>10.58<br>*10.92 | Mar. 2<br>Apr. 5<br>July 3<br>Aug. 11 | 1600<br>1300 | 1,120<br>880<br>e1,000<br>e1,200  | 10.70<br>10.56   |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum daily discharge, 30 ft3/s, Oct. 10, 25.

|                                  |                                        | 0.100                                |                                        |                                        | TEN OLO                         | MEAN VA                                | LUES                                 |                                        |                                    |                                            |                                           |                                 |
|----------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------|
| DAY                              | OCT                                    | NOV                                  | DEC                                    | JAN                                    | FEB                             | MAR                                    | APR                                  | MAY                                    | JUN                                | JUL                                        | AUG                                       | SEP                             |
| 1                                | e49                                    | e38                                  | 134                                    | 146                                    | 184                             | 346                                    | e580                                 | e240                                   | e63                                | e71                                        | e132                                      | e110                            |
| 2                                | e50                                    | e41                                  | 135                                    | 574                                    | 174                             | 948                                    | e424                                 | e213                                   | e72                                | e147                                       | e84                                       | e127                            |
| 3                                | e50                                    | e46                                  | 587                                    | 1420                                   | 212                             | 693                                    | e290                                 | e195                                   | e94                                | e633                                       | e79                                       | e80                             |
| 4                                | e54                                    | e46                                  | 970                                    | 565                                    | 291                             | 349                                    | e375                                 | e227                                   | e85                                | e701                                       | e73                                       | e68                             |
| 5                                | e54                                    | e49                                  | 311                                    | 263                                    | 270                             | 247                                    | e714                                 | e348                                   | e117                               | e199                                       | e64                                       | e63                             |
| 6<br>7<br>8<br>9                 | e44<br>e40<br>e38<br>e37<br>e30        | e151<br>e204<br>e130<br>e160<br>e138 | 190<br>163<br>149<br>269<br>708        | 203<br>184<br>177<br>167<br>176        | 202<br>191<br>209<br>238<br>237 | 206<br>196<br>192<br>181<br>166        | e823<br>e698<br>e475<br>e387<br>e333 | e326<br>e267<br>e210<br>e157<br>e141   | e100<br>e69<br>e71<br>e74<br>e97   | e125<br>e101<br>e101<br>e165<br>e192       | e76<br>e88<br>e68<br>e66<br>e469          | e61<br>e61<br>e70<br>e90<br>e82 |
| 11                               | e37                                    | 173                                  | 438                                    | 277                                    | 195                             | 147                                    | e292                                 | e127                                   | e85                                | e120                                       | e1040                                     | e67                             |
| 12                               | e36                                    | 409                                  | 332                                    | 211                                    | 184                             | 145                                    | e257                                 | e121                                   | e63                                | e115                                       | e446                                      | e63                             |
| 13                               | e38                                    | 251                                  | 263                                    | 175                                    | 171                             | 163                                    | e243                                 | e111                                   | e75                                | e143                                       | e175                                      | e93                             |
| 14                               | e52                                    | 148                                  | 186                                    | 159                                    | 156                             | 173                                    | e232                                 | e102                                   | e296                               | e124                                       | e88                                       | e172                            |
| 15                               | e67                                    | 112                                  | 160                                    | 152                                    | 148                             | 163                                    | e216                                 | e101                                   | e515                               | e268                                       | e94                                       | e118                            |
| 16                               | e52                                    | 95                                   | 149                                    | 148                                    | 120                             | 151                                    | e208                                 | e106                                   | e155                               | e209                                       | e88                                       | e76                             |
| 17                               | e44                                    | 98                                   | 143                                    | 137                                    | 133                             | 137                                    | e265                                 | e98                                    | e104                               | e102                                       | e82                                       | e75                             |
| 18                               | e40                                    | 93                                   | 204                                    | 151                                    | 131                             | 129                                    | e410                                 | e92                                    | e82                                | e85                                        | e76                                       | e132                            |
| 19                               | e35                                    | 332                                  | 579                                    | 358                                    | 128                             | 125                                    | e358                                 | e95                                    | e71                                | e76                                        | e70                                       | e170                            |
| 20                               | e34                                    | 343                                  | 380                                    | 534                                    | 123                             | 120                                    | e310                                 | e106                                   | e65                                | e121                                       | e66                                       | e110                            |
| 21                               | e34                                    | 409                                  | 215                                    | 338                                    | 122                             | 119                                    | e270                                 | e113                                   | e66                                | e116                                       | e63                                       | e109                            |
| 22                               | e34                                    | 392                                  | 173                                    | 238                                    | 129                             | 124                                    | e247                                 | e106                                   | e73                                | e71                                        | e63                                       | 94                              |
| 23                               | e34                                    | 194                                  | 152                                    | 231                                    | 160                             | 128                                    | e230                                 | e93                                    | e87                                | e64                                        | e64                                       | 90                              |
| 24                               | e32                                    | 170                                  | 146                                    | 202                                    | 180                             | 118                                    | e228                                 | e91                                    | e84                                | e60                                        | e60                                       | 80                              |
| 25                               | e30                                    | 178                                  | 491                                    | 166                                    | 179                             | 109                                    | e403                                 | e87                                    | e72                                | e61                                        | e56                                       | 67                              |
| 26<br>27<br>28<br>29<br>30<br>31 | e43<br>e75<br>e67<br>e49<br>e43<br>e41 | 200<br>488<br>353<br>192<br>157      | 688<br>270<br>199<br>174<br>162<br>155 | 166<br>156<br>146<br>146<br>148<br>181 | 170<br>168<br>162               | 104<br>103<br>142<br>188<br>146<br>249 | e574<br>e402<br>e336<br>e311<br>e277 | e82<br>e82<br>e82<br>e77<br>e72<br>e66 | e66<br>e140<br>e231<br>e118<br>e82 | e139<br>e245<br>e125<br>e80<br>e74<br>e119 | e55<br>e97<br>e149<br>e142<br>e107<br>e78 | 59<br>54<br>51<br>49<br>50      |
| TOTAL                            | 1363                                   | 5790                                 | 9275                                   | 8295                                   | 4967                            | 6507                                   | 11168                                | 4334                                   | 3372                               | 4952                                       | 4358                                      | 2591                            |
| MEAN                             | 44.0                                   | 193                                  | 299                                    | 268                                    | 177                             | 210                                    | 372                                  | 140                                    | 112                                | 160                                        | 141                                       | 86.4                            |
| MAX                              | 75                                     | 488                                  | 970                                    | 1420                                   | 291                             | 948                                    | 823                                  | 348                                    | 515                                | 701                                        | 1040                                      | 172                             |
| MIN                              | 30                                     | 38                                   | 134                                    | 137                                    | 120                             | 103                                    | 208                                  | 66                                     | 63                                 | 60                                         | 55                                        | 49                              |

CAL YR 1986 TOTAL 53391 MEAN 146 MAX 2120 MIN 27 WTR YR 1987 TOTAL 66972 MEAN 183 MAX 1420 MIN 30

e Estimated

#### RESERVOIRS IN RARITAN RIVER BASIN

01396790 SPRUCE RUN RESERVOIR.--Lat 40°38'30", long 74°55'19", Hunterdon County, Hydrologic Unit 02030105, at dam on Spruce Run, 0.5 mi north of Clinton, and 0.6 mi upstream from mouth. DRAINAGE AREA, 41.3 mi². PERIOD OF RECORD, November 1963 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed in October 1963 with crest of spillway at elevation 273.00 ft. Usable capacity, 11,000,000,000 gal. Dead storage 300,000 gal. Reservoir used for water supply and recreation. Outflow mostly regulated by gates. Water is released to maintain minimum flow on the South Branch Raritan River and, at times, for municipal supply. Records given herein represent usable capacity

capacity.
COOPERATION.--Records provided by New Jersey Water Supply Authority.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 11,640,000,000 gal, Apr. 2, 1970, elevation, 274.38 ft; minimum observed, 3,100,000,000 gal, Oct. 18, 1983, elevation, 246.68 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,220,000,000 gal, April 5, elevation, 273.39 ft; minimum observed, 3,390,000,000 gal, Nov. 5, elevation, 247.72 ft.
REVISED RECORDS.--WDR NJ-84-1: (M). WDR NJ-85-1: 1984.

01397050 ROUND VALLEY RESERVOIR.--Lat 40°36'39", long 74°50'42", Hunterdon County, Hydrologic Unit 02030105, at main dam on Prescott Brook, 1.8 mi south of Lebanon, 3.2 mi upstream from mouth, and 4.5 mi west of Whitehouse. DRAINAGE AREA, 5.7 mi². PERIOD OF RECORD, March 1966 to current year. Nonrecording gage read daily. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam at main dam on Prescott Brook and two dams on South Branch Rockaway River at Lebanon; storage began in March 1966. Capacity at spillway level, 55,000,000,000 gal, elevation, 385.00 ft. Reservoir is used primarily for storage and is filled by pumping from South Branch Raritan River at Hamden Pumping Station (see following page). Outflow is controlled by operation of gates in pipe in dams. Water is released into South Branch Rockaway Creek and Prescott Brook.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 55,400,000,000 gal, June 15, 1975, elevation, 385.63 ft; minimum observed (after first filling), 37,100,000,000 gal, Feb. 9, 1981, elevation, 361.30 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 53,180,000,000 gal, Aug. 10, elevation, 382.76 ft; minimum observed, 49,950,000,000 gal, Nov. 5, elevation, 378.25 ft.

REVISED RECORDS.--WDR NJ-85-1: 1984.

| Date                                      | Elevation<br>(feet)*                                                                   | Contents<br>(million<br>gallons)                                           | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)             | OCTOBER 1986 TO SEP<br>Elevation<br>(feet)*                                            | Contents<br>(million<br>gallons)                                                       | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)          |
|-------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                           | 0139679                                                                                | O SPRUCE RUN                                                               | RESERVOIR                                                                  | 01397050 R                                                                             | OUND VALLEY RE                                                                         | SERVOIR                                                                 |
| Sept. 30<br>Oct. 31<br>Nov. 30<br>Dec. 31 | 249.66<br>247.88<br>254.13<br>262.00                                                   | 3,780<br>3,430<br>4,790<br>6,950                                           | -17.5<br>+70.1<br>+108                                                     | 379.12<br>378.36<br>378.66<br>379.12                                                   | 50,620<br>50,030<br>50,230<br>50,620                                                   | -29.4<br>+10.3<br>+19.5                                                 |
| CAL YR 1986                               |                                                                                        | •                                                                          | -13.5                                                                      | ÷                                                                                      |                                                                                        | +12.5                                                                   |
| Jan. 31                                   | 265.71<br>267.90<br>272.54<br>272.99<br>272.94<br>272.38<br>272.74<br>272.17<br>272.94 | 8,160<br>9,020<br>10,830<br>11,000<br>10,740<br>10,740<br>10,640<br>10,980 | +60.4<br>+47.5<br>+90.3<br>+8.8<br>-1.0<br>-12.4<br>+8.0<br>-13.0<br>+17.5 | 379.36<br>379.41<br>380.59<br>382.12<br>382.23<br>382.35<br>382.59<br>382.56<br>382.57 | 50,780<br>50,810<br>51,650<br>52,660<br>52,730<br>52,850<br>53,090<br>53,060<br>53,070 | +8.0<br>+1.7<br>+41.9<br>+52.1<br>+3.5<br>+6.2<br>+12.0<br>-1.5<br>+0.5 |
| WTR YR 1987                               | - 0                                                                                    |                                                                            | +30.5                                                                      |                                                                                        | -                                                                                      | +10.4                                                                   |

Elevation at 0800 on first day of following month.

#### DIVERSIONS IN RARITAN RIVER BASIN

- 01396920 Water is diverted 4.0 mi upstream from the gaging station on South Branch Raritan River at Stanton (see station 01397000), at the Hamden Pumping Station, for storage in Round Valley Reservoir. Records provided by New Jersey Water Supply Authority.

  REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01400509 Elizabethtown Water Company diverts water from the Raritan and Millstone Rivers just upstream from the mouth of the Millstone River at Manville. Records given herein represent the total diversion from both rivers. Records provided by the Elizabethtown Water Company.
- 01400836 Water is diverted from Carnegie Lake (Millstone River) at Princeton to the Delaware and Raritan Canal at the aqueduct 2.3 mi upstream from the gaging station on the Delaware and Raritan Canal at Kingston (station 01460500). Negative discharge indicates flow from Canal to Carnegie Lake. Records provided by New Jersey Water Supply Authority.

  REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01402910 Water is diverted from the Raritan River just below the Millstone River to the Delaware and Raritan Canal at Ten Mile Lock for municipal supply. Negative discharge indicates flow from Canal to Millstone River. Records provided by the New Jersey Water Supply Authority.

  REVISED RECORDS.--WDR NJ-85-1: 1984.

01460570 Elizabethtown Water Company diverts water from the Delaware and Raritan Canal 1200 ft downstream from Ten Mile Lock at Manville for municipal supply. Records provided by the Elizabethtown Water Company.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| MONTH       | 01396920<br>HAMDEN<br>PUMPING<br>STATION | 01400509<br>RARITAN AND<br>MILLSTONE<br>RIVERS              | 01400836<br>CARNEGIE<br>LAKE                                    | 01402910<br>TEN MILE<br>LOCK<br>DIVERSION                         | 01460570<br>DELAWARE AND<br>RARITAN<br>CANAL              |
|-------------|------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|
| October     | 0<br>0<br>0                              | 160<br>145<br>149                                           | -40.8<br>-59.3<br>-21.2                                         | 21.2<br>20.9<br>-2.0                                              | 8.0<br>12.1<br>3.6                                        |
| CAL YR 1986 | 6.3                                      | 155                                                         | -16.1                                                           | 19.1                                                              | 6.7                                                       |
| January     | 0<br>0<br>33.1<br>36.1<br>0<br>0<br>0    | 147<br>149<br>137<br>153<br>156<br>147<br>157<br>154<br>150 | -23.2<br>0<br>-2.7<br>-3.8<br>0<br>3.6<br>-29.1<br>-1.2<br>12.1 | 3.3<br>0<br>-18.4<br>-33.1<br>-21.2<br>4.1<br>-7.8<br>-3.1<br>4.2 | 6.3<br>8.7<br>16.6<br>5.0<br>10.8<br>31.0<br>21.1<br>27.1 |
| WTR YR 1987 | 5.8                                      | 150                                                         | -13.8                                                           | -2.7                                                              | 14.2                                                      |

#### NAVESINK RIVER BASIN

#### 01407500 SWIMMING RIVER NEAR RED BANK, NJ

LOCATION.--Lat 40°19'10", long 74°06'55", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft upstream from spillway at Swimming River Reservoir, 3.3 mi southwest of Red Bank, and 4.8 mi upstream from mouth. Water-quality samples collected at bridge on Swimming River Road, 800 ft downstream from gaging station.

DRAINAGE AREA .-- 49.2 mi 2 .

PERIOD OF RECORD . -- August 1922 to current year.

REVISED RECORDS. -- WDR NJ-83-1. Drainage area. WSP 891: 1939.

GAGE.:-Water-stage recorder above concrete dam. Datum of gage is 30.00 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1962, at site 800 ft upstream at datum 17.67 ft lower. Jan. 19 to Mar. 30, 1962, nonrecording gage, 700 ft upstream at datum 13.87 ft lower.

REMARKS.--No estimated daily discharges. Records good above 10 ft<sup>3</sup>/s and fair below. Records given herein represent flow over spillway and flow or leakage through blowoff gates. Diversion above station for municipal supply. Flow regulated by Swimming River Reservoir. Several measurements of water temperature were made during the year.

COOPERATION.--Water-stage recorder inspected by and record of diversion furnished by New Jersey-American Water Co. (formerly Monmouth Consolidated Water Co.).

AVERAGE DISCHARGE.--65 years, 80.7 ft3/s, 22.60 in./yr, adjusted for storage and diversion.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,910 ft<sup>3</sup>/s, Oct. 27, 1943, gage height, 8.96 ft, site and datum then in use, from rating curve extended above 1,000 ft<sup>5</sup>/s on basis of weir formula; no flow some days in many years.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood in July 1919 reached a stage of 7.84 ft (site and datum then in use), from floodmark, discharge about 11,800 ft<sup>3</sup>/s.

EXTREMES OF CURRENT YEAR.--Maximum discharge, 2,500 ft<sup>3</sup>/s, Jan. 2, gage height, 6.50 ft; no flow many days in October, November, August, and September.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 3.7 7.4 .00 .00 .00 60 400 262 .00 52 825 3 .00 .00 1160 72 430 95 65 67 12 15 4.6 75 577 43Ó .00 .00 323 117 179 .00 3.6 .00 .00 164 142 121 145 19 65 29 5 .00 91 .00 .00 68 95 386 164 45 .00 31 24 21 .00 49 42 39 84 84 79 75 74 80 2.6 .00 19 6 81 320 194 126 63 50 77 78 .00 8 .00 28 .00 .00 262 274 18 .00 .00 74 107 54 .60 118 76 65 105 46 38 10 .00 84 .00 .00 82 79 117 .00 11 .00 .00 134 78 74 58 38 17 26 50 133 74 50 22 13 7.6 75 73 64 56 .00 12 13 .00 .07 65 47 17 13 68 62 42 43 52 .00 .48 18 .00 .00 .18 88 103 13 70 15 .00 .87 45 63 77 39 61 .25 4.7 61 1.2 1.5 1.7 49 55 53 59 52 43 36 24 15 28 2.5 16 .00 42 73 58 53 52 248 244 1.5 .00 46 56 116 262 18 .00 158 8.7 10 .39 5.0 92 57 19 .00 293 127 41 .05 49 29 20 .00 96 45 98 48 .00 48 22 17 21 .00 214 .00 1.1 6.0 22 .00 65 58 121 114 79 71 43 1.2 3.8 1.9 .00 48 50 .00 36 51 83 .00 39 24 .00 73 71 59 101 36 34 .85 .00 10 37 7.2 .00 506 66 310 .48 .22 .00 26 34 35 38 4.6 2.8 1.5 -00 80 143 90 93 4.5 155 87 59 .00 84 .00 211 73 5.0 27 .00 55 41 28 63 54 20 73 14 29 .85 .00 40 33 27 12 63 60 65 91 11 .00 6.9 30 70 ... 81 .00 .00 ... 20 8.4 .00 66 385 508.81 17.0 103 .17 47.1 TOTAL .00 973.53 32.5 214 4077 4301 3077 99.3 430 213.84 6.90 84 162.93 5.43 35 1957 4615 1631 980.59 .00 31.6 430 .22 MEAN 69.9 132 825 139 154 577 52.6 .00 1160 56 164 .00 .00 MIN .00 27 .00 45 71 50.8 82.4 1.67 1.93 47.6 53.0 1.08 34.1 64.9 27.0 27.8 97.7 1.99 35.1 87.7 1.78 39.7 32.0 31.0 31.7 166 3.37 3.89 46.6 MEAN # 164 64.1 1.30 1.45 131 185 0.69 1.98 CFSM: 3.76 2.60 IN. 3.85 2.07 1.09 0.80 2.21 1.20 2.05

CAL YR 1986 TOTAL 14430.96 MEAN 39.5 MAX 1140 MIN .00 MEAN \$2.3 CFSM \$1.67 IN. \$22.73 WTR YR 1987 TOTAL 22497.62 MEAN 61.6 MAX 1160 MIN .00 MEAN \$101 CFSM \$2.05 IN. \$27.88

Diversion and change in contents in Swimming River Reservoir, in cubic feet per second.

Adjusted for diversion and change in contents.

#### 01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°11'56", long 74°04'14", Monmouth County, Hydrologic Unit 02030104, on left bank 100 ft upstream from bridge on Remsen Mill Road, 0.3 mi downstream from Robins Swamp Brook, and 1.7 mi west of Neptune City.

DRAINAGE AREA.--9.96 mi<sup>2</sup>.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD . -- October 1966 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 7.05 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Diversion above station by Monmouth Consolidated Water Co. for municipal supply (records given herein) and by farmers for irrigation. Several measurements of water temperature were made during the year.

COOPERATION.--Water-stage recorder inspected by and records of diversion provided by New Jersey-American Water Co. (formerly Monmouth Consolidated Water Co.).

AVERAGE DISCHARGE. -- 21 years, 14.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD...Maximum discharge, 1,010 ft<sup>3</sup>/s, Aug. 10, 1987, gage height, 6.38 ft; maximum gage height, 7.84 ft, Dec. 26, 1969; no flow many days during most years.

0

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,010 ft<sup>3</sup>/s, Aug. 10, gage height, 6.38 ft; no flow part of many days during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES AUG SEP DAY OCT NOV DEC JAN MAR APR MAY JUN JUL 2.9 9.2 3.3 5.3 5.2 3.8 8.2 6.2 5.9 38 1.9 8.5 123 7.5 8.1 277 95 89 24 189 43 25 3.4 2.2 1.3 1.1 14 20 26 4 4 32 1.4 18 .7 10 74 26 26 10 46 8.9 12 1.4 45 104 28 16 21 11 68 7.2 3.4 2.3 3.1 2.3 21 12 7.3 15 15 14 19 4.5 3.5 3.1 7.9 5.2 7.3 7.4 10 72 27 18 3.8 1.3 6 70 23 28 31 22 11 18 3.6 1.4 13 8.4 7.1 18 89 9 5.5 7.3 1.1 72 65 12 17 10 2.5 323 10 9.2 14 6.0 22 15 14 7.7 23 5.3 3.2 3.9 1.9 2.2 2.8 15 4.3 5.2 8.0 6.7 8.7 3.1 2.8 2.3 5.1 7.2 3.3 3.7 3.0 2.7 5.0 32 35 17 1.8 8.5 42 25 21 20 12 13 14 15 13 12 8.0 13 6.9 2.7 10 5.3 6.6 11 5.6 5.9 3.4 2.0 16 4.0 10 9.5 5.6 5.5 11 57 4.4 2.5 2.7 18 7.1 6 .6 6.4 6.2 8.2 8.8 6.1 14 6.0 18 19 20 3.1 2.9 3.0 10 79 26 41 58 28 6.2 38 23 18 5.4 6.5 9.3 2.3 1.4 2.0 3.5 35 1.8 18 75 64 1.4 11 7.2 5.6 .93 1.7 1.3 .58 .34 2.9 2.7 3.0 2.8 21 22 23 24 25 22 20 27 13 5.9 7.5 9.7 1.7 61 29 21 24 15 19 5.5 3.0 4.8 16 11 14 14 26 77 6.5 5.5 5.0 12 12 14 29 4.0 .96 .86 .88 6.7 9.1 3.7 2.7 6.1 6.6 2.8 4.8 2.6 . 5 5.5 5.6 4.7 3.9 3.2 24 41 24 19 2.6 26 27 28 29 30 31 11 28 4.4 5.4 4.0 5.7 .35 2.1 19 41 14 11 8.1 6.6 4.3 4.0 3.9 10 15 1.9 8.4 10 9.5 6.8 9.6 3.9 4.1 2.8 4.6 5.8 5.9 1.9 11 5.8 3.2 1.9 8.0 1.8 12 12 ... 7.6 3.5 18 17 112 Ó 161.4 5.21 15 1.9 TOTAL 726.6 24.2 79 1014.5 875.2 28.2 277 266.7 9.52 26 520.2 729.8 24.3 104 235.1 7.58 32 196.0 241.52 428.40 145.3 16.8 6.53 4.84 MEAN MAX 13.8 189 MIN 3.8 2.8 6.8 2.2 .52 5.7 .34 .8 13.7 (1) 10.6 6.1

CAL YR 1986 TOTAL 4091.21 MEAN 11.2 MAX 189 MIN .28 † 8.5 WTR YR 1987 TOTAL 5540.65 MEAN 15.2 MAX 323 MIN .34 † 8.1

<sup>†</sup> Diversion, in cubic feet per second, from Shark River by New Jersey-American Water Co., for municipal supply.

## 01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME TA                                          | REAM- CI<br>FLOW, CO<br>ISTAN- DU<br>ANEOUS AN | ICE (S                                               | PH<br>TAND-<br>ARD<br>ITS)            | TEMPI<br>ATUI<br>WATI | RE I                                                 | YGEN,<br>DIS-<br>OLVED<br>MG/L)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|----------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT 1986       |                                                  |                                                |                                                      |                                       |                       |                                                      |                                                          |                                                                |                                              |                                                  | 10024.0                             |
| 16<br>FEB 1987 | 1130                                             | E4.0                                           | 155                                                  | 6.3                                   | 11                    | .0                                                   | 9.8                                                      | 89                                                             | <1.2                                         | 50                                               | 110                                 |
| 25             | 1220                                             | 3.9                                            | 231                                                  | 7.1                                   | 3                     | .0                                                   | 12.4                                                     | 91                                                             | <0.1                                         | 20                                               | 70                                  |
| MAR<br>24      | 1145                                             | 5.4                                            | 169                                                  | 7.1                                   | 8                     | .0                                                   | 11.0                                                     | 93                                                             | <0.6                                         | 20                                               | 7                                   |
| JUN 24         | 1030                                             |                                                | 137                                                  |                                       |                       |                                                      |                                                          |                                                                |                                              |                                                  |                                     |
| JUL            |                                                  | 3.5                                            | •                                                    | 6.9                                   | 16                    |                                                      | 7.9                                                      | 81                                                             | E1.3                                         | 790                                              | 540                                 |
| 30             | 1200                                             | 8.3                                            | 234                                                  | 4.9                                   | 17                    | .5                                                   | 8.2                                                      | 86                                                             | E1.2                                         | 230                                              | 170                                 |
| 19             | 1230                                             | 1.6                                            | 208                                                  | 6.5                                   | 23                    | .5                                                   | 8.0                                                      | 95                                                             | 2.3                                          | 490                                              | 240                                 |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)           | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)   | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODI<br>DIS<br>SOLV<br>(MG<br>AS      | ED /L                 | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y SULFA<br>DIS<br>L SOLY<br>(MG)                               | VED SOLV                                     | F, RIC<br>DI<br>VED SOL<br>/L (MC                | DE,<br>IS-<br>LVED<br>G/L           |
| OCT 1986       |                                                  |                                                |                                                      |                                       |                       |                                                      |                                                          |                                                                |                                              |                                                  |                                     |
| 16<br>FEB 1987 | 43                                               | 3 14                                           | 1.9                                                  | 9                                     | .3                    | 2.4                                                  | 20                                                       | 2                                                              | 4 16                                         | (                                                | 0.1                                 |
| 25             | 39                                               | 12                                             | 2.3                                                  | 21                                    |                       | 3.1                                                  | 16                                                       | 2                                                              | 5 36                                         | (                                                | 0.1                                 |
| MAR<br>24      | 39                                               | 12                                             | 2.2                                                  | 13                                    |                       | 2.9                                                  | 19                                                       | 2                                                              | 4 23                                         | (                                                | 0.1                                 |
| JUN<br>24      | 43                                               | 3 14                                           | 2.0                                                  | 10                                    |                       | 2.4                                                  | 18                                                       | 2                                                              | 5 18                                         |                                                  | 0.1                                 |
| JUL 30         | 6                                                |                                                |                                                      |                                       |                       |                                                      |                                                          |                                                                |                                              |                                                  |                                     |
| AUG            | 0                                                | 514                                            | 3.1                                                  | 11                                    |                       | 4.3                                                  | <1.0                                                     |                                                                |                                              |                                                  | 0.1                                 |
| 19             | 36                                               | 5 11                                           | 2.0                                                  | 11                                    |                       | 2.7                                                  | 20                                                       | 3                                                              | 1 19                                         | (                                                | 0.1                                 |
| DATE           | SILICA<br>DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO2) | CONSTI-                                        | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NIT<br>GE<br>NO2+<br>TOT<br>(MG<br>AS | NÓ3<br>AL<br>/L       | NITRO-<br>GEN,<br>AMMONÍA<br>TOTAL<br>(MG/L<br>AS N) | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ NIT<br>IIC GE<br>IL TOT                                | N, PHORU<br>AL TOT/<br>/L (MG/               | US, ORGAL TOTAL (MC                              | ANIČ<br>FAL<br>G/L                  |
| OCT 1986       |                                                  |                                                |                                                      |                                       |                       |                                                      |                                                          |                                                                |                                              |                                                  |                                     |
| 16<br>FEB 1987 | 13                                               | 93                                             | 0.008                                                | 0.                                    | 13                    | 0.21                                                 | 1.0                                                      | 1.1                                                            | 0.050                                        | 3.8                                              | В                                   |
| 25<br>MAR      | 10                                               | 120                                            | 0.005                                                | 0.                                    | 60                    | 0.24                                                 | 1.2                                                      | 1.8                                                            | 0.040                                        | 3.9                                              | 9                                   |
| 24             | 11                                               | 100                                            | 0.011                                                | 0.                                    | 45                    | 0.57                                                 | 1.1                                                      | 1.5                                                            | <0.020                                       | 2.4                                              | 4                                   |
| JUN<br>24      | 13                                               | 95                                             | 0.010                                                | 0.                                    | 24                    | 0.29                                                 | 0.52                                                     | 0.7                                                            | 6 0.053                                      | 3 4.6                                            | 5                                   |
| JUL<br>30      | 14                                               |                                                | 0.005                                                | 0.                                    |                       | 0.26                                                 | 0.70                                                     |                                                                |                                              |                                                  |                                     |
| AUG<br>19      |                                                  |                                                |                                                      |                                       |                       |                                                      |                                                          |                                                                |                                              |                                                  |                                     |
| 19             | 11                                               | 100                                            | 0.009                                                | 0.                                    | 25                    | 0.14                                                 | 1.1                                                      | 1.3                                                            | 0.060                                        | 2.3                                              | •                                   |

## 01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       |                      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|----------------------------|----------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 1986<br>16<br>JUN 1987 | 1130                 | ••                                                                  | 160                                                                 | 0.1                                                                  | 3.0                                                                   |                                                                      | ••                                                                 | 3                                                                   |                                                                      |                                                                    |                                                                     | <1                                                                   |
| 24                         | 1030                 | <0.5                                                                | 100                                                                 |                                                                      | ••                                                                    | 50                                                                   | <1                                                                 | galante i                                                           | <10                                                                  | 20                                                                 | <1                                                                  |                                                                      |
|                            | DATE                 | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | (UG/L                                                              | TERIAL<br>(UG/G                                                     | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | TERIAL                                                               |
|                            | OCT 1986             | AS CK)                                                              | (00/0)                                                              | A3 (0)                                                               | AS CO,                                                                | AS CO)                                                               | AS FE                                                              | AS FE                                                               | AS PB)                                                               | AS FB)                                                             | AS MAY                                                              | (00/0)                                                               |
|                            | 16<br>JUN 1987       |                                                                     | 4                                                                   | <10                                                                  |                                                                       | 3                                                                    |                                                                    | 4300                                                                |                                                                      | 20                                                                 |                                                                     | 7                                                                    |
|                            | 24                   | 20                                                                  |                                                                     | ••                                                                   | 2                                                                     |                                                                      | 2400                                                               |                                                                     | 11                                                                   | 1.5                                                                | 60                                                                  |                                                                      |
|                            | DATE                 | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G                               | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                        | FM BOT-<br>TOM MA-                                                    | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                         | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            |                                                                      |
|                            | OCT 1986             |                                                                     | 0.01                                                                |                                                                      | <10                                                                   |                                                                      | <1                                                                 |                                                                     | 20                                                                   |                                                                    | 6                                                                   | <1.0                                                                 |
|                            | JUN 1987<br>24       | <0.10                                                               |                                                                     | 4                                                                    |                                                                       | <1                                                                   |                                                                    | 10                                                                  | 1.                                                                   | 2                                                                  |                                                                     | • • •                                                                |
|                            | DATE                 | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | IN BOT-<br>TOM MA-<br>TERIAL                                        | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                        | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | IN BOT-<br>TOM MA-<br>TERIAL                                        | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | TOM MA-<br>TERIAL                                                   | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
|                            | OCT 1986             | <0.1                                                                | 14                                                                  | 2.3                                                                  | 1.6                                                                   | 4.2                                                                  | 0.2                                                                |                                                                     | 5.7                                                                  | -0.1                                                               | -0.1                                                                | 0.3                                                                  |
|                            | 16<br>IUN 1987<br>24 |                                                                     |                                                                     |                                                                      | 1.6                                                                   | 4.2                                                                  | 0.2                                                                | 0.5                                                                 |                                                                      | <0.1                                                               | <0.1                                                                | 0.3                                                                  |
|                            | DATE                 | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | TOTAL<br>IN BOT-                                                    | IN BOT-<br>TOM MA-<br>TERIAL                                         | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
|                            | OCT 1986             |                                                                     |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
|                            | 16<br>JUN 1987       | 1.2                                                                 |                                                                     | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | 6.4                                                                 | <0.1                                                                 | 7.00                                                               | <10                                                                 | <0.1                                                                 |
|                            | 24                   | ••                                                                  |                                                                     |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     | 11-4-                                                                |

219

#### 01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°12'13", long 74°03'58", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft downstream from dam on Jumping Brook Reservoir, 0.8 mi upstream from mouth, and 1.4 mi west of Neptune City. Water-quality samples collected at bridge on Corlies Avenue, 600 ft downstream from gaging station.

DRAINAGE AREA .-- 6.46 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1966 to current year. Records for water years 1976-83 are unpublished but are available in the files of New Jersey District Office.

REVISED RECORDS. -- WDR-84-1: drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 13.76 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those below 10 ft<sup>3</sup>/s and above 150 ft<sup>3</sup>/s, which are fair. Diversion above station by Monmouth Consolidated Water Co. for municipal supply (records given herein) and by farmers for irrigation. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION.--Water-stage recorder inspected by and records of diversion provided by New Jersey-American Water Co. (formerly Monmouth Consolidated Water Co.).

AVERAGE DISCHARGE .-- 21 years, 10.2 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORDS.--Maximum discharge, 1,830 ft<sup>3</sup>/s, Sept. 12, 1971, from rating curve extended above 150 ft<sup>3</sup>/s; maximum gage height, 7.00 ft, December 16, 1974; no flow June 7, 1971.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,280  $ft^3/s$ , Aug. 10, gage height, 6.73 ft, from rating curve extended above 150  $ft^3/s$ ; minimum, 1.0  $ft^3/s$ , July 24, gage height, 1.28 ft.

|                                    |                                   | DISCHAR                         | de, in co                           | BIC PEET                         | M SECON                         | EÁN VALUE                            | S                               | BER 1900                               | IU SEFIEM                         | DEK 1707                             |                                      |                                   |
|------------------------------------|-----------------------------------|---------------------------------|-------------------------------------|----------------------------------|---------------------------------|--------------------------------------|---------------------------------|----------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|
| DAY                                | ОСТ                               | NOV                             | DEC                                 | JAN                              | FEB                             | MAR                                  | APR                             | MAY                                    | JUN                               | JUL                                  | AUG                                  | SEP                               |
| 1 2 3 4 5                          | 2.7<br>4.7<br>3.9<br>5.9<br>3.6   | 2.5<br>4.4<br>3.2<br>3.4        | 5.3<br>22<br>125<br>17<br>9.1       | 14<br>220<br>29<br>15<br>11      | 9.5<br>10<br>15<br>19           | 73<br>35<br>18<br>12<br>9.2          | 9.6<br>8.1<br>80<br>30          | 6.4<br>6.8<br>29                       | 3.0<br>7.4<br>5.5<br>4.7<br>8.2   | 2.6<br>26<br>25<br>5.3<br>3.7        | 2.5<br>2.3<br>2.9<br>2.2<br>2.0      | 13<br>4.0<br>3.2<br>2.6<br>2.5    |
| 6<br>7<br>8<br>9                   | 2.7<br>1.9<br>1.7<br>1.7          | 70<br>9.2<br>15<br>9.4<br>6.5   | 7.6<br>6.9<br>6.5<br>58<br>33       | 9.2<br>9.0<br>8.2<br>7.7<br>16   | 9.2<br>9.7<br>11<br>17<br>11    | 8.5<br>8.4<br>8.1<br>7.5<br>6.7      | 48<br>18<br>11<br>9.4<br>8.7    | 9.2<br>7.7<br>7.0<br>6.5<br>6.0        | 3.9<br>3.1<br>2.9<br>7.1<br>6.0   | 3.2<br>3.2<br>6.3<br>15<br>4.8       | 3.8<br>2.7<br>2.1<br>1.8<br>360      | 2.7<br>3.1<br>7.2<br>12<br>3.9    |
| 11<br>12<br>13<br>14<br>15         | 1.4<br>1.5<br>2.0<br>14<br>4.8    | 26<br>24<br>6.9<br>4.9          | 16<br>21<br>9.6<br>7.7<br>7.2       | 17<br>9.1<br>7.8<br>7.2<br>7.1   | 8.3<br>8.2<br>7.2<br>6.4        | 5.9<br>6.5<br>9.1<br>7.7<br>6.6      | 8.2<br>7.4<br>9.5<br>7.3<br>6.7 | 5.6<br>5.7<br>5.3<br>5.1<br>5.3        | 3.1<br>2.7<br>13<br>27<br>5.2     | 3.5<br>3.0<br>2.8<br>5.2<br>6.2      | 10<br>5.7<br>4.4<br>3.7<br>3.6       | 3.1<br>3.5<br>9.0<br>6.4<br>3.7   |
| 16<br>17<br>18<br>19<br>20         | 3.0<br>2.8<br>2.6<br>2.6          | 4.4<br>4.0<br>5.4<br>60         | 6.8<br>6.7<br>36<br>37<br>12        | 6.6<br>6.3<br>27<br>47<br>35     | 5.8<br>6.0<br>6.1<br>6.0<br>5.8 | 6.1<br>5.7<br>5.6<br>5.2<br>5.2      | 6.8<br>39<br>23<br>11<br>9.1    | 5.1<br>4.7<br>4.3<br>5.9<br>8.6        | 3.3<br>2.7<br>2.5<br>2.7<br>2.2   | 3.0<br>2.5<br>2.2<br>2.5<br>2.6      | 3.3<br>3.2<br>3.1<br>2.8<br>2.4      | 4.6<br>13<br>21<br>12<br>6.7      |
| 21<br>22<br>23<br>24<br>25         | 2.4                               | 39<br>9.9<br>6.9<br>9.2<br>7.3  | 8.7<br>7.5<br>7.0<br>9.4            | 14<br>13<br>24<br>12<br>8.4      | 6.0<br>6.3<br>8.4<br>9.3<br>8.1 | 5.4<br>5.8<br>5.2<br>5.0<br>4.8      | 8.7<br>8.2<br>7.3<br>8.5<br>25  | 9.1<br>5.4<br>4.9<br>4.6<br>4.3        | 2.2<br>3.6<br>4.5<br>2.7<br>2.3   | 2.2<br>1.9<br>1.8<br>1.5<br>1.6      | 2.0<br>2.8<br>2.6<br>2.2<br>2.5      | 4.6<br>5.3<br>5.5<br>3.4<br>2.9   |
| 26<br>27<br>28<br>29<br>30<br>31   | 9.2<br>4.1<br>3.2<br>2.8<br>2.6   | 18<br>25<br>8.5<br>6.6<br>5.7   | 13<br>8.9<br>8.0<br>7.2<br>12<br>12 | 8.4<br>8.0<br>7.8<br>7.4<br>9.4  | 7.8<br>7.6<br>7.9               | 4.8<br>4.7<br>12<br>6.6<br>7.1<br>81 | 10<br>7.9<br>9.8<br>8.5<br>7.2  | 4.2<br>4.7<br>4.6<br>3.9<br>3.5<br>3.2 | 2.1<br>24<br>6.7<br>3.4<br>2.6    | 38<br>11<br>3.7<br>2.7<br>2.0<br>3.5 | 2.0<br>12<br>10<br>8.5<br>3.8<br>3.0 | 3.0<br>3.0<br>3.2<br>2.8<br>4.9   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†) | 111.8<br>3.61<br>14<br>1.4<br>.26 | 422.9<br>14.1<br>70<br>2.5<br>0 | 588.1<br>19.0<br>125<br>5.3<br>0    | 636.6<br>20.5<br>220<br>6.3<br>0 | 253.9<br>9.07<br>19<br>5.8<br>0 | 392.4<br>12.7<br>81<br>4.7<br>0      | 475.9<br>15.9<br>80<br>6.7      | 212.0<br>6.84<br>29<br>3.2<br>.54      | 170.3<br>5.68<br>27<br>2.1<br>.49 | 198.5<br>6.40<br>38<br>1.5           | 475.9<br>15.4<br>360<br>1.8<br>.52   | 175.8<br>5.86<br>21<br>2.5<br>.51 |

CAL YR 1986 TOTAL 3168.5 MEAN 8.68 MAX 267 MIN .88 † .22 WTR YR 1987 TOTAL 4114.1 MEAN 11.3 MAX 360 MIN 1.4 † .24

<sup>†</sup> Diversion, in cubic feet per second, from Jumping Brook, by New Jersey-American Water Co., for municipal supply.

## 01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                       |                                             | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)       | TEMPER<br>ATURE<br>WATER<br>(DEG C   | SO                                              | GEN, (<br>IS-<br>LVED S                                             | DIS- D<br>OLVED<br>PER-<br>CENT<br>ATUR-   | XYGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)    |
|----------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------------|
| 16                         | 1030                                        | E3.0                                            | 129                                               | 5.3                                  | 11.0                                 |                                                 | 9.8                                                                 | 88                                         | <0.9                                                         | 90                                               | 130                                    |
| EB 1987                    | 1030                                        |                                                 | 587                                               |                                      |                                      |                                                 |                                                                     | 96                                         | <0.4                                                         | <20                                              | 13                                     |
| IAR                        |                                             | 7.6                                             |                                                   | 6.8                                  | 2.0                                  |                                                 | 3.3                                                                 |                                            | 7.00                                                         | <20                                              | 130                                    |
| 24<br>UN                   | 1030                                        | 4.9                                             | 216                                               | 6.4                                  | 9.0                                  |                                                 | 0.9                                                                 | 94                                         | <1.0                                                         | 1                                                | a Feb                                  |
| 24                         | 1200                                        | 2.9                                             | 184                                               | 6.9                                  | 19.0                                 |                                                 | 8.2                                                                 | 89                                         | <0.9                                                         | 170                                              | 240                                    |
| 30                         | 1045                                        | 2.2                                             | 179                                               | 6.3                                  | 19.5                                 |                                                 | 7.6                                                                 | 83                                         | <0.9                                                         | 110                                              | 350                                    |
| 19                         | 1045                                        | 2.9                                             | 161                                               | 5.8                                  | 23.0                                 |                                                 | 7.4                                                                 | 87                                         | <1.1                                                         | 230                                              | 540                                    |
| DATE                       | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | DIS-<br>L SOLV<br>(MG/                          | VED SOL                                           | UM, SOU<br>S- DI<br>VED SOU<br>/L () | IUM,<br>IS-<br>LVED S                | OTAS-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L<br>S K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                     | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | DIS-<br>D SOLVE<br>(MG/I                                     | D SO                                             | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |
| OCT 1986<br>16<br>FEB 1987 |                                             | 26 6.                                           | 9 2                                               | .1                                   | 9.7                                  | 3.4                                             | 2.0                                                                 | 23                                         | 16                                                           | <                                                | 0.1                                    |
| 25<br>MAR                  |                                             | 44 13                                           | 2                                                 | .9                                   | 98                                   | 2.1                                             | 5.0                                                                 | 31                                         | 160                                                          |                                                  | 0.1                                    |
| 24<br>JUN                  |                                             | 39 11                                           | 2                                                 | .7                                   | 27                                   | 2.4                                             | 5.0                                                                 | 29                                         | 45                                                           | <                                                | 0.1                                    |
| 24                         |                                             | 40 12                                           | 2                                                 | .5                                   | 12                                   | 2.5                                             | 9.0                                                                 | 27                                         | 23                                                           |                                                  | 0.1                                    |
| JUL<br>30                  |                                             | 46 14                                           | 2                                                 | .7                                   | 12                                   | 2.8                                             | 7.0                                                                 | 33                                         | 23                                                           |                                                  | 0.2                                    |
| AUG<br>19                  | 2:                                          | 37 10                                           | 3                                                 | .0                                   | 12                                   | 3.2                                             | 3.0                                                                 | 29                                         | 20                                                           |                                                  | 0.1                                    |
| DATE                       | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | ED TUENT                                        | OF NIT<br>TI- GE<br>TS, NITE<br>S- TOT<br>/ED (MC | N,<br>LITE NO.                       | GEN,<br>2+NO3 AM<br>DTAL T<br>MG/L ( | IITRO-<br>GEN,<br>IMONIA<br>OTAL<br>(MG/L       | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHORU:<br>TOTA<br>(MG/                                       | S, ORG                                           | BON,<br>ANIĆ<br>TAL<br>IG/L            |
| OCT_1986                   | 0                                           |                                                 | -                                                 | 000                                  |                                      |                                                 |                                                                     |                                            | 0.010                                                        | 5.1                                              |                                        |
| 16<br>FEB 1987             |                                             | .1                                              |                                                   |                                      |                                      | 0.55                                            | 0.90                                                                | 1.0                                        | 0.060                                                        | 5.                                               |                                        |
| 25<br>MAR                  |                                             |                                                 |                                                   |                                      |                                      | .29                                             | 0.75                                                                | 1.2                                        | <0.020                                                       | 4.                                               |                                        |
| 24<br>JUN                  | 7                                           | .1                                              |                                                   | .006                                 | 0.50                                 | ).22                                            | 0.49                                                                | 0.99                                       | <0.020                                                       | 2.                                               | 8                                      |
| 24<br>JUL                  | 8                                           | .6                                              | 93 0.                                             | .011                                 | 0.31 0                               | 0.24                                            | 0.82                                                                | 1.1                                        | 0.042                                                        | 6.                                               | 8                                      |
| 30                         | 8                                           | .6                                              | 100 0.                                            | .004                                 | 0.22                                 | .22                                             | 0.74                                                                | 0.96                                       | 0.029                                                        | 5.                                               | 2                                      |
| 19                         | 10                                          |                                                 | 89 0.                                             | .008                                 | 0.30                                 | .13                                             | 0.69                                                                | 0.99                                       | 0.020                                                        | 5.                                               | 9                                      |

SHARK RIVER BASIN

## 01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                  | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                    | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT 1986<br>16 | 1030                                                  | <0.5                                                  | <1                                                              | <10                                                             | 40                                                      | <1                                                      | <10                                                            | 4                                                       |
| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)          | PHENOLS<br>TOTAL<br>(UG/L)                              |
| OCT 1986<br>16 | 1600                                                  | 5                                                     | 70                                                              | <0.10                                                           | 4                                                       | <1                                                      | 190                                                            | 6                                                       |

#### MANASQUAN RIVER BASIN

#### 01407997 MARSH BOG BROOK AT SQUANKUM, NJ

LOCATION.--Lat 40°10'01", long 74°09'33", Monmouth County, Hydrologic Unit 02040301, at bridge on Squankum-Yellow Brook Road in Squankum, and 0.2 mi upstream from mouth.

DRAINAGE AREA. -- 4.91 mi 2.

PERIOD OF RECORD. -- Water years 1971-74, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME TA                                           | REAM- CI<br>LOW, CO<br>STAN- DU<br>NEOUS AN  | ICT- (S                                              | TAND-<br>ARD                                  | TEMPER-<br>ATURE<br>WATER<br>(DEG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)     | DIS- D<br>SOLVED<br>(PER-<br>CENT                    | BIO- I<br>CHEM- I<br>ICAL,<br>5 DAY E | COLI-<br>FORM,<br>FECAL, STREP-<br>EC TOCOCCI<br>BROTH FECAL<br>(MPN) (MPN) |
|----------------|---------------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|
| OCT 1986       | 0930                                              | FO /F                                        | 450                                                  |                                               | 7.0                                  | 0.0                                     | 80                                                   | <0.4                                  | 50 240                                                                      |
| FEB 1987       |                                                   | E0.45                                        | 150                                                  | 6.5                                           | 7.0                                  | 9.8                                     | 100                                                  |                                       |                                                                             |
| 25<br>MAR      |                                                   | E6.9                                         | 121                                                  | 6.2                                           | 2.5                                  | 12.7                                    | 92                                                   |                                       | <20 2                                                                       |
| 24<br>JUN      | 1315                                              | E4.1                                         | 110                                                  | 6.0                                           | 10.0                                 | 10.9                                    | 96                                                   | <0.3                                  | <20 17                                                                      |
| 24<br>JUL      | 1330                                              | E1.9                                         | ••                                                   | 6.7                                           | 17.5                                 | 7.9                                     |                                                      | <0.9                                  | 460 >2400                                                                   |
| 30             | 1330                                              | E1.6                                         | 113                                                  | 6.5                                           | 19.0                                 | 7.8                                     | 84                                                   | E1.4 2                                | 200 >2400                                                                   |
| AUG<br>31      | 1100                                              | E1.9                                         | 104                                                  | 6.2                                           | 15.5                                 | 9.0                                     | 90                                                   | <1.1                                  | 220 540                                                                     |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SOD I UI<br>DIS-<br>SOL VEI<br>(MG/I<br>AS NA | D SOLV                               | JM, LINI<br>S- LA<br>VED (MG<br>/L AS   | TY SULFAT<br>B DIS-<br>/L SOLVE<br>(MG/L             | DIS-<br>D SOLVEI<br>(MG/L             | (MG/L                                                                       |
| OCT 1986<br>21 | 43                                                | 14                                           | 1.9                                                  | 7.                                            | 3 2                                  | .8 16                                   | 26                                                   | 13                                    | 0.5                                                                         |
| FEB 1987<br>25 | 26                                                |                                              | 1.6                                                  | 7.                                            |                                      | .0 2.                                   |                                                      | 16                                    | 0.1                                                                         |
| MAR            | 25                                                |                                              |                                                      |                                               |                                      |                                         |                                                      | 4                                     |                                                                             |
| 24<br>JUN      |                                                   |                                              | 1.5                                                  | 6.                                            |                                      | .1 3.                                   |                                                      | 11                                    | 0.1                                                                         |
| 24<br>JUL      | 35                                                | 11                                           | 1.9                                                  | 6.                                            | 1 2                                  | .6 9.                                   | 0 27                                                 | 10                                    | 0.1                                                                         |
| 30             | 30                                                | 9.5                                          | 1.6                                                  | 6.                                            | 0 2                                  | .3 8.                                   | 0 24                                                 | 12                                    | 0.1                                                                         |
| 31             | 29                                                | 8.8                                          | 1.7                                                  | 6.                                            | 1 2                                  | .7 4.                                   | 0 27                                                 | 10                                    | 0.1                                                                         |
| DATE           | SILICA,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO2) | CONSTI-                                      | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITR<br>GEN<br>NO2+N<br>TOTA<br>(MG/<br>AS N  | OS AMMO<br>L TOT<br>L (MG            | N, MONI<br>NIA ORGA<br>AL TOT<br>/L (MG | AM-<br>A + NITRO<br>NIC GEN,<br>AL TOTAL<br>/L (MG/L | PHORUS<br>TOTAL<br>(MG/L              | TOTAL<br>(MG/L                                                              |
| OCT 1986<br>21 | 13                                                | 88                                           | 0.010                                                | 0.2                                           | 4 0.1                                | 8 0.6                                   | 0 0.84                                               | 0.070                                 | 3.2                                                                         |
| FEB 1987<br>25 | 10                                                | 71                                           | 0.005                                                | 0.2                                           | 2 0.2                                | 1 0.6                                   | 3 0.85                                               | 0.040                                 | 3.4                                                                         |
| MAR 24         | 11                                                | 65                                           |                                                      |                                               |                                      |                                         |                                                      | <0.020                                | 1.4                                                                         |
| JUN 24         | 15                                                | 79                                           |                                                      |                                               |                                      |                                         |                                                      | 0.090                                 | 9.1                                                                         |
| JUL 30         | 12                                                | 72                                           |                                                      |                                               |                                      |                                         |                                                      | 0.094                                 |                                                                             |
| AUG            |                                                   |                                              |                                                      |                                               |                                      |                                         |                                                      |                                       | 8.2                                                                         |
| 31             | 12                                                | 71                                           | 0.010                                                | 0.2                                           | 2 0.1                                | 9 0.5                                   | 8 0.80                                               | 0.080                                 | 5.3                                                                         |

### MANASQUAN RIVER BASIN

## 01407997 MARSH BOG BROOK AT SQUANKUM, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE          | TIME           | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | NITRO-<br>GEN,NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N)  | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|---------------|----------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 198       | 6 0930         |                                                                     | 110                                                                  | 0.4                                                                  | 1.2                                                                   |                                                                      |                                                                    | . 1                                                                 |                                                                      |                                                                    |                                                                     | <1                                                                   |
| 21<br>JUN 198 | 7              |                                                                     |                                                                      | 0.4                                                                  | 1.2                                                                   |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 24            | 1330           | <0.5                                                                | ••                                                                   | •••                                                                  |                                                                       | 50                                                                   | <1                                                                 | •••                                                                 | <10                                                                  | <10                                                                | <1                                                                  | ••                                                                   |
|               | DATE           | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|               | OCT 1986       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 40            | 21<br>JUN 1987 | ••                                                                  | 3                                                                    | <10                                                                  | •••                                                                   | 2                                                                    | •••                                                                | 1900                                                                | ••                                                                   | <10                                                                | •••                                                                 | 1                                                                    |
|               | 24             | 20                                                                  | ••                                                                   | ••                                                                   | 2                                                                     | ••                                                                   | 5800                                                               |                                                                     | 37                                                                   | ••                                                                 | 50                                                                  | •••                                                                  |
|               | DATE           | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                                   | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
|               | OCT 1986       |                                                                     | 0.01                                                                 |                                                                      | <10                                                                   |                                                                      | <1                                                                 |                                                                     | 8                                                                    |                                                                    | <1                                                                  | <1.0                                                                 |
|               | JUN 1987       |                                                                     | 0.01                                                                 |                                                                      | <10                                                                   | 100                                                                  | SI                                                                 | 1 12                                                                | ۰                                                                    | 17.5                                                               | -1                                                                  | 11.0                                                                 |
|               | 24             | <0.10                                                               | ••                                                                   | 3                                                                    | ••                                                                    | <1                                                                   |                                                                    | 20                                                                  | ••                                                                   | 3                                                                  |                                                                     | ••                                                                   |
|               | DATE           | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| 0             | CT 1986        |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    | 4                                                                   |                                                                      |                                                                    |                                                                     |                                                                      |
|               | 21<br>UN 1987  | <0.1                                                                | <1.0                                                                 | <0.1                                                                 | 0.1                                                                   | 0.1                                                                  | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                 |
| 3             | 24             |                                                                     |                                                                      | ••                                                                   |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      | ••                                                                 |                                                                     | ••                                                                   |
|               | DATE           | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   |
|               | OCT 1986       |                                                                     |                                                                      |                                                                      |                                                                       | 2.1                                                                  | 273                                                                |                                                                     |                                                                      |                                                                    |                                                                     | 0.201                                                                |
|               | JUN 1987       | <0.1                                                                | <0.1                                                                 | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                                 | <1.00                                                              | <10                                                                 | <0.1                                                                 |
|               | 24             |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      | • • •                                                              |                                                                     |                                                                      |

#### MANASQUAN RIVER BASIN

#### 01408000 MANASQUAN RIVER AT SQUANKUM, NJ

LOCATION.--Lat 40°09'47", Long 74°09'21", Monmouth County, Hydrologic Unit 02040301, on right bank 50 ft upstream from northbound bridge on State Highway 547 (Squankum Park Road) in Squankum, and 0.4 mi downstream from Marsh Bog Brook.

DRAINAGE AREA . - - 44.0 mi 2.

PERIOD OF RECORD. -- July 1931 to current year. Monthly discharge only for July 1931, published in WSP 1302.

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.82 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 13, 1940, water-stage recorder at site 80 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 56 years, 75.4 ft3/s, 23.27 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,940 ft<sup>3</sup>/s, Sept. 21, 1938, gage height, 12.45 ft, from floodmark, site then in use, from rating curve extended above 900 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; minimum, 8.1 ft<sup>3</sup>/s, Aug. 6, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (\*):

| Date Time                                  | Discharge (ft <sup>3</sup> /s) | (ft)                 | Date                         | Time                 | (ft <sup>3</sup> /s) | Gage height (ft)      |
|--------------------------------------------|--------------------------------|----------------------|------------------------------|----------------------|----------------------|-----------------------|
| Dec. 3 1300<br>Dec. 25 1300<br>Jan. 2 1915 | 933<br>621<br>1,280<br>772     | 6.97<br>5.70<br>8.12 | Apr. 5<br>June 14<br>Aug. 10 | 0200<br>0915<br>1645 | 817<br>825<br>*1,550 | 6.55<br>6.58<br>*9.03 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 21 ft<sup>3</sup>/s, Oct. 11, 12, 13, 25, gage height, 2.46 ft.

|                                            |                                  |                             | the back                                 |                                          |                                           | MĚAN VALU                                | ES                                       | 95                                        |                                           | 191.99                                    |                                            |                                           |
|--------------------------------------------|----------------------------------|-----------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|
| DAY                                        | ОСТ                              | NOV                         | DEC                                      | JAN                                      | FEB                                       | MAR                                      | APR                                      | MAY                                       | JUN                                       | JUL                                       | AUG                                        | SEP                                       |
| 1 2 3 4 5                                  | 24<br>29<br>26<br>34<br>26       | 23<br>25<br>26<br>25<br>32  | 48<br>71<br>705<br>175<br>101            | 74<br>858<br>358<br>153<br>122           | 82<br>82<br>101<br>126<br>107             | 342<br>411<br>176<br>140<br>113          | 230<br>113<br>92<br>374<br>368           | 77<br>74<br>76<br>141<br>149              | 38<br>68<br>64<br>50<br>68                | 36<br>92<br>254<br>78<br>56               | 54<br>44<br>42<br>40<br>37                 | 109<br>57<br>48<br>41<br>38               |
| 6<br>7<br>8<br>9                           | 23<br>22<br>22<br>23<br>22       | 131<br>50<br>57<br>53<br>41 | 80<br>71<br>65<br>215<br>261             | 105<br>100<br>92<br>84<br>105            | 89<br>89<br>97<br>121<br>104              | 102<br>97<br>94<br>88<br>79              | 323<br>179<br>137<br>119<br>101          | 101<br>87<br>80<br>74<br>68               | 49<br>42<br>40<br>43<br>62                | 48<br>45<br>49<br>98<br>79                | 54<br>43<br>37<br>39<br>1070               | 36<br>37<br>38<br>45<br>37                |
| 11<br>12<br>13<br>14<br>15                 | 22<br>22<br>22<br>44<br>35       | 75<br>120<br>54<br>40<br>36 | 122<br>167<br>102<br>81<br>74            | 122<br>93<br>82<br>78<br>76              | 87<br>84<br>81<br>75<br>71                | 74<br>75<br>83<br>81<br>75               | 93<br>86<br>96<br>83<br>79               | 64<br>62<br>61<br>56<br>58                | 41<br>38<br>68<br>518<br>107              | 50<br>44<br>41<br>46<br>110               | 258<br>97<br>74<br>61<br>55                | 35<br>35<br>58<br>85<br>46                |
| 16<br>17<br>18<br>19<br>20                 | 26<br>24<br>23<br>23<br>23       | 35<br>33<br>34<br>182<br>75 | 69<br>67<br>130<br>246<br>112            | 72<br>68<br>122<br>235<br>270            | 66<br>67<br>67<br>66<br>64                | 71<br>68<br>66<br>64<br>63               | 77<br>204<br>177<br>117<br>99            | 57<br>53<br>52<br>56<br>59                | 71<br>55<br>50<br>45<br>42                | 48<br>40<br>37<br>45<br>113               | 50<br>49<br>47<br>44<br>41                 | 39<br>46<br>78<br>55<br>47                |
| 21<br>22<br>23<br>24<br>25                 | 23<br>23<br>23<br>22<br>22<br>22 | 181<br>80<br>59<br>64<br>58 | 89<br>77<br>71<br>72<br>409              | 129<br>109<br>117<br>96<br>80            | 64<br>66<br>77<br>81<br>77                | 63<br>67<br>63<br>61<br>60               | 91<br>83<br>79<br>88<br>220              | 66<br>55<br>52<br>51<br>49                | 40<br>44<br>50<br>43<br>39                | 51<br>42<br>38<br>35<br>33                | 39<br>41<br>42<br>36<br>35                 | 43<br>45<br>68<br>45<br>40                |
| 26<br>27<br>28<br>29<br>30<br>31           | 37<br>47<br>28<br>25<br>24<br>23 | 83<br>163<br>75<br>61<br>53 | 146<br>103<br>89<br>79<br>79             | 80<br>78<br>77<br>72<br>76<br>93         | 75<br>73<br>72                            | 60<br>57<br>80<br>70<br>63<br>332        | 126<br>96<br>95<br>92<br>83              | 48<br>49<br>49<br>46<br>42<br>39          | 37<br>78<br>57<br>44<br>38                | 170<br>109<br>55<br>45<br>40<br>102       | 35<br>78<br>84<br>77<br>52<br>43           | 36<br>35<br>34<br>34<br>39                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 812<br>26.2<br>47<br>22<br>.60   | 182<br>23                   | 4255<br>137<br>705<br>48<br>3.12<br>3.60 | 4276<br>138<br>858<br>68<br>3.13<br>3.62 | 2311<br>82.5<br>126<br>64<br>1.88<br>1.95 | 3338<br>108<br>411<br>57<br>2.45<br>2.82 | 4200<br>140<br>374<br>77<br>3.18<br>3.55 | 2051<br>66.2<br>149<br>39<br>1.50<br>1.73 | 2029<br>67.6<br>518<br>37<br>1.54<br>1.72 | 2129<br>68.7<br>254<br>33<br>1.56<br>1.80 | 2798<br>90.3<br>1070<br>35<br>2.05<br>2.37 | 1429<br>47.6<br>109<br>34<br>1.08<br>1.21 |
| CAL YR<br>WTR YR                           | 1986<br>1987                     | TOTAL 25037<br>TOTAL 31652  | MEAN (                                   | 68.6 MAX                                 | 1010 MIN<br>1070 MIN                      | 19 CFSM<br>122 CFSM                      | 1.56 IN<br>1.97 IN                       |                                           |                                           |                                           |                                            |                                           |

#### METEDECONK RIVER BASIN

#### 01408120 NORTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ

LOCATION.--Lat 40°05'30", long 74°09'10", Ocean County, Hydrologic Unit 02040301, on upstream right bank at bridge on State Route 549, 1.0 mi upstream from confluence with South Branch Metedeconk River, and 2.3 mi east of Lakewood.

DRAINAGE AREA .- - 34.9 mi 2.

PERIOD OF RECORD. -- October 1972 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 3.89 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 17, 1977, gage located on upstream left side of bridge. Nov. 17, 1977 to Dec. 19, 1984, gage located on the downstream side of bridge.

REMARKS.--Records good. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 15 years, 63.6 ft3/s, 24.75 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,370 ft<sup>3</sup>/s, Nov. 8, 1977, gage height, 9.28 ft, from rating extended above 500 ft<sup>3</sup>/s; minimum, 11 ft<sup>3</sup>/s, many days in August and September, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft<sup>3</sup>/s and maximum (\*):

| Date                 |       | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)      | Date                         | Time                 | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft)  |
|----------------------|-------|----------------------|-----------------------------------|-----------------------|------------------------------|----------------------|-----------------------------------|----------------------|
| Dec.<br>Jan.<br>Mar. | 2 2 2 | 2300<br>2245<br>1615 | 353<br>*449<br>254                | 6.72<br>*7.11<br>6.17 | Apr. 5<br>June 15<br>Aug. 11 | 0930<br>1145<br>0330 | 305<br>313<br>378                 | 6.50<br>6.54<br>6.83 |
| Apr.                 | 1     | 1100                 | 251                               | 6.15                  |                              |                      | -5/-5/-                           | 12.55                |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 19 ft<sup>3</sup>/s, Oct. 11, 12, Aug. 26, 27, gage height, 2.49 ft.

|                                            |                                  |                                           |                                          |                                          | 5250.                                    | MEAN VAL                                  | JES                                      |                                           |                                           |                                           |                                           |                                          |
|--------------------------------------------|----------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|
| DAY                                        | ОСТ                              | NOV                                       | DEC                                      | JAN                                      | FEB                                      | MAR                                       | APR                                      | MAY                                       | JUN                                       | JUL                                       | AUG                                       | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | 22<br>30<br>26<br>26<br>25       | 25<br>34<br>34<br>30<br>42                | 45<br>61<br>270<br>270<br>153            | 65<br>312<br>341<br>213<br>145           | 76<br>73<br>86<br>99<br>93               | 134<br>238<br>206<br>173<br>128           | 231<br>157<br>119<br>175<br>286          | e63<br>e61<br>e62<br>e98<br>e127          | 34<br>47<br>71<br>52<br>65                | 31<br>84<br>121<br>100<br>92              | 43<br>41<br>31<br>27<br>25                | 67<br>56<br>44<br>33<br>30               |
| 6<br>7<br>8<br>9                           | 23<br>21<br>21<br>21<br>21       | 145<br>113<br>72<br>63<br>55              | 101<br>64<br>55<br>111<br>181            | 92<br>76<br>70<br>66<br>74               | 82<br>77<br>77<br>89<br>89               | 93<br>80<br>75<br>72<br>67                | 272<br>233<br>161<br>118<br>89           | e108<br>e92<br>75<br>66<br>60             | 53<br>40<br>36<br>37<br>48                | 58<br>39<br>37<br>40<br>36                | 31<br>36<br>28<br>24<br>224               | 28<br>27<br>29<br>32<br>29               |
| 11<br>12<br>13<br>14<br>15                 | 20<br>19<br>21<br>55<br>49       | 56<br>98<br>76<br>50<br>40                | 151<br>141<br>104<br>78<br>63            | 93<br>83<br>72<br>64<br>61               | 79<br>71<br>67<br>61<br>59               | 61<br>61<br>70<br>71<br>66                | 77<br>71<br>e73<br>e79<br>e75            | 56<br>54<br>52<br>49<br>49                | 37<br>33<br>40<br>134<br>266              | 34<br>31<br>29<br>38<br>44                | 307<br>190<br>97<br>49<br>36              | 27<br>26<br>41<br>46<br>39               |
| 16<br>17<br>18<br>19<br>20                 | 31<br>26<br>25<br>22<br>22       | 37<br>35<br>35<br>136<br>121              | 57<br>55<br>82<br>159<br>140             | 59<br>56<br>83<br>166<br>227             | 58<br>56<br>54<br>54<br>52               | 62<br>58<br>56<br>54<br>53                | e64<br>e116<br>e151<br>e121<br>e106      | 49<br>47<br>46<br>47<br>65                | 186<br>94<br>46<br>35<br>32               | 42<br>36<br>29<br>30<br>44                | 32<br>30<br>27<br>25<br>24                | 33<br>29<br>47<br>52<br>42               |
| 21<br>22<br>23<br>24<br>25                 | 21<br>21<br>21<br>21<br>21       | 141<br>116<br>72<br>61<br>59              | 102<br>71<br>60<br>60<br>170             | 170<br>132<br>e109<br>e83<br>e73         | 52<br>53<br>62<br>72<br>68               | 53<br>55<br>55<br>52<br>50                | e88<br>e71<br>e57<br>e63<br>e123         | 77<br>58<br>51<br>47<br>44                | 31<br>34<br>65<br>51<br>36                | 40<br>30<br>26<br>24<br>23                | 22<br>23<br>25<br>22<br>20                | 36<br>33<br>43<br>42<br>34               |
| 26<br>27<br>28<br>29<br>30<br>31           | 39<br>64<br>40<br>31<br>28<br>26 | 68<br>108<br>92<br>66<br>51               | 193<br>130<br>91<br>67<br>67<br>71       | e67<br>e69<br>e66<br>e66<br>e67<br>e77   | 66<br>64<br>64                           | 50<br>49<br>66<br>62<br>57<br>159         | e125<br>e101<br>e89<br>e78<br>e68        | 43<br>44<br>45<br>41<br>38<br>35          | 33<br>72<br>84<br>49<br>35                | 55<br>76<br>56<br>36<br>28<br>41          | 20<br>35<br>53<br>102<br>81<br>44         | 28<br>26<br>25<br>24<br>27               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 859<br>27.7<br>64<br>19<br>.79   | 2131<br>71.0<br>145<br>25<br>2.04<br>2.27 | 3423<br>110<br>270<br>45<br>3.16<br>3.65 | 3397<br>110<br>341<br>56<br>3.14<br>3.62 | 1953<br>69.7<br>99<br>52<br>2.00<br>2.08 | 2586<br>83.4<br>238<br>49<br>2.39<br>2.76 | 3637<br>121<br>286<br>57<br>3.47<br>3.88 | 1849<br>59.6<br>127<br>35<br>1.71<br>1.97 | 1876<br>62.5<br>266<br>31<br>1.79<br>2.00 | 1430<br>46.1<br>121<br>23<br>1.32<br>1.52 | 1774<br>57.2<br>307<br>20<br>1.64<br>1.89 | 1075<br>35.8<br>67<br>24<br>1.03<br>1.15 |

CAL YR 1986 TOTAL 21068 MEAN 57.7 MAX 475 MIN 15 CFSM 1.65 IN. 22.45 WTR YR 1987 TOTAL 25990 MEAN 71.2 MAX 341 MIN 19 CFSM 2.04 IN. 27.69

e Estimated

#### TOMS RIVER BASIN

#### 01408500 TOMS RIVER NEAR TOMS RIVER, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°59'10", long 74°13'29", Ocean County, Hydrologic Unit 02040301, on left bank 1.9 mi downstream from Union Branch, and 2.6 mi northwest of Toms River.

DRAINAGE AREA. -- 123 mi. 2

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1928 to current year. Monthly discharge only for October, November 1928, published in WSP 1302.

REVISED RECORDS.--WSP 1702: 1938. WDR NJ-76-1: 1975(M). WDR NJ-77-1: 1976.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 8.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 59 years, 215 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft<sup>3</sup>/s, Sept. 23, 1938, gage height, 12.50 ft, from floodmark, from rating curve extended above 1,500 ft<sup>3</sup>/s; minimum, 46 ft<sup>3</sup>/s, many days in August and September 1966, gage height, 2.70 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 745 ft<sup>3</sup>/s, Jan. 4, gage height, 7.82 ft; minimum, 77 ft<sup>3</sup>/s, Oct. 10, gage height, 3.08 ft.

|                                            |                                        | J. 100 III.                               | , III 0                                    | 0010 1221                                  | TER DECO                                  | MEAN VAL                                  | UES                                        | DEK 1700                                  | 10 02.12.                                 |                                           |                                          |                                           |
|--------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|
| DAY                                        | ОСТ                                    | NOV                                       | DEC                                        | JAN                                        | FEB                                       | MAR                                       | APR                                        | MAY                                       | JUN                                       | JUL                                       | AUG                                      | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 108<br>109<br>106<br>105<br>102        | 104<br>108<br>112<br>112<br>117           | 204<br>200<br>346<br>401<br>539            | 237<br>404<br>501<br>707<br>605            | 255<br>257<br>267<br>282<br>293           | 279<br>360<br>459<br>550<br>502           | 344<br>409<br>441<br>453<br>496            | 262<br>246<br>238<br>275<br>314           | 152<br>156<br>166<br>160<br>185           | 169<br>189<br>261<br>383<br>394           | 172<br>162<br>147<br>135<br>124          | 217<br>208<br>195<br>164<br>144           |
| 6<br>7<br>8<br>9                           | 95<br>87<br>83<br>85<br>83             | 186<br>190<br>205<br>202<br>188           | 485<br>385<br>289<br>296<br>342            | 484<br>387<br>322<br>286<br>274            | 295<br>288<br>275<br>275<br>270           | 433<br>366<br>320<br>301<br>287           | 670<br>714<br>625<br>529<br>447            | 349<br>377<br>346<br>298<br>271           | 183<br>168<br>153<br>143<br>142           | 314<br>237<br>189<br>213<br>204           | 127<br>119<br>114<br>112<br>233          | 131<br>125<br>123<br>126<br>127           |
| 11<br>12<br>13<br>14<br>15                 | 80<br>81<br>118<br>131                 | 182<br>195<br>197<br>195<br>170           | 382<br>458<br>429<br>375<br>317            | 279<br>280<br>280<br>262<br>246            | 267<br>261<br>251<br>236<br>225           | 266<br>251<br>249<br>247<br>244           | 389<br>329<br>298<br>312<br>308            | 244<br>230<br>226<br>213<br>209           | 136<br>131<br>131<br>147<br>164           | 195<br>179<br>157<br>167<br>188           | 243<br>324<br>340<br>249<br>173          | 123<br>116<br>122<br>133<br>133           |
| 16<br>17<br>18<br>19<br>20                 | 122<br>116<br>109<br>102<br>96         | 159<br>146<br>139<br>211<br>230           | 268<br>241<br>245<br>301<br>328            | 234<br>223<br>240<br>315<br>389            | 207<br>208<br>204<br>202<br>200           | 239<br>230<br>221<br>213<br>207           | 265<br>308<br>347<br>376<br>415            | 208<br>204<br>193<br>187<br>201           | 209<br>228<br>168<br>128<br>121           | 186<br>182<br>160<br>139<br>151           | 148<br>137<br>124<br>114<br>108          | 127<br>114<br>141<br>149<br>161           |
| 21<br>22<br>23<br>24<br>25                 | 97<br>94<br>91<br>92<br>90             | 300<br>308<br>308<br>268<br>233           | 372<br>341<br>281<br>252<br>320            | 472<br>502<br>463<br>380<br>326            | 198<br>198<br>208<br>225<br>231           | 203<br>202<br>201<br>198<br>193           | 385<br>329<br>251<br>229<br>288            | 225<br>235<br>233<br>218<br>205           | 120<br>126<br>185<br>199<br>204           | 149<br>135<br>125<br>120<br>115           | 102<br>102<br>103<br>97<br>93            | 154<br>142<br>147<br>135<br>124           |
| 26<br>27<br>28<br>29<br>30<br>31           | 100<br>125<br>131<br>125<br>119<br>110 | 222<br>255<br>259<br>265<br>234           | 335<br>390<br>381<br>319<br>274<br>252     | 288<br>274<br>254<br>247<br>244<br>254     | 234<br>233<br>227                         | 190<br>186<br>200<br>208<br>213<br>297    | 317<br>346<br>349<br>320<br>285            | 192<br>185<br>183<br>179<br>172<br>161    | 178<br>201<br>229<br>226<br>199           | 125<br>153<br>158<br>144<br>131<br>163    | 91<br>112<br>140<br>225<br>235<br>221    | 118<br>112<br>107<br>103<br>106           |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 3172<br>102<br>131<br>80<br>.83<br>.96 | 6000<br>200<br>308<br>104<br>1.63<br>1.81 | 10348<br>334<br>539<br>200<br>2.71<br>3.13 | 10659<br>344<br>707<br>223<br>2.80<br>3.22 | 6772<br>242<br>295<br>198<br>1.97<br>2.05 | 8515<br>275<br>550<br>186<br>2.23<br>2.58 | 11574<br>386<br>714<br>229<br>3.14<br>3.50 | 7279<br>235<br>377<br>161<br>1.91<br>2.20 | 5038<br>168<br>229<br>120<br>1.37<br>1.52 | 5775<br>186<br>394<br>115<br>1.51<br>1.75 | 4926<br>159<br>340<br>91<br>1.29<br>1.49 | 4127<br>138<br>217<br>103<br>1.12<br>1.25 |

CAL YR 1986 TOTAL 66185 MEAN 181 MAX 960 MIN 68 CFSM 1.47 IN. 20.01 WTR YR 1987 TOTAL 84185 MEAN 231 MAX 714 MIN 80 CFSM 1.88 IN. 25.45

## 01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: November 1974 to September 1981 (discontinued).
WATER TEMPERATURE: November 1963 to May 1966, November 1974 to September 1981 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE          | TIME                      | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                     | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)    | PH<br>(STAND-<br>ARD<br>UNITS)                                | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | BID-                                                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                               | CENT<br>SATUR-                                                  | CHEM-<br>ICAL,<br>5 DAY                                            | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./ | (COLS.<br>PER                                        | HARD-<br>NESS<br>(MG/L<br>AS                                   |
|---------------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|
| NOV 198       | 0800                      | E233                                                                | 70                                                   | 4.42                                                          | 7.0                                                           | 1.6                                                           | 10.7                                                              | 87                                                              | 1.2                                                                | K18                                                 | 310                                                  | 12                                                             |
| JAN 198       | 7 1130                    | E254                                                                | 62                                                   | 4.50                                                          | 0.0                                                           | 1.8                                                           | 13.4                                                              | 91                                                              | 1.0                                                                | <5                                                  | K140                                                 | 10                                                             |
| MAR 31        | 1200                      | 299                                                                 | 54                                                   | 5.00                                                          | 12.5                                                          | 3.2                                                           | 8.6                                                               | 83                                                              | 1.1                                                                | K27                                                 | 1200                                                 | 9                                                              |
| MAY           | 1200                      |                                                                     | 67                                                   |                                                               |                                                               |                                                               |                                                                   |                                                                 |                                                                    | 32                                                  | 1200                                                 | 10                                                             |
| 26<br>JUL     |                           | E192                                                                |                                                      | 5.00                                                          | 16.0                                                          | 2.2                                                           | 8.6                                                               | 86                                                              | 1.6                                                                |                                                     |                                                      |                                                                |
| 28<br>SEP     | 1100                      | E158                                                                | 63                                                   | 5.30                                                          | 22.5                                                          | 3.1                                                           | 7.3                                                               | 85                                                              | 1.5                                                                | 170                                                 | K2200                                                | 11                                                             |
| 29            | 1130                      | 105                                                                 | 75                                                   | 5.30                                                          | 17.5                                                          | 2.7                                                           | 9.4                                                               | 98                                                              | 0.8                                                                | ••                                                  | ••                                                   | 12                                                             |
| DATE          | ACIDITY<br>(MG/L<br>AS H) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                  | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | ALKA-<br>LINITY,<br>CARBON-<br>ATE<br>IT-FLD<br>(MG/L -<br>CACO3) | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)              |
| NOV 198       | 6                         |                                                                     |                                                      |                                                               |                                                               |                                                               |                                                                   |                                                                 |                                                                    |                                                     |                                                      |                                                                |
| 25<br>JAN 198 | 7                         | 2.7                                                                 | 1.2                                                  | 4.5                                                           | 1.1                                                           | <0.1                                                          | <0.1                                                              | <1                                                              | 16                                                                 | 8.2                                                 | <0.10                                                | 5.1                                                            |
| 28            | 0.2                       | 2.2                                                                 | 1.0                                                  | 5.1                                                           | 0.90                                                          | <0.1                                                          | <0.1                                                              | <1                                                              | 12                                                                 | 8.9                                                 | <0.10                                                | 4.6                                                            |
| 31            | ••                        | 2.2                                                                 | 0.90                                                 | 4.9                                                           | 1.0                                                           | 1.2                                                           | 1.0                                                               | 1                                                               | 12                                                                 | 8.1                                                 | <0.10                                                | 2.7                                                            |
| 26            | ••                        | 2.2                                                                 | 1.0                                                  | 5.2                                                           | 0.90                                                          | 8.5                                                           | 7.0                                                               | 7                                                               | 8.0                                                                | 8.3                                                 | <0.10                                                | 3.9                                                            |
| JUL 28        |                           | 2.7                                                                 | 1.1                                                  | 5.4                                                           | 1.1                                                           | 1.2                                                           | 1.0                                                               | 2                                                               | 18                                                                 | 8.9                                                 | 0.10                                                 | 5.0                                                            |
| SEP 29        |                           | 3.0                                                                 | 1.2                                                  | 6.4                                                           | 1.4                                                           |                                                               |                                                                   |                                                                 | 11                                                                 | 10                                                  | 0.10                                                 | 5.2                                                            |
|               | DATE                      | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)           | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)              | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)   | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) |
|               | 0V 1986<br>25             |                                                                     | 9                                                    | 85                                                            | <0.010                                                        | 0.230                                                         | 0.100                                                             | 0.080                                                           | 0.20                                                               | 0.020                                               | <0.050                                               | <0.010                                                         |
| J             | AN 1987<br>28             |                                                                     | 10                                                   | 50                                                            | 0.010                                                         | 0.440                                                         | 0.120                                                             | 0.130                                                           | 0.60                                                               | 0.020                                               | 0.020                                                | <0.010                                                         |
| М             | 28<br>AR<br>31<br>AY      | 33                                                                  | 22                                                   | 54                                                            | <0.010                                                        | 0.300                                                         | 0.100                                                             | 0.110                                                           | 0.90                                                               | 0.040                                               | <0.010                                               | <0.010                                                         |
| М             | AY 26                     | 35                                                                  | 8                                                    | 79                                                            | <0.010                                                        | 0.340                                                         | 0.190                                                             | 0.200                                                           | 0.70                                                               | 0.020                                               | 0.010                                                | <0.010                                                         |
| J             | UL<br>28                  | 43                                                                  | 19                                                   | 68                                                            | <0.010                                                        | 0.350                                                         | 0.120                                                             | 0.120                                                           | 1.0                                                                | 0.030                                               | 0.010                                                | <0.010                                                         |
| S             | EP 29                     | 39                                                                  |                                                      |                                                               |                                                               |                                                               |                                                                   |                                                                 |                                                                    |                                                     |                                                      |                                                                |
|               | 27                        | 39                                                                  | ••                                                   |                                                               | <0.010                                                        | 0.590                                                         | 0.160                                                             | 0.170                                                           | 0.80                                                               | 0.030                                               | <0.010                                               | <0.010                                                         |

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME             | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) |                 | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB) |
|----------------|------------------|-----------------------------------------------------|-----------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|
| NOV 1986<br>25 | 0800             | 300                                                 | <1              | 32                                           | <0.5                                                 | <1                                           | <1                                                  | <3                                           | 6                                            | 570                                        | 7                                          |
| MAR 1987       | 1200             | 160                                                 | <1              | 30                                           | <0.5                                                 | 1                                            | <1                                                  | <3                                           | 2                                            | 270                                        | 10                                         |
| MAY 26         | 1200             | 150                                                 | <1              | 23                                           | <0.5                                                 | <1                                           | <1                                                  | <3                                           | <1                                           | 380                                        | <5                                         |
| SEP 29         | 1130             | 50                                                  | <1              | 26                                           | 0.9                                                  | <1                                           | <1                                                  | <3                                           | 2                                            | 130                                        | 15                                         |
| A SERVE        | DATE             | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)        | SOLVED<br>(UG/L | MERCURY<br>DIS-<br>SOLVED<br>(UG/L           | DIS-<br>SOLVEI<br>(UG/L                              | NICKEL<br>DIS-<br>SOLVEI<br>(UG/L            | DIS-<br>D SOLVE<br>(UG/L                            | SILVER<br>DIS-<br>D SOLVEI<br>(UG/L          | DIS-<br>SOLVED<br>(UG/L                      | (UG/L                                      | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) |
|                | NOV 1986         | <4                                                  | 54              | <0.1                                         | <10                                                  | 0 :                                          | 3 <                                                 | 1 <                                          | 1 18                                         | <6                                         | 29                                         |
|                | MAR 1987         | <4                                                  | 39              | 0.1                                          | <10                                                  | 0 8                                          | 1 <                                                 | 1 <                                          | 1 15                                         | <6                                         | 33                                         |
|                | MAY<br>26<br>SEP | <4                                                  | 35              | 0.1                                          | l <10                                                | 0 <                                          | 1 <                                                 | 1 <                                          | 1 15                                         | <6                                         | 25                                         |
|                | 29               | <4                                                  | 32              | 2 <0.1                                       | <10                                                  | 0                                            | 7 <                                                 | 1 <                                          | 1 17                                         | <6                                         | 25                                         |

#### WESTECUNK CREEK BASIN

#### 01409280 WESTECUNK CREEK AT STAFFORD FORGE, NJ

LOCATION.--Lat 39°40'00", long 74°19'12", Ocean County, Hydrologic Unit 02040301, 75 ft downstream from dam, 0.2 mi south of Stafford Forge, 1.2 mi downstream from Log Swamp Branch, and 2.0 mi west of Staffordville.

DRAINAGE AREA .-- 15.8 mi 2.

PERIOD OF RECORD.--October 1973 to current year. Occasional low-flow measurements, water years 1969-73, at site 400 ft downstream.

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 6.36 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1981, water-stage recorder and wooden control at site 50 ft upstream at datum 9.42 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow regulated by dam 75 ft upstream. Several measurements of water temperature were made during the year. The minimum daily discharge on August 26 was probably caused by regulation.

AVERAGE DISCHARGE.--14 years, 32.0 ft<sup>3</sup>/s, 27.50 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 256 ft<sup>3</sup>/s, July 4, 1978, gage height, 3.70 ft; no flow part of May 17, 1974, Sept. 7, 1978.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 75 ft3/s and maximum (\*):

| Date   | Time    | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time       | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|---------|-----------------------------------|------------------|----------|------------|-----------------------------------|---------------------|
| Apr. 6 | unknown | *108                              | *a11.72          | No other | peak great | er than base disch                | narge.              |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

a from maximum indicator.

Minimum daily discharge, 5.9 ft3/s, Aug. 26.

|                                            |                                            | DIOGIN                                  | IN O.                                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  | TER DECOR                                | MEAN VALL                                | JES OUT                                  | JULK 1700                                | 10 021 121                               | IDEN 1701                                |                                             |                                         |
|--------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------|
| DAY                                        | OCT                                        | NOV                                     | DEC                                      | JAN                                      | FEB                                      | MAR                                      | APR                                      | MAY                                      | JUN                                      | JUL                                      | AUG                                         | SEP                                     |
| 1 2 3 4 5                                  | 14<br>10<br>4.7<br>4.9<br>8.3              | 18<br>19<br>19<br>18<br>20              | e22<br>e23<br>e37<br>e37<br>e33          | e34<br>e53<br>e58<br>e57<br>e51          | 36<br>36<br>37<br>38<br>38               | 42<br>52<br>54<br>50<br>45               | e54<br>e50<br>e42<br>e60<br>e68          | 39<br>38<br>39<br>48<br>57               | 32<br>33<br>36<br>35<br>39               | 35<br>42<br>61<br>61<br>49               | 57<br>52<br>45<br>39                        | 29<br>28<br>27<br>26<br>26              |
| 6<br>7<br>8<br>9                           | 16<br>16<br>14<br>14<br>14                 | 28<br>27<br>26<br>28<br>30              | e29<br>e26<br>e24<br>e34<br>e47          | e46<br>e43<br>e39<br>e37<br>e38          | 37<br>36<br>36<br>40<br>33               | 42<br>40<br>39<br>42<br>39               | e74<br>e68<br>58<br>50<br>36             | 54<br>47<br>45<br>44<br>41               | 38<br>34<br>32<br>31<br>31               | 41<br>38<br>39<br>37<br>37               | 44<br>49<br>47<br>44<br>48                  | 20<br>21<br>24<br>25<br>24              |
| 11<br>12<br>13<br>14<br>15                 | 14<br>14<br>13<br>23<br>26                 | 30<br>29<br>26<br>24<br>21              | e47<br>e49<br>e44<br>e39<br>e36          | e41<br>e39<br>e37<br>e36<br>e34          | 43<br>38<br>37<br>36<br>35               | 37<br>38<br>41<br>41<br>40               | 37<br>37<br>38<br>38<br>39               | 38<br>39<br>45<br>47<br>39               | 30<br>30<br>32<br>34<br>33               | 36<br>35<br>34<br>35<br>45               | 49<br>46<br>44<br>42<br>42                  | 25<br>24<br>26<br>26<br>24              |
| 16<br>17<br>18<br>19<br>20                 | 24<br>22<br>21<br>21<br>20                 | 19<br>e17<br>e17<br>e22<br>e22          | e33<br>e31<br>e33<br>e38<br>e36          | e33<br>34<br>38<br>47<br>55              | 36<br>33<br>32<br>32<br>32               | 38<br>37<br>36<br>35<br>35               | 38<br>48<br>57<br>55<br>51               | 38<br>35<br>32<br>33<br>39               | 33<br>32<br>31<br>30<br>41               | 41<br>36<br>34<br>33<br>33               | 43<br>41<br>46<br>47<br>45                  | 26<br>30<br>28<br>36<br>38              |
| 21<br>22<br>23<br>24<br>25                 | 19<br>19<br>19<br>18<br>18                 | e28<br>e27<br>e24<br>e23<br>e23         | e33<br>e31<br>e29<br>e29<br>e40          | 52<br>50<br>50<br>53<br>48               | 32<br>32<br>40<br>38<br>37               | 35<br>35<br>35<br>34<br>34               | 52<br>49<br>46<br>46<br>50               | 45<br>44<br>40<br>38<br>36               | 36<br>33<br>33<br>32<br>31               | 35<br>34<br>33<br>35<br>35               | 43<br>41<br>40<br>38<br>20                  | 34<br>32<br>33<br>31<br>29              |
| 26<br>27<br>28<br>29<br>30<br>31           | 19<br>20<br>19<br>18<br>18                 | e23<br>e30<br>e28<br>e26<br>e23         | e40<br>e36<br>e33<br>e32<br>e31<br>e32   | 47<br>43<br>40<br>38<br>37<br>36         | 37<br>36<br>36<br>                       | 34<br>e33<br>e35<br>e35<br>e34<br>e50    | 48<br>44<br>43<br>44<br>42               | 35<br>36<br>37<br>36<br>35<br>33         | 31<br>36<br>45<br>41<br>37               | 36<br>38<br>37<br>36<br>37<br>55         | 7.3<br>13<br>27<br>36<br>36<br>29           | 26<br>26<br>32<br>33<br>28              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 518.9<br>16.7<br>26<br>4.7<br>1.06<br>1.22 | 715<br>23.8<br>30<br>17<br>1.51<br>1.68 | 1064<br>34.3<br>49<br>22<br>2.17<br>2.51 | 1344<br>43.4<br>58<br>33<br>2.74<br>3.16 | 1009<br>36.0<br>43<br>32<br>2.28<br>2.38 | 1217<br>39.3<br>54<br>33<br>2.48<br>2.87 | 1462<br>48.7<br>74<br>36<br>3.08<br>3.44 | 1252<br>40.4<br>57<br>32<br>2.56<br>2.95 | 1022<br>34.1<br>45<br>30<br>2.16<br>2.41 | 1213<br>39.1<br>61<br>33<br>2.48<br>2.86 | 1239.3<br>40.0<br>57<br>7.3<br>2.53<br>2.92 | 837<br>27.9<br>38<br>20<br>1.77<br>1.97 |

CAL YR 1986 TOTAL 7784.9 MEAN 21.3 MAX 49 MIN 4.7 CFSM 1.35 IN. 18.32 WTR YR 1987 TOTAL 12893.2 MEAN 35.3 MAX 74 MIN 4.7 CFSM 2.24 IN. 30.35

e Estimated

#### 01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ

LOCATION.--Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi upstream from Wesickaman Creek.

DRAINAGE AREA .-- 26.7 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME            | STREA<br>FLOO<br>INSTA    | AN- DUI                                                             | FIC<br>N-<br>CT-<br>CE                       | PH<br>(STAND-<br>ARD<br>UNITS)   | ATI                                           | PER-<br>URE<br>TER<br>G C)            | SOL                    | EN,<br>S-<br>VED                                               | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | BI<br>CH<br>IC | GEN<br>AND,<br>O-<br>EM-<br>AL,<br>DAY<br>IG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPM | I,<br>AL, STRE<br>TOCOC<br>TH FECA                 | CI |
|----------------|-----------------|---------------------------|---------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------|---------------------------------------|------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------|-------------------------------------------------|--------------------------------------------|----------------------------------------------------|----|
| OCT 1986       |                 |                           |                                                                     |                                              |                                  |                                               |                                       |                        |                                                                |                                                               |                |                                                 |                                            |                                                    |    |
| 21             | 1245            | E13                       |                                                                     | 31                                           | 6.7                              | 1                                             | 4.0                                   | 10                     | .2                                                             | 99                                                            | E              | 1.5                                             | <20                                        | 23                                                 |    |
| MAR 1987<br>04 | 1345            | E144                      |                                                                     | 76                                           | 4.3                              |                                               | 4.0                                   | 11                     | .3                                                             | 85                                                            | <              | 8.0                                             | <20                                        | 4                                                  |    |
| APR 02         | 1030            | E103                      |                                                                     | 47                                           | 4.4                              | 1                                             | 0.5                                   | 10                     | .9                                                             | 98                                                            |                | 0.4                                             | <20                                        | <2                                                 |    |
| JUN            |                 |                           |                                                                     |                                              |                                  |                                               |                                       |                        |                                                                |                                                               |                |                                                 |                                            |                                                    |    |
| 16<br>JUL      | 1015            | E52                       |                                                                     | 46                                           | 4.7                              | 2                                             | 4.0                                   | -                      | .2                                                             | 86                                                            | •              | 0.9                                             | <20                                        | 27                                                 |    |
| 15<br>NUG      | 1030            | E15                       |                                                                     | 59                                           | 4.3                              | 2                                             | 4.0                                   | 6                      | .1                                                             | 73                                                            | E              | 1.5                                             | 170                                        | 350                                                |    |
| 06             | 1345            | E19                       |                                                                     | ••                                           | 6.4                              | 2                                             | 3.0                                   |                        | .2                                                             | 73                                                            |                | 0.9                                             | 20                                         | >2400                                              |    |
| DATE           | NE<br>(M        | SS<br>G/L                 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M   | M, SOD<br>- DI<br>ED SOL<br>L (M | IUM,<br>S-<br>VED<br>IG/L                     | POT<br>SI<br>DI<br>SOL<br>(MG<br>AS   | JM,<br>S-<br>VED<br>/L | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | DIS<br>SOL<br>(MG                                             | VED            | CHLC<br>RIDE<br>DIS-<br>SOLV<br>(MG,            | /ED                                        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |    |
| OCT 1986       |                 |                           |                                                                     |                                              |                                  |                                               |                                       |                        |                                                                | 3 - 0 11 11                                                   |                |                                                 |                                            |                                                    |    |
| 21<br>MAR 1987 |                 | 6                         | 1.2                                                                 | 0.                                           | 69                               | 1.9                                           | 0                                     | .8                     | 2.0                                                            | 7                                                             | .2             | 3.0                                             | 5                                          | <0.1                                               |    |
| 04             |                 | 8                         | 2.0                                                                 | 0.                                           | 71                               | 2.7                                           | 0                                     | .6                     | <1.0                                                           | 11                                                            |                | 5.0                                             |                                            | <0.1                                               |    |
| APR 02         |                 | 7                         | 1.5                                                                 | 0.                                           | 75                               | 2.7                                           | 0                                     | .8                     | <1.0                                                           | 14                                                            |                | 4.8                                             | 3                                          | <0.1                                               |    |
| JUN<br>16      |                 | 6                         | 1.3                                                                 | - 1                                          | 71                               | 2.7                                           | <0                                    |                        | <1.0                                                           | 10                                                            |                | 5.2                                             |                                            | 0.1                                                |    |
| JUL            |                 | 1000                      |                                                                     |                                              |                                  |                                               |                                       |                        |                                                                |                                                               |                |                                                 |                                            |                                                    |    |
| 15<br>AUG      |                 | 5                         | 1.2                                                                 | 0.                                           | 60                               | 2.6                                           | 0                                     | .9                     | <1.0                                                           | 10                                                            |                | 5.4                                             | •                                          | <0.1                                               |    |
| 06             |                 | 6                         | 1.3                                                                 | 0.                                           | 75                               | 2.5                                           | 0                                     | .8                     | 1.0                                                            | 13                                                            |                | 4.                                              | 7                                          | 0.1                                                |    |
| DATE           | DI:<br>SO<br>(M | ICA,<br>S-<br>LVED<br>G/L | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | TE NOZ                           | TRO-<br>SEN,<br>S+NO3<br>OTAL<br>IG/L<br>S N) | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS | NÍA<br>AL<br>/L        | NITRO<br>GEN, AM<br>MONIA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | + NIT<br>C GE<br>TOT.                                         | N,<br>AL<br>/L | PHOS<br>PHORU<br>TOTA<br>(MG,                   | JS, (                                      | CARBON,<br>DRGANIC<br>TOTAL<br>(MG/L<br>AS C)      |    |
| OCT 1986       |                 |                           | -                                                                   |                                              |                                  |                                               |                                       |                        |                                                                |                                                               |                |                                                 |                                            | Se                                                 |    |
| 21<br>MAR 1987 |                 | 3.0                       | 20                                                                  | 0.0                                          |                                  | .05                                           | <0.0                                  | •                      | 0.50                                                           | ME!                                                           |                | 0.020                                           | ,                                          | 5.3                                                |    |
| 04<br>APR      |                 | 2.9                       | •••                                                                 | 0.0                                          | 05 0                             | .23                                           | 0.0                                   | 8                      | 0.35                                                           | 0.5                                                           | 8              | 0.022                                           | 2                                          | 7.2                                                |    |
| 02<br>JUN      |                 | 1.8                       | ***                                                                 | 0.0                                          | 07 0                             | .10                                           | 0.0                                   | 5                      | 0.40                                                           | 0.5                                                           | 0              | <0.020                                          | )                                          | 7.6                                                |    |
| 16             |                 | 4.6                       |                                                                     | 0.0                                          | 14 0                             | .11                                           | <0.0                                  | 5                      | 1.1                                                            | 1.3                                                           |                | 0.032                                           | 2 2                                        | 28                                                 |    |
| JUL<br>15      |                 | 5.1                       |                                                                     | 0.0                                          | 21 0                             | .11                                           | 0.1                                   | 4                      | 1.2                                                            | 1.4                                                           |                | 0.050                                           | )                                          | 43                                                 |    |
| AUG            |                 |                           |                                                                     |                                              |                                  |                                               |                                       |                        |                                                                |                                                               |                |                                                 |                                            |                                                    |    |
| 06             |                 | 5.6                       | 29                                                                  | 0.0                                          | 22 0                             | .38                                           | 0.1                                   | 1                      | 0.90                                                           | 1.3                                                           |                | 0.050                                           | ) :                                        | 30                                                 |    |

## 01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| JUN 1987       | 4045                                                  |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                                |                                                         |
| 16             | 1015                                                  | 180                                                   | 2                                                               | <10                                                             | <10                                                     | <1                                                      | <10                                                            | 3                                                       |
| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)          | PHENOLS<br>TOTAL<br>(UG/L)                              |
| JUN 1987<br>16 | 6900                                                  | <5                                                    | 20                                                              | <0.10                                                           | <1                                                      | <1                                                      | 10                                                             | 3                                                       |

#### 01409400 MULLICA RIVER NEAR BATSTO, NJ

LOCATION.--Lat 39°40'28", long 74°39'55", Atlantic County, Hydrologic Unit 02040301, on right bank 2.4 mi upstream from Sleeper Branch, and 2.5 mi north of Batsto.

DRAINAGE AREA . - - 46.7 mi 2.

PERIOD OF RECORD. -- September 1957 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1958(M), 1960(M), 1967-68(M), WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 11.93 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for periods of estimated daily discharges, which are fair. Some regulation from upstream cranberry bogs and Atsion Lake. Diversions from Sleeper Branch enter river upstream of gage. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .- - 30 years, 108 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840  $\rm ft^3/s$  Feb. 26, 1979, gage height, 6.14 ft; minimum, 7.0  $\rm ft^3/s$ , Sept. 6, 7, 8, 1966, gage height, 0.28 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 666  $\rm ft^3/s$ , Apr. 4, gage height, 4.34 ft; minimum , 25  $\rm ft^3/s$ , Oct. 1, 8, 9, 10, gage height, 0.50 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986
MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e180 e270 38 33 33 33 32 139 197 101 35 144 178 123 150 228 249 28 156 e230 e330 e270 27 25 25 61 64 62 57 151 138 151 224 e250 493 207 72 68 65 62 130 e200 e170 e150 187 292 171 e145 e140 e135 56 53 52 76 58 59 29 34 37 12 13 14 15 147 141 134 159 152 134 31 59 54 51 97 167 121 71 179 e135 33 32 152 36 38 38 39 171 91 38 35 72 92 77 26 26 26 27 22 23 24 25 247 250 87 134 97 172 159 93 92 96 93 e160 56 51 31 29 43 44 e150 82 79 e140 72 e130 e220 38 35 34 35 35 e270 e330 27 28 29 30 31 80 e320 e300 e260 e200 72 35.7 31.7 66.5 113 182 330 TOTAL 185 330 130 164 MEAN 65.6 84.7 40.3 MAX 

CAL YR 1986 TOTAL 30050 MEAN 82.3 MAX 407 MIN 18 WTR YR 1987 TOTAL 39933 MEAN 109 MAX 568 MIN 25

e Estimated

#### 01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ

LOCATION.--Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road in Wescoatville, 1.1 mi southwest of Nesco, 1.7 mi upstream from Norton Branch, and 3.8 mi southwest of Batsto.

DRAINAGE AREA. -- 9.57 mi 2, revised.

PERIOD OF RECORD. -- Water years 1974 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE            |                                                | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS | ANCE                                         | PH<br>STAND-<br>ARD<br>NITS)                                 | TEMPER-<br>ATURE<br>WATER<br>(DEG C)  | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)     | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)    |
|-----------------|------------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|----------------------------------------|
| OCT 1986        |                                                |                                        |                                              | _                                                            |                                       |                                         |                                                                |                                                                |                                                  |                                        |
| 14<br>MAR 1987  | 1030                                           | E7.8                                   | 142                                          | 5.8                                                          | 17.0                                  | 5.0                                     | 52                                                             | E6.9 >2                                                        | 24000                                            | >2400                                  |
| 03<br>23<br>JUN | 1100 E<br>1030                                 | E20                                    | 116<br>125                                   | 6.3                                                          | 5.5                                   | 7.4<br>9.4                              | 59                                                             | 2.5<br>3.0                                                     | <20<br><20                                       | 79<br>920                              |
| 16              | 1200                                           | E9.1                                   | 266                                          | 5.0                                                          | 22.0                                  | 3.0                                     | 34                                                             | E4.4                                                           | 130                                              | 350                                    |
| JUL<br>15       | 1330                                           | E23                                    | 92                                           | 5.7                                                          | 21.5                                  | 3.8                                     | 43                                                             | E1.3                                                           | 1100                                             | 1600                                   |
| AUG<br>06       | 1200                                           | E11                                    | 139                                          | 6.5                                                          | 21.0                                  | 1.9                                     | 21                                                             | 3.3                                                            | 1300                                             | 1600                                   |
| DATE            | HARD<br>NESS<br>(MG/I<br>AS<br>CACO            | DIS-<br>SOLVE<br>(MG/L                 | DIS-<br>D SOLVEI<br>(MG/L                    | DIS-<br>DIS-<br>DIS-<br>DIS-<br>DIS-<br>DIS-<br>DIS-<br>DIS- | DI<br>ED SOL<br>/L (MG                | UM, LINI<br>S- LA<br>VED (MG<br>/L AS   | TY SULF<br>B DIS<br>/L SOL                                     | VED SOLV                                                       | , RI<br>D<br>VED SO<br>L (M                      | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |
| OCT 1986        |                                                |                                        |                                              |                                                              |                                       |                                         |                                                                |                                                                |                                                  |                                        |
| 14<br>MAR 1987  |                                                | 21 5.1                                 | 1.9                                          | 13                                                           | 3                                     | .9 2.                                   | 0 2                                                            | 0 15                                                           |                                                  | 0.3                                    |
| 03<br>23<br>JUN |                                                | 22 5.5<br>22 5.3                       | 2.0                                          | 6                                                            | 6 2                                   | .8 9.<br>.1 20                          |                                                                | 8 11<br>4 12                                                   |                                                  | 0.2                                    |
| 16              |                                                | 32 8.5                                 | 2.7                                          | 25                                                           | 4                                     | .7 12                                   | 1                                                              | 4 22                                                           |                                                  | 0.6                                    |
| JUL<br>15       |                                                | 17 4.2                                 | 1.7                                          | 6                                                            | .6 2                                  | .0 6.                                   | 0 1                                                            | 5 11                                                           |                                                  | 0.2                                    |
| AUG<br>06       |                                                | 22 5.2                                 |                                              |                                                              |                                       | .2 16                                   | 1                                                              | 5 13                                                           |                                                  | 0.3                                    |
| DATE            | SILICA<br>DIS-<br>SOLVI<br>(MG/I<br>AS<br>SIO2 | CONSTI                                 | NITRO<br>GEN,<br>NITRITI<br>TOTAL<br>D (MG/L | GEI                                                          | N, GE<br>NO3 AMMO<br>AL TOT<br>/L (MG | N, MONI<br>NIA ORGA<br>AL TOT<br>/L (MG | AM-<br>A + NIT<br>NIC GE<br>AL TOT<br>/L (MG                   | N, PHORU<br>AL TOTA<br>/L (MG)                                 | JS, ORG<br>AL TO<br>/L (M                        | BON,<br>ANIC<br>TAL<br>G/L<br>C)       |
| OCT 1986        |                                                |                                        |                                              |                                                              |                                       |                                         |                                                                |                                                                |                                                  |                                        |
| 14<br>MAR 1987  | 8                                              | .7 6                                   | 9 0.11                                       | 5 1.0                                                        | 60 2.4                                | 0 -                                     | •                                                              | - 1.42                                                         | 12                                               |                                        |
| 03<br>23<br>JUN |                                                |                                        | 6 0.01<br>3 0.03                             |                                                              |                                       |                                         | 3.4<br>4.8                                                     |                                                                |                                                  | 2<br>0                                 |
| 16              | 8                                              | .1 9                                   | 3 0.18                                       | 6 1.                                                         | 55 5.1                                | 0 7.3                                   | 8.8                                                            | 1.89                                                           | 18                                               |                                        |
| JUL<br>15       | 5                                              | .8 5                                   | 0 0.03                                       | 9 0.                                                         | 77 0.2                                | 6 1.2                                   | 1.9                                                            | 0.430                                                          | 0 15                                             |                                        |
| AUG<br>06       | 7                                              | .9 7                                   | 2 0.05                                       | 7 1.                                                         | 17 0.8                                | 5 2.3                                   | 3.5                                                            | 1.09                                                           | 12                                               |                                        |

# 01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                         | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENI<br>TOTAL<br>(UG/L<br>AS AS  | C RE                                                            | TAL<br>COV- F<br>ABLE E                               | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|----------------------------------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| JUN 1987<br>16 | 1200                                         | 70                                                  |                                    | :1 <                                                            | 10                                                    | 70                                                    | <1                                                      | <10                                                            | 25                                                      |
| DATE           | IRON<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS F | LLE ERA                                             | AD, N<br>FAL T<br>COV- R<br>ABLE E | MANGA-<br>IESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCUR'<br>TOTAL<br>RECOV<br>ERABLI<br>(UG/L<br>AS HG | TOT<br>REC<br>E ERA<br>(UG                            | AL SEL<br>OV- NIU<br>BLE TOT                            | M, REC                                                         | AL<br>COV-<br>ABLE                                      |
| JUN 1987<br>16 | 8                                            | 300                                                 | 7                                  | 20                                                              | <0.1                                                  | 0                                                     | 6                                                       | <1                                                             | 50                                                      |

#### 01409500 BATSTO RIVER AT BATSTO, NJ

LOCATION.--Lat 39°38'33", long 74°39'00", Burlington County, Hydrologic Unit 02040301, on right bank 30 ft downstream from bridge on State Highway 542 at Batsto, and 1.0 mi upstream from mouth.

DRAINAGE AREA.--67.8 mi<sup>2</sup>.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1927 to current year. Monthly discharge only for April to September 1939, published in WSP 1302.

REVISED RECORDS. -- WSP 1432: 1930, 1933, 1936, 1938. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Oct. 12, 1939; prior to Mar. 24, 1939, wooden control at site 50 ft downstream. Datum of gage is 1.4 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Considerable regulation at times by sluice gates prior to December 1954 and by automatic Bascule and sluice gates since July 1959 at Batsto Lake, 300 ft upstream, capacity, about 60,000,000 gal. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 60 years, 124 ft 3/s, 24.84 in./yr.

EXTREMES FOR PERIOD OF RECORD...Maximum daily discharge, 2,000 ft<sup>3</sup>/s, not previously published, Aug. 20, 1939; maximum gage height, 8.7 ft, Aug. 20, 1939, from floodmark; minimum daily discharge, 5.7 ft<sup>3</sup>/s, Oct. 4, 1959.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 785 ft3/s, Apr. 6; minimum daily, 50 ft3/s, Oct. 8.

|                                  |                                  |                                 | ,                               |                                        |                                 | MEAN VAL                               | JES                                 |                                        | , , , , , , , ,                |                                  |                            |                            |
|----------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|--------------------------------|----------------------------------|----------------------------|----------------------------|
| DAY                              | ост                              | NOV                             | DEC                             | JAN                                    | FEB                             | MAR                                    | APR                                 | MAY                                    | JUN                            | JUL                              | AUG                        | SEP                        |
| 1                                | 53                               | 53                              | 117                             | 143                                    | 137                             | 141                                    | 166                                 | e135                                   | 98                             | 94                               | 70                         | 76                         |
| 2                                | 62                               | 54                              | 119                             | 165                                    | 139                             | 187                                    | 219                                 | e130                                   | 93                             | 126                              | 69                         | 73                         |
| 3                                | 57                               | 54                              | 143                             | 202                                    | 140                             | 311                                    | 222                                 | e125                                   | 91                             | 177                              | 68                         | 70                         |
| 4                                | 55                               | 53                              | 165                             | 262                                    | 147                             | 359                                    | 292                                 | e150                                   | 92                             | 160                              | 66                         | 67                         |
| 5                                | 53                               | 55                              | 194                             | 245                                    | 154                             | 304                                    | 605                                 | e200                                   | 106                            | 148                              | 64                         | 66                         |
| 6<br>7<br>8<br>9                 | 51<br>51<br>50<br>53<br>53       | 66<br>79<br>83<br>81<br>81      | 187<br>168<br>149<br>148<br>159 | 210<br>185<br>170<br>158<br>152        | 158<br>155<br>152<br>154<br>153 | 246<br>208<br>186<br>173<br>155        | 785<br>681<br>550<br>427<br>324     | e215<br>e210<br>e200<br>192<br>177     | 114<br>114<br>108<br>101<br>95 | 134<br>123<br>115<br>110<br>105  | 70<br>71<br>71<br>67<br>73 | 65<br>66<br>65<br>68<br>69 |
| 11                               | 51                               | 80                              | 183                             | 143                                    | 151                             | 152                                    | 259                                 | 167                                    | 90                             | 112                              | 114                        | 66                         |
| 12                               | 50                               | 84                              | 199                             | 140                                    | 146                             | 143                                    | 222                                 | 156                                    | 86                             | 140                              | 213                        | 63                         |
| 13                               | 50                               | 90                              | 199                             | 139                                    | 140                             | 136                                    | 198                                 | 154                                    | 85                             | 128                              | 233                        | 67                         |
| 14                               | 67                               | 86                              | 198                             | 134                                    | 136                             | 132                                    | 175                                 | 145                                    | 87                             | 123                              | 195                        | 74                         |
| 15                               | 69                               | 82                              | 176                             | 128                                    | 131                             | 133                                    | 168                                 | 138                                    | 85                             | 137                              | 153                        | 77                         |
| 16                               | 65                               | 79                              | 163                             | 125                                    | 123                             | 139                                    | 156                                 | 134                                    | 84                             | 169                              | 126                        | 76                         |
| 17                               | 60                               | 77                              | 146                             | 122                                    | 119                             | 137                                    | 158                                 | 127                                    | 80                             | 177                              | 105                        | 73                         |
| 18                               | 58                               | 75                              | 146                             | 124                                    | 118                             | 129                                    | 181                                 | 118                                    | 78                             | 157                              | 94                         | 71                         |
| 19                               | 58                               | 90                              | 150                             | 143                                    | 116                             | 124                                    | 202                                 | 111                                    | 75                             | 135                              | 86                         | 70                         |
| 20                               | 56                               | 94                              | 163                             | 181                                    | 115                             | 121                                    | 200                                 | 118                                    | 74                             | 121                              | 79                         | 76                         |
| 21                               | 57                               | 119                             | 167                             | 251                                    | 114                             | 118                                    | 187                                 | 131                                    | 85                             | 110                              | 74                         | 78                         |
| 22                               | 55                               | 122                             | 159                             | 256                                    | 112                             | 117                                    | 177                                 | 136                                    | 131                            | 98                               | 72                         | 80                         |
| 23                               | 53                               | 128                             | 150                             | 239                                    | 114                             | 110                                    | 164                                 | 133                                    | 118                            | 92                               | 70                         | 81                         |
| 24                               | 51                               | 125                             | 143                             | 204                                    | 119                             | 111                                    | 161                                 | 128                                    | 103                            | 88                               | 68                         | 81                         |
| 25                               | 52                               | 119                             | 154                             | 187                                    | 124                             | 112                                    | 153                                 | 123                                    | 95                             | 84                               | 66                         | 77                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 56<br>59<br>60<br>59<br>58<br>55 | 122<br>126<br>132<br>135<br>125 | 176<br>199<br>199<br>183<br>169 | 163<br>149<br>155<br>146<br>141<br>141 | 128<br>130<br>129               | 108<br>108<br>102<br>114<br>115<br>133 | 163<br>e165<br>e160<br>e155<br>e145 | 120<br>119<br>116<br>114<br>110<br>106 | 89<br>90<br>98<br>102<br>99    | 80<br>76<br>75<br>73<br>71<br>72 | 66<br>69<br>69<br>70<br>70 | 74<br>70<br>66<br>66<br>67 |
| TOTAL                            | 1737                             | 2749                            | 5127                            | 5303                                   | 3754                            | 4864                                   | 7820                                | 4438                                   | 2846                           | 3610                             | 2850                       | 2138                       |
| MEAN                             | 56.0                             | 91.6                            | 165                             | 171                                    | 134                             | 157                                    | 261                                 | 143                                    | 94.9                           | 116                              | 91.9                       | 71.3                       |
| MAX                              | 69                               | 135                             | 199                             | 262                                    | 158                             | 359                                    | 785                                 | 215                                    | 131                            | 177                              | 233                        | 81                         |
| MIN                              | 50                               | 53                              | 117                             | 122                                    | 112                             | 102                                    | 145                                 | 106                                    | 74                             | 71                               | 64                         | 63                         |
| CFSM                             | .83                              | 1.35                            | 2.44                            | 2.52                                   | 1.98                            | 2.31                                   | 3.84                                | 2.11                                   | 1.40                           | 1.72                             | 1.36                       | 1.05                       |
| IN.                              | .95                              | 1.51                            | 2.81                            | 2.91                                   | 2.06                            | 2.67                                   | 4.29                                | 2.44                                   | 1.56                           | 1.98                             | 1.56                       | 1.17                       |

CAL YR 1986 TOTAL 35441 MEAN 97.1 MAX 531 MIN 45 CFSM 1.43 IN. 19.44 WTR YR 1987 TOTAL 47236 MEAN 129 MAX 785 MIN 50 CFSM 1.91 IN. 25.91

e Estimated

#### 01409500 BATSTO RIVER AT BATSTO, NJ -- Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1956, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE             | TIME                            | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- C<br>AN- D<br>OUS A                                             | NCE                                  | PH<br>(STAND-<br>ARD<br>UNITS)   | TEMP<br>ATU<br>WAT<br>(DEG                    | RE<br>ER S                                           | YGEN,<br>DIS-<br>OLVED<br>MG/L) | OXYGEN<br>DIS-<br>SOLVE<br>(PER-<br>CENT<br>SATUR<br>ATION | DEP<br>D B<br>CI<br>III               | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL, ST<br>TOC<br>TH FE                       | REP-<br>COCCI<br>ECAL<br>(PN) |
|------------------|---------------------------------|------------------------------------|---------------------------------------------------------------------|--------------------------------------|----------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------|------------------------------------------------------------|---------------------------------------|------------------------------------------------------|---------------------------------------|----------------------------------------------------|-------------------------------|
| OCT 1986         | 4070                            | 7,                                 | *,                                                                  | 20                                   |                                  |                                               | 10 April 180                                         |                                 |                                                            |                                       | .O. E                                                | 20                                    | 11                                                 | 7                             |
| 14<br>MAR 1987   | 1230                            | 74                                 |                                                                     | 28                                   | 5.6                              | - 4                                           | .0                                                   | 8.4                             | 84                                                         |                                       | <0.5                                                 | 20                                    |                                                    | 17                            |
| 03               | 1220<br>1230                    | 288<br>115                         |                                                                     | 63<br>50                             | 4.5                              |                                               | ••                                                   | 11.3                            | 86                                                         |                                       | E1.3<br>E0.6                                         | <20<br><20                            |                                                    | 7                             |
| JUN<br>16<br>JUL | 1330                            | 83                                 |                                                                     | 36                                   | 5.8                              | 23                                            | .0                                                   | 6.8                             | 80                                                         | 1                                     | E1.2                                                 | <20                                   | 2                                                  | 22                            |
| 15               | 1200                            | 134                                |                                                                     | 44                                   | 5.0                              | 22                                            | .5                                                   | 6.4                             | 74                                                         |                                       | <1.1                                                 | 40                                    | 35                                                 | 50                            |
| AUG<br>06        | 1045                            | 74                                 |                                                                     | 37                                   | 5.5                              | 22                                            | .5                                                   | 6.9                             | 80                                                         | Qu.                                   | <0.9                                                 | 20                                    | 13                                                 | 30                            |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC  | S<br>/L                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | DIS<br>SOLV<br>(MG/                  | M, SOD<br>- DI<br>ED SOL<br>L (M | IUM,<br>S-<br>VED<br>IG/L<br>NA)              | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | LINI                            | Y SU<br>B D<br>L S                                         | LFATE<br>IS-<br>OLVED<br>MG/L<br>SO4) | CHLO<br>RIDI<br>DIS<br>SOL'<br>(MG,                  | VED                                   | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                               |
| OCT 1986         |                                 | 5                                  |                                                                     |                                      | -,                               |                                               |                                                      | 2.0                             |                                                            | 5.3                                   |                                                      |                                       | -0.1                                               |                               |
| 14<br>MAR_1987   |                                 |                                    | 1.0                                                                 |                                      |                                  | 2.1                                           | 0.8                                                  | 2.0                             |                                                            |                                       | 3.                                                   |                                       | <0.1                                               |                               |
| 03<br>23<br>JUN  |                                 | 10                                 | 1.8                                                                 | 0.<br>1.                             | 86<br>0                          | 1.9<br>2.6                                    | 0.7                                                  | <1.0<br>2.0                     |                                                            | 12<br>11                              | 5.                                                   |                                       | <0.1<br><0.1                                       |                               |
| 16               |                                 | 7                                  | 1.6                                                                 | 0.                                   | 85                               | 2.3                                           | 0.6                                                  | 3.0                             |                                                            | 7.0                                   | 4.                                                   | 9                                     | <0.1                                               |                               |
| 15<br>AUG        |                                 | 6                                  | 1.3                                                                 | 0.                                   | 58                               | 2.0                                           | 0.6                                                  | 2.0                             |                                                            | 16                                    | 5.                                                   | 0                                     | <0.1                                               |                               |
| 06               |                                 | 5                                  | 1.2                                                                 | 0.                                   | 58                               | 2.1                                           | 0.6                                                  | 2.0                             |                                                            | 7.0                                   | 4.                                                   | 1                                     | 0.1                                                |                               |
| DATE             | SILI<br>DIS<br>SOL<br>(MG<br>AS | VED<br>/L                          | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/ | TE NOZ                           | TRO-<br>SEN,<br>2+NO3<br>OTAL<br>IG/L<br>S N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | MONI                            | AM-<br>A + N<br>NIC<br>AL T<br>/L (                        | ITRO-<br>GEN,<br>OTAL<br>MG/L         | PHO<br>PHOR<br>TOT<br>(MG<br>AS                      | US,<br>AL<br>/L                       | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                               |
| OCT 1986<br>14   |                                 | 4.7                                | 19                                                                  | 0.0                                  | 04 0                             | 0.05                                          | 0.17                                                 | -                               |                                                            |                                       | 0.0/                                                 | •                                     | 2.6                                                |                               |
| MAR 1987         |                                 | 1                                  |                                                                     |                                      |                                  |                                               | 0.17                                                 |                                 |                                                            |                                       | 0.04                                                 |                                       |                                                    |                               |
| 03<br>23<br>JUN  |                                 | 3.4<br>3.2                         | 28                                                                  |                                      |                                  | ).22<br>).21                                  | 0.06<br>0.08                                         | 0.3                             |                                                            | ).58<br>).75                          | <0.02                                                |                                       | 6.8<br>2.6                                         |                               |
| 16<br>JUL        |                                 | 4.8                                | 24                                                                  | 0.0                                  | 008                              | 0.06                                          | 0.08                                                 | 0.7                             | 9 (                                                        | .85                                   | 0.03                                                 | 7                                     | 12                                                 |                               |
| 15               |                                 | 4.9                                | 32                                                                  | 0.0                                  | 13 (                             | 80.0                                          | 0.83                                                 | 0.9                             | 7 1                                                        | .0                                    | 0.04                                                 | 0                                     | 12                                                 |                               |
| 06               |                                 | 5.1                                | 22                                                                  |                                      |                                  |                                               |                                                      | air .                           | 121                                                        |                                       | 0.03                                                 | 0                                     | 5.9                                                |                               |

## 01409500 BATSTO RIVER AT BATSTO, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| JUN 1987<br>16 | 1330                                                  | 70                                                    | <1                                                              | <10                                                             | <10                                                     | <1                                                      | 10                                                             | 3                                                       |
| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)          | PHENOLS<br>TOTAL<br>(UG/L)                              |
| JUN 1987<br>16 | 2400                                                  | <5                                                    | <10                                                             | <0.10                                                           | <1                                                      | <1                                                      | <10                                                            | 2                                                       |

#### 01409510 BATSTO RIVER AT PLEASANT MILLS, NJ

LOCATION.--Lat 39°37'55", long 74°38'40", Burlington County, Hydrologic Unit 02040301, on right bank, 0.4 mi upstream from Mullica River, and 0.5 mi southeast of Pleasant Mills.

DRAINAGE AREA ... 73.6 mi 2.

PERIOD OF RECORD.--July 1958 to current year. Annual maximum only published for 1958 to 1965.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is -8.6 ft below National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--No gage-height or doubtful record: Nov. 24 to Jan. 13. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation recorded, 7.2 ft, Mar. 7, 1962; minimum recorded (1966-87), -0.67 ft, Jan. 2, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 4.71 ft, (from crest-stage gage), Jan. 2; minimum recorded, 0.11 ft, Oct. 6, but may have been lower during period of no gage-height record.

Summaries of tide elevations during year are as follows:

#### TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|              |           | OCT  | NOV  | DEC | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEP  |
|--------------|-----------|------|------|-----|------|------|------|------|------|------|------|------|------|
| Maximum      | Elevation | 3.33 | 3.71 |     | 4.71 | 3.27 | 3.89 | 4.01 | 3.44 | 3.40 | 3.58 | 3.53 | 3.78 |
| high tide    | Date      | 11   | 20   |     | e2   | 27   | 31   | 17   | 20   | 23   | 12   | 6    | 19   |
| Minimum      | Elevation | 0.11 | 0.12 |     |      | 0.38 | 0.41 | 0.59 | 0.52 | 0.44 | 0.70 | 0.66 | 0.63 |
| low tide     | Date      | 6    | 3    |     |      | 20   | 27   | 30   | 17   | 20   | 26   | 24   | 29   |
| Mean high ti | ide       | 2.77 |      |     |      | 2.42 | 2.93 | 3.15 | 2.75 | 2.76 | 2.87 | 2.86 | 2.82 |
| Mean water   | level     | 1.64 |      |     |      | 1.46 | 2.07 | 2.42 | 1.81 | 1.73 | 1.98 | 1.93 | 1.86 |
| Mean low tic | de        | 0.46 |      |     |      | 0.64 | 0.99 | 1.51 | 0.84 | 0.71 | 1.08 | 1.00 | 0.93 |

e - Date of maximum elevation determined from record at Batsto River at Batsto (station 01409500).

#### 01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ

LOCATION.--Lat 39°41'17", long 74°32'54", Burlington County, Hydrologic Unit 02040301, on right bank 900 ft downstream from Godfrey Bridge on Washington-Jenkins Road, 2.2 mi downstream from Hospitality Brook, and 1.2 mi southwest of Jenkins.

DRAINAGE AREA ... 84.1 mi2.

PERIOD OF RECORD . - - October 1974 to current year.

REVISED RECORDS.--WDR NJ-77-1: 1976. WDR NJ-81-1: 1975(P), 1976(P), 1977(P), 1978(P), 1979(P), 1980(P).

GAGE. -- Water-stage recorder. Datum of gage is 10.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except from Nov. 24 to Jan. 7, which are fair. Some regulation by cranberry bogs and small ponds. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 13 years, 144 ft3/s, 23.25 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,320 ft<sup>3</sup>/s, Feb. 26, 1979, gage height, 16.14 ft; minimum, 22 ft<sup>3</sup>/s, July 24, 1977, gage height 10.16 ft; minimum gage height, 10.14 ft, July 24, 25, 26, 1985, June 30, 1986.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum(\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time       | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|------------------|----------|------------|-----------------------------------|---------------------|
| Apr. 5 | 1730 | *993                              | *15.28           | No other | peak great | er than base disch                | narge.              |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 42 ft3/s, Oct. 11, Sept. 29, gage height, 10.32 ft.

|                                  |                                    |                                      |                                              |                                        |                                 | MĚAN VAL                               | UES                             |                                       |                              |                                  |                                  |                            |
|----------------------------------|------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------|
| DAY                              | OCT                                | NOV                                  | DEC                                          | JAN                                    | FEB                             | MAR                                    | APR                             | MAY                                   | JUN                          | JUL                              | AUG                              | SEP                        |
| 1 2 3 4 5                        | 64                                 | 76                                   | e150                                         | e195                                   | 169                             | 245                                    | 343                             | 153                                   | 86                           | 87                               | 81                               | 65                         |
|                                  | 88                                 | 80                                   | e150                                         | e370                                   | 169                             | 372                                    | 351                             | 141                                   | 88                           | 143                              | 86                               | 63                         |
|                                  | 77                                 | 111                                  | e280                                         | e500                                   | 186                             | 393                                    | 275                             | 140                                   | 85                           | 322                              | 73                               | 59                         |
|                                  | 72                                 | 105                                  | e320                                         | e525                                   | 206                             | 319                                    | 446                             | 197                                   | 88                           | 244                              | 66                               | 57                         |
|                                  | 93                                 | 87                                   | e300                                         | e465                                   | 204                             | 264                                    | 916                             | 303                                   | 130                          | 183                              | 61                               | 55                         |
| 6<br>7<br>8<br>9                 | 84<br>76<br>64<br>66<br>54         | 139<br>175<br>150<br>146<br>125      | e260<br>e250<br>e215<br>e240<br>e330         | e360<br>e251<br>222<br>200<br>196      | 200<br>193<br>193<br>199<br>185 | 249<br>230<br>219<br>206<br>203        | 974<br>839<br>634<br>482<br>388 | 300<br>276<br>218<br>189<br>163       | 126<br>110<br>98<br>94<br>89 | 136<br>121<br>118<br>114<br>102  | 77<br>80<br>73<br>64<br>152      | 55<br>56<br>58<br>62<br>60 |
| 11                               | 47                                 | 111                                  | e350                                         | 201                                    | 195                             | 191                                    | 311                             | 149                                   | 84                           | 104                              | 292                              | 54                         |
| 12                               | 55                                 | 131                                  | e355                                         | 187                                    | 190                             | 165                                    | 271                             | 143                                   | 80                           | 150                              | 416                              | 54                         |
| 13                               | 73                                 | 120                                  | e330                                         | 173                                    | 185                             | 189                                    | 255                             | 140                                   | 85                           | 130                              | 314                              | 58                         |
| 14                               | 161                                | 111                                  | e280                                         | 152                                    | 174                             | 179                                    | 252                             | 129                                   | 92                           | 113                              | 217                              | 61                         |
| 15                               | 183                                | 101                                  | e230                                         | 147                                    | 160                             | 165                                    | 210                             | 122                                   | 87                           | 163                              | 158                              | 61                         |
| 16                               | 126                                | 100                                  | e175                                         | 142                                    | 144                             | 169                                    | 169                             | 115                                   | 82                           | 163                              | 121                              | 65                         |
| 17                               | 110                                | 91                                   | e140                                         | 134                                    | 138                             | 154                                    | 247                             | 108                                   | 75                           | 140                              | 96                               | 58                         |
| 18                               | 94                                 | 86                                   | e155                                         | 154                                    | 134                             | 145                                    | 343                             | 118                                   | 71                           | 116                              | 73                               | 56                         |
| 19                               | 82                                 | 136                                  | e210                                         | 239                                    | 123                             | 147                                    | 330                             | 109                                   | 66                           | 95                               | 70                               | 61                         |
| 20                               | 93                                 | 144                                  | e225                                         | 348                                    | 125                             | 136                                    | 313                             | 128                                   | 64                           | 83                               | 65                               | 59                         |
| 21                               | 91                                 | 201                                  | e200                                         | 400                                    | 128                             | 132                                    | 332                             | 160                                   | 87                           | 76                               | 57                               | 59                         |
| 22                               | 78                                 | 213                                  | e175                                         | 401                                    | 169                             | 126                                    | 298                             | 160                                   | 147                          | 65                               | 57                               | 68                         |
| 23                               | 68                                 | 205                                  | e155                                         | 400                                    | 179                             | 140                                    | 301                             | 150                                   | 123                          | 60                               | 58                               | 93                         |
| 24                               | 80                                 | e200                                 | e145                                         | 350                                    | 180                             | 137                                    | 235                             | 140                                   | 106                          | 59                               | 56                               | 69                         |
| 25                               | 74                                 | e195                                 | e260                                         | 267                                    | 180                             | 129                                    | 228                             | 128                                   | 92                           | 56                               | 51                               | 62                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 89<br>110<br>111<br>98<br>88<br>70 | e195<br>e235<br>e230<br>e205<br>e175 | e340<br>e305<br>e270<br>e254<br>e245<br>e210 | 243<br>237<br>223<br>196<br>181<br>183 | 176<br>167<br>166               | 120<br>133<br>129<br>125<br>129<br>261 | 215<br>188<br>191<br>182<br>170 | 119<br>118<br>120<br>110<br>101<br>92 | 84<br>97<br>105<br>95<br>91  | 55<br>54<br>50<br>47<br>47<br>71 | 52<br>61<br>65<br>68<br>62<br>53 | 61<br>68<br>55<br>48<br>51 |
| TOTAL                            | 2719                               | 4379                                 | 7504                                         | 8242                                   | 4817                            | 5901                                   | 10689                           | 4739                                  | 2807                         | 3467                             | 3275                             | 1811                       |
| MEAN                             | 87.7                               | 146                                  | 242                                          | 266                                    | 172                             | 190                                    | 356                             | 153                                   | 93.6                         | 112                              | 106                              | 60.4                       |
| MAX                              | 183                                | 235                                  | 355                                          | 525                                    | 206                             | 393                                    | 974                             | 303                                   | 147                          | 322                              | 416                              | 93                         |
| MIN                              | 47                                 | 76                                   | 140                                          | 134                                    | 123                             | 120                                    | 169                             | 92                                    | 64                           | 47                               | 51                               | 48                         |
| CFSM                             | 1.04                               | 1.74                                 | 2.88                                         | 3.16                                   | 2.05                            | 2.26                                   | 4.24                            | 1.82                                  | 1.11                         | 1.33                             | 1.26                             | .72                        |
| IN.                              | 1.20                               | 1.94                                 | 3.32                                         | 3.65                                   | 2.13                            | 2.61                                   | 4.73                            | 2.10                                  | 1.24                         | 1.53                             | 1.45                             | .80                        |

CAL YR 1986 TOTAL 45777 MEAN 125 MAX 913 MIN 33 CFSM 1.49 IN. 20.24 WTR YR 1987 TOTAL 60350 MEAN 165 MAX 974 MIN 47 CFSM 1.97 IN. 26.69

e Estimated

## 01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ (National stream-quality accounting network station)

LOCATION.--Lat 39°40'30", long 74°32'28", Burlington County, Hydrologic Unit 02040301, at bridge on State Highway 563 in Maxwell, 1.6 mi southeast of Washington, 1.8 mi southwest of Jenkins, and 2.2 mi upstream from confluence with Oswego River.

DRAINAGE AREA .-- 85.9 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

REMARKS. -- Water-stage recorder located at station 01409810.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE          | TIME       | INS<br>TAN   | EAM-<br>OW,<br>TAN-<br>EOUS                 | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)                                | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | TUR-<br>BID-<br>ITY<br>(NTU)                                  | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L)      | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                       |
|---------------|------------|--------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| OV_1986       | WS at Land |              |                                             |                                                  |                                                               |                                                               |                                                               |                                                      |                                                                | The Lates                                                           |                                                                |                                                                    | - 1                                                          |
| 25<br>AN 1987 | 1040       | E199         | -                                           | 52                                               | 4.1                                                           | 7.0                                                           | 1.9                                                           | 9.9                                                  | 81                                                             | 1.0                                                                 | 12                                                             | 140                                                                | 4                                                            |
| 28<br>AR      | 1330       | E227         | d 1                                         | 50                                               | 4.2                                                           | 0.0                                                           | 1.7                                                           | 11.3                                                 | 77                                                             | 0.3                                                                 | <1                                                             | K12                                                                | 3                                                            |
| 31            | 0900       | E266         | 5                                           | 43                                               | 4.1                                                           | 11.0                                                          | 2.3                                                           | 8.8                                                  | 81                                                             | 0.4                                                                 | 24                                                             | 1000                                                               | 3                                                            |
| 26            | 0900       | E121         | 10.03                                       | 38                                               | 4.2                                                           | 14.5                                                          | 5.6                                                           | 8.3                                                  | 81                                                             | 1.3                                                                 | K10                                                            | 520                                                                | 3                                                            |
| 28            | 0845       | E51          |                                             | 37                                               | 4.3                                                           | 19.5                                                          | 4.7                                                           | 7.7                                                  | 84                                                             | 0.5                                                                 | к8                                                             | K360                                                               | 3                                                            |
| P             | 1911       |              |                                             |                                                  |                                                               |                                                               |                                                               |                                                      |                                                                |                                                                     |                                                                | KJOO                                                               |                                                              |
| 29            | 0930       | E49          |                                             | 40                                               | 3.8                                                           | 16.5                                                          | 3.1                                                           | 8.6                                                  | 88                                                             | 0.8                                                                 | -4                                                             | 45.1                                                               | 3                                                            |
| DATE          | (M         | DITY<br>IG/L | CALCIL<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | DIS<br>SOLVE<br>(MG/I                            | JM, SODIUS DIS                                                | SOLVI                                                         | UM, BON<br>S- IT-I<br>ED (MG,<br>L AS                         | CAR- LIN<br>MATE CAR<br>FLD A<br>/L IT-F<br>(MG/     | L - MG/L                                                       | TY AT SULF AL DIS D SOLV AS (MG/                                    | ED SOLV                                                        | DE, RIC<br>S- DI<br>VED SOLV<br>L (MG)                             | DE,<br>IS-<br>VED<br>/L                                      |
| 0V 1986<br>25 |            |              | 0.00                                        |                                                  |                                                               | 1 2 2                                                         |                                                               |                                                      | - 7                                                            | 40                                                                  | 187                                                            |                                                                    |                                                              |
| N 1987        |            | 0.2          | 0.80                                        | 0.50                                             |                                                               | 0.7                                                           | <0.1                                                          | <0.1                                                 | <1                                                             | 12                                                                  | 4.7                                                            | <0.1                                                               |                                                              |
| 28<br>R       |            | ••           | 0.70                                        | 0.40                                             | 2.1                                                           | 0.4                                                           | <0.1                                                          | <0.1                                                 | <1                                                             | 11                                                                  | 4.3                                                            | <0.1                                                               |                                                              |
| 31            |            | 0.1          | 0.60                                        | 0.40                                             | 1.9                                                           | 0.5                                                           | <0.1                                                          | <0.1                                                 | <1                                                             | 9.7                                                                 | 3.4                                                            | <0.1                                                               |                                                              |
| 26            |            |              | 0.60                                        | 0.40                                             | 2.0                                                           | 0.3                                                           | <0.1                                                          | <0.1                                                 | <1                                                             | <5.0                                                                | 4.6                                                            | <0.1                                                               |                                                              |
| JL<br>28      |            |              | 0.57                                        | 0.39                                             | 2.0                                                           | 0.5                                                           | <0.1                                                          | <0.1                                                 | <1                                                             | 7.9                                                                 | 3.9                                                            | 0.1                                                                |                                                              |
| P<br>29       |            | 0.1          | 0.66                                        | 0.4                                              | 1 2.5                                                         | 0.6                                                           | <0.1                                                          | <0.1                                                 | <1                                                             | 6.8                                                                 | 3.3                                                            | 0.1                                                                |                                                              |
|               | DATE       | SC           | LICA,<br>IS-<br>DLVED<br>4G/L<br>AS<br>102) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)       | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONÍA<br>TOTAL<br>(MG/L<br>AS N) | AMMONIA                                                        | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                    | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)               | PHOS-<br>PHORUS<br>ORTHO<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) |
| NOV           | 1986       |              |                                             | 100                                              | 1                                                             |                                                               |                                                               |                                                      |                                                                |                                                                     |                                                                |                                                                    |                                                              |
| JAN           | 1987       |              | 4.8                                         | 5                                                | 80                                                            | <0.010                                                        | <0.10                                                         | <0.01                                                | <0.010                                                         | 0.20                                                                | 0.010                                                          | <0.010                                                             | <0.010                                                       |
| MAR.          | B          |              | 4.3                                         | 5                                                | 78                                                            | <0.010                                                        | <0.10                                                         | <0.01                                                | 0.020                                                          | 0.40                                                                | 0.010                                                          | 0.010                                                              | <0.010                                                       |
|               | 1          |              | 3.4                                         | 15                                               | 70                                                            | <0.010                                                        | <0.10                                                         | 0.01                                                 | 0.020                                                          | 0.80                                                                | 0.020                                                          | 0.010                                                              | <0.010                                                       |
| 20            | 6          |              | 4.5                                         | 11                                               | 93                                                            | <0.010                                                        | <0.10                                                         | 0.04                                                 | 0.050                                                          | 0.50                                                                | 0.030                                                          | 0.010                                                              | <0.010                                                       |
| JUL<br>2      | в          |              | 6.2                                         | 23                                               | 93                                                            | <0.010                                                        | <0.10                                                         | 0.05                                                 | 0.060                                                          | 0.70                                                                | 0.040                                                          | 0.020                                                              | <0.010                                                       |
| SEP           | 9          |              |                                             | 11                                               |                                                               |                                                               |                                                               |                                                      |                                                                |                                                                     | 0.030                                                          |                                                                    |                                                              |

MULLICA RIVER BASIN
01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME           | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB) |
|----------------|----------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|
| NOV 1986<br>25 | 1040           | 250                                                 | <1                                                   | 16                                           | <0.5                                                 | <1                                           | <1                                                  | <3                                           | 6                                            | 650                                        | 6                                          |
| MAR 1987<br>31 | 0900           | 160                                                 | <1                                                   | 13                                           | <0.5                                                 | 1                                            | <1                                                  | <3                                           | 4                                            | 520                                        | <5                                         |
| MAY 26         | 0900           | 160                                                 | <1                                                   | 13                                           | <0.5                                                 | <1                                           | <1                                                  | <3                                           | 1                                            | 720                                        | 20                                         |
| SEP 29         | 0930           | 130                                                 | <1                                                   | 14                                           | <0.5                                                 | <1                                           | <1                                                  | <3                                           | 2                                            | 320                                        | <5                                         |
|                | DATE           | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)        | MANGA-<br>NESE,<br>DIS-<br>SOLVEI<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>D SOLVED<br>(UG/L         | DIS-<br>SOLVED<br>(UG/L                              | SOLVED<br>(UG/L                              | DIS-<br>SOLVEI<br>(UG/L                             | (UG/L                                        | DIS-<br>SOLVED<br>(UG/L                      | DIUM,<br>DIS-<br>SOLVED<br>(UG/L           | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) |
|                | NOV 1986<br>25 | <4                                                  | 19                                                   | 9 <0.1                                       | <10                                                  | 3                                            | · <                                                 | 1 <1                                         | 1 7                                          | <6                                         | 25                                         |
|                | MAR 1987<br>31 | <4                                                  |                                                      |                                              |                                                      |                                              |                                                     |                                              |                                              |                                            |                                            |
|                | 26<br>SEP      | <4                                                  | 12                                                   | 2 0.1                                        | <10                                                  | <1                                           | <                                                   | 1 <1                                         | 5                                            | <6                                         | 12                                         |
|                | 29             | <4                                                  | 13                                                   | 3 <0.1                                       | <10                                                  | 3                                            | s <                                                 | 1 <1                                         | 7                                            | <6                                         | 12                                         |

#### MULLICA RIVER BASIN

## 01410000 OSWEGO RIVER AT HARRISVILLE, NJ

LOCATION.--Lat 39°39'47", long 74°31'26", Burlington County, Hydrologic Unit 02040301, on right bank 50 ft downstream from bridge on State Highway Spur 563 at Harrisville, and 0.5 mi upstream from confluence with West Branch Wading River.

DRAINAGE AREA . - - 72.5 mi 2 .

#### WATER DISCHARGE RECORDS

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1955, published as "East Branch Wading River at Harrisville".

REVISED RECORDS .-- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since June 23, 1939. Datum of gage is 4.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for estimated daily discharges, which are fair. Figures given herein represent flow over main spillway and through bypass channel. Flow regulated by Harrisville Pond 200 ft above station, capacity, about 30,000,000 gal and by ponds and cranberry bogs 5 to 10 mi upstream. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 57 years, 87.1 ft3/s, 16.31 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,390 ft<sup>3</sup>/s, Aug. 20, 1939, gage height, 9.54 ft, from highwater mark in gage house, from rating curve extended above 640 ft<sup>3</sup>/s; no flow part of Oct. 26, 1932, June 10, 1970, and May 29, 30, 1974, while pond was filling.

EXTREMES FOR CURRENT YEAR ... Maximum discharge, 508 ft<sup>3</sup>/s, Apr. 6, gage height, 4.90 ft; minimum, 31 ft<sup>3</sup>/s, Oct. 8, Aug. 26, 27, gage height, 2.82 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES DAY OCT NOV JUL AUG SEP DEC JAN FEB MAR APR MAY JUN 276 281 242 42 39 38 45 43 44 172 187 159 51 257 224 161 63 62 251 422 e128 e127 168 98 86 35 33 36 36 94 108 108 115 155 329 229 190 68 65 39 e118 e117 143 40 83 e108 34 35 99 121 119 e110 74 69 72 87 36 40 43 45 90 79 73 175 151 127 12 13 14 15 130 120 111 57 e108 105 101 e106 e103 e91 100 96 80 81 93 91 120 e86 e85 e84 94 91 78 68 55 57 57 108 96 54 51 56 53 44 59 58 124 e82 e82 83 52 94 43 97 90 86 86 22 23 24 25 142 131 149 172 e81 59 44 47 e92 e98 e105 101 85 83 145 216 161 163 67 60 44 48 57 61 35 27 28 29 30 60 56 51 47 137 123 71 87 36 41 134 119 74 77 74 70 78 72 73 62 101 125 113 ... ... 52.4 121 33 .72 .83 TOTAL MEAN 90.0 81.3 59.0 43.4 59 34 60.3 MAX 91 MIN 1.24 1.39 CFSM 2.16 1.81 1.42 1.56 2.65 .83 1.12 .81 .60

.67

**CAL YR 1986** MEAN 71.0 WTR YR 1987 **TOTAL 36196** MEAN 99.2 MAX 497 MIN 31 CFSM

e Estimated

# 01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrietns were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE             | TIME                                               | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)   | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)    | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | CHEM-<br>ICAL,<br>5 DAY                       | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    |
|------------------|----------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| OCT 1986         | 1045                                               | 57                                                | 47                                                   | 4.2                                                  | 11.5                                                 | 10.0                                                                | 91                                                             | E1.5                                          | <20                                                 |
| MAR 1987         |                                                    |                                                   |                                                      |                                                      |                                                      |                                                                     |                                                                |                                               | -                                                   |
| 19               | 1115<br>1230                                       | 197<br>78                                         | 68<br>44                                             | 4.4                                                  | 4.5<br>9.0                                           | 12.0<br>10.7                                                        | 92<br>93                                                       | <0.8                                          | <20<br><20                                          |
| JUN<br>03<br>JUL | 1200                                               | 52                                                | 45                                                   | 4.1                                                  | 22.5                                                 | 10.6                                                                | 122                                                            | <0.6                                          | <20                                                 |
| 14               | 1230                                               | 67                                                | 60                                                   | 4.4                                                  | 26.0                                                 | 7.5                                                                 | 93                                                             | <0.4                                          | <20                                                 |
| AUG<br>04        | 1230                                               | 62                                                | 43                                                   | 4.2                                                  | 25.0                                                 | 7.5                                                                 | 91                                                             | <1.0                                          | <20                                                 |
| DATE             | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)                 | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
| OCT 1986         |                                                    |                                                   |                                                      |                                                      |                                                      |                                                                     |                                                                |                                               |                                                     |
| 20<br>MAR 1987   | 2                                                  | 4                                                 | 0.88                                                 | 0.52                                                 | 2.3                                                  | 1.0                                                                 | <1.0                                                           | 8.8                                           | 4.2                                                 |
| 19               | 17                                                 | 3                                                 | 0.63<br>0.66                                         | 0.38<br>0.42                                         | 2.1                                                  | 0.4                                                                 | <1.0<br><1.0                                                   | 12<br>10                                      | 3.5<br>3.7                                          |
| JUN<br>03        | 49                                                 | 3                                                 | 0.61                                                 | 0.35                                                 | 2.2                                                  | 0.4                                                                 | <1.0                                                           | 8.6                                           | 4.2                                                 |
| JUL<br>14        | 920                                                | 3                                                 | 0.60                                                 | 0.30                                                 | 2.6                                                  | 0.8                                                                 | <1.0                                                           | 11                                            | 4.4                                                 |
| AUG<br>04        | 11                                                 | 3                                                 | 0.65                                                 |                                                      | 2.2                                                  |                                                                     | <1.0                                                           | 8.0                                           | 4.3                                                 |
| 04               |                                                    | 3                                                 | 0.05                                                 | 0.30                                                 | 2.2                                                  | 0.8                                                                 | VI.0                                                           | 8.0                                           | 4.3                                                 |
| DATE             | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NÓ3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONÍA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONÍA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                      | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)   | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)       |
| OCT_1986         | 4.5                                                |                                                   |                                                      |                                                      |                                                      |                                                                     |                                                                |                                               | 2.7                                                 |
| 20<br>MAR 1987   | <0.1                                               | 6.7                                               | 0.006                                                | <0.05                                                | <0.31                                                | ••                                                                  | ••                                                             | 0.020                                         | 3.9                                                 |
| 19               | <0.1<br><0.1                                       | 4.3                                               | 0.004                                                | 0.15<br><0.05                                        | 0.07                                                 | 0.45                                                                | 0.60                                                           | <0.020<br><0.020                              | 5.4                                                 |
| JUN<br>03        | <0.1                                               | 5.4                                               | 0.006                                                | <0.05                                                | 0.11                                                 | E0.07                                                               |                                                                | <0.020                                        | 4.3                                                 |
| JUL<br>14        | <0.1                                               | 5.9                                               | 0.009                                                | <0.05                                                | 0.09                                                 | 0.61                                                                |                                                                | <0.020                                        | 10                                                  |
| AUG<br>04        | 0.1                                                | 6.2                                               | <0.003                                               | <0.05                                                | 0.12                                                 | 0.50                                                                |                                                                | <0.020                                        | 6.1                                                 |
|                  |                                                    |                                                   |                                                      |                                                      |                                                      |                                                                     |                                                                |                                               |                                                     |

## MULLICA RIVER BASIN

# 01410000 OSWEGO RIVER AT HARRISVILLE, NJ -- Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                |                                                 | CARBON,<br>INOR-<br>GANIC,<br>TOT IN              | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN          | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-        | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-         | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-     | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-    | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA- | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-          | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA- |
|----------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------------------|
| DATE           | TIME                                            | G/KG<br>AS C)                                     | BOT MAT<br>(G/KG<br>AS C)                         | TERIAL<br>(UG/G<br>AS AS)                     | TERIAL<br>(UG/G<br>AS CD)                       | TOM MA-<br>TERIAL<br>(UG/G)             | TERIAL<br>(UG/G<br>AS CO)                  | TERIAL<br>(UG/G<br>AS CU)               | TERIAL<br>(UG/G<br>AS FE)                      | TERIAL<br>(UG/G<br>AS PB)             |
| OCT 1986<br>20 | 1045                                            | 0.1                                               | 1.2                                               | 4                                             | <1                                              | 4.1                                     | <10                                        | 2                                       | 2600                                           | <10                                   |
|                | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA- | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA- | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-     | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-        | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-  | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA- | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-   |
| DATE           | TERIAL<br>(UG/G)                                | (UG/G<br>AS HG)                                   | (UG/G<br>AS NI)                                   | TERIAL (UG/G)                                 | (UG/G<br>AS ZN)                                 | TERIAL (UG/KG)                          | TERIAL (UG/KG)                             | TERIAL<br>(UG/KG)                       | TERIAL (UG/KG)                                 | TERIAL (UG/KG)                        |
| OCT 1986<br>20 | 2                                               | 0.01                                              | <10                                               | <1                                            | 3                                               | <1                                      | <1.0                                       | <0.1                                    | <1.0                                           | 0.5                                   |
|                | DDE,<br>TOTAL<br>IN BOT-                        | DDT,<br>TOTAL<br>IN BOT-                          | DI-<br>AZINON,<br>TOTAL<br>IN BOT-                | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-            | ENDO-<br>SULFAN,<br>TOTAL                       | ENDRIN,<br>TOTAL                        | ETHION,<br>TOTAL                           | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-    | HEPTA-<br>CHLOR<br>EPOXIDE                     | LINDANE<br>TOTAL<br>IN BOT-           |
| DATE           | TOM MA-<br>TERIAL<br>(UG/KG)                    | TOM MA-<br>TERIAL<br>(UG/KG)                      | TOM MA-<br>TERIAL<br>(UG/KG)                      | TOM MA-<br>TERIAL<br>(UG/KG)                  | IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | TOM MA-<br>TERIAL<br>(UG/KG)            | BOTTOM<br>MATL.<br>(UG/KG)                     | TOM MA-<br>TERIAL<br>(UG/KG)          |
| OCT 1986<br>20 | 0.1                                             | 0.2                                               | <0.1                                              | <0.1                                          | 1.9                                             | <0.1                                    | <0.1                                       | <0.1                                    | <0.1                                           | <0.1                                  |
|                | TOT<br>IN E<br>TOM                              | ION, OXY<br>TAL CHL<br>BOT- TOT.<br>MA- BOT       | OR, THI<br>IN TOT.                                | A- TR<br>ON, THI<br>IN TOT.<br>TOM BOT        | ON, TOT                                         | AL TOT<br>BOT - IN E<br>MA- TOM         | ON, PER<br>TAL THA<br>BOT- IN B<br>MA- TOM | NE TOT                                  | NE, THI<br>AL TOT<br>OT- IN B<br>MA- TOM       | AL<br>OT-<br>MA-                      |
| D              | ATE TER                                         |                                                   |                                                   |                                               |                                                 |                                         | KIAL TERI                                  |                                         |                                                | KG)                                   |
| OCT 1          |                                                 | 0.1                                               | <b>0.1</b>                                        | 0.1                                           | 0.1                                             | 0.1                                     | 0.1 <1                                     | .00 <10                                 | - 45                                           | 0.1                                   |

245

## 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ

LOCATION.--Lat 39°37'23", long 74°26'30", Burlington County, Hydrologic Unit 02040301, on left bank upstream of bridge on Stage Road, 0.7 mi west of Lake Absegami, 2.2 mi north of New Gretna, and 5.3 mi upstream from mouth.

DRAINAGE AREA.--8.11 mi<sup>2</sup>.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1969 to 1974. January 1978 to current year.

REVISED RECORDS .-- WDR NJ-81-1: 1978-80(P).

GAGE. -- Water-stage recorder. Datum of gage is 1.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Some regulation by Lake Absegami. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE ... 9 years, 15.2 ft3/s, 22.45 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 260  $\rm ft^3/s$ , July 4, 1978, gage height, 5.87 ft; minimum, 5.6  $\rm ft^3/s$ , July 8, 1986, gage height, 3.47 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharges of 65 ft3/s and maximum(\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|------------------|---------|--------------|-----------------------------------|---------------------|
| Apr. 4 | 2045 | *52                               | *4.92            | No peak | greater than | base discharge.                   |                     |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Minimum discharge, 6.4 ft<sup>3</sup>/s, Oct. 1, 6, 7, 8, 9, gage height, 3.60 ft.

|                                            |                                            |                                            |                                         |                                         |                                         | MEAN VALU                               | JES                                     |                                         |                                         |                                            |                                              |                                            |
|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|
| DAY                                        | ОСТ                                        | NOV                                        | DEC                                     | JAN                                     | FEB                                     | MAR                                     | APR                                     | MAY                                     | JUN                                     | JUL                                        | AUG                                          | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | 6.5<br>7.9<br>7.9<br>7.4<br>7.1            | 7.7<br>8.0<br>8.2<br>7.9<br>9.1            | 11<br>12<br>24<br>23<br>16              | 24<br>38<br>40<br>33<br>28              | 24<br>24<br>26<br>27<br>26              | 26<br>33<br>29<br>24<br>21              | 35<br>27<br>21<br>38<br>48              | 20<br>19<br>19<br>29<br>37              | 15<br>15<br>16<br>16<br>24              | 11<br>19<br>33<br>24<br>16                 | 12<br>11<br>11<br>10<br>e11                  | e9.9<br>e9.6<br>e9.0<br>e9.0<br>e8.6       |
| 6<br>7<br>8<br>9                           | 6.7<br>6.4<br>6.5<br>6.6<br>7.4            | 16<br>14<br>11<br>11<br>9.8                | 13<br>13<br>13<br>22<br>35              | 26<br>25<br>25<br>24<br>26              | 24<br>23<br>23<br>24<br>24              | 19<br>18<br>18<br>18<br>15              | 45<br>39<br>34<br>29<br>26              | 31<br>25<br>23<br>22<br>22              | 20<br>15<br>14<br>14<br>13              | 13<br>13<br>15<br>13<br>12                 | e12<br>e13<br>e11<br>e11<br>e12              | e8.3<br>e8.5<br>e8.6<br>e8.8<br>e8.9       |
| 11<br>12<br>13<br>14<br>15                 | 7.1<br>6.7<br>7.1<br>15                    | 9.7<br>11<br>10<br>9.3<br>9.0              | 31<br>29<br>26<br>22<br>21              | 29<br>26<br>24<br>23<br>22              | 22<br>22<br>22<br>21<br>20              | 14<br>14<br>16<br>17<br>16              | 25<br>24<br>24<br>23<br>22              | 21<br>21<br>22<br>21<br>21              | 13<br>13<br>13<br>12<br>12              | 11<br>11<br>11<br>12<br>16                 | e13<br>e12<br>e11<br>e11<br>e11              | e8.4<br>e8.7<br>e9.7<br>e9.5<br>e9.2       |
| 16<br>17<br>18<br>19<br>20                 | 9.0<br>8.7<br>8.3<br>8.0                   | 9.1<br>8.9<br>9.0<br>13                    | 21<br>20<br>22<br>26<br>23              | 22<br>21<br>24<br>33<br>37              | 19<br>19<br>19<br>19                    | 14<br>13<br>13<br>13<br>13              | 22<br>35<br>40<br>32<br>28              | 20<br>20<br>19<br>20<br>24              | 12<br>11<br>11<br>11<br>11              | 13<br>11<br>11<br>11<br>11                 | e10<br>e10<br>e10<br>e9.9<br>e9.7            | 9.5<br>9.3<br>10<br>14<br>14               |
| 21<br>22<br>23<br>24<br>25                 | 7.9<br>7.7<br>7.7<br>7.6<br>7.5            | 16<br>15<br>11<br>11                       | 20<br>19<br>18<br>19<br>27              | 32<br>30<br>32<br>29<br>26              | 18<br>18<br>21<br>23<br>22              | 13<br>13<br>12<br>12<br>12              | 28<br>27<br>24<br>24<br>29              | 28<br>23<br>20<br>19                    | 11<br>13<br>12<br>11<br>11              | 11<br>11<br>10<br>10<br>10                 | e9.2<br>e9.2<br>e10<br>e10<br>e11            | 11<br>11<br>11<br>10<br>10                 |
| 26<br>27<br>28<br>29<br>30<br>31           | 9.1<br>11<br>9.3<br>8.4<br>8.0<br>7.8      | 12<br>18<br>15<br>12<br>11                 | 26<br>22<br>20<br>19<br>19<br>21        | 26<br>26<br>25<br>24<br>24<br>25        | 20<br>20<br>19                          | 11<br>11<br>14<br>16<br>15<br>30        | 26<br>22<br>22<br>23<br>21              | 18<br>18<br>18<br>18<br>17              | 11<br>17<br>21<br>15<br>11              | 10<br>10<br>10<br>9.8<br>10                | e9.8<br>e9.5<br>e8.3<br>e9.3<br>e9.3<br>e9.2 | 9.8<br>9.5<br>9.3<br>9.2<br>9.7            |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 260.3<br>8.40<br>17<br>6.4<br>1.04<br>1.19 | 336.7<br>11.2<br>18<br>7.7<br>1.38<br>1.54 | 653<br>21.1<br>35<br>11<br>2.60<br>3.00 | 849<br>27.4<br>40<br>21<br>3.38<br>3.89 | 608<br>21.7<br>27<br>18<br>2.68<br>2.79 | 523<br>16.9<br>33<br>11<br>2.08<br>2.40 | 863<br>28.8<br>48<br>21<br>3.55<br>3.96 | 670<br>21.6<br>37<br>16<br>2.66<br>3.07 | 414<br>13.8<br>24<br>11<br>1.70<br>1.90 | 403.8<br>13.0<br>33<br>9.8<br>1.61<br>1.85 | 326.4<br>10.5<br>13<br>8.3<br>1.30<br>1.50   | 292.0<br>9.73<br>14<br>8.3<br>1.20<br>1.34 |

CAL YR 1986 TOTAL 3933.5 MEAN 10.8 MAX 35 MIN 6.3 CFSM 1.33 IN. 18.04 WTR YR 1987 TOTAL 6199.2 MEAN 17.0 MAX 48 MIN 6.4 CFSM 2.09 IN. 28.43

e Estimated

## MULLICA RIVER BASIN

## 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ -- Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE              | TIME                              | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | CON-<br>DUCT-                                 | PH<br>(STAND-<br>ARD<br>UNITS)           | TEMPER-<br>ATURE<br>WATER<br>(DEG C)         | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                      | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)  | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    |
|-------------------|-----------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| OCT_1986          |                                   |                                                 |                                               |                                          |                                              | 0 1 1                                                    | 10                                                             | 2.00                                          | The sale                                            |
| 23<br>FEB 1987    | 1245                              | 7.7                                             | 41                                            | 5.3                                      | 10.5                                         | 8.3                                                      | 74                                                             | <0.6                                          | <20                                                 |
| 19                | 1130                              | 19                                              | 44                                            | 4.4                                      | 3.0                                          | 11.7                                                     | 87                                                             | <0.3                                          | 20                                                  |
| 19                | 1100                              | 13                                              | 54                                            | 4.6                                      | 6.0                                          | 9.3                                                      | 75                                                             | <0.7                                          | <20                                                 |
| JUN<br>03         | 1030                              | 16                                              | 44                                            | 4.2                                      | 18.0                                         | 6.1                                                      | 64                                                             | <0.3                                          | 20                                                  |
| JUL<br>14         | 1100                              | 11                                              | 41                                            | 5.1                                      | 20.0                                         | 5.8                                                      | 64                                                             | <0.2                                          | <20                                                 |
| AUG<br>04         | 1045                              | 10                                              | 35                                            | 4.6                                      | 18.5                                         | 6.2                                                      | 66                                                             | <1.0                                          | 20                                                  |
|                   |                                   |                                                 |                                               |                                          |                                              |                                                          |                                                                |                                               |                                                     |
| DATE              | STREP<br>TOCOCC<br>FECAL<br>(MPN) |                                                 | CALCIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>) AS CA | DIS-<br>SOLVED<br>(MG/L                  | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)      | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
| OCT_1986          |                                   |                                                 |                                               |                                          |                                              |                                                          |                                                                |                                               |                                                     |
| 23<br>FEB 1987    | 33                                |                                                 | 0.60                                          | 0.63                                     | 2.8                                          | 0.8                                                      | <1.0                                                           | 6.7                                           | 5.0                                                 |
| 19<br>MAR         | 2                                 | - 1                                             | 4 0.6                                         | 0.61                                     | 3.1                                          | 0.6                                                      | <1.0                                                           | 8.0                                           | 5.8                                                 |
| 19<br>JUN         | 110                               |                                                 | 4 0.6                                         | 0.47                                     | 2.6                                          | 0.6                                                      | <1.0                                                           | 9.5                                           | 4.4                                                 |
| 03                | 3500                              |                                                 | 3 0.5                                         | 0.51                                     | 3.0                                          | 0.6                                                      | <1.0                                                           | 11                                            | 6.3                                                 |
| JUL<br>14         | 920                               |                                                 | 3 0.6                                         | 0.40                                     | 3.3                                          | 0.7                                                      | <1.0                                                           | 13                                            | 5.2                                                 |
| AUG<br>04         | 170                               |                                                 | 4 0.7                                         |                                          | 3.1                                          | 0.7                                                      | <1.0                                                           | 10                                            | 5.4                                                 |
|                   |                                   | -                                               |                                               | . 0.44                                   | 3.1                                          | 0.7                                                      | 11.0                                                           | 100                                           | 3.4                                                 |
| D                 | ATE                               | RIDE,<br>DIS-<br>SOLVED<br>(MG/L                | DIS-<br>SOLVED N<br>(MG/L<br>AS               | GEN,<br>ITRITE NO<br>TOTAL TO<br>(MG/L ( | GEN,<br>2+NO3 AM<br>OTAL TO<br>MG/L (        | ITRO- GEI<br>GEN, MOI<br>MONIA ORO<br>OTAL TO<br>MG/L (I | GANIC PHO<br>DTAL TO<br>MG/L (N                                | ORUS, ORG<br>OTAL TO<br>IG/L (M               | BON,<br>ANIĆ<br>TAL<br>G/L<br>C)                    |
| OCT_1             |                                   |                                                 |                                               |                                          |                                              |                                                          |                                                                |                                               | 13                                                  |
| 23.<br>FEB 1      | 987                               | <0.1                                            |                                               |                                          |                                              |                                                          |                                                                |                                               | .2                                                  |
| 19.<br>MAR        |                                   | <0.1                                            | 6.9 <                                         | 0.003 <0                                 | .050 0                                       | .130                                                     | 0.30 0.                                                        | .030 3                                        | .0                                                  |
| 19.<br>JUN        |                                   | <0.1                                            | 6.7                                           | 0.005 <0                                 | .050 0                                       | .160                                                     | 0.24 <0.                                                       | .020 2                                        | .5                                                  |
| 03.               |                                   | <0.1                                            | 5.9                                           | 0.005 <0                                 | .050 0                                       | .150                                                     | 0.53 <0.                                                       | .020 5                                        | .4                                                  |
|                   |                                   |                                                 |                                               |                                          |                                              |                                                          |                                                                |                                               |                                                     |
| JUL<br>14.<br>AUG |                                   | <0.1                                            | 7.8                                           | 0.009 <0                                 | .050 0                                       | .110                                                     | 0.52 <0.                                                       | .020 4                                        | .6                                                  |

MULLICA RIVER BASIN

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                     | TIME                   | SULFIDE<br>TOTAL<br>(MG/L<br>AS S) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | TOTAL<br>RECOV-  | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|--------------------------|------------------------|------------------------------------|-----------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT_1986                 |                        |                                    |                                                     |                                     |                                                                 |                                                       |                  |                                                                |                                                         |
| 23<br>JUN 1987           | 1245                   | <0.5                               | 80                                                  | <1                                  | •••                                                             |                                                       | <1               | ••                                                             |                                                         |
| 03                       | 1030                   | <0.5                               | 150                                                 | <1                                  | <10                                                             | <10                                                   | <1               | <10                                                            | 4                                                       |
| DAT                      | TO<br>RI<br>EI<br>E (I | ECOV- REP<br>RABLE ER<br>JG/L (U   | AD, NE TAL TO COV- RE ABLE ER G/L (U                | TAL TO<br>COV- RE<br>RABLE ER       | TAL TO<br>COV- RI<br>ABLE EI<br>G/L (I                          | COV- N<br>RABLE T<br>JG/L (                           | IUM, REGOTAL ERA | TAĹ<br>COV-<br>ABLE PHE<br>G/L TO                              | NOLS<br>Tal<br>/L)                                      |
| OCT 198<br>23<br>JUN 198 |                        | 170                                | <5                                                  | 20 <                                | 0.10                                                            | 4                                                     | <1               | 140                                                            | 3                                                       |
| 03                       |                        | 240                                | <5                                                  | <10 <                               | 0.10                                                            | 4                                                     | <1               | <10                                                            |                                                         |

## 01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ

LOCATION.--Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on Sicklerville-New Freedom Road (Spur 536), 1.5 mi northeast of Sicklerville, and 2.7 mi upstream of New Brooklyn Lake dam.

DRAINAGE AREA.--15.1 mi<sup>2</sup>.

PERIOD OF RECORD .- - Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                  | K-1                                    |                                               |                                                           |                                                      |                            |                       | 7                                                   |                                   |                               |                                               |                                                      |                                            |                                                    |
|------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------------------------|-----------------------|-----------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| DATE             | TIME                                   | STREAM<br>FLOW,<br>INSTAN<br>TANEOUS<br>(CFS) | - DUC                                                     | FIC<br>N-<br>CT- (S<br>CE                            | PH<br>TAND-<br>ARD<br>ITS) | TEMPI<br>ATUI<br>WATI | RE<br>ER S                                          | YGEN,<br>DIS-<br>SOLVED<br>(MG/L) | SOL<br>(PE<br>CE<br>SAT       | IS- DE<br>LVED B<br>IR- C<br>INT I            | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | STREP-<br>TOCOCCI<br>H FECAL                       |
| OCT 1986         | P. 19                                  |                                               | 3, 40                                                     |                                                      | -                          |                       |                                                     |                                   |                               |                                               |                                                      |                                            |                                                    |
| 08<br>FEB 1987   | 1200                                   | E5.7                                          |                                                           | 185                                                  | 6.1                        | 10                    | .0                                                  | 4.1                               |                               | 36                                            | 2.5                                                  | 79                                         | 140                                                |
| 18               | 1045                                   | E15                                           |                                                           | 138                                                  | 6.5                        | 1                     | .5                                                  | 11.5                              |                               | 82                                            | 3.4                                                  | 5                                          | 80                                                 |
| 1AR<br>25        | 1030                                   | E13                                           |                                                           | 107                                                  | 6.5                        | 6                     | .5                                                  | 9.8                               |                               | 79                                            | 2.3                                                  | <20                                        | 210                                                |
| JUN<br>02<br>JUL | 1115                                   | E10                                           |                                                           | 120                                                  | 6.3                        | 19                    | .0                                                  | 5.1                               |                               | 55                                            | 1.2                                                  | 110                                        | 490                                                |
| 20<br>AUG        | 1015                                   | E12                                           |                                                           | 112                                                  | 6.0                        | 19                    | .0                                                  | 5.0                               |                               | 54                                            | 0.3                                                  | 50                                         | 1100                                               |
| 12               | 1015                                   | E15                                           |                                                           | 78                                                   | 5.1                        | 18                    | .0                                                  | 4.4                               |                               | 47                                            | 1.5                                                  | 170                                        | 230                                                |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC         | S D                                           | LCIUM<br>IS-<br>OLVED<br>MG/L<br>S CA)                    | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODI<br>DIS<br>SOLV<br>(MG | ED                    | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | LINI                              | TY<br>B<br>/L                 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | DIS<br>SOL<br>(MG                                    | E,<br>VED<br>/L                            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986         |                                        | 27                                            | 7.0                                                       |                                                      | 40                         |                       | , .                                                 | 40                                |                               | 47                                            | 40                                                   |                                            | -0.4                                               |
| 08<br>FEB 1987   |                                        | 27                                            | 7.0                                                       | 2.3                                                  | 18                         |                       | 4.1                                                 | 18                                |                               | 13                                            | 18                                                   |                                            | <0.1                                               |
| 18<br>MAR        |                                        | 21                                            | 5.2                                                       | 2.0                                                  | 12                         |                       | 2.3                                                 | 14                                |                               | 16                                            | 17                                                   | *                                          | <0.1                                               |
| 25<br>JUN        |                                        | 21                                            | 5.2                                                       | 2.0                                                  | 9                          | .7                    | 2.5                                                 | 18                                |                               | 16                                            | 12                                                   |                                            | <0.1                                               |
| 02               |                                        | 21                                            | 5.2                                                       | 1.9                                                  | 11                         |                       | 2.5                                                 | 10                                |                               | 14                                            | 16                                                   |                                            | <0.1                                               |
| 20               |                                        | 23                                            | 5.6                                                       | 2.1                                                  | 11                         |                       | 2.4                                                 | 9.                                | 0                             | 15                                            | 14                                                   |                                            | <0.1                                               |
| 12               |                                        | 16                                            | 4.1                                                       | 1.4                                                  | 6                          | .3                    | 2.0                                                 | 4.                                | 0                             | 18                                            | 10                                                   |                                            | 0.1                                                |
| DATE             | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIC | CA, SU<br>- CO<br>VED TU<br>                  | LIDS,<br>M OF<br>NSTI-<br>ENTS,<br>DIS-<br>OLVED<br>MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | GE                         | NÓ3<br>AL<br>AL       | NITRO<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | MONI                              | AM-<br>A +<br>NIC<br>AL<br>/L | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)      | PHOR TOT (MG                                         | US, C                                      | CARBON,<br>DRGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986         |                                        |                                               |                                                           |                                                      |                            |                       |                                                     |                                   |                               |                                               |                                                      |                                            |                                                    |
| 08<br>FEB 1987   |                                        | 8.0                                           | 81                                                        | 0.066                                                | 5 3.                       | .28                   | 0.53                                                | 1.3                               |                               | 4.6                                           | 0.73                                                 | 0                                          | 4.0                                                |
| 18               |                                        | 5.6                                           | 68                                                        | 0.00                                                 | 5 0.                       | .77                   | 1.28                                                | 2.0                               |                               | 2.8                                           | 0.32                                                 | 0                                          | 6.4                                                |
| 25<br>JUN        |                                        | 4.7                                           | 63                                                        | 0.01                                                 | 2 0.                       | .56                   | 1.60                                                | 2.6                               |                               | 3.2                                           | 0.70                                                 | 10                                         | 5.5                                                |
| 02               |                                        | 6.0                                           | 63                                                        | 0.029                                                | 9 1.                       | .96                   | 0.17                                                | 1.4                               |                               | 3.4                                           | 0.66                                                 | 5                                          | 10                                                 |
| 20               |                                        | 5.7                                           | 61                                                        | <0.003                                               | 3 1.                       | .47                   | 0.09                                                | 1.0                               |                               | 2.5                                           | 0.37                                                 | 0                                          | 13                                                 |
| 12               |                                        | 6.1                                           | 50                                                        | 0.01                                                 | 0 0.                       | .48                   | 0.24                                                | 1.4                               |                               | 1.8                                           | 0.33                                                 | 0                                          | 32                                                 |
|                  |                                        |                                               |                                                           |                                                      |                            |                       |                                                     |                                   |                               |                                               |                                                      |                                            |                                                    |

# 01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)     | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | (UG/L                                  | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|----------------|------|----------------------------------------|-----------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT 1986<br>08 | 1200 | <0.5                                   | 30                                                  | <1                                     | <10                                                             | 80                                                    | <1                                                              | <10                                                            | 10                                                      |
| DA             | TE ( | OTAĽ T<br>ECOV- R<br>RABLE E<br>UG/L ( | EAD, NOTAL TECOV- RABLE EUG/L (                     | OTAL T<br>ECOV- R<br>RABLE E<br>UG/L ( | OTAL TO<br>ECOV- R<br>RABLE E<br>UG/L (                         | ECOV- NI<br>RABLE TO<br>UG/L (L                       | ZIN<br>ELE- TOT<br>IUM, REC<br>OTAL ERA<br>JG/L (UG<br>S SE) AS | AĹ<br>OV-<br>BLE PHE<br>JL TO                                  | NOLS<br>ITAL<br>I/L)                                    |
| OCT 19<br>08   | 86   | 260                                    | <5                                                  | 10                                     | <0.10                                                           | 2                                                     | <1                                                              | 20                                                             | 3                                                       |

## 01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ

LOCATION.--39°40'09", long 74°54'49", Camden County, Hydrologic Unit 02040302, downstream side of bridge on Broad Lane Road, 1.9 mi southwest of Blue Anchor, and 2.1 mi downstream from confluence of Fourmile Branch.

DRAINAGE AREA.--37.3 mi<sup>2</sup>.

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME     | STRE/<br>FLOW<br>INST/<br>TANEO<br>(CF: | AN- DUI<br>DUS ANI                                                  | IC<br>I-<br>CT- (                                | PH<br>STAND-<br>ARD<br>NITS) | TEMP<br>ATU<br>WAT<br>(DEG              | RE<br>ER                        | SOL       | SEN,<br>S-<br>VED               | SO (P                                           | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | CH<br>IC | AND,                       | COL<br>FORI<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL, STREP-<br>TOCOCCI<br>TH FECAL            |
|----------------|----------|-----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|------------------------------|-----------------------------------------|---------------------------------|-----------|---------------------------------|-------------------------------------------------|---------------------------------------------------|----------|----------------------------|----------------------------------------|----------------------------------------------------|
| OCT 1986<br>08 | 0930     | E22                                     |                                                                     | 77                                               | 6.3                          | 10                                      | 0.0                             |           | 8.6                             |                                                 | 86                                                |          | 0.9                        | 79                                     | 350                                                |
| FEB 1987       |          |                                         |                                                                     |                                                  |                              |                                         |                                 |           | 2.44                            | 2                                               |                                                   |          |                            |                                        |                                                    |
| 18             | 0945     | E47                                     |                                                                     | 99                                               | 6.2                          |                                         | .5                              |           | 1.5                             |                                                 | 82                                                |          | 0.9                        | 8                                      |                                                    |
| 25<br>JUN      | 0930     | E44                                     |                                                                     | 75                                               | 6.0                          | 7                                       | .5                              | ,         | 8.9                             |                                                 | 81                                                |          | 1.0                        | <20                                    | 140                                                |
| 02             | 1000     | E35                                     |                                                                     | 73                                               | 6.1                          | 18                                      | 3.5                             | . (       | 5.9                             |                                                 | 74                                                |          | 0.7                        | 70                                     | 270                                                |
| 20<br>AUG      | 0930     | E39                                     |                                                                     | 82                                               | 6.0                          | 18                                      | 3.5                             |           | 5.5                             |                                                 | 69                                                |          | 0.4                        | 20                                     | 3500                                               |
| 12             | 0930     | E47                                     |                                                                     | 65                                               | 5.1                          | 18                                      | 3.5                             |           | 5.9                             |                                                 | 63                                                |          | 0.8                        | 80                                     | 330                                                |
| DATE           | NE<br>(M | SS<br>G/L                               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE<br>SIUN<br>DIS-<br>SOLVE<br>(MG/L<br>AS MO | D SOL                        |                                         | SI                              | VED /L    | LINI<br>(MC<br>AS<br>CAC        | TY<br>AB<br>G/L                                 | SULF<br>DIS<br>SOL<br>(MG                         | VED      | (MG                        | E,<br>VED                              | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 1986<br>08 |          | 15                                      | 3.3                                                                 | 1.6                                              |                              | 6.4                                     | 2                               | .0        | 8                               | .0                                              |                                                   | 9.5      | 9                          | .2                                     | <0.1                                               |
| FEB 1987       |          | 16                                      | 3.6                                                                 | 1.7                                              |                              | 8.8                                     | 1                               | .6        | 6                               | .0                                              | 1                                                 | 1        | 13                         | 1                                      | <0.1                                               |
| MAR 25         |          | 16                                      | 3.4                                                                 | 1.8                                              |                              | 6.2                                     |                                 | .5        |                                 | .0                                              |                                                   | 0        | 13                         | .9                                     | <0.1                                               |
| JUN            |          |                                         |                                                                     |                                                  |                              |                                         |                                 |           |                                 |                                                 |                                                   |          | - 1                        |                                        |                                                    |
| JUL 02         |          | 15                                      | 3.2                                                                 | 1.6                                              |                              | 6.1                                     |                                 | .5        |                                 | .0                                              |                                                   | 3        |                            | 1.1                                    | <0.1                                               |
| 20             |          | 15                                      | 3.4                                                                 | 1.6                                              |                              | 8.7                                     | 1                               | .6        | 8                               | .0                                              |                                                   | 16       | 12                         |                                        | <0.1                                               |
| 12             |          | 14                                      | 3.4                                                                 | 1.4                                              |                              | 5.5                                     | 1                               | .8        | 4                               | .0                                              | 1 191                                             | 6        | 9                          | .2                                     | 0.1                                                |
| DATE           | SO (M    | ICA,<br>S-<br>LVED<br>G/L               | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN<br>NITRI<br>TOTAL<br>(MG/I<br>AS N  | E NO2                        | TRO-<br>EN,<br>+NÓ3<br>TAL<br>G/L<br>N) | NIT<br>GE<br>AMMO<br>TOT<br>(MG | NÍA<br>AL | GEN<br>MON<br>ORGA<br>TO<br>(MI | TRO-<br>AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N) |                                                   | J/L      | PHOR<br>PHOR<br>TOT<br>(MG | AL<br>/L                               | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT 1986<br>08 |          | 6.5                                     | 43                                                                  | 0.00                                             | 6 1                          | .34                                     | 0.1                             | 6         | 0.4                             | 42                                              | 1.8                                               |          | 0.20                       | 10                                     | 4.1                                                |
| FEB 1987       |          | 4.6                                     | 48                                                                  | 0.00                                             |                              | .14                                     | 0.3                             | 1. 1      | 0.                              |                                                 | 1.9                                               |          | 0.07                       |                                        | 5.1                                                |
| MAR 25         |          | 2.7                                     | 38                                                                  | 0.0                                              |                              | .10                                     | 0.1                             |           | 0.0                             |                                                 | 1.8                                               |          | 0.12                       |                                        | 5.0                                                |
| JUN 02         |          |                                         | 45                                                                  |                                                  |                              |                                         |                                 |           |                                 |                                                 |                                                   |          |                            |                                        |                                                    |
| JUL            |          | 5.8                                     |                                                                     | 0.00                                             |                              | .10                                     | 0.1                             |           | 1.0                             |                                                 | 2.1                                               |          | 0.20                       |                                        | 8.6                                                |
| AUG 20         |          | 6.3                                     | 54                                                                  | 0.00                                             |                              | .61                                     | 0.1                             |           | 0.8                             |                                                 | 2.5                                               |          | 0.31                       |                                        | 15                                                 |
| 12             |          | 6.2                                     | 46                                                                  | 0.00                                             | 9 0                          | .34                                     | 0.0                             | 7         | 0.9                             | 93                                              | 1.3                                               |          | 0.23                       | 0                                      | 30                                                 |

# 01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE                 | TIME                                                                 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS)  | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)    | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)               | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         |
|----------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|
| OCT 1986             | 0930                                                                 | -0 E                                                           |                                                                      |                                                                      |                                                                       | 50                                                                   | <1                                                                 |                                                                      | <10                                                                | 30                                                                  | <1                                                              |
| 08                   | 0930                                                                 | <0.5                                                           | 170                                                                  | <0.1                                                                 | 2.7                                                                   |                                                                      | ::                                                                 | 1                                                                    |                                                                    |                                                                     | ::                                                              |
| JUN 1987<br>02       | 1000                                                                 | <0.5                                                           |                                                                      | ••                                                                   |                                                                       | 130                                                                  | <1                                                                 | ••                                                                   | <10                                                                | <10                                                                 | <1                                                              |
| DATE                 | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)   | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)              | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB)  | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) |
| OCT 1986<br>08       |                                                                      | <10                                                            |                                                                      |                                                                      | 4/                                                                    | -                                                                    | 710                                                                |                                                                      | 10                                                                 |                                                                     | 20                                                              |
| 08                   | <1                                                                   |                                                                | 2                                                                    | <10                                                                  | 14                                                                    | <1                                                                   | 310                                                                | 520                                                                  | 10                                                                 | 10                                                                  |                                                                 |
| JUN 1987<br>02       | ••                                                                   | <10                                                            | ••                                                                   |                                                                      | 3                                                                     |                                                                      | 960                                                                |                                                                      | <5                                                                 | ••                                                                  | 10                                                              |
| DATE                 | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)        | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)                | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                                          | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        |
| OCT 1986             |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    | 1                                                                    |                                                                    |                                                                     |                                                                 |
| 08<br>08<br>JUN 1987 | 9                                                                    | <0.10                                                          | 0.10                                                                 | .1                                                                   | <10                                                                   | <1<br>                                                               | <1                                                                 | 70                                                                   | 4                                                                  |                                                                     | <1                                                              |
| 02                   |                                                                      | 0.10                                                           |                                                                      | 1                                                                    | ••                                                                    | <1                                                                   | ••                                                                 | 10                                                                   | ••                                                                 | <1                                                                  |                                                                 |
| DATE                 | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)   | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | TOM MA-<br>TERIAL                                                   | TOM MA-<br>TERIAL                                               |
| OCT 1986             |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                 |
| 08<br>08             | <1.0                                                                 | <0.1                                                           | 0.7                                                                  | 0.4                                                                  | 0.5                                                                   | <0.1                                                                 | <0.1                                                               | <0.1                                                                 | <0.1                                                               | <0.1                                                                | <0.1                                                            |
| JUN 1987<br>02       |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    | ••                                                                   |                                                                    |                                                                     |                                                                 |
| DATE                 | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)     | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)    | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                |
| OCT 1986             |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                 |
| 08<br>08<br>JUN 1987 | <0.1                                                                 | <0.1                                                           | <0.1                                                                 | <0.1                                                                 | <0.1                                                                  | <0.1                                                                 | <0.1                                                               | <0.1                                                                 | <1.00                                                              | <10                                                                 | <0.1                                                            |
| 02                   |                                                                      |                                                                |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                      |                                                                    |                                                                     |                                                                 |

#### 01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ

LOCATION.--Lat 39°35'42", long 74°51'06", Atlantic County, Hydrologic Unit 02040302, on left bank 25 ft upstream from bridge on State Highway 54, 1.0 mi south of Folsom, and 2.0 mi upstream from Pennypot Stream.

DRAINAGE AREA. -- 57.1 mi 2.

PERIOD OF RECORD.--September 1925 to current year. Prior to October 1947, published as "Great Egg River at Folsom". REVISED RECORDS.--WSP 1432: 1928(M), 1933. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Nov. 26, 1934. Datum of gage is 53.32 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 6, 1941, water-stage recorder at site 100 ft downstream at same datum. Mar. 6 to Oct. 5, 1941, nonrecording gage at site 145 ft downstream at datum 0.25 ft higher.

REMARKS.--Records good. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

AVERAGE DISCHARGE. -- 62 years, 86.3 ft3/s, 20.50 in./yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,440 ft<sup>3</sup>/s, Sept. 3, 1940, gage height, 9.09 ft; minimum, 15 ft<sup>3</sup>/s, Sept. 6, 1957, Aug. 28-30, 1966; minimum gage height, 3.42 ft, Aug. 28-30, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 405  $\rm ft^3/s$ , Dec. 27, gage height, 5.78 ft; minimum, 32  $\rm ft^3/s$ , Apr. 5, gage height, 3.57 ft.

|                                            |                                        | DISCHA                                    | ide, in co                               | DIC PEET                                 | PER SECO                                  | MEAN VAL                                 | JES OCT                                   | OBER 1700                                | TO SEFTE                                 | IDER 1707                                 |                                  |                                        |
|--------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|
| DAY                                        | ОСТ                                    | NOV                                       | DEC                                      | JAN                                      | FEB                                       | MAR                                      | APR                                       | MAY                                      | JUN                                      | JUL                                       | AUG                              | SEP                                    |
| 1 2 3 4 5                                  | 40<br>45<br>59<br>65<br>53             | 41<br>42<br>42<br>44                      | 82<br>76<br>93<br>113<br>141             | 132<br>144<br>184<br>214<br>201          | 93<br>95<br>100<br>108<br>117             | 103<br>173<br>257<br>257<br>221          | 136<br>171<br>163<br>171<br>220           | 118<br>107<br>100<br>106<br>135          | 63<br>60<br>58<br>58<br>68               | e65<br>73<br>93<br>113<br>119             | 35<br>35<br>35<br>34<br>35       | 42<br>43<br>44<br>41<br>38             |
| 6<br>7<br>8<br>9<br>10                     | 46<br>42<br>39<br>38<br>38             | 57<br>63<br>69<br>71<br>71                | 138<br>119<br>102<br>97<br>110           | 170<br>142<br>124<br>113<br>106          | 120<br>116<br>110<br>107<br>106           | 182<br>149<br>126<br>118<br>109          | 298<br>326<br>301<br>258<br>212           | 185<br>195<br>173<br>144<br>124          | 74<br>76<br>71<br>66<br>62               | 108<br>97<br>87<br>76<br>67               | 55<br>62<br>70<br>75<br>82       | 37<br>37<br>37<br>38<br>39             |
| 11<br>12<br>13<br>14<br>15                 | 37<br>36<br>37<br>46<br>54             | 68<br>68<br>70<br>70<br>65                | 130<br>145<br>142<br>132<br>117          | 103<br>103<br>100<br>97<br>92            | 106<br>104<br>101<br>98<br>93             | 102<br>97<br>95<br>95<br>95              | 174<br>144<br>126<br>114<br>107           | 109<br>99<br>96<br>94<br>93              | 59<br>56<br>55<br>53<br>52               | 66<br>68<br>63<br>61<br>84                | 85<br>80<br>71<br>64<br>55       | 38<br>36<br>38<br>42<br>44             |
| 16<br>17<br>18<br>19<br>20                 | 54<br>49<br>45<br>43<br>41             | 59<br>56<br>55<br>69<br>78                | 104<br>93<br>89<br>101<br>118            | 89<br>86<br>87<br>104<br>152             | 87<br>81<br>80<br>79<br>78                | 94<br>90<br>87<br>84<br>81               | 101<br>106<br>122<br>146<br>153           | 92<br>89<br>85<br>82<br>88               | 50<br>51<br>48<br>e49<br>e47             | 91<br>98<br>92<br>79<br>67                | 48<br>44<br>41<br>40<br>38       | 44<br>43<br>45<br>57<br>56             |
| 21<br>22<br>23<br>24<br>25                 | 40<br>39<br>39<br>38<br>38             | 93<br>100<br>104<br>101<br>92             | 131<br>122<br>108<br>97<br>148           | 207<br>212<br>190<br>161<br>134          | e78<br>78<br>80<br>83<br>90               | 79<br>78<br>77<br>76<br>75               | 142<br>129<br>117<br>110<br>116           | 98<br>106<br>108<br>102<br>94            | e53<br>e81<br>e80<br>e71<br>e62          | 58<br>52<br>49<br>46<br>44                | 36<br>36<br>37<br>36<br>35       | 56<br>54<br>53<br>53<br>55             |
| 26<br>27<br>28<br>29<br>30<br>31           | 40<br>47<br>50<br>48<br>45<br>43       | 87<br>92<br>98<br>101<br>94               | 311<br>397<br>329<br>245<br>193<br>155   | 111<br>106<br>98<br>95<br>96<br>94       | 95<br>98<br>98                            | 73<br>72<br>75<br>80<br>84<br>101        | 133<br>164<br>177<br>158<br>135           | 86<br>81<br>79<br>78<br>75<br>70         | e57<br>e56<br>e61<br>e63<br>e66          | 43<br>41<br>39<br>38<br>37<br>36          | 34<br>34<br>36<br>38<br>39<br>39 | 56<br>51<br>46<br>42<br>42             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1374<br>44.3<br>65<br>36<br>.78<br>.90 | 2161<br>72.0<br>104<br>41<br>1.26<br>1.41 | 4478<br>144<br>397<br>76<br>2.53<br>2.92 | 4047<br>131<br>214<br>86<br>2.29<br>2.64 | 2679<br>95.7<br>120<br>78<br>1.68<br>1.75 | 3485<br>112<br>257<br>72<br>1.97<br>2.27 | 4930<br>164<br>326<br>101<br>2.88<br>3.21 | 3291<br>106<br>195<br>70<br>1.86<br>2.14 | 1826<br>60.9<br>81<br>47<br>1.07<br>1.19 | 2150<br>69.4<br>119<br>36<br>1.21<br>1.40 | 1484<br>47.9<br>85<br>34<br>.84  | 1347<br>44.9<br>57<br>36<br>.79<br>.88 |

CAL YR 1986 TOTAL 28743 MEAN 78.7 MAX 397 MIN 25 CFSM 1.38 IN. 18.72 WTR YR 1987 TOTAL 33252 MEAN 91.1 MAX 397 MIN 34 CFSM 1.60 IN. 21.66

e Estimated

## 01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ

LOCATION.--Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run, and 20.9 mi upstream from mouth.

DRAINAGE AREA. -- 154 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           | TIME           | STREAFLO    | W, COI<br>AN- DUI<br>OUS AN                                         | FIC<br>N-<br>CT-<br>CE                       | PH<br>(STAND-<br>ARD<br>UNITS) | TEMP<br>ATU<br>WAT<br>(DEG              | RE<br>ER                                     | DXYGEN<br>DIS-<br>SOLVE<br>(MG/L | SO (P)                                                           | IS- DE<br>LVED B<br>ER- C<br>ENT I<br>TUR- 5  | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPM | AL, ST<br>TOC<br>TH FE                             | REP-<br>OCCI<br>CAL<br>IPN) |
|----------------|----------------|-------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------|------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------------------|-----------------------------|
| OCT 1986       |                |             |                                                                     | 223                                          | 1.2                            |                                         |                                              |                                  | 7.40                                                             |                                               |                                                      | 13.                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              |                             |
| 08<br>FEB 1987 | 0900           | E107        |                                                                     | 57                                           | 6.2                            | 11                                      | .5                                           | 9.2                              |                                                                  | 83                                            | 0.6                                                  | 14                                         | 17                                                 | 0                           |
| 18             | 0900           | E226        |                                                                     | 65                                           | 4.9                            | 0                                       | .5                                           | 13.3                             |                                                                  | 92                                            | 0.5                                                  | 2                                          | 7                                                  | 9                           |
| MAR<br>25      | 0900           | E211        |                                                                     | 57                                           | 5.0                            | 7                                       | .0                                           | 9.6                              |                                                                  | 79                                            | 0.7                                                  | 2                                          | 92                                                 | 0                           |
| JUN            |                |             |                                                                     |                                              |                                |                                         |                                              |                                  |                                                                  |                                               |                                                      |                                            |                                                    |                             |
| 02<br>JUL      | 0900           | E172        |                                                                     | 56                                           | 5.7                            | 20                                      | ).5                                          | 7.6                              |                                                                  | 85                                            | 0.8                                                  | 110                                        | 12                                                 | 20                          |
| 20             | 0900           | E211        |                                                                     | 52                                           | 5.2                            | 20                                      | .5                                           | 7.2                              |                                                                  | 80                                            | 0.8                                                  | 33                                         | 110                                                | 00                          |
| AUG<br>12      | 0900           | E235        |                                                                     | 61                                           | 4.5                            | 19                                      | .5                                           | 7.3                              |                                                                  | 80                                            | 0.9                                                  | 220                                        | 24                                                 | 0                           |
| DATE           | NE<br>(M       | SS<br>G/L   | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M   | M, SOD                         | S-                                      | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS K   | M, LI<br>ED (                    | LKA-<br>NITY<br>LAB<br>MG/L<br>AS<br>CACO3)                      | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | DIS<br>SOLY<br>(MG)                                  | ,<br>/ED<br>/L                             | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                             |
| OCT 1986<br>08 |                | 10          | 2.2                                                                 | 1.                                           | 2                              | 4.8                                     | 1.                                           | 5                                | 4.0                                                              | 9.8                                           | 8 8                                                  | .2                                         | <0.1                                               |                             |
| FEB 1987       |                | 11.10       |                                                                     |                                              |                                |                                         |                                              |                                  |                                                                  |                                               |                                                      |                                            |                                                    |                             |
| 18<br>MAR      |                | 12          | 2.4                                                                 | 1.                                           | 4                              | 5.9                                     | 1.                                           | 1                                | 2.0                                                              | 13                                            | 11                                                   |                                            | <0.1                                               |                             |
| 25             |                | 11          | 2.2                                                                 | 1.                                           | 3                              | 4.5                                     | 1.                                           | 1                                | 1.0                                                              | 10                                            | 7                                                    | .5                                         | <0.1                                               |                             |
| JUN<br>02      |                | 10          | 2.1                                                                 | 1.                                           | 1                              | 4.3                                     | 1.                                           | 6                                | 3.0                                                              | 12                                            | 8                                                    | .0                                         | <0.1                                               |                             |
| JUL<br>20      |                | 9           | 2.1                                                                 | 1.                                           |                                | 4.3                                     | 1.                                           |                                  | 2.0                                                              | 13                                            |                                                      | .0                                         | <0.1                                               |                             |
| AUG            |                |             |                                                                     |                                              |                                |                                         |                                              |                                  |                                                                  | 7.7                                           |                                                      |                                            |                                                    |                             |
| 12             |                | 12          | 2.5                                                                 | 1.                                           | 3 !                            | 5.1                                     | 1.                                           | 3                                | 2.0                                                              | 13                                            | 8                                                    | .3                                         | 0.1                                                |                             |
| DATE           | DI<br>SO<br>(M | LVED<br>G/L | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | TE NOZ-                        | TRO-<br>EN,<br>+NÓ3<br>TAL<br>G/L<br>N) | NITR<br>GEN<br>AMMON<br>TOTA<br>(MG/<br>AS N | O- GE                            | IITRO-<br>EN, AM-<br>DNIA +<br>RGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHORI<br>PHORI<br>TOTA<br>(MG,                       | JS, (<br>AL<br>/L                          | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                             |
| OCT 1986       |                |             |                                                                     |                                              |                                |                                         | 1                                            |                                  |                                                                  |                                               | 2 2 -                                                |                                            |                                                    |                             |
| 08<br>FEB 1987 |                | 7.0         | 37                                                                  | 0.0                                          | 04 0                           | .57                                     | 0.23                                         |                                  | .47                                                              | 1.0                                           | 0.08                                                 | 0                                          | 4.2                                                |                             |
| 18             |                | 5.5         | 41                                                                  | 0.0                                          | 04 0                           | .64                                     | 0.19                                         | (                                | .51                                                              | 1.2                                           | 0.03                                                 | 0                                          | 5.4                                                |                             |
| 25             |                | 3.8         | 31                                                                  | 0.0                                          | 06 0                           | .52                                     | 0.09                                         |                                  | .90                                                              | 1.4                                           | <0.05                                                | 0                                          | 4.2                                                |                             |
| JUN<br>02      |                | 5.3         | 36                                                                  | 0.0                                          |                                | .43                                     | 0.12                                         |                                  | 1.1                                                              | 1.5                                           | 0.09                                                 | 5                                          | 11                                                 |                             |
| JUL<br>20      |                | 6.4         | 37                                                                  | <0.0                                         | 03 0                           | .42                                     | 0.10                                         |                                  | .0                                                               | 1.5                                           | 0.11                                                 | 0                                          | 18                                                 |                             |
| AUG<br>12      |                | 6.6         | 39                                                                  |                                              |                                |                                         |                                              |                                  |                                                                  |                                               |                                                      |                                            |                                                    |                             |
| 12             |                | 0.0         | 39                                                                  | 0.0                                          | 00 0                           | .21                                     | 0.07                                         | ,                                | .88                                                              | 1.1                                           | 0.10                                                 | U                                          | 14                                                 |                             |

# 01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

| DATE           |      | TIME           | SULF<br>TOT<br>(MG<br>AS                        | AL /L                                        | ALUM<br>INUM<br>DIS<br>SOLV<br>(UG/<br>AS A | ARS                                                             | ENIC<br>TAL<br>IG/L<br>S AS) | BER<br>LIU<br>TOT<br>REC<br>ERA<br>(UG<br>AS | M,<br>AL<br>OV-<br>BLE<br>/L | BORO<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS B | L TOT<br>V- REC<br>LE ERA<br>L (UC         | IIUM<br>COV-<br>ABLE                         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | ERA<br>(UC               | AL<br>OV- |
|----------------|------|----------------|-------------------------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|------------------------------|----------------------------------------------|------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|----------------------------------------------------------------|--------------------------|-----------|
| JUN 1987<br>02 |      | 0900           | <                                               | 0.5                                          | 2                                           | 00                                                              | <1                           | <1                                           | 0                            | <                                            | 10                                         | <1                                           | <10                                                            | )                        | 22        |
|                | DATE | RE<br>ER<br>(L | CON,<br>DTAL<br>ECOV-<br>RABLE<br>IG/L<br>S FE) | LEAI<br>TOTA<br>RECO<br>ERAI<br>(UG,<br>AS I | AĹ<br>OV-<br>BLE<br>/L                      | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MER<br>TO<br>RE<br>ER        | CURY<br>TAL<br>COV-<br>ABLE<br>G/L<br>HG)    | REC<br>ERA<br>(UC            | (EL,<br>TAL<br>COV-<br>ABLE<br>G/L<br>NI)    | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS Z | L<br>OV-<br>BLE PI<br>L                                        | HENOLS<br>FOTAL<br>JG/L) |           |
| JUN            | 1987 |                | 1400                                            |                                              | 7.0                                         | 20                                                              | 1                            | 0 10                                         |                              | 5                                            | -1                                         |                                              | 30                                                             | -1                       |           |

#### TUCKAHOE RIVER BASIN

## 01411300 TUCKAHOE RIVER AT HEAD OF RIVER, NJ

LOCATION.--Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, on right bank at highway bridge on State Route 49, 0.2 mi upstream from McNeals Branch, 0.4 mi southeast of Head of River, and 3.7 mi west of Tuckahoe.

DRAINAGE AREA . - - 30.8 mi 2 .

PERIOD OF RECORD. -- December 1969 to current year.

REVISED RECORDS. -- WDR NJ-78-1: 1975(M), 1976(M).

GAGE.--Water-stage recorder, wooden control, and downstream tidal crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Occasional regulation by ponds above station. Fish gate open Apr. 1 to June 1. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 17 years, 44.5 ft3/s, 19.62 in./yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 510 ft<sup>3</sup>/s, May 31, 1984, elevation, 6.17 ft; maximum elevation, 7.01 ft, Mar. 29, 1984; minimum daily discharge, 1.3 ft<sup>3</sup>/s, Sept. 3, 13, 1980.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 203  $\rm ft^3/s$ , Mar. 2, elevation, 4.12 ft; minimum, 10  $\rm ft^3/s$ , Aug. 21, 22, 25, 31, Sept. 1, 5, 11, 12.

|                                            |                                       | DISCHA                                  | ige, in co                                | DIC FEET                                  | PER SECON                                | MEAN VALL                                 | JES OCTO                                  | DEK 1700                                  | 10 SEFTER                             | DEK 1707                              |                                       |                                       |
|--------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| DAY                                        | OCT                                   | NOV                                     | DEC                                       | JAN                                       | FEB                                      | MAR                                       | APR                                       | MAY                                       | JUN                                   | JUL                                   | AUG                                   | SEP                                   |
| 1<br>2<br>3<br>4<br>5                      | 16<br>18<br>21<br>18<br>17            | 21<br>22<br>24<br>22<br>25              | 34<br>41<br>68<br>85<br>68                | 56<br>121<br>154<br>131<br>105            | 61<br>62<br>70<br>81<br>81               | 116<br>196<br>169<br>139<br>113           | 130<br>110<br>89<br>112<br>153            | 51<br>49<br>47<br>65<br>109               | 29<br>30<br>30<br>31<br>35            | 21<br>30<br>38<br>36<br>39            | 15<br>15<br>14<br>14<br>14            | 13<br>13<br>12<br>12<br>11            |
| 6<br>7<br>8<br>9                           | 15<br>15<br>14<br>14<br>14            | 34<br>36<br>32<br>30<br>28              | 52<br>45<br>40<br>46<br>80                | 84<br>69<br>62<br>57<br>61                | 74<br>68<br>67<br>74<br>77               | 93<br>80<br>73<br>71<br>76                | 150<br>136<br>116<br>99<br>83             | 101<br>81<br>68<br>59<br>53               | 34<br>31<br>29<br>28<br>27            | 35<br>29<br>28<br>29<br>26            | 17<br>19<br>18<br>16<br>15            | 12<br>12<br>12<br>12<br>12            |
| 11<br>12<br>13<br>14<br>15                 | 15<br>14<br>15<br>34<br>52            | 28<br>30<br>29<br>26<br>25              | 89<br>95<br>88<br>68<br>55                | 80<br>78<br>67<br>59<br>55                | 78<br>72<br>71<br>68<br>62               | 70<br>65<br>74<br>81<br>76                | 72<br>65<br>66<br>65<br>60                | 49<br>45<br>45<br>43<br>42                | 27<br>26<br>27<br>27<br>26            | 26<br>28<br>25<br>25<br>27            | 15<br>14<br>14<br>13<br>13            | 11<br>12<br>14<br>14<br>13            |
| 16<br>17<br>18<br>19<br>20                 | 51<br>36<br>28<br>25<br>22            | 24<br>23<br>22<br>34<br>42              | 49<br>46<br>51<br>87<br>90                | 53<br>50<br>55<br>101<br>158              | 55<br>52<br>51<br>51<br>50               | 69<br>62<br>57<br>54<br>52                | 57<br>78<br>103<br>96<br>84               | 43<br>41<br>39<br>38<br>46                | 25<br>24<br>23<br>23<br>22            | 25<br>23<br>21<br>19<br>18            | 13<br>13<br>12<br>12<br>12            | 12<br>12<br>17<br>24<br>26            |
| 21<br>22<br>23<br>24<br>25                 | 20<br>20<br>20<br>19                  | 46<br>49<br>42<br>36<br>36              | 72<br>58<br>50<br>50<br>120               | 146<br>123<br>119<br>103<br>87            | 50<br>50<br>55<br>70<br>79               | 51<br>51<br>50<br>49<br>47                | 75<br>68<br>61<br>60<br>67                | 57<br>54<br>49<br>44<br>41                | 22<br>24<br>26<br>26<br>25            | 17<br>17<br>16<br>15                  | 11<br>11<br>12<br>12<br>11            | 20<br>20<br>22<br>18<br>14            |
| 26<br>27<br>28<br>29<br>30<br>31           | 24<br>29<br>28<br>25<br>22<br>21      | 36<br>44<br>47<br>41<br>37              | 155<br>126<br>97<br>76<br>65<br>59        | 62<br>58<br>58<br>58<br>62<br>64          | 75<br>70<br>66                           | 46<br>45<br>54<br>71<br>71<br>97          | 69<br>60<br>57<br>58<br>54                | 38<br>38<br>37<br>35<br>33<br>31          | 23<br>23<br>22<br>21<br>20            | 15<br>17<br>16<br>16<br>15            | 11<br>12<br>13<br>13<br>12<br>12      | 13<br>13<br>13<br>13<br>13            |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 701<br>22.6<br>52<br>14<br>.73<br>.85 | 971<br>32.4<br>49<br>21<br>1.05<br>1.17 | 2205<br>71.1<br>155<br>34<br>2.31<br>2.66 | 2596<br>83.7<br>158<br>50<br>2.72<br>3.14 | 1840<br>65.7<br>81<br>50<br>2.13<br>2.22 | 2418<br>78.0<br>196<br>45<br>2.53<br>2.92 | 2553<br>85.1<br>153<br>54<br>2.76<br>3.08 | 1571<br>50.7<br>109<br>31<br>1.65<br>1.90 | 786<br>26.2<br>35<br>20<br>.85<br>.95 | 722<br>23.3<br>39<br>15<br>.76<br>.87 | 418<br>13.5<br>19<br>11<br>.44<br>.50 | 435<br>14.5<br>26<br>11<br>.47<br>.53 |

CAL YR 1986 TOTAL 13114 MEAN 35.9 MAX 155 MIN 12 CFSM 1.17 IN. 15.83 WTR YR 1987 TOTAL 17216 MEAN 47.2 MAX 196 MIN 11 CFSM 1.53 IN. 20.79

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial record stations.

Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

|                |                                                     |                                                                                                                                                                                                                                                                                                                                      |                                        |                        | Annu     | al Maximum             | aximum                            |  |
|----------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|----------|------------------------|-----------------------------------|--|
| Station<br>No. | Station name                                        | Location                                                                                                                                                                                                                                                                                                                             | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date     | Gage<br>height<br>(ft) | Discharge<br>(ft <sup>3</sup> /s) |  |
|                |                                                     | Hackensack River b                                                                                                                                                                                                                                                                                                                   | pasin                                  |                        |          |                        |                                   |  |
| *01378385      | Tenakill Brook at<br>Closter, NJ                    | Lat 40°58'29", long 73°58'06,<br>Bergen County, Hydrologic Unit<br>02030103, at bridge on High<br>Street in Closter, 0.7 mi<br>upstream from mouth. Datum of<br>gage is 23.85 ft above National<br>Geodetic Vertical Datum of 1929.                                                                                                  | 8.56                                   | 1965-87                | 4-04-87  | b2.29                  | 460                               |  |
| *01378590      | Metzler Brook at<br>Englewood, NJ                   | Lat 40°54'29", long 73°59'13",<br>Bergen County, Hydrologic Unit<br>02030103, at bridge on Lantana<br>Avenue in Englewood, and 1.6<br>mi upstream from mouth. Datum<br>of gage is 43.10 ft above<br>National Geodetic Vertical<br>Datum of 1929.                                                                                     | 1.54                                   | 1965-87                | 11-21-86 | b1.55                  | 94.0                              |  |
|                |                                                     | Passaic River b                                                                                                                                                                                                                                                                                                                      | asin                                   |                        |          |                        |                                   |  |
| 01378690       | Passaic River near<br>Bernardsville, NJ             | Lat 40°44'03", long 74°32'26",<br>Somerset County, Hydrologic Uni<br>02030103, at bridge on U.S.<br>Route 202, 1.8 mi northeast<br>of Bernardsville, and 3.0 mi<br>upstream from Great Brook.<br>Datum of gage is 238.07 ft<br>above National Geodetic<br>Vertical Datum of 1929.                                                    | 8.83<br>t                              | 1968-76‡,<br>1977-87   | 4-05-87  | b13.57                 | 700                               |  |
| 01379845       | Rockaway River<br>at Warren Street,<br>at Dover, NJ | Lat 40°53'08", long 74°33'36", Morris County, Hydrologic Unit 02030103, on left bank, 100 ft upstream from bridge on Warren Street, in Dover, 4.0 mi west of Denville and 6 mi south- east of Lake Hopatcong. Datum of gage is 561.83 ft above National Geodetic Vertical Datum of 1929.                                             | 52.1                                   | 1981-87                | 4-05-87  | 6.25                   | 1,600                             |  |
| 01387880       | Pond Brook at<br>Oakland, NJ                        | Lat 41°01'36", long 74°14'04", Bergen County, Hydrologic Unit 02030103, at bridge on NJ Route 208 in Oakland, 0.2 mi upstream from former site at Franklin Avenue (prior to October 1975), 0.6 mi upstream from mouth, and 1.5 mi northwest of Frnakli Lakes. Datum of gage is 276.97 above National Geodetic Vertica Datum of 1929. | n<br>ft                                | 1968-71,<br>1976-86    | 4-04-87  | 2.46                   | 490                               |  |

|                |                                                                |                                                                                                                                                                                                                                                                                                                |                           |                        | Ann      | ual Maximum            |                                   |
|----------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|----------|------------------------|-----------------------------------|
| Station<br>No. | Station name                                                   | Location                                                                                                                                                                                                                                                                                                       | Drainage<br>area<br>(mi²) | Period<br>of<br>record | Date     | Gage<br>height<br>(ft) | Discharge<br>(ft <sup>3</sup> /s) |
|                |                                                                | Passaic River basin                                                                                                                                                                                                                                                                                            | Continued                 |                        |          |                        |                                   |
| 01389030       | Preakness (Singac)<br>Brook near<br>Preakness, NJ              | Lat 40°56'55", long 74°13'25",<br>Passaic County, Hydrologic Unit<br>02030103, at bridge on Ratzer<br>Road, 1.0 mi north of Preakness,<br>and 2.0 mi upstream from<br>Naachtpunkt Brook. Datum of<br>gage is 230.8 ft above National<br>Geodetic Vertical Datum of 1929.                                       |                           | 1979-87                | 4-04-87  | b-unknown              | e465                              |
| 01389534       | Peckman River at<br>Ozone Avenue, at<br>Verona, NJ             | Lat 40°50'42", long 74°14'09",<br>Passaic County, Hydrologic Unit<br>02030103, at bridge on Ozone<br>Avenue in Verona, 4.0 mi west<br>of Clifton and 1.0 mi southwest<br>of Cedar Grove Reservoir.<br>Datum of gage is 300.08 ft above<br>National Geodetic Vertical<br>Datum of 1929.                         | 4.45                      | 1945,<br>1979-87       | 9-13-87  | 6.14                   | 3,000                             |
| 01389765       | Molly Ann Brook at<br>North Haledon, NJ                        | Lat 40°57'11", long 74°11'07",<br>Passaic County, Hydrologic Unit<br>02030103, at bridge on Overlook<br>Avenue in North Haldeon, 1.5<br>mi west of Hawthorne and 0.5<br>mi upstream from Oldham Pond<br>Dam. Datum of gage is 209.68 f<br>above National Geodetic Vertica<br>Datum of 1929.                    | 3.89                      | 1945,<br>1979-87       | 11-21-86 | 6.66                   | 630                               |
| 01389900       | Fleischer Brook<br>at Market<br>Street, at Elmwood<br>Park, NJ | Lat 40°53'57", long 74°06'54",<br>Bergen County, Hydrologic Unit<br>02030103, at culvert on Market<br>Street in Elmood Park (formerly<br>East Paterson), and 2.0 mi upst<br>from mouth. Datum of gage is<br>35.31 ft above National Geodeti<br>Vertical Datum of 1929.                                         |                           | 1967-87                | 9-13-87  | 2.73                   | 153                               |
| *01390450      | Saddle River at<br>Upper Saddle<br>River, NJ                   | Lat 41°03'32", long 74°05'44",<br>Bergen County, Hydrologic Unit<br>02030103, at culvert on Lake<br>Street in Upper Saddle River,<br>and 1.3 mi downstream from Pine<br>Brook. Datum of gage is 186.11<br>ft above National Geodetic<br>Vertical Datum of 1929.                                                | 10.9                      | 1966-87                | 4-04-87  | 4.46                   | 1,650                             |
| 01390810       | Hohokus Brook at<br>Allendale, NJ                              | Lat 41°01'37", long 74°08'44",<br>Bergen County, Hydrologic Unit<br>02030103, at bridge on Brooksid<br>Avenue in Allendale, and 0.2 mi<br>downstream from Valentine Broo<br>Datum of gage is 277.46 ft abo<br>National Geodetic Vertical<br>Datum of 1929.                                                     | k.                        | 1969-87                | 4-04-87  | 6.00                   | 500                               |
| 01390900       | Ramsey Brook at<br>Allendale, NJ                               | Lat 41°01'44", long 74°08'07",<br>Bergen County, Hydrologic Unit<br>02030103, at bridge on Brooksid<br>Avenue in Allendale and 0.6 mi<br>upstream from Hohokus Brook.<br>Datum of gage is 270.79 ft<br>above National Geodetic Vertica<br>Datum of 1929.                                                       |                           | 1975-87                | 4-04-87  | 3.31                   | 350                               |
| 01392500       | Second River at<br>Belleville, NJ                              | Lat 40°47'17", long 74°10'19",<br>Essex County, Hydrologic Unit<br>02030103, on Mill Street in<br>Branch Brook Park at Belleville<br>300 ft downstream from Franklin<br>Avenue, and 1,100 ft downstrea<br>from Hendricks Pond dam. Datum<br>of gage is 62.6 ft above Nation<br>Geodetic Vertical Datum of 1929 | m<br>al                   | 1937-64‡,<br>1963-87   | 11-26-86 | 6.15                   | 2,480                             |

|                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |                           |                                              | Annu     | al Maximum             |                                   |
|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------|----------|------------------------|-----------------------------------|
| Station<br>No. | Station name                                                       | Location                                                                                                                                                                                                                                                                                                                                                            | Drainage<br>area<br>(mi²) | Period<br>of<br>record                       | Date     | Gage<br>height<br>(ft) | Discharge<br>(ft <sup>3</sup> /s) |
|                |                                                                    | Raritan River ba                                                                                                                                                                                                                                                                                                                                                    | sin                       |                                              |          |                        |                                   |
| 01397500       | Walnut Brook near<br>Flemington, NJ                                | Lat 40°30'55", long 74°52'52",<br>Hunterdon County, Hydrologic<br>Unit 02030105, bank 1.2 mi<br>northwest of Flemington,<br>and 2.3 mi upstream from<br>mouth. Datum of gage is<br>267.33 ft above National<br>Geodetic Vertical Datum<br>of 1929.                                                                                                                  | 2.24                      |                                              | 11-26-86 | 3.42                   | 715                               |
| 01399690       | South Branch<br>Rockaway Creek at<br>Whitehouse Station            | Lat 40°37'24", long 74°46'01",<br>Hunterdon County, Hydrologic<br>Unit 02030105, on right<br>upstream wingwall of bridge<br>on U.S. Route 22, 0.6 mi<br>north of Whitehouse Station,<br>0.9 mi west of Whitehouse,<br>and 0.3 mi upstream from mouth.                                                                                                               |                           | 1977-76‡<br>1987                             | 4-04-87  | 10.34                  | 890                               |
| 01399700       | Rockaway Creek at<br>Whitehouse, NJ                                | Lat 40°37'55", long 74°44'11",<br>Hunterdon County, Hydrologic<br>Unit 02030105, on right bank<br>at bridge on Lamington Road,<br>1.4 mi northeast of Whitehouse,<br>and 1.8 mi upstream from mouth.<br>Datum of gage is 99.64 ft.<br>National Geodetic Vertical<br>Datum of 1929.                                                                                  | 37.1                      | 1959-62,<br>1964-65,<br>1977-84‡,<br>1985-87 | 4-04-87  | 7.27                   | 2,280                             |
| 01399830       | North Branch<br>Raritan River<br>at North Branch,<br>NJ            | Lat 40°36'00", long 74°40'27",<br>Somerset County, Hydrologic<br>Unit 02030105, on right<br>bank 5 ft upstream from<br>bridge on State Highway 28<br>in North Branch, 0.1 mi south<br>of River Brook, and 3.6 mi<br>upstream from confluence with<br>South Branch Raritan River.<br>Datum of gage is 56.94 ft<br>above National Geodetic<br>Vertical Datum of 1929. | 174                       | 1977-81‡,<br>1982-87                         | 12-03-86 | 12.47                  | 7,800                             |
| 01400630       | Millstone River at<br>Southfield Road,<br>near Grovers Mill,<br>NJ | Lat 40°18'12", long 74°34'33", Mercer County, Hydrologic Unit 02030105, at bridge on Southfield Road, 0.2 mi southeast at Grovers Mill, 3.5 mi southwest of Cranbury, and 3.0 mi upstream of Bear Brook. Datum of gage is 62.63 ft above National Geodetic Vertical Datum of 1929.                                                                                  | 41.0                      | 1971,75,<br>1979-87                          | 7-03-87  | 6.90                   | 1,200                             |
| 01400730       | Millstone River<br>at Plainsboro, NJ                               | Lat 40°19'27", long 74°36'51", Mercer County, Hydrologic Unit 02030105, 30 ft upstream from railroad bridge on AMTRAK (former Penn Central) mainline, 100 ft downstream from Cranbury Brook, 0.2 mi upstream from Beas Brook, and 0.9 mi southwest of Plainsboro. Datum of gage is 53.41 ft above National Geodetic Vertical Datum of 1929.                         |                           | 1965-75‡<br>1976-87                          | 7-04-87  | 6.14                   | <b>1,860</b>                      |
| 01400775       | Bear Brook at Route<br>535, near Locust<br>Corner, NJ              | Lat 40°16'41", long 74°34'39" Mercer County, Hydrologic Unit 02030105, at bridge on State Route 535, 0.9 mi southwest of Locust Corner, 2.0 mi east of Hightstown, and 4.2 mi above mouth. Datum of gage is 73.75 ft above National Geodetic Vertical Datum of 1929.                                                                                                | 6,69                      | 1971,75,<br>1979-87                          | 7-03-87  | b7.43                  | 1,190                             |

|                |                                                             |                                                                                                                                                                                                                                                                                                         |                           |                        | Annua   | al Maximum             |                                   |
|----------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------|------------------------|-----------------------------------|
| Station<br>No. | Station name                                                | Location                                                                                                                                                                                                                                                                                                | Drainage<br>area<br>(mi²) | Period<br>of<br>record | Date    | Gage<br>height<br>(ft) | Discharge<br>(ft <sup>3</sup> /s) |
|                |                                                             | Raritan River basin0                                                                                                                                                                                                                                                                                    | continued                 |                        |         |                        |                                   |
| 01400795       | Bear Brook at Route<br>571, near Grovers<br>Mill, NJ        | Lat 40°17'41", long, 74°35'34", Mercer County, Hydrologic Unit 02030105, at bridge on Route 571 (Princeton - Hightstown Road), 1.2 mi upstream of Grovers Mill Pond, 1.4 mi east of Princeton Junction, and 2.9 mi west of U.S. Route 130 and Hightstown.                                               | 9.28                      | 1986-87                | 7-03-87 | 10.95                  | 880                               |
| 01400822       | Little Bear Brook<br>at Penns Neck, NJ                      | Lat 40°19'21", long 74°37'37", Mercer County, Hydrologic Unit 02030'105, at downstream side of bridge on Alexander Road, 0.9 mi southeast of Penns Neck, 2.8 mi southwest of Plainsboro and 1.0 mi above mouth. Datum of gage is 53.96 ft above National Geodetic Vertical Datum of 1929.               | 1.84                      | 1971,1975<br>1979-87   | 7-03-87 | 3.27                   | 107                               |
| 01400900       | Stony Brook at<br>Glenmoore, NJ                             | Lat 40°21'55", long 74°47'14",<br>Mercer County, Hydrologic Unit<br>02030105, at highway bridge on<br>Spur State Route 518, 200 ft<br>east of tracks of CONRAIL, at<br>Glenmoore, and 2.0 mi southwest<br>of Hopewell. Datum of gage is<br>159.1 ft above National<br>Geodetic Vertical Datum of 1929   | 17.0                      | 1957-87                | 7-03-87 | b7.96                  | 3,075                             |
| *01400930      | Baldwin Creek at<br>Pennington, NJ                          | Lat 40°20'18", long 74°47'50",<br>Mercer County, Hydrologic Unit<br>02030'105, at bridge on State<br>Route 31, 0.8 mi north of<br>Pennington, and 0.9 mi upstream<br>from Baldwin Lake dam. Datum<br>of gage is 161.69 ft above<br>National Geodetic Vertical<br>Datum of 1929.                         | 1.99                      | 1960-87                | 4-04-87 | 7.05                   | 670                               |
| 01400950       | Hart Brook near<br>Pennington, NJ                           | Lat 40°19'17", long 74°45'38",<br>Mercer County, Hydrologic Unit<br>02030105, at culvert on Federal<br>City Road, 1.6 mi upstream of<br>mouth, and 1.7 mi southeast of<br>Pennington. Datum of gage after<br>July 1, 1975 is 163.32 ft above<br>National Geodetic Vertical<br>Datum of 1929.            | 0.57                      | 1968-87                | 7-14-87 | 5.27                   | 470                               |
| 01401160       | Duck Pond Run<br>near Princeton<br>Junction, NJ             | Lat 40°17"47", long 74°38'47",<br>Mercer County, Hydrologic Unit<br>02030105, on right bank upstream<br>from bridge on Clarksville Road<br>1.5 mi southwest of Princeton<br>Junction, and 4.0 mi south of<br>Princeton. Datum of gage is<br>72.50 ft above National Geodetic<br>Vertical Datum of 1929. |                           | 1980-87                | 7-03-87 | 5.95                   | 213                               |
| 01401301       | Millstone River<br>at Carnegie<br>Lake, at<br>Princeton, NJ | Lat 40°22'11", long 74°37'15",<br>Middlesex County, Hydrologic<br>Unit 02030105, at right end<br>of Carnegie Lake dam, 2.5 mi<br>northeast of Princeton.<br>Datum of gage is 50.00 ft<br>above National Geodetic<br>Vertical Datum of 1929.                                                             | 159                       | 1977-87,               | 7-03-87 | 4.81                   | 5,640                             |
| 01401595       | Rock Brook near<br>Blawenburg, NJ                           | Lat 40°25'47", long 74°41'05",<br>Somerset County, Hydrologic<br>Unit 02030105, at bridge on<br>Burnt Hill Road, 0.7 mi upstrea<br>from mouth, 1.0 mi northeast of<br>Blawenburg, and 2.8 mi northwes<br>of Rocky Hill. Datum of gage<br>is 63.45 ft above National<br>Geodetic Vertical Datum of 1929  | t                         | 1967-87                | 4-04-87 | b5.38                  | 1,480                             |

| E+. (T)        | Service grant des                                                  |                                                                                                                                                                                                                                                                                                                                             |                                        |                        | Annu                                                                                                                                             | al Maximum                                                                                                     |                                                                 |
|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Station<br>No. | Station name                                                       | Location                                                                                                                                                                                                                                                                                                                                    | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date                                                                                                                                             | Gage<br>height<br>(ft)                                                                                         | Discharge<br>(ft <sup>3</sup> /s)                               |
|                |                                                                    | Raritan River basin(                                                                                                                                                                                                                                                                                                                        | Continued                              |                        |                                                                                                                                                  |                                                                                                                |                                                                 |
| 01401600       | Beden Brook near<br>Rocky Hill, NJ                                 | Lat 40°24'52", long 74°39'02",<br>Somerset County, Hydrologic<br>Unit 02030105, at bridge on<br>U.S. Route 206, 0.7 mi upstream<br>from Pike Run, 1.2 mi northwest<br>of Rocky Hill, and 4.6 mi north<br>of Princeton. Datum of gage is<br>38.09 ft above National Geodetic<br>Vertical Datum of 1929.                                      | 27.6                                   | 1967-87                | 4-04-87                                                                                                                                          | b10.20                                                                                                         | 3,500                                                           |
| 01401870       | Six Mile Run<br>near<br>Middlebush, NJ                             | Lat 40°28'12", long 74°32'42",<br>Somerset County, Hydrologic<br>Unit, 02030105, at bridge on<br>South Middlebush Road, 1.6 mi<br>upstream from mouth, and 2.1<br>mi south of Middlebush. Datum<br>of gage is 39.91 ft above<br>National Geodetic Vertical<br>Datum of 1929.                                                                | 10.7                                   | 1966-87                | 7-14-87                                                                                                                                          | 8.48                                                                                                           | 2,850                                                           |
| 01403395       | Blue Brook at<br>Seeleys Pond<br>Dam, near Berkeley<br>Heights, NJ | Lat 40°40'02", long 74°24'13",<br>Union County, Hydrologic Unit<br>02030105, on wall on right<br>bank, upstream from Seeleys<br>Pond spillway, 300 ft north<br>of Scotch Plains, 1.0 mi west<br>of Mountainside, and 4.5 mi<br>southeast of Berkeley Heights.<br>Datum of gage is 202.05 ft<br>National Geodetic Vertical<br>Datum of 1929. | 3.59                                   | 1973,<br>1981-87       | 4-04-87                                                                                                                                          | 4.84                                                                                                           | 256                                                             |
| 01403500       | Green Brook at<br>Plainfield, NJ                                   | Lat 40°36'53", Long 74°25'55",<br>Union County, Hydrologic Unit<br>02030105, on left bank 20 ft<br>downstream from bridge on<br>Sycamore Avenue in Plainfield<br>and 1.0 mi upstream from Stony<br>Brook. Datum of gage is 70.37<br>ft above National Geodetic<br>Vertical Datum of 1929.                                                   | 9.75                                   | 1938-84‡<br>1985-87    | 11-26-86                                                                                                                                         | 3.80                                                                                                           | 957                                                             |
|                |                                                                    | Navesink River                                                                                                                                                                                                                                                                                                                              | basin                                  |                        |                                                                                                                                                  |                                                                                                                |                                                                 |
| 01407290       | Big Brook at<br>Marlboro, NJ                                       | Lat 40°19'10", long 74°12'52",<br>Monmouth County, Hydrologic<br>Unit 02030'104, downstream side<br>of bridge on Hillsdale Road,<br>1.7 mi east of Marlboro, and<br>3.0 mi northwest of Colts Neck.                                                                                                                                         | 6.42                                   | 1980-87                | 1-02-87                                                                                                                                          | b8.36                                                                                                          | 1,030                                                           |
|                |                                                                    | Manasquan River                                                                                                                                                                                                                                                                                                                             | basin                                  |                        |                                                                                                                                                  |                                                                                                                |                                                                 |
| *01407830      | Manasquan River<br>near Georgia, NJ                                | Lat 40°12'36", long 74°16'41",<br>Monmouth County, Hydrologic<br>Unit 02040301, at culvert on<br>Jacksons Mill Road near Georgia<br>and 0.5 mi upstream from Debois<br>Creek. Datum of gage is 70.47<br>ft above National Geodetic<br>Vertical Datum of 1929.                                                                               |                                        | 1969-87                | 8-10-87<br>4-10-83<br>1-04-82<br>2-20-81<br>4-10-80<br>1-21-79<br>11-08-77<br>2-25-77<br>8-10-76<br>12-17-74<br>12-21-73<br>11-15-72<br>11-30-71 | 13.34<br>11.61<br>11.17<br>10.26<br>9.78<br>10.63<br>10.81<br>11.28<br>12.12<br>12.61<br>9.39<br>9.00<br>10.03 | 705 d603 d548 d445 d385 d565 d503 d565 d673 d742 d342 d305 d415 |
| *01408015      | Mingamahone Brook<br>at Farmingdale,<br>NJ                         | Lat 40°11'38", long 74°09'42",<br>Monmouth County, Hydrologic<br>Unit 02040301, at bridge on<br>Belmar Road in Farminodale,<br>and 3.0 mi upstream from<br>mouth. Datum of gage is 48.64<br>ft above National Geodetic<br>Vertical Datum of 1929.                                                                                           | 6.20                                   | 1969-87                | 8-28-71                                                                                                                                          | 11.54                                                                                                          | d595<br>189                                                     |

|                |                                              |                                                                                                                                                                                                                                                                                                                                                                         |                                       |                           | Annu     | Annual Maximum         |                                   |  |
|----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|----------|------------------------|-----------------------------------|--|
| Station<br>No. | Station name                                 | Location                                                                                                                                                                                                                                                                                                                                                                | Drainag<br>area<br>(mi <sup>2</sup> ) | e Period<br>of<br>record  | Date     | Gage<br>height<br>(ft) | Discharge<br>(ft <sup>3</sup> /s) |  |
|                |                                              | Manasquan River basin-                                                                                                                                                                                                                                                                                                                                                  | -Continu                              | ied                       |          |                        |                                   |  |
| *01408030      | Manasquan River<br>at Allenwood, NJ          | Lat 40°08'35", long 74°07'03",<br>Monmouth County, Hydrologic<br>Unit 02040301, at bridge on<br>Hospital Road at Allenwood,<br>and 1.5 mi downstream from<br>Mill Run. Datum of gage is<br>3.56 ft above National Geodetic<br>Vertical Datum of 1929.                                                                                                                   | 63.9                                  | 1969-87                   | 8-10-87  | b9.60                  | 1,950                             |  |
|                |                                              | Mullica River b                                                                                                                                                                                                                                                                                                                                                         | asin                                  |                           |          |                        |                                   |  |
| *01409375      | Mullica River<br>near Atco, NJ               | Lat 39°47'08", long 74°51'38",<br>Burlington County, Hydrologic<br>Unit 02040301, on left bank of<br>small lake 50 ft downstream fro<br>bridge on Jackson-Medford Road,<br>0.7 mi north of intersection of<br>State Route 534 with Jackson-<br>Medford Road, and 1.6 mi east<br>of Atco. Datum of gage is 102.<br>ft above National Geodetic<br>Vertical Datum of 1929. |                                       | 1975-87<br>(discontinued) | 8-12-87  | b5.01                  | 28                                |  |
| *01409403      | Wildcat Branch<br>at Chesilhurst, NJ         | Lat 39°44'04", long 74°51'33",<br>Camden County, Hydrologic Unit<br>02040301, at culvert on Old<br>White Horse Pike, 0.5 mi east<br>of Chesilhurst, and 0.9 mi<br>north of Waterford Works.<br>Datum of gage is 98.98 ft<br>National Geodetic Vertical<br>Datum of 1929.                                                                                                | 1.03                                  | 1975-87<br>(discontinued) | 12-27-86 | 5.07                   | 11.5                              |  |
| *01409409      | Blue Anchor Brook<br>near Blue<br>Anchor, NJ | Lat 39°41'17", long 74°51'00",<br>Camden County, Hydrologic<br>Unit 02040302, at bridge on<br>Spring Garden Road, 4,000 ft<br>upstream of Route 30 highway<br>bridge, 1.8 mi east of Blue<br>Anchor and 2.2 mi upstream<br>from mouth. Datum of gage is<br>84.94 ft above National<br>Geodetic Vertical Datum of 1929                                                   | 3.01                                  | 1975-87<br>(discontinued) | unknown  | f                      | <12                               |  |
|                |                                              | Great Egg Harbor Ri                                                                                                                                                                                                                                                                                                                                                     | ver bas                               | in                        |          |                        |                                   |  |
| 01410810       | Fourmile Branch<br>at New Brooklyn,<br>NJ    | Lat 39°41'47", long 74°56'25",<br>Camden County, Hydrologic Unit<br>02040302, on left bank 70 ft<br>upstream from bridge on Malaga<br>Road, 0.3 mi northeast of New<br>Brooklyn, 0.3 mi upstream from<br>mouth. Datum of gage is 101.04<br>ft above National Geodetic<br>Vertical Datum of 1929.                                                                        | 7.74                                  | 1972-79‡,<br>1980-87      | 12-27-86 | 4.75                   | 113                               |  |

<sup>\*</sup> Also a low-flow partial-record station.
\*\* Also a tidal crest-stage station.

† Discharge not determined.

† Operated as a continuous-record gaging station.

< Less than the follwoing figure.

b Downstream side of bridge.

c Not previously published.

d Revised.

e Estimated.

f Peak gage height below recordable level.

#### Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1987 Measurements Drainage Period Discharge (ft<sup>3</sup>/s) Date Station Station Name Location of No. record Hudson River basin Lat 41°06'43", long 74°35'21", Sussex County, Hydrologic Unit 02020007, at bridge on Franklin Avenue (Route 631) at Franklin, 100 ft downstream of Franklin Pond and 0.5 mi northeast of State 1959-64 1982-83, Wallkill River at 01367700 29.4 9-23-87 122 Franklin, NJ 1985, 1987 Route 23. Passaic River basin Lat 40°43'09", long 74°31'52", Somerset County, Hydrologic Unit 02030103, 800 ft downstream from dam on Osborn Pond, 0.9 mi above Penns Brook, and 1.3 mi northeast of Basking Ridge. 5-29-87 9-03-87 01378700 Passaic River at 10.0 1961-63, 5.7 1968, outlet of Osborn Pond at Osborn Mills, NJ 7-23-87 9-03-87 01379200 Lat 40°56", long 74°31'26", Morris County, Hydrologic Unit 02030103, at bridge on King 1962-67, 1973-75, 1986-87 Dead River near Millington, NJ 20.8 11 7.4 George Road (Spur State Route 527), 100 ft upstream from mouth, 2.0 mi south of Milling-ton, and 4.2 mi south of Basking Ridge. Lat 40°48'02", long 74°21'34", Morris County, Hydrologic Unit 02030103, at bridge on State Route 10, 0.6 mi southeast of Hanover, 3.5 mi southeast of Whippany, and 4.8 mi above Rockaway River. 01379570 Passaic River at 1961-63, 9-03-87 79 128 Hanover, NJ 1968 Lat 40°51'42, long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46, 0.9 mi west of Pine Brook, and 1.1 mi upstream of Whippany River. 01381200 Rockaway River 136 1963-73 33 151 7-23-87 at Pine Brook, -24-87 1979-81 1983-87 Whippany River near Pine Brook, NJ 01381800 C1-06-83 7-23-87 9-24-87 178 50 58 Lat 40°50'42", long 74°20'51", 1963-68, 68.5 Morris County, Hydrologic Unit 02030103, at bridge on Edwards Road, 0.3 mi upstream from mouth, and 1.3 mi south-west of Pine Brook. 1978, 1979-81 1983-87 Lat 40°53'50", long 74°16'23", Essex County, Hydrologic Unit 02030103, at bridge on Two Bridges Road, just above confluence with Pompton River, 0.3 mi northeast of Two Bridges and 2.6 mi northwest of Little 01382000 Passaic River at 1963-68, 1983-84, 1986-87 194 361 6-30-87 Two Bridges, NJ Lat 40°53'52", long 74°16'22", Essex County, Hydrologic Unit 02030103, at bridge on Two Bridges Road, just upstream of mouth, 0.3 mi northeast of Two Bridges and 2.6 mi northeast of Little Falls. 01389000 Pompton River at 372 1963-68 130 129 Two Bridges, NJ 1984, 1986-87 9-24-87

|                |                                                               |                                                                                                                                                                                                                                                       | Danimon                   | Period                                            | Measu                                     | rements                           |
|----------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------|
| Station<br>No. | Station Name                                                  | Location                                                                                                                                                                                                                                              | Drainage<br>area<br>(mi²) | of<br>record                                      | Date                                      | Discharge<br>(ft <sup>3</sup> /s) |
|                |                                                               | Passaic River basinC                                                                                                                                                                                                                                  | ontinued                  |                                                   |                                           |                                   |
| 01389100       | Singac Brook at<br>Singac, NJ                                 | Lat 40°53'57", long 74°15'57", Passaic County, Hydrologic Unit 02030103, at bridge on Fairfield Road, between U.S. Routes 80 and 46, 60 ft upstream from mouth, 1.2 mi northwest of Signac and 1.8 mi northwest of Little Falls.                      | 11.1                      | 1963-67,<br>1983-84,<br>1986-87                   | 7-23-87<br>9-24-87                        | 26<br>23                          |
| 01389600       | Peckman River at<br>McBride Avenue<br>at West Paterson,<br>NJ | Lat 40°53'32", long 74°12'43",<br>Passaic County, Hydrologic<br>Unit 02030103, at bridge on<br>McBride Avenue, 0.2 mi upstream<br>from mouth, 0.7 mi west of West<br>Paterson and 3.2 mi southwest<br>of Paterson.                                    | 10.1                      | 1963-67,<br>1983-84,<br>1986-87                   | 10-22-86<br>6-18-87<br>7-23-87<br>9-24-87 | 10<br>12<br>17<br>21              |
|                |                                                               | Raritan River bas                                                                                                                                                                                                                                     | in                        |                                                   |                                           |                                   |
| 01396280       | South Branch<br>Raritan River at<br>Middle Valley,<br>NJ      | Lat 40°45'40", long 74°49'18",<br>Morris County, Hydrologic Unit<br>02030105, at bridge on Middle<br>Valley Road, at Middle Valley,<br>200 ft northwest of West Mill<br>Road (State Route 513),<br>and 0.2 mi upstream of CONRAIL<br>railroad bridge. | 47.7                      | 1963-67,<br>1973,<br>1975,<br>1982-83,<br>1985-87 | 8-18-87                                   | 33                                |
| 01397290       | Assiscong Creek<br>at Bartles<br>Corners, NJ                  | Lat 40°32'23", long 74°50'52" Hunterdon County, Hydrologic Unit 02030105, at bridge on River Road, 0.3 mi upstream from mouth, 1.5 mi north of Flemington, and 2.8 mi west of Three Bridges.                                                          | 2.98                      | 1981-87                                           | 7-23-87<br>9-24-87                        | .92                               |
| 01397800       | Neshanic River<br>near Flemington,<br>NJ                      | Lat 40°28'46", long 74°51'29" Hunterdon County, Hydrologic Unit 02030105, at bridge on Kuhl Road, 200 ft downstream from confluence of First Neshanic River and Second Neshanic River, 1.4 mi south of Flemington, and 2.1 mi west of Reaville.       | 11.4                      | 1981-87                                           | 7-23-87<br>9-24-87                        | 3.2<br>.46                        |
| 01397900       | Third Neshanic<br>River near<br>Ringoes, NJ                   | Lat 40°27'31", long 74°52'05",<br>Hunterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>Eitts Road, 2.0 mi upstream<br>from mouth, 2.1 mi north of<br>Ringoes, and 3.0 mi southwest<br>of Reaville.                                          | 9.24                      | 1981-87                                           | 7-23-87<br>9-28-87                        | 6.0<br>1.3                        |
| 01398052       | Back Brook near<br>Reaville, NJ                               | Lat 40°27'32", long 74°49'24",<br>Hunterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>Manners Road, 0.6 mi upstream<br>from mouth, 0.8 mi northwest<br>of Wertsville, and 1.5 mi<br>southeast of Reaville.                                 | 11.4                      | 1981-87                                           | 7-23-87<br>9-28-87                        | 4.0<br>.94                        |
| 01398075       | Pleasant Run at<br>Centerville, NJ                            | Lat 40°32'17", long 74°45'17",<br>Hunterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>Old York Road in Centerville,<br>2.4 mi northwest of Neshanic<br>Station, 2.5 mi upstream from<br>mouth, and 2.7 mi northwest<br>of Three Bridges.   | 8.11                      | 1982-87                                           | 7-23-87<br>9-24-87                        | 1.9                               |
| 01398260       | North Branch<br>Raritan River<br>near Chester,<br>NJ          | Lat 40°46'16", long 74°34",<br>Morris County, Hydrologic<br>Unit 02030105, at bridge on<br>State Route 24, 0.8 mi upstream<br>from Burnett Brook,<br>and 3.8 mi east of Chester.                                                                      | 7.57                      | 1964-67,<br>1980-87                               | 8-18-87                                   | 3.6                               |

|                |                                           |                                                                                                                                                                                                                                                         | rainase                               |                                                       |                     | rements                           |
|----------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|---------------------|-----------------------------------|
| Station<br>No. | Station Name                              | Location                                                                                                                                                                                                                                                | rainage<br>area<br>(mi <sup>2</sup> ) | of<br>record                                          | Date                | Discharge<br>(ft <sup>3</sup> /s) |
|                |                                           | Raritan River basinCor                                                                                                                                                                                                                                  | ntinued                               |                                                       |                     |                                   |
| 01399700       | Rockaway Creek<br>near Whitehouse,<br>NJ  | Lat 40°37'49", long 74°44'11",<br>Hunterdon County, Hydrologic Unit<br>02030105, at bridge on Lamington<br>Road, 1.4 mi northeast of<br>Whitehouse, and 1.8 mi upstream<br>from mouth.                                                                  | 37.1                                  | 1959-62,<br>1964-65,<br>1973,<br>1977-84;<br>1986-87* | a9-16-86<br>8-18-87 | 12<br>20                          |
| 01400540       | Millstone River<br>near Manalapan,<br>NJ  | Lat 40°15'44", long 74°25'13",<br>Monmouth County, Hydrologic Unit<br>02030105, at bridge on State<br>Route 33, 1.3 mi west of<br>Manalapan, 5.5 mi east of<br>Hightstown and 8.4 mi upstream<br>of Rocky Brook.                                        | 7.37                                  | 1960-62,<br>1964,<br>1971-72,<br>1985,                | 8-26-87             | 5.9                               |
| 01400640       | Millstone River<br>at Grovers Mill,<br>NJ | Lat 40°18'48", long 74°35'22",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on Cranberry<br>Neck Road, 1.0 mi east of Grovers<br>Mill, 1.8 mi upstream from<br>Cranberry Brook, and 1.8 mi east o<br>Princeton Junction.                    | 42.6<br>f                             | 1959-62,<br>1964-65,<br>1971-72,<br>1986-87           | a9-22-86<br>8-25-87 | 21<br>25                          |
| *01400900      | Stony Brook at<br>Glenmore, NJ            | Lat 40°21'55", long 74°14", Mercer County, Hydrologic Unit 02030'105, at bridge on Pennington-Hopewell Road (State Route 518 Spur), at entrance to Hopewell Valley Country Club, 0.3 mi downstream of unnamed tributary and 2.6 mi north of Pennington. | 17.0                                  | 1957-62,<br>1964,<br>1969-71,<br>1985-87              | 8-13-87             | 2.0                               |
| *01400930      | Baldwin Creek at<br>Pennington, NJ        | Lat 40°20'18", long 74°47'50",<br>Mercer County, Hydrologic<br>Unit 02030105 at bridge on U.S.<br>Route 31, 450 ft downstream of<br>unnamed tributary, 0.4 mi north<br>of Pleasant Valley Road and<br>0.8 mi from Pennington.                           | 1.99                                  | 1957-59,<br>1963,<br>1965-69,<br>1972,<br>1985-87     | 8-13-87             | 1.0                               |
| *01400947      | Stony Brook at<br>Pennington, NJ          | Lat 40°19'50", long 74°46'05",<br>Mercer County, Hydrologic<br>Unit 02030105, 25 ft upstream<br>from dam on Stony Brook at<br>Old Mill Road, 1.3 mi east of<br>Pennington and 1.4 mi downstream<br>from Baldwin Creek.                                  | 26.7                                  | 1965-69,<br>1971-72,<br>1985-86                       | 8-13-87             | 5.3                               |
| 01400970       | Honey Branch near<br>Rosedale, NJ         | Lat 40°20'26", long 74°44'39",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Elm Ridge Road, 0.2 mi above<br>mouth, and 1.2 mi west of<br>Rosedale.                                                                                    | 3.83                                  | 1957-59,<br>1968-73,<br>1975,<br>1985-87              | 8-13-87             | .18                               |
| 01401100       | Stony Brook at<br>Clarksville, NJ         | Lat 40°18'34", long 74°40'52",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on State<br>Route 533 (Quaker Road) 600 ft<br>upstream of Duck Pond Run, 0.9 mi<br>north of Clarksville and 2.7 mi<br>southwest of Penns Neck.                  | 46.5                                  | 1959-62,<br>1964,<br>1987                             | 8-13-87             | 15                                |
| 01401520       | Beden Brook near<br>Нореwell, NJ          | Lat 40°23'02", long 74°44'28",<br>Mercer County, Hydrologic Unit<br>02030'105, at bridge on Aunt Molly<br>Road, 0.8 mi upstream from<br>Province Line Road and 1.2 mi east<br>of Hopewell.                                                              | 6.67                                  | 1965,<br>1987                                         | 8-14-87             | 1.44                              |
| 01401590       | Rock Brook at<br>Blawenberg, NJ           | Lat 40°24'40", long 74°42'10",<br>Somerset County, Hydrologic Unit<br>02030105, at bridge on Great Road,<br>0.3 mi north of Blawenburg, 1.7 mi<br>upstream of mouth and 3.7 mi west<br>Rocky Hill.                                                      |                                       | 1962-67,<br>1971-72,<br>1987                          | 8-13-87             | 3.7                               |

|                |                                              |                                                                                                                                                                                                                                                                      | Drainage                               | Period                                                           | Measu                                    | rements                           |  |
|----------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|------------------------------------------|-----------------------------------|--|
| Station<br>No. | Station Name                                 | Location                                                                                                                                                                                                                                                             | Drainage<br>area<br>(mi <sup>2</sup> ) | of<br>record                                                     | Date                                     | Discharge<br>(ft <sup>3</sup> /s) |  |
|                |                                              | Raritan River basin                                                                                                                                                                                                                                                  | Continued                              |                                                                  |                                          |                                   |  |
| 01401600       | Beden Brook near<br>Rocky Hill, NJ           | Lat 40°24'52", long 74°39'02",<br>Somerset County, Hydrologic<br>Unit 02030105, at bridge on<br>U.S. Route 206 and State Route<br>533, 0.7 mi upstream from Pike<br>Run, 1.2 mi northwest of Rocky<br>Hill and 4.6 mi north of<br>Princeton.                         | 27.6                                   | 1959-63,<br>1965-67,<br>1971-72,<br>1977,<br>1979-83,<br>1986-87 | 4-02-87<br>6-01-87<br>8-13-87<br>8-25-87 | 56<br>9.8<br>12<br>2.0            |  |
| 01404060       | Ambrose Brook at<br>Middlesex, NJ            | Lat 40°03", long 74°31'02",<br>Middlesex County, Hydrologic<br>Unit 02030105, at dam, 900 ft<br>upstream from bridge on State<br>Route 18 in Middlesex,<br>and 0.7 mi upstream from mouth.                                                                           | 13.9                                   | 1979-87                                                          | 7-23-87<br>9-24-87                       | 5.0<br>10                         |  |
| 01404180       | Mill Brook at<br>Highland Park,<br>NJ        | Lat 40°30'23", long 74°25'51",<br>Middlesex County, Hydrologic<br>Unit 02030105, at bridge on<br>Harrison Street in Highland<br>Park, 0.7 mi upstream from<br>mouth, and 0.9 mi northeast<br>of New Brunswick.                                                       | 1.41                                   | 1979-87                                                          | 7-23-87                                  | 10                                |  |
| 01405170       | Milford Brook at<br>Englishtown, NJ          | Lat 40°18'02", long 74°20'07",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>Conmack Road, 0.6 mi upstream<br>from McGellairds Brook, 1.2 mi<br>east of Englishtown, and 2.0 mi<br>southwest of Gordons Corner.                                   | 4.86                                   | 1982,<br>1984-87                                                 | 7-23-87<br>9-25-87                       | 2.0<br>2.7                        |  |
| 01405180       | McGellairds Brook<br>at Englishtown,<br>NJ   | Lat 40°18'06", long 74°21'26",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>Wilson Avenue in Englishtown,<br>0.8 mi downstream from Milford<br>Brook, 1.0 mi southeast of<br>Monmouth-Middlesex County line,<br>and 5.5 mi northwest of Freehold | 14.9                                   | 1982,<br>1984-87                                                 | 7-23-87<br>9-25-87                       | 10<br>11                          |  |
| 01405210       | Pine Brook at<br>Clarks Mills,<br>NJ         | Lat 40°18'58", long 74°19'51",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>Winthrop Drive, 1.3 mi east<br>of Clarks Mills, 1.9 mi up-<br>stream of Matchaponix Brook,<br>and 4.8 mi northwest of<br>Freehold.                                   | 4.66                                   | 1982,<br>1984-87                                                 | 7-23-87<br>9-25-87                       | 3.2<br>3.7                        |  |
| 01405240       | Matchaponix Brook<br>near Englishtown,<br>NJ | Lat 40°19'21", long 74°21'35",<br>Middlesex County, Hydrologic<br>Unit 0203105, at bridge on<br>Union Hill Road, 1.9 mi north<br>of Englishtown, 2.8 mi northwest<br>of Gordons Corner and 3.9 mi<br>upstream of Barclay Brook.                                      | 29.1                                   | 1979-87                                                          | 7-23-87<br>9-24-87                       | 30<br>36                          |  |
| 01405285       | Barclay Brook near<br>Englishtown, NJ        | Lat 40°20'53", long 74°21'27",<br>Middlesex County, Hydrologic<br>Unit 02030105, at bridge on<br>State Route 527 (Old Bridge-<br>Englishtown Road), 0.6 mi<br>south of Redshaw Corner, 0.9 mi<br>upstream from mouth, and 3.5 mi<br>north of Englishtown.            | 4.94                                   | 1979-87                                                          | 7-23-87                                  | 1.8                               |  |
| 01405300       | Matchaponix Brook<br>at Spotswood, NJ        | Lat 40 22'53", long 74°22'51",<br>Middlesex County, Hydrologic<br>Unit 02030105, 0.9 mi south-<br>east of Spotswood, 1.1 mi<br>upstream from confluence with<br>Manalapan Brook, and 2.3 mi<br>southwest of Old Bridge.                                              | 43.9                                   | 1952-67‡,<br>1968-87b                                            | 9-24-87                                  | 38                                |  |
| 01405335       | Manalapan Brook<br>near Manalapan,<br>NJ     | Lat 40 16'45", long 74°22'53",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>South Main Street, 1.8 mi<br>northeast of Manalapan, 1.8 mi<br>southwest of Englishtown, and<br>5.6 mi southeast of Jamesburg.                                       | 16.0                                   | 1979-87                                                          | 7-23-87<br>9-24-87                       | 12<br>15                          |  |

|               |                                                             |                                                                                                                                                                                                                                   | Danisas                                | Ponied                        | Measurements                   |                                   |
|---------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|--------------------------------|-----------------------------------|
| tation<br>No. | Station Name                                                | Location                                                                                                                                                                                                                          | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record        | Date                           | Discharge<br>(ft <sup>3</sup> /s) |
|               |                                                             | Raritan River BasinCo                                                                                                                                                                                                             | ntinued                                |                               |                                |                                   |
| 01406000      | Deep Run near<br>Browntown, NJ                              | Lat 40°22'30", long 74°18'14",<br>Middlesex County, Hydrologic<br>Unit 02030105, upstream from<br>highway bridge, 0.7 mi downstream<br>from the Middlesex-Monmouth County<br>line, and 1.8 mi south of Browntow                   | 8.07<br>,<br>in.                       | 1933-40‡,<br>1982,<br>1984-87 | 7-23-87<br>9-24-87             | 4.3<br>5.1                        |
|               |                                                             | Matawan Creek Basi                                                                                                                                                                                                                | n                                      |                               |                                |                                   |
| 01407012      | Gravelly Brook, at<br>Church Street at<br>Matawan, NJ       | Lat 40°4'27", long 74°05'18",<br>Monmouth County, Hydrologic Unit<br>02030104, at bridge on Church<br>Road, 0.5 mi east of intersection<br>of State Routes 34 and 79, and<br>0.9 mi upstream of the mouth.                        | 2.36                                   | 1987                          | 10-22-86<br>7-24-87<br>9-24-87 | 1.4<br>2.1<br>1.9                 |
| 01407026      | Wilkson Creek,<br>at Church Street,<br>at Matawan, NJ       | Lat 40°24'24", long 74°14'18",<br>Monmouth County, Hydrologic Unit<br>02030104, at bridge on Church<br>Street, 0.7 mi east of Matawan,<br>2.2 mi southeast of Keyport and<br>2.6 mi upstream of mouth.                            | 1.37                                   | 1987                          | 10-22-86<br>7-24-87<br>9-24-87 | 1.8<br>1.7<br>1.6                 |
|               |                                                             | Waackaack Creek Bas                                                                                                                                                                                                               | sin                                    |                               |                                |                                   |
| 01407070      | Waackaack Creek,<br>at Middle Road<br>near Keansburg,<br>NJ | Lat 40°25'23", long 74°08'12",<br>Monmouth County, Hydrologic Unit<br>02030104, at bridge on Middle Roa<br>at Community of Philips Mills, 1.4<br>mi south of Keansburg and 3.1 mi<br>upstream from mouth.                         | 4.3                                    | 1987                          | 10-22-86<br>7-24-87<br>9-24-87 | 2.0<br>3.3<br>4.2                 |
|               |                                                             | Compton Creek Bas                                                                                                                                                                                                                 | in                                     | 7                             |                                | 100                               |
| 01407102      | Town Brook, at<br>Church Street,<br>at New Monmouth,<br>NJ  | Lat 40°24'52", long 74°06'00",<br>Monmouth County, Hydrologic Unit<br>02030104, at bridge on Church<br>Street, at New Monmouth, 0.2 mi<br>upstream of mouth and 1.1 mi south<br>of Port Monmouth.                                 | 3.35                                   | 1987                          | 10-22-86<br>7-24-87<br>9-24-87 | 1.2<br>1.8<br>2.6                 |
|               |                                                             | Navesink Creek Bas                                                                                                                                                                                                                | sin                                    | J. S. Mr.                     |                                |                                   |
| 01407532      | Poricy Brook at<br>Red Bank, NJ                             | Lat 40°21'25", long 74°05'18" Monmouth County, Hydrologic Unit 02030104, at bridge on Navesink River Road, 200 ft downstream of Poricy Pond, 0.4 mi upstream of mouth and 1.0 mi northwest of Red Bank.                           | 2.5                                    | 1987                          | 10-22-86<br>7-24-87<br>9-25-87 | 1.0<br>1.5<br>1.5                 |
|               |                                                             | East Creek basi                                                                                                                                                                                                                   | 1                                      |                               |                                |                                   |
| 01407055      | East Creek at<br>North Centerville,<br>NJ                   | Lat 40°25'32", long 74°09'58",<br>Monmouth County, Hydrologic Unit<br>02030104, at bridge on Middle<br>Road, 0.2 mi west of intersection<br>of Union Road and Middle Road at<br>North Centerville, 2.0 mi upstream<br>from mouth. |                                        | 1969,<br>1986-87              | 10-22-86<br>7-24-87<br>9-24-87 | 1:1                               |
|               |                                                             | Absecon Creek bas                                                                                                                                                                                                                 | in                                     |                               |                                |                                   |
| 01410215      | Clarks Mill Stream<br>at Port Republic,<br>NJ               | Lat 39°30'23", long 74°30'21",<br>Atlantic County, Hydrologic<br>Unit 02040301, at bridge on<br>State Route 575, 0.5 mi upstream<br>of Mill Pond and 1.0 mi east of<br>Port Republic.                                             | 8.61                                   | 1986-87                       | 7-23-87<br>9-24-87             | 6.6                               |
| 01410225      | Morses Mill Stream<br>at Port Republic,<br>NJ               | Lat 39°30'48", long 74°30'30",<br>Atlantic County, Hydrologic<br>Unit 02040301, at bridge on<br>State Alternate Route 561<br>(Moss Mill Road), 0.6 mi                                                                             | 8.25                                   | 1986-87                       | 7-23-87<br>9-24-87             | 8.9<br>3.6                        |
|               |                                                             | upstream of Mill Pond and<br>1.2 mi southwest of Port Republic                                                                                                                                                                    |                                        |                               |                                |                                   |

## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

| Station St |                                                    |                                                                                                                                                                                                                                             |                                        | 20.00                  | Measurements       |                                   |
|------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|--------------------|-----------------------------------|
|            | Station Name Location                              | Location                                                                                                                                                                                                                                    | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date               | Discharge<br>(ft <sup>3</sup> /s) |
|            |                                                    | Great Egg Harbor Rive                                                                                                                                                                                                                       | r basin                                |                        |                    |                                   |
| 01410784   | Great Egg Harbor<br>River near<br>Sicklerville, NJ | Lat 39°44'02", long 74°57'05",<br>Camden County, Hydrologic Unit<br>02040302, at bridge on Williams-<br>town-New Freedom Road, 1.5 mi<br>northeast of Sicklerville and<br>3.2 mi upstream from Fourmile<br>Branch.                          | 15.1                                   | 1971-81,<br>1985-87    | 7-29-87            | 4.5                               |
| 01411250   | English Creek near<br>Scullville, NJ               | Lat 39°22'07", long 74°39'46",<br>Atlantic Coutny, Hydrologic<br>Unit 02040302, at bridge on<br>School House Road, 1.8 mi<br>upstream from State Route 559,<br>at the community of English<br>Creek, and 2.5 mi northwest of<br>Scullville. | 3.80                                   | 1986-87                | 7-23-87<br>9-24-87 | 4.6<br>3.4                        |
|            |                                                    | Patcong Creek bas                                                                                                                                                                                                                           | in                                     |                        |                    |                                   |
| 01411305   | Mill Branch near<br>Northfield, NJ                 | Lat 39°23'23", long 74°35'37",<br>Atlantic County, Hydrologic<br>Unit 02040302, at bridge on<br>County Route 684 (Spruce Rd),<br>0.4 mi downstream of Cedar<br>Branch, 1.1 mi south of Cardiff<br>and 4.5 mi northwest of Northfiel         | 7.47<br>d.                             | 1986-87                | 7-23-87<br>9-24-87 | 7.5<br>7.2                        |

Also a crest-stage partial-record station.
Not previously published.
Operated as a continuous-record gaging station by Duhernal Water Company. Recorder charts on file in U.S. Geological Survey, West Trenton Office.
Operated as a continuous-record gaging station.
Revised. a

## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

# Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (\*).

|                               | Tributary to                  |                                                                                                                                                                                                                      | Sec. 1                                 | Measured                       | Measurements                                                                                      |                                         |
|-------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|
| Stream                        |                               | Location                                                                                                                                                                                                             | Drainage<br>area<br>(mi <sup>2</sup> ) | previously<br>(water<br>years) | Date                                                                                              | Discharge<br>(ft <sup>3</sup> /s)       |
|                               |                               | Hudson River basin                                                                                                                                                                                                   |                                        |                                |                                                                                                   |                                         |
| 01367770<br>Wallkill<br>River | Roudout Creek                 | Lat 40°11'38", long 74°34'32" Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.6 mi upstream of Papakating Creek tributary, 1.7 m southwest of Independence Corner 2.0 mi southeast of Sussex. |                                        | 1977-82,<br>1985               | 9-23-87                                                                                           | 122                                     |
|                               |                               | Passaic River basin                                                                                                                                                                                                  |                                        |                                |                                                                                                   |                                         |
| 01378710<br>Penns<br>Brook    | Passaic<br>River              | Lat 40°42'40", long 74°32'24",<br>Somerset County, Hydrologic Unit<br>02030'103, on right bank below<br>confluence of small tributary, 0.<br>mi northeast of Basking Ridge and<br>0.75 mi upstream of mouth.         |                                        | nder, daar a                   | 5-29-87                                                                                           | *.35                                    |
| 01379340<br>Passaic<br>River  | Newark<br>Bay                 | Lat 40°41'22", long 74°26'24",<br>Union County, Hydrologic Unit<br>02030103, at bridge on Snyder<br>Avenue, 1.2 mi downstream of<br>Springfield Avenue bridge and<br>2.2 ml west of New Providence.                  | 89.5                                   | 1968                           | 9-03-87                                                                                           | *60                                     |
| 40464207418<br>Bear<br>Brook  | 303000<br>Canoe<br>Brook      | Lat 40°46'42", long 74°18'03"<br>Essex County, Hydrologic Unit<br>02030103, at bridge on East Cedar<br>Street, 1.3 mi northeast of North<br>field and 1.5 mi upstream of mout                                        | 0.92<br>h.                             |                                | 5-28-87                                                                                           | *.34                                    |
| 40463207418<br>Bear<br>Brook  | 32800<br>Canoe Brook<br>Brook | Lat 40°46'42", long 74°18'28"<br>Essex County, Hydrologic Unit<br>02030103, at bridge on Sycamore<br>Avenue, 0.9 mi east of Northfield<br>and 1.0 mi upstream of mouth.                                              | 1.11                                   |                                | 5-28-87                                                                                           | *.37                                    |
| 40461807418<br>Bear<br>Brook  | 35800<br>Canoe<br>Brook       | Lat 40°46'18", long 74°18'58",<br>Essex County, Hydrologic Unit<br>02030103, downstream of confluenc<br>with Cub Brook, and 1.6 mi south<br>Livingston, 0.5 mi upstream of mo<br>Livingston.                         | of                                     |                                | 5-28-87                                                                                           | 0.60                                    |
| 40460807419<br>Canoe<br>Brook | Passaic<br>Passaic<br>River   | Lat 40°46'08", long 74°19'21",<br>Essex County, Hydrologic Unit<br>02030103, upstream of confluence<br>with Bear Brook, 0.2 mi upstream<br>of bridge on Hobart Gap Road and<br>2.0 mi south of Livingston.           | 6.60                                   |                                | 5-28-87                                                                                           | 0.49                                    |
| 40460207419<br>Canoe<br>Brook | 92400<br>Passaic<br>River     | Lat 40°46'02", long 74°19'24",<br>Essex County, Hydrologic Unit<br>02030103, at bridge on Hobart Gap<br>Road, 0.3 mi upstream from un-<br>named pond and 2.0 mi south of<br>Livingston.                              | 4.13                                   |                                | 5-28-87                                                                                           | 1.02                                    |
| 01379530<br>Canoe<br>Brook    | Passaic<br>River              | Lat 40°45'21", long 74°21'43",<br>Essex County, Hydrologic<br>Unit 02030103, just downstream<br>of Commonwealth Water Company<br>pumping station, 0.5 mi upstream<br>of mouth, and 2.0 mi north of Sum               | 11.0<br>mit.                           | 1933-60ac,<br>1961-86bc        | 11-10-86<br>12-30-86<br>1-07-87<br>2-03-87<br>3-16-87<br>5-05-87<br>6-12-87<br>7-14-87<br>9-04-87 | 0<br>0<br>0<br>22<br>0<br>0<br>0<br>.22 |
| 01379650<br>Rockaway<br>River | Passaic<br>River              | Lat 40°59'38", long 74°31'24",<br>Morris County, Hydrologic<br>Unit 02030103, in Woodstock,<br>650 ft downstream of Oak Ridge<br>Lake dam, 0.3 mi upstream of<br>Longwood Lake and 2.0 mi south<br>of Petersburg.    | 17.5                                   | 1986                           | 9-08-87                                                                                           | 22                                      |

|                               |                   |                                                                                                                                                                                                                                              | Drainage     | Measured<br>previously<br>(water<br>years) | Measurements                                                                                                 |                                                          |
|-------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Stream                        | Tributary to      | utary to Location                                                                                                                                                                                                                            | area (mi²)   |                                            | Date                                                                                                         | Discharge<br>(ft <sup>3</sup> /s)                        |
|                               |                   | Passaic River basinCo                                                                                                                                                                                                                        | ntinued      |                                            |                                                                                                              |                                                          |
| 01379660<br>Rockaway<br>River | Passaic<br>River  | Lat 40°58'37", long 74°32'50" Morris County, Hydrologic Unit 02030103, 300 ft downstream of wooden bridge, 600 ft downstream of Longwood Lake and 1.6 mi sout west of Woodstock.                                                             | 7.16<br>h-   | ***                                        | 9-08-87                                                                                                      | 20                                                       |
| 01379808<br>Rockaway<br>River | Passaic<br>River  | Lat 40°53'17", long 74°34'09",<br>Morris County, Hydrologic<br>Unit 02030103, 0.2 mi<br>upstream from Jackson Brook,<br>1.0 mi downstream of Green<br>Pond Brook, and 2.1 mi east<br>of Roxbury.                                             | 47.1         | 1983 - 86                                  | 7-21-87                                                                                                      | 36                                                       |
| 01379865<br>Mill<br>Brook     | Rockaway<br>River | Lat 40°52'04", long 74°32'43"<br>Morris County, Hydrologic Unit<br>02030103, at bridge on Mountains<br>Drive, 1.3 mi southeast of Dover<br>and 1.8 mi upstream of mouth.                                                                     | 3.5<br>side  |                                            | 9-24-87                                                                                                      | 5.4                                                      |
| 01379870<br>Mill<br>Brook     | Rockaway<br>River | Lat 40°52'39", long 74°31'31",<br>Morris County, Hydrologic<br>Unit 02030103, at mouth,<br>600 ft downstream of bridge<br>on Palmer Road, 0.4 mi down-<br>stream of bridge at Dover-<br>Rockaway Road and 1.7 mi<br>southeast of Dover.      | 4.84         | 1985-86                                    | 9-24-87                                                                                                      | *8.0                                                     |
| 01380000<br>Beaver<br>Brook   | Rockaway<br>River | Lat 40°57'38", long 74°27'43", Morris County, Hydrologic Unit 02030103, 50 ft below sluice gates at outlet of Splitrock Reservoir, 2 mi northeast of Hibernia, and 3.5 mi upstream of mouth of Hibernia Brook.                               | 5.50         | 1925-46ac,<br>1976-86bc                    | 11-06-86<br>12-21-86<br>2-02-87<br>3-06-87<br>4-13-87<br>6-01-87<br>7-07-87<br>9-02-87                       | *3.7<br>*19<br>7.8<br>*15<br>*25<br>*2.2<br>*2.6<br>*2.1 |
| 01380010<br>Beaver<br>Brook   | Rockaway<br>River | Lat 40°56'49", long 74°27'38",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Meriden-Lyonsville Road, 700 ft<br>west of Meriden Road, 1.3 mi<br>downstream of Splitrock<br>Reservoir and 1.3 mi southwest<br>of Lyonsville. | 6.80         | 1985 - 86                                  | 9-24-87                                                                                                      | *11                                                      |
| 01380011<br>Beaver<br>Brook   | Rockaway<br>River | Lat 40°56'44", long 74°27'37" Morris County, Hydrologic Unit 02030103, 600 ft downstream of bridge on Meriden-Lyonsville Road, 1.4 mi downstream of Split rock Reservoir and 1.4 mi south- west of Lyonsville.                               |              | ••                                         | 9-24-87                                                                                                      | *8.4                                                     |
| 01389802<br>Passaic<br>River  | Newark<br>Bay     | Lat 40°54'57", long 74°10'55",<br>Passaic County, Hydrologic Unit<br>02030103, on right bank, 10 ft<br>upstream from Passaic Falls in<br>Paterson and 1.5 mi downstream<br>from Peckman River.                                               | 779          | 8-1<br>8-1                                 | 12-16-86<br>2-24-87<br>6-18-87<br>7-09-87<br>18-87 a 090<br>18-87 a 083<br>19-87 a 125<br>8-20-87<br>9-28-87 | 0 144                                                    |
| 01389882<br>Dundee<br>Canal   | Passaic<br>River  | Lat 40°52'45", long 74°07'21", Passaic County, Hydrologic Unit 02030103, at bridge on Ackerman Avenue at Clifton, 0.4 mi downstream from Dundee Dam and 1.2 mi upstream from Passaic Street Bridge.                                          | <del>-</del> | 1986                                       | 2-25-87<br>4-10-87<br>5-21-87<br>7-07-87<br>8-17-87                                                          | 1.6<br>5.8<br>0<br>3.0                                   |
| 01389895<br>Passaic<br>River  | Newark<br>Bay     | Lat 40°52'45", long 74°07'14",<br>Bergen County, Hydrologic<br>Unit 02030103, at bridge on<br>Outwater Lane at Garfield,<br>0.4 mi downstream from Dundee<br>Dam and 1.2 mi upstream from<br>bridge on Passaic Street.                       | 806          | 1970-71<br>1986                            | 10-29-86<br>2-10-87<br>4-10-87<br>5-21-87<br>7-07-87<br>8-17-87                                              | 104<br>1,220<br>6,920<br>505<br>*270<br>*328             |

|                                                 | Inihutanu ta                     |                                                                                                                                                                                                                     | Drainage           | Measured<br>previously                            | Measurements                                                |                                   |
|-------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------|-------------------------------------------------------------|-----------------------------------|
| Stream                                          | Tributary to                     |                                                                                                                                                                                                                     | (mi <sup>2</sup> ) | (water years)                                     | Date                                                        | Discharge<br>(ft <sup>3</sup> /s) |
| 01391200<br>Saddle<br>River                     | Passaic<br>River                 | Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road, at Fair Lawn, and 0.8 mi downstream of Hohokus Brook.                                                            | 45.2               | 1978,<br>1981,<br>1983,<br>1986                   | 8-19-87                                                     | *34                               |
|                                                 |                                  | Rahway River basin                                                                                                                                                                                                  |                    |                                                   |                                                             |                                   |
| 01393950<br>West Branch<br>Rahway<br>River      | Rahway (1994)<br>River           | Lat 40°47'02", long 74°16'27", Essex County, Hydrologic Unit 02030104, at bridge on Indian Avenue, at West Orange, 1.1 mi downstream from bridge at Interstate 280 and 1.25 mi upstream from Orange Reservoir.      | 2.52               | 1983,<br>1985                                     | e9-25-86                                                    | .43                               |
|                                                 |                                  | Raritan River basin                                                                                                                                                                                                 |                    |                                                   |                                                             |                                   |
| 01396535<br>South<br>Branch<br>Raritan<br>River | Raritan<br>River                 | Lat 40°39'49", long 74°53'52",<br>Unterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>Arch Street in High Bridge,<br>0.9 mi northeast of Mariannes<br>Corner and 4.3 mi northeast<br>of Norton.           | 68.8               | 1978-81,<br>1983,<br>1985-86                      | 6-03-87                                                     | 87                                |
| 01396588<br>Spruce<br>Run                       | South Branch<br>Raritan<br>River | Lat 40°40'41", long 74°55'06",<br>Hunterdon County, Hydrologic<br>Unit 02030105, 800 ft down-<br>stream of Rocky Run, 0.3 mi<br>upstream of bridge on Van<br>Syckel Road and 1.6 mi<br>southeast of Glen Gardner.   | 15.5               | 1979,<br>1981-83,<br>1985-86                      | 8-18-87                                                     | *5.8                              |
| 01397400<br>South<br>Branch                     | Raritan<br>River                 | Lat 40°31'01", long 74°48'10", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 1.4 mi downstream from Bushkill Brook, and 3.0 mi northeast of Flemington.                    | 181                | 1976<br>1978-81,<br>1983,<br>1985-86              | 8-19-87                                                     | *103                              |
| 01399120<br>North Branch<br>Raritan<br>River    | Raritan<br>River                 | Lat 40°38'09", long 74°40'56" Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road, 0.1 mi upstream from Lamington River, 0.3 mi east of Burnt Mills, and 4.0 mi southwest of Far Hills.        | 63.8<br>s          | 1964<br>1975-78,<br>1981-83,<br>1985-86           | e5-30-86<br>8-19-87                                         | 47<br>*29.3                       |
| 01399780<br>Lamington<br>River                  | North Branch<br>Raritan<br>River | Lat 40°38'09", long 74°41'13",<br>Somerset County, Hydrologic Unit<br>02030105, at bridge on Walsh Road<br>at Burnt Mills, 0.2 mi upstream<br>from North Branch Raritan River,<br>and 4.4 mi southwest of Far Hills | 100                | 1964,<br>1973,<br>1975-78,<br>1981-83,<br>1985-86 | e5-30-86<br>8-19-87                                         | 62<br>*54                         |
| 01400120<br>Raritan<br>River                    | Raritan<br>Bay                   | Lat 40°33'42", long 74°38'10",<br>Somerset County, Hydrologic Unit<br>02030105, at bridge on South<br>Branch Raritan Road in Raritan,<br>and 3.5 mi northeast of South<br>Branch.                                   |                    | 1975-81<br>1983,<br>1985-86                       | e9-17-86<br>8-19-87                                         | 381<br>*231                       |
| 01400583<br>Millstone<br>River                  | Raritan<br>River                 | Lat 40°17'36", long 74°31'39",<br>Mercer County, Hydrologic Unit,<br>02030105, at bridge on Old<br>Cranberry Road, 1.0 mi upstream<br>of Rocky Brook tributary and<br>1.6 mi north of Hightstown.                   | 20.7               |                                                   | 6-04-87<br>7-02-87<br>7-10-87<br>7-13-87                    | 12<br>139<br>55<br>214            |
| 01400589<br>Rocky<br>Brook                      | Millstone<br>River               | Lat 40°15'11", long 74°29'16",<br>Mercer County, Hydrologic Unit,<br>02030105, at bridge on Disbrow<br>Hill Road, 0.5 mi upstream from<br>Timber Run tributary and 2.2 mi<br>east of Hightstown.                    | 7.14               |                                                   | 7-02-87<br>7-03-87<br>7-13-87<br>0-87 a 1010<br>0-87 a 1515 | 8.5<br>85<br>126<br>226<br>295    |
| 01400591<br>Rocky<br>Brook                      | Millstone<br>River               | Lat 40°15'10", long 74°30'11",<br>Mercer County, Hydrologic Unit,<br>02030105, at bridge on Milford<br>Road, at outlet of Etra Lake,<br>1.2 mi upstream of Peddie Lake an<br>1.6 mi southeast of Hightstown.        | 9.08<br>d          |                                                   | 7-02-87<br>7-03-87<br>7-13-87<br>8-10-87                    | 17<br>76<br>143<br>263            |

|                                                  |                    |                                                                                                                                                                                                                                                                            | Drainage                | Measured<br>previously<br>(water<br>years) | Measurements                             |                                   |
|--------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|------------------------------------------|-----------------------------------|
| Stream                                           | Tributary to       | ary to Location                                                                                                                                                                                                                                                            | area (mi <sup>2</sup> ) |                                            | Date                                     | Discharge<br>(ft <sup>3</sup> /s) |
|                                                  |                    | Raritan River basinCon                                                                                                                                                                                                                                                     | tinued                  |                                            |                                          |                                   |
| 01400599<br>Rocky<br>Brook                       | Millstone<br>River | Lat 40°16'37", long 74°32'06",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on U.S. Route<br>130 at Hightstown and 0.4 mi<br>northeast of intersection of U.S.<br>Route 130 and County Route 571.                                                              |                         | 1971-72                                    | 7-02-87<br>7-03-87<br>7-13-87<br>8-10-87 | 78<br>139<br>144<br>309           |
| 01400725<br>Cranbury<br>Brook                    | Millstone<br>River | Lat 40°19'34", long 74°36'11",<br>Middlesex County, Hydrologic Unit<br>02030105, at bridge on Maple Aven<br>at outlet of Plainsboro Pond in<br>Plainsboro and 0.70 mi upstream o<br>mouth.                                                                                 | ue                      | 1967<br>1971-72                            | 7-02-87<br>7-10-87                       | 10<br>34                          |
| 01400870<br>Stony<br>Brook<br>Tributary<br>No. 3 | Stony<br>Brook     | Lat 40°24'12", long 74°48'07" Mercer County, Hydrologic Unit 02030105, at bridge on Van Dyke Road, 0.2 mi east of Stony Brook Road and 2.0 mi northwest of Hopewell.                                                                                                       | 1.0                     | 1970                                       | 8-14-87                                  | .25                               |
| 01400880<br>Stony<br>Brook                       | Millstone<br>River | Lat 40°22'53", long 74°48'11",<br>Mercer County, Hydrologic<br>Unit 02030105, downstream of<br>unnamed tributary, 0.8 mi<br>and 1.4 mi east of Woodsville.                                                                                                                 | 2.12                    | 1985 - 86                                  | 8-14-87                                  | *.73                              |
| 01400907<br>Stony<br>Brook<br>Branch             | Stony<br>Brook     | Lat 40°21'33", long 74°47'56",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on State Rout<br>31, and 2.2 mi north of Penningto<br>1.0 mi upstream of mouth.                                                                                                    | 7.07<br>ee<br>on        | **                                         | 8-13-87                                  | *.44                              |
| 01400910<br>Stony<br>Brook<br>Branch             | Stony<br>Brook     | Lat 40°21'07", long 74°47'04",<br>Mercer County, Hydrologic<br>Unit 02030105, 1,000 ft<br>upstream from Titus Mill Road,<br>at mouth of Pennington and<br>1.8 mi east of State Route 31.                                                                                   | 1.46                    | 1985 - 86                                  | 8-14-87                                  | *.23                              |
| 01400920<br>Stony<br>Brook                       | Millstone<br>River | Lat 40°20'21", long 74°46'42",<br>Mercer County, Hydrologic Unit<br>02030105, 250 ft upstream from<br>confluence with Baldwin Creek in,<br>Hopewell Township, and 1.1 mi<br>northwest of intersection of East<br>Delaware Avenue and Main Street<br>in Pennington Borough. |                         | 1963,<br>1971-72,<br>1985-86               | 8-14-87                                  | *2.8                              |
| 01400923<br>Baldwin<br>Creek                     | Stony<br>Brook     | Lat 40°20'26", long 74°48'38",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>unimproved road, 0.1 mi north<br>of Yard Road, 0.2 mi upstream of<br>unnamed tributary and 1.3 mi nort<br>west of Pennington.                                                | .58<br>:h-              | 1985 - 86                                  | 8-13-87                                  | *.04                              |
| 01400925<br>Baldwin<br>Creek                     | Stony<br>Brook     | Lat 40°21'21", long 74°48'07",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Yard Road, 200 ft upstream of<br>unnamed tributary, 0.3 mi<br>west of route 31 and 1.0 north<br>of Pennington.                                                               | 1.07                    | 1985 - 86                                  | 8-13-87                                  | *.62                              |
| 01400927<br>Baldwin<br>Creek<br>tributary        | Baldwin<br>Creek   | Lat 40°20'15", long 74°47'56",<br>Mercer County, Hydrologic<br>Unit 02030105, 450 ft upstream<br>of bridge on State Route 31,<br>0.2 mi south of Yard Road,<br>0.4 mi north of Pleasant Valley<br>Road and 0.8 mi from Pennington.                                         | .43                     | 1985-86                                    | 8-13-87                                  | *.20                              |
| 01400932<br>Baldwin<br>Creek                     | Stony<br>Creek     | Lat 40°20'26", long 74°46'48",<br>Mercer County, Hydrologic<br>Unit 02030105, just downstream<br>from earthfill dam, 1,000 ft<br>upstream from mouth, and 1.1 mi<br>northeast of Pennington.                                                                               | 2.52                    | 1962-70c,<br>1985-86                       | 8-14-87                                  | *.86                              |

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

| Stream                                           |                    |                                                   | Drainage                                                                                                                                                                                                      | Measured<br>previously<br>(water<br>years) | Measurements        |                                   |            |
|--------------------------------------------------|--------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|-----------------------------------|------------|
|                                                  | Tributary to       |                                                   | area (mi <sup>2</sup> )                                                                                                                                                                                       |                                            | Date                | Discharge<br>(ft <sup>3</sup> /s) |            |
|                                                  |                    |                                                   | Raritan River basinCo                                                                                                                                                                                         | ntinued                                    |                     |                                   |            |
| 01400936<br>Lewis<br>Brook                       | Stony<br>Brook     | Merce<br>Unit<br>North<br>north<br>Brook<br>south | 19'53", long 74°47'32",<br>r County, Hydrologic<br>02030105, at bridge on<br>Main Street, 0.2 mi<br>of Delaware Avenue at<br>side Avenue, one street<br>of Franklin Avenue at<br>ngton and 0.6 mi upstream    | 0.32                                       | 1985-86             | 8-13-87                           | *.22       |
| 01400938<br>Lewis<br>Brook                       | Stony<br>Brook     | Lat 40°<br>Merce<br>Unit<br>from<br>of in         | 20'02", long 74°46'58",<br>r County, Hydrologic<br>02030105, 200 ft upstream<br>mouth, 0.3 mi northeast<br>tersection of King George<br>ount Rose Road in<br>ngton.                                           | .53                                        | 1971-72,<br>1985-86 | 8-13-87                           | *.35       |
| 01400939<br>Lewis<br>Brook<br>tributary          | Lewis<br>Brook     | Merce<br>02030<br>from<br>of in<br>Road           | 20'00", long 74°46'57",<br>or County, Hydrologic Unit<br>105, 100 ft upstream<br>mouth and 0.3 mi northeast<br>tersection of King George<br>and Mount Rose Road in<br>ngton.                                  | .08                                        | 1971-72,<br>1985-86 | 8-13-87                           | *.02       |
| 01400940<br>Stony<br>Brook                       | Millstone<br>River | Merce<br>02030<br>Road<br>100 1                   | 19'55", long 74°46'39",<br>or County, Hydrologic Unit<br>105, at bridge on Mt. Rose<br>(Pennington-Rocky Hill Road<br>t east of King George Road,<br>t upstream of unnamed tribu<br>.2 mi east of Pennington. |                                            | 1985-86             | 8-14-87                           | *3.8       |
| 01400941<br>Stony<br>Brook<br>tributary<br>No. 4 | Stony<br>Brook     | Merce<br>02030<br>mouth<br>Penni                  | 19'52", long 74°46'42",<br>er County, Hydrologic Unit<br>105, 100 ft upstream from<br>near Mount Rose Road at<br>ington, 0.2 mi downstream<br>Federal City Road.                                              | .32                                        | 1971-72,<br>1985-86 | 8-13-87                           | *.10       |
| 01400942<br>Stony<br>Brook<br>tributary<br>No. 5 | Stony<br>Brook     | Merce<br>Unit<br>on Pe<br>Road<br>1.0 m           | 18'49", long 74°47'09",<br>er County, Hydrologic<br>02030105, at bridge<br>ennington-Lawrenceville<br>at Baldwins Corner,<br>ni south of Pennington<br>1.5 mi upstream from mouth                             | .81                                        | 1985-86             | 8-13-87                           | *.23       |
| 01400944<br>Stony<br>Brook<br>tributary<br>No. 5 | Stony<br>Brook     | Merce<br>Unit<br>of Oa<br>of ur                   | 19'14", long 74°46'45",<br>er County, Hydrologic<br>02030105, at north end<br>ak Street, 400 ft upstream<br>named lake and 0.75 mi<br>of Pennington.                                                          | 0.17                                       | 1985 - 86           | 8-13-87                           | *.11       |
| 01400945<br>Stony<br>Brook<br>tributary<br>No. 5 | Stony<br>Brook     | Merce<br>Unit<br>Feder<br>Penni                   | 19'43", long 74°46'12",<br>er County, Hydrologic<br>02030105, at bridge on<br>ral City Road, east of<br>ington, and 0.1 mi upstream<br>mouth.                                                                 | 1.62                                       | 1985-86             | 8-13-87                           | *.51       |
| 01400950<br>Hart<br>Brook                        | Stony<br>Brook     | Unit<br>Feder<br>Unstr                            | 19'17", long 74°45'38",<br>er County, Hydrologic<br>02030105, at culvert on<br>eal City Road, 1.0 mi<br>eam from mouth and<br>ni southeast of Pennington.                                                     | 0.57                                       | 1985 - 86           | 4-04-87<br>8-14-87                | 52<br>*.05 |
| 01400951<br>Hart<br>Brook                        | Stony<br>Brook     | Merce<br>Unit<br>from<br>downs<br>Road            | 19'52", long 74°45'23",<br>er County, Hydrologic<br>02030105, 0.2 mi upstream<br>Stony Brook, 0.6 mi<br>stream from Blackwells<br>1.9 mi east of Pennington,<br>1.9 mi southwest of Rosedale                  | 1.25                                       | 1965,<br>1985-86    | 8-14-87                           | *.15       |

|                                                  |                    |                                                                                                                                                                                                                                         | rainage                    | Measured<br>previously<br>(water<br>years) | Measurements |                                   |
|--------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|--------------|-----------------------------------|
| Stream                                           | Tributary to       | Location                                                                                                                                                                                                                                | area<br>(mi <sup>2</sup> ) |                                            | Date         | Discharge<br>(ft <sup>3</sup> /s) |
|                                                  |                    | Raritan River basinConti                                                                                                                                                                                                                | inued                      |                                            |              |                                   |
| 01400952<br>Stony<br>Brook<br>tributary<br>No. 2 | Stony<br>Brook     | Lat 40°20'08", long 74°44'48",<br>Mercer County, Hydrologic<br>Unit 02030105, 0.3 mi upstream<br>of Honey Branch, 1.3 mi west<br>of Rosedale, and 2.4 mi east<br>of Pennington.                                                         | 0.49                       | 1965,<br>1985-86                           | 8-14-87      | *.04                              |
| 01400953<br>Honey<br>Branch                      | Stony<br>Brook     | Lat 40°21'27", long 74°45'58",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge<br>on Wargo Road, 0.5 mi<br>upstream of Pennington-<br>Rocky Hill Road and<br>8 mi north of Centerville.                                        | 0.70                       | 1985 - 86                                  | 8-13-87      | *.02                              |
| 01400960<br>Honey<br>Branch                      | Stony<br>Brook     | Lat 40°21'17", long 74°45'29", Mercer County, Hydrologic Unit 02030105, at bridge on Mount Rose Road, 0.6 mi northeast of Centerville, 1.4 mi southeast of Mount Rose and 2.5 mi northeast of Pennington.                               | 1.28                       | 1985-86                                    | 8-13-87      | *.18                              |
| 01400962<br>Honey<br>Branch<br>tributary         | Honey<br>Branch    | Lat 40°21'22", long 74°45'22", Mercer County, Hydrologic Unit 02030105, at bridge on Bayberry Road (formerly Van Kirk Road) 0.1 above mouth, and 2.7 mi northeast of Pennington.                                                        | 0.58                       | 1965,<br>1968-69,<br>1985-86               | 8-13-87      | *.19                              |
| 01400974<br>Stony<br>Brook                       | Millstone<br>River | Lat 40°20'35", long 74°43'33",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge<br>on Carter Road in Rosedale,<br>1.2 mi downstream from<br>Honey Branch.                                                                       | 34.2                       | 1965,<br>1971-72<br>1985-86                | 8-14-87      | *5.6                              |
| 01400978<br>Cleveland<br>Brook                   | Stony<br>Brook     | Lat 40°21'24", long 74°45'51",<br>Mercer County, Hydrologic<br>Unit 02030105, 800 ft upstream<br>from Cleveland Brook Road,<br>1.4 mi north of Rosedale and<br>1.8 mi upstream of mouth                                                 | 0.41                       | 1985 - 86                                  | 8-13-87      | *.09                              |
| 01400985<br>Stony<br>Brook                       | Millstone<br>River | Lat 40°21'09", long 74°42'39",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Province Line Road, 0.65 mi<br>downstream of Cleveland Brook<br>and 1.2 mi northeast of<br>Rosedale.                                      | 36.2                       | 1985 - 86                                  | 8-13-87      | *7.4                              |
| 01400990<br>Palmer Lake<br>outlet<br>stream      | Stony<br>Brook     | Lat 40°21'16", long 74°41'52",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on Elm Road<br>at Princeton, 0.6 mi downstream<br>of Palmer Lake and 0.6 mi upstream<br>of mouth.                                               | 15.4                       |                                            | 8-13-87      | *.20                              |
| 01400998<br>Stony<br>Brook<br>tributary<br>No. 6 | Stony<br>Brook     | Lat 40°20'03", long 74°41'52",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on private<br>estate, 0.6 mi north of Coxs Corne<br>and 1.8 mi southwest of Princeton,<br>300 ft upstream of mouth.                             | 9.74                       |                                            | 8-13-87      | *.22                              |
| 01401510<br>Beden<br>Brook                       | Millstone<br>River | Lat 40°23'12", long, 74°46'00",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on Louellen<br>Avenue at Hopewell, 400 ft west<br>of W. Broad Street and 1.1 mi<br>upstream from Hopewell-Princeton<br>Road (State Route 569). | 0.55                       | 1985                                       | 8-14-87      | *.04                              |
| 01401513<br>Beden<br>Brook                       | Millstone<br>River | Lat 40°23'02", long 74°44'42",<br>Somerset County, Hydrologic Unit<br>02030105, 1,200 ft upstream from<br>Aunt Molly Road, 0.9 mi southeast<br>of Hopewell, and 2.8 mi southwest<br>of Blawenburg.                                      |                            | 1965,<br>1985                              | 8-14-87      | *.28                              |

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

|                                                  |                    |                                                                                                                                                                                                                                      | Drainage                | Measured<br>previously<br>(water<br>years) | Measurements        |                                   |
|--------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|---------------------|-----------------------------------|
| Stream                                           | Tributary to       | Location                                                                                                                                                                                                                             | area (mi <sup>2</sup> ) |                                            | Date                | Discharge<br>(ft <sup>3</sup> /s) |
|                                                  |                    | Raritan River basinConf                                                                                                                                                                                                              | tinued                  |                                            |                     |                                   |
| 01401515<br>Beden<br>Brook<br>tributary          | Beden<br>Brook     | Lat 40°23'58", long 74°45'16",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on dead end<br>road, 0.1 mi west of Hopewell-<br>Amwell Road, 0.85 mi northeast of<br>Hopewell and 1.4 mi upstream of<br>mouth.              |                         | 1985                                       | 8-14-87             | *.42                              |
| 01401517<br>Beden<br>Brook                       | Beden<br>Brook     | Lat 40°23'02", long 74°44'38",<br>Somerset County, Hydrologic Unit<br>02030105, at left bank, 900 ft<br>upstream from Aunt Molly Road,<br>1.0 mi southeast of Hopewell, and<br>2.7 mi southwest of Blawenburg.                       | 4.3                     | 1965,<br>1985                              | 8-14-87             | *.76                              |
| 01401518<br>Beden<br>Brook<br>tributary<br>No. 2 | Beden<br>Brook     | Lat 40°23'01", long 74°44'32"<br>Somerset County, Hydrologic Unit<br>02030105, at right bank, 200 ft<br>upstream from Aunt Molly Road,<br>1.0 mi southeast of Hopewell, and<br>2.6 mi southwest of Blawenburg.                       |                         | 1965,<br>1985                              | 8-14-87             | *.03                              |
| 01401525<br>Beden<br>Brook                       | Millstone<br>River | Lat 40°23'25", long 74°43'52",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on Province<br>Line Road, 900 ft upstream of<br>unnamed tributary and 0.6 mi sout<br>of Stoutsburg.                                          | 7.84<br>h               | 1985                                       | 8-14-87             | *1.7                              |
| 01401530<br>Beden<br>Brook                       | Millstone<br>River | Lat 40°23'40", long 74°42'05",<br>Somerset County, Hydrologic Unit<br>02030105, at bridge on Great Road<br>0.9 mi south of Blawenburg and 2.<br>mi upstream of Rock Brook.                                                           | 11.8                    |                                            | 8-13-87             | *4.1                              |
| 01401535<br>Beden<br>Brook                       | Millstone<br>River | Lat 40°24'20", long 74°40'44",<br>Somerset County, Hydrologic Unit<br>02030105, at bridge on County Rou<br>518 (Georgetown-Franklin Turnpike<br>0.5 mi upstream of Rock Brook and<br>mi east of Blawenburg.                          | ),                      |                                            | 8-13-87             | *5.5                              |
| 01401540<br>Rock<br>Brook                        | Beden<br>Brook     | Lat 40°26'44", long 74°44'52",<br>Somerset County, Hydrologic Unit<br>02030105, at bridge on Montgomery<br>Road, 0.3 mi north of Amwell, 0.5<br>upstream of mouth and 4.2 mi nort<br>Hopewell.                                       | mi                      |                                            | 8-13-87             | *3.8                              |
| 01402540<br>Millstone<br>River                   | Raritan<br>River   | Lat 40°31'47", long 74°35'19",<br>Somerset County, Hydrologic<br>Unit 02030105, at bridge on<br>Wilhouski Street in Weston,<br>0.8 mi southwest of Alma White<br>College, and 1.9 mi north of<br>Millstone.                          | 271                     | 1979-81,<br>1985-86                        | 8-25-87             | *85                               |
| 01403200<br>Middle<br>Brook                      | Raritan<br>River   | Lat 40°33'38", long 74°32'56",<br>Middlesex County, Hydrologic<br>Unit 02030105, at bridge on<br>Lincoln Boulevard (old State<br>Route 28), at Bound Brook,<br>0.5 mi above mouth.                                                   | 17.2                    | 1955,<br>1975,<br>1982-83,<br>1985-86      | 1-12-87             | 38                                |
| 01405302<br>Matchaponix<br>Brook                 | South<br>River     | Lat 40°23'22", long 74°22'55",<br>Middlesex County, Hydrologic Unit<br>02030105, at bridge on Mundy Aver<br>in Spotswood, 0.2 mi upstream fro<br>mouth, 0.5 mi east of DeVoe Lake<br>Dam and 3.4 mi southeast of<br>Tanners Corners. | 44.1<br>:<br>nue<br>om  | 1980,<br>1982,<br>1986                     | e5-15-86            | *28                               |
| 01405340<br>Manalapan<br>Brook                   | South<br>River     | Lat 40°17'46", long 74°23'53",<br>Middlesex County, Hydrologic Unit<br>02030105, at bridge on Federal Ro<br>2.0 mi west of Englishtown, 2.6 m<br>north of Manalapan, and 3.0 mi do<br>stream from Still House Brook.                 | oad,<br>ni              | 1979-81,<br>1986                           | e5-15-86<br>8-26-87 | *18<br>*12                        |

|                                          |                         |                                                                                                                                                                                                                                           | Drainage                   | Measured<br>previously<br>(water<br>years) | Measurements                    |                                   |
|------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|---------------------------------|-----------------------------------|
| Stream                                   | Tributary to            | Location                                                                                                                                                                                                                                  | area<br>(mi <sup>2</sup> ) |                                            | Date                            | Discharge<br>(ft <sup>3</sup> /s) |
|                                          |                         | Manasquan River basi                                                                                                                                                                                                                      | n                          |                                            |                                 |                                   |
| 01405435<br>Cedar<br>Brook               | Manalapan<br>Brook      | Lat 40°23'26", long 74°23'31" Middlesex County, Hydrologic Unit 02030105, 50 ft upstream from mouth in Spotswood and 4.3 mi south of South River.                                                                                         | 3.85                       | 1943,<br>1949-50,<br>1957-86†,             | 10-01-86<br>11-18-86<br>1-07-87 | *2.7<br>*3.7<br>*7.9              |
| 01407997<br>Marsh Bog<br>Brook           | Manasquan<br>River      | Lat 40°10'01", long 74°09'33",<br>Monmouth County, Hydrologic<br>Unit 02040301, at bridge on<br>Yellow Brook Road at<br>Squankum, 0.2 mi upstream<br>from mouth.                                                                          | 4.91                       | 1966,<br>1972-74,<br>1978-82,<br>1985-86   | 8-26-87                         | *.92                              |
|                                          |                         | Mullica River basin                                                                                                                                                                                                                       |                            |                                            |                                 |                                   |
| 01409387<br>Mullica<br>River             | Great<br>Bay            | Lat 39°44'25", long 74°43'37",<br>Burlington County, Hydrologic<br>Unit 02040301, at bridge on<br>U.S. Route 206 in Atsion, at<br>outlet of Atsion Lake and<br>0.2 mi upstream from Wesickman<br>Creek.                                   | 26.7                       | 1980-81,<br>1985-86                        | 8-19-87                         | *19                               |
| 01409416<br>Hammonton<br>Creek           | Mullica<br>River        | Lat 39°38'02", long 74°43'05",<br>Atlantic County, Hydrologic<br>Unit 02040301, at bridge on<br>Chestnut Road, 0.4 mi south<br>of Wescoatville and 1.6 mi<br>upstream from Norton Branch.                                                 | 9.57                       | 1974<br>1978-81,<br>1983,<br>1985-86       | 8-19-87                         | *7.7                              |
| 01410500<br>Absecon<br>Creek             | Absecon<br>Bay          | Lat 39°25'45", long 74°31'16",<br>Atlantic County, Hydrologic Unit<br>02040302, on right bank 30 ft<br>downstream from Doughty Pond Dam<br>of Atlantic City Water Department<br>1.0 mi west of Absecon and 3.4 mi<br>upstream from mouth. | 16.6                       | 1923-29c<br>1933-38c<br>1946-85cg<br>1986g | 7-23-87<br>9-24-87              | 9.0<br>6.8                        |
|                                          |                         | Great Egg Harbor River                                                                                                                                                                                                                    | basin                      |                                            |                                 |                                   |
| 01410820<br>Great Egg<br>Harbor<br>River | Great Egg<br>Harbor Bay | Lat 39°40'09", long 74°54'49",<br>Camden County, Hydrologic<br>Unit 02040302, at bridge on<br>Broad Lane Road, 2.1 mi<br>downstream from confluence<br>of Fourmile Branch and<br>1.9 mi southwest of Blue<br>Anchor.                      | 37.2                       | 1972-80c,<br>1985-86                       | 7-29-87                         | *21                               |
| 01411110<br>Great Egg<br>Harbor<br>River | Great Egg<br>Harbor Bay | Lat 39°30'50", long 74°46'47",<br>Atlantic County, Hydrologic<br>Unit 02040302, at bridge on<br>U.S. Route 322 in Weymouth,<br>0.5 mi upstream from Deep<br>Run and 20.9 mi upstream<br>from mouth.                                       | 154                        | 1978-81<br>1985-86                         | 8-04-87                         | 116                               |

a Discharge records published in reports of the New Jersey Department of Environmental Protection.
b Discharge records on file in U.S. Geological Survey Office, West Trenton, New Jersey.
c Operated as continuous-recording gaging station.
d Estimated.

e Not previously published.

f Operated as continuous gaging station by Duhernal Water Company.
g Also a tidal crest-stage partial-record station.

The following table contains annual maximum elevations for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum elevation is given. Information on some other high elevations may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum elevation has been determined.

Annual maximum elevation at tidal crest-stage partial-record stations during water year 1987

|                | Station name                               | Location                                                                                                                                                                                                                                                                                                 | 100 E                                         | Annual Maximum |                            |
|----------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|----------------------------|
| Station<br>No. |                                            |                                                                                                                                                                                                                                                                                                          | Period<br>of<br>record                        | Date           | Elevation<br>NGVD*<br>(ft) |
| 01406700       | Raritan River<br>at Perth<br>Amboy, NJ     | Lat 40°30'31", long 74°17'30",<br>Middlesex County, Hydrologic<br>Unit 02030104, on downstream<br>left bank, 20 ft downstream<br>of Victory Bridge on State<br>Route 35 in Perth Amboy, 0.5<br>mi downstream from Garden<br>State Parkway bridge, and 1.5<br>mi upstream from mouth of<br>Raritan River. | 1967-70‡,<br>1980-87                          | 1-02-87        | 7.20                       |
| 01407030       | Luppatatong Creek<br>at Keyport, NJ        | Lat 40°26'08", long 74°12'27",<br>Monmouth County, Hydrologic<br>Unit 02030104, on left bank<br>upstream side of Front Street<br>bridge in Keyport, 0.1 mi<br>upstream from mouth, and 2.0 mi<br>northwest of Matawan.                                                                                   | 1980-87                                       | 1-02-87        | 7.30                       |
| 01409145       | Manahawkin Bay near<br>Manahawkin, NJ      | Lat 39°40'13", long 74°12'54",<br>Ocean County, Hydrologic Unit<br>02040301, at west end of State<br>Route 72 bridge over Manahawkin<br>Bay, 2.5 mi northwest of Ship<br>Bottom, and 3.1 mi southeast of<br>Manahawkin.                                                                                  | 1965-87                                       | 1-02-87        | 4.24                       |
| 01409285       | Little Egg Harbor<br>at Beach Haven, NJ    | Lat 39°33'10", long 74°15'07",<br>Ocean County, Hydrologic Unit<br>02040301, in Beach Haven at U.S.<br>Coast Guard station, 6.0 mi<br>southeast of Tuckerton and 7.4<br>mi southeast of Ship Bottom.                                                                                                     | 1979-87                                       | 1-02-87        | 5.31                       |
| 01409510       | Batsto River at<br>Pleasant<br>Mills, NJ   | Lat 39°37'55", long 74°38'40",<br>Ocean County, Hydrologic Unit<br>02040301, on right bank, 0.5<br>mi upstream from mouth, and<br>1.0 mi southeast of Pleasant<br>Mills.                                                                                                                                 | 1958-87‡                                      | 1-02-87        | 4.71                       |
| 01410100       | Mullica River near<br>Port Republic, NJ    | Lat 39°33'12", long 74°27'46",<br>Atlantic County, Hydrologic<br>Unit 02040301, on right bank on<br>bulkhead piling at south end of<br>U.S. Route 9 and Garden State<br>Parkway bridge over Mullica<br>River, 2.8 mi northeast of Port<br>Republic, and 2.8 mi south of<br>New Gretna.                   | 1965-87                                       | 1-02-87        | 5.00                       |
| 01410500       | Absecon Creek<br>at Absecon, NJ            | Lat 39°25'45", long 74°31'16",<br>Atlantic County, Hydrologic<br>Unit 02040302, on right<br>bank 30 ft downstream from<br>Doughty Pond Dam of Atlantic<br>City Water Department, 1 mi west<br>of Absecon, and 3.4 mi upstream<br>from mouth.                                                             | 1923-29‡,<br>1933-38‡,<br>1946-84‡<br>1985-87 | 1-02-87        | 5.78                       |
| 01410570       | Beach Thorofare<br>at Atlantic<br>City, NJ | Lat 39°21'56", long 74°26'44",<br>Atlantic County, Hydrologic<br>Unit 02040302, on west<br>abutment south side of<br>Pennsylvania-Reading Seashore<br>Lines railroad swivel bridge in<br>Atlantic City, 0.5 mi northeast<br>of Bader Field airport, and 2.7<br>mi northeast of Ventnor City.             | 1978‡<br>1969-87                              | 1-02-87        | 6.35                       |

# ELEVATIONS AT TIDAL CREST-STAGE STATIONS

Annual maximum elevation at tidal crest-stage partial-record stations during water year 1987--Continued

|                |                                              |                                                                                                                                                                                                                                                           |                        | Annual  | Maximum                    |
|----------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------------|
| Station<br>No. | Station name                                 | Location                                                                                                                                                                                                                                                  | Period<br>of<br>record | Date    | Elevation<br>NGVD*<br>(ft) |
| 01411300       | Tuckahoe River<br>at Head of<br>River, NJ    | Lat 39°18'25", long 74°49'15",<br>Cape May County, Hydrologic<br>Unit 02040302, on right bank<br>at highway bridge on State Route<br>49, 0.2 mi upstream from McNeals<br>Branch, 0.4 mi southeast of Head<br>of River, and 3.7 mi west of<br>Tuckahoe.    | 1979-87‡               | 1-02-87 | 4.89                       |
| 01411320       | Great Egg Harbor<br>Bay at Ocean<br>City, NJ | Lat 39°17'03", long 74°34'41",<br>Cape May County, Hydrologic<br>Unit 02040302, on bulkhead<br>at west end of 7th Street (prior<br>to October 1974, gage was<br>located at Fifth Street), Ocean<br>City, and 2.5 mi southeast of<br>Somers Point.         | 1965-87                | 1-02-87 | 6.73                       |
| 01411360       | Great Channel<br>at Stone<br>Harbor, NJ      | Lat 39°03'26", long 74°45'53",<br>Cape May County, Hydrologic<br>Unit 02040302, on bulkhead<br>piling at east end of bridge at<br>west end of Borough of Stone<br>Harbor, 3.7 mi southeast of Cape<br>May Court House, and 3.9 mi<br>southwest of Avalon. | 1965-87                | 1-02-87 | 6.18                       |

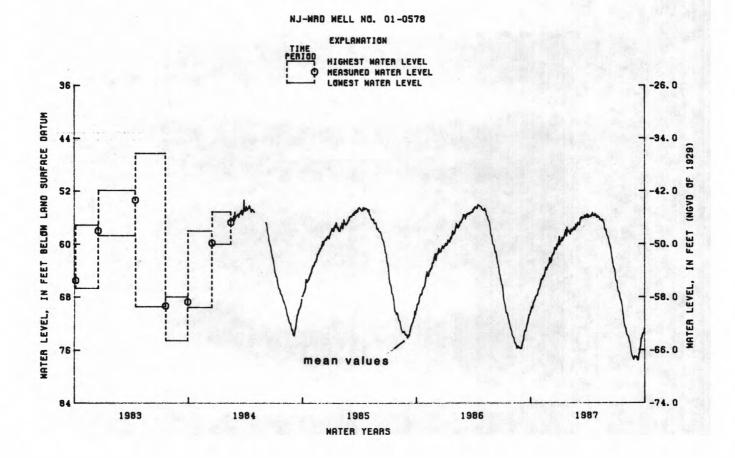
National Geodetic Vertical Datum of 1929 (NGVD).
 Operated as a continuous-record gaging station.

391827074371001. Local I.D., Jobs Point Obs. NJ-WRD Well Number, 01-0578.
LOCATION.--Lat 39°18'26", long 74°37'09", Hydrologic Unit 02040302, on the west side of the Garden State Parkway at interchange 29, Somers Point.

Owner: U.S. Geological Survey.
AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 680 ft, screened 670 to 680 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to February 1984.
DATUM.--Land-surface datum is 10.00 ft above National Geodetic Vertical Datum of 1929.

February 1984.

DATUM.--Land-surface datum is 10.00 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 9.34 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--October 1959 to June 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 29.10 ft below land-surface datum, Apr. 13, 1961; lowest, 78.41 ft below land-surface datum, Sept. 8, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                         |                                                    | a M                                                | EAN VALUE                                          | ES                                                 |                                                    |                                                    |                                                    |                                                    | 10-314                                             |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                     | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 69.46<br>69.00<br>68.51<br>67.83<br>67.34<br>66.42 | 65.35<br>65.30<br>64.77<br>63.48<br>63.58<br>62.96 | 61.53<br>60.54<br>59.99 | 59.53<br>59.03<br>59.13<br>58.37<br>58.47<br>57.93 | 58.57<br>57.89<br>57.87<br>57.87<br>57.44<br>57.17 | 57.03<br>56.00<br>55.92<br>56.04<br>56.04<br>55.47 | 55.85<br>55.86<br>55.73<br>55.70<br>55.40<br>55.97 | 55.88<br>56.35<br>56.36<br>56.37<br>57.33<br>58.14 | 58.95<br>59.94<br>61.16<br>62.63<br>63.75<br>65.40 | 66.22<br>67.21<br>68.33<br>69.42<br>71.29<br>72.65 | 73.78<br>74.20<br>75.34<br>76.75<br>77.46<br>77.12 | 77.03<br>77.37<br>75.95<br>74.19<br>73.40<br>72.73 |
| MEAN                             | 68.33                                              | 64.44                                              | 61.23                   | 58.81                                              | 57.78                                              | 56.20                                              | 55.74                                              | 56.63                                              | 61.46                                              | 68.82                                              | 75.51                                              | 75.45                                              |
| WATER                            | YEAR 1987                                          |                                                    | MEAN 63.                | 40 H                                               | HIGH 54.29                                         | APR 16                                             | LOW                                                | 78.41 SEF                                          | 8                                                  |                                                    |                                                    |                                                    |



391955074250701. Local I.D., ACOW 1 Obs. NJ-WRD Well Number 01-0711.
LOCATION.--Lat 39°19'55", long 74°25'07", in the Atlantic Ocean, 1.9 miles offshore of Atlantic City
Owner: U.S. Geological Survey.

-65

-90

OCT

NOV

DEC

IRN

FEB

Owner: U.S. Geological Survey.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.-- Drilled artesian observation well, diameter 4 in, depth 871 ft, screened 820 to 850 ft.

INSTRUMENTATION.--Digital data logger with differential pressure transducers and conductivity cells. Recorder located on sea floor, about 33 ft below NGVD.

DATUM.-- 0.00 ft, National Geodedic Vertical Datum of 1929.

Measuring point: Deck of drilling platform at time when transducers were set at bottom of well.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Elevation of differential pressure transducers was determined by direct measurement from the deck of the drilling platform. Elevation of the deck of the drilling platform was determined by survey by the U.S. Geological Survey, National Mapping Division. Specific conductance extremes for 1987 water year - maximum 171 us/cm, minimum 168 us/cm.

PERIOD OF RECORD.--February 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 63.72 ft below NGVD, April 14,16, 1987; lowest, 90.90 ft below NGVD, September 8, 1987.

# ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                      |           |      |            |     |        | MEAN VAL | LUES   |        |        |        |        |        |
|----------------------|-----------|------|------------|-----|--------|----------|--------|--------|--------|--------|--------|--------|
| DAY                  | ОСТ       | NOV  | DEC        | JAN | FEB    | MAR      | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
| 5                    |           |      |            |     |        | -67.37   | -66.76 | -66.60 | -70.09 | -77.12 | -83.90 | -88.07 |
| 10                   |           |      |            |     |        | -66.26   | -66.80 | -67.27 | -70.97 | -78.11 | -84.62 | -88.55 |
| 15                   |           |      |            |     | -68.21 | -66.40   | -66.24 | -67.54 | -72.52 | -79.18 | -85.70 | -88.32 |
| 20                   |           |      |            |     | -68.44 | -67.05   | -66.51 | -67.34 | -73.89 | -79.88 | -86.93 | -87.10 |
| 10<br>15<br>20<br>25 |           |      |            |     | -67.96 | -66.97   | -65.81 | -68.17 | -74.99 | -81.32 | -87.94 | -86.53 |
| EOM                  |           | •••  | •••        |     | -67.58 | -67.17   | -67.03 | -69.24 | -76.37 | -82.66 | -88.07 | -86.32 |
| MEAN                 |           |      |            | ••• | -68.12 | -67.01   | -66.53 | -67.57 | -72.56 | -79.37 | -85.88 | -87.65 |
| WATER                | YEAR 1987 | HIGH | -63.72 APR | 14, | 16 LOW | -90.90   | SEP 8  |        |        |        |        |        |

-65 mmhhi (NGVD OF 1929) -70 -75 FEET Z -80 ARTER LEVEL

AUG

JUN

MAY

1987

water year

JUL

SEF

392153074250101. Local I.D., Galen Hall Obs. NJ-WRD Well Number, 01-0037.
LOCATION.--Lat 39°21'51", long 74°24'59", Hydrologic Unit 02040302, near the intersection of Pacific and Congress Avenues, Atlantic City, Municipal Utilities Authority.

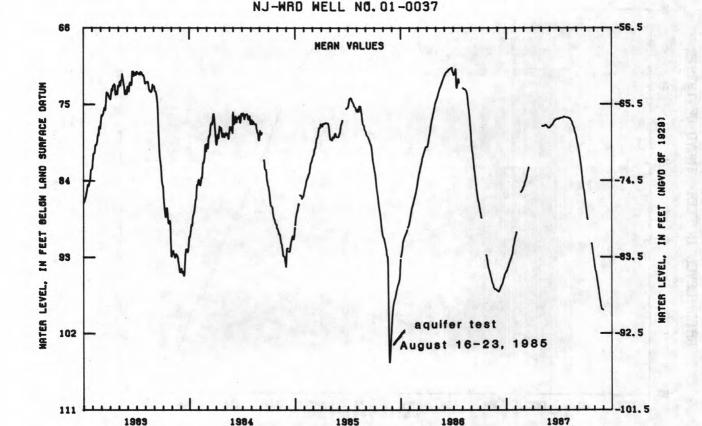
AUJIFER.--Atlantic City Municipal Utilities Authority.

AUJIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 837 ft, screened 782 to 837 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to July 1980.

DATUM.--Land-surface datum is 9.54 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 0.90 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Water level affected by USGS aquifer test, August 16-23, 1985. Missing record from November 5-19, December 18 to February 2 and July 10-22 was caused by recorder malfunction. Missing record from September 1-30 was due to damage by construction equipment.

PERIOD OF RECORD.--January 1949 to August 1975, May 1977 to current year. Records for 1949 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.58 ft below land-surface datum, Mar. 7, 1962; lowest, 105.70 ft below land-surface datum, Aug. 22, 1985. (see remarks)

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|          |           |       |           |     |       | MEAN VALUE | S      |       |       |       |       |     |
|----------|-----------|-------|-----------|-----|-------|------------|--------|-------|-------|-------|-------|-----|
| DAY      | OCT       | NOV   | DEC       | JAN | FEB   | MAR        | APR    | MAY   | JUN   | JUL   | AUG   | SEP |
| 5        | 94.21     |       | 84.08     |     | 77.55 | 77.53      | 76.63  | 76.67 | 79.73 | 87.60 | 94.61 |     |
| 10       | 93.70     |       | 83.52     |     | 77.52 | 77.36      | 76.58  | 76.78 | 80.68 |       | 95.44 |     |
| 15<br>20 | 93.22     |       | 82.74     |     | 77.45 | 77.04      | 76.55  | 77.04 | 81.98 |       | 96.55 |     |
| 20       | 92.69     | 85.37 |           |     | 77.68 |            | 76.52  | 77.56 | 83.51 |       | 97.77 |     |
| 25       | 91.57     | 85.09 |           |     | 77.78 |            | 76.57  | 78.09 | 85.01 | 91.90 | 98.92 |     |
| EOM      | 90.64     | 84.66 | •••       |     | 77.72 |            | 76.58  | 78.83 | 86.17 | 93.39 | 99.27 |     |
| MEAN     | 92.89     | 86.44 | 83.57     |     | 77.61 | 77.10      | 76.58  | 77.37 | 82.34 | 90.00 | 96.78 |     |
| WATER    | YEAR 1987 | н     | IGH 76.46 | APR | 18    | LOW 99.30  | AUG 31 |       |       |       |       |     |



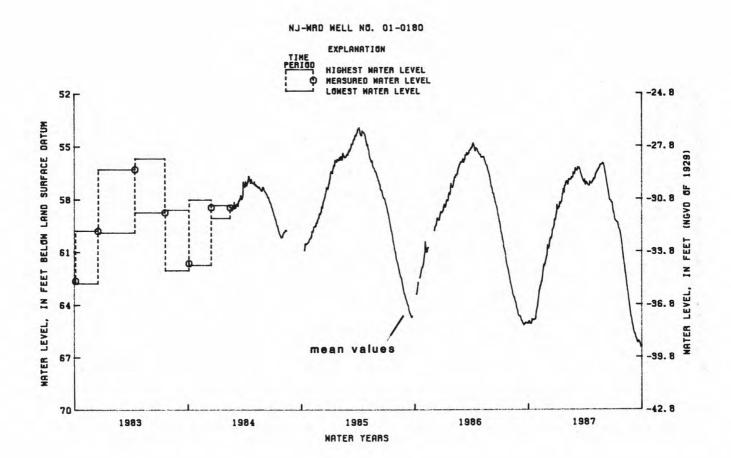
WATER YEARS

392754074270101. Local I.D., Oceanville 1 Obs. NJ-WRD Well Number, 01-0180.
LOCATION.--Lat 39°27'54", long 74°27'01", Hydrologic Unit 02040302, at Edwin B. Forsythe National Wildlife Refuge, Brigantine Division, Oceanville.
Owner: U.S. Geological Survey.
AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 570 ft, screened 560 to 570 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, April 1977 to

INSTRUMENTATION. --Digital water-level recorder--ou-minute punch. water-level extremes recorder, April 1984.

DATUM. --Land-surface datum is 27.17 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of bushing, 2.30 ft above land-surface datum.


REMARKS. --Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD. --October 1959 to August 1975, April 1977 to current year. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.

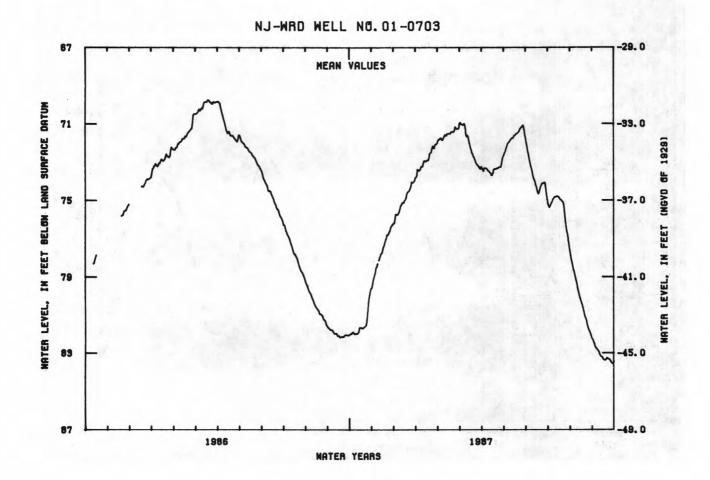
EXTREMES FOR PERIOD OF RECORD. --Highest water level, 33.62 ft below land-surface datum, Apr. 13, 1961; lowest, 66.51 ft below land-surface datum, Sept. 29, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    | y.                                                 |                                                    |                                                    |                                                    | MEAN VALU                                          | IES                                                |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 64.93<br>65.11<br>64.86<br>64.87<br>64.82<br>64.12 | 63.38<br>62.98<br>62.59<br>61.84<br>61.68<br>61.25 | 60.83<br>60.34<br>60.20<br>59.67<br>59.14<br>58.86 | 58.58<br>58.30<br>58.16<br>57.70<br>57.64<br>57.00 | 57.19<br>56.90<br>56.87<br>56.79<br>56.60<br>56.49 | 56.38<br>56.22<br>56.25<br>56.61<br>56.90<br>56.88 | 57.04<br>57.17<br>57.24<br>57.12<br>56.99<br>56.85 | 56.61<br>56.42<br>56.24<br>56.04<br>56.02<br>56.02 | 56.45<br>57.05<br>57.55<br>58.08<br>58.21<br>58.61 | 59.10<br>59.28<br>59.37<br>59.75<br>60.14<br>61.02 | 61.77<br>62.41<br>63.17<br>63.83<br>64.56<br>65.15 | 65.61<br>65.84<br>66.12<br>66.07<br>66.27<br>66.33 |
| MEAN                             | 64.83                                              | 62.45                                              | 59.99                                              | 57.95                                              | 56.83                                              | 56.53                                              | 57.08                                              | 56.28                                              | 57.47                                              | 59.64                                              | 63.26                                              | 65.97                                              |
| WATER                            | YEAR 1987                                          | ME                                                 | AN 59.87                                           | HIGH                                               | 55.83                                              | MAY 29                                             | LOW 6                                              | 66.51 SEP                                          | 29                                                 |                                                    |                                                    |                                                    |



393232074263901. Local I.D., FAA-TW-Pomona Obs. NJ-WRD Well Number, 01-0703. LOCATION.--Lat 39°26'39", long 74°32'32", Hydrologic Unit 02040302, at the NAFEC Atlantic City Airport, Egg Harbor Township.


Harbor Township.
Owner: U.S. Geological Survey
AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 575 ft, screened 560 to 570 ft.
INSTRUMENTATION.--Digital water-level recorder--60 minute punch.
DATUM.--Land-surface datum is 38 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 1.75 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--October 1985 to current year. Records for 1985 to 1986 are unpublished and are available in files of New Jersey District Office

files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 69.74 ft below land-surface datum, March 18, 1986; lowest, 83.58 ft below land-surface datum, Sept. 28,29, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

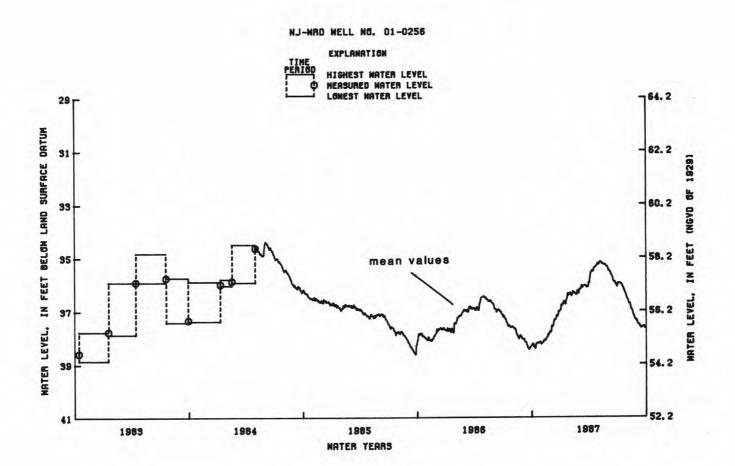
|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VAL                                           | JES                                                |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 81.99<br>81.65<br>81.65<br>81.65<br>81.02<br>79.58 | 78.72<br>78.13<br>77.60<br>76.99<br>76.61<br>76.21 | 75.77<br>75.27<br>75.02<br>74.55<br>74.05<br>73.80 | 73.44<br>73.09<br>72.91<br>72.52<br>72.31<br>71.82 | 71.87<br>71.63<br>71.53<br>71.45<br>71.28<br>71.23 | 71.06<br>71.61<br>72.11<br>72.71<br>73.14<br>73.24 | 73.33<br>73.48<br>73.69<br>73.37<br>73.26<br>72.70 | 72.20<br>71.85<br>71.63<br>71.48<br>71.20<br>71.80 | 72.81<br>73.70<br>74.31<br>74.39<br>74.10<br>74.98 | 75.20<br>74.82<br>74.82<br>75.05<br>76.15<br>77.66 | 78.65<br>79.44<br>80.24<br>80.95<br>81.66<br>82.28 | 82.75<br>83.05<br>83.33<br>83.27<br>83.42<br>83.45 |
| MEAN                             | 81.42                                              | 77.55                                              | 74.90                                              | 72.76                                              | 71.53                                              | 72.16                                              | 73.36                                              | 71.71                                              | 73.83                                              | 75.48                                              | 80.29                                              | 83.15                                              |
| WATER                            | YEAR 1987                                          | ME                                                 | AN 75.69                                           | HIGH                                               | 70.88                                              | MAR 1                                              | LOW 83.                                            | 58 SEP 2                                           | 28,29                                              |                                                    |                                                    |                                                    |



393333074442401. Local I.D., Scholler 1 Obs. NJ-WRD Well Number, 01-0256.
LOCATION.--Lat 39°33'33", long 74°44'26", Hydrologic Unit 02040302, at Scholler Brothers plant, near intersection of Weymouth and Second Roads, Elwood.
Owner: Scholler Brothers Incorporated.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 275 ft, screened 254 to 275 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to April 1984.

DATUM.--Land-surface datum is 93.19 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.66 ft above land-surface datum.


PERIOD OF RECORD.--April 1962 to August 1975, May 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.18 ft below land-surface datum, Mar. 20, 1963; lowest, 39.56

ft below land-surface datum, Sept. 13, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VALU                                          | ES                                                 |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | ОСТ                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 38.24<br>38.40<br>38.22<br>38.20<br>38.23<br>38.27 | 38.19<br>38.13<br>38.07<br>37.98<br>37.89<br>37.79 | 37.62<br>37.40<br>37.32<br>37.20<br>37.01<br>36.99 | 36.81<br>36.69<br>36.70<br>36.55<br>36.44<br>36.32 | 36.45<br>36.32<br>36.35<br>36.40<br>36.33<br>36.34 | 36.20<br>36.10<br>36.07<br>36.04<br>36.12<br>35.94 | 35.72<br>35.51<br>35.52<br>35.39<br>35.31<br>35.22 | 35.21<br>35.18<br>35.22<br>35.26<br>35.30<br>35.38 | 35.48<br>35.60<br>35.73<br>35.91<br>35.98<br>36.09 | 35.96<br>35.96<br>36.00<br>36.14<br>36.31<br>36.50 | 36.64<br>36.72<br>36.95<br>37.10<br>37.28<br>37.38 | 37.51<br>37.55<br>37.64<br>37.61<br>37.60<br>37.61 |
| MEAN                             | 38.26                                              | 38.02                                              | 37.31                                              | 36.61                                              | 36.35                                              | 36.10                                              | 35.49                                              | 35.26                                              | 35.75                                              | 36.13                                              | 36.97                                              | 37.57                                              |
| WATER                            | YEAR 1987                                          | 7 ME                                               | AN 36.65                                           | HIGH                                               | 35.10                                              | MAY 7                                              | LOW 3                                              | 38.43 OCT                                          | 11                                                 |                                                    |                                                    |                                                    |



MEAN

176.70

176.86

176.91

## **BURLINGTON COUNTY**

395122074301701. Local I.D., Butler Place 1 Obs. NJ-WRD Well Number, 05-0683.

LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township.
Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,117 ft, screened 2,102 to 2,117 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 140.66 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of coupling, 2.80 ft above land-surface datum.

PERIOD OF RECORD.--October 1964 to August 1975, March 1977 to current year. Records for 1964 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 143.20 ft below land-surface datum, Feb. 25, 1965; lowest, 179.71 ft below land-surface datum, Sept. 28, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

177.06

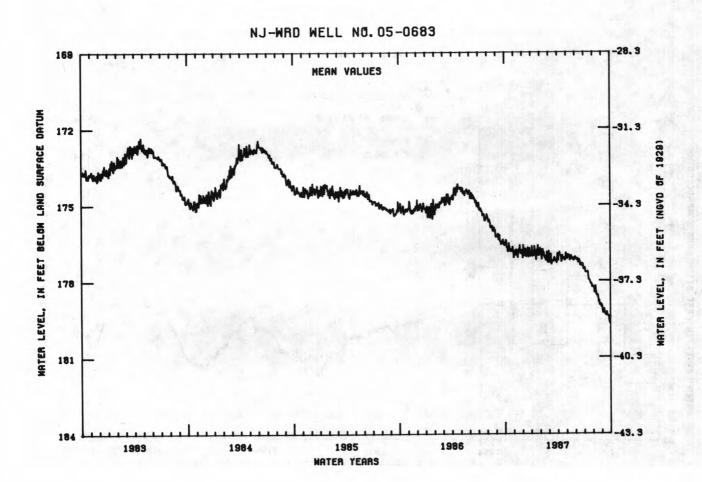
177.08

177.27

177.85

178.61

179.32


#### **MEAN VALUES** DAY NOV OCT DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 179.28 179.23 179.37 179.36 179.45 179.39 177.16 176.97 177.07 177.21 177.18 177.29 177.22 177.25 177.10 177.24 176.98 176.99 177.21 176.40 176.86 176.95 177.04 177.58 178.28 10 15 20 25 176.97 176.92 176.82 176.94 176.96 176.72 176.96 176.88 176.71 177.00 176.84 176.91 176.91 177.00 177.02 177.14 177.18 178.20 178.59 178.73 178.98 179.03 176.79 176.61 176.79 177.22 177.17 177.33 177.42 177.65 177.70 177.98 178.14 177.15 176.86 177.02 EOM 176.91 176.91 178.21 177.22 177.05 177.56

177.16

WATER YEAR 1987 -- MEAN 177.39 HIGH 176.30 JAN 22 LOW 179.71 SEP 28

177.02

176.88

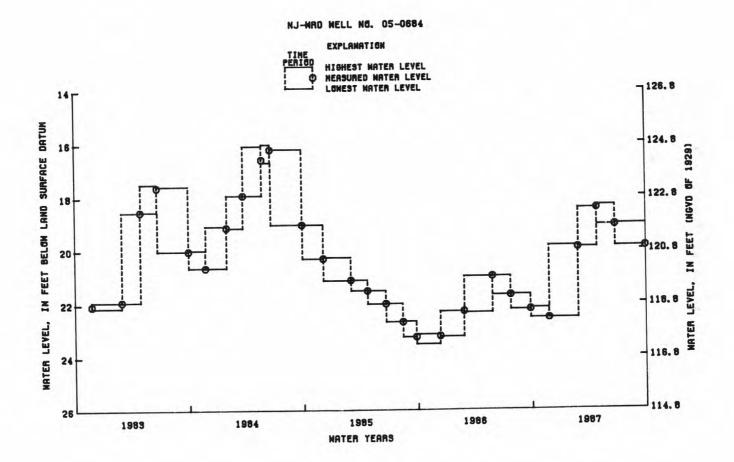


## **BURLINGTON COUNTY**

395122074301702. Local I.D., Butler Place 2 Obs. NJ-WRD Well Number, 05-0684. LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township. Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in, depth 170 ft, screened 160 to 170 ft.
INSTRUMENTATION.--Water-level extremes recorder, March 1977 to current year. Water-level recorder, May 1965 to April

DATUM.--Land-surface datum is 140.82 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Front edge of cutout in recorder housing, 2.67 ft above land-surface datum.

PERIOD OF RECORD.--May 1965 to April 1975, March 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.14 ft below land-surface datum, Feb. 15, 1973; lowest, 23.53 ft below land-surface datum, between Sept. 26, and Dec. 11, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

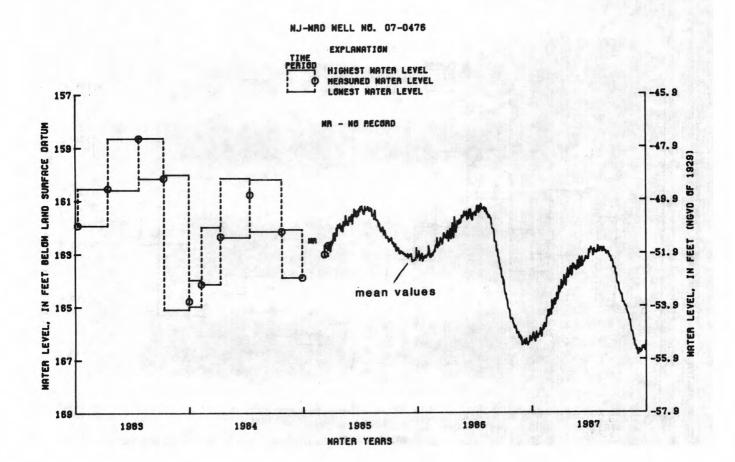
#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL LOWEST HIGHEST WATER WATER WATER PERIOD DATE LEVEL SEPT. 26, 1986 TO NOV. 24, 1986 22.17 22.56 NOV. 24, 1986 22.56 NOV. 24, 1986 TO FEB. 26, 1987 19.92 19.85 22.56 FEB. 26, 1987 FEB. 26, 1987 TO APR. 27, 1987 18.45 19.92 APR. 27, 1987 18.45 APR. 27, 1987 TO JUNE 24, 1987 18.35 19.09 JUNE 24, 1987 19.09 JUNE 24, 1987 TO SEPT. 29, 1987 SEPT. 29, 1987 19.05 19.89 19.89



394215074561701. Local I.D., New Brooklyn Park 1 Obs. NJ-WRD Well Number, 07-0476.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 1,505 ft, screened 1,485 to 1,495 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977 to December 1984. to December 1984.

to December 1984.

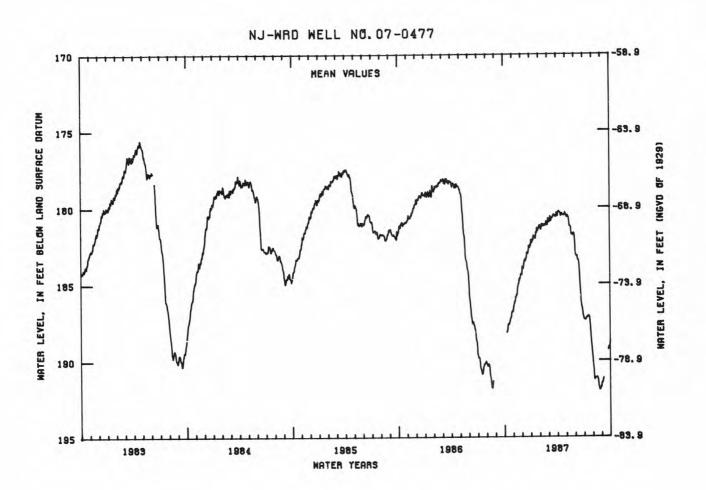
DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top of coupling, 1.75 ft above land-surface datum.

PERIOD OF RECORD.--February 1963 to August 1975, February 1977 to current year. Records for 1963 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 120.16 ft below land-surface datum, March 6, 1963; lowest, 166.88 ft below land-surface datum, Sept. 4,5, 1987.

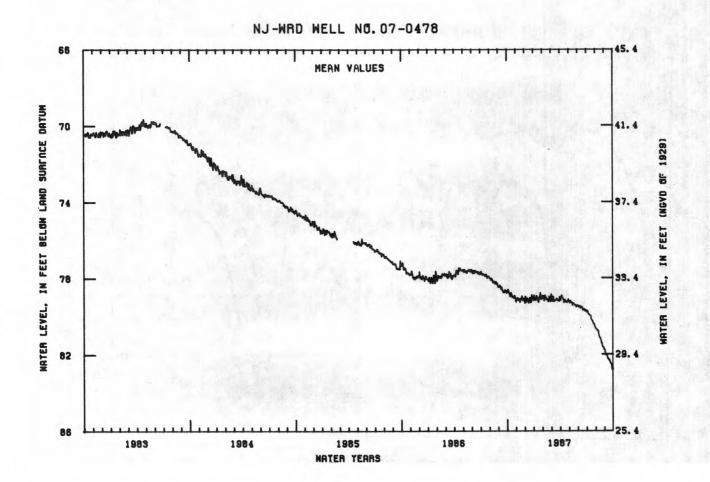
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987


|                                  |                                                          |                                                          |                                                          |                                                          |                                                          | MEAN VALU                                                | JES                                                      |                                                          |                                                          |                                                          |                                                          |                                                          |
|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| DAY                              | OCT                                                      | NOV                                                      | DEC                                                      | JAN                                                      | FEB                                                      | MAR                                                      | APR                                                      | MAY                                                      | JUN                                                      | JUL                                                      | AUG                                                      | SEP                                                      |
| 5<br>10<br>15<br>20<br>25<br>EOM | 165.99<br>166.29<br>166.04<br>166.11<br>166.08<br>166.15 | 165.82<br>165.78<br>165.61<br>165.37<br>165.34<br>165.20 | 165.06<br>164.73<br>164.83<br>164.63<br>164.24<br>164.39 | 164.33<br>164.02<br>164.01<br>163.91<br>163.92<br>163.51 | 163.85<br>163.57<br>163.59<br>163.64<br>163.53<br>163.51 | 163.52<br>163.37<br>163.34<br>163.15<br>163.23<br>162.87 | 162.89<br>162.88<br>163.05<br>162.98<br>162.97<br>162.74 | 162.92<br>162.81<br>162.81<br>162.91<br>162.97<br>162.95 | 163.07<br>163.24<br>163.30<br>163.52<br>163.78<br>164.10 | 164.27<br>164.48<br>164.60<br>164.85<br>165.01<br>165.18 | 165.34<br>165.52<br>165.97<br>166.17<br>166.48<br>166.64 | 166.83<br>166.70<br>166.72<br>166.59<br>166.53<br>166.32 |
| MEAN                             | 166.08                                                   | 165.53                                                   | 164.73                                                   | 163.97                                                   | 163.55                                                   | 163.26                                                   | 162.91                                                   | 162.89                                                   | 163.42                                                   | 164.68                                                   | 165.94                                                   | 166.63                                                   |
| WATER                            | YEAR 198                                                 | 37                                                       | MEAN 164                                                 | .47 H                                                    | IGH 162.5                                                | 7 APR 29                                                 | LOW                                                      | 166.88                                                   | SEP 4,5                                                  |                                                          |                                                          |                                                          |



394215074561702. Local I.D., New Brooklyn Park 2 Obs. NJ-WRD Well Number, 07-0477.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 849 ft, screened 829 to 839 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.30 ft above land-surface datum.
PERIOD OF RECORD.--January 1963 to August 1975, March 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 131.54 ft below land-surface datum, Mar. 6, 1963; lowest, 191.95 ft below land-surface datum, Aug. 25, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987


|                                  |                                                |                                                          |                                                          |                                                          |                                                          | MEAN VALU                                                | ES                                                       |                                                          |                                                          |                                                          |                                                          |                                |
|----------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------|
| DAY                              | OCT                                            | NOV                                                      | DEC                                                      | JAN                                                      | FEB                                                      | MAR                                                      | APR                                                      | MAY                                                      | JUN                                                      | JUL                                                      | AUG                                                      | SEP                            |
| 5<br>10<br>15<br>20<br>25<br>EOM | 188.13<br>187.68<br>187.45<br>187.18<br>186.83 | 186.29<br>185.93<br>185.50<br>184.97<br>184.65<br>184.35 | 184.02<br>183.50<br>183.38<br>183.02<br>182.52<br>182.52 | 182.33<br>182.00<br>181.92<br>181.69<br>181.57<br>181.17 | 181.47<br>181.22<br>181.21<br>181.22<br>181.13<br>181.09 | 180.98<br>180.80<br>180.71<br>180.51<br>180.62<br>180.35 | 180.35<br>180.34<br>180.56<br>180.50<br>180.51<br>180.39 | 180.63<br>180.64<br>181.19<br>181.70<br>181.79<br>181.90 | 183.14<br>183.35<br>183.73<br>185.40<br>186.50<br>187.11 | 187.33<br>187.23<br>187.11<br>187.13<br>188.25<br>189.66 | 190.82<br>191.12<br>191.11<br>191.44<br>191.93<br>191.66 | 191.32<br><br>189.13<br>188.69 |
| MEAN                             | 187.39                                         | 185.40                                                   | 183.30                                                   | 181.83                                                   | 181.18                                                   | 180.68                                                   | 180.44                                                   | 181.21                                                   | 184.57                                                   | 187.67                                                   | 191.26                                                   | 190.13                         |
| WATER                            | YEAR 198                                       | 37 ME                                                    | EAN 184.2                                                | 29 HI                                                    | H 180.22                                                 | APR 29                                                   | LOW                                                      | 191.95                                                   | AUG 25                                                   |                                                          |                                                          |                                |



394215074561703. Local I.D., New Brooklyn Park 3 Obs. NJ-WRD Well Number, 07-0478.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 540 ft, screened 520 to 530 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.45 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 6 inch coupling, 2.10 ft above land-surface datum.
PERIOD OF RECORD.--December 1962 to August 1975, March 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.53 ft below land-surface datum, Dec. 18, 1962; lowest, 82.84 ft below land-surface datum, Sept. 28,29, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VALU                                          | ES                                                 |                                                    |                                                    |                                                    | 1                                                  |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | ОСТ                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 78.59<br>78.88<br>78.78<br>78.99<br>79.06<br>79.21 | 79.11<br>79.13<br>79.22<br>79.12<br>79.17<br>79.20 | 79.17<br>79.04<br>79.24<br>79.12<br>78.88<br>79.11 | 79.14<br>79.08<br>79.11<br>78.99<br>79.12<br>78.90 | 79.18<br>79.04<br>79.12<br>79.24<br>79.15<br>79.21 | 79.18<br>79.10<br>79.16<br>79.08<br>79.19<br>78.98 | 78.97<br>79.05<br>79.28<br>79.22<br>79.24<br>79.10 | 79.28<br>79.28<br>79.34<br>79.41<br>79.45<br>79.43 | 79.47<br>79.52<br>79.53<br>79.65<br>79.73<br>79.77 | 79.76<br>79.91<br>79.96<br>80.23<br>80.41<br>80.59 | 80.70<br>80.73<br>81.13<br>81.30<br>81.58<br>81.77 | 82.03<br>82.07<br>82.28<br>82.40<br>82.55<br>82.71 |
| MEAN                             | 78.88                                              | 79.12                                              | 79.15                                              | 79.05                                              | 79.09                                              | 79.12                                              | 79.14                                              | 79.35                                              | 79.59                                              | 80.11                                              | 81.14                                              | 82.28                                              |
| WATER                            | YEAR 1987                                          | ME                                                 | AN 79.67                                           | HIGH                                               | 78.56                                              | OCT 4,5                                            | LOW                                                | 82.84 SEP                                          | 28,29                                              |                                                    |                                                    |                                                    |



394440074593101. Local I.D., Winslow WC 5 Obs. NJ-WRD Well Number, 07-0503.
LOCATION.--Lat 39°44'40", long 74°59'31", Hydrologic Unit 02040302, about 1,000 ft east of intersection of Cross Keys-Berlin and Erial-Williamstown Roads, Winslow Township.

Owner: Winslow Water Company.

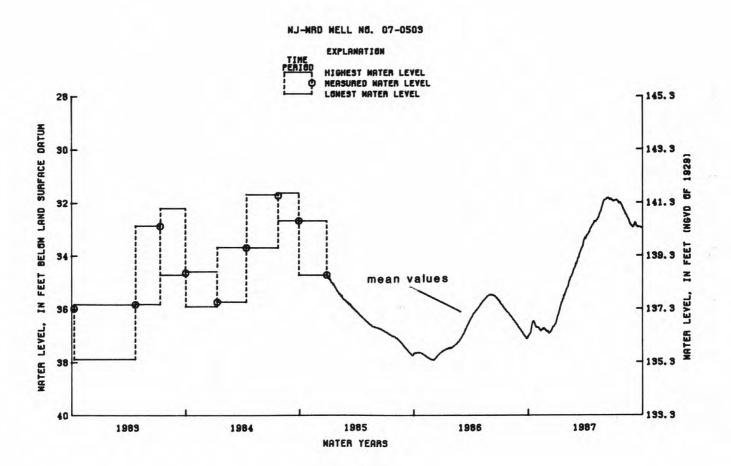
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 76 ft, screened 71 to 76 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, November 1977 to December 1984.

December 1984.

DATUM.--Land-surface datum is 173.26 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 1.00 ft above land surface datum.

PERIOD OF RECORD.--December 1972 to current year. Records for 1972 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 26.78 ft below land-surface datum, May 20-21, 1973; lowest, 38.35 ft below land-surface datum, between June 3 and Oct. 6, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VALU                                          | ES                                                 |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 36.95<br>36.73<br>36.48<br>36.52<br>36.69<br>36.71 | 36.75<br>36.84<br>36.74<br>36.72<br>36.82<br>36.86 | 36.92<br>36.88<br>36.77<br>36.68<br>36.59<br>36.39 | 36.19<br>35.93<br>35.74<br>35.63<br>35.44<br>35.26 | 35.12<br>34.90<br>34.78<br>34.62<br>34.46<br>34.37 | 34.23<br>34.09<br>33.87<br>33.70<br>33.52<br>33.32 | 33.26<br>33.17<br>33.03<br>32.91<br>32.83<br>32.74 | 32.68<br>32.59<br>32.44<br>32.32<br>32.11<br>31.90 | 31.89<br>31.85<br>31.84<br>31.85<br>31.91<br>31.95 | 31.92<br>31.91<br>32.00<br>31.99<br>32.09<br>32.26 | 32.38<br>32.48<br>32.61<br>32.77<br>32.87<br>32.91 | 32.76<br>32.86<br>32.93<br>32.93<br>32.94<br>32.93 |
| MEAN                             | 36.70                                              | 36.78                                              | 36.72                                              | 35.75                                              | 34.78                                              | 33.83                                              | 33.02                                              | 32.38                                              | 31.88                                              | 32.01                                              | 32.64                                              | 32.89                                              |
| WATER                            | YEAR 1987                                          | ME                                                 | AN 34.11                                           | HIGH                                               | 31.80                                              | JUN 8,9                                            | LOW 3                                              | 37.02 OCT                                          | 1                                                  |                                                    |                                                    |                                                    |



## CUMBERLAND COUNTY

392512074521206. Local I.D., Ragovin 2100 Obs. NJ-WRD Well Number 11-0137. LOCATION.--Lat 39°25'12", long 74°52'12", Hydrologic Unit 02040302, in wooded area off Harriet Avenue, 1.5 mi southeast of Milmay.

134

1983

1984

Owner: Sam DeRosa.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 5 in, depth 2,093 ft, perforated casing 2083 to 2,093 ft.

to 2,093 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 85 ft above National Geodedic Vertical Datum of 1929, by altimeter.
Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.
REMARKS.--This well is screened in a saline zone of the aquifer system (Luzier, 1980,p. 8-12). An equivalent freshwater head is obtained by multiplying the column of water in the well by the ratio of density of water in the well to the density of freshwater. In 1974, the density of water was 1.011 grams per milliliter at 20 deg. C and a plus 17 foot correction was needed to obtain the equivalent freshwater head.

PERIOD OF RECORD.--October 1974 to April 1975, February 1977 to current year. Records for 1974 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 115.82 ft below land-surface datum, Apr. 3, 1975; lowest, 132.12 ft below land-surface datum, Sept. 28, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### **MEAN VALUES** DAY NOV SEP OCT DEC FEB JUN JUL AUG JAN MAR APR MAY 130.90 131.18 130.95 131.11 131.14 130.82 130.68 130.74 130.67 130.77 130.92 130.83 130.87 130.82 130.71 130.76 130.94 130.91 130.95 131.17 131.23 131.19 131.28 131.29 130.97 130.80 130.97 130.84 130.68 130.77 131.30 131.30 131.32 130.99 131.54 132.00 130.99 130.95 131.00 131.10 131.16 131.91 131.96 131.90 131.93 131.56 131.77 131.79 131.90 131.13 131.14 10 15 131.02 130.83 130.89 20 25 131.46 130.85 130.91 .02 130.81 130.91 130.80 131.89 131.84 130.70 131.10 131.06 131.05 130.89 130.70 MEAN 130.75 130.84 130.83 131.04 131.24 131.40 131.72 131.92 WATER YEAR 1987 -- MEAN 131.12 HIGH 130.42 JAN 22,23 LOW 132.12 SEP 28

NJ-WRD WELL NO. 11-0137

124 -39. 0 **MEAN VALUES** DATUM 126 41.0 SURFACE 1929) 9 LAND CNGVD 128 -43. 0 BELOW FEET Z 130 45. 0 LEVEL, LEVEL, MATER 132 -47.0

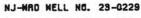
1985

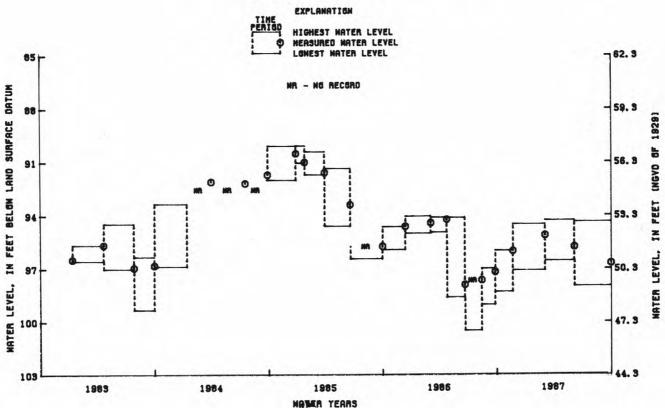
WATER YEARS

1986

1987

402015074275702. Local I.D., Forsgate 4 Obs.. NJ-WRD Well Number, 23-0229.
LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030'105, on Hanover Lane at Rossmoor, Monroe Township.
Owner: Monroe Township Municipal Utilities Authority.
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
MELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 330 ft screened 319 to 330 ft.
INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, April 1965 to August 1967, August 1968 to August 1975.


DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 1.50 ft below land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--April 1965 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 80.09 ft below land-surface datum, July 16, 1973; lowest, 100.47 ft below land-surface datum, between June 20 and Aug. 13, 1986.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

## WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERIO | 00 |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE |      | WATER<br>LEVEL |
|-------|-----|-------|----|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| SEPT. | 25, | 1986  | то | NOV.  | 21, | 1986 | 95.95                     | 98.29                    | NOV.  | 21,  | 1986 | 95.99          |
| NOV.  | 21, | 1986  | то | MAR.  | 3,  | 1987 | 94.47                     | 97.08                    | MAR.  | 3,   | 1987 | 95.10          |
| MAR.  | 3,  | 1987  | то | JUNE  | 5,  | 1987 | 94.25                     | 96.54                    | JUNE  | 5,   | 1987 | 95.76          |
| JUNE  | 5,  | 1987  | то | SEPT. | 30, | 1987 | 94.33                     | 97.98                    | SEPT. | 30,  | 1987 | 96.68          |





402015074275701. Local I.D., Forsgate 3 Obs. NJ-WRD Well Number, 23-0228.

LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township. Owner: Monroe Township Municipal Utilities Authority.

AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 138 ft, screened 128 to 138 ft.

INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, October 1961 to August 1967, August 1968 to August 1975.

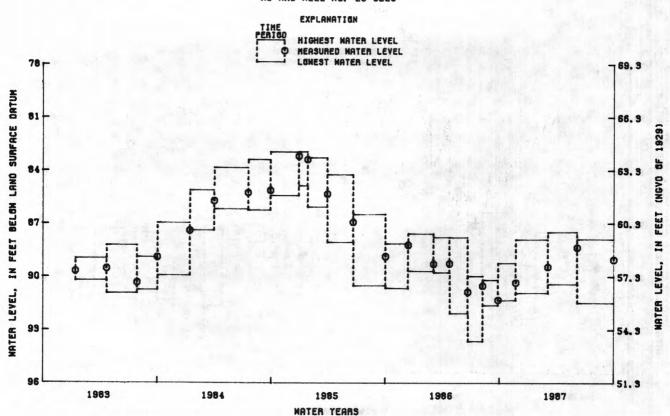
DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.40 ft below land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--October 1961 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1961 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 70.32 ft below land-surface datum, May 6, 1962; lowest, 93.64 ft below land-surface datum, between June 20 and Aug. 7, 1986.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

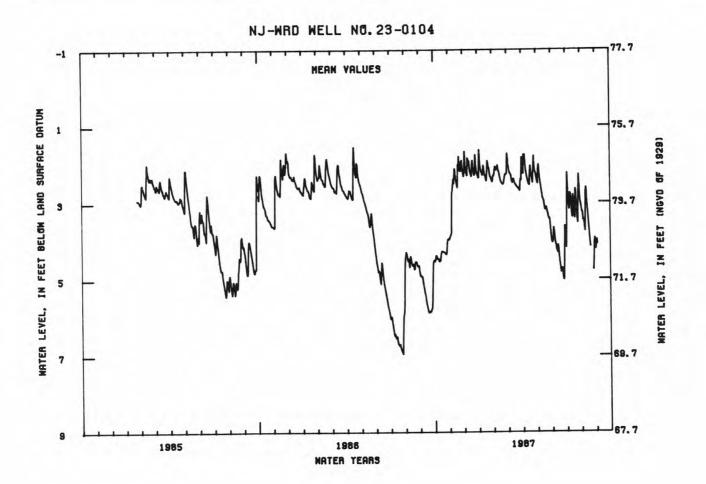
## WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERIOD  |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       |       | DATE     | WATER |
|-------|-----|---------|-------|-----|------|---------------------------|--------------------------|-------|-------|----------|-------|
| SEPT. | 25, | 1986 TO | NOV.  | 21, | 1986 | 89.21                     | 91.33                    | 97.70 | NOV.  | 21, 1986 | 90.32 |
| NOV.  | 21, | 1986 TO | MAR.  | 3,  | 1987 | 87.88                     | 90.93                    |       | MAR.  | 3, 1987  | 89.45 |
| MAR.  | 3,  | 1987 TO | JUNE  | 5,  | 1987 | 87.47                     | 90.43                    |       | JUNE  | 5, 1987  | 88.36 |
| JUNE  | 5,  | 1987 TO | SEPT. | 30, | 1987 | 87.88                     | 91.47                    | * 1   | SEPT. | 30, 1987 | 89.03 |






402143074185201. Local I.D., Morrell 1 Obs. NJ-WRD Well Number 23-0104.
LOCATION.--Lat 40°21'43", long 74°18'49", Hydrologic Unit 02030105, on the north side of Texas Road, about .4 mi. east of Route 9, Old Bridge Township
OWNER: Olympia and York Bridge Development Corp.
AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 17 in, depth 11 ft, cased with precast concrete rings.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 76.75 ft above National Geodedic Vertical Datum of 1929.
Measuring point: Top inside edge of concrete ring, .20 ft above land-surface datum.
REMARKS.--Well depth was 6 ft before deepening in September 1932. Missing record from September 3-30 was due to recorder malfunction.

malfunction.

PERIOD OF RECORD.--October 1923 to July 1975, January 1985 to current year. Periodic manual measurments August 1975 to December 1984. Records for 1973 to 1985 are unpublished and are available in files of New Jersey District Office. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.18 ft below land-surface datum, August 27, 1971; lowest, 10.40 ft below land surface datum, October 13, 1953. Well was dry, August to September 1932, before deepening.

## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                              |                                              |                                              |                                              |                                              | MEAN VALUE                                   | S                                            |                                              |                                              |                                              |                                  |     |
|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|-----|
| DAY                              | OCT                                          | NOV                                          | DEC                                          | JAN                                          | FEB                                          | MAR                                          | APR                                          | MAY                                          | JUN                                          | JUL                                          | AUG                              | SEP |
| 5<br>10<br>15<br>20<br>25<br>EOM | 4.38<br>4.51<br>4.27<br>4.27<br>4.34<br>3.96 | 3.75<br>2.50<br>2.42<br>2.10<br>2.17<br>2.24 | 2.12<br>1.88<br>2.23<br>2.07<br>1.74<br>2.35 | 2.12<br>2.14<br>2.32<br>1.96<br>2.32<br>2.28 | 2.11<br>2.10<br>2.40<br>2.52<br>2.25<br>2.23 | 2.16<br>2.40<br>2.43<br>2.57<br>2.65<br>1.81 | 1.87<br>2.26<br>2.52<br>2.26<br>1.77<br>2.31 | 2.00<br>2.58<br>2.93<br>3.15<br>3.36<br>3.88 | 3.64<br>4.10<br>4.17<br>4.81<br>5.00<br>4.02 | 2.84<br>2.77<br>2.79<br>2.63<br>3.52<br>3.03 | 3.46<br>2.70<br>3.29<br>4.14<br> | ::: |
| MEAN                             | 4.31                                         | 2.52                                         | 2.12                                         | 2.20                                         | 2.28                                         | 2.37                                         | 2.19                                         | 2.93                                         | 4.28                                         | 3.01                                         | 3.57                             |     |
| WATER                            | YEAR 1987                                    | HIG                                          | H 1.20                                       | APR 4                                        | LOW 5.                                       | 11 JUN 2                                     | 5                                            |                                              |                                              |                                              |                                  |     |

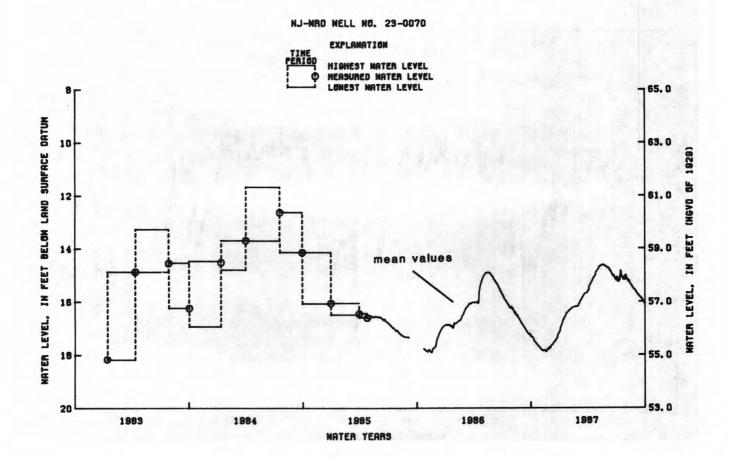


402553074271701. Local I.D., Robert Fischer Obs. NJ-WRD Well Number, 23-0070.
LOCATION.--Lat 40°25'55", long 74°27'19", Hydrologic Unit 02030105, about 1,800 ft southeast of Weber School on Hardenburg Lane, East Brunswick Township.
Owner: Robert D. Fischer.
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 4.5 ft, depth 21 ft, lined with concrete blocks.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, January 1977 to April 1985. April 1985.

APTI 1985.

DATUM.--Land-surface datum is 73.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of angle iron at bottom of shelter doors, 1.70 ft above land-surface datum.


REMARKS.--Well deepened October 29, 1965 from 17 to 21 ft.

PERIOD OF RECORD.--June 1936 to April 1975, January 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.88 ft below land-surface datum, Apr. 26-27, 1939; lowest, 19.11 ft below land-surface datum, between July 24 and Oct. 6, 1981; well was dry many times, 1963-1965 before deepening. deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                           |                                                    |                                                    |                                           | MEAN VALUE                                         | S                                                  |                                                    |           |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | ОСТ                                                | NOV                                       | DEC                                                | JAN                                                | FEB                                       | MAR                                                | APR                                                | MAY                                                | JUN       | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 17.34<br>17.46<br>17.53<br>17.60<br>17.68<br>17.76 | 17.83<br>17.85<br>17.84<br>17.87<br>17.79 | 17.63<br>17.59<br>17.50<br>17.40<br>17.29<br>17.13 | 16.92<br>16.75<br>16.60<br>16.50<br>16.41<br>16.32 | 16.29<br>16.24<br>16.21<br>16.19<br>16.19 | 16.05<br>15.93<br>15.82<br>15.72<br>15.68<br>15.62 | 15.42<br>15.31<br>15.20<br>15.09<br>14.96<br>14.83 | 14.74<br>14.65<br>14.61<br>14.63<br>14.65<br>14.69 | 14.91     | 15.18<br>15.15<br>14.82<br>15.08<br>15.16<br>14.98 | 15.16<br>15.18<br>15.33<br>15.42<br>15.52<br>15.59 | 15.69<br>15.75<br>15.82<br>15.88<br>15.98<br>16.07 |
| MEAN                             | 17.53                                              | 17.81                                     | 17.46                                              | 16.63                                              | 16.22                                     | 15.83                                              | 15.19                                              | 14.67                                              | 14.92     | 15.11                                              | 15.34                                              | 15.84                                              |
| WATER                            | YEAR 198                                           | 7 ME                                      | AN 16.05                                           | HIGH                                               | 14.60                                     | MAY 17,18                                          | LOW                                                | 17.88                                              | NOV 18-20 |                                                    |                                                    |                                                    |



402633074220001. Local I.D., South River 2 Obs. NJ-WRD Well Number, 23-0439. LOCATION.--Lat 40°26'33", long 74°22'00", Hydrologic Unit 02030105, at the corner of Whitehead Avenue and Anne Street, South River.
Owner: South River Utilities.

Owner: South River Utilities.

AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 126 ft, screened 121 to 126 ft.

INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, January 1968 to August 1975.

to August 1975.

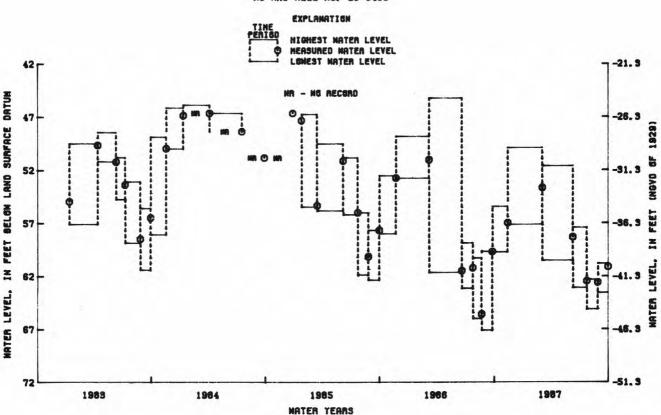
DATUM.--Land-surface datum is 20.69 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.55 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Water quality data for 1987 is published elsewhere in this report.

PERIOD OF RECORD.--January 1968 to August 1975, January 1977 to September 1987 (discontinued). Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

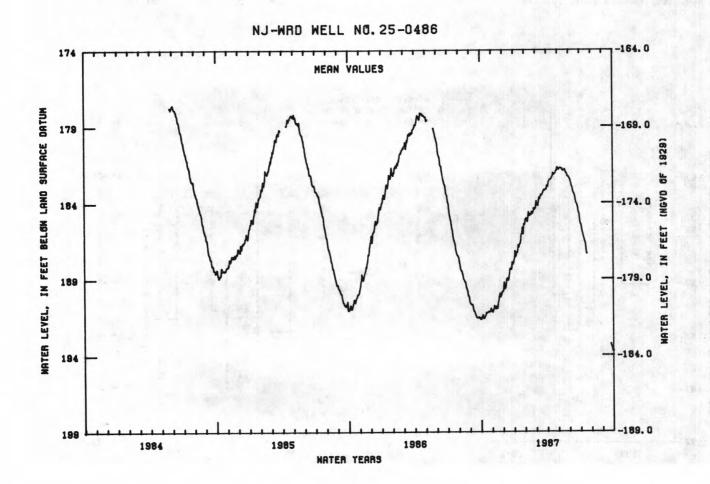
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 39.37 ft below land-surface datum, Jan. 30, 1968; lowest, 73.64 ft below land-surface datum, between Aug. 25 and Oct. 16, 1980.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

## WATER-LEVEL EXTREMES

## MEASURED WATER LEVEL

|       |     | PERIO | D    |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATI | E    | WATER<br>LEVEL |
|-------|-----|-------|------|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| SEPT. | 25, | 1986  | TO N | VOV.  | 13, | 1986 | 55.41                     | 59.74                    | NOV.  | 13,  | 1986 | 56.96          |
| NOV.  | 13, | 1986  | TO N | AR.   | 3,  | 1987 | 49.88                     | 57.13                    | MAR.  | 3,   | 1987 | 53.65          |
| MAR.  | 3,  | 1987  | то . | JUNE  | 9,  | 1987 | 51.60                     | 60.53                    | JUNE  | 9,   | 1987 | 58.33          |
| JUNE  | 9,  | 1987  | то . | JULY  | 24, | 1987 | 57.42                     | 63.10                    | JULY  | 24,  | 1987 | 62.45          |
| JULY  | 24, | 1987  | TO A | AUG.  | 28, | 1987 | 62.32                     | 65.13                    | AUG.  | 28,  | 1987 | 62.58          |
| AUG.  | 28, | 1987  | TO S | SEPT. | 30, | 1987 | 60.77                     | 63.57                    | SEPT. | 30,  | 1987 | 61.10          |


## NJ-NRD HELL NG. 23-0439



400711074020201. Local I.D., DOE - Sea Girt Obs. NJ-WRD Well Number, 25-0486.
LOCATION.--Lat 40°07'11", long 74°02'02", Hydrologic Unit 02030104, at the National Guard Camp, Sea Girt.
Owner: State of New Jersey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 988 ft, perforated casing 604 to 614 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 10 ft above National Geodedic Vertical Datum of 1929, from topographic map
Measuring point: Top edge of recorder shelf, 3.20 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Missing record from July 20 to September 21,
1987 was due to recorder malfunction.
PERIOD OF RECORD.--May 1984 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 176.58 ft below land-surface datum, May 25, 1984; lowest, 193.87
ft below land-surface datum, Sept. 29, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|      |        |        |        |        |        | MEAN VALU | JES    |        |        |        |     |        |
|------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|-----|--------|
| DAY  | OCT    | NOV    | DEC    | JAN    | FEB    | MAR       | APR    | MAY    | JUN    | JUL    | AUG | SEP    |
| 5    | 191.34 | 190.96 | 189.63 | 187.49 | 185.26 | 184.14    | 182.64 | 181.74 | 182.69 | 185.71 |     |        |
| 10   | 191.52 | 190.95 | 189.02 | 187.11 | 184.69 | 183.65    | 182.47 | 181.77 | 183.14 | 186.28 |     |        |
| 15   | 191.21 | 190.91 | 189.10 | 186.72 | 184.77 | 183.48    | 182.31 | 181.88 | 183.50 | 186.73 |     |        |
| 20   | 191.18 | 190.12 | 188.31 | 186.06 | 184.74 | 183.37    | 182.17 | 181.85 | 184.04 |        |     |        |
| 25   | 191.17 | 190.12 | 187.91 | 186.09 | 184.46 | 183.21    | 181.95 | 182.11 | 184.52 |        |     | 193.50 |
| EOM  | 191.16 | 189.80 | 187.68 | 185.10 | 184.36 | 182.88    | 181.68 | 182.35 | 185.23 |        |     | 193.70 |
| MEAN | 191.28 | 190.52 | 188.77 | 186.52 | 184.76 | 183.56    | 182.29 | 181.94 | 183.64 | 186.28 |     |        |



400832074082101. Local I.D., Allaire State Park C Obs. NJ-WRD Well Number, 25-0429.
LOCATION.--Lat 40°08'34", long 74°08'34", Hydrologic Unit 02040301, about 1.3 mi southeast of Lower Squankum, in Allaire State Park, Wall Township.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 715 ft, screened 623 to 633 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1964 to July 1975.

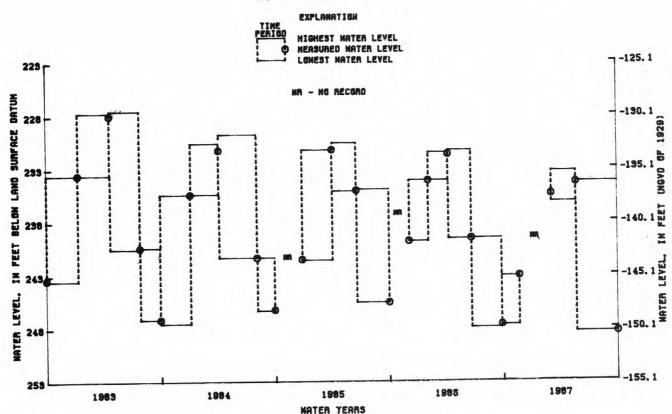
to July 1975.

DATUM.--Land-surface datum is 97.93 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.64 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, February 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 141.05 ft below land-surface datum, Apr. 8, 1964; lowest, 248.40 ft below land-surface datum, between May 21 and Sept. 30, 1987.

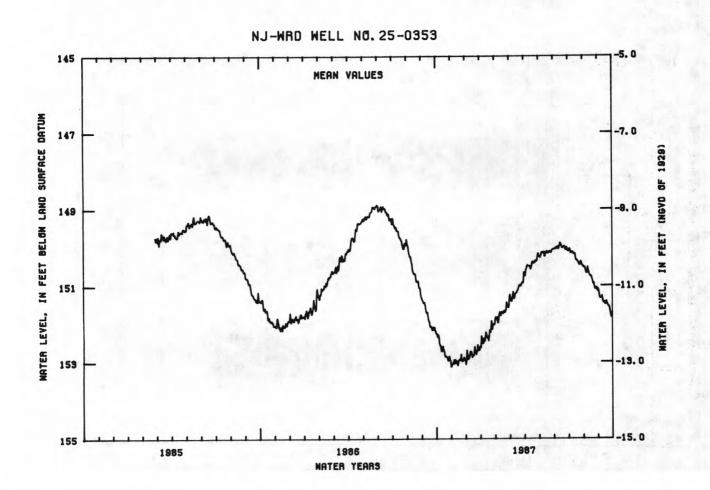

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

# WATER-LEVEL EXTREMES

## MEASURED WATER LEVEL

|          | PERIOD                   | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL | DATE           | WATER<br>LEVEL |
|----------|--------------------------|---------------------------|--------------------------|----------------|----------------|
| SEPT. 25 | , 1986 TO NOV. 21, 1986  | 243.07                    | 247.70                   | NOV. 21, 1986  | 243.07         |
| NOV. 21  | , 1986 TO MAR. 3, 1987   | •••                       | ***                      | MAR. 3, 1987   | 235.47         |
| MAR. 3   | , 1987 TO MAY 21, 1987   | 233.29                    | 236.20                   | MAY 21, 1987   | 234.39         |
| MAY 21   | , 1987 TO SEPT. 30, 1987 | 234.32                    | 248.40                   | SEPT. 30, 1987 | 248.40         |






401542074053001. Local I.D., Ft. Monmouth 1-NCO. NJ-WRD Well Number, 25-0353.
LOCATION.--Lat 40°15'42", long 74°05'30", Hydrologic Unit 02030104, at Training Center, Wyckoff Rd. and Wayside Rd.
New Shrewsbury Borough.

New Shrewsbury Borough.
Owner: U.S. Army.
AQUIFER: --Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 327 ft, screened 321 to 327 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land surface datum is 140 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 1.50 ft above land surface datum.
PERIOD OF RECORD.--February 1985 to current year. Records for 1985 are unpublished and are available in files of
New Jersey District Office.
EXTREMES FOR PREOID OF RECORD.--Highest water level 148.88 ft below land surface datum, May 31-Jun. 2, 1985; lowest,
153.15 ft below land surface datum Oct. 31, Nov. 1, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                          |                                                          |                                                          |                                                          |                                                          | MEAN VALU                                                | JES                                                      |                                                          |                                                          |                                                          |                                                |                                                          |
|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
| DAY                              | ОСТ                                                      | NOV                                                      | DEC                                                      | JAN                                                      | FEB                                                      | MAR                                                      | APR                                                      | MAY                                                      | JUN                                                      | JUL                                                      | AUG                                            | SEP                                                      |
| 5<br>10<br>15<br>20<br>25<br>EOM | 152.30<br>152.65<br>152.64<br>152.85<br>152.97<br>153.12 | 153.05<br>153.03<br>153.02<br>152.95<br>152.97<br>152.97 | 152.88<br>152.71<br>152.82<br>152.70<br>152.54<br>152.61 | 152.51<br>152.36<br>152.32<br>152.19<br>152.14<br>151.82 | 151.98<br>151.77<br>151.72<br>151.70<br>151.53<br>151.52 | 151.41<br>151.28<br>151.19<br>151.03<br>151.00<br>150.65 | 150.57<br>150.49<br>150.55<br>150.42<br>150.35<br>150.16 | 150.23<br>150.13<br>150.13<br>150.16<br>150.13<br>150.05 | 150.01<br>149.99<br>149.90<br>149.99<br>150.06<br>150.10 | 150.08<br>150.13<br>150.18<br>150.37<br>150.47<br>150.48 | 150.55<br>150.51<br>150.75<br>150.88<br>151.08 | 151.33<br>151.35<br>151.48<br>151.48<br>151.62<br>151.71 |
| MEAN                             | 152.69                                                   | 152.97                                                   | 152.76                                                   | 152.24                                                   | 151.70                                                   | 151.13                                                   | 150.46                                                   | 150.15                                                   | 150.01                                                   | 150.27                                                   | 150.79                                         | 151.45                                                   |
| WATER                            | YEAR 198                                                 | 37 M                                                     | EAN 151.                                                 | 39 HI                                                    | GH 149.89                                                | 9 JUN 13                                                 | -15 L                                                    | OW 153.1                                                 | 5 OCT 31                                                 | NOV 1                                                    |                                                |                                                          |



402208074145201. Local I.D., Marlboro 1 Obs. NJ-WRD Well Number, 25-0272.
LOCATION.--Lat 40°22'08", long 74°14'52", Hydrologic Unit 02030104, on the west side of New Jersey Route 79, 0.9 mi south of Morganville.

south of Morganville.

Owner: Marlboro Township Municipal Utilities Authority.

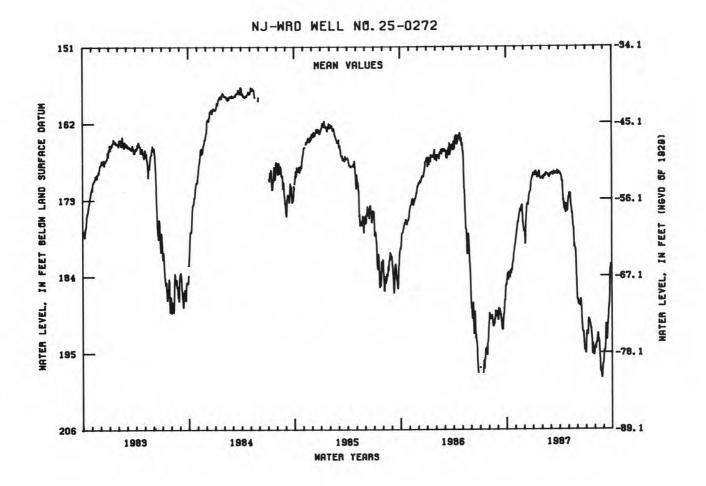
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 680 ft, screened 670 to 680 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 116.93 ft above National Geodetic Vertical Datum of 1929.

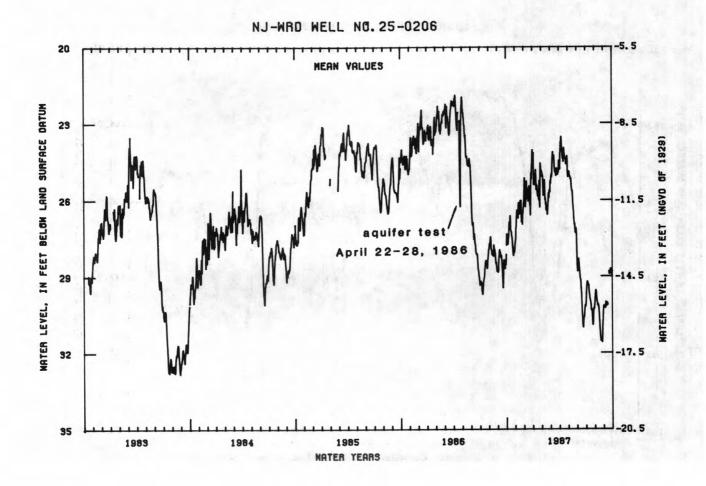
Measuring point: Top edge of recorder shelf, 2.50 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--January 1973 to July 1975, March 1977 to current year. Records for 1973 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 144.06 ft below land-surface datum, Apr. 4, 1973; lowest, 198.86 ft below land-surface datum, Aug. 26, 1987.

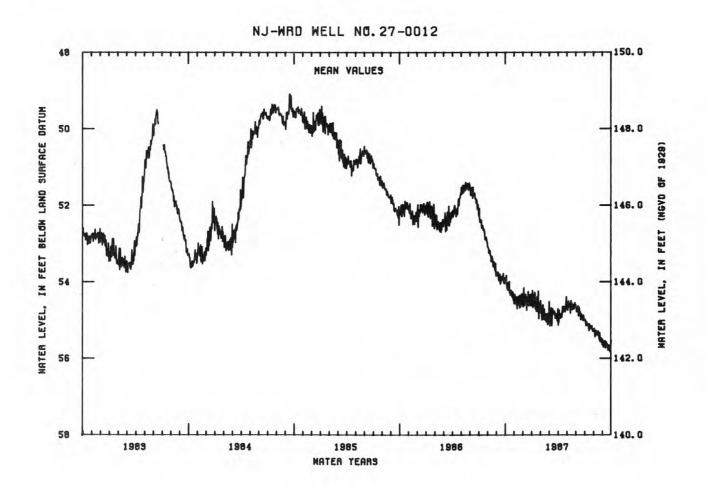
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987


|                                  |                                                          |                                                          |                                                          |                                                          | 1                                                        | MEAN VALU                                                | JES                                                      |                                                          |                                                          |                                                |                                                          |                                                          |
|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| DAY                              | OCT                                                      | NOV                                                      | DEC                                                      | JAN                                                      | FEB                                                      | MAR                                                      | APR                                                      | MAY                                                      | JUN                                                      | JUL                                            | AUG                                                      | SEP                                                      |
| 5<br>10<br>15<br>20<br>25<br>EOM | 183.49<br>183.80<br>183.12<br>183.18<br>181.55<br>179.41 | 177.69<br>176.33<br>174.86<br>174.26<br>174.71<br>177.28 | 179.39<br>174.11<br>173.79<br>171.93<br>170.41<br>169.64 | 169.51<br>169.09<br>169.49<br>169.07<br>169.84<br>169.92 | 169.98<br>169.47<br>169.12<br>169.48<br>169.79<br>169.61 | 169.38<br>169.35<br>169.03<br>169.33<br>169.02<br>168.95 | 169.20<br>170.41<br>173.23<br>174.47<br>174.46<br>174.40 | 172.22<br>172.43<br>175.02<br>177.01<br>179.90<br>184.33 | 187.40<br>187.61<br>187.71<br>191.81<br>193.47<br>194.59 | 191.87<br>190.38<br>190.46<br>191.38<br>195.18 | 194.40<br>192.90<br>193.19<br>195.91<br>198.40<br>196.46 | 194.74<br>191.26<br>190.96<br>188.18<br>182.96<br>184.65 |
| MEAN                             | 182.78                                                   | 175.91                                                   | 173.41                                                   | 169.45                                                   | 169.57                                                   | 169.22                                                   | 172.15                                                   | 176.16                                                   | 190.02                                                   | 192.53                                         | 195.05                                                   | 189.51                                                   |
| WATER                            | YEAR 198                                                 | 37 M                                                     | EAN 179.7                                                | 70 HIC                                                   | H 166.99                                                 | JAN 8                                                    | LOW                                                      | 198.86 AL                                                | JG 26                                                    |                                                |                                                          |                                                          |



402626074114204. Local I.D., Keyport Borough WD 4 Obs. NJ-WRD Well Number, 25-0206.
LOCATION.--Lat 40°26'25", long 74°11'45", Hydrologic Unit 02030104, at the unused Myrtle Avenue Water Plant, Keyport.
Owner: Keyport Borough Water Department.
AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 249 ft, screened 225 to 249 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 14.47 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.30 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation. Water level affected by USGS aquifer test, April 22-28, 1986.
PERIOD OF RECORD.--June 1978 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.57 ft below land-surface datum, Mar. 27, 1986; lowest, 34.88 ft below land-surface datum, July 22, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987


|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VALU                                          | JES                                                |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 27.44<br>27.06<br>27.05<br>27.46<br>28.19<br>27.72 | 26.63<br>26.72<br>26.55<br>26.00<br>26.96<br>26.02 | 26.27<br>25.61<br>26.04<br>25.83<br>24.93<br>24.29 | 24.98<br>24.81<br>25.56<br>25.94<br>25.51<br>24.93 | 25.81<br>25.53<br>26.41<br>26.50<br>25.76<br>25.69 | 24.98<br>24.11<br>24.57<br>24.99<br>25.01<br>24.44 | 24.09<br>23.95<br>24.51<br>24.32<br>24.37<br>25.03 | 24.90<br>25.19<br>25.60<br>26.45<br>27.11<br>27.78 | 28.42<br>28.84<br>29.53<br>30.88<br>30.60<br>30.18 | 29.29<br>29.31<br>29.85<br>30.33<br>30.91<br>30.23 | 29.55<br>30.07<br>30.27<br>31.28<br>31.48<br>30.22 | 30.24<br>30.17<br>30.12<br>28.92<br>28.69<br>28.79 |
| MEAN                             | 27.51                                              | 26.52                                              | 25.55                                              | 25.28                                              | 25.80                                              | 24.79                                              | 24.29                                              | 26.03                                              | 29.62                                              | 29.96                                              | 30.52                                              | 29.56                                              |



404639074230001. Local I.D., Briarwood School Obs. NJ-WRD Well Number, 27-0012.
LOCATION.--Lat 40°46'39", long 74°23'00", Hydrologic Unit 02030103, at Briarwood School near Florham Park.
Owner: U.S. Geological Survey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 110 ft, screened 100 to 110 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 198 ft above National Geodedic Vertical Datum of 1929, by altimeter.
Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.
PERIOD OF RECORD.--March 1967 to May 1975, April 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 34.17 ft below land-surface datum, June 3, 1968; lowest, 55.90 ft below land-surface datum, Sept. 27, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                                           |                                                    |                                                    | MEAN VALU                                          | IES                                                |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | ОСТ                                                | NOV                                                | DEC                                       | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 54.07<br>54.23<br>54.29<br>54.22<br>54.36<br>54.58 | 54.47<br>54.71<br>54.37<br>54.35<br>54.61<br>54.63 | 54.63<br>54.46<br>54.63<br>54.32<br>54.63 | 54.59<br>54.27<br>54.56<br>54.78<br>54.78<br>54.69 | 54.99<br>54.99<br>55.00<br>54.98<br>55.08<br>54.90 | 55.02<br>55.15<br>54.84<br>54.82<br>54.91<br>54.70 | 54.94<br>54.87<br>54.73<br>54.74<br>54.79<br>54.72 | 54.58<br>54.57<br>54.49<br>54.70<br>54.72<br>54.61 | 54.71<br>54.90<br>54.79<br>54.85<br>54.94<br>54.97 | 55.15<br>55.10<br>55.28<br>55.15<br>55.20<br>55.27 | 55.38<br>55.30<br>55.31<br>55.50<br>55.54<br>55.51 | 55.64<br>55.74<br>55.71<br>55.69<br>55.81<br>55.54 |
| MEAN                             | 54.21                                              | 54.49                                              | 54.48                                     | 54.58                                              | 54.89                                              | 54.86                                              | 54.79                                              | 54.63                                              | 54.84                                              | 55.16                                              | 55.41                                              | 55.68                                              |
| WATER                            | YEAR 198                                           | 7 ME                                               | AN 54.83                                  | HIGH                                               | 53.71                                              | JAN 22                                             | LOW 55                                             | .90 SEP                                            | 27                                                 |                                                    |                                                    |                                                    |



405027074232301. Local I.D., Troy Meadows 1 Obs. NJ-WRD Well Number, 27-0020.
LOCATION.--Lat 40°50'27", long 74°23'23", Hydrologic Unit 02030103, on the east side of Beverwyck Road, 0.8 mi north of intersection with Troy Road, Parsippany-Troy Hills Township.

Owner: U.S. Geological Survey.

AQUIFER.--Stratified drift of Pleistocene age.

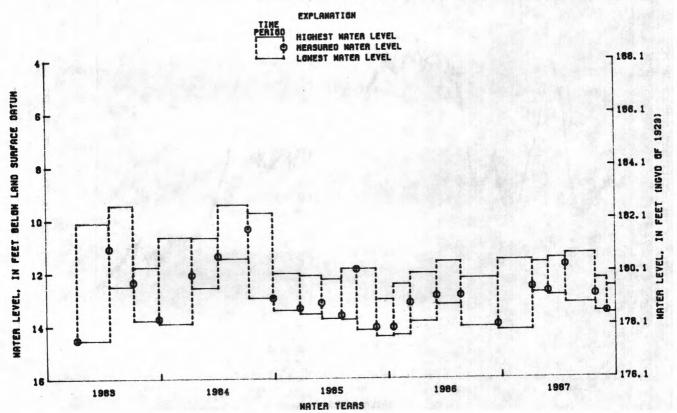
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 89 ft, screened 79 to 89 ft.

INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1965 to

July 1970.

DATUM.--Land-surface datum is 192.07 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.32 ft above land-surface datum.


PERIOD OF RECORD.--December 1965 to July 1970, April 1977 to current year. Periodic manual measurements, December 1970 to February 1975. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 6.00 ft below land-surface datum, Mar. 15-16, 1967 and June 15, 1968; lowest, 15.77 ft below land-surface datum, between Feb. 10 and May 31, 1978.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST WATER LOWEST WATER WATER PERIOD LEVEL LEVEL LEVEL DATE SEPT. 18, 1986 TO JAN. 7, 1987 11.54 14.20 JAN. 7, 1987 12.58 JAN. 7, 1987 TO FEB. 27, 1987 11.64 12.80 27, 1987 12.75 27, 1987 TO APR. FEB. 23, 1987 11.49 12.91 APR. 23, 1987 11.75 APR. 23, 1987 TO JULY 28, 1987 11.32 13.20 JULY 28, 1987 12.86 JULY 28, 1987 TO SEPT. 3, 1987 13.52 12.27 13.52 SEPT. 3, 1987 SEPT. 3, 1987 TO OCT. 12.56 13.54 1, 1987 13.59 OCT. 1, 1987

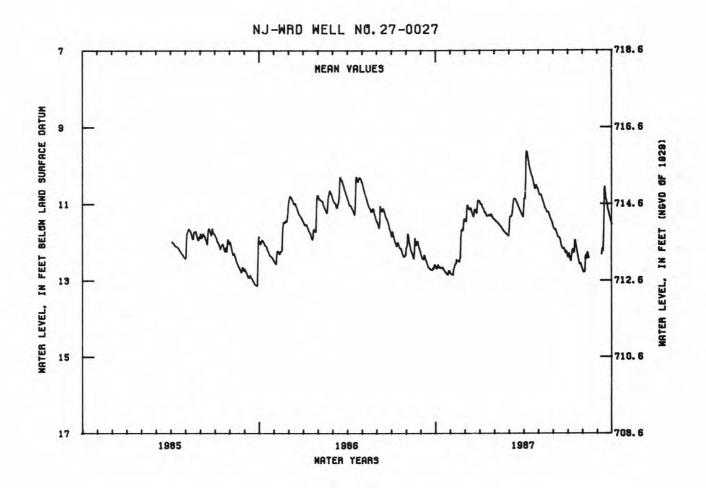
NJ-MRD HELL NO. 27-0020



405531074361901. Local I.D., Berkshire Valley TW-9. NJ-WRD Well Number, 27-0027.
LOCATION.--Lat 40°55'31", long 74°36'19", Hydrologic Unit 02030103, about 1,000 ft east of Lower Berkshire Valley Rd.
Jefferson Township.
Owner: State of New Jersey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 115 ft, screened 78 to 98 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 725.64 ft above National Geodedic Vertical Datum of 1929 (levels by Woodward-Clyde Consultants).

DATUM.--Land-surface datum is 720.04 ft above National Geografic Vertical Datum of 1727 (Levels 5, Woodmand Style Consultants).

Measuring point: Top of 6 inch casing, 2.25 ft above land surface datum.


REMARKS.-- Missing record from August 14 to September 8, 1987 was due to recorder malfunction.

PERIOD OF RECORD.--April 1985 to current year. Periodic manual measurments November 1981 to March 1985.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.62 ft below land-surface datum, Apr. 6, 1987; lowest, 13.17 ft below land-surface datum, Sept. 25, 1985

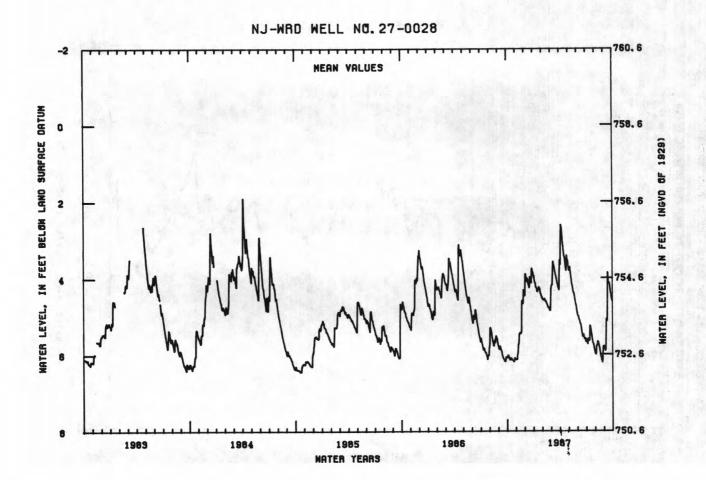
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VALU                                          | JES                                              |                                                    |                                                    |                                                    |                |                                           |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------|-------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                              | MAY                                                | JUN                                                | JUL                                                | AUG            | SEP                                       |
| 5<br>10<br>15<br>20<br>25<br>EOM | 12.59<br>12.66<br>12.67<br>12.79<br>12.86<br>12.82 | 12.86<br>12.58<br>12.50<br>12.40<br>11.71<br>11.43 | 11.04<br>11.12<br>11.28<br>11.15<br>11.03<br>10.99 | 11.11<br>11.24<br>11.32<br>11.30<br>11.35<br>11.43 | 11.50<br>11.57<br>11.66<br>11.75<br>11.81<br>11.85 | 11.33<br>10.90<br>10.92<br>11.07<br>11.22<br>11.12 | 9.72<br>9.88<br>10.19<br>10.42<br>10.51<br>10.65 | 10.76<br>10.94<br>11.13<br>11.21<br>11.37<br>11.58 | 11.66<br>11.85<br>11.96<br>12.18<br>12.25<br>12.36 | 12.43<br>12.20<br>11.95<br>12.25<br>12.58<br>12.72 | 12.75<br>12.27 | 12.17<br>10.55<br>11.03<br>11.33<br>11.54 |
| MEAN                             | 12.73                                              | 12.28                                              | 11.15                                              | 11.26                                              | 11.65                                              | 11.15                                              | 10.30                                            | 11.12                                              | 11.99                                              | 12.36                                              |                | 11.35                                     |
| WATER                            | YEAR 1987                                          | HI                                                 | GH 9.62                                            | APR 6                                              | LOW 12                                             | 2.88 NOV                                           | 5                                                |                                                    |                                                    |                                                    |                |                                           |



410207074270001. Local I.D., Green Pond TW5 Obs. NJ-WRD Well Number, 27-0028.
LOCATION.--Lat 41°02'07", long 74°27'00", Hydrologic Unit 02030103, about 500 ft east of Route 513 and 1.1 mi south of intersection with Route 23, Rockaway Township.
Owner: State of New Jersey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 120 ft, screened 80 to 120 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 758.56 ft above National Geodetic Vertical Datum of 1929 (levels by Woodward-Clyde Consultants).

Consultants).


Measuring point: Top edge of recorder shelf, 1.20 ft above land-surface datum.

PERIOD OF RECORD.--November 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.35 ft below land-surface datum, Apr. 5, 1984; lowest, 6.45 ft below land-surface datum, Oct. 22, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                              |                                              |                                              |                                              |                                              | EAN VALU                                     | ES                                           |                                              |                                              |                                              |                                              |                                              |
|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| DAY                              | OCT                                          | NOV                                          | DEC                                          | JAN                                          | FEB                                          | MAR                                          | APR                                          | MAY                                          | JUN                                          | JUL                                          | AUG                                          | SEP                                          |
| 5<br>10<br>15<br>20<br>25<br>EOM | 6.01<br>6.12<br>6.09<br>6.14<br>6.19<br>6.13 | 6.13<br>5.71<br>5.42<br>5.38<br>4.67<br>4.40 | 3.95<br>3.99<br>4.19<br>3.97<br>3.78<br>3.93 | 4.10<br>4.24<br>4.35<br>4.27<br>4.41<br>4.52 | 4.58<br>4.60<br>4.66<br>4.76<br>4.83<br>4.85 | 4.18<br>3.57<br>3.80<br>3.97<br>4.17<br>3.83 | 2.60<br>2.95<br>3.34<br>3.60<br>3.40<br>3.62 | 3.74<br>3.94<br>4.20<br>4.39<br>4.60<br>4.86 | 4.99<br>5.13<br>5.30<br>5.53<br>5.56<br>5.63 | 5.66<br>5.58<br>5.24<br>5.46<br>5.71<br>5.90 | 5.99<br>5.66<br>5.77<br>6.00<br>6.18<br>5.78 | 5.88<br>5.06<br>3.98<br>4.14<br>4.41<br>4.60 |
| MEAN                             | 6.11                                         | 5.31                                         | 4.03                                         | 4.27                                         | 4.67                                         | 4.01                                         | 3.32                                         | 4.23                                         | 5.30                                         | 5.60                                         | 5.90                                         | 4.80                                         |
| WATER                            | YEAR 1987                                    | MEA                                          | N 4.80                                       | HIGH                                         | 2.51 APR                                     | 4 L                                          | OW 6.23                                      | AUG 26,27                                    |                                              |                                              |                                              |                                              |

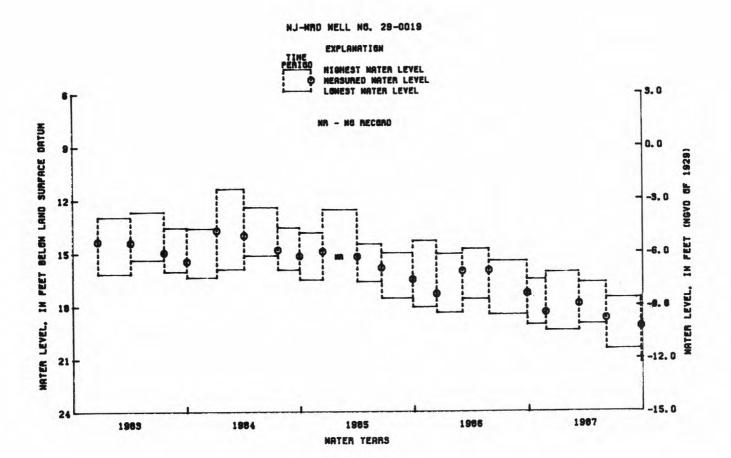


394829074053503. Local I.D., Island Beach 3 Obs. NJ-WRD Well Number, 29-0019.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,756 ft, screened 2,736 to 2,756 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, November 1968 to March 1975.

To March 1975.

DATUM.--Land-surface datum is 9.02 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 5.11 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--November 1968 to March 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 5.95 ft above land-surface datum, Apr. 23, 1969; lowest, 20.45 ft below land-surface datum, between June 5 and Sept. 25, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

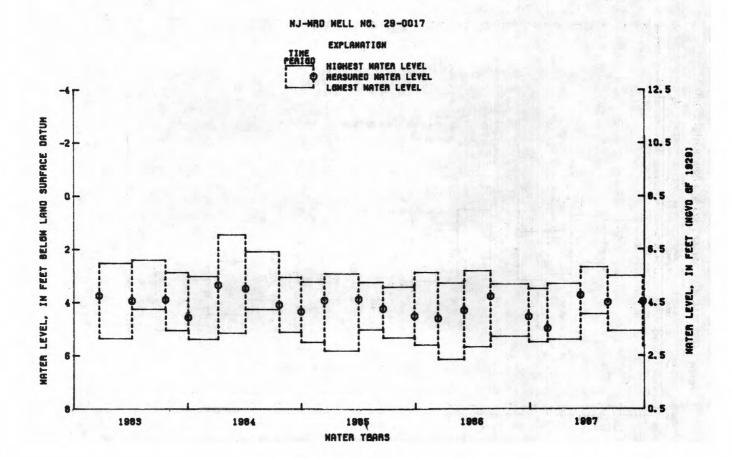
#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST WATER LEVEL LOWEST WATER PERIOD LEVEL DATE LEVEL SEPT. 26, 1986 TO NOV. 25, 1986 16.48 19.07 NOV. 25, 1986 18.37 NOV. 25, 1986 TO MAR. 10, 1987 16.08 19.40 MAR. 10, 1987 17.89 10, 1987 TO JUNE 5, 1987 16.67 19.03 JUNE 5, 1987 18.70 JUNE 5, 1987 TO SEPT. 25, 1987 17.53 SEPT. 25, 1987 19.18 20.45



394829074053501. Local I.D., Island Beach 1 Obs. NJ-WRD Well Number, 29-0017.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 397 ft, screened 377 to 397 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, July 1962 to March 1975.

DATUM.--Land-surface datum is 8.50 ft above National Geodetic Vertical Datum of 1929.

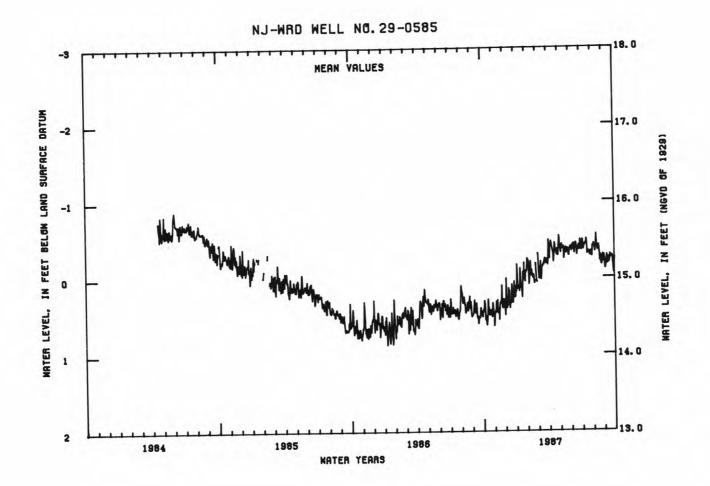
Measuring point: Front edge of cutout in recorder housing, 3.40 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--July 1962 to March 1975, February 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.05 ft below land-surface datum, Dec. 6, 1962; lowest, 6.14 ft below land-surface datum, between Dec. 13, 1978 and Jan. 10, 1979 and between Dec. 11, 1985 and Mar. 3, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987


#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD DATE LEVEL LEVEL LEVEL SEPT. 26, 1986 TO NOV. 25, 1986 4.97 3.47 5.49 NOV. 25, 1986 NOV. 25, 1986 TO MAR. 10, 1987 MAR. 10, 1987 3.72 3.29 5.40 10, 1987 TO JUNE 5, 1987 2.66 JUNE 5, 1987 4.00 4.44 JUNE 5, 1987 TO SEPT. 25, 1987 2.99 SEPT. 25, 1987 3.96 5.07



395028074104401. Local I.D., DOE-Forked River Obs. NJ-WRD Well Number, 29-0585.
LOCATION.--Lat 39°50'28", long 74°10'44", Hydrologic Unit 02040301, at the Forked River Game Farm, Forked River.
Owner: State of New Jersey.
AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 959 ft, perforated casing 412 to 422 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 15 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 3.80 ft above land-surface datum.
PERIOD OF RECORD.--April 1984 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.83 ft above land-surface datum, June 1, 1984; lowest, 0.90 ft below land-surface datum, Jan. 24,25, 1986.

WATER LEVEL, IN FEET ABOVE (-) OR BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                              |                                              |                                              |                                               | M                                      | EAN VAL                                           | UES                                                |                                                    |                                           |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                          | NOV                                          | DEC                                          | JAN                                           | FEB                                    | MAR                                               | APR                                                | MAY                                                | JUN                                       | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 0.33<br>0.61<br>0.37<br>0.45<br>0.51<br>0.63 | 0.43<br>0.46<br>0.44<br>0.29<br>0.40<br>0.40 | 0.33<br>0.14<br>0.33<br>0.24<br>0.05<br>0.19 | 0.15<br>0.04<br>0.10<br>0.01<br>0.05<br>-0.25 | 0.09<br>-0.09<br>-0.01<br>0.08<br>0.02 | 0.02<br>-0.03<br>-0.14<br>-0.23<br>-0.18<br>-0.49 | -0.41<br>-0.38<br>-0.26<br>-0.32<br>-0.30<br>-0.51 | -0.36<br>-0.40<br>-0.38<br>-0.32<br>-0.30<br>-0.40 | -0.42<br>-0.36<br>-0.45<br>-0.37<br>-0.37 | -0.42<br>-0.44<br>-0.46<br>-0.34<br>-0.28<br>-0.41 | -0.41<br>-0.56<br>-0.36<br>-0.28<br>-0.16<br>-0.23 | -0.11<br>-0.21<br>-0.19<br>-0.27<br>-0.21<br>-0.26 |
| MEAN                             | 0.45                                         | 0.37                                         | 0.26                                         | 0.02                                          | -0.05                                  | -0.16                                             | -0.36                                              | -0.36                                              | -0.39                                     | -0.37                                              | -0.34                                              | -0.21                                              |
| WATER                            | YEAR 1987                                    | MEAN                                         | -0.10                                        | HIGH                                          | -0.64 APR                              | 29                                                | LOW 0.65                                           | OCT 31,                                            | NOV 1                                     |                                                    |                                                    |                                                    |



395714074223401. Local I.D., Crammer Obs. NJ-WRD Well Number, 29-0486. LOCATION.--Lat 39°57'14", long 74°22'34", Hydrologic Unit 02040301, about 800 ft east of Central Railroad of New

LOCATION.--Lat 39°57'14", long 74°22'34", Hydrologic Unit 02040301, about 800 ft east of Central Railroad of New Jersey, Whiting.

Owner: Whiting Bible Church.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

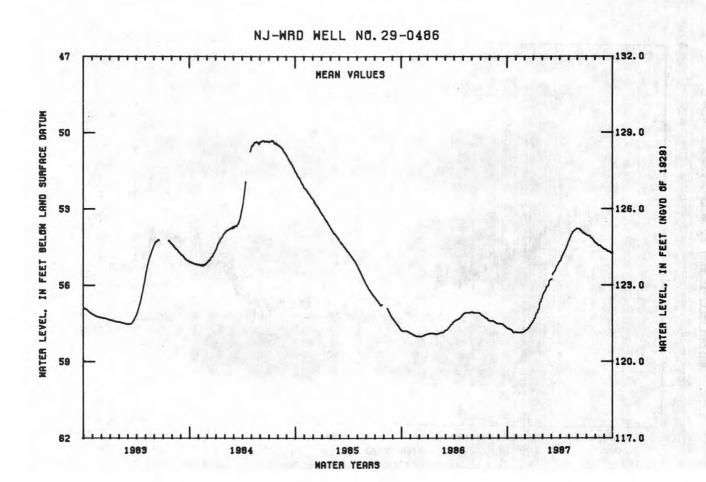
WELL CHARACTERISTICS.--Water-table observation well, diameter 8 in, depth 69 ft, slotted steel casing, gravel packed. INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 179.05 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 8-inch coupling, 0.90 ft above land-surface datum.

REMARKS.--Originally a dug well in which slotted casing was installed on March 31, 1966, and the well deepened from 60 to 69 ft.

PERIOD OF RECORD.--May 1952 to current year. Records for 1952 to 1962 are unpublished and are available in files of


FROM 60 TO 69 TT.

PERIOD OF RECORD.--May 1952 to current year. Records for 1952 to 1962 are unpublished and are available in files of New Jersey District office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 47.80 ft below land-surface datum, June 9-14, 20-29, 1973; lowest, 58.02 ft below land surface datum, Nov. 21,22,29-30, Dec. 1-8, 1985. Well was dry, November 1957 to February 1958, December 1965, before deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VALUE                                | s                                                  |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                       | APR                                                | MÁY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 57.72<br>57.74<br>57.77<br>57.85<br>57.86<br>57.86 | 57.86<br>57.87<br>57.87<br>57.86<br>57.85<br>57.85 | 57.77<br>57.72<br>57.66<br>57.56<br>57.46<br>57.37 | 57.28<br>57.10<br>56.96<br>56.73<br>56.63<br>56.39 | 56.28<br>56.17<br>56.04<br>56.00<br>55.80<br>55.79 | 55.51<br>55.43<br>55.27<br>55.18<br>55.06 | 54.95<br>54.81<br>54.70<br>54.59<br>54.44<br>54.28 | 54.15<br>54.01<br>53.91<br>53.86<br>53.82<br>53.78 | 53.80<br>53.84<br>53.88<br>53.94<br>53.99<br>54.03 | 54.06<br>54.07<br>54.12<br>54.17<br>54.24<br>54.33 | 54.38<br>54.42<br>54.45<br>54.48<br>54.54<br>54.59 | 54.61<br>54.65<br>54.68<br>54.71<br>54.74<br>54.75 |
| MEAN                             | 57.79                                              | 57.85                                              | 57.61                                              | 56.90                                              | 56.06                                              | 55.38                                     | 54.68                                              | 53.95                                              | 53.90                                              | 54.15                                              | 54.46                                              | 54.68                                              |
| WATER                            | YEAR 1987                                          | ME                                                 | AN 55.62                                           | HIGH                                               | 53.78                                              | MAY 29-31,                                | JUN 1,2                                            | LOW                                                | 57.87                                              | OCT 21-24,                                         | NOV 3,4,                                           | 6-15,23                                            |



JUNE

395609074124001. Local I.D., Toms River TW 2 Obs. NJ-WRD Well Number, 29-0534.
LOCATION.--Lat 39°56'09", long 74°12'40", Hydrologic Unit 02040301, about 200 ft east of Double Trouble Road on the north side of Jakes Branch, South Toms River.

Owner: U.S. Geological Survey.

AOUIFER.--Englishtown aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 1,146 ft, screened 1,080 to 1,146 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, December 1965 to March 1975. to March 1975.

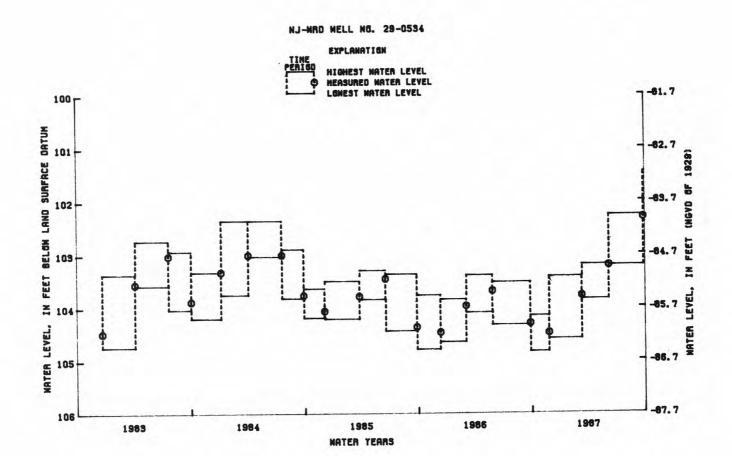
DATUM.--Land-surface datum is 18.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.70 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to March 1975, February 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 48.37 ft below land-surface datum, May 28, 1966; lowest, 104.91 ft below land-surface datum, between Sept. 29 and Dec. 21, 1982.

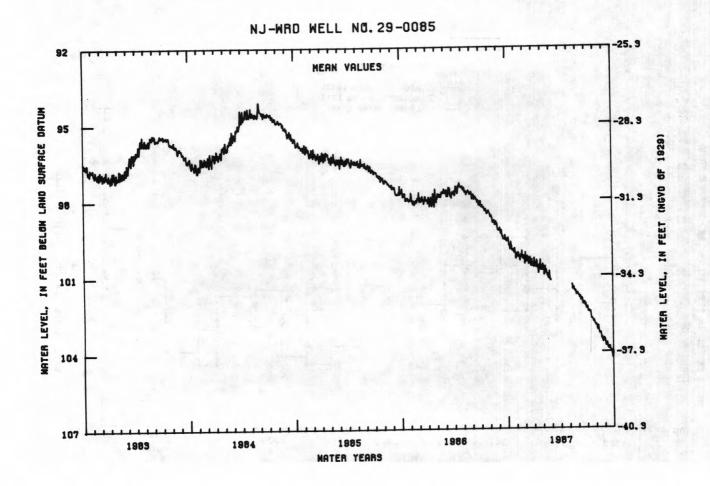
103.22


SEPT. 25, 1987

102.32

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD DATE LEVEL SEPT. 26, 1986 TO NOV. 25, 1986 104.16 104.84 25, 1986 104.49 NOV. 25, 1986 TO MAR. 10, 1987 103.42 104.60 MAR. 10, 1987 103.79 MAR. 10, 1987 TO JUNE 5, 1987 103.20 103.85 103.22 JUNE 5, 1987 5, 1987 TO SEPT. 25, 1987


102.27



395930074142101. Local I.D., Toms River Chem 84 Obs. NJ-WRD Well Number, 29-0085.
LOCATION.--Lat 39°59'29", long 74°14'20", Hydrologic Unit 02040301, at Toms River Plant, Ciba-Geigy Corporation, Dover Township.
Owner: Ciba-Geigy Corporation.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 1,480 ft, screened 1,460 to 1,480 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 66.71 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.70 ft above land-surface datum.
REMARKS.--Missing record from March 1 to May 11, 1987 was due to recorder malfunction.
PERIOD OF RECORD.--July 1968 to July 1975, March 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 62.32 ft below land-surface datum, July 19, 1968 and Feb. 9, 1969; lowest, 104.26 ft below land-surface datum, Sept. 28, 1987.

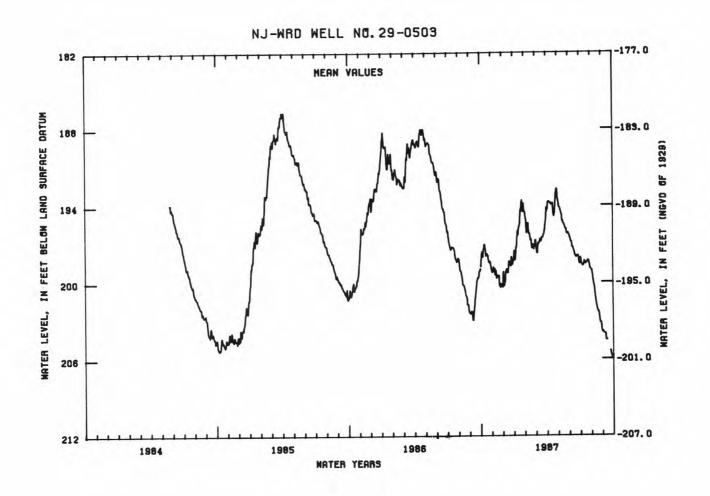
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                |                |                  |                  |                  |                  | MEAN VALUE | S   |                  |        |                  |                  |        |
|----------------|----------------|------------------|------------------|------------------|------------------|------------|-----|------------------|--------|------------------|------------------|--------|
| DAY            | OCT            | NOV              | DEC              | JAN              | FEB              | MAR        | APR | MAY              | JUN    | JUL              | AUG              | SEP    |
| 5<br>10        | 99.50<br>99.88 | 100.18           | 100.35           | 100.60           | 100.95<br>100.81 | :::        | ::: | :::              | 101.77 | 102.29           | 102.97           | 103.76 |
| 15<br>20<br>25 | 99.74<br>99.96 | 100.28           | 100.46           | 100.63           | 100.94           | :::        | ::: | 101.41           | 101.89 | 102.46           | 103.27           | 103.88 |
| 25<br>EOM      | 100.08         | 100.32<br>100.38 | 100.34<br>100.58 | 100.77<br>100.53 | 101.07<br>101.14 | :::        | ::: | 101.68<br>101.67 | 102.15 | 102.82<br>102.90 | 103.59<br>103.54 | 104.00 |
| MEAN           | 99.85          | 100.21           | 100.43           | 100.60           | 100.89           |            |     | 101.57           | 101.96 | 102.56           | 103.26           | 103.85 |
| WATER          | YEAR 198       | 37 н             | IGH 99.44        | OCT 4            | LOW              | 104.26 SEE | 28  |                  |        |                  |                  |        |



400210074031001. Local I.D., Mantoloking 6 Obs. NJ-WRD Well Number, 29-0503. LOCATION.--Lat 40°02'10", long 74°03'10", Hydrologic Unit 02040301, at the Bay Avenue water treatment plant, Mantoloking.

Mantoloking.
Owner: New Jersey - American Water Company.
AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 906 ft, screened 845 to 906 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 5 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping.


DEPLOD OF DECORD --May 1984 to current year.

PERIOD OF RECORD.--May 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 185.95 ft below land-surface datum, Apr. 6, 1985; lowest, 206.36 ft below land-surface datum, Sept. 29, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                          |                                                          |                                                          |                                                          |                                                | MEAN VALU                                                | ES                                                       |                                                          |                                                          |                                                          |                                                          |                                          |
|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------|
| DAY                              | OCT                                                      | NOV                                                      | DEC                                                      | JAN                                                      | FEB                                            | MAR                                                      | APR                                                      | MAY                                                      | JUN                                                      | JUL                                                      | AUG                                                      | SEP                                      |
| 5<br>10<br>15<br>20<br>25<br>EOM | 197.57<br>197.27<br>197.79<br>197.84<br>198.44<br>199.05 | 199.14<br>199.39<br>199.61<br>199.53<br>200.38<br>200.23 | 200.25<br>199.08<br>199.24<br>198.31<br>197.96<br>198.13 | 198.11<br>196.41<br>195.60<br>194.21<br>194.46<br>194.48 | 196.11<br>195.78<br>196.49<br>197.30<br>197.39 | 197.55<br>196.99<br>196.55<br>196.45<br>196.23<br>194.12 | 193.68<br>193.76<br>193.82<br>194.73<br>193.54<br>193.10 | 194.09<br>194.50<br>195.14<br>195.55<br>195.93<br>196.15 | 196.56<br>197.16<br>197.51<br>197.97<br>197.92<br>198.49 | 198.37<br>198.69<br>198.40<br>198.38<br>198.28<br>198.95 | 199.39<br>200.28<br>201.60<br>202.22<br>202.96<br>203.79 | 203.97<br>204.34<br><br>205.69<br>205.68 |
| MEAN                             | 197.94                                                   | 199.53                                                   | 199.01                                                   | 195.65                                                   | 196.34                                         | 196.51                                                   | 193.83                                                   | 195.10                                                   | 197.42                                                   | 198.48                                                   | 201.43                                                   | 204.75                                   |
| WATER                            | YEAR 198                                                 | 37 MI                                                    | EAN 197.8                                                | S HIG                                                    | H 192.23                                       | APR 29                                                   | LOW                                                      | 206.36                                                   | SEP 29                                                   |                                                          |                                                          |                                          |



400416074270101. Local I.D., Colliers Mills TW 1 Obs. NJ-WRD Well Number, 29-0138. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson

Township.
Owner: U.S. Geological Survey.


AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 427 ft, screened 417 to 427 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 136.52 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch coupling, 2.20 ft above land-surface datum.
PERIOD OF RECORD.--February 1964 to July 1975, March 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.02 ft below land-surface datum, Feb. 19, 1964; lowest, 75.55 ft below land-surface datum, Oct. 31, Nov. 1, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VALU                                          | ES                                                 |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 75.15<br>75.39<br>75.30<br>75.39<br>75.45<br>75.53 | 75.40<br>75.40<br>75.33<br>75.23<br>75.26<br>75.24 | 75.15<br>75.00<br>75.08<br>75.00<br>74.87<br>74.98 | 74.90<br>74.79<br>74.82<br>74.74<br>74.72<br>74.53 | 74.73<br>74.61<br>74.65<br>74.69<br>74.60<br>74.60 | 74.60<br>74.56<br>74.54<br>74.46<br>74.52<br>74.31 | 74.24<br>74.24<br>74.35<br>74.30<br>74.29<br>74.18 | 74.25<br>74.22<br>74.24<br>74.30<br>74.33<br>74.29 | 74.34<br>74.40<br>74.36<br>74.47<br>74.47<br>74.53 | 74.42<br>74.46<br>74.51<br>74.64<br>74.70<br>74.69 | 74.72<br>74.62<br>74.81<br>74.88<br>74.99<br>74.94 | 75.04<br>75.00<br>75.05<br>75.04<br>75.08<br>75.05 |
| MEAN                             | 75.33                                              | 75.30                                              | 75.05                                              | 74.76                                              | 74.61                                              | 74.50                                              | 74.28                                              | 74.27                                              | 74.41                                              | 74.56                                              | 74.83                                              | 75.03                                              |
| WATER                            | YEAR 1987                                          | ME                                                 | AN 74.74                                           | HIGH                                               | 74.09                                              | APR 29                                             | LOW 75                                             | .55 OCT                                            | 31, NOV 1                                          |                                                    |                                                    |                                                    |



#### OCEAN COUNTY

400416074270103. Local I.D., Colliers Mills TW 3 Obs. NJ-WRD Well Number, 29-0140. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 270 ft, screened 257 to 267 ft.

INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, January 1964 to

INSTRUMENTATION.--water-level extremes recorder, october 1970 to content year.

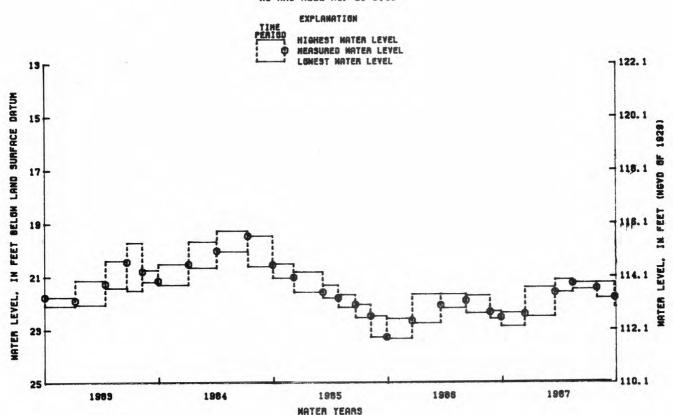
July 1975.

DATUM.--Land-surface datum is 135.15 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.49 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, October 1976 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.72 ft below land-surface datum, May 9, 1964; lowest, 23.32 ft below land-surface datum, between Sept. 26 and Dec. 16, 1985.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERIOD        |          | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE     | WATER<br>LEVEL |
|-------|-----|---------------|----------|---------------------------|--------------------------|-------|----------|----------------|
| SEPT. | 26, | 1986 TO DEC.  | 11, 1986 | 22.35                     | 22.87                    | DEC.  | 11, 1986 | 22.40          |
| DEC.  | 11, | 1986 TO MAR.  | 17, 1987 | 21.40                     | 22.50                    | MAR.  | 17, 1987 | 21.59          |
| MAR.  | 17, | 1987 TO MAY   | 13, 1987 | 21.11                     | 21.59                    | MAY   | 13, 1987 | 21.25          |
| MAY   | 13, | 1987 TO JULY  | 29, 1987 | 21.23                     | 21.48                    | JULY, | 29, 1987 | 21.44          |
| JULY  | 29, | 1987 TO SEPT. | 25, 1987 | 21.22                     | 21.81                    | SEPT. | 25, 1987 | 21.79          |

#### NJ-HRD HELL NG. 29-0140



#### OCEAN COUNTY

400416074270102. Local I.D., Colliers Mills TW 2 Obs. NJ-WRD Well Number, 29-0139. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond,

Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Vincentown Formation of Paleocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 171 ft, screened 161 to 171 ft.

INSTRUMENTATION.--Water-level extremes recorder, Oc. ber 1976 to current year. Water-level recorder, January 196 to August 1975.

to August 1975.

DATUM.--Land-surface datum is 135.76 ft above Na' onal Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.10 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to August 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.92 ft below land-surface datum, between Apr. 3 and July 11 1984; lowest, 6.77 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985 and between Aug. 6 and Sept. 26, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### MATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|          | PERIOD                   | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL | DAT      | E    | WATER<br>LEVEL |
|----------|--------------------------|---------------------------|--------------------------|----------|------|----------------|
| SEPT. 26 | , 1986 TO DEC. 11, 1986  | 5.92                      | 6.55                     | DEC. 11, | 1986 | 5.92           |
| DEC. 11  | , 1986 TO MAR. 17, 1987  | 5.20                      | 5.96                     | MAR. 17, | 1987 | 5.29           |
| MAR. 17  | , 1987 TO MAY 13, 1987   | 4.91                      | 5.35                     | MAY 13,  | 1987 | 5.04           |
| MAY 13   | , 1987 TO JULY 29, 1987  | 5.04                      | 5.63                     | JULY 29, | 1987 | 5.49           |
| JULY 29  | , 1987 TO SEPT. 25, 1987 | 5.45                      | 5.84                     | SEPT. 25 | 1987 | 5.82           |

#### NJ-HRD HELL NG. 29-0139

### EXPLANATION HIGHEST MATER LEVEL MEASURED MATER LEVEL 133. 8 LONEST MATER LEVEL - NO RECORD FEET BELON LAND SURFACE DATUM FEET 130. 8 5 6 MATER LEVEL, 1987 1986 1985 1984 1983

HATER YEARS

#### OCEAN COUNTY

400416074270104. Local I.D., Colliers Mills TW 4 Obs. NJ-WRD Well Number, 29-0141. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 71 ft, gravel-filled hole 46 to 71 INSTRUMENTATION. -- Water-level extremes recorder, October 1976 to current year. Water-level recorder, March 1964 to

INSTRUMENTATION.--Water-level extremes recorder, october 1,750
April 1975.

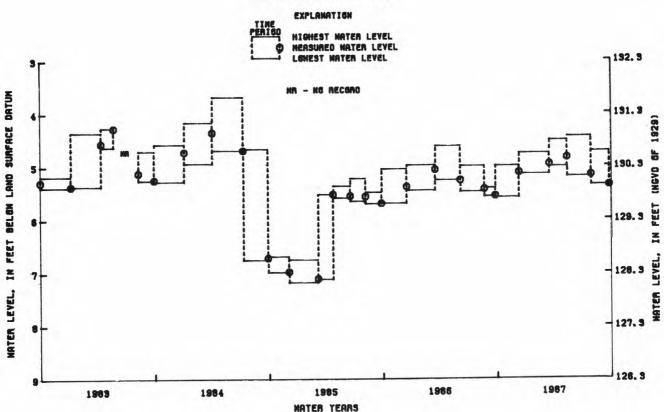
DATUM.--Land-surface datum is 135.31 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.86 ft above land-surface datum.

REMARKS.--Water level affected by stage of Colliers Mills Pond.

PERIOD OF RECORD.--March 1964 to April 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.68 ft below land-surface datum, between Apr. 3 and July 11, 1984; lowest, 7.17 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERIOD  |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE     | WATER<br>LEVEL |
|-------|-----|---------|-------|-----|------|---------------------------|--------------------------|-------|----------|----------------|
| SEPT. | 26, | 1986 TO | DEC.  | 11, | 1986 | 4.99                      | 5.59                     | DEC.  | 11, 1986 | 5.12           |
| DEC.  | 11, | 1986 TO | MAR.  | 17, | 1987 | 4.75                      | 5.15                     | MAR.  | 17, 1987 | 4.96           |
| MAR.  | 17, | 1987 TO | MAY   | 13, | 1987 | 4.51                      | 5.01                     | MAY   | 13, 1987 | 4.84           |
| MAY   | 13, | 1987 TO | JULY  | 29, | 1987 | 4.44                      | 5.20                     | JULY  | 29, 1987 | 5.17           |
| JULY  | 29, | 1987 TO | SEPT. | 25, | 1987 | 4.72                      | 5.36                     | SEPT. | 25, 1987 | 5.36           |





#### UNION COUNTY

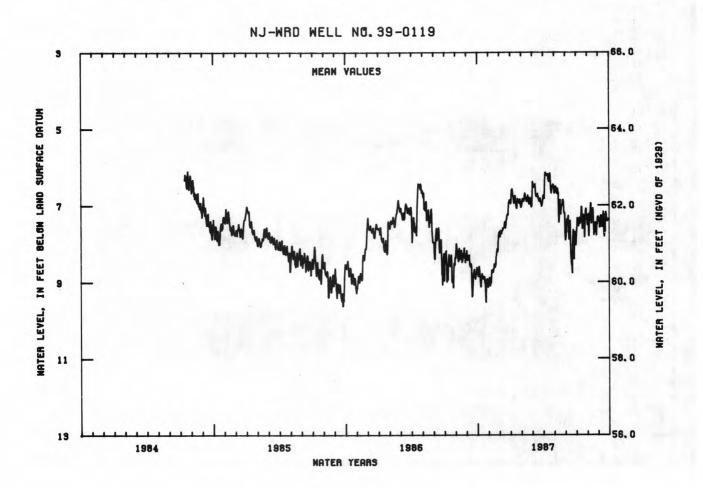
404106074171901. Local I.D., Union County Park Obs. NJ-WRD Well Number, 39-0119.
LOCATION.--Lat 40°41'06", long 74°17'19", Hydrologic Unit 02030104, at Galloping Hill Golf Course, Kenilworth.
Owner: Union County Park Commission.
AQUIFER.--Passaic Formation of Jurassic-Triassic age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, length of casing unknown, depth 290 ft,

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, length of casing unknown, depth 290 ft, open hole.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 69.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.30 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--June 1943 to May 1975, July 1984 to current year. Periodic manual measurements, August 1976 to April 1984. Records for 1975 to 1983 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.06 ft below land-surface datum, June 2, 1952; lowest, 16.05 ft below land-surface datum, June 29, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

|                                  |                                              |                                              |                                              |                                              | M                                            | EAN VALUE                                    | S                                            |                                              |                                              |                                              |                                              |                                              |
|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| DAY                              | ОСТ                                          | NOV                                          | DEC                                          | JAN                                          | FEB                                          | MAR                                          | APR                                          | MAY                                          | JUN                                          | JUL                                          | AUG                                          | SEP                                          |
| 5<br>10<br>15<br>20<br>25<br>EOM | 8.58<br>9.12<br>8.83<br>8.85<br>9.14<br>9.08 | 9.09<br>8.76<br>8.63<br>8.54<br>8.21<br>7.68 | 7.72<br>7.58<br>7.42<br>7.36<br>7.00<br>6.95 | 6.61<br>6.92<br>6.98<br>6.86<br>6.91<br>6.98 | 6.89<br>6.76<br>6.83<br>6.96<br>6.97<br>7.01 | 6.51<br>6.61<br>6.71<br>6.89<br>6.94<br>6.75 | 6.31<br>6.22<br>6.35<br>6.22<br>6.51<br>6.59 | 6.49<br>6.54<br>7.28<br>7.06<br>6.84<br>7.71 | 7.35<br>7.70<br>7.87<br>8.77<br>8.40<br>8.04 | 7.37<br>7.31<br>7.02<br>7.23<br>7.58<br>7.41 | 7.80<br>6.93<br>7.15<br>7.46<br>7.55<br>7.28 | 7.56<br>7.46<br>7.34<br>7.25<br>7.36<br>7.36 |
| MEAN                             | 8.93                                         | 8.52                                         | 7.39                                         | 6.87                                         | 6.86                                         | 6.73                                         | 6.40                                         | 6.92                                         | 7.87                                         | 7.38                                         | 7.39                                         | 7.41                                         |
| WATER                            | YEAR 1987                                    | MEA                                          | N 7.39                                       | HIGH                                         | 6.11 APR                                     | 6,7,13                                       | LOW                                          | 9.95 OCT                                     | 24                                           |                                              |                                              |                                              |



| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER                                                                                                                                                                                            | LOCAL<br>IDENTIFIER                                                                                                                             | LATITUDE                             | LONGITUDE                                      | AQUIFER<br>UNIT                                                                                                        | WC  | PERIOD<br>OF<br>RECORD |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----|------------------------|
| 01-387                   | RAMBERG, RALPH US GEOL SURVEY US GEOL SURVEY US GEOL SURVEY ATLANTIC CITY MUA ATLANTIC CITY MUA US GEOL SURVEY US GEOL SURVEY US GEOL SURVEY                                                             | AMATOL 8                                                                                                                                        | 393557                               | 744114                                         | 121CKKD                                                                                                                | W   | 1961-1986              |
| 01-496                   | US GEOL SURVEY                                                                                                                                                                                           | USGS 4-H-2                                                                                                                                      | 393557<br>394029                     | 743957                                         | 121CKKD                                                                                                                | W   | 1963-1986              |
| 01-542                   | US GEOL SURVEY                                                                                                                                                                                           | WHARTON 2G                                                                                                                                      |                                      | 743959                                         | 121CKKD                                                                                                                | W   | 1960 - 1986            |
| 01-545                   | US GEOL SURVEY                                                                                                                                                                                           | WHARTON 11                                                                                                                                      | 394046                               | 744010                                         | 121CKKD                                                                                                                | W   | 1957-1986              |
| 01-775<br>01-776         | ATLANTIC CITY MUA                                                                                                                                                                                        | FAA SHALLOU                                                                                                                                     | 392639<br>392639                     | 743232<br>743232                               | 121CKKD<br>121CKKD                                                                                                     | W   | 1985 - P<br>1985 - P   |
| 05-029                   | IIS GEOL SURVEY                                                                                                                                                                                          | OSWEGO LAKE 1                                                                                                                                   | 394208                               | 742645                                         | 121CKKD                                                                                                                | ü   | 1962-1986              |
| 05-030                   | US GEOL SURVEY                                                                                                                                                                                           | OSWEGO LAKE 2                                                                                                                                   | 394208                               | 74.264.5                                       | 121CKKD                                                                                                                | W   | 1962-1986              |
| 05-407                   | US GEOL SURVEY                                                                                                                                                                                           | ATSION 1                                                                                                                                        | 394422<br>394422                     | 744309                                         | 124PNPN                                                                                                                | Α   | 1963-P                 |
| 05-408                   | US GEOL SURVEY                                                                                                                                                                                           | ATSION 1<br>ATSION 2<br>ATSION 3<br>MOUNT                                                                                                       | 394422                               | 744309<br>744309<br>744309                     | 121CKKD                                                                                                                | ü   | 1963-P<br>1963-P       |
| 05-409<br>05-570         | US GEOL SURVEY CAPE MAY CITY WD US GEOL SURVEY                                                                                               | MOUNT                                                                                                                                           | 394422                               | 743623                                         | 121CKKD<br>121CKKD                                                                                                     | W   | 1955-P                 |
| 05-628                   | US GEOL SURVEY                                                                                                                                                                                           | PENN SE SHALLOW                                                                                                                                 | 394452                               | 742819                                         | 121CKKD                                                                                                                | W   | 1936-P                 |
| 05-630                   | US GEOL SURVEY                                                                                                                                                                                           | PENN SF DEEP                                                                                                                                    | 394513                               | 742806                                         | 42401/10                                                                                                               | 1.1 | 1963-P                 |
| 05-676                   | US GEOL SURVEY                                                                                                                                                                                           | COYLE AIRPORT                                                                                                                                   | 394914                               | 742546                                         | 124PNPN                                                                                                                | A   | 1962-P<br>1967-1986    |
| 09-011                   | CAPE MAY CITY WD                                                                                                                                                                                         | CMCWD 1 OBS                                                                                                                                     | 385612                               | 742806<br>742546<br>745457                     | ILIUNOI                                                                                                                | ^   | 1967-1986              |
| 09-048<br>09-080         | US GEOL SURVEY                                                                                                                                                                                           | CANAL 5                                                                                                                                         | 390213                               | 745533<br>745056                               | 121CNSY<br>121CNSY                                                                                                     | A   | 1957-1986<br>1957-P    |
| 09-081                   | US GEOL SURVEY                                                                                                                                                                                           | CAPE MAY 42CC<br>CAPE MAY 23HB                                                                                                                  | 390211                               | 745055                                         | 112HLBC                                                                                                                | û   | 1957-P                 |
| 13-013                   | COMMONWEALTH WC                                                                                                                                                                                          | CANOE BROOK 30                                                                                                                                  | 404452                               | 742116                                         |                                                                                                                        |     | 1950-P                 |
| 13-014                   | EAST ORANGE WD                                                                                                                                                                                           | NEUTRAL ZONE                                                                                                                                    | 404454                               | 742021<br>740834                               | 1129FDF                                                                                                                | U   | 1926-P                 |
| 13-017                   | WALSH BROS                                                                                                                                                                                               | BALLENTINE 8                                                                                                                                    | 404401<br>402128<br>402353           | 140034                                         | 231PSSC<br>231PSSC<br>2110DBG                                                                                          | A   | 1949-P                 |
| 21-088<br>23-159         | US GEOL SURVEY<br>DUHERNAL WC                                                                                                                                                                            | HONEYBRANCH 10                                                                                                                                  | 402128                               | 744613<br>742152                               | 231PSSC                                                                                                                | W   | 1968-P<br>1939-1986    |
| 23-180                   | DUHERNAL WC                                                                                                                                                                                              | DUHERNAL OBS 3                                                                                                                                  | 402438                               | 742129                                         | 2110DBG                                                                                                                | W   | 1938-1986              |
| 23-181                   | PERTH AMBOY WD                                                                                                                                                                                           | RUNYON 123                                                                                                                                      | 402442                               | 742136                                         | 2110DBG                                                                                                                | ü   | 1955-1986              |
| 23 - 194                 | PERTH AMBOY WD                                                                                                                                                                                           | RUNYON 1                                                                                                                                        | 402442<br>402536<br>403211           | 742018                                         | 211FRNG                                                                                                                | A   | 1934-P                 |
| 23-265                   | CHEVRON OIL CO                                                                                                                                                                                           | CAPE MAY 42CC CAPE MAY 23HB CANOE BROOK 30 NEUTRAL ZONE BALLENTINE 8 HONEYBRANCH 10 DUHERNAL OBS 5 DUHERNAL OBS 1 RUNYON 123 RUNYON 1 11 TEST 2 | 403211                               | 741612                                         | 211FRNG                                                                                                                | W   | 1950-1986              |
| 23-270<br>23-273         | AMER CYANAMID NJ WATER POLICY                                                                                                                                                                            | TEST 2<br>PLAINSBORO POND<br>OBS 1-1961<br>OBS 2-1961                                                                                           | 403231                               | 741612<br>741616<br>743529                     | 211FRNG<br>211MRPAM                                                                                                    | W   | 1950-1986<br>1970-P    |
| 23-201                   | MONROE TWP MUA                                                                                                                                                                                           | ORS 1-1961                                                                                                                                      | 401932                               | 743529                                         | 211FRNG                                                                                                                | A   | 1965-P                 |
| 23-291<br>23-292         | MONROE TWP MUA                                                                                                                                                                                           | OBS 2-1961                                                                                                                                      | 402109                               | 743013<br>743012<br>742847<br>742013<br>741959 | 2110DBG                                                                                                                | ŵ   | 1961-P                 |
| 23-306                   | MONROE TWP MUA PHELPS DODGE CO SAYREVILLE WD SAYREVILLE WD DUHERNAL WC NJ WATER POLICY AMER CYANAMID NOVAK, W GORDONS CRNR WC US GEOL SURVEY | PHELPS DODGE 3                                                                                                                                  | 402109<br>402147<br>402558<br>402605 | 742847                                         | 211FRNG                                                                                                                |     | 1969-P                 |
| 23-344<br>23-351         | SAYREVILLE WD                                                                                                                                                                                            | SWD 2                                                                                                                                           | 402558                               | 742013                                         | 211FRNG<br>2110DBG<br>2110DBG                                                                                          | W   | 1968-P                 |
| 23-365                   | SATREVILLE WD                                                                                                                                                                                            | SWD T                                                                                                                                           | 402605                               | 741959                                         | 2110DBG<br>211FRNG                                                                                                     | W   | 1968-P<br>1932-P       |
| 23-433                   | N.I WATER POLICY                                                                                                                                                                                         | SO RIVER 4                                                                                                                                      | 402555                               | 742133                                         | LITTRING                                                                                                               |     | 1968-1986              |
| 23-482                   | AMER CYANAMID                                                                                                                                                                                            | TEST 1                                                                                                                                          | 403242                               | 741617                                         | 211FRNG                                                                                                                | A   | 1950-P                 |
| 23-516                   | NOVAK, W                                                                                                                                                                                                 | HULSART                                                                                                                                         | 402123                               | 741617<br>741849<br>741529<br>742252           | 211EGLS                                                                                                                | W   | 1936-1984              |
| 25-250                   | GORDONS CRNR WC                                                                                                                                                                                          | VILLAGE 215                                                                                                                                     | 401918                               | 741529                                         | 211EGLS                                                                                                                | A   | 1971-P                 |
| 27-001<br>27-002         | US GEOL SURVEY                                                                                                                                                                                           | WECKEATION FLD                                                                                                                                  | 404432                               | 7/2/06                                         | 1128FDF                                                                                                                | U   | 1967-P<br>1966-P       |
| 27-003                   | US GEOL SURVEY                                                                                                                                                                                           | W B DRIVER 2                                                                                                                                    | 404748                               | 742406<br>742419                               | 112SFDF                                                                                                                | ŭ   | 1966-P                 |
| 27-004                   | US GEOL SURVEY                                                                                                                                                                                           | CLEMENS                                                                                                                                         | 404816                               | 742419<br>742359<br>742347<br>742200           | 21100BG<br>211FEGLS<br>211EGLS<br>211EGLS<br>112SFDF<br>112SFDF<br>112SFDF<br>112SFDF<br>112SFDF<br>112SFDF<br>112SFDF | Ü   | 1966-P                 |
| 27-005                   | US GEOL SURVEY                                                                                                                                                                                           | CLEMENS<br>SANDOZ CHEM CO<br>GREEN ACRES<br>ESSO SIX INCH                                                                                       | 404826                               | 742347                                         | 112SFDF                                                                                                                | U   | 1966-P                 |
| 27-006<br>27-014         | US GEOL SURVEY                                                                                                                                                                                           | GREEN ACRES                                                                                                                                     | 404937                               | 742200                                         | 112SFDF                                                                                                                | U   | 1967-P                 |
| 27-014                   | US GEOL SURVEY<br>MORRISTOWN ARPT                                                                                                                                                                        | ESSO SIX INCH                                                                                                                                   | 404705<br>404743                     | 742452<br>742522<br>742402<br>742638           | 112SFDF<br>112SFDF<br>112SFDF<br>112SFDF                                                                               | U   | 1967-P<br>1960-P       |
| 27-017                   |                                                                                                                                                                                                          | MRWD 4                                                                                                                                          | 404508                               | 742402                                         | 112SFDF                                                                                                                | ŭ   | 1958-P                 |
| 27-022                   | INT PIPE                                                                                                                                                                                                 | INT PIPE                                                                                                                                        | 404508<br>405209                     | 742638                                         | 112SFDF                                                                                                                | ŭ   | 1963-P                 |
| 27-023                   | RANDOLPH WD                                                                                                                                                                                              | RWD MT FR 2                                                                                                                                     | 404921                               | 743330                                         | 400PCMB                                                                                                                | U   | 1964-P                 |
| 29-018<br>29-020         | RANDOLPH WD US GEOL SURVEY US GEOL SURVEY                                                                                                                                                                | IS BEACH 2                                                                                                                                      | 394829                               | 740535                                         | 124PNPN                                                                                                                | A   | 1962-P                 |
| 29-020                   | US GEOL SURVEY                                                                                                                                                                                           | WEBBS MILLS 2                                                                                                                                   | 394829                               | 740535<br>742252                               | 121CKKD<br>124PNPN                                                                                                     | W   | 1962-P<br>1962-P       |
| 29-513                   | US GEOL SURVEY                                                                                                                                                                                           | WEBBS MILLS 2 GARDEN ST PKY 1 GARDEN ST PKY 2 PPWD 3 HASKELL SCHWEITZER                                                                         | 394744                               | 741418                                         | 121CKKD                                                                                                                | û   | 1962-P                 |
| 29-514                   | US GEOL SURVEY                                                                                                                                                                                           | GARDEN ST PKY 2                                                                                                                                 | 394744                               | 741418                                         | 121CKKD                                                                                                                | U   | 1962-P                 |
| 29-532                   | PT. PLEASANT WD                                                                                                                                                                                          | PPWD 3                                                                                                                                          | 400459<br>410209<br>404113           | 740359<br>741708                               | 211EGLS                                                                                                                | Õ   | 1986-P                 |
| 31-011                   | WANAQUE WD                                                                                                                                                                                               | HASKELL                                                                                                                                         | 410209                               | 741708                                         | 112TILL                                                                                                                | W   | 1965 - 1982            |
| 39-058<br>39-102         | MAGRUDER COLOR<br>WHITE LABS INC                                                                                                                                                                         | SCHWEITZER<br>LAB 3                                                                                                                             | 404113                               | 741216<br>741644                               | 231PSSC<br>231PSSC                                                                                                     | A   | 1956-P<br>1952-P       |
| 39-115                   | WHITE LABS INC                                                                                                                                                                                           | LAB 4                                                                                                                                           | 404043                               | 741618                                         | 231PSSC                                                                                                                | Â   | 1952-P                 |
| 39-133                   | ORIT CORP                                                                                                                                                                                                | HATFIELD OBS                                                                                                                                    | 403726                               | 741623                                         | 231PSSC                                                                                                                | A   | 1959-P                 |

See figure 12 for well locations.
P - Present
Aquifer unit: see definition of terms
WC - (Water Condition): A-Artesian, W-Water table, U-Undetermined
Data available in the files of the New Jersey District Office.

# QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 ATLANTIC COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER   | LOCAL<br>IDENTIFIER | LATITUDE | LONGITUDE | ELEV.<br>LAND<br>SURF.<br>(FT.<br>NGVD) | IN  |   | NED<br>VAL | AQUIFER<br>UNIT |
|--------------------------|-----------------|---------------------|----------|-----------|-----------------------------------------|-----|---|------------|-----------------|
| 01-367                   | LONGPORT WD     | LONGPORT 2          | 391859   | 743122    | 10                                      | 750 | - | 800        | 122KRKDL        |
| 01-582                   | NJ WATER CO     | NJWC 5-DOBBS        | 391906   | 743629    | 15                                      | 79  | - | 99         | 121CKKD         |
| 01-589                   | NJ WATER CO     | NJWC 9-GROVELAND    |          | 743550    | 19                                      | 129 | - | 159        | 121CKKD         |
| 01-592                   | SOMERS POINT SA | SOM PT-1            | 391957   | 743606    | 8                                       | 80  |   | 110        | 121CKKD         |
| 01-353                   | NJ WATER CO     | SHORE-KIRKLIN       | 392001   | 743522    | 10                                      | 56  | - | 71         | 121CKKD         |
| 01-375                   | MARGATE CITY WD | MCWD 4              | 392002   | 743012    | 10                                      | 745 | - | 795        | 122KRKDL        |
| 01-598                   | VENTNOR CITY WD | VCWD 9              | 392030   | 742852    | 8                                       | 740 |   | 800        | 122KRKDL        |
| 01-682                   | RESORTS INTRNTL | 1-1980              | 392134   | 742521    | 8                                       |     |   | 840*       | 122KRKDL        |
| 01-549                   | NJ WATER CO     | SHORE-MILL RD       | 392157   | 743317    | 25                                      | 117 |   | 152        | 121CKKD         |
| 01-041                   | BRIGANTINE WD   | BRIG WD 1           | 392431   | 742153    | 8                                       | 736 |   | 829        | 122KRKDL        |
| 01-013                   | NJ WATER CO     | SHORE - ABSECON1    | 392554   | 743027    | 22                                      | 178 |   | 205        | 121CKKD         |

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER   | LOCAL<br>IDENTIFIER | DATE<br>OF<br>SAMPLE | TEMPER-<br>ATURE<br>(DEG C) | SPE-<br>CIFIC<br>CONDUCT<br>-ANCE<br>(US/CM) | PH<br>(UNITS) | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
|--------------------------|-----------------|---------------------|----------------------|-----------------------------|----------------------------------------------|---------------|-----------------------------------------------|
| 01-367                   | LONGPORT WD     | LONGPORT 2          | 8/26/1987            | 19.0                        | 179                                          | 7.7           | 7.2                                           |
| 01-582                   | NJ WATER CO     | NJWC 5-DOBBS        | 8/25/1987            | 14.5                        | 137                                          | 5.2           | 20                                            |
| 01-589                   | NJ WATER CO     | NJWC 9-GROVELAND    | 8/25/1987            | 13.0                        | 620                                          | 4.5           | 200                                           |
| 01-592                   | SOMERS POINT SA | SOM PT-1            | 8/25/1987            | 13.0                        | 66                                           | 5.6           | 10                                            |
| 01-353                   | NJ WATER CO     | SHORE-KIRKLIN       | 8/25/1987            | 14.0                        | 123                                          | 5.3           | 16                                            |
| 01-375                   | MARGATE CITY WD | MCWD 4              | 8/26/1987            | 18.5                        | 165                                          | 7.5           | 6.0                                           |
| 01-598                   | VENTNOR CITY WD | VCWD 9              | 8/26/1987            | 19.0                        | 153                                          | 7.7           | 6.3                                           |
| 01-682                   | RESORTS INTRNTL | 1-1980              | 8/26/1987            | 19.5                        | 186                                          | 7.7           | 6.3                                           |
| 01-549                   | NJ WATER CO     | SHORE-MILL RD       | 8/25/1987            | 13.5                        | 128                                          | 5.0           | 14                                            |
| 01-041                   | BRIGANTINE WD   | BRIG WD 1           | 8/26/1987            | 18.5                        | 118                                          | 7.5           | 3.4                                           |
| 01-013                   | NJ WATER CO     | SHORE - ABSECON1    | 8/25/1987            | 13.0                        | 53                                           | 4.9           | 3.4<br>5.9                                    |

<sup>\*</sup> Total depth of well.

#### Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system
122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

### QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

BERGEN COUNTY

| NJ-WRD<br>WELL<br>NUMBER      | SITE O                                                        | WNER                                                          |                                                                 | LOCAL<br>IDENTIFIER                                    | LATITUDE                                                      | LONGITU                                               | ELE<br>LAN<br>SUR<br>DE (FT.                           | D St                                                                | PEN OR<br>CREENED<br>NTERVAL<br>(FT.)                         | AQUIFER<br>UNIT               |
|-------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|
| 03-0219<br>03-0222<br>03-0226 | FAIRLEIGH                                                     | EDUCATION<br>DICKINSON<br>PARK COMM                           | UNIV S                                                          | LEONIA HS FLD<br>SOCCER FIELD<br>ROCKLEIGH PK 2        | 405221<br>405407<br>405940                                    | 073592<br>074014<br>073562                            | 3 10                                                   | 110                                                                 | 3 - 350<br>6 - 363<br>1 - 300                                 | 231BRCK<br>231BRCK<br>231BRCK |
| NJ-WRD<br>WELL<br>NUMBER      | DATE                                                          | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)               | PH<br>(STAND-<br>ARD<br>UNITS)                         | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                        | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)          | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |                               |
| 03-0219<br>03-0222<br>03-0226 | 07-24-87<br>09-10-87<br>07-24-87                              | 12.5<br>15.0<br>13.5                                          | 247<br>440<br>343                                               | 7.6<br>7.9<br>7.7                                      | 81<br>140<br>140                                              | 24<br>30<br>47                                        | 5.1<br>16<br>5.6                                       | 11<br>36<br>14                                                      | 1.0<br>1.0<br>1.0                                             |                               |
| NJ-WRD<br>WELL<br>NUMBER      | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)          | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)           | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)    | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)      | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |                               |
| 03-0219<br>03-0222<br>03-0226 | 84<br>138<br>118                                              | <1.0<br><1.0<br><1.0                                          | 68<br>112<br>98                                                 | 17<br>56<br>33                                         | 12<br>25<br>12                                                | 1.0<br>0.2<br>0.1                                     | 27<br>15<br>19                                         | 140<br>250<br>190                                                   | <0.010<br><0.010<br><0.010                                    |                               |
| NJ-WRD<br>WELL<br>NUMBER      | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM<br>MONIA<br>ORGANI<br>DIS.<br>(MG/L<br>AS N)   | + PHORUS,                                              | PHOS-<br>PHORUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | , ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)           | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |                               |
| 03-0219<br>03-0222<br>03-0226 | 3.0<br>1.9<br>4.7                                             | <0.010<br>0.010<br><0.010                                     | 0.40<br><0.20<br>0.60                                           | 0.030<br>0.060<br>0.020                                | 0.020<br>0.050<br>0.020                                       | <10<br><10<br><10                                     | <1<br>3<br>3                                           | <1<br><1<br><1                                                      | <1<br><1<br><1                                                |                               |
| NJ-WRD<br>WELL<br>NUMBER      | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                      | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)   | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)                  | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)            | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | PHENOLS<br>TOTAL<br>(UG/L)                                          | DI-<br>CHLORO-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L)        |                               |
| 03-0219<br>03-0222<br>03-0226 | <1<br>2<br>3                                                  | 7<br><3<br>3                                                  | 31<br><5<br><5                                                  | 1<br>1                                                 | <0.1<br><0.1<br><0.1                                          | 50<br>24<br><3                                        | 0.5<br>1.0<br>1.5                                      | 2 4 2                                                               | <0.20                                                         |                               |
| NJ-WRD<br>WELL<br>NUMBER      | CARBON-<br>TETRA-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)         | 1,2-DI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)               | BROMO-<br>FORM<br>TOTAL<br>(UG/L)                               | CHLORO-<br>DI-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L) | CHLORO-<br>FORM<br>TOTAL<br>(UG/L)                            | TOLUENE<br>TOTAL<br>(UG/L)                            | BENZENE<br>TOTAL<br>(UG/L)                             | CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)                               | CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)                          |                               |
| 03-0219<br>03-0222<br>03-0226 | <0.20                                                         | <0.20                                                         | <0.20                                                           | <0.20                                                  | 0.60                                                          | <0.20                                                 | <0.20                                                  | <0.20                                                               | <0.20                                                         |                               |

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### BERGEN COUNTY

| NJ-WRD<br>WELL<br>NUMBER      | ETHYL-<br>BENZENE<br>TOTAL<br>(UG/L)                        | METHYL-<br>BROMIDE<br>TOTAL<br>(UG/L)                     | METHYL-<br>CHLO-<br>RIDE<br>TOTAL                | ENE<br>CHLO-<br>RIDE<br>TOTAL                    | TETRA-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | TRI-<br>CHLORO-<br>FLUORO-<br>METHANE<br>TOTAL<br>(UG/L) | CHLORO                                           |                                                  |                                                  | 100                                                           |
|-------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| 03-0219<br>03-0222<br>03-0226 | <0.20                                                       | <0.20                                                     | <0.20                                            | <0.20                                            | <0.20                                                 | <0.20                                                    | <0.20                                            | <0.20                                            | <0.20                                            |                                                               |
| NJ-WRD<br>WELL<br>NUMBER      | 1,1,2-<br>TRI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)      | 1,1,2,2<br>TÉTRA-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L) | 1,2-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L) | 1,2-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L) | 1,2-<br>TRAN:<br>CHLO<br>ETHY<br>ENE<br>TOTA<br>(UG/  | RO- (                                                    | 1,3-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L) | 1,3-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L) | 1,4-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L) | 2-<br>CHLORO-<br>ETHYL-<br>VINYL-<br>ETHER<br>TOTAL<br>(UG/L) |
| 03-0219<br>03-0222<br>03-0226 | <0.20                                                       | <0.20                                                     | <0.20                                            | <0.20                                            | <0.2                                                  |                                                          | <0.20                                            | <0.20                                            | <0.20                                            | <0.20                                                         |
| NJ-WRD<br>WELL<br>NUMBER      | DI-<br>CHLORO<br>DI-<br>FLUORO<br>METHAN<br>TOTAL<br>(UG/L) | - 1,3-DI<br>- CHLORO                                      | - CHLORO                                         | ETHY ENE TOTA                                    | OMO VI<br>L- CH<br>RI<br>L TO                         | NYL (<br>LO- I<br>DE I                                   | TOTAL                                            | STYRENE                                          | XYLENE<br>WATER<br>WHOLE<br>TOT REC<br>(UG/L)    | 70                                                            |
| 03-0219<br>03-0222<br>03-0226 | <0.20                                                       | <0.20                                                     | <0.20                                            | <0.                                              | 2 <0                                                  | .20                                                      | <0.2                                             | <0.2                                             | <0.2                                             |                                                               |

AQUIFER UNIT

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### BURLINGTON COUNTY

| NJ-WRD<br>WELL<br>NUMBER                 | SITE                                                              |                                                                 | LOCAL<br>IDENTIFIER                                  | R LA                                                  | TITUDE                                               | LONGITUDE                                         | ELEV<br>LAND<br>SURF.<br>(FT. NGVI                                  | SCF                                                           | EN OR<br>REENED<br>ERVAL                                      | AQUIFER<br>UNIT                                               |
|------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| 05-0417<br>05-0418<br>05-0451<br>05-0452 | ST OF N                                                           | NJ<br>L                                                         | MULICA 100<br>MULICA 299<br>MULLICA 50<br>MULLICA 51 | S 3                                                   | 94608<br>94608<br>94536<br>94536                     | 0744054<br>0744054<br>0743542<br>0743542          | 48.5<br>48.5<br>64.9<br>64.9                                        | 95<br>41<br>165<br>16                                         | - 100<br>- 46<br>- 170<br>- 21                                | 121CKKD<br>121CKKD<br>121CKKD<br>121CKKD                      |
| NJ-WRD<br>WELL<br>NUMBER                 | DATE                                                              | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                            | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)    | PH<br>(STAND-<br>ARD<br>UNITS)                        | HARD -<br>NESS<br>(MG/L<br>AS<br>CACO3)              | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                  | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            |
| 05-0417<br>05-0418<br>05-0451<br>05-0452 | 09-11-87<br>09-11-87<br>09-11-87<br>09-11-87                      | 12.5<br>12.0<br>13.0<br>14.5                                    | 155<br>28<br>193<br>38                               | 6.9<br>4.8<br>8.2<br>5.6                              | 3<br>2<br>67<br>3                                    | 0.59<br>0.22<br>25<br>0.54                        | 0.43<br>0.28<br>1.1<br>0.39                                         | 34<br>1.6<br>12<br>2.0                                        | 4.1<br>0.80<br>5.0<br>0.40                                    | 93<br><1.0<br>110<br>14                                       |
| NJ-WRD<br>WELL<br>NUMBER                 | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)                   | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)   | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 05-0417<br>05-0418<br>05-0451<br>05-0452 | <1.0<br><1.0<br><1.0<br><1.0                                      | 76<br><1<br>88<br>11                                            | 9.9<br>3.6<br>8.6<br>5.3                             | 1.6<br>4.7<br>8.3<br>3.5                              | 0.4<br>0.1<br>0.1<br>0.1                             | 15<br>7.7<br>22<br>4.3                            | 110<br>140<br>31                                                    | <0.010<br><0.010<br><0.010<br><0.010                          | <0.10<br><0.10<br><0.10<br><0.10                              | 0.050<br>0.010<br>0.050<br>0.080                              |
| NJ-WRD<br>WELL<br>NUMBER                 | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)            | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)  | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)          | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)      | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)                 | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)                  | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    |
| 05-0417<br>05-0418<br>05-0451<br>05-0452 | <0.20<br><0.20<br><0.20<br><0.20                                  | 0.060<br><0.010<br>0.130<br>0.020                               | <10<br>60<br><10<br>160                              | 6<br>29<br>87<br>11                                   | <0.5<br><0.5<br><0.5<br><0.5                         | <1<br><1<br>1<br><1                               | <5<br><5<br><5<br><5                                                | ₹<br>₹<br>₹<br>₹                                              | <10<br><10<br><10<br><10                                      | 1200<br>68<br>220<br>6900                                     |
| NJ-WRD<br>WELL<br>NUMBER                 | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                        | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)                    | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)         | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)      | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)                | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)            | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)                    | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C)        |
| 05-0417<br>05-0418<br>05-0451<br>05-0452 | <10<br><10<br><10<br><10                                          | <4<br><4<br><4                                                  | 14<br>7<br>53<br>29                                  | <10<br><10<br><10<br><10                              | <10<br><10<br><10<br><10                             | <1<br><1<br><1<br><1                              | 10<br>6<br>130<br>4                                                 | <6<br><6<br><6<br><6                                          | ₹<br>₹<br>₹                                                   | 1.1<br>8.4<br>1.0<br>4.1                                      |

Aquifer Unit

121CKKD-Kirkwood-Cohansey aquifer system.

## QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 CAPE MAY COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER       | LOCAL<br>IDENTIFIER | LATITUDE | LONGITUDE | ELEV.<br>LAND<br>SURF.<br>(FT.<br>NGVD) | SCREENE<br>INTERV | AL   | AQUIFER<br>UNIT |
|--------------------------|---------------------|---------------------|----------|-----------|-----------------------------------------|-------------------|------|-----------------|
| 09-017                   | US COAST GUARD      | USCG 1              | 385651   | 745310    | 11                                      | 292 -             | 322  | 121CNSY         |
| 09-018                   | US COAST GUARD      | USCG 2              | 385652   | 745327    | 11                                      | 295 -             | 325  | 121CNSY         |
| 09-209                   | COLD SPRING PACKING | COLD SPRING 1       | 385656   | 745422    | 5                                       | 90 -              | 110  | 112ESRNS        |
| 09-044                   | SNOW CANNING        | SNOW_1              | 385725   | 745257    | 10                                      |                   | 278* | 121CNSY         |
| 09-154                   | WILDWOOD WD         | WWD 2               | 385932   | 744851    | 10                                      | 293 -             | 354  | 121CNSY         |
| 09-132                   | STONE HARBOR WD     | SHWD 4              | 390301   | 744545    | 10                                      | 830 -             | 880  | 122KRKDL        |
| 09-173                   | STONE HARBOR WD     | SHWD 6              | 390314   | 744532    | 10                                      | 822 -             | 862  | 122KRKDL        |
| 09-135                   | STONE HARBOR WD     | SHWD 3              | 390323   | 744525    | 9                                       | 837 -             | 877  | 122KRKDL        |
| 09-166                   | STONE HARBOR WD     | SHWD 5              | 390351   | 744504    | 7                                       | 820 -             | 860  | 122KRKDL        |
| 09-002                   | AVALON WD           | AVALON WD 7-71      | 390420   | 744435    | 5                                       | 821 -             | 861  | 122KRKDL        |
| 09-004                   | AVALON WD           | AVALON WD 6         | 390528   | 744338    | 10                                      | 880 -             | 920  | 122KRKDL        |
| 09-005                   | AVALON WD           | AVALON WD 8-76      | 390545   | 744326    | 8                                       | 784 -             | 839  | 122KRKDL        |
| 09-126                   | SEA ISLE CITY WD    | SICWD 5             | 390747   | 744241    | 7                                       | 735 -             | 802  | 122KRKDL        |
| 09-128                   | SEA ISLE CITY WD    | SICWD 3             | 390902   | 744153    | 7                                       | 800 -             | 870  | 122KRKDL        |
| 09-106                   | NJ WATER CO         | SHORE DIV 7         | 391343   | 743755    | 8                                       | 760 -             | 810  | 122KRKDL        |
| 09-124                   | NJ WATER CO         | SHORE DIV 13        | 391712   | 743340    | 8                                       | 757 -             | 840  | 122KRKDL        |

| NJ-WRD<br>WELL<br>NUMBER | SITE                               | LOCAL<br>IDENTIFIER     | DATE<br>OF<br>SAMPLE   | TEMPER-<br>ATURE<br>(DEG C) | SPE-<br>CIFIC<br>CONDUCT<br>-ANCE<br>(US/CM) | PH<br>(UNITS) | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
|--------------------------|------------------------------------|-------------------------|------------------------|-----------------------------|----------------------------------------------|---------------|-----------------------------------------------|
| 09-017                   | US COAST GUARD                     | USCG 1                  | 8/26/1987              | 16.0                        | 390                                          | 7.9           | 50                                            |
| 09-018<br>09-209         | US COAST GUARD COLD SPRING PACKING | USCG 2                  | 8/26/1987              | 15.5                        | 350                                          | 7.8           | 35                                            |
| 09-044                   | SNOW CANNING                       | COLD SPRING 1<br>SNOW 1 | 8/24/1987              | 15.5                        | 500<br>305                                   | 7.3           | 120<br>20                                     |
| 09-154                   | WILDWOOD WD                        | WWD 2                   | 8/26/1987<br>8/24/1987 | 15.5                        | 750                                          | 7.5           | 190                                           |
| 09-132                   | STONE HARBOR WD                    | SHWD 4                  | 8/27/1987              | 20.0                        | 1,000                                        | 8.6           | 230                                           |
| 09-173                   | STONE HARBOR WD                    | SHWD 6                  | 8/27/1987              | 20.0                        | 310                                          | 8.7           | 20                                            |
| 09-135                   | STONE HARBOR WD                    | SHWD 3                  | 8/27/1987              | 21.0                        | 305                                          | 8.7           | 17                                            |
| 09-166                   | STONE HARBOR WD                    | SHWD 5                  | 8/27/1987              | 20.5                        | 315                                          | 8.6           | 23                                            |
| 09-002                   | AVALON WD                          | AVALON WD 7-71          | 8/27/1987              | 19.5                        | 259                                          | 8.7           | 12                                            |
| 09-004                   | AVALON WD                          | AVALON WD 6             | 8/27/1987              | 20.0                        | 375                                          | 8.6           | 48                                            |
| 09-005                   | AVALON WD                          | AVALON WD 8-76          | 8/27/1987              | 19.5                        | 255                                          | 8.5           | 48<br>13                                      |
| 09-126                   | SEA ISLE CITY WD                   | SICWD 5                 | 8/27/1987              | 19.5                        | 242                                          | 8.5           | 10                                            |
| 09-128                   | SEA ISLE CITY WD                   | SICWD 3                 | 8/27/1987              | 19.5                        | 255                                          | 8.4           | 14                                            |
| 09-106                   | NJ WATER CO                        | SHORE DIV 7             | 8/25/1987              | 19.5                        | 202                                          | 8.0           | 10                                            |
| 09-124                   | NJ WATER CO                        | SHORE DIV 13            | 8/25/1987              | 19.5                        | 196                                          | 7.9           | 9.0                                           |

<sup>\*</sup> Total depth of well.

#### Aquifer unit:

112ESRNS - Cape May Formation, estuarine sand facies 122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 ESSEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER  | SITE                                                          |                                                               | LOCAL<br>IDENTIFIER                                                | LATITU                                               | DE LONG                                                        | ITUDE (                                                  | ELEV.<br>LAND<br>SURF.<br>FT. NGVD)                  | OPEN OR<br>SCREENED<br>INTERVAL<br>(FT.)                            | AQUI FER<br>UNIT                                              |
|---------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 13-0052<br>13-0089        | LIVINGSTON T                                                  |                                                               | LTWD 7<br>COOLING-1                                                | 404757<br>404840                                     | 7 074<br>0 074                                                 | 2135<br>1211                                             | 180<br>240                                           | 69.8 - 301<br>43 - 400                                              | 231BRCK<br>231BRCK                                            |
| NJ-WRD<br>WELL<br>NUMBER  | DATE                                                          | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | ANCE                                                               | PH NE<br>STAND - (F<br>ARD AS                        | ARD-<br>ESS<br>4G/L<br>S<br>ACO3)                              | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)             | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |
| 13-0052<br>13-0089        | 05-11-87<br>08-19-87                                          | 11.5<br>14.5                                                  | 432<br>635                                                         | 7.5<br>7.2                                           | 170<br>270                                                     | 38<br>66                                                 | 18<br>26                                             | 13<br>21                                                            | 0.7                                                           |
| NJ-WRD.<br>WELL<br>NUMBER | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(Mg/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3    | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)       | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 13-0052<br>13-0089        | 137<br>166                                                    | <1.0<br><1.0                                                  | 110<br>134                                                         | 29<br>64                                             | 36<br>74                                                       | 0.1<br>0.1                                               | 24<br>20                                             | 230<br>360                                                          | <0.010<br><0.010                                              |
| NJ-WRD<br>WELL<br>NUMBER  | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONI/<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)  | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)      | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |
| 13-0052<br>13-0089        | 1.1                                                           | <0.010<br><0.010                                              | 0.30<br>0.60                                                       | 0.090<br>0.050                                       | 0.080<br>0.020                                                 | 1<br><10                                                 | <1<br>3                                              | <1<br><1                                                            | <1<br><1                                                      |
| NJ-WRD<br>WELL<br>NUMBER  | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)                   | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)               | (MG/L                                                | PHENOLS<br>TOTAL<br>(UG/L)                                          | DI-<br>CHLORO-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L)        |
| 13-0052<br>13-0089        | 2 2                                                           | 5 3                                                           | <5<br><5                                                           | <1<br><1                                             | <0.1<br><0.1                                                   | 22<br>10                                                 | 0.8                                                  | <1<br>1                                                             | <0.20<br><0.20                                                |
| NJ-WRD<br>WELL<br>NUMBER  | CARBON-<br>TETRA-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)         | 1,2-DI<br>CHLORO<br>ETHANE<br>TOTAL<br>(UG/L)                 | <ul> <li>BROMO-</li> </ul>                                         | METHAN<br>TOTAL                                      | CHLORO-<br>E FORM<br>TOTAL                                     | TOLUENE<br>TOTAL<br>(UG/L)                               | BENZENE<br>TOTAL<br>(UG/L)                           | CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)                               | CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)                          |
| 13-0052<br>13-0089        |                                                               | <0.20<br><0.20                                                | <0.20<br><0.20                                                     | <0.20<br><0.20                                       | <0.20<br>23                                                    | <0.20<br><0.20                                           | <0.20<br><0.20                                       | <0.20<br><0.20                                                      | <0.20<br><0.20                                                |
| NJ-WRD<br>WELL<br>NUMBER  | ETHYL-<br>BENZENE<br>TOTAL<br>(UG/L)                          | METHYL-<br>BROMIDE<br>TOTAL<br>(UG/L)                         | METHYL-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)                        | METHYL-<br>ENE<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)   | TETRA-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)          | TRI-<br>CHLORO-<br>FLUORO-<br>METHANE<br>TOTAL<br>(UG/L) | 1,1-DI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)      | 1,1-DI-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)              | 1,1,1-<br>TRI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)        |
| 13-0052<br>13-0089        |                                                               | <0.20<br><0.20                                                | <0.20<br><0.20                                                     | <0.20<br><0.20                                       | <0.20<br>3.3                                                   | <0.20<br><0.20                                           | <0.20<br><0.20                                       | <0.20<br><0.20                                                      | <0.20<br>0.30                                                 |

# QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 ESSEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER | 1,1,2-<br>TRI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L) | 1,1,2,2<br>TETRA-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L) | 1,2-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)           | 1,2-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L)        | 1,2-<br>TRANSDI<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | 1,3-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L) | 1,3-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)    | 1,4-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L) | CHLORO-<br>ETHYL-<br>VINYL-<br>ETHER<br>TOTAL<br>(UG/L) |
|--------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|
| 13-0052                  | <0.20                                                  | <0.20                                                     | <0.20                                                      | <0.20                                                   | <0.20                                                          | <0.20                                            | <0.20                                               | <0.20                                            | <0.20                                                   |
| 13-0089                  | <0.20                                                  | <0.20                                                     | <0.20                                                      | <0.20                                                   | 0.80                                                           | <0.20                                            | <0.20                                               | <0.20                                            | <0.20                                                   |
| NJ-WRD<br>WELL<br>NUMBER | D<br>FI<br>MI<br>TO                                    | DI-<br>HLORO-<br>I-<br>LUORO-<br>ETHANE<br>DTAL<br>UG/L)  | TRANS-<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL<br>(UG/L) | CIS<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL<br>(UG/L) | 1,2-<br>DIBROMO<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)            | VINYL<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)        | TRI-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | STYRENE<br>TOTAL<br>(UG/L)                       | XYLENE<br>WATER<br>WHOLE<br>TOT REC<br>(UG/L)           |
| 13-0052                  |                                                        | 0.20                                                      | <0.20                                                      | <0.20                                                   | <0.2                                                           | <0.20                                            | <0.2                                                | <0.2                                             | <0.2                                                    |
| 13-0089                  |                                                        | 0.20                                                      | <0.20                                                      | <0.20                                                   | <0.2                                                           | <0.20                                            | 0.8                                                 | <0.2                                             | <0.2                                                    |

Aquifer unit

QUALITY OF GROUND WATER

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### HUDSON COUNTY

| NJ-WRD<br>WELL<br>NUMBER | S                                                             | ITE<br>NER                                                    | LOCAL<br>IDENTIFI                                                  |                                                      | UDE LO                                                     | ONGITUDE                                           | ELEV.<br>LAND<br>SURF.<br>(FT. NGVD)                 | OPEN OR<br>SCREENED<br>INTERVAL<br>(FT.)                            | AQUIFER<br>UNIT                                               |
|--------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 17-0005                  | KISS & SC                                                     | ONS TEXTILE                                                   | MILL 1                                                             | 4048                                                 | 300                                                        | 740045                                             | 220                                                  | 50 - 1155                                                           | 231SCKN                                                       |
| NJ-WRD<br>WELL<br>NUMBER | DATE                                                          | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                     | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)       | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |
| 17-0005                  | 08-04-87                                                      | 16.5                                                          | 817                                                                | 8.6                                                  | 21                                                         | 8.0                                                | 0.29                                                 | 160                                                                 | 0.7                                                           |
| NJ-WRD<br>WELL<br>NUMBER | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3    | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 17-0005                  | 109                                                           | 4.0                                                           | 95                                                                 | 92                                                   | 130                                                        | 1.0                                                | 12                                                   | 470                                                                 | <0.010                                                        |
| NJ-WRD<br>WELL<br>NUMBER | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHORU<br>ORTHO<br>DIS-<br>SOLVE<br>(MG/L<br>AS P) | DIS-<br>D SOLVI                                    | , ARSENIC<br>DIS-<br>ED SOLVED<br>L (UG/L            | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |
| 17-0005                  | <0.10                                                         | <0.010                                                        | 0.50                                                               | 0.060                                                | <0.01                                                      | 0 <10                                              | <1                                                   | <1                                                                  | 1                                                             |
| NJ-WRD<br>WELL<br>NUMBER | COPPER<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                   | DIS-<br>SOLVED<br>(UG/L                                       | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | DIS<br>SOL<br>(UG                                          | - D<br>VED S(                                      | INC, ORG                                             | VED PHENO                                                           |                                                               |
| 17-0005                  | <1                                                            | 4                                                             | <5                                                                 | <1                                                   | <0                                                         | .1                                                 | 18 2.0                                               | <1                                                                  |                                                               |

Aquifer Unit

231SCKN-Stockton Formation.

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### HUNTERDON COUNTY

| NJ-WRD<br>WELL<br>NUMBER                            |                                                               | SITE                                                                |                                                                    | CAL<br>IFIER                                         | LATITUDE                                                       | LONGITUDE                                           | ELEV<br>LAND<br>SURF<br>(FT. N                         | . SC                                                                | EN OR<br>REENED<br>TERVAL<br>(FT.)                            | AQUIFER<br>UNIT                                     |
|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| 19-0032<br>19-0037<br>19-0039<br>19-0043<br>19-0063 | MANLEY,<br>ORTHO RE<br>COPPER H                               | PRODUCTIONS<br>MICHAEL<br>ESEARCH INS<br>HILL CTRY (<br>THERAN CHUR | MANL<br>ST 1-DO<br>CLUB IRRI                                       |                                                      | 403215<br>402829<br>403455<br>402756<br>404019                 | 0745024<br>0745456<br>0745905<br>0745150<br>0744446 | 120<br>450<br>460<br>145<br>200                        | 53<br>42<br>40                                                      | - 280<br>- 192<br>- 300                                       | 231BRCK<br>231SCKN<br>231BRCK<br>231BRCK<br>231BRCK |
| NJ-WRD<br>WELL<br>NUMBER                            | DATE                                                          | TEMPI<br>ATURI<br>WATEI<br>(DEG                                     | E DUCT<br>R ANCE                                                   | C PH<br>- (STAND<br>ARD                              | AS                                                             | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>) AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L                                  | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |                                                     |
| 19-0032<br>19-0037<br>19-0039<br>19-0043<br>19-0063 | 07-29-8<br>07-21-8<br>07-21-8<br>07-22-8<br>05-27-8           | 7 12.<br>7 12.<br>7 13.                                             | 5 342<br>5 155<br>0 1120                                           | 7.8<br>6.1<br>7.7                                    | 430<br>160<br>55<br>600<br>290                                 | 140<br>37<br>14<br>180<br>66                        | 19<br>17<br>4.8<br>37<br>31                            | 21<br>9.2<br>8.5<br>27<br>11                                        | 0.8<br>1.0<br>0.5<br>1.2<br>1.1                               |                                                     |
| NJ-WRD<br>WELL<br>NUMBER                            | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)                     | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3    | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)  | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)      | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |                                                     |
| 19-0032<br>19-0037<br>19-0039<br>19-0043<br>19-0063 | 148<br>152<br>36<br>146<br>248                                | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                                | 121<br>123<br>31<br>120<br>206                                     | 300<br>27<br>19<br>520<br>32                         | 11<br>11<br>7.2<br>6.6<br>39                                   | 0.2<br>0.1<br>0.1<br>0.2<br><0.1                    | 18<br>19<br>22<br>23<br>16                             | 580<br>200<br>94<br>870<br>320                                      | <0.010<br><0.010<br><0.010<br><0.010<br><0.010                |                                                     |
| NJ-WRD<br>WELL<br>NUMBER                            | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)       | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)  | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)           | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |                                                     |
| 19-0032<br>19-0037<br>19-0039<br>19-0043<br>19-0063 | 0.85<br>1.90<br>3.00<br><0.10<br>2.70                         | <0.010<br><0.010<br><0.010<br>0.050<br>0.020                        | 0.50<br>0.30<br>0.50<br>0.40<br>0.40                               | 0.030<br>0.060<br>0.060<br>0.020<br>0.010            | 0.020<br>0.040<br>0.020<br><0.010<br><0.010                    | <10<br><10<br><10<br><10<br>4                       | 2<br>1<br><1<br>16<br><1                               | <1<br><1<br><1<br><1<br><1                                          | <1<br><1<br><1<br><1                                          |                                                     |
| NJ-WRD<br>WELL<br>NUMBER                            | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                          | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | DIS-<br>SOLVED<br>(UG/L                                        | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)          | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | PHENOLS<br>TOTAL<br>(UG/L)                                          |                                                               |                                                     |
| 19-0032<br>19-0037<br>19-0039<br>19-0043<br>19-0063 | <1<br><1<br>13<br><1<br>1                                     | <3<br><3<br><3<br>280<br><3                                         | <5<br><5<br><5<br><5<br><5                                         | 65<br><1<br>1<br>190<br><1                           | 0.2<br><0.1<br>0.3<br><0.1<br><0.1                             | <3<br>73<br>7<br>5<br>10                            | 1.9<br>1.4<br>1.2<br>1.3                               | 3<br>4<br>3<br>-3                                                   |                                                               |                                                     |

Aquifer Units

<sup>231</sup>BRCK-Brunswick Group (undifferentiated). 231SCKN-Stockton Formation.

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### MERCER COUNTY

| NJ-WRD WELL SITE LOCAL NUMBER OWNER IDENTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LATITUDE                                               | LONGITUDE                                                      | L                                                        | AND                                                    | OPEN OR<br>SCREENED<br>INTERVAL<br>(FT.)                            | AQUIFER<br>UNIT                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 21-0198 PRINCETON W CO 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 401927                                                 | 0743927                                                        | 6                                                        | 0.00                                                   | 301*                                                                | 231SCKN                                                       |
| SPE-<br>  CIFIC<br>  TEMPER- CON-<br>  NJ-WRD   ATURE DUCT-<br>  WELL   WATER   ANCE<br>  NUMBER   DATE   (DEG C) (US/CM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PH<br>(STAND-<br>ARD<br>UNITS)                         | HARD -<br>NESS<br>(MG/L<br>AS<br>CACG3)                        | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)             | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |
| 21-0198 09-09-87 12.0 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.5                                                    | 170                                                            | 44                                                       | 15                                                     | 14                                                                  | 1.4                                                           |
| BICAR- CAR- LINITY BONATE BONATE WH WAT IT-FLD IT-FLD TOTAL NJ-WRD (MG/L (MG/L FIELD WELL AS AS MG/L AS NUMBER HCO3) CO3) CACO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)          | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)       | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)      | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 21-0198 160 <1.0 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                     | 13                                                             | 0.2                                                      | 24                                                     | 220                                                                 | <0.010                                                        |
| NITRO-   NITRO-   NITRO-   GEN, GEN, AM-   GEN, AM- | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)   | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)      | (UG/L                                                  | CADMIUM<br>D1S-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |
| 21-0198 0.74 0.010 <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.110                                                  | 0.070                                                          | <10                                                      | <1                                                     | <1                                                                  | 1                                                             |
| COPPER, IRON, LEAD, N<br>DIS- DIS- DIS- D<br>NJ-WRD SOLVED SOLVED SOLVED SOLVED<br>WELL (UG/L (UG/L (UG/L (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OIS- I<br>SOLVED :<br>(UG/L                            | DIS-<br>SOLVED<br>(UG/L                                        | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)               | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | PHENOLS<br>TOTAL<br>(UG/L)                                          | DI-<br>CHLORO-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L)        |
| 21-0198 12 <3 <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                     | <0.1                                                           | 11                                                       | 1.1                                                    | 2                                                                   | <0.20                                                         |
| CARBON- TETRA- 1,2-DI- CHLO- CHLORO- BROMO- NJ-WRD RIDE ETHANE FORM WELL TOTAL TOTAL NUMBER (UG/L) (UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHLORO-<br>DI-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L) | CHLORO-<br>FORM<br>TOTAL<br>(UG/L)                             | TOLUENE<br>TOTAL<br>(UG/L)                               | BENZENE<br>TOTAL<br>(UG/L)                             | CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)                               | CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)                          |
| 21-0198 <0.20 <0.20 <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.20                                                  | 0.40                                                           | <0.20                                                    | <0.20                                                  | <0.20                                                               | <0.20                                                         |
| BETHYL- METHYL- CHLO- NJ-WRD BENZENE BROMIDE RIDE WELL TOTAL TOTAL TOTAL NUMBER (UG/L) (UG/L) (UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | METHYL-<br>ENE<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)     | TETRA-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)          | TRI-<br>CHLORO-<br>FLUORO-<br>METHANE<br>TOTAL<br>(UG/L) | 1,1-DI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)        | 1,1-DI-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)              | 1,1,1-<br>TRI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)        |
| 21-0198 <0.20 <0.20 <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.20                                                  | <0.20                                                          | <0.20                                                    | <0.20                                                  | <0.20                                                               | <0.20                                                         |
| 1,1,2- TRI- TETRA- 1,2-DI- CHLORO- CHLORO- NJ-WRD ETHANE ETHANE BENZENE WELL TOTAL TOTAL NUMBER (UG/L) (UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L)       | 1,2-<br>TRANSDI<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | 1,3-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L)         | 1,3-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)       | 1,4-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)                    | 2-<br>CHLORO-<br>ETHYL-<br>VINYL-<br>ETHER<br>TOTAL<br>(UG/L) |
| 21-0198 <0.20 <0.20 <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.20                                                  | <0.20                                                          | <0.20                                                    | <0.20                                                  | <0.20                                                               | <0.20                                                         |

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### MERCER COUNTY

| NJ-WRD<br>WELL | DI-<br>CHLORO-<br>DI-<br>FLUORO-<br>METHANE<br>TOTAL | TRANS-<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL | CIS<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL | 1,2-<br>DIBROMO<br>ETHYL-<br>ENE<br>TOTAL | VINYL<br>CHLO-<br>RIDE<br>TOTAL | TRI-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL | STYRENE<br>TOTAL | XYLENE<br>WATER<br>WHOLE<br>TOT REC |
|----------------|------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------|------------------|-------------------------------------|
| NUMBER         | (UG/L)                                               | (UG/L)                                           | (UG/L)                                        | (UG/L)                                    | (UG/L)                          | (UG/L)                                    | (UG/L)           | (UG/L)                              |
| 21-0198        | <0.20                                                | <0.20                                            | <0.20                                         | <0.2                                      | <0.20                           | <0.2                                      | <0.2             | <0.2                                |

<sup>\*</sup> Total depth of well.

Aquifer Unit

231SCKN-Stockton Formation.

QUALITY OF GROUND WATER
WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER                            | SITE<br>OWNER                                                           |                                                                 | LOCAL<br>IDENTIFIE                                            | R                               | LATITUDE                                       | LONGIT                                             |                                                   | ELEV.<br>LAND<br>SURF.<br>. NGVD)                                   | OPEN OR<br>SCREENED<br>INTERVAL<br>(FT.)                      | AQUIFER<br>UNIT                                               |
|-----------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0801 | PRINCETON U<br>MIDDLESEX W<br>RUTGERS UNI<br>PRINCETON U<br>PRINCETON U | ATER CO<br>VERSITY<br>NIVERSITY                                 | FORRESTAL<br>30 PARK A<br>COOK FARM<br>TEST WELL<br>TEST WELL | VE<br>HOUSE<br>1                | 402045<br>403555<br>402804<br>402059<br>402100 | 07436<br>07424<br>07425<br>07436                   | 29<br>39<br>01                                    | 50<br>97.6                                                          | 97.8 - 500<br>53 - 160<br>31 - 60<br>00 - 125                 | 231SCKN<br>231BRCK<br>231BRCK<br>231SCKN<br>231SCKN           |
| NJ-WRD<br>WELL<br>NUMBER                            | DATE                                                                    | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                            | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)             | PH<br>(STAND-<br>ARD<br>UNITS)  | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)         | CALCIU<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)        | DIS-<br>SOLVED<br>(MG/L                           | (MG/L                                                               | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            |
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | 04-28-87<br>04-29-87<br>07-23-87<br>01-16-87<br>10-29-86                | 11.5<br>13.0<br>13.0<br>12.0<br>12.0                            | 272<br>679<br>263<br>350<br>360                               | 5.8<br>7.6<br>7.7<br>7.2<br>7.3 | 64<br>290<br>94<br>150<br>180                  | 15<br>85<br>23<br>39<br>47                         | 6.4<br>19<br>9.0<br>12<br>14                      | 21<br>19<br>15<br>8.6                                               | 2.0<br>1.4<br>3.5<br>1.3<br>1.5                               | 202<br>116                                                    |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | 01-15-87<br>04-22-87<br>09-16-87<br>07-30-87<br>10-29-86                | 12.0<br>12.5<br>12.0<br>12.0                                    | 350<br>390<br><br>369<br>348                                  | 7.2<br>7.2<br>7.4<br>7.5        | 170<br>170<br>170                              | 46<br>45<br>46                                     | . 14<br>14                                        | 11<br>11 9.7                                                        | 1.4<br>2.1<br>1.6                                             | ::                                                            |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | 01-15-87<br>01-16-87<br>04-22-87<br>07-29-87                            | 11.5<br>11.5<br>12.0<br>12.0                                    | 333<br>333<br>360<br>358                                      | 7.3<br>7.3<br>7.4<br>7.4        | 160<br>160<br>170                              | 44<br>45<br>46                                     | 11<br>12<br>12                                    | 9.2<br>9.8<br>9.9                                                   | 1.6<br>1.6<br>2.0                                             | ::                                                            |
| NJ-WRD<br>WELL<br>NUMBER                            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)                         | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFA<br>DIS-<br>SOLVE<br>S (MG/L<br>AS SO                    | TE RI<br>DI<br>ED SO            | DE,<br>S-<br>DLVED<br>IG/L                     | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | <1.0<br><1.0                                                            | 23<br>164<br>94<br>151                                          | 20<br>110<br>14<br><br>21                                     |                                 | 41<br>36<br>16<br>                             | <0.1<br><0.1<br>0.1<br>                            | 24<br>22<br>33<br>23<br>26                        | 140<br>390<br>170                                                   | <0.010<br><0.010<br><0.010<br><0.010                          | 1.6<br>3.5<br><0.1                                            |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | ::                                                                      | 151<br>150<br><br>181                                           | 22<br>24<br><br>22<br>18                                      |                                 | 10<br>17<br>15<br>13                           | 0.1<br>0.1<br>0.1<br>0.1                           | 27<br><br>26<br>25                                | 230                                                                 | <0.010<br><0.010<br><br><0.010<br><0.010                      | 0.19<br>0.13<br><br>0.14<br><0.10                             |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | ::                                                                      | 143<br>143<br>152<br>173                                        | 18<br>19<br>18                                                |                                 | 13<br>16<br>13                                 | 0.1<br>0.2<br>0.1                                  | 25<br>26<br>26                                    | 220<br>230                                                          | <0.010<br><0.010<br><0.010<br><0.010                          | <0.10<br><0.10<br><0.10<br><0.10                              |

QUALITY OF GROUND WATER
WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987
MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER                            | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)           | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)           |
|-----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | <0.010<br>0.020<br>0.210<br><0.010                            | 0.90<br>0.80<br>0.80                                               | 0.080<br>0.050<br>0.030                              | 0.070<br>0.040<br>0.020                                        | 10<br><10<br><10                                    | <1<br>2<br><1<br>                            | 290<br>350                                             | <0.5<br>1                                            | <1<br>1<br><1<br><1<br><1                              |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | <0.010<br><0.010<br><0.010<br><0.010                          | <0.20<br>0.30<br>0.30<br>0.40                                      |                                                      | 0.020<br>0.010<br>0.010<br>0.020                               | <u>:</u>                                            | 11 0                                         | 330<br>330<br>390                                      | <0.5<br><0.5                                         | <br>1<br><br><1<br><1                                  |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | 0.030<br>0.020<br>0.030                                       | <0.20<br>0.30<br>0.30                                              | ::                                                   | 0.020<br>0.010<br>0.020                                        | ::                                                  |                                              | 370<br>400<br>400                                      | <0.5<br><0.5<br><0.5                                 | <1<br>2<br><1                                          |
| NJ-WRD<br>WELL<br>NUMBER                            | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           | CHRO-<br>MIUM,<br>HEXA-<br>VALENT,<br>DIS.<br>(UG/L<br>AS CR)      | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)         | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                   | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)          | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)   | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)           | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)           |
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | <1<br><1<br><1<br>                                            | :                                                                  | <br><br><br>                                         | 7<br>4<br><1<br><10<br><10                                     | 110<br>5<br>360<br>3<br>13                          | <5<br><5<br><5<br><10<br><10                 | <br><br>6<br>7                                         | 30<br>2<br>75<br>6<br>170                            | <0.1<br><0.1<br><0.1                                   |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | <br><br><5                                                    | <br><br><1                                                         | ः<br>उ<br>उ                                          | <10<br><10<br><10                                              | 27<br><br>24<br>510                                 | <10<br><10<br><10                            | <br>4<br><br>8<br>8                                    | 56<br><br>50<br>300                                  |                                                        |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | ::<br>::<br><5                                                | <br><br><br><1                                                     | <br><3<br><3<br><3                                   | <10<br><10<br><10                                              | <3<br>400<br>410                                    | <10<br><10<br><10                            | 7<br>10<br>12                                          | 300<br>300<br>310                                    |                                                        |
| NJ-WRD<br>WELL<br>NUMBER                            | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)         | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)                       | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)         | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)           | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)  | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)   | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | PHENOLS<br>TOTAL<br>(UG/L)                           | DI-<br>CHLORO-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L) |
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | <10<br><10                                                    | ::                                                                 |                                                      | 320<br>380                                                     | <br><br><6<br><6                                    | 10<br>10<br>3<br>13<br><3                    | 0.8<br>0.9<br>1.4                                      | <1<br>3<br>3<br>                                     | <3.0<br><br>                                           |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | <10<br><10<br><10                                             | <br><br><10                                                        | <br><br>-1<br>                                       | 360<br>360<br>410                                              | <6<br><6<br><6                                      | <3<br><br>10<br><3                           | :                                                      | :                                                    | <0.20<br><0.20                                         |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | <10<br><10<br><10                                             | <br><br><br><10                                                    | <br><br><1                                           | 390<br>400<br>400                                              | <6<br><6<br><6                                      | <br>7<br>10<br>6                             | ::<br>::                                               |                                                      | <0.20                                                  |

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER                            | CARBON-<br>TETRA-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)  | 1,2-DI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)           | BROMO-<br>FORM<br>TOTAL<br>(UG/L)                | CHLORO-<br>DI-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L) | CHLORO-<br>FORM<br>TOTAL<br>(UG/L)                             | TOLUENE<br>TOTAL<br>(UG/L)                        | BENZENE<br>TOTAL<br>(UG/L)                       | CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L) | CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)           |
|-----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------------------------|
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | <3.0<br><br><br>                                       | <3.0<br><br>                                              | <3.0                                             | <3.0<br><br>                                           | <3.0<br><br>                                                   | <3.0<br><br>                                      | <3.0<br><br>                                     | <3.0<br><br>                          | <3.0<br><br><br>                               |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | <0.20<br><0.20                                         | <0.20<br><0.20                                            | <0.20<br><0.20                                   | <0.20<br><0.20                                         | 0.70<br><0.20                                                  | <0.20<br><0.20                                    | <0.20<br><0.20                                   | <0.20<br><0.20                        | <0.20<br><0.20                                 |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | <0.20                                                  | <br><br><0.20                                             | <br><br><0.20                                    | <0.20                                                  | <br><br><0.20                                                  | ···<br><0.20                                      | <br><br><0.20                                    | <0.20                                 | <br><br><br><0.20                              |
| NJ-WRD<br>WELL<br>NUMBER                            | ETHYL-<br>BENZENE<br>TOTAL<br>(UG/L)                   | METHYL-<br>BROMIDE<br>TOTAL<br>(UG/L)                     | METHYL-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)      | METHYL-<br>ENE<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)     | TETRA-<br>CHLORO<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)           | TRI-<br>CHLOF<br>FLUOF<br>METH/<br>TOTAI<br>(UG/I | RO- CĤLO<br>ANE ETHA<br>L TOTA                   | RO- ETHY<br>NE ENE<br>L TOTA          | ORO- TŘI-<br>(L- CHLORO-<br>ETHANE<br>AL TOTAL |
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | <3.0<br><br>                                           | <3.0<br><br>                                              | <3.0<br><br>                                     | <3.0<br><br>                                           | 76<br><br><br>                                                 | <3.0<br>                                          | <3.0<br><br>                                     | <3.0<br><br><br>                      | 5.3                                            |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | <0.20<br><0.20                                         | <0.20<br><0.20                                            | <0.20<br><0.20                                   | <0.20<br><0.70                                         | 9.3<br>8.8                                                     | <0.20<br><0.20                                    |                                                  |                                       | 20 <0.20<br>20 1.5                             |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | <br><br><0.20                                          | <br><br><br><0.20                                         | <br><br><0.20                                    | <br><br><0.20                                          | 3.6                                                            | <0.2                                              | 0 <0.2                                           | 0 <0.3                                | 20 0.20                                        |
| NJ-WRD<br>WELL<br>NUMBER                            | 1,1,2-<br>TRI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L) | 1,1,2,2<br>TETRA-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L) | 1,2-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L) | 1,2-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L)       | 1,2-<br>TRANSDI<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | 1,3-DI-<br>CHLORO-<br>PROPANE<br>TOTAL<br>(UG/L)  | 1,3-DI-<br>CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L) | CHLORO                                | - VINYL-                                       |
| 23-1116<br>23-0340<br>23-1051<br>23-0792<br>23-0792 | <3.0<br><br>                                           | <3.0<br><br>                                              | <3.0<br><br>                                     | <3.0<br><br>                                           | 4.2<br><br><br>                                                | <3.0<br>                                          | <3.0<br><br><br>                                 | <3.0<br><br>                          | <3.0<br><br>                                   |
| 23-0792<br>23-0792<br>23-0792<br>23-0792<br>23-0801 | <0.20<br><0.20                                         | <0.20<br><0.20                                            | <0.20<br><0.20                                   | <0.20<br><0.20                                         | 0.60<br><0.20                                                  | <0.20<br><0.20                                    | <0.20<br><0.20                                   | <0.20<br><0.20                        | <0.20<br><0.20                                 |
| 23-0801<br>23-0801<br>23-0801<br>23-0801            | <br><br><0.20                                          | <br><br><br><0.20                                         | <0.20                                            | <br><br><0.20                                          | <br><br><br><0.20                                              | <br><br><0.20                                     | <br><br><0.20                                    | <br><br><0.20                         | <br><br><0.20                                  |

#### QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER | DI-<br>CHLORO-<br>DI-<br>FLUORO-<br>METHANE<br>TOTAL<br>(UG/L) | TRANS-<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL<br>(UG/L) | CIS<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL<br>(UG/L) | 1,2-<br>DIBROMO<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | VINYL<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L) | TRI-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | STYRENE<br>TOTAL<br>(UG/L) | XYLENE<br>WATER<br>WHOLE<br>TOT REC<br>(UG/L) | TRITIUM<br>TOTAL<br>(PCI/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|----------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23-1116                  | <3.0                                                           | <3.0                                                       | <3.0                                                    | <3.0                                                | <3.0                                      | 210                                                 | <3.0                       | <3.0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0340                  | 1 116                                                          |                                                            |                                                         |                                                     |                                           |                                                     |                            |                                               | 17 187 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23-1051                  | (V                                                             |                                                            |                                                         |                                                     |                                           |                                                     |                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0792                  |                                                                |                                                            |                                                         |                                                     |                                           |                                                     |                            |                                               | Charles and the same of the sa |
| 23-0792                  | and the                                                        | ••                                                         |                                                         | ••                                                  |                                           |                                                     |                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0792                  |                                                                |                                                            |                                                         |                                                     |                                           |                                                     | •••                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0792                  |                                                                |                                                            |                                                         |                                                     |                                           |                                                     |                            |                                               | 131.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23-0792                  | <0.20                                                          | <0.20                                                      | <0.20                                                   | <0.2                                                | <0.20                                     | 7.8                                                 | <0.2                       | <0.2                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0792                  | <0.20                                                          | <0.20                                                      | <0.20                                                   | <0.2                                                | <0.20                                     | 0.4                                                 | <0.2                       | <0.2                                          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23-0801                  |                                                                |                                                            |                                                         |                                                     |                                           |                                                     | The state of the state of  |                                               | 1 3 2 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          |                                                                |                                                            |                                                         |                                                     |                                           | 11.48 11.1-                                         |                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0801                  |                                                                |                                                            |                                                         |                                                     |                                           | 4.                                                  | 10.00                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0801                  | 34                                                             |                                                            |                                                         |                                                     |                                           | FIRE                                                | Man Mary                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0801                  | 1                                                              | • •                                                        |                                                         |                                                     |                                           | 14                                                  | /• i• As. 1 10             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0801                  | <0.20                                                          | <0.20                                                      | <0.20                                                   | <0.2                                                | <0.20                                     | <0.2                                                | <0.2                       | <0.2                                          | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          |                                                                |                                                            |                                                         |                                                     |                                           |                                                     |                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>\*</sup> Total depth of well.

#### Aquifer Units

231BRCK-Brunswick Group (undifferentiated). 231SCKN-Stockton Formation.

## QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                 | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                    | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                             | LATITUTDE LONGITUD                                                                                                                                                                                                                                                                                                                                                | ELEV.<br>LAND<br>SURF.<br>(FT.<br>E NGVD)                                                                                                                                                                                                                         | SCREENED<br>INTERVAL<br>(FT.)                                                                                                                                                                                                                                                      | AQUIFER<br>UNIT                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23-0735<br>23-0571<br>23-0196<br>23-0196<br>23-0570<br>23-0551<br>23-0069<br>23-0434<br>23-0438<br>23-0368<br>23-0368<br>23-0365<br>23-0368<br>23-0376<br>23-0440<br>23-0206<br>23-0206<br>23-0206<br>23-1058<br>23-1058 | PERTH AMBOY WD SOUTH RIVER WD SAYREVILLE WD DUHERNAL WC SOUTH RIVER WD SAYREVILLE WD DUHERNAL WC SOUTH RIVER WD HERCULES POWDER OLD BRIDGE MUA OLD BRIDGE MUA OLD BRIDGE MUA US GEOL SURVEY US GEOL SURVEY US GEOL SURVEY | RUNYON 8R PERTH AMBOY 7 PERTH AMBOY 5 PERTH AMBOY 1A PERTH AMBOY 1A PERTH AMBOY 6 SRWD 6 C P S 1-1975 SRWD 2 SRWD 5 SWD A I DUH SAY 4 SRWD 2R HERCULES 5 1 HERCULES 5 1 HERCULES 3 LAWRENCE HAR 8 LAWRENCE HAR 8 LAWRENCE HAR 8 LAWRENCE HAR 9 HESS BROS 1 HESS BROS 2 HERCULES 1 REBT SAYER ST | 402524 741940<br>402531 741932<br>402537 742020<br>402537 742020<br>402538 741950<br>402548 742155<br>402609 741940<br>402556 742141<br>402559 742142<br>402614 741950<br>402633 742102<br>402633 742202<br>402633 742202<br>402648 742022<br>402649 742025<br>402700 741454<br>402704 742133<br>402704 742133<br>402704 742131<br>402705 742021<br>402721 742210 | 15<br>12<br>20<br>15<br>47<br>20<br>20<br>35<br>47<br>20<br>20<br>35<br>47<br>47<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                    | 70 - 85<br>67 - 82<br>50 - 80<br>201 - 261<br>201 - 261<br>60 - 80<br>155 - 208<br>56 - 66<br>173 - 198<br>132 - 182<br>72 - 82<br>83 - 94<br>148 - 160<br>121 - 126<br>182 - 228<br>195*<br>180 - 220<br>193 - 213<br>360 - 395<br>112 - 122<br>138 - 148<br>170 - 225<br>68 - 78 | 2110DBG<br>2110DBG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211ODBG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG |
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                 | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                    | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                             | DATE TEM<br>OF ATU<br>SAMPLE (DEC                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   | SODIUM DIS- SOLVED PH (MG/L (UNITS) AS NA                                                                                                                                                                                                                                          | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>) AS CL)                                                                                                                                                                                                           |
| 23-0735<br>23-0571<br>23-0196<br>23-0196<br>23-0570<br>23-0551<br>23-069<br>23-0438<br>23-0365<br>23-0365<br>23-0365<br>23-0365<br>23-0439<br>23-0440<br>23-040<br>23-055<br>23-055<br>23-055<br>23-055<br>23-055        | PERTH AMBOY WD SOUTH RIVER WD SOUTH RIVER WD SOUTH RIVER WD SAYREVILLE WD SAYREVILLE WD SAYREVILLE WD SAYREVILLE WD SOUTH RIVER WD HERCULES POWDER THOMAS & CHADWICK HERCULES POWDER OLD BRIDGE MUA OLD BRIDGE MUA OLD BRIDGE MUA US GEOL SURVEY HERCULES POWDER US GEOL SURVEY       | RUNYON 8R PERTH AMBOY 7 PERTH AMBOY 1A PERTH AMBOY 1A PERTH AMBOY 6 SRWD 6 C P S 1-1975 SRWD 2 SRWD 5 SWD A I DUH SAY 4 SRWD 2R HERCULES 5 1 HERCULES 3 LAWRENCE HAR 9 HESS BROS 1 HESS BROS 2 HERCULES 1REBT SAYER ST                                                                          | 10/ 7/1986<br>10/ 7/1986<br>10/ 7/1986<br>8/11/1987<br>10/ 7/1986<br>10/21/1986<br>10/21/1986<br>10/21/1986<br>10/21/1987<br>8/12/1987<br>8/12/1987<br>10/27/1987<br>10/27/1986<br>10/ 7/1986<br>10/ 2/1986<br>10/ 2/1986<br>10/ 2/1986<br>10/ 2/1986<br>10/ 2/1986<br>10/ 2/1986<br>10/ 2/1986<br>10/ 2/1986<br>10/ 7/1986                                       | 11.5 327<br>11.5 212<br>12.5 315<br>12.0 673<br>13.0 715<br>12.5 345<br>12.0 66<br>12.5 250<br>13.5 130<br>12.5 96<br>12.5 252<br>13.0 5,550<br>13.5 630<br>13.5 6,700<br>12.5 89<br>13.0 65<br>14.0 7,500<br>12.5 89<br>13.0 7,500<br>12.5 12,500<br>13.5 12,500 | 4.0<br>4.3<br>5.7<br>6.5<br>3.8<br>5.4<br>3.8<br>5.7<br>4.5<br>3.9<br>5.6<br>5.5<br>7.1<br>5.6<br>6.2<br>5.7<br>6.2<br>5.7<br>6.1<br>2,900                                                                                                                                         | 33<br>10<br>150<br>44<br>170<br>41<br>8.7<br>50<br>14<br>23<br>41<br>11<br>1,800<br>170<br>2,800<br>11<br>2,300<br>12<br>2,2<br>4,700<br>4,300<br>290<br>5,300                                                                                            |

<sup>\*</sup> Total depth of well.

#### Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

## QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                          | SITE<br>OWNER                                                                                                                                                                                                                         | LOCAL<br>IDENTIFIER                                                                                                                                                            | LATITUTDE LO                                                                                                                                                                   |                                                                                                                                                              | ELEV.<br>LAND<br>SURF.<br>(FT.<br>NGVD)                                                                          | SCREEN<br>INTER                                                                                          | /AL                                                                                                   | AQUIFER<br>UNIT                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23-1056<br>23-1056<br>23-0401<br>23-0403<br>23-1060<br>23-080<br>23-0411<br>23-0414<br>23-1077<br>23-0255<br>23-0264<br>23-0264<br>23-0478<br>23-0543<br>23-0548  | MIDDLESEX COUNTY MIDDLESEX COUNTY SAYREVILLE WD SAYREVILLE WD US GEOL SURVEY HERBERT SAND CO SOUTH AMBOY WD SOUTH AMBOY WD US GEOL SURVEY JERS CENTRAL PL CARBORUNDUM CO CHEVRON OIL CO HAAGEN DAZS INC AMER CYANAMID CO SHELL OIL CO | MCUA 3 MCUA 3 MORGAN P SWD Q-1973 MARSH AVE 1 RANNEY WELL SAWD 8 SAWD 10 JCP&L-SAY 7-1972 1 OBS 2 SWIFT 1 CYANAMID 2A 5(S2) 8(R7)                                              | 402743<br>402743<br>402744<br>402745<br>402802<br>402807<br>402822<br>402825<br>402825<br>402831<br>402923<br>403046<br>403200<br>403233<br>403236<br>403242<br>403257         | 742216<br>742216<br>741628<br>741631<br>742022<br>742351<br>741630<br>741632<br>742120<br>741651<br>741827<br>741620<br>741633<br>741616<br>741526<br>741539 | 5<br>44<br>40<br>40<br>28<br>10<br>10<br>7<br>12<br>15<br>45<br>30<br>9<br>25<br>17                              | 43 -<br>43 -<br>254 -<br>78 -<br>138 -<br>209 -<br>38 -<br>46 -<br>135 -<br>57 -<br>96 -<br>39 -<br>45 - | 53<br>53<br>288<br>136<br>148<br>18*<br>234<br>48<br>48<br>165<br>67<br>106<br>59<br>60<br>42*<br>36* | 211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG<br>211FRNG |
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                          | SITE<br>OWNER                                                                                                                                                                                                                         | LOCAL<br>IDENTIFIER                                                                                                                                                            | DATE<br>OF<br>SAMPLE                                                                                                                                                           | TEMPER-<br>ATURE<br>(DEG C)                                                                                                                                  | SPE-<br>CIFIC<br>CONDUCT<br>-ANCE<br>(US/CM)                                                                     | PH<br>(UNITS)                                                                                            | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                                                           | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                                                           |
| 23-1056<br>23-1056<br>23-0401<br>23-0403<br>23-1060<br>23-0080<br>23-0411<br>23-0414<br>23-1077<br>23-0430<br>23-0255<br>23-0264<br>23-0478<br>23-0543<br>23-0548 | MIDDLESEX COUNTY MIDDLESEX COUNTY SAYREVILLE WD SAYREVILLE WD US GEOL SURVEY HERBERT SAND CO SOUTH AMBOY WD SOUTH AMBOY WD US GEOL SURVEY JERS CENTRAL PL CARBORUNDUM CO CHEVRON OIL CO HAAGEN DAZS INC AMER CYANAMID CO SHELL OIL CO | MCUA 3<br>MCUA 3<br>MORGAN P<br>SWD Q-1973<br>MARSH AVE 1<br>RANNEY WELL<br>SAWD 8<br>SAWD 10<br>JCP&L-SAY<br>7-1972<br>1<br>OBS 2<br>SWIFT 1<br>CYANAMID 2A<br>5(S2)<br>8(R7) | 11/ 6/198<br>8/13/198<br>8/12/198<br>8/12/198<br>5/ 5/198<br>10/ 2/198<br>10/ 2/198<br>10/ 8/198<br>11/ 5/198<br>10/ 8/198<br>10/ 8/198<br>10/ 8/198<br>10/ 8/198<br>10/ 8/198 | 77 13.0<br>77 12.5<br>77 13.0<br>66 13.5<br>66 13.5<br>77 14.0<br>66 13.5<br>66 13.5<br>66 14.0<br>14.0                                                      | 12,400<br>68<br>68<br>2,930<br>155<br>75<br>310<br>19,000<br>4,000<br>299<br>326<br>1,290<br>1,140<br>800<br>498 | 5.5.25<br>5.25<br>5.26<br>5.78<br>6.09<br>6.09<br>6.17<br>5.76                                           | 360                                                                                                   | 5,500<br>5,400<br>3.8<br>27<br>840<br>17<br>5.4<br>38<br>6,000<br>1,300<br>11<br>34<br>260<br>190<br>61<br>43                                                                           |

<sup>\*</sup> Total depth of well.

Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

## QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MONMOUTH COUNTY

| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                   | SITE<br>Owner                                                                                                                                                                                                                                                                                      | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                             | LATITUDE LONG                                                                                                                                                                                                                                                         | ITUDE                                                                                                                        | ELEV.<br>LAND<br>SURF.<br>(FT.<br>NGVD)                                                                                                      | SCREENE<br>INTERV                                                                                         | AL AQUIFER                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25-029<br>25-030<br>25-234<br>25-235<br>25-552<br>25-552<br>25-512<br>25-387<br>25-384<br>25-387<br>25-386<br>25-011<br>25-026<br>25-011<br>25-288<br>25-294<br>25-496<br>25-282<br>25-284 | BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LAKE WD SPRING LAKE WD SPRING LAKE WD BELMAR BORO WD BELMAR BORO WD AVON WD ALENHURST WD ALENHURST WD ALENHURST WD ATLAN HIGH WD ATLAN HIGH WD BAYSHORE SEW AU MATAWAN BORO WD                      | BWD 1 BWD 2 MWD 3 MWD 2R MWD 7 MWD 5 SGWD 7 SLWD 2 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 10 (2 ELECT) BWD 4 ELEC(11) AWD 2 AWD 4 MATAWAN MUA 3 MATAWAN BORO 1 AHWD 1 | 400645 74<br>400712 74<br>400712 74<br>400712 74<br>400714 74<br>400802 74<br>400857 74<br>400928 74<br>400952 74<br>401038 74<br>401102 74<br>401136 74<br>401136 74<br>401401 74<br>402349 74<br>402428 74<br>402427 74<br>402427 74<br>402427 74                   | 0344<br>0345<br>0328<br>0328<br>0329<br>0230<br>0210<br>0211<br>0146<br>0045<br>0120<br>0025<br>1345<br>0236<br>1344<br>1450 | 35<br>33<br>15<br>20<br>15<br>21<br>15<br>20<br>15<br>20<br>15<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 130 - 690 - 103 - 94 - 97 - 640 - 570 - 485 - 600 - 601 - 419 - 525 - 345 - 222 - 510 - 510 - 245 - 231 - | 150 121CKKD 750 211EGLS 118* 121CKKD 118 121CKKD 112 121CKKD 117 121CKKD 124 121CKKD 600 211EGLS 600 211MLRW 560 211MLRW 561 211EGLS 671 211EGLS 671 211EGLS 501 211MLRW 565 211CGLS 502 2110DBG 582 2110DBG 582 2110DBG 582 2110DBG 583 2110DBG 271 2110DBG |
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                   | SITE<br>OWNER                                                                                                                                                                                                                                                                                      | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                             | DATE<br>OF<br>SAMPLE                                                                                                                                                                                                                                                  | TEMPER-<br>ATURE<br>(DEG C)                                                                                                  | SPE-<br>CIFIC<br>CONDUCT<br>-ANCE<br>(US/CM)                                                                                                 | PH<br>(UNITS)                                                                                             | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                                                                                                                                |
| 25-029<br>25-030<br>25-234<br>25-235<br>25-552<br>25-512<br>25-384<br>25-387<br>25-386<br>25-018<br>25-026<br>25-011<br>25-288<br>25-294<br>25-294<br>25-284<br>25-284                     | BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD ALLENHURST WD ALLENHURST WD ABERDEEN TWP MUA MATAWAN BORO WD ATLAN HIGH WD BAYSHORE SEW AU MATAWAN BORO WD | BWD 1 BWD 2 MWD 3 MWD 2R MWD 7 MWD 5 SGWD 7 SLWD 2 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 10 (2 ELECT) BWD 4 ELEC(11) AWD 2 AWD 4 MATAWAN MUA 3 MATAWAN BORO 1 AHWD 1 AHWD 1 BAYSHORE 1 MATAWAN BORO 3                                                                                                            | 9/ 1/1987<br>9/ 2/1987<br>9/ 2/1987<br>9/ 2/1987<br>9/ 2/1987<br>10/ 6/1986<br>10/ 6/1986<br>10/ 8/1986<br>10/ 8/1986<br>10/ 6/1986 | 20.0<br>13.5<br>13.5<br>13.5<br>14.0<br>19.5<br>17.5<br>19.0<br>18.0<br>19.5<br>18.0<br>14.0<br>13.0<br>16.5<br>13.5         | 194<br>186<br>88<br>93<br>86<br>61<br>78<br>186<br>194<br>183<br>221<br>186<br>246<br>212<br>62<br>102<br>98<br>99<br>115<br>84              | 7.4.4.4.5.6.5.5.0.5.0.7.0.4.0.8.7.7.7.8.0.5.6.6.5.5.7.5.7.7.7.7.7.7.7.7.7.7.7.7.7                         | 2.5<br>0.8<br>11<br>12<br>11<br>8.8<br>9.8<br>0.6<br>0.8<br>0.6<br>1.2<br>0.6<br>2.1<br>1.1<br>1.8<br>2.0<br>1.4<br>1.4                                                                                                                                      |
| * Total                                                                                                                                                                                    | denth of unil                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |                                                                                                                              |                                                                                                                                              |                                                                                                           |                                                                                                                                                                                                                                                              |

<sup>\*</sup> Total depth of well.

#### Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 211MLRW - Wenonah-Mount Laurel aquifer 211EGLS - Englishtown aquifer

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system

# QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MONMOUTH COUNTY

| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                             | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                          | LOCAL<br>IDENTIFIER                                                                                                                                                                                                   | LATITUDE LONG                                                                                                                                                                                                                                        | SITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ELEV.<br>LAND<br>SURF.<br>(FT.<br>NGVD)                                                                                            | SCREENE<br>INTERVA                                                                                                                                                      | \L                                                                                                                   | AQUIFER<br>UNIT                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25-111<br>25-197<br>25-197<br>25-113<br>25-113<br>25-199<br>25-466<br>25-190<br>25-190<br>25-207<br>25-420<br>25-453<br>25-453<br>25-420<br>25-420<br>25-514<br>25-568<br>25-568<br>25-565<br>25-320 | W KEANSBURG WC KEYPORT BORO WD KEYPORT BORO WD W KEANSBURG WC HAZLET TWP BD ED KERR GLASS CO ABERDEEN TWP WD KEANSBURG MUA KEANSBURG MUA KEYPORT BORO WD KEANSBURG MUA INFERN-O-THERM UNION BEACH WD UNION BEACH WD UNION BEACH WD INT FLAVOR FRAG INT FLAVOR FRAG INT FLAVOR FRAG US GEOL SURVEY US ARMY                                              | W KEANSBURG 1 KEYPORT 7 KEYPORT 7 W KEANSBURG 2 1 REPLACEMENT 2 3-77 KWD 6 KWD 4 KEYPORT 6 KWD 3 INFERN-O-1 UBWD 3 1977 UBWD 3 1977 UBWD 3 1977 UBWD 2 1969 UBWD 2 1969 IFF-2R IFF-1 JCPL CONASCONK PT. FT HANCOCK 5A | 402535 74 402535 74 402537 74 402542 74 402640 74 402620 74 402620 74 402628 74 402630 74 402632 74 402632 74 402634 74 402641 74 402665 74 40265 74                                                                                                 | 00932<br>11214<br>10933<br>00850<br>11220<br>11351<br>10739<br>11144<br>10744<br>11129<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051<br>11051 | 59<br>35<br>35<br>44<br>87<br>20<br>56<br>10<br>11<br>12<br>15<br>10<br>10<br>10<br>10<br>10                                       | 326 -<br>304 -<br>304 -<br>312 -<br>270 -<br>285 -<br>420 -<br>302 -<br>280 -<br>247 -<br>308 -<br>480 -<br>480 -<br>262 -<br>266 -<br>298 -<br>265 -<br>201 -<br>838 - | 366<br>354<br>354<br>352<br>315<br>470<br>340<br>277<br>348<br>300*<br>532<br>289<br>312<br>328<br>265<br>211<br>878 | 21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG<br>21100BG |
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                             | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                          | LOCAL<br>IDENTIFIER                                                                                                                                                                                                   | DATE<br>OF<br>SAMPLE                                                                                                                                                                                                                                 | TEMPER-<br>ATURE<br>(DEG C)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPE-<br>CIFIC<br>CONDUCT<br>-ANCE<br>(US/CM)                                                                                       | PH<br>(UNITS)                                                                                                                                                           | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                                                                          | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                                                                                                                                                                         |
| 25-111<br>25-197<br>25-197<br>25-112<br>25-113<br>25-199<br>25-466<br>25-190<br>25-207<br>25-208<br>25-453<br>25-453<br>25-453<br>25-420<br>25-5420<br>25-5420<br>25-568<br>25-568<br>25-320         | W KEANSBURG WC KEYPORT BORO WD KEYPORT BORO WD W KEANSBURG WC HAZLET TWP BD ED KERR GLASS CO ABERDEEN TWP WD KEANSBURG MUA KEANSBURG MUA KEYPORT BORO WD KEANSBURG MUA INFERN-O-THERM UNION BEACH WD INT FLAVOR FRAG INT FLAVOR FRAG INT FLAVOR FRAG US GEOL SURVEY US GEOL SURVEY US ARMY | W KEANSBURG 1 KEYPORT 7 W KEANSBURG 2 1 REPLACEMENT 2 3-77 KWD 6 KWD 4 KEYPORT 6 KWD 3 INFERN-0-1 UBWD 3 1977 UBWD 3 1977 UBWD 2 1969 UBWD 2 1969 IFF-2R IFF-1 JCPL CONASCONK PT. FT HANCOCK 5A                       | 10/ 1/1986<br>10/ 8/1986<br>9/ 3/1987<br>10/ 1/1986<br>10/ 1/1986<br>10/ 6/1986<br>10/ 8/1986<br>10/ 8/1986<br>10/ 8/1986<br>10/ 9/1986<br>10/ 9/1986<br>9/ 3/1987<br>10/ 9/1986<br>9/ 3/1987<br>10/ 9/1986<br>10/ 9/1986<br>9/ 3/1987<br>10/ 9/1986 | 13.55.0<br>14.05.50.55.0<br>14.35.50.55.55.5<br>14.55.55.5<br>14.55.55.5<br>14.55.55.5<br>14.55.55.5<br>14.55.55.5<br>14.55.55.5                                                                                                                                                                                                                                                                                                                                                          | 72<br>118<br>118<br>73<br>68<br>78<br>68<br>272<br>800<br>1,970<br>8,250<br>82<br>84<br>6,750<br>5,650<br>72<br>6,700<br>78<br>212 | 5.990170233725408832824<br>6.666666655665566567                                                                                                                         | 3.0                                                                                                                  | 1.7<br>15<br>13<br>1.7<br>1.6<br>1.9<br>290<br>560<br>2.7<br>2,800<br>2,300<br>1,700<br>1.9<br>2,300<br>2,300<br>2,300<br>2,300<br>2,300<br>5.5<br>5.0                                                                                                                                                |

<sup>\*</sup> Total depth of well.

#### Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER
WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### MORRIS COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER                                                 |                                                               | LOCAL<br>IDENTIFIER                                               | LATITUD                                              | E LONG!                                                        | ITUDE (                                             | ELEV.<br>LAND<br>SURF.<br>FT. NGVD)                    | OPEN OR<br>SCREENED<br>INTERVAL<br>(FT.)                            | AQUIFER<br>UNIT                                               |
|--------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 27-0153                  | SE MORRIS                                                     | CO MUA                                                        | LIDGERWOOD 5                                                      | 404707                                               | 0742                                                           | 2839                                                | 300                                                    | 67.8 - 265                                                          | 231BRCK                                                       |
| NJ-WRD<br>WELL<br>NUMBER | DATE                                                          | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                 | PH<br>(STAND-<br>ARD<br>UNITS)                       | HARD -<br>NESS<br>(MG/L<br>AS<br>CACO3)                        | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |
| 27-0153                  | 04-21-87                                                      | 11.5                                                          | 398                                                               | 7.3                                                  | 190                                                            | 42                                                  | 21                                                     | 11                                                                  | 1.3                                                           |
| NJ-WRD<br>WELL<br>NUMBER | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3   | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)  | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>S102)      | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 27-0153                  | 162                                                           | <1.0                                                          | 142                                                               | 28                                                   | 23                                                             | <0.1                                                | 15                                                     | 220                                                                 | <0.010                                                        |
| NJ-WRD<br>WELL<br>NUMBER | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L          | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)           | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |
| 27-0153                  | 2.8                                                           | 0.010                                                         | 0.30                                                              | 0.020                                                | <0.010                                                         | <10                                                 | <1                                                     | 1                                                                   | <1                                                            |
| NJ-WRD<br>WELL<br>NUMBER | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                        | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)                   | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)          | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | PHENOLS<br>TOTAL<br>(UG/L)                                          | *                                                             |
| 27-0153                  | <1                                                            | 4                                                             | <5                                                                | <1                                                   | <0.1                                                           | 6                                                   | 0.6                                                    | 2                                                                   |                                                               |
|                          |                                                               |                                                               |                                                                   |                                                      |                                                                |                                                     |                                                        |                                                                     |                                                               |

Aquifer Unit

### QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 OCEAN COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER                         | LOCAL<br>IDENTIFIER | LATITUDE         | LONGITUDE        | ELEV.<br>LAND<br>SURF.<br>(FT.<br>NGVD) | INT       | EENED<br>ERVAL<br>FT.) | AQUIFER<br>UNIT    |
|--------------------------|---------------------------------------|---------------------|------------------|------------------|-----------------------------------------|-----------|------------------------|--------------------|
| 29-590                   | BEACH HAVEN WD                        | BHWD 9              | 393342           | 741431           | 5                                       | 552       | - 630                  | 122KRKDL           |
| 29-009                   | BEACH HAVEN WD                        | BHWD 8              | 393346           | 741430           | 5                                       | 572       | - 656                  | 122KRKDL           |
| 29-544                   | SHIP BOTTOM WD                        | SBWD 4              | 393839           | 741052           |                                         | 536       | - 578                  | 122KRKDL           |
| 29-111                   | HARVEY CDRS WD                        | HCWD 4              | 394134           | 740832           | ,9                                      | 465       | - 500                  | 122KRKDL           |
| 29-613                   | BERKELEY WC                           | PINEWALL            | 395248           | 741011           | 45                                      | 475       | 200*                   | 121CKKD            |
| 29-022                   | SHORE WATER CO                        | SWC 1               | 395422           | 740458           | 7                                       | 175       | - 200                  | 121CKKD            |
| 29-023                   | SHORE WATER CO                        | SWC 2               | 395423           | 740458           |                                         | 497       | - 530<br>- 86          | 124PNPN<br>121CKKD |
| 29-697<br>29-540         | ARLINGTON BEACH WC<br>SEASIDE PARK WD | ABWC 1<br>SPWD 3    | 395443<br>395452 | 740500<br>740502 | 10                                      | 76<br>459 | - 503                  | 124PNPN            |
| 29-612                   | BERKELEY WC                           | BAYVILLE            | 395454           | 740906           | 20                                      | 437       | 90*                    | 121CKKD            |
| 29-809                   | OCEAN GATE BORO WD                    | OGBWD 4             | 395527           | 740826           | 10                                      | 330       | - 370                  | 124PNPN            |
| 29-515                   | PINE BEACH WU                         | PBWU 1              | 395558           | 741013           | 30                                      | 135       | - 197                  | 121CKKD            |
| 29-537                   | SEASIDE HGTS WD                       | SHWD 2              | 395636           | 740439           | 4                                       | 400       | - 430                  | 124PNPN            |
| 29-538                   | SEASIDE HGTS WD                       | SHWD 1R             | 395636           | 740439           |                                         | 144       | - 175                  | 121CKKD            |
| 29-115                   | ISL HGHTS WD                          | IHWD 8              | 395639           | 740854           | 12                                      | 115       | - 292                  | 124PNPN            |
| 29-815                   | SEASIDE HGTS WD                       | SHWD 6-87           | 395643           | 740443           | 7                                       | 129       | - 149                  | 112CKKD            |
| 29-617                   | SEASIDE HGTS WD                       | SHWD 5              | 395652           | 740442           | 5                                       |           | 175*                   | 121CKKD            |
| 29-058                   | TOMS RIVER WC                         | TRWC 21             | 395715           | 741231           | 10                                      | 46        | - 56                   | 121CKKD            |
| 29-626                   | TOMS RIVER WC                         | TRWC 30             | 395721           | 741230           | 0                                       | 1700      | - 1875                 | 211MRPA            |
| 29-453                   | LAVALLETTE WD                         | LWD 4               | 395808           | 740416           | 5                                       | 1358      | - 1515                 | 211MRPA            |
| 29-454                   | LAVALLETTE WD                         | LWD 2               | 395808           | 740421           | 5                                       | 1009      | - 1136                 | 211EGLS            |
| 29-100                   | NJ WATER CO                           | NORMANDY 3          | 395956           | 740344           | 8                                       | 1428      | - 1479                 | 211MRPA            |
| 29-504                   | NJ WATER CO                           | MANTOLOKING 7       | 400210           | 740310           | 5                                       | 1263      | - 1368                 | 211MRPA            |
| 29-006                   | NJ WATER CO                           | BAY HEAD 6          | 400405           | 740244           | 10                                      | 778       | - 818                  | 211EGLS            |
| 29-530                   | PT PLEASANT WD                        | PPWD 6              | 400454           | 740413           | 20                                      | 730       | - 790                  | 211EGLS            |
| 29-531                   | PT PLEASANT WD                        | PPWD 5              | 400454           | 740414           | 18                                      | 1256      | - 1342                 | 211MRPA            |
| 29-579                   | PT PLEAS BCH WD                       | PPBWD 11            | 400512           | 740251           | 5                                       | 130       | - 143                  | 121CKKD            |
| 29-807                   | PT PLEAS BCH WD                       | PPBWD 12            | 400536           | 740251           | 5                                       | 108       | - 132                  | 121CKKD            |
| 29-523                   | PT PLEAS BCH WD                       | PPBWD 10            | 400551           | 740243           | 5                                       | 87        | - 130                  | 121CKKD            |
|                          |                                       |                     |                  |                  |                                         |           |                        |                    |
| *                        |                                       |                     |                  |                  | CDE.                                    |           | CHIO                   | IDE                |

| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                                                         | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                     | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                      | DATE<br>OF<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEMPER-<br>ATURE<br>(DEG C)                                                                                                                                                  | SPE-<br>CIFIC<br>CONDUCT<br>-ANCE<br>(US/CM)                                                                                                                              | PH<br>(UNITS)                                                                                                                                                                                                                                                         | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29-590<br>29-009<br>29-111<br>29-613<br>29-022<br>29-023<br>29-697<br>29-540<br>29-809<br>29-515<br>29-815<br>29-815<br>29-817<br>29-538<br>29-115<br>29-617<br>29-058<br>29-626<br>29-454<br>29-100<br>29-530<br>29-531<br>29-531<br>29-531<br>29-531<br>29-532 | BEACH HAVEN WD BEACH HAVEN WD SHIP BOTTOM WD HARVEY CDRS WD BERKELEY WC SHORE WATER CO ARLINGTON BEACH WC SEASIDE PARK WD BERKELEY WC OCEAN GATE BORO WD PINE BEACH WU SEASIDE HGTS WD SEASIDE HGTS WD SEASIDE HGTS WD SEASIDE HGTS WD TOMS RIVER WC TOMS RIVER WC TOMS RIVER WC LAVALLETTE WD NJ WATER CO NJ WATER CO NJ WATER CO PT PLEASANT WD PT PLEAS BCH WD PT PLEAS BCH WD PT PLEAS BCH WD PT PLEAS BCH WD | BHWD 9 BHWD 8 SBWD 4 HCWD 4 PINEWALL SWC 1 SWC 2 ABWC 1 SPWD 3 BAYVILLE OGBWD 4 PBWU 1 SHWD 2 SHWD 1R IHWD 8 SHWD 6-87 SHWD 6-87 SHWD 2 ITRWC 21 TRWC 21 TRWC 21 TRWC 21 TRWC 30 LWD 4 LWD 2 NORMANDY 3 MANTOLOKING 7 BAY HAD 6 PPWD 5 PPWD 5 PPBWD 11 PPBWD 12 PPBWD 10 | 8/13/1987<br>8/13/1987<br>8/13/1987<br>8/13/1987<br>8/13/1987<br>8/11/1987<br>8/11/1987<br>8/11/1987<br>8/12/1987<br>8/12/1987<br>8/12/1987<br>8/11/1987<br>8/11/1987<br>8/11/1987<br>8/11/1987<br>8/11/1987<br>8/11/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987<br>8/10/1987 | 17.5<br>17.5<br>16.5<br>13.5<br>14.0<br>16.0<br>12.5<br>12.0<br>12.5<br>14.0<br>13.5<br>14.0<br>13.5<br>14.0<br>24.5<br>24.5<br>24.5<br>24.5<br>24.5<br>24.5<br>24.5<br>24.5 | 68<br>67<br>62<br>73<br>102<br>595<br>240<br>556<br>173<br>71<br>230<br>555<br>80<br>1,515<br>103<br>122<br>192<br>420<br>175<br>167<br>210<br>197<br>149<br>1,040<br>799 | 6.4.3.2.5.4.9.9.6.7.1.5.6.6.2.2.8.9.6.4.6.5.4.4.1.1.0.4.6.5.8.6.8.5.7.4.8.6.6.5.5.5.7.7.8.8.7.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.5.6.6.6.5.6.6.6.5.6.6.6.5.6.6.6.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6 | 2.7<br>3.2<br>2.9<br>2.7<br>11<br>4.5<br>0.5<br>1.0<br>5.3<br>7.6<br>1.7<br>130<br>470<br>11<br>23<br>0.8<br>0.8<br>0.9<br>0.7<br>0.9<br>320<br>320<br>220 |

<sup>\*</sup> Total depth of well.

#### Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 122KRKDL- Atlantic City 800-foot sand of the Kirkwood Formation

124PNPN - Piney Point aquifer 211EGLS - Englishtown aquifer 211MRPA - Potomac-Raritan-Magothy aquifer system

### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### PASSAIC COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITI                                                          |                                                               | LO<br>IDENT                                                        | CAL<br>IFIER LA                                        | TITUDE L                                                       | ONGITUDE                                                 | ELEV.<br>LAND<br>SURF.<br>(FT. NGVD)                   | OPEN OR<br>SCREENED<br>INTERVAL<br>(FT.)                            | AQUI FER<br>UNIT                                              |
|--------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 31-0035                  | PREAKNESS                                                     | HILLS CNTRY C                                                 | LUB TOWE                                                           | R 2 4                                                  | 05655                                                          | 0741403                                                  | 290                                                    | 40 - 561                                                            | 231BRCK                                                       |
| NJ-WRD<br>WELL<br>NUMBER | DATE                                                          | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                  | PH<br>(STAND-<br>ARD<br>UNITS)                         | AS                                                             | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)             | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | (MG/L                                                               | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |
| 31-0035                  | 09-14-87                                                      | 13.0                                                          | 385                                                                | 7.6                                                    | 160                                                            | 41                                                       | 15                                                     | 12                                                                  | 0.8                                                           |
| NJ-WRD<br>WELL<br>NUMBER | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3    | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)          | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)       | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)      | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 31-0035                  | 106                                                           | <1.0                                                          | 88                                                                 | 60                                                     | 16                                                             | 0.2                                                      | 23                                                     | 220                                                                 | <0.010                                                        |
| NJ-WRD<br>WELL<br>NUMBER | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)   | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)      | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)           | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |
| 31-0035                  | 1.1                                                           | <0.010                                                        | <0.20                                                              | 0.050                                                  | 0.040                                                          | <10                                                      | 2                                                      | <1                                                                  | 2                                                             |
| NJ-WRD<br>WELL<br>NUMBER | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)   | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)                   | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)               | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | PHENOLS<br>TOTAL<br>(UG/L)                                          | DI-<br>CHLORO-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L)        |
| 31-0035                  | <1                                                            | 9                                                             | <5                                                                 | 2                                                      | <0.1                                                           | 11                                                       | 0.7                                                    | 2                                                                   | <0.20                                                         |
| NJ-WRD<br>WELL<br>NUMBER | CARBON-<br>TETRA-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)         | 1,2-DI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)               | BROMO-<br>FORM<br>TOTAL<br>(UG/L)                                  | CHLORO-<br>DI-<br>BROMO-<br>METHANE<br>TOTAL<br>(UG/L) | TOTAL<br>(UG/L)                                                | TOLUENE<br>TOTAL<br>(UG/L)                               | BENZENE<br>TOTAL<br>(UG/L)                             | CHLORO-<br>BENZENE<br>TOTAL<br>(UG/L)                               | CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)                          |
| 31-0035                  | <0.20                                                         | <0.20                                                         | <0.20                                                              | <0.20                                                  | 1.3                                                            | <0.20                                                    | <0.20                                                  | <0.20                                                               | <0.20                                                         |
| NJ-WRD<br>WELL<br>NUMBER | ETHYL-<br>BENZENE<br>TOTAL<br>(UG/L)                          | METHYL-<br>BROMIDE<br>TOTAL<br>(UG/L)                         | METHYL-<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)                        | METHYL-<br>ENE<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L)     | TETRA-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)          | TRI-<br>CHLORO-<br>FLUORO-<br>METHANE<br>TOTAL<br>(UG/L) | 1,1-DI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)        | 1,1-DI-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L)              | 1,1,1-<br>TRI-<br>CHLORO-<br>ETHANE<br>TOTAL<br>(UG/L)        |
| 31-0035                  | <0.20                                                         | <0.20                                                         | <0.20                                                              | <0.20                                                  | 0.30                                                           | 0.40                                                     | <0.20                                                  | <0.20                                                               | <0.20                                                         |
| NJ-WRD<br>WELL           | 1,1,2-<br>TŘI-<br>CHLORO-                                     | 1,1,2,2<br>TETRA-<br>CHLORO-                                  | 1,2-DI-<br>CHLORO-                                                 | 1,2-DI-<br>CHLORO-                                     | 1,2-<br>TRANSDI<br>CHLORO-<br>ETHYL-                           | 1,3-DI-<br>CHLORO-                                       | 1,3-DI-<br>CHLORO-<br>BENZENE                          | 1,4-DI-<br>CHLORO-                                                  | 2-<br>CHLORO-<br>ETHYL-<br>VINYL-                             |
| NUMBER                   | TOTAL<br>(UG/L)                                               | ETHANE<br>TOTAL<br>(UG/L)                                     | BENZENE<br>TOTAL<br>(UG/L)                                         | PROPANE<br>TOTAL<br>(UG/L)                             | ENE<br>TOTAL<br>(UG/L)                                         | PROPANE<br>TOTAL<br>(UG/L)                               | TOTAL<br>(UG/L)                                        | BENZENE<br>TOTAL<br>(UG/L)                                          | ETHER<br>TOTAL<br>(UG/L)                                      |

# QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 PASSAIC COUNTY

| NJ-WRD<br>WELL<br>NUMBER | DI-<br>CHLORO-<br>DI-<br>FLUORO-<br>METHANE<br>TOTAL<br>(UG/L) | TRANS-<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL<br>(UG/L) | CIS<br>1,3-DI-<br>CHLORO-<br>PROPENE<br>TOTAL<br>(UG/L) | 1,2-<br>DIBROMO<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | VINYL<br>CHLO-<br>RIDE<br>TOTAL<br>(UG/L) | TRI-<br>CHLORO-<br>ETHYL-<br>ENE<br>TOTAL<br>(UG/L) | STYRENE<br>TOTAL<br>(UG/L) | XYLENE<br>WATER<br>WHOLE<br>TOT REC<br>(UG/L) |
|--------------------------|----------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------------------------|
| 31-0035                  | <0.20                                                          | <0.20                                                      | <0.20                                                   | <0.2                                                | <0.20                                     | <0.2                                                | <0.2                       | <0.2                                          |

Aquifer Unit

QUALITY OF GROUND WATER

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

#### SOMERSET COUNTY

| J-WRD<br>WELL<br>IUMBER       | SITE<br>OWNER                                                 | 1                                                             | LOCAL<br>DENTIFIER                                                | LATITUDE                                             | LONGITUD                                                       | ELEV<br>LAND<br>SURF<br>E (FT. NG                   | . SCRE                                                 | ENED<br>RVAL                                                     | AQUIFER<br>UNIT                                     |
|-------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|
| 5-0011<br>5-0024<br>5-0034    | WILSON PRODUCTS<br>SOUTH BRANCH REF<br>SOMERSET CO PARK       | . CH P                                                        | ILSON 3<br>ARSONAGE 1<br>ARREN BROOK-1965                         | 403021<br>403239<br>403655                           | 0744343<br>0744147<br>0742941                                  | 60                                                  | 60 -<br>60 -<br>50 -                                   | 480<br>150<br>130                                                | 231BRCK<br>231BRCK<br>231BRCK                       |
| IJ-WRD<br>WELL<br>IUMBER      | DATE                                                          | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                 | PH<br>(STAND-<br>ARD<br>UNITS)                       | HARD -<br>NESS<br>(MG/L<br>AS<br>CACO3)                        | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)   | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                     | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) |
| 55-0011<br>55-0024<br>55-0034 | 07-21-87<br>07-22-87<br>05-06-87                              | 13.5<br>13.5<br>10.5                                          | 400<br>379<br>380                                                 | 7.7<br>7.8<br>7.2                                    | 190<br>180<br>120                                              | 45<br>43<br>30                                      | 19<br>17<br>10                                         | 13<br>12<br>25                                                   | 0.70<br>1.0<br>1.8                                  |
| NJ-WRD<br>WELL<br>NUMBER      | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3   | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)  | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)      | SOLIDS<br>SUM OF<br>CONSTI<br>TUENTS<br>DIS-<br>SOLVED<br>(MG/L) | GEN,<br>NITRITE                                     |
| 35-0011<br>35-0024<br>35-0034 | 193<br>160<br>57                                              | <1.0<br><1.0<br><1.0                                          | 158<br>132<br>47                                                  | 32<br>19<br>29                                       | 15<br>13<br>50                                                 | 0.1<br>0.1<br><0.1                                  | 22<br>16<br>13                                         | 240<br>200<br>190                                                | <0.010<br><0.010<br>0.020                           |
| NJ-WRD<br>WELL<br>NUMBER      | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)           | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                     | CKRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) |
| 35-0011<br>35-0024<br>35-0034 | 0.33<br>5.3<br>0.77                                           | <0.010<br><0.010<br>0.080                                     | 0.30<br>0.70<br>0.70                                              | 0.300<br>0.050<br>0.010                              | <0.010<br>0.030<br>0.010                                       | <10<br><10<br>4                                     | 19<br>3<br><1                                          | <1<br><1<br><1                                                   | <1<br><1<br><1                                      |
| NJ-WRD<br>WELL<br>NUMBER      | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVE<br>(UG/L<br>AS FE                      | DIS-<br>D SOLVED<br>(UG/L                                         | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)                   | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)          | CARBON,<br>ORGANIO<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) |                                                                  |                                                     |
| 35-0011<br>35-0024<br>35-0034 | <1<br>6<br>6                                                  | <3<br><3<br>34                                                | <5<br><5<br><5                                                    | <1<br><1<br>380                                      | 0.3<br>0.3<br><0.1                                             | 21<br>16<br>150                                     | 1.5<br>1.4<br>3.1                                      | 2 2 2                                                            |                                                     |

Aquifer Unit

# QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 UNION COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER                                                 | I                                                             | LOCAL<br>DENTIFIER                                                | LATITUDE                                             | LONGITU                                                        | DE (FI                                              | ELEV.<br>LAND<br>SURF.<br>[. NGVD)                   | OPEN OR<br>SCREENED<br>INTERVAL<br>(FT.)                            | AQUIFER<br>UNIT                                               |
|--------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 39-0385                  | COMMONWEALT                                                   | H WC B                                                        | ALUSTROL 17                                                       | 404201                                               | 074213                                                         | 6                                                   | 295                                                  | 97.8 - 371                                                          | 231BRCK                                                       |
| NJ-WRD<br>WELL<br>NUMBER | DATE                                                          | TEMPER-<br>ATURE<br>WATER<br>(DEG C)                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                 | PH<br>(STAND-<br>ARD<br>UNITS)                       | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                         | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           |
| 39-0385                  | 07-29-87                                                      | 11.0                                                          | 297                                                               | 6.7                                                  | 120                                                            | 37                                                  | 7.8                                                  | 10                                                                  | 0.8                                                           |
| NJ-WRD<br>WELL<br>NUMBER | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3   | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)  | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) |
| 39-0385                  | 98                                                            | <1.0                                                          | 79                                                                | 18                                                   | 27                                                             | 0.1                                                 | 30                                                   | 180                                                                 | <0.010                                                        |
| NJ-WRD<br>WELL<br>NUMBER | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>DIS-<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           |
| 39-0385                  | 0.34                                                          | <0.010                                                        | 0.50                                                              | 0.090                                                | 0.060                                                          | <10                                                 | <1                                                   | <1                                                                  | <1                                                            |
| NJ-WRD<br>WELL<br>NUMBER | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVEI<br>(UG/L<br>AS FE                     | (UG/L                                                             | (UG/L                                                | MERCU<br>DIS-<br>SOLVE<br>(UG/L                                | D S                                                 | INC,<br>IS-<br>OLVED<br>UG/L                         | (MG/L TOT                                                           | NOLS<br>AL<br>(/L)                                            |
| 39-0385                  | 3                                                             | <3                                                            | <5                                                                | <1                                                   | 0.3                                                            |                                                     | 8                                                    | 2.1                                                                 | 1                                                             |

Aquifer Unit

|                                                                                     | PAGE       |                                                            | P                                       | AGE                         |
|-------------------------------------------------------------------------------------|------------|------------------------------------------------------------|-----------------------------------------|-----------------------------|
| Absecon Creek at Absecon                                                            | 276        | Butler Place 1 observation                                 |                                         | 284                         |
| Absecon Creek, miscellaneous measurements                                           | 275        | Butler Place 2 observation                                 | well                                    | 285                         |
| Accuracy of the records                                                             | .14        | Camden County, ground-water                                | lavels                                  | 286                         |
| AcknowledgmentsACOW 1 Observation well                                              | 279        | Canistear Reservoir                                        |                                         | 114                         |
| Acre-foot, definition of                                                            | 20         | Canoe Brook, miscellaneous                                 | measurements                            | 200                         |
| Adenosine triphosphate, definition of                                               | 20         | Cape May County, ground-wat<br>Carnegie Lake, Millstone Ri | er quality                              | 322                         |
| Algae, definition of                                                                | 20         | Carnegie Lake, Millstone Ri                                | ver at, at Princeton                    | 259<br>275                  |
| Algal growth potential (AGP), definition of                                         | 20         | Cedar Brook, miscellaneous                                 |                                         | 263                         |
| Allaire State Park C observation well Allendale, Hohokus Brook at                   | 297<br>257 | Centerville, Pleasant Run a<br>Cells/volume, definition of |                                         | 22                          |
| Ramsey Brook at                                                                     | 257        | Cfe-day definition of                                      |                                         | 22                          |
| Allenwood, Manasquan River at                                                       | 261        | Charlotteburg Reservoir                                    |                                         | 115                         |
| Ambrose Brook at Middlesex                                                          | 265        | Chatham, Passaic River near                                |                                         | 63                          |
| Aquifer, definition of                                                              | 20<br>20   | Chemical oxygen demand, def                                | inition of                              | 261                         |
| Aquifer codes and geologic names                                                    | 21         | Chesilhurst, Wildcat Branch<br>Chester, North Branch Rarit | an River near151.                       | 263                         |
| Ash mass, definition of                                                             | 21         | Chlorophyll, definition of.                                |                                         | 22                          |
| Assiscong Creek at Bartles Corners                                                  | 263        | Clarks Mills, Pine Brook at                                |                                         | 265                         |
| Atco, Mullica River near                                                            | 261        | Clarks Mills Stream at Port                                | Republic                                | 266                         |
| Atlantic City, Beach Thorofare at                                                   | 276<br>278 | Clarksville, Stony Brook at<br>Cleaveland Brook, miscellar | near rements                            | 264<br>273                  |
| Atlantic County, ground-water levels                                                | 318        | Clinton Reservoir                                          | 113,                                    | 115                         |
| Atsion, Mullica River at                                                            | 263        | Clinton, Spruce Run at                                     |                                         | 140                         |
| Mullica River at outlet of Atsion Lake at                                           | 230        | Closter, Tenakill Brook at.                                |                                         | 256                         |
| Awosting, Wanaque River at                                                          | 83         | Colliers Mill TW 1 observat                                | ion well                                | 312<br>314                  |
| Axte Brook near Pottersville                                                        | 164        | Colliers Mill TW 2 observat                                |                                         | 313                         |
| Back Brook near Reaville                                                            | 263        | Colliers Mill TW 4 observat                                |                                         | 315                         |
| tributary near Ringoes                                                              | 149        | Color unit, definition of                                  |                                         | 22                          |
| Bacteria, definition of                                                             | 21         | Commonwealth Water Company,                                |                                         | 116                         |
| Baldwin Creek at Pennington                                                         | 271        | Contents, definition of<br>Continuing record station,      | definition of                           | 22                          |
| Baldwin Creek tributary, miscellaneous                                              | 211        | Control definition of                                      | derimicion or                           | 22<br>22<br>22              |
| measurements                                                                        | 271        | Control, definition of<br>Control structure, definiti      | on of                                   |                             |
| Barclay Brook near Englishtown                                                      | 265        | Cooperation                                                |                                         | 700                         |
| Bass River, East Branch, near New Gretna                                            | 263<br>245 | Crammer observation well                                   |                                         | 308<br>271                  |
| Batsto, Mullica River near                                                          | 232        | Cranberry Brook, miscellane<br>Crest-stage partial-record  |                                         | 256                         |
| Batsto River at Batsto                                                              | 235        | Cubic feet per second per s                                |                                         |                             |
| at Pleasant Mills23                                                                 | 8,276      | definition of                                              | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 22                          |
| Beach Haven, Little Egg Harbor at                                                   | 276        | Cubic foot per second, defi<br>Cumberland County, ground-  | nition of                               | 290                         |
| Bear Brook at Route 535 near Locust Corner                                          | 258        | Current Water Resources Pro                                | piects in New Jersey.                   | 18                          |
| near Grovers Mills                                                                  | 259        |                                                            |                                         | - 13                        |
| Bear Brook, miscellaneous measurements26                                            |            | Dead River near Millington.                                |                                         | 262                         |
| Beden Brook, miscellaneous measurements27 Beden Brook tributaries, miscellaneous    | 3,214      | Deep Run near Browntown Definition of terms                |                                         | 266                         |
| measurements                                                                        | 274        | De Forest Lake, NY                                         |                                         | 58                          |
| measurements.  Beden Brook near Hopewell                                            | 264        | Diatoms, definition of                                     |                                         | 58<br>24<br>22              |
| Beden Brook near Rocky Hill188,26                                                   | 0,265      | Discharge, definition of                                   |                                         | 22                          |
| Bedload, definition of                                                              | 21         | Discharge measurements at m<br>Discontinued gaging station |                                         | 161<br>33<br>34<br>22<br>22 |
| Belle Mead, Pike Run at                                                             | 190        | Discontinued continuous Wat                                |                                         | 34                          |
| Royce Brook tributary near                                                          | 194        | Dissolved, definition of                                   |                                         | 22                          |
| Belleville, Second River at                                                         | 257        | Dissolved-solids concentrat                                |                                         | 22                          |
| Bergen County, ground water quality<br>Berkeley Heights, Blue Brook at Seeleys Pond | 319        | DOE - Forked River observation                             |                                         | 307<br>296                  |
| Dam near                                                                            | 260        | Dover, Rockaway River at Wa                                |                                         | 256                         |
| Berkshire Valley, Rockaway River at<br>Berkshire Valley TW 9 observation well       | 66         | Downstream order and system                                |                                         | 11                          |
| Berkshire Valley TW 9 observation well                                              | 303        | Drainage area, definition of                               |                                         | 22                          |
| Bernardsville, Passaic River near<br>Big Brook at Marlboro                          | 256<br>260 | Drainage basin, definition                                 |                                         | 22                          |
| Blochemical oxygen demand, definition of                                            | 21         | Dry mass, definition of<br>Duck Pond Run near Princeto     |                                         | 259                         |
| Biomass, definition of                                                              | 21         | Dundee Canal, miscellaneous                                |                                         | 269                         |
| Black Creek near Vernon                                                             | 50         |                                                            |                                         |                             |
| Black River: See Lamington River Blackwells Mills, Millstone River at               | 191        | East Creek at North Center                                 | /11le                                   | 266                         |
| Blawenburg, Rock Brook near15                                                       | 9 264      | Echo Lake<br>Elizabeth River at Ursino I                   | ake at Flizaheth                        | 117                         |
| Blue Anchor, Blue Anchor Brook near                                                 | 261        | Elizabethtown Water Company                                | v. diversions                           | 214                         |
| Great Egg Harbor River near                                                         | 250        | Elmwood Park, Fleischer Bro                                | ook at Market Street                    |                             |
| Blue Brook at Seeleys Pond Dam near Berkeley                                        | 260        | at                                                         |                                         | 257<br>256                  |
| Heights<br>Blue green algae, definition of                                          | 24         | Englewood, Metzler Brook a<br>English Creek near Scullvi   |                                         | 267                         |
| Boonton Reservoir1                                                                  | 13,114     | Englishtown, Barclay Brook                                 |                                         | 265                         |
| Boonton, Rockaway River above Reservoir, at                                         | 70         | Matchaponix Brook near.                                    |                                         | 265                         |
| Rockaway River below Reservoir, at                                                  | 71         | McGelliards Brook at                                       |                                         | 265                         |
| Bottom material<br>Bound Brook, Raritan River below Calco Dam, at.                  | 21<br>195  | Milford Brook near<br>Essex County, ground-water           | quality                                 | 265<br>323                  |
| Raritan River at Queens Bridge at                                                   | 197        | Explanation of the Records                                 |                                         | 11                          |
| Briarwood School observation well                                                   | 301        |                                                            |                                         |                             |
| Browntown, Deep Run near                                                            | 266<br>284 | FAA-TW Pomona observation                                  |                                         | 282                         |
| ground-water quality                                                                | 321        | Fair Lawn, Saddle River at<br>Far Hills, North Branch Ra   |                                         | 153                         |
| Burnt Mills, Lamington River at                                                     | 168        | Farmingdale, Mingamahone B                                 |                                         | 260                         |
| North Branch Raritan River at                                                       | 154        | Farrington Dam, Lawrence B                                 |                                         | 204                         |

| F                                                                      | AGE        |                                                                             | PAGE          |
|------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|---------------|
| ecal coliform bacteria, definition of                                  | 21         | Hunterdon County, ground-water quality                                      | 326           |
| ecal streptococcal bacteria, definition of                             | 21         | Hydrologic Bench-Mark Network                                               | 11            |
| ischer observation well                                                | 294        | Hydrologic bench-mark station, definition of                                | 23            |
| leischer Brook at Market Street at Elmwood Park                        | 257        | Hydrologic conditions, summary of                                           | 23<br>2<br>23 |
| Hemington, Neshanic River near                                         | 263<br>258 | Hydrologic unit, definition of                                              | 23            |
| Folsom, Great Egg Harbor River at                                      | 252        | Identifying estimated daily discharge                                       | 14            |
| Forsgate 3 observation well                                            | 292        | Instantaneous discharge, definition of                                      | 22            |
| Forsgate 4 observation well                                            | 291        | Introduction                                                                | 1             |
| Fourmile Branch at New Brooklyn                                        | 261        | Ironia, Lamington (Black) River near Island Beach 1 observation well        | 157<br>306    |
| Franklin, Wallkill River at                                            | 298        | Island Beach 3 observation well                                             | 305           |
| rt. Hormouth 1-NCO observation wett                                    | 270        | Istana Beach 5 observation wetter                                           | 4/200         |
| Gage height, definition of                                             | 22         | Jenkins, West Branch Wading River near                                      | 239<br>116    |
| Gaging station, definition of                                          | 22         | Jersey City, diversion                                                      |               |
| Galen Hall observation well                                            | 280        | Jobs Point observation well                                                 | 278<br>219    |
| Georgia, Manasquan River nearGlen Gardner, Spruce Run at               | 134        | Jumping Brook near Neptune City                                             | 217           |
| Spruce Run near                                                        |            | Keansburg, Waackaack Creek at Middle Road near.                             | 266           |
| Spruce Run near                                                        | ,264       | Keyport Borough WD 4 observation well                                       | 300           |
| Great Channel at Stone Harbor                                          | 277        | Keyport, Luppatatong Creek at                                               | 276<br>186    |
| Great Egg Harbor Bay at Ocean City<br>Great Egg Harbor River at Folsom | 277<br>252 | Kingston, Millstone River at                                                | 100           |
| at Weymouth                                                            | 253        | Lakes and reservoirs:                                                       |               |
| near Blue Anchor                                                       | 250        | Lakes and reservoirs: Boonton Reservoir1                                    | 13,114        |
| near Sicklerville248                                                   | ,267       | Canistear Reservoir                                                         | 13,114        |
| Great Egg Harbor River basin, crest-stage partial-record stations in   | 261        | Charlotteburg Reservoir1 Clinton Reservoir1                                 | 13, 115       |
| Discharge measurements at low-flow partial-                            | 201        | De Forest Lake                                                              | 58            |
| record stations in                                                     | 267        | Echo Lake1                                                                  | 14,115        |
| Great Egg Harbor River, miscellaneous                                  | 275        | Farrington Reservoir                                                        | 204           |
| measurementsGreen algae, definition of                                 | 275        | Greenwood Lake                                                              | 13, 115       |
| Green Brook at Plainfield                                              | 260        | Oradell Reservoir                                                           |               |
| at Seeley Mills                                                        | 199        | Round Valley Reservoir                                                      | 213           |
| Green Pond TW 5 observation well                                       | 304        | Splitrock Reservoir1                                                        | 13,114        |
| Green Pond Brook at Picatinny Arsenal                                  | 67<br>69   | Spruce Run Reservoir                                                        | 213<br>215    |
| at Whartonbelow Picatinny Arsenal                                      | 68         | Tappan, Lake                                                                | 58            |
| Greenwood Lake114                                                      | ,115       | Wanaque Reservoir1                                                          | 14,115        |
| Ground-water level records                                             | 278        | Woodcliff Lake                                                              | 58            |
| Ground-water levels, explanation of records                            | 17         | Lakewood, North Branch Metedeconk River near                                | 225<br>168    |
| Data collection and computation                                        | 17<br>17   | Lamington (Black) River at Burnt Mills                                      | 156           |
| Ground-water quality, explanation of records                           | 18         | near Ironia                                                                 | 157           |
| Data collection and computation                                        | 18         | near Pottersville                                                           | 160           |
| Data presentation                                                      | 18<br>318  | Lamington River, miscellaneous measurements                                 | 270           |
| Ground-water quality records                                           | 259        | Land surface datum, definition of                                           | 204           |
| Grovers Mill, Millstone River at180                                    | ,264       | Latitude - Longitude system                                                 | . 11          |
| Millstone River at Southfield Road near                                | 258        | Lewis Brook, miscellaneous measurements                                     | 272           |
| Hackensack River at New Milford                                        | 57         | Lewis Brook tributary, miscellaneous                                        | 272           |
| at Rivervale                                                           | 57         | measurementsLittle Bear Brook at Penns Neck                                 | 259           |
| at West Nyack, NY                                                      | 52         | Little Egg Harbor, Beach Haven at                                           | 276           |
| Hackensack River basin, diversions                                     | 59         | Little Falls, Passaic River at                                              | 100           |
| Elevations, reservoir and lake                                         | 58         | Locust Corner, Bear Brook at Route 535 near                                 | 258<br>109    |
| record stations                                                        | 256        | Lodi, Saddle River at                                                       | 262           |
| Reservoirs in                                                          | 58         | Low tide, definition of                                                     | 23            |
| Hackensack Water Co., diversions 59                                    |            | Luppatationg Creek at Keyport                                               | 276           |
| Hammden Pumping Station, diversions                                    | 214        | Macs Brook at Somerville                                                    | 174           |
| Hammonton Creek at Wescoatville                                        | 233        | Macopin Intake Dam, Pequannock River at                                     | 82            |
| Hanover, Passaic River at                                              | 262        | Mahwah Ramapo River near                                                    | 91            |
| Hardness, definition of                                                | 22         | Mahwah River near Suffern, NY                                               | 89            |
| Harrisville, Oswego River at                                           | 242        | Mallica River, miscellaneous measurements Manahawkin Bay near Manahawkin    | 275<br>276    |
| Hart Brook near Pennington                                             | 259        | Manalapan Brook at Bridge Street at Spotswood.                              | 210           |
| Head of River, Tuckahoe River at255                                    | ,277       | at Federal Road near Manalapan                                              | 207           |
| High Bridge, South Branch Raritan River at Arch                        |            | at Spotswood                                                                | 209           |
| Street at                                                              | 132        | near Manalapan                                                              | 265<br>274    |
| Highland Park, Mill Brook at                                           | 265        | Manalapan Brook, miscellaneous measurements Manalapan, Millstone River near | 78.264        |
| High tide, definition of                                               | 23         | Manasquan River at Allenwood                                                | 261           |
| Hohokus Brook at Allendale                                             | 257        | at Squankum                                                                 | 224           |
| at Hohokus                                                             | 106<br>150 | near Georgia                                                                | 260           |
| Honey Branch near Rosedate                                             | 264        | Manasquan River basin, crest-stage partial-<br>record stations in           | 260           |
| Honey Branch, miscellaneous measurements                               | 273        | Discharge measurements at miscellaneous sites                               | 275           |
| Honey Branch tributary, miscellaneous                                  |            | Mantoloking 6 observation well                                              | 311           |
| Measurements                                                           | 273        | Manville, Raritan River at                                                  | 175           |
| Hudson County, ground-water quality                                    | 264<br>325 | Marlboro, Big Brook at                                                      | 260           |
| MUGSON River basin, discharge measurements at                          | 525        | Marsh Bog Brook, miscellaneous measurements                                 | 275           |
| low flow sites                                                         | 262        | Marsh Bog Brook at Squankum                                                 | 222           |

|                                                                                                                           | PAGE              |                                                                                                                    | PAGE           |
|---------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------|----------------|
| Martinsville, West Branch Middle Brook near Matawan, Wilkson Creek at Church Street at Matchaponix Brook near Englishtown | 196<br>266<br>265 | Northfield, Mill Creek near<br>North Haledon, Molly Ann Brook at<br>North Jersey District Water Supply Commission, | 267<br>257     |
| at Mundy Avenue at Spotswoodat Spotswood                                                                                  | 205<br>265        | diversions                                                                                                         | 116            |
| miscellaneous measurements                                                                                                | 274<br>240        | Sites                                                                                                              | 11<br>59       |
| McGelliards Brook at Englishtown                                                                                          | 265<br>25         | Oak Ridge Reservoir1                                                                                               | 13,115         |
| Mean discharge, definition of                                                                                             | 22                | Oakland, Pond Brook at<br>Oceanville 1 observation well                                                            | 256<br>281     |
| Mean high or low tide, definition of<br>Measuring point                                                                   | 23<br>327         | Ocean City, Great Egg Harbor Bay at                                                                                | 277            |
| Mercer County, ground-water quality Metamorphic stage, definition of                                                      | 23                | Ocean County, ground-water levelsground-water quality                                                              | 305<br>338     |
| Metamorphic stage, definition of                                                                                          | 23<br>225<br>23   | Old Bridge, South River at                                                                                         | 212<br>58      |
| Metzler Brook at Englewood                                                                                                | 256               | Organic mass, definition of                                                                                        | 21<br>23       |
| Micrograms per gram, definition of Micrograms per liter, definition of                                                    | 23                | Organism, definition ofOrganism count/area, definition of                                                          | 23             |
| Middle Brook: miscellaneous measurements                                                                                  | 274               | Organism count/volume, definition of<br>Osborn Mills, Passaic River at Outlet of                                   | 24             |
| West Branch, near Martinsville                                                                                            | 196               | Osborn Pond at<br>Oswego River at Harrisville                                                                      | 262<br>242     |
| Middlebush, Six Mile Run near                                                                                             | 260               | Other records available                                                                                            | 15             |
| Middlesex, Ambrose Brook at                                                                                               | 265<br>291        | Packanack Lake, Pompton River at                                                                                   | 96             |
| ground-water quality                                                                                                      | 329<br>265        | Palmer Lake, miscellaneous measurements Papakating Creek at Sussex                                                 | 273<br>48      |
| Mill Branch near Northfield                                                                                               | 267               | Parameter code                                                                                                     | 24             |
| Mill Brook at Highland Park miscellaneous measurements                                                                    | 265<br>269        | Partial-record stations, crest-stage Definition of                                                                 | 256<br>24      |
| Milligrams per liter, definition of                                                                                       | 23<br>262         | Low-flow<br>Tidal Crest-stage                                                                                      | 262<br>276     |
| Passaic River near                                                                                                        | 60                | Particle size, definition of                                                                                       | 24             |
| at Carnegie Lake at Princeton                                                                                             | 191<br>259        | classificationPascack Brook at Westwood                                                                            | 56             |
| at Grovers Mill                                                                                                           | 80,264<br>186     | Passaic County, ground-water quality<br>Passaic. Third River at                                                    | 339<br>112     |
| at Southfield Road near Grovers Mill<br>at Plainsboro                                                                     | 258               | Passaic, Third River at                                                                                            | 100            |
| at Weston                                                                                                                 | 193               | near Mahwah                                                                                                        | 91             |
| miscellaneous measurements2 near Manalapan                                                                                | 70,274<br>78,264  | at Outlet of Osborn Pond at Osborn Mills                                                                           | 262<br>78      |
| Mingamahone Brook at Farmingdale                                                                                          | 260<br>268        | at Two Bridgesbelow Pompton River at Two Bridges                                                                   | 79,262         |
| Molly Ann Brook at North Haledon                                                                                          | 257               | miscellaneous measurements                                                                                         |                |
| Monmouth County, ground-water levels                                                                                      | 296<br>335        | near Bernardsvillenear Chatham                                                                                     | 63             |
| Morrell observation well                                                                                                  | 293<br>301        | Passaic River basin, crest-stage partial-record                                                                    | 60             |
| ground-water quality                                                                                                      | 337<br>74         | stations in                                                                                                        | 256            |
| Morristown, Whippany River at                                                                                             | 266               | record stations in                                                                                                 | 262            |
| Mulhockaway Creek at Van Syckel                                                                                           | 137<br>230        | Discharge measurements at miscellaneous sites                                                                      | 268            |
| near Atconear Batsto                                                                                                      | 261<br>232        | Diversions                                                                                                         | 116            |
| near Port Republic<br>Mullica River basin, crest-stage partial-record                                                     | 276               | Reservoirs in,                                                                                                     | 113<br>115     |
| stations in                                                                                                               | 261               | Passaic Valley Water Commission, diversions                                                                        | 116            |
| Discharge measurements at miscellaneous sites                                                                             | 275               | Peckman River, at Ozone Avenue at Verona<br>at McBride Ave, West Paterson, at<br>Pennington, Baldwin Creek at2     | 263            |
| National Geodetic Vertical Datum of 1929                                                                                  |                   | Pennington, Baldwin Creek at2 Hart Brook near2                                                                     | 259,264<br>259 |
| (NGVD of 1929)                                                                                                            | 23                | Stony Brook at                                                                                                     | 264<br>268     |
| (NASQUAN)                                                                                                                 | 11                | Penns Neck, Little Bear Brook at                                                                                   | 259            |
| National Trends Network                                                                                                   | 11<br>26          | Pequannock River at Macopin Intake Dam<br>Percent composition, definition of                                       | 82<br>24<br>24 |
| Navesink River basin, crest-stage partial-<br>record in                                                                   | 260               | Periphyton, definition of                                                                                          | 276            |
| Neptune City, Jumping Brook near<br>Shark River near                                                                      | 219<br>216        | Pesticides, definition of                                                                                          | 173            |
| Neshanic River at Reaville                                                                                                | 146               | Peters Brook near RaritanPhytoplankton, definition of                                                              | 27             |
| near Flemington                                                                                                           | 263<br>261        | Picatinny Arsenal, Green Pond Brook at Green Pond Brook below Picatinny Lake                                       | 68             |
| New Brooklyn Park 1 observation well New Brooklyn Park 2 observation well                                                 | 286<br>287        | Picocurie, definition ofPike Run at Belle Mead                                                                     | 190            |
| New Brooklyn Park 3 observation well                                                                                      | 288               | Pine Brook at Clarks Mills                                                                                         | 265            |
| New Gretna, East Branch Bass River near<br>New Milford, Hackensack River at                                               | 245<br>57         | Pine Brook, Passaic River at                                                                                       | 72,26          |
| New Monmouth, Town Brook, at Church Street, at.<br>Newark, City of, diversions                                            | 266<br>116        | Whippany River near                                                                                                | 77,26          |
| NJ-WRD well number                                                                                                        | 23<br>258         | Plainsboro, Millstone River at                                                                                     | 182,258        |
| North Centerville, East Creek at                                                                                          | 266               | Pleasant Mills, Batsto River at                                                                                    | 238,27         |

|                                                                               | PAGE       | PAGE                                                                          |
|-------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------|
| Polychlorinated biphenyls, definition of                                      | 24         | Rockaway River above Reservoir, at Boonton 70                                 |
| Pompton Lakes, Ramapo River at                                                | 93         | at Berkshire Valley                                                           |
| Pompton Plains, Pompton River at                                              | 95         | at Warren Street at Dover                                                     |
| Pompton River at Packanack Lake                                               | 96         | at Pine Brook                                                                 |
| at Pompton Plains                                                             | 95         | Rockaway River above Reservoir, at Boonton 70                                 |
| at two bridges                                                                | 262        | below Reservoir, at Boonton                                                   |
| Pond Brook at Oakland                                                         | 256        | miscellaneous measurements                                                    |
| Poricy Brook at Red Bank                                                      | 266        | Rocky Hill, Beden Brook near188,260,265<br>Rosedale. Honey Branch near264     |
| Port Republic, Clarks Mills Stream at                                         | 266<br>266 | Rosedale, Honey Branch near                                                   |
| Mullica River near                                                            | 276        | Royce Brook tributary near Belle Mead 194                                     |
| Pottersville, Axle Brook near                                                 | 164        | Runoff in inches, definition of                                               |
| Lamington (Black) River near                                                  | 160        |                                                                               |
| Upper Cold Brook near                                                         | 163        | Saddle River at Lodi                                                          |
| Preakness (Signac) Brook near Preakness                                       | 257        | at Fair Lawn                                                                  |
| Princeton Junction, Duck Pond Run near                                        | 259        | at Ridgewood                                                                  |
| Princeton, Millstone River at Carnegie Lake at.                               | 259        | at Upper Saddle River                                                         |
| Stony Brook at                                                                | 183        | miscellaneous measurements                                                    |
| Publications, current NJ projectstechniques of water-resource investigations. | 19<br>31   | Screened interval, definition of                                              |
| techniques of water resource investigations.                                  | 31         | Scullville, English Creek near                                                |
| Radiochemical program                                                         | 11         | Second River at Belleville                                                    |
| Ragovin 2100 observation well                                                 | 290        | Secondary wells                                                               |
| Rahway River at Rahway                                                        | 125        | Sediment, definition of                                                       |
| Robinsons Branch, at Rahway                                                   | 128        | measurement of                                                                |
| near Springfield                                                              | 122        | Seeley Mills, Green Brook at                                                  |
| West Branch, at West Orange                                                   | 120        | Selected References                                                           |
| miscellaneous measurements                                                    | 270        | Shark River near Neptune City                                                 |
| Ramapo River at Pompton Lakes                                                 | 93<br>88   | Sicklerville, Great Egg Harbor River near248,267<br>Singac Brook at Singac263 |
| at Suffern, NYdiversions                                                      | 116        | Singac Brook at Singac                                                        |
| near Mahwah                                                                   | 91         | Sodium-adsorption-ratio, definition of 25                                     |
| Ramsey Brook at Allendale                                                     | 257        | Solute, definition of                                                         |
| Raritan, Peters Brook near                                                    | 173        | Somerset County, ground-water quality 341                                     |
| North Branch Raritan River near                                               | 170        | Somerville, Macs Brook at                                                     |
| Raritan River at                                                              | 171        | South Bound Brook, Raritan River near 203                                     |
| Raritan River at Manville                                                     | 175        | South River at Old Bridge                                                     |
| at Perth Amboyat Queens Bridge at Bound Brook                                 | 276<br>197 | South River 2 observation well                                                |
| below Calco Dam, at Bound Brook                                               | 195        | Specific conductance, definition of 20                                        |
| miscellaneous measurements                                                    | 270        | Splitrock Reservoir113,114                                                    |
| near South Bound Brook                                                        | 203        | Spotswood, Manalapan Brook at Bridge Street at. 210                           |
| North Banch, at Burnt Mills                                                   | 154        | Manalapan Brook at                                                            |
| near Chester15<br>near Far Hills15                                            | 153        | Matchaponix Brook at                                                          |
| at North Branch                                                               | 258        | Spring Valley Water Company, diversions 5                                     |
| miscellaneous measurements                                                    | 270        | Springfield, Rahway River near                                                |
| near Raritan                                                                  | 170        | Spruce Run at Clinton                                                         |
| South Branch at Arch Street at High Bridge                                    | 132        | at Glen Gardner                                                               |
| at Middle Valley12                                                            | 143        | miscellaneous measurements                                                    |
| at Three Bridges                                                              | 144        | Spruce Run Reservoir data                                                     |
| miscellaneous measurements                                                    | 270        | Squankum, Manasquan River at                                                  |
| near High Bridge<br>Raritan River basin, crest-stage partial-record           | 131        | Marsh Bog Brook at                                                            |
| Raritan River basin, crest-stage partial-record                               |            | Stafford Forge, Westecunk Creek at                                            |
| stations in                                                                   | 258        | Stage and water-discharge records, explanation                                |
| Discharge measurements at low-flow partial-<br>record stations in             | 263        | of                                                                            |
| Discharge measurements at miscellaneous site                                  | 270        | Stanton, South Branch Raritan River at 143                                    |
| Diversions                                                                    | 214        | Station Identification numbers 1                                              |
| Reservoirs in                                                                 | 213        | Stone Harbor, Great Channel at                                                |
| Elevation                                                                     | 213        | Stony Brook at Clarksville                                                    |
| Readington, Holland Brook at                                                  | 150        | at Glenmoore259,26                                                            |
| Reaville, Back Brook near                                                     | 263<br>146 | at Pennington                                                                 |
| Records collected by other agencies                                           | 140        | at Princeton                                                                  |
| Records of stage and water discharge                                          | 12         | East Branch, at Best Lake at Watchung 20                                      |
| Recoverable from bottom material, definition of                               | 25         | miscellaneous measurements271,272,27                                          |
| Red Bank, Poricy Brook at                                                     | 266        | Stony Brook Branch, miscellaneous measurement 27                              |
| Red Bank, Swimming River near                                                 | 215        | Stony Brook tributaries, miscellaneous                                        |
| References, selected                                                          | 28<br>17   | measurements                                                                  |
| Reservoirs: See Lakes and reservoirs                                          | 17         | Streamflow, definition of                                                     |
| Return period, definition of                                                  | 25         | Substrate, definition of                                                      |
| Ridgewood, Saddle River at                                                    | 105        | Succasunna, Lamington (Black) River 150                                       |
| Ringoes, Back Brook tributary near                                            | 149        | Suffern, NY, Mahwah River near                                                |
| Third Neshanic River near                                                     | 263        | Ramapo River at                                                               |
| Ringwood Creek near Wanaque<br>River mile, definition of                      | 84<br>25   | Surface area, definition of                                                   |
| Rivervale, Hackensack River at                                                | 53         | Arrangement1                                                                  |
| Robinsons Branch Rahway River at Rahway                                       | 128        | Surface area, definition of                                                   |
| Rock Brook near Blawenburg2                                                   | 59.264     | Data Presentation                                                             |
| miscellaneous measurements2                                                   | 70,274     | Laboratory measurements                                                       |
| Rockaway Creek at Whitehouse                                                  | 65 250     |                                                                               |
| over bidion, at will tellouse                                                 | 05,236     | Sediment1                                                                     |
|                                                                               |            |                                                                               |

|                                                 | PAGE  |                                                 | PAGE      |
|-------------------------------------------------|-------|-------------------------------------------------|-----------|
| Surface-Water Quality records                   | 44    | Van Syckel, Mulhockaway Creek at                | 137       |
| Surficial bed material, definition of           | 26    | Vernon, Black Creek near                        | 50        |
| Suspended, recoverable, definition of           | 26    | Verona, Peckman River at Ozone Avenue at        | 157       |
| Suspended sediment, definition of               | 26    |                                                 |           |
| Suspended-sediment concentration, definition of | 25    | Waackaack Creek, at Middle Road near Keansburg. | 266       |
| Suspended-sediment discharge, definition of     | 25    | Wading River, West Branch at Maxwell            | 240       |
| Suspended-sediment load, definition of          | 25    | near Jenkins                                    | 239       |
| Suspended, total, definition of                 | 26    | Wallkill River at Franklin 4                    | 4,262     |
| Sussex, Papakating Creek at                     | 48    | miscellaneous measurements                      | 268       |
| Wallkill River near                             | 46    | near Sussex                                     | 46        |
| Swimming River near Red Bank                    | 215   | Walnut Brook near Flemington                    | 258       |
| Darming Kiver Hear Kea Bankiritini              | -13   | Wanaque, Ringwood Creek near                    | 84        |
| Tappan, Lake                                    | 58    | Wanaque, Wanaque River at                       | 85        |
| Taxonomy, definition of                         | 26    | Reservoir11                                     | 4 115     |
| Tan Mile Lock diversions                        | 214   | Wanague Reservoir diversions                    | 1116      |
| Ten Mile Lock, diversions                       |       | Wanaque Reservoir diversions                    | 83        |
| Tenakill Brook at Closter                       | 256   | Wanaque River at Awosting                       |           |
| Terms, definition of                            | 20    | at Wanague                                      | 85        |
| Thermograph, definition of                      | 26    | Watchung, East Branch Stony Brook at            |           |
| Third Neshanic River near Ringoes               | 263   | Best Lake at                                    | 201       |
| Third River at Passaic                          | 112   | Stony Brook at                                  | 202       |
| Three Bridges, South Branch Raritan River at    | 144   | Water Quality Records, explanation of           | 15        |
| Tidal crest-stage stations                      | 276   | Water Quality, summary of                       | 2         |
| Time weighted average, definition of            | 26    | Water-Related Reports for New Jersey completed  |           |
| Toms River Chemical 84 observation well         | 310   | by the Geological Survey during 1986-87         | 19        |
| Toms River near Toms River                      | 226   | Water-table, definition of                      | 28        |
| Toms River TW 2 observation well                | 309   | Water Year, definition of                       | 28        |
| Tons per acre-foot, definition of               | 26    | WATSTORE Data, access to                        | 20        |
| Tons per day, definition of                     | 27    | WDR, definition of                              | 28        |
| Total, definition of                            | 27    | Weighted average, definition of                 | 28        |
| Total discharge                                 | 27    | Weighted average, definition of                 | 28<br>233 |
| Total discharge                                 | 21    | Wescoatville, Hammonton Creek at                | 52        |
| Total coliform bacteria, definition of          |       | West Nyack, NY, Hackensack River at             |           |
| Total organism count, definition of             | 24    | diversions                                      | 59<br>120 |
| Total recoverable, definition of                | 27    | West Orange, West Branch Rahway River at        |           |
| Town Brook, at Church Street, at New Monmouth   | 266   | West Paterson, Peckman River-McBridge Ave at    | 263       |
| Tritium network, definition of                  | _11   | Westecunk Creek at Stafford Forge               | 229       |
| Troy Meadows 1 observation well                 | 302   | Weston, Millstone River at                      | 192       |
| Tuckahoe River at Head of River25               |       | Pascack Brook at                                | 56        |
| Two Bridges, Passaic River at 7                 | 9,262 | Wet mass, definition of                         | 253       |
| Passaic River below Pompton River               | 99    | Weymouth, Great Egg Harbor River at             | 253       |
| Pompton River at                                | 262   | Wharton, Green Pond Brook at                    | 69        |
|                                                 |       | Whippany River at Morristown                    | 74        |
| Union County, ground-water levels               | 316   | near Pine Brook                                 | 77.262    |
| ground-water quality                            | 342   | Whitehouse, Rockaway Creek at166,25             | 8 264     |
| Union County Park observation well              | 316   | South Branch Rockaway Creek at16                | 55 258    |
| Upper Cold Brook near Pottersville              | 163   | Wildcat Branch at Chesilhurst                   | 261       |
| Upper Saddle River, Saddle River at             | 257   | Wilkson Creek at Church Street, at Matawan      | 266       |
| Ursino Lake, Elizabeth River at, at Elizabeth   | 117   |                                                 | 289       |
| oromo bane, burzabeth kiver at, at burzabeth    | 117   | Winslow WC 5 observation well                   |           |
|                                                 |       | Woodcliff Lake                                  | 58        |
|                                                 |       | WSP, definition of                              | 28        |
|                                                 |       | Total subsect definition of                     | 25        |
|                                                 |       | Zooplankton, definition of                      | 25        |

### FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

| Multiply inch-pound units                  | Ву                     | To obtain SI units                               |
|--------------------------------------------|------------------------|--------------------------------------------------|
|                                            | Length                 |                                                  |
| inches (in)                                | 2.54x10 <sup>1</sup>   | millimeters (mm)                                 |
| 6 4 (6)                                    | 2.54x10 <sup>-2</sup>  | meters (m)                                       |
| feet (ft)                                  | 3.048x10 <sup>-1</sup> | meters (m)                                       |
| miles (mi)                                 | 1.609x10°              | kilometers (km)                                  |
|                                            | Area                   |                                                  |
| acres                                      | 4.047x10 <sup>3</sup>  | square meters (m <sup>2</sup> )                  |
| deles                                      | 4.047x10 <sup>-1</sup> | square hectometers (hm²)                         |
|                                            | 4.047x10 <sup>-3</sup> | square kilometers (km²)                          |
| square miles (mi <sup>2</sup> )            | 2.590x10°              | square kilometers (km²)                          |
|                                            | Volume                 |                                                  |
|                                            |                        |                                                  |
| gallons (gal)                              | 3.785x10°              | liters (L)                                       |
|                                            | 3.785x10°              | cubic decimeters (dm <sup>3</sup> )              |
|                                            | $3.785 \times 10^{-3}$ | cubic meters (m <sup>3</sup> )                   |
| million gallons                            | $3.785 \times 10^{3}$  | cubic meters (m <sup>3</sup> )                   |
|                                            | $3.785 \times 10^{-3}$ | cubic hectometers (hm³)                          |
| cubic feet (ft <sup>3</sup> )              | 2.832x10 <sup>1</sup>  | cubic decimeters (dm <sup>3</sup> )              |
|                                            | 2.832x10 <sup>-2</sup> | cubic meters (m <sup>3</sup> )                   |
| cfs-days                                   | $2.447 \times 10^{3}$  | cubic meters (m <sup>3</sup> )                   |
|                                            | $2.447 \times 10^{-3}$ | cubic hectometers (hm³)                          |
| acre-feet (acre-ft)                        | $1.233 \times 10^3$    | cubic meters (m <sup>3</sup> )                   |
|                                            | $1.233 \times 10^{-3}$ | cubic hectometers (hm³)                          |
|                                            | 1.233x10 <sup>-6</sup> | cubic kilometers (km³)                           |
|                                            | Flow                   |                                                  |
| cubic feet per second (ft <sup>3</sup> /s) | 2.832x101              | liters per second (L/s)                          |
| cubic feet per second (it 73)              | 2.832x10 <sup>1</sup>  | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 2.832x10 <sup>-2</sup> | cubic meters per second (m <sup>3</sup> /s)      |
| gallons per minute (gal/min)               | 6.309x10 <sup>-2</sup> | liters per second (L/s)                          |
| Banono por minate (gar/min)                | 6.309x10 <sup>-2</sup> | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 6.309x10 <sup>-5</sup> | cubic meters per second (m³/s)                   |
| million gallons per day                    | 4.381x10 <sup>1</sup>  | cubic decimeters per second (dm <sup>3</sup> /s) |
| garante per uny                            | 4.381x10 <sup>-2</sup> | cubic meters per second (m³/s)                   |
|                                            | Mass                   |                                                  |
| 4(1                                        | 0.050 101              |                                                  |
| tons (short)                               | 9.072x10 <sup>-1</sup> | megagrams (Mg) or metric tons                    |

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, N.J. 08628

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE

