

(200) (Ga3) OHIO 1987 Water Resources Data Ohio Water Year 1987

A JUN 2 4 1988 A

Volume 2. St. Lawrence River Basin Statewide Project Data

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT OH-87-2 Prepared in cooperation with the State of Ohio and with other agencies

		OC'	гові	ER					NO	VEMI	BER					DEC	CEMI	BER		
S	M	Т	W	T	F	S	S	М	T	W	T	F	S	S	M	T	W	T	F	S
			1	2	3	4							1		1	2	3	4	5	6
5	6	7	8	9	10	11	2	3	4	5	6	7	8	7	8	9	10	11	12	13
12	13	14	15	16	17	18	9	10	11	12	13	14	15	14	15	16	17	18	19	20
19	-20	21	22	23	24	25	16	17	18	19	20	21	22	21	22	23	24	25	26	27
26	27	28	29	30	31		23 30	24	25	26	27	28	29	28	29	30	31			

		JA	ANUA	ARY						FI	EBRU	JAR	Z				1	MAR	CH			
S	M	Т	W	T	F	S		S	M	T	W	Т	F	S	S	M	T	W	T	F	S	
				1	2	3		1	2	3	4	5	6	7	1	2	3	4	5	6	7	
4	5	6	7																-	-	14	
						31										30						
		E	APR	IL							MA	Y						JUN	Ε			
5	M	T	W	T	F	S		S	M	T	W	Т	F	S	S	М	Т	W	Т	F	S	
			1	2	3	4							1	2		1	2	3	4	5	6	
5	6	7	8	9	10	11		3	4	5	6	7	8	9	7	8	9	10	11	12	13	
2	13	14	15	16	17	18		10	11	12	13	14	15	16	14	15	16	17	18	19	20	
9	20	21	22	23	24	25		17	18	19	20	21	22	23	21	22	23	24	25	26	27	
6	27	28	29	30				24	25	26	27	28	29	30	28	29	30					
								31														
			JUL	Y						Al	JGUS	ST					SEP'	rem)	BER			
3	M	T	W	T	F	S		S	M	T	W	T	F	S	S	M	T	W	T	. F	S	
			1	2	3	4								1			1	2	3	4	5	
5	6	7	8	9	10	11	*	2	3	4	5	6	7	8	6	7	8	9	10	11	12	
2	13	14	15	16	17	18		9	10	11	12	13	14	15	13	14	15	16	17	18	19	
								16														
5	27	28	29	30	31			23														
								30														

Water Resources Data Ohio

Water Year 1987

Volume 2. St. Lawrence River Basin Statewide Project Data

by H.L. Shindel, J.H. Klingler, J.P. Mangus, and L.E. Trimble

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT OH-87-2 Prepared in cooperation with the State of Ohio and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in Ohio write to

District Chief, Water Resources Division
U.S. Geological Survey
975 West Third AVenue
Columbus, Ohio 43212

1987

PREFACE

This volume of the annual hydrologic data report of Ohio is one of the series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provides the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Ohio are contained in 2 volumes:

Volume 1. Ohio River Basin Volume 2. St. Lawrence River Basin - Statewide Project Data

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

A.E.	Arnett	L.M.	Hicks	J.W.	Roberts
K.J.	Breen	K.S.	Jackson	A.C.	Sedam
D.D.	Brooks	A.L.	Jones	J.M.	Sherwood
C.J.	Childress	R.L.	Jones	D.J.	Shifflet
A.W.	Coen III	M.K.	Katzenbach	B.N.	Sroka
J.T.	de Roche	G.F.	Koltun	R.V.	Swisshelm
C.M.	Eberle	D.F.	MacFadden	C.C.	Vince
S.M.	Eberts	J.A.	McClure	S.A.	Vivian
R.P.	Frehs	V.E.	Nichols	G.F.	Ward
S.W.	Hatch	C.N.	Owens	J.J.	Welday
C.A.	Hawkins	B.B.	Palcsak	K.S.	Wilson

This report was prepared in cooperation with the State of Ohio and with other agencies under the general supervision of S.M. Hindall District Chief, Ohio.

50272 - 101 REPORT DOCUMENTATION 1. REPORT NO. 3. Recipient's Accession No. USGS/WRD/HD-88/233 PAGE 4. Title and Subtitle 5. Report Date Water Resources Data--Ohio, 1987 April 1988 Volume 2. St. Lawrence River Basin 6. 7. Author(s) 8. Performing Organization Rept. No. H.L. Shindel, J. H. Klingler, J. P. Mangus, and L. E. Trimble USGS-WDR-OH-87-2 9. Performing Organization Name and Address
U.S. Geological Survey, Water Resources Division 10. Project/Task/Work Unit No. 975 W. Third Avenue 11. Contract(C) or Grant(G) No. Columbus, Ohio 43212-3192 (C) (G) 12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered U.S. Geological Survey, Water Resources Division ANNUAL--10/1/86 975 W. Third Avenue to 9/30/87 Columbus, Ohio 43212-3192 14. 15. Supplementary Notes Prepared in cooperation with the State of Ohio and with other agencies. 16. Abstract (Limit: 200 words)

Water-resources data for the 1987 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 123 gaging stations, stage and contents at 8 lakes and reservoirs; water quality at 25 gaging stations, 196 wells, and 93 partial-record sites; and water levels at 828 observation wells. Also included are data from 31 crest-stage partial-record stations and 89 miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Ohio.

17. Document Analysis a. Descriptors

*Ohio, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rates, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperature, Sampling sites, Water levels, Water analyses, Streamflow, Water wells.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statemen:
No restriction on distribution. This report
may be purchased from: National Technical
Information Service, Springfield, VA 22161

19. Security Class (This Report)
UNCLASSIFIED

21. No. of Pages
UNCLASSIFIED

22. Price

CONTENTS

			Page
Prefac	e		III
		face-water stations, in downstream order, for which records are published	VI
List o	f gro	ound-water wells, by county, for which records are published	X
		on	1
		hydrologic conditions	1
		Ditation	3
3		e water Streamflow	3
-		Vater quality	3
		H-water levels	10
		of records	10
5		on identification numbers	10
	I	atitude-longitude system	11
R	ecord	ds of stage and water discharge	11
	D	Data presentation	12
		Identifying estimated daily discharge	14
		Other records available	14
Re		s of surface-water quality	14
	A	arrangement of records	15
	0	n-site measurement and sample collection	15
		Vater temperature	15 15
	L	aboratory measurements	16
		Nata presentation	16 17
Re	ecord	s of ground-water levels	17
		ata collection and computation	17 17
Re	ecord	s of ground-water quality	18
	D	ata collection and computation	18
Access		ata presentation	18 18
Definit	tion	of termss on Techniques of Water-Resources Investigations	19
Station	rec	ords, surface water	26 32
	artia	1-record stations and miscellaneous sites	100
Station		rest-stage partial-record stationsords, ground water	100
Gı	round	-water levels	101
Surface	iolog	ical and selected water-quality data of Scioto and Olentangy Riverser and ground-water quality in active coal mining areas	121
Surface	e and	ground-water records for Southern Franklin County project	143
		r records for the Geauga County project	156 162
Ground-	-wate	r records for the Shalersville Brine Disposal project	176
		r records for the Northwest Ohio project	178
Sa	andus	Countyky County	179 229
Wo	ood C	ounty	283
Factors	s for	converting inch-pound units to International System units (SI)Inside back	341 cover
		, , , , , , , , , , , , , , , , , , ,	
		ILLUSTRATIONS	
Figure	1.	Map showing physiographic divisions and location of Hydrologic Index	
	2.	StationsGraph showing comparison of 1987 annual mean values of pH, dissolved	2
		oxygen, temperature, and specific conductance with the average of	
		annual mean values for 1982-87 for three water-quality-monitor index stations in Ohio	4
	3.	Map showing geographic distribution of principal aquifers in Ohio	7
	4.	Graph showing sample 1-year and 5-year hydrographs of a well completed	8
	5.	in an unconfined unconsolidated aquifer	0
		in a confined carbonate-rock aquifer	9
	6.	System for numbering wells and miscellaneous sites (latitude and longitude)	5
	7.	Graph showing runoff during 1987 water year with median runoff for	
	8a.	period 1951-80 for four representative gaging stations Map showing location of data-collection stations excluding crest-stage	28
		and low-flow partial record sites	29
	8b.	Map showing location of data-collection stations including crest-stage	30
	8c.	and low-flow partial record sites Map showing location of crest-stage and low-flow partial record sites	31

(Letter after station name designates type of data: (c) chemical, (d) discharge, (e) contents and (or) elevation, (HBM) hydrologic bench mark, (M) water-quality monitor, (m) microbiological, (NASQAN) National stream-quality accounting network, (r) radio-chemical, (s) miscellaneous sediment measurements, (S) daily suspended-sediment data, (t) temperature.)

ST. LAWRENCE RIVER BASIN

STREAMS TRIBUTARY TO LAKE ERIE	Page
Ottawa River at Toledo University, Toledo (d)	32
Tiffin River at Stryker (d)	33
Unnamed tributary to Lost Creek near Farmer (d)	34
Auglaize River near Fort Jennings (d)	35
Blanchard River near Findlay (d)	36
Auglaize River near Defiance (d)	37
Maumee River near Defiance (d)	38
Maumee River near Waterville (M)	39
Maumee River at Waterville (dcmts)(NASQAN)	46
Lake Erie at Reno Beach (e)	49
Portage River at Woodville (d)	50
Tymochtee Creek at Crawford (d)	51
Honey Creek near New Washington (d)	52
Honey Creek at Melmore (d)	53
Rock Creek at Tiffin (d)	54
Sandusky River near Fremont (dcmbtS) (NASQAN)	55
Old Woman's Creek at U.S. 6 near Huron (e)	60
Lake Erie at Ruggles Beach (e)	61
Vermilion River near Fitchville (dcmS)	62
Black River at Elyria (d)	65
Rocky River near Berea (d)	66
Cuyahoga River at Hiram Rapids (d)	67
Cuyahoga River at Old Portage (d)	68
Tinkers Creek at Bedford (d)	69
Cuyahoga River at Independence (dcMt) (NASQAN)	70
Cuyahoga River at West Third Street bridge in Cleveland (M)	79
Grand River near Painesville (dS)	86
Grand River at Painesville (cmt) (NASQAN)	90
Fields Brook at Ashtabula (M)	92
Conneaut Creek at Conneaut (d)	99

The following continuous-record streamflow, water quality, or stage stations in Ohio have been discontinued. Daily streamflow, water quality, and stage records were collected and published for the period of record shown for each station. Abbreviations used for characteristics measured are as follows: COND, specific conductance; DIS, discharge; DO, dissolved oxygen; G HT, gage height; PH, pH; and TEMP, temperature. Short term project stations of one or two years not included.

Station number	Station name	Charac- teristic measured	Period of record
04177500 04181000	ST JOSEPH R NR BLAKESLEE ST MARYS R NR WILLSHIRE	DIS DIS	1926-32 1925-32
04183500	MAUMEE R AT ANTWERP	DIS	1939-82
04184000	MAUMEE R NR SHERWOOD	TEMP DIS	1948-49 1903-06
04184100	MAUMEE RIVER AT DEFIANCE	TEMP	1966-78 1966-78
		DO	1966-78
04184500	BEAN C AT POWERS	PH DIS	1973-78 1940-81
04185300	TIFFIN RIVER AT EVANSPORT	TEMP	1968-78
		COND	1968-78 1971-78
		PH	1968-78
04185500 04186000	TIFFIN R NR BRUNERSBURG MIAMI & ERIE CA AT DELPHOS	DIS DIS	1928-35 1928-33
04187500	OTTAWA R AT ALLENTOWN	DIS	1923-35
		TEMP	1943-82 1969-82
		COND	1969-82
		DO PH	1977-82 1977-82
04188000	OTTAWA R AT KALIDA	DIS	1930-35
04188200	AUGLAIZE R AT CLOVERDALE	TEMP	1967-78 1967-78
		DO	1967-78
04188500	EAGLE CR NR FINDLAY	PH DIS	1967-78 1947-57
04189500	BLANCHARD R AT GLANDORF	DIS	1921-28
04190000	BLANCHARD R AT DUPONT	DIS	1947-51 1928-35
04190500	ROLLER CR AT OHIO CITY	DIS	1946-48
04191000 04191500	TOWN CR NR VAN WERT AUGLAIZE R NR DEFIANCE	DIS TEMP	1945-53 1966-76
04171300	AUGUATUE K NK DELIANCE	COND	1966-76
		DO PH	1966-76 1966-76
		SED	1936-36
04192000	MIAMI & ERIE CA NR DEFIANCE	DIS	1924-29 1952-69
04192900	KEITZ RUN AT WATERVILLE	PRECIP	1981-86
04193000	MIAMI & ERIE CA AT WATERVILLE MAUMEE RIVER AT WATERVILLE	DIS TEMP	1921-29 1974-77
04193300	MACHEL KIVEK AT WATERVILLE	COND	1974-77
		DO PH	1974-77 1974-77
04194000	SWAN C AT TOLEDO	DIS	1940-48
04194023	MAUMEE R AT MOUTH AT TOLEDO	TEMP	1967-75 1967-75
		DO	1967-75
04194310	M B PORTAGE R NR PORTAGE	PH TEMP	1967-75 1969-75
		COND	1969-75
04194500 04195000	PORTAGE R NR PEMBERVILLE N B PORTAGE R NR BOWLING GREEN	DIS	1930-35 1923-32
04195600	PORTAGE R AT RR BRIDGE AT WOODVILLE	TEMP	1968-80
		DO	1968-80 1970-80
		PH	1968-80
04195800	PORTAGE R AT ELMORE	SED TEMP	1950-53 1950-52
04196000	SANDUSKY R NR BUCYRUS	DIS	1925-35
			1938-51 1964-81
04196200	BROKEN SWORD C AT NEVADA	DIS	1976-81
04196500	SANDUSKY R NR UPPER SANDUSKY	TEMP COND	1969-79 1969-80
		DO	1969-79
		PH	1969-79

Station number	Station name	Charac- teristic measured	Period of record
04196600 04196800	TYMOCHTEE C NR MARSEILLES TYMOCHTEE C AT CRAWFORD	DIS TEMP COND	1969-74 1968-75 1968-75
		DO PH	1968-75 1968-75
04196990	SANDUSKY R AT ST JOHNS BRIDGE NR MEXICO	TEMP COND DO	1969-76 1969-76 1969-76
04197000	SANDUSKY RIVER NR MEXICO	DIS	1928-35
04197300 04197450	WOLF C AT BETTSVILLE E B WOLF C NR BETTSVILLE	DIS	1938-82 1976-81 1976-81
04197500 04198000	HAVENS C AT HAVENS SANDUSKY RIVER NR FREMONT	DIS TEMP COND	1946-49 1950-66 1964-66
04198001	SANDUSKY RIVER AT FREMONT	SED TEMP	1978-84 1947-48
04198005	SANDUSKY RIVER BL FREMONT	TEMP	1950 1966-80
01120000		COND	1966-80
		DO PH	1966-80 1966-67
			1969-75
04198018	W B HURON R NR WILLARD	TEMP	1968-75 1968-75
04198019	SANDHILL C NR MONROEVILLE	PRECIP	1981-86
04199000	HURON RIVER AT MILAN	TEMP	1953-66
		COND	1978-80 1978-80
		DO	1978-80
04100100	HIDON DIVED DE MILAN	PH	1978-80
04199100	HURON RIVER BL MILAN	TEMP	1968-78 1968-78
		DO	1968-78
04199160	OLD WOMANS C AB US 6 AT HURON	PH G HT	1968-78 1980-84
04199170	LAKE ERIE AT HURON	G HT	1980-84
04199500	VERMILION R NR VERMILION	TEMP	1969-80
		COND	1969-80 1969-80
		PH	1969-80
04199900	E B BLACK R AT GRAFTON	DIS TEMP	1950-81 1969-75
04133300	L D DEACH IN AT GRAFION	COND	1969-75
04200000	E B BLACK R AT ELYRIA	DIS	1922-35 1970-75
04200400	W B BLACK R NR ELYRIA	TEMP	1969-70
04200430	W B BLACK R AB LAKE ST AT ELYRIA	DIS	1980-84
04200500	BLACK R AT ELYRIA	SED TEMP	1980-81 1962-70
0120000		COND	1964-70
04200550	BLACK R BL ELYRIA	SED TEMP	1980-81 1966-70
04200550	BUACK K BU EDIKIA	COND	1966-82
		DO	1967-82
04202500	CUYAHOGA RIVER NR KENT	PH DIS	1976-82 1933-35
04203000	BREAKNECK C NR KENT	DIS	1927-35
04204000 04204500	L CUYAHOGA R AT MOGADORE	DIS	1945-78 1945-74
04204300	L CUYAHOGA R AT MASSILLON RD AKRON SPRINGFIELD LAKE OUTLET AT AKRON	DIS DIS	1945-74
04205500	L CUYAHOGA R AT AKRON	DIS	1920
04205700	L CUYAHOGA R BL OHIO CA AT AKRON	DIS	1927-34 1973-79
04206000	CUYAHOGA R AT OLD PORTAGE	TEMP	1970-84
		COND	1970-84 1970-84
		PH	1970-84
	10 x	SED	1972-81
04206200 04206250	CUYAHOGA R AT BATZUM CUYAHOGA R AT IRA	TEMP DIS	1947-49 1973-79
04207000	OHIO CANAL FEEDER AT BRECKSVILLE	DIS	1923-24
04207200	TINKERS C AT BEDFORD OHIO CA AT INDEPENDENCE	SED	1972-79 1921-23
04207500	OHIO CA AT INDEPENDENCE	DIS	1921-23
			1940-41
			1948-81

DISCONTINUED STATIONS--Continued

Station number	Station name	Charac- teristic measured	Period of record
04206200	CUYAHOGA R AT BATZUM	TEMP	1947-49
04206250	CUYAHOGA R AT IRA	DIS	1973-79
04207000	OHIO CANAL FEEDER AT BRECKSVILLE	DIS	1923-24
04207200	TINKERS C AT BEDFORD	SED	1972-79
04207500	OHIO CA AT INDEPENDENCE	DIS	1921-23
			1927-35
	4		1940-41
			1948-81
04208502	BIG C AT CLEVELAND	DIS	1972-80
		SED	1978
04208505	CUYAHOGA R AT DUPONT INTAKE IN CLEVELAN		1964-75
04208510	CUYAHOGA R AT CNTR ST BRDGE IN CLEVELAN		1964-66
		COND	1964-66
		DO	1964-66
		PH	1964-66
04209000	CHAGRIN R AT WILLOUGHBY	DIS	1925-35
			1939-84
		TEMP	1950-50
		SED	1969-74
04209500	GRAND R NR NORTH BRISTOL	DIS	1942-47
04210000	PHELPS C NR WINDSOR	DIS	1942-59
04210500	GRAND RIVER NR ROME	DIS	1942-47
04211000	ROCK C NR ROCK CREEK	DIS	1948-66
04211500	MILL C NR JEFFERSON	DIS	1942-74
04212000	GRAND R NR MADISON	DIS	1922-35
			1938-74
04212200	GRAND RIVER AT PAINESVILLE	TEMP	1966-82
		COND	1966-82
		DO	1966-82
		PH	1966-82
04212500	ASHTABULA R NR ASHTABULA	DIS	1924-35
			1939-47
			1950-80
04212700	ASHTABULA R AT ASHTABULA	TEMP	1983-84
		COND	1983-84
		DO	1970-80
		PH	1971-80

Well number	Local number	Location	Page
		CRAWFORD COUNTY	
404838082563100	CR-1	Bucyrus	101
		GEAUGA COUNTY	
412518081221500	GE-3A	Southeast of Chagrin Falls	102
		HARDIN COUNTY	
404648083412600	HN-2A	Southeast of Dola	103
		HENRY COUNTY	
412123083574000	HY-2	Southwest of McClure	104
		LUCAS COUNTY	
413704083362200	LU-1	Toledo	105
		MEDINA COUNTY	
410142082005900	MD-1	Lodi	106
		PORTAGE COUNTY	
410540081213600 410920081192000	PO-7 PO-6	Brimfield	107 108
410920081192000	PO-6	PUTNAM COUNTY	108
405505004033000	PU-1		109
405505084032900	P0-1	Columbus Grove	109
405753082360800	R-3	RICHLAND COUNTY Shiloh	110
405/53082360800	R-3		110
		SANDUSKY COUNTY	
411914083045300 412703083213600	S-3 S-2	Fremont	111 112
		SENECA COUNTY	
410802083093900	SE-2	Tiffin	113
		SUMMIT COUNTY	
410330081282000	SU-6	Akron	114
410846081271600	SU-7	Cuyahoga Falls	115
		VAN WERT COUNTY	
405215084335400	VW-1	Van Wert	116
		WILLIAMS COUNTY	
412821084313600 412930084320900	WM-1 WM-3	Bryan Bryan	117 118
413108084415300	WM-12	East of Blakeslee	119
		WYANDOT COUNTY	
405009083172600	WY-1	Upper Sandusky	120
		**	120

VOLUME 2: ST. LAWRENCE RIVER BASIN STATEWIDE PROJECT DATA

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources in Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to the interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data--Ohio."

This report (in two volumes) includes records on both surface and ground water in the State. Specifically, it contains: (1) Discharge records for 123 streamflow-gaging stations, 89 miscellaneous sites, and peak flow information for 31 crest-stage partial-record stations; (2) stage and content records for 8 streams, lakes, and reservoirs; (3) water-quality data for 25 streamflow-gaging stations, 196 wells, and 93 partial-record sites; and (4) water levels for 828 observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, partial-record stations, and observation wells in the St. Lawrence River basin are shown in figures 8a, 8b, and 8c.

This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present, in two to three volumes, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several years concurrent with it, water-resources data for Ohio were published in a series of U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 3 and 4." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on the chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above-mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States, and may be purchased from the Books and Open-File Reports Section, U.S. Geological Survey, Box 24525, Federal Center, Denver, CO 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report OH-87-2." For archiving and general distribution, the reports for 1971-74 water years are also identified as water-data reports. These water-data reports can be purchased in paper copy or in microfiche from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information for ordering specific reports, including current prices, may be obtained by writing the District Chief at the address given on the back of title page or by telephoning (614) 469-5553.

COOPERATION

The U.S. Geological Survey and agencies of the State of Ohio have had cooperative agreements for the collection of water-resource records since 1898. Organizations that assist in collecting data in this report are: Ohio Department of Natural Resources, J. J. Sommer, Director; Ohio Enviromental Protection Agency, R. L. Shank, Director; Ohio Department of Transportation, W. J. Smith, Director; Miami Conservancy District, J. L. Rozelle, General Manager and Chief Engineer; City of Columbus Department of Public Service, G. Rosenbaum, Director; City of Canton Water Department, J. D. Williams, Superintendent; Ross County, J. L. Kennard, Commissioner; Seneca County Soil and Water District, Gene Baltes, Chief, Water Quality Laboratory; University of Toledo, R. Gallagher; Geauga County, D. C. Dietrich, Planning Director; City of Fremont, R. W. Lash, Service Director; Lucas County, E. J. Ciecka, Administrator; Wood County, F. G. Schutte, Sanitary Engineer; Sandusky County, K. W. Kerik, Health Commissioner; and City of Akron, R. Kapper and A. Youngblood. Funds or services were provided by the U.S. Army Corps of Engineers in collecting records for 72 hydrologic-data stations in this report. The Miami Conservancy District, U.S. Army Corps of Engineers, and Ohio Department Natural Resources aided in collecting records.

SUMMARY OF HYDROLOGIC CONDITIONS

Ohio is located in three physiographic provinces, each with its own distinctive hydrologic characteristics. The topography of the Till Plains section of the Central Lowlands physiographic province (fig. 1) consists of gently rolling ground moraine with bands of terminal moraine and outwash-filled valleys. Glaciation altered the courses of most streams in this area. The Eastern Lake Plains section (fig. 1) consists of wide expanses of level or nearly level land interrupted only by the sporadic sandy ridges that are the last visible remnants of glacial-lake beaches. Much

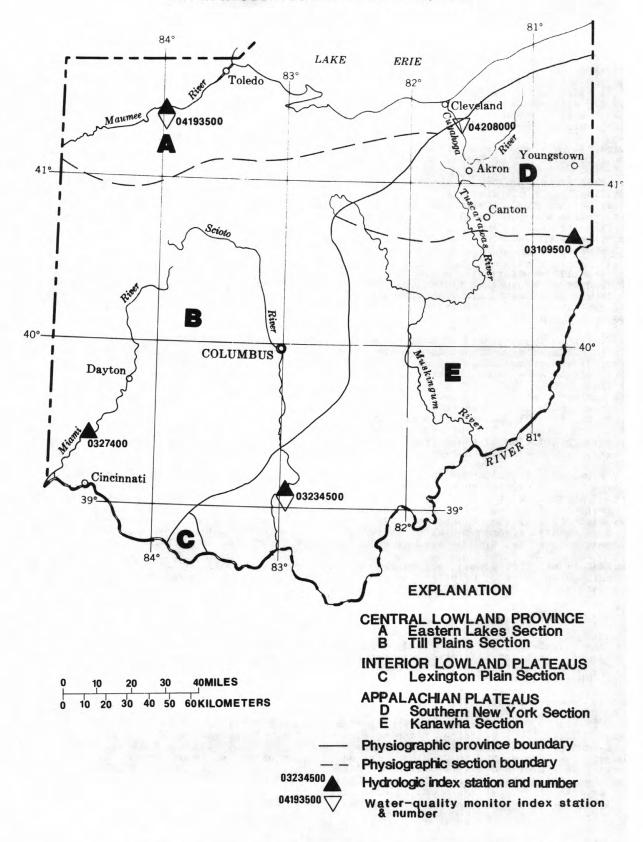


Figure 1.--Physiographic divisions and location of Hydrologic Index Stations.

of the area was swamp prior to development, and marshes are still present along Lake Erie near Toledo. The Lexington Plains section of the Interior Low Plateau province (fig. 1) is characterized by rolling terrain with isolated large hills and ridges. The "barbed" drainage pattern formed when small streams were captured as their headwaters cut back into the hills over time. Streams have carved the Kanawha section of the Appalachian Plateaus province (fig. 1) into an intricate series of hollows and steep-sided ridges. Only the large streams in the section have any appreciable flood plain. In the southern New York section (fig. 1), successive waves of glaciation have subdued the relief, buried many preglacial valleys, and rerouted many streams.

Precipitation

The average annual precipitation in Ohio is about 38 inches. The rainfall decreases from around 42 inches on the southern border to about 32 inches in the northwest. An area of greater precipitation (up to 44 inches) in northeastern Ohio results from air masses that pick up moisture and heat from Lake Erie and subsequently release precipitation over a range of hills stretching northeastward from Cleveland.

Monthly precipitation typically is greatest from May through July and least in October, December, and February. Of the approximate 38 inches of average annual precipitation, about 10 inches runs off immediately, 2 inches is retained at or near the surface and evaporates or transpires, and 26 inches enters the ground. Of the 26 inches that enters the ground, 20 inches is retained in the unsaturated zone and is later lost by evapotranspiration. The remaining 6 inches reaches the water table. Of this 6 inches, 2 inches is eventually discharged to streams, and the rest is lost by evapotranspiration or consumptive use. Average runoff ranges from about 15 to 18 inches along the southern border to about 8 to 12 inches along most of the northern border, except in the northeast where runoff reaches 20 inches. The pattern of streamflow differs from the pattern of precipitation because of the contributions of snowmelt to streamflow in the early spring and the reduction in flows by evapotranspiration from June through September.

Surface Water

Streamflow

Streamflow-data-collection stations are distributed irregularly throughout the State, and tend to be concentrated on the main river systems. The stations sample a wide variety of conditions. The drainage areas range from 12 to 7,420 square miles, and cover a wide diversity of land uses, topographic conditions, and other physical conditions. Streamflow ranges from natural to highly regulated.

At the beginning of the 1987 water year, above-average precipitation caused excessive streamflow statewide, except for eastern Ohio where it was in the normal range. Streamflow remained either excessive or normal throughout the State until January. Thereafter, below-average precipitation that persisted through May caused gradual declines, which resulted in deficient streamflow statewide by March. Eastern Ohio received above-average precipitation in April, which caused excessive flows for that month, but flows in the remainder of the State were either in the normal or deficient range. During June and July, above-average precipitation that occurred statewide, except for parts of southern Ohio, caused excessive streamflow throughout much of the State. Major floods occurred in north-central Ohio in early July and caused serious damage to several small communities. The remainder of the water year was characterized by gradual declines, in streamflow statewide, generally to the normal range. The exception to this trend was part of southwestern Ohio where persistent below-average precipitation produced drought conditions and lower than normal flows for many small streams.

Streamflow trends for the 1987 water year are reflected in graphical comparisons of monthly and annual mean discharges for 1987 and the 1951-80 reference period at four Hydrologic Index Stations (fig. 7; station locations are shown in fig. 1).

Water Quality

Trace-element analyses of samples collected at the NASQAN sites indicated that all concentrations of arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver were considerably less than U.S. Environmental Protection Agency recommended limits for domestic water supply. Manganese concentrations exceeding 200 micrograms per liter were detected once in November, May, and July in the Hocking River below Athens.

Selected water-quality-monitor data collected from index stations in three major basins (also NASQAN sites) are shown in figure 2 (station locations are shown in figure 1). The graphs represent annual mean values for pH, specific conductance, dissolved-oxygen concentration, and temperature compared with mean values for 1982-87 (averages of annual means for these 6 years). The data

Normal is defined as flow between the 25th and 75th percentiles as measured during the base period 1951 through 1980.

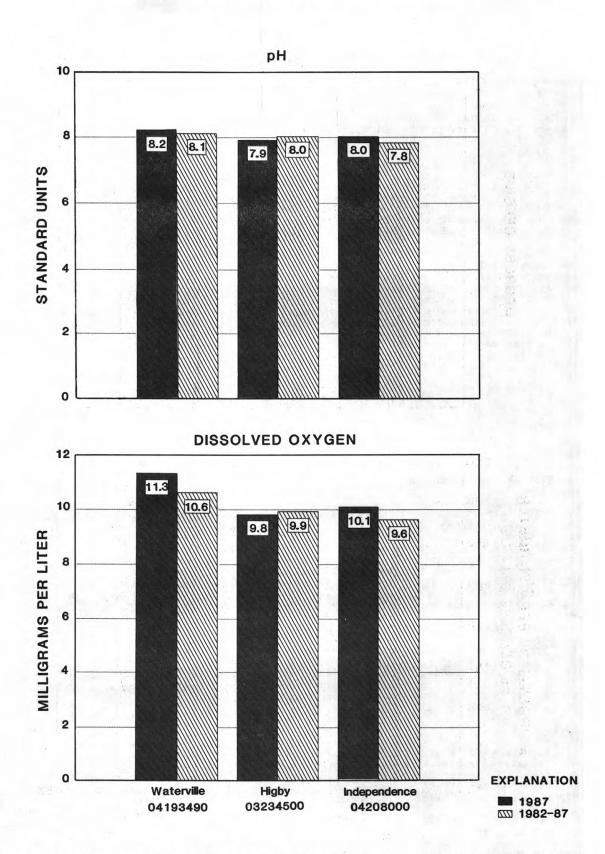


Figure 2.—Comparison of 1987 annual mean values of pH, dissolved oxygen, temperature, and specific conductance with the average of annual mean values for 1982–87 for three water-quality-monitor index stations in Ohio.

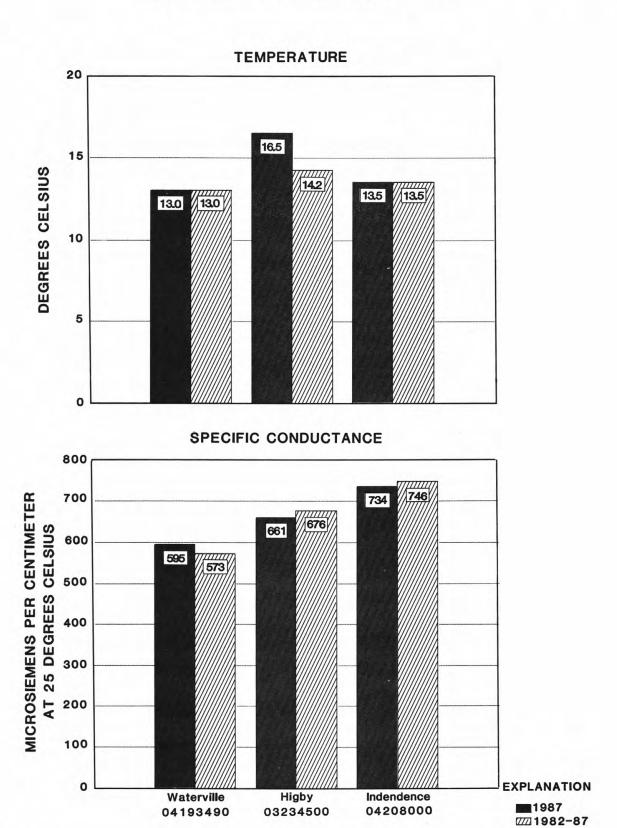


Figure 2.—Comparison of 1987 annual mean values of pH, dissolved oxygen, temperature, and specific conductance with the average of annual mean values for 1982–87 for three water-quality-monitor index stations in Ohio.—Continued

indicate that pH remained about the same at all sites. Specific conductance decreased at Scioto River at Higby (station 03234500) and at Cuyahoga River at Independence (station 04208000), but increased at Maumee River at Waterville (station 04193500). Dissolved-oxygen concentrations increased at Maumee River at Waterville and at Cuyahoga River at Independence. Temperature remained about the same except at Scioto River at Higby, where the increase probably was due to loss of data during the winter period.

Ground Water

Ground water serves the needs of 42 percent of Ohio's population. An estimated 740 million gallons per day (Mgal/d) of ground water is withdrawn for domestic, industrial, and agricultural purposes. Many people in Ohio depend on ground water as the only practical source of supply.

Ohio's unconsolidated aquifers are composed of either coarse- or fine-grained sediments. Both types are composed mainly of materials of glacial origin. The coarse-grained unconsolidated aquifers generally consist of highly permeable sand and gravel; much of the sand and gravel is alluvium derived from glaciofluvial outwash present along the courses of some modern streams; thus, these aquifers sometimes are referred to as "watercourse" aquifers. Coarse-grained unconsolidated aquifers in the northwestern corner of the State (fig. 3) underlie glacial till, are locally under artesian pressure, and are highly productive. Extensive kame-terrace deposits of water-bearing gravel and sand are important ground water sources in northeastern Ohio. The fine-grained unconsolidated aquifers are similar to the coarse-grained unconsolidated aquifers in form and origin but are less permeable because of higher percentages of mixed fine sand, silt, and clay. Included in the fine-grained unconsolidated aquifers are tills that contain thin or localized stratified lenses of sand and gravel.

The principal source of water supply for much of the unglaciated upland area of southeastern Ohio is from bedrock aquifers composed of shaly sandstone or thin limestone aquifers. These strata which range from Mississippian to Permian in age, are dominated by low-yielding shales and shaly sandstones that include numerous coal-bearing strata. In some places, small water supplies are available in fractured coal beds. Several sandstone aquifers in northeastern Ohio are of regional extent and are important ground-water sources for individual and small public supplies. These include the Berea and Black Hand Sandstones of Mississippian age and several sandstone members of the Pottsville and Allegheny Formations of Pennsylvanian age. The Lake Erie coastline of northeastern Ohio is underlain by shale of Devonian and Mississippian age (fig. 3) that yields only small amounts of water to wells. Silurian-age limestone and dolomite and Devonian limestone comprise the carbonate aquifer system (fig. 3) of much of western Ohio. Glacial cover is uneven and consists of valley fill and terminal moraine in some places. The northeastern part of western Ohio contains an area of high-yielding wells that tap a preferentially weathered zone, which developed when carbonate section was periodically exposed as land mass during the Paleozoic Era. The southwestern corner of Ohio near Cincinnati is underlain by shale and a thin limestone aquifer of Ordovician age. Away from the watercourse (coarse unconsolidated) aquifers that traverse the area, the rocks that form the uplands have only very small ground-water yields.

Ground-Water Levels

Most of the ground-water observation wells in Ohio tap unconsolidated sand and gravel aquifers in buried valleys of watercourse systems associated with the State's principal streams. Figure 4 shows sample 1-year and 5-year hydrographs of a well completed in an unconfined unconsolidated sand-and-gravel aquifer. The observation-well network also includes some bedrock wells in areas where consolidated aquifers are important water supplies, such as the carbonate-rock region of northwestern Ohio and various sandstone units of eastern Ohio. Figure 5 shows sample 1-year and 5-year hydrographs of a well completed in a confined carbonate-rock aquifer. The yearly low for most wells occurs during the winter months, especially in colder, drier years, or near the end of the growing season. Highs for the year usually occur from March through June, which is the peak of the recharge season. The yearly water-level fluctuation due to climatic conditions in water-table and confined-aquifer wells in commonly 3 to 5 feet.

Ground-water levels rose in response to above-average precipitation statewide at the beginning of the 1987 water year and levels were generally above normal in northern Ohio and below normal in southern Ohio. These conditions persisted until late November, when heavy precipitation caused above-normal levels throughout much of the State. With the exception of some increases in ground-water levels due to localized heavy precipitation, the remainder of the water year can be characterized as having levels gradually declining into the below-normal ranges for most of the State in response to below-average precipitation.

²For ground-water levels, "normal" is defined as being between the 25th and 75th percentiles of the range of values recorded during the reference period 1960-75.

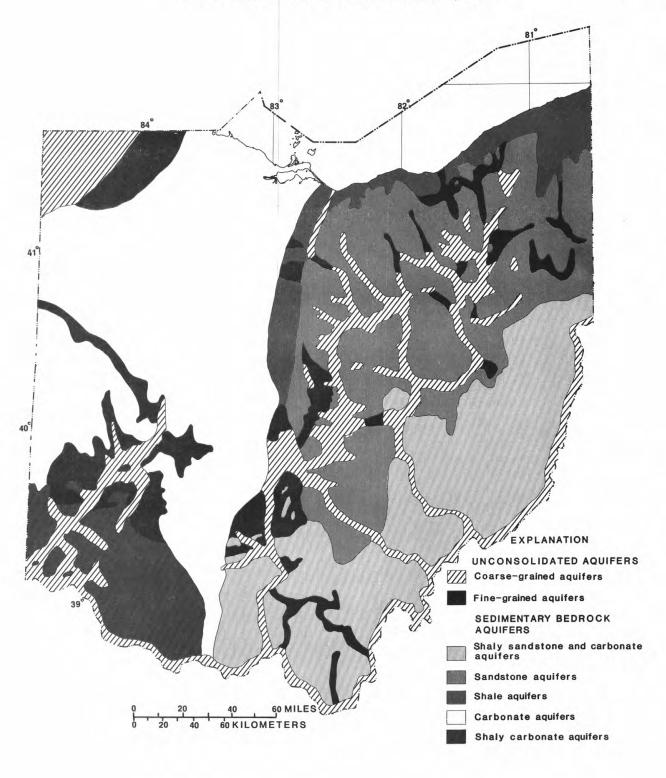


Figure 3.-- Geographic distribution of principal aquifers in Ohio.

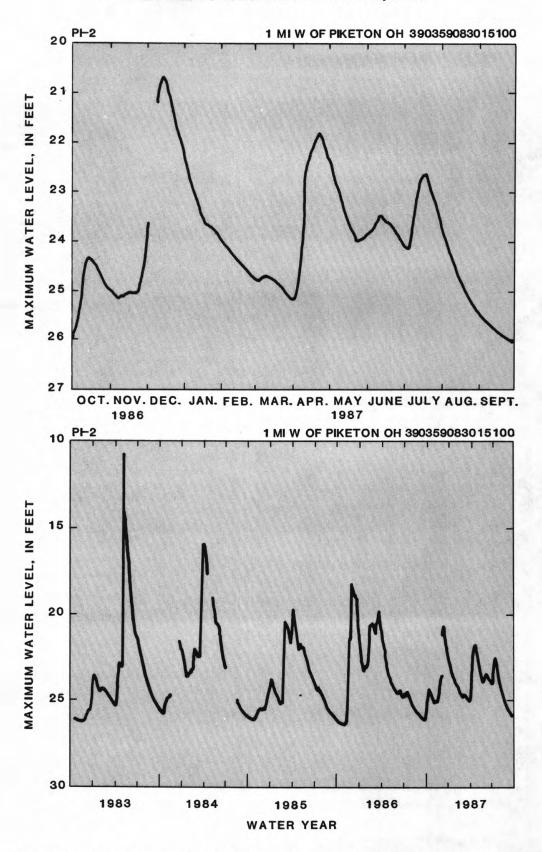


Figure 4.--Sample 1-year and 5-year hydrographs of a well completed in an unconfined unconsolidated aquifer.

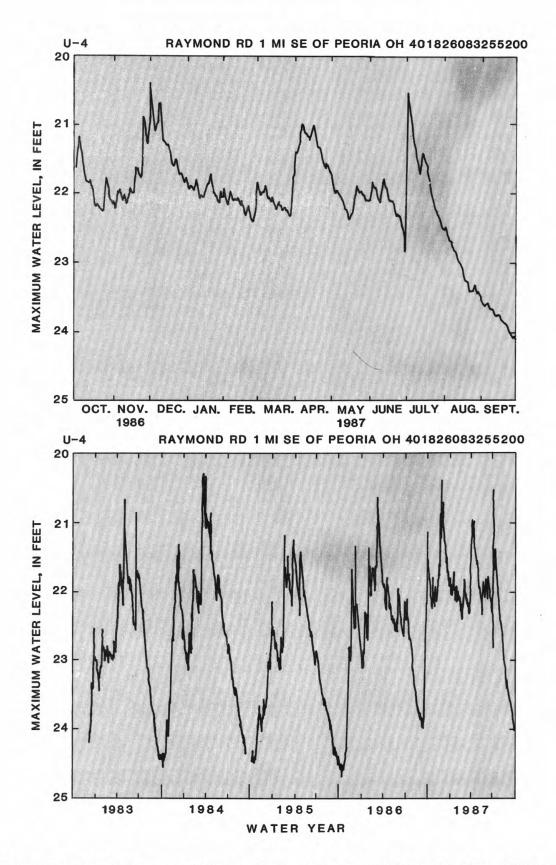


Figure 5.—Sample 1-year and 5-year hydrographs of a well completed in a confined carbonate-rock aquifer.

SPECIAL NETWORKS AND PROGRAM

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activity.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological survey to meet many of the information needs of government agencies and other groups involved in general or regional water-quality planning and management. The approximately 500 sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the U.S. Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for; (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs; (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics; and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The records in this report are for the 1987 water year that began October 1, 1986 and ended September 30, 1987. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or wellsite, is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic locations. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Ohio, for surface-water stations where only miscellaneous measurements are made.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in a "List of Stations" in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station such as 04041000, which appears just to the left of the station name, includes the two-digit part number "04" plus the six-digit downstream order number "041000". The part number designates the major river basin; for example, part "03" is the Ohio River Basin, and part "04" is the St. Lawrence River Basin.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a l-second grid. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial indentification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure 6.)

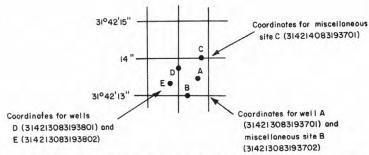


Figure 6. System for numbering wells and miscellaneous sites (latitude and longitude)

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharge may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir contents, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because mean daily discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of a partial record is indicated by table titles such as "crest-stage partial records," or "low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage stations for which data are given in this volume are shown in figure 8.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a con tinuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consists of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage, or with digital recorders that punch stage values on paper tapes or store stage data on cassette tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresesponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) Logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curve or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relation that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method, in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and contents. The application of stage to the stage-contents curves or tables give the contents from which daily, monthly, or yearly changes are then determined. If the stage-contents relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information.

Data Presentation

The records published for each gaging station consist of two parts—the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulalation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA. -- Drainage areas are measured using the most accurate maps available. Because the type maps available varies from one drainage basin to another, the accuracy of the drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum

discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only the peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at the station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development.

EXTREMES FOR PERIOD OF RECORD. -- Extremes may include maximum and minimum stages and maximum and minimum discharges or contents. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR. -- Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, including the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report following discovery of the error.

Although rare, occasionally the records of a discontinued station gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the data from previously published data reports may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published retrieval of data is always accompanied by revisions of the corresponding data in computer storage.

Manuscript information for lakes or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges respectively, for the month. Discharge for the month is often expressed in cubic feet per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by symbol and corresponding footnote.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are usually presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second, when collected, is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in time of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredths of a cubic foot per second for values less than 1 ft 3 /s; to the nearest tenth between 1.0 and 10 ft 3 /s; to whole numbers between 10 and 1,000 ft 3 /s; and to three significant figures for more than 1,000 ft 3 /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, comsumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Records of discharge, ground-water, reservoir contents, and water-quality not published by the Geological Survey are collected in Ohio at several sites by State and other Federal agencies. The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of these sites as well as an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records at specific sites can be obtained from that that office upon request.

Information used in preparing the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Ohio District office. Also, most of the daily mean discharges are in computer-readable form and have been analylzed statistically. Information on availability of the unpublished information or on results of statistical analyses of the published records may be obtained from the District office.

Records of Surface-Water Ouality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Freuency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recording; however, because of cost, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this volume are shown in figure 8.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at a nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

In obtaining water-quality data, a major concern is that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made on site when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the sample to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations" (TWRI), Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on p. 21-22 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at differ ent locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream-Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors that must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for each day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey District Office, whose address is given on the back of the title page of this report.

Water Temperatures

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharge for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge values differ from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical oxygen demand (BOD), and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratives in Arvada, CO. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. Cl. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily, are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD. -- This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION. -- Information on instrumentation is given only if a water-quality monitor, temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the record.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums and minimums may not have been sampled. Extremes, when given, are for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

Remark Codes

The following remarks codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
К	Results based on colony count outside the acceptable range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organisms may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

Records of Ground-Water Levels

Water-level data from a network of observation wells (as well as project wells) are given in this report. The network well data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Ohio are shown in figure 8. Water-level data for specific projects are reported under those projects.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is a 15-digit number that is based on latitude and longitude. The secondary identification number is the local well number, which is provided for local needs.

Water-level measurements in this report are given in feet with reference to land-surface datum (LSD). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum above National Geodetic Vertical Datum of 1929 is given in each well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or larger units.

Data Presentation

Each well record consists of two parts, the station description and the data table of water levels observed during the water year. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION. -- This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER. -- This entry describes the aquifer by age and composition.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and (or) screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

DATUM.--This entry describes both the measuring point and the land-surface altitude at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base, and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The altitude of the land-surface datum (LSD) is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that are also water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF PUBLISHED RECORD. -- This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water level records by the U.S. Geological Survey or cooperating agency, and the words "to current year" if the records are to be continued to the following year. Periods for which water-level records are available, but not published by the Survey, may be noted.

EXTREMES FOR PERIOD OF PUBLISHED RECORD. -- This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum (LSD), and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below (or above) land-surface datum. All periodic measurements of water levels for wells are listed. For wells equipped with recorders, daily water-level lows are published. The highest and lowest daily water levels of the water year are shown on a line below the table. Because only daily lows are published for wells with recorders, the extreme instantaneaous high may be a value that is not listed in the table. Missing records are indicated by dashes in place of the water level.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that, for most sampling sites, they consist of only one set of measurements. The quality of ground water ordinarily changes slowly, so that frequent measuring of the same parameter is not necessary unless one is concerned with a particular problem such as monitoring for trends of a particular constituent.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the TWRI manuals listed on p. 21-22. The data presented in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and the material comprising the casings.

Data Presentation

The records of ground-water quality are published intermixed with the ground-water-level data for network wells and with the specific project for project wells.

ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, VA.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's District offices. (See address given on the back of the title page.)

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, VA 22092

DEFINITION OF TERMS

Terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting inch-pound units to International System of units (SI) on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot, and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multicelled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield reasonable quantities of water to wells and springs.

<u>Artesian</u> means confined, and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 $^{\circ}$ C. In the laboratory, these bacteria are defined as the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 $^{\circ}$ C + 1.0 $^{\circ}$ C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours hours when incubated at $44.5^{\circ}\text{C} + 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at $35^{\circ}\text{C} + 1.0^{\circ}\text{C}$ on KF-streptoccus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

 $\underline{\text{Biomass}}$ is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism, which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll a and b are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (cfs, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u>: That material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totalling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface stream and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness of water</u> is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

Hydrologic Bench-Mark Station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

<u>Hydrologic Index Stations</u>, in this report, refers to four continuous record gaging stations that have been selected as representative of streamflow patterns for their respective regions of Ohio. Station locations are shown in figure 1.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

<u>Measuring point</u> (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

<u>Metamorphic stage</u> refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

<u>Methylene blue active substance</u> (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, µg/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Microgram per kiligram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of bottom material.

<u>Micrograms per liter</u> (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of dry sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream-Ouality Accounting Network (NASQAN) is a data-collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per unit area habitat, usually square meters (m^2) , acres, or hectares. Periphyton benthic organisms and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

 ${\color{red} \underline{\textbf{Total organism count}}}$ is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter code</u> is a 5-digit number used in the U.S Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and (or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size	(mm)	Method of analysis			
Clay		- 0.004	Sedimentation.			
Silt	0.004	- 0.062	Sedimentation.			
Sand	0.062	- 2.0	Sedimentation or sieve.			
Gravel	2.0	- 64.0	Sieve.			

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population in terms of types, number, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

<u>Pesticide program</u> is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC,pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{-12} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

<u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per millimeter (cells/mm) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movement within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2/time)$] for periphyton and macrophytes and [mg $C/(m^2/time)$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2/time)$] for periphyton and macrophytes and [mg $0_2/(m^3/time)$] for phytoplankton are the units for expressing primary productivity. They diffine production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material. -- The amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment, thus, the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Bed load</u> is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

 $\underline{\text{Bed-load discharge}}$ (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

 $\underline{\text{Suspended sediment}} \text{ is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.}$

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

<u>Suspended-sediment load</u> is the quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

 ${\tt \underline{Mean\ concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

7-day, 10-year low flow (70₁₀) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

<u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium of alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrate are basket samplers (made of wire cages filled with clean streamsize rocks) and multiplate samplers (made of hardboard) for benthic-organism collection, and plexiglass strips for periphyton.

<u>Surface area</u> of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

<u>Suspended, total</u> is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms

have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

Kingdom.....Animal
Phylum....Arthropoda
Class...Insecta
Order...Ephemeroptera
Family...Ephemeridae
Genus...Hexagenia
Species.Hexagenia limbata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY) is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

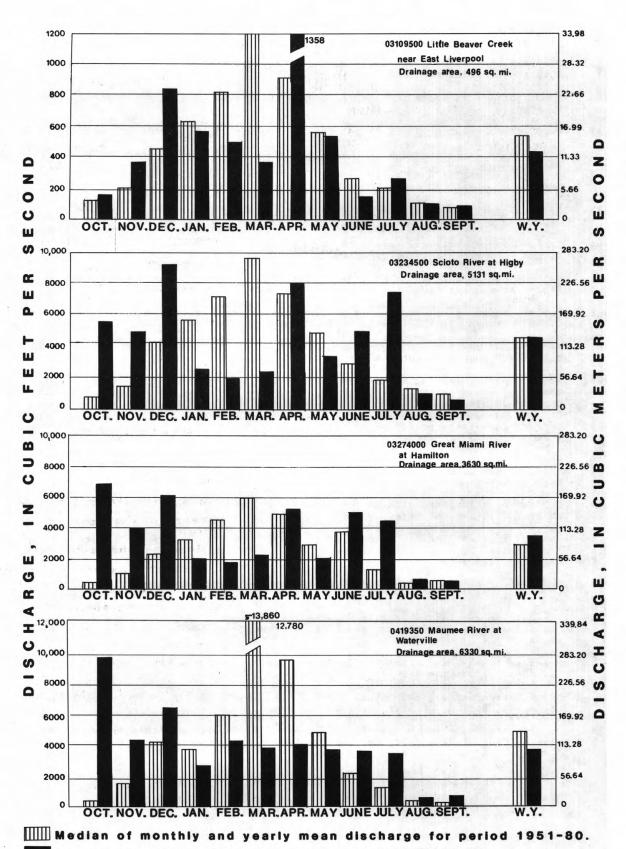
Total recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Water year</u> in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1980, is called the "1980 water year."

 \underline{WDR} is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published after 1975.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 ${\tt WRD}$ is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.


WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1: 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy. by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples. edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells. by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters. by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

Monthy and yearly mean discharge for 1987 water year.

Figure 7. --Runoff during 1987 water year compared with median runoff for period 1951-80 for four representative gaging stations.

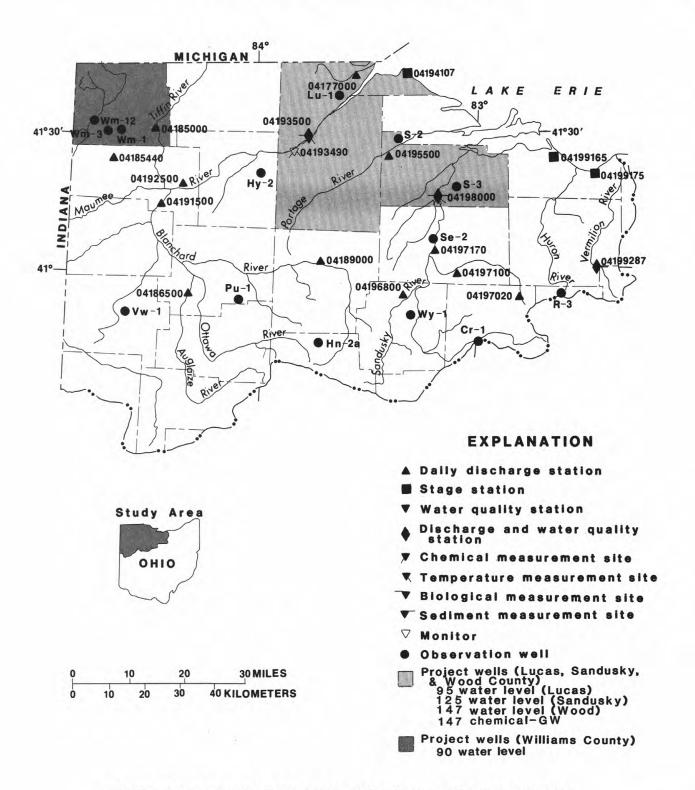
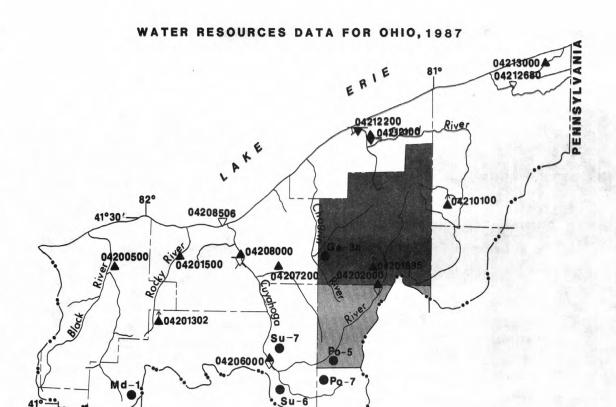
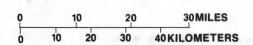




Figure 8a.--Location of data-collection stations excluding crest-stage and low-flow partial record sites.

- **∇** Monitor
- ▲ Daily discharge station
- Discharge station periodic measurement

EXPLANATION

- **▼** Water quality station
- Discharge and water quality station
- W Chemical measurement site
- ▼ Temperature measurement site
- ▼ Biological measurement site
- ▼ Sediment measurement site
- A Peak-flow discharge station
- Observation well
- Project wells (Geauga County)
 114 water level
 4 chemical-GW
 3 chemical-oil & gas field brine
- Shalersville Brine Disposal project wells 69 water level

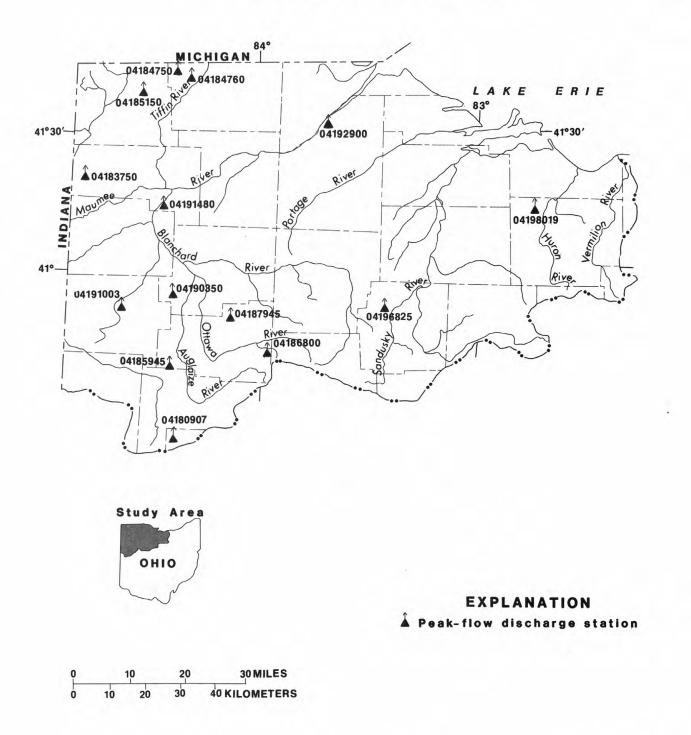


Figure 8c.--Location of crest-stage and low-flow partial record sites.

04177000 OTTAWA RIVER AT TOLEDO UNIVERSITY, TOLEDO, OH

LOCATION.--Lat 41°39'36", long 83°36'44", in NE 1/4 sec. 32, T.9 S., R.7 E., Lucas County, Hydrologic Unit 04100001, on left bank at auto bridge at Toledo University, Toledo, Ohio., 0.4 mi downstream from Deline Ditch, 5.6 mi upstream from Sibley Creek, and 10.9 mi upstream from mouth.

DRAINAGE AREA.--150 mi². Area at site used prior to Sept. 30, 1948, 150 mi², revised.

PERIOD OF RECORD.--March 1945 to September 1948 (published as "Tenmile Creek at Toledo"), August 1976 to current year.

REVISED RECORDS. -- WSP 1307: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 576.28 ft above National Geodetic Vertical Datum of 1929. From Aug. 1976 to July, 1979 at site 500 ft downstream. Prior to Sept. 30, 1948 water-stage recorder at site 2,500 ft upstream at datum 3.72 ft higher.

REMARKS.--Estimated daily discharges: Oct. 5-16. Records good except for periods of estimated record, which are fair. Water-quality data collected at this site 1977.

AVERAGE DISCHARGE.--14 years (1946-48, 1977-87) 130 ft3/s, 11.77 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,950 ft³/s Mar. 14, 1982, gage height, 14.54 ft; minimum, no flow Aug. 24 to Sept. 19, 1945, July 7-15, Aug. 12-15, Sept. 1-9, 16-22, Oct. 5-10, 1946.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1943 reached a stage of 15.1 ft present datum, from floodmark, Lucas County Sanitary Engineers, discharge, 3,400 ft³/s. Flood of Apr. 25, 1950 reached a stage of 15.0 ft present datum, from floodmark, discharge, 3,300 ft³/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1150 ft3/s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft³/s)	(ft)	Date	Time	(ft³/s)	(ft)
Oct. 5	0830	*2,100	*11.62	June 4	0830	1,730	10.79

Minimum daily discharge, 6.4 ft3/s Sept. 28.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND MEAN VA	, WATER	YEAR	OCTOBER	1986	TO SEPTEME	BER 19	37				
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JI	JL	AUG		SEP	
1	238	49	118	60	49	231		314	40	31		36	20		19	
2	583	50	274	62	51	468		422	45	181	2	72	25	3	33	
3	1350	48	714	66	53	316		360	102	1220	1	33	30	2	26	
4	1970	47	487	63		195		197	178	1650		98	23	2	23	
5	2000	47	230	60		142		402	120	730		03	15	2	20	
6	1600	45	145	58	54	128		783	83	225	1	64	13		18	
7	1000	43	141	62	60	113		423	70	111	- 1	71	13	1	17	
8	600	42	261	60	120	105		248	58	72	1	58	63	1	17	
9	450	42	595	54		90		168	51	56		14	59	2	22	
10	350	42	799	55		68		121	47	45		36	42	1	18	
11	250	42	408	59	86	55		109	44	39		30	25	2	24	
12	170	39	204	57	85	56		139	41	54		28	15	2	26	
13	200	38	119	51		52		126	38	70		35	14		19	
14	220	36	82	56	76	63		102	36	61		36	13		16	
15	250	36	80	181	64	70		108	46	42		24	13	3	32	
16	270	36	72	437		69		117	35	35		22	13		26	
17	179	36	71	225	50	76		117	32	27		21	23		31	
18	117	47	91	147		114		91	52	22		19	14		30	
19	88	45	88	109	40	166		77	142	20		19	18		22	
20	76	65	78	87	37	141		66	105	277		18	21	1	16	
21	68	69	71	89		99		61	66	393		17	38		14	
22	64	81	66	68	36	79		58	53	518		17	71	1	11	
23	60	86	65	68	39	77		60	49	749		19	33		9.0	
24	57	90	66	78	44	63		56	38	239		19	30		8.1	
25	54	81	70	44	46	62		48	34	97		31	20		7.8	
26	62	241	68	40		60		42	34	62		32	72		7.4	
27	63	769	65	38		54		43	33	51		45	465		6.6	
28	64	476	64	39	56	49		43	30	37		20	381		6.4	
29	59	247	64	41		46		43	29	30		18	202		LO	
30	56	160	64	48		161		41	28	173		17	94	1	12	
31	52		63	48		561			31			20	92			
TOTAL	12620	3175	5783	2610		4029		4985	1790	7317	18		1970		77.3	
MEAN	407	106	187	84.2		130		166	57.7	244	60		63.5	1	19.2	
MAX	2000	769	799	437		561		783	178	1650		36	465		49	
MIN	52	36	63	38	36	46		41	28	20		17	13		6.4	
CFSM	2.71	.71	1.25	.56	.42	.87		1.11	.38	1.63		40	.42		.13	
IN.	3.13	.79	1.43	.65		1.00		1.24	.44	1.81		46	.49		.14	
CAL YR WTR YR		OTAL 638		MEAN MEAN	175 133	MAX	200		IN IN	12 6.4	CFSM	1.17		IN.	15.0	84

04185000 TIFFIN RIVER AT STRYKER, OH

LOCATION.--Lat 41°30'16", long 84°25'47", in SE 1/4 sec. 5, T.6 N., R.4 E., Williams County, Hydrologic Unit 04100006, on left bank 0.5 mi downstream from bridge on State Highway 191 at west edge of Stryker, 0.6 mi upstream from Penn Central bridge, and 1.6 mi downstream from Leatherwood Creek.

DRAINAGE AREA . -- 410 mi2.

PERIOD OF RECORD. -- September 1921 to September 1928 (published as "near Stryker"), October 1940 to current year.

REVISED RECORDS.--WSP 1144: 1922-28. WSP 1387: 1925. WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 685.1 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1928, nonrecording gage at site 3.5 mi downstream at different datum. Oct. 13, 1940 to Jan. 17, 1941, nonrecording gage and Jan. 18, 1941 to Sept. 30, 1953, water-stage recorder, at site 0.5 mi downstream at same

REMARKS.--Estimated daily discharges: Jan. 21-31, Feb. 9-28, Mar. 2-10, 15, 31. Records fair except those for periods of estimated record which are poor. Small diversion 12.5 mi upstream from gage for municipal supply of Archbold. Diversion averaged 2.16 ft³/s is returned as sewage to Brush Creek which flows into Tiffin River about 15 mi downstream from station. Water-quality data collected at this site 1965 to 1977. Sediment data collected 1969 to 1974.

AVERAGE DISCHARGE. -- 54 years, 325 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,800 ft³/s Mar. 15, 1982, gage height, 18.36 ft; minimum daily discharge, 3.9 ft³/s Aug. 30, 31, Sept. 1, 1953.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1913 reached a stage of 16.0 ft, from floodmarks, discharge, 7,600 ft³/s. Flood in 1937 reached a stage of 15.0 ft, from information by local resident, discharge, 6,000 ft3/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,850 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date Time	Discharge (ft³/s)	Gage height (ft)
Oct. 4	1600	*3,390	*14.27	No other peak gre	eater than base	discharge.

Minimum daily discharge, 16 ft3/s Sept. 29.

		DISCHARGE,	IN CUBIC	FEET		, WATER	YEAR C	CTOBE	R 1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	A	PR	MAY	JUN	JUL	AUG	SEP
1	548	208	551	163	145	675	1	77	123	84	321	23	59
2	913	203	610	166		1000		46	126	108	439	24	46
3	1760	202	809	168		1400		47	246	107	226	23	39
4	3290	201	869	166		1000		57	425	248	177	21	34
5	3340	195	780	163	166	700		71	344	309	123	20	32
6	3220	188	518	162	175	700		04	256	194	110	19	30
7	2740	184	383	162		800		77	200	134	107	18	27
8	2220	177	512	157	239	600		90	167	106	86	19	25
9	1670	170	842	155		450		21	148	90	69	25	24
10	1060	168	341	152	150	200	2	83	133	78	58	26	23
11	606	161	747	159	150	115		52	123	69	50	26	25
12	392	154	977	164	150	116		54	113	65	47	24	29
13	364	144	344	155	120	130		93	103	64	44	23	35
14	546	131	291	157	100	124		23	99	65	44	22	33
15	634	140	331	243	90	120	3	11	100	59	41	20	30
16	584	141	272	388		113		87	99	52	39	19	30
17	444	142	240	279	74	142		15	100	47	39	18	32
18	329	144	239	292		185		53	122	44	37	17	35
19	270	150	249	236		272		21	323	44	36	19	35
20	238	163	241	143	70	255	2	71	369	44	34	18	36
21	218	226	222	120	66	274		37	258	77	31	18	31
22	204	293	205	100		227		05	192	134	30	19	30
23	195	380	192	80	62	254		01	154	338	27	21	29
24	188	482	184	72	62	247		02	131	217	27	21	24
25	184	518	183	70	60	231	1	90	116	109	26	20	22
26	195	757	179	80	70	219		69	109	77	26	21	20
27	217	983	172	90	100	206		55	103	63	26	43	18
28	234	1100	170	90	160	195		48	97	55	26	90	17
29	242	1140	169	84		186		37	90	50	25	114	16
30	232	899	168	80		190		32	85	62	24	99	17
31	219		166	110		185	-		82		24	77	
TOTAL	27496		12156	4806	3306	11511		29	5136	3193	2419	967	883
MEAN	887	338	392	155	118	371		44	166	106	78.0	31.2	29.4
MAX	3340	1140	977	388	239	1400		90	425	338	439	114	59
MIN	184	131	166	70	60	113	1	32	82	44	24	17	16
CAL YR WTR YR	1986 TO	OTAL 1618 OTAL 893		MEAN MEAN	444 245	MAX	3340 3340		MIN MIN	27 16			

04185440 UNNAMED TRIBUTARY TO LOST CREEK NR FARMER, OH

LOCATION.--Lat 41°21'42", long 84°41'28", Defiance County, Hydrologic Unit 04100006, on right bank 400 ft above bridge on Rosedale Rd., 0.5 mi above mouth and 2.0 mi from Farmer.

DRAINAGE AREA. -- 4.23 mi2.

PERIOD OF RECORD. -- October 1985 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 760 ft above National Geodetic Vertical Datum of 1929 from topographic map.

REMARKS.--Estimated daily discharges: Oct. 9-13, Jan. 21 to Feb. 6, Feb. 11-14, Feb. 21-27. Records fair except for estimated daily discharges which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 757 ft³/s Oct. 3, 1987, gage height, 5.74 ft; minimum discharge 0.00 ft³/s several days in August and September 1987.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 120 ft3/s and maximum (*).

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 3	1230	*757	*5.74	May 3	1030	139	3.37

Minimum daily discharge, 0.00 ft3/s Aug. 3-26, Sept. 5-11, 15, 29.

		DISCHARGE,	IN CUBIC	FEET		, WATER	YEAR OCTOBE	R 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	53	.11	1.3	.84	.60	46	1.1	.35	.87	4.7	.10	.12
2	9.7	.11	22	.92	.74	17	2.2	15	.48	4.3	.04	.06
3	211	.12	15	.88		8.4	1.2	70	.37	1.9	.00	.04
4	29	.12	4.4	.81	2.0	3.8	.88	20	.24	2.5	.00	.01
5	7.6	.12	2.2	.78		5.5	.84	6.0	.21	1.4	.00	.01
6	4.5	.11	1.5	.75		7.1	.92	3.7	.18	7.4	.00	.00
7	5.2	.10	1.7	.75	15	4.6	.84	2.1	.16	29	.00	.00
8	9.9	.10	16	.66	24	3.0	.69	1.2	.14	3.3	.00	.00
9	8.4	.09	36	.65	14	2.1	.62	.87	.13	1.1	.00	.00
10	6.8	.09	12	.71	2.5	1.0	.60	.64	.12	.60	.00	.00
11	6.4	.09	3.6	.64	2.3	.84		.51		.40	.00	.06
12	7.6	.09	2.0	.59		.76		.48		.32	.00	.07
13	10	.09	1.2	.60		.67		.38	.14	.22	.00	.07
14	13	.09	1.1	.63	2.5	.82	1.0	.38	.11	.19	.00	.03
15	2.8	.09	.97	17	1.4	.94	3.6	.40	.10	.14	.00	.07
16	1.8	.09	.87	17	.91	.77		.33		.14	.00	.58
17	1.3	.09	.90	3.0	.72	.68		.31	.09	.11	.00	.75
18	1.1	.13	2.0	2.0	.58	.66		15	.09	.09	.00	.93
19	.53	.22	1.4	1.3	.49	.64		41	.08	.09	.00	.30
20	.31	5.4	1.1	1.1	.48	.57	3.5	9.5	.20	.09	.00	.11
21	.24	20	.97	.94	.46	.54	.80	3.6	7.6	.08	.00	.09
22	.19	14	.93	.86		.49	.68	2.1	5.1	.08	.00	.08
23	.17	12	.88	.78		.46	6.5	1.1	5.5	.07	.00	.08
24	.14	7.9	.86	.72	.45	.45	2.0	.77	.76	.08	.00	.06
25	.14	3.4	.87	.66	.46	.48	1.1	.61	.34	.14	.00	.06
26	.21	24	.81	.62	.50	.45		.65		.20	.06	.05
27	.31	8.8	.78	.58	.56	.41		.51		.22	1.3	.04
28	.25	3.9	.78	.56	2.3	.40	.62	.42	.10	.20	.82	.06
29.	.19	2.5	.76	.54		.40	.54	.34		.19	.45	.05
30	.14	1.9	.76	.54		3.5	.37	.34	7.5	.20	.13	.07
31	.12		.73	.54		2.3		1.5		.20	.17	
TOTAL	392.04		36.37	58.95		115.73		200.09	31.46	59.65	3.07	3.85
MEAN	12.6	3.53	4.40	1.90	3.21	3.73	1.92	6.45		1.92	.10	.13
MAX	211	24	36	17	24	46	13	70	7.6	29	1.3	.93
MIN	.12	.09	.73	.54	.45	.40	.37	.31	.08	.07	.00	.00
CFSM	2.98	.83	1.04	.45		.88		1.52		.45	.02	.03
IN.	3.45	.93	1.20	.52		1.02		1.76		.52	.03	.03
CAL YR	1986 T	OTAL 1927.	58	MEAN	5.28	MAX	211	MIN	.09	CFSM 1.25		IN. 16.95
WTR YR	1987 T	OTAL 1254.	.37	MEAN	3.44	MAX		MIN	.00	CFSM .81		IN. 11.03

04186500 AUGLAIZE RIVER NEAR FORT JENNINGS, OH

LOCATION.--Lat 40°56'55", long 84°15'58", in SE 1/4 sec. 15, T.1 S., R.5. E., Putnam County, Hydrologic Unit 04100007, on left bank 200 ft upstream from bridge on U. S. Highway 224, 3.5 mi northeast of Fort Jennings, 6 mi upstream from Ottawa River, and 7.3 mi downstream from Jennings Creek.

DRAINAGE AREA . - - 332 mi 2 .

PERIOD OF RECORD. -- August 1921 to December 1935. October 1940 to current year.

REVISED RECORDS.--WSP 744: 1932. WSP 974: 1930(M). WSP 1307: 1922-24(M), 1926-27(M), 1929(M). WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 713.6 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 6, 1930, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Oct. 7-22, Jan. 20-Feb. 25. Records good except for estimated record, which are fair. Beginning Jan. 4, 1971, water was diverted at a point 24.3 mi upstream from station into Lake Bresler. Storage in Lake Bresler is available for low-flow augmentation and water supply of city of Lima, in Ottawa River basin. Net withdrawal totaled 3,694 mil gal, equivalent to a mean withdrawal of 15.6 ft³/s. No releases have been made for low-flow augmentation. Some diversion from Grand Lake to Auglaize River basin through Miami and Eric Canal into Jennings Creek at a point 9.2 mi upstream from station. Annual figures of runoff are considered to be within 10 percent of natural yield. Sediment data collected at this site 1970 to 1974. Water-quality data collected at this site 1968 to 1978. National Weather Service gage height telemeter at station.

AVERAGE DISCHARGE. -- 61 years, 286 ft 3/s, 11.70 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 12,000 ft³/s Jan. 23, 1959; maximum gage height, 20.30 ft Jan. 23, 1959, from floodmark (ice jam); minimum daily discharge, .94 ft³/s Oct. 10, 11.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2700 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date Ti	ime	Discharge (ft³/s)	Gage height (ft)
Nov. 27	2200	*2,820	*10.95	No other pea	aks above	base discharge	

Minimum daily discharge, 8.2 ft 3/s Sept. 30.

		DISC	HARGE,	IN CUBIC	FEET	PER SECOND MEAN VA	, WATER LUES	YEAR OCTO	DBER 1986	TO SEPTE	MBER 1	987		
DAY	OCI	n N	OV	DEC	JAN	FEB	MAR	APR	MAY	JUN		JUL	AUG	SEP
1	883	3	99	325	114	200	175	243	69	553		68	36	22
2	426		88	775	108	280	485	217	74	292		592	35	19
3	261		80	2060	105	400	427	363	73	1200		700	58	29
3	188		78	1930	99	600	254	238	68	1280		670	54	26
5	146		78	776	92	470	180	183	65	507		160	44	21
6	143	3	80	393	88	370	173	563	61	201		554	48	18
7	470)	78	281	91	300	182	1020	55	119		242	41	17
8	330)	75	263	90	250	159	604	52	82		165	33	15
9	250)	72	527	86	220	142	320	49	194		129	36	16
10	190		68	1250	84		113	194	48	223		92	39	17
11	150)	68	905	87	170	74	136	45	120		87	32	18
12	130)	68	393	81	150	64	108	44	271		759	30	18
13	120)	66	269	83	130	55	84	39	940		937	27	17
14	150)	65	204	82	120	50	96	41	794		494	26	19
15	370)	62	200	113	110	72	124	40	246		746	23	21
16	290		61	162	218	100	74	206	36	120		328	20	13
17	220)	60	142	222	96	70	300	34	113	1:	110	17	13
18	170)	62	139	163	92	63	244	37	83		504	18	14
19	130)	71	143	138	86	44	140	202	60		245	16	16
20	110) 1	29	147	125	92	38	93	328	56		152	13	20
21	94	9	85	135	115	78	35	98	319	77	147	89	11	15
22	90	10	70	124	110	76	33	121	143	79		69	11	16
23	88	5	15	123	100	73	41	116	76	80		71	9.8	16
24	81	. 3	17	128	96	70	57	112	50	79		63	8.8	13
25	78	3 2	42	163	90	68	46	109	45	51		61	11	13
26	121	5	75	233	86	66	54	93	457	63		55	31	14
27	260		70	214	83	64	42	73	360	58		52	106	12
28	260		00	175	80	67	31	62	146	55		44	298	9.1
29	181		75	150	78		28	77	76	51		42	192	9.2
30	137	7 4	59	137	76		49	74	71	64		42	74	8.2
31	113	-		126	140		137		225			38	36	
TOTAL	6630			12992	3323		3447	6411	3428	8111		360	1434.6	494.5
MEAN	214	3	71	419	107	178	111	214	111	270		399	46.3	16.5
MAX	883		70	2060	222	600	485		457	1280	1	700	298	29
MIN	78	3	60	123	76		28	62	34	51		38	8.8	8.2
CFSM	. 64		12	1.26	.32		.33	.64	.33	.81	1	.20	.14	.05
IN.	-74	1.	25	1.46	.37	.56	. 39	.72	.38	.91	1	.38	.16	.06
CAL YR WTR YR		TOTAL	1514 74735		MEAN MEAN	415 205	MAX MAX	4350 2470	MIN MIN	32 8.2	CFSM	1.25		16.96

04189000 BLANCHARD RIVER NEAR FINDLAY, OH

LOCATION.--Lat 41°03'21", long 83°41'17", on east line of sec. 10, T.1 N., R.10 E., Hancock County, Hydrologic Unit 04100008, on left bank at upstream side of county road bridge, 2 mi west of Findlay, 3 mi downstream from Eagle Creek, and 3 mi upstream from Aurand Run.

DRAINAGE AREA . -- 346 mi 2.

PERIOD OF RECORD.--October 1923 to December 1935, October 1940 to current year. Monthly discharge only for October 1923, published in WSP 1307.

REVISED RECORDS.--WSP 974: 1942. WSP 1054: 1927-30, 1933(M), 1945. WSP 1387: 1926, 1928(M), 1930(M), 1952. WSP 1912: Drainage area. WRD-OH-81-2: 1959, 1975 (M).

GAGE.--Water-stage recorder. Datum of gage is 754.55 ft above National Geodetic Vertical Datum of 1929. Prior to July 24, 1930, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Oct. 1-22, Jan. 22, 23, 25-28, Jan. 30-Feb. 19, Aug. 30-Sept. 30. Records good except for periods of estimated record and June 19 to Aug. 30, which are fair. Water is diverted upstream from station into Findlay Reservoir. Storage in Findlay Reservoir used for water supply of city of Findlay, and is available for low-flow augmentation. All water returns to stream upstream from station. No releases have been made for low-flow augmentation. Sediment data collected at this site 1970-74. Water-quality data collected at this site 1968 to 1980.

AVERAGE DISCHARGE. -- 59 years, 255 ft3/s, 10.01 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft³/s June 14, 1981, gage height, 17.43 ft from measurement made on peak; minimum daily, 0.4 ft³/s Aug. 27, Sept. 3, 1934.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1913 reached a stage of 18.5 ft; discharge, 22,000 ft³/s, from rating curve extended above 10,000 ft³/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,800 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 3	1500	*2,780	*7.93	No oth	ner peak	greater than base	discharge

Minimum daily discharge, 15 ft3/s Aug. 24.

		DISC	HARGE,	IN CUBIC	FEET	PER		WATER	YEAR	OCTOBER	1986	TO	SEPTEMBE	R 198	7			
	001		1017	DEG	7331								****		et o	2110		CER
DAY	OC	T N	IOV	DEC	JAN		FEB	MAR		APR	MAY		JUN	JU	ь	AUG		SEP
1	69	0	99	283	80		160	227		397	49		184	33	9	40		43
2	100	0	91	949	82		220	534		749	87		611	94		32		35
3	150	0	85	2620	81		320	391		703	108		1880	134	0	27		29
4	200	0	82	2230	77		450	230		361	110		1010	145	0	23		26
5	88	0	78	1090	76		330	169		553	90		432	88	5	22		24
6	54	0	77	396	78		260	141	1	1760	70		235	41	7	22		23
7	36	0	74	297	83		210	127		L480	63		154	27	9	25		22
8	25	0	69	360	78		180	119		757	64		126	25	0	23		21
9	18	0	66	699	74		160	117		408	62		577	14	7	32		20
10	16	0	64	1230	80		140	93		279	52		1130	11	1	30		19
11	14		02	737	80		120	78		217	51		698	9		24		20
12	12		88	355	77		110	71		180	50		339	16		21		20
13	15		79	216	91		100	64		146	47		815	11		21		19
14	29		77	158	95		94	66		125	45		590	41		20		22
15	45	0	71	160	285		87	70		120	47		245	24	2	21		25
16	32	0	66	136	380		82	66		116	40		150	11	9	18		31
17	24	0	65	123	262		77	57		107	39		106	8	3	18		29
18	19	0	89	141	193		73	52		95	64		80		4	18		27
19	15	0 2	66	150	170		70	52		83	90		65	5	5	17		26
20	12	0 5	37	143	146		72	51		74	238		112	4	9	16		24
21	10		60	125	118		71	49		71	169		462		4	16		22
22	8		30	121	110		73	46		67	287		610	4	1	25		21
23	8		25	122	94		76	45		73	283		323	5	0	18		21
24	7	8 3	77	120	85		71	45		68	139		190		6	15		20
25	8:	2 2	89	123	79		66	46		61	91		127	3	2	16		20
26	10		55	120	75		62	47		54	88		129		1	57		20
27	14		40	117	72		59	46		58	263		86	3		141		21
28	19	6 17	10	110	70		72	44		58	369		65		2	152		23
29	17		65	104	81			43		53	164		83		2	113		25
30	14		83	99	100			221		54	180		207		0	72		25
31	11	4 -		89	125			357			151			2	8	54		
TOTAL	1103			13723	3577	1	3865	3764	9	327	3650		11821	795		1149		723
MEAN	35		12	443	115		138	121		311	118		394	25		37.1		24.1
MAX	200		40	2620	380		450	534	J	1760	369		1880	145		152		43
MIN	7		64	89	70		59	43		53	39		65		8	15	1	19
CFSM	1.0		19	1.28	.33		.40	.35		.90	.34		1.14	. 7		.11		.07
IN.	1.1	9 1.	33	1.48	.38		.42	.40]	1.00	.39		1.27	. 8	6	.12		.08
CAL YR WTR YR		TOTAL TOTAL	1178 829		MEAN MEAN		323 227	MAX MAX	382 262		IN IN			FSM FSM	.93		IN.	12.67

04191500 AUGLAIZE RIVER NEAR DEFIANCE, OH

LOCATION.--Lat 41°14'14", long 84°23'59", in NE 1/4 sec. 9, T.3 N. R.4 E., Defiance County, Hydrologic Unit 04100007, on right bank 125 ft downstream from hydroelectric dam of Hydro-Corporation, 0.2 mi upstream from Jackson ditch, and 3 mi south of Defiance.

DRAINAGE AREA . -- 2,318 mi2.

PERIOD OF RECORD.--May to August 1903 (gage heights only), April 1915 to current year. Monthly discharges only for some periods, published in WSP 1307.

REVISED RECORDS.--WSP 954: 1941. WSP 1912: Drainage area. WRD OH-72-1: 1966 (M).

GAGE.--Water-stage recorder. Datum of gage is 659.70 ft above National Geodetic Vertical Datum of 1929. May 20 to Aug. 8, 1903, non-recording gage at site 1.8 mi downstream at different datum. April 13, 1915, to Dec. 6, 1933, nonrecording gage near right bank on downstream side of dam at datum 6.00 ft higher, and auxiliary tailwater staff gage near right bank on downstream side of dam at present datum. Oct. 1982 to Nov. 1984 at dam 125 ft upstream, at present datum.

REMARKS.--Estimated daily discharges: June 21 to July 9. Records good except those for Feb. 19 to July 9, which are poor. Flow regulated by dam at powerplant at station; reservoir capacity, 9,800 acre-ft. Plant shut down except for occassional gate operation, Jan. 10, 1963 to Sept. 7, 1985. Some deversion by Miami and Erie Canal from Grand Lake into Jennings Creek, tributary to Auglaize River 70 mi upstream from station. Water-quality data collected at this site 1966 to 1977.

AVERAGE DISCHARGE. -- 72 years, 1,744 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 52,500 ft³/s Feb.16, 1950, Feb. 12, 1959, gage height, 26.4 ft, from graph based on hourly powerplant tailwater-gage readings, and gage readings respectively; maximum gage height 27.65 ft Feb. 13, 1959, from flood mark (ice jam). Minimum daily discharge, 0.5 ft³/s Oct. 13, 14, 1952 during repair to powerplant dam.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of March 1913 reached a stage of 38.8 ft, from reading on powerplant tailwater gage at present datum; discharge, 120,000 ft³/s, from rating curve extended above 51,000 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,600 ft³/s Oct. 4, gage height 14.04; minimum daily, 35 ft³/s Nov. 16.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND	, WATER LUES	YEAR OCTOBI	ER 1986	TO SEPTEME	ER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4580	584	3260	504	890	1040	2780	696	1340	1100	480	455
2	9590	621	3660	732	1400	3290	2470	397	1510	6000	213	488
3	11400	590	8680	668	2790	3860	2320	1070	3460	11000	377	167
4	13200	425	9840	484	5740	2960	2390	1610	6480	9000	670	360
5	11700	427	7900	717	6220	2000	2090	1160	5060	7000	400	160
6	8050	435	5360	415	5830	1820	2780	501	3080	4000	110	139
7	5110	433	3390	766	4920	1880	5200	389	1120	3000	338	145
8	2980	438	2310	614	4840	1700	5280	39	626	2500	370	143
9	1730	346	3440	606	3790	1360	4110	477	525	1900	456	107
10	1280	350	7690	424	2800	1200	2350	185	1450	1200	264	117
11	820	284	6990	489	2110	948	1690	113	1570	791	174	192
12	783	367	4480	674	1760	633	1360	342	1520	2390	143	57
13	1050	212	2490	270	1450	543	1390	364	3810	3420	240	59
14	3020	577	1570	592	1240	429	1360	413	4910	2920	480	123
15	4600	452	1280	861	1140	425	892	111	3180	2070	442	249
16	3140	35	1100	2040	808	558	1580	74	1350	1860	61	50
17	2060	188	850	2130	709	502	1990	81	567	1370	162	302
18	1450	210	931	1810	639	455	1670	700	554	1510	44	50
19	860	679	956	1440	522	304	1410	1820	354	902	46	51
20	808	316	858	1110	597	410	871	3000	172	640	48	190
21	597	3450	964	833	599	263	866	1850	500	358	49	51
22	352	7080	948	794	298	42	750	1370	500	435	52	46
23	772	6190	768	558	768	386	1030	648	540	312	50	193
24	517	3790	936	560	804	484	1150	635	450	312	52	47
25	486	2510	727	467	262	423	1060	656	320	205	57	49
26	471	2440	1230	451	308	276	736	563	400	236	182	187
27	973	9350	1270	512	627	338	704	1060	350	215	558	62
28	1280	11200	1130	518	448	249	438	599	330	463	1710	64
29	1210	8120	1010	472		263	598	650	400	283	2090	75
30	916	5280	792	480		549	378	653	600	197	1130	74
31	668		873	478		1890		652		80	655	
TOTAL	96453			23469	54309	31480	53693	22878	47028	67669	12103	4452
MEAN	3111	2246	2828	757	1940	1015	1790	738	1568	2183	390	148
MAX	13200	11200	9840	2130	6220	3860	5280	3000	6480	11000	2090	488
MIN	352	35	727	270	262	42	378	39	172	80	44	46
CAL YR		OTAL 94050		MEAN	2577	MAX		MIN	31			
WTR YR	1987 TO	TAL 56859	96 1	MEAN	1558	MAX	13200	MIN	35			

04192500 MAUMEE RIVER NEAR DEFIANCE, OH

LOCATION.--Lat 41°17'30", long 84°16'52", in NW 1/4 sec. 22, T.4 N., R.5 E., Defiance County, Hydrologic Unit 04100009, on left bank 40 ft. upstream from Independence Dam, 4 mi downstream from mouth of Auglaize River, and 4.5 mi east of Defiance.

DRAINAGE AREA. -- 5,545 mi 2.

PERIOD OF RECORD. -- October 1924 to December 1935, March 1939 to September 1974, October 1978 to current year.

REVISED RECORDS.--WSP 974: 1926-27, 1930. WSP 1387: 1925-28, 1946. WRD Ohio, 1970: Drainage Area.

GAGE.--Water-stage recorder. Datum of gage is 658.56 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 13, 1924, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow affected by regulation of Auglaize River at hydroelectric plant of the Hydro-Corporation, 7 mi upstream. Operation of hydroelectric plant there was discontinued Jan. 10, 1963 to Sept. 7, 1985. Low flow slightly regulated by powerplant at Ft. Wayne, Indiana. Slight diversion 275 ft upstream into Miami and Erie Canal through a 24 inch conduit which bypasses station.

AVERAGE DISCHARGE. -- 55 years, 4,255 ft 3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 104,000 ft³/s Mar. 15, 1982, gage height, 15.87 ft; minimum discharge, 2 ft³/s Sept. 3, 1925; minimum gage height, 1.09 ft Sept. 26, 1928.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 23,000 ft3/s and maximum (*):

- 4		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft3/s)	(ft)	Date	Time	(ft³/s)	(ft)
Oct. 5	0200	*31,200	*6.68	No other	peaks	greater than base	discharge.

Minimum daily discharge, 172 ft3/s Aug. 24.

		DISCHARGE	, IN CUB	IC FEET		D, WATER ALUES	YEAR OCTO	BER 1986	TO SEPTEMBER	1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8420	1650	7990	1830	1830	3880	4710	1350	3210	1840	389	1460
2	16900	1650	9070	1590		9490		1450	3440	3290	289	1260
3	22700	1550	15000	1810		11300	4180	4250	4480	6670	305	789
4	29300	1290	15900	1510	8090	9130	4100	8410	9400	8280	476	629
5	29800	1190	13000	1610	10200	7570	3670	7130	7480	8090	493	528
6	24200	1180	9840	1470		7580	4320	4310	4890	6680	321	451
7	18000	1150	7300	1480		8160		3100	2870	4810	335	389
8	13500	1110	6540	1490		7040		2190	2200	4990	250	378
9	10800	1070	8780	1400		5450		1810	1910	5910	356	320
10	8970	940	14600	1340	7060	4170	3800	1440	2680	3480	279	312
11	6940	944	14800	1340		3370		1440	3210	2220	451	362
12	5120	846	11000	1470		2510		1190	2740	3000	397	335
13	3930	865	7530	1150		2180		1200	4250	3980	317	297
14	6180	908	5520	1350		1900		1280	5780	3660	293	334
15	8410	1150	4400	2130	3140	1650	2320	943	3940	2950	230	426
16	7160	557	3760	5480		1930		802	2430	2860	224	473
17	5340	493	2990	6340	1770	1700		889	1350	2980	291	743
18	4130	490	2890	5280		1620		1440	931	2570	200	570
19	3170	1010	2530	3780		1560		7280	852	1720	181	571
20	2560	1080	2630	2640	1700	1480	3290	12400	666	1090	185	522
21	2070	4730	2390	1980		1650		8270	789	993	207	437
22	1690	10000	2470	1670		1280		5460	1770	907	214	396
23	1790	9940	2130	1500		1540		2960	2830	839	178	629
24	1540	7070	2090	1370		1560		2260	2860	670	172	330
25	1440	5580	2070	1180	1120	1490	2300	2000	1910	425	178	265
26	1420	5960	2290	1390		1290		1600	1190	434	328	322
27	1830	14700	2600	1450		1320		2150	938	336	613	288
28	2590	17700	2440	1430		1100		1790	937		3010	246
29	2750	13700	2280	1320		1250		1640	659	412	3990	253
30	2210	10200	2000	1290		1650		1520	775	398	2550	244
31	1910		1970	1290		3470		1910		276	1810	
TOTAL	256770		190800	62360		111270		95864		87168	19512	14559
MEAN	8283	4023	6155	2012		3589		3092	2779	2812	629	485
MAX	29800	17700	15900	6340		11300		12400	9400	8280	3990	1460
MIN	1420	490	1970	1150	1120	1100	1270	802	659	276	172	244
CAL YR		OTAL 2219		MEAN	6081	MAX	34300	MIN	373			
WTR YR	1987 T	OTAL 1265	393	MEAN	3467	MAX	29800	MIN	172			

04193490 MAUMEE RIVER NEAR WATERVILLE, OH

LOCATION.--Lat 41°28'34", long 83°44'20", Lucas County, Hydrologic Unit 04100009, in Bowling Green water-treatment plant, 2.0 mi upstream from discharge station at Waterville.

DRAINAGE AREA .-- 6,313 mi2.

PERIOD OF RECORD. -- Water years 1950 to 1976 (published as Maumee River at Waterville) 1976 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: May 1963 to current year.
pH: May 1963 to current year.
WATER TEMPERATURES: March 1950 to current year.
DISSOLVED OXYGEN: March 1963 to current year.

INSTRUMENTATION.--Water-quality monitor since May 1963. Prior to June 1974 water-quality monitor located in water-treatment plant 2,500 ft upstream from discharge station. Prior to May 1963 alcohol-actuated thermograph located at discharge station.

REMARKS.--Interruptions in the water-quality record were due to malfunction of the instrument. Prior to October 1976, records published as 04193500, Maumee River at Waterville, Ohio. See records of daily discharge for gaging station at Waterville (04193500).

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,260 microsiemens, Feb. 16, 1977; minimum, 156 microsiemens, July 20, 1973.
pH: Maximum, 11.4 units Jan. 16, 1965; minimum, 5.0 units Nov. 24, 1968.
WATER TEMPERATURES: Maximum, 34.0°C July 1, 1963; minimum, 0.0°C on many days during winters.
DISSOLVED OXYGEN: Maximum, >20.0 mg/L several days in water years 1980, 1981 and 1987; minimum, 0.3 mg/L Nov. 10, 1965.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 788 microsiemens Feb. 2, 3; minimum, 360 microsiemens, Aug. 3.
PH: Maximum, 9.2 units Sept. 9; minimum, 7.2 units on Feb. 9.
WATER TEMPERATURES: Maximum, 32.5°C Aug. 3; minimum, 0.0°C on many days during winter.
DISSOLVED OXYGEN: Maximum, \$\geq 20.0 \text{ mg/L}, \text{ March 22, 23; minimum, 3.8 mg/L Aug. 18.}

04193490 MAUMEE RIVER NEAR WATERVILLE, OH--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	SPECI	FIC COM	DUCTANCE,	MICROSIEMENS	PER	CENTIMETER	AT 25, WATE	R YEAR	OCTOBER 19	986 TO SEPT	EMBER 19	187
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R	N	OVEME	BER	1	DECEMBI	ER		JANUAR	RY
1 2 3 4 5	466 468 458 412 372	394 452 374 370 362	425 461 409 392 367	702 720 736 748 746	696 700 720 738 738	698 709 728 744 742	520 544 530 524 506	512 522 502 500 496	515 531 515 510 502	764 764 756 752 756	758 756 750 750 750	762 761 753 751 753
6 7 8 9 10	374 380 396 414 426	360 364 382 396 412	365 371 391 405 419	742 740 736 726 718	734 730 720 710 710	738 734 729 719 715	500 516 556 558 526	494 492 518 526 510	497 498 538 547 517	756 752 758 762 758	754 746 746 756 750	755 749 753 760 754
11 12 13 14 15	452 474 500 554 552	426 452 474 504 524	438 462 488 523 535	724 730 734 744 742	712 718 724 732 736	718 724 730 736 739	536 540 548 550 548	516 528 530 528 540	527 534 539 537 543	75 0 75 8 76 0 76 8 76 2	746 748 756 758 732	748 754 757 763 748
16 17 18 19 20	604 596 534 558 580	548 530 524 536 558	575 554 527 546 569	740 738 734 726 734	736 732 718 718 724	739 735 726 721 727	558 570 590 608 620	548 558 572 590 608	552 564 580 598 613	744 738 736 710 710	710 716 698 696 694	724 723 714 705 703
21 22 23 24 25	600 606 616 626 628	580 594 604 612 620	591 600 608 619 624	772 742 760 644 596	720 678 648 596 580	734 716 725 621 586	628 646 662 672 688	620 630 648 660 672	623 637 654 666 682	726 712 698 730 732	706 686 686 694 720	716 699 693 710 728
26 27 28 29 30 31	638 694 684 662 680 694	624 640 644 650 662 680	630 656 654 655 670 687	624 538 538 512 514	542 500 518 500 508	586 515 526 505 512	708 724 728 740 746 756	688 708 722 730 740 744	697 715 724 733 743 752	730 736 734 742 750 756	718 728 730 734 744 746	725 733 733 737 748 751
MONTH	694	360	523	772	500	686	756	492	593	768	686	738
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARC	СН		APRI	i.		MAY	
1 2 3 4 5	770 788 788 754 760	754 768 754 714 706	763 780 779 733 737	682 642 630 622 594	65 4 61 6 57 8 59 6 57 2	674 626 605 608 583	664 674 732 736 690	65 0 64 8 67 4 67 0 64 0	656 663 699 711 667	592 598 642 640 626	572 582 598 616 570	582 588 613 626 597
6 7 8 9 10	700 592 548 548 544	596 548 522 522 528	65 0 571 537 532 536	580 576 578 582 586	576 566 566 576 564	578 572 572 580 575	648 656 670 654 644	622 628 656 628 636	633 645 665 636 641	568 590 622 628 622	554 572 582 616 612	561 581 604 620 617
11 12 13 14 15	550 558 578 580 608	538 552 558 574 578	543 555 566 577 592	588 584 592 604 610	566 574 584 592 594	578 578 589 598 604	636 604 614 630 636	604 598 598 608 622	624 603 605 618 628	614 606 596 590 586	602 594 588 582 556	607 601 590 585 574
16 17 18 19 20	618 628 632 642 648	594 614 626 632 632	607 619 630 637 641	634 638 638 65 0	612 624 628 638 636	626 631 633 646 646	642 656 658 650 620	634 642 652 612 606	639 651 656 632 614	556 548 542 616 622	536 534 526 536 556	547 542 536 577 591
21 22 23 24 25	65 4 660 666 662 662	64 0 65 2 65 4 65 4 65 4	65 0 65 6 66 0 65 9 65 8	648 652 634 634 636	634 620 610 608 612	641 643 619 621 625	608 606 612 612 616	596 598 602 606 606	604 602 607 609 612	548 540 540 554 578	524 520 518 518 554	532 531 531 532 566
26 27 28 29 30 31	666 674 690 	656 662 674 	660 669 682 	642 648 654 648 630 660	624 640 640 622 614 632	634 644 646 639 620	624 616 588 578 590	610 582 572 564 558	616 602 581 572 579	584 610 612 604 602 616	576 584 604 586 594 600	580 597 609 593 598 606
MONTH	788	522	639	682	564	647 616	736	558	629	642	518	581

04193490 MAUMEE RIVER NEAR WATERVILLE, OH--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	SPEC	IFIC CON	DUCTANCE,	MICROSIEMENS	PER	CENTIMETER	AT 25, WATE	R YEAR	OCTOBER 19	86 TO SEPT	EMBER 19	987
DAY	MAX	MIN	MEAN	MAX	MIN		MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JUL	7		AUGUS	T		SEPTEME	BER
1	640	618	632	624	586	608	422	364	405	744	698	731
2	686	542	647	646	600	610	422	366	391	744	722	738 754
3 4	646 626	578 592	618 606	606 606	582 564	593 595	404 418	360 366	390 389	766 766	740 720	743
5	676	602	633	616	560	587	424	400	414	744	720	743 730
6	598	502	547	576	520	534	464	404	424	764	726	752
7 8	512	500	507	526	496	512	466	404	438	766	722	752 755
9	510 502	504 488	507 496	516 500	480	495	466	440	452 456	744 720	682 658	720 689
10	502	492	498	498	456 444	473 473	466 482	446	463	704	664	690
11	518	502	508	500	480	490	466	458	463	706	640	660
11 12	550	514	532	498	480	485	458	440	448	658	640	645 611
13	568	534	549	484	464	480	456	440	445	646	576	611
14 15	616 646	560 600	575 624	464 466	416	443 450	464 466	440	459 453	604 582	564 560	589 574
16 17	606 526	526 502	576 515	506 524	444	474 496	476 482	444	462 472	578 560	522 538	557 551
18	524	496	516	504	480	491	484	460	479	566	556	560
19 20	524 526	486 476	516 520	500 496	480 480	493 485	482 486	458 480	479 482	586 586	560 560	568 573
21 22	526 560	520 476	522 511	486 496	480 480	483 486	486 486	480 476	484 483	598 606	576 576	590 600
23 24	506	484	499	484	458	477	486	476	482	606	566	594
	486	456	476	480	458	477	484	458	480	586 576	540 542	568 561
25	498	440	470	500	446	477	484	480	481	376	342	301
26	516	484	503	506	480	499	486	480	482	560	520	541 541
27 28	538 546	496 520	519 539	506 506	484 480	501 495	486 498	478 480	483 485	556	520	541
29 30	576	520	549	486	400	443	618	496	551	542	524	538
31	596	536	567	420 426	400 376	406 407	686 718	604 680	65 6 69 7	544	520	530
MONTH	686	440	543	646	376	497	718	360	472	766	520	629
VEAD	788	360	595									
YEAR	/00	360										
			PH	(STANDARD UNI	rs),	WATER YEAR	OCTOBER 198	6 TO S	EPTEMBER 19	87		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R	N	OVEMI	RED		DECEMB	ED		JANUAF	v
								4.4				
1 2	7.73 7.69	7.59	7.67 7.64		8.28	8.32	8.08 8.10	7.98 7.81	8.04 7.97	8.28 8.27	8.22	8.25
3 4	7.67	7.40	7.53	8.44	8.32	8.39	7.85	7.77	7.80	8.28	8.20	8.25
	7.47	7.39	7.43		8.29	8.34	7.91	7.85	7.89	8.29	8.21	8.24
5	7.50	7.44	7.46	8.43	8.31	8.38	7.90	7.87	7.88	8.33	8.22	8.21
6	7.57	7.50	7.53		8.26	8.35	7.93	7.88	7.91	8.36	8.26	8.31 8.30
7 8	7.71 7.73	7.57 7.66	7.61 7.70		8.29	8.37	7.96 7.96	7.92 7.91	7.94 7.93	8.35 8.35	8.27 8.26	
9	7.78	7.72	7.75	8.53	8.33	8.41	7.91	7.73	7.85	8.40	8.30	8.31
10	7.88	7.78	7.82	8.54	8.38	8.45	7.88	7.74	7.80	8.45	8.34	8.40
11	7.90	7.87	7.89		8.41	8.51	8.02	7.90	7.97	8.49	8.37	8.42
	7.95 8.01	7.89 7.93	7.92 7.96		8.42 8.46	8.49	8.02 8.06	7.99	8.00	8.49	8.38	8.44
13 14	8.01	7.89	7.93	8.64	3.54	8.60	8.09	8.05	8.07	8.48	8.38 8.21	8.44
15	7.96	7.88	7.91	8.69	8.54	8.62	8.05	8.03	8.04	8.47	8.21	8.31
16	8.03	7.94	7.99	8.70	8.57	8.61	8.06	8.03	8.05	8.26 8.29	8.15 8.22	8.21 8.25
17 18	8.00	7.91	7.95		8.58	8.64	8.07 8.09	8.03	8.05 8.07	8.29 8.27	8.22	8.25
19	7.97 8.03	7.90 7.95	7.94		8.61	8.68	8.14	8.06	8.11	8.25	8.23 8.21	8.25 8.24
20	8.08	8.02	8.06		8.64	8.72	8.13	8.10	8.11	8.23	8.17	8.20
21	8.11	8.07	8.09	8.68	8.23	8.43	8.13	8.08	8.10	8.22	8.16	8.19
21 22	8.12	8.07	8.09	8.35	8.18	8.29	8.14	8.10	8.12	8.24	8.16	8.19
23 24	8.15 8.17	8.08 8.11	8.11		7.96	8.20 7.98	8.16 8.23	7.78	8.12 8.18	8.24	8.14	8.18
25	8.23	8.14	8.19		7.96	7.98	8.21	8.18	8.20	8.18	8.08	8.12
26	8.23	8.15	8.19	8.08	7.71	7.94	8.22	8.18	8.20	8.21	8.11	8.16
27	8.22	8.16	8.19	7.77	7.63	7.69	8.22	8.18	8.20	8.21	8.11	8.16 8.16
28 29	8.22	8.09 8.16	8.15		7.77	7.81 7.80	8.25 8.28	8.19	8.21 8.25	8.20 8.20	8.11	8.14 8.12
30	8.30	8.15	8.21		7.83	7.89	8.26	8.23	8.25	8.20	8.11	8.15
31	8.36	8.26	8.31				8.27	8.21	8.23	8.27	8.10	8.14
MONTH	8.36	7.39	7.92	8.81	7.63	8.33	8.28	7.73	8.05	8.49	8.08	8.25

04193490 MAUMEE RIVER NEAR WATERVILLE, OH--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			rn	(SI ANDARD	DNITS), W	VATER YEAR	COCTOBER 19	BO TO SE	SPTEMBER I	987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH	I		APRIL			MAY	
1 2 3 4 5	8.33 8.32 8.20 8.09 8.03	8.18 8.15 8.07 8.01 7.91	8.24 8.21 8.13 8.06 7.98	8.50 8.13 8.12 8.07 8.01	8.11 8.07 8.03 8.00 7.98	8.28 8.09 8.07 8.03 8.00	8.47 8.58 8.48 8.52 8.49	8.30 8.39 8.33 8.39 8.16	8.37 8.47 8.43 8.46 8.35	8.73 8.59 8.49 7.98 7.94	8.38 8.33 7.86 7.79 7.87	8.53 8.47 8.24 7.88 7.91
6 7 8 9	7.90 7.87 7.90 7.94 8.00	7.85 7.84 7.84 7.25 7.94	7.87 7.85 7.87 7.87 7.97	8.02 8.00 8.02 8.14 8.25	7.99 7.95 7.95 7.98 8.14	8.00 7.98 7.98 8.04 8.18	8.15 8.21 8.24 8.14 8.19	8.04 8.05 8.11 8.05 7.99	8.08 8.13 8.17 8.09 8.08	7.91 7.90 8.01 8.24 8.23	7.85 7.87 7.84 7.96 8.07	7.88 7.88 7.90 8.08 8.16
11 12 13 14 15	8.06 8.08 8.18 8.16 8.20	7.99 8.05 8.06 8.10 8.10	8.01 8.06 8.10 8.14 8.14	8.29 8.32 8.36 8.29 8.48	8.17 8.16 8.17 8.19 8.20	8.23 8.23 8.25 8.24 8.28	8.13 8.22 8.40 8.38 8.52	7.99 8.02 8.02 8.14 8.29	8.06 8.10 8.16 8.26 8.37	8.24 8.26 8.50 8.65 8.68	8.06 8.06 8.20 8.32 8.47	8.16 8.16 8.33 8.50 8.55
16 17 18 19 20	8.18 8.19 8.23 8.29 8.36	8.13 8.14 8.15 8.18 8.20	8.16 8.16 8.17 8.21 8.28	8.49 8.54 8.60 8.66 8.76	8.30 8.29 8.37 8.45 8.52	8.38 8.40 8.48 8.56 8.63	8.53 8.63 8.43 8.13 8.15	8.32 8.46 8.14 7.93 7.85	8.41 8.52 8.28 8.03 7.98	8.65 8.65 8.47 8.23 7.84	8.38 8.35 8.05 7.78 7.60	8.51 8.50 8.26 7.94 7.67
21 22 23 24 25	8.34 8.42 8.42 8.45 8.46	8.23 8.24 8.28 8.26 8.34	8.28 8.30 8.34 8.37 8.39	8.81 8.66 8.68 8.65 8.56	8.58 8.47 8.38 8.36 8.36	8.72 8.58 8.51 8.52 8.48	8.15 8.29 8.38 8.49 8.68	7.84 7.95 8.08 8.19 8.32	7.98 8.07 8.21 8.29 8.45	7.64 7.63 7.63 7.73 7.81	7.60 7.60 7.61 7.61 7.72	7.62 7.62 7.62 7.66 7.75
26 27 28 29 30	8.61 8.63 8.62	8.34 8.39 8.39 	8.48 8.53 8.49 	8.49 8.50 8.49 8.54 8.49 8.41	8.36 8.37 8.33 8.40 8.34 8.29	8.43 8.45 8.43 8.47 8.41 8.36	8.79 8.76 8.84 8.81 8.76	8.51 8.59 8.46 8.50 8.42	8.63 8.68 8.63 8.62 8.57	7.80 7.74 7.76 7.85 8.03 8.03	7.74 7.70 7.68 7.68 7.70 7.80	7.77 7.72 7.72 7.74 7.83 7.90
MONTH	8.63	7.25	8.17	8.81	7.95	8.31	8.84	7.84	8.30	8.73	7.60	8.01
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	BER
1 2 3 4 5	7.92 7.92 7.84 7.77 7.81	7.80 7.79 7.76 7.71 7.73	7.83 7.83 7.79 7.73 7.78	8.52 8.18 8.33 8.33 7.92	8.19 8.00 8.00 7.89 7.69	8.34 8.04 8.08 8.08 7.82	9.13 8.82 9.11 9.00 8.53	7.81 7.80 8.40 7.81 7.82	8.29 8.45 8.71 8.47 8.16	8.63 8.70 8.68 8.70 8.72	8.20 8.40 8.40 8.29 8.20	8.39 8.52 8.58 8.44 8.48
6 7 8 9	7.78 7.73 7.81 7.83 7.85	7.69 7.68 7.72 7.76 7.79	7.73 7.70 7.77 7.79 7.82	7.82 7.83 7.83 7.83 7.92	7.62 7.79 7.80 7.79 7.80	7.74 7.80 7.82 7.81 7.84	8.81 8.82 8.29 8.71 8.71	8.12 8.19 7.71 8.00 8.39	8.42 8.47 8.05 8.31 8.48	8.60 8.63 9.03 9.23 8.73	8.20 8.00 8.22 8.02 7.89	8.34 8.35 8.54 8.55 8.22
11 12 13 14 15	7.88 7.92 7.92 7.91 7.92	7.81 7.82 7.87 7.81 7.80	7.83 7.87 7.89 7.85 7.84	7.93 8.02 7.93 7.93 8.09	7.80 7.80 7.82 7.82 7.81	7.88 7.91 7.90 7.87 7.95	8.72 8.99 8.90 8.71 8.73	8.30 8.40 8.52 8.40 8.40	8.49 8.65 8.71 8.56 8.55	8.78 8.79 9.00 9.12 8.52	7.70 7.82 7.90 8.00 8.00	8.25 8.23 8.50 8.46 8.22
16 17 18 19 20	8.03 8.09 8.42 8.73 8.68	7.81 7.80 8.00 8.13 8.08	7.92 7.89 8.15 8.36 8.31	8.13 8.12 8.13 8.30 8.43	7.89 8.00 7.91 8.00 8.10	8.03 8.03 8.01 8.14 8.24	8.63 8.83 8.90 8.83 8.90	8.20 8.20 7.92 8.21 8.19	8.48 8.43 8.30 8.50 8.57	8.82 8.73 8.68 8.71 8.58	7.80 8.22 8.40 8.31 8.20	8.22 8.50 8.52 8.45 8.31
21 22 23 24 25	8.48 8.11 7.83 7.98 8.48	8.20 7.79 7.80 7.80 7.88	8.32 7.88 7.81 7.85 8.15	8.72 8.72 8.81 8.83 8.72	8.10 8.10 8.20 8.50 8.58	8.34 8.36 8.50 8.66 8.67	8.70 8.73 8.92 8.91 8.83	8.38 8.11 8.20 8.41 8.48	8.52 8.43 8.56 8.67 8.63	8.70 8.93 8.90 9.03 9.13	8.21 8.28 8.40 8.59 8.50	8.40 8.55 8.67 8.68 8.76
26 27 28 29 30 31	8.63 8.71 8.79 8.73 8.61	8.19 8.40 8.42 8.40 8.28	8.43 8.55 8.62 8.55 8.45	8.73 8.73 8.83 8.90 8.91 8.93	8.48 8.40 8.43 8.42 8.40 7.91	8.56 8.50 8.63 8.65 8.64 8.45	8.71 8.62 8.49 8.41 8.42 8.43	8.38 8.31 8.40 8.20 8.10 8.20	8.49 8.45 8.42 8.29 8.24 8.34	8.92 8.92 8.59 8.73	8.40 8.42 8.39 8.23	8.69 8.64 8.44 8.47
MONTH	8.79	7.68	8.01	8.93	7.62	8.17	9.13	7.71	8.45	9.23	7.70	8.46
YEAR	9.23	7.25	8.20						2 4 7 5	159,53		

04193490 MAUMEE RIVER NEAR WATERVILLE, OH--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			TEMPERA	TURE, WATER	(DEG. (C), WATER	YEAR OCTOBE	ER 1986	TO SEPTEMB	ER 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBI	ER		DECEMBI	ER		JANUA	RY
1 2 3 4 5	21.5 20.5 20.0 19.5 19.0	20.5 20.0 19.5 19.0 18.0	21.0 20.5 19.5 19.5 18.5	13.0 13.0 11.5 10.0 9.5	12.0 12.0 10.0 9.5 9.0	12.5 12.5 10.5 10.0 9.5	4.5 5.0 5.5 4.5 3.5	4.0 3.5 4.5 3.5 3.0	4.0 4.5 5.0 4.0 3.5	1.5 1.5 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5
6 7 8 9 10	18.0 17.0 16.5 16.0 14.5	17.0 16.0 15.5 15.0 14.0	17.5 16.5 16.0 15.5 14.5	10.5 11.5 12.5 12.5 9.5	9.5 10.5 11.0 9.5 8.0	10.0 11.0 11.5 11.0 8.5	3.0 3.0 4.0 5.0	2.5 2.5 3.0 4.0 2.5	2.5 3.0 3.5 4.5 3.5	2.0 2.5 2.0 1.0	2.0 1.0 .5	1.0 2.0 1.5 1.0
11 12 13 14 15	14.5 14.5 14.5 14.0 12.0	13.0 14.0 14.0 12.0 11.5	14.0 14.5 14.5 13.0 12.0	8.5 7.0 5.5 3.0 3.0	7.5 5.5 3.0 2.5 2.0	8.0 6.5 4.0 2.5 2.5	2.5 2.0 1.5 .5	2.0 1.5 .5 .0	2.0 2.0 1.0 .5	1.0 .5 .5 1.5 2.5	.5 .0 .0 .5	.5 .5 1.0 2.0
16 17 18 19 20	11.5 11.5 11.5 11.5	11.0 10.5 10.0 10.0 10.0	11.0 11.0 10.5 10.5	4.0 5.0 5.0 4.0 3.0	3.5 4.0 4.0 2.5 2.5	3.5 4.5 4.5 3.0 3.0	1.0 1.5 1.0	1.0 1.0 1.0 1.0	.5 1.0 1.5 1.0	1.5 .5 1.0 1.0	.5 .5 .0	1.0 .5 1.0 .5
21 22 23 24 25	12.5 13.5 14.0 14.0 13.0	11.0 12.0 13.0 13.0 12.5	11.5 12.5 13.5 13.5 12.5	3.5 4.0 4.0 4.5 4.5	3.0 3.5 3.5 4.0 3.5	3.5 4.0 4.0 4.0	2.0 1.5 1.0 1.5	1.5 1.0 1.0 1.0	1.5 1.5 1.0 1.0	.0 .0 .0	.0 .0 .0	.0
26 27 28 29 30 31	14.0 14.0 13.5 13.0 12.5 12.0	12.5 13.0 12.0 12.5 11.5	13.5 13.5 13.0 13.0 12.0	6.0 5.5 5.5 5.5	4.5 5.5 5.5 5.5 5.0	5.0 6.0 5.5 5.5 5.5	1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.0 1.0	1.5 1.5 1.5 1.0 1.5	.0 .0 .0 .0	.0 .0 .0	.0
MONTH	21.5	10.0	14.0	13.0	2.0	6.5	5.5	.0	2.0	2.5	.0	.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH	I		APRIL			MAY	
1 2 3 4 5	.0 .0 .0	.0 .0 .0	.0 .0 .0	3.5 4.0 4.0 4.5 4.5	3.0 2.5 3.0 3.0 4.0	3.0 3.0 3.5 4.0	6.0 5.5 5.5 5.0 5.5	5.0 5.0 4.0 4.0 3.0	5.5 5.5 5.0 4.5 4.0	16.0 16.0 15.0 13.0	14.5 15.0 11.5 10.5 11.0	15.5 15.5 13.5 12.0 12.5
6 7 8 9	.0 .5 .0	.0 .0 .0	.0 .0 .0	5.5 7.0 7.5 7.0 4.0	3.5 4.5 5.5 3.5 2.5	4.5 5.5 6.5 5.5 3.5	6.5 9.0 9.5 10.5 11.5	5.0 6.0 7.0 7.5 8.5	5.5 7.5 8.5 9.0 10.0	15.0 15.5 17.0 18.0 19.0	12.0 13.5 14.0 15.5 16.5	13.5 14.5 15.0 16.5 18.0
11 12 13 14 15	.5 .5 .5	.0 .0 .0	.0 .0 .0	3.5 4.0 5.0 5.0 4.0	2.0 2.5 3.0 3.0 3.0	3.0 3.5 4.0 4.0 3.5	11.0 11.5 12.5 12.5 13.5	10.0 9.5 10.0 11.5 12.0	10.5 10.5 11.0 12.0 13.0	20.0 20.0 20.0 21.0 21.5	18.0 18.5 17.5 18.5 19.0	19.0 19.0 18.5 19.5 20.0
16 17 18 19 20	.0 .0 .5 .5	.0 .0 .0	.0 .0 .0	4.0 4.5 4.5 5.5 6.5	2.5 3.0 3.5 3.0 4.5	3.5 3.5 4.0 4.0 5.5	13.0 14.5 15.5 16.5 18.0	12.0 12.0 13.0 13.5 15.0	13.0 13.0 14.5 15.0 16.0	22.0 22.5 22.0 21.5 19.0	19.5 19.5 21.0 18.0 17.5	20.5 21.0 21.5 19.5 18.0
21 22 23 24 25	.5 .5 1.0 1.5	.0 .0 .5 .5	.0 .5 .5 1.0	7.5 8.0 9.5 9.5	5.0 6.0 7.0 7.5 9.5	6.5 7.0 8.5 9.0	19.0 17.5 17.0 16.5 15.0	16.5 15.0 14.5 14.0 13.0	17.5 16.0 15.5 15.5 14.0	19.5 21.5 21.0 20.0 19.5	17.5 18.5 19.5 18.5 18.5	18.5 20.0 20.0 19.5 19.0
26 27 28 29 30 31	1.5 2.0 3.0 	.5 2.0 	1.5 1.5 2.5 	9.5 9.5 10.0 11.0 11.0 7.0	8.5 8.5 9.0 9.0 7.0 6.0	9.0 9.0 9.5 10.0 9.5 6.5	16.0 16.0 15.5 16.0 17.0	13.5 14.5 14.0 13.5 14.0	14.5 15.0 15.0 15.0 15.5	21.5 24.0 25.0 26.0 27.0 25.5	18.5 20.5 23.0 23.5 24.5 24.5	20.0 22.0 24.0 24.5 25.5 25.0
MONTH	3.0	.0	.5	11.0	2.0	5.5	19.0	3.0	11.5	27.0	10.5	18.5

MONTH

11.5

5.7 8.8

16.0 10.1 12.3

STREAMS TRIBUTARY TO LAKE ERIE

04193490 MAUMEE RIVER NEAR WATERVILLE, OH--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			TEMPER	ATURE, WATER	R (DEG.	C), WATER	YEAR OCTOBER	1986	O SEPTEMB	ER 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	BER
1 2 3 4 5	25.0 25.5 24.5 24.0 24.0	24.0 23.0 22.0 21.0 21.5	24.5 24.0 23.0 22.5 23.0	22.5 22.5 24.0 24.5 24.0	22.0 21.0 22.0 22.0 22.0	22.5 21.5 23.0 23.5 23.0	31.0 29.0 32.5 30.5 28.0	27.0 27.0 27.0 28.0 26.0	28.0 27.5 29.5 29.0 27.0	21.0 20.0 19.5 20.5 22.0	19.0 19.0 18.0 18.5 19.0	20.0 19.5 19.0 19.5 20.5
6 7 8 9 10	23.0 23.5 23.5 23.0 23.0	21.5 21.0 22.0 22.0 21.5	22.5 22.5 22.5 23.0 22.5	23.5 24.5 25.5 26.5 27.0	21.0 22.0 23.0 24.0 24.0	22.5 23.5 24.5 25.0 25.5	28.5 28.0 26.5 26.5 25.5	25.0 25.0 25.0 24.5 24.5	26.0 26.0 25.5 25.5 25.0	21.5 23.0 25.5 26.0 23.0	20.0 20.0 22.0 22.0 22.0	21.0 21.5 23.0 23.0 22.5
11 12 13 14 15	23.0 24.5 26.0 26.5 26.5	21.0 22.5 23.5 24.0 24.5	22.5 23.0 24.5 25.5 25.5	28.0 28.0 27.5 26.5 25.0	25.5 26.0 26.5 24.5 23.0	26.5 27.0 27.0 25.5 24.0	24.5 26.0 27.5 27.5 28.0	23.5 23.0 24.5 26.0 26.0	24.0 24.5 26.0 26.5 27.0	23.0 23.0 24.0 24.5 22.0	22.0 22.0 21.5 21.0 21.0	22.5 22.5 22.5 22.5 21.5
16 17 18 19 20	26.5 26.0 26.0 28.0 27.0	24.0 25.0 24.0 24.5 25.0	25.5 25.5 25.0 25.5 25.5	25.0 26.0 26.5 27.0 28.5	23.0 23.0 24.5 25.5 26.0	24.0 24.5 25.5 26.5 27.5	28.5 29.5 28.5 27.5 28.0	26.5 26.5 26.0 25.0 24.5	27.5 27.5 27.0 26.0 26.0	21.0 21.0 21.5 22.5 21.0	20.0 20.0 21.0 21.0 19.5	20.5 20.5 21.0 21.5 20.5
21 22 23 24 25	26.0 26.0 25.5 26.0 26.5	25.0 24.0 23.5 23.0 24.5	25.5 25.0 24.5 24.5 25.5	30.0 31.0 30.0 29.0 29.0	27.0 27.0 27.5 28.0 28.0	28.0 28.5 29.0 28.5 28.5	26.0 26.5 25.0 24.5 22.5	24.5 24.0 23.0 22.0 21.5	25.0 25.0 24.0 23.0 22.0	19.5 20.0 19.0 19.0 19.5	18.0 18.0 18.0 17.0 16.5	19.0 19.0 18.5 17.5 18.0
26 27 28 29 30 31	26.0 25.0 23.5 23.0 23.0	25.0 23.5 22.0 22.0 22.5	25.5 24.5 23.0 22.5 22.5	29.0 28.0 27.5 28.0 28.5 31.5	28.0 26.5 26.0 26.0 26.0 26.5	28.5 27.5 27.0 27.0 27.5 28.0	21.0 20.5 19.5 21.5 21.5 21.5	20.5 19.5 18.0 18.0 19.5 20.0	21.0 20.0 19.0 19.5 20.5 21.0	18.5 19.5 19.0 18.5	16.5 17.0 18.5 17.5	17.5 18.0 19.0 18.0
MONTH	28.0	21.0	24.0	31.5	21.0	26.0	32.5	18.0	25.0	26.0	16.5	20.5
YEAR	32.5	.0	13.0 OXYGEN,	DISSOLVED (DO). MG	/I. WATER	YEAR OCTOBER	1986 7	O SEPTEMBI	FD 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE			NOVEME			DECEMBE			JANUAR	
1 2 3 4 5	6.7 6.6 6.7 6.0 6.3	6.4 6.4 5.9 5.7 5.9	6.6 6.5 6.4 5.8 6.0	11.2 11.6 11.9 12.1 12.1	10.4 10.1 10.4 10.7	10.8 10.8 11.2 11.2	12.6 12.6 12.0 12.6 12.7	12.2 11.9 11.7 12.0 12.6	12.4 12.4 11.8 12.3 12.6	14.4 14.4 14.7 15.0 15.2	13.9 13.9 13.9 14.0 14.1	14.1 14.1 14.2 14.3 14.6
6 7 8 9 10	6.7 7.7 8.3 8.7 9.1	6.3 6.7 7.7 8.3 8.7	6.4 7.2 8.0 8.5 8.9	12.6 12.7 12.4 12.3 12.3	10.7 10.9 10.5 10.3 11.2	11.5 11.7 11.3 11.2 11.8	13.0 13.0 12.8 12.7 12.8	12.7 12.8 12.7 12.1 12.1	12.9 12.9 12.7 12.4 12.4	15.3 15.3 15.4 15.4	14.2 14.1 14.7 14.5 14.5	14.7 14.6 14.9 14.8 15.0
11 12 13 14 15	9.2 9.1 9.1 9.5 9.7	9.0 9.0 9.0 9.1 9.4	9.1 9.0 9.0 9.3 9.5	13.9 13.3 14.0 14.5 14.6	11.8 12.0 12.5 13.1 13.1	12.7 12.5 13.0 13.9 13.7	13.0 13.2 13.6 13.7 13.9	12.8 13.0 13.2 13.5 13.6	12.9 13.1 13.4 13.6 13.8	15.7 15.9 16.0 16.0	14.6 14.4 14.6 13.8	15.1 15.0 15.2 15.2 14.4
16 17 18 19 20	9.9 9.9 10.2 10.3 10.2	9.7 9.8 9.9 10.0 10.0	9.8 9.9 10.0 10.1 10.1	14.4 14.8 15.9 14.4 16.0	12.8 12.9 13.2 13.2 13.8	13.3 13.9 14.2 13.8 14.6	13.9 13.8 13.7 13.9	13.8 13.7 13.5 13.6 13.7	13.9 13.8 13.6 13.8 13.8	14.4 14.4 14.4 14.0 14.4	13.6 13.9 13.8 13.7 13.7	14.0 14.2 14.0 13.9 14.0
21 22 23 24 25	10.0 9.8 9.8 9.8 10.0	9.8 9.6 9.4 9.2 9.3	9.9 9.7 9.5 9.5	14.1 13.3 12.6 12.0 12.2	12.4 12.2 12.1 11.8 11.8	13.1 12.7 12.4 11.9 12.0	13.9 13.9 13.9 14.0	13.6 13.7 13.5 13.7	13.7 13.8 13.8 13.8	14.6 14.8 15.0 15.2	14.1 13.8 13.8 14.3 14.2	14.3 14.2 14.1 14.6 14.6
26 27 28 29 30 31	9.9 9.7 10.2 10.0 11.0	9.3 9.2 9.1 9.4 9.5	9.6 9.4 9.5 9.6 10.1	12.0 11.2 11.6 11.6	11.1 10.9 11.2 11.4 11.6	11.7 11.1 11.4 11.5 11.9	14.1 14.2 14.2 14.4 14.4	13.7 13.7 13.8 13.9 13.9	13.8 13.9 14.0 14.1 14.1	15.7 15.7 15.5 15.2 15.1 15.9	14.6 14.6 14.5 14.0 14.1 13.9	15.0 15.1 14.9 14.5 14.4

16.0

11.7 13.3

14.4

13.6 14.5

04193490 MAUMEE RIVER NEAR WATERVILLE, OH--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	16.5 16.4 15.0 14.3 14.0	14.7 14.4 13.7 13.5 13.4	15.3 15.1 14.3 14.0 13.8	15.0 12.7 12.7 12.7 12.6	12.4 12.3 12.3 12.4 12.2	13.2 12.5 12.5 12.5 12.4	13.7 14.3 14.3 13.8 13.5	12.0 12.2 12.2 12.3 12.4	12.7 13.2 13.2 13.1 12.9	17.0 13.9 12.1 10.6 10.3	12.3 10.8 9.7 9.8 9.5	14.8 12.7 10.3 10.1 9.9
6 7 8 9 10	13.3 13.1 13.0 13.5 13.4	13.1 12.9 12.8 13.0 13.3	13.2 13.0 12.9 13.3 13.3	12.8 12.6 12.3 12.3	12.3 12.0 11.7 11.5 12.3	12.5 12.2 11.9 11.9	12.5 13.1 13.2 12.6 12.9	12.1 12.0 11.6 11.4 10.9	12.3 12.4 12.3 11.9	10.0 9.8 10.5 11.4 11.4	9.3 8.9 8.7 9.1 8.9	9.6 9.3 9.5 10.1 10.3
11 12 13 14 15	13.5 13.2 13.8 13.5 14.2	13.2 13.0 13.1 13.1 13.3	13.4 13.1 13.4 13.3 13.7	13.8 14.0 14.5 13.6 14.6	12.6 12.5 12.6 12.4 12.3	13.1 13.1 13.3 12.8 13.1	11.5 12.2 13.9 13.1 14.1	10.4 10.5 10.5 10.6 10.9	11.0 11.2 11.7 11.6 12.1	10.8 10.8 12.4 13.7 13.8	8.8 8.5 8.9 9.4 9.4	9.9 9.6 10.7 11.7
16 17 18 19 20	14.3 14.8 15.2 15.5	13.9 13.9 13.9 14.2 14.2	14.0 14.0 14.1 14.5 14.8	15.2 15.7 15.8 16.6 18.3	12.7 13.2 13.2 13.2 13.7	13.8 14.1 14.4 14.7 15.6	13.4 14.2 12.8 11.7 11.9	10.6 10.8 10.1 9.4 8.7	11.8 12.2 11.4 10.4 10.1	15.7 14.8 13.8 8.6 8.1	11.8 11.5 5.0 6.8 7.2	13.5 13.6 9.6 8.0 7.5
21 22 23 24 25	15.1 15.6 15.5 16.5	14.2 13.9 13.9 13.9 14.6	14.6 14.5 14.5 15.1 15.3	18.9 20.0 20.0 19.8 19.1	14.3 15.1 15.7 14.8 15.3	16.9 17.4 18.7 17.8 16.6	11.4 11.8 12.7 12.4 13.7	8.5 8.6 9.3 9.7	9.8 9.8 10.7 10.8 11.7	7.6 7.2 6.8 7.1 7.4	7.2 6.5 6.5 6.5 6.8	7.4 7.0 6.7 6.8 7.1
26 27 28 29 30	16.9 17.1 17.2 	14.4 14.2 14.1 	15.7 15.7 15.1	15.7 14.3 13.7 13.3 12.4 13.1	12.9 12.4 11.2 11.7 10.6 11.5	13.9 13.4 12.6 12.5 11.6 12.2	15.5 17.3 18.3 16.6 18.5	10.5 11.9 12.9 13.6 12.3	12.8 14.2 15.6 15.1 14.7	7.5 7.2 7.4 8.0 9.1 8.7	6.5 6.6 6.5 6.5	7.2 7.0 6.9 7.1 7.4 7.5
MONTH	17.2	12.8	14.2	20.0	10.6	13.7	18.5	8.5	12.2	17.0	5.0	9.4
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
1 2 3 4 5	7.7 7.8 7.5 7.2 7.5	6.6 6.6 7.1 7.0 7.0	7.0 7.0 7.3 7.1 7.2	10.8 8.4 8.5 8.6 7.7	8.2 7.8 7.6 7.6 7.2	9.3 8.0 8.1 8.1	15.2 13.0 15.8 15.4 10.8	5.7 5.4 8.4 6.2 6.4	9.2 9.9 11.4 11.5 8.3	13.2 12.8 14.6 17.0 17.9	8.5 9.3 10.0 11.2 12.0	10.5 11.0 11.8 14.0 15.2
6 7 8 9 10	7.4 7.3 7.6 7.6 7.8	7.1 7.1 7.1 7.2 7.4	7.3 7.2 7.3 7.4 7.6	7.7 7.9 7.6 7.4 7.4	7.2 4.3 7.4 7.2 7.0	7.5 7.3 7.5 7.2 7.3	15.0 16.5 12.2 11.8 12.0	7.2 8.0 6.5 6.8 8.1	10.5 13.2 9.5 8.9 9.2	14.8 17.1 18.8 19.3 14.0	11.9 10.4 12.6 9.8 7.5	13.6 13.3 14.8 14.0 10.2
11 12 13 14 15	7.8 7.9 8.0 8.2 8.1	7.5 7.3 7.4 7.2 7.0	7.6 7.5 7.6 7.6	7.6 8.0 7.8 8.0 8.8	6.8 6.8 7.2 7.4	7.2 7.3 7.2 7.5 7.9	11.2 13.2 11.8 9.8 9.8	7.0 8.3 8.2 7.2 6.8	9.0 10.1 10.0 8.5 8.1	12.8 12.0 14.6 15.3 13.2	5.8 5.6 5.9 7.8 8.0	9.5 8.3 10.2 10.6 10.0
16 17 18 19 20	9.0 8.8 10.6 14.8 14.4	7.2 7.2 7.7 8.0 7.2	8.0 7.8 8.9 10.6 9.3	9.0 8.7 9.0 9.6 11.0	7.8 7.6 7.4 7.6 7.6	8.3 8.2 8.1 8.5 8.9	8.5 11.2 11.2 11.0 11.0	5.7 5.1 3.8 5.2 5.0	7.2 6.9 6.1 7.7 8.0	12.1 11.4 11.0 11.8 10.4	6.5 8.0 7.8 8.0 8.0	8.7 9.2 9.5 9.3 8.8
21 22 23 24 25	10.2 8.2 7.0 8.2 11.0	7.6 6.6 6.8 6.8 7.2	8.9 7.1 6.9 7.2 8.9	14.2 13.7 14.0 13.0 11.8	7.4 6.9 7.0 8.0 8.8	9.8 9.7 10.1 10.6 10.1	9.0 8.6 10.8 11.8 10.2	5.2 5.0 5.5 7.2 6.8	6.8 6.6 7.9 9.1 8.3	12.0 14.9 14.0 18.2 16.6	8.2 9.4 9.2 9.0 8.7	9.7 11.3 11.6 11.2 12.2
26 27 28 29 30	12.7 13.4 13.8 14.6 13.2	7.8 8.8 9.8 6.9 10.0	10.1 11.1 11.7 12.4 10.9	11.2 12.6 15.0 17.6 16.4 14.0	7.8 7.0 7.8 12.3 13.4 7.5	9.0 8.8 11.7 15.0 15.0	9.0 7.8 8.6 9.3 10.1 11.5	6.2 5.6 7.0 7.6 7.4 8.0	7.1 6.7 7.8 8.4 8.6 9.6	14.9 13.6 9.2 9.9	11.6 9.6 8.0 6.8	13.5 11.4 8.7 8.2
MONTH	14.8	6.6	8.3	17.6	4.3	9.0	16.5	3.8	8.7	19.3	5.6	11.0
YEAR	20.0	3.8	11.3									

04193500 MAUMEE RIVER AT WATERVILLE, OH (National stream quality accounting network station)

LOCATION.--Lat 41°30'00", long 83°42'46", Lucas County, Hydrologic Unit 04100009, on downstream side of first pier from left end of bridge on State Highway 64 at Waterville, 3 mi downstream from Tontogany Creek, and 20.7 mi upstream from mouth.

DRAINAGE AREA . -- 6,330 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1898 to December 1901, August 1921 to December 1935, March 1939 to current year.

REVISED RECORDS.--WSP 894: 1930(M). WSP 1084: 1946. WSP 1387: 1900(M), 1922-23, 1933. WDR OH-68-1: 1967. WDR OH-70-1: Drainage area. WRD-OH-82-2: 1981.

GAGE.--Water-stage recorder with auxilliary crest-stage gage. Datum of gage is 595.71 ft above National Geodetic Datum of 1929. Nov. 19, 1898 to Dec. 31, 1901, Aug. 26, 1921 to July 31, 1930, nonrecording gage Aug. 1, 1930 to Dec. 31, 1935, water-stage recorder, Mar. 14, 1939 to Mar. 12, 1940, nonrecording gage at same site and datum.

REMARKS .-- Estimated daily discharges: May 23. Records good.

AVERAGE DISCHARGE.--62 years (1921-35, 1939-87), 4,960 ft³/s, 10.64 in/yr includes flow in Miami and Erie Canal at Waterville 1922-29; canal was abandoned in 1929 and was filled in prior to March 1939.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 121,000 ft³/s Mar. 14, 1982, gage height, 14.96 ft recorder-manometer; 17.18 ft from floodmark. Practically no flow at times prior to June 30, 1929, when entire river flow was being diverted by canal; minimum daily since canal was abandoned, 26 ft³/s Oct. 24, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1913 reached a stage of 19.9 ft, from information by local resident, estimated discharge, 180,000 ft 3/s, from rating curve extended above 94,000 ft 3/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 37,100 ft³/s Oct. 4, gage height, 9.72 ft; minimum daily, 163 ft³/s, Aug. 21.

		DISC	HARGE,	IN C	UBIC	FEET		, WATER LUES	YEAR OCTOBE	R 1986	го ѕертемві	ER 198	7		
DAY	OCI	P N	OV	DEC		JAN	FEB	MAR	APR	MAY	JUN	JUI	ь 1	UG	SEP
1	6800) 19	80	8130		2250	1730	3550	5340	1490	2630	1800	0 :	46	1600
2	14600	18	60	8290		1820	2420	8670	5450	1570	3840	3130	0 5	21	1390
3	24200			15500		2100	3200	11300	4710	3140	5270	5600		39	1180
4	36200			16900		1870	5800	9480	4680	10700	7420	760		26	848
5	33400			13500		1730	9520	7490	4860	8240	7980	7930		53	733
6	26400			10100		1890	10300	6850	6250	5730	5730	8420		47	615
7	19400			7670		1690	9880	7530	6770	3720	4070	6420		00	530
8	13700			6610		1810	10500	6960	7480	2940	2640	6020		64	479
9	10400			8640		1610	9690	5730	6430	2200	2090	7070		83	473
10	8380	10	30	14300		1860	8100	4510	4730	1980	2120	5440	0 3	94	358
11	6940			15400		1710	6160	3740	3820	1780	3090	3540		17	379
12	5370			11800		1510	4760	3110	3610	1470	3040	325		90	464
13	4260			7880		1590	4250	2500	2830	1410	3080	5050		04	456
14	6100			5810		1430	3600	2330	2970	1550	5060	605		03	342
15	8340	14	10	4580		2290	3700	1980	2900	1430	4420	6110	0 :	56	414
16	7360			3960		4840	3100	2170	3160	1210	3150	572		15	768
17	5730		00	3380		6080	2830	2300	6400	1290	1980	4550		84	952
18	4430		01	3120		5730	2420	1970	6730	1520	1500	2580		74	1140
19	3 65 (06	2760		4320	2110	2080	5450	6150	1240	2200		39	934
20	2780) 15	10	2830		3570	1960	1890	4000	14500	1040	145	0 2	02	755
21	2500		20	2560		3040	2170	2010	3270	10600	1290	1180		63	708
22	2160		40	2700		2610	1860	1810	2730	6930	2810	979		37	544
23	1780		00	2430		2010	1500	1600	2920	3660	3530	1020		90	596
24	1870			2280		1570	1870	1920	2530	3120	3290	869		18	556
25	1710	59	20	2600		1950	1620	2030	2650	2740	2600	729	9 1	79	360
26	1840			2210		1740	1390	1770	2570	2490	1970	513		80	312
27	1920			2680		1910	1540	1600	2290	2120	1550	432	2	67	357
28	2420			2700		1880	1960	1640	2040	2580	1110	390		30	328
29	2760			2470		1880		1650	1800	1980	1220	465		20	277
30	2480			2340		1710		1960	1400	1960	1280	46		30	327
31	2280) –		2150		1740		4370		1960		424	4 21	90	
TOTAL	272160			98280		73740	119940	118500		114160	92040	10739			19175
MEAN	8779			6396		2379	4284	3823	4092	3683	3068	3464		57	639
MAX	36200			16900		6080	10500	11300	7480	14500	7980	8420		20	1600
MIN	1710		01	2150		1430	1390	1600	1400	1210	1040	390		63	277
CFSM	1.39		66	1.01		.38	.68	.60	. 65	.58	.48	.5		10	.10
IN.	1.60		74	1.17		.43	.70	.70	.72	.67	.54	.63	3 .	12	.11
CAL YR WTR YR		TOTAL TOTAL	23311 13847			IEAN IEAN	6387 3794	MAX MAX	36200 36200	MIN MIN		CFSM :	.60		IN. 13.70 IN. 8.14

04193500 MAUMEE RIVER AT WATERVILLE, OHIO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1950 to current year.

PERIOD OF DAILY RECORD. --SUSPENDED SEDIMENT DISCHARGE: April 1950 to September 1984.

EXTREMES FOR PERIOD OF DAILY RECORD.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,240 mg/L Mar. 26, 1954; minimum daily mean, 1 mg/L on many days
during 1953, 1955, and 1963.
SEDIMENT LOADS: Maximum daily, 208,000 tons Feb. 12, 1959; minimum daily, 0.26 ton Sept. 18, 1955.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
NOV											
18 MAR	1230	703	740	8.77	-1.0	4.5	5.9	13.0	103	50	50
24 APR	1100	1940	680	8.96	21.0	12.5	2.0	12.0	116	K4	K14
28 AUG	1430	2100	560	8.91	23.0	18.5	10	12.8	141	K23	K10
25	1315	164	495	8.77	29.0	20.0	15	10.6	121	K27	2200
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV											
18 MAR	350	120	95	28	26	4.8	254	13	228	94	41
24	290	120	70	27	22	3.1			164	93	39
APR 28	270	130	67	24	19	3.0			134	84	33
AUG 25	190	72	43	20	28	5.5	121	12	119	94	42
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	MITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
NOV	0.40	6.7	460	0.000	1 00	0.000	0.020	0.90	0.110	0.010	0.030
18 MAR	0.40	6.7	468	0.020	1.90	0.020					
24 APR	0.30	0.07	370	0.040	2.60	0.030	0.050	2.3	0.080	0.020	<0.010
28 AUG	0.30	0.10	335	0.040	3.20	0.020	0.020	1.8	0.160	0.020	<0.010
25	0.40	490	297	<0.010	<0.100	<0.010	0.020	1.8	0.180	0.040	0.020

04193500 MAUMEE RIVER AT WATERVILLE, OH--Continued

WATER QUALITY RECORDS

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIO DIS- SOLVEI (UG/L AS AS)	DIS- SOLVEI (UG/)	DIS- D SOLV	A, CADI	IS- DIS LVED SOI G/L (UG	M, COBA - DIS VED SOLV	S- DIS YED SOL	VED SOL	S- D: VED SOI	AD, LITHI IS- DIS LVED SOLV G/L (UG/ PB) AS I	S- VED /L
NOV												
18	<10	1		54 <0	.5	<1	<1	<3	11	10	8	14
MAR 24	20	<1		36 <0	0.5	<1	<1	<3	3	18	<5	12
APR									1.2	2.2		
28 AUG	30	<1		38 <0	0.5	2	<1	<3	6	19	<5	20
25	20	2	: :	37 <0	0.5	<1	<1	<3	2	4	<5	6
DA	NE E SC TE (U	DIS- DLVED S IG/L	ERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	SEDI- MENT, SUS- PENDED (MG/L)	
NOV												
18		2	<0.1	<10	3	<1	<1.0	1200	<6	13	E323	
MAR												
24 APR	•	1	<0.1	<10	2	<1	<1.0	790	<6	10	16	
28 AUG		4	<0.1	<10	3	<1	<1.0	680	<6	7	E35	
25		2	0.1	<10	3	<1	<1.0	770	<6	6	32	

K Results based on colony count outside the acceptable range (non-ideal colony count). E ${\tt Estimated.}$

04194107 LAKE ERIE AT RENO BEACH, OH

LOCATION.-- Lat 41°40'29", long 83°17'32", Lucas County, Hydrologic Unit 04100010, on right bank at mouth of Reno side cut (Coulee Canal) which is Cedar Creek drainage.

PERIOD OF RECORD. -- November 1981 to current year.

GAGE.--Water-stage recorder. Datum of gage is 560.00 ft International Great Lakes Datum.

REMARKS.--Interruptions in record are due to malfunctions of the instruments.

EXTREMES FOR PERIOD OF RECORD.--Maximum recorded gage height, 16.02 ft Mar. 4, 1985; minimum recorded gage height 7.70 ft Dec. 2, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum recorded gage height, 14.74 ft Dec. 1, minimum recorded gage height, 11.49 ft Apr. 2.

		GAGE	HEIGHT	(FEET)	MEAN	WAT VALUES	TER YEAR	OCTOBER	1986 TO S	EPTEMBER :	1987	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13.83	13.30	14.74	13.45	12.80	12.62	12.54	12.98	12.69	13.12	12.90	12.17
2	13.48	13.35	13.81	13.45	12.73	11.70	11.49	13.02	12.84	13.19	12.53	12.43
3	13.33	12.94	11.93	13.18	12.64	12.53	12.81	13.31	12.79	12.74	12.79	12.65
4	13.92	13.40	11.52	13.43	12.74	12.74	13.34	13.31	12.78	12.91	12.76	12.57
5	13.03	13.63	12.90	13.43	12.79	12.96	13.12	13.00	12.82	13.16	13.00	12.42
6	13.16	13.35	12.70	13.30	12.68	12.76	12.95	12.89	13.03	12.86	12.81	12.37
7	13.32	13.43	12.89	12.91	12.79	12.65	12.96	12.93	12.61	12.86	12.62	12.36
8	12.99	13.32	13.90	12.83	11.87	12.75	13.02	12.93	12.45	12.78	12.80	12.32
9	13.81	11.91	13.34	13.26	12.88	13.46	13.04	12.75	12.89	12.88	12.54	12.21
10	14.20	13.31	12.37	13.21	12.66	13.58	13.06	12.80	12.83	12.76	12.77	12.54
11	13.67	13.11	12.95	12.39	13.09	13.16	13.07	12.82	12.83	12.82	13.14	12.34
12	13.48	12.54	12.61	12.36	12.86	12.69	13.09	13.01	12.56	12.78	12.98	12.34
13	13.52	12.59	13.19	13.16	13.00	12.83	13.17	13.20	12.78	12.78	12.69	12.26
14	12.31	12.66	12.59	13.04	13.50	13.10	13.40	12.90	12.72	12.84	12.62	12.38
15	12.89	12.31	13.18	13.08	13.21	13.46	13.25	12.99	12.84	13.14	12.54	12.36
16	13.31	12.77	13.33	13.34	13.37	13.17	13.43	12.95	12.84	13.07	12.45	12.33
17	13.72	12.77	13.46	13.62	13.45	12.81	13.21	12.86	13.13	12.87	12.20	12.35
18	13.67	13.80	12.82	13.23	12.90	13.03	13.09	13.18	12.89	12.76	12.42	12.36
19	13.52	13.31	12.99	14.17	12.79	12.87	13.13	13.55	12.82	12.73	12.29	12.33
20	13.33	13.26	13.37	12.61	12.75	12.62	13.12	13.11	12.95	12.54	12.45	12.31
21	13.30	12.88	13.40	12.31	12.75	12.66	13.17	13.06	13.02	12.70	12.12	12.13
22	13.40	13.02	12.94	12.97	12.74	12.60	13.66	12.91	12.73	12.76	12.15	12.29
23	13.38	12.96	13.04	11.81	12.61	12.76	13.08	12.84	12.98	12.73	12.29	11.85
24	13.83	12.56	13.97	12.26	12.67	12.86	13.39	13.10	12.97	12.64	12.37	12.13
25	13.88	13.04	13.15	13.03	12.71	12.53	13.40	13.14	12.93	12.63	12.17	12.22
26	13.62	13.31	13.35	13.05	12.76	12.33	13.21	12.97	12.55	12.60	12.54	11.91
27	13.17	12.93	13.41	12.92	12.98	12.66	12.98	12.91	12.52	12.85	12.74	12.13
28	13.25	12.81	13.13	12.76	13.08	12.60	12.72	12.87	12.46	12.66	13.00	12.13
29	13.07	13.03	13.28	13.21		12.74	12.73	12.86	12.52	12.76	12.48	11.86
30	13.49	14.16	13.39	12.48		12.64	12.83	12.75	12.62	12.56	12.35	11.64
31	13.61	14.10	13.35	12.76		12.39		12.77		12.94	11.97	
MEAN	13.44	13.06	13.13	13.00	12.85	12.78	13.05	12.99	12.78	12.82	12.56	12.26
MAX	14.20	14.16	14.74	14.17	13.50	13.58	13.66	13.55	13.13	13.19	13.14	12.65
MIN	12.31	11.91	11.52	11.81	11.87	11.70	11.49	12.75	12.45	12.54	11.97	11.64
CAL YR	1986 ME	AN 13.3	3 MA	x 14.74	MIN	11.36						
	1987 ME					11.49						

04195500 PORTAGE RIVER AT WOODVILLE, OH

LOCATION.--Lat 41°26'58", long 83°21'41", in sec. 28, T.6 N., R.13 E., Sandusky County, Hydrologic Unit 04100010, on left bank at upstream side of bridge on U.S. Highway 20 in Woodville, 600 ft downstream from unnamed right bank tributary, and 10.3 mi upstream from Sugar Creek.

DRAINAGE AREA .-- 428 mi2.

PERIOD OF RECORD. -- July 1928 to December 1935, October 1939 to current year.

REVISED RECORDS.--WSP 894: 1929-30. WSP 1207: 1933. WSP 1387: 1931, 1933. WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 614.75 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 8, 1933, nonrecording gage, Oct. 9, 1933 to Dec. 30, 1935 water-stage recorder, Oct. 17 to Nov. 29, 1939, nonrecording gage, all at same site and datum.

REMARKS.--Estimated daily discharges: Jan. 21-30, Feb. 17, 18. Records good except for periods of estimated record, which are fair. Flow supplemented by water imported from Maumee River basin for municipal supply for city of Bowling Green 16 mi upstream. The importation of this water began Sept. 1, 1951. Sediment data collected at this site 1950 to 1956. Water-quality data collected at this site 800 ft downstream 1968 to 1980. National Weather Service gage height telemeter at station.

AVERAGE DISCHARGE (adjusted for diversion) .-- 55 years, 327 ft 3/s, 10.38 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,500 ft 3/s Feb. 15, 1950, gage height, 14.51 ft; minimum daily (prior to diversion) 0.4 ft 3/s Aug. 26, 1931; (subsequent to diversion) 1.8 ft 3/s Sept. 22, 1955.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1913 reached a stage of 17 ft, from information by local residents, discharge, 17,000 ft³/s, from rating curve extended above 11,500 ft³/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 27	2000	*3,540	*8.37	No other	peak	greater than base	discharge.

DISCHARGE. IN CURIC FEET DED SECOND. WATER YEAR OCTOBER 1986 TO SERTEMBER 1987

Minimum daily discharge, 6.8 ft 3/s Aug. 18.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR OCTOBER	1986 T	O SEPTEMI	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	160	58	412	134	160	355	1060	91	223	142	9.9	42
2	834	53	532	130	207	1310		94	388	218	10	35
3	745	48	2280	134	375	957	952	290	1090	228	13	25
4	1670	45	1820	122	753	558		1130	1210	180	17	18
5	1630	44	783	112	919	379	733	786	453	137	11	15
6	612	44	439	110	806	303	2650	420	210	245	9.1	12
7	299	42	331	118	839	249	2210	274	133	199	8.7	
8	175	40	556	116	1120	218	1060	204	97	115	8.4	9.6
9	121	38	1120	96	785	199		158	85	259	9.3	8.4
10	91	36	2080	91	585	160		130	77	179	9.9	8.5
11	72	35	1160	116	373	113	337	111	65	82	10	8.8
12	61	34	555	90	316	121		96	60	53	11	9.7
13	58	35	315	77	286	105	247	84	72	55	9.4	8.8
14	190	34	205	88	244	100		75	556	65	9.3	8.6
15	647	33	235	333	168	114		69	235	101	9.2	15
16	319	33	184	712	158	147	189	63	120	95	8.8	18
17	183	32	153	423	165	152	173	57	77	53	7.4	32
18	127	35	168	295	145	130	151	58	56	37	6.8	29
19	92	42	233	242	132	120		100	44	29	7.7	33
20	72	83	221	137	112	116	116	235	54	23	7.1	29 .
21	62	493	186	180	103	106		215	60	21	8.7	23
22	59	844	174	160	99	93		149	133	15	13	20
23	55	460	188	140	99	86		111	229	14	15	16
24	49	303	180	120	102	83		88	177	13	20	13
25	47	224	236	100	88	84	112	73	104	17	16	11
26	49	683	261	95	78	86		65	69	14	16	9.9
27	110	3280	239	93	74	84		62	53	12	41	9.1
28	127	2560	209	90		81		141	45	11	92	8.1
29	93	1110	186	99		74		97	40	10	125	7.8
30	76	618	172	110		281	96	65	44	9.8	93	7.0
31	68		155	129		1620		56		9.8	58	
TOTAL	8953		15968	4992		8584		5647	6259	2641.6	690.7	501.3
MEAN	289	381	515	161		277		182	209	85.2	22.3	16.7
MAX	1670	3280	2280	712		1620		1130	1210	259	125	42
MIN	47	32	153	77	74	74		56	40	9.8	6.8	7.0
(+)	5.3	5.0	6.2	4.9	5.5	5.2		5.8	5.9	6.4	6.6	6.9
MEAN ≠	284	376	509	156		272		176	203	78.8	15.7	9.8
CFSM ≠	.66	.88	1.19	.36		.64		.41	. 47	.18	.04	.02
IN ≠	.77	.98	1.37	.42	.80	.73	1.22	.47	.53	.21	.04	.03
CAL YR 1				10000	4			100 120 120				/
WTR YR 1		OTAL 13733 OTAL 89284				4070 3280	MIN 14 MIN 6.8	+ 5.0 + 5.8	MEAN ≠		≠ .87 ≠ .56	IN \neq 11.77 IN \neq 7.58

⁺ Diversion in cubic feet per second, from Maumee River basin for municipal supply; furnished by City of Bowling Green.

[#] Adjusted for diversion.

04196800 TYMOCHTEE CREEK AT CRAWFORD, OH

LOCATION.--Lat 40°55'22", long 83°20'56", in SE 1/4 sec. 27, T.1 S., R.13 E., Wyandot County, Hydrologic Unit 04100011, on right bank at downstream side of bridge on State Highway 199 (formerly U.S. Highway 23), 0.4 mi northwest of Crawford, 1.5 mi downstream from Lick Run, 2.7 mi upstream from Little Tymochtee Creek, and 3 mi southeast of Carey.

DRAINAGE AREA .-- 229 mi2.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1961-63, and annual maximum, water years 1961-64, June 1964 to current year.

REVISED RECORDS. -- WRD Ohio 1969: 1964(P), 1966(M), 1967(P).

GAGE.--Water-stage recorder. Datum of gage is 785.86 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 20 to Feb. 24. Records good except those for estimated daily discharges, which are fair. Beginning Mar. 9, 1972 water is diverted at a point 29.4 mi upstream from station into Killdeer Reservoir. Storage is available for low-flow augmentation. During the year, there were no pumpage into or releases made from Killdeer Reservoir. Water-quality data collected at this site 1968 to 1977. Sediment data collected 1970 to 1974.

AVERAGE DISCHARGE. -- 23 years, 183 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,390 ft³/s Mar. 17, 1978, gage height, 9.94 ft; maximum gage height, 11.21 ft Mar. 6, 1963 (backwater from ice); no flow Aug. 10, Sept. 13-18, Oct. 23 to Nov. 4, 1964, Aug. 23-26, 1965.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in January 1959 reached a stage of 12.9 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,800 ft 3/s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft ³ /s)	(ft)	Date	Time	(ft ³ /s)	(ft)
Nov. 28 Dec. 4	1830 2230	2,130 2,210	6.29 6.38	July 4	0600	*4,020	*7.98

Minimum daily discharge, 1.3 ft 3/s Sept. 16.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR OCTOBER	1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	174	75	273	68	100	116	748	30	368	203	7.5	15
2	641	58	578	61	150	401	959	29	301	1220	7.1	9.9
3	909	48	1410	58	265	432	1110	32	586	2060	104	7.8
4	1170	41	2040	61	300	258	798	91	863	3660	104	8.6
5	1280	38	1880	58	140	172	467	80	902	2210	62	6.8
6	1220	56	690	55	110	138	1180	53	277	975	28	4.9
7	459	68	302	56	86	116	1530	36	138	391	23	3.6
8	216	55	261	56	74	88	1390	28	84	231	16	2.2
9	142	52	452	52	68	81	579	25	753	152	11	2.3
10	99	87	838	55	62	71	305	24	1500	117	9.3	1.6
11	74	118	1010	74	58	61	205	19	1420	91	13	3.0
12	56	93	502	62	52	48	161	16	484	61	8.4	4.5
13	47	82	237.	52	50	40	130	14	832	80	5.8	4.7
14	119	79	165	51	46	38	111	14	1310	250	6.6	3.0
15	277	66	124	119	44	37	99	15	1180	952	5.7	1.6
16	227	54	100	226	42	37	96	13	261	1100	4.3	1.3
17	133	47	86	235	39	34	96	11	141	318	4.3	1.8
18	90	63	86	143	38	30	92	13	84	134	3.8	2.6
19	65	217	100	103	36	30	75	229	52	80	4.6	3.4
20	48	470	124	83	34	26	52	381	39	52	5.3	4.3
21	39	911	103	73	33	26	43	367	167	37	4.3	4.2
22	33	1060	90	65	31	26	40	611	102	28	3.7	4.1
23	31	752	87	59	30	26	42	340	209	23	2.9	5.1
24	26	340	90	53	28	22	39	173	126	20	3.2	5.7
25	23	239	90	49	27	21	37	90	58	15	4.0	6.0
26	32	577	113	46	27	24	34	125	34	13	6.8	7.3
27	254	1310	138	43	22	22	32	188	21	11	12	7.8
28	291	1900	123	40	25	21	26	100	25	10	66	6.8
29	203	1460	97	37		20	29	103	19	10	104	5.7
30	142	478	85	57		58	39	57	63	7.4	60	4.2
31	101		74	74		505		40		6.7	28	
TOTAL	8621		12348	2324	2017	3025	10544	3347	12399	14518.1	728.6	149.8
MEAN	278	363	398	75.0	72.0	97.6	351	108	413	468	23.5	4.99
MAX	1280	1900	2040	235	300	505	1530	611	1500	3660	104	15
MIN	23	38	74	37	22	20	26	11	19	6.7	2.9	1.3
CAL YR WTR YR		OTAL 89901 OTAL 80915		MEAN MEAN	246 222	MAX		IN IN	1.6 1.3			

04197020 HONEY CREEK NEAR NEW WASHINGTON, OH

LOCATION.--Lat 40°57'37", long 82°47'19", in SE 1/4, sec. 7, T.22 N., R.20 W., Crawford County, Hydrologic Unit 04100011, on left bank 250 ft downstream from State Route 103 bridge and 3.4 mi east of New Washington.

DRAINAGE AREA. -- 17 mi2.

PERIOD OF RECORD. -- June 1979 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 940.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 18-31, Feb. 16-22, Aug. 12 to Sept. 2. Records good, except estimated discharges, which are fair.

AVERAGE DISCHARGE. -- 8 years, 17.6 ft3/s, 14.06 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,810 ft³/s June 13, 1981, gage height, 20.13 ft, from rating curve extended above 325 ft³/s on basis of step backwater analysis; minimum, no flow Oct. 17, 1981, July 26, 29-31, 1985.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 1	1915	390	14.64	July 2	0645	*1,700	*19.85
Nov. 26	1400	358	14.42	July 14	0845	706	16.39
Apr. 5	2315	354	14.39				to the state of the

Minimum daily discharge, 0.30 ft3/s Aug. 19.

		DISC	CHARG	GE, IN CUB			, WATER	YEAR OCTO	BER 1986	TO SEPTEM	BER 198	37		
DAY	OCT	1	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JU	JL	AUG	SEP
1	191		5.6	15	10	10	48	46	3.3	2.0	31		1.3	2.0
2	107		5.0	83	10	24	51	148	3.8	2.4	656		1.4	1.7
3	124		5.4	192	8.7	48	24	57	4.4	14	110		1.8	1.6
4	147		5.1	60	8.3	26	15	33	3.7	5.3	61		3.6	1.4
5	92		4.8	31	8.0	20	14	113	2.9	2.8	39		3.0	1.1
6	46		1.7	20	8.3	19	17	206	2.8	2.1	41		1.4	1.1
7	32		3.9	17	8.3	23	13	99	2.8	1.8	27		1.2	1.1
8	24		3.5	39	7.8	26	11	55	2.9	5.3	21		1.2	1.0
9	19		3.8	101	7.5	16	9.3	35	2.7	50	18		1.4	.88
10	16		3.7	94	7.6	14	6.0	26	2.6	13	15		1.9	.83
11	13		3.2	32	7.4	15	5.8	20	2.5	5.6	12		1.5	.84
12	10		1.3	20	6.4	34	4.3	37	2.4	4.1	42		1.4	.92
13	9.4		4.8	13	5.7	26	3.7	40	2.2	3.5	22		1.1	.88
14	25		3.9	15	8.4	18	3.7	23	2.2	2.9	323		.90	.82
15	18		3.1	11	39	14	4.4	17	2.5	2.4	83		.72	.78
16	13		3.3	9.8	23	9.8	3.9	14	2.2	2.3	46		.54	.79
17	10		3.3	9.1	13	7.8	3.4	12	1.9	2.2	29		.43	.89
18	8.4	1:	1	11	10	6.1	3.3	9.6	9.6	2.0	20		.35	1.1
19	7.3		4	11	8.6	5.4	3.3	8.1	15	2.0	14		.30	1.0
20	6.7	4:	3	9.5	7.8	5.0	3.0	7.1	5.7	9.9	10		.46	.76
21	6.1	70)	8.5	7.0	3.5	2.8	6.3	3.7	39	7.		.60	.67
22	5.6			8.2	6.3	4.2	2.6	5.6	11	28	6.		.78	.89
23	5.2			8.0	5.9	5.0	2.3	5.6	4.1	8.8	4.		.63	.87
24	4.9			10	5.5	4.2	2.2	5.2	2.9	4.6	3.		.45	.74
25	4.4	14	1	118	5.2	3.7	2.2	4.5	2.5	3.2	3.	.1	. 39	.68
26	4.7			48	5.1	3.2	2.3	4.2	2.3	2.8	2.		1.0	.56
27	8.4			25	4.8	3.0	2.1	4.2	13	2.2		. 6	2.0	.49
28		4 9		19	4.6	4.6	1.9	5.2	3.6	2.0	2.		4.0	.43
29	10	3(16	4.3		1.8	4.2	2.6	1.7	1.		7.2	.38
30	8.7		-	13	5.2		50	3.8	2.2	8.1	1.		4.6	.51
31	7.3			11	6.5		55		2.0		1.	. 4	2.9	
TOTAL	997.1			1078.1	274.2	398.5	372.3	1054.6	128.0	236.0	1657		50.45	27.71
MEAN	32.2		3.7	34.8	8.85	14.2	12.0	35.2	4.13	7.87	53.		1.63	.92
MAX	191		176	192	39	48	55	206	15	50	65		7.2	2.0
MIN	4.4		3.1	8.0	4.3	3.0	1.8	3.8	1.9	1.7	1.		.30	.38
CFSM	1.89		. 39	2.05	.52	.84	.71	2.07	.24	.46	3.1		.10	.05
IN.	2.18	1.	.55	2.36	.60	.87	.81	2.31	.28	.52	3.6	53	.11	.06
CAL YR WTR YR		TOTAL TOTAL		84.66	MEAN MEAN	19.9 19.1	MAX MAX	212 656	MIN MIN	.15	CFSM CFSM	1.17	IN.	15.91 15.28

04197100 HONEY CREEK AT MELMORE, OH

LOCATION.--Lat 41°01'20", long 83°06'35", Seneca County, Hydrologic Unit 04100011, at bridge on State Highways 67 and 100 at Melmore, 1.5 mi upstream from Buckeye Creek.

DRAINAGE AREA. -- 149 mi2.

PERIOD OF RECORD. -- Annual maximum, water years 1961-75, February 1976 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 818 ft above National Geodetic Vertical Datum of 1929 from topographic map.

REMARKS.--Estimated daily discharges: Jan. 20-25, Feb. 16-22. Records good except those for estimated daily discharges which are fair. Water-quality data collected at this site 1976 to 1977.

AVERAGE DISCHARGE. -- 11 years, 139 ft 3/s, 12.67 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,400 ft³/s June 13, 1981, gage height, 11.00 ft; minimum discharge 0.58 ft³/s Sept. 11, 28, 29, 30, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 6	2130	*1,820	*7.68	No other	er peaks ab	ove base discha	rge.

Minimum daily discharge 1.2 ft3/s Aug. 21.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR OCTO	BER 1986	TO SEPTEM	BER 1987		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
			DEC						1222			
1	289	26	121	65	51	146		21	12	24	3.5	
2	538	24	278	61	62	398	865	23	13	166	3.6	
3	614	21	921	58	187	304	871	29	113	573	4.7	
4	919	20	925	52	282	157	464	33	162	736	8.4	
5	898	18	517	48	249	105	610	28	70	479	9.2	9.7
6	565	18	214	46	214	123	1670	24	38	244	8.8	7.4
7	256	17	132	42	271	127	1440	21	26	148	8.9	5.6
8	132	17	165	45	329	100	756	19	20	90	7.0	4.1
9	88	22	463	43	181	81	381	19	72	63	7.5	3.4
10	65	21	680	42	128	65	219	18	203	46	6.5	3.0
11	52	20	482	42	120	48	150	16	91	35	5.7	3.0
12	41	18	209	38	218	43	122	16	45	27	6.0	3.0
13	36	18	120	35	285	38	130	15	35	33	5.1	7.2
14	173	17	84	36	177	36	145	13	27	59	4.1	6.3
15	186	17	74	201	99	38	108	13	21	325	3.3	4.1
16	107	17	61	282	66	45	87	13	17	364	2.9	3.8
17	70	16	55	142	52	43	74	13	13	160	2.4	2.9
18	51	56	55	86	44	38	63	14	11	77	2.0	3.4
19	39	439	61	73	34	35	53	55	9.2	50	1.5	4.3
20	33	414	60	69	26	33	46	101	8.0	34	1.5	3.5
21	28	523	52	63	29	31	41	65	87	23	1.2	2.9
22	25	409	47	57	33	28	36	42	403	17	3.6	2.5
23	22	217	44	52	32	26	35	32	324	14	3.8	
24	21	136	45	49	32	25	33	29	142	12	15	2.0
25	20	103	391	46	30	24	29	21	64	10	10	1.7
26	23	547	548	43	28	24	26	17	41	8.2	11	1.5
27	32	981	314	39	27	24	25	24	39	7.0	32	1.4
28	40	754	165	37	28	22	24	31	31	6.0	108	1.4
29	44	342	119	34		21	24	26	19	5.3	140	1.3
30	38	182	94	36		172	23	17	16	4.5	70	1.5
31	32		77	43		496		13		3.9	41	
TOTAL	5477	5430	7573	2005	3314	2896	9043	821	2172.2	3843.9	538.2	171.3
MEAN	177	181	244	64.7	118	93.4	301	26.5	72.4	124	17.4	5.71
MAX	919	981	925	282	329	496	1670	101	403	736	140	26
MIN	20	16	44	34	26	21	23	13	8.0	3.9	1.2	
CFSM	1.19	1.21	1.64	.43	.79	.63		.18	.49	.83	.12	
IN.	1.37	1.36	1.89	.50	.83	.72		.20	.54	.96	.13	.04
CAL YR WTR YR		OTAL 57023 OTAL 43284		MEAN	156 119	MAX MAX	1910 1670	MIN MIN	1.9		.05	IN. 14.24 IN. 10.81

04197170 ROCK CREEK AT TIFFIN, OH

LOCATION.--Lat 41°06'49", long 83°10'06", Seneca County, Hydrologic Unit 04100011, on left bank 0.05 mi downstream from bridge on Rebecca Street, at Heidelburg College, Tiffin, Ohio.

DRAINAGE AREA. -- 34.6 mi2.

PERIOD OF RECORD. -- June 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 740 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Dec. 10-15, Feb. 23-June 18, and July 10-Sept. 20. Records fair except those for estimated record, which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,640 ft³/s Feb. 23, 1985, gage height, 7.78 ft; minimum daily discharge 0.74 ft³/s Oct. 4, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge 516 ft 3/s Oct. 4, gage height 5.79 ft; minimum daily discharge, 1.2 ft 3/s Aug. 21.

		DISCHARGE	, IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR OCTOBE	R 1986	TO SEPTEMB	ER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	199 203 192 411 101	9.0 8.4 8.0 7.7 7.2	15 99 375 106 27	11 11 11 11 11	11 14 60 75 61	50 90 50 30 26	130 200 160 120 150	7.0 8.0 11 13 28	3.1 20 30 35 12	4.3 15 14 26 29	2.0 2.0 2.2 3.5 4.0	2.7 2.6 2.4 2.2 2.2
6 7 8 9	27 15 11 9.5 8.5	7.1 6.9 7.4 13 15	17 14 37 194 310	9.6 9.5 9.8 10	47 82 117 56 23	30 23 18 14 12	300 250 140 70 45	7.0 5.6 5.4 5.0 4.8	7.6 6.0 5.2 15	54 19 9.7 5.5 4.3	3.9 3.7 3.5 3.2 2.9	2.1 2.1 2.1 2.2 2.5
11 12 13 14 15	7.9 7.5 8.8 57 45	12 11 10 8.8 8.2	100 50 20 13	9.6 9.1 9.3	18 36 55 27 16	9.0 8.0 7.0 9.0	33 29 34 35 26	4.5 4.1 3.9 3.7 3.6	17 12 8.0 6.6 5.4	4.5 5.0 6.0 9.0	2.7 2.6 2.5 2.1 1.9	2.7 2.9 2.7 2.5 3.0
16 17 18 19 20	15 11 9.1 8.4 8.1	8.0 7.5 26 222 104	10 10 13 15	53 18 13 13	28 23 7.8 6.7 5.4	11 10 8.6 7.8 7.4	21 18 15 12	3.6 3.6 5.0 17 25	4.5 3.2 2.5 2.4 2.4	21 22 19 15	1.6 1.4 1.4 1.3	3.2 3.7 3.7 3.5 3.0
21 22 23 24 25	7.5 7.2 7.4 7.1 7.4	257 61 27 19 16	11 11 9.8 11 183	15 11 12 11 10	5.0 5.2 9.0 9.0 7.8	7.2 7.2 7.0 6.8 6.8	10 9.6 9.0 8.6 8.4	14 10 8.6 7.0 5.2	4.7 11 5.5 7.2 5.1	9.0 7.0 6.0 5.0 4.0	1.2 1.4 2.0 3.5 5.0	2.7 2.4 2.3 2.3 2.2
26 27 28 29 30 31	10 18 18 13 10 9.2	208 302 52 25 17	90 29 19 15 13	8.5 8.5 8.3 8.1 9.8	7.0 7.0 15 	6.6 6.2 6.0 6.0 30	8.0 8.0 7.4 7.2 7.0	4.5 6.0 8.0 6.2 4.6 3.5	30 8.4 4.3 3.7 4.5	3.6 3.2 2.8 2.6 2.4 2.2	8.0 6.0 4.5 3.5 3.0	2.1 2.0 1.9 1.9
TOTAL MEAN MAX MIN CFSM IN.	1469.6 47.4 411 7.1 1.37 1.58	1491.2 49.7 302 6.9 1.44 1.60	1851.8 59.7 375 9.8 1.73 1.99	454.1 14.6 91 8.1 .42 .49	833.9 29.8 117 5.0 .86	600.6 19.4 90 6.0 .56	1882.2 62.7 300 7.0 1.81 2.02	246.4 7.95 28 3.5 .23 .26	322.3 10.7 40 2.4 .31 .35	356.1 11.5 54 2.2 .33 .38	95.8 3.09 8.0 1.2 .09	75.7 2.52 3.7 1.9 .07
CAL YR WTR YR		OTAL 14123 OTAL 9679		MEAN MEAN	38.7 26.5	MAX MAX		MIN		CFSM 1.12 CFSM .77	IN	1. 15.19

04198000 SANDUSKY RIVER NEAR FREMONT, OH (National stream quality accounting network station)

LOCATION.--Lat 41°18'28", long 83°09'32", in sec. 17, T.4 N., R.15 E., Sandusky County, Hydrologic Unit 04100011, on left bank at downstream side of county road bridge, 2.3 mi upstream from Ballville diversion dam, 2.5 mi downstream from Wolf Creek, and 3.5 mi southwest of Fremont.

DRAINAGE AREA. -- 1,251 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1898 to March 1901 (gage height and discharge measurements only, published at "at Fremont"), October 1923 to December 1935, July 1938 to current year. Monthly discharge only for October 1923, published in WSP 1307.

REVISED RECORDS.--WSP 744: 1931-32. WSP 874: 1938. WSP 1144: 1924-30. WSP 1387: 1925, 1928-29, 1931-35. WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 626.3 ft above National Geodetic Vertical Datum of 1929. Nov. 18, 1898, to Mar. 10, 1901, nonrecording gage at site 4 mi downstream at different datum. Nov. 8, 1923, to Sept. 5, 1930, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: January 22 to February 22. Records good except for periods of estimated record, which are poor.

AVERAGE DISCHARGE. -- 61 years (1923-35, 1938-87), 1,007 ft 3/s, 10.94 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 36,500 ft³/s Mar. 16, 1978 gage height, 13.57 ft; maximum, gage height, 16.14 ft Feb. 24, 1979, (ice jam); minimum discharge, 4.4 ft³/s Feb. 29, 1964 (result of freezeup); minimum gage height, 0.78 ft Oct. 20, 1963.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 10,000 ft 1/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Feb 4	1230	ice jam	*6.52 6.29	July 6	0430	10,600	6.17

DISCURDED IN CURTS FEET DED SECOND WATER VERD COMORED 1006 TO SEDTEMBED 1007

Minimum daily discharge, 36 ft 3/s Sept. 28.

DAY 1 2 3	OCT 2590 4460 4420	NOV 406	DEC	JAN								
2	4460	100		Orm	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2	4460	400	1610	550	700	491	4130	280	388	487	74	242
		340	1620	512		1990	6040	305	591	2190	75	166
	4420	297	6290	488	2000	2600	6050	374	2520	5700	82	127
4	7520	266	7270	462	3000	1880	4640	488	2840	7000	80	107
5	6440	250	5970	447	2100	1140	4190	435	1860	9230	159	91
6	5010	239	3910	426	1400	843	9930	395	1340	9550	154	78
					1100	778	9230	339	646	4520	131	70
7	3460	234	1870	411								
8	1580	245	1460	404	900	717	7390	296	408	1570	118	63
9	879	266	2440	394	800	627	4830	265	458	896	99	57
10	619	304	4940	397	700	536	2340	245	3400	613	93	51
11	483	301	4440	393	600	452	1490	236	3690	468	82	54
12	403	312	3060	385	510	393	1120	231	2230	385	110	53
13	371	313	1580	365	450	351	930	216	1300	312	118	48
14	814	289	919	346	400	334	949	210	1820	516	92	45
15	1630	276	719	591	360	339	935	201	1990	2740	72	50
16	1190	272	624	1380	320	339	758	188	1480	3670	58	58
17	817	254	562	1400	280	333	644	172		2380	50	55
18	564	252	539	1000	250	314	573	173	363	972	47	64
19	439	1550	564	721	220	296	500	201	273	516	42	66
20	365	2150	570	632	190	284	445	739	237	370	40	55
21	317	4860	560	604	230	270	394	867	324	279	41	54
22	282	4470	520	580	280	259	359	972	1580	227	51	54
23	256	3280	485	540	299	251	346	1760	1410	196	61	56
24	233					242		1010	1070			
25	219	2030 1290	473 1330	520 500	283 268	242	336 317	528	590	163 143	51 43	52 46
26	247	2000	2080	490	252	238	293	345	563	122	57	44
27	382	7810	2130	480	243	234	281	849	483	106	131	38
28	629	6670	1330	470	247	238	280	1420	282	93	266	36
29	702	5310	926	470		230	276	755	216	85	529	43
30	629	3230	735	460		532	278	465	285	80	533	40
31	511		624	450		2610		410		77	371	
TOTAL	48461	49766	62150	17268	19582	20381	70274	15370	35224	55656	3910	2063
MEAN	1563	1659	2005	557	699	657	2342	496	1174	1795	126	68.8
MAX	7520	7810	7270	1400	3000	2610	9930	1760	3690	9550	533	242
MIN	219	234	473	346	190	230	276	172	216	77	40	36
CFSM	1.25	1.33	1.60	.45	.56	.53	1.87	.40	.94	1.43	.10	.05
IN.	1.44	1.48	1.85	.51	.58	.61	2.09	.46	1.05	1.65	.12	.06
CAL YR WTR YR		OTAL 5111 OTAL 4001		MEAN MEAN	1400 1096	MAX MAX	11600 9930	MIN MIN	64 36	CFSM 1.12 CFSM .88		IN. 15.20 IN. 11.90

04198000 SANDUSKY RIVER NEAR FREMONT, OH--Continued

WATER-QUALITY ANALYSES

PERIOD OF RECORD. -- Water years 1951-56, 1978 to current year.

PERIOD OF DAILY RECORD . --

SUSPENDED SEDIMENT DISCHARGE: Water years 1951-1956, 1979 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,420 mg/L June 9, 1981; minimum daily mean, 1 mg/L on many days
during 1952-1956, 1980, 1981.
SEDIMENT LOADS: Maximum daily, 124,000 tons June 14, 1981; minimum daily, less than 0.05 ton on several days during 1952 and 1954.

EXTREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,190 mg/L June 11; minimum daily mean, 4 mg/L Feb. 26,27.
SEDIMENT LOADS: Maximum daily, 11,900 tons June 11; minimum daily, 1.4 ton Sept. 27.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
NOV 19	0830	1150	775	0.41		4.0	22	10.0	0.4	1000	1100
MAR	0630	1130	115	8.41	-1.5	4.0	44	12.0	94	1000	1100
25	0845	242	830	8.58	15.0	10.5	5.0	10.6	98	K42	88
APR 29 AUG	0930	294	680	8.43	19.0	14.5	9.5	11.8	120	K47	87
25	1115	43	787	8.58	19.0	19.0	10	9.1	102	130	600
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV 19	380	150	99	31	22	4.0	270	2.0	225	130	36
MAR	360	130	99	31	22	4.0	270	2.0	223	130	30
25 APR	380	180	93	34	20	2.4			195	140	37
29	350	160	85	32	23	2.7	217	7.0	188	130	35
AUG 25	290	100	65	31	53	5.5	218	7.0	191	160	49
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
NOV											
19 MAR	0.40	3.7	501	0.010	1.40	0.120	0.120	1.0	0.200	0.010	0.040
25 APR	0.30	0.10	473	0.030	1.70	0.030	0.030	1.2	0.050	0.020	<0.010
29 AUG	0.40	0.20	427	0.020	0.850	0.020	0.020	2.6	0.100	0.020	<0.010
25	0.50	1.7	485	<0.010	<0.100	<0.010	0.030	3.0	0.160	0.050	0.020

57

STREAMS TRIBUTARY TO LAKE ERIE

04198000 SANDUSKY RIVER NEAR FREMONT, OH--Continued

WATER-QUALITY ANALYSES

ALUM- INUM, ARSENIC BARIUM, LIUM, CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, LITHIUM DIS- SOLVED SOLV														
19 40 <1 51 <0.5 <1 <1 <1 <3 4 92 <5 18 IAR 25 20 <1 52 <0.5 <1 <1 <1 <3 7 63 <5 16 IAR 29 30 <1 52 <0.5 1 <1 <1 <3 7 63 <5 16 IAR 29 30 <1 52 <0.5 1 <1 <1 <3 4 16 <5 7 IAR 29 30 <1 52 <0.5 1 <1 <1 <3 3 8 <5 9 IAR 29 20 2 60 <0.5 1 <1 <1 <3 3 8 <5 9 IAR MANGA- NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	DATE	INUM, DIS- SOLVED (UG/L	SOLVI (UG/I	- DIS ED SOLV L (UG	UM, LI - DI ED SO /L (U	UM, S- LVED G/L	DIS- SOLVED (UG/L	MIUM, DIS- SOLVE (UG/L	DIS D SOLV (UG	- DIS ED SOI /L (UC	S- I LVED SO G/L (U	DIS- DLVED JG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L
MAR 25 20 <1 52 <0.5 <1 <1 <3 7 63 <5 16 PR 29 30 <1 52 <0.5 1 <1 <3 4 16 <5 7 AUG 29 20 2 60 <0.5 1 <1 <3 3 4 16 <5 7 AUG 25 MANGA- NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	VOV													
25 20 <1 52 <0.5 <1 <1 <3 7 63 <5 16 APR 29 30 <1 52 <0.5 1 <1 <3 4 16 <5 7 AUG 25 20 2 60 <0.5 1 <1 <3 3 4 16 <5 7 AUG 25 20 2 60 <0.5 1 <1 <3 3 8 <5 9 MANGA- NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS- D		40		<1	51	<0.5	<1	<	1	<3	4	92	<5	18
NPR 29 30 <1 52 <0.5 1 <1 <3 4 16 <5 7 NDG 25 20 2 60 <0.5 1 <1 <3 3 3 8 <5 9 MANGA- NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS- D		20			50						-			10
29 30 <1 52 <0.5 1 <1 <3 4 16 <5 7 AUG 25 20 2 60 <0.5 1 <1 <3 3 4 16 <5 7 AUG 25 20 2 60 <0.5 1 <1 <3 3 8 <5 9 MANGA- NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS-		20		<1	52	<0.5	<.	<	1	<3	/	63	<5	10
MANGA- MOLYB- SELE- STRON- VANA- NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-		30		<1	52	<0.5	1	<	1	<3	4	16	<5	7
MANGA- NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS- D														
NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, SEDI- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	25	20		2	60	<0.5	1	<	1	<3	3	8	<5	9
19 18 <0.1 <10 2 <1 <1.0 2700 <6 17 158 MAR 25 46 <0.1 <10 2 <1 <1.0 2800 <6 25 8 APR 29 8 1.0 <10 1 <1 <1.0 2400 <6 13 23 AUG	DAT	NE D SOI E (U	SE, I IS- LVED G/L	DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	NICK DIS SOL (UG	KEL, NIK G- DI EVED SOI G/L (UC	UM, S IS- LVED G/L	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L	DIUM, DIS- SOLVEI (UG/L	DIS SOLV (UG/	S- ME VED SU 'L PE	NT, S- NDED
MAR 25 46 <0.1 <10 2 <1 <1.0 2800 <6 25 8 APR 29 8 1.0 <10 1 <1 <1.0 2400 <6 13 23 AUG								92		3233	-		30	
25 46 <0.1 <10 2 <1 <1.0 2800 <6 25 8 APR 29 8 1.0 <10 1 <1 <1.0 2400 <6 13 23 AUG			18	<0.1	<10		2	<1	<1.0	2700	<6)	17	158
AUG	25		46	<0.1	<10		2	<1	<1.0	2800	<6	5	25	8
25 2 0.4 <10 4 1 <1.0 3500 <6 9 23	AUG								<1.0					
	25		2	0.4	<10		4	1	<1.0	3500	<6	5	9	23

K Results based on colony count outside the acceptable range (non-ideal colony count).

04198000 SANDUSKY RIVER NEAR FREMONT, OH--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5	2590 4460 4420 7520 6440	282 322 272 344 289	1970 3880 3250 6980 5030	406 340 297 266 250	41 41 28 19 14	45 38 22 14 9.5	1610 1620 6290 7270 5970	100 76 216 277 216	435 332 3950 5440 3480
6 7 8 9	5010 3460 1580 879 619	255 181 107 79 62	3450 1690 456 187 104	239 234 245 266 304	15 19 18 21 21	9.7 12 12 15 17	3910 1870 1460 2440 4940	161 144 111 130 170	1700 727 438 856 2270
11 12 13 14 15	483 403 371 814 1630	50 48 49 89	65 52 49 196 634	301 312 313 289 276	16 15 14 10 12	13 13 12 7.8 8.9	4440 3060 1580 919 719	168 162 135 110 42	2010 1340 576 273 82
16 17 18 19 20	1190 817 564 439 365	96 63 52 49 43	308 139 79 58 42	272 254 252 1550 2150	13 7 8 113 147	9.5 4.8 5.4 602 853	624 562 539 564 570	32 10 10 11 11	54 15 15 17 17
21 22 23 24 25	317 282 256 233 219	43 40 37 28 26	37 30 26 18 15	4860 4470 3280 2030 1290	188 163 102 70 48	2470 1970 903 384 167	560 520 485 473 1330	12 27 14 18 53	18 38 18 23 190
26 27 28 29 30 31	247 382 629 702 629 511	25 44 45 42 44 48	17 45 76 80 75 66	2000 7810 6670 5310 3230	108 470 383 278 166	856 9910 6900 3990 1450	2080 2130 1330 926 735 624	96 93 87 62 34 24	539 535 312 155 67 40
TOTAL	48461		29104	49766		30723.6	62150		25962
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	550 512 488 462 447	17 15 20 22 27	25 21 26 27 33	700 1200 2000 3000 2100	95 139 204 296 212	180 450 1100 2400 1200	491 1990 2600 1880 1140	17 58 74 49 33	23 312 519 249 102
6 7 8 9	426 411 404 394 397	33 25 24 20 26	38 28 26 21 28	1400 1100 900 800 700	153 57 40 27 25	578 169 97 58 47	843 778 717 627 536	23 21 14 13 7	52 44 27 22 10
11 12 13 14 15	393 385 365 346 591	14 15 30 10 26	15 16 30 9.3	600 510 450 400 360	26 25 26 28 29	42 34 32 30 28	452 393 351 334 339	6 7 6 7 6	7.3 7.4 5.7 6.3 5.5
16 17 18 19 20	1380 1400 1000 721 632	42 46 28 23	156 174 76 45 32	320 280 250 220 190	29 30 31 34 36	25 23 21 20 18	339 333 314 296 284	6 5 10 6 6	5.5 4.5 8.5 4.8 4.6
21 22 23 24 25	604 580 540 520 500	18 15 15 15	29 23 22 21 16	230 280 299 283 268	37 38 38 14 11	23 29 31 11 8.0	270 259 251 242 240	7 7 10 10	5.1 4.9 6.8 6.5 5.2
26 27 28 29 30 31	490 480 470 470 460 450	12 10 10 10 10	16 13 13 13 12 12	252 243 247 	4 10 	2.7 2.6 6.7 	238 234 238 230 532 2610	12 12 10 15 68 120	7.7 7.6 6.4 9.3 139 846
TOTAL	17268		1057.3	19582		6666.0	20381		2464.6

04198000 SANDUSKY RIVER NEAR FREMONT, OH--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	4130 6040 6050 4640 4190	104 190 203 152 142	1160 3100 3320 1900 1610	280 305 374 488 435	31 59 40 42 40	23 49 40 55 47	388 591 2520 2840 1860	194 200 868 490 320	203 319 6360 3760 1610
6 7 8 9	9930 9230 7390 4830 2340	338 312 203 140 82	9060 7780 4050 1830 518	395 339 296 265 245	35 32 30 24 16	37 29 24 17	1340 646 408 458 3400	360 270 202 180 1090	1300 471 223 223 10800
11 12 13 14 15	1490 1120 930 949 935	60 34 22 21 26	241 103 55 54 66	236 231 216 210 201	22 20 16 9	14 12 9.3 5.1 5.4	3690 2230 1300 1820 1990	1190 675 450 660 580	11900 4060 1580 3240 3120
16 17 18 19 20	758 644 573 500 445	15 12 11 15 16	31 21 17 20 19	188 172 173 201 739	9 8 13 27 89	4.6 3.7 6.1 15	1480 587 363 273 237	460 280 196 170 150	1840 444 192 125 96
21 22 23 24 25	394 359 346 336 317	18 16 20 24 30	19 16 19 22 26	867 972 1760 1010 528	89 438 740 610 310	208 1470 3520 1660 442	324 1580 1410 1070 590	142 301 322 223 129	124 1330 1230 644 205
26 27 28 29 30 31	293 281 280 276 278	28 28 28 23 23	22 21 21 17 17	345 849 1420 755 465 410	195 392 860 420 350 221	182 1290 3300 856 439 245	563 483 282 216 285	337 243 112 72 136	600 317 85 42 105
TOTAL	70274		35155	15370		14215.2	35224		56548
		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	487 2190 5700 7000 9230	238 291 615 472 410	313 2410 9460 8920 10200	74 75 82 80 159	24 28 32 44 70	4.8 5.7 7.1 9.5 30	242 166 127 107 91	68 50 42 44 42	44 22 14 13
6 7 8 9	9550 4520 1570 896 613	250 170 122 77 65	6450 2070 517 186 108	154 131 118 99 93	45 47 44 38 34	19 17 14 10 8.5	78 70 63 57 51	38 31 29 44 34	8.0 5.9 4.9 6.8 4.7
11 12 13 14 15	468 385 312 516 2740	65 60 56 90 256	82 62 47 125 1410	82 110 118 92 72	34 42 51 36 34	7.5 12 16 8.9 6.6	54 53 48 45 50	28 29 30 27 26	4.1 4.1 3.9 3.3 3.5
16 17 18 19 20	3670 2380 972 516 370	370 227 115 97 85	3670 1460 302 135 85	58 50 47 42 40	36 32 30 30 26	5.6 4.3 3.8 3.4 2.8	58 55 64 66 55	38 26 27 24 19	6.0 3.9 4.7 4.3 2.8
21 22 23 24 25	279 227 196 163 143	70 52 50 53 29	53 32 26 23 11	41 51 61 51 43	34 32 28 24 23	3.8 4.4 4.6 3.3 2.7	54 54 56 52 46	26 16 23 20 23	3.8 2.3 3.5 2.8 2.9
26 27 28 29 30 31	122 106 93 85 80 77	38 27 26 25 26 28	13 7.7 6.5 5.7 5.6 5.8	57 131 266 529 533 371	26 65 129 110 81 75	4.0 23 93 157 117 75	44 38 36 43 40	17 14 19 15 16	2.0 1.4 1.8 1.7
TOTAL	55656		48201.3	3910		684.3	2063		197.8
YEAR	400105		250979.1						

04199165 OLD WOMAN'S CREEK AT U.S. 6 AT HURON, OH

LOCATION.--Lat 41°22'51", long 82°30'53", Erie County, Hydrologic Unit 04100012, on left bank at U.S. Highway 6 and State Highway 2 bridge, 0.75 mi east of Huron.

DRAINAGE AREA .-- 26.5 mi2.

WTR YR 1987 MEAN

PERIOD OF RECORD .-- May 1980 to current year.

GAGE.--Water-stage recorder. Datum of gage is 560.00 ft above National Geodetic Vertical Datum of 1929. Oct. 1982 to Sept. 1985 at same site at datum 0.10 ft lower.

REMARKS .-- Interruptions in record are due to malfunctions of the instruments.

14.85 MAX 16.92 MIN 13.50

EXTREMES FOR PERIOD OF RECORD.--Maximum recorded gage height, 17.27 ft Nov. 27, 1986; minimum recorded gage height, 10.88 ft Jan. 10, 11, 1982.

EXTREMES FOR CURRENT YEAR.--Maximum recorded gage height, 17.27 ft Nov. 27; minimum recorded gage height, 13.24 ft Jan. 23.

		GAGE	HEIGHT	(FEET)	MEAN	VALUES		OCTOBER 1	1986 TO SE	PTEMBER 1	.987	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16.06	15.85	15.46	14.71	14.27	14.20	14.08	14.84	14.24	14.48	14.28	15.24
2	15.83	15.85	14.90	14.84	14.25	13.69	14.04	14.91	14.32	14.97	14.11	15.24
3	15.54	15.87	14.55	14.63	14.28	14.20	14.40	15.07	14.42	14.36	14.22	15.24
4	16.12	15.88	13.50	14.72	14.31	14.25	16.14	15.40	14.46	14.67	14.18	15.24
5	15.32	15.89	14.30	14.67	14.40	14.36	15.39	15.57	14.34	14.50	14.68	15.24
6	15.07	15.91	14.06	14.56	14.21	14.25	14.80	15.67	14.46	14.36	14.29	15.23
7	14.85	15.92	14.19	14.46	14.32	14.15	14.51	15.74	14.19	14.34	14.09	15.23
8	14.53	15.95	15.03	14.42	14.31	14.23	14.59	15.79	14.06	14.31	14.16	15.23
9	15.12	15.99	14.82	14.48	14.80	15.01	14.50	15.85	14.57	14.35	14.07	15.22
10	15.64	16.00	14.36	14.59	15.16	15.15	14.50	15.86	14.46	14.30	14.38	15.22
11	15.65	16.01	14.33	14.57	15.41	14.52	14.51	15.85	14.25	14.31	14.42	15.24
12	15.61	16.03	14.25	14.02	14.81	14.24	14.57	15.82	14.17	14.27	14.52	15.25
13	15.58	16.04	14.68	14.52	14.52	14.27	14.59	15.82	14.39	14.30	14.52	15.25
14	15.63	16.05	13.99	14.37	14.80	14.39	14.72	15.84	14.28	15.20	14.53	15.26
15	15.60	16.06	14.41	14.50	14.58	14.71	14.70	15.86	14.30	14.52	14.53	15.26
16	15.35	16.06	14.57	14.77	14.80	14.53	14.75	15.86	14.35	14.48	14.51	15.30
17	15.25	16.08	14.64	14.89	14.83	14.24	14.69	15.87	14.51	14.32	14.49	15.33
18	15.32	16.18	14.34	14.90	14.43	14.35	14.57	15.91	14.54	14.24	14.47	15.36
19	15.36	16.57	14.40	15.75	14.28	14.32	14.58	15.99	14.50	14.24	14.45	15.39
20	15.39	16.66	14.62	14.47	14.26	14.12	14.56	16.03	14.91	14.08	14.43	15.41
21	15.43	16.88	14.67	14.00	14.26	14.16	14.61	16.06	14.54	14.21	14.43	15.41
22	15.45	16.92	14.34	14.48	14.23	14.07	15.13	16.14	14.36	14.23	14.52	15.44
23	15.47	16.81	14.35	14.00	14.15	14.17	14.71	16.18	14.57	14.21	14.59	15.44
24	15.49	16.71	15.17	13.72	14.17	14.23	15.06	16.18	14.44	14.12	14.59	15.45
25	15.51	16.63	14.93	14.48	14.22	14.13	15.03	16.18	14.38	14.15	14.59	15.45
26	15.57	16.79	14.64	14.57	14.24	13.87	14.83	16.01	14.34	14.14	14.60	15.45
27	15.63	15.16	14.66	14.32	14.37	14.12	14.88	14.41	14.33	14.32	14.67	15.44
28	15.70	14.15	14.50	14.20	14.36	14.09	14.81	14.33	14.29	14.16	14.86	15.43
29	15.77	14.30	14.54	14.49		14.15	14.68	14.30	14.14	14.17	15.08	15.42
30	15.80	15.23	14.65	14.15		14.47	14.77	14.27	14.29	14.05	15.18	15.42
31	15.83		14.62	14.37		14.81		14.23		14.30	15.22	
MEAN	15.50	16.01	14.53	14.50	14.47	14.30	14.72	15.54	14.38	14.34	14.51	15.32
MAX	16.12	16.92	15.46	15.75	15.41	15.15	16.14	16.18	14.91	15.20	15.22	15.45
MIN	14.53	14.15	13.50	13.72	14.15	13.69	14.04	14.23	14.06	14.05	14.07	15.22

04199175 LAKE ERIE AT RUGGLES BEACH, OHIO

LOCATION.--Lat 41°22'59", long 82°28'22", Erie County, Hydrologic Unit 04100012, on left bank, at mouth of Cranberry Creek, at Ruggles Beach, 4.5 mi east of Huron.

PERIOD OF RECORD. -- Oct. 29, 1986 to Sept. 30, 1987.

GAGE. -- Water-stage recorder. Datum of gage is 560.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Interruptions in record are due to malfunctions of the instruments.

EXTREMES FOR PERIOD OF RECORD. -- Maximum recorded gage height, 17.98 ft Jan. 19, 1987; minimum recorded gage height, 12.92 ft Sept. 30, 1987.

EXTREMES FOR CURRENT YEAR.--Maximum recorded gage height, 17.98 ft Jan. 19, minimum recorded gage height, 12.92 ft Sept. 30.

		GAGE	HEIGHT	(FEET)		WA	TER YEAR	OCTOBER	1986 TO	SEPTEMBER	1987	
					MEAN	VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		14.98	15.51	15.12	14.64	14.51	14.40	14.89	14.70	14.91	14.66	14.15
2		15.13	15.05	15.20	14.63	14.04	14.03	14.91	14.77	14.95	14.54	14.27
3		14.75	14.07	14.98	14.59	14.60	14.74	15.08	14.79	14.70	14.68	14.38
4		15.12	13.78	15.12	14.65	14.60	16.24	15.05	14.80	14.87	14.68	14.34
5		15.16	14.67	15.07	14.64	14.71	15.21	14.89	14.81	14.94	14.92	14.20
6		15.00	14.45	14.93	14.55	14.62	14.95	14.82	14.89	14.81	14.70	14.16
7		15.04	14.55	14.80	14.67	14.52	14.91	14.87	14.64	14.81	14.58	14.18
8		14.98	15.30	14.75	14.83	14.63	14.97	14.86	14.56	14.78	14.66	14.21
9		14.26	14.99	14.89	15.89	15.52	14.95	14.74	14.85	14.83	14.52	14.13
10		15.02	14.43	14.90	15.57	15.24	14.96	14.77	14.75	14.78	14.70	14.29
11		14.89	14.64	14.54	14.91	14.89	14.96	14.77	14.71	14.81	14.87	14.15
12		14.56	14.59	14.46	14.88	14.61	15.00	14.95	14.57	14.76	14.72	14.17
13		14.74	14.91	14.90	14.90	14.65	15.04	15.00	14.74	14.80	14.56	14.14
14		14.39	14.31	14.78	15.16	14.78	15.18	14.84	14.69	15.00	14.52	14.21
15		14.21	14.74	14.90	15.01	15.07	15.10	14.89	14.77	14.92	14.45	14.12
16		14.49	14.88	15.04	15.24	14.86	15.29	14.90	14.76		14.39	14.16
17		14.49	15.04	15.15	15.21	14.62	15.07	14.81	14.93		14.29	14.17
18		15.40	14.71	14.95	14.81	14.73	15.02	14.99	14.76		14.35	14.30
19		14.87	14.84	15.70	14.70	14.68	15.04	15.16	14.75		14.36	14.20
20		14.75	15.06	14.70	14.67	14.51	15.02	14.97	14.80	14.57	14.33	14.18
21		14.76	15.09	14.45	14.67	14.55	15.02	14.93	14.86		14.01	14.05
22		14.63	14.74	14.89	14.64	14.49	15.31	14.86	14.73		14.22	14.15
23		14.56	14.81	14.30	14.54	14.58	15.00	14.88	14.92		14.35	13.88
24		14.39	15.48	14.36	14.57	14.60	15.22	14.93	14.88		14.30	14.03
25		14.64	14.98	14.96	14.62	14.48	15.16	14.95	14.84	14.65	14.13	14.08
26		14.98	15.06	14.98	14.64	14.29	15.06	14.86	14.74		14.27	13.79
27		14.70	15.09	14.75	14.74	14.53	14.97	14.83	14.74		14.54	13.85
28		14.53	14.92	14.60	14.75	14.50	14.85	14.80	14.54	14.63	14.76	13.67
29	15.03	14.69	14.96	14.89		14.57	14.82	14.78	14.54	14.67	14.36	13.43
30	15.22	15.41	15.06	14.51		14.70	14.86	14.71	14.65	14.54	14.22	13.44
31	15.15		15.03	14.76		14.76		14.77		14.72	14.10	
MEAN		14.78	14.83	14.85	14.83	14.66	15.01	14.89	14.75		14.48	14.08
MAX		15.41	15.51	15.70	15.89	15.52	16.24	15.16	14.93		14.92	14.38
MIN		14.21	13.78	14.30	14.54	14.04	14.03	14.71	14.54	14.54	14.01	13.43

04199287 VERMILION RIVER NEAR FITCHVILLE, OH

LOCATION.--Lat 41°07'52", long 82°28'13, Huron County, Hydrologic Unit 04100012, on left bank upstream side of Prospect Road Bridge, 2.6 mi north of Fitchville.

DRAINAGE AREA. -- 112 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 7, 1987 to Sept. 30, 1987.

GAGE.--Water-stage recorder. Elevation of gage is 903 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- Records good except those above 2,000 ft3/s which are fair.

EXTREMES FOR PERIOD May-September 1987.--Maximum discharge, 8,900 ft³/s July 2, 1987, gage height, 14.80 ft; (from flood marak), from drainage area adjustment of slope-area estimate of flow at Fitchville; minimum daily 3.2 ft³/S Sept. 30, 1987.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									12	141	29	44
2									12	3930	59	34
1 2 3									115	3100	277	21
4									81	597	66	14
5									41	189	31	14
,									4.	103	31	10
6 7 8 9									26	160	19	8.9
7								26	20	130	14	8.0
8								27	18	67	9.7	6.8
9								20	103	51	9.9	6.3
10								16	74	88	59	5.5
10								10	/-	00	33	3.3
11								14	36	47	48	7.0
12								11	25	33	24	8.2
13								8.6	25 63	26	15	6.4
12 13 14 15								11 8.6 7.1	38	841	11	5.5
15								9.0	18	1280	8.5	5.4
13								3.0		1200	0.5	3.4
16								9.6	12 8.6	177	6.9	5.4
17								9.0	8.6	95	5.8	5.9
18								13	/.5	64	4.9	20
19								257	6.4	48	4.1	23
18 19 20								125	6.9	37	3.3	20 23 12
21 22								110	34	29	3.6	7.4
22								217	130	24	5.4	6.1
23								86	76	19	6.9	6.4
24								55	46	15	6.9	6.1
23 24 25								55 33	25	13	6.5	5.3
26								28	15	11	6.7	5.0
27								38	21	8.7	56	4.4
27 28								35	17	7.5	149	3.8
29								24	9.2	6.6	99	3.3
30								16	14	5.0	57	3.2
29 30 31								12		5.8	36	
									1110 -		1120 7	200 2
TOTAL									1110.6	11245.6	1138.1	308.3
MEAN									37.0	363	36.7	10.3
MAX									130	3930	277	44
MIN									6.4	5.0	3.3	3.2

04199287 VERMILION RIVER NEAR FITCHVILLE, OH

WATER QUALITY RECORDS

PERIOD OF RECORD. -- May 7, 1987 to September 30, 1987.

PERIOD OF DAILY RECORD. -- May 7, 1987 to September 30, 1987.

INSTRUMENTATION .-- Automatic sediment sampler.

REMARKS.--Samples collected periodically as part of non-point source pollution project.

EXTREMES FOR PERIOD May 7 to September 30, 1987.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 685 mg/L July 2, 1987; minimum daily mean 5 mg/L May 9, 14, 16, 17, 1987.
SEDIMENT LOADS: Maximum daily, 7,270 tons July 2, 1987; minimum daily 0.07 tons Sept. 27, 1987.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
MAY									
18	1615	14	450	7.86	20.0	7.0			200
19	0845	357	390	7.85	18.0	6.8			149
19	1310	315	345	7.34	13.0	5.7			96
20	1130	118	420	7.80	18.0	7.1			172
JUN									
24	1130	35	530	8.10	21.0	7.1	K670	550	203
JUL									
15	1130	1270	205	7.60	20.5	7.1	28000	67000	59
AUG									
20	1030	3.2	570	8.14	20.0	8.3	K100		150
SEP									
10	1055	5.3	620	8.27	20.0	5.2	K34	170	172

K Results based on colony count outside the acceptable range

04199287 VERMILION RIVER NEAR FITCHVILLE, OH--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5				===			12 12 115 81 41	18 20 211 147 56	.58 .65 66 32 6.2
6 7 8 9 10				26 27 20 16	14 12 5	.98 .87 .27	26 20 18 103 74	37 33 34 337 214	2.6 1.8 1.7 94 43
11 12 13 14 15				14 11 8.6 7.1 9.0	6 12 6 5 7	.23 .36 .14 .10	36 25 63 38 18	69 68 112 84 87	6.7 4.6 19 8.6 4.2
16 17 18 19 20				9.6 9.0 13 257 125	5 10 420 137	.13 .12 .35 291 46	8.6 7.5 6.4 6.9	71 48 33 30 58	2.3 1.1 .67 .52
21 22 23 24 25				110 217 86 55 33	45 338 95 32 47	13 198 22 4.8 4.2	34 130 76 46 25	201 323 151 78 48	27 113 31 9.7 3.2
26 27 28 29 30 31				28 38 35 24 16 12	37 30 20 17 20 20	2.8 3.1 1.9 1.1 .86 .65	15 21 17 9.2 14	43 42 32 27 43	1.7 2.4 1.5 .67 1.6
TOTAL				1206.3		593.61	1110.6		489.09
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	141 3930 3100 597 189	307 685 197 132 82	117 7270 1870 213 42	29 59 277 66 31	60 117 327 114 46	4.7 19 245 20 3.9	44 34 21 14 10	20 18 16 14 13	2.4 1.7 .91 .53
6 7 8 9 10	160 130 67 51 88	48 39 28 21 304	21 14 5.1 2.9	19 14 9.7 9.9	35 23 16 20 49	1.8 .87 .42 .53	8.9 8.0 6.8 6.3 5.5	10 8 6 8	.24 .17 .11 .14
11 12 13 14 15	47 33 26 841 1280	85 52 38 239 199	11 4.6 2.7 543 688	48 24 15 11 8.5	46 31 21 16 10	6.0 2.0 .85 .48	7.0 8.2 6.4 5.5	11 8 12 9	.21 .18 .21 .13
16 17 18 19 20	177 95 64 48 37	73 45 25 23 19	35 12 4.3 3.0 1.9	6.9 5.8 4.9 4.1 3.3	14 12 22 7 18	.26 .19 .29 .08	5.4 5.9 20 23 12	8 8 26 22 13	.12 .13 1.4 1.4 .42
21 22 23 24 25	29 24 19 15	12 14 12 13 11	.94 .91 .62 .53	3.6 5.4 6.9 6.9	16 9 8 10 9	.16 .13 .15 .19	7.4 6.1 6.4 6.1 5.3	11 7 7 14 8	.22 .12 .12 .23 .11
26 27 28 29 30 31	11 8.7 7.5 6.6 5.8 5.0	11 14 10 8 8	.33 .33 .20 .14 .13	6.7 56 149 99 57 36	9 50 114 60 32 26	.16 9.3 46 16 4.9 2.5	5.0 4.4 3.8 3.3 3.2	20 6 22 16 20	.27 .07 .23 .14
TOTAL	11245.6		10937.14	1138.1		394.21	308.3		12.67
YEAR	15008.9		12426.72						
NOTE:	NUMBER OF	MISSING DA	YS OF RECORD I	EXCEEDED 20%	OF YEAR				

04200500 BLACK RIVER AT ELYRIA, OH

LOCATION.--Lat 41°22'49", long 82°06'17", in T.6 N., R.17 W., Lorain County, Hydrologic Unit 04110001, on left bank in Cascade Park at Elyria, 0.8 mi downstream from confluence of East and West Branches.

DRAINAGE AREA. -- 396 mi2.

PERIOD OF RECORD.--October 1944 to current year. Records for May 1903 to July 1906 (published as "near Elyria") published in WSP 97, 129, and 205, are unreliable and should not be used.

REVISED RECORDS. -- WSP 1912: Drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 620.83 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 25, to Feb. 2, Feb. 10-12. Records good except for periods of estimated record, which are fair. Some regulation at low flow for industrial use. Water-quality data collected at this site 1969 to 1974. Sediment data collected 1970 to 1974.

AVERAGE DISCHARGE.--43 years, 333 ft3/s, 11.42 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 51,700 ft³/s July 6, 1969, gage height, 26.4 ft, (from flood mark), from rating curve extended above 13,000 ft³/s on basis of slope-area measurement of peak flow; no flow for part of Oct. 10, 1956 (result of temporary storage at dam upstream).

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,200 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 6	0730	5,220	10.60	July 4	0230	*9,350	*14.26

Minimum daily discharge, 10 ft3/s Sept. 27.

		DIS	CHARGE,	IN CUBIC	FEET		WATER LUES	YEAR OCTOBER	1986	TO SEPTEM	BER 198	37			
DAY	oca	r	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Jt	JL	AUG		SEP
1	181		40	220	191	160	352	1810	132	68	24	14	17		51
2	227		35	342	195	200	852	3070	107	92	414	10	26		38
3	410		31	1620	224	493	824	3530	121	599	813		57		38
4	1150		28	1650	226	787	576	1540	115	602	570		72		35
5	613		26	679	162	699	416	2540	114	304	85		62		26
6	406	5	26	335	157	559	306	5080	108	156	4 ()5	44		22
7	208		25	242	210	754	258	4070	90	95	2		38		22
8	118		25	478	501	970	222	2810	76		1		33		20
9	72		30	1110	423	566	193	1190	65	217	13		73		17
10	53		26	1990	306	400	159	589	59			9	89		14
11	43	,	34	1150	267	350	127	410	54	188		73	42		13
12	32		34	478	224	500	103	634	51			51	93		20
13	39		38	275	221	887	90	611	44			51	55		17
14	64		34	171	324	673	95	452	49	88		50	39		12
15	63		33	181	831	407	115	334	55		10		28		14
16	50		32	146	920	321	157	280	44			51	22		18
17	4()	33	126	525	297	268	248	41	38	18	34	20		16
18	35	5	73	167	312	184	365	215	55	32	1:	LO	18		72
19	29	9	519	282	307	173	316	183	63			77	15		60
20	25		613	260	443	127	247	160	166			59	13		36
21	23	3 1	010	203	404	98	191	132	256	917		15	13		24
22	23		775	161	286	104	154	111	211			37	176		20
23	23		439	121	227	120	130	131	127	1090		32	91		17
24	2		281	130	252	128	114	149	100			28	40		16
25	20		202	1150	300	130	103	188	72	203		30	28		16
26	73		808	1610	220	140	97	198	59	108		36	35		13
27	144		300	751	170	142	91	168	54	72		33	77		10
			280		130							22			13
28	16			450		144	88	153	171				98		
29	89		517	332	100		85	250	160	80		18	117		11 11
30 31	49		311	260 227	120 140		400 1710	183	99 80	213		L8 L5	96 73		
momar	454			1 70 07	0210	10510	0004	21410	2000	0220	220		1700		710
TOTAL	4549			17297	9318	10513	9204	31419	2998		228		1700		712
MEAN	147		322	558	301	375	297	1047	96.7		73		54.8		23.7
MAX	1150		300	1990	920		1710	5080	256		81		176		72
MIN	20		25	121	100	98	85	111	41			L5	13		10
CFSM	.3		.81	1.41	.76	.95	.75	2.64	.24		1.8		.14		.06
IN.	. 43	3	.91	1.62	.88	.99	.86	2.95	.28	.78	2.1	L4	.16		.07
CAL YR WTR YR		TOTAL	118222 1285		MEAN MEAN	324 352	MAX MAX		AIN AIN	5.2 10	CFSM CFSM	.82		IN.	11.11

04201500 ROCKY RIVER NEAR BEREA, OH

LOCATION.--Lat 41°24'24", long 81°53'14", in T.6 N., R.15 W., Cuyahoga County, Hydrologic Unit 04110001, on right bank at downstream side of Cedar Point Road Bridge in Rocky River Reservation, just downstream from confluence of East and West Branches, and 3.0 mi northwest of Berea.

DRAINAGE AREA . -- 267 mi2.

PERIOD OF RECORD.--October 1923 to September 1935, September 1943 to current year. Monthly discharge only for October 1923, published in WSP 1307.

REVISED RECORDS.--WSP 1437: 1924, 1925(M), 1926, 1927(M), 1928-29, 1930-35(M), 1945. WSP 1912: Drainage area. WRD-OH-2-1983: 1978-1982(M).

GAGE.--Water-stage recorder. Datum of gage is 649.90 ft above National Geodetic Vertical Datum of 1929 (Cuyahoga County bench mark). Prior to Sept. 30, 1935, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Some regulation at low flow by small reservoirs on East Branch. Some inter-basin transfer of water from Lake Erie for municipal water supply by Cleveland Metro Water District. Water-quality data collected at this site 1964 to 1977.

AVERAGE DISCHARGE. -- 56 years, 273 ft3/s, 13.89 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,400 ft³/s Jan. 22, 1959, gage height, 14.10 ft, from rating curve extended above 11,000 ft³/s on basis of contracted-opening measurement of peak flow; maximum gage height, 18.6 ft June 29, 1924 (backwater caused by tornado); minimum daily discharge, 0.2 ft³/s Sept. 2, 1932, Aug. 22, 27, 30, 1933.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood in March 1913 reached a stage of 20.9 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 4,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 6	2400	5,180	5.17	July 2	2200	*8,130	*6.40

Minimum daily discharge, 26 ft3/s Aug. 20, 21.

		DISCHARGE,	IN CUBIC	FEET		, WATER LUES	YEAR OCTOBE	R 1986 7	O SEPTEMB	ER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	548	75	188	156	272	1350	1180	101	101	925	39	90
2	688	77	639	182		1630	2280	95	89	6160	81	68
3	972	73	1970	226		760	1730	132	2060	3910	490	50
4	2440	68	955	187	391	534	909	137	393	2290	149	44
5	624	69	395	151	295	349	2440	110	140	627	70	40
6	355	69	248	145		298	4230	88	88	291	51	39
7	192	71	225	216	409	279	4250	69	70	192	45	37
8	121	71	682	363	564	255	2050	72	59	136	57	37
9	95	72	1170	248	312	214	710	71	124	108	146	36
10	84	68	1750	229	341	169	439	65	107	94	236	36
11	77	88	587	247		129	323	61	66	80	124	36
12	72	110	317	194		122	384	66	103	68	69	57
13	94	92	215	183	489	116	344	51	409	59	50	73
14	164	88	174	228	317	122	250	59	173	2010	41	52
15	178	80	153	904	219	176	227	101	79	512	35	53
16	111	79	1.36	755	284	247	231	102	59	195	31	60
17	88	82	137	323	189	293	200	71	46	123	30	47
18	77	184	284	267	128	338	169	109	40	87	30	324
19	69	905	417	358		349	144	252	35	67	28	439
20	66	505	247	475	114	296	125	142	667	56	26	157
21	64	1120	184	299		227	113	96	968	53	26	89
22	62	594	148	218	145	175	101	80	1030	50	351	67
23	57	324	122	175		153	118	67	1080	47	207	64
24	57	237	131	150		141	167	57	344	44	80	50
25	59	191	1470	229	232	133	169	52	153	42	47	45
26	86	1840	847	201		148	128	52	124	75	55	41
27	104	2140	403	199	246	140	110	69	138	61	155	39
28	108	631	279	194		127	190	92	667	49	525	37
29	83	354	219	176		115	169	64	247	44	217	46
30	77	246	188	258		773	126	77	872	43	99	59
31	81		170	313		1800		212		41	84	
TOTAL	7953		15050	8449		11958	24006	2872	10531	18539	3674	2312
MEAN	257	353	485	273		386	800	92.6	351	598	119	77.1
MAX	2440	2140	1970	904		1800	4250	252	2060	6160	525	439
MIN	57	68	122	145	114	115	101	51	35	41	26	36
CFSM	.96	1.32	1.82	1.02		1.45	3.00	.35	1.31	2.24	.45	.29
IN.	1.11	1.48	2.10	1.18	1.08	1.67	3.34	.40	1.47	2.58	.51	.32
CAL YR WTR YR		OTAL 1143 OTAL 1237		MEAN MEAN	313 339	MAX MAX		MIN MIN		CFSM 1.17 CFSM 1.27		IN. 15.93 IN. 17.23

04202000 CUYAHOGA RIVER AT HIRAM RAPIDS, OH

LOCATION.--Lat 41°20'26", long 81°10'01", in T.5 N., R.7 W., Portage County, Hydrologic Unit 04110002, on left bank at downstream side of bridge on Winchell Road at Hiram Rapids, 0.6 mi downstream from Black Brook.

DRAINAGE AREA .-- 151 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1927 to December 1935 (published as "near Hiram"), October 1944 to current year.

REVISED RECORDS.--WSP 1054: 1945. WSP 1437: 1931. WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,087.46 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 26, 1927, nonrecording gage and Aug. 26, 1927, to Dec. 31, 1935, water-stage recorder, at site 2.8 mi downstream at different datum. Oct. 20, 1944, to Oct. 22, 1946, nonrecording gage at present site and datum.

REMARKs.--Estimated daily discharges: Jan. 24-30. Records good except for estimated daily discharges and Feb. 26 to Apr. 20, which are fair. Flow regulated by East Branch Reservoir, usable capacity, 4,140 acre-ft, 14.6 mi upstream since 1939 and by LaDue Reservoir, usable capacity, 18,110 acre-ft, 9.8 mi upstream since 1961. Water-quality data collected at this site 1965 to 1977.

AVERAGE DISCHARGE. -- 51 years, 210 ft 3/s, 18.89 in/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,670 ft³/s Jan. 23, 1959, gage height, 8.11 ft, from rating curve extended above 2,600 ft³/s; minimum daily, 6.6 ft³/s Sept. 10, 1933.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,100 ft³/s Apr. 8, gage height, 5.74 ft; minimum daily, 19 ft³/s June 19.

DISCURDED IN CURTO BEEN DED CECOND MANER VERD COMORED 1006 NO CEDMENDED 1007

		DISCHA	RGE, IN CUB	IC FEET	PER SECOND, MEAN VAL	WATER JUES	YEAR OCTO	BER 1986	TO SEPTEM	IBER 1987		
DAY	oca	r nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	448	3 122	487	225	131	389	379	85	37	228	53	219
2	465		443	209	134	714		76	36	569	59	
2	528		556	200		895		78	51	1010	105	
3										1420		
4	677		678	190		861		92	77		131	
5	703	118	736	178	136	720	757	92	76	1260	113	157
6	694		659	172		583		83	62	971	93	
7	616		548	173		495		72	47	743	92	
8	514	1 117	480	178	130	452	2070	63	49	578	91	143
9	416		489	180	123	431	1910	58	45	447	96	142
10	324		593	180		386		61	31	333	120	
11	233	3 118	646	181	146	311	1080	51	24	253	127	138
12	160		613	179		234	796	55	36	208	112	
13	116		517	176		173		49	55	165	84	
14	113		461	176		139	455	53	54	121	68	
15	127	7 133	322	225	118	126	356	60	43	112	60	196
16	128		252	299		125		55	32	110	57	
17	123		207	342		129		48	25	88	55	
18	118	3 146	213	330	101	135	200	46	21	70	54	224
19	100	5 170	265	308	94	122	176	58	19	57	54	311
20	87	7 200	317	274	92	117	156	70	66	52	51	504
21	74	4 248	330	256	92	117	136	69	148	46	50	594
22	6		305	210		114	117	64	223	39	87	552
23	59		267	182		112		70	253	35	161	
24	5:		234	160	111	111	103	56	246	33	169	
25	48		255	140	118	115	106	45	199	34	140	
26	5	1 390	317	130	126	131	97	39	146	36	105	275
								43				
27	6		374	110	134	136			94	33	105	
28	79		378	100	144	122		45	86	26	159	
29	100		341	100		115	112	42	96	23	200	
30	110		297	110		130	105	39	130	22	228	
31	117	7	255	127		274		38		41	231	
TOTAL	7523	3 7127	12835	6000	3474	9014	16612	1855	2507	9163	3310	7343
MEAN	243	3 238	414	194	124	291	554	59.8	83.6	296	107	245
MAX	703		736	342		895	2070	92	253	1420	231	
MIN	48		207	100	92	111	88	38	19	22	50	
CFSM	1.61		2.74	1.28	.82	1.93	3.67	.40	.55	1.96	.71	
	1.85					2.22			.62	2.26	.82	
IN.	1.85	1.76	3.16	1.48	.86	2.22	4.09	.46	.02	2.20	.02	1.01
CAL YR WTR YR		TOTAL TOTAL	97710 86763	MEAN MEAN	268 238	MAX MAX	1690 2070	MIN MIN	21 19	CFSM 1.77 CFSM 1.58		IN. 24.07 IN. 21.37

04206000 CUYAHOGA RIVER AT OLD PORTAGE, OH

LOCATION.--Lat 41°08'08", long 81°32'50", Summit County, Hydrologic Unit 04110002, on right bank 230 ft upstream from North Portage Path bridge at Old Portage, 1.2 mi downstream from Little Cuyahoga River, and 4 mi northwest of Akron City Hall.

DRAINAGE AREA . -- 404 mi2.

WTR YR 1987 TOTAL

157565

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1921 to December 1935, March 1939 to current year.

REVISED RECORDS.--WSP 1307: 1924(M). WSP 1912: Drainage area. WRD OH-79-2: 1974 (M), 1976 (M).

GAGE.--Water-stage recorder. Datum of gage is 740.11 ft above National Geodetic Vertical Datum of 1929, unadjusted. Prior to Dec. 21, 1923, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by diversions, storage reservoirs and power plants. At Lake Rockwell, 17.7 mi upstream from gage, an average of 70 ft³/s was diverted for municipal supply of city of Akron. Sewage from city enters river 2.9 mi downstream from station. Some diversion from the Tuscarawas River basin drainage into this basin at Portage Lakes (see REMARKS for station 03116000 in volume 1 of this report). Sediment data collected at this site 1972-1981.

AVERAGE DISCHARGE. -- 62 years, 430 ft 3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 6,500 ft³/s Jan. 21, 1959, gage height, 11.54 ft, from rating curve extended above 3,900 ft³/s on basis of contracted-opening estimate at gage height 11.54 ft, at site with drainage area of 488 mi adjusted to gaging station by drainage-area relation; maximum gage height, 13.29 ft Sept. 14, 1979; minimum daily, 26 ft³/s Sept. 2, 1945, July 5, 1954.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,490 ft³/s Oct. 3, gage height, 9.16 ft; minimum daily, 76 ft³/s July 31, Aug. 1.

DICCUARCE IN CURIC BEEN DED CECOMO MAMER VEAD COMORED 1006 NO CERMENDED 1007

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR OCTOBER	1986	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DEC	JAN		MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1100	141	878	421	263	551	642	213	164	333	76	299
2	764	139	1200	424		1040	935	186	169	1960	123	248
3	1190	156	1390	413		1090		202		1670	163	228
4	1570	153	1270	371		1120		199	138	1390	110	227
5	1210	163	1150	353	316	1090	1480	185	118	1510	100	310
6	949	162	1160	331	321	944	2250	181	115	1430	122	262
7	878	151	1050	364	328	796	2690	173	112	1140	127	264
8	805	142	939	352	338	697	2790	161	161	889	126	295
9	676	142	945	353	309	643	2790	152	188	753	280	266
10	555	145	1050	372	305	585	2560	143	131	564	237	275
11	467	176	987	368	325	525	2080	139	119	457	185	641
12	376	169	923	369	363	461	1570	135	189	367	165	276
13	400	161	848	350		393		127	200	434	158	188
14	457	160	691	348	332	364	908	127	158	361	152	186
15	366	160	632	425		363	765	220	133	228	120	205
16	336	183	538	513	221	339	639	132	114	209	110	238
17	312	198	454	506		319	546	129	107	176	123	267
18	289	322	469	520		329		348	102	153	120	501
19	279	381	481	598		354		387	111	127	103	418
20	269	448	475	589		341	381	295	448	116	95	457
21	263	551	487	493	210	314	335	257	275	109	96	511
22	259	535	500	455		283		213	327	96	238	600
23	233	507	472	432		262		189	359	94	135	608
24	155	493	444	291		241	342	161	350	91	111	550
25	151	465	594	259		235	319	154	314	91	106	442
26	258	1040	587	276	253	243	300	151	253	105	136	353
27	206	1140	547	265		253		153	207	103	145	267
28	194	1010	554	226		257		139	214	90	182	254
29	174	990	546	241		220		199	173	84	137	259
30	159	1010	509	293		352		195	232	78	125	268
31	156		457	281		587		173		76	284	
TOTAL	15456	11593	23227	11852	7750	15591	30491	5818	5850	15284	4490	10163
MEAN	499	386	749	382		503		188	195	493	145	339
MAX	1570	1140	1390	598		1120		387	448	1960	284	641
MIN	151	139	444	226		220		127	102	76	76	186
CAL YR	1986 т	OTAL 1814	23	MEAN	497	MAX	1950 M	IN	67			

2790

MIN 76

432

MAX

MEAN

04207200 TINKERS CREEK AT BEDFORD, OH

LOCATION.--Lat 41°23'04", long 81°31'39", in T.6 N., R.11 W., Cuyahoga County, Hydrologic Unit 04110002, on left bank at downstream side of bridge on State Highway 14 in Bedford, 5.5 mi upstream from mouth.

DRAINAGE AREA .-- 83.9 mi2.

PERIOD OF RECORD. -- November 1962 to current year.

REVISED RECORDS. -- WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 876.18 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 23 to Feb. 2, Feb. 16-20, and July 22 to Sept. 28. Records good except for Apr. 6 to June 20, which are fair and for estimated daily discharges, which are poor. Water-quality data collected at this site 1965 to 1977. Sediment data collected at this site 1974 to 1979.

AVERAGE DISCHARGE. -- 24 years (1963-87), 131 ft3/s, 21.21 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,220 ft³/s July 20, 1969, gage height, 10.10 ft, from rating curve extended above 3,400 ft³/s on the basis of contracted-opening measurement of peak flow; minimum, 5.2 ft³/s Aug. 19, 1963.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*).

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 3	2030	1,800	6.34	July 2	0830	*1,970	*6.49

Minimum daily discharge, 16 ft 3/s July 31.

		DISCHAR	GE, IN CUBI	C FEET	PER SECOND, MEAN VAL	WATER JUES	YEAR OCTOB	ER 1986	TO SEPTEM	BER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	294	35	102	65	37	997	446	45	26	244	30	120
2	233	37	479	82		873		52	45	1220	66	52
3	764	34	774	95		631		67	175	1090	140	
4	743	35	556	77		326		60	55	769	30	
5	607		272	59		228		47	30	290	23	110
6	253	34	150	62		220		41	25	122	21	58
7	124	34	180	106		214	1100	38	23	79	22	
8	86	33	321	101	125	183	713	35	26	61	24	88
9	66	36	505	81	92	141	326	32	28	48	60	56
10	56	32	514	86	123	101	190	30	27	130	120	45
11	48		320	84		81		32	24	67	39	300
12	43		162	75	116	72		52	87	34	28	66
13	84		115	74		65		36	31	36	25	42
14	188		93	114		63		35	28	356	23	
15	93	35	95	298	73	98	143	81	25	77	21	46
16	62		97	249		114		40	24	46	20	
17	68		91	129		121		28	22	34	24	72
18	50		240	127		128		88	22	30	27	130
19	42		207	134		129	74	94	23	26	21	110
20	40	291	127	137	43	112	63	53	300	26	19	100
21	39		99	104		88		39	281	26	19	120
22	37		82	79		72		33	413	25	150	
23	35	159	66	62		67		29	218	24	40	180
24	34	124	80	52		58		26	72	24	25	90
25	31	97	347	45	130	58	75	24	44	25	22	64
26	49		267	40		66		28	36	28	40	
27	90		150	37		57	76	31	31	30	86	37
28	60		110	35	243	52		27	108	25	160	
29	47	196	91	33		47	65	26	138	20	40	44
30	44		80	41		317	52	26	371	18	31	48
31	39		72	52		511		27		16	39	
TOTAL	4449	4603	6844	2815		6290	8361	1302	2758	5046	1435	2419
MEAN	144	153	221	90.8	88.2	203	279	42.0	91.9	163	46.3	80.6
MAX	764	723	774	298	243	997	1200	94	413	1220	160	
MIN	31	32	66	33	30	47	52	24	22	16	19	32
CFSM	1.72		2.63	1.08		2.42		.50	1.10	1.94	.55	.96
IN.	1.97	2.04	3.03	1.25	1.09	2.79	3.71	.58	1.22	2.24	.64	1.07
CAL YR WTR YR			52261 48791	MEAN MEAN	143 134	MAX	983 1220	MIN	16 16	CFSM 1.70 CFSM 1.60		IN. 23.17 IN. 21.63
HIW IN	1301	TOTAL	40191	HEAN	134	MAA	1220	MIN	10	CESM 1.60		IN. 21.03

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH (National stream quality accounting network station)

LOCATION.--Lat 41°23'43", long 81°37'48, in T.6 N., R.12 W., Cuyahoga County, Hydrologic Unit 04110002, on left bank 240 ft downstream from bridge on Old Rockside Road, 0.8 mi northeast of Independence, and 3.0 mi downstream from Tinkers Creek.

DRAINAGE AREA . -- 707 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1903 to December 1905 (fragmentary), January to July 1906 (gage heights and discharge measurements only), September 1921 to May 1923, September 1927 to December 1935, March 1940 to current year.

REVISED RECORDS.--WSP 1307: 1922-23(M), 1928-30(M), 1933(M), 1940(M), 1947(M), 1950(M). WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 583.57 ft above National Geodetic Vertical Datum of 1929. Sept. 21, 1903 to July 21, 1906, nonrecording gage at bridge 240 ft upstream at present datum. Sept. 28, 1921 to May 30, 1923, nonrecording gage at bridge 240 ft upstream at datum 2.42 ft higher. Sept. 5, to Oct. 8, 1927, nonrecording gage, and Oct. 9, 1927, to Dec. 31, 1935, Mar. 5, 1940, to June 19, 1969, water-stage recorder, at site 100 ft upstream at present datum.

REMARKS.--Estimated daily discharges: Sept. 1-30. Records fair except for period of estimated daily discharge, which is poor. Natural flow of stream affected by diversion, storage reservoirs and power plants. Some diversion from the Tuscarawas River basin drainage into this basin at Portage Lakes (see REMARKS for station 03117000). Water diverted into Ohio Canal at Brecksville, 6 mi upstream from station, bypasses station. These records do not include flow in canal except above about 15,000 ft³/s, when channels merge.

AVERAGE DISCHARGE.--56 years (1921-22, 1927-35, 1940-87), 835 ft3/s, not including flow in Ohio Canal.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,800 ft³/s Jan. 22, 1959, gage height, 22.41 ft, from rating curve extended above 17,000 ft³/s on basis of contracted-opening measurement of peak flow; minimum daily, 21 ft³/s Aug. 28, 1933; minimum combined daily discharge of river and canal, 55 ft³/s Aug. 28, 1933.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10,500 ft³/s July 2, gage height, 17.69 ft; minimum daily, 169 ft³/s July 31.

		DISCH	ARGE,	IN CUBIC	FEET		, WATER	YEAR OCTOB	ER 1986	TO SEPTEMBE	R 1987		
DAY	OCI	no No	V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2030	29	6	1360	795	576	3400	2010	558	291	1360	198	760
2	1910	27	7	2510	822		3380	3180	469	317	7360	335	600
3	2830			3810	870	759	2540	2660	519	790	5620	923	470
4	5130			2710	758	722	2060	2220	557	438	3480	303	450
5	2650			2010	675	688	1840	4240	441	272	2480	215	740
6	1790	25	9	1780	660	688	1740	6260	421	226	2170	199	560
7	1420	24	2	1720	753	781	1590	6910	390	213	1870	217	560
8	1230			2120	798		1390		358	203	1560	223	660
9	1050			2450	717	766	1220	3810	333	483	1360	358	540
10	857			2870	745	763	1080	3340	304	315	1110	803	520
11	715	5 22	3	2000	772	759	949	2810	292	239	988	374	1300
12	607	7 22	3	1660	722	846	875	2340	343	408	684	298	700
13	663			1440	696	849	772		289	648	662	253	440
14	996			1210	751		709	1590	281	416	1670	247	440
15	713			1090	1420	635	795	1460	581	289	670	225	500
16	590	20	4	1000	1310	528	852	1290	371	239	494	188	560
17	558	3 22	8	876	1000		855	1120	292	214	404	180	620
18	5 0 5			1150	982	517	871		484	197	337	229	1100
19	462			1140	1130		919		1170	195	279	200	900
20	441			957	1280	464	860		720	1560	243	181	960
21	434	189	0	885	983	484	745	700	587	1460	236	179	1100
22	423	3 126	0	865	851	539	671	613	481	1740	242	920	1200
23	423			827	800	618	616		408	1270	228	531	1300
24	349			791	653	590	559	825	326	808	217	257	1100
25	291			1870	637	700	521	761	277	685	219	222	900
26	496			1490	607	707	551	624	285	608	245	232	640
27	475	343	0	1180	588	710	530	637	366	497	257	514	560
28	442	2 216	0	1050	498	872	527	988	290	852	221	1010	500
29	381			961	475		494	735	327	677	200	454	500
30	337			952	549		1320		339	1290	186	290	560
31	306			871	645		2400		339		169	349	
TOTAL	31504	2393	8	47605	24942	18804	37631	61995	13198	17840	37221	11107	21740
MEAN	1016			1536	805	672	1214		426	595	1201	358	725
MAX	5130			3810	1420		3400		1170	1740	7360	1010	1300
MIN	291			791	475	464	494		277	195	169	179	440
CAL YR WTR YR		TOTAL	3884 3475		MEAN MEAN	1064 952	MAX MAX	5970 7360	MIN MIN	124 169			

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1948 to September 1949, October 1950 to current year.

PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: July 1965 to current year.

PH: February 1973 to current year.
WATER TEMPERATURES: October 1948 to September 1949, October 1952 to current year.

DISSOLVED OXYGEN: July 1965 to current year.
SUSPENDED SEDIMENT DISCHARGE: Water years 1950-74, December 1976 to September 1984.

INSTRUMENTATION. -- Alcohol-actuated thermograph October 1956 to June 1965, water-quality monitor since July 1965.

REMARKS. -- Interruptions in the water-quality record were due to malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 3,000 microsiemens Feb. 12, 1977; minimum, 149 microsiemens Nov. 23, 1974. ph: Maximum, 9.0 units July 20, 1987; minimum, 5.9 units Jan. 26, 1976.
WATER TEMPERATURES: Maximum, 31.0 C Aug. 18, 1949, July 21, 1980; minimum, 0.0 C on many days during winter.
DISSOLVED OXYGEN: Maximum, 17.4 mg/L Feb. 24, 1987; minimum, 0.0 mg/L Oct. 23, 1965, Feb. 10-12, June 23,

July 26, 1966.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,800 mg/L Aug. 21, 1960; minimum daily mean, 1 mg/L Sept. 4, 10, 1955.

SEDIMENT LOADS: Maximum daily, 97,000 tons Sept. 14, 1979; minimum daily, 0.25 ton Sept. 4, 1955.

EXTREMES FOR CURRENT YEAR .--

PREMEE FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 1,960 microsiemens Sept. 14; minimum, 282 microsiemens July 2. pH: Maximum, 9.0 July 29, 30; minimum, 7.4 units Apr. 15.
WATER TEMPERATURES: Maximum, 29.0 C July 21, 22; minimum, 0.0 C Jan. 26, 27, 28.
DISSOLVED OXYGEN: Maximum recorded, 17.4 mg/L Feb. 24,; minimum, 3.4 mg/L Sept. 12.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
NOV											
20 MAR	0900	2260	655	8.04	2.0	5.5	19	12.0	98	8000	6400
18	0945	2030	610	7.98	8.0	4.5	2.5	11.6	92	9200	580
APR 29	0930	592	700	8.11	18.0	13.5	5.1	9.4	95	1500	120
AUG	2.473.47	2.5.00	3.515								
19	1430	159	873	8.59	34.0	24.5	4.2	10.0	125	260	1600
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV	200	88	58	14			140	0	115	74	85
20 MAR	200	88	58	14	53	4.5	140	U	115	74	85
18 APR	220	100	62	15	99	4.6			115	79	180
29 AUG	220	92	62	15	60	3.7	153	0	124	77	100
19	260	100	74	17	78	6.5	174	5.0	151	90	120
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
NOV							0.000				
20 MAR	0.30	7.6	404	0.020	1.50	0.070	0.060	1.1	0.170	0.040	0.040
18	0.30	4.3	513	0.050	1.10	1.70	1.70	2.7	0.340	0.230	0.160
APR 29 AUG	0.30	3.8	405	0.090	2.00	0.310	0.310	1.0	0.110	0.040	0.020
19	0.50	5.6	504	0.070	3.60	0.010	<0.010	1.3	0.240	0.150	0.110

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH--Continued

WATER-QUALITY RECORDS

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSEN DIS SOLV (UG/ AS A	E- DIS ED SOLV	3-	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADM DI SOL (UG	IUM MIN S- DIS VED SOI /L (U		COBALT, DIS- SOLVED (UG/L AS CO)	SOI (UC	S- LVED G/L	IRON, DIS- SOLVEI (UG/L AS FE)	SOL (UG	S- VED	LITHIUM DIS- SOLVED (UG/L AS LI)
NOV															
20	20		1	38	<0.5		1	<1	<3		8	31	В	<5	12
MAR															
18	20		1	39	<0.5		<1	<1	<3		4	3	5	<5	13
APR	30		1	46	/n =		<1	<1	<3		9	68	0	<5	23
29 AUG	30		1	40	<0.5		<1	<1	(3		9	0.0	0	(3	23
19	30		3	49	<0.5		<1	1	<3		3	1	0	<5	9
DATI	NE D SO E (U	NGA- SE, DIS- DLVED G/L MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DEN DI SOI (UC	IS- D EVED S	CKEL, DIS- GOLVED UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)		ER, S- VED S	TRON- TIUM, DIS- OLVED UG/L S SR)	VANA DIUM DIS SOLV (UG/ AS V	i, : 3- ED : 'L	ZINC, DIS- SOLVED (UG/L AS ZN)		IT,
NOV															
20		40	<0.1		<10	3	<1	<	1.0	170		<6	16		
MAR 18		120	<0.1		<10	<1	<1	,	1.0	190		<6	28		14
APR		120	10.1		110	11	(1	,	1.0	190		10	20		
29		67	0.2		<10	3	<1	<	1.0	180		<6	24		
AUG												1002	204		
19		21	<0.1		<10	1	<1	<	1.0	210		<6	12		22

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	SPECIF	TC CONDU	CTANCE,	MICROSIEMENS	PER CE	NTIMETER AT	25, WATER	YEAR OC	TOBER 1986	TO SEPTEM	BER 1987	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMB	ER		DECEMBE	R		JANUAR	RY
1 2 3 4 5	591 555 576 486 510	429 426 351 360 480	561 511 511 416 491	783 801 816 834 858	768 777 795 807 822	777 786 806 822 837	489 603 450 435 459	480 441 402 405 438	484 505 421 416 446	603 948 1240 1170 981	564 603 921 1000 831	585 724 1070 1090 900
6 7 8 9	537 504 510 573 582	489 489 495 504 543	501 498 503 530 569	8 4 0 8 7 3 8 5 5 8 5 8 8 4 9	828 834 840 840 816	835 850 848 849 836	459 498 519 492 441	441 447 468 447 420	450 457 483 479 431	822 852 798 753 990	789 774 741 726 741	806 809 781 737 841
11 12 13 14 15	612 636 687 666 654	570 588 621 591 576	598 618 657 625 625	837 849 858 873 921	822 822 807 849 873	828 838 831 860 893	465 477 480 516 543	441 465 468 474 516	448 471 477 495 534	1190 1150 1100 957 969	942 1030 960 921 720	1100 1080 1020 943 832
16 17 18 19 20	684 702 702 696 696	654 666 681 666 666	669 688 693 684 685	924 912 951 810 681	897 876 840 639 630	913 897 877 687 660	570 588 678 612 588	534 558 588 570 570	555 575 630 586 578	720 663 666 831 1240	654 627 624 651 846	689 652 644 699 1090
21 22 23 24 25	699 702 705 723 768	672 678 678 684 726	691 694 695 703 747	657 609 624 636 624	603 597 603 600 606	623 601 610 619 616	582 576 582 624 609	567 558 552 567 468	576 566 568 592 531	1050 906 873 963 960	918 819 798 801 915	980 849 822 884 947
26 27 28 29 30 31	777 681 792 792 798 798	696 630 681 753 780 771	758 651 717 767 787 781	606 465 501 519 498	384 420 465 483 474	486 446 478 494 486	513 549 555 552 564 573	477 513 531 534 543 549	497 537 546 546 558 566	906 867 876 876 1360 1960	852 843 828 855 888 1330	870 854 848 865 1060 1660
MONTH	798	351	633	951	384	733	678	402	516	1960	564	895
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARC			APRIL			MAY	
1 2 3 4 5	1940 1830 1590 1530 1280	1700 1530 1500 1290 1150	1790 1630 1540 1400 1200	705 603 720 702 618	495 501 588 615 573	578 561 641 647 590	1000 1030 696 927 1060	834 702 651 636 717	926 858 667 707 831	738 780 792 777 795	690 741 768 741 732	707 763 776 763 753
6 7 8 9	1130 1090 1070 1110 1210	1080 1050 1010 939 1080	1100 1070 1040 1010 1130	594 573 558 567 564	549 540 540 546 552	569 555 552 559 558	699 453 429 426 405	459 414 414 399 387	575 434 424 409 393	825 1020 1050 948 888	801 834 960 870 858	808 955 1010 902 872
11 12 13 14 15	1310 1280 1210 1090 987	1200 1200 1100 999 951	1240 1260 1160 1050 959	588 612 630 750 1300	558 576 588 618 738	579 599 616 668 980	408 459 480 507 576	393 411 459 483 516	398 430 465 499 551	888 900 909 882 876	864 858 882 861 813	875 878 894 876 857
16 17 18 19 20	945 942 927 897 924	897 909 882 861 891	921 926 895 875 903	1310 1160 948 852 768	1170 954 855 771 741	1260 1050 910 816 757	591 591 612 627 645	573 573 582 594 618	582 584 602 615 633	876 879 903 825 816	738 771 819 576 714	790 839 871 696 780
21 22 23 24 25	951 957 966 906 897	903 924 909 876 837	917 936 937 888 858	762 750 753 771 786	738 732 735 744 765	745 740 745 756 774	684 699 756 759 729	636 672 684 714 714	668 685 706 739 721	798 801 804 834 834	771 762 783 807 816	787 776 795 818 827
26 27 28 29 30	834 810 807 	810 798 717 	818 805 789	819 813 801 915 921	789 798 786 789 756	806 804 792 833 874	741 744 735 714 711	723 717 645 666 699	733 735 692 695 705	861 891 861 867 855	834 855 831 837 810	846 864 840 853 829 841
31 MONTH	1940	717	1070	831 1310	672 495	727 730	1060	387	622	849 1050	831 576	830
							and the same			4.00		7.7.7.7

MONTH

8.12

7.52

8.38

7.58

8.02

8.08

7.66 7.88

8.18

7.84

7.99

STREAMS TRIBUTARY TO LAKE ERIE

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	SPEC	IFIC CON	DUCTANCE,	MICROSIEMENS	PER	CENTIMETER	AT 25	, WAT	ER YEAR	OCTOBER	1986	TO SEPT	TEMBER 19	87
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	-	MAX	MIN	MEAN		MAX	MIN	MEAN
		JUNE			JUL	Z .			AUGUST	?			SEPTEME	BER
1 2 3 4 5	846 882 804 774 834	822 792 639 648 780	834 850 721 725 813	627 636 408 426 432	498 282 366 396 423	589 384 381 411 429		894 873 729 750 804	864 492 465 606 753	880 825 623 661 785		804 762 759 738 735	621 705 720 717 714	705 743 741 724 725
6 7 8 9	864 891 885 822	834 861 870 804	855 874 877 807	435 441 459 474 558	423 423 435 459 468	428 427 448 466 494		858 876 870 846 768	804 846 825 675 546	838 862 856 782 636		720 666 666 711 687	645 645 633 660 639	668 658 651 679 657
11 12 13 14 15	870 873 870 792 876	822 771 615 624 798	850 835 789 712 842	540 576 606 531 612	435 534 495 405 537	516 559 584 483 562		723 807 828 825 852	555 726 801 807 807	645 782 812 816 827		666 654 639 675 684	555 378 543 642 558	645 488 601 654 642
16 17 18 19 20	924 933 921 933 921	882 912 909 912 432	909 920 915 926 713	669 735 735 759 780	615 663 690 735 759	637 679 712 750 770		8 46 8 43 8 43 8 5 5 8 6 7	825 822 825 801 795	839 833 834 839 834		711 720 702 552 594	675 687 546 516 537	690 710 613 540 565
21 22 23 24 25	636 600 612 672 711	435 456 543 606 663	570 534 582 644 686	822 831 828 843 840	777 801 816 816 816	79 2 81 6 82 4 82 7 83 0		897 876 708 735 804	870 426 555 651 738	885 681 611 704 775		564 564 555 549 561	528 507 519 528 531	550 548 541 540 551
26 27 28 29 30 31	729 729 675 669 621	696 702 615 549 474	714 717 651 634 563	831 846 825 861 882 885	822 795 804 828 858 876	827 818 821 •848 871 881	1	849 000 693 699 774 801	801 681 546 666 705 765	823 855 637 681 751 782		582 588 612 630 651	543 546 579 600 618	564 568 595 617 635
MONTH	933	432	761	885	282	641		000	426	774	4.	804	378	627
YEAR	1960	282	734											
Lange Co.				STANDARD UNITS							987			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	1	XAM	MIN	MEAN		MAX	MIN	MEAN
					OVEME		2		DECEMBE				JANUAR	
1 2 3 4 5	8.01 7.89 7.87 7.69 7.84	7.60 7.66 7.62 7.52 7.60	7.76 7.79 7.79 7.59 7.69	8.18 8.27 8.16	7.92 7.89 7.96 8.00 7.95	8.02 8.01 8.11 8.05 8.06	7	.93 .89 .84 .88	7.85 7.75 7.76 7.83 7.83	7.89 7.83 7.81 7.84 7.86		7.97 8.00 8.02 8.03 8.02	7.94 7.94 7.93 7.92	7.95 7.97 7.98 7.97 7.98
6 7 8 9	7.92 7.77 7.78 7.79 7.82	7.74 7.73 7.75 7.74 7.79	7.77 7.76 7.77 7.76 7.81	8.33 8.32 8.29	7.94 7.98 7.97 7.92 3.02	8.07 8.14 8.08 8.08 8.20	7 7 7	.86 .87 .88 .78	7.84 7.81 7.76 7.72 7.66	7.85 7.83 7.81 7.75 7.74		8.04 8.04 8.04 8.08 8.08	7.97 7.94 7.96 7.91 7.96	8.01 7.99 7.99 8.01 8.02
11 12 13 14 15	7.83 7.81 7.84 7.84 7.87	7.78 7.77 7.77 7.74 7.76	7.81 7.79 7.79 7.79 7.84	8.28 8.30 8.36	3.08 3.01 3.05 3.09 3.10	8.16 8.12 8.16 8.24 8.21	7 7 7	.83 .86 .87 .89	7.77 7.81 7.82 7.83 7.86	7.80 7.83 7.85 7.85 7.87		8.03 8.12 8.16 8.18 8.07	7.93 8.00 7.96 7.96 7.90	7.98 8.05 8.06 8.06 7.96
16 17 18 19 20	7.90 7.90 7.91 7.90 7.93	7.86 7.82 7.80 7.86 7.86	7.88 7.86 7.86 7.88 7.89	8.38 8.30 8.02	3.03 7.98 7.96 7.66 7.95	8.09 8.16 8.10 7.84 8.01	7 7 7	.88 .90 .94 .92	7.84 7.84 7.86 7.90 7.91	7.85 7.87 7.91 7.92 7.92		7.95 8.10 8.03 7.99 8.04	7.91 7.95 7.90 7.90 7.84	7.94 8.02 7.97 7.96 7.94
21 22 23 24 25	7.92 7.91 7.98 8.04 8.00	7.85 7.81 7.83 7.82 7.88	7.88 7.86 7.89 7.92 7.94	8.00 7 8.01 7 8.06 7	7.81 7.92 7.97 7.98 1.04	7.88 7.96 7.99 8.02 8.07	7 7 7	.95 .95 .96 .97	7.93 7.93 7.93 7.91 7.78	7.94 7.94 7.94 7.94 7.89		8.06 8.05 8.12 8.07 7.99	7.96 7.93 7.93 7.95 7.89	8.01 7.98 8.03 8.00 7.94
26 27 28 29 30 31	7.94 7.93 8.07 8.07 8.04 8.12	7.64 7.65 7.89 7.92 7.86 7.89	7.85 7.82 7.97 7.98 7.93 8.01	7.76 7.77 7.88 7.93	.60 .61 .62 .58 .87	7.79 7.68 7.71 7.81 7.89	7 7 8 8	.95 .96 .97 .08 .00	7.89 7.94 7.94 7.94 7.92	7.93 7.95 7.96 7.98 7.95 7.94		8.05 8.03 8.04 8.12 8.03 7.96	7.88 7.93 7.92 7.94 7.92 7.85	7.95 7.97 7.97 8.01 7.98 7.91

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

				(DIMIDHED O	MIID/, W	ILEK IEAK	OCTOBER 130	30 10 31	FIEMBER IS	,0,		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2	8.02 8.16	7.90 7.94	7.96	8.04 7.84	7.71 7.73	7.83 7.80	7.95 7.89	7.80 7.71	7.86 7.78	8.52 8.47	7.98	8.27
3	8.03	7.84	7.91	7.89	7.81	7.85	7.87	7.76	7.79	8.34	7.99 7.90	8.24 8.05
5	8.16	7.87 7.93	8.00	7.94 7.91	7.87 7.87	7.90 7.89	7.86 7.82	7.77	7.81 7.74	8.58	7.85 8.29	8.16 8.45
6	8.24											
7 8	8.26	7.94	8.09 8.10	7.88 7.84	7.82 7.79	7.85 7.81	7.69 7.64	7.64 7.61	7.67 7.62	8.62 8.53	8.36	8.47
9	8.14	7.95 7.97	8.05	7.89 7.92	7.75	7.81	7.65 7.63	7.61 7.60	7.62 7.62	8.54 8.52	8.11	8.36
10	8.27	7.99	8.12	8.04	7.76 7.82	7.83 7.92	7.60	7.55	7.58	8.53	8.05	8.34
11	8.22	7.93	8.09	8.08	7.80	7.94	7.66	7.55	7.59	8.52	7.96	8.32
11	8.12	7.95	8.03	8.18	7.86	8.02	7.74	7.58	7.64	8.49	7.97	8.32 8.37
13 14	8.26	7.92 8.01	8.07 8.17	8.18 8.16	7.85 7.86	8.03	7.86 7.84	7.61 7.58	7.70 7.68	8.73 8.79	7.86 8.02	8.47
15	8.44	8.01	8.21	8.29	7.87	8.07	7.72	7.44	7.61	8.43	7.90	8.20
16	8.47	8.10	8.27	8.31	7.92	8.12	7.92	7.59	7.73	8.44	7.92	8.14
17 18	8.49	8.11 8.11	8.28	8.26 8.29	7.83 7.82	8.07 8.07	7.91 8.18	7.65 7.70	7.77 7.89	8.53 8.48	7.96 7.91	8.32 8.15
19	8.55	8.11	8.31	8.39	7.83	8.10	8.26	7.71	7.97	7.93	7.54	7.72
20	8.56	8.20	8.35	8.48	7.84	8.16	8.40	7.68	8.03	8.14	7.87	7.98
21 22	8.61 8.57	8.19 8.14	8.37 8.35	8.60 8.70	7.87	8.24	8.44	7.73	8.11	8.20 8.14	7.92 7.92	8.05 8.01
23	8.42	8.06	8.26	8.78	7.91 7.98	8.32	8.50 8.19	7.82 7.77	7.93	8.15	7.93	8.03
24 25	8.69	8.10 8.15	8.36	8.78 8.70	8.07 8.06	8.45	8.10 8.39	7.67	7.86 8.07	8.10 8.10	7.97 8.03	8.04
26		8.08										8.00
27	8.67 8.62	8.08	8.37 8.35	8.36 8.60	8.03 7.87	8.22 8.21	8.47 8.43	7.83 7.98	8.15 8.22	8.06 8.10	7.96 7.93	8.01
28 29	8.60	8.01	8.27	8.77	8.11	8.44	8.13	7.63 7.75	7.83 8.00	8.05 8.07	7.90 7.92	7.97 8.01
30				8.79 8.58	8.37 7.77	8.57 8.06	8.32 8.46	7.86	8.17	8.16	7.96	8.03
31				7.86	7.73	7.78				8.15	8.03	8.08
MONTH	8.69	7.84	8.19	8.79	7.71	8.07	8.50	7.44	7.84	8.79	7.54	8.18
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
$\frac{1}{2}$	8.05	7.89 7.96	8.00	8.03 8.04	7.89 7.71	7.95	8.88 8.77	8.37	8.64	8.21	7.85	8.04
3	7.97	7.96 7.80	8.01 7.86	8.04 7.85	7.71 7.72	7.82 7.78	8.77 8.11	8.17 7.91	8.43	8.27 8.37	8.13 8.15	8.18 8.25
4	8.06	7.75	7.92	7.89	7.84	7.86	8.24	7.80	8.00	8.35	8.15	8.24
5	8.08	7.96	8.03	7.94	7.87	7.90	8.40	8.01	8.18	8.38	8.12	8.26
6	8.11	7.98	8.05	7.96	7.87	7.91	8.48	8.12	8.29	8.54	8.15	8.32
7 8	8.16	8.03	8.09 8.16	7.95 7.98	7.80 7.85	7.88 7.91	8.43 8.37	8.15 8.16	8.31 8.28	8.48	8.10	8.28
10	8.10	8.00	8.00	7.94 8.03	7.85 7.86	7.89 7.94	8.29 8.16	8.09 7.86	8.15 7.97	8.59 8.61	8.12 8.20	8.33
11	8.30 8.27	8.03 7.92	8.18	8.12 8.37	7.90 7.92	8.00 8.12	8.29 8.35	7.97 8.12	8.11	8.37 7.94	8.02 7.51	8.22 7.75
13 14	8.04	7.80	7.89	8.46	8.01	8.22	8.38	8.15	8.25	8.14	7.94	8.04
15	8.27	7.79 7.99	7.96 8.14	8.01 8.18	7.89 7.90	7.94 8.04	8.42	8.17 8.21	8.31 8.35	8.26 8.20	8.06 8.10	8.15 8.12
16	8.43	8.11	8.28	8.26	7.98	8.10	8.67	8.23	8.44	8.14	8.02	8.07
17	8.37	8.11	8.26	8.32	7.97	8.15	8.80	8.28	8.53	8.19	7.96	8.06
18 19	8.45	8.15	8.31	8.38 8.52	8.03	8.20 8.32	8.80 8.76	8.35 8.30	8.60 8.53	8.08	7.91 7.88	8.01 7.99
20	8.52	7.60	8.01	8.64	8.20	8.45	8.66	8.22	8.45	8.10	7.92	8.02
21 22	7.93	7.69	7.82	8.78	8.30	8.55	8.48	8.26	8.35	8.18	8.05	8.11
22	7.95 7.97	7.80 7.74	7.87 7.88	8.79 8.83	8.25	8.56 8.55	8.34	7.96 7.81	8.09 7.94	8.15	8.08	8.11
23 24	8.11	7.97	8.03	8.90	8.31	8.62	8.29	8.07	8.18	8.19	8.10	8.15
25	0 20	8.03	8.12	8.88	8.33	8.63	8.35	8.15	8.25	8.32	8.11	8.21
	8.28					2		8.16	8.22	8.40	2 2 2 2	0 05
26	8.42	8.05	8.20	8.76	8.11	8.45	8.29				8.11	8.25
27 28		8.05 8.14 8.04	8.20 8.23 8.07	8.76 8.80 8.95	8.11 8.25 8.34	8.45 8.54 8.67	8.29 8.20 8.02	8.01 7.97	8.14 8.00	8.49	8.14 8.18	8.31 8.37
27 28	8.42 8.32 8.17 8.16	8.14 8.04 7.94	8.23 8.07 8.06	8.80 8.95 9.01	8.25 8.34 8.40	8.54 8.67 8.71	8.20 8.02 8.21	8.01 7.97 8.04	8.14 8.00 8.12	8.49 8.60 8.52	8.14 8.18 8.21	8.31 8.37 8.37
27	8.42 8.32 8.17	8.14 8.04	8.23	8.80 8.95	8.25 8.34	8.54	8.20 8.02	8.01 7.97	8.14	8.49	8.14 8.18	8.31 8.37
27 28 29 30	8.42 8.32 8.17 8.16 8.07	8.14 8.04 7.94 7.90	8.23 8.07 8.06 7.99	8.80 8.95 9.01 9.02	8.25 8.34 8.40 8.36	8.54 8.67 8.71 8.71	8.20 8.02 8.21 8.23	8.01 7.97 8.04 8.13	8.14 8.00 8.12 8.18	8.49 8.60 8.52 8.52	8.14 8.18 8.21 8.16	8.31 8.37 8.37 8.29
27 28 29 30 31	8.42 8.32 8.17 8.16 8.07	8.14 8.04 7.94 7.90	8.23 8.07 8.06 7.99	8.80 8.95 9.01 9.02 8.98	8.25 8.34 8.40 8.36 8.42	8.54 8.67 8.71 8.71 8.71	8.20 8.02 8.21 8.23 8.26	8.01 7.97 8.04 8.13 8.14	8.14 8.00 8.12 8.18 8.20	8.49 8.60 8.52 8.52	8.14 8.18 8.21 8.16	8.31 8.37 8.37 8.29

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			TEMPER	ATURE, WATER	DEG.), WATER	YEAR OCTOBE	R 1986 T	O SEPTEMBI	ER 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	BR		DECEMBE	R		JANUAR	Y.
1 2 3 4 5	23.0 21.5 21.0 21.5 21.0	21.0 21.0 20.0 20.5 20.0	22.0 21.0 20.5 21.0 20.5	14.0 14.0 12.5 11.5	12.5 12.5 11.0 10.5 10.0	13.5 14.0 11.5 11.0 10.5	5.5 5.5 6.0 5.0 4.0	4.5 5.0 5.5 4.0 3.5	5.0 5.5 6.0 5.0 4.0	4.0 3.5 4.0 3.0 3.0	3.5 3.0 3.0 2.5 2.0	4.0 3.5 3.5 3.0 2.5
6 7 8 9	19.5 17.5 17.5 17.0 15.5	17.0 16.0 15.5 15.5	18.0 17.0 16.5 16.5 15.0	12.0 12.5 14.0 14.0	11.0 11.5 12.5 12.5 10.5	11.5 12.0 13.5 13.5 11.5	4.0 4.5 5.5 7.0 7.0	3.0 3.5 4.5 5.5 4.5	3.5 4.0 5.0 6.5 6.0	3.0 4.0 4.0 3.5 4.0	2.0 3.0 3.5 3.0 3.0	2.5 3.5 3.5 3.5 3.5
11 12 13 14 15	15.5 16.5 17.0 16.5 14.5	13.5 15.0 16.5 14.5 13.0	14.5 15.5 16.5 16.0 13.5	10.5 9.0 8.0 5.5 6.5	8.5 8.0 5.5 5.0 5.0	9.5 8.5 6.5 5.0 5.5	4.5 4.0 3.5 3.0 3.0	3.5 3.5 2.5 2.0 2.5	4.0 3.5 3.0 2.5 3.0	4.0 3.5 4.5 5.0	3.0 2.5 3.5 3.5 4.5	3.5 3.0 4.0 4.5 5.0
16 17 18 19 20	13.5 14.0 14.0 13.5 13.0	12.5 13.0 12.5 12.0 11.5	13.0 13.5 13.5 12.5 12.0	8.0 9.0 8.5 7.0 6.0	6.5 8.0 7.0 5.5 5.5	7.5 8.5 8.0 6.5 5.5	4.0 5.0 5.5 4.5 4.5	3.0 4.5 4.5 4.0 4.0	3.5 5.0 5.0 4.5 4.0	4.5 3.5 4.0 3.5 3.5	3.5 3.0 3.5 2.5 2.5	4.0 3.0 3.5 3.0 3.0
21 22 23 24 25	14.0 15.5 16.0 15.5	12.0 13.5 15.0 15.0	13.0 14.5 15.5 15.5 15.0	6.0 6.5 7.0 7.0	5.5 5.5 6.0 6.5 5.5	6.0 6.0 6.0 7.0	4.5 3.5 3.0 4.0 4.0	3.5 2.5 2.5 3.0 3.5	4.5 3.0 3.0 3.5 3.5	3.0 3.0 2.5 .5	2.0 2.0 1.0 .5	2.5 2.5 2.0 .5
26 27 28 29 30 31	16.0 15.0 15.0 15.5 15.0	14.5 14.0 14.0 14.0 13.5 12.0	15.0 14.5 14.5 14.5 14.5 13.0	8.5 8.5 8.0 8.5 7.0	7.0 7.5 7.0 6.5 5.5	7.5 8.0 7.5 7.0 6.5	3.5 4.0 4.0 3.5 4.0 4.0	3.5 3.5 3.0 3.5 3.5	3.5 3.5 3.5 3.5 4.0	.5 1.5 3.0 3.0	.0 .0 .0 1.5 2.5 2.5	.5 .5 2.0 3.0 3.0
MONTH	23.0	11.5	15.5	14.0	5.0	8.5	7.0	2.0	4.0	5.0	.0	3.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCE	ı		APRIL			MAY	
1 2 3 4 5	3.0 4.0 3.5 4.0 3.5	2.5 3.0 3.0 3.0 2.5	3.0 3.5 3.5 3.5 3.0	5.0 4.5 4.0 4.0	4.0 3.5 3.0 3.0 2.5	4.5 4.0 3.5 3.5 3.5	5.5 5.5 5.5 5.0 4.5	4.0 5.0 4.5 3.0 3.0	5.0 5.5 5.0 4.0	14.5 15.5 15.0 15.0	12.5 13.5 12.5 11.5 12.5	14.0 14.0 14.0 13.0 14.0
6 7 8 9	4.0 5.0 4.0 2.0 3.0	2.5 3.0 1.5 1.0	3.5 4.0 3.5 1.5 2.0	6.0 7.5 8.0 8.0 5.0	3.5 5.0 6.5 4.0 3.0	5.0 6.5 7.5 6.5 4.0	5.0 8.0 8.5 9.5 10.5	4.0 5.0 6.5 7.0 8.0	4.5 6.5 7.5 8.5 9.5	16.5 17.0 17.5 18.5 20.0	13.5 15.0 14.5 15.0 17.0	15.0 16.0 16.0 17.0 18.5
11 12 13 14 15	4.0 4.0 4.0 4.0 3.0	2.5 3.5 3.0 3.0 1.5	3.0 4.0 3.5 3.5 2.0	5.0 6.5 6.0 5.0	3.5 4.5 4.5 3.5 3.5	4.0 5.5 5.5 4.5 5.0	11.0 11.5 13.0 13.5 14.0	9.5 10.0 10.5 12.0 13.0	10.0 11.0 11.5 12.5 13.5	21.0 21.0 20.5 21.5 21.0	18.5 19.0 17.0 18.0 19.0	20.0 20.0 19.0 20.0 20.0
16 17 18 19 20	1.5 3.0 4.5 4.0 3.5	.5 1.5 2.5 2.5 2.0	1.0 2.0 3.5 3.0 3.0	6.5 6.5 7.0 8.0 8.5	4.0 4.5 5.5 6.0	5.5 5.5 5.5 7.0 7.5	13.5 13.5 16.0 17.0 19.0	12.5 12.5 12.5 14.0 15.5	13.0 13.0 14.0 15.5 17.0	20.5 22.0 21.0 20.5 21.5	17.5 18.0 19.0 19.0	19.0 20.0 20.0 19.5 20.5
21 22 23 24 25	4.5 5.0 4.5 5.0	2.5 4.0 4.0 3.5 3.0	3.5 4.5 4.5 4.0	9.0 9.5 11.0 12.0 13.5	6.5 6.5 7.5 8.5 11.0	8.0 8.0 9.0 10.5 12.0	20.0 18.5 17.5 16.0 15.5	16.5 17.0 16.0 13.5 12.0	18.5 18.0 17.0 15.0 13.5	23.0 24.5 24.0 22.0 21.0	20.0 22.0 22.0 19.5 18.0	21.5 23.0 23.0 21.0 19.5
26 27 28 29 30 31	5.0 5.0 6.5	3.0 4.0 5.0 	4.0 4.5 5.5 	12.5 11.0 12.5 13.5 13.0 6.0	10.5 10.0 10.5 10.5 6.0 3.5	11.0 10.5 11.5 12.0 11.0	17.0 16.0 14.0 15.5	13.5 14.0 13.0 12.0 13.0	15.0 15.0 13.5 13.5 14.5	22.5 24.0 25.0 25.5 26.0 25.5	20.0 21.5 23.0 23.5 24.0 24.0	21.5 22.5 24.0 24.5 25.0 24.5
MONTH	6.5	.5	3.5	13.5	2.5	7.0	20.0	3.0	11.5	26.0	11.5	19.5

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			TEMPERATUR	E, WATER	(DEG. C)	, WATER YE	AR OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5	24.5 24.5 23.5 24.0 23.5	23.0 22.0 21.5 21.5 20.5	24.0 23.5 22.5 22.5 22.0	21.5 21.0 22.5 23.0 23.5	21.0 19.5 20.0 21.5 21.0	21.0 20.0 21.0 22.0 22.5	27.0 26.5 26.5 26.5 27.0	25.0 24.0 23.5 24.5 24.5	25.5 25.0 25.0 25.5 26.0	20.0 19.5 19.5 20.0 20.5	18.0 18.0 17.0 17.5 19.0	19.5 18.5 18.0 19.0 20.0
6 7 8 9 10	22.5 24.0 24.5 21.5	21.0 20.5 22.0 20.5	22.0 22.5 23.5 21.5	24.0 25.0 26.0 26.0 25.5	22.0 22.5 23.0 24.0 24.5	23.0 23.5 24.5 25.0 25.5	26.0 26.0 25.5 24.0 23.5	23.5 23.0 24.5 23.0 23.0	25.0 25.0 25.0 24.0 23.5	21.0 21.0 22.5 22.5 22.5	20.0 20.0 20.5 21.0 20.5	20.5 20.5 21.5 21.5 21.5
11 12 13 14 15	21.5 21.5 23.5 25.5 26.5	18.5 20.0 20.5 22.0 24.0	20.5 21.0 22.0 23.5 25.5	27.0 28.0 27.5 25.0 23.0	24.5 26.0 26.0 22.5 21.5	26.0 27.0 27.0 23.5 22.5	24.0 25.0 26.0 27.0 27.5	21.5 22.5 23.5 24.5 24.5	23.0 24.0 25.0 25.5 26.0	22.0 22.5 23.5 23.5 22.0	21.0 21.0 22.0 21.5 19.5	21.5 21.5 22.5 22.5 20.5
16 17 18 19 20	26.5 26.0 25.5 26.5 26.0	23.5 23.0 22.5 23.5 22.5	25.0 25.0 24.5 25.0 24.0	24.0 25.0 25.5 27.0 28.0	21.5 22.5 23.0 24.0 25.0	22.5 23.5 24.5 25.5 27.0	27.5 27.5 26.5 25.5 25.0	24.5 25.5 24.5 23.5 23.0	26.0 26.5 25.5 25.0 24.0	21.5 23.0 22.5 20.5 21.0	19.5 21.5 20.5 20.0 19.5	20.5 22.0 21.0 20.0 20.0
21 22 23 24 25	24.5 24.0 24.5 25.5 26.5	22.5 22.5 23.0 22.0 23.5	23.5 23.5 23.5 24.0 25.0	29.0 29.0 28.5 28.5 28.0	26.0 26.5 26.0 26.0 26.0	28.0 28.0 27.5 27.5 27.0	24.0 22.5 22.0 21.5 20.5	22.0 21.0 20.5 19.5 19.0	22.5 21.5 21.5 20.5 19.5	20.0 19.0 19.0 18.5 18.0	19.0 18.5 17.5 17.5	19.5 18.5 18.5 18.0 17.5
26 27 28 29 30 31	26.0 25.0 22.0 22.5 22.0	24.5 21.5 19.0 21.0 21.0	25.5 23.5 21.0 22.0 21.5	27.0 27.0 26.0 26.5 27.0 27.5	25.5 25.0 23.5 23.5 24.5 25.0	26.5 26.0 25.0 25.0 26.0 26.5	19.5 20.0 20.0 21.0 21.5 21.0	18.5 18.5 19.5 19.0 19.0	19.0 19.0 19.5 20.0 20.0	18.0 18.5 19.0 18.5 19.0	16.0 16.5 17.0 17.5 17.5	17.0 17.5 18.0 18.5
MONTH	26.5	18.5	23.0	29.0	19.5	25.0	27.5	18.5	23.5	23.5	16.0	20.0
YEAR	29.0	.0	13.5									
			OXYGEN, DIS	SOLVED (DO), MG/L	, WATER YE	AR OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	7.1 7.3 7.6 7.2 7.7	5.9 6.0 7.0 6.0 6.4	6.6 6.9 7.3 6.7	11.3 10.2 11.1 9.9 11.9	9.7 8.4 8.6 8.9 8.6	10.5 9.4 9.8 9.4 10.1		10.7 11.8 11.7 11.6 11.5	12.1 12.3 11.9 12.3 12.0	12.8 13.2 13.3 13.6 14.2	11.8 12.4 12.5 12.7 12.9	12.2 12.7 12.8 13.0 13.5
6 7 8 9 10	8.5 8.6 8.8 9.2 9.8	6.6 8.1 8.4 8.4 9.1	8.0 8.4 8.6 8.7 9.5	12.9 13.8 13.0 12.5 13.6		11.7 12.5 11.6 11.4 12.3	13.4 13.3 12.9 12.0 11.0	12.6 12.9 12.1 10.9 10.3	13.1 13.1 12.6 11.5 10.8	14.0 13.3 13.2 13.2 13.1	13.3 12.6 12.5 12.4 12.3	13.7 12.9 12.8 12.9 12.6
11 12 13 14 15	9.9 9.7 9.3 9.3	9.5 9.3 8.9 8.8 9.2	9.7 9.6 9.1 9.0 10.0	12.5 12.8 12.8 13.7 12.9	11.2 11.1 11.1 11.5 11.8	11.8 12.0 11.9 12.7 12.4	11.3 11.5 11.6 12.1 12.3	11.0 11.2 11.2 11.6 11.5	11.2 11.3 11.5 11.7 11.9	12.7 13.5 14.2 14.0 12.8	11.9 12.4 12.6 12.4 12.2	12.2 12.9 13.2 13.1 12.4
16 17 18 19 20	10.9 11.0 11.1 11.6 11.0	10.1 10.4 10.4 10.4 10.3	10.6 10.7 10.8 10.9 10.6	12.1 12.3 11.3 12.1 12.1	10.9 10.3 10.4 10.3 11.4	11.2 11.3 10.8 11.0	11.9 12.1 11.7 11.8 12.0	11.2 11.1 11.0 11.0	11.5 11.6 11.2 11.4 11.7	12.8 13.8 13.2 12.7 13.1	12.3 12.6 12.5 12.0 11.3	12.6 13.2 12.9 12.3 12.1
21 22 23 24 25	10.8 10.2 10.3 10.4 10.0	10.0 9.4 9.0 8.9 9.0	10.5 9.8 9.5 9.6 9.5	12.1 12.4 13.0 12.5 13.1	11.0 11.9 11.9 12.0 12.1	11.5 12.1 12.3 12.3	12.4 12.8 12.6 12.4 12.4	11.7 12.0 12.0 11.8 11.8	12.0 12.3 12.3 12.1 12.1	13.6 13.1 12.5 12.4 13.3	12.4 12.3 11.4 11.4	13.0 12.6 12.0 11.9 12.3
26 27 28 29 30 31	9.3 9.3 10.7 10.5 9.9 11.5	7.4 7.4 9.1 9.1 8.5 8.9	8.7 8.7 9.7 9.7 9.2 10.2	12.3 11.5 11.5 12.1 11.0	10.6 10.5 9.9 9.5 10.7	11.4 11.0 10.9 10.8 10.8	12.6 12.6 13.0 13.4 13.1	12.3 12.3 12.4 12.4 12.6 12.4	12.4 12.5 12.6 12.9 12.8 12.8	13.6 13.6 13.3 13.6 12.6 11.8	11.8 12.6 12.1 12.3 11.4 10.4	12.4 13.0 12.7 12.9 11.9
			- 10 mm = 1				2003		ALC: A TOTAL OF THE PARTY OF TH			

13.4 10.3 12.1

14.2 10.4

12.6

MONTH

11.6

5.9

9.2

13.8

8.4

11.4

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY MAX				- III O D II	PIDDOBVED	(DO7) FIG7		TEAR OCTOBE		O SEPTEMB			
1	DAY	MAX	MIN	MEAN	MAX		MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
7 12.5 10.1 11.1 13.1 12.2 12.6 12.9 11.4 12.0 13.7 7.5 10.4 8 10.5 9.4 8.5 10.5 9.4 8.5 10.5 9.4 8.5 10.5 11.5 11.5 13.8 7.3 10.5 10.1 11.7 13.3 11.5 11.5 13.8 7.3 10.5 10.1 11.7 13.3 11.5 11.5 13.8 7.3 10.5 10.1 11.7 13.3 11.5 11.5 13.8 7.3 10.5 10.1 11.7 13.3 11.5 11.5 13.8 7.3 10.5 10.1 11.7 13.3 11.5 11.5 13.8 7.3 10.5 10.1 11.7 13.3 11.5 11.5 13.8 7.3 10.5 10.1 11.1 11.5 11.5 13.8 7.3 10.5 10.1 11.1 11.5 11.5 13.5 10.5 11.5 11.5 13.5 10.5 11.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 11.5 13.5 10.5 10.5 10.5 11.5 13.5 10.5 10.5 10.5 10.5 10.5 10.5 11.5 13.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	3 4	12.9 11.7 12.9	11.5 11.0 10.2 10.3	11.9 11.8 10.6 11.2	12.8 13.4 13.9	10.9 10.9 12.3 13.0	11.4 11.7 12.7 13.4	11.9 13.0 12.6	10.3 11.2 11.2 12.1	11.0 11.4 12.1 12.4	13.3 10.3 15.0	8.7 8.3 8.3 8.7	10.4
12	7 8 9	12.5 10.5 11.3	10.1 9.4 9.4	11.1 9.8 10.2	13.1 12.3 11.5	12.2 11.5 10.7	12.6 11.9 11.1	12.9 11.6 11.5	11.4 11.3 10.9	12.0 11.5 11.3	13.7 13.8 13.3	7.5 7.3 7.2	10.4 10.5 10.4
17 13.5 10.8 12.2 15.1 11.7 13.4 9.6 8.4 8.9 10.7 6.9 9.0 18.1 19.1 11.2 12.5 10.9 8.5 9.2 9.1 6.7 7.5 19.1 11.2 11.2 12.5 10.9 11.2 11.3 8.0 9.3 8.5 9.2 9.1 6.7 7.5 19.1 11.2 11.2 11.2 11.3 8.0 9.3 8.5 9.2 9.1 6.7 7.5 7.6 7.6 11.2 11.2 11.2 11.3 8.0 9.3 8.5 9.2 9.1 6.7 7.5 7.6 7.6 11.2 11.2 11.2 11.2 11.3 8.0 9.3 8.5 9.2 9.1 6.7 7.5 7.6 7.6 11.3 11.4 11.5 11.2 11.2 11.2 11.3 8.0 9.3 8.5 9.2 9.1 6.7 7.5 7.6 7.6 11.3 11.4 11.5 11.5 11.5 11.5 11.5 11.2 11.2 11.3 8.0 9.3 8.5 9.2 8.5 9.0 6.8 7.7 7.6 7.6 11.3 11.4 11.5 11.5 11.5 11.5 11.5 11.5 11.5	12 13 14	11.5 12.7 12.6	10.8 10.1 10.3	11.1 11.2 11.3	14.9 14.7 13.2	12.6 12.4 11.8	13.6 13.3 12.5	9.5 10.0 9.6	9.1 9.0 8.8	9.3 9.5 9.2	11.4 12.3 12.5	5.5 7.4 7.1	8.3 9.9 9.8
22 16.1 11.9 13.7 15.9 10.2 12.8 12.4 7.2 9.5 8.3 6.5 7.3 23 14.4 11.6 13.0 16.3 10.4 13.1 8.7 7.2 8.0 7.9 6.2 7.0 24 17.4 12.1 14.4 16.4 16.1 12.9 9.9 7.2 8.4 7.8 6.5 7.1 25 16.4 12.4 14.3 14.1 8.8 11.2 13.1 8.7 10.6 8.1 7.1 7.1 7.5 26 16.6 12.7 14.3 11.1 8.6 9.8 13.3 8.5 10.6 7.5 6.7 7.2 27 16.2 12.4 14.0 13.9 8.6 10.8 13.0 8.5 10.4 8.2 6.6 7.7 2 28 15.8 11.8 13.6 15.8 9.0 12.0 9.3 7.0 8.4 7.6 6.5 7.0 29 15.8 9.4 12.2 12.2 8.4 9.8 7.6 6.3 7.0 30 10.7 9.3 10.0 7.7 6.3 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 7.7 6.4 7.1 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 13 1.0 10.2 15.0 4.3 8.7 10.7 10.7 10.2 15.0 4.3 8.7 10.7 10.7 10.2 15.0 4.3 8.7 10.7 10.7 10.2 15.0 4.3 8.7 10.7 10.7 10.2 15.0 4.3 8.7 10.7 10.7 10.2 15.0 4.3 8.7 10.7 10.7 10.7 10.7 10.2 15.0 4.3 8.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10	17 18 19	13.5 13.7 15.2	10.8 10.4 10.1	12.2 11.9 12.8	15.1 14.9 14.6	11.7 11.2 10.8	13.4 12.9 12.4	9.6 10.9 11.3	8.4 8.5 8.0	8.9 9.2 9.3	10.7 9.1 7.1	6.9 6.7 4.3	9.0 7.5 6.1
27 16.2 12.4 14.0 13.9 8.6 10.8 13.0 8.5 10.4 8.2 6.6 7.4 28 15.8 11.8 13.6 15.8 12.0 15.8 11.8 13.6 15.8 9.0 12.0 9.3 7.0 8.4 7.6 6.5 7.0 29 15.8 9.4 12.2 12.2 8.4 9.8 7.6 6.5 7.0 30 10.7 8.2 8.9 12.9 7.9 10.1 7.4 6.2 6.9 31 10.7 9.3 10.0 12.9 7.9 10.1 7.4 6.2 6.9 31 10.7 9.3 10.0 12.9 7.9 10.1 7.4 6.2 6.9 31 10.7 9.3 10.0 12.9 7.9 10.1 7.4 6.2 6.9 8.7 6.9 12.9 7.9 10.1 7.4 6.2 6.9 8.7 12.9 7.9 12.9 12.9 7.9 12.9 12.9 7.9 12.9 12.9 7.9 12.9 12.9 7.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12	22 23 24	16.1 14.4 17.4	11.9 11.6 12.1	13.7 13.0 14.4	15.9 16.3 16.4	10.2 10.4 10.1	12.8 13.1 12.9	12.4 8.7 9.9	7.2 7.2 7.2	9.5 8.0 8.4	8.3 7.9 7.8	6.5 6.2 6.5	7.3 7.0
Day Max Min Mean M	27 28 29 30	16.2 15.8	12.4 11.8 	14.0 13.6 	13.9 15.8 15.8 10.7	8.6 9.0 9.4 8.2	10.8 12.0 12.2 8.9	13.0 9.3 12.2 12.9	8.5 7.0 8.4 7.9	10.4 8.4 9.8 10.1	8.2 7.6 7.6 7.4	6.6 6.5 6.3 6.2	7.0 7.0 6.9
JUNE JULY AUGUST SEPTEMBER	MONTH	17.4	9.4	12.3	16.4	8.2	12.2	13.3	7.0	10.2	15.0	4.3	8.7
1 7.5 6.0 6.8 8.0 7.5 7.8 11.0 6.9 8.7 8.8 6.7 8.0 2 7.8 7.0 6.0 6.6 7.1 8.2 7.1 7.5 11.1 6.9 8.6 9.2 8.1 8.5 7.0 6.0 6.0 6.6 8.0 7.3 7.8 7.9 8.5 6.2 7.2 9.8 8.3 9.5 8.7 8.8 8.3 9.5 8.1 6.9 7.5 8.2 7.8 8.0 9.4 6.8 7.9 9.9 7.8 8.7 8.8 8.8 7.9 9.4 6.8 7.9 9.9 7.8 8.7 8.8 8.8 7.9 9.9 7.8 8.7 8.8 8.8 9.9 9.9 7.8 8.7 8.8 8.8 9.9 9.4 6.8 7.9 9.9 7.8 8.7 8.8 8.8 9.9 9.9 7.8 8.7 8 8.0 9.4 6.8 7.9 9.9 7.8 8.7 8 8.8 9.9 9.9 7.8 8.7 8 8.8 9.9 9.9 7.7 8 8.7 8 8.9 9.9 7.8 8.7 8 8.9 9.9 7.7 8 8.7 8 8.9 9.9 7.0 8.5 9.9 9.9 7.7 8 8.7 8 8.9 9.9 7.0 8.5 9.9 9.9 7.6 8.5 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2 7.8 6.6 7.1 8.2 7.1 7.5 11.1 6.9 8.6 9.2 8.1 8.5 3 9.0 4 7.7 6.0 6.0 6.6 8.8 8.0 7.3 7.8 7.9 8.5 6.2 7.2 9.7 8.1 8.8 8.3 9.0 4 7.7 6.0 7.0 8.0 7.8 7.8 8.0 9.4 6.8 7.9 9.9 7.8 8.7 8.8 8.8 8.3 9.0 6.8 7.9 9.9 7.8 8.7 8.8 8.7 9.9 8.5 6.2 7.2 9.7 8.1 8.8 8.8 8.7 9.0 9.4 6.8 7.9 9.9 7.8 8.7 8.7 8.8 8.7 9.0 9.4 6.8 7.9 9.9 7.8 8.7 8.8 8.8 9.0 9.4 6.8 7.9 9.9 7.8 8.7 8.8 8.8 9.0 9.4 7.1 8.3 10.1 7.8 8.8 8.8 9.0 9.0 9.4 7.1 8.2 9.9 7.6 8.7 8.7 9.9 9.9 7.6 8.7 9.9 9.9 7.6 8.7 9.9 9.9 7.6 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0			JUNE			JULY			AUGUST			SEPTEME	ER
7 8.5 7.3 7.8 7.9 7.5 7.7 9.4 7.1 8.2 9.9 7.7 8.7 8.5 9 7.7 8.8 8.9 6.9 7.9 8.0 7.5 7.7 8.7 7.0 7.8 9.9 7.6 8.5 9 7.7 8.9 9.6 7.2 7.5 7.7 7.1 7.4 10.3 7.4 8.6 10 9.7 8.9 9.6 8.1 7.0 7.6 7.5 6.8 7.2 10.3 7.5 8.7 11 9.9 7.9 8.9 8.4 7.2 7.7 8.8 7.4 8.1 9.8 7.0 7.8 8.7 12 8.7 7.1 7.9 9.1 7.0 7.8 8.9 9.6 6.3 6.0 6.1 13 7.8 6.5 7.1 9.3 6.9 7.9 8.6 7.2 7.9 6.3 6.0 6.1 14 8.3 6.5 7.1 9.3 6.9 7.9 8.6 7.2 7.9 6.3 6.0 6.1 14 8.3 6.5 7.4 8.0 7.1 7.5 8.7 8.5 6.7 7.6 9.0 7.4 8.2 9.3 7.0 8.1 7.0 6.2 6.6 6.1 15 8.5 6.7 7.6 9.0 7.4 8.2 9.3 7.0 8.1 7.0 6.2 6.6 6.1 16 9.5 6.9 8.1 9.1 7.8 8.4 10.3 7.0 8.5 6.8 6.5 6.7 1.7 9.2 7.0 8.0 9.4 7.7 8.5 10.9 6.9 8.7 6.9 8.7 6.9 5.9 6.3 18 9.6 7.1 8.3 9.5 7.4 8.4 11.0 7.0 8.8 7.0 5.9 6.5 19 9.9 7.2 8.5 10.5 7.3 8.7 11.2 7.1 8.9 7.4 6.5 7.0 19 9.9 7.2 8.5 10.5 7.3 8.7 11.2 7.1 8.9 7.4 6.5 7.0 12 8.3 7.5 6.3 7.0 12.2 6.6 9.2 8.0 7.3 7.6 7.4 8.8 7.5 8.1 7.9 7.4 6.5 7.0 12 8.7 7.5 6.3 7.0 12.2 6.5 9.2 8.1 6.5 7.4 8.8 9.4 8.1 8.7 9.3 8.2 8.7 1.2 9.3 8.2 8.7 9.9 9.9 7.2 8.5 8.2 7.3 7.7 11.1 6.7 8.8 9.4 8.1 8.7 9.3 8.2 8.7 9.3 8.2 8.7 9.3 9.3 9.5 8.2 7.3 7.7 11.1 6.7 8.8 9.4 8.1 8.7 9.3 8.2 8.7 9.3 8.2 8.7 9.3 8.2 8.7 9.0 7.3 8.1 11.2 6.7 8.8 9.4 8.1 8.7 9.3 8.2 8.7 9.3 8.2 8.7 9.3 8.2 8.7 9.9 8.5 8.2 7.3 7.7 11.1 6.7 8.8 8.9 8.5 8.0 8.3 9.3 9.5 8.5 8.0 8.3 9.3 9.5 8.2 9.0 12.4 7.3 9.8 8.9 8.5 8.1 8.3 10.3 8.4 9.2 9.3 8.6 7.9 9.0 7.3 8.1 11.2 6.4 8.4 9.2 8.6 9.9 8.5 8.5 8.0 8.3 9.3 9.3 9.8 8.7 8.1 8.3 10.3 8.4 9.2 9.3 8.6 7.9 9.0 7.3 8.1 11.2 6.4 8.4 9.2 8.6 9.9 8.5 8.5 8.0 8.3 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 9.3 9.3 9.3 8.1 7.0 9.5 8.9 8.2 8.5 10.1 7.9 8.6 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.3 9.0 9.0 9.2 9.2 9.2 9.2 9.2 9.3 9.0 9	3 4	7.8 7.0 7.7	6.6 6.0 6.0	7.1 6.6 7.0	8.2 8.0 8.0	7.1 7.3 7.8	7.5 7.8 7.9	11.1 7.8 8.5	6.9	8.6 7.2	9.2 9.8 9.7	8.1	8.5 9.0
12 8.7 7.1 7.9 9.1 7.0 7.8 9.0 7.4 8.1 6.6 3.4 5.6 13 7.8 8.3 6.5 7.1 9.3 6.9 7.9 8.6 7.2 7.9 6.3 6.0 6.1 14 8.3 6.5 7.4 8.0 7.1 7.5 9.1 7.1 8.1 6.7 5.8 6.3 15 8.5 6.7 7.6 9.0 7.4 8.2 9.3 7.0 8.1 7.0 6.2 6.6 15 16 9.5 6.9 8.1 9.1 7.8 8.4 10.3 7.0 8.5 6.8 6.5 6.7 17 8.0 9.1 7.1 8.3 9.5 7.4 8.4 11.0 7.0 8.5 6.9 5.9 6.5 18 9.6 7.1 8.3 9.5 7.4 8.4 11.0 7.0 8.8 7.0 5.9 6.5 19 9.9 7.2 8.5 10.5 7.3 8.7 11.2 7.1 8.9 7.4 6.5 7.0 20 8.3 5.5 6.8 11.1 7.1 9.0 10.7 7.1 8.7 7.3 6.7 7.1 21 7.3 6.4 8.9 11.7 6.8 9.2 9.2 7.3 8.1 7.9 7.2 7.5 8.1 22 7.5 7.1 7.3 12.2 6.6 9.2 8.0 7.3 7.6 7.9 7.4 7.6 23 7.5 6.3 7.0 12.2 6.5 9.2 8.1 6.5 7.4 8.8 9.4 8.1 8.7 9.3 8.2 8.1 2.2 8.5 8.2 7.3 7.7 11.1 6.7 8.8 9.4 9.4 8.1 8.7 9.3 8.2 8.7 8.0 8.3 7.0 8.3 8.7 11.1 8.7 7.9 7.2 7.5 8.1 2.2 8.2 7.3 7.7 11.1 6.7 8.8 9.4 8.1 8.7 9.3 8.2 8.7 8.0 8.3 7.9 8.5 8.0 8.3 7.0 12.2 6.8 8.9 8.5 8.0 7.3 7.9 8.5 8.5 8.0 8.3 7.0 12.2 6.8 8.9 9.4 8.1 8.7 9.3 8.2 8.7 8.0 8.3 7.9 8.5 8.5 8.0 8.3 7.0 12.2 6.8 8.9 8.5 8.0 7.3 7.9 8.5 8.5 8.0 8.3 8.7 7.0 12.2 6.8 8.9 8.5 8.5 8.0 8.3 8.2 8.3 7.3 7.7 11.1 6.7 8.8 9.4 8.1 8.7 9.3 8.2 8.7 8.0 8.3 7.9 8.5 8.5 8.0 8.3 8.2 8.3 7.3 7.7 11.1 6.4 8.4 8.4 9.2 8.2 8.6 9.9 8.5 9.0 8.7 9.0 7.3 8.1 11.2 6.8 8.9 8.5 8.5 8.0 8.3 10.3 8.4 9.2 9.2 8.6 7.2 8.0 12.4 7.3 9.8 8.7 8.0 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.3 10.0 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.9 9.4 8.1 8.9 9.0 9.0 9.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7 8 9	8.5 8.9	7.3 6.9	7.8 7.9	7.9 8.0 7.9	7.5 7.5 7.2	7.7 7.7 7.5	9.4 8.7 7.7	7.1 7.0 7.1	8.2 7.8 7.4	9.9 9.9 10.3	7.7 7.6 7.4	8.7 8.5 8.6
18	12 13 14	8.7 7.8 8.3	7.1 6.5 6.5	7.9 7.1 7.4	9.1 9.3 8.0	7.0 6.9 7.1	7.8 7.9 7.5	9.0 8.6 9.1	7.4 7.2 7.1	8.1 7.9 8.1	6.6 6.3 6.7	3.4 6.0	5.6
22	17 18 19	9.2 9.6 9.9	7.0 7.1 7.2	8.0 8.3 8.5	9.4 9.5 10.5	7.7 7.4 7.3	8.5 8.4 8.7	10.9 11.0 11.2	6.9 7.0 7.1	8.7 8.8 8.9	6.9 7.0 7.4	5.9 5.9 6.5	6.5 7.0
27 9.0 7.3 8.1 11.2 6.8 8.9 8.5 8.1 8.3 10.3 8.4 9.2 28 8.4 7.9 8.2 11.8 6.9 9.4 8.2 7.9 8.0 10.7 8.3 9.3 29 8.6 7.2 8.0 12.4 7.3 9.8 8.7 8.1 8.3 10.0 8.1 8.9 30 8.1 7.6 7.9 12.3 7.0 9.5 8.9 8.2 8.5 10.1 7.9 8.6 31 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3 12.3 7.1 9.5 8.7 8.0 8.3	23 24	7.5 7.5 8.0	7.1 6.3 7.3	7.3 7.0 7.6	12.2 12.2 12.4	6.6 6.5 6.7	9.2 9.2 9.4	8.0 8.1 9.3	7.3 6.5 7.9	7.6 7.4 8.5	7.9 8.8 8.5	7.4 7.5 8.0	7.6 8.1
MONTH 9.9 5.5 7.7 12.4 6.4 8.4 11.2 6.2 8.2 10.7 3.4 7.9	27 28 29 30	9.0 8.4 8.6 8.1	7.3 7.9 7.2 7.6	8.1 8.2 8.0 7.9	11.2 11.8 12.4 12.3	6.8 6.9 7.3 7.0	8.9 9.4 9.8 9.5	8.5 8.2 8.7 8.9	8.1 7.9 8.1 8.2	8.3 8.0 8.3 8.5	10.3 10.7 10.0 10.1	8.4 8.3 8.1 7.9	9.3 8.9 8.6
	YEAR					7.5							

04208506 CUYAHOGA RIVER AT WEST THIRD STREET BRIDGE, IN CLEVELAND, OH

LOCATION.--Lat 41°29'17", long 81°41'07", in T.7 N., R.12 W., Cuyahoga County, Hydrologic Unit 04110002, on left bank just upstream from bridge on West Third Street in Cleveland, 3.0 mi upstream from mouth, and 1.2 mi downstream from turning basin.

DRAINAGE AREA . -- 798 mi 2.

PERIOD OF RECORD .-- November 1966 to August 1987.

PERIOD OF RECORD . --

SPECIFIC CONDUCTANCE: November 1966 to August 1987. pH: November 1966 to August 1987. WATER TEMPERATURES: November 1966 to August 1987. DISSOLVED OXYGEN: November 1966 to August 1987.

INSTRUMENTATION. -- Water-quality monitor.

REMARKS.--Interruptions in the water-quality record were due to malfunction of the instrument. No discharge records available.

EXTREMES FOR PERIOD OF DAILY RECORD .--

TREMES FOR PERIOD OF DAILY RECORD. -
SPECIFIC CONDUCTANCE: Maximum, 3,480 microsiemens Feb. 12, 13, 1985; minimum, 192 microsiemens May 22, 1984.

pH: Maximum, 9.3 units Sept. 14, 1969; minimum, 4.3 units May 16, 1969.

WATER TEMPERATURES: Maximum, 35.0°C July 24, 1967; minimum, 1.0°C Jan. 1, 1969.

DISSOLVED OXYGEN: Maximum, 15.7 mg/L Mar. 31, 1984; minimum, 0.0 mg/L on many days

during 1967, 1968, 1971 to 1974, 1977 to 1984.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 2,510 microsiemens Feb. 2; minimum, 288 microsiemens July 2. pH: Maximum, 8.3 units Jan. 26; minimum, 7.3 units on many days during year. WATER TEMPERATURES: Maximum, 32.0°C July 25, 26, 27; minimum, 3.5°C Jan. 25. DISSOLVED OXYGEN: Maximum, 13.4 mg/L Jan. 29; minimum, 0.1 mg/L on many days during year.

STREAMS TRIBUTARY TO LAKE ERIE
04208506 CUYAHOGA RIVER AT WEST THIRD STREET BRIDGE, IN CLEVELAND, OH--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	DFEC	IFIC CON	DUCTANCE	MICROSTEME	NS PER C	ENTIMETER	AT 25, WAT	ER YEAR	OCTOBER	1986 TO SEP.	LEMBER 13	987
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	ER		DECEMBE	ER		JANUA	RY
1	597	486	563	720	711	715				747	669	707
1 2	588	495	541	741	720	730	726	603	655	852	696	734
3	627 480	393 384	567 409	744 738	735 717	739 727	591 555	511 509	550 528	1590 1620	852 1430	1210 1540
5	534	483	517	729	720	722	599	558	577	1570	1230	1370
6	552	531	539	744	729	735	628	605	618	1210	1020	1100
7	558	540	548	765	747	755	638	562	616	1000	930	962
8 9	573 585	552 567	561 579	783	765 780	773	628 588	546 552	590 570	972 936	936 879	956 903
10	624	576	604	783 792	783	781 789	563	505	519	945	861	900
11 12	648	609	629	795	747	777	536	521	529	1500	951	1250
	681	645	661	750	735	741	561	536	550	1410	1270	1340
13 14	723 723	675 660	693 695	735 771	708 717	719 738	581 590	568 572	. 577 580	1370 1240	1220 1140	1290 1200
15	660	603	621	852	768	807	611	577	597	1130	999	1080
16	6 6 9	618	632	888	855	874	639	608	626	975	795	871
17 18	705	672	690	930	891	913	705	625	659	795	768	784
19	741 738	705 723	727 731	918 849	813 705	898 753	855 861	690 714	743 767	774 810	741 729	764 778
20	729	717	724				726	699	711	1210	777	1010
21	738	714	723				726	696	711	1480	1240	1380
22 23	810 675	666 663	749 670				729	702	715	1360 1210	1210 1080	1310 1140
24	678	663	670				699 732	675 672	687 700	1080	1030	1050
25	681	663	671				774	576	677	1150	1040	1080
26	726	681	699				573	549	559	1190	1150	1170
27 28	732 687	690 618	719 665				597	549	573	1180	1060	1110
29 30	630	609	616				660 663	597 633	633 651	1080 1080	1050 1050	1060 1060
	681	630	649				660	627	646	1300	1030	1090
31	717	684	701				705	639	668	2110	1360	1780
MONTH	810	384	638	930	705	773	861	505	626	2110	669	1100
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	SĀ		MARCE	H		APRII			MAY	
$\frac{1}{2}$	2450 2510	1930 2190	2170	828	474	715	1030 1310	789	908	873	819	838
3	2510	2190 1790	2360 1950	531 819	456 537	483	1310 744	750 684	1050 704	864 981	8 43 822	853 893
4	1770	1690	1710	900	771	668 845	906	675	721	957	864	906
5	1690	1480	1580	768	684	726	1140	663	864	888	828	856
6	1500	1340	1400	693	663	676	654	462	563	885	825	863 909
7	1330	1230	1270	705	669	681	453	411	431	981	864	
8 9	1260 1180	1180 1120	1210 1160	723 714	687 690	704 703	447 444	417 420	429 431	1020 1140	969 942	986 1060
10	1420	1180	1270	720	666	693	438	417	428	1200	1050	1160
11	1590	1420	1500	732	651	695	465	432	445	1170	1120	1150
12	1630	1580	1610	750	690	721	528	462	491	1140	1060	1100
13 14	1550 1440	1450 1300	1510 1350	810 810	735 765	768 784	528 621	501 531	509 576	1070 1060	1010 1020	1040
15	1290	1180	1220	1350	816	976	705	600	654	1060	927	1010
16	1180	1070	1120	1780	1370	1590	717	459	697	933	897	918
17 18	1100 1070	1020	1060	1610	1300	1440	738	708	726	1040	930	970
19	1040	1020 1020	1040 1030	1300	1140 1010	1240 1090	789 801	717 738	762 778	1040 1030	1030 849	1030 936
20	1030	996	1020	1050	939	963	843	780	810	8 4 3	756	791
21	1040	1000	1010	936	882	901	864	786	824	924	792	860
22 23	1050 1090	1030	1040	957 960	894 921	929 938	915 921	816 870	863 895	1020 1030	918 990	961 1000
24	1030	969	995	942	909	927	924	873	905	1080	1010	1030
25	984	903	946	996	927	960	873	819	853	1070	1000	1030
26	906	861	877	1040	981	1020	837	798	816	1020	984	1000
27 28	864 849	825 807	837 825	1090 1000	999 990	1040 993	909 909	822 801	877 870	1020 990	891 915	955 939
29				1040	456	1000	789	750	772	1030	945	978
30				1060	459	951	879	462	791	1020	969	996
31				861	687	759				990	930	958
MONTH	2510	807	1290	1780	456	890	1310	411	715	1200	756	968

7.55

7.31

8.33

STREAMS TRIBUTARY TO LAKE ERIE

04208506 CUYAHOGA RIVER AT WEST THIRD STREET BRIDGE, IN CLEVELAND, OH--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	BER
1 2 3 4 5	957 945 753 732 804	909 777 492 627 726	926 930 570 687 766	579 615 411 435 468	447 288 318 411 423	506 409 367 425 453	1080 1070 636 666 756	1020 786 342 531 642	1060 1040 457 597 711			
6 7 8 9	921 975 1020 1020 981	804 906 975 984 924	854 934 996 1010 955	495 498 555 561 582	459 456 498 537 546	481 474 523 548 564	822 936 1000 999 900	726 828 930 912 663	785 890 966 974 732			
11 12 13 14 15	930 924 903 900 903	918 810 729 762 837	923 853 833 820 866	591 657 729 735 564	522 573 666 324 450	566 608 692 474 503	681 732 	663 663 	672 687 			
16 17 18 19 20	903 936 990 1030 1030	861 888 924 990 498	879 913 958 1010 814	690 777 801 876 903	570 684 756 810 867	635 728 777 847 886		===	=== === ===			
21 22 23 24 25	555 597 579 660 771	468 510 507 594 663	513 564 551 628 713	927 951 987 1040 1060	903 927 951 990 1040	913 938 967 1010 1050		 	 			
26 27 28 29 30 31	810 831 831 702 558	768 798 702 570 381	787 816 798 664 481	1070 1060 1050 1010 999 1030	1050 1050 1010 987 978 987	1060 1060 1020 999 989 1000	===	 	===			
MONTH	1030	381	800	1070	288	725	1080	342	798			
YEAR	2510	288	850									
			PH	(STANDARD	UNITS), W	ATER YEAR	R OCTOBER 19	86 TO SE	PTEMBER 1	.987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAF	RY
1 2 3 4 5	7.69 7.55 7.64 7.60 7.60	7.39 7.42 7.50 7.47 7.50	7.49 7.47 7.55 7.54 7.55	7.49 7.51 7.51 7.48 7.55	7.42 7.44 7.45 7.45 7.46	7.45 7.48 7.48 7.47 7.50	7.63 7.64 8.21 8.06 7.73	7.50 7.50 7.55 7.66 7.58	7.57 7.57 7.67 7.71 7.65	7.44 7.45 7.47 7.48 7.45	7.32 7.31 7.34 7.35 7.34	7.39 7.38 7.41 7.43 7.41
6 7 8 9	7.80 7.62 7.61 7.78 7.70	7.57 7.52 7.53 7.55 7.55	7.63 7.58 7.56 7.61 7.59	7.60 7.62 7.68 7.67 7.58	7.54 7.59 7.58 7.59 7.52	7.57 7.60 7.62 7.61 7.55	7.69 7.63 7.57 7.80 7.66	7.61 7.55 7.53 7.50 7.59	7.64 7.58 7.55 7.57 7.63	7.48 7.48 7.46 7.47 7.45	7.33 7.32 7.41 7.38 7.36	7.40 7.42 7.44 7.43 7.40
11 12 13 14 15	7.60 7.57 7.55 7.56 7.64	7.52 7.52 7.50 7.42 7.49	7.56 7.54 7.53 7.49 7.56	7.55 7.55 7.56 7.64 7.64	7.49 7.53 7.52 7.56 7.59	7.51 7.54 7.54 7.60 7.61	7.66 7.65 7.62 7.64 7.56	7.57 7.59 7.52 7.52 7.47	7.61 7.61 7.55 7.58 7.52	7.43 7.46 7.49 7.49 7.61	7.38 7.39 7.39 7.39 7.47	7.41 7.42 7.44 7.44 7.54
16 17 18 19 20	7.56 7.58 7.61 7.52 7.47	7.51 7.51 7.50 7.43 7.39	7.54 7.54 7.53 7.47 7.42	7.64 7.58 7.60 7.81 7.73	7.58 7.50 7.49 7.47 7.53	7.61 7.54 7.51 7.61 7.61	7.59 7.55 7.46 7.63 7.52	7.47 7.37 7.35 7.37 7.40	7.51 7.45 7.41 7.45 7.44	7.67 7.63 7.64 7.65 7.71	7.54 7.54 7.59 7.55 7.62	7.61 7.57 7.61 7.61 7.66
21 22 23 24 25	7.49 7.50 7.53 7.47 7.43	7.37 7.36 7.45 7.41 7.40	7.42 7.43 7.48 7.45 7.42	7.71 7.68 7.68 7.61 7.52	7.65 7.61 7.61 7.52 7.34	7.68 7.64 7.64 7.57 7.45	7.46 7.44 7.48 7.54 7.61	7.34 7.34 7.42 7.42 7.42	7.41 7.39 7.46 7.46 7.50	7.75 7.69 7.65 7.63 7.70	7.65 7.58 7.57 7.53 7.59	7.69 7.65 7.62 7.57 7.65
26 27 28 29 30 31	7.42 7.49 7.50 7.51 7.52 7.51	7.35 7.36 7.40 7.42 7.45 7.44	7.38 7.42 7.47 7.47 7.49 7.47	7.80 7.70 7.72 7.65 7.62	7.31 7.61 7.62 7.62 7.57	7.54 7.66 7.67 7.64 7.60	7.63 7.67 7.58 7.56 7.53 7.52	7.54 7.53 7.45 7.38 7.47 7.43	7.59 7.59 7.53 7.51 7.50 7.47	8.33 8.08 7.74 7.83 7.69 7.72	7.68 7.74 7.67 7.63 7.62 7.60	7.85 7.89 7.71 7.69 7.65 7.65

MONTH

7.80

7.35

7.50

7.81

7.31

7.57

8.21

7.34

7.54

STREAMS TRIBUTARY TO LAKE ERIE
04208506 CUYAHOGA RIVER AT WEST THIRD STREET BRIDGE, IN CLEVELAND, OH--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			- 11	(STANDARD	UNITS), W	MIEK IBAK	OCTOBER 19	00 10 51	LIBRIDER	1907		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2	7.66	7.55	7.62	7.90	7.80	7.85	7.72	7.61	7.66	7.62	7.48	7.55
	7.64	7.55 7.60	7.60 7.66	7.81 7.90	7.71 7.73	7.77 7.84	7.67 7.64	7.63 7.59	7.65 7.62	7.54 7.50	7.47	7.51 7.47
3	7.97	7.54 .	7.68	7.91	7.83	7.85	7.61	7.56	7.60	7.45	7.39	7.43 7.50
5	7.63	7.52	7.60	7.90	7.82	7.86	7.60	7.55	7.58	7.58	7.37	7.50
6	7.68	7.61	7.64	7.85	7.82	7.83	7.56	7.53	7.54	7.63	7.52	7.56
7 8	7.72 7.74	7.63 7.68	7.69 7.71	7.81 7.75	7.73	7.76 7.71	7.73 7.72	7.51 7.66	7.66	7.60 7.54	7.51 7.47	7.54
9	7.81	7.73 7.77	7.77	7.76	7.68 7.68	7.72	7.70	7.63	7.67	7.55	7.46	7.51 7.50
10	7.86	7.77	7.81	7.78	7.71	7.75	7.63	7.54	7.58	7.51	7.41	7.47
11	7.83	7.77	7.80	7.80	7.76	7.78	7.55	7.52	7.53	7.50	7.45	7.47
12	7.84 7.83	7.77 7.75	7.80 7.78	7.79	7.71	7.74	7.54 7.55	7.50 7.51	7.52 7.53	7.48	7.43	7.45
14	7.83	7.76	7.80	7.96 7.79	7.72 7.68	7.82 7.72	7.52	7.46	7.50	7.61	7.43	7.53
15	7.84	7.79	7.82	7.68	7.58	7.65	7.57	7.48	7.53	7.47	7.36	7.41
16	7.87	7.81	7.85	7.74	7.60	7.65	7.61	7.51	7.56	7.42	7.35 7.31	7.38 7.35
17	7.93 7.96	7.78	7.87	7.75	7.61	7.66	7.68 7.62	7.56	7.61	7.39	7.31 7.29	7.35 7.32
19	7.97	7.87 7.89	7.92 7.94	7.78 7.80	7.65 7.70	7.72 7.74	7.65	7.53 7.53	7.58	7.36 7.46	7.34	7.41
20	7.89	7.82	7.85	7.75	7.65	7.71	7.67	7.53	7.60	7.48	7.33	7.39
21	7.87	7.79	7.82	7.76	7.65	7.71	7.65	7.51	7.58	7.42	7.34	7.38
22	7.90	7.80	7.83	7.69	7.63	7.66	7.64	7.47	7.55	7.44	7.37 7.39	7.39 7.40
23	7.88 7.92	7.82 7.85	7.84 7.89	7.79 7.79	7.60 7.70	7.70 7.75	7.68 7.55	7.44	7.54 7.50	7.41 7.43	7.37	7.40
25	7.91	7.86	7.88	7.75	7.70	7.72	7.50	7.45	7.48	7.42	7.38	7.40 7.39
26	7.96	7.89	7.92	7.77	7.64	7.67	7.55	7.46	7.49	7.41	7.38	7.39 7.37
27 28	7.92	7.87	7.91	7.69	7.52	7.59	7.58	7.42	7.49	7.39	7.35	7.37
	7.93	7.89	7.92	7.64 7.72	7.53 7.62	7.57 7.68	7.63 7.64	7.41 7.48	7.57 7.56	7.39 7.36	7.31 7.31	7.34 7.33
29 30				7.75	7.55	7.64	7.58	7.46	7.54	7.37 7.34	7.30 7.30	7.33 7.32
31				7.61	7.54	7.58				7.34	7.30	
MONTH	7.97	7.52	7.79	7.96	7.52	7.72	7.73	7.41	7.57	7.63	7.29	7.43
							2020.00				*****	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN	MAX	MIN AUGUST		MAX	MIN SEPTEME	
	7.37	JUNE 7.31	7.34	7.63	JULY 7.55	7.61	7.59	AUGUST	7.56	MAX		
1 2	7.37 7.37	JUNE 7.31 7.30	7.34 7.33	7.63 7.75	JULY 7.55 7.61	7.61 7.70	7.59 7.72	AUGUST 7.53 7.50	7.56 7.54	MAX		
1 2 3 4	7.37 7.37 7.55 7.43	JUNE 7.31 7.30 7.39 7.33	7.34 7.33 7.48 7.37	7.63 7.75 7.69 7.76	JULY 7.55	7.61	7.59 7.72 7.76 7.59	7.53 7.50 7.56 7.47	7.56 7.54 7.65 7.53	MAX		
1 2 3	7.37 7.37 7.55	JUNE 7.31 7.30 7.39	7.34 7.33 7.48	7.63 7.75 7.69	JULY 7.55 7.61 7.65	7.61 7.70 7.67	7.59 7.72 7.76	AUGUST 7.53 7.50 7.56	7.56 7.54 7.65	MAX		
1 2 3 4 5	7.37 7.37 7.55 7.43 7.34	JUNE 7.31 7.30 7.39 7.33 7.30 7.30	7.34 7.33 7.48 7.37 7.32	7.63 7.75 7.69 7.76 7.74	JULY 7.55 7.61 7.65 7.68 7.69	7.61 7.70 7.67 7.72 7.71	7.59 7.72 7.76 7.59 7.52	AUGUST 7.53 7.50 7.56 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48	MAX		
1 2 3 4 5	7.37 7.37 7.55 7.43 7.34 7.33	7.31 7.30 7.39 7.33 7.30 7.30 7.30	7.34 7.33 7.48 7.37 7.32 7.31 7.32	7.63 7.75 7.69 7.76 7.74 7.74	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.66	7.61 7.70 7.67 7.72 7.71 7.70 7.67	7.59 7.72 7.76 7.59 7.52 7.46 7.45	AUGUST 7.53 7.50 7.56 7.47 7.44 7.41 7.42	7.56 7.54 7.65 7.53 7.48 7.43 7.44	MAX		
1 2 3 4 5 6 7 8	7.37 7.37 7.55 7.43 7.34 7.33 7.34 7.37 7.40	JUNE 7.31 7.30 7.39 7.33 7.30 7.30	7.34 7.33 7.48 7.37 7.32	7.63 7.75 7.69 7.76 7.74 7.74 7.71 7.67	JULY 7.55 7.61 7.65 7.68 7.69	7.61 7.70 7.67 7.72 7.71	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52	AUGUST 7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44	7.56 7.54 7.65 7.53 7.48	MAX		
1 2 3 4 5	7.37 7.37 7.55 7.43 7.34 7.33 7.34 7.37	JUNE 7.31 7.30 7.39 7.33 7.30 7.30 7.31 7.32	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34	7.63 7.75 7.69 7.76 7.74 7.74	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55	7.59 7.72 7.76 7.59 7.52 7.46 7.45	AUGUST 7.53 7.50 7.56 7.47 7.44 7.41 7.42	7.56 7.54 7.65 7.53 7.48 7.43 7.44 7.48	MAX		
1 2 3 4 5 6 7 8 9 10	7.37 7.37 7.55 7.43 7.34 7.33 7.34 7.37 7.40 7.41	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50	AUGUST 7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47	7.56 7.54 7.65 7.53 7.48 7.43 7.44 7.48 7.49 7.46	MAX		
1 2 3 4 5 6 7 8 9 10	7.37 7.37 7.55 7.43 7.34 7.33 7.34 7.37 7.40 7.41	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.33	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.47	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.44 7.44	7.56 7.54 7.65 7.53 7.48 7.43 7.44 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.33 7.32 7.35	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.39 7.36 7.35 7.42	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	AUGUST 7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.47	7.56 7.54 7.65 7.53 7.48 7.43 7.44 7.48 7.49 7.46	MAX		
1 2 3 4 5 6 7 8 9 10	7.37 7.37 7.55 7.43 7.34 7.34 7.37 7.40 7.41 7.42 7.39 7.38	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.36 7.37	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58 7.58 7.52 7.49	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.44 7.43	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.47	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46	MAX		
1 2 3 4 5 6 7 8 9 10	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.38 7.38 7.31	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.39 7.36 7.35 7.42 7.44	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58 7.58 7.58 7.55 7.57	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.44 7.43 7.50 7.49	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.47 7.46 7.60 7.54	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41 7.44	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.51 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.36 7.36 7.36 7.38 7.31 7.32 7.35 7.38	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.36 7.37 7.42 7.44	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58 7.58 7.58 7.57	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.44 7.43 7.50 7.49	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.47 7.46 7.60 7.54	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.47	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.37 7.37 7.55 7.43 7.34 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.38 7.51	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.38 7.32 7.35 7.38 7.31 7.32 7.35 7.38	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.39 7.36 7.35 7.42 7.44	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58 7.58 7.52 7.76 7.76 7.57	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.46 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.47 7.46 7.60 7.54	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41 7.44	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.38	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.36 7.37 7.36 7.37 7.37	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.39 7.36 7.35 7.42 7.44	7.63 7.75 7.69 7.74 7.74 7.71 7.58 7.58 7.58 7.58 7.57 7.64 7.57 7.64 7.59 7.50	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.47 7.46 7.60 7.54 7.57	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.38 7.37 7.61	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.38 7.32 7.35 7.38 7.31 7.32 7.35 7.38	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.36 7.35 7.42 7.44 7.35 7.44 7.35 7.44	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58 7.58 7.58 7.57 7.64 7.57 7.50 7.50 7.50 7.52	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.41 7.44 7.43 7.50 7.49	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.46 7.60 7.54 7.54 7.54 7.46 7.46 7.46 7.46	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.42 7.44 7.41 7.41 7.42 7.44 7.41 7.41 7.42 7.44 7.41 7.42 7.42 7.44 7.41 7.42 7.42 7.42 7.42 7.42 7.44 7.41 7.42 7.42 7.42 7.42 7.42 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.44 7.41 7.42 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.43 7.44 7.41 7.42 7.42 7.43 7.44 7.44 7.41 7.42 7.42 7.43 7.44 7.44 7.45 7.45 7.45 7.45 7.45 7.45	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.36 7.37 7.61	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.37 7.36 7.31 7.32 7.37 7.38 7.31 7.32 7.33 7.33 7.33	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.39 7.36 7.35 7.42 7.44 7.35 7.44 7.35 7.44	7.63 7.75 7.69 7.76 7.74 7.71 7.67 7.58 7.58 7.58 7.59 7.76 7.57 7.64 7.59 7.50 7.52	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.44 7.43 7.50 7.49 7.51 7.46 7.44 7.43 7.50 7.49	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.46 7.54 7.54 7.54 7.46 7.54 7.46 7.54 7.54 7.46 7.57	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.44 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.36 7.37 7.61	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.38 7.31 7.32 7.35 7.38 7.31 7.32 7.37 7.44 7.45 7.45 7.37	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.36 7.35 7.42 7.44 7.35 7.44 7.35 7.44 7.49 7.55 7.49	7.63 7.75 7.69 7.74 7.74 7.71 7.67 7.58 7.58 7.58 7.58 7.57 7.64 7.57 7.50 7.50 7.50 7.50 7.50 7.50	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.44 7.43 7.43 7.43 7.43	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.46 7.60 7.54 7.54 7.54 7.46 7.46 7.46 7.46 7.46 7.46	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41 7.42 7.44 7.41 7.41 7.42 7.44 7.41 7.41 7.42 7.44 7.41 7.41 7.41 7.41 7.41 7.41 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.53 7.36 7.37 7.61 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.36 7.36 7.36 7.37 7.36 7.37 7.36 7.37 7.37	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.36 7.35 7.42 7.44 7.35 7.35 7.44 7.35 7.35 7.44	7.63 7.75 7.76 7.74 7.71 7.68 7.58 7.58 7.58 7.59 7.767 7.50 7.50 7.50 7.51 7.53 7.53	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.46 7.44 7.43 7.45 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.46 7.60 7.54 7.54 7.54 7.46 7.46 7.46 7.47	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.36 7.37 7.61 7.53 7.51 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.38 7.31 7.32 7.33 7.33 7.33 7.37 7.44 7.45 7.45 7.45 7.48	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.36 7.35 7.42 7.44 7.35 7.44 7.35 7.44 7.49 7.55 7.57	7.63 7.75 7.76 7.74 7.74 7.71 7.58 7.58 7.58 7.58 7.57 7.64 7.57 7.64 7.50 7.50 7.50 7.55 7.55 7.55	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.46 7.43 7.43 7.43 7.43 7.45 7.46 7.47 7.46 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.46 7.60 7.54 7.54 7.48 7.46 7.46 7.46 7.46 7.46 7.47 7.54 7.48 7.46 7.48	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.53 7.36 7.37 7.61 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.36 7.36 7.36 7.37 7.36 7.37 7.37 7.44 7.45 7.45 7.45 7.45	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.39 7.36 7.35 7.42 7.44 7.35 7.44 7.49 7.55 7.57	7.63 7.75 7.69 7.76 7.74 7.71 7.58 7.58 7.58 7.59 7.76 7.57 7.64 7.59 7.50 7.50 7.52 7.53 7.55 7.55 7.55 7.55 7.55 7.55 7.57	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.46 7.43 7.43 7.50 7.49 7.51 7.46 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.53 7.52 7.48 7.46 7.46 7.54 7.54 7.54 7.46 7.46 7.46 7.46 7.47 7.50 7.48 7.48 7.46 7.50 7.48 7.46 7.46 7.46	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.36 7.37 7.64 7.53 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.37	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.36 7.35 7.42 7.44 7.35 7.44 7.49 7.55 7.49 7.50 7.52 7.53	7.63 7.75 7.76 7.74 7.71 7.57 7.58 7.58 7.58 7.59 7.76 7.50 7.50 7.50 7.50 7.50 7.55 7.55 7.57	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.46 7.43 7.45 7.47 7.46 7.48 7.45 7.47 7.46 7.48 7.46 7.66	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.52 7.46 7.47 7.46 7.46 7.47 7.54 7.48 7.46 7.46 7.47 7.54 7.48 7.46 7.46 7.47 7.55 7.55 7.54 7.48 7.46 7.46 7.46 7.47 7.55 7.55 7.55 7.55 7.55 7.55 7.55	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49 7.54 7.46	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7.37 7.37 7.35 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.36 7.37 7.61 7.53 7.61 7.53 7.81 7.53 7.54 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.38 7.31 7.32 7.35 7.38 7.31 7.32 7.35 7.38 7.31 7.32 7.35 7.38 7.31 7.32 7.35 7.38 7.31 7.32 7.35 7.38	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.36 7.35 7.42 7.44 7.35 7.42 7.44 7.35 7.44 7.55 7.57 7.50 7.50	7.63 7.75 7.76 7.74 7.74 7.71 7.58 7.58 7.58 7.58 7.55 7.57 7.64 7.57 7.50 7.50 7.50 7.55 7.55 7.57	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.44 7.43 7.43 7.43 7.45 7.47 7.46 7.47 7.46 7.47 7.46 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.52 7.48 7.46 7.60 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49	AUGUST 7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	7.37 7.37 7.55 7.43 7.34 7.39 7.40 7.41 7.42 7.39 7.38 7.53 7.36 7.37 7.64 7.53 7.58 7.55 7.55 7.55 7.55 7.55 7.55 7.55	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.36 7.36 7.38 7.31 7.32 7.33 7.33 7.33 7.37 7.44 7.45 7.45 7.45 7.45 7.47 7.45 7.47 7.49 7.53	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.38 7.36 7.35 7.42 7.47 7.35 7.49 7.55 7.49 7.50 7.52 7.53 7.58	7.63 7.75 7.76 7.74 7.71 7.67 7.58 7.58 7.58 7.58 7.59 7.76 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	JULY 7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.46 7.43 7.45 7.46 7.45 7.47 7.46 7.58 7.66 7.55 7.54	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.52 7.48 7.46 7.46 7.54 7.54 7.54 7.54 7.54 7.48 7.46 7.48 7.46 7.47 7.55 7.54 7.48 7.46 7.47 7.55 7.55 7.55 7.55 7.55 7.55 7.55	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.46 7.45 7.54 7.46	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.43 7.44 7.49 7.46 7.50 7.43	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7.37 7.37 7.55 7.43 7.34 7.37 7.40 7.41 7.42 7.39 7.38 7.51 7.53 7.36 7.37 7.61 7.53 7.54 7.53	JUNE 7.31 7.30 7.39 7.33 7.30 7.31 7.32 7.37 7.36 7.36 7.38 7.32 7.35 7.38 7.31 7.32 7.33 7.33 7.37 7.44 7.45 7.45 7.45 7.45 7.47 7.49 7.53	7.34 7.33 7.48 7.37 7.32 7.31 7.32 7.34 7.39 7.36 7.35 7.42 7.44 7.35 7.44 7.35 7.44 7.55 7.57 7.49 7.50 7.52 7.50 7.52 7.53	7.63 7.75 7.76 7.74 7.74 7.71 7.58 7.58 7.58 7.58 7.55 7.57 7.64 7.57 7.50 7.50 7.50 7.55 7.55 7.57	7.55 7.61 7.65 7.68 7.69 7.66 7.61 7.39 7.45 7.47 7.41 7.43 7.50 7.49 7.51 7.44 7.43 7.43 7.43 7.45 7.47 7.46 7.47 7.46 7.47 7.46 7.47	7.61 7.70 7.67 7.72 7.71 7.70 7.67 7.55 7.52 7.48 7.46 7.60 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.59 7.72 7.76 7.59 7.52 7.46 7.45 7.52 7.50 7.49 7.54 7.46	7.53 7.50 7.56 7.47 7.44 7.41 7.42 7.44 7.47 7.44 7.41	7.56 7.54 7.65 7.53 7.48 7.44 7.48 7.49 7.46 7.50 7.43	MAX		

04208506 CUYAHOGA RIVER AT WEST THIRD STREET BRIDGE, IN CLEVELAND, OH--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			TEMPERA	FURE, WATER	(DEG. C), WATER	YEAR OCTOBER	R 1986 T	O SEPTEMBE	SR 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	24.0 22.5 22.0 21.5 21.5	22.5 21.5 21.0 21.0 20.5	23.5 22.0 21.5 21.0 21.0	18.5 18.0 18.5 18.0 16.5	18.0 18.0 18.0 16.5 16.5	18.5 18.0 18.0 17.5 16.0	8.5 7.5 7.0 6.5 6.0	7.0 6.0 6.5 5.5 5.0	8.0 7.0 7.0 6.0 5.5	7.5 7.5 7.0 7.0 6.5	6.5 7.0 6.5 6.0 6.0	7.0 7.5 6.5 6.5 6.5
6 7 8 9 10	20.5 18.5 18.5 18.5	18.0 17.5 17.5 18.0 17.5	19.5 18.0 18.0 18.0	16.0 16.5 17.5 17.5	16.0 16.0 16.5 17.0 17.5	16.0 16.5 17.0 17.5	5.5 6.0 7.0 8.0 8.5	5.0 5.5 6.5 6.5	5.5 5.5 6.5 7.0 7.5	6.5 7.0 7.0 7.0 7.0	6.0 6.0 7.0 6.5 6.5	6.5 6.5 7.0 7.0
11 12 13 14 15	17.5 18.0 20.0 19.5 17.5	17.0 17.0 18.0 18.0 16.5	17.0 17.5 19.0 18.5 17.0	17.5 16.0 14.5 12.0 11.5	16.0 14.5 12.0 11.5 11.0	17.0 15.5 13.0 12.0 11.5	6.5 5.5 5.5 5.0 5.5	5.0 5.0 4.5 4.5 4.5	5.5 5.5 5.0 5.0	7.5 7.0 7.0 8.0 8.0	6.5 6.0 6.5 7.0	7.0 6.5 6.5 7.0 7.5
16 17 18 19 20	16.5 16.5 17.0 17.0	16.0 16.0 16.0 16.5 16.5	16.0 16.0 16.5 16.5	11.5 13.0 13.5 12.5 8.5	11.0 11.5 12.5 8.0 8.0	11.5 12.5 13.0 10.0 8.5	6.0 7.5 8.5 8.0 7.0	5.0 5.5 7.5 7.0 6.5	5.5 6.5 8.0 7.5 7.0	7.0 6.0 6.5 6.5	6.0 6.0 5.5 5.5 4.5	6.5 6.0 6.0 6.0
21 22 23 24 25	17.0 18.0 19.0 19.5 20.0	16.5 17.0 18.0 18.0	16.5 17.5 18.5 18.5	8.5 7.5 9.0 9.5 9.5	7.0 7.0 7.5 8.5 9.0	7.5 7.5 8.5 9.0 9.5	7.5 7.5 7.0 7.0 7.0	7.0 7.0 6.0 6.0 5.0	7.0 7.5 6.5 6.5	5.5 5.5 5.0 5.0 4.0	4.5 4.5 5.0 4.0 3.5	5.0 5.0 5.0 4.5 3.5
26 27 28 29 30 31	20.0 20.0 19.0 18.5 18.0	19.5 19.0 17.5 18.0 18.0	20.0 19.5 18.5 18.0 18.0	9.5 9.0 9.0 8.5 8.5	8.5 9.0 8.0 8.0	9.0 9.0 8.5 8.0 8.0	5.5 6.0 6.5 7.0 6.5 7.0	5.0 5.5 6.0 6.0 6.0	5.0 5.5 6.5 6.5 6.5	5.0 5.0 5.5 6.5 6.5	4.0 4.5 4.5 5.0 5.5 6.0	4.5 4.5 5.5 6.0
MONTH	24.0	16.0	18.5	18.5	7.0	12.5	8.5	4.5	6.5	8.0	3.5	6.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR			MARCE			APRIL			MAY	
1 2 3 4 5	7.0 7.5 7.5 7.0 7.0	6.0 6.5 6.5 6.0	6.0 7.0 7.0 6.5 6.5	8.5 5.0 5.0 5.0	5.0 4.5 4.5 4.5 4.5	7.0 4.5 5.0 4.5 4.5	5.5 6.0 5.5 5.5 4.5	4.0 5.0 5.0 4.5 3.5	4.5 5.5 5.0 5.0 4.0	17.0 18.0 17.5 17.5	16.0 17.0 17.0 15.5	16.5 17.0 17.5 16.5 16.0
6 7 8 9 10	7.5 8.0 8.0 6.5 5.0	6.5 7.0 7.0 5.0 4.5	7.0 7.5 7.5 6.0 5.0	6.5 8.0 10.0 9.0 7.5	5.0 6.5 8.0 8.0 5.0	6.0 7.5 9.0 9.0 6.5	5.0 7.5 8.5 9.0 10.5	4.5 4.5 7.0 8.0 9.0	4.5 5.5 7.5 8.5 9.5	17.5 18.5 19.5 20.5 21.5	16.0 17.5 18.5 19.0 20.5	17.0 18.0 19.0 20.0 20.5
11 12 13 14 15	6.5 7.0 7.0 6.5 6.5	5.0 6.0 6.5 6.0	5.5 6.5 6.5 6.5	6.5 7.0 8.5 8.0	4.5 5.5 6.5 7.5 7.0	5.5 6.5 7.5 7.5	11.0 11.0 12.5 14.0 14.5	10.0 10.5 11.0 12.5 13.5	10.5 11.0 12.0 13.5 14.0	22.5 22.0 23.0 23.5 22.5	21.0 21.5 21.5 22.0 21.5	21.5 22.0 22.0 23.0 22.0
16 17 18 19 20	6.0 5.5 6.0 7.5 8.0	5.5 5.5 5.5 6.0 7.5	5.5 5.5 6.0 7.0 7.5	8.5 9.0 8.5 9.0 9.5	7.0 7.0 7.0 7.5 8.0	7.5 8.0 7.5 8.5 9.0	14.5 15.0 15.5 18.0 19.0	14.0 14.0 14.5 15.5 17.5	14.5 14.5 15.0 16.5 18.5	22.0 23.0 23.5 23.5 22.0	21.0 22.0 23.0 20.5 20.5	21.5 22.5 23.5 21.5 21.0
21 22 23 24 25	8.5 8.5 8.5 9.0 8.5	7.5 8.0 8.5 8.0	8.0 8.5 8.5 8.5	10.5 11.0 12.0 12.5 13.5	9.0 9.5 10.5 11.5 12.5	9.5 10.5 11.0 12.0 13.0	19.5 20.0 20.0 19.0 16.5	18.0 19.0 19.0 16.5 15.5	19.0 19.5 19.5 18.0 16.0	23.0 25.0 25.0 25.0 24.5	21.5 22.5 24.0 24.5 24.0	22.5 23.5 24.5 25.0 24.5
26 27 28 29 30	8.0 8.0 8.5 	7.5 7.0 8.0 	7.5 7.5 8.5 	14.0 14.0 13.5 15.5 15.0	13.0 13.0 13.0 13.0 10.5 4.0	13.5 13.5 13.0 14.5 14.0 6.0	17.0 18.0 17.5 16.0	15.0 16.5 15.0 14.5 15.0	16.0 17.0 16.5 15.5	24.5 24.5 26.5 26.5 28.0 27.0	24.0 24.0 24.0 25.5 26.0 26.5	24.0 24.0 25.0 26.0 27.0 26.5
MONTH	9.0	4.5	7.0	15.5	4.0	8.5	20.0	3.5	12.5	28.0	15.5	21.5

04208506 CUYAHOGA RIVER AT WEST THIRD STREET BRIDGE, IN CLEVELAND, OH--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

							TEAR OCTOBE.		O BELLEVEL			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1	27.0	26.0	26.5	22.5	22.0	22.5	31.0	30.0	30.5			
2	27.0	25.0	26.5	22.5	20.0	20.5	30.5	27.5	30.0			
3 4	25.0 24.0	21.5	22.5	22.5	20.0	21.0 22.5	26.0 27.0	24.0 25.0	25.0 26.5			
5	25.0	24.0	24.5	23.5	23.0	23.5	28.5	27.0	27.5			
6	25.5	24.5	25.0	24.5	23.5	24.0	28.5	27.5	28.5			
7	26.0	25.5	26.0	25.0	24.0	24.5	29.0	28.5	29.0			
9	26.0	26.0 26.0	26.0	26.0 27.0	24.5	25.5 26.5	29.5 29.5	29.0	29.0			
10	25.5	24.5	25.0	27.5	26.5	27.0	28.0	25.5	26.5			
11 12	24.5	24.0	24.5	27.5	27.0	27.0	25.5	25.0	25.5			
	24.5	24.0	24.0	28.5 29.5	27.0 28.5	28.0	27.0	25.0	26.0			
13 14	26.0	23.5	24.5	29.0	23.0	25.0						
15	26.5	25.5	26.0	24.5	23.0	23.5						
16 17	27.5 28.5	26.5	27.0 27.5	25.0 27.0	24.0	24.5			555 W			
18	28.5	27.5	28.0	27.0	25.5	26.0						
19 20	28.5	28.0	28.5	28.5 29.5	26.5 28.0	27.5 28.5			55		N.	
21 22	24.0	23.0	23.5	29.5 31.0	29.0	29.5						
23	24.5	24.0	24.0	31.5	30.5	31.0						
24 25	25.5 26.5	24.0 25.0	24.5	31.5	31.0 31.5	31.5 31.5						
26 27	27.0 27.0	26.5 26.5	26.5	32.0 32.0	31.0 31.0	31.5 31.5						
28	26.5	24.0	26.0	31.5	31.0	31.0						
29 30	24.0	23.0	23.5	31.0 31.0	30.5 29.5	31.0 30.0						
31				30.5	29.5	29.5						
MONTH	28.5	21.5	25.5	32.0	20.0	27.0	31.0	24.0	28.0			
YEAR	32.0	2 5										
	32.0	3.5	15.0									
	32.0			SSOLVED (DO) - MG/I	WATED VEA	P OCTORED 1	986 TO 9	POTEMBED 10	987		
		ох	YGEN, D	SSOLVED (DO							MTN	MEAN
DAY	MAX	OX MIN	YGEN, DI	SSOLVED (DO	MIN	MEAN	R OCTOBER 1:	MIN	MEAN	987 MAX	MIN	MEAN
		ох	YGEN, DI			MEAN			MEAN		MIN JANUAR	
DAY	MAX 5.6	OX MIN OCTOBE 4.1	MEAN	MAX 4.7	MIN NOVEMBE 3.6	MEAN ER 4.2	MAX 7.6	MIN DECEMBE	MEAN ER 7.2	MAX 6.1	JANUAR	Y 5.1
DAY	MAX 5.6 6.0	MIN OCTOBE 4.1 4.9	MEAN R 4.8	MAX 4.7 4.8	MIN NOVEMBE 3.6 4.1	MEAN ER 4.2 4.5	7.6 9.0	MIN DECEMBE 6.6 7.1	MEAN 7.2 7.7	6.1 5.9	JANUAR 4.1 3.7	5.1 4.8
DAY 1 2 3 4	5.6 6.0 6.7 6.3	OX MIN OCTOBE 4.1 4.9 5.5 5.6	YGEN, DI MEAN R 4.8 5.4 6.0 6.0	4.7 4.8 4.7	MIN NOVEMBE 3.6 4.1 4.0 4.0	MEAN 4.2 4.5 4.3 4.1	7.6 9.0 9.7 9.8	MIN DECEMBE 6.6 7.1 8.7 9.4	MEAN 7.2 7.7 9.2 9.7	6.1 5.9 6.0 7.2	JANUAR 4.1 3.7 3.9 5.2	5.1 4.8 5.1
DAY 1 2 3	MAX 5.6 6.0 6.7	OX MIN OCTOBE 4.1 4.9 5.5	MEAN R 4.8 5.4 6.0	4.7 4.8 4.7	MIN NOVEMBE 3.6 4.1 4.0	MEAN ER 4.2 4.5 4.3	7.6 9.0 9.7	MIN DECEMBE 6.6 7.1 8.7	MEAN 7.2 7.7 9.2	6.1 5.9 6.0	JANUAR 4.1 3.7 3.9	5.1 4.8
DAY 1 2 3 4 5	MAX 5.6 6.0 6.7 6.3 6.7	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9	MEAN RR 4.8 5.4 6.0 6.0 6.4	4.7 4.8 4.7 4.2 5.1	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1	MEAN 4.2 4.5 4.3 4.1 4.6	7.6 9.0 9.7 9.8 9.9	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5	MEAN 7.2 7.7 9.2 9.7 9.7 9.7	6.1 5.9 6.0 7.2 6.7	JANUAR 4.1 3.7 3.9 5.2 4.3	5.1 4.8 5.1 6.3 5.7
DAY 1 2 3 4 5	5.6 6.0 6.7 6.3 6.7	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1	MEAN 4.8 5.4 6.0 6.4 6.9 7.3 7.4	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1	MEAN ER 4.2 4.5 4.3 4.1 4.6	7.6 9.0 9.7 9.8 9.9	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.4	MEAN 7.2 7.7 9.2 9.7 9.7 9.4 9.0 8.6	6.1 5.9 6.0 7.2 6.7 6.9 6.6	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7	5.1 4.8 5.1 6.3 5.7
DAY 1 2 3 4 5 6 7 8 9	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.7	MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.6	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.4 8.0	MEAN 7.2 7.7 9.2 9.7 9.7 9.7 9.8 6.6 8.5	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9	5.1 4.8 5.1 6.3 5.7 5.8 5.5 4.7
DAY 1 2 3 4 5 6 7 8	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.7	MEAN R 4.8 5.4 6.0 6.4 6.9 7.3 7.4 7.2 6.9	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.4 8.0 8.3	MEAN 7.2 7.7 9.2 9.7 9.7 9.7 9.6 8.6 8.5 8.7	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 5.8	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6	5.1 4.8 5.1 6.3 5.7 5.8 5.5 5.3 4.7 3.3
DAY 1 2 3 4 5 6 7 8 9 10	5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7 7.5 7.1	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.7 6.6	MEAN R 4.8 5.4 6.0 6.4 6.9 7.1	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8	MEAN 7.2 7.7 9.2 9.7 9.7 9.4 9.0 8.6 8.5 8.7	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6	5.1 4.8 5.1 6.3 5.7 5.8 5.5 5.3 4.7 3.3 3.6
DAY 1 2 3 4 5 6 7 8 9 10	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7 7.5 7.1	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.7 6.6	MEAN R 4.8 5.4 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.4 8.0 8.3 8.8	MEAN 7.2 7.7 9.2 9.7 9.7 9.7 9.0 8.6 8.5 8.7 9.2 9.0 8.5	6.1 5.9 6.0 7.2 6.7 6.6 5.8 4.5 4.4	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.5	5.1 4.8 5.1 6.3 5.7 5.5 5.3 4.7 3.3 3.6 4.7
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7 7.5 7.1 7.5 9 6.9	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.7 6.6 6.7 5.6	MEAN R 4.8 5.4 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1	MEAN 7.2 7.7 9.2 9.7 9.7 9.4 9.0 8.6 8.5 8.7	6.1 5.9 6.0 7.2 6.7 6.6 5.8 4.5 4.4 5.6 7	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.5	5.1 4.8 5.1 6.3 5.7 5.5 5.3 4.7 3.3 3.6 4.7
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7 7.5 7.1 7.5 7.3 6.9 6.9 7.2	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.6 6.7 5.6 5.8 6.7	MEAN R 4.8 5.4 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4 4.3 4.3 4.8 5.1	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 3.9 4.0	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.0 4.5 4.4	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4	MEAN 7.2 7.7 9.2 9.7 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7 8.1	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 5.7 6.1	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.2 4.0 4.9	5.1 4.8 5.3 5.7 5.8 5.5 5.3 4.7 3.3 3.6 4.5 4.7 4.8
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7 7.5 7.1 7.5 7.1 7.5 7.2 7.2 7.2 7.2	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.7 6.6 6.6 6.7 5.8 6.7	MEAN R 4.8 5.4 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4 4.3 4.2 4.3 4.3 4.8 5.1	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5 4.4	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8	MEAN 7.2 7.7 9.2 9.7 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7	6.1 5.9 6.0 7.2 6.7 6.6 5.8 4.5 4.4 5.6 7	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.2 4.0 4.9	5.1 4.8 5.1 6.3 5.7 5.8 5.5 5.3 4.7 3.3 3.6 4.57 4.8 6.7
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7 7.5 7.1 7.5 7.2 6.9 6.9 7.2 7.8 5.6	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.6 6.7 5.6 5.8 6.7	MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4 4.3 4.2 4.3 4.8 5.1	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.0 4.5 4.4 5.4 4.4 3.5	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1 9.6 9.3 9.0 9.3 8.6	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8	MEAN 7.2 7.7 9.2 9.7 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7 8.1 7.3 6.5 5.5	6.1 5.9 6.0 7.2 6.7 6.6 5.8 4.5 4.5 4.4 5.6 5.7 6.1 7.7	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.2 4.0 4.9	5.1 4.8 5.1 6.3 5.7 5.8 5.5 5.3 4.7 3.3 3.6 4.57 4.8 6.7
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	MAX 5.6 6.0 6.7 6.3 6.7 7.2 7.6 7.7 7.5 7.1 7.5 7.2 6.9 6.9 7.2 7.8 5.6	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.6 6.7 5.6 5.8 6.7	MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.1 4.4 4.3 4.2 4.3 4.2 4.3 5.1	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5 4.4	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1 9.6 9.3 9.3 8.6	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 5.4	MEAN 7.2 7.7 9.2 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7 8.1 7.3	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 5.7 7.7	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.2 4.0 4.9	5.1 4.8 5.3 5.7 5.8 5.5 5.3 4.7 3.3 3.6 4.5 4.7 4.8
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MAX 5.66.0 6.7 6.3 6.7 7.2 7.67 7.5 7.1 7.53 6.9 7.2 7.8 5.66 4.62	OX MIN OCTOBE 4.1 4.9 5.6 5.9 6.7 7.0 6.7 6.6 6.7 5.68 6.7 5.68 6.7 4.8 3.8	MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 5.2 4.2 3.9	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4 4.3 4.2 4.3 4.8 5.1 5.1	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7 3.2 4.2 7.1	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.4 4.1 3.8 4.0 4.5 4.4 5.4 4.4 3.5 6.0 7.4	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1 9.6 9.3 9.0 9.3 8.6 7.8 7.2	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 5.4 4.5 5.4 5.8	MEAN 7.2 7.7 9.2 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7 8.1 7.3 6.5 6.1 6.4	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 5.7 6.1 7.7	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.2 4.0 4.9 6.9 7.8 8.6 8.2 9.1	5.1 4.81 5.7 5.5 5.7 5.8 5.3 7 3.3 3.6 4.7 4.8 6.7 8.0 9.0 9.7
DAY 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22	MAX 5.666.7 6.3 6.7 7.2 7.67 7.5 7.1 7.5 7.3 6.9 7.2 7.2 6.8 5.6 4.2 4.7 4.6	OX MIN OCTOBE 4.1 5.5 5.6 5.9 6.7 7.0 6.6 6.7 6.6 6.7 6.6 6.7 6.6 8.7 4.8 3.6	YGEN, DI MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 5.2 3.9	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.1 4.4 4.3 4.2 4.3 4.8 5.1 5.7 5.1 4.2 8.0 7.9	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7 3.2 4.2 7.1	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5 4.4 3.5 6.0 7.4 8.6 8.2	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.9 9.1 9.6 9.3 9.0 9.3 8.6 7.2 6.2 7.3 7.2	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 5.4 4.5 5.8	MEAN 7.2 7.7 9.2 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7 6.5 6.1 6.4 5.9 5.1	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 7.7 8.8 8.8 9.3 10.5	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 2.4 4.0 4.9 6.9 7.8 8.6 8.2 9.1 9.4 9.1	5.1 4.8 5.3 5.7 5.8 5.3 4.7 3.3 4.7 4.8 6.7 8.0 9.0 9.7 9.6
DAY 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22	MAX 5.60 6.7 6.3 6.7 7.2 7.67 7.1 7.53 6.9 7.2 6.86 4.62 4.7 4.7 4.66	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.01 6.7 6.6 6.7 5.8 6.7 5.8 6.7 4.8 3.8 3.6	YGEN, DI MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 3.9 4.1 3.9 3.2	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.1 4.4 4.3 4.2 4.3 4.2 4.3 4.2 4.3 4.2 8.0 7.9	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7 3.2 4.2 7.1	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.4 4.1 3.8 4.0 4.5 4.4 3.5 6.0 7.4 8.6 8.2 7.6	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1 9.6 9.3 9.3 8.6 7.2 6.2 7.2 6.1 6.1	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 5.4 4.5 5.8 4.6 4.1 5.3	MEAN 7.2 7.7 9.2 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7 8.1 7.3 6.5 6.1 6.4 5.9 6.3	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 5.7 7.7 8.8 8.8 9.3 10.5	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.2 4.0 4.9 6.9 7.8 8.6 8.2 9.1 9.4 9.1 7.4	5.1 4.81 5.3 5.7 5.5 5.3 7 3.3 3.6 4.5 7 4.8 8.3 9.0 9.7 9.6 8.9
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MAX 5.666.7 6.3 6.7 7.2 7.67 7.5 7.1 7.5 7.3 6.9 7.2 7.2 6.8 5.6 4.2 4.7 4.6	OX MIN OCTOBE 4.1 5.5 5.6 5.9 6.7 7.0 6.6 6.7 6.6 6.7 6.6 6.7 6.6 8.7 4.8 3.6	YGEN, DI MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 5.2 3.9	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.1 4.4 4.3 4.2 4.3 4.8 5.1 5.7 5.1 4.2 8.0 7.9	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7 3.2 4.2 7.1	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5 4.4 3.5 6.0 7.4 8.6 8.2	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.9 9.1 9.6 9.3 9.0 9.3 8.6 7.2 6.2 7.3 7.2	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 5.4 4.5 5.8	MEAN 7.2 7.7 9.2 9.7 9.4 9.0 8.6 8.5 8.7 9.2 9.0 8.5 8.7 6.5 6.1 6.4 5.9 5.1	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 7.7 8.8 8.8 9.3 10.5	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 2.4 4.0 4.9 6.9 7.8 8.6 8.2 9.1 9.4 9.1	5.1 4.8 5.3 5.7 5.8 5.3 4.7 3.3 4.7 4.8 6.7 8.0 9.0 9.7 9.6
DAY 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 3 24	MAX 5.60 6.7 6.3 6.7 7.2 7.67 7.5 7.1 7.53 6.9 6.9 7.2 6.86 4.6 4.7 4.6 3.0	OX MIN OCTOBE 4.1 4.9 5.6 5.9 6.7 7.0 7.1 6.6 6.7 5.6 5.8 6.7 6.7 4.8 3.8 3.6 3.7 4.2 4.8 3.6	YGEN, DI MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 3.9 4.1 3.9 3.2 2.4 2.1	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.1 4.4 4.3 4.2 4.3 4.8 5.1 5.7 5.1 4.2 8.0 7.9 9.1 8.1 6.9 5.0	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7 3.2 4.2 7.1 8.1 7.2 7.0 5.1 1.3	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.4 4.1 3.8 4.0 4.5 6.0 7.4 8.6 8.2 7.6 6.2 3.9	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1 9.6 9.3 9.0 9.3 8.6 7.2 6.2 7.3 7.2 6.1 6.9 6.8 9.0	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 5.4 4.5 5.8 4.6 4.1 5.3 4.4 5.4	MEAN 7.2 7.7 9.7 9.7 9.7 9.7 9.0 8.6 8.5 8.7 9.0 8.5 8.7 8.1 7.3 6.5 5.5 6.1 6.4 5.9 6.3 6.0	6.1 5.9 6.0 7.2 6.7 6.6 5.8 5.8 4.5 4.4 5.6 5.7 6.1 7.7 8.8 8.8 9.3 10.5	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.2 4.0 4.9 6.9 7.8 8.6 8.2 9.1 9.4 9.1 7.4	5.1 4.8 5.3 5.7 5.5 5.3 7 3.6 6.7 4.8 7 8.0 9.9 9.7 9.6 9.9 9.7 9.6 9.9 9.7
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 25 26	MAX 5.60 6.7 6.3 6.7 7.2 7.57 7.1 7.53 6.9 7.2 6.86 4.62 4.7 4.66 3.00 2.5 3.50	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.6 6.7 5.6 5.8 6.7 6.6 5.8 6.7 4.8 3.6 3.7 4.8 3.6 4.1 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	YGEN, DI MEAN 4.8 5.4 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 5.2 4.2 3.9 4.1 3.9 3.2 2.4 2.1	MAX 4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.1 4.4 4.3 4.2 4.3 4.2 4.3 4.8 5.1 5.7 5.1 4.2 8.0 7.9 9.1 8.7 8.1 6.9 5.0 8.6	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7 3.2 7.1 8.1 7.2 7.0 5.1 1.3	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5 4.4 5.4 4.4 3.5 6.0 7.4 8.6 8.2 7.6 6.2 3.9 5.3 8.7	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.9 9.1 9.6 9.3 8.6 7.8 7.2 6.2 7.3 7.2 6.6 6.1 6.8 9.0 9.0	MIN DECEMBE 6.6 7.1 8.7 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 4.5 5.4 5.8 4.6 4.1 5.3 4.4 8.2 7.2	MEAN 7.2 7.7 9.2 9.7 9.4 9.0 8.6 8.7 9.2 9.0 8.5 8.7 9.1 6.4 5.9 6.1 6.4 5.9 6.1 6.3 6.0 7.0	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 5.8 4.5 4.4 5.6 7.7 8.8 8.8 9.3 10.5 10.3 10.0 9.4 8.9 9.9	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 3.2 4.0 4.9 6.9 8.6 8.2 9.1 9.4 9.1 7.4 6.9 8.3	5.1 4.8 5.3 5.7 5.8 5.3 7 3.6 5.7 4.8 7 4.8 7 8.0 9.9 9.7 9.6 9.8 9.7 9.6 9.8 9.7
DAY 1 2 3 4 5 6 7 8 9 10 11 2 13 11 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28	MAX 5.60 6.7 6.3 6.7 7.2 7.67 7.1 7.53 6.9 7.2 6.8 6.60 4.62 4.7 4.66 3.00 2.5 3.5	OX MIN OCTOBE 4.1 5.5 5.6 5.9 6.7 7.01 6.7 6.6 6.7 5.8 6.7 5.8 6.7 4.8 3.6 3.7 4.8 3.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	YGEN, DI MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 5.2 4.2 3.9 4.1 3.9 2.4 2.1	4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.2 5.1 4.4 4.3 4.2 4.3 4.8 5.1 5.7 5.1 4.2 8.0 7.9 9.1 8.7 8.1 6.9 5.0	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 5.1 7.2 7.0 5.1 1.3	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5 6.0 7.4 8.6 8.2 7.6 6.2 3.9 5.3 8.7 8.9	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1 9.6 9.3 9.3 8.6 7.2 7.2 6.6 6.1 6.9 6.8 9.0	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 5.4 5.4 5.8 4.6 4.1 5.4 8.2	MEAN 7.2 7.7 9.7 9.7 9.7 9.7 9.0 8.6 8.7 9.0 8.5 8.7 9.1 6.4 5.9 6.1 6.4 5.9 6.1 6.4 5.9 6.1 6.4	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 5.7 7.7 8.8 8.8 9.3 10.5 10.3 10.0 9.4 8.8 9.9	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.2 4.0 4.9 6.9 8.6 8.2 9.1 9.4 9.1 7.4 6.9 8.3 9.5 10.7 10.5	5.1 4.8 5.1 6.3 5.7 5.5 5.3 7 3.3 3.6 4.7 4.8 6.7 8.0 8.9 9.7 9.9 9.8 9.2 10.6 11.4
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 25 26	MAX 5.606.776.3 6.777.57.1 7.5396.997.2 7.285.664.2 4.76633.0 5.5094.9	OX MIN OCTOBE 4.1 4.9 5.5 5.6 5.9 6.7 7.0 7.1 6.6 6.7 5.6 5.8 6.7 6.6 5.8 6.7 4.8 3.6 3.7 4.8 3.6 4.1 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	YGEN, DI MEAN R 4.8 5.4 6.0 6.0 6.4 6.9 7.3 7.4 7.2 6.9 7.1 6.1 6.5 7.0 6.9 6.2 4.2 3.9 4.1 3.9 3.2 2.4 2.1 2.4 4.5	MAX 4.7 4.8 4.7 4.2 5.1 5.3 5.2 5.1 4.4 4.3 4.2 4.3 4.2 8.0 7.9 9.1 8.1 6.9 5.0 8.6 9.0 9.0	MIN NOVEMBE 3.6 4.1 4.0 4.0 4.1 4.8 4.9 4.6 4.0 3.8 3.7 3.8 3.9 4.0 5.0 3.7 3.2 4.2 7.1 8.1 7.2 7.0 5.1 1.3 1.0 8.3 8.6	MEAN 4.2 4.5 4.3 4.1 4.6 4.9 5.0 4.9 4.4 4.1 3.8 4.0 4.5 4.4 5.4 4.4 3.5 6.0 7.4 8.6 8.2 7.6 6.2 3.9 5.3 8.7	7.6 9.0 9.7 9.8 9.9 9.7 9.3 8.9 8.8 9.1 9.6 9.3 9.0 9.3 8.6 7.2 6.1 6.9 6.8 9.0	MIN DECEMBE 6.6 7.1 8.7 9.4 9.5 9.0 8.4 8.0 8.3 8.8 8.7 8.0 8.1 7.4 6.8 4.1 5.3 4.4 5.4 5.4 8.2 7.2	MEAN 7.2 7.7 9.2 9.7 9.4 9.0 8.5 8.7 9.2 9.0 8.5 8.7 9.2 9.0 8.5 8.7 9.2 9.0 8.7 7.3 6.4	6.1 5.9 6.0 7.2 6.7 6.9 6.6 5.8 4.5 4.4 5.6 6.1 7.7 8.8 8.8 9.3 10.5 10.3 10.0 9.4 8.8 9.9	JANUAR 4.1 3.7 3.9 5.2 4.3 4.2 3.7 4.7 2.9 2.6 2.5 3.5 2.4.0 4.9 6.9 7.8 8.6 8.2 9.1 9.4 9.1 7.4 6.9 8.3	5.1 4.8 5.3 5.7 5.8 5.3 7 3.6 5.7 4.8 7 4.8 7 8.0 9.9 9.7 9.6 9.8 9.7 9.6 9.8 9.7

1.0 5.5

MONTH 7.7 1.6 5.3 9.1

9.9 4.1 7.7 13.4 2.5

04209506 CUYAHOGA RIVER AT WEST THIRD STREET BRIDGE, IN CLEVELAND, OH--Continued OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	XY.		MARCH			APRIL			MAY	
1 2 3 4 5	11.5 12.4 12.6 12.7 11.9	10.4 10.1 11.9 11.4 11.3	11.0 11.7 12.4 12.2 11.6	10.9 10.4 11.4 11.8 12.4	10.8	10.5 10.2 10.8 11.4 12.0	7.7 7.8 8.9 8.9 9.9	7.5 7.4 7.7 8.3 9.1	7.6 7.6 8.0 8.5 9.3	7.3 6.0 6.3 5.7	5.3 4.7 4.7 5.0 5.0	6.4 5.6 5.8 5.3 5.4
6 7 8 9	11.7 12.1 11.6 11.5 12.9	11.1 10.7 10.5 10.8 11.2	11.3 11.7 11.3 11.1 12.2	12.5 12.1 11.3 10.4 10.0	10.2	12.0 11.6 10.8 10.1 9.6	9.7 10.1 9.4 9.0 8.3	9.1 9.4 8.9 8.4 6.4	9.4 9.7 9.3 8.7 7.5	6.7 5.7 4.5 4.3	5.1 4.1 3.0 3.3 1.5	5.6 4.6 3.7 3.7 3.1
11 12 13 14 15	13.0 12.6 13.0 13.0	12.4 11.1 11.7 12.6 12.2	12.7 12.1 12.5 12.8 12.5	10.7 10.3 12.2 11.9	9.7 9.8 9.5 11.6 10.8	10.4 10.2 11.5 11.7	7.2 7.6 7.9 7.7 7.5	6.9	7.0 7.2 7.7 7.0 7.1	2.2 3.7 4.9 2.4	• 1	3.5
19 20	11.9 11.9 11.5 11.3 11.2	11.3 11.1 10.6 10.4 10.0	11.1	11.1 10.2 10.2 10.3 10.0	8.7 9.2	10.7 9.9 9.8 9.9 9.7	7.0 7.4 6.8 7.0 7.3	6.5 6.4 5.8 5.6 5.3	6.8	1.6 1.5 2.2 3.3 3.0	.1 .3 .3 .4 1.6	.6 .0 2.4 2.2
23 24	11.7 11.9 11.5 12.9 13.3	11.2	11.3 11.5 11.0 12.2 12.8	9.0	8.9 8.7 7.6 6.4 6.1	9.3 8.9 8.6 7.0 6.6	7.1 7.3 7.6 5.6 6.3	5.0 5.0 4.2 4.8 5.4	6.4 5.9 5.7 5.2 5.9	2.6 3.2 1.2 1.2	1.2 .7 .3 .1	1.7 1.6 .7 .5
26 27 28 29 30 31	13.2 12.5 11.7 	12.5 11.7 10.7 	12.9 12.1 11.1 	5.2	4.0 4.1 4.2 4.6 4.1 5.8	5.0 4.5 4.7 5.2 4.9 6.8	7.6 6.7 7.6 7.2 7.7	5.6 3.8 4.3 5.9 5.5	6.3 5.5 6.6 6.8 6.9	1.0	.1 .3 .2 .2	. 4
MONTH	13.3	10.0	11.8	12.5	4.0	9.2	10.1	3.8	7.2	7.3	.1	2.4
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5		:1 2.8 1.4	.4 .2 3.3 2.2 1.0	5.4 6.1 6.0 6.1	5.1 5.0 5.5 5.8 5.5	5.3 5.6 5.8 5.9 5.7	1.1 4.3 4.8 3.7 3.1	.1 3.3 2.7 1.3	.6 .5 4.1 3.3 2.2			
6 7 8 9	.2 .5 .4 .3	.1 .1 .1 .1	.1 .2 .2 .1	5.9 5.8 5.4 4.9	5.3 5.1 4.5 4.3 3.6	5.6 5.5 5.1 4.5 4.2	1.3	.7 .6 .6 .4	1.3 .9 1.0 1.0 2.3			
11 12 13 14 15	.7 1.0 2.2 3.5 3.8	.1 .9 1.9	.3 .2 1.5 2.8 2.0	4.2	2.8 3.0 2.2 2.7 3.5	3.5 3.4 2.5 4.6 4.3	3.2 3.3 	2.1 2.1 	2.8 2.7 			
16 17 18 19 20	.8 .4 .3	.1 .1 .1 .1	.4 .3 .2 .1 2.1	4.9 4.8 3.2 2.7 2.6	3.8 2.9 2.1 1.3 1.0	4.4 4.1 2.7 2.1 1.5	==	===	===			
21 22 23 24 25	4.5 4.9 4.9 5.0 3.9	3.3 4.4 3.7 2.3 2.5	3.9 4.6 4.3 3.6 3.4	1.7 2.1 1.8 2.6 2.3	1.0 .8 .9 .7	1.3 1.4 1.3 1.3	===	===	===			
26 27 28 29 30 31	3.1 3.9 4.3 5.1	2.1 1.6 1.6 3.0 4.0	2.8 2.3 2.8 3.5 4.5	2.5 2.9 3.1 3.2 3.3 1.5	.5 1.3 2.1 1.3 .4	1.7 2.2 2.5 2.6 1.8	=======================================	===	===			
MONTH	5.1	.1	1.8	6.1	.2	3.4	4.8	.1	1.9			
YEAR	13.4	.1	6.0									

04212100 GRAND RIVER NEAR PAINESVILLE, OH

LOCATION.--Lat 41°43'08", long 81°13'41", Lake County, Hydrologic Unit 04110004, on downstream left abutment of bridge on State Highway 84 (Walnut Avenue), 0.9 mi downstream from Big Creek in Painesville.

DRAINAGE AREA. -- 685 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 596.37 ft above National Geodetic Vertical Datum of 1929. Previously published, in error, as 620.37 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 5, 6, Jan. 21 to Feb. 25, and Aug. 3-13. Records fair except periods of estimated record, which are poor.

AVERAGE DISCHARGE. -- 13 years, 1,054 ft 3/s, 20.89 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,700 ft³/s June 11, 1986, gage height, 13.07 ft; maximum gage height, 13.16 ft Dec. 25, 1979; minimum, 11 ft³/s Sept. 14, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 6,500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Jan. 25	0430	ice jam	*10.99	July 3	2230	7,690	7.87
Mar. 2 Apr. 6	0730 2300	7,870 *13,000	7.98 10.53	Aug. 28	0130	6,820	7.31

Minimum daily discharge, 26 ft 3/s Aug. 21.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR OCTOBER	1986	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1660	373	1680	617	500	4960	3660	182	80	2670	30	453
2	1790	313	1680	580	430	7590		165	69	4410	37	
3	2070	320	4460	576		5680		168	196	6460	1000	
3	2760	316	4840	546	350	3730		209	141	6160	960	
5	2810	286	3350	440		2810		205	93	3620	250	
6	2260	267	2590	380	410	2290		197	66	2450	130	110
7	1960	255	2280	515	370	2020	12300	162	57	1760	100	94
8	1660	250	3380	648	330	1790		134	49	964	90	
9	1140	245	3350	645	370	1490		112	45	440	80	
10	664	231	3830	579	420	1120		100	43	280	70	
11	371	231	2880	584	480	825	2530	88	39	206	300	81
12	262	232	1840	584	410	672	1420	100	60	243	180	98
13	236	252	1300	611	360	576	919	94	57	475	120	604
14	375	277	822	616	410	521		86	48	2220	77	
15	873	285	280	1460		489		88	45	569	58	
16	1060	337	518	2260		486	518	80	43	338	46	373
17	867	428	601	1640	280	535	478	76	44	197	39	294
18	710	458	965	1200	260	601	463	78	42	134	34	1640
19	506	844	1610	1080		654	448	92	38	103	30	
20	357	1120	1530	942	210	677	412	82	40	85	28	2710
21	286	1880	1180	700		673		76	110	75	26	
22	231	1870	876	460		618		75	480	66	1190	
23	195	1680	672	360	180	548	270	83	546	57	2230	735
24	175	1370	541	310	170	496	214	77	805	50	1110	456
25	156	1100	1900	270	160	465		71	693	43	522	340
26	150	1880	3490	250		526		70	461	42	258	
27	176	4490	2430	230	212	806	178	82	214	41	2960	203
28	505	3710	1630	210	350	830	214	.64	145	36	4940	159
29	1010	2550	1210	200		726		60	174	36	3610	131
30	714	2130	909	260		1490		54	3010	32	1680	137
31	518		718	400		3710		76		31	762	
TOTAL	28507	29980	59342	20153	9010	50404	77927	3286	7933	34293	22947	19304
MEAN	920	999	1914	650	322	1626		106	264	1106	740	643
MAX	2810	4490	4840	2260		7590		209	3010	6460	4940	3930
MIN	150	231	280	200		465		54	38	31	26	76
CFSM	1.34	1.46	2.79	.95		2.37		.15	.39	1.61	1.08	.94
IN.	1.55	1.63	3.22	1.09		2.74		.18	.43	1.86	1.25	1.05
CAL YR		OTAL 4651		MEAN	1274	MAX		IN		CFSM 1.8		IN. 25.26
WTR YR	1987 T	OTAL 3630	186	MEAN	995	MAX	12300 M	IIN	26	CFSM 1.4	5	IN. 19.72

87

STREAMS TRIBUTARY TO LAKE ERIE

04212100 GRAND RIVER NEAR PAINESVILLE, OHIO--Continued

SEDIMENT ANALYSIS

PERIOD OF RECORD. -- November 1978 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD.-SEDIMENT CONCENTRATIONS: Maximum daily nean, 1,350 mg/L Jan. 1, 1979; minimum daily mean, 1 mg/L Nov. 18, 1981,
Oct. 26, 27, 1982.
SEDIMENT LOADS: Maximum daily, 38,800 tons Dec. 25, 1979; minimum daily, 0.09 ton Oct. 26, 27, 1982.

EXTREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 853 mg/L June 30; minimum daily mean, 4 mg/L Nov. 12, 13.
SEDIMENT LOADS: Maximum daily, 9,220 tons Apr. 6; minimum daily, 0.75 July 31.

04212100 GRAND RIVER NEAR PAINESVILLE, OH--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1 2 3 4 5	1660 1790 2070 2760 2810	67 68 110 135 85	300 329 783 1010 645	373 313 320 316 286	10 8 7 7 6	10 6.8 6.0 6.0 4.6	1680 1680 4460 4840 3350	37 45 98 77 47	168 204 1180 1010 425
6 7 8 9	2240 1920 1600 1090 674	53 48 42 34 23	321 249 181 100 42	267 255 250 245 231	6 4 5 5 7	4.3 2.8 3.4 3.3 4.4	2590 2280 3380 3350 3830	40 58 60 62 64	280 357 548 561 662
11 12 13 14 15	390 277 250 395 854	13 10 11 30 58	14 7.5 7.4 32 134	231 232 252 277 285	5 4 4 6 6	3.1 2.5 2.7 4.5 4.6	2880 1840 1300 822 280	36 29 27 31 16	280 144 95 69 12
16 17 18 19 20	1030 853 714 530 376	32 24 27 13 11	89 55 52 19	337 428 458 844 1120	7 7 12 32 36	6.4 8.1 15 73 109	518 601 965 1610 1530	13 11 40 37 25	18 18 104 161 103
21 22 23 24 25	302 245 207 186 165	9 8 9 8 7	7.3 5.3 5.0 4.0 3.1	1880 1870 1680 1370 1100	58 41 27 19 21	294 207 122 70 62	1180 876 672 541 1900	21 16 12 13 115	67 38 22 19 764
26 27 28 29 30 31	159 187 519 980 714 518	7 8 30 39 23 12	3.0 4.0 42 103 44 17	1880 4490 3710 2550 2130	133 230 94 56 46	1070 2790 942 386 265	3490 2430 1630 1210 909 718	116 43 34 27 19 16	1090 282 150 88 47 31
TOTAL	28465		4618.6	29980		6488.5	59342		8997
		JANUARY			FEBRUARY			MARCH	
1 2 3 4 5	617 580 576 546 440	13 12 12 12 13	22 19 19 18 15	500 430 390 350 450	22 21 19 19 21	30 24 20 18 26	4960 7590 5680 3730 2810	350 410 170 109 84	4690 8400 2610 1100 637
6 7 8 9	380 515 648 645 579	14 12 13 12 10	14 17 23 21 16	410 370 330 370 420	20 19 18 19 20	22 19 16 19 23	2290 2020 1790 1490 1120	70 56 40 36 31	433 305 193 145 94
11 12 13 14 15	584 584 611 616 1460	10 10 9 9	16 16 15 15	480 410 360 410 350	22 20 20 20 19	29 22 19 22 18	825 672 576 521 489	28 25 18 14 14	62 45 28 20 18
16 17 18 19 20	2260 1640 1200 1080 942	74 42 31 22 16	452 186 100 64 41	310 280 260 240 210	19 16 16 15	16 12 11 9.7 7.9	486 535 601 654 677	17 14 11 12 11	22 20 18 21 20
21 22 23 24 25	700 460 360 310 270	14 20 19 19	26 25 18 16	200 190 180 170 160	13 12 10 11 12	7.0 6.2 4.9 5.0 5.2	673 618 548 496 465	10 8 9 8 11	18 13 13 11 14
26 27 28 29 30 31	250 230 210 200 260 400	15 15 14 13 16 21	10 9.3 7.9 7.0 11 23	218 212 350 	15 14 30 	8.8 8.0 28 	526 806 830 726 1490 3710	10 12 12 12 70 210	14 26 27 24 396 2100
TOTAL	20153		1534.2	9010		456.7	50404		21537

04212100 GRAND RIVER NEAR PAINESVILLE, OH--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	3660 3810 3940 5350 7900	142 83 91 72 367	1400 854 968 1040 7920	182 165 168 209 205	8 8 11 7 9	3.9 3.6 5.0 4.0 5.0	80 69 196 141 93	9 10 168 23 30	1.9 1.9 129 8.8 7.5
6 7 8 9	11200 12300 9050 5880 4030	305 273 155 105 86	9220 9070 3790 1670 936	197 162 134 112 100	9 8 8 7 6	4.8 3.5 2.9 2.1 1.6	66 57 49 45 43	32 27 24 20 23	5.7 4.2 3.2 2.4 2.7
11 12 13 14 15	2530 1420 919 688 601	64 61 45 22 16	437 234 112 41 26	88 100 94 86 88	10 12 5 7 8	2.4 3.2 1.3 1.6 1.9	39 60 57 48 45	17 31 20 21 24	1.8 5.0 3.1 2.7 2.9
16 17 18 19 20	518 478 463 448 412	14 11 10 10	20 14 13 12	80 76 78 92 82	11 13 16 14 10	2.4 2.7 3.4 3.5 2.2	43 44 42 38 40	22 22 12 20 15	2.6 2.6 1.4 2.1 1.6
21 22 23 24 25	366 312 270 214 189	11 8 9 8 7	11 6.7 6.6 4.6 3.6	76 75 83 77 71	10 8 14 10 20	2.1 1.6 3.1 2.1 3.8	110 480 546 805 693	93 308 120 110 87	51 472 177 239 163
26 27 28 29 30 31	172 178 214 214 201	9 8 7 5 8	4.2 3.8 4.0 2.9 4.3	70 82 64 60 54 76	16 12 12 10 10	3.0 2.7 2.1 1.6 1.5	461 214 145 174 3010	61 48 16 69 853	76 28 6.3 92 7360
TOTAL	77927		37840.7	3286		86.2	7933		8857.4
		JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	2670 4410 6460 6160 3620	260 437 320 220 73	1870 5470 5580 3660 714	30 37 1000 960 250	10 15 200 94 54	.81 1.5 540 244 36	453 293 211 175 139	22 18 14 11 11	27 14 8.0 5.2 4.1
6 7 8 9	2450 1760 964 440 280	68 74 57 23 20	450 352 148 27 15	130 100 90 80 70	36 39 27 28 24	13 11 6.6 6.0 4.5	110 94 86 80 76	9 9 7 6 6	2.7 2.3 1.6 1.3
11 12 13 14 15	206 243 475 2220 569	12 50 80 507 45	6.7 33 103 4580 69	300 180 120 77 58	25 20 21 21 18	20 9.7 6.8 4.4 2.8	81 98 604 937 683	7 10 62 60 43	1.5 2.6 101 152 79
16 17 18 19 20	338 197 134 103 85	28 20 13 11 12	26 11 4.7 3.1 2.8	46 39 34 30 28	16 17 20 10	2.0 1.8 1.8 .81	373 294 1640 3930 2710	38 40 138 139 69	38 32 791 1470 505
21 22 23 24 25	75 66 57 50 43	11 11 7 7 9	2.2 2.0 1.1 .95	26 1190 2230 1110 522	14 490 300 75 40	.98 2270 1810 225 56	2390 1420 735 456 340	67 53 30 20 16	432 203 60 25 15
26 27 28 29 30 31	42 41 36 36 32 31	10 11 12 14 18	1.1 1.2 1.2 1.4 1.6	258 2960 4940 3610 1680 762	31 397 345 70 48 41	22 3810 5300 682 218 84	266 203 159 131 137	12 9 9 8 6	8.6 4.9 3.9 2.8 2.2
TOTAL	34293		23139.80	22947		15392.33	19304		3996.9
YEAR	363044		132945.33						

04212200 GRAND RIVER AT PAINESVILLE, OH

(National stream-quality accounting network station)

LOCATION.--Lat 41[°]44'09", long 81[°]15'59", in T.11 N., R.8 W., Lake County, Hydrologic Unit 04110004, at bridge on State Highway 535 in Painesville, 2.2 mi upstream from mouth, and 8.0 mi downstream from Kellogg Creek.

DRAINAGE AREA.--701 mi².

PERIOD OF RECORD.--March 1950 to February 1952, October 1962 to current year.

REMARKS.--Water temperatures available for Mar. 1950 to February 1952, October 1962 to December 1966. Four parameter (Specific Conductance, pH, Water Temperature, and Dissolved Oxygen) Water quality monitor at site from December 1966 to September 1981.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
NOV											
19 MAR	1430	610	7.82	2.5	4.0	8.1	11.6	90	720	2700	180
17 APR	1230	620	8.09	6.0	5.0	5.0	11.4	91	120	K50	180
28	1245	1100	8.17	12.0	12.5	1.5	10.0	97	380	110	370
AUG 19	1145	2860	8.14	27.0	26.5	12	7.3	95	190	42	850
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
NOV	100		0.5	42					40	110	
19 MAR	100	56	9.5	43	3.4			76	48	110	0.20
17	69	58	8.6	48	2.7	135	0	111	45	130	0.10
APR 28	290	130	9.9	100	3.0	98	0	80	50	300	0.20
AUG 19	740	320	12	250	6.3	131	0	107	62	840	0.20
	azz z az	SOLIDS,	NITRO-	NITRO-	NIMBO	NITRO-	NITRO-		BWOG	PHOS-	
	SILICA, DIS- SOLVED (MG/L	RESIDUE AT 180 DEG. C DIS-	GEN, NITRITE DIS- SOLVED	GEN, NO2+NO3 DIS- SOLVED	NITRO- GEN, AMMONIA TOTAL	GEN, AMMONIA DIS- SOLVED	GEN, AM- MONIA + ORGANIC TOTAL	PHOS- PHOROUS TOTAL	PHOS- PHOROUS DIS- SOLVED	PHOROUS ORTHO, DIS- SOLVED	ALUM- INUM, DIS- SOLVED
DATE	AS SIO2)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(MG/L AS P)	(UG/L AS AL)
NOV											
19	4.3	360	0.010	0.270	0.040	0.030	0.70	0.050	<0.010	<0.010	20
MAR 17	3.5	361	<0.010	0.340	0.070	0.060	0.50	0.040	0.020	0.010	60
APR 28	1.4	735	0.010	0.160	0.130	0.120	0.60	0.040	0.010	<0.010	30
AUG 19	3.3	1810	<0.010	0.360	0.190	0.180	1.2	0.050	0.010	<0.010	30

STREAMS TRIBUTARY TO LAKE ERIE
0412200 GRAND RIVER AT PAINESVILLE, OH--Continued

DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)
NOV										
19	<1	35	<0.5	<1	<1	<3	6	59	<5	9
MAR									320	
17 APR	<1	31	<0.5	<1	9	<3	3	150	<5	11
28	<1	66	<0.5	<1	10	<3	6	91	<5	15
AUG	1.5		10.5	3.2	10	10		2.1	13	13
19	1	100	<10	<1	10	4	5	20	<5	20
	MANGA- NESE, DIS- SOLVED	MERCURY DIS- SOLVED	MOLYB- DENUM, DIS- SOLVED	NICKEL, DIS- SOLVED	SELE- NIUM, DIS- SOLVED	SILVER, DIS- SOLVED	STRON- TIUM, DIS- SOLVED	VANA- DIUM, DIS- SOLVED	ZINC, DIS- SOLVED	SEDI- MENT, SUS-
DATE	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS MO)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS AG)	(UG/L AS SR)	(UG/L AS V)	(UG/L AS ZN)	PENDED (MG/L)
NOV										
19 MAR	28	<0.1	<10	2	<1	<1.0	160	<6	5	28
17 APR	50	<0.1	<10	1	<1	<1.0	160	<6	23	9
28 AUG	47	<0.1	<10	1	<1	<1.0	290	<6	24	7
19	120	0.2	9	1	<1	<1.0	700	9	10	23

K Results based on colony count outside the acceptable range (non-ideal colony count)

04212680 FIELDS BROOK AT ASHTABULA, OH

LOCATION.--Lat 41°53'36", long 80°47'44", Ashtabula County, Hydrologic Unit 04110003, on left upstream side of bridge at E. 15 th Street in Ashtabula, 1,750 ft upstream from mouth.

DRAINAGE AREA .-- 3.63 mi2.

PERIOD OF RECORD .-- April 1983 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: April 1983 to current year.
pH: April 1983 to current year.
WATER TEMPERATURES: April 1983 to current year.
DISSOLVED OXYGEN: April 1983 to current year.

INSTRUMENTATION. -- Water-quality monitor.

REMARKS .-- Interruptions in the water-quality record were due to malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 20,600 microsiemens May 4, 1986; minimum, 420 microsiemens Nov. 26, 1985.
pH: Maximum, 9.6 units Feb. 24, 1984; minimum, 2.7 units Oct. 28, 1984.
WATER TEMPERATURES: Maximum, 34.0°C July 23, 1987; minimum, 1.5°C Dec. 24, 25, 1983, Jan. 20, 21, 1985.
DISSOLVED OXYGEN: Maximum, 13.3 mg/L Mar. 5, 1985; minimum, 1.4 mg/L Aug. 10, 1986.

EXTREMES FOR CURRENT YEAR. -SPECIFIC CONDUCTANCE: Maximum, 17,800 microsiemens Jan. 5; minimum, 800 microsiemens Apr. 5.
pH: Maximum recorded, 8.8 units Apr. 22, May 6; minimum, 5.9 units on Nov. 25.
WATER TEMPERATURES: Maximum, 34.0°C on July 23; minimum, 2.0°C Apr. 4.
DISSOLVED OXYGEN: Maximum, 13.7 mg/L Apr. 5; minimum, 4.5 mg/L June 29.

04212680 FIELDS BROOK AT ASHTABULA, OH--Continued

SPECIFIC COMMUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	SPEC	IFIC CO	DUCTANCE,	MICROSIEME	NS PER	CENTIMETER	AT 25, WAT	ER YEAR	OCTOBER I	.986 TO SEPT	EMBER 19	187
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	ER		NOVEMB	ER		DECEMBE	R		JANUAF	RY
1 2 3 4 5	4840 5380 3620 2820 3620	3080 2960 1220 1860 2800	3710 3320 2560 2400 3160	4600 4760 5780 4020 5240	4180 3500 3660 3720 3740	4420 3910 4100 3830 4140	3900 4700 2220 3700 5180	3360 1720 1700 2260 2920	3650 2770 1860 2490 3290	4100 5120 5740 3540 17800	3440 3320 3200 3080 3440	3690 3590 3450 3200 5930
6 7 8 9	3560 4380 4680 6840 5780	3160 3340 3500 3360 4140	3370 3680 3920 4500 4720	4600 5520 5760 5060 6020	4200 4260 4320 4300 3780	4390 4630 4760 4550 4650	3480 3080 2200 2340 2560	3020 1800 1700 1600 1660	3310 2630 1920 2010 2130	4500 3820 3400 3140 3240	3780 3080 3160 2880 2940	4060 3360 3280 3020 3060
11 12 13 14 15	4440 5400 5100 7220 4420	3840 4120 4500 4000 2740	4270 4940 4760 4560 3440	3760 3400 4000 4680 4320	3000 3060 3180 3680 4040	3360 3220 3640 4100 4210	3200 3840 3480 3800 3460	2560 2820 3160 2980 3220	2770 3200 3270 3260 3360	4180 4120 3960 3540 5120	3120 3200 3280 3000 2920	3430 3530 3550 3260 3440
15 17 18 19 20	3960 3660 4740 5680 4980	3000 3180 3660 4420 4200	3300 3420 4110 4800 4550	4200 4200 3700 3260 3300	3740 3340 3020 2820 2520	3970 3910 3250 3010 2980	3620 3360 2940 2680 3180	3160 2960 1940 2080 2720	3320 3180 2260 2370 2900	5100 3600 3680 3320 3900	2820 3200 2940 2800 3000	3170 3310 3100 2960 3190
21 22 23 24 25	5320 5640 4260 3820 4980	3960 3640 2840 2980 3440	4280 3930 3510 3320 3780	2380 2880 3100 3750 4180	2180 2120 2840 2960 2980	2260 2490 3010 3260 3250	3860 3920 3820 4160 1860	2980 3380 3200 1660 1220	3280 3610 3470 3100 1520	3700 4740 4200 4620 4700	2960 3420 3480 3400 3280	3270 3750 3810 3670 3510
26 27 28 29 30 31	5160 4360 4280 4000 4860 4560	3440 3160 3280 3320 3560 3920	3770 3710 3580 3640 3870 4130	3140 2200 2680 3180 3380	1620 1620 2240 2700 2900	2350 1850 2440 3000 3170	2620 2880 3460 3180 3220 3460	1920 2640 2660 2700 2640 2720	2210 2780 2810 2900 2870 3090	3 62 0 33 6 0 39 4 0 3 6 4 0 3 2 6 0 3 5 6 0	3220 2960 3180 2880 2980 2960	3330 3150 3450 3200 3170 3210
MONTH	7220	1220	3840	6020	1620	3540	5180	1220	2830	17800	2800	3450
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAE	RY		MARC	Н		APRIL			MAY	
1 2 3 4 5	3200 3880 3420 3500 3600	2920 2800 2840 2940 2960	2990 3020 3030 3290 3320	2680 2960 2520 	1200 1280 1860 	1760 1820 2240 	2120 2520 3920 2640 2760	1780 1700 1800 900 800	1910 1900 2540 2100 1250	4400 5100 4760 3840 3600	3740 4300 3460 3360 3100	4090 4520 4070 3580 3430
6 7 8 9	3440 3460 3960 3360 3640	3000 2980 3040 3140 3220	3200 3210 3260 3260 3460	3620 4940 8820 6080 4000	3020 2400 3400 3540 3560	3320 3490 3910 3890 3780	2420 1480 2560 3300 4820	900 1080 1460 2560 3300	1190 1210 1940 2830 3970	3700 4280 4640 5200 5030	2960 3620 3780 3980 4640	3270 3860 3940 4470 4870
11 12 13 14 15	4540 3560 3860 3920 3980	3020 3220 3160 3500 3560	3240 3280 3320 3630 3770	5280 5880 4720 4400 4520	3400 3560 4020 3880 4000	3660 3970 4260 4070 4150	6100 4940 4220 3820 3800	4420 4220 3720 3520 3140	4800 4570 3990 3690 3390	5420 4360 4640 4380 4420	4000 3760 3600 2960 3500	4650 4010 3960 4080 4050
16 17 18 19 20	7740 4940 4080 3800 3700	3600 3700 3280 3300 3100	4230 4010 3590 3570 3310	4420 4120 4400 4360 4160	3820 3400 3760 3500 3360	4110 3820 4150 4000 3660	3740 5780 5520 5320 4560	3320 4140 4480 4180 3760	3540 4660 4700 4550 4220	4580 4560 5080 4020 4220	4020 4080 3600 3580 3300	4300 4360 4120 3840 3670
21 22 23 24 25	4220 4360 4280 9780 3760	3760 3800 3520 3400 3140	3900 3990 3700 4430 3360	5000 6100 4500 4200 4280	3740 3880 3160 3800 3160	4030 4350 3960 3970 3780	4200 4260 5120 4340 5620	3700 3100 4020 3740 4020	3910 3580 4280 4070 4300	5880 4380 4960 8340 7580	4120 3400 3320 4640 4980	4370 4050 4170 5290 5740
26 27 28 29 30	4000 4420 4200 	3360 3400 2800 	3650 3660 3470 	3400 3480 3740 5560 3680 2400	2820 2960 3220 3480 1400 1360	3130 3250 3470 3700 2850 1780	7560 4180 4060 3800 4200	3560 3080 3200 3220 3820	4230 3830 3630 3550 4020	6340 6440 7960 5100 4620 51.60	4680 4620 4740 3600 3900 4600	5480 5160 6410 4680 4350 4770
MONTH	9780	2800	3510	8820	1200	3530	7560	800	3410	8340	2960	4370

MONTH

STREAMS TRIBUTARY TO LAKE ERIE

04212680 FIELDS BROOK AT ASHTABULA, OH--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	SPEC	IFIC C	ONDUCTANCE,	MICROSIEMENS	PER	CENTIMETER	AT 25	, W	ATER	YEAR	OCTOBER	1986	TO SEPT	TEMBER 19	87
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX		MIN	MEAN		MAX	MIN	MEAN
		JUN	E		JUL	1			7	ugus	r			SEPTEMB	ER
1 2 3 4 5	5680 5220 4580 4140 4480	4280 2660 3760 3200 3600	4250 4330 3730	3560 3560 4760	3360 2300 2780 3240 3780	3630 3140 3160 3920 4180	5 4 7	320 180 160 600 940	1 2	200 700 840 420 200	4630 4360 3440 3950 3470		7880 5100 5640 5140 5740	3760 3660 4420 4880 4700	4770 4080 4790 4980 5120
6 7 8 9	5000 14000 5740 4700 4820	3720 4600 3680 4280 3100	6270 4880 450 0	4400 4300 4180	3960 3660 3520 3260 3220	4190 3910 3890 3580 3440	3	680 820 980 640	3 3 3	760 1060 1300 1380 1400	3100 3380 3530 3730 3750		6060 5880 5520 4940 4560	5020 4800 4340 3840 3460	5230 5120 4600 4270 3750
11 12 13 14 15	5380 4880 4480 5760 5700	3480 3400 3400 3940 4160	4160 3790 4410	4560 4700 4460	3240 3840 2100 2760 3380	3430 4190 4180 3390 3560	57	700 880 7520 1940 5720	3 4	240 340 220 000 240	3800 4100 4690 4380 4580		4860 7360 5960 5080 4780	3820 4060 4820 4100 2000	4360 4940 5040 4660 3080
16 17 18 19 20	4400 4520 9760 4600 4800	4000 3760 3960 4000 3820	3970 4450 4280	5800 6960 4740	4020 3920 3600 4160 3760	4270 4510 4190 4410 3940	4	900 1700 1580 1020 1880	3 3	120 160 1840 1360 1880	4410 4350 4110 4160 4440		4500 3580 3680 4140 9300	1760 2180 2680 3560 3960	2760 2840 3210 3880 4440
21 22 23 24 25	5420 4020 4920 4600 5340	2420 2020 2720 2600 2620	3030 3030 3050	6320 7080	3380 3560 4320 4020 3400	3700 4040 4900 4320 4460	5	240 460 920 540) 2	000 420 220 580 420	4480 4410 4590 5030 4690		5140 4180 4640 5280 4480	4020 3400 3660 4000 3940	4360 3830 4060 4260 4210
26 27 28 29 30 31	4360 4100 4880 4400 4380	3600 3800 4000 2680 3140	3930 4370 4010 3610	5540 4560 5020 4820	4320 4140 4120 4180 4300 4300	4900 4600 4340 4420 4540 4480	2 3 3 6	660 560 400 780 160	2 2 3	220 860 160 560 400 980	4130 1680 2440 2920 4090 4460		5540 8980 5160 5780 12800	3860 4800 4740 4140 4580	4470 5360 4930 4750 5920
MONTH	14000	2020	4140	7080	2100	4060	7	600		860	3980		12800	1760	4400
YEAR	17800	800	3760												
			PH	(STANDARD UNI	TS),	WATER YEAR	OCTOE	ER	1986	TO SI	EPTEMBER	1987			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX		MIN	MEAN		MAX	MIN	MEAN
		OCTO	BER	N	OVEMI	BER			DE	CEMBI	ER			JANUAR	
1 2 3 4 5	7.96 7.94 7.92 7.83 7.92	7.32 7.61 7.48 7.57 7.83	7.85 7.74 7.71	7.68 7.72 7.73	7.66 7.65 7.66 7.67 7.62	7.69 7.67 7.69 7.70 7.68	7 7 7	.73 .71 .41 .67	7	.67 .35 .25 .42	7.70 7.55 7.36 7.50 7.69		7.88 7.86 7.86 7.87 7.98	7.73 7.69 7.77 7.75 7.66	7.79 7.80 7.80 7.80 7.81
6 7 8 9	7.94 7.95 7.97 7.77 7.83	7.75 7.86 7.74 7.68 7.73	7.91 7.86 7.73	7.64 7.59 7.55	7.07 7.56 7.49 7.49 7.53	7.54 7.59 7.54 7.52 7.60	77	.81 .76 .47 .51	7	.76 .46 .42 .36	7.79 7.63 7.44 7.47 7.49		8.24 8.22 7.92 7.95 8.02	7.94 7.78 7.78 7.85 7.59	8.13 7.95 7.84 7.89 7.81
11 12 13 14	7.79 7.77 7.69 7.71 7.71	7.71 7.68 7.53 7.46 7.45	7.73 7.62 7.63	7.84 7.72 7.69	7.71 7.66 7.63 7.55 7.55	7.73 7.74 7.68 7.64 7.60	77	.82 .85 .90 .88	7	.61 .78 .82 .83	7.72 7.82 7.86 7.86 7.79		7.82 7.83 7.84 7.91 7.97	7.70 7.70 7.71 7.65 7.78	7.75 7.78 7.78 7.83 7.85
16 17 18 19 20	7.57 7.62 7.65 7.67 7.66	7.45 7.51 7.60 7.49 7.18	7.58 7.64 7.64	7.65 7.63 7.59	7.60 7.56 7.49 7.50 7.49	7.62 7.60 7.58 7.55 7.58	77	.88 .90 .90 .76	7	.79 .81 .65 .57	7.84 7.86 7.72 7.70 7.80		8.01 7.95 7.90 7.94 8.03	7.83 7.81 7.84 7.73 7.89	7.90 7.88 7.86 7.87 7.93
21 22 23 24 25	7.64 7.64 7.65 7.68 7.70	7.52 7.61 7.58 7.61 7.63	7.63 7.62 7.64	7.62 7.65 7.70	7.44 7.53 7.58 7.51 5.87	7.49 7.58 7.60 7.61 7.63	8 8	.89 .02 .00 .92	7	.84 .76 .83 .51	7.86 7.90 7.87 7.82 7.42		8.04 8.01 8.09 8.12 8.12	7.85 7.88 7.92 7.84 7.73	7.92 7.93 8.01 8.03 7.91
26 27 28 29 30 31	7.72 7.65 7.64 7.72 7.73 7.72	7.52 7.32 7.59 7.64 7.67	7.58 7.62 7.68 7.70	7.54 7.67 7.73	7.38 7.43 7.53 7.65 7.69	7.55 7.49 7.60 7.69 7.74	7 7 7 7	.62 .73 .83 .84 .86	7	.46 .63 .72 .75	7.53 7.68 7.77 7.79 7.80 7.82		8.12 7.97 7.92 7.96 7.87 7.93	7.60 7.78 7.72 7.63 7.71 7.74	7.86 7.85 7.80 7.75 7.77 7.82
							,								

7.97 7.18 7.69 7.84 5.87 7.62 8.02 7.25 7.70 8.24 7.59 7.86

95

STREAMS TRIBUTARY TO LAKE ERIE

04212680 FIELDS BROOK AT ASHTABULA, OH--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

Dec					(DIIII)	OHILLD!	WALDIN TORK	OCTODER I	700 IO D	DI I DI I DI I			
1	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2 7:93 7:61 7:79 7:70 7:70 7:70 7:70 7:62 7:62 7:62 7:66 7:60 8.65 7:80 8.11 3 7:70 7:70 7:60 7:50 7:60 7:50 7:80 7:80 8.13 7:70 7:80 7:70 7:80 7:80 7:80 8.13 7:70 7:80 7:70 7:80 7:70 7:80 7:70 7:80 7:70 7:80 7:70 7:80 7:70 7:80 7:70 7:7			FEBRUAL	RY		MARC	Н		APRI	L		MAY	
7 7,79 7,88 7,69 7,94 7,68 2,92 7,76 7,57 7,66 8,59 7,27 8,06 8,79 7,99 10 7,70 7,06 7,06 7,06 7,06 7,06 7,06 7,0	3 4	7.93 7.83 7.87	7.61 6.79 7.43	7.78 7.67 7.66	7.79 7.84	7.49 7.70	7.62 7.76	7.63 7.70 7.68	7.56 7.56 7.30	7.60 7.63 7.58	8.65 8.10 8.61	7.80 7.81 7.81	8.11 7.92
122 7.76 7.52 7.65 7.98 7.77 7.85 7.95 7.84 7.88 8.23 7.71 7.87 1.87 1.87 1.87 1.87 1.87 1.87	7 8 9	7.79 7.72 7.69	7.58 7.62 6.77	7.67 7.66 7.56	7.94 7.94 7.90	7.68 7.71 7.65	7.82 7.81 7.79	7.76 7.88 7.98	7.57 7.51 7.77	7.66 7.77 7.88	8.59 8.50 8.43	7.67 7.67 7.69	8.06 7.99 7.98
17 7,90 7,75 7,83 8.01 7,70 7.84 8.27 7.86 7.98 8.09 7.70 7.86 18 7,91 7,72 7,78 8.00 7,77 7.87 7.87 8.10 7.87 8.40 7.85 8.08 8.09 7.70 7.86 19 7,97 7,61 7,77 8.10 7.76 7.86 8.51 7.97 8.13 8.11 7.81 7.93 20 7,70 7,76 7.80 8.00 7,74 7.86 8.51 7.97 8.13 8.11 7.81 7.93 21 7,90 7,75 7.80 8.15 7,71 7.86 8.77 7.88 8.20 8.24 7.87 7.99 21 7,90 7,70 7.80 8.15 7,71 7.86 8.77 7.88 8.20 8.24 7.87 7.99 22 7,91 7,66 7,76 8.11 7.74 7.88 8.20 8.24 7.87 7.99 23 7,91 7,60 7,72 8.11 7.74 7.82 8.61 7.74 7.82 8.61 7.81 8.22 8.23 7.81 8.13 8.11 7.81 7.93 23 7,91 7,60 7,72 8.11 7.94 7.83 8.03 7.84 8.22 8.24 7.83 7.90 25 7,84 7.64 7.74 7.94 7.94 7.74 7.82 8.61 7.90 8.19 8.29 7.90 8.04 25 7,84 7.66 7.75 7.95 7.85 8.14 7.98 8.20 8.24 7.88 8.20 26 7,81 7,80 7.70 7.90 7.90 7.76 7.82 8.51 7.97 8.16 8.20 8.24 7.88 8.20 27 7,84 7.66 7.74 7.84 7.85 7.87 8.80 8.30 7.87 8.16 8.20 7.80 8.04 29 7.14 7.85 7.85 8.13 7.87 8.80 8.30 7.88 8.80 8.20 8.26 7.88 8.05 30 7.81 7.82 8.85 7.73 8.60 7.55 8.13 7.87 8.16 8.20 7.80 8.04 29 7.14 7.85 8.13 7.87 7.87 8.80 8.30 7.88 8.80 8.20 7.80 8.04 31 7.81 7.55 7.73 8.60 7.55 8.13 8.04 7.87 8.04 31 7.81 7.55 7.73 8.60 7.55 8.13 8.04 7.87 8.04 31 7.81 7.55 7.85 8.16 8.20 7.75 8.16 8.31 7.75 8.04 31 7.81 7.55 7.85 8.09 7.87 8.80 8.30 7.89 7.77 7.86 8.04 31 7.81 7.55 7.85 8.09 7.66 7.99 7.77 7.86 7.89 8.77 7.99 8.04 31 7.81 7.82 8.83 7.84 8.83 7.84 8.83 7.84 8.83 7.84 8.83 7.84 8.83 7.84 8.83 7.83 8.02 8.00 8.00 7.65 7.89 7.77 7.86 8.04 31 7.81 7.85 8.80 8.90 7.66 7.95 7.87 7.33 7.69 7.78 7.79 7.86 7.89 8.04 31 7.81 7.85 8.80 8.90 7.66 7.95 7.87 7.97 7.94 8.77 7.97 7.82 8.04 31 7.81 7.85 8.80 8.80 8.80 8.77 7.77 7.86 7.87 7.77 7.86 8.05 31 7.81 7.85 8.80 8.80 8.77 7.77 7.86 7.87 7.77 7.86 8.04 31 7.81 7.85 8.00 8.00 7.66 7.95 7.87 7.77 7.86 7.87 7.77 7.80 8.00 7.78 7.79 7.80 8.00 7.78 7.79 7.80 7.80 8.00 7.79 7.80 7.80 8.00 7.79 7.90 7.70 7.80 7.80 8.00 7.70 7.70 7.80 7.8	12 13 14	7.75 7.73 7.83	7.52 6.11 7.51	7.65 7.35 7.70	7.98 7.98 8.00	7.77 7.80 7.80	7.85 7.86 7.87	7.95 8.05 8.12	7.84 7.81 7.84	7.88 7.92 7.96	8.23 8.12 8.08	7.71 7.71 7.72	7.91 7.87 7.86
22 7.91 7.68 7.76 8.01 7.75 7.85 8.77 7.81 8.26 8.14 7.74 7.95 23 7.81 7.81 8.26 7.90 7.70 7.76 8.11 7.74 7.88 8.38 7.84 8.02 8.19 7.85 7.97 244 7.90 7.70 7.76 8.01 7.71 7.83 8.54 7.91 8.15 8.24 7.83 8.00 25 7.84 7.64 7.74 7.74 7.82 8.61 7.90 8.19 8.26 7.88 8.00 25 7.84 7.64 7.74 7.74 7.82 8.61 7.90 8.19 8.26 7.88 8.00 25 7.88 7.80 8.00 25 7.88 7.80 8.00 25 7.88 7.80 8.00 25 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80	17 18	7.90 7.91 7.87	7.75 7.72 7.61	7.83 7.78 7.77	8.01 8.00 8.10	7.70 7.78 7.76	7.84 7.87 7.86	8.27 8.40 8.51	7.80 7.85 7.87	7.98 8.08 8.13	8.09 7.95 8.11	7.70 7.76 7.81	7.86 7.82 7.93
The color of the	23 24	7.91 7.81 7.90	7.68 7.60 7.70	7.76 7.72 7.76	8.01 8.11 8.01	7.75 7.74 7.71	7.85 7.88 7.83	8.77 8.38 8.54	7.81 7.84 7.91	8.26 8.02 8.15	8.14 8.19 8.24	7.74 7.85 7.83	7.95 7.97 8.00
DAY MAX MIN HEAN MAX MIN MEAN MAX MIN MEAN MIN MEAN MIN MEAN MIN MEAN	27 28 29 30	7.90 7.84	7.08 7.66	7.70 7.74 	7.96 8.11 8.13 7.81	7.80 7.80 7.78 7.56	7.86 7.91 7.91 7.73	8.51 8.54 8.67 8.60	7.85 7.81 7.75 7.65	8.10 8.09 8.12 8.13	8.30 8.34 8.35 8.40	7.50 7.87 7.83 7.87	7.99 8.04 8.02 8.04
June June July August September	MONTH	8.05	6.11	7.72	8.15	7.47	7.82	8.77	7.07	7.94	8.77	7.09	7.98
1 8.15 7.81 7.94 8.16 8.00 8.07 7.99 7.77 7.86 7.89 7.77 7.82 2 8.20 7.35 7.85 8.09 7.66 7.95 7.87 7.33 7.69 7.78 7.76 7.71 3 8.20 7.67 7.85 8.17 7.91 8.04 7.87 7.33 7.69 7.78 7.70 7.74 4 8.07 7.80 7.89 8.25 8.00 8.11 7.90 7.71 7.77 7.78 7.66 7.71 5 7.97 7.58 7.83 8.34 8.07 8.18 7.88 7.71 7.77 7.78 7.65 7.71 6 7.96 7.74 7.82 8.36 8.10 8.20 7.79 7.38 7.61 7.79 7.71 7.76 6 7.96 7.74 7.82 8.36 8.10 8.20 7.87 7.79 7.38 7.61 7.79 7.71 7.76 8 8.04 7.06 7.85 8.11 8.20 7.87 7.55 7.72 7.81 7.69 7.71 7 7.94 7.68 7.80 8.35 8.11 8.20 7.87 7.55 7.72 7.81 7.69 7.74 8 8.00 7.79 7.85 8.51 8.07 8.24 7.91 7.72 7.81 7.80 7.67 7.73 9 8.00 7.79 7.88 8.46 8.05 8.21 7.80 7.73 7.76 7.87 7.58 7.56 10 7.96 7.78 7.84 8.48 8.07 8.24 7.91 7.67 7.75 7.94 7.74 7.81 11 7.81 7.67 7.74 8.48 8.48 8.07 8.24 7.84 7.67 7.75 7.79 7.85 7.56 7.72 12 7.79 7.60 7.69 8.29 7.95 8.09 7.95 7.71 7.82 7.77 7.85 7.57 7.72 12 7.79 7.60 7.69 8.29 7.95 8.09 7.95 7.71 7.82 7.79 7.31 7.66 13 7.86 7.70 7.78 8.82 7.79 7.90 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.8	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
\$ 8.20 7.35 7.85 8.09 7.66 7.95 7.87 7.33 7.69 7.78 7.70 7.74 \$ 8.07 7.67 7.785 8.17 7.91 8.04 7.82 7.42 7.67 7.77 7.78 7.65 7.71 \$ 8.07 7.80 7.89 8.25 8.00 8.11 7.90 7.71 7.77 7.78 7.65 7.71 \$ 7.97 7.58 7.83 8.34 8.07 8.18 7.88 7.71 7.77 7.78 7.65 7.71 6 7.96 7.74 7.82 8.36 8.10 8.20 7.99 7.38 7.61 7.79 7.71 7.76 7 7.94 7.68 7.80 8.35 8.11 8.20 7.87 7.55 7.72 7.81 7.69 7.74 8 8.04 7.70 7.85 8.51 8.07 8.24 7.91 7.72 7.81 7.69 7.73 9 8.00 7.79 7.88 8.46 8.05 8.21 7.80 7.33 7.76 7.87 7.58 7.76 10 7.96 7.78 7.84 8.48 8.07 8.24 7.91 7.72 7.81 7.80 7.67 7.73 9 8.00 7.79 7.84 8.48 8.07 8.24 7.80 7.73 7.76 7.87 7.58 7.76 11 7.81 7.67 7.74 8.43 8.02 8.19 7.91 7.67 7.77 7.85 7.57 7.72 12 7.79 7.00 7.69 8.29 7.95 8.09 7.95 7.71 7.82 7.79 7.31 7.66 13 7.86 7.70 7.78 8.22 7.93 7.95 8.09 7.95 7.71 7.82 7.79 7.31 7.66 13 7.86 7.00 7.78 8.20 7.75 7.90 7.62 7.82 7.89 7.80 7.80 7.48 7.68 7.80 7.48 7.68 7.80 7.95 7.74 7.82 8.07 8.82 7.99 7.89 6.08 7.70 7.80 7.63 7.70 7.75 7.91 7.75 7.91 7.70 7.81 7.85 7.85 7.75 7.91 7.95 7.95 7.74 7.82 8.07 7.80 7.92 7.98 7.64 7.79 7.93 7.62 7.75 7.91 7.80 7.80 7.62 7.80 7.80 7.92 7.98 7.64 7.79 7.93 7.62 7.75 7.91 7.80 7.80 7.62 7.80 7.80 7.92 7.99 7.62 7.82 7.98 7.68 7.79 7.80 7.63 7.70 7.81 7.84 8.50 7.85 8.11 8.23 7.85 8.00 8.08 7.70 7.84 7.84 7.63 7.47 7.82 8.07 7.80 7.92 7.98 7.64 7.79 7.84 7.80 7.63 7.70 7.81 7.80 7.80 7.80 7.92 7.98 7.64 7.79 7.80 7.62 7.75 7.91 7.80 7.80 7.80 7.90 7.80 7.90 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.90 7.80 7.80 7.80 7.90 7.80 7.80 7.80 7.90 7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.8			JUNE			JULY			AUGUS	T		SEPTEM	BER
7 7.94 7.68 7.80 8.35 8.11 8.20 7.87 7.55 7.72 7.81 7.69 7.74 8.80 8.35 8.11 8.20 7.87 7.55 7.72 7.81 7.69 7.74 8.80 7.67 7.73 9.80 7.79 7.88 8.46 8.05 8.21 7.80 7.73 7.76 7.87 7.58 7.76 7.87 7.58 7.76 10 7.96 7.78 7.84 8.48 8.07 8.24 7.84 7.67 7.73 7.76 7.87 7.58 7.76 7.87 7.58 7.76 7.78 7.84 8.48 8.07 8.24 7.84 7.67 7.75 7.94 7.74 7.81 11 7.81 7.67 7.74 8.43 8.02 8.19 7.91 7.67 7.77 7.85 7.57 7.72 12 7.79 7.60 7.69 8.29 7.95 8.09 7.95 7.71 7.82 7.79 7.31 7.66 13 7.86 7.70 7.88 8.22 7.13 7.90 7.89 6.08 7.70 7.80 7.48 7.68 14 7.84 7.70 7.75 7.90 7.80 7.89 6.08 7.70 7.80 7.63 7.70 15 7.95 7.74 7.82 8.07 7.80 7.92 7.98 7.64 7.79 7.93 7.62 7.75 15 7.95 7.74 7.82 8.07 7.80 7.92 7.98 7.64 7.79 7.93 7.62 7.75 16 7.91 7.70 7.81 8.08 7.85 8.12 7.86 7.97 8.07 7.11 7.84 7.71 7.39 7.64 18 8.50 7.85 8.11 8.23 7.85 8.00 8.08 7.70 7.84 7.63 7.47 7.57 19 8.10 7.84 7.94 8.04 7.88 8.12 7.86 7.97 8.07 7.11 7.84 7.71 7.39 7.64 18 8.50 7.85 8.11 8.23 7.85 8.00 8.08 7.70 7.84 7.63 7.47 7.57 19 8.10 7.84 7.94 8.26 7.84 8.02 8.05 7.69 7.82 7.79 7.64 7.71 7.39 7.64 7.71 2.8 8.10 7.84 7.94 8.26 7.84 8.02 8.05 7.69 7.82 7.79 7.64 7.71 7.77 7.80 7.81 8.31 7.85 8.04 8.08 7.69 7.82 7.79 7.64 7.71 7.77 7.85 8.11 7.94 8.26 7.84 8.02 8.05 7.69 7.82 7.79 7.64 7.71 7.77 7.85 8.11 7.84 7.94 8.26 7.84 8.02 8.05 7.69 7.82 7.79 7.64 7.71 7.77 7.84 7.81 8.31 7.85 8.04 8.08 7.69 7.84 7.86 7.71 7.77 7.78 8.21 7.79 7.84 7.94 8.00 7.87 7.99 7.95 7.84 7.86 7.77 7.94 7.70 7.78 8.21 7.79 7.98 7.99 7.89 7.89 7.89 7.89 7.89	3 4	8.20 8.07	7.35 7.67 7.80	7.85 7.85 7.89	8.09 8.17 8.25	7.66 7.91 8.00	7.95 8.04 8.11	7.87 7.82 7.90	7.33 7.42 7.71	7.69 7.67 7.77	7.78 7.74 7.78	7.70 7.67 7.65	7.74 7.71
12 7.79 7.60 7.69 8.29 7.95 8.09 7.95 7.71 7.82 7.79 7.31 7.66 13 7.86 7.70 7.78 8.22 7.13 7.90 7.89 6.08 7.70 7.80 7.48 7.68 14 7.84 7.70 7.75 7.90 7.62 7.82 7.98 7.68 7.79 7.80 7.48 7.69 15 7.95 7.74 7.82 8.07 7.80 7.92 7.98 7.64 7.79 7.93 7.62 7.75 16 7.91 7.70 7.81 8.08 7.84 7.94 8.04 7.68 7.84 8.09 7.70 7.81 18 8.04 7.78 7.88 8.12 7.86 7.97 8.07 7.71 7.84 7.11 7.39 7.61 18 8.50 7.85 8.11 8.23 7.85 8.00 8.08 7.70 7.84 7.63 7.47 7.57 19 8.10 7.84 7.94 8.26 7.84 8.02 8.05 7.69 7.82 7.99 7.64 7.71 20 7.91 7.67 7.81 8.31 7.85 8.04 8.08 7.69 7.82 7.99 7.64 7.71 21 8.01 7.67 7.81 8.31 7.85 8.04 8.08 7.69 7.84 7.86 7.71 7.77 21 8.01 7.76 7.86 8.21 7.79 7.95 8.02 7.71 7.84 7.86 7.71 7.77 21 8.01 7.76 7.86 8.21 7.79 7.95 8.02 7.71 7.84 7.88 7.70 7.78 22 7.87 7.51 7.77 8.21 7.74 7.94 7.81 6.91 7.58 7.87 7.58 7.76 23 8.01 7.84 7.92 8.17 7.73 7.91 7.98 7.68 7.77 7.94 7.70 7.79 24 8.12 7.90 8.00 8.24 7.79 7.95 7.84 7.66 7.74 7.94 7.70 7.79 25 8.11 7.94 8.00 7.87 7.43 7.75 7.89 7.69 7.77 7.94 7.70 7.77 26 8.11 7.88 8.00 8.06 8.07 7.87 7.89 7.66 7.77 7.85 7.88 7.70 7.78 27 8.18 8.00 8.06 8.07 7.87 7.89 7.95 7.89 7.69 7.77 7.85 7.48 7.73 7.91 7.77 8.18 7.73 7.91 7.77 7.85 7.89 7.69 7.77 7.85 7.48 7.70 7.77 28 8.21 7.90 8.08 8.08 8.03 7.79 7.89 7.69 7.77 7.85 7.88 7.70 7.77 29 8.36 8.04 8.14 8.09 7.75 7.89 7.64 7.29 7.48 7.90 7.70 7.77 30 8.08 7.81 7.98 8.05 7.77 7.88 7.89 7.61 7.78 7.88 7.90 7.64 7.77 29 8.36 8.04 8.14 8.09 7.75 7.99 7.89 7.64 7.29 7.48 7.90 7.70 7.77 31 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.76 7.89 7.86 7.76 7.80	7 8 9	7.94 8.04 8.00	7.68 7.70 7.79	7.80 7.85 7.88	8.35 8.51 8.46	8.11 8.07 8.05	8.20 8.24 8.21	7.87 7.91 7.80	7.55 7.72 7.73	7.72 7.81 7.76	7.81 7.80 7.87	7.69 7.67 7.58	7.74 7.73 7.76
17 8.04 7.78 7.88 8.12 7.86 7.97 8.07 7.71 7.84 7.71 7.39 7.64 18 8.50 7.85 8.11 8.23 7.85 8.00 8.08 7.70 7.84 7.63 7.47 7.57 19 8.10 7.84 7.94 8.26 7.84 8.02 8.05 7.69 7.82 7.79 7.64 7.71 20 7.91 7.67 7.81 8.31 7.85 8.04 8.08 7.69 7.82 7.79 7.64 7.71 21 8.01 7.76 7.86 8.21 7.79 7.95 8.02 7.71 7.84 7.86 7.71 7.77 21 8.01 7.76 7.86 8.21 7.79 7.95 8.02 7.71 7.84 7.88 7.70 7.78 22 7.87 7.51 7.77 8.21 7.74 7.94 7.81 6.91 7.58 7.88 7.76 23 8.01 7.84 7.92 8.17 7.73 7.91 7.98 7.68 7.77 7.94 7.70 7.79 24 8.12 7.90 8.00 8.24 7.79 7.95 7.84 7.66 7.74 7.90 7.70 7.79 25 8.11 7.94 8.00 7.87 7.43 7.75 7.89 7.66 7.74 7.90 7.70 7.77 26 8.11 7.88 8.00 8.06 7.75 7.88 7.89 7.69 7.77 7.85 7.48 7.73 27 8.18 8.00 8.06 8.07 7.81 7.90 7.46 7.08 7.26 7.88 7.70 7.77 28 8.21 8.00 8.08 8.03 7.79 7.89 7.64 7.29 7.48 7.90 7.64 7.77 29 8.36 8.04 8.14 8.09 7.75 7.91 7.77 7.15 7.66 7.88 7.32 7.70 30 8.08 7.81 7.98 8.05 7.77 7.88 7.89 7.61 7.77 8.08 7.90 7.64 7.77 31 8.08 7.76 7.89 7.89 7.61 7.77 8.08 7.58 7.78 31 8.08 7.76 7.89 7.89 7.76 7.80 MONTH 8.50 7.35 7.89 8.51 7.13 8.01 8.08 6.08 7.74 8.09 7.31 7.74	12 13 14	7.79 7.86 7.84	7.60 7.70 7.70	7.69 7.78 7.75	8.29 8.22 7.90	7.95 7.13 7.62	8.09 7.90 7.82	7.95 7.89 7.98	7.71 6.08 7.68	7.82 7.70 7.79	7.79 7.80 7.80	7.31 7.48	7.66 7.68
22 7.87 7.51 7.77 8.21 7.74 7.94 7.81 6.91 7.58 7.87 7.58 7.76 23 8.01 7.84 7.92 8.17 7.73 7.91 7.98 7.68 7.77 7.94 7.70 7.77 24 8.12 7.90 8.00 8.24 7.79 7.95 7.84 7.66 7.74 7.90 7.70 7.77 25 8.11 7.94 8.00 7.87 7.43 7.75 7.89 7.69 7.77 7.85 7.48 7.73 7.43 7.75 7.89 7.69 7.77 7.85 7.48 7.73 7.43 7.75 7.89 7.69 7.77 7.85 7.48 7.73 7.85 7.48 7.73 7.85 7.48 7.73 7.85 7.48 7.73 7.85 7.48 7.73 7.85 7.48 7.73 7.75 7.89 7.69 7.77 7.85 7.88 7.70 7.77 7.85 7.89 7.69 7.77 7.85 7.88 7.70 7.77 7.85 7.89 7.69 7.70 7.77 7.85 7.89 7.69 7.70 7.77 7.85 7.89 7.69 7.70 7.77 7.85 7.89 7.61 7.78 7.82 7.63 7.72 7.85 7.88 7.70 7.77 7.85 7.89 7.61 7.78 7.80 7.80 7.70 7.77 7.85 7.80 7.80 7.90 7.64 7.77 7.77 7.85 7.80 7.80 7.90 7.64 7.77 7.80 7.80 7.90 7.64 7.77 7.80 7.80 7.90 7.64 7.77 7.80 7.80 7.70 7.70 7.80 7.80 7.70 7.7	17 18	8.04 8.50 8.10	7.78 7.85 7.84	7.88 8.11 7.94	8.12 8.23 8.26	7.86 7.85 7.84	7.97 8.00 8.02	8.07 8.08 8.05	7.71 7.70 7.69	7.84 7.84 7.82	7.71 7.63 7.79	7.39 7.47 7.64	7.64 7.57 7.71
27 8.18 8.00 8.06 8.07 7.81 7.90 7.46 7.08 7.26 7.88 7.70 7.77 28 8.21 8.00 8.08 8.03 7.79 7.89 7.64 7.29 7.48 7.90 7.64 7.77 29 8.36 8.04 8.14 8.09 7.75 7.91 7.77 7.15 7.66 7.88 7.32 7.70 30 8.08 7.81 7.98 8.05 7.77 7.88 7.83 7.71 7.77 8.08 7.58 7.32 7.70 31 8.08 7.76 7.89 7.86 7.76 7.80 8.08 7.32 7.78 31 8.08 7.35 7.78 7.89 7.86 7.76 7.80 7.31 7.74	23 24	7.87 8.01 8.12	7.51 7.84 7.90	7.77 7.92 8.00	8.21 8.17 8.24	7.74 7.73 7.79	7.94 7.91 7.95	7.81 7.98 7.84	6.91 7.68 7.66	7.58 7.77 7.74	7.87 7.94 7.90	7.58 7.70	7.76 7.79
MONTH 8.50 7.35 7.89 8.51 7.13 8.01 8.08 6.08 7.74 8.09 7.31 7.74	27 28	8.18 8.21	8.00	8.06 8.08	8.07 8.03 8.09	7.81 7.79 7.75	7.90 7.89 7.91	7.46 7.64 7.77	7.08 7.29 7.15	7.26 7.48 7.66	7.88 7.90 7.88	7.64 7.32	7.77 7.70
YEAR 8.77 5.87 7.81		8.08											
	31	8.08			8.08	7.76	7.89	7.86	7.76	7.80			

04212680 FIELDS BROOK AT ASHTABULA, OH--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			TEMPERATUR	E, WATER	(DEG. C), WATER Y	EAR OCTOBE	R 1986 T	O SEPTEM	IBER 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
OCTOBER		NOVEMBER			R	DECEMBER			JANUARY			
1 2 3 4 5	26.0 25.5 25.0 24.0 23.5	25.0 24.5 20.5 22.0 21.5	25.5 25.0 23.0 23.0 22.5	20.0 19.0 17.5 17.5	17.5 16.0 15.5 16.0 15.5	19.0 18.0 16.5 17.0 16.0	10.5 10.0 7.5 7.5 8.5	9.5 6.0 6.5 7.0	10.0 7.0 7.0 7.0 8.0	10.5 10.0 9.5 9.5 9.5	9.5 9.0 9.0 8.0 7.5	10.0 9.5 9.0 8.5 8.5
6 7 8 9 10	21.0 22.5 22.5 21.5 20.0	19.0 20.0 20.0 19.5 18.5	20.0 21.0 21.0 21.0 19.0	18.5 18.5 19.5 18.5 15.5	16.0 16.0 17.5 15.0 14.0	17.0 17.0 18.5 17.0 15.0	9.0 9.0 8.0 9.5 8.5	7.0 6.0 6.0 8.0 7.0	8.0 8.0 7.0 9.0 7.5	10.5 10.0 8.5 9.0 8.5	8.5 7.0 7.5 8.0 7.5	9.0 8.5 8.0 8.5 8.0
11 12 13 14 15	20.5 21.5 21.5 21.0 17.5	18.0 19.0 20.5 17.5 14.0	19.0 20.0 21.0 19.0 15.5	15.5 15.0 13.0 11.5 12.5	15.0 13.0 11.0 10.5 11.0	15.0 14.5 11.5 11.0 11.5	8.5 8.5 8.0 8.5 10.0	6.5 7.5 6.5 6.5 8.0	7.5 8.5 7.5 7.5 9.5	7.5 8.0 9.5 11.0 10.5	6.5 6.0 8.5 8.5	7.5 7.0 9.0 9.5
16 17 18 19 20	16.0 16.5 18.0 18.5 19.0	14.5 15.5 16.5 15.5 16.5	15.5 16.0 17.0 17.0	12.5 14.0 14.5 11.5 11.0	12.0 12.5 12.0 10.5 8.5	12.5 13.0 13.5 11.0 10.5	10.0 11.0 10.0 8.0 8.0	9.0 10.0 7.0 7.0 7.5	9.5 10.0 8.0 7.5 8.0	10.0 10.0 10.0 8.5 9.0	9.0 8.5 8.5 6.0 7.5	9.5 9.5 9.5 7.5 8.5
21 22 23 24 25	20.0 21.0 21.5 20.5 19.5	17.5 18.5 20.0 18.5 18.0	18.5 19.5 20.5 20.0 18.5	9.0 11.5 13.0 13.0	7.5 9.0 10.5 12.0 10.0	8.0 10.5 11.5 12.5 11.0	8.5 9.5 9.5 10.0 5.5	7.5 7.0 8.5 4.5 3.5	8.0 8.0 9.0 8.5 4.5	8.5 9.0 8.0 5.0 7.0	7.0 7.5 4.5 4.0 4.5	8.0 6.5 4.5 5.5
26 27 28 29 30 31	19.5 20.0 20.0 20.5 19.0	18.0 18.0 18.0 18.0 18.0	19.0 18.5 18.5 19.0 18.5 18.0	12.5 11.0 11.5 12.0 12.0	9.5 9.5 10.0 10.5 10.0	11.0 10.0 11.0 11.5 11.5	7.0 8.0 9.0 9.5 9.5	5.5 7.0 8.0 8.0 9.0 9.5	6.5 7.5 8.5 8.5 9.0 9.5	7.0 8.0 8.5 10.0 9.0 8.0	5.0 6.5 7.0 8.0 7.5 7.0	6.0 7.5 8.0 8.5 8.0 7.5
MONTH	26.0	14.0	19.5	20.0	7.5	13.5	11.0	3.5	8.0	11.0	4.0	8.0
HONIN			13.3	20.0	,	13.3	11.0	3.3	0.0	11.0		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
			MEAN			MEAN			MEAN			
		MIN	MEAN		MIN	MEAN		MIN	MEAN		MIN	
DAY 1 2 3 4	8.5 9.0 9.0	MIN FEBRUARY 7.0 7.5 7.5 7.0	8.0 8.5 8.0 7.5	7.0 7.5 9.0	MIN MARCH 4.0 4.5 6.5	5.5 6.0 7.5	5.5 5.5 7.0 6.0	MIN APRIL 3.5 4.5 4.5 2.0	4.5 5.0 6.0 4.5	19.0 20.5 18.0 19.0	MIN MAY 15.0 17.0 13.5 13.5	MEAN 17.0 18.5 16.0
1 2 3 4 5 6 7 8	8.5 9.0 9.0 8.5 8.5 10.0 9.5 7.5	MIN FEBRUARY 7.0 7.5 7.5 7.0 6.5 7.5 7.0 6.5 3.5	8.0 8.5 8.0 7.5 7.5 8.5 8.0 6.0 4.5	7.0 7.5 9.0 13.0 15.5 16.0	MIN MARCH 4.0 4.5 6.5 11.0 10.5 12.0 7.0	5.5 6.0 7.5 12.0 12.5 14.0 10.5	5.5 5.5 7.0 6.0 8.0 14.0 14.5 16.5	MIN APRIL 3.5 4.5 4.5 2.0 2.5 6.5 8.0 10.0 11.5	4.5 5.0 6.0 4.5 5.0 7.5 10.5 13.5	MAX 19.0 20.5 18.0 19.0 21.0 22.5 22.0 23.5 24.0	MIN MAY 15.0 17.0 13.5 13.5 15.0 16.0 18.0 17.5 18.5	MEAN 17.0 18.5 16.0 17.5 19.0 20.0 20.0 21.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14	8.5 9.0 9.05 8.5 10.0 9.5 7.5 6.0 8.0	MIN FEBRUARY 7.0 7.5 7.5 7.0 6.5 7.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5	8.0 8.5 8.5 7.5 7.5 8.5 8.0 4.5 6.5 7.5 8.5 8.0 8.0	7.0 7.5 9.0 13.0 15.5 16.0 13.0 8.0	MIN MARCH 4.0 4.5 6.5 11.0 10.5 12.0 7.0 6.0 7.5 8.5 9.0	5.5 6.0 7.5 12.0 12.5 14.0 10.5 7.0 8.0 9.5 10.0 9.5	5.5 5.5 7.0 6.0 8.0 14.0 14.5 16.5 18.0	MIN APRIL 3.5 4.5 4.5 2.0 2.5 6.5 8.0 10.0 11.5 12.0 13.5 13.5 14.0 14.5	4.5 5.0 6.0 4.5 5.0 7.5 10.5 12.5 13.5 15.0 14.5 16.0	MAX 19.0 20.5 18.0 19.0 21.0 22.5 22.0 23.5 24.0 25.0 25.5 24.0 25.0	MIN MAY 15.0 17.0 13.5 13.5 15.0 16.0 18.5 20.0 21.0 20.5 18.5 21.0	MEAN 17.0 18.5 16.0 16.0 17.5 19.0 20.0 21.0 22.0 23.0 22.5 21.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	8.5 9.0 9.0 8.5 10.0 9.5 6.0 9.5 7.5 7.0 9.5 7.5	MIN FEBRUARY 7.0 7.5 7.5 7.0 6.5 7.5 7.0 6.5 7.0 6.5 7.0 6.5 8.5 7.0 6.5 8.6 8.0 8.0	MEAN 8.0 8.5 8.0 7.5 7.5 8.5 8.0 6.0 4.5 6.5 7.5 8.0 8.0 9.0	7.0 7.5 9.0 13.0 15.5 16.0 13.0 8.0 10.5 12.0 13.0 9.5 12.0	MIN MARCH 4.0 4.5 6.5 11.0 10.5 12.0 7.0 6.0 7.5 8.5 9.0 8.5 9.5	5.5 6.0 7.5 12.0 12.5 14.0 10.5 7.0 8.0 9.5 10.0 9.5 9.5	MAX 5.5 5.5 7.0 6.0 8.0 14.0 14.5 16.5 18.5 17.5 17.0 16.5 17.0 22.0	MIN APRIL 3.5 4.5 4.5 2.0 2.5 6.5 8.0 10.0 11.5 12.0 13.5 13.5 14.0 14.5 15.0 14.5 15.0	4.5 5.0 6.0 4.5 5.0 7.5 10.5 12.5 13.5 15.0 16.0 16.0 16.5	19.0 20.5 18.0 19.0 21.0 22.5 22.0 23.5 24.0 25.0 25.5 24.0 25.0 24.0 25.0 24.0	MIN MAY 15.0 17.0 13.5 13.5 15.0 16.0 17.5 18.5 20.0 21.0 20.5 18.5 21.0 20.5 18.5 21.0	MEAN 17.0 18.5 16.0 16.0 17.5 19.0 20.0 21.0 22.0 23.0 22.5 22.5 22.0 23.0 21.5 22.5 22.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	8.5 9.0 9.0 8.5 8.5 10.0 9.5 6.0 8.0 9.5 7.5 7.0 9.5 11.5 12.5 13.0 11.5	MIN FEBRUARY 7.0 7.5 7.5 7.0 6.5 7.5 7.0 6.5 7.0 6.5 8.0 8.0 8.0 8.0 8.0 9.0 10.0 9.5 9.0 8.5	8.0 8.5 8.0 7.5 7.5 8.5 8.0 6.0 4.5 6.5 7.5 8.5 8.0 8.0 6.5 6.5 10.0 10.0 10.0 10.0 10.0	7.0 7.5 9.0 13.0 15.5 16.0 13.0 9.5 12.0 13.0 14.0 15.0 14.0 15.0 14.0 17.5 17.0	MIN MARCH 4.0 4.5 6.5 11.0 10.5 12.0 7.0 6.0 7.5 8.5 9.0 8.5 9.5 9.5 10.0 11.0 11.5 11.5 11.5 5.0	MEAN 5.5 6.0 7.5 12.0 12.5 14.0 10.5 7.0 8.0 9.5 9.5 9.0 10.0 10.5 11.5 12.0 12.0 12.0 14.0 14.5	MAX 5.5 7.0 6.0 8.0 14.0 14.5 16.5 17.5 17.0 21.0 22.0 22.5 23.5 19.0 18.5 17.5 17.5 21.0 22.0 28.5	MIN APRIL 3.5 4.5 4.5 2.0 2.5 6.5 8.0 10.0 11.5 12.0 13.5 13.5 14.0 14.5 15.0 14.5 15.0 14.5 15.5 15.5 15.5 15.5 15.5 14.0	4.5 5.0 6.0 4.5 5.0 7.5 12.5 13.5 15.0 16.0 16.5 18.5 19.0 20.0 17.5 18.5 19.0 20.0 17.5 18.5 16.0	MAX 19.0 20.5 18.0 19.0 21.0 22.5 22.0 23.5 24.0 25.0 25.5 24.0 25.0 24.5 26.0 22.5 23.5 24.0 25.0 24.5 26.0 24.5 26.0 27.5 28.5 28.5	MIN MAY 15.0 17.0 13.5 13.5 15.0 16.0 17.5 18.5 20.0 21.0 20.5 18.5 21.0 20.0 19.5 20.5 19.5 20.0 20.5 21.0 20.0 22.5 20.0 22.5 22.5 21.0 20.0	MEAN 17.0 18.5 16.0 16.0 17.5 19.0 20.0 21.0 22.0 23.0 21.5 22.5 22.0 23.0 21.5 22.5 22.0 23.0 24.0 23.0 24.0 25.5 26.5 26.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	8.5 9.0 9.0 8.5 8.5 10.0 9.5 7.5 6.0 9.5 9.5 8.5 7.5 7.0 9.5 11.5 12.5 12.0 11.5 12.0	MIN FEBRUARY 7.0 7.5 7.5 7.0 6.5 7.5 7.0 6.5 8.5 7.0 6.5 8.0 8.0 8.0 8.0 9.0 9.0 8.5 6.0 9.0 9.0 8.5	8.0 8.5 8.0 7.5 7.5 8.5 8.0 6.0 4.5 6.5 7.5 8.0 8.0 9.0 9.0 9.5 10.0 10.0 10.0 10.0	7.0 7.5 9.0 13.0 15.5 16.0 13.0 8.0 10.5 12.0 13.0 13.0 14.0 15.0 14.0 17.5 17.0	MIN MARCH 4.0 4.5 6.5 11.0 10.5 12.0 7.0 6.0 7.5 8.5 9.5 9.5 9.5 11.0 11.0 11.0 11.5 11.5	MEAN 5.5 6.0 7.5 12.0 12.5 14.0 10.5 7.0 8.0 9.5 10.0 9.5 9.5 10.0 12.5 14.0 12.5 14.0 12.5 14.0	MAX 5.5 7.0 6.0 8.0 14.0 14.5 16.5 18.5 17.5 17.0 21.0 22.0 22.5 23.5 19.0 18.5 17.5 17.5 17.5 17.5	MIN APRIL 3.5 4.5 2.0 2.5 6.5 8.0 10.0 11.5 12.0 13.5 13.5 14.5 15.0 14.5 16.0 17.5 17.0 14.5 13.5 15.5 15.5 15.5 15.5 15.5	MEAN 4.5 5.0 6.0 4.5 5.0 7.5 12.5 13.5 15.0 14.5 16.0 17.5 18.0 16.5 17.0 16.5 17.0 16.5 17.0 16.0 17.5 18.0 16.5	MAX 19.0 20.5 18.0 19.0 21.0 22.5 22.0 23.5 24.0 25.0 25.5 24.0 25.0 24.0 25.0 24.5 24.0 22.5 21.5 23.5 24.0 23.0 24.5 27.0 27.0 27.5 28.5 28.5	MIN MAY 15.0 17.0 13.5 13.5 15.0 16.0 18.5 20.0 21.0 20.5 18.5 20.0 21.0 20.5 21.0 20.5 20.5 20.5 20.0 20.5 20.5 20.5 2	MEAN 17.0 18.5 16.0 16.0 17.5 19.0 20.0 21.0 22.0 23.0 22.5 22.5 22.0 21.5 22.0 24.0 25.5 26.5 26.5

04212680 FIELDS BROOK AT ASHTABULA, OH--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			TEMPERATUR	E, WATER	(DEG. C), WATER	YEAR OCTOBER	1986 1	O SEPTEMBE	ER 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
1 2 3 4 5	28.0 30.0 29.0 28.5 28.5	25.5 25.5 25.0 25.5 24.0	26.5 27.0 27.0 27.0 26.0	26.5 26.0 28.0 29.0 30.0	25.0 23.5 24.0 26.0 25.5	25.5 25.0 26.0 27.0 27.5	30.5 30.0 30.0 31.5 30.5	29.0 24.5 25.5 28.0 29.0	30.0 28.5 27.5 29.5 29.5	25.5 25.0 26.0 27.0 26.5	23.5 23.5 23.5 23.5 24.5	24.5 24.5 24.5 25.0 25.5
6 7 8 9 10	28.5 29.5 28.5 26.5 27.0	25.0 25.0 26.0 23.5 22.5	26.5 27.0 27.0 25.5 24.5	30.0 30.0 31.5 32.0 32.5	27.5 28.0 28.5 29.0 29.5	28.5 29.0 29.5 30.5 31.0	31.5 29.5 29.5 30.0	28.0 27.5 29.0 28.0 28.0	29.5 29.5 29.5 29.0 29.0	26.0 27.0 27.5 28.5 28.5	24.5 25.0 26.5 26.5 25.5	25.5 26.0 27.0 27.5 27.0
11 12 13 14 15	27.5 27.0 29.5 31.0 30.5	22.5 23.5 25.5 26.0 27.0	25.0 25.5 27.5 28.5 29.0	32.5 33.0 31.5 29.5 28.0	29.5 30.0 28.0 24.5 24.5	31.0 31.5 30.0 26.0 26.0	30.5 31.5 30.0 31.0 31.0	27.5 27.5 28.0 27.5 27.5	29.0 29.5 29.0 29.0 29.5	28.0 27.5 27.5 27.0 25.0	26.0 25.5 25.5 24.5 24.0	26.5 26.0 26.0 24.5
16 17 18 19 20	30.5 29.5 29.0 30.0 27.5	26.5 26.0 25.0 25.5 26.0	28.5 27.5 27.0 27.5 26.5	29.5 30.5 31.0 32.5 33.0	26.0 26.0 27.5 28.5 30.0	27.5 28.0 29.0 30.0 31.0	31.0 32.0 31.5 31.5 30.5	28.5 29.0 29.0 28.0 28.0	30.0 30.5 30.0 29.5 29.0	25.5 26.0 24.0 25.0 26.0	24.0 23.0 23.0 23.5 23.5	24.5 24.5 23.5 24.5 24.5
21 22 23 24 25	27.0 26.0 28.0 29.5 29.5	23.5 23.5 25.0 25.5 25.0	26.0 24.5 26.0 27.5 27.0	33.0 33.5 34.0 33.5 32.5	30.0 30.0 30.5 30.5 28.5	31.0 31.5 32.0 32.0 31.5	29.0 28.0 27.5 27.5 27.0	27.5 23.5 25.0 24.5 24.5	28.5 26.5 26.0 26.0 25.5	25.5 24.5 25.0 24.0 24.0	23.5 22.5 22.5 23.0 22.5	24.5 23.5 23.5 23.5 23.0
26 27 28 29 30	29.0 27.0 28.5 29.0 25.5	26.5 25.5 24.5 25.5 24.5	27.5 26.5 26.0 27.0 25.5	32.5 32.0 32.0 32.5 33.0 33.0	30.5 29.0 28.5 29.0 29.5 30.0	31.5 30.5 30.5 30.5 31.0 31.0	26.0 22.0 23.0 25.0 26.5 25.5	21.5 18.5 21.5 22.0 23.0 24.0	25.5 20.0 22.0 23.5 24.5 24.5	24.0 24.0 25.5 25.0 24.0	21.5 21.5 22.5 23.5 22.0	22.5 23.0 24.0 24.0 23.0
MONTH	31.0	22.5	26.5	34.0	23.5	29.5	32.0	18.5	27.5	28.5	21.5	25.0
YEAR	34.0	2.0	18.0									
			OXYGEN, DISS	SOLVED (00), MG/	L, WATER	YEAR OCTOBER	1986 T	O SEPTEMBE	R 1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R	I	DECEMBE	R		JANUAR	Y
1 2 3 4 5	6.6 6.6 7.0 6.7 6.9	6.2 6.3 6.3 6.4 6.5	6.4 6.5 6.6 6.6 6.8	7.5 7.9 8.3 8.3 8.3	6.9 7.0 7.7 7.8 7.7	7.2 7.5 8.0 8.0	11.1 12.2 11.9 11.8 11.5	10.5 10.7 11.5 11.3 11.3	10.7 11.7 11.6 11.6 11.5	10.9 10.7 10.9 11.2 11.2	10.4 10.5 10.6 10.8 10.6	10.7 10.5 10.7 11.0 11.0
6 7 8 9 10	7.3 6.9 7.1 7.1 7.3	6.5 6.3 6.2 6.8 6.8	7.0 6.6 6.5 7.0 7.1	7.9 8.1 7.6 8.1 8.7	7.6 7.4 6.9 7.0 8.0	7.7 7.8 7.3 7.5 8.3	11.7 12.2 12.2 11.4 11.4	11.3 11.3 11.4 11.0 11.1	11.5 11.6 11.9 11.2 11.2	10.9 11.4 11.3 11.0 11.2	10.1 10.1 10.7 10.6 10.6	10.5 10.8 10.9 10.8 10.9
11 12 13 14 15	7.1 6.9 6.6 7.0 10.5	6.6 6.2 5.9 6.1 7.1	6.9 6.6 6.2 6.6 8.7	8.4 8.8 9.7 10.0 9.8	8.1 8.2 8.8 9.6 9.3	8.2 8.4 9.4 9.8 9.5	11.2 11.1 11.5 11.5	10.7 10.6 11.1 10.7 10.3	11.0 10.8 11.3 11.1 10.5	11.3 11.5 11.2 11.2	11.1 11.0 10.8 10.3 10.4	11.1 11.3 11.0 10.9 10.6
16 17 18 19 20	10.6 10.0 9.6 10.6 9.2	9.8 9.6 8.8 8.9 8.0	10.3 9.8 9.3 9.5 8.7	9.4 9.4 9.3 9.9	9.1 8.8 8.8 9.4 8.7	9.3 9.1 9.0 9.7 9.8	10.6	10.4 10.2 10.3 11.1 11.0	10.5 10.4 10.9 11.2 11.0	11.1 11.2 10.7 10.8 10.6	10.7 10.4 10.3 10.3	10.9 10.8 10.5 10.6 10.4
21 22 23 24 25	8.2 7.8 6.7 6.7 8.2	7.2 6.8 6.1 6.3 6.7	7.7 7.4 6.4 6.6 7.3	11.5 11.1 10.5 9.4 10.0	11.0 10.4 9.4 8.9 9.1	11.2 10.8 10.1 9.2 9.6	11.4 10.9 11.9	11.0 10.7 10.7 10.5 11.6	11.2 11.1 10.8 11.0	11.6 10.3 10.6 11.2 10.9	10.2 9.5 9.5 10.6 10.2	10.6 9.9 10.1 10.8 10.6
26 27 28 29 30 31	7.5 7.6	 7.0 6.9	 7.2 7.3	10.1 10.6 10.4 10.2 10.6	9.0 10.2 10.0 9.8 9.8	9.6 10.4 10.2 10.0 10.2	11.4 11.2 11.2 10.8	11.3 11.1 11.0 10.8 10.7 10.6	11.5 11.2 11.1 11.0 10.8 10.8	10.7 10.4 10.0 9.7 9.1	10.0 9.7 9.0 8.9 8.7 8.5	10.4 10.0 9.5 9.2 8.9 8.8
Motor	5.15-1	2.75										

MONTH

10.6

5.9

7.4

11.5

6.9

9.0

12.2 10.2 11.2

11.6 8.5 10.5

STREAMS TRIBUTARY TO LAKE ERIE

04212680 FIELDS BROOK AT ASHTABULA, OH--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

					,,	_,	YEAR OCTOBER	. 1500 1	O DEL LEND	DK 1507		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1	8.5	7.6	8.1				12.4	11.9	12.2	11.7	9.9	10.6
1 2							12.2	11.9	12.1	11.6	9.8	10.4
3 4							12.1 13.6	11.2	11.7	11.0	9.8	10.3
5							13.7	10.4	12.7	12.6	7.6	10.0
6				10.3	9.3	9.9	12.5	12.0	12.2	12.2	6.4	9.0
7 8				9.9	8.5	9.3	12.0 11.1	11.0	11.5	11.1	5.9	7.8
9				10.6	8.6	9.6	10.3	9.7	10.0	9.1	5.7	7.4
10				11.4	10.6	11.0	10.1	9.5	9.8	8.8	5.8	6.9
11				11.3	10.1	10.7	10.0	9.7	9.8	7.6	5.4	6.4
12 13				10.8 10.7	9.7	10.2	9.9 10.1	9.7	9.8	7.8 7.9	5.2	7.0
14				10.8	9.6	10.2	10.1	9.8	10.0	7.9	6.3	7.0
15				11.3	10.2	10.5	10.1	9.8	9.9	7.9	6.5	7.1
16				11.5	10.2	10.8	10.8	10.0	10.3	8.0	6.7	7.3
17 18				10.7	9.5 8.9	9.8	11.0 11.2	9.9	10.4	7.9 7.7	6.6	7.1
19 20				10.0	8.8	9.3	11.3	9.8	10.4	8.2	7.2	7.1
20				9.5	8.3	8.9	11.6	9.6	10.4	8.7	7.3	7.9
21 22				9.6	8.6	8.9	11.3	9.6	10.2	9.2	6.8	8.0
23				9.5 9.5	8.5 8.7	8.9 9.0	11.6 10.7	9.7	10.5	8.4	6.9 7.0	7.5
24 25				9.5 9.5	8.6	9.0	11.3	9.7	10.5	8.9 8.5	4.7 7.0	7.8 7.8
			02.5		8.6	9.0	11.7	10.2	10.8			
26 27				9.8 9.6	9.2 9.1	9.5 9.4	11.4	9.9	10.5	8.3	6.6	7.3 7.1
28				9.9	9.2	9.5	11.2	9.9	10.4	8.1	6.5	7.1 7.5
29 30				10.1 11.3	9.0 9.1	9.5 9.7	11.3 11.6	9.7	10.4	8.6	6.8	7.5
31				12.3	11.6	12.1				8.9	6.5	7.5
MONTH	8.5	7.6	8.1	12.3	8.3	9.8	13.7	9.5	10.7	12.6	4.7	7.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		THAT										
		JUNE			Y.IIIT.			AUGUST	•		SEPTEME	RER
		JUNE			JULY	2.5		AUGUST			SEPTEME	
1 2	7.8 7.8	6.4	7.0 6.9	7.3 7.2	6.8	7.1 7.0	7.6 7.3	6.8	7.1	8.1 7.4	7.0	7.6
	7.8	6.4 6.3 6.2	6.9	7.2	6.8 6.9 6.4	7.0 7.0	7.3 7.0	6.8 6.3 6.5	7.1 6.9 6.8	7.4 7.5	7.0 7.0 7.1	7.6 7.2 7.3
1 2 3 4 5	7.8	6.4	6.9	7.2	6.8	7.0	7.3 7.0 6.9	6.8 6.3 6.5 6.4	7.1 6.9	7.4	7.0 7.0 7.1	7.6
3 4 5	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3	6.8 6.9 6.4 6.3 6.0	7.0 7.0 6.7 6.6	7.3 7.0 6.9 7.1	6.8 6.3 6.5 6.4 6.5	7.1 6.9 6.8 6.6 6.8	7.4 7.5 7.6 7.4	7.0 7.0 7.1 6.9 6.9	7.6 7.2 7.3 7.2 7.1
3 4 5	7.8 7.6 7.5	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5	7.2 7.4 7.2 7.3 7.1 7.5	6.8 6.9 6.4 6.3	7.0 7.0 6.7	7.3 7.0 6.9	6.8 6.3 6.5 6.4	7.1 6.9 6.8 6.6	7.4 7.5 7.6	7.0 7.0 7.1	7.6 7.2 7.3
3 4 5 6 7 8	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5 8.1	6.8 6.9 6.4 6.3 6.0 5.9 6.0	7.0 7.0 6.7 6.6 6.4 6.5 7.2	7.3 7.0 6.9 7.1 7.4 7.3 7.3	6.8 6.3 6.5 6.4 6.5	7.1 6.9 6.8 6.6 6.8 6.9 7.0	7.4 7.5 7.6 7.4 7.3 7.3	7.0 7.0 7.1 6.9 6.9	7.6 7.2 7.3 7.2 7.1 7.0 7.0 6.8
3 4 5	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5	6.8 6.9 6.4 6.3 6.0	7.0 7.0 6.7 6.6 6.4 6.5	7.3 7.0 6.9 7.1 7.4 7.3	6.8 6.3 6.5 6.4 6.5	7.1 6.9 6.8 6.6 6.8	7.4 7.5 7.6 7.4 7.3 7.3	7.0 7.0 7.1 6.9 6.9	7.6 7.2 7.3 7.2 7.1
3 4 5 6 7 8 9	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4	6.8 6.9 6.4 6.3 6.0 5.9 6.0 6.5 7.0	7.0 7.0 6.7 6.6 6.4 6.5 7.2 8.3 8.4	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.3	6.8 6.3 6.5 6.4 6.5 6.6 6.7 6.7	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3	7.0 7.0 7.1 6.9 6.9 6.7 6.7 6.4 6.5	7.6 7.2 7.3 7.2 7.1 7.0 7.0 6.8 6.7 6.8
3 4 5 6 7 8 9 10	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 9.4	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.6	7.0 7.0 6.7 6.6 6.4 6.5 7.2 8.3 8.4	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.3 7.5	6.8 6.3 6.4 6.5 6.6 6.7 6.7 6.8	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.0 7.1	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3	7.0 7.0 7.1 6.9 6.7 6.4 6.5 6.5 6.5	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8
3 4 5 6 7 8 9	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6	6.8 6.9 6.4 6.3 6.0 5.9 6.0 6.5 7.6 7.6	7.0 7.0 6.7 6.6 6.4 6.5 7.2 8.3 8.4 8.2 7.6	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5	6.8 6.5 6.4 6.5 6.6 6.7 6.7 6.8 6.9	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.1 7.3	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 6.9 7.0	7.0 7.1 6.9 6.7 6.4 6.5 5.3 6.4	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8 6.6 6.6
3 4 5 6 7 8 9 10	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 9.4	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.6	7.0 7.0 6.7 6.6 6.4 6.5 7.2 8.3 8.4	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.3 7.5	6.8 6.3 6.4 6.5 6.6 6.7 6.7 6.8	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.0 7.1	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3	7.0 7.0 7.1 6.9 6.7 6.4 6.5 6.5 6.5	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8
3 4 5 6 7 8 9 10 11 12 13 14	7.8 7.5 7.5 7.6	6.4 6.3 6.2 5.7 5.7 	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6	6.8 6.9 6.4 6.3 6.0 5.9 6.5 7.0 7.6 7.3 7.0 7.1	7.0 7.0 6.7 6.6 6.5 7.2 8.3 8.4 8.2 7.7 7.6 8.1	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.5 7.7	6.35 6.45 6.66 6.77 6.88 6.89 7.0	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.1 7.3 7.4	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 6.9 7.0	7.0 7.1 6.9 6.7 6.4 6.5 5.9 6.3 6.4	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8 6.6 6.6
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7	6.9 6.7 6.5 6.6	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.6 7.3 7.0 7.1 7.4 7.7	7.0 7.0 6.6 6.5 7.2 8.3 8.4 8.2 7.7 7.6 8.1 8.2	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.5 7.7 7.9 8.2 8.3	6.35.45 6.45.5.36.66.77 6.88.900 6.88.900	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.0 7.1 7.3 7.4 7.4	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 7.3 7.3 7.5 7.5	7.0 7.1 6.9 6.7 6.4 6.5 5.3 6.4 6.6 6.8 6.9	7.6 7.2 7.3 7.2 7.1 7.0 7.0 6.8 6.7 6.8 6.6 6.6 6.6 7.1
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	7.8 7.5 7.6 7.1 6.3	6.4 6.3 6.2 5.7 5.7 5.3 4.8	6.9 6.7 6.5 6.6 6.3	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.9	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.6 7.3 7.1 7.4 7.7 7.7 7.7	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.4 8.2 7.7 7.6 8.1 8.2	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.1 8.1 8.1	6.35 6.45 6.66 6.67 7.0 6.88 7.0 6.87 6.88	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.0 7.1 7.3 7.3 7.4 7.4	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 7.5 7.5 7.5 7.5	7.0 7.1 6.9 6.7 6.7 6.5 5.9 6.4 6.4 6.6 6.8 7.1 7.2	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8 6.6 6.7 6.8 6.9 7.0 7.1
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.8 7.6 7.5 7.6	6.4 6.3 6.2 5.7 5.7 	6.9 6.7 6.5 6.6 6.3	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 8.7	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.6 7.1 7.7 7.7 7.7	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.4 8.2 7.6 8.1 8.2 8.1 8.2	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.3 8.2 8.1	6.35 6.45 6.5 6.66 6.77 6.88 6.90 77.00 6.87	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.0 7.1 7.3 7.4 7.4 7.4	7.4 7.5 7.6 7.4 7.3 7.1 7.2 7.3 7.3 7.3 7.5 7.5	7.0 7.1 6.9 6.7 6.7 6.4 6.5 5.9 6.4 6.6 6.6 6.9 7.1	7.6 7.2 7.3 7.2 7.1 7.0 7.0 6.8 6.7 6.8 6.6 6.7 6.8 7.0 7.1 7.3
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.8 7.5 7.6 7.1 6.3 5.7	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8	6.9 6.5 6.6 6.3 5.5 5.2	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.9 8.8	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.6 7.1 7.7 7.7 7.7 7.7 7.7 7.7 7.5 7.1 6.5	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.4 8.2 7.6 8.1 8.2 7.6	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.3 8.2 8.1 8.1 8.2 8.4	6.35 6.45 6.66.67 6.66.67 77.00 6.87 6.66.69 7.00 7.00 7.00	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.3 7.3 7.3	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 7.5 7.5 7.5 7.5 7.7 7.7	7.0 7.1 6.9 6.7 6.7 6.4 6.5 5.9 6.4 6.6 6.6 6.8 7.1 7.2 7.1	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8 6.6 6.7 6.8 7.0 7.1 7.4 7.4
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.8 7.6 7.5 7.6 7.1 6.3 5.7	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8	6.9 6.7 6.5 6.6 6.3 5.5 5.2	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.7 8.8 8.7 8.8 8.8 8.4 8.2	6.8 6.9 6.4 6.3 6.0 5.9 6.5 7.0 7.6 7.3 7.0 7.1 7.7 7.7 7.5 7.5 7.5 6.5	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.4 8.2 7.6 8.1 8.3 7.6 7.6	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.1 8.1 8.2 8.4	6.35.45 6.66.57 6.66.77 6.88.90 7.00 9.87.89 7.00	7.1 6.9 6.8 6.6 6.8 6.8 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.4 7.5 7.6	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 7.5 7.5 7.5 7.5 7.7 7.7	7.0 7.1 6.9 6.7 6.4 6.5 5.9 6.4 6.6 6.6 6.9 7.1 7.1 7.2 7.2	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8 6.6 6.7 6.8 7.0 7.1 7.4 7.4
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.8 7.5 7.5 7.6 7.1 6.3 5.7 6.5 7.6	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8 5.3 6.1 5.8	6.9 6.5 6.6 6.3 5.5 5.2 5.8 7.0 6.3	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 8.7 8.8 9.0 8.7 8.8 9.2 8.9 8.8 8.2 8.3	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.0 7.1 7.7 7.7 7.7 7.7 7.7 7.7 7.5 7.1 6.5	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.2 7.6 8.1 8.2 7.6 7.0 9.7 7.6 7.0 9.7 7.0 9.7 7.0	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.5 7.7 7.9 8.2 8.1 8.1 8.2 8.4 8.4 8.6 8.5 8.5	6.35 6.45 6.66.77 6.88 6.90 7.00 6.66.77 6.66 6.77 7.66	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.0 7.1 7.3 7.3 7.4 7.4 7.5 7.6 8.0 7.9	7.4 7.5 7.6 7.4 7.3 7.1 7.2 7.3 7.3 7.3 7.5 7.5 7.5 7.5 7.7 7.7	7.0 7.1 6.9 6.7 6.4 6.5 5.3 6.4 6.6 6.9 7.1 7.2 7.2	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.6 6.6 6.6 6.6 7.1 7.3 7.4 7.4 7.7
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.8 7.6 7.5 7.6 7.1 6.3 5.7 6.5 7.6 7.3	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8	6.9 6.7 6.5 6.6 6.3 5.5 5.2 5.8 7.0 6.9	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.9 8.8 8.4 8.2 8.3	6.8 6.9 6.4 6.3 6.0 5.9 6.5 7.6 7.3 7.0 7.1 7.7 7.7 7.7 7.5 6.5	7.0 7.0 6.6 6.5 7.2 8.3 8.4 8.2 7.7 8.1 8.3 8.2 7.6 8.1 8.3 7.6 7.6 7.6 7.6	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.5 7.7 7.9 8.2 8.3 8.2 8.1 8.1 8.1 8.2 8.4	6.35.45 6.66.77 8889900 988789 0006	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.3 7.3 7.3 7.3	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 7.5 7.5 7.5 7.5 7.7 7.7	7.0 7.1 6.9 6.7 6.4 6.5 5.9 6.4 6.6 6.6 6.9 7.1 7.1 7.2 7.2	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.7 6.8 6.6 6.7 6.8 7.0 7.1 7.4 7.4
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	7.8 7.6 7.5 7.6 7.1 6.3 5.7 6.5 7.6 8 7.1 7.6	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8 5.3 6.1 6.1 5.8 6.1	6.9 6.5 6.6 6.3 5.5 5.2 5.8 7.0 6.3 6.5	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 8.7 8.8 9.0 8.9 8.8 8.4 8.2 8.3 8.7	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.1 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.0 7.0 6.6 6.4 6.5 7.2 8.4 8.2 7.6 8.2 7.6 8.2 7.6 7.0 6.9 7.2 6.9	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.1 8.1 8.2 8.4 8.4 8.5 8.5 8.7	6.35.45 6.66.77 6.88.90 77.00 6.87.77 77.77 7.8	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.1 7.3 7.3 7.4 7.4 7.5 7.6 8.0 7.9 8.1	7.4 7.5 7.6 7.4 7.3 7.1 7.2 7.3 7.3 7.5 7.5 7.5 7.5 7.7 7.7	7.0 7.1 6.9 6.7 6.4 6.5 5.3 6.4 6.6 6.6 6.9 7.1 7.2 7.2 7.3 7.5 7.5	7.6 7.2 7.3 7.2 7.1 7.0 6.8 6.6 6.7 6.8 6.6 6.7 7.1 7.4 7.7 7.7 7.6 7.7
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	7.8 7.6 7.5 7.6 7.1 6.3 5.7 6.5 7.6 7.3 6.8 7.1	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8 5.3 6.1 6.1 5.8 6.1	6.9 6.7 6.5 6.6 6.3 5.5 5.2 5.8 7.0 6.9 6.3 6.5	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.9 8.8 8.4 8.2 8.3 8.7 7.8	6.8 6.9 6.4 6.3 6.0 5.9 6.5 7.6 7.1 7.7 7.7 7.7 7.7 7.7 7.5 6.5 6.3 6.5	7.0 7.0 6.6 6.5 7.2 8.3 8.4 8.2 7.7 8.1 8.3 8.3 8.4 8.7 7.6 8.1 7.9 7.6 7.9 7.1 7.9	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.5 7.7 7.9 8.2 8.3 8.1 8.1 8.1 8.4 8.4 8.4	6.35 6.45 6.66 6.77 6.88 9.00 9.87 7.06 6.77 7.77 7.77	7.1 6.9 6.8 6.6 6.8 6.8 6.9 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.5 7.6 8.0 7.9	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.5 7.5 7.5 7.5 7.7 7.7 7.7 7.8 8.2 8.2 8.1 8.0	7.0 7.1 6.9 6.7 6.4 6.5 5.9 6.4 6.6 6.6 6.9 7.1 7.2 7.2 7.3 7.5	7.6 7.23 7.21 7.00 6.8 6.6 6.6 6.6 6.6 7.1 7.3 7.4 7.7 7.7 7.7
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	7.8 7.6 7.5 7.6 7.1 6.3 5.7 6.5 7.6 8.8 7.1 7.6 8.0 8.8	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8 5.3 6.1 6.1 5.8 6.1 6.4 6.8 7.8	6.9 6.5 6.6 6.3 5.5 5.2 5.8 7.0 6.9 6.3 6.5 6.9 7.4	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.9 8.8 8.4 8.2 8.3 8.7 7.8 8.1 8.2 8.1 8.1	6.8 6.9 6.4 6.3 6.0 5.9 6.5 7.6 7.0 7.1 7.7 7.7 7.7 7.7 7.7 7.5 6.3 6.3 6.4 6.3	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.2 7.6 8.1 8.3 8.3 8.3 8.3 8.3 7.6 6.9 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.5 7.7 7.9 8.2 8.3 8.1 8.1 8.1 8.4 8.4 8.5 8.5 8.7	6.35.45 6.66.77 6.88.90 6.66.77 6.88.90 77.06.67 77.77 7.8.34 8.1	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.5 7.6 8.0 7.9 8.1 8.0 8.5 8.4	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.5 7.5 7.5 7.5 7.7 7.7 7.7 7.8 8.2 8.1 8.0 8.2 8.1 8.1	7.0 7.1 6.9 6.7 7.6.4 6.5 5.3 6.4 6.6 6.5 7.1 7.2 7.3 7.5 7.4 7.1	7.6 7.23 7.1 7.0 6.8 6.6 6.6 7.0 6.8 6.6 7.1 7.7 7.7 7.7 7.7 7.7 7.7 7.4 7.7 7.7 7.4 7.4
3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	7.8 7.6 7.5 7.6 7.1 6.3 5.7 6.5 7.6 7.3 6.8 7.1 7.6 8.0 8.8	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8 5.3 6.1 5.8 6.1 6.4 6.8 7.8	6.9 6.5 6.6 6.3 5.5 5.2 5.8 7.0 6.9 6.3 6.5	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.9 8.3 8.7 7.8 8.2 8.3 8.7 7.8	6.8 6.9 6.4 6.3 6.0 5.9 6.5 7.6 7.3 7.0 7.7 7.7 7.7 7.7 7.7 7.5 6.3 6.3 6.4 6.3	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.2 7.6 8.1 8.2 7.6 7.2 8.1 7.6 7.1 7.6 7.7 7.6 7.7 7.7 7.7 7.7 7.7	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.1 8.1 8.2 8.4 8.4 8.5 8.5 8.7	6.35.45 6.66.77 6.88.90 6.66.77 6.88.90 77.00 77.77 78.83.4	7.1 6.9 6.8 6.6 6.8 6.8 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.5 7.6 8.0 7.9 8.1 8.6 8.5	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.5 7.5 7.5 7.5 7.7 7.7 7.7 7.8 8.2 8.1 8.0 8.2 8.1 8.1	7.0199 77.455 934446 8.9121 222235 7.541	7.6 7.2 7.3 7.2 7.0 7.0 6.8 6.6 6.6 6.6 6.6 6.6 7.1 7.3 7.4 7.7 7.6 7.7 7.6 7.8 7.6
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	7.8 7.6 7.5 7.6 7.1 6.3 5.7 6.5 7.6 8.0 8.8 7.1 7.6 8.0 8.8	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8 5.3 6.1 6.1 5.8 6.1 6.4 6.8 7.8 4.5 6.9	6.9 6.5 6.6 6.3 5.5 5.2 5.8 7.0 6.9 6.3 6.5 6.9 7.4 7.1	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.7 8.6 9.0 9.2 8.9 8.8 8.4 8.2 8.3 8.7 7.8 8.1 8.0 7.9	6.8 6.9 6.4 6.3 6.0 5.9 6.5 7.6 7.3 7.1 7.7 7.7 7.7 7.7 7.5 6.3 6.3 6.3 6.4 6.3 6.3 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.7 6.6 6.5 7.7 6.6 6.5 7.7 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.2 7.6 8.1 8.3 8.2 7.6 8.3 8.3 7.6 7.9 7.1 7.9 7.1 7.9 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.1 8.1 8.2 8.4 8.4 8.5 8.5 8.7 8.7 8.7 8.7 8.7	6.3.5.4.5 6.6.6.7.7 6.8.9.0.0 9.8.7.8.9 9.0.0.6.6.7 7.7.7.7.7 7.8.3.4.1.9.8	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.5 7.6 8.0 7.9 8.1 8.0 8.5 8.4 8.2 8.0	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.5 7.5 7.5 7.5 7.7 7.7 7.7 8.2 8.2 8.1 8.0 8.2 8.1 8.1	7.0 7.1 6.9 6.7 7.6.4 6.5 5.3 6.4 6.6 6.5 7.1 7.2 7.2 7.3 7.5 7.4 7.1 7.2 7.2 7.3	7.6 7.23 7.1 7.0 6.8 6.6 6.6 7.1 7.3 7.4 7.7 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7.8 7.6 7.5 7.6 7.1 6.3 5.7 6.5 7.6 8.0 8.8 8.6 7.3	6.4 6.3 6.2 5.7 5.7 5.3 4.8 4.8 5.3 6.1 6.1 6.4 6.8 7.8 6.9	6.9 6.5 6.6 6.3 5.5 5.5 5.2 5.8 7.0 6.3 6.5 6.9 7.4 8.3 7.4 7.1	7.2 7.4 7.2 7.3 7.1 7.5 8.1 9.5 9.4 8.6 9.0 8.7 8.8 9.0 9.2 8.9 8.8 8.4 8.2 8.3 8.7 7.8	6.8 6.9 6.4 6.3 6.0 5.9 6.0 7.0 7.1 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.0 7.0 6.6 6.4 6.5 7.2 8.3 8.2 7.6 8.1 8.2 7.6 8.1 8.2 7.6 6.9 7.1 6.9 7.4 7.4 7.3	7.3 7.0 6.9 7.1 7.4 7.3 7.3 7.3 7.5 7.5 7.7 7.9 8.2 8.3 8.2 8.1 8.2 8.4 8.4 8.5 8.5 8.5 8.7 8.7	6.3.5.4.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	7.1 6.9 6.8 6.6 6.8 6.9 7.0 7.0 7.1 7.3 7.4 7.4 7.4 7.5 6.0 7.9 8.0 8.6 8.5 8.4 8.2	7.4 7.5 7.6 7.4 7.3 7.3 7.1 7.2 7.3 7.3 7.5 7.5 7.5 7.5 7.7 7.7 7.7 8.2 8.2 8.1 8.0 8.4 8.1 8.1	7.0199 6.776.455 9.34466.6 6.89121 7.227.35 7.41127.2	7.6 7.23 7.1 7.0 6.8 6.6 6.6 6.7 6.8 6.6 6.7 7.1 7.4 7.7 7.6 7.7 7.6 7.8 7.6 7.6

STREAMS TRIBUTARY TO LAKE ERIE

04213000 CONNEAUT CREEK AT CONNEAUT, OH

LOCATION.--Lat 41°55'37", long 80°36'15", Ashtabula County, Hydrologic Unit 04120101, on right bank at downstream side of Keefus Road bridge at Conneaut, and 6.4 mi upstream from mouth.

DRAINAGE AREA. -- 175 mi2.

PERIOD OF RECORD.--July 1922 to December 1935, March 1950 to September 1961 (published as "at Amboy"), October 1961 to current year.

REVISED RECORDS.--WSP 714: 1926. WSP 784: 1933. WSP 1437: 1923-25(M), 1926-30, 1931-32(M), 1933, 1935(M). WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 610.30 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1924, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Jan 5, 6, Jan. 23 to Feb. 27. Records good except for estimated daily discharges which are poor. Water-quality data collected at this site 1965 to 1977. Sediment data collected 1970 to 1974.

AVERAGE DISCHARGE. -- 50 years, 271 ft 3/s, 21.04 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,000 ft³/s Jan. 22, 1959, gage height, 11.70 ft; maximum gage height, 12.94 ft Mar. 4, 1934 (backwater from ice); minimum discharge, 0.2 ft³/s July 31, Aug. 1, 1933, Aug. 1, 2, 1934.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,900 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date		Time	Discharge (ft³/s)	Gage height (ft)
Mar. 2 Apr. 6	2100 2400	4,010 3,000	6.99 6.23	July	3	2400	*4,890	*7.56

Minimum daily discharge, 13 ft3/s June 19, Aug. 21.

		DISCHARGE,	IN CUBIC	FEET		, WATER	YEAR OCTOBER	1986	TO SEPTEMB	ER 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	133	127	178	142	190	839	1200	74	40	1230	16	84
2	327	105	291	137		2970	744	62	59	798	54	69
3	416	105	1520	134		1890	802	68	162	2760	627	58
4	1140	106	1980	126		495	640	104	141	2260	611	49
5	963	96	601	87	160	308	1370	116	72	276	155	43
6	381	86	309	80		273	2610	84	44	151	78	37
7	265	80	270	126	120	402	2680	65	33	109	52	33
8	185	78	898	164	100	529	1440	55	27	123	42	33
9	125	74	1020	184	110	390	521	48	23	91	38	570
10	90	70	1100	157		241	310	44	19	71	36	221
11	75	71	704	160	170	148	225	40	17	58	131	110
12	63		325	171		113	187	43	30	57	84	74
13	67	90	224	150		103	184	42	35	55	51	357
14	192		163	141	140	96	174	44	36	105	38	471
15	437	95	179	377	120	90	149	42	32	456	30	185
16	327	115	151	825	100	88	137	44	23	217	25	116
17	266	231	146	375	92	96	125	52	17	102	21	141
18	193	230	272	220	80	89	115	43	14	65	18	574
19	155	251	672	194		82	106	40	13	50	16	910
20	115	341	434	168	66	80	93	36	16	42	14	452
21	91	341	277	164	60	78	83	34	16	37	13	468
22	76	438	196	112		74	73	33	305	33	24	228
23	67	373	154						1030	29	18	151
				92		70		33				
24	60	307	143	86		68	68	30	287	27	31	125
25	54	268	1060	82	140	71	81	33	117	28	33	105
26	58	435	1730	78	130	184	85	31	69	24	23	79
27	59	1780	555	74	120	209	70	30	55	29	568	65
28	113	1120	323	72	134	171	75	30	51	37	1060	56
29	442	359	236	70		132	108	36	60	26	569	52
30	252	238	187	96		223	96	30	196	21	271	84
31	169		160	150		1290		33		19	136	
TOTAL	7356	8176	16458	5194	3240	11892	14616	1499	3039	9386	4883	6000
MEAN	237	273	531	168	116	384	487		101	303	158	200
	1140		1980					48.4				910
MAX		1780		825		2970	2680	116	1030	2760	1060	
MIN	54	70	143	70	56	68	65	30	13	19	13	33
CFSM	1.35	1.56	3.03	.96		2.19	2.78	.28	.58	1.73	.90	1.14
IN.	1.56	1.74	3.50	1.10	.69	2.53	3.11	.32	.65	2.00	1.04	1.28
CAL YR	1986	TOTAL 126550	.9 1	MEAN	347	MAX	7890 M	IIN	6.5	CFSM 1.98	3	IN. 26.90
WTR YR	1987	TOTAL 917	39 1	MEAN	251	MAX		IIN		CFSM 1.43		IN. 19.50

PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at crest-stage partial-record stations during water year 1987

						Annual	maximum
Station No	o. Station name	Location	Drainage area (mi ²)	Period of record	Date	Gage height (feet)	Dis- charge (ft /s
		Streams tributary to Lake Erie					3
04183750	Racetrack Run at Hicksville, OH	Lat 41 ⁰ 18'58", long 84 ⁰ 46'00", Defiance County, Hydrologic Unit 04100005, at culvert on Hicksville-Edgerton Road, 0.2 mi south of Middle Fork Gordon Creek, 0.9 mi north of Hicksville.	0.34	1978-87	10- 3-86	12.31	24
04184750	Spring Creek at Fayette, OH	Lat 41°40'32", long 84°19'47", Fulton County, Hydrologic Unit 04100006, at culvert on Gorham Street, 800 ft north of U.S. Highway 20 in Fayette.	2.58	1978-87	10- 3-86	97.28	282
04184760	Bean Creek tributary near Fayette, OH	Lat 41 ⁰ 39'08", long 84 ⁰ 17'34", Fulton County, Hydrologic Unit 04100006, at culvert on Fulton County Highway N, 1.5 mi south of U.S. Highway 20, and	0.56	1978-87	10- 3-86	14.60	45
		2.3 mi southeast of Fayette.					
04185150	Beaver Creek tributary near Montpelier, OH	Lat 41 ⁰ 34'19", long 84 ⁰ 31'03", Williams County, Hydrologic Unit 04100006 on Williams County Road K, 2.0 mi east of State Highway 15, and 4.7 mi east of Montpelier.	0.40	1978-87	10- 3-86	18.72	70
04105045	Auglaiga Divos	Lat 40 ⁰ 42'27", long 84 ⁰ 19'06", Allen	0.51	1978-87	6-12-87	00 74	77
74163943	Auglaize River tributary near Spencerville, OH	County, Hydrologic Unit 04100007, at culvert on State Highway 117, 1.8 mi east of Spencerville.	0.51	1970-07	0-12-87	90.74	
04187945	Rattlesnake Creek near Cairo, OH	Lat 40°49'20", long 84°04'16", Allen County, Hydrologic Unit 04100007, at culvert on Stewart Road, 1.2 mi southeast of Cairo.	1.45	1978-87	6- 9-87	22.00	82
04190350	Little Auglaize River tributary at Ottoville, OH	Lat 40 ⁰ 55'05", long 84 ⁰ 20'47", Putnam County, Hydrologic Unit 04100007, at culvert on State Highway 66, 1.0 mi south of Ottoville.	1.04	1978-87	7-11-87	14.38	77
04191480	Beetree Run near Junction, OH	Lat 41 ⁰ 13'26", long 84 ⁰ 24'33, Defiance County, Hydrologic Unit 04100007, at culvert on private drive from Bowman Road 12, near Sponseller Road 158, 3.2 mi northeast of Junction.	1.66	1978-87	10- 3-86	99.25	51

101

CRAWFORD COUNTY

404838082563100. Local number, CR-1.
LOCATION.--Lat 40°48'38", long 82°56'31", Hydrologic Unit 04100011, Timken Roller Bearing Co., U.S. 30 in Bucyrus.
Owner: Timken Roller Bearing Co.
AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled test water-table well, diameter 6 in., depth 54 ft, cased.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 1039.13 ft above National Geodetic Vertical Datum of 1929. Measuring point: Floor of instrument shelter 3.50 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of water.
PERIOD OF RECORD.--April 1962 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 37.64 ft below land-surface datum, Dec. 11, 1962; minimum daily low, 16.78 ft below land-surface datum, Apr. 24-25, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19.62	19.83	18.66	18.06	18.47	18.75	18.89	18.23	18.52	18.49	20.08	22.54
2	19.49	19.60	18.49	18.71	18.70	18.90	18.64	18.23	18.55	18.04	19.61	22.39
3	19.37	19.44	18.16	18.43	18.65	19.00	18.60	18.38	18.53	17.20	20.45	22.39
4	19.14	19.45	18.23	18.43	18.74	19.05	18.44	18.67	18.56	17.17	21.12	22.31
5	18.94	19.37	18.21	18.44	19.40	18.93	18.37	18.56	18.59	17.20	21.60	22.21
6	18.95	19.46	18.17	18.28	19.02	18.91	18.15	18.46	18.65	17.27	21.97	22.13
7	18.92	19.47	18.11	18.38	18.64	18.84	17.83	18.48	18.57	17.35	22.30	22.06
8	19.11	19.39	18.08	18.39	18.73	18.71	17.72	18.59	18.57	17.44	22.28	22.71
	19.10	19.57	17.95	18.35	18.82	18.88	17.75	18.55	18.52	17.52	21.81	22.98
10	19.10	19.61	17.94	18.15	18.70	18.96	17.74	18.53	18.52	17.57	21.59	22.51
11	19.03	19.51	17.85	18.31	18.68	19.04	17.74	18.53	18.42	17.66	21.47	22.05
12	18.99	19.53	17.97	18.41	18.70	18.99	17.88	18.66	18.29	17.67	21.19	22.11
13	18.99	19.67	18.15	18.48	18.71	18.99	17.96	19.17	18.30	17.83	20.97	22.04
14	18.98	19.61	17.98	18.38	18.70	18.86	17.85	18.88	18.08	17.77	21.51	22.28
15	19.05	19.41	17.97	18.53	18.78	18.93	17.76	18.86	18.16	17.31	22.36	22.39
16	19.03	19.34	17.97	18.58	18.76	19.03	17.74	18.83	18.19	17.39	22.88	22.36
17	19.18	19.40	17.96	18.51	18.65	19.04	17.85	18.77	18.30	17.46	23.36	22.05
18	19.25	19.50	17.98	18.33	18.81	18.94	17.97	18.77	18.32	17.48	23.68	21.95
19	19.24	19.52	18.03	18.40	18.87	19.57	18.03	18.59	18.28	17.52	23.90	21.94
20	19.17	19.21	18.14	18.45	18.88	19.33	18.06	18.61	18.26	17.60	23.72	21.91
21	19.10	19.25	18.23	18.41	18.73	19.16	18.05	18.66	18.22	17.83	23.77	21.88
22	19.15	19.14	18.21	18.25	18.69	19.16	18.04	18.61	18.28	18.08	24.08	21.86
23	19.22	19.05	18.14	18.39	18.89	19.11	18.07	18.67	18.38	18.29	24.26	21.83
24	19.24	19.15	18.04	18.52	19.62	19.04	18.21	18.72	18.41	18.47	24.36	21.78
25	19.18	19.12	18.10	18.53	19.33	19.04	18.24	18.69	18.36	18.53	24.00	21.84
26	19.08	18.88	18.13	18.52	19.18	19.13	18.24	18.71	18.40	18.49	23.49	21.86
27	19.18	18.80	18.14	18.50	19.07	19.13	18.18	18.59	18.60	18.36	23.18	21.85
28	19.24	18.64	18.14	18.58	18.93	19.18	18.17	18.53	18.59	18.48	22.99	21.82
29	19.52	18.63	18.06	18.58		19.17	18.14	18.54	18.60	19.32	22.92	21.71
30	19.47	18.66	18.10	18.42		19.02	18.26	18.51	18.62	20.09	22.78	21.69
31	19.43		18.16	18.54		18.90		18.51		20.40	22.58	
MAX	19.62	19.83	18.66	18.71	19.62	19.57	18.89	19.17	18.65	20.40	24.36	22.98

WTR YR 1987 MEAN 19.21 HIGH 17.17 JUL 4 24.36 AUG 24 LOW

GEAUGA COUNTY

412518081221500. Local number, GE-3A.
LOCATION.--Lat 41°25'18", long 81°22'15", Hydrologic Unit 04110003, 1.2 mi southeast of Chagrin Falls.

Owner: City of Chagrin Falls.

AQUIFER.--Sandstone of Pennsylvanian Age.

39.14

39.07

39.12

39.05

38.99

38.99

26 27

28

29

30

WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 6 in., depth drilled 120 ft, present depth

34.39

34.39

34.32

34.21

33.98

34.08

36.48

36.58

36.45

36.36

36.36

32.60

32.57

32.49

32.49

33.62

34.77

WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 6 in., depth drilled 120 ft, present depth 89 ft, cased.

INSTRUMENTATION. --Digital recorder -- 60-minute punch.

DATUM. --Elevation of land-surface datum is 1130 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.

PERIOD OF RECORD. --September 1951 to current year.

REMARKS. --Water level affected by pumping wells nearby for Chagrin Falls municipal supply.

EXTREMES FOR PERIOD OF RECORD. --Maximum daily low, 52.85 ft below land-surface datum, Oct. 2, 1965; minimum daily low, 8.70 ft below land-surface datum, May 17, 1973.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	43.17	38.78	36.35	33.99	34.91	31.36	29.96	28.19	27.29	.30.40	38.79	41.19
1 2	42.88	38.63	36.13	33.70	35.41	31.62	29.83	28.05	27.27	31.20	38.87	41.32
3	42.73	38.53	36.13	33.94	35.83	31.89	29.93	28.24	27.27	31.86	39.02	41.41
4	42.33	38.41	35.91	33.94	34.90	31.93	29.90	28.32	27.29	32.39	39.12	41.41
5	42.06	38.36	36.04	33.90	34.56	31.84	29.51	28.32	27.29	32.69	39.31	41.45
	41 01	20 27	26.01	22.60	24.04	21 70		00.10		22 22	20 44	
6	41.91	38.27	36.01	33.68	34.04	31.72	29.51	28.13	27.31	33.02	39.44	41.48
7	41.83	38.27	35.90	33.58	33.54	31.53	29.38	27.98	27.17	33.35	39.52	41.53
8	41.58	38.04	35.57	33.58	33.32	31.20	29.29	27.99	27.06	33.64	39.60	41.56
	41.41	38.07	35.41	33.54	33.53	31.33	29.22	27.99	27.22	33.88	39.60	41.67
10	41.41	38.09	35.44	33.10	33.41	31.46	29.17	27.87	27.25	34.10	39.83	41.71
11	41.11	37.81	35.44	33.12	33.29	31.45	28.96	27.87	27.13	34.27	39.84	41.78
12	40.94	37.79	35.29	33.22	32.93	31.19	28.95	27.99	26.85		39.89	41.79
13	40.72	37.82	35.60	33.32	32.98	31.19	29.13	27.99	26.87		40.00	41.89
14	40.54	37.76	35.50	33.22	32.84	31.01	29.13	27.87	26.87		40.09	41.97
15	40.54	37.40	35.10	33.19	32.92	30.96	28.79	27.89	26.85		40.14	42.02
	40.44	27.22	25 10	22.20	22.02	21.00	00.50	07.00	00.40		10.16	47 00
16	40.44	37.23	35.10	33.30	32.92	31.02	28.62	27.89	28.48		40.16	41.99
17	40.33	37.19	35.03	33.28	32.64	31.02	28.54	27.70	29.50		40.29	41.99
18	40.35	37.24	34.67	32.82	32.62	30.89	28.60	27.65	29.72		40.35	42.12
19	40.21	37.32	34.76	32.77	32.67	30.61	28.69	27.63	29.15		40.42	42.16
20	39.96	37.00	34.76	32.91	32.67	30.59	28.69	27.67	29.51		40.49	42.19
21	39.77	37.05	34.88	32.80	32.45	30.51	28.62	27.68	29.73		40.49	42.29
22	39.67	37.00	34.86	32.64	32.30	30.51	28.52	27.62	29.61		40.64	42.33
23	39.60	36.76	34.60	32.58	32.35	30.50	28.32	27.64	30.37		40.71	42.35
24	39.55	36.77	34.43	32.79	32.39	30.37	28.53	27.64	30.68		40.79	42.44
25	39.40	36.76	34.35	32.79	32.39	30.20	28.56	27.60	30.89	37.93	40.79	42.52
23	33.40	30.70	34.33	32.13	32.33	30.20	20.30	27.00	30.03	37.33	40.73	72.32

30.26

30.26

30.28

30.28

29.97

29.96

28.52

28.42

28.13

28.13

28.19

27.49

27.52

27.49

27.44

27.35

27.31

31.40

31.83

32.24

32.34

31.16

38.03

38.16

38.31

38.48

38.62

38.74

40.81

40.89

40.96

41.06

41.08

41.12

41.12

42.57

42.59

42.62

42.59

42.53

42.62

MAX 43.17 38.78 36.35 34.77 35.83 31.93 29.96 28.32 32.34 WTR YR 1987 MEAN 34.42 HIGH 26.85 JUN 12 AND OTHERS LOW 43.17 OCT 1

32.39

32.24

31.93

103 HARDIN COUNTY

404648083412600. Local number, HN-2A. LOCATION.--Lat 40°46'48", long 83°41'26", Hydrologic Unit 04100007, at southeast edge of Dola. Owner: Kevin Eikenbary.

WTR YR 1987 MEAN

6.73

HIGH

6.05

AQUIFER .-- Limestone of Silurian Age.

WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 6 in., depth 51 ft cased.

INSTRUMENTATION.--Type F continuous recorder.

DATUM.--Elevation of land-surface datum is 945 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 2.88 ft above land-surface datum.

REMARKS. --Station operated by Ohio Department of Natural Resources, Division of Water. PERIOD OF RECORD. --December 1954 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily low, 15.86 ft below land-surface datum, Jan. 20, 21, 1965; minimum daily low, 5.46 ft below land-surface datum, Mar. 21, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 7.08 6.55 6.68 7.80 6.70 6.52 6.41 6.52 6.41 6.62 6.10 6.53 2 7.01 6.30 6.37 6.30 6.57 6.31 6.52 6.40 6.65 7.87 6.73 6.50 6.19 6.68 6.62 6.56 6.60 6.38 8.00 6.94 6.65 6.60 6.80 6.72 6.67 6.90 6.70 8.00 6.64 6.88 6.65 5 6.71 6.53 6.58 6.65 6.90 6.75 6.40 6.70 6.66 6.38 6.89 7.98 6 6.86 6.52 6.99 7.93 6.57 6.47 6.77 6.40 6.54 6.66 6.34 6.66 6.27 6.53 6.42 6.55 6.34 7.05 7.88 6.82 6.62 6.42 6.57 6.45 6.22 7.85 8 6.70 6.58 6.54 6.45 6.36 6.20 6.50 6.45 6.34 7.05 9 6.05 6.50 6.25 6.56 7.95 6.67 6.55 6.49 10 6.78 6.90 6.30 6.11 6.53 6.44 6.61 6.33 7.14 7.99 6.66 6.18 6.51 6.26 8.00 6.67 6.74 6.30 6.38 6.37 7.16 11 6.45 6.66 6.05 6.42 6.75 6.40 8.00 6.51 6.62 12 6.55 6.33 6.60 6.30 6.33 7.12 13 6.45 6.69 6.62 6.45 6.43 6.62 6.24 6.24 7.18 8.08 6.60 14 6.42 7.06 6.55 6.49 6.38 6.44 6.32 6.55 6.24 6.38 7.24 8.22 15 6.51 6.68 6.32 6.69 6.54 6.47 6.68 6.29 6.40 7.28 8.22 6.50 16 6.51 6.45 6.29 6.83 6.53 6.63 6.07 6.68 6.34 7.26 8.16 17 6.66 6.49 6.28 6.77 6.32 6.67 6.22 6.54 6.45 6.58 7.35 8.07 6.43 6.55 6.57 18 6.81 6.65 6.21 6.38 6.46 7.44 8.10 6.56 6.29 6.37 7.50 19 6.80 6.84 6.49 6.64 6.42 6.48 6.45 6.53 8.20 20 6.69 6.64 6.42 6.56 6.67 6.45 6.49 6.51 6.30 6.56 7.66 8.25 21 6.51 6.71 6.57 6.50 6.54 6.43 6.42 6.59 6.20 6.59 7.65 8.30 6.57 6.34 6.61 6.29 6.59 7.64 8.43 22 6.48 6.71 6.35 6.50 6.40 23 6.56 6.46 6.33 6.49 6.53 6.25 6.53 6.58 24 6.66 6.69 6.69 6.58 7.90 8.43 6.53 6.68 6.37 8.58 25 6.65 6.40 6.69 6.75 6.32 6.56 6.63 6.49 8.62 6.26 6.49 6.52 6.62 6.80 6.50 6.51 6.58 6.38 6.59 7.87 7.68 27 6.43 6.60 6.54 6.62 6.70 6.51 6.46 6.63 6.46 6.55 8.76 6.54 6.53 6.47 6.33 6.50 6.60 7.76 28 6.54 6.63 6.62 6.63 6.63 6.63 6.52 6.63 7.85 8.65 6.45 6.62 6.58 29 ---6.44 6.55 6.59 6.66 7.85 8.61 6.38 6.42 6.44 30 6.78 6.52 7.79 6.78 6.50 6.64 6.53 6.52 31 7.08 7.06 6.69 6.83 6.90 6.88 6.62 6.70 6.66 6.71 7.90 8.76 MAX

DEC 9 AND OTHERS

T.OW

8.76 SEP 28

HENRY COUNTY

412123083574000. Local number, HY-2. LOCATION.--Lat 41°21'23", long 83°57'40", Hydrologic Unit 04100009, 1.4 Mi southwest of McClure. Owner: State of Ohio.

Owner: State of Ohio.
AQUIFER.--Limestone of Silurian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth drilled 300 ft, cased to 43 ft.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 680 ft above National Geodetic Vertical Datum of 1929, from topographic
map. Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.
PERIOD OF RECORD.--June 1971 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 22.76 ft below land-surface datum, May 30, 1977; minimum daily
low, 14.55 ft below land-surface datum, Mar. 22, 1978.

						MAXIMUM						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19.07	18.52	18.26	17.99	17.81	17.53	18.13	18.95	18.67	20.59	20.40	19.39
2	19.02	18.52	18.12	17.89	17.65	17.74	18.19	18.76	18.91	20.32	20.11	19.22
3	19.00	18.49	17.99	18.05	17.89	17.98	18.27	18.70	19.30	19.87	19.90	19.32
4	18.81	18.39	18.09	18.11	18.07	18.06	18.26	18.78	19.52	19.52	19.85	19.39
5	18.86	18.39	18.12	18.11	18.07	18.05	18.19	18.76	19.65	19.31	19.82	19.38
6	18.95	18.37	17.99	18.02	18.04	18.03	18.18	18.64	19.75	19.01	20.14	19.38
7	18.97	18.40	17.85	17.91	17.89	17.99	18.14	18.57	19.77	18.87	20.42	19.28
8	18.91	18.32	17.64	17.89	17.97	17.92	18.16	18.57	19.78	18.76	20.61	19.23
9	19.03	18.44	17.45	17.70	18.00	18.07	18.17	18.57	19.71	18.72	20.63	19.20
10	19.05	18.51	17.45	17.38	17.93	18.12	18.16	18.55	19.61	18.66	20.84	19.26
11	18.96	18.42	17.43	17.31	17.81	18.11	18.07	18.58	19.45	18.58	20.90	19.58
12	18.86	18.43	17.42	17.35	17.56	18.17	18.19	18.66	19.20	18.48	20.91	19.82
13	18.80	18.56	17.56	17.35	17.57	18.18	18.26	18.65	19.19	18.39	21.01	20.08
14	18.73	18.54	17.56	17.25	17.41	18.10	18.21	18.62	19.16	18.35	21.06	20.24
15	18.78	18.31	17.66	17.35	17.47	18.16	18.10	18.71	19.19	18.31	21.08	20.29
16	18.78	18.26	17.75	17.52	17.46	18.25	18.17	18.77	19.29	18.57	21.08	20.28
17	18.82	18.24	17.75	17.54	17.33		18.53	19.03	19.74	19.11	21.13	20.20
18	18.84	18.22	17.75	17.49	17.39	18.22	18.93	19.13	20.04	19.49	21.21	20.12
19	18.83	18.25	17.83	17.57	17.44		19.19	19.05	20.21	19.74	21.25	20.14
20	18.74	18.12	17.93	17.64	17.43	18.15	19.36	18.89	20.35	19.99	21.32	20.11
21	18.64	18.13	17.98	17.64	17.33		19.43	18.81	20.36	20.15	21.29	20.09
22	18.62	18.13	17.98	17.59	17.25		19.42	18.78	20.39	20.26	21.24	20.09
23	18.60	18.13	17.91	17.69	17.37		19.52	18.79	20.24	20.32	21.32	19.99
24	18.63	18.25	17.84	17.85	17.47		19.67	18.77	20.05	20.46	21.37	19.57
25	18.57	18.28	17.87	17.84	17.70	18.10	19.73	18.74	19.85	20.55	21.30	19.29
26	18.38	18.08	18.01	17.85	17.79		19.72	18.68	19.96	20.59	21.13	19.17
27	18.41	18.18	18.03	17.85	17.80		19.69	18.69	20.25	20.61	20.59	19.15
28	18.47	18.16	18.02	17.86	17.71		19.56	18.76	20.39	20.66	20.26	19.17
29	18.45	18.21	18.01	17.87			19.25	18.79	20.47	20.70	19.98	19.11
30	18.58	18.26	17.99	17.71		20120	19.04	18.75	20.59		19.77	18.99
31	18.58		17.99	17.83		18.11		18.74		20.72	19.53	
MAX	19.07	18.56	18.26	18.11	18.07	18.29	19.73	19.13	20.59	20.74	21.37	20.29
tamp up	1987 MI	EAN 18.	01	HIGH	17.25	JAN 14 AND	OMUEDO	LOW	21 27	AUG 24		

105 GROUND-WATER RECORDS LUCAS COUNTY

413704083362200. Local number, LU-1. LOCATION.--Lat 41°37'04", long 83°36'22", Hydrologic Unit 04100001, at Toledo State Hospital. Owner: State of Ohio.

WTR YR 1987 MEAN

59.36

HIGH

56.87

APR 16

LOW

63.52 SEP 4

AQUIFER.--Limestone of Silurian Age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth drilled 525 ft, present depth 523.0 ft, cased to 93 ft.

INSTRUMENTATION .-- Type F continuous recorder.

DATUM. -- Elevation of land-surface datum is 624 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 2.98 ft above land-surface datum (Revised from 1978 and 1979).

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water. Prior to Aug. 23, 1978, measuring point was 3.10 ft above land-surface datum. Reported in 1979 as 3.00 ft above land-surface datum. PERIOD OF RECORD.--March 1946 to September 1982 continuous, October 1983 to January 1985 periodic, continuous thereafter.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily low, 117.25 ft below land-surface datum, Sept. 18, 1957; minimum daily low, 56.87 ft below land-surface datum, Apr. 16, 1987.

MAXIMUM VALUES OCT SEP DAY NOV DEC JUN JUL AUG JAN FEB MAR APR MAY 59.39 59.00 58.72 58.14 57.67 57.18 57.22 57.01 58.87 61.62 62.56 63.28 2 59.43 59.04 58.40 57.99 57.40 57.33 59.09 61.48 62.44 63.36 57.57 56.95 3 59.27 58.91 58.19 58.24 57.84 57.97 57.45 57.21 59.42 61.25 62.54 63.51 59.07 58.85 58.51 58.32 58.20 58.06 57.36 57.38 59.68 61.45 62.57 63.52 63.44 5 59.12 58.77 58.72 58.35 58.23 57.96 57.28 57.37 59.85 61.50 62.69 6 59.30 58.75 58.65 58.11 58.05 57.92 57.21 57.20 60.02 61.53 62.82 63.34 58.81 58.57 59.31 58.10 57.73 57.79 57.12 57.11 59.95 61.62 62.83 63.28 8 59.15 58.64 58.40 58.10 57.92 57.55 57.13 57.14 60.04 61.73 62.85 63.22 59.43 58.92 58.14 58.04 58.04 57.82 57.15 57.06 60.39 61.82 62.65 63.30 10 59.45 59.05 58.39 57.60 57.90 57.95 57.08 56.97 60.54 61.81 62.87 63.33 58.82 57.72 57.90 56.92 62.88 12 59.11 58.90 57.86 57.85 57.85 57.18 60.26 61.85 62.84 13 59.02 59.17 58.82 57.95 57.88 57.86 57.30 57.18 60.38 61.80 62.85 62.89 14 58.90 59.13 58.63 57.76 57.87 57.64 57-16 57.00 60.43 62.00 62.92 62.81 15 59.04 58.70 58.44 58.06 58.03 57.71 56.98 57.21 60.64 62.05 62.95 62.69 16 59.03 58.46 58.41 58.24 57.99 57.84 56.87 57.17 60.73 62.25 62.90 62.52 17 58.39 58.37 62.37 59.28 58.17 57.75 57.86 56.97 56.98 60.98 62.97 62.14 18 59.41 58.57 58.16 57.83 57.96 57.67 57.13 56.92 61.02 62.38 63.07 61.80 19 59.40 58.71 58.22 57.79 58.10 57.52 57.25 56.92 60.96 62.37 63.12 61.76 20 59.24 58.40 58.39 57.87 58.12 57.52 57.27 56.96 60.93 62.47 63.26 61.68 21 59.03 58.54 58.57 57.84 57.87 57.45 57.24 56.98 60.84 62.54 63.23 61.53 58.55 58.99 58.52 57.64 57.69 57.48 57.20 57.05 60.93 62.54 63.21 61.45 23 59.00 58.39 58.34 57.68 57.91 57.44 57.11 57.15 62.48 63.35 61.40 24 59.08 58.60 58.21 57.99 58.04 57.30 57.39 57.19 61.25 62.51 63.43 61.15 25 58.96 58.60 58.18 58.00 58.14 57.14 57.45 57.13 61.17 62.53 63.37 61.25 26 58.63 58.41 58.33 57.94 58.20 57.30 57.08 62.48 63.33 61.13 57.38 61.18 27 58.56 58.36 57.92 58.04 57.30 57.20 57.51 62.48 63.16 61.12 61.31 28 58.82 58.53 58.34 57.96 57.73 57.40 57.11 57.91 61.41 62.50 63.26 61.05 29 58.89 58.58 58.26 57.98 57.40 57.00 61.45 62.53 63.37 60.79 58.20 30 59.11 58.71 58.16 57.60 ---57.16 57.09 58.46 61.62 62.55 63.34 60.60 59.12 31 58.24 57.82 57.23 58.72 62.60 59.45 59.17 MAX 58.82 58.35 58.23 58.06 57.45 58.72 61.62 62.60 63.43 63.52

MEDINA COUNTY

410142082005900. Local number, MD-1.
LOCATION.--Lat 41°01'42", long 82°00'59", Hydrologic Unit 04110001. Waterworks plant at Lodi.
Owner: Lodi Water Dept.

AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in., depth 65 ft, cased.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 910 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 1.90 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.
PERIOD OF RECORD.--September 1946 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 39.33 ft below land-surface datum, July 21, 1983; minimum daily low, 7.60 ft below land-surface datum, July 6, 1969.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.74	27.20	28.87	23.47	25.14	24.59	28.39	31.44	32.56	28.71	26.68	32.55
2	32.70	26.33	27.62	27.48	29.57	31.37	31.28	25.18	32.47	29.54	26.52	31.91
3	26.53	28.54	30.40	22.55	26.94	34.17	29.65	21.94	32.32	24.30	32.72	32.90
4	25.87	26.37	28.33	23.11	27.61	34.17	25.45	29.87	32.91	23.77	32.09	31.46
5	25.55	26.09	29.19	32.75	29.54	28.65	24.28	32.47	32.14	24.04	29.98	25.98
6	25.47	35.54	23.65	26.85	29.56	32.67	28.23	30.19	28.72	29.25	31.84	25.09
7	35.85	27.98	25.43	28.16	26.14	26.68	28.05	32.47	26.20	28.74	33.22	25.88
8	34.33	25.47	27.01	28.60	23.68	26.04	29.59	29.90	31.45	29.33	26.62	33.69
9	38.21	26.63	29.82	27.47	30.75	29.29	28.79	25.57	29.60	28.49	24.33	32.32
10	29.16	28.45	27.31	24.91	29.83	27.96	27.10	25.21	29.91	29.54	32.75	30.01
11	28.55	27.51	28.39	22.99	33.19	29.84	23.19	32.47	29.71	24.26	32.23	28.33
12	26.78	26.30	28.24	26.53	30.21	31.78	21.78	31.49	29.89	24.53	33.32	26.75
13	28.86	35.93	25.28	28.57	32.39	31.73	28.03	31.20	26.60	30.63	32.30	26.71
14	28.46	28.40	23.58	27.80	25.98	26.77	27.20	29.55	26.54	29.05	32.67	32.08
15	26.79	28.22	27.12	27.87	25.14	24.60	27.88	29.80	29.31	29.28	25.45	30.61
16	35.05	25.82	26.90	27.98	28.69	29.07	25.92	24.84	29.78	29.00	24.95	30.51
17	28.08	27.46	28.03	24.83	30.63	31.33	29.61	26.32	31.97	29.28	32.43	32.42
18	27.35	25.84	28.66	23.19	29.37	31.76	24.11	31.09	30.45	26.08	32.92	30.88
19	24.99	26.90	27.42	31.44	29.81	28.50	21.32	32.17	30.34	23.28	30.38	26.65
20	27.17	34.38	26.95	27.85	29.92	29.82	25.17	32.07	27.96	30.53	30.63	28.36
21 .	27.86	27.62	26.02	27.03	27.48	27.82	27.52	31.01	26.27	32.21	31.85	30.25
22	28.12	27.24	34.06	29.55	24.43	24.76	26.15	30.82	28.98	32.17	29.66	28.91
23	32.93	26.28	32.36	28.16	31.88	31.28	31.24	26.36	31.31	32.67	28.25	29.65
24	27.65	30.07	27.52	26.19	34.46	30.94	29.00	24.51	27.75	31.81	32.67	32.67
25	26.01	28.67	23.94	23.88	29.73	29.10	24.73	26.16	29.68	25.73	30.74	32.67
26	25.52	29.22	26.21	30.15	32.95	29.63	23.63	32.22	27.40	26.27	33.31	27.42
27	27.60	24.02	24.42	29.04	31.47	29.66	30.70	33.31	25.50	32.67	32.61	24.88
28	28.64	27.59	22.43	31.13	24.07	27.13	27.63	33.39	24.69	32.65	30.16	29.46
29	28.36	26.27	30.23	30.86		23.93	30.86	29.48	29.88	31.25	26.88	29.96
30	31.12	25.57	28.91	31.12		33.41	25.77	27.70	29.72	32.67	26.95	28.38
31	28.21		28.52	25.56		28.39		26.42		32.20	30.21	
MAX	38.21	35.93	34.06	32.75	34.46	34.17	31.28	33.39	32.91	32.67	33.32	33.69
MAX	38.21	35.93	34.06	32.75	34.46	34.17	31.28	33.39	32.91	32.67	33.32	

WTR YR 1987 MEAN 28.69 HIGH 21.32 APR 19 38.21 OCT 9 LOW

PORTAGE COUNTY

410540081213600. Local number, PO-7.
LOCATION.--Lat 41⁰05'40", long 81⁰21'36", Hydrologic Unit 04110002, Sunnybrook golf course near Brimfield.
Owner: City of Talmidge.
AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 101 ft cased.

WTR YR 1987 MEAN

-2.41

HIGH

-3.29 APR 14

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 101 ft cased.

INSTRUMENTATION.--Type F continuous recorder.

DATUM.--Elevation of land-surface datum is 1065 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 7.00 ft above land-surface datum.

REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.

PERIOD OF RECORD.--March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 1.53 ft above land-surface datum, Aug. 22, 1987; minimum daily low, 3.94 ft above land-surface datum, Mar. 15-16, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	-2.92	-2.93	-2.79	-2.81	-2.56	-2.54	-2.21	-2.80	-2.42	-2.02	-1.76	-1.72
2	-2.83	-2.98	-2.91	-2.85	-2.54	-2.51	-2.20	-2.80	-2.40	-2.18	-1.77	-1.75
3	-2.92	-2.51	-2.93	-2.85	-2.50	-2.49	-2.20	-2.82	-2.45	-2.33	-1.77	-1.74
4	-3.13	-2.55	-2.85	-2.85	-2.49	-2.51	-2.25	-2.80	-2.39	-2.37	-1.80	-1.64
5	-3.13	-2.84	-2.92	-2.83	-2.45	-2.50	-2.26	-2.78	-2.33	-2.39	-1.68	-1.63
6	-3.08	-2.48	-2.95	-2.79	-2.47	-2.47	-2.32	-2.71	-2.32	-2.37	-1.71	-1.66
7	-3.05	-2.50	-2.98	-2.84	-2.46	-2.45	-2.38	-2.73	-2.32	-2.34	-1.69	-1.74
8	-3.09	-2.40	-2.97	-2.70	-2.50	-2.46	-2.41	-2.69	-2.32	-2.28	-1.57	-1.67
9	-3.09	-2.47	-2.97	-2.58	-2.45	-2.42	-2.41	-2.77	-2.31	-2.29	-1.60	-1.64
10	-3.08	-2.45	-3.00	-2.52	-2.43	-2.42	-2.39	-2.73	-2.31	-2.28	-1.64	-1.61
11	-3.09	-2.39	-2.97	-2.61	-2.42	-2.44	-2.48	-2.73	-2.23	-2.20	-1.63	-1.62
12	-3.09	-2.52	-2.94	-2.52	-2.38	-2.38	-2.49	-2.66	-2.22	-2.23	-1.63	-1.75
13	-3.13	-2.52	-2.88	-2.58	-2.44	-2.39	-1.93	-2.62	-2.32	-2.19	-1.65	-1.84
14	-3.07	-2.37	-2.91	-2.47	-2.47	-2.17	-3.29	-2.56	-2.30	-2.13	-1.64	-1.86
15	-3.07	-2.52	-2.85	-2.39	-2.51	-2.17	-3.25	-2.51	-2.27	-2.14	-1.64	-1.81
16	-3.09	-2.59	-2.86	-2.39	-2.49	-2.15	-3.22	-2.50	-2.23	-2.10	-1.66	-1.80
17	-2.96	-2.27	-2.85	-2.45	-2.50	-2.19	-3.17	-2.50	-2.20	-2.07	-1.66	-1.86
18	-3.00	-2.48	-2.77	-2.61	-2.50	-2.16	-3.03	-2.47	-2.15	-2.14	-1.65	-1.80
19	-3.04	-2.50	-2.80	-2.63	-2.44	-2.15	-3.03	-2.49	-2.02	-2.14	-1.60	-1.77
20	-3.05	-2.55	-2.83	-2.63	-2.39	-2.15	-3.01	-2.49	-1.95	-2.13	-1.60	-1.85
21	-3.05	-2.65	-2.83	-2.68	-2.37	-2.14	-2.95	-2.47	-2.12	-2.01	-1.60	-1.91
22	-3.04	-2.64	-2.86	-2.67	-2.42	-2.10	-2.89	-2.45	-2.18	-1.99	-1.53	-1.90
23	-3.03	-2.65	-2.87	-2.65	-2.34	-2.13	-2.87	-2.50	-2.14	-1.97	-1.54	-1.85
24	-3.03	-2.60	-2.90	-2.50	-2.37	-2.10	-2.84	-2.50	-2.07	-1.85	-1.65	-1.89
25	-3.04	-2.65	-2.93	-2.54	-2.35	-2.10	-2.94	-2.52	-1.84	-1.84	-1.70	-1.90
26	-3.06	-2.70	-2.81	-2.55	-2.33	-2.07	-2.95	-2.48	-1.81	-1.90	-1.59	-1.92
27	-3.04	-2.85	-2.84	-2.50	-2.42	-2.07	-2.99	-2.45	-1.93	-1.91	-1.62	-1.95
28	-3.00	-2.89	-2.86	-2.50	-2.48	-2.14	-2.95	-2.35	-2.00	-1.74	-1.63	-1.95
29	-3.03	-2.83	-2.84	-2.49		-2.16	-2.98	-2.43	-2.09	-1.74	-1.65	-1.93
30	-2.96	-2.80	-2.78	-2.58		-2.17	-2.89	-2.44	-1.97	-1.71	-1.70	-1.90
31	-2.91		-2.80	-2.53				-2.48		-1.70	-1.75	
MAX	-2.83	-2.27	-2.77	-2.39	-2.33		-1.93	-2.35	-1.81	-1.70	-1.53	-1.61

LOW

-1.53 AUG 22

PORTAGE COUNTY

410920081192000. Local number, PO-6.
LOCATION.--Lat 41 09'20", long 81 19'20", Hydrologic Unit 04110002, State Rt 59, east of Kent.
Owner: Testa Bros.
AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 72 ft, cased.

WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 8 in., depth 72 ft, cased.

INSTRUMENTATION. --Type F continuous recorder.

DATUM. --Elevation of land-surface datum is 1040 ft above National Geodetic Vetical Datum of 1929, from topographic map. Measuring point: Top of platform 4.50 ft below land-surface datum.

REMARKS. --Station operated by Ohio Department of Natural Resources, Division of Water.

PERIOD OF RECORD. --April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Maximum daily low, 25.37 ft below land-surface datum, Feb. 22, 1977; minimum daily low, 14.28 ft below-land surface datum, May 5, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	23.60	24.45	25.11	24.46	24.00	24.44	24.85	23.53	22.88	23.30	23.38	24.05
2	23.64	24.49	25.11	24.39	23.99	24.47	24.87	23.53	22.87	23.30	23.42	24.08
3	23.66	24.50	25.14	24.36	24.04	24.49	24.88	23.51	22.87	23.30	23.42	24.10
4	23.73	24.52	25.14	24.36		24.49	24.88	23.50	22.87	23.30	23.43	24.12
5	23.75	24.53	25.14	24.34	24.05	24.52	24.89	23.48	22.87	23.30	23.43	24.14
6	23.78	24.58	25.13	24.32	24.05	24.52	24.88	23.44	22.86	23.30	23.43	24.15
7	23.81	24.60	25.10	24.27	24.05	24.52	24.87	23.42	22.85	23.30	23.44	24.17
8	23.85	24.61	25.05	24.27	24.05	24.52	24.81	23.40	22.85	23.30	23.45	24.20
9	23.90	24.64	25.02	24.27	24.07	24.55	24.70	23.39	22.88	23.30	23.48	24.24
10	23.91	24.67	25.01	24.19	24.07	24.55	24.57	23.38	22.89	23.29	23.50	24.26
11	23.93	24.67	25.00	24.19	24.07	24.57		23.37	22.89	23.27	23.50	24.30
12	23.94	24.68	24.95	24.18	24.10	24.57		23.35	22.88	23.26	23.51	24.33
13	23.96	24.75	24.95	24.18	24.13	24.57		23.33	22.87	23.22	23.53	24.38
14	24.01	24.76	24.93	24.15	24.16	24.58		23.32	22.88	23.23	23.55	24.41
15	24.03	24.77	24.87	24.14	24.19	24.65		23.29	22.90	23.23	23.57	24.44
16	24.06	24.78	24.86	24.14	24.20	24.67		23.28	22.97	23.21	23.59	24.45
17	24.10	24.80	24.83	24.13	24.23	24.68		23.26	23.00	23.21	23.64	24.50
18	24.13	24.85	24.78	24.09	24.25	24.68		23.22	23.01	23.21	23.65	24.52
19	24.14	24.92	24.78	24.09	24.28	24.70		23.18	23.01	23.20	23.70	24.56
20	24.15	24.91	24.75	24.07	24.30	24.70		23.17	23.01	23.20	23.73	24.57
21	24.18	24.95	24.74	24.05	24.30	24.72		23.15	23.02	23.21	23.76	24.59
22	24.20	24.97	24.71	24.05	24.30	24.73		23.13	23.05	23.22	23.78	24.64
23	24.25	24.98	24.67	24.04	24.36	24.75		23.10	23.10	23.23	23.79	24.67
24	24.27	25.01	24.64	24.02	24.37	24.75		23.08	23.11	23.25	23.84	24.69
25	24.27	25.03	24.60	24.01	24.40	24.75		23.03	23.12	23.26	23.87	24.70
26	24.31	25.05	24.60	24.00	24.42	24.76		23.00	23.20	23.28	23.88	24.75
27	24.36	25.10	24.58	23.99	24.42	24.76		22.97	23.25	23.29	23.90	24.78
28	24.38	25.10	24.55	23.98	24.42	24.79		22.96	23.27	23.30	23.94	24.80
29	24.41	25.11	24.55	23.98		24.80		22.94	23.28	23.32	23.96	24.82
30	24.44	25.11	24.48	23.99		24.80		22.92	23.30	23.34	23.98	24.85
31	24.45		24.47	24.01		24.81		22.90		23.38	24.00	
MAX	24.45	25.11	25.14	24.46	24.42	24.81		23.53	23.30	23.38	24.00	24.85
WTR Y	R 1987 ME	AN 24.	05	HIGH	22.85 JU	N 7 AND	OTHERS	LOW	25.14	DEC 3 AND	OTHERS	

GROUND-WATER RECORDS PUTNAM COUNTY

405505084032900. Local number, PU-1.
LOCATION.--Lat 40°55'05", long 84°03'29", Hydrologic Unit 04100007, Center and Broadway Streets, Columbus Grove.
Owner: Columbus Grove Water Department.
AQUIFER.--Limestone of Silurian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 110 ft, cased.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 770 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resource, Division of Water.
PERIOD OF RECORD.--July 1946 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 24.30 ft below land-surface datum, Aug. 24, 1962; minimum daily low, 9.50 ft below land-surface datum, Jan. 5, 1950.

		WATER LE	EVEL, IN I	FEET BELOW	LAND SU	RFACE DATU MAXIMUM		YEAR OCTOB	ER 1986	TO SEPTEM	BER 1987	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10.91	11.91	10.81	12.98	13.13	12.61	11.40	13.78		11.77	14.58	12.65
2	10.95	13.12	11.84	12.71	13.63	10.79	12.07	11.98		13.37	12.55	14.48
3	11.97	12.80	11.24	11.57	12.41	12.72	12.70	13.48		11.54	14.44	12.69
3	11.87	11.57	10.50	13.29	12.63	12.86	11.76	11.93		13.21	12.74	14.18
5	10.59	12.57	11.85	10.78	12.88	13.08	11.11	13.79		11.30	14.32	12.77
6	12.41	12.94	11.71	11.51	12.38	12.13	12.58	12.18		13.35	12.70	14.56
7	10.33	11.61	10.63	12.86	12.49	13.34	12.96	13.78		11.70	14.62	12.84
8	10.73	13.36	12.33	13.49	13.21	12.69	13.71	12.10		14.08	12.82	14.64
9	12.18	13.92	12.32	11.37	12.86	13.18	13.07	14.05		13.63	14.21	14.29
10	10.62	12.75	10.57	13.18	12.73	11.68	11.16	12.29		13.59	13.95	14.93
11	11.14	12.67	12.17	12.91	12.27	12.83	11.88	14.31		11.74	14.55	14.68
12	12.37	13.25	11.89	11.33	11.52	13.00	12.59	12.85		13.40	12.89	14.94
13	10.50	13.88	11.03	13.21	12.58	13.13	12.46	14.47		13.08	14.65	13.29
14	11.20	13.14	12.49	13.28	12.69	13.44	10.60	12.85		13.29	13.17	15.10
15	12.37	13.81	12.74	11.99	12.51	13.20	12.77	14.79		11.56	15.18	13.45
16	10.54	11.59	10.96	13.18	10.54	13.26	12.16	12.97		13.66	13.69	15.01
17	11.00	13.28	12.10	12.56	12.63	13.34	10.64	15.03		11.89	15.12	13.38
18	12.87	13.10	12.21	13.02	12.39	12.92	13.35	14.30		13.49	14.67	14.93
19	12.20	11.68	10.89	12.81	13.11	13.11	11.69	14.58		12.82	15.13	13.49
20	11.12	12.66	12.91	13.15	12.42	13.34	12.62	12.77		13.94	13.33	14.97
21	12.92	12.73	12.74	11.60	13.25	13.55	13.68	14.62		12.44	14.93	13.49
22	12.20	11.40	11.15	12.82	12.88	13.48	13.01	12.87		14.25	13.26	15.16
23	11.17	12.21	13.14	12.31	13.06	13.14	13.52	14.83		14.44	15.07	13.46
24	12.68	12.60	13.03	11.69	13.53	11.38	11.51	13.55		14.30	13.38	15.25
25	13.48	11.13	11.45	13.14	13.28	13.00	13.51	14.74		14.05	15.26	13.49
26	11.16	12.72	12.98	11.49	11.27	12.94	11.77	13.14		14.27	14.61	15.20
27	12.78	12.02	13.47	11.68	13.00	11.57	13.47	14.97		13.74	14.75	13.70
28	12.19	10.82	12.69	13.43	13.66	13.56	11.80			14.52	12.70	15.55
29	11.73	12.58	12.85	13.58		11.74	13.45			12.79	14.36	13.59
30	13.25	12.15	12.76	11.41		11.35	12.07			14.37	14.03	15.26
31	11.01		13.37	13.39		13.42				14.30	14.50	
MAX	13.48	13.92	13.47	13.58	13.66	13.56	13.71	222		14.52	15.26	15.55

HIGH WTR YR 1987 MEAN 10.33 12.87 OCT 7 LOW 15.55 SEP 28

RICHLAND COUNTY

405753082360800. Local number, R-3.
LOCATION.--Lat 40°57'53", long 82°36'08", Hydrologic Unit 04100012, Voisard plant in Shiloh.
Owner: Voisard Corp.
AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 150 ft, cased.
INSTRUMENTATION.--Digital recorder --60-minute punch.
DATUM.--Elevation of land-surface datum is 1080 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 3.17 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.
PERIOD OF RECORD.--April 1946 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 35.90 ft below land-surface datum, Feb. 12, 1981; minimum daily low, 23.68 ft below land-surface datum, June 15, 23, 1947.

WATER LEVEL,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987
MAYTMIM WAT HEC													

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	33.23	33.11	33.11	32.14	32.23	31.84	32.14				31.92	31.93
2	33.28	33.14	32.58	31.95	31.93	32.31	32.28				31.75	31.97
3	33.17	33.06	32.69	32.32	32.40	32.66	32.30				31.83	32.05
4	32.99	33.05	32.89	32.33	32.63	32.74	32.19				31.83	32.03
5	33.09	33.02	33.04	32.39	32.59	32.61	32.09				31.84	31.93
6	33.36	33.07	32.98	32.20	32.42	32.58	32.06				31.90	31.83
7	33.34	33.06	32.85	32.19	32.03	32.46	31.98				31.87	31.78
8	33.18	32.97	32.63	32.35	32.24	32.29	31.95				31.84	31.80
9	33.38	33.24	32.43	32.39	32.42	32.41	31.94				31.69	31.90
10	33.33	33.38	32.59	31.90	32.45	32.55	31.89				31.84	31.86
11	33.17	33.16	32.55	31.98	32.46	32.55	31.69				31.80	31.84
12	33.09	33.20	32.56	32.16	32.35	32.51	31.74				31.80	31.86
13	32.97	33.50	32.87	32.27	32.31	32.46	31.93				31.78	31.98
14	32.97	33.42	32.67	32.01	32.32	32.19	31.79				31.78	32.12
15	33.04	33.05	32.55	32.22	32.45	32.26	31.58				31.80	32.06
16	32.98	32.82	32.43	32.32	32.42	32.45	31.37			31.50	31.77	31.95
17	33.21	32.88	32.36	32.22	32.28	32.44				31.54	31.91	31.84
18	33.36	32.96	32.16	31.95	32.51	32.25				31.52	31.98	31.84
19	33.33	33.14	32.20	31.95	32.63	32.08				31.43	32.05	31.98
20	33.23	32.95	32.37	32.05	32.58	32.02				31.53	32.13	32.07
21	33.07	33.12	32.50	31.99	32.33	32.02				31.58	32.09	32.17
22	33.07	33.06	32.48	31.75	32.33	32.01				31.59	31.95	32.20
23	33.08	32.96	32.31	31.91	32.59	32.00				31.58	32.06	32.17
24	33.06	33.18	32.14	32.16	32.65	31.99				31.63	32.13	32.10
25	32.95	33.13	32.18	32.04	32.68	31.90				31.69	32.08	32.25
26	32.73	32.97	32.34	32.39	32.65	32.11				31.71	32.07	32.36
27	32.87	33.14	32.34	32.28	32.59	32.01				31.74	31.81	32.40
28	33.02	33.07	32.34	32.40	32.24	32.22				31.82	31.83	32.41
29	33.00	33.07	32.22	32.33		32.14				31.83	32.01	32.26
30	33.22	33.09	32.15	31.99		31.91				31.88	32.00	32.14
31	33.19		32.25	32.29		32.12				31.95	31.88	
MAX	33.38	33.50	33.11	32.40	32.68	32.74					32.13	32.41
WTR Y	R 1987 ME	AN 32.	36	HIGH	31.37 A	PR 16	LOW 33.	50 NOV 1	.3			

SANDUSKY COUNTY

411914083045300. Local number, S-3. LOCATION.--Lat 41 19'14", long 83 04'53", Hydrologic Unit 04100011, 2.6 mi southeast of Fremont Post Office. Owner: State of Ohio.

AQUIFER .-- Limestone of Silurian Age.

WELL CHARACTERISTICS .-- Drilled test artesian well, diameter 12 in., depth 121 ft, cased to 93 ft.

WELL CHARACTERISTICS.--Dilled test artesian well, diameter 12 in., depth 121 ft, cased to 93 ft.

INSTRUMENTATION.--Digital recorder -- 60-minute punch.

DATUM.--Elevation of land-surface datum is 627 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.

PERIOD OF RECORD.--December 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 24.18 ft below land-surface datum, Aug. 2, 1975; minimum daily low, 14.02 ft below land-surface datum, Mar. 24, 1975.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES DAY OCT NOV DEC FEB JUN JUL AUG SEP JAN MAR APR MAY 17.70 16.18 20.43 19.01 16.99 15.11 14.69 14.22 14.37 14.52 19.39 16.99 17.60 16.98 15.98 16.76 20.18 18.87 14.95 14.53 14.40 19.52 14.50 14.49 17.50 16.94 15.76 15.11 14.68 14.53 14.62 18.23 16.68 20.68 18.91 16.83 15.87 15.15 14.88 14.76 14.42 14.73 17.61 16.63 20.55 5 17.26 16.82 15.95 15.18 14.90 14.61 17.27 16.61 20.95 18.74 6 17.36 16.74 15.87 15.01 14.77 14.59 14.30 14.62 17.02 16.47 20.04 18.63 16.80 15.77 15.67 15.04 17.39 14.57 14.50 14.31 14.64 16.76 16.44 19.64 18.55 17.24 14.72 20.85 16.66 14.32 16.42 18.45 14.42 16.62 15.46 14.95 16.42 14.91 14.62 14.35 16.02 16.52 10 17.31 16.98 15.57 14.70 14.91 14.30 16.53 16.40 20.06 18.41 11 16.75 14.79 16.37 18.34 17.15 15.52 17.43 16.32 19.69 14.90 14.62 14.24 16.76 12 17.06 15.55 14.88 16.38 16.08 16.34 20.35 18.31 14.80 14.30 14.59 17.05 16.93 15.70 16.25 20.99 13 14.90 14.80 14.49 15.98 16.04 16.22 14 16.92 16.87 15.59 14.79 14.73 14.47 14.37 16.02 20.43 18.36 15 16.99 16.63 15.48 14.90 14.81 14.51 14.25 15.58 17.11 16.18 19.84 18.28 16.97 16.30 20.62 18.14 16 16.48 15.45 14.95 14.77 14.62 14.20 16.76 18-24 15.40 21.20 17 17.09 16.43 14.94 14.61 17.21 19.06 16.34 17.96 14.58 14.27 18 17.17 16.47 15.25 14.77 14.68 14.46 14.45 16.49 19.38 16.34 20.85 17.93 14.70 19 17.17 15.28 14.77 14.41 14.51 16.04 18.84 16.34 21.79 17.95 20 17.13 16.34 15.32 14.77 14.76 15.80 18.59 17.47 22.34 17.97 21 17.02 15.42 22.57 17.99 16.31 14.72 14.58 14.46 14.62 15.73 17.63 18.68 22 17.02 16.32 15.40 14.53 14.51 22.50 17.97 14.48 14.61 15.66 17.25 19.41 15.24 14.72 21.57 23 17.02 16.20 14.62 14.47 17.97 19.93 17.92 14.51 15.72 17.06 16.28 15.12 15.70 20.92 14.61 18.96 20.41 25 17.01 16.25 15.13 14.80 14.81 14.36 16.85 19.09 20.51 20.49 17.93 26 16.80 16.04 17.90 15.26 14.84 14.81 14.47 14.68 17.22 18.86 19.38 20.15 27 15.27 14.80 14.72 19.71 17.93 16.83 16.14 14.46 16.48 17.93 17.55 14.62 18.72 16.12 15.23 17.95 28 16.97 14.80 14.51 14.52 14.57 18.40 19.48 29 16.95 16.15 15.18 14.80 14.51 14.46 17.62 17.30 18.18 19.34 17.83 ___ 30 17.08 16.18 15.14 14.55 14.40 14.56 19.24 17.11 17.72 31 17.07 15.15 14.72 14.37 19.05 20.17 19.01 17.70 16.99 MAX 16.18 15.18 14.91 14.71 19.01 14.76 19.05 19.52 20.51 22.57

WTR YR 1987 MEAN 16.50 HIGH 14.20 APR 16 LOW 22.57 AUG 21

SANDUSKY COUNTY--Continued

412703083213600. Local number, S-2.
LOCATION.--Lat 41°27'03", long 83°21'36", Hydrologic Unit 04100010, at water works in Woodville.

Owner: Woodville Water department.

AQUIFER.--Limestone of Silurian Age.

AQUIFER.--Limestone of Silurian Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 198 ft cased.

INSTRUMENTATION.--Digital recorder -- 60-minute punch.

DATUM.--Elevation of land-surface datum is 635 ft above National Geodetic Vertical Datum of 1929 from topographic map. Measuring point: Top of casing at land-surface datum.

REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.

PERIOD OF RECORD.--June 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 100.97 ft below land-surface datum, Jan. 29, 1982; minimum daily low, 18.60 ft below land-surface datum, May 6, 1977.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL AUG	SEP
1			26.60	24.46	24.80	25.72	24.54	24.74	26.20		
2			25.99	23.85	25.25	26.03	24.06	24.61	25.95		
3			26.08	24.61	25.72	25.80	24.12	24.68	25.80		
4	29.12	29.08	25.68	24.48	26.32	25.44	23.93	25.12	25.35		
5	28.47	27.87	25.19	24.71	26.66	25.19	23.74	24.81	23.85		
6	27.98	27.83	24.79	24.28		25.04	24.00	24.28	24.80		
7	27.68	28.19	24.98	24.71		24.55	24.05	23.08	25.33		
8		27.87	24.89	24.62		25.04	24.06	23.83	25.37		
9	30.16	30.56	25.18	24.55		25.78	24.16	24.76	25.28		
10	27.65	40.37	24.14	23.98	29.60	25.81	24.04	24.80			
11	35.48		24.18	24.56	27.41	25.99	24.18	24.84			
12	27.68		24.63	24.73	26.55	28.52	24.22	25.04			
13			24.47	24.36	26.59	27.92	24.43	23.29			
14			24.34	23.97	27.06	26.97	24.25	24.30			
15	28.51		24.11	24.25	30.68	27.07	22.77	25.04			
16	27.67	28.83	24.64	26.40		26.79	23.51	25.40			
17	39.56	28.30	24.24	25.60	27.73	26.57	24.28	26.00			
18		45.51	24.66	25.63	27.50	25.19	24.62	25.37			
19	27.96		24.49	25.50	27.54	26.19	24.24	25.23			
20		29.69	24.76	25.28	27.50	25.77	24.69	24.99			
21	44.11	29.06	24.08	24.79	27.00	26.11	24.60	25.13			
22		29.23	24.66	24.81	26.59	26.06	24.44	25.18			
23			24.79	25.00	26.89	25.86	24.46	24.02			
24			24.54	25.32	26.48	25.57	23.74	24.37			
25	28.64	29.04	24.36	25.38	26.21	25.51	23.79	25.04			
26	28.23		24.68	25.46	25.46	24.93	24.85	25.30			
27			24.75	25.07	26.19	25.08	24.60	25.40			
28	29.96	27.79	24.66	25.08	25.85	25.33	24.67	25.49			
29	28.31	26.86	24.11	24.90		25.21	22.71	25.71			
30	28.18	26.44	24.50	24.98		25.23	24.65	26.22			
31			24.35	24.75		24.95		25.98			
MAX			26.60	26.40		28.52	24.85	26.22			

WTR YR 1987 MEAN 25.97 HIGH 22.71 APR 29 LOW 45.51 NOV 18

113

GROUND-WATER RECORDS SENECA COUNTY

410802083093900. Local number, SE-2.
LOCATION.--Lat 41 08'02", long 83 09'39", Hydrologic Unit 04100011, Tiffin State Hospital, Tiffin.
Owner: State of Ohio.
AQUIFER.--Limestone of Silurian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 250 ft, cased.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 740 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 0.50 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.
PERIOD OF RECORD.--July 1962 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 23.76 ft below land-surface datum, Nov. 22, 1964; minimum daily low, 14.48 ft below land-surface datum, Mar. 22, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18.55	18.85	17.58	17.81	18.81	18.43	18.83	18.57	19.39	19.43	20.03	20.54
2	18.04	18.89	17.37	17.82	18.50	18.75	18.56	18.56	19.35	19.14	19.99	20.57
3	17.73	18.84	17.00	18.09	18.83	19.02	18.55	18.81	18.97	18.94	20.13	20.74
4	17.05	18.83	17.13	18.17	18.93	19.07	18.25	18.97	18.97	18.91	20.16	20.72
5	16.57	18.84	17.24	18.22	18.91	18.89	17.85	18.93	18.91	18.86	20.30	20.67
6	16.65	18.97	17.16	18.03	18.52	18.84	17.41	18.73	18.92	18.67	20.44	20.59
7	16.68	19.02	17.12	18.16	18.08	18.73	16.71	18.76	18.76	18.74	20.47	20.59
8	16.81	18.90	17.06	18.19	18.30	18.50	16.43	18.84	18.75	18.89	20.48	20.57
9	17.30	19.25	16.83	18.16	18.41	18.95	16.45	18.84	18.97	19.03	20.28	20.72
10	17.44	19.38	16.94	17.78	18.26	19.06	16.47	18.83	19.03	19.07	20.58	20.74
11	17.40	19.17	16.86	18.07	18.20	18.98	16.51	18.86	18.79	19.14	20.58	20.75
12	17.39	19.25	16.98	18.36	18.28	19.05	16.99	19.16	18.56	19.15	20.50	20.78
13	17.48	19.52	17.33	18.44	18.28	19.04	17.17	19.19	18.71	19.15	20.54	20.87
14	17.43	19.47	17.25	18.35	18.35	18.86	17.00	19.06	18.73	19.33	20.62	21.00
15	17.62	19.10	17.26	18.63	18.44	19.01	16.96	19.32	18.84	19.30	20.66	20.99
16	17.66	18.94	17.36	18.72	18.40	19.17	17.08	19.24	18.93	19.29	20.65	20.89
17	18.06	19.07	17.37	18.66	18.28	19.16	17.39	19.13	19.17	19.41	20.73	20.74
18	18.25	19.13	17.45	18.30	18.57	18.96	17.67	19.14	19.24	19.44	20.84	20.84
19	18.25	19.23	17.60	18.42	18.69	18.93	17.85	19.16	19.21	19.51	20.90	20.94
20	18.15	18.86	17.84	18.55	18.71	18.94	17.90	19.24	19.22	19.61	21.07	20.94
21	18.10	18.65	17.99	18.54	18.46	18.97	18.00	19.32	19.15	19.74	21.01	20.99
22	18.20	18.55	18.01	18.38	18.38	19.03	17.95	19.31	19.06	19.79	20.94	21.05
23	18.36	18.22	17.88	18.66	18.83	19.01	18.07	19.41	19.23	19.74	21.08	21.05
24	18.44	18.47	17.81	18.96	18.96	18.91	18.41	19.43	19.32	19.77	21.13	21.01
25	18.39	18.44	17.81	18.92	19.04	18.98	18.49	19.41	19.18	19.80	21.05	21.14
26	18.23	18.05	17.87	18.93	19.05	19.19	18.47	19.41	19.23	19.78	20.98	21.12
27	18.41	17.99	17.83	18.84	18.87	19.16	18.28	19.51	19.33	19.79	20.73	21.16
28	18.59	17.72	17.76	19.02	18.66	19.30	18.40	19.47	19.42	19.86	20.62	21.18
29	18.66	17.44	17.73	19.01		19.25	18.32	19.48	19.42	19.88	20.66	21.04
30	18.92	17.58	17.76	18.78		19.09	18.61	19.46	19.51	19.94	20.63	21.03
31	18.91		17.82	18.94		18.90		19.46		20.01	20.48	
MAX	18.92	19.52	18.01	19.02	19.05	19.30	18.83	19.51	19.51	20.01	21.13	21.18

WTR YR 1987 MEAN 18.90 HIGH 16.43 APR 8 LOW 21.18 SEP 28

SUMMIT COUNTY

22.36

WTR YR 1987 MEAN

MAX

23.34

16.21

HIGH

410330081282000. Local number, SU-6.
LOCATION.--Lat 41003'30", long 81028'20", Hydrologic Unit 04110002, Seiberling St, Akron.
Owner: Goodyear Tire and Rubber Co.

AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 24 in., depth 89 ft, cased.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 1000 ft above National Geodetic Vertical Datum of 1929 from topographic

map. Measuring point: Floor of instrument shelter 2.63 ft above land-surface datum.

REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.

PERIOD OF RECORD.--March 1944 to current year. Records for May 14-Sept. 30, 1980, published in USGS-WRD-OH-80-1, are unreliable and should not be used.

12.66

11.92 APR 7

EXTREMES FOR PERIOD OF RECORD. --Maximum daily low, 59.47 ft below land-surface datum, Oct. 18, 1947; minimum daily low, 11.92 ft below land-surface datum, April 7, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN FEB MAR APR MAY 12.70 22.84 1 21.02 22.37 15.58 12.45 12.51 12.62 12.35 21.53 15.41 ---20.94 12.43 12.52 12.53 12.33 ---22.91 2 22.37 12.81 21.52 3 22.42 ---12.94 ---21.58 20.18 22.53 15.02 12.63 12.68 12.48 12.34 13.03 21.70 23.05 20.30 14.89 13.04 22.03 6 20.50 22.68 14.74 ---12.61 12.71 12.15 12.35 13.02 21.91 20.68 22.74 22.80 14.62 ---12.58 12.70 11.92 12.40 12.95 ---21.98 ---12.93 ---8 20.83 12.48 12.60 12.45 ---22.01 ------20.94 22.80 14.23 12.54 13.00 21.98 12.62 12.44 10 21.02 22.84 14.12 12.58 12.67 12.35 13.01 21.94 11 21.05 22.90 14.04 12.58 12.68 12.28 13.01 22.03 ___ 12 13.89 ---12.73 ------21.08 22.94 12.58 12.35 13.06 22.11 ------------21.17 23.02 12.59 13.01 22.22 12.35 14 13.64 12.51 ---22.28 21.25 23.09 12.57 12.69 12.38 12.99 ------15 21.35 23.12 13.60 12.56 12.55 12.38 12.99 22.28 12.60 22.27 16 21.44 23.12 13.58 12.56 12.58 ---12.38 13.09 ------12.53 17 21.55 23.14 13.48 12.51 12.56 12.62 ---12.29 13.14 ---22.30 ---------23.23 12.42 12.45 12.45 ---18 21.57 13.49 12.62 12.62 12.23 13.16 22.36 ---22.45 21.58 13.44 12.15 19 12.63 12.62 13.16 20 21.55 23.33 12.21 13.15 22.53 12.63 12.64 21 21.63 23.34 12.48 12.57 12.68 12.34 12.27 12.96 22.56 22 21.69 20.08 ___ 12.46 12.52 12.67 12.34 12.29 12.95 ---22.59 ---------22.57 23 21.77 18.62 12.55 12.55 12.57 12.34 12.28 ------21.01 ---12.55 12.60 12.58 12.35 12.21 22.59 24 21.88 17.87 25 21.95 17.44 ---12.51 12.65 12.60 12.34 12.16 21.07 22.65 21.97 17.08 ---12.48 12.62 12.28 12.40 21.11 22.72 ------22.03 16.71 ---12.50 12.65 12.66 12.20 12.54 21.21 22.75 ---------21.33 28 22.12 16.36 ---12.55 12.63 12.71 12.23 12.59 22.78 ------22.80 29 22.22 16.06 ---12.55 ---12.71 12.29 12.65 ---21.47 22.78 30 22.28 22.36 15.82 12.47 12.59 12.35 12.66 12.62 31 12.51 12.64

12.73

LOW

12.66

23.34 NOV 21

22.80

SUMMIT COUNTY--Continued

410846081271600. Local number, SU-7.
LOCATION.--Lat 41°08'46", long 81°27'16", Hydrologic Unit 04110002, Monroe Falls Road, Cuyahoga Falls.
Owner: Cuyahoga Falls Water Department.
AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused water-table, diameter 6 in., depth 100 ft, cased.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 994 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 5.00 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.
PERIOD OF RECORD.--August 1968 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 44.19 ft below land-surface datum, Sept. 7, 1971; minimum daily low, 0.45 ft above land-surface datum, Feb. 27, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

						MAXIMUM	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	34.99	32.46	29.25	19.97	25.09	29.22		16.64	24.62	26.59	27.63	32.91
2	34.31	32.96	27.52	20.20	25.36	29.29		16.97	24.77	26.32	27.86	32.84
3	33.45	33.39	26.48	20.47	25.63	28.85		17.26	24.44	25.18	28.01	32.83
4	32.33	33.42	24.75	20.49	25.88	27.51		17.39	25.14		28.22	33.03
5	30.89	34.05	22.96	20.63	25.90	26.25		17.56	25.42		28.55	33.04
6	27.96	34.40	21.09	20.75	26.19	24.53		18.11	25.74		28.79	32.93
7	25.99	34.66	19.23	21.09	26.35			18.23	26.08		29.03	32.85
8	24.90	35.01	17.82	21.48	26.37			18.86	26.43		29.23	32.86
9	24.83	35.23	17.13	21.62	26.62			19.26	26.72		29.29	32.84
10	25.15	35.21	16.85	21.64	26.80			19.69	26.82		29.24	32.86
11	25.54	35.64	15.90	21.79	26.79			19.87	26.71		29.34	32.92
12	25.99	35.71	15.33	22.24	26.96			20.28	27.35		29.48	32.94
13	25.95	35.84	15.09	22.29	27.15			20.76	27.77		29.55	33.02
14	26.78	36.02	15.25	22.64	27.15			21.02	27.86		29.78	33.09
15	27.14	36.27	15.40	22.85	27.32			21.55	28.06		30.15	33.15
16	27.41	36.53	15.78	22.95	27.40			21.66	28.36		30.55	33.03
17	27.64	37.22	16.72	23.04	27.64			21.80	28.54		30.78	33.09
18	28.09	37.48	17.34	23.09	27.89			22.06	28.19		31.09	33.09
19	28.42	37.80	17.59	23.06	28.09			22.09	26.89		31.38	32.42
20	28.93	37.86	17.77	23.20	28.20			22.21	25.76		31.74	32.41
21	28.94	37.84	18.20	23.24	28.35		11.19	22.31	24.45	24.01	31.99	32.07
22	29.54	37.67	18.42	22.79	28.45		11.91	22.43	24.29	24.56	32.18	31.54
23	29.80	37.37	18.81	22.89	28.65		12.69	22.59	24.28	25.13	32.14	30.98
24	30.22	37.10	19.09	23.03	28.78		13.34	22.65	25.07	25.42	32.31	31.06
25	30.53	36.97	19.29	23.21	28.86		13.61	22.72	25.14	25.70	32.39	31.13
26	30.74	36.65	19.33	23.99	28.96		14.17	22.91	25.21	25.92	32.50	31.13
27	31.12	36.19	19.36	24.10	29.06		14.91	23.10	25.34	26.09	32.53	31.18
28	31.42	34.51	19.39	24.06	29.08		15.52	23.24	25.44	26.24	32.61	31.17
29	31.70	32.96	18.98	24.03	25.00		15.91	23.59	25.61	26.51	32.62	31.44
30	32.03	30.74	19.77	24.41			16.29	24.08	26.11	26.86	32.78	31.66
31	32.15		19.95	24.80				24.47		27.33	32.86	
MAX	34.99	37.86	29.25	24.80	29.08			24.47	28.54		32.86	33.15

11.19 APR 21 WTR YR 1987 MEAN 26.54 HIGH LOW 37.86 NOV 20

VAN WERT COUNTY

405215084335400. Local number, VW-1. LOCATION.--Lat 40°52'15", long 84°33'54", Hydrologic Unit 04100007, Ridge Road near Van Wert. Owner: Marsh Foundation.

AQUIFER .-- Limestone of Silurian Age.

WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 8 in., depth 340 ft, cased.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 340 ft, cased.

INSTRUMENTATION.--Type F continuous recorder.

DATUM.--Elevation of land-surface datum is 790.37 ft above National Geodetic Vertical Datum of 1929. Measuring point: Floor of instrument shelter 6.15 ft above land-surface datum.

REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.

PERIOD OF RECORD.--August 1957 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily low 32.81 ft below land-surface datum, Mar. 2, 1977; minimum daily low, 18.85 ft below land-surface datum, Mar. 6, 1959.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.05	28.10	28.10	28.00	28.20		28.55	28.75	29.05	29.10	28.90	28.95
2	28.10	28.10	27.85	27.90	28.00		28.70	28.70	29.05	28.95	28.80	28.95
3	28.00	28.00	27.80	28.10	28.35	28.80	28.80	28.85	29.15	28.90	28.85	29.05
4	27.90	27.90	28.05	28.20	28.65	28.85	28.75	29.05	29.20	29.00	28.85	29.05
5	28.05	27.85	28.20	28.20	28.65	28.70	28.70	29.05	29.25	29.00	28.95	28.95
6	28.15	27.90	28.15	28.05	28.55	28.70	28.65	29.00	29.25	28.95	29.05	28.85
7	28.15	27.95	28.10	28.10	28.30	28.65	28.65	28.85	29.10	28.95	29.10	28.80
8	28.05	27.80	27.95	28.10	28.45	28.45	28.60	28.95	29.05	28.95	29.05	28.75
9	28.25	28.10	27.75	28.10	28.55	28.65	28.65	28.90	29.15	29.00	28.90	28.80
10	28.30	28.20	28.00	27.70	28.45	28.75	28.65	28.85	29.25	28.95	29.05	28.80
11	28.15	28.00	28.00	27.85	28.40	28.75	28.45	28.80	29.10	29.00	29.05	28.80
12	28.00	28.10	28.05	28.00	28.45	28.80	28.65	29.00	28.90	28.90	28.95	28.80
13	27.95	28.35	28.35	28.05	28.45	28.80	28.85	29.00	28.90	28.80	28.95	28.85
14	27.90	28.30	28.20	27.95	28.45	28.60	28.75	28.95	28.85	28.95	29.00	28.95
15	28.00	28.00	28.05	28.20	28.50	28.65	28.60	29.05	28.95	28.90	29.00	28.90
16	28.00	27.80	28.05	28.30	28.50	28.80	28.50	29.05	29.00	28.95	28.95	28.80
17	28.20	27.75	28.00	28.30	28.35	28.80	28.55	29.00	29.10	29.05	28.95	28.65
18	28.30	27.90	27.90	28.10	28.60	28.70	28.75	28.90	29.20	29.00	29.10	28.70
19	28.30	28.00	27.95	27.95	28.70	28.60	28.80	28.85	29.15	29.00	29.05	28.75
20	28.20	27.80	28.10	28.10	28.70	28.60	28.85	28.95	29.05	29.00	29.20	28.80
21	28.05	27.95	28.20	28.10	28.50	28.55	28.85	29.05	28.95	29.05	29.15	28.80
22	28.00	27.95	28.20	27.95	28.40	28.60	28.80	29.10	28.95	29.05	29.10	28.90
23	28.00	27.85	28.05	28.10	28.40	28.55	28.70	29.25	29.10	29.05	29.25	28.90
24	28.05	28.05	27.90	28.35	28.80	28.45	28.90	29.25	29.15	29.00	29.30	28.85
25	27.95	28.00	28.00	28.35	28.80	28.40	29.05	29.25	29.10	29.05	29.25	29.00
26	27.70	27.85	28.10	28.40	28.75	28.55	29.00	29.20	29.00	29.05	29.25	28.95
27	27.80	28.00	28.15	28.35	28.50	28.55	28.95	29.15	29.05	29.00	29.00	29.00
28	27.90	28.00	28.15	28.40	28.00	28.65	28.85	29.15	29.10	28.95	28.95	29.05
29	27.95	28.00	28.10	28.40		28.60	28.75	29.20	29.10	28.95	29.05	28.90
30	28.10	28.10	28.00	28.20		28.45	28.80	29.10	29.10	28.90	29.00	28.85
31	28.10		28.10	28.30		28.50		29.10		28.95	28.90	
MAX	28.30	28.35	28.35	28.40	28.80		29.05	29.25	29.25	29.10	29.30	29.05
WTR Y	YR 1987 ME	EAN 28.	.59	HIGH	27.70 00	T 26 AND	OTHERS	LOW	29.30	AUG 24		

WILLIAMS COUNTY

412821084313600. Local number, WM-1.
LOCATION.--Lat 41°28'21", long 84°31'36", Hydrologic Unit 04100006, Bryan Water Treatment Plant, Bryan.
Owner: City of Bryan.
AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused production well, diameter 8 in., depth 118 ft, cased.
INSTRUMENTATION.--Type F continuous recorder.
DATUM.--Elevation of land-surface datum is 747 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 3.30 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.
PERIOD OF RECORD.--May 1951 to May 1957, discontinued June 1957 to September 1984, reactivated October 1984 to current year.

current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 36.80 ft below land-surface datum, Aug. 20, 1987; minimum daily low, 1.45 ft below land-surface datum, Jan. 27, 1952.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	30.50	27.65	24.20		24.70	26.50	27.60	27.95	28.40	28.90		35.55	
2	30.45	25.35	24.35		25.80	26.40	27.80	28.15	29.40	28.75		35.60	
3	29.50	26.20	24.70		26.30	27.70	28.00	26.55	30.25	28.80		35.40	
	29.50	26.00			27.10	28.40	28.25	25.90	30.60	27.90		35.35	
5	27.55	26.45			27.20	28.90	27.70	27.10	30.95	27.40	777	35.15	
6	28.60	26.35			27.90	28.80	26.50	27.05	31.00	28.40		33.55	
7	28.70	26.60	23.45		29.40	29.15	27.60	27.35	30.20	29.35	35.00	33.70	
8		26.85	23.50		29.50	26.75	28.30	27.50	29.85	29.50	35.10	34.55	
9		24.50	24.90		29.80	27.10	27.80	27.75	30.60	29.85	33.35	34.65	
10	29.30	25.95	25.15		30.25	28.35	28.40	26.80	31.00	29.90	34.50	34.45	
11	29.45	25.55	25.35		29.65	27.95	28.40	26.90	30.80	29.25	34.90	34.65	
12	27.80	25.90	25.20		29.70	28.20	27.60	27.35	30.30	29.25	34.65	34.75	
13	27.95	26.50	24.40		29.85	28.50	27.35	27.95	29.90	29.85	35.35	33.05	
14	28.00	26.35	23.35	24.30	29.80	27.55	27.20	28.20	29.60	30.40	35.20	34.00	
15	28.20	25.40	25.30	24.30	28.00	26.70	27.45	28.80	30.50	30.70	35.30	34.55	
16	28.35	24.45	25.30		27.20	27.80	27.75	28.40	31.35	31.75	34.25	34.20	
17	28.70	25.45	25.40	24.70	28.60	28.80	27.00	27.00	31.80	32.30	35.95	34.05	
18	28.75	25.90	25.85	23.45	28.90	29.30	26.20	27.50	32.15	31.10	36.50	34.05	
19	26.35	25.85	26.00	24.50	29.20	29.80	24.80	27.70		30.30	36.15	34.20	
20	27.65	26.15	24.75	24.45	29.15	30.00	26.45	28.35	31.35	32.65	36.80	32.80	
21	27.80	26.10	23.85	24.90	29.00	28.95	27.10	29.90	30.10	32.75	36.70	33.95	
22	28.00	25.55	25.60	25.25	27.30	27.45	27.65	30.65	30.70	33.80	36.55	34.50	
23	27.75	24.80	25.10	25.90	28.60	28.35	27.75	30.50	31.05		34.60	33.35	
24	28.20	26.00	25.20	25.20	28.70	28.10	28.20	27.80	31.30		36.10	33.80	
25	27.35	26.15	23.90	24.15	28.65	28.95	27.25	27.25	31.20	33.40	36.45	34.20	
26	25.40	26.25	23.35	24.20	28.90	28.75	27.10	27.80	31.25	32.50	35.70	34.35	
27	26.75	25.15	22.50	26.00	29.00	28.60	26.50	28.25	30.75	33.30	35.65	32.80	
28	26.90	24.05		26.40	27.50	29.40	27.00	28.80	29.85		35.55	33.30	
29	27.25	23.35	22.95	26.10		28.50	27.65	30.00	30.40		34.10	34.05	
30	27.30	22.75	23.20	25.30		27.00	27.90	30.30	29.15		33.95	34.40	
31	27.60			24.70		27.45		29.75			34.20		
MAX	4	27.65			30.25	30.00	28.40	30.65				35.60	

WTR YR 1987 MEAN 28.90 HIGH 22.50 DEC 27 T.OW 36.80 AUG 20

WILLIAMS COUNTY

412930084320900. Local number, WM-3.
LOCATION.--Lat 41⁰29'30", long 84⁰32'09", Hydrologic Unit 04100006, Union Street, Bryan.
Owner: City of Bryan.
AQUIFER.--Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused test well, diameter 8 in., depth 174 ft, cased.
INSTRUMENTATION.--Type F continuous recorder.
DATUM.--Elevation of land-surface datum is 760 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 2.00 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.
PERIOD OF RECORD.--October 1984 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 26.40 ft below land-surface datum, Aug. 21, 1987; minimum daily low, 15.15 ft below land-surface datum, Jan. 4, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22.15	19.40		15.95	17.90	18.90	20.70	21.25	22.10	21.75	25.45	24.90
2	22.20	18.60	17.45	15.35	18.00	18.40	20.80	21.20	22.40	21.25	24.50	24.90
3	21.95	18.60	17.50	15.40	18.60	18.95	21.05	20.45	22.65	20.75	24.00	24.90
4	21.60	19.15	17.85	15.15	19.00	19.60	20.90	20.40	22.90	20.25	24.80	24.80
5	20.50	19.15	18.00	15.70	19.05	19.85	20.60	20.60	23.00	19.65	24.90	24.65
6	20.30	18.90	18.15	16.25	18.70	20.20	20.45	20.90	22.95	19.20	24.80	23.85
7	20.60	19.00	17.75	17.05		20.10	20.85	20.95	22.45	19.90	24.80	23.15
8	20.50	18.80	17.15	17.30		19.60	21.00	21.05	22.65	20.15	24.85	24.10
9	20.70	18.05	17.80	17.35	19.90	19.30	21.30	21.05	22.85	20.45	24.10	24.20
10	20.70	18.50	18.00	17.30	20.45	19.90	21.35	20.65	23.00	20.55	24.00	24.20
11	20.65	18.60	18.10	16.65	20.45	20.00	21.25	20.40	23.05	20.30	24.60	24.20
12	19.85	18.60	18.10	16.80	20.45	20.05	20.80	20.65	22.75	20.30	24.65	24.20
13	19.65	19.05	18.15	17.50	20.40	20.05	20.45	21.25	22.75	20.10	24.90	23.05
14	19.85	19.20	17.65	17.70	20.35	19.70	20.60	21.30	22.35	20.70	24.90	23.80
15	19.90	19.10		18.00	19.60	19.10	20.65	21.60	22.60	20.95	24.95	23.80
16	19.90	18.25		18.25	19.45	19.45	20.85	21.60	23.15	21.80	24.55	23.80
17	20.05			18.25	19.75	20.25	20.80	21.10	23.70	22.50	24.85	23.70
18	20.00			17.60	19.90	20.70	20.10	20.85	23.80	22.55	25.70	23.60
19	19.30			17.55	20.15	21.20	19.35	21.00	23.95	21.95	25.70	23.60
20	19.50			17.80	20.10	21.50	19.85	21.25	24.00	22.50	26.30	22.95
21	19.85			17.85	20.10	21.45	20.35	21.25	23.20	23.15	26.40	23.05
22	20.05			18.05	19.40	20.70	20.70		22.65	24.05	26.10	23.80
23	19.90		17.75	18.30	19.60	20.60	20.85		22.85	24.70	25.60	23.80
24	19.95		17.75	18.30	19.95	20.80	21.10		23.15	25.20	25.20	23.70
25	19.90	18.35	16.65	17.90	20.05	21.15	21.05		23.15	25.15	25.65	23.80
26	18.85	18.45	16.00	17.65	20.10	21.10	20.65	20.90	23.15	24.20	25.65	23.80
27	18.95		15.90	18.15	20.10	21.50	20.35	21.60	23.00	23.60	25.25	23.10
28	19.25		15.50	18.65	19.55	21.45	20.90	21.95	22.85	23.70	25.05	23.25
29	19.35		15.85	18.75		20.95	20.95	22.65	22.40	24.30	24.85	23.75
30	19.40		16.20	18.70		20.40	21.10	22.55	22.40	25.05	24.00	23.75
31	19.50		16.25	18.45		20.55		22.35		25.40	24.05	
MAX	22.20			18.75		21.50	21.35		24.00	25.40	26.40	24.90

WTR YR 1987 MEAN 20.95 HIGH 15.15 JAN 4 26.40 AUG 21 LOW

WILLIAMS COUNTY

413108084415300. Local number, WM-12. LOCATION.--Lat 41°31'08", long 84°41'53", Hydrologic Unit 04100003, 1.7 mi east of Blakeslee. Owner: State of Ohio.

AQUIFER. -- Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS. -- Drilled test artesian well, diameter 10 in., depth 115 ft, cased to 115 ft, screened 85 ft

to 115 ft.

INSTRUMENTATION. --Digital recorder -- 60-minute punch.

DATUM. --Elevation of land-surface datum is 830 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 1.50 ft above land-surface datum.

REMARKS. -- Station operated by Ohio Department of Natural Resources, Division of Water.

PERIOD OF RECORD. -- 1974 to September 1982 continuous, periodic October 1983 to December 1984, continuous

thereafter.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 10.56 ft below land-surface datum, Feb. 6-7, 1977; minimum daily low, 3.83 ft below land-surface datum, Mar. 17, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

						MAXIMUM V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.43	8.85										
1 2 3 4	9.11	8.88										
3	8.96	8.85										
A	7.72	8.86										
5	7.14	8.86										
		0.00										
6 7	6.83	8.90										
7	6.66	8.93										
8	6.87	8.90										
8	7.29	9.08										
10	7.54	9.13										
		1107										
11	7.67	9.06										
12	7.78	9.11										
13	7.92	9.22										
14	7.86											
15	7.96											
16	8.03											
17	8.25											
18	8.36											
19	8.40											
20	8.39											
21	8.41											
22	8.47											
23	8.59											
24 25	8.64											
25	8.64											
2.4	2.24											
26	8.59						0.70					
27	8.65						8.79					
28	8.72											
29	8.76											
30	8.85											
31	8.86											
MAX	9.43											
WTR YR	1987 MEAN	8.4	2 H	HIGH	6.66 OCT	7 1	LOW 9.	43 OCT	1			

WYANDOT COUNTY

405009083172600. Local number, WY-1.
LOCATION.--Lat 40°50'09", long 83°17'26", Hydrologic Unit 04100011, State Rt 199, Upper Sandusky.
Owner: Karg Supply Co.
AQUIFER.--Limestone of Silurian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 5 in, depth 90 ft, cased.
INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 850 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.
REMARKS.--Station operated by Ohio Department of Natural Resources, Division of Water.
PERIOD OF RECORD.--September 1951 to current year.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily low, 40.90 ft below land-surface datum, July 12, 15, 17, 21, Aug. 26, 1961; minimum daily low, 25.75 ft below land-surface datum, Apr. 16, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	30.53	29.68	28.92	28.72	28.28	28.50	28.67	28.49	29.08	29.61	30.61	31.06
2	30.50	29.56	28.90	28.40	28.27	28.25	28.66	28.40	29.12	29.46	30.15	31.01
3	30.42	29.42	28.74	28.37	28.45	28.66	28.78	28.43	29.47	29.42	30.35	30.92
4	30.30	29.36	28.72	28.28	28.65	28.86	28.78	28.57	29.48	29.42	30.66	30.95
5	30.15	29.36	28.89	28.43	28.76	28.88	28.46	28.57	29.46	29.33	30.82	30.95
6	30.17	29.36	28.89	28.43	28.76	28.88	28.28	28.50	29.49	29.38	31.16	30.68
7	30.18	29.44	28.84	28.50	28.72	28.81	28.27	28.56	29.50	29.40	31.14	30.51
8	30.21	29.44	28.72	28.60	28.50	28.35	27.97	28.72	29.50	29.53	30.92	30.81
9	30.10	29.28	28.71	28.61	28.67	28.38	28.08	28.98	29.51	29.64	30.50	31.08
10	29.99	29.45	28.70	28.61	28.68	28.77	27.99	29.02	29.14	29.68	30.77	31.09
11	29.94	29.48	28.70	28.38	28.68	28.85	27.96	29.05	28.86	29.70	30.97	31.15
12	29.77	29.68	28.75	28.53	28.62	28.83	27.58	29.05	28.95	29.70	30.99	31.16
13	29.66	29.69	28.82	28.59	28.63	28.80	27.70	29.32	29.00	29.28	31.12	30.70
14	29.65	29.77	28.81	28.60	28.64	28.80	27.81	29.47	29.17	29.54	31.38	30.78
15	29.82	29.72	28.75	28.62	28.66	28.65	27.91	29.47	29.33	29.54	31.41	30.81
16	29.78	29.46	28.74	28.76	28.68	28.83	27.93	29.26	29.46	29.59	30.76	30.76
17	29.68	29.53	28.64	28.78	28.68	28.84	27.87	29.35	29.56	29.65	31.02	30.69
18	29.69	29.53	28.60	28.71	28.69	28.85	28.03	29.39	29.57	29.65	31.28	30.80
19	29.69	29.56	28.65	28.57	28.82	28.74	28.10	29.32	29.55	29.63	31.60	30.80
20	29.86	29.56	28.67	28.64	28.85	28.67	28.01	28.32	29.50	29.59	31.69	30.55
21	29.85	29.49	28.66	28.69	28.85	28.68	28.46	29.26	29.50	29.70	31.70	30.76
22	30.05	29.49	28.72	28.69	28.67	28.66	28.55	29.33	29.42	30.06	31.62	30.80
23	30.05	29.31	28.75	28.58	28.54	28.51	28.56	29.02	29.49	30.24	30.87	30.79
24	30.08	29.52	28.75	28.68	28.74	28.51	28.73	29.04	29.59	30.44	31.29	30.79
25	30.08	29.52	28.62	28.70	28.87	28.65	28.78	28.95	29.62	30.47	31.44	30.66
26	29.68	29.29	28.59	28.69	28.92	28.65	28.78	29.01	29.66	30.07	31.50	30.62
27	29.72	29.19	28.69	28.64	28.90	28.69	28.37	29.24	29.67	30.51	31.40	30.48
28	29.72	29.04	28.69	28.65	28.78	28.68	28.41	29.46	29.46	30.51	31.14	30.34
29	29.84	28.93	28.73	28.61		28.55	28.43	29.56	29.34	30.62	30.89	30.59
30	29.81	28.74	28.72	28.42		28.35	28.53	29.59	29.60	30.71	30.60	30.59
31	29.70		28.73	28.28		28.60		29.56		30.71	30.99	
MAX	30.53	29.77	28.92	28.78	28.92	28.88	28.78	29.59	29.67	30.71	31.70	31.16

WTR YR 1987 MEAN 29.37 HIGH 27.58 APR 12 LOW 31.70 AUG 21 The following 10 tables list the results of bacteriological and chemical, physical analyses collected at 10 sites in the Scioto and Olentangy Rivers in Franklin and Delaware Counties, Ohio.

All data was collected as part of a study to determine the bacteriological quality at selected sites on the Scioto and Olentangy Rivers in the greater Columbus metropolitan area, Ohio.

WATER-QUALITY DATA

03221000 - SCIOTO R BL O'SHAUGHNESSY DAM NR DUBLIN OH

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	COLI- FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	WATER WHOLE TOTAL UREASE (COLS./ 100 ML)
JUL 1987							
28	0730	514	4.2	25.0		3000	1800
AUG							
06	0730					190	120
12	0730					17000	15000
17	0730					>1600	>1600
19	0730					1900	1800
24	0730					35000	30000
27	0730	560	1.9	22.5		K500	K300
SEP							
03	0730					K120	K120
14	0730	660	5.6	21.5	8.03	800	660
OCT							
08	0730	759	7.6	12.5	7.60	190	180

400048083053400 - SCIOTO R BL GRIGGS RE AT COLUMBUS OH

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	WATER WHOLE TOTAL UREASE (COLS./ 100 ML)
JUL 1987							
28	0800	470	5.8	27.5		51	27
AUG							
06	0800					200	350
12	0800					98	60
17	0800					K64	64
19	0800					K12	22
24	0800					25	31
27	0800	470	5.8	27.5		74	120
SEP							
03	0800					34	56
14	0800	569	7.9	22.5	8.28	270	400
OCT							
08	0800	632	8.7	14.0	8.10	31	36

03222010 - SCIOTO R AT DUBLIN ROAD WTP AT COLUMBUS OH

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	COLI- FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	E. COLI WATER WHOLE TOTAL UREASE (COLS./ 100 ML)
JUL 1987							
29	0900	421	6.1	26.5		120	34
AUG							
06	0900					>320	
12	0900					K52	K24
17	0900					88	46
19	0900					K32	K18
24	0900					K16	K12
27	0900	530	7.4	23.0		K1200	290
SEP							
03	0900					49	53
14	0900	572	7.4	22.0	7.87	98	110
OCT							
08	0900	615	8.0	11.5	8.10	K24	K18

WATER-QUALITY DATA--Continued

395731083001400 - SCIOTO R AT TOWN ST AT COLUMBUS OH

		SPE-				FORM,	E. COLI WATER
		CIFIC CON-	OXYGEN,	TEMPER-	PH	FECAL,	WHOLE
		DUCT-	DIS-	ATURE	(STAND-	UM-MF	UREASE
DATE	TIME	ANCE	SOLVED	WATER	ARD	(COLS./	(COLS./
		(US/CM)	(MG/L)	(DEG C)	UNITS)	100 ML)	100 ML)
JUL 1987							
29	1100	492	11.9	27.0		3400	970
AUG							
06	1230					10000	
12	1230					K1500	640
17	1230					480	580
19	1230					480	210
24	1230					140	94
27	1230	670		24.5		8600	260
SEP							
03	1230					580	440
14	1230	602	7.9	23.5	7.96	K110	K110
OCT							
08	1230	781	8.1	13.5	7.80	>1200	>1600

395623082595800 - SCIOTO R AT GREENLAWN AVE AT COLUMBUS OH

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	COLI- FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	WATER WHOLE TOTAL UREASE (COLS./ 100 ML)
JUL 1987							
29	1230	450	8.2	27.0		>100000	60000
AUG							
06	1300					5400	
12	1300					1500	980
17	1300					K1500	K200
19	1300					K200	150
24	1300					80	56
27	1300	620		24.5		2400	5000
SEP							
03	1300					780	900
14	1300	649	12.7	24.0	8.52	400	390
OCT							
08	1300	732	10.5	13.5	8.40	>12000	>16000

03227500 - SCIOTO R AT COLUMBUS OH

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	COLI- FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	WATER WHOLE TOTAL UREASE (COLS. / 100 ML)
JUL 1987							
29	1400	502	7.1	28.5		24000	6700
AUG				7377			
06	1400					>80000	28000
12	1400					K2200	K2600
17	1400					2300	2100
19	1400					430	650
24	1400					100	88
27	1400	605	6.5	24.0		>8000	>8000
SEP							
03	1400					7000	5500
14	1400	635	7.4	24.0	7.85	4500	4500
OCT							
08	1400	677	7.1	15.5	7.90	>120000	>160000

03226800 - OLENTANGY R NR WORTHINGTON OH

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	COLI- FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	WATER WHOLE TOTAL UREASE (COLS./ 100 ML)
JUL 1987							
30	1100	688	5.8	25.0		270	29
AUG							
06	1100					140	260
12	1100					140	55
17	1100					320	280
19	1100					78	47
24	1100					84	80
27	1100	535	6.3	21.5		170	260
SEP							
03	1100					82	100
14	1100	713	6.9	20.0	7.87	99	100
OCT							
08	1100	708	8.8	9.5	8.00	130	110

03226885 - OLENTANGY R AT HENDERSON RD AT COLUMBUS OH

SPE- CIFIC CON- CON- CON- CON- CON- CON- CON- CON	RM, WA CAL, WH 45 TO -MF URE LS./ (CO	COLI TER IOLE TAL CASE OLS./
JUL 1987		
30 1030 716 7.0 25.0	640	500
AUG		
06 1030	460	820
12 1030 1	K110	120
17 1030	160	140
19 1030	100	120
24 1030	120	92
27 1030 548 7.0 21.0	680	1800
SEP		
03 1030	220	210
14 1030 567 6.9 20.0 7.77	880	740
OCT		
08 1030 629 8.9 10.0 8.00 K	1200 K	1000

400015083012100 - OLENTANGY R AT WOODY HAYES DR AT COLUMBUS OH

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	COLI- FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	E. COLI WATER WHOLE TOTAL UREASE (COLS./ 100 ML)
JUL 1987							
30	1000	686	7.8	26.5		K7200	K900
AUG							
06	1000					5200	5400
12	1000					K9700	5800
17	1000					>24000	>20000
19	1000					7500	5000
24	1000					5600	5200
27	1000	605	7.2	22.0		2400	5200
SEP							
03	1000					520	320
14	1000	397	5.5	21.5	7.55	790	720
OCT							
08	1000	673	8.5	11.5	7.90	1200	800

395829083011200 - OLENTANGY R AT GOODALE ST AT COLUMBUS OH

TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	TEMPER- ATURE WATER (DEG C)	PH (STAND- ARD UNITS)	COLI- FORM, FECAL, 0.45 UM-MF (COLS./ 100 ML)	WATER WHOLE TOTAL UREASE (COLS./ 100 ML)	
0930	707	3.3	25.5		>130000	>12000	
0930					>80000	>16000	
0930					130000	62000	
0930					>140000	>130000	
0930					88000	50000	
0930					140000	98000	
0930	639	6.5	23.5		6400	6400	
0930					2800	3600	
0930	713	5.4	22.0	7.65	K300	K200	
0930	673	8.5	11.5	7.90	1200	1100	
	0930 0930 0930 0930 0930 0930 0930	CIFIC CON- DUCT- ANCE (US/CM) 0930 707 0930 0930 0930 0930 639 0930 639	CIFIC CON- OXYGEN, DUCT- DIS- ANCE SOLVED (US/CM) (MG/L) 0930 707 3.3 0930 0930 0930 0930 0930 639 6.5 0930 0930 713 5.4	CIFIC CON- OXYGEN, TEMPER-DUCT- DIS- ATURE WATER (US/CM) (MG/L) (DEG C) 0930 707 3.3 25.5 0930	CIFIC CON- OXYGEN, TEMPER- PH DUCT- DIS- ATURE (STAND- ANCE SOLVED WATER ARD (US/CM) (MG/L) (DEG C) UNITS) 0930 707 3.3 25.5 0930	SPE-CIFIC CON-OXYGEN, TEMPER-PH O.45 DUCT-DIS-ATURE (STAND-UM-MF (COLS./US/CM) (MG/L) (DEG C) UNITS) 100 ML) 0930 707 3.3 25.5>130000 0930 130000 0930 130000 0930 130000 0930 88000 0930 88000 0930 64000 0930 6400 0930 6400 0930 6400 0930 6400	SPE- FORM, WATER FECAL, WHOLE CON- OXYGEN, TEMPER- PH O.45 TOTAL TOTAL OXYGEN TEMPER- PH O.45 TOTAL OXYGEN OXYGEN

SURFACE-WATER AND GROUND-WATER QUALITY IN ACTIVE COAL MINING AREAS OF OHIO

The following tables list the results of chemical analysis of samples collected from 20 drainage basins in eastern Ohio. All basins are in Ohio's coal region. The first table lists surface-water quality data and the second lists ground-water quality data and ground-water level measurements where available.

An asterisk denotes an active gaging station. Refer to report OH-87-1 for detailed flow records.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ACIDITY (MG/L AS CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
03108980		M F L BEA	VER C NR	SALEM OH	(LAT 40 54	20N LON	G 080 48	17W)
OCT 1986 21	0945	7.7	1210	7.73	8.0		158	160
03108990	E B	M F L BEA	VER C AT	LEETONIA	OH (LAT 40	52 16N	LONG 080	45 54W)
OCT 1986 21	0815	2.0	790	8.14	7.5		257	140
03109100	1	M F L BEAV	ER C NR I	ROGERS OH	(LAT 40 43	22N LON	G 080 38	03W)
OCT 1986 21	1645	27	765	8.81	12.0		147	150
JUL 1987 21	0945	29	730	8.32	25.5		139	160
03109200	W F	L BEAVER	C AT WEST	r POINT OF	H (LAT 40 4	2 38N LO	NG 080 41	49W)
OCT 1986 22	0815	28	450	8.18	9.0		169	97
03109395		BULL C A	T NEGLEY	OH (LAT 4	0 47 15N I	ONG 080	32 42W)	
OCT 1986 22	1015	11	670	8.30	9.0		170	110
03109400	N	F L BEAVE	R C NR NE	EGLEY OH (LAT 40 46	30N LONG	080 32 3	6W)
OCT 1986 22	1130	29	930	8.44	9.5		169	250
03109500*	L BE	EAVER C NR	EAST LIV	ERPOOL OH	(LAT 40 4	0 33N LO	NG 080 32	27W)
OCT 1986 22	1330	93	700	8.83	12.5		130	160
JUL 1987 21	1145	78	770	8.30	27.0		121	190
03110000*	YE	LLOW C NR	HAMMONDS	VILLE OH	(LAT 40 32	16N LONG	9 080 43	31W)
OCT 1986 22	1545	14	570	8.42	13.5		101	150
JUL 1987 21	1345	17	570	8.36	29.5		83	130
03111500*					т 40 11 36	N LONG OF		
OCT 1986		MONT O HI	D12201111	(2	10 11 00	20110 01		,
20	1215	31	2400	8.32	8.5		255	1100
JUL 1987 22	0845	27	2350	8.05	22.5		167	1100
03111548	WH	HEELING C	BL BLAINE	OH (LAT	40 04 01N	LONG 080	48 31W)	
OCT 1986 20	1245	22	2250	8.24	7.5	222	220	1100
JUL 1987 20	1630	28		8.20	28.0		173	1100
03113550	мс	MAHON C A	r BELLATR	E OH (T.AT	40 00 39N	LONG 080) 45 45W)	
OCT 1986				(,	
20 JUL 1987	1430	15	980	8.31	10.5		146	330
20	1500	7.2	1350	8.17	27.0	4	146	480

SURFACE-WATER-QUALITY DATA--Continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
03108980	м і	L BEAVER	C NR SA	LEM OH (L	AT 40 54	20N LONG	080 48 17	7)
OCT 1986								
21	220	20	2700	2700	50	780	20	760
03108990	EBMI	L BEAVER	C AT LE	ETONIA OH	(LAT 40	52 16N LO	NG 080 45	54W)
OCT 1986 21	200	10	1100	1100	40	300	90	210
03109100	· M F	L BEAVER	C NR ROG	ERS OH (L	AT 40 43	22N LONG	080 38 031	1)
OCT 1986				1.1	11	22		3.2
21 JUL 1987	130	20	560	530	30	80	40	40
21	280	40	210		<10	80	40	40
03109200	WFL	BEAVER C	AT WEST	POINT OH	(LAT 40 4	2 38N LON	G 080 41 4	9W)
OCT 1986	140	20	400	450	20	0.0	20	60
22	140	20	480	450	30	90	30	60
03109395	в	JLL C AT N	EGLEY OH	(LAT 40	47 15N LO	NG 080 32	42W)	
OCT 1986								
22	20	<10	190	140	50	70	0	70
03109400	N F I	BEAVER C	NR NEGL	EY OH (LA	r 40 46 3	ON LONG 0	80 32 36W)	
OCT 1986 22	50	20	290	250	40	60	10	50
03109500*	L BEAVE	ER C NR EAS	ST LIVER	POOL OH (LAT 40 40	33N LONG	080 32 27	W)
OCT 1986	/2/2	6.0		100	22	2.2		
22 JUL 1987	90	10	340	290	50	50	20	30
21	190	40	260	230	30	60	30	30
03110000*	YELLO	W C NR HAM	MONDSVI	LLE OH (LA	AT 40 32	16N LONG	080 43 31W	')
OCT 1986		20	210	200	20	20	10	10
22 JUL 1987	80	30	310	290		-		
21	220	60	210	190	20	30	10	20
03111500*	SHO	ORT C NR D	ILLONVAL	E OH (LAT	40 11 361	N LONG 08	0 44 04W)	
OCT 1986	220	110	700	600	20	0.0	10	00
20 JUL 1987	320	110	700	680	20	90	10	80
22	420	190	470	440	30	50	10	40
03111548	WHE	ELING C B	L BLAINE	OH (LAT	10 04 01N	LONG 080	48 31W)	
OCT 1986	420	100	920	900	20	190	0	190
20 JUL 1987								
20	870	480	1300	1300	20	70	0	70
03113550	MCM	IAHON C AT	BELLAIR	E OH (LAT	40 00 391	LONG 08	0 45 45W)	
OCT 1986	210	140	490	470	20	0.0	0	90
20 JUL 1987				470	20	90	0	
20	440	140	460		<10	40	0	40

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ACIDITY (MG/L AS CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
03114000*	C	APTINA C A	T ARMSTRO	NGS MILLS	OH (LAT	39 54 31N	LONG 080	55 27W)
OCT 1986								
21 JUL 1987	0845	13	605	8.39	8.5		141	120
20	1145	5.7	510	8.35	27.5		151	77
03114250	St	JNFISH C A	T CAMERON	OH (LAT	39 46 00N	LONG 080	56 09W)	
OCT 1986 22	0900	4.3	435	8.31	10.5		125	52
JUL 1987						-		
20	1320	3.7	405	8.37	29.0		132	40
03116950	NI	EWMAN C NR	MASSILLO	N OH (LAT	40 49 22	N LONG 08	1 33 06W)	
OCT 1986 22	1045	1.8	460	8.24	13.0		209	110
JUL 1987 22	1245	3.8	740	8.31	28.5		202	240
22	1245	3.0	740	0.31	20.3		202	240
03117500*	\$	SANDY C AT	WAYNESBU	RG OH (LA	T 40 40 2	IN LONG 0	81 15 36W	1)
OCT 1986 22	1245	68	340	8.03	13.5		116	120
JUL 1987 21	1430	71	640	8.34	24.0		129	240
21	1430	71	640	8.34	24.0		129	240
03123000 st	JGAR C	AB BEACH C	ITY DAM A	T BEACH C	ITY OH (I	AT 40 39	24N LONG	081 34 37W)
OCT 1986 22	0900	19	720	7.80	18.5		192	74
JUL 1987								
22	0915	29	600	7.98	25.0		173	140
03127500*	ST	ILLWATER C	AT UHRIC	HSVILLE C	OH (LAT 40	23 10N L	ONG 081 2	0 50W)
OCT 1986 22	1630	88	890	7.69	12.5		95	340
JUL 1987						-		
21	1015	69	865	7.95	25.5		123	300
03129100	WI	HITE EYES	C NR FRES	NO OH (LA	т 40 18 1	7N LONG 0	81 45 Olw	1)
OCT 1986 23	1100	14	420	7.67	12.5		89	66
JUL 1987 20		7.4					98	120
20	1045	7.4	400		20.0		30	120
03140000*	M	ILL C NR C	OSHOCTON	OH (LAT 4	0 21 46N	LONG 081	51 45W)	
OCT 1986 21	1400	5.3	380	7.81	10.0		93	54
JUL 1987 20		6.3	350	7.86	26.0		91	87
20	1313	0.3	330	7.00	20.0		91	07
03148150	Mo	OXAHALA C	NR CROOKS	VILLE OH	(LAT 39 4	3 52N LON	G 082 06	04W)
OCT 1986 21	1400	6.4	2600	3.50	11.0	197		1600
			2000	3.30	22.0			
03148400	М	OXAHALA C	AT ROBERT	S OH (LAT	39 51 17	N LONG 08	2 03 23W)	
OCT 1986 22	0900	12	2600	3.44	11.0	148		1400
JUL 1987								
20	1500	15	1950	3.22	25.5	206	0	450

SURFACE-WATER-QUALITY DATA--Continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
03114000*	CAI	PTINA C AT	ARMSTRO	NGS MILLS	OH (LAT 3	39 54 31N	LONG 080	55 27W)
OCT 1986 21	120	20	270	240	30	20	10	10
JUL 1987								
20	370	40	470		<10	50	30	20
03114250	SUI	NFISH C AT	CAMERON	OH (LAT	39 46 00N	LONG 080	56 09W)	
OCT 1986			111					
22 JUL 1987	70	30	150	120	30	20	0	20
20	240	30	310		<10	50	30	20
03116950	NEV	MAN C NR I	MASSILLO	OH (LAT	40 49 22N	LONG 081	33 06W)	
OCT 1986 22	200	20	940	910	30	180	30	150
JUL 1987	200	20	940	910	30	180	30	130
22	140	<10	490	430	60	210	70	140
03117500*	SAN	NDY C AT W	AYNESBURG	G OH (LAT	40 40 21N	LONG 081	. 15 36W)	
OCT 1986								
22 JUL 1987	70	20	520	500	20	410	10	400
21	110	20	410	350	60	270	40	230
03123000 s	UGAR C AE	BEACH CI	TY DAM AT	BEACH C	ITY OH (LA	т 40 39 2	4N LONG	081 34 37W)
OCT 1986								
22	870	180	1700	1300	380	220	60	160
JUL 1987 22	1500	20	2400	2400	30	270	120	150
03127500*	ST	LLWATER C	AT UHRIC	CHSVILLE (OH (LAT 40	23 10N I	ONG 081 2	20 50W)
OCT 1986 22	300	40	840	820	20	450	30	420
JUL 1987	300	40	040	020	20	450	30	420
21	440	50	700	670	30	570	120	450
03129100	мні	TE EYES C	NR FRESN	OO OH (LA	r 40 18 17	N LONG 08	1 45 01W)	
OCT 1986	240	40	1600	1500	70	200	0	400
23 JUL 1987	240	40	1600	1500	70	390	U	400
20	200	50	1300	1300	40	280	30	250
03140000*	м	LL C NR C	OSHOCTON	OH (LAT	10 21 46N	LONG 081	51 45W)	
OCT 1986				12.22.2	134			
21 JUL 1987	80	<10	1600	1500	60	270	0	280
20	120	<10	940	880	60	160	30	130
03148150	мох	KAHALA C NI	R CROOKSV	TILLE OH	(LAT 39 43	52N LONG	082 06 0)4W)
OCT 1986 21	7500	6600	24000	4000	20000	25000	2000	23000
03148400	МОМ	AHALA C A	r ROBERTS	OH (LAT	39 51 17N	LONG 082	03 23W)	
OCT 1986								
22	8600	8200	11000	0	11000	14000	0	16000
JUL 1987	7000	0200	1100	200		2200	200	2100
20	7900	8200	1100	280	820	3300	200	3100

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ACIDITY (MG/L AS CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
03149500	Si	ALT C NR CH	MANDLERSV	VILLE OH (LAT 39 54	31N LONG	081 51 3	8W)
OCT 1986				2 (2)				-
21 JUL 1987	0900	5.7	480	7.40	7.5		110	69
21	0930	5.1	505	8.04	24.5		115	590
03150250	М	EIGS C NR E	BEVERLY C	OH (LAT 39	36 00N L	ONG 081 4	2 42W)	
OCT 1986			2400				160	620
21 JUL 1987	1115	7.4	1400	7.70	9.0		163	630
22	0900	9.1	1250	8.10	25.5		131	550
03156700	1	RUSH C NR S	SUGAR GRO	OVE OH (LA	т 39 38 1	8N LONG 0	82 30 42W)
OCT 1986	1120	24		0.00			101	100
21 JUL 1987	1130	24	515	8.20	7.5		101	120
23	1030	22	745	7.85	28.5		93	210
03157000*	CI	LEAR C NR F	CKBRIDG	GE OH (LAT	39 35 18	N LONG 08	2 34 43W)	
OCT 1986								
21 JUL 1987	1415	27	430	8.85	8.0		178	39
22	1700	17	370	8.34	26.0		157	640
03158200	MO	ONDAY C AT	DOANVILI	LE OH (LAT	39 26 07	N LONG 08	2 11 30W)	
OCT 1986 21	1625	5.6	1150	3.41	10.0	69	0	480
JUL 1987								
22	1500	7.1	1050	3.58	27.0	73	0	970
03160050	LI	EADING C NE	R MIDDLEP	PORT OH (L	AT 39 00	31N LONG	082 05 07	W)
JUL 1987 21	0845	0.61	1200	7.83	23.5		118	280
03160105	CI	AMPAIGN C	R GALLIP	POLIS OH (LAT 38 53	51N LONG	082 11 3	lW)
OCT 1986 23	1600	0.22	855	6.95	12.5		23	410
JUL 1987								
20	1600	0.04	700	7.70	29.0		78	160
03201988	L	RACCOON C	NR VINTO	ON OH (LAT	38 57 11	N LONG 08	2 21 56W)	
OCT 1986 22	1515	6.6	790	4.75	8.5	31	0	340
JUL 1987								
22	0945	8.8	730	4.38	24.5	28	0	320
38271508224	12400	INDIAN GUY	AN C NR	BRADRICK	OH (LAT 3	8 27 15N	LONG 082	24 24W)
OCT 1986 23	1100	2.6	615	7.76	10.5		85	200
JUL 1987	1100	2.0	613	7.70				200
20	1415	2.6	550	7.80	24.0		86	170
38300508228	30600	SYMMES C	NR GETAW	AY OH (LA	T 38 30 0	5N LONG 0	82 28 06W)
OCT 1986	1200	12	405	7 60	70.0		75	100
23 JUL 1987	1300	13	405	7.68	10.0		75	
20	1245	14	400	7.65	23.0		132	65

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
03149500	SA	LT C NR CH	ANDLERSV:	ILLE OH (I	AT 39 54	31N LONG	081 51 38	W)
OCT 1986 21 JUL 1987	140	20	980	850	130	260	0	260
21	4700	60	310	270	40	7100	300	6800
03150250	ME	IGS C NR E	SEVERLY OF	H (LAT 39	36 00N LC	NG 081 42	42W)	
OCT 1986 21	270	<10	520	500	20	140	60	80
JUL 1987 22	590	10	790	760	30	100	70	30
03156700	RU:	SH C NR SU	IGAR GROVI	E OH (LAT	39 38 181	1 LONG 082	30 42W)	
OCT 1986				011 (2011	05 00 10.	. 20110 002		
21 JUL 1987	340	20	1100	1100	30	1700	0	1700
23	610	50	1400	1300	60	670	100	570
03157000*	CLI	EAR C NR F	OCKBRIDGE	E OH (LAT	39 35 181	LONG 082	34 43W)	
OCT 1986								
21 JUL 1987	40	20	280	230	50	40	0	40
22	490	470	41000	5000	36000	3300	200	3100
03158200	М	ONDAY C AT	DOANVIL	LE OH (LAT	39 26 07	'N LONG 08	2 11 30W)	
OCT 1986 21	7800	7600	2500	300	2200	3900	100	3800
JUL 1987 22	17000	17000	8700	100	8600	10000	0	12000
03160050	LE	ADING C NE	MIDDLEPO	ORT OH (LA	т 39 00 3	IN LONG 0	82 05 07W	1)
JUL 1987	0.61	100		0.26				
21	360	30	370	340	30	810	140	670
03160105	CAI	MPAIGN C N	R GALLIPO	OLIS OH (I	AT 38 53	51N LONG	082 11 31	.W)
OCT 1986 23	100	20	610	480	130	7100	0	7300
JUL 1987 20	460	50	640	550	90	2400	0	2400
20	400	30	040	330	30	2400	·	2400
03201988	L	RACCOON C	NR VINTOR	OH (LAT	38 57 11N	LONG 082	21 56W)	
OCT 1986 22	4100	4100	430	80	350	4100	0	4300
JUL 1987					90	2800	200	
22	4000	4200	400	310	90	2800	200	2600
3827150822	42400	INDIAN GUY	AN C NR I	BRADRICK C	H (LAT 38	27 15N L	ONG 082 2	4 24W)
OCT 1986 23	160	40	790	570	220	560	0	580
JUL 1987								
20	610	30	820	790	30	400	0	410
3830050822	80600	SYMMES C	NR GETAW	AY OH (LA	38 30 05	N LONG 08	2 28 06W)	
OCT 1986 23	140	20	1200	1200	100	450	0	450
JUL 1987			1300	1200	100	450	0	450
20	340	30	1300	1300	50	740	0	760

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ACIDITY (MG/L	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
3858260822	01800	RACCOON C	AT VINT	ON OH (LA	T 38 58 26	N LONG 08	2 20 18W)
OCT 1986 22 JUL 1987 22	1345 0830	11 11	450 510	7.13 6.94	9.0 25.0		33 17	140 190
3909410822	12200	ELK F NE	RADCLIF	F OH (LAT	39 09 41N	LONG 082	21 22W)	
OCT 1986 22	1200	3.2	500	7.35	8.5		48	130
JUL 1987 22	1145	0.93	400	7.15	24.0		43	120
3923420820	72000	SUNDAY C A	T CHAUNC	EY OH (LA	T 39 23 42	N LONG 08	2 07 20W)
OCT 1986 22	0950	6.9	2000	2.70	8.0	260		1000
JUL 1987 22	1200	11	1650	3.31	25.0	137	0	75
77/35		7.7				77	- 8	
3943400820	41200	OGG C NR I	EAVERTOW	N OH (LAT	39 43 40N	LONG 082	04 12W)	
OCT 1986 21	1300	0.13	4500	4.67	15.5	465	8	2800
3945190820	51600	BLACK F NR	CROOKSVI	LLE OH (L	AT 39 45 1	9N LONG 0	82 05 16	₩)
OCT 1986 21	1500	1.2	4600	4.89	12.0	177	2	2700
3946450810	04100	PINEY F NR	WOODSFIE	LD OH (LA	T 39 46 45	N LONG 08	1 00 41W)
OCT 1986 22	1015	0.58	350	8.43	8.5		119	46
3947120810	70100	SUNFISH C	R WOODSF	IELD OH (LAT 39 47	12N LONG	081 07 0	lw)
OCT 1986 22	1150	0.28	495	8.78	10.0		105	51
3948270810	65300	BAKER F NR	WOODSFIE	LD OH (LA	T 39 48 27	N LONG 08	1 06 53W)
OCT 1986 22	1115	0.27	350	8.12	9.0		85	38
3949190820	82000	BUTCHERKNIE	E C NR F	ULTONHAM	OH (LAT 39	49 19N L	ONG 082	08 20W)
OCT 1986 20	1415	0.39	1600	3.77	9.0	142		960
3950480820	72000 I	BUCKEYE F NE	R EAST FU	LTONHAM O	H (LAT 39	50 48N LO	NG 082 0	7 20W)
OCT 1986 22	1200	1.8	1600	6.60	12.0		13	900
3951280821	21600	TURKEY RN N	R SOMERS	ET OH (LA	T 39 51 28	N LONG 08	2 12 16W	
OCT 1986 20	1315	0.39	1000	7.65	8.5		56	390
3952100821	65600	PAINTER C	NR SOMER	SET OH (L	AT 39 52 1	ON LONG O	82 16 56	W)
OCT 1986 20	1230	0.57	520	8.42	8.0		152	59

SURFACE-WATER-QUALITY DATA--Continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	RECOV-	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
3858260822		RACCOON C						AS MN)
OCT 1986 22	70	40	870	500	370	360	0	370
JUL 1987 22	270	<10	520	480	40	700	20	680
3909410822	12200	ELK F NR F	RADCLIFF	OH (LAT 39	9 09 41N	LONG 082	21 22W)	
OCT 1986 22	110	90	800	0	950	370	0	400
JUL 1987 22	250	20	920	790	130	700	0	720
22	230	20	320	790	130	700	0	720
3923420820	72000	SUNDAY C A	T CHAUNC	EY OH (LA	г 39 23 4	2N LONG 0	82 07 20W)
OCT 1986	25.00	2500						
22 JUL 1987	3500	3500	54000	0	54000	4400	400	4000
22	240	30	570	500	70	40	0	40
3943400820	41200	OGG C NR D	EAVERTOW	N OH (LAT	39 43 40	N LONG 08	2 04 12W)	
OCT 1986 21	26000	24000	110000	0	120000	9300	0	9500
22	20000	24000	110000	•	120000	3300	Ů	3300
3945190820	51600	BLACK F N	R CROOKS	VILLE OH	(LAT 39 4	5 19N LON	G 082 05	16W)
OCT 1986 21	4200	3600	64000	5000	59000	5900	200	5700
39464508100	04100	PINEY F NR	WOODSFIE	LD OH (LAT	39 46 4	5n Long 0	81 00 41W)
OCT 1986 22	10	20	60	40	20	<10	49	10
39471208107	70100	SUNFISH C N	R WOODSF	ELD OH (I	AT 39 47	12N LONG	081 07 03	LW)
OCT 1986 22	40	30	150	100	50	40	0	40
39482708106	5300 B	AKER F NR W	OODSFIELI	OH (LAT	39 48 27	N LONG 08	1 06 53W)	
ост 1986								
22	50	20	150	110	40	20	0	20
39491908208	32000 В	UTCHERKNIFE	C NR FUI	TONHAM OH	(LAT 39	49 19N L	ONG 082 08	3 20W)
OCT 1986 20	12000	11000	3200	400	2800	16000	0	18000
39504808207	2000 BU	CKEYE F NR	EAST FULT	помнам он	(LAT 39	50 48N LO	NG 082 07	20W)
OCT 1986 22	1200	630	600	100	500	14000	0	17000
39512808212	1600	TURKEY RN	NR SOMERS	SET OH (LA	т 39 51	28N LONG	082 12 16	I)
OCT 1986 20	110	20	440	380	60	2300	0	2300
39521008216	5600	PAINTER C	NR SOMERS	SET OH (LA	т 39 52	10N LONG	082 16 56W	7)
OCT 1986 20	70	10	400	320	80	90	10	80

DATE TI	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNI TS)	TEMPER- ATURE WATER (DEG C)	ACIDITY (MG/L AS CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
39521408205470	0 JONATHAN C	AT WHITE	COTTAGE	OH (LAT 39	52 14N	LONG 082	05 47W)
	9.5	1050	7.46	12.5		120	310
JUL 1987 20 18	5.8	1030	8.46	28.5		107	350
39521708205530	O KENT DN AT	WHITE CO	TTAGE OH	(TAT 39 52	17N LON	G 082 05	53W)
OCT 1986				(2.11 33 32	2711 2011		55,
	0.13	1100	7.86	12.0		151	82
39533308054130	0 PEA VINE C	NR ARMST	RONGS MII	LS OH (LAT	39 53 3	3N LONG	080 54 13W)
OCT 1986 21 09	0.41	475	8.33	7.5		186	59
2052220000111				. / 20 -	2 250 10		1100
39533708201110 OCT 1986	O MOXAHALA	C NR DARL	INGTON OF	H (LAT 39 5	3 3/N LO	NG 082 0.	r IIW)
22 13	300 25	1600	6.30	12.0	9.0	25	800
JUL 1987 20 13	30 26	1300	5.43	26.5	14	6	170
39541708132300	00 WILLS C A	T PLEASAN	T CITY OF	H (LAT 39 5	4 17N LO	NG 081 3	2 30W)
OCT 1986		2050	0 01	11 5		201	020
JUL 1987	115 11	2050	8.21	11.5		201	930
21 17	730 2.9	1900	8.28	29.0		189	900
39541908104480	0 S F CAPTIN	A C NR SO	MERTON OF	H (LAT 39 5	4 19N LO	NG 081 0	4 48W)
OCT 1986 21 12	230 2.0	485	8.48	9.5		134	37
39541908218440	00 VALLEY RN	NR GLENFO	RD OH (LA	AT 39 54 19	N LONG 0	82 18 44	N)
OCT 1986 20 11	100 2.2	540	9.20	8.0		425	60
39543208219400	00 JONATHAN	C NR GLEN	FORD OH	(LAT 39 54	32N LONG	082 19	10W)
OCT 1986	200 2.1	540	7.10	0.0		240	42
20 10	000 2.1	540	7.10	8.0		240	42
39544408102500	00 N F CAPTI	NA C SOME	RTON OH	(LAT 39 54	44N LONG	081 02 5	50W)
OCT 1986 21 11	145 4.5	550	8.75	8.5		165	79
39550208057570	00 BEND F NR	ARMSTRONG	S MILLS	ОН (LAT 39	55 02N L	ONG 080 !	57 57W)
OCT 1986 21 10	045 2.4	455	8.50	7.0		140	73
40001308053300	00 WILLIAMS C	AT GLENC	O OH (LA	r 40 00 13N	LONG 08	0 53 30W	
OCT 1986 21 10	500 1.2	485	8.47	13.5		153	71
40002308053200	00 MCMAHON C	AT GLENC	OE OH (L	AT 40 00 23	N LONG 0	80 53 201	√)
OCT 1986 21 10	545 9.6	680	8.63	10.5		134	160

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
3952140820	54700 J	ONATHAN C	AT WHITE	COTTAGE	OH (LAT	39 52 14N	LONG 082	05 47W)
OCT 1986 22	280	80	420	390	30	2500	0	2600
JUL 1987 20	170	60	2400		<10	590	0	590
3952170820	55300 F	KENT RN AT	WHITE CO	TTAGE OH	(LAT 39 5	52 17N LON	IG 082 05	53W)
OCT 1986								
22	190	20	550	500	50	160	20	140
3953330805	41300 PF	EA VINE C	NR ARMSTE	RONGS MILI	S OH (LAT	r 39 53 33	N LONG 08	30 54 13W)
OCT 1986 21	40	10	120	100	20	20	10	10
3953370820	11100 мс	XAHALA C	NR DARLIN	IGTON OH	(LAT 39 53	3 37N LONG	082 01 3	lw)
OCT 1986 22	360	60	1100	250	850	6400	0	6600
JUL 1987 20	190	20	610	580	30	210	0	210
3954170813	23000 V	VILLS C AT	PLEASANT	CITY OH	(LAT 39 5	54 17N LON	G 081 32	30W)
OCT 1986 22	520	30	610	570	40	170	90	80
JUL 1987 21	1000	20	1400	1400	1400	370	60	310
3954190810	44800 5	F CAPTINA	A C NR SC	MERTON OF	I (LAT 39	54 19N LC	NG 081 04	48W)
OCT 1986 21	170	30	380	350	30	30	20	10
3954190821	84400 \	ALLEY RN N	NR GLENFO	RD OH (LA	ат 39 54 1	19N LONG 0	82 18 44W	7)
OCT 1986 20	270	20	1000	920	80	190	0	190
3954320821	94000 J	JONATHAN C	NR GLENF	ORD OH (I	AT 39 54	32N LONG	082 19 40	W)
OCT 1986 20	100	20	400	330	70	120	0	120
3954440810	25000 N	F CAPTINA	A C SOMER	RTON OH (I	AT 39 54	44N LONG	081 02 50	W)
OCT 1986 21	110	30	240	160	80	50	20	30
3955020805	75700 E	BEND F NR A	ARMSTRONG	s MILLS C	OH (LAT 39	55 02N L	ONG 080 5	57 57W)
OCT 1986 21	30	30	120	100	20	<10		10
4000130805	33000 WI	LLIAMS C A	AT GLENCO	OH (LAT	40 00 131	LONG 080	53 30W)	
OCT 1986 21	50	10	150	110	40	<10		10
4000230805	32000 MC	MAHON C AT	GLENCOE	OH (LAT	40 00 23N	LONG 080	53 20W)	
OCT 1986 21	90	50	220	140	80	20	0	20

			SPE-				ALKA- LINITY	
DATE	TIME	STREAM- FLOW, INSTAM- TANMOUS (CFS)	CITIC COH- DUCT- ANCE (US/CM)	PU (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ACIDITY (MG/L AS CACO3)	WH WAT TOTAL FIELD MG/L AS CACO3	SOLFATE DIS- SOLVED (MG/L AS SO4)
40011.70813	62600	CROOKED C	NR CAMBI	RIDGE OH	(LAT 40 0	1 17N LON	9 081 36	26W)
OCT 1986 22	1515	4.6	630	7.97	12.5		149	110
JUL 1937 21	1530	2.7	555	8.23	25.5		157	200
1002250805	04100	L MCMAHO	N C NR NEI	FFS OH (I	AT 40 02	25N LONG	080 50 41	W)
OCT 1986								
20	1530	1.8	1200	7.94	12.0		192	410
009120820	14700	L WAKATOM	IKA C NR	PRINWAY (OH (LAT 40	09 12N L	ONG 082 0	1 47W)
OCT 1986 21	1015	21	970	7.84	9.0		104	390
JUL 1987		3.4		7.82	24.0		92	470
20	1145	3.4	1000	1.8%	24.0		92	470
	32900	WHITE EYES	C NR PLA	INFIELD (H (LAT 40	09 20N L	ONG 081 4	3 29W)
OCT 1986 23	1400	17	700	7.44	13.0		85	240
JUL 1987 21	1200	4.5	720	7.61	25.0		84	270
016240813	63400	BUCKHORN C	AT NEWCO	MERSTOWN	OH (LAT 4	0 16 24N	LONG 081	36 34W)
OCT 1986								
23 JUL 1987	0930	12	360	7.50	12.0		60	76
21	0845	3.8	430	7.78	24.0		73	170
017160804	51300	MCINTYRE (C NR SMITH	HFIELD OF	H (LAT 40	17 16N LO	NG 080 45	13W)
OCT 1986 20	1400	4.9	2000	8.35	10.0		203	1000
JUL 1987								
22	1015	4.6	2300	8.19	24.0		191	1100
018570803	91700	CROSS C NI	R MINGO JU	UNCTION O	OH (LAT 40	18 57N L	ONG 080 3	9 17W)
OCT 1986 20	1545	20	1300	8.78	10.5		135	600
JUL 1987	1600	23	3.550	8.46	28.5		114	660
019360820	01400	SIMMONS I	RN NR WAR	SAW OH (I	LAT 40 19	36N LONG	082 00 14	W)
OCT 1986 21	1230	3.9	760	8.04	8.0		100	250
JUL 1987 20	1330	2.5	700	7.93	23.5		112	230
034260812	11900	CONOTTON	C NR SOM	ERDALE OF	H (LAT 40	34 26N LO	NG 081 21	19W)
OCT 1986								
22 JUL 1987	1515	46	310	7.66	14.0		79	120
21	1215	45	445	7.57	24.0		81	190
037150803	91400	r AErrom	C NR WELL	LSVILLE (OH (LAT 40	37 15N L	ONG 080 3	9 14W)
OCT 1986	0020	0.50	***	7 40			25	220
23	0930	0.52	660	7.49	9.5		35	230

SURFACE-WATER-QUALITY DATA--Continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
4001170813	62600	CROOKED C	NR CAME	BRIDGE OH	(LAT 40 01	17N LONG	081 36 2	26W)
OCT 1986 22	240	20	630		<10	290	200	90
JUL 1987 21	540	<10	1000	1000	20	360	140	220
4002250805	04100	L MCMAHON	C NR NI	EFFS OH (L	AT 40 02 2	5N LONG OF	30 50 41W	7)
OCT 1986 20	3500	130	3100	3100	20	120	10	110
4009120820	14700	L WAKATOMIS	KA C NR	TRINWAY O	H (LAT 40	09 12N LO	NG 082 01	47W)
OCT 1986 21 JUL 1987	80	10	710	650	60	1100	0	1100
20	160	<10	630	590	40	420	40	380
4009200814	32900	WHITE EYES	C NR PI	AINFIELD	OH (LAT 40	09 20N LO	ONG 081 4	13 29W)
OCT 1986 23	110	10	890	790	100	940	0	970
JUL 1987 21	310	20	1400	1400	40	520	10	510
4016240813	63400	BUCKHORN C	AT NEW	COMERSTOWN	OH (LAT 4	0 16 24N I	ONG 081	36 34W)
OCT 1986 23	160	20	770	750	. 20	550	0	560
JUL 1987 21	180	20	700	670	30	320	30	290
4017160804	51300	MCINTYRE C	NR SMI	THFIELD O	H (LAT 40	17 16N LO	NG 080 45	5 13W)
OCT 1986								
20 JUL 1987	60	40	200	170	30	100	0	100
22	250	50	210	180	30	50	0	60
4018570803	91700	CROSS C NI	R MINGO	JUNCTION	он (LAT 40	18 57N LO	ONG 080 3	39 17W)
OCT 1936 20	840	70	560	530	30	170	40	130
JUL 1987 21	620	150	450	430	20	130	30	100
22	020	130	430	430	20	130	30	100
	01400	SIMMONS RM	NR WAF	RSAW OH (L	AT 40 19 3	6N LONG 08	32 00 14W	1)
OCT 1936 21	40	10	420	380	40	280	0	280
JUL 1987 20	130	<10	460	420	. 40	170	30	140
4034260812	11900	CONOTTON C	NR SOM	ERDALE OH	(LAT 40 3	4 26N LONG	081 21	19W)
OCT 1986 22	250	50	2000	1700	330	1000	0	1100
JUL 1987	350	20	2000	2000	50	870	0	1100
4037150803		L YELLOW O						
OCT 1986	21400	T THUM (MAN MET	TOATHE O	" (mut 40	J. 13H 10	000 33	1311)
23	180	30	280	260	20	60	40	20

SURFACE-WATER AND GROUND-WATER QUALITY IN ACTIVE COAL MINING AREAS OF OHIO--Continued

SURFACE-WATER-QUALITY DATA--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ACIDITY (MG/L AS CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)
4038230812	13700	NIMISHILLE	EN C AT S	SANDYVILLE	OH (LAT	40 38 23N	LONG 081	21 37W)
OCT 1986 22 JUL 1987 21	1400 1630	81 114	1120	8.12	15.0 27.0		216 198	180
4041400803	51100	LONGS RN	NR CALCU	TTA OH (L	AT 40 41	40N LONG	080 35 11	W)
OCT 1986 23	0815	0.89	600	7.97	10.0	_	105	110
4042040805	15600	BRUSH C NE	WEST PO	OINT OH (L	AT 40 42	04N LONG	080 51 56	W)
OCT 1986 21	1300	0.58	330	8.54	11.0		84	41
4044230805	02900	COLD RN	NR LISBO	ON OH (LAT	40 44 23	N LONG 08	0 50 29W)	
OCT 1986 21	1200	2.0	520	8.44	10.0	-	158	79
4045440804	15400	ELK RN A	T ELKTON	OH (LAT	40 45 44N	1 LONG 080	41 54W)	
OCT 1986 21	1515	2.4	650	8.76	12.0		138	170
4106160820	75500	WAKATOMIKA	C NR FRA	ZEYSBURG (OH (LAT 4	1 06 16N	LONG 082	07 55W)
OCT 1986 21 JUL 1987	0915	41	410	7.50	8.5		75	25
20	0945	33	350	7.64	23.5		82	27

	ALUM-			IRON,		MANGA-	MANGA-	
	INUM,	ALUM-	IRON,	SUS-		NESE,	NESE,	MANGA-
	TOTAL	INUM,	TOTAL	PENDED	IRON,	TOTAL	SUS-	NESE,
	RECOV-	DIS-	RECOV-	RECOV-	DIS-	RECOV-	PENDED	DIS-
	ERABLE	SOLVED	ERABLE	ERABLE	SOLVED	ERABLE	RECOV.	SOLVED
DATE	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE								
	AS AL)	AS AL)	AS FE)	AS FE)	AS FE)	AS MN)	AS MN)	AS MN)
4038230812	13700	NIMISHILLE	N C AT S	ANDYVILLE	OH (LAT	40 38 23N	LONG 081	21 37W)
OCT 1986								
22	100	10	840	810	30	170	0	170
JUL 1987								
21	150	20	670	640	30	130	40	90
	200		0,0	0.0				-
4041400803	51100	LONGS RN	NR CALC	UTTA OH (LAT 40 41	40N LONG	080 35 11	.W)
OCT 1986								
	40	<10	320	240	80	80	40	40
23	40	(10	320	240	80	80	40	40
4042040805	15600	BRUSH C N	R WEST P	OINT OH (LAT 40 42	04N LONG	080 51 56	iw)
OCT 1986								
21	120	20	720	660	60	90	40	50
21	120	20	120	000	60	90	40	30
4044230805	02900	COLD RN N	R LISBON	OH (LAT	40 44 23N	LONG 080	50 29W)	
OCT 1986								
21	390	10	1300	1200	50	160	50	110
4045440804	15400	ELK DN AT	FI.KTON	OH (LAT 40	0 45 44N	LONG 080 A	11 54W)	
4043440004	13400	DDK KN AL	LILITON	OII (LIAI 4)	3 43 4411	DONG COU	11 3111/	
OCT 1986								
21	30	20	150	100	50	120	10	110
4106160820	75500	WAKATOMIKA	C ND ED	AZEVCDUDO	OH / T A M	41 06 16N	TONG 002	07 EEW)
*100100820	73500	WAKATOMIKA	CNRFR	MALIBBURG	OH (LAT	4T 00 TON	LONG U82	U/ 33W)
OCT 1986								
21	60	10	840	750	90	90	0	90
JUL 1987								4.0
20	110	10	450	370	80	590	540	50

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)
4016200814	15300 CS	-148 KOEBEI	NURSER	NR W LA	FAYETTE O	H (LAT 40	16 20N L	ONG 081 4	1 53W)
AUG 1987 24	1445	23.12	635	7.50	12.0	1.2	320	87	94
4018000813	24500 TU	-47 ECHO PT	HARDWO	ODS NR PT	WASHINGT	ON OH (LAT	40 18 00	N LONG 0	81 32 45W)
AUG 1987 24	1800	10.11	540	8.04	12.5	7.8	230	83	64
4025320812	41400 TU	-48 L CONKE	EY NR TU	SCARAWAS	OH (LAT 4	0 25 32N I	ONG 081	24 14W)	
AUG 1987 25	1145	40.63	695	7.55	11.5	5.8	330	110	95
4022240812	92400 TU	-49 S JOHNS	SON NR GI	NADENHUTT	EN OH (LA	т 40 22 24	N LONG O	31 29 24W)
AUG 1987	1415	24.91	940	7.07	11.5	1.0	450	190	
									130
	54200 ST	-51 D HOSTE	ETLER NR	BREWSTER	OH (LAT	40 41 30N	LONG 081	35 42W)	
AUG 1987 25	1630	36.80	640	7.59	10.5	1.2	310	120	87
4037420813	31800 TU	-50 BECKERS	FALLS	FARMS NR	STRASBURG	OH (LAT 4	0 37 42N	LONG 081	33 18W)
AUG 1987 25	1730	19.58	685	7.35	11.0	3.8	330	89	99
4035430813	21800 TU	-51 L ELLIC	OTT AT S	FRASBURG	OH (LAT 4	0 35 43N I	ONG 081	32 18W)	
AUG 1987 25	1845	34.85	850	7.53	11.0	1.7	450	290	110
4038300812	20700 TU	-53 US POST	OFFICE	AT SANDY	VILLE OH	(LAT 40 38	30N LONG	G 081 22	07W)
AUG 1987 26	1200		1280	7.50	12.5	1.1	420	250	130
403816081	175100 C	-11 BELDEN	AND BLA	KE NR MAG	NOLIA OH	(LAT 40 38	16N LONG	G 081 17	51W)
AUG 1987 26	1415	28.40	400	5.43	14.0	5.4	89	79	24
4041150811	.52000 ST	-52 D GREEN	N AT WAY	NESBURG O	H (LAT 40	41 15N LO	NG 081 1	5 20W)	
AUG 1987 26	1700		380	6.67	12.5	1.9	120	0	33
4043170810	91500 C-	12 R BECKEI	R NR MIN	ERVA OH (LAT 40 43	17N LONG	081 09 1	5W)	
AUG 1987 26	1930		360	6.48	11.5	1.5	160	0	47
4032550812	95800 TU	-52 ZIMMER	PATIENT	CARE NR	DOVER OH	(LAT 40 32	55N LONG	G 081 29	58W)
AUG 1987 26	1000		685	7.45	10.5	0.9	330	180	94

GROUND-WATER-QUALITY DATA--Continued

DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
401620081415300	CS-148	KOEBEL NUF	SERY NR	W LAFAYET	TE OH (LA	r 40 16 2	ON LONG O	81 41 53W)
AUG 1987 24	21	3.7	1.3	232	82	19	12	400
401800081324500	TU-47	ECHO PT HAR	RDWOODS N	R PT WASH	INGTON OH	(LAT 40	18 00N LO	NG 081 32 45W)
AUG 1987 24	16	19	1.2	141	75	23	10	328
402532081241400	TU-48 1	CONKEY NE	TUSCARA	WAS OH (L	AT 40 25	32N LONG	081 24 14	W)
AUG 1987 25	22	6.6	2.0	210	66	20	12	426
402224081292400	TU-49 S	JOHNSON N	IR GNADEN	HUTTEN OH	(LAT 40 2	22 24N LO	NG 081 29	24W)
AUG 1987 25	31	16	2.7	257	250	17	10	632
404130081354200	ST-51 I	HOSTETLER	NR BREW	STER OH (LAT 40 41	30N LONG	081 35 4	2W)
AUG 1987 25	23	7.9	1.4	193	70	47	1.7	377
403742081331800	TU-50 I	BECKERS FAI	LS FARMS	NR STRAS	BURG OH (I	LAT 40 37	42N LONG	081 33 18W)
AUG 1987 25	19	7.2	6.8	230	44	24	13	399
403543081321800	TU-51 I	ELLIOTT A	T STRASB	URG OH (L	AT 40 35 4	13N LONG	081 32 18	W)
AUG 1987 25	43	7.9	2.0	159	300	10	13	616
403830081220700	TU-53 t	JS POST OFF	CE AT S	ANDYVILLE	OH (LAT	10 38 30N	LONG 081	22 07W)
AUG 1987 26	22	48	2.3	168	110	200	12	663
403816081175100	C-11 BI	ELDEN AND E	LAKE NR	MAGNOLIA	OH (LAT 40	38 16N	LONG 081	17 51W)
AUG 1987 26	7.1	34	1.8	10	47	68	13	238
404115081152000	ST-52 I	GREEN AT	WAYNESBU	RG OH (LA	т 40 41 15	5N LONG 0	81 15 20W)
AUG 1987 26	10	28	3.2	191	6.0	2.6	9.5	192
404317081091500	C-12 R	BECKER NR	MINERVA	OH (LAT 4	0 43 17N I	LONG 081	09 15W)	
AUG 1987 26	10	9.9	1.2	174	9.0	2.1	12	190
403255081295800	TU-52 2	IMMER PATI	ENT CARE	NR DOVER	OH (LAT 4	10 32 55N	LONG 081	29 58W)
AUG 1987 26	24	10	1.9	153	180	19	11	444

GROUND-WATER-QUALITY DATA--Continued

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
401620081415300	O CS-148 K	DEBEL NUR	SERY NR W	V LAFAYET	TE OH (LAT	г 40 16 20	ON LONG 0	81 41 53W)
AUG 1987 24	373	20	<10	280	290	390	370	
401800081324500	TU-47 EC	HO PT HAR	DWOODS NE	R PT WASH	INGTON OH	(LAT 40 :	18 00N LO	NG 081 32 45W)
AUG 1987 24	293	20	10	740	6	10	5	
402532081241400	TU-48 L	CONKEY NR	TUSCARAW	VAS OH (L	AT 40 25 3	32N LONG	081 24 14	W)
AUG 1987 25	350	20	<10	60	6	<10	<1	0.8
402224081292400	TU-49 S	JOHNSON NI	R GNADENE	IUTTEN OH	(LAT 40 2	22 24N LOI	NG 081 29	24W)
AUG 1987 25	613	10	10	1200	710	950	890	1.1
404130081354200	ST-51 D	HOSTETLER	NR BREWS	STER OH (LAT 40 41	30N LONG	081 35 4	2W)
AUG 1987 25	355	20	<10	680	710	180	24	0.6
403742081331800	TU-50 BEX	CKERS FAL	LS FARMS	NR STRASI	BURG OH (I	LAT 40 37	42N LONG	081 33 18W)
AUG 1987 25	351	20	<10	20	3	<10	<1	0.7
403543081321800	TU-51 L	ELLIOTT A	r strasbu	RG OH (L	AT 40 35 4	3N LONG	081 32 18	W)
AUG 1987 25	582	20	<10	500	580	100	93	0.5
403830081220700	TU-53 US	POST OFF	ICE AT SA	NDYVILLE	OH (LAT 4	10 38 30N	LONG 081	22 07W)
AUG 1987 26	630	10	<10	6700	4200	810	800	1.0
403816081175100	C-11 BELI	DEN AND B	LAKE NR M	AGNOLIA (OH (LAT 40	38 16N 1	LONG 081	17 51W)
AUG 1987 26	201	90	70	80	26	40	38	0.6
404115081152000	ST-52 D	GREEN AT	WAYNESBUF	RG OH (LA	г 40 41 15	N LONG 08	31 15 20W)
AUG 1987 26	209	10	<10	1700	1700	190	190	0.5
404317081091500	C-12 R B	ECKER NR 1	MINERVA C	H (LAT 40	0 43 17N I	LONG 081 (9 15W)	
AUG 1987 26	197	20	<10	750	780	730	730	0.7
403255081295800	TU-52 ZI	MMER PATI	ENT CARE	NR DOVER	OH (LAT 4	10 32 55N	LONG 081	29 58W)
AUG 1987 26	432	20	<10	200	220	130	130	0.5

Data in the following three tables were collected as part of a 3-year study of ground water and Scioto River quality in Southern Franklin County between Frank Road and the Southerly Sewage Treatment Facility; the reach includes the City of Columbus collector-well system. The objective of the study is to (1) determine what proportion of water that is pumped from the collector wells originates from the alluvial aquifer, the bedrock aquifer, and the Scioto River and (2) characterize the quality of water from the collector wells as a function of variation in pumping rates and as a function of variation in the quantity of effluent from the Jackson Pike Sewage Treatment Plant when the Scioto River is at low flow.

Tables 1 and 2 contain chemical-quality data from a network of 18 surface-water sites and 12 ground-water wells. Table 3 contains ground-water level measurements from a network of 52 wells.

CHEMICAL QUALITY OF SURFACE WATER

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARE WH WAT TOT FLD MG/L AS CACO3
3955	5010830034	00 SCIOTO	O R AT FR	ANK RD AT	r COLUMBUS	OH (LAT	39 55 01N	LONG 083	00 34W)	
AUG 1987 18	0630	73	550	8.1	17.0	24.5	4.2	11100	230	88
395417	7083003200	JACKSON	PIKE STP	OUTFALL	AT COLUMB	US OH (LA	т 39 54 1	7N LONG 0	83 00 32	W)
AUG 1987 18	0820		980	7.4	22.0	24.5	4.1	12	250	83
395408	3083002100	SCIOTO I	R BL SEWA	GE PLANT	AT COLUMB	US OH (LA	т 39 54 0	8N LONG O	83 00 21	W)
AUG 1987 18	1630	201	950	7.6	29.5	29.0	5.5	130	330	180
	3954080	183000200	KIAN RN	AT COLUME	BUS OH (LA	т 39 54 0	8N LONG 0	83 00 02W)	
AUG 1987 18	1230	0.80	700	8.0	29.5	18.5	7.7	660	260	140
39532808	33003500 S	SCIOTO R	2.4 MI BL	FRANK RE	AT COLUM	BUS OH (I	AT 39 53	28N LONG	083 00 3	5W)
AUG 1987	2145	207	790	7.0		27.0	5.4		330	170
3952	2510830107	00 SCIOTO	O R AT I-	270 S AT	COLUMBUS	OH (LAT 3	9 52 51.N	LONG 083	01 07W)	
AUG 1987	0345	206	910	6.8	17.0	24.5	4.7		330	170
3	3952500830	110900 SC	TOTO BIG	RIIN AT CO	OLUMBUS OH	(T.AT 39	52 50N I.O	NG 083 01	09W)	
AUG 1987	0415	6.6	1050	7.4	16.0	21.5	6.7		500	220
3952440	183010700	SCIOTO R	BL SCIOT	O BIG RN	AT COLUMB	US OH (LA	т 39 52 4	4N LONG 0	83 01 07	W)
AUG 1987	0630	208	840	6.9	23.0	25.5	5.9	1100	300	150
20.5	156002012	1600 CG TO	NO P PI T	270 AM C	TOT LIMBURG O	ш /тап эо	E1 E6N T		1 26W)	
395 AUG 1987	0156083012	600 SC10	LO K BC I	-270 AT C	COLUMBUS C	H (LAT 39	21 26N F	ONG 083 0.	1 26W)	
18	1000	207	820	7.6	24.0	24.5		560	300	150
395147	083012800	UNNAMED	TRIB TO	SCIOTO R	NR COLUMB	US OH (LA	T 39 51 4	7N LONG 0	83 01 28	W)
AUG 1987 18	0845	0.23	740	6.5		20.5	6.8	140	360	89
3951	140830104	01 SCIOTO	R AT CW	-101 NR S	SHADEVILLE	OH (LAT	39 51 14N	LONG 083	01 04W)	
AUG 1987 18	1140	198	810	6.9		25.5	4.6		310	160
3950	410830048	00 SCIOTO	O R NR CW	-103 NR S	SHADEVILLE	OH (LAT	39 50 41N	LONG 083	00 48W)	
AUG 1987 18	1445	178	800	7.2	32.0	27.5	6.3	200	300	160
395	021083003	600 SCIO	TO R AT C	W-104 NR	COLUMBUS	OH (LAT 3	9 50 21N	LONG 083 (00 36W)	
AUG 1987	0630	202	000	7.5	30.0	05.0	2.0	¹ 86	222	100
18 18	0630 1715	203 187	860 790	7.5	18.0	25.0 27.5	2.2 8.6	-86 	320 310	180 160

DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)
395	5501083003	400 SCIOT	O R AT FR	ANK RD AT	COLUMBUS	OH (LAT	39 55 01N	LONG 083	3 00 34W)	
AUG 1987 18	59	19	20	4.6	139	83	34	0.5	<0.01	3.8
39541	708300320	0 JACKSON	PIKE STP	OUTFALL	AT COLUMB	US OH (LA	т 39 54 1	7N LONG C	083 00 32V	1)
AUG 1987 18	73	15	75	12	162	120	110	1.0	0.52	10
39540	808300210	O SCIOTO	R BL SEWA	GE PLANT	AT COLUMB	US OH (LA	т 39 54 0	8N LONG (083 00 21W	1)
AUG 1987 18	93	23	57	9.2	147	190	93	0.9	0.32	6.8
	395408	083000200	KIAN RN	AT COLUMB	US OH (LA	т 39 54 0	8N LONG 0	83 00 02W	7)	
AUG 1987 18	71	21	42	3.4	124	140	57	0.8	0.05	10
3953280	83003500	SCIOTO R	2.4 MI BL	FRANK RD	AT COLUM	BUS OH (L	AT 39 53	28N LONG	083 00 35	5W)
AUG 1987 18	92	23	56	9.1	156	180	92	0.9	0.33	6.6
395	251083010	700 SCIOT	ORATI-	270 S AT	COLUMBUS	OH (LAT 3	9 52 51N	LONG 083	01 07W)	
AUG 1987 19	92	23	56	9.2	152	170	92	0.9		6.6
	3952500830	010900 sc	IOTO BIG 1	RUN AT CO	LUMBUS OH	(LAT 39	52 50N LO	NG 083 01	. 09W)	
AUG 1987 19	130	43	51	6.7	289	220	90	0.3	0.17	10
395244	083010700	SCIOTO R	BL SCIOTO	BIG RN	AT COLUMB	US OH (LA	т 39 52 4	4n LONG 0	83 01 07W	1)
AUG 1987 18	80	24	47	7.9	151	180	63	0.7	0.50	6.2
39	5156083012	2600 SCIO	TO R BL I-	-270 AT C	OLUMBUS O	H (LAT 39	51 56N L	ONG 083 0	1 26W)	
AUG 1987 18	80	24	46	7.9	151	200	62	0.7	0.50	6.2
39514	7083012800	UNNAMED	TRIB TO S	SCIOTO R	NR COLUMB	US OH (LA	г 39 51 4	7N LONG 0	83 01 28W	1)
AUG 1987 18	94	30	23	2.8	272	99	36	0.4	<0.01	5.5
395	1140830104	01 SCIOT	O R AT CW-	-101 NR S	HADEVILLE	OH (LAT	39 51 14N	LONG 083	01 04W)	
AUG 1987 18	81	25	48	7.8	148	180	62	0.7	0.52	6.1
395	0410830048	300 SCIOT	ORNRCW-	-103 NR S	HADEVILLE	OH (LAT	39 50 41N	LONG 083	00 48W)	
AUG 1987	81	24	48	8.2	148	170	61	0.7	0.53	5.8
39	5021083003	8600 SCIO	TO R AT CV	7-104 NR (COLUMBUS	OH (LAT 3	9 50 21N 1	LONG 083	00 36W)	
AUG 1987 18	87 82	25 24	46 47	8.2 7.5	146 144	190 190	64 62	0.7 0.7	1.0	6.2
				7.5				0.7	0.57	

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	COBALT, DIS- SOLVED (UG/L AS CO)
395	501083003	400 SCIOT	O R AT FR	ANK RD AT	COLUMBUS	OH (LAT 3	9 55 01N	LONG 083	00 34W)	
AUG 1987 18	334	0.10	0.07	0.80	0.03	43	<0.5	160	<1	<3
39541	708300320	0 JACKSON	PIKE STP	OUTFALL	AT COLUME	US OH (LAT	39 54 1	7N LONG 0	83 00 32W)
AUG 1987 18	529	4.1	8.0	13	5.6	19	<0.5	280	<1	<3
39540	808300210	0 SCIOTO	R BL SEWA	GE PLANT	AT COLUME	US OH (LAT	39 54 0	BN LONG 0	83 00 21W)
AUG 1987 18	574	3.2	5.4	10	1.8	31	<0.5	230	1	<3
	395408	083000200	KIAN RN	AT COLUMB	US OH (LA	T 39 54 08	N LONG 0	83 00 02W	1)	
AUG 1987 18	427	<0.10	0.08	0.50	0.04	27	<0.5	90	2	<3
3953280	83003500	SCIOTO R	2.4 MI BI	FRANK RD	AT COLUM	BUS OH (LA	т 39 53 :	28N LONG	083 00 35	W)
AUG 1987 18	582	3.3	5.4	5.4	2.1	30	<0.5	230	<1	<3
395	251083010	700 SCIOT	O R AT I-	270 S AT	COLUMBUS	OH (LAT 39	52 51N	LONG 083	01 07W)	
AUG 1987 19	527	3.2	5.0	5.4	2.3	31	<0.5		<1	<3
	395250083	010900 SC	IOTO BIG	RUN AT CO	LUMBUS OH	(LAT 39 5	2 50N LO	NG 083 01	09W)	
AUG 1987	754	0.91	0.34	1.1	0.09	100	<0.5	170	<1	<3
395244	083010700	SCIOTO R	BL SCIOT	O BIG RN	AT COLUMB	US OH (LAT	39 52 4	4n LONG 0	83 01 07W)
AUG 1987 18	509	3.4	3.8	4.5	2.5	33	<0.5	190	<1	<3
39	515608301	2600 SCIO	TO R BL I	-270 AT C	OLUMBUS C	н (LAT 39	51 56N L	ONG 083 0	1 26W)	
AUG 1987 18	519	3.3	3.7	3.8	2.5	33	<0.5	190	<1	<3
39514	708301280	0 UNNAMED	TRIB TO	SCIOTO R	NR COLUMB	US OH (LAT	39 51 4	7N LONG 0	83 01 28W)
AUG 1987	467	<0.10	0.08	0.40	0.02	100	<0.5	50	<1	<3
395	114083010	401 SCIOT	O R AT CW	-101 NR S	HADEVILLE	OH (LAT 3	9 51 14N	LONG 083	01 04W)	
AUG 1987	522	3.5	3.4	3.6	2.4	35	<0.5	190	<1	<3
395	041083004	800 SCIOT	O R NR CW	-103 NR S	HADEVILLE	OH (LAT 3	9 50 41N	LONG 083	00 48W)	
AUG 1987 18	536	3.6	3.2	3.6	2.5	34	<0.5	190	<1	<3
39	502108300	3600 SCIO	TO R AT C	W-104 NR	COLUMBUS	OH (LAT 39	50 21N	LONG 083	00 36W)	
AUG 1987	517	3.8	3.9	4.3	2.6	34	<0.5	190	<1	<3
18	519	4.1	2.7	3.8	2.4	34	<0.5	200	रंग	<3 <3

CHEMICAL QUALITY OF SURFACE WATER--Continued

DATE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
3955010	83003400 S	CIOTO R A	T FRANK	RD AT COLU	JMBUS OH (LAT 39 55	01N LONG	083 00 3	(4W)
AUG 1987									
18	<10	25	<10	13	6	<10	1200	<6	16
395417083	003200 JAC	KSON PIKE	STP OUT	FALL AT CO	DLUMBUS OH	(LAT 39	54 17N LC	NG 083 00	32W)
AUG 1987									
18	10	59	<10	43	40	20	870	<6	65
395408083	002100 SCI	OTO R BL	SEWAGE P	LANT AT CO	LUMBUS OH	(LAT 39	54 08N LC	NG 083 00	21W)
AUG 1987									
18	<10	37	<10	25	29	20	1900	<6	63
3	9540808300	0200 KIAN	RN AT C	OLUMBUS OF	H (LAT 39	54 08N LO	NG 083 00	02W)	
AUG 1987									
18	10	21	10	10	56	10	340	<6	62
39532808300	3500 SCIOT	O R 2.4 M	I BL FRA	NK RD AT C	COLUMBUS O	н (LAT 39	53 28N I	ONG 083 0	0 35W)
AUG 1987									
18	<10	28	<10	27	29	20	1900	<6	41
3952510	83010700 S	CIOTO R A	T I-270	S AT COLUM	BUS OH (L	AT 39 52	51n LONG	083 01 07	'W)
AUG 1987									
19	<10	29	<10	26	28	20	1900	<6	40
3952	5008301090	0 SCIOTO	BIG RUN	AT COLUMBU	S OH (LAT	39 52 50	N LONG 08	3 01 09W)	
AUG 1987									
19	<10	17	<10	16	36	10	2500	<6	11
3952440830	10700 SCIO	TO R BL S	сіото ві	G RN AT CO	LUMBUS OH	(LAT 39	52 44N LO	NG 083 01	07W)
AUG 1987									
18	<10	28	<10	15	22	10	1800	<6	37
395156	083012600	SCIOTO R	BL I-270	AT COLUME	BUS OH (LA	T 39 51 5	6N LONG 0	83 01 26W	')
AUG 1987									
18	<10	25	<10	15	32	20	1700	<6	19
395147083	012800 UNN	AMED TRIB	TO SCIO	TO R NR CO	LUMBUS OH	(LAT 39	51 47N LO	NG 083 01	28W)
AUG 1987									
18	<10	22	<10	10	220	10	1900	<6	4
3951140	83010401 s	CIOTO R A	r CW-101	NR SHADEV	ILLE OH (LAT 39 51	14N LONG	083 01 0	4W)
AUG 1987									
18	<10	24	<10	15	27	10	1800	<6	33
3950410	83004800 S	CIOTO R N	R CW-103	NR SHADEV	ILLE OH (LAT 39 50	41N LONG	083 00 4	8W)
AUG 1987									
18	<10	25	<10	14	26	10	1800	<6	23
395021	083003600	SCIOTO R	AT CW-10	4 NR COLUM	BUS OH (L	AT 39 50	21N LONG	083 00 36	W)
AUG 1987									
18	<10 <10	19 21	<10	15 11	16 17	<10 10	1800 1800	<6 <6	22 20
10	110	21	<10	11	17	10	1000	10	20

CHEMICAL QUALITY OF SURFACE WATER--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
	3949570	83002900	SCIOTO R	AT SHADE	TILLE OH	(LAT 39 49	57N LONG	083 00 2	9W)	
AUG 1987								5 T		
18	0830	208	860	7.5	20.0	25.0	8.6	¹ 150	310	160
	3949310	83003600	SCIOTO R	NR SHADE	ILLE OH	(LAT 39 49	31N LONG	083 00 3	6W)	
AUG 1987										
18	0945	203	860	7.5	22.0	25.5	3.9	¹ 30	320	160
3949030830	10200 sci	OTO R AB	SOUTHERLY	STP OUTE	PALL AT S	HADEVILLE	O(LAT 39	49 03N LO	NG 083 01	02W)
AUG 1987										X
18	1230	197	850	7.5	24.0	26.0	3.8	100	310	170
	3949020	83010300	PLUM RN I	NR SHADEVI	LLE OH (LAT 39 49	02N LONG	083 01 03	W)	
AUG 1987										
18	1345	0.16	780	8.1	28.0	24.0	8.8	280	380	99
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)
	3949570	83002900	SCIOTO R	AT SHADEV	VILLE OH	(LAT 39 49	57N LONG	083 00 2	9W)	
AUG 1987										
18	83	24	46	7.7	147	170	88	0.6	1.0	6.0
	3949310	83003600	SCIOTO R	NR SHADE	VILLE OH	(LAT 39 49	31N LONG	083 00 3	6W)	
AUG 1987										
18	86	24	45	8.1	160	180	63	0.7	1.0	6.0
3949030830	10200 SCI	OTO R AB	SOUTHERLY	STP OUTE	FALL AT S	HADEVILLE	O(LAT 39	49 03N LO	NG 083 01	02W)
AUG 1987 18	85	24	46	8.2	146	180	63	0.7	1.2	5.7
	3949020	83010300	PLUM RN 1	NR SHADEVI	LLE OH (LAT 39 49	02N LONG	083 01 03	W)	
AUG 1987 18	97	34	9.3	2.2	284	63	28	0.4	0.014	12

CHEMICAL QUALITY OF SURFACE WATER--Continued

DATE	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/I	IE NO.	ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)	NITR GEN AMMON DIS SOLV (MG/ AS N	, GE IA MO - OR ED D	ITRO- N,AM- NIA + GANIC IS. MG/L S N)	PHOS PHORO DIS SOLV (MG/ AS I	OUS S- /ED /L	DI: SOL	s-		DIS SOI (UC	RYL- UM, S- LVED G/L BE)	SO (U	RON IS- LVE G/L B)	D S	ADMIU DIS- SOLVE (UG/L AS CD	D	COBALT, DIS- SOLVED (UG/L AS CO)
	39495	70830	02900	SCIOTO	R AT	SHADEV	ILLE C	OH (L	AT	39 4	49	57N	LONG	083	00	2 9W)			
AUG 1987																			
18	54	6	3.8	3.9		4.2	2.7	7		3.	3		(0.5	1	00		<1		<3
	39493	10830	03600	SCIOTO	R NR	SHADEV	ILLE C	OH (L	AT .	39 4	49	31N	LONG	083	00	36W)			
AUG 1987																			
18	51	4	3.8	3.8		3.9	2.6	5		34	4		(0.5	1	90		<1		<3
3949030830	10200 S	СІОТО	R AB	SOUTHE	RLY ST	P OUTF	ALL AT	SHA	DEV	ILLE	E ()(LA	r 39	49 0	3N :	LONG	083	01	02W)
AUG 1987																			
18	52	2	3.8	3.7		4.1	2.5	5		34	4		(0.5	2	00		<1		<3
	39490	208303	10300	PLUM R	N NR S	HADEVI	LLE OF	H (LA	т 39	9 49	9 (2N I	LONG	083	01) 3W)			
AUG 1987																			
18	41	8	1.4	0.0	9	0.50	0.0	4		170	0		(0.5		30		<1		<3
DAT	D S E (PPER, IS- OLVED UG/L S CU)	SOI (UC	S- LVED :	LEAD, DIS- SOLVED (UG/L AS PB)	LITH DI SOL (UG AS	IUM S- VED /L	MANG NESE DIS SOLV (UG/ AS M	ED L	DE SC (U	OIS OLV	/ED	STR TI DI SOL (UG AS	UM, S- VED /L	D: Si	ANA- IUM, DIS- DLVEI UG/L S V)) s	INC DIS OLV UG/ S Z	ED L
	39495	708300	02900	SCIOTO	R AT	SHADEV	ILLE C	H (L	AT :	39 4	19	57N	LONG	083	00	29W)			
AUG 1																			
18.	••	<10		16	<10		11		21			10	180	0		<6		28	
	39493	10830	03600	SCIOTO	R NR	SHADEV	ILLE C	H (L	AT :	39 4	19	31N	LONG	083	00	36W)			
AUG 1																			
18.	••	<10		16	<10		41		22			10	180	0		<6		21	
3949030830	10200 s	сіото	R AB	SOUTHE	RLY ST	P OUTF	ALL AT	SHA	DEV	ILLE	Ξ ((LA	r 39	49 0	3N	LONG	083	01	02W)
AUG 1 18.		<10		21	<10		11		24		<	(10	180	0		<6		16	
	39490	208301	10300	PLUM R	N NR S	HADEVI	LLE OH	(LA	т 39	9 49	9 0	2N I	LONG	083	01 ((WE)			
AUG 1		<10		47	<10		4	2	70			10	80	0		<6		<3	

¹Based on a non-ideal colony count (less than 20 or greater than 80 counts per plate)

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
395020	008300340)5 FR-104	CW COLLEC	TOR WELL	NR COLUME	BUS OH (LAT	39 50 2	ON LONG	83 00 34W	')
SEP 1987 03	1045	1664.2	685	788	7.4	22.0	13.5	0.3	<1	410
39504	608300310	5 FR-103	CW COLLEC	TOR WELL	NR COLUME	BUS OH (LAT	39 50 4	6N LONG	83 00 31W)
SEP 1987 03	1300		699	793	7.2	23.5	14.0	0.3	<1	410
3951140830	10405 FR	101CW RAD	IAL COLLE	CTOR WELI	AT HARTM	IAN FMS COI	(LAT 39	51 14N LC	ONG 083 01	04W)
SEP 1987 03	1335	1 _{661.9}	685	774	7.3	26.0	15.5	0.2	<1	380
395	510808301	.0600 FR-1	47 NR SCI	OTO R NR	COLUMBUS	OH (LAT 39	51 08N	LONG 083	01 06W)	
SEP 1987 04	0935	17.25	685	896	7.5	29.0	13.0	0.3	21	470
20502400	2002000 #	n 140 m	mv.s.v. vis.p.v.	C AM CW 3	04 ND 001	mmus ou	20 E	0 241 101	10 003 00	2.014
SEP 1987	3003000 E	R-149 HAR	TMAN FARM	S AT CW-1	.U4 NR COI	LUMBUS OH (LAT 39 5	U Z4N LUI	NG 083 00	30W)
04	1240	16.35	684	952	7.5	31.0	13.0	0.3	<1	
		395132	083001200	FR-73 (I	AT 39 51	32N LONG	83 00 12	W)		
SEP 1987 04	1430	46.34	735	699	7.3	30.0	14.5		<1	390
		3953140	83021900	FR-202 (I	AT 39 53	14N LONG O	83 02 19	W)		
SEP 1987 08	1400	94.70	752	986	7.3	29.0	14.0	0.3	<1	500
3949560830	002700 FF	2-18 CITY	OF COLS S	OF RT 66	5 AT SHAL	EVILLE OH	(LAT 39	49 56N LC	ONG 083 00	27W)
SEP 1987 08	1000	24.11		1010	7.1	24.0	12.5	0.2	21	460
	3	950200830	03700 FR-	104 TH-73	(LAT 39	50 20N LON	IG 083 00	37W)		
SEP 1987 09	1007	17.21	685	742	7.7	23.0	12.0	1.3	>60	400
		3951170	83011600	FR-120 (I	AT 39 51	17N LONG 0	83 01 16	W)		
SEP 1987	1045	13.02	690	672	7.4	24.0	12.5	0.5	21	380
	3010200 F	R-148 HAR	TMAN FARM	S AT CW-1	.01 NR COL	UMBUS OH (LAT 39 5	1 14N LON	NG 083 01	02W)
03	1440	21.93	687	744	10.4	25.5	14.0	0.5	<1	290
395	02008301	4400 FR-1	41 J LAKO	S NR SHAD	EVILLE, C	OH (LAT 39	50 20N L	ONG 083 0)1 44W)	
SEP 1987 02	1235	28.66								
08	1130		720	894	7.3	27.0	14.0	0.3	<1	480

CHEMICAL QUALITY OF GROUND WATER--Continued

DATE	HARD- NESS NONCARB WH WAT TOT FLD (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)
39502	0083003405	FR-104	CW COLLEC	TOR WELL	NR COLUMB	US OH (LA	T 39 50 2	ON LONG	83 00 34W	1)
SEP 19 87										
03	150	110	33	19	2.1	265	100	35	0.40	0.12
39504	6083003105	FR-103	CW COLLEC	TOR WELL	NR COLUMB	US OH (LA	T 39 50 4	6N LONG	83 00 31W	')
SEP 1987										
03	150	110	33	18	2.7	260	120	32	0.50	0.14
3951140830	10405 FR 1	.01CW RAD	IAL COLLE	CTOR WELL	AT HARTM	AN FMS CO	L(LAT 39	51 14N LO	NG 083 01	04W)
SEP 1987										
03	130	100	31	22	3.0	247	110	36	0.40	0.20
39	5108083010	600 FR-1	47 NR SCI	OTO R NR	COLUMBUS	OH (LAT 3	9 51 08N	LONG 083 (01 06W)	
SEP 1987										
04	160	120	40	14	1.8	310	120	29	0.70	0.17
39502408	3003000 FR	R-149 HAR	TMAN FARM	S AT CW-1	04 NR COL	UMBUS OH	(LAT 39 5	0 24N LONG	3 083 00	30W)
SEP 1987										
04						382				
		395132	083001200	FR-73 (L	AT 39 51	32N LONG	083 00 12	W)		
SEP 1987										
04	82	100	34	3.3	1.4	308	63	5.1	0.30	0.033
		3953140	83021900	FR-202 (L	AT 39 53	14N LONG	083 02 19	W)		
				201-210-31						
SEP 1987	1.00	100	44	0.7	2 2	242	100	0.0	1 7	0 024
08	160	120	44	27	2.2	341	190	9.8	1.7	0.034
394956083	002700 FR-	18 CITY	OF COLS S	OF RT 66	5 AT SHAD	EVILLE OH	(LAT 39	49 56N LON	NG 083 00	27W)
SEP 1987				- 2.5		- 244		4.2	4.44	
08	92	120	38	34	2.2	362	88	87	0.20	0.12
	39	50200830	03700 FR-	104 TH-73	(LAT 39	50 20N LO	NG 083 00	37W)		
SEP 1987										
09	110	100	37	6.2	1.5	291	90	14	0.40	0.037
		3951170	83011600	FR-120 (L	AT 39 51	17N LONG	083 01 16	v)		
SEP 1987										
11	80	99	32	4.9	1.7	293	53	15	0.30	0.026
39511408	3010200 FR	-148 HAR	TMAN FARM	S AT CW-1	01 NR COL	UMBUS OH	(LAT 39 5]	L 14N LONG	083 01	02W)
CPD 1007										
SEP 1987 03	250	24	54	46	5.3	35	230	60	1.0	0.70
39	5020083014	400 FR-14	1 J LAKO	S NR SHADI	EVILLE, O	H (LAT 39	50 20N LO	ONG 083 01	44W)	
					ry CV WEST			20.00		
SEP 1987 08	140	120	43	6.6	1.2	336	72	53	0.50	0.050
	140		4.5	0.0	4.6	330	4 -			0.000

CHEMICAL QUALITY OF GROUND WATER--Continued

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)
39502	2008300340	05 FR-104	CW COLLEC	TOR WELL	NR COLUMB	US OH (LA	т 39 50 2	ON LONG	83 00 34V	1)
SEP 1987 03	12	429	<0.10	0.16	0.30	<0.01	130	<0.5	70	<1
39504	1608300310	05 FR-103	CW COLLEC	TOR WELL	NR COLUMB	US OH (LA	т 39 50 4	6N LONG	83 00 31V	1)
SEP 1987 03	12	500	<0.10	0.09	0.50	<0.01	60	<0.5	70	<1
3951140830	010405 FR	101CW RAD	IAL COLLE	CTOR WELL	AT HARTM	AN FMS CO	L(LAT 39	51 14N LO	NG 083 01	04W)
SEP 1987 03	12	483	<0.10	0.24	0.60	<0.01	87	<0.5	90	<1
39	510808301	10600 FR-1	47 NR SCI	OTO R NR	COLUMBUS	OH (LAT 3	9 51 08N	LONG 083	01 06W)	
SEP 1987 04	15	542	<0.10	0.29	0.60	<0.01	30	<0.5	80	<1
39502408	33003000 F	FR-149 HAR	TMAN FARM	IS AT CW-1	.04 NR COI	UMBUS OH	(LAT 39 5	0 24N LON	G 083 00	30W)
SEP 1987 04			<0.10	1.4	1.7	0.02				<u>-</u>
		395132	083001200	FR-73 (I	AT 39 51	32N LONG	083 00 12	W)		
SEP 1987 04	16	400	<0.10	0.14	0.70	<0.01	310	<0.5	10	5
		3953140	83021900	FR-202 (I	AT 39 53	14N LONG	083 02 19	W)		
SEP 1987 08	16	637	<0.10	0.60	0.30	<0.01	26	<0.5	190	<1
394956083	3002700 FF	R-18 CITY	OF COLS S	OF RT 66	55 AT SHAD	EVILLE OF	(LAT 39	49 56N LO	NG 083 0	27W)
SEP 1987 08	14	482	<0.10	0.22	<0.20	<0.01	270	<0.5	40	<1
	3	3950200830	03700 FR-	104 TH-73	3 (LAT 39	50 20N LO	ONG 083 00	37W)		
SEP 1987 09	14	460	<0.10	0.19	0.20	<0.01	250	<0.5	40	<1
		3951170	83011600	FR-120 (I	LAT 39 51	17N LONG	083 01 16	W)		
SEP 1987	14	396	<0.10	0.19	0.30	<0.01	210	<0.5	20	<1
39511408	83010200 F	FR-148 HAR	TMAN FARM	IS AT CW-1	101 NR COI	UMBUS OH	(LAT 39 5	1 14N LON	G 083 01	02W)
SEP 1987 03	180	474	<0.10	0.03	0.40	<0.01	6	<0.5	330	<1
39	9502008301	14400 FR-1	.41 J LAKO	S NR SHAI	DEVILLE, O	OH (LAT 39	50 20N L	ONG 083 0	1 44W)	
SEP 1987 08	17	507	<0.10	0.16	0.30	<0.01	270	<0.5	20	<1

CHEMICAL QUALITY OF GROUND WATER--Continued

DATE	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVEI (UG/L AS ZN)
3950	20083003405	FR-104	CW COLLECT	OR WELL	NR COLUMBUS	S OH (LAT	39 50 20	ON LONG	83 00 34W)	h
SEP 1987										
03	<3	<10	1300	<10	8	100	<10	740	<6	<3
3950	46083003105	FR-103	CM COLLECT	OR WELL	NR COLUMBUS	S OH (LAT	39 50 46	6N LONG	83 00 31W)	
SEP 1987 03	<3	<10	460	<10	8	100	<10	680	<6	<3
95114083	010405 FR 1	.01CW RAD	IAL COLLEC	TOR WELI	AT HARTMA	N FMS COL	(LAT 39 5	51 14N LC	NG 083 01	04W)
SEP 1987 03	<3	<10	1200	<10	8	100	<10	880	<6	<3
3	95108083010	600 FR-1	47 NR SCIO	TO R NR	COLUMBUS O	H (LAT 39	51 08N I	LONG 083	01 06W)	
SEP 1987										
04	<3	<10	730	<10	18	43	<10	2000	<6	6
3950240	83003000 FR	R-149 HAR	TMAN FARMS	AT CW-	104 NR COLU	MBUS OH (LAT 39 50	24N LON	IG 083 00 3	ow)
SEP 1987 04										
		395132	083001200	FR-73 (I	AT 39 51 3	2N LONG 0	83 00 120	√)		
SEP 1987 04	<3	<10	2500	<10	5	37	<10	200	<6	10
		3953140	83021900 F	R-202 (I	AT 39 53 1	4N LONG 0	83 02 19W	√)		
SEP 1987	<3	<10	3100	<10	13	35	50	19000	<6	<3
39495608	3002700 FR-	18 CITY	OF COLS S	OF RT 66	55 AT SHADE	VILLE OH	(LAT 39 4	49 56N LO	NG 083 00	27W)
SEP 1987	<3	<10	470	20	<4	86	10	480	<6	10
					(LAT 39 50					
SEP 1987 09	<3	<10	1100	<10	10	120	<10	1300	<6	12
		3951170	83011600 F	R-120 (I	AT 39 51 1	7N LONG 0	83 O1 16W	Ñ)		
SEP 1987										
11	<3	<10	2000	<10	5	57	<10	630	<6	46
3951140	83010200 FR	-148 HAR	TMAN FARMS	AT CW-1	.01 NR COLUM	MBUS OH (LAT 39 51	L 14N LON	G 083 01 0	2W)
SEP 1987 03	<3	<10	5	<10	49	22	<10	5100	<6	<3
3	95020083014	400 FR-1	41 J LAKOS	NR SHAF	DEVILLE. OH	(LAT 39	50 20N LC	ONG 083 0	1 44W)	
				THE DIME						
SEP 1987				WK Dillie		,	**************************************			

¹²Water level elevation, in feet.
2Based on a non-ideal colony count (less than 20 or greater than 80 counts per plate).

GROUND-WATER LEVEL MEASUREMENTS

SITE ID	LOCAL WELL NUMBER	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	WATER- LEVEL DATE	WATER LEVEL (FEET BELOW LAND SURFACE)
394956083002700	FR-18	394956	830027	06-11-87	21.18
395006083013600	FR-116	395006	830136	09-08-87 02-26-87 04-27-87 06-11-87 09-02-87	24.11 24.48 23.20 23.22 25.29
395008082593100	FR-126 M13	395008	825931	09-04-87 06-11-87	25.35 18.54 19.31
395016083010300	FR-117	395016	830103	09-02-87 02-26-87 04-27-87 06-11-87	18.23 16.42 16.05
395020083003405 395020083003300	FR 104 CW FR-104 TH-20	395020 395020	830034 830033	09-02-87 09-02-87 06-10-87	1664.2 22.84
395020083003400	FR-104 TH-72	395020	830034	09-03-87 06-10-87 09-02-87	22.30 23.73 18.94
395020083003700	FR-104 TH-73	395020	830037	06-11-87 09-09-87	18.16 17.21
395020083014400 395021083002900	FR-141 FR-104 TH-18	395020 395021	830144 830029	09-02-87 06-10-87	28.66 28.34
395024083003000	FR-149	395024	830030	09-02-87 06-10-87 09-03-87	27.67 14.68 16.28
395027082592500	FR 151	395027	825925	09-04-87 06-11-87	16.35 29.10
395037082581900	FR-36	395037	825819	09-02-87 06-11-87	29.12 15.54
395039082585800	FR-115 TH 67	395039	825858	09-02-87 06-11-87	16.50
395045083003100	FR 103 TH-11	395045	830025	09-02-87 06-10-87	34.45 38.22
395046083003105 395058083002400	FR 103 CW FR-119	395046 395111	830031 830026	09-02-87 09-03-87 06-11-87	43.13
395059083000900	FR-122	395059	830009	09-02-87 06-10-87	32.17 40.10
395108083010600 395108083010600	FR-147 FR-147	395108 395108	830106 830106	09-02-87 06-10-87 09-03-87	40.76 16.66 20.13
395114083010201	FR-101-TH 46	395114	830102	09-04-87 06-10-87 06-10-87	17.25 21.11 21.1
395114083010200	FR-148	395114	830102	09-03-87 06-10-87	24.42 17.56
395114083010405 395117083011600	FR 101CW FR-120	395114 395117	830104 830116	09-03-87 09-03-87 06-11-87	1 _{662.0} 10.70
395123083003300	FR-121	395123	830033	09-11-87 06-10-87	13.02
395126083014000	FR-131	395126	830140	09-02-87 06-11-87	19.67
395131082592400	FR-123	395131	825924	06-11-87 09-02-87	11.96 12.63
395132083001200	FR-73	395132	830012	06-10-87 09-04-87	45.85 46.34
395157083003500	FR-109	395157	830035	06-10-87 09-02-87	24.59 22.76
395206083014501	FR-209	395206	830145	06-11-87 09-02-87	15.21
395218083023900	FR-133	395218	830239	06-11-87 09-02-87	60.52 61.27
395250083014101	FR-236	395250	830141	06-11-87 09-01-87	60.18
395254083010700	FR-253	395254	830107	06-10-87 09-01-87	27.70 33.64
395255083003000 395314083021900	FR-262 FR-202	395255 395314	830030 830219	06-11-87 06-11-87	23.75 89.03
395315083020002	FR-213	395315	830200	09-08-87 06-11-87	94.70
395321083005700	FR-268	395321	830057	09-01-87 06-10-87	80.29 30.36
395329083013100	FR-264	395329	830131	09-01-87 06-10-87 06-11-87 09-01-87 09-08-87	34.22 62.13 89.03 61.49 94.70

SURFACE- AND GROUND-WATER RECORDS FOR THE SOUTHERN FRANKLIN COUNTY PROJECT-Continued

GROUND-WATER LEVEL MEASUREMENTS--Continued

SITE ID	LOCAL WELL NUMBER	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	WATER- LEVEL DATE	WATER LEVEL (FEET BELOW LAND SURFACE)
395331083013900	FR-246	395331	830139	06-11-87	122.44
	700 77			09-01-87	122.34
395348083022701	FR-227	395348	830227	06-11-87	75.18
				09-08-87	76.73
395350083030001	FR-230	395350	830300	06-11-87	85.76
				09-01-87	86.17
395351083013700	FR-244	395335	830137	06-11-87	69.73
				09-01-87	68.77
395413083002900	FR-260	395413	830029	06-10-87	31.55
				09-01-87	32.62
395409083013201	FR-217	395409	830132	06-11-87	69.79
				09-01-87	70.14
395409083015001	FR-224	395409	830150	06-10-87	76.71
	250000000000000000000000000000000000000	100000000000000000000000000000000000000		09-01-87	76.71
395409083015000	FR-224R	395409	830150	06-10-87	82.18
		120702	Series.	09-01-87	82.61
395417083005000	FR-259	395417	830050	06-10-87	43.39
111121111111111	44.000	49-712		09-01-87	43.74
395437083021300	FR-132	395437	830213	06-10-87	29.97
	4.05.121	622910	222222	09-01-87	30.12
395448083004200	FR-258	395448	830042	01-21-87	30.48
				06-10-87	28.48
		222722	221222	09-01-87	31.84
395458083011600	FR-248	395458	830116	02-04-87	44.08
				06-11-87	43.87
2055000000000000000	PD 057	205500	020027	09-01-87	43.11
395509083003700	FR-257	395509	830037	06-10-87	24.61
20552222222222	77.056	205502	020021	09-01-87	29.66
395523083003100	FR-256	395523	830031	06-10-87	22.01
				09-01-87	27.88

 $^{^{\}mbox{\scriptsize 1}}$ Water level elevation in the collector well during pumping.

The following tables contain chemical analyses of brine from three oil- and gas-production wells. The tables also contain chemical analyses and ground-water-level measurements from a network of water-supply wells in Geauga County. The data was collected as part of a cooperative study with the Geauga County Planning Commission for evaluating ground-water resources in Geauga County.

Remarks: Brine samples were taken from the well head at each oil and gas well.

SUMMIT COUNTY

411143081273800. Local number, SUNE - Stow #2
LOCATION.--Lat 41011'43", long 81027'38", Hydrologic Unit 04110002, near Stow, OH.
RESERVOIR.--Lockport equivalent, informally referred to as the "Newburg" zone.
WELL CHARACTERISTICS.--Gas production well.
DATUM.--Elevation of land-surface datum is 1,042 ft above National Geodetic Vertical Datum of 1929.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TEMPER- ATURE AIR (DEG C)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH (STAND- ARD UNITS)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
NOV 17	13.0	123000	5.45	288	28	0.8	120000	120000	37000	7600
DAT	SODII DIS- SOLVI E (MG,	DIS ED SOLV L (MG/	M, RID: - DIS: ED SOL' L (MG	E, SULF - DIS VED SOI /L (MC	S- DI LVED SOI G/L (MC	DE, BARI S- DIS EVED SOLV G/L (UG	- DIS ED SOL' /L (UG	UM, LITH S- DI VED SOL /L (UG	S- DI VED SOI G/L (MG	IIDE S- VED S/L BR)
NOV 17	58000	2200	20000	0 72	20 4	.3 6	000 920	000 43	000 2100	

GEAUGA COUNTY

413622081054000. Local number, GECL-CNG #634

LOCATION.--Lat 41°36'22", long 81°05'40", Hydrologic Unit 04110004, Near Montville, Ohio.
Owner: CNG Development Company.

RESERVOIR.--Albion Sandstone, informally referred to as the "Clinton" zone.

WELL CHARACTERISTICS.--Oil and gas production well.

DATUM.--Elevation of land-surface datum is 1,210 ft above National Geodetic Vertical Datum of 1929.

DATE	TEMPER- ATURE AIR (DEG C)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH (STAND- ARD	CARBON L DIOXIDE W DIS- SOLVED (MG/L M	ALKA- INITY H WAT TOTAL FIELD IG/L AS CACO3	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	HARD- NO NESS WH (MG/L TO AS MG	WAT DOT FLD SO	MAGNE- SIUM, IS- DIS- OLVED SOLVED MG/L (MG/L S CA) AS MG)
NOV 18	5.0	130000	6.72	35	91	3.1	95000	95000 310	00 3900
DAT	SODI DIS SOLV E (MG AS	DIS SOLV	M, RIDE, - DIS- ED SOLVE L (MG/L	SULFAT DIS- D SOLVE (MG/L	DIS D SOLV	BARIUM B- DIS- VED SOLVED 'L (UG/I	DIS- SOLVED UG/L	LITHIUM DIS- SOLVED (UG/L	BROMIDE DIS- SOLVED (MG/L AS BR)
NOV 18	71000	1400	190000	270	<2.	.5 800	00 1200000	52000	2000

GEAUGA COUNTY--Continued

413009081073000. Local number, GECL - BAPTIST #1
LOCATION.--Lat 41⁰30'09", long 81⁰07'30", Hydrologic Unit 04110002, near Burton, Ohio.
Owner: Lomak Petroleum, Inc.

RESERVOIR. --Albion Sandstone, informally referred to as the "Clinton" zone.
WELL CHARACTERISTICS. --Oil and gas production well.
DATUM. --Elevation of land-surface datum is 1,305 ft above National Geodetic Vertical Datum of 1929.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TEMPER- ATURE AIR (DEG C)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH (STAND- ARD UNITS)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	HARD- NESS (MG/L AS CACO3)	WH WAT I TOT FLD S MG/L AS	MAGNE- ALCIUM SIUM, DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS CA) AS MG)
NOV 19	-10.0	125000	6.02	115	53	1.4	130000	130000 390	7200
DA.	SODI DIS SOLV TE (MG AS	ED SOLV	UM, RIDE S- DIS- VED SOLV /L (MG/	E, SULF. DIS ZED SOL L (MG	- DI VED SOL /L (MG	E, BARIU S- DIS- VED SOLVE /L (UG/	DIS D SOLV	JM, LITHIUM S- DIS- VED SOLVEI 'L (UG/L	DIS- D SOLVED (MG/L
NOV 19	. 69000	2400	200000	27	0 4	.3 60	000 11000	000 59000	2100

413624081055800. Local number, GE-205 LOCATION.--Lat 41°36'24", long 81°05'58", Hydrologic Unit 04110002, 15247 G.A.R. Highway near Montville, Ohio. OWNER: S. Craxton.

AQUIFER. -- Sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS. --Drilled well, diameter 6.0 in., depth 70 ft. INSTRUMENTATION. --Water-level measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,200 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.8 ft above land-surface datum. PERIOD OF RECORD. -- November 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

WATER DATE LEVEL Nov. 18, 1986 20.56

DATE	TEMPER- ATURE WATER (DEG C)	TEMPER- ATURE AIR (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)
NOV										
18	11.5	5.0	2340	8.02	7.5	398	0.6	53	0	12
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	BARIUM, DIS- SOLVED (UG/L	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	LITHIUM DIS- SOLVED (UG/L	BROMIDE DIS- SOLVED (MG/L
	AS MG)	AS NA)	AS K)	AS CL)	AS SO4)	AS F)	AS BA)	AS SKI	AS LI)	AS BR)
NOV										
18	5.3	500	3.5	520	5.2	1.1	1300	440	40	3.3

GROUND-WATER RECORDS FOR GEAUGA COUNTY PROJECT -- Continued

GEAUGA COUNTY--Continued

414248081045200. Local number, GE-207 LOCATION.--Lat 41°42'48", long 81°04'52", Hydrologic Unit 04110004, Clay Street near Thompson, Ohio. Owner: M. Collen.

Owner: M. Collen.
AQUIFER.--Ohio Shale of Devonian Age.
WELL CHARACTERISTICS.--Drilled well, diameter 10 in., depth 50 ft.
INSTRUMENTATION.--Water-level measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 1,005 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.00 ft above land-surface datum. PERIOD OF RECORD. -- November 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

WATER DATE LEVEL

NOV. 19, 1986 3.90

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TEMPER- ATURE WATER (DEG C)	TEMPER- ATURE AIR (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)
NOV 19	11.5	-1.0	1500	8.27	2.8	266	0.8	120	0	28
19	11.5	-1.0	1500	0.27	2.0	200	0.0	120	U	20
	MAGNE- SIUM,	SODIUM,	POTAS- SIUM,	CHLO- RIDE,	SULFATE	FLUO- RIDE,	BARIUM,	STRON- TIUM,	LITHIUM	BROMIDE
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(UG/L	(MG/L
	AS MG)	AS NA)	AS K)	AS CL)	AS SO4)	AS F)	AS BA)	AS SR)	AS LI)	AS BR)
NOV										
19	12	260	3.8	320	9.9	1.0	70	650	60	1.1

413633081051800. Local number, GE-113. LOCATION.--Lat 41036'33", long 81005'18", Hydrologic Unit 04110002, G.A.R. Highway near Montville, Ohio. Owner: Heath Construction.

Owner: Heath Construction.
AQUIFER.--Cuyahoga Group of Mississippian Age.
WELL CHARACTERISTICS.--Drilled well, diameter 6.0 in., depth 80 ft, cased to 60 ft.
INSTRUMENTATION.--Water-level measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 1,250 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 0.90 ft above land-surface datum.
PERIOD OF RECORD.--May 1980 to November 1986.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 18.68 ft below land-surface datum, May 8, 1980; lowest,

28.60 ft below land-surface datum, Nov. 5, 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

WATER WATER DATE LEVEL DATE LEVEL NOV 05, 1986 28.60 NOV 19, 1986 24.69

DATE	TEMPER- ATURE WATER (DEG C)	TEMPER- ATURE AIR (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)
NOV 19	11.0	0.0	460	7.54	13	233	0.6	230	0	59
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BARIUM, DIS- SOLVED (UG/L AS BA)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	LITHIUM DIS- SOLVED (UG/L AS LI)	BROMIDE DIS- SOLVED (MG/L AS BR)
NOV 19	19	16	2.4	3.8	21	0.30	140	540	24	0.026

GROUND-WATER RECORDS FOR GEAUGA COUNTY PROJECT--Continued

GEAUGA COUNTY--Continued

413259081013300. Local number, GE-206.
LOCATION.--Lat 41°32′59", long 81°01′33", Hydrologic Unit 04110004, Huntley Road, near Huntsburg, Ohio.
OWNER: T. Lane.

AQUIFER.--Berea Sandstone of Mississippian Age.
WELL CHARACTERISTICS.--Drilled well, diameter 6.0 in., depth 170 ft, cased to 35 ft.
INSTRUMENTATION.--Water-level measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 1,090 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.60 ft above land-surface datum.
PERIOD OF RECORD.--November 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE WATER LEVEL NOV. 13, 1986 35.97

DATE	TEMPER- ATURE AIR (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
NOV 18	5.0	1450	8.83	1.6	562	0.6	15	0	4.3	1.1

DAT	SODIUM, DIS- SOLVED E (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BARIUM, DIS- SOLVED (UG/L AS BA)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	LITHIUM DIS- SOLVED (UG/L AS LI)	BROMIDE DIS- SOLVED (MG/L AS BR)
NOV 18	350	1.6	180	11	2.0	19	74	24	0.98

GEAUGA COUNTY--Continued

Site Number	Local Number	Geologic Unit	Da	te	Water Level
412309081202400	GE-23	324PSVL	Nov.	3, 1986	13.46
412449081232700	GE-29	330BERE		3, 1986	40.12
412655081205600	GE-31			6, 1986	0.98
412803081210000	GE-32	330BDFD	Nov.	6, 1986	0.74
412439081183000	GE-36	324PSVL		3, 1986	66.78
412440081201500	GE-38			3, 1986	23.96
412514081202200	GE-39	324PSVL		3, 1986	37.94
412905081045500	GE-42	1120TSH		4, 1986	40.40
414220081045500	GE-43	330BDFD		5, 1986	8.90
414124081010100	GE-44	330BERE		5, 1986	1.59
413202081015700 412620081032400	GE-48	330CYHG	Nov.	4, 1986 4, 1986	1.72 15.90
413449081121600	GE-49 GE-52			5, 1986	39.37
413346081122300	GE-52	1120TSH		6, 1986	24.99
413346081122301	GE-53A			6, 1986	38.87
413343081132800	GE-54			6, 1986	60.23
412051081165700	GE-60	324PSVL		3, 1986	60.20
412749081145200	GE-64	324PSVL		6, 1986	30.58
412622081162500	GE-65			6, 1986	6.70
412645081182400	GE-66			6, 1986	26.33
412949081104600	GE-68	324PSVL	Nov.	4, 1986	18.27
413151081125800	GE-69	324PSVL	Nov.	6, 1986	27.56
413201081110900	GE-70	330CYHG	Nov.	4, 1986	0.55
413433081075500	GE-72	324PSVL		5, 1986	13.74
413138081152000	GE-76	112OTSH		6, 1986	24.27
413735081131200	GE-82			5, 1986	66.91
412627081075400	GE-83	324PSVL		4, 1986	31.19
412716081125400	GE-85	324PSVL		6, 1986	49.85
412749081171500	GE-89	324PSVL		6, 1986	85.84
412748081143900	GE-91	324PSVL		6, 1986 4, 1986	44.23
412354081010400 412547081211500	GE-93 GE-94				10.58
412547081211501	GE-94A	330CYHG		6, 1986 6, 1986	14.31
41254/081211501	GE-94A	330CYHG 330BERE	Nov.	0, 1900	20.12
412559081095200	GE-96	324PSVL	Nov.	4, 1986	15.53
412559081095201	GE-96A			4, 1986	24.69
412718081102400	GE-98			4, 1986	7.63
412225081035600	GE-99			4, 1986	32.15
413757081122300	GE-101	1120TSH		5, 1986	24.58
413755081101200	GE-103	330BERE		5, 1986	86.78
413606081102100	GE-104	330BERE		5, 1986	94.33
413544081060500	GE-105	330CYHG		5, 1986	29.99
413456081035600	GE-106	330CYHG	Nov.	5, 1986	36.10
413249081173800	GE-107	112OTSH	Nov.	6, 1986	59.33
413117081171900	GE-108	1120TSH	Nov.	6, 1986	49.54
413005081130000	GE-109	324PSVL	Nov.	6, 1986	76.09
413346081064000	GE-111	324PSVL		4, 1986	28.52
413207081044400	GE-112	324PSVL		4, 1986	46.75
412901081070200	GE-114	324PSVL	Nov.	4, 1986	43.48
412737081063300	GE-115	324PSVL		4, 1986	24.26
412926081144300	GE-116	112OTSH		6, 1986	42.30
412915081045900	GE-118	330CYHG		4, 1986	21.37
412657081040500 413230081190200	GE-119	324PSVL	Nov.	4, 1986	11.73
	GE-120	330BERE		6, 1986	99.60
412746081202000	GE-121	330CYHG 330BERE	Nov.	6, 1986	68.82
412410081223900	GE-122	330BERE	Nov.	3, 1986	61.08
412703081181600	GE-122	330CYHG		F 4 F 5 F 5 F 5 F	87.13
412/03001101000	GE-123	330BERE	NOV.	6, 1986	07.13
413052081153100	GE-124	330CYHG	Nov	6, 1986	26.01
413032001133100	GE-124	330BERE	NOV.	0, 1300	20.01
		330BDFD			
413100081105500	GE-125	330CYHG	Nov.	4, 1986	74.37
	02 123	330BERE		1, 1500	,,
412212081230100	GE-126	330BERE	Nov.	4, 1986	116.99
413821081060500	GE-129	330CYHG		5, 1986	103.23
	750	330BERE			
413623081101000	GE-130	330BERE	Nov.	5, 1986	86.68
412959081030700	GE-135	1120TSH		4, 1986	12.44
412841081023200	GE-136	330CYHG		4, 1986	13.67
413318081004100	GE-137	330CYHG	Nov.	4, 1986	14.26
		2200000	Nov.	4, 1986	60.80
413318081004300	GE-137A	330BERE			
413318081004300 412159081104100 412138081072000	GE-137A GE-138 GE-139	324PSVL 324PSVL	Nov.	3, 1986 3, 1986	46.50

GROUND-WATER RECORDS FOR GEAUGA COUNTY PROJECT--Continued

GEAUGA COUNTY--Continued

Site Number	Local Number	Geologic Unit	Date	Water Level
412318081073700	GE-140	324PSVL	Nov. 3, 1986	48.43
412224081084300	GE-141	1120TSH	Nov. 3, 1986	9.11
412529081132000	GE-143	324PSVL	Nov. 3, 1986	11.00
412211081183400	GE-144	324PSVL	Nov. 3, 1986	38.72
413729081024700	GE-145	330CYHG	Nov. 5, 1986	48.09
412845081030100	GE-147	330CYHG	Nov. 4, 1986	2.28
414158081050000	GE-148	330BDFD	Nov. 5, 1986	7.17
413155081214900	GE-150	324PSVL	Nov. 6, 1986	25.41
412319081135000	GE-151	324PSVL	Nov. 3, 1986	82.97
413246081144000	GE-151	324PSVL	Nov. 6, 1986	29.72
413415081160900	GE-152	1120TSH	Nov. 5, 1986	62.60
412441081061400	GE-155	1120151	Nov. 3, 1986	22.58
412835081185800	GE-156	324PSVL	Nov. 6, 1986	61.66
413628081060500				4.36
	GE-157	1120TSH		20.80
412442081102100	GE-159	330BERE		23.84
412304081102300	GE-161	324PSVL	Nov. 3, 1986	
412511081032800	GE-162	324PSVL	Nov. 4, 1986	40.12
412415081033500	GE-163	324PSVL	Nov. 4, 1986	14.11
412319081163000	GE-165	1120TSH	Nov. 3, 1986	9.28
412454081162400	GE-166	324PSVL	Nov. 3, 1986	53.43
412138081113000	GE-167		Nov. 3, 1986	16.25
412628081122800	GE-169	330CYHG	Nov. 6, 1986	FLOWIN
412311081213000	GE-170	330CYHG	Nov. 3, 1986	47.35
412511081225900	GE-171	330CYHG	Nov. 3, 1986	53.93
413415081155100	GE-172	330CYHG	Nov. 5, 1986	55.12
412142081212300	GE-173	324PSVL	Nov. 3, 1986	6.14
412907081202100	GE-174	1120TSH	Nov. 6, 1986	30.95
412841081214900	GE-175	1120TSH	Nov. 6, 1986	30.76
413521081143100	GE-176	324PSVL	Nov. 5, 1986	46.29
413416081083000	GE-177	1120TSH	Nov. 4, 1986	11.41
413138081084200	GE-178	324PSVL	Nov. 4, 1986	55.43
413414081214200	GE-179	330BERE	Nov. 6, 1986	63.90
413114081201600	GE-180	324PSVL	Nov. 6, 1986	31.48
413118081193600	GE-181	324PSVL	Nov. 6, 1986	8.09
412429081045100	GE-183	324PSVL	Nov. 4, 1986	41.06
413020081175400	GE-184	1120TSH	Nov. 6, 1986	74.91
413630081145000	GE-185	330CYHG	Nov. 5, 1986	35.25
413647081120000	GE-186	330CYHG	Nov. 5, 1986	46.16
413506081161800	GE-193	324PSVL	Nov. 5, 1986	53.03
413513081110700	GE-195	1120TSH	Nov. 5, 1986	13.73
413808081034700	GE-196	324PSVL	Nov. 5, 1986	67.06
413957081011800	GE-197	330BERE	Nov. 5, 1986	62.25
414058081010000	GE-198	330BERE	Nov. 5, 1986	15.60
414106081041400	GE-199	324PSVL		15.89
413607081032500	GE-199	324PSVL 324PSVL		28.80
41300/001032300	GE-202	324PSVL	Nov. 5, 1986 Nov. 4, 1986	10.33

Geologic Unit (Aquifer)

¹¹²⁰TSH - Outwash, Pleistocene Epoch 324PSVL - Pottsville Formation, Pennsylvanian Age 330CYHG - Cuyahoga Group, Mississippian Age 330BERE - Berea Sandstone, Mississippian Age 330BDFD - Bedford Shale, Mississippian Age

 $[\]mathbf{1}_{\text{Depth}}$ of water level below land surface, in feet.

The following tables contain ground water-level measurements, chemical analyses from observation wells located in a small watershed affected by coal mining. The data will be used to document ground-water flow and water quality during post-mining conditions.

JEFFERSON COUNTY

401011080521602. Local number, Jll P1-1. LOCATION.--Lat 40⁰10'11", long 80⁰52'16", Hydrologic Unit 05030106, near Harrisville AQUIFER.--Overburden spoils, replaced after mining.

WELL CHARACTERISTICS .-- Drilled observation water well, diameter 5 in., depth 39 ft, cased to 39 ft, bottom 10 ft slotted.

DATUM. -- Altitude of land-surface datum is 1,236.2 ft. Measuring point: Top of casing, 3.0 ft above land-surface datum.

PERIOD OF RECORD.--March 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 29.65 ft below land-surface datum, Feb. 19, 1986; lowest, measured, 37.40 ft Dec. 28, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 28, 1986 May 5, 1987	34.16 30.03	Dec 22, 1986 June 16, 1987	33.02 31.29	Feb 25, 1987 Aug 21, 1987	31.60 32.48	Apr 14, 1987	30.15

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	CIFIC				NESS		MAGNE-	
TIME	CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
1300	212	6.81	13.5	1100	820	310	84	30
1445	1700	6.82	15.0	1100	840	310	80	32
	1300	TIME CON- DUCT- ANCE (US/CM) 1300 212	TIME CON- PH DUCT- (STAND- ANCE ARD (US/CM) UNITS) 1300 212 6.81	TIME CON- PH TEMPER- DUCT- (STAND- ATURE ANCE ARD WATER (US/CM) UNITS) (DEG C) 1300 212 6.81 13.5	TIME CON- PH TEMPER- NESS (MG/L ATURE (MG/L AS) (NESCM) UNITS) (DEG C) CACO3) 1300 212 6.81 13.5 1100	TIME	TIME	CON-

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
OCT 1986 28 MAY 1987	3.6	305	980	58	1800	<10	20	6200	
05	3.7	260	800	68	1540	<10	29	4200	

401011080521603. Local number, Jll P2-2.
LOCATION.--Lat 40°10'll", long 80°52'l6", Hydrologic Unit 05030106, near Harrisville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 187 ft, cased to 46 ft.
DATUM.--Altitude of land-surface datum is 1,236.2 ft. Measuring point: Top of casing, 2.7 ft above land-surface datum. PERIOD OF RECORD. -- March 1981 to current year.

EXTREMES FOR PERIOD OF RECORD .-- Highest water level, 31.95 ft below land-suface datum, May 24, 1983; lowest, measured, 46.84 ft below land-surface datum, Aug 21, 1987.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 28, 1986 May 5, 1987	46.52 45.83	Dec 22, 1986 June 16, 1987	46.45 46.67	Feb 25, 1987 Aug 21, 1987	46.70 46.84	Apr 14, 1987	45.28

GROUND-WATER RECORDS IN STRIP MINES--Continued

JEFFERSON COUNTY--Continued

401010080521801. Local number, Jll P3-1.
LOCATION.--Lat 40°10'10", long 80°52'18", Hydrologic Unit 05030106, near Harrisville
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 7 in., depth 35.5 ft.
DATUM.--Elevation of land-surface datum is 1,236.70 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing 3.0 ft above land-surface datum.
PERIOD OF RECORD.--April 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 30.80 ft below land-suface datum, February 19, 1986; lowest water level, dry many days.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	WATER LEVEL	
Dec 25, 1986 Aug 21, 1987	32.51 33.70	Apr 14, 1987	31.26	May 4, 1987	31.43	June 16, 1987	32.36

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIM	SPE- CIFI CON- DUCT ME ANCI (US/C	IC - PH I- (STANI E ARD	WATE	RE (MG/	WH WAS L TOT FI MG/L	RB CALCIU T DIS- LD SOLVE AS (MG/L	DIS- D SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 1987									
04	140	00 23	180 6.8	34 14	.0 13	00 9	00 330	110	23
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
MAY 1987 04	4.4	377	930	49	1820	20	80	450	

401002080521800. Local number, W4-1.
LOCATION.--Lat 40°10'02", long 80°52'18", Hydrologic Unit 05030106, near Harrisville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 60 ft., cased to 18.00 ft.
DATUM.--Altitude of land-surface datum is 1251.37 ft. Measuring point: Top of casing, 1.2 ft above land-surface datum.

PERIOD OF RECORD.--May 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 42.88 ft below land-surface datum, May 29, 1979; lowest, measured, 55.60 ft below land-surface datum, July 21, 1980.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	DATE WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
Oct 28, 1986 May 5, 1987	53.15 46.65	Dec 22, 1986 June 16, 1987	50.71 49.50	Feb 25, 1987 Aug 21, 1987	49.50 51.32	Apr 13, 1987	45.83	

GROUND-WATER RECORDS IN STRIP MINES--Continued

JEFFERSON COUNTY--Continued

401002080521801. Local number, Jl1 W5-3. LOCATION.--Lat 40⁰10'02", long 80⁰52'18", Hydrologic Unit 05030106, near Harrisville QUIFER.--Sand, shales and coals of Middle Pennsylvanian Age. WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 280 ft., cased to 218 ft. DATUM.--Altitude of land-surface datum is 1,251.74 ft. Measuring point: Top of casing, 1.76 ft. REMARKS.--Dry since construction. PERIOD OF RECORD.--June 1976 to current year.

401004080521900. Local number, Jl1 W6-1.
LOCATION.--Lat 40°10'04", long 80°52'19", Hydrologic Unit 05030106, near Harrisville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 46 ft., cased to 17.8 ft.
DATUM.--Altitude of land-surface datum is 1237.36 ft. Measuring point: Top of casing, 3.2 ft above
land-surface datum.
PERIOD OF RECORD.--May 1976 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 28.60 ft below land-surface datum, Feb. 26, 1979; lowest,
45.21 ft below land-surface datum, Aug. 3, 1980.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 28, 1986 May 5, 1987		22, 1986 16, 1987	37.86 35.68	Feb 25, 1987 Aug 21, 1987	36.24 37.35	Apr 14, 1987	34.92

401004080521901. Local number, Jl1 W7-2.
LOCATION.--Lat 40°10'04", long 80°52'19", Hydrologic Unit 05030106, near Harrisville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 192 ft., cased to 53.8 ft.
DATUM.--Altitude of land-surface datum is 1237.25 ft. Measuring point: Top of casing, 3.0 ft above
land-surface datum.
PERIOD OF RECORD.--May 1976 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 60.45 ft below land-surface datum, Jan. 16, 1980; lowest,
170.11 ft below land-surface datum, Nov. 19, 1979.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL				WATER LEVEL	DATE	WATER LEVEL
Dec 22, 1986 June 16, 1987		Feb 25, 1987 Aug 21, 1987	162.50 155.37	Apr 14, 1987 1	48.84	May 5, 1987	150.80

JEFFERSON COUNTY--Continued

401007080522400. Local number, Jll W8-2.
LOCATION.--Lat 40°10'07", long 80°52'24", Hydrologic Unit 05030106, near Harrisville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 105 ft., cased to 20.43 ft.
INSTRUMENTATION.--Digital recorder--60 minute punch.
DATUM.--Altitude of land-surface datum is 1,156.67 ft. Measuring point: Top of casing, 0.57 ft above

land-surface datum.

PERIOD OF RECORD. -- May 1976 to current year.
EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 24.45 ft below land-surface datum, July 13, 1986; lowest, 37.23 ft below land-surface datum, June 18, 1976.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
29.44							27.13	27.92	28.05	28.27	27.97
28.96							27.09	27.91	27.88	28.35	28.03
28.93							27.13	27.90	27.50	28.31	28.08
28.92							26.99	27.95	27.53	28.08	28.11
28.35							29.14	27.99	27.61	28.06	28.11
28.61							27.91	28.02	27.68	28.03	28.11
28.84							27.71	28.00	27.68	28.03	28.11
29.08							27.75	28.03	27.64	28.03	28.11
29.12							27.76	28.03	27.83	28.03	27.87
29.21							27.80	28.00	27.87	28.04	27.85
29.24						1222	27.82	27.97	27.91	28.04	27.99
29.29							27.89	27.96	27.93	28.09	27.99
29.38							27.90	27.68	27.93	28.15	28.00
						27.13				28.18	28.06
29.39						27.11	27.91	27.82	28.03	28.20	28.08
29.51						27.11	27.91	27.95	28.16	28.21	28.09
29.55									28.19	28.28	28.20
											28.26
											28.26
29.47						27.32	27.81	28.03	28.13	28.38	28.31
29.52						27.32	27.84	27.90	28.14	28.45	28.34
											28.34
											28.34
											28.38
29.45						26.75	27.83	27.85	27.96	27.93	28.43
29.48						26.80	27.82	27.93	28.04	27.93	28.43
											28.46
											28.45
											28.41
											28.35
							27.90		28.27	27.93	
							29.14	28.06	28.27	28.45	28.46
	28.96 28.93 28.93 28.61 28.84 29.08 29.12 29.21 29.24 29.29 29.38 29.39 29.55 29.55 29.57 29.47 29.47 29.52 29.53 29.54 29.55 29.54 29.55 29.54 29.55 29.56	28.96 28.93 28.93 28.92 28.35 28.61 28.84 29.08 29.12 29.21 29.24 29.29 29.38 29.39 29.39 29.51 29.55 29.55 29.51 29.47 29.47 29.52 29.53 29.47 29.47	28.96 28.93 28.92 28.35 28.61 28.84 29.08 29.12 29.21 29.24 29.29 29.38 29.39 29.39 29.51 29.55 29.51 29.47 29.47 29.52 29.53 29.54 29.51 29.45 29.48 29.56 29.56	28.96 28.93 28.92 28.35 28.61 28.84 29.08 29.12 29.21 29.24 29.29 29.38 29.39 29.39 29.51 29.55 29.51 29.47 29.47 29.47 29.52 29.53 29.54 29.51 29.45	28.96 28.93 28.92 28.35 28.61 28.84 29.08 29.12 29.21 29.24 29.29 29.38 29.39 29.39 29.51 29.55 29.51 29.47 29.47 29.52 29.53 29.54 29.51 29.45 29.48 29.56 29.56 29.56 29.56 29.56	28.96 28.93 28.92 28.35 28.61 28.84 29.08 29.12 29.21 29.24 29.29 29.38 29.39 29.39 29.51 29.55 29.51 29.47 29.47 29.52 29.53 29.54 29.51 29.45	28.96 28.93 28.92 28.35 28.61 29.08 29.12 29.21 29.24 29.29 29.38 29.39 27.13 29.39 27.11 29.51 29.51 29.51 29.51 29.51 29.51 29.52 29.47 29.52 29.53 29.47 29.52 29.53 29.54 29.55 27.32 29.55 29.54 29.55 29.55 27.32 29.55 29.55 27.32 29.55 27.32 29.55 29.55 27.32 29.55 29.55 27.32 29.55 29.56 26.80 29.56 20.91	28.96 27.09 28.93 27.13 28.92 26.99 28.35 29.14 28.61 27.91 29.08 27.71 29.08 27.76 29.21 27.80 29.24 27.80 29.29 27.80 29.38 27.89 29.39 27.13 27.89 29.39 27.11 27.91 29.51 27.16 27.89 29.55 27.16 27.89 29.47 27.32 27.84 29.47 27.32 27.84 29.54 27.32 27.84 29.55 27.32 27.84 29.54 27.32 27.84 29.55 27.32 27.84 29.54 27.32 27.84 29.55 27.32 27.84 29.55 27.32 27.84 29.56 26.80 27.82 29.56 26.80 27.82 29.56 26.83 27.81 <tr< td=""><td>28.96 </td><td>28.96 27.09 27.91 27.88 28.92 26.99 27.95 27.53 28.35 29.14 27.99 27.61 28.61 27.91 28.02 27.68 28.84 27.71 28.00 27.68 29.12 27.76 28.03 27.64 29.12 27.76 28.03 27.87 29.24 27.80 28.00 27.87 29.29 27.89 27.96 27.93 29.39 27.13 27.89 27.70 28.03 29.39 27.13 27.89 27.70 28.03 29.51 27.11 27.91 27.82 28.03 29.55 27.16 27.89 28.03 28.19 29.47 27.32 27.84 28.03 28.15 29.47 27.32 27.81 28.03 28.13 29.52 27.32 27.84 27.90 28.03 28.13 29.54 29.56<!--</td--><td>28.96 27.09 27.91 27.88 28.35 28.93 26.99 27.95 27.53 28.08 28.35 29.14 27.99 27.61 28.06 28.61 27.91 28.02 27.68 28.03 29.08 27.71 28.00 27.68 28.03 29.12 27.75 28.03 27.64 28.03 29.12 27.76 28.03 27.83 28.04 29.24 27.80 28.00 27.68 27.93 28.09 29.38 27.89 27.96 27.93 28.09 29.39 27.89 27.96 27.93 28.09 29.39 27.13 27.89 27.96 27.93 28.15 29.39 27.13 27.89 27.90 27.68 27.93 28.12 29.51 27.11 27.91 27.82 28.03 28.12 29.55 27.11 27.91 27.82 28.03 28.18 29.55 27.12 27.89 27.00 28.03 28.18 29.54 27.13 27.89 27.00 28.03 28.18 29.55 27.16 27.89 28.03 28.15 28.33 29.51 27.12 27.81 27.91 27.82 28.03 28.13 28.28 29.55 27.18 27.91 27.89 28.03 28.16 28.21 29.55 27.18 27.81 28.03 28.13 28.33 29.47 27.23 27.84 28.03 28.13 28.33 29.54 27.32 27.84 27.84 28.03 28.13 28.33 29.55 27.32 27.84 27.84 27.81 28.14 28.42 29.54 27.32 27.84 27.84</td></td></tr<>	28.96	28.96 27.09 27.91 27.88 28.92 26.99 27.95 27.53 28.35 29.14 27.99 27.61 28.61 27.91 28.02 27.68 28.84 27.71 28.00 27.68 29.12 27.76 28.03 27.64 29.12 27.76 28.03 27.87 29.24 27.80 28.00 27.87 29.29 27.89 27.96 27.93 29.39 27.13 27.89 27.70 28.03 29.39 27.13 27.89 27.70 28.03 29.51 27.11 27.91 27.82 28.03 29.55 27.16 27.89 28.03 28.19 29.47 27.32 27.84 28.03 28.15 29.47 27.32 27.81 28.03 28.13 29.52 27.32 27.84 27.90 28.03 28.13 29.54 29.56 </td <td>28.96 27.09 27.91 27.88 28.35 28.93 26.99 27.95 27.53 28.08 28.35 29.14 27.99 27.61 28.06 28.61 27.91 28.02 27.68 28.03 29.08 27.71 28.00 27.68 28.03 29.12 27.75 28.03 27.64 28.03 29.12 27.76 28.03 27.83 28.04 29.24 27.80 28.00 27.68 27.93 28.09 29.38 27.89 27.96 27.93 28.09 29.39 27.89 27.96 27.93 28.09 29.39 27.13 27.89 27.96 27.93 28.15 29.39 27.13 27.89 27.90 27.68 27.93 28.12 29.51 27.11 27.91 27.82 28.03 28.12 29.55 27.11 27.91 27.82 28.03 28.18 29.55 27.12 27.89 27.00 28.03 28.18 29.54 27.13 27.89 27.00 28.03 28.18 29.55 27.16 27.89 28.03 28.15 28.33 29.51 27.12 27.81 27.91 27.82 28.03 28.13 28.28 29.55 27.18 27.91 27.89 28.03 28.16 28.21 29.55 27.18 27.81 28.03 28.13 28.33 29.47 27.23 27.84 28.03 28.13 28.33 29.54 27.32 27.84 27.84 28.03 28.13 28.33 29.55 27.32 27.84 27.84 27.81 28.14 28.42 29.54 27.32 27.84 27.84</td>	28.96 27.09 27.91 27.88 28.35 28.93 26.99 27.95 27.53 28.08 28.35 29.14 27.99 27.61 28.06 28.61 27.91 28.02 27.68 28.03 29.08 27.71 28.00 27.68 28.03 29.12 27.75 28.03 27.64 28.03 29.12 27.76 28.03 27.83 28.04 29.24 27.80 28.00 27.68 27.93 28.09 29.38 27.89 27.96 27.93 28.09 29.39 27.89 27.96 27.93 28.09 29.39 27.13 27.89 27.96 27.93 28.15 29.39 27.13 27.89 27.90 27.68 27.93 28.12 29.51 27.11 27.91 27.82 28.03 28.12 29.55 27.11 27.91 27.82 28.03 28.18 29.55 27.12 27.89 27.00 28.03 28.18 29.54 27.13 27.89 27.00 28.03 28.18 29.55 27.16 27.89 28.03 28.15 28.33 29.51 27.12 27.81 27.91 27.82 28.03 28.13 28.28 29.55 27.18 27.91 27.89 28.03 28.16 28.21 29.55 27.18 27.81 28.03 28.13 28.33 29.47 27.23 27.84 28.03 28.13 28.33 29.54 27.32 27.84 27.84 28.03 28.13 28.33 29.55 27.32 27.84 27.84 27.81 28.14 28.42 29.54 27.32 27.84 27.84

		SPE-				HARD- NESS		MAGNE-	
		CIFIC CON-	РН	TEMPER-	HARD- NESS	NONCARB WH WAT	CALCIUM DIS-	SIUM, DIS-	SODIUM, DIS-
		DUCT-	(STAND-	ATURE	(MG/L	TOT FLD	SOLVED	SOLVED	SOLVED
DATE	TIME	ANCE	ARD	WATER	AS	MG/L AS	(MG/L	(MG/L	(MG/L
		(US/CM)	UNITS)	(DEG C)	CACO3)	CACO3	AS CA)	AS MG)	AS NA)
OCT 1986									
28	1200	1920	6.77	11.5	1200	740	330	94	17
MAY 1987									
05	1220	2000	6.64	12.5	1200	710	330	91	15
		ALKA-							
	POTAS-	LINITY		CHLO-	RESIDUE	ALUM-		MANGA-	
	SIUM,	WH WAT	SULFATE	RIDE,	AT 180	INUM,	IRON,	NESE,	
	DIS-	TOTAL	DIS-	DIS-	DEG. C	DIS-	DIS-	DIS-	
	SOLVED	FIELD	SOLVED	SOLVED	DIS-	SOLVED	SOLVED	SOLVED	
DATE	(MG/L	MG/L AS	(MG/L	(MG/L	SOLVED	(UG/L	(UG/L	(UG/L	
	AS K)	CACO3	AS SO4)	AS CL)	(MG/L)	AS AL)	AS FE)	AS MN)	
OCT 1986									
28 MAY 1987	2.5	470	750	31	1400	<10	9	4	
05	2.7	493	740	33	1640	<10	150	7600	

JEFFERSON COUNTY--Continued

401007080522401. Local number, J11 W9-3.
LOCATION.--Lat 40°10'07", long 80°52'24", Hydrologic Unit 05030106, near Harrisville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 122.3 ft. cased to 120 ft.
DATUM.--Altitude of land-surface datum is 1,154.60 ft. Measuring point: Top of casing, 1.6 ft above land-surface datum.
REMARKS.--Dry since construction. Well caved, original depth, 189.40 ft.
PERIOD OF RECORD.--June 1976 to current year.

401009080521500. Local number, Jll PlO-1.
LOCATION.--LAT 40°10'09", long 80°52'15", Hydrologic Unit 05010306, near Harrisville.
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 5 in, depth 39.3 ft, cased to 39.0 ft.
DATUM.--Altitude of land-surface datum is 1236.1 ft. Measuring point: Top of casing, 3.0 ft above land surface datum.
PERIOD OF RECORD.--March 1981 to August 1982, January 1984 to May 1984, Dec. 1985 to present.
EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 29.92 ft below land-surface datum, Jan. 18, 1986, lowest measured, dry prior to January 1982.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 1986									
28 MAY 1987	0930	1460	6.74	12.5	860	600	240	63	21
05	1010	1300	6.74	13.0	740	490	210	53	18
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	AD II)	CHCOS	AD DO4)	AD CD)	(110/11)	AD ALI	AD III,	no ma,	
OCT 1986 28 MAY 1987	2.7	255	540	44	1180	<10	14	920	
05	2.7	243	480	33	999	30	10	740	

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986	TO	SEPTEMBER 1987	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35.13	35.13	35.06	33.40		32.27	32.08	31.01	31.59	32.27	32.77	33.32
2	35.15	35.14	35.03	33.34		32.27	31.97	31.02	31.62	32.27	32.79	33.34
3	35.17	35.15	34.82	33.34		32.28	31.86	31.04	31.65	32.29	32.79	33.36
4	35.17	35.16	34.74	33.34		32.30	31.72	31.05	31.68	32.29	32.82	33.38
5	35.18	35.16	34.72	33.34		32.29	31.59	31.07	31.71	32.33	32.84	33.39
				24 2/2								
6	35.23	35.19	34.70	33.34		32.28	31.49	31.07	31.74	32.34	32.87	33.39
7	35.24	35.22	34.60	33.34		32.27	31.18	31.07	31.76	32.36	32.88	33.41
8	35.27	35.22	34.50	33.34		32.25	30.75	31.07	31.78	32.37	32.89	33.41
9	35.31	35.21	34.42	33.34		32.21	30.63	31.08	31.79	32.39	32.89	33.43
10	35.32	35.23		33.34		32.23	30.59	31.09	31.84	32.41	32.93	33.45
11	35.34	35.23		33.34		32.23	30.54	31.09	31.85	32.42	32.95	33.47
12	35.35	35.23				32.22	30.50	31.12	31.86	32.44	32.96	33.48
13	35.37	35.24				32.22	30.51	31.13	31.87	32.44	32.99	33.49
14	35.40	35.25				32.22	30.95	31.13	31.89	32.46	33.02	33.52
15	35.43	35.25				32.21	30.95	31.17	31.92	32.48	33.03	33.54
16	35.46	35.23				32.21	30.95	31.18	31.95	32.49	33.04	33.55
17	35.51	35.22				32.22	30.97	31.19	31.97	32.54	33.06	33.55
18	35.54	35.22				32.22	31.00	31.20	32.00	32.55	33.08	33.56
19	35.55	35.25				32.21	31.03	31.23	32.01	32.57	33.09	33.59
20	35.56	35.25				32.20	31.04	31.27	32.03	32.59	33.14	33.59
21	35.59	35.23	222			32.21	31.04	31.29	32.04	32.59	33.16	33.63
22	35.64	35.23										33.65
			33.85			32.21	31.04	31.33	32.06	32.62	33.16	
23	35.66	35.23	33.85			32.21	31.05	31.37	32.09	32.63	33.18	33.66
2.4	35.67	35.24	33.81			32.22	31.05	31.39	32.11	32.65	33.19	33.68
25	35.69	35.25	33.74		32.35	32.21	31.02	31.42	32.13	32.67	33.23	33.69
26	35.72	35.24	33.68		32.35	32.22	31.01	31.46	32.14	32.67	33.23	33.71
27	35.74	35.15	33.64		32.34	32.21	31.00	31.48	32.17	32.69	33.24	33.76
28	35.75	35.13	33.60		32.33	32.24	30.97	31.49	32.21	32.71	33.26	33.76
29	35.06	35.10	33.53			32.24	30.97	31.53	32.24	32.73	33.29	33.76
30	35.09	35.10	33.45			32.23		31.55			33.29	33.77
31	35.12						30.98		32.27	32.74		
31	33.12		33.43			32.19		31.57		32.76	33.29	
MAX	35.75	35.25				32.30	32.08	31.57	32.27	32.76	33.29	33.77
WTR YF	1987 ME	EAN 32.	99	HIGH 3	0.50 AP	R 1.2	LOW 35	.75 OCT	28			

GROUND-WATER RECORDS IN STRIP MINES--Continued

JEFFERSON COUNTY--Continued

401008080522900. Local number. Jll Stream. LOCATION.--LAT 40°10'08", long 80°52'29", Hydrologic Unit 05030106, near Harrisville. DRAINAGE AREA.--0.05 mi. DATUM.--Altitude of land surface datum is 1,120 ft. PERIOD OF RECORD.--May 1987 to present.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SPE CIF CON DUC ANC	IC - PI T- (STA E AI	AND -	TEMPER- ATURE WATER (DEG C)	AS	SS S/L	HARD NESS NONCA WH WA TOT F: MG/L CACO	RB CALC T DIS- LD SOL' AS (MG	VED SOL'	UM, SODIUM, S- DIS- VED SOLVED /L (MG/L
MAY 1987 04	1445	5 1	400 8	3.16	15.0		800	6	70 210	68	13
DATE	1	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3		FATE R S- D LVED S S/L (CHLO- IDE, IS- OLVED MG/L S CL)	AT DE D SO	SIDUE 180 G. C IS- LVED G/L)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY 19		3.4	137	680) 2	3	1	160	30	11	6

401007080522000. Local number. Jll Seep.
LOCATION.--LAT 40⁰10'07", long 80⁰52'20", Hydrologic Unit 05030106, near Harrisville.
AQUIFER.--Overburden spoils, replaced after mining.
DATUM.--Altitude of land-surface datum is 1,160 ft.
PERIOD OF RECORD.--May 1984 to current year.

DATE	TIME	SPE- CIFI CON- DUCT ANCE (US/C	C PH - (STA	ND- ATU	RE (MG	S I	HARD- NESS NONCARB WH WAT FOT FLD MG/L AS CACO3	DIS-	DIS ED SOLV	JM, SODIUM, S- DIS- VED SOLVED /L (MG/L
MAY 04	1.445	2200	3.8	4 16.0	0 -	-				
DATE	SC SC S (M	TAS- SIUM, DIS- DLVED	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RESIDAT 18 DEG DISSOLV	80 I . C S- S VED (LUM- NUM, DIS- OLVED UG/L S AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAY 1987	7		0			_				

The following tables contain ground water-level measurements, chemical analyses from observation wells located in a small watershed affected by coal mining. The data will be used to document ground-water flow and water quality during post-mining conditions.

MUSKINGUM COUNTY

394859081462802. Local number, M09 Pl-1.
LOCATION.--Lat 39⁰48'59", long 81⁰46'28", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 65 in., depth 24 ft, cased to 24.0 ft, bottom 10 ft slotted.

DATUM. -- Altitude of land-surface datum is 1,038.46 ft. Measuring point: Top of casing, 2.5 ft above land-surface datum.

PERIOD OF RECORD.--September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.19 below land-surface datum, Feb. 20, 1986; lowest measured, dry many days.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

WATER DATE LEVEL

Apr 13, 1987 20.92

394859081462803. Local number, MO9 P2-2.
LOCATION.--Lat 39 48'59", long 81 46'28", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 7 in., depth 117 ft, cased to 40.0 ft.
DATUM.--Altitude of land-surface datum is 1,038.56ft. Measuring point: Top of casing, 3.0 ft above land-surface datum.

PERIOD OF RECORD. -- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 35.34 ft below land-surface datum, Feb 20, 1986; lowest, measured, 42.75 ft below land-surface datum, July 30, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29, 1986 May 28, 1987		Dec 23, 1986 June 16, 1987	36.01 35.33	Feb 25, 1987 Aug 20, 1987	36.40 35.84	Apr 13, 1987	35.42

394855081462702. Local number, MO9 P3-1.
LOCATION.--Lat 39⁰48'55", long 81⁰46'27", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 7 in., depth 24 ft, cased to 24.0 ft, bottom 10 ft slotted..

DATUM.--Altitude of land-surface datum is 1023.06 ft. Measuring point: Top of casing, 2.5 ft above land-surface datum.

PERIOD OF RECORD. -- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 13.27 ft below land-surface datum, Feb. 20, 1986; lowest measured, dry many days.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29, 1986 May 28, 1987	16.24 16.58	Dec 23, 1986 June 16, 1987	15.91 16.88	Feb 25, 1987 Aug 20, 1987	15.77 17.40	Apr 13, 1987	14.92

394845081462600. Local number, MO9 W5-2. LOCATION.--Lat 39°48'45", long 81°46'26", Hydrologic Unit 05040004, near Chandlersville. AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.

WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 49 ft, cased to 17.3 ft. DATUM.--Altitude of land-surface datum is 973.03 ft. Measuring point: Top of casing, 3.7 ft above land-surface datum.

PERIOD OF RECORD .-- March 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 12.71 ft below land-surface datum, Apr 13, 1987; lowest, measured, 21.70 ft below land-surface datum, Jan. 4, 1977.

WATER LEVELS. IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29, 1986 May 28, 1987	14.33 13.89	Dec 23, 1986 June 16, 1987	13.15	Feb 25, 1987 Aug 20, 1987	13.34	Apr 13, 1987	12.71

394845081462601. Local number, MO9 P5-2a.
LOCATION.--Lat 39°48'45", long 81°46'26", Hydrologic Unit 05040004, near Chandlersville.
QUIFER.--Sand, shales and coals of Middle Pennsylvanian Age. WELL CHARACTERISTICS.—Drilled observation water well, diameter 6 in., depth 50 ft., cased to 16.5 ft.

DATUM.—Altitude of land-surface datum is 974.17 ft. Measuring point: Top of casing, 3.0 ft.

PERIOD OF RECORD.—September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water—level measured, 3.91 ft below land-surface datum, Aug. 19, 1980; lowest measured, 9.48 ft below land-surface datum, Sept. 26, 1978.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29, 198		Dec 23, 1986	5.28	Apr 13, 1987	4.67	May 28, 1987	7.22

394845081462602. Local number, M09 P5-2b.
LOCATION.--Lat 39⁰48'45", long 81⁰46'26", Hydrologic Unit 05040004, near Chandlersville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 50 ft., cased to 17.5 ft.
DATUM.--Altitude of land-surface datum is 973.98 ft. Measuring point: Top of casing, 2.0 ft above

land-surface datum

DEPLOD OF PECOND --September 1978 to current year.

PERIOD OF RECORD. -- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 13.67 ft below land-surface datum, Feb. 20, 1986; lowest, 18.68 ft below land-surface datum, Sept. 26, 1978.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL DATE		WATER LEVEL	DATE	WATER DATE LEVEL DATE		WATER LEVEL
Oct 29, 198		Dec 23, 1986 June 16, 1987	14.07	Feb 25, 1987	14.25	Apr 13, 1987	13.61

394855081461603. Local number, MO9 P6-1.
LOCATION.--Lat 39°48'55", long 81°46'16", Hydrologic Unit 05040004, near Chandlersville
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 56 ft, cased to 56.0 ft, bottom 10 ft slotted.

DATUM.--Altitude of land-surface datum is 1059.91 ft. Measuring point: Top of casing, 3.0 ft above

land-surface datum
PERIOD OF RECORD.--October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 45.87 ft below land-surface datum, Apr. 11, 1986; lowest measured, dry, prior to April 1980.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE LEVEL		DATE	WATER LEVEL DATE		WATER LEVEL	
Oct 29, 1986 May 27, 1987	49.81 48.10	Dec 23, 1986 June 16, 1987	49.50 48.30	Feb 25, 1987 Aug 20, 1987	49.10 49.27	Apr 13, 1987	48.60	

394855081461604. Local number, MO9 P7-2.
LOCATION.--Lat 39°48'55", long 81°46'16", Hydrologic Unit 05030106, near Chandlersville
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in, depth 170 ft, cased to 72.0 ft.
DATUM.--Altitude of land-surface datum is 1,060.54 ft. Measuring point: Top of casing, 2.5 ft above land-surface datum
PERIOD OF RECORD.--November 1978 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.80 ft below land-surface datum, Sept. 25 1980; lowest measured, 106.18 ft below land-surface datum, Aug 20, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	105.77	105.71	105.70	105.42	105.16	105.19	105.12	104.88	105.09	105.43	105.93	106.25
2	105.77	105.73	105.70	105.42	105.16	105.15	105.11	104.88	105.09	105.43	105.95	106.26
3	105.76	105.74	105.69	105.39	105.14	105.14	105.10	104.88	105.10	105.43	105.95	106.28
4	105.75	105.75	105.66	105.39	105.13	105.13	105.10	104.88	105.10	105.44	105.96	106.29
5	105.73	105.75	105.65	105.37	105.14	105.13		104.89	105.11	105.44	105.96	106.30
6	105.72	105.75	105.65	105.37	105.14	105.14		104.89	105.12	105.45	105.97	106.31
7	105.72	105.76	105.65	105.36	105.15	105.14		104.89	105.12	105.46	105.98	106.33
8	105.72	105.76	105.65	105.35	105.15	105.14		104.90	105.14	105.49	106.00	
9	105.72	105.76	105.65	105.35	105.14	105.13		104.92	105.15	105.50	106.02	
10	105.73	105.76	105.62	105.34	105.14	105.11		104.93	105.16	105.51	106.02	
11	105.74	105.76	105.60	105.32	105.15	105.12		104.94	105.18	105.53	106.03	
12	105.75	105.76	105.57	105.30	105.15	105.12		104.94	105.18	105.53	106.04	
13	105.75	105.76	105.56	105.29	105.15	105.13	104.96	104.96	105.19	105.53	106.05	
14	105.75	105.77	105.56	105.29	105.15	105.13	104.96	104.97	105.19	105.54	106.07	
15	105.75	105.77	105.56	105.29	105.15	105.13	104.95	104.98	105.20	105.56	106.08	
16	105.75	105.77	105.55	105.29	105.15	105.13	104.94	104.99	105.20	105.58	106.10	
17	105.75	105.76	105.55	105.29	105.15	105.13	104.93	105.00	105.22	105.59	106.11	
18	105.77	105.76	105.53	105.29	105.15	105.14	104.91	105.01	105.24	105.65	106.11	
19	105.78	105.75	105.50	105.28	105.15	105.14	104.90	105.02	105.26	105.66	106.11	
20	105.80	105.75	105.50	105.25	105.16	105.14	104.90	105.02	105.28	105.69	106.13	
21	105.81	105.72	105.49	105.25	105.17	105.14	104.90	105.04	105.29	105.72	106.15	
22	105.81	105.72	105.49	105.24	105.17	105.13	104.90	105.05	105.31	105.74	106.15	
23	105.82	105.72	105.49	105.22	105.17	105.13	104.90	105.05	105.31	105.77	106.16	
24	105.83	105.72	105.48	105.20	105.17	105.13	104.90	105.07	105.32	105.78	106.17	
25	105.84	105.72	105.46	105.20	105.18	105.13	104.89	105.08	105.34	105.81	106.19	
26	105.84	105.72	105.45	105.20	105.19	105.12	104.89	105.10	105.35	105.84		
27	105.84	105.71	105.44	105.20	105.21	105.12	104.90	105.10	105.36	105.85	106.21	
28	105.84	105.71	105.44	105.20	105.21	105.12	104.89	105.03	105.37	105.86	106.22	
29	105.84	105.71	105.44	105.20		105.14	104.89	105.05	105.39	105.87	106.23	
30	105.66	105.70	105.43	105.19		105.14	104.88	105.07	105.41	105.89	106.23	
31	105.68		105.42	105.17		105.13		105.08		105.92	106.24	
MAX	105.84	105.77	105.70	105.42	105.2	105.19		105.10	105.41	105.92		
WTR :	YR 1987 M	MEAN 105	.44	HIGH	104.88	APR 30 AND	OTHERS	LOW	106.33	SEP 7		

394852081462002. Local number, MO9 P8-1
LOCATION.--Lat 39⁰48'52", long 81⁰46'20", Hydrologic Unit 05040004, near Chandlersville
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 37 ft. cased to 37.0 ft, bottom 10 ft slotted..

DATUM.--Altitude of land-surface datum is 1,039.42 ft. Measuring point: Top of casing, 2.5 ft above land-surface

datum.

PERIOD OF RECORD.--September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 32.25 ft below land-surface datum, Aug. 19, 1980; lowest measured, intersittently dry.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

					HAAIR	IOM VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29.06	29.83		29.68	29.31	28.86		28.22	28.12	28.34	28.67	28.99
2	29.08	29.93		29.65	29.12			28.17	28.12	28.33	28.67	29.01
3	29.08	29.95		29.75	29.33			28.19	28.13	28.35	28.66	29.07
4	29.01	30.79		29.74	29.37			28.26	28.15	28.37	28.65	29.07
5	29.08			29.75	29.42			28.27	28.16	28.39	28.68	29.05
6	29.19			29.70	29.37			28.25	28.18	28.39	28.72	29.01
7	29.21			29.67	29.27			28.22	28.18	28.44	28.73	29.00
8	29.21			29.67	29.22			28.23	28.16	28.46	28.74	28.96
9	29.21			29.66	29.33			28.22	28.19	28.49	28.74	29.00
10	29.28			29.42	29.30			28.19	28.22	28.49	28.76	29.00
11	29.29			29.52	29.26			28.16	28.21	28.49	28.77	29.00
12	29.27			29.53	29.20			28.17	28.15	28.49	28.77	29.00
13	29.20			29.54	29.20		28.32	28.19	28.12	28.49	28.79	29.07
14	29.21			29.53	29.15		28.31	28.18	28.12	28.49	28.82	29.09
15	29.22			29.56	29.25		28.27	28.19	28.12	28.53	28.83	29.08
16	29.22			29.59	29.23		28.21	28.19	28.12	28.59	28.83	29.07
17	29.32			29.58	29.09		28.20	28.17	28.18	28.64	28.80	29.00
18	29.43			29.47	29.17		28.27	28.12	28.20	28.65	28.86	29.06
19	29.43			29.45	29.24		28.29	28.10	28.20	28.67	28.87	29.07
20	29.41			29.49	29.25		28.33	28.13	28.19	28.68	28.95	29.09
21	29.36			29.47	29.17		28.31	28.17	28.14	28.69	28.95	29.09
22	29.35			29.33	29.09		28.31	28.17	28.14	28.69	28.93	29.14
23	29.36			29.34	29.19		28.28	28.17	28.19	28.68	28.95	29.12
24	29.38		29.80	29.42	29.22		28.29	28.18	28.21	28.68	29.00	29.19
25	29.38		29.76	29.42	29.22		28.34	28.17	28.21	28.68	28.99	29.24
26	29.29		29.81	29.38	29.24		28.36	28.17	28.18	28.67	28.99	29.29
27	29.33		29.83	29.38	29.22		28.33	28.18	28.22	28.65	28.94	29.30
28	29.40		29.82	29.39	29.11		28.28	28.67	28.29	28.67	28.95	29.29
29	29.40		29.78	29.39			28.27	28.28	28.29	28.67	29.00	29.12
30	29.62		29.73	29.20			28.22	28.18	28.35	28.66	29.01	29.19
31	29.73		29.77	29.32				28.13		28.67	28.97	
MAX	29.73			29.75	29.42			28.67	28.35	28.69	29.01	29.30
WTP VE	1987 MF	AN 28	87	нтсн .	9 10 MA	v 10	TOW 30	79 NOV	4			

WTR YR 1987 MEAN 28.87 HIGH 28.10 MAY 19 LOW 30.79 NOV 4

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

HARD-

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 1986			2022	120.2	1011				
04 MAY 1987	1500	1830	6.70	14.0	1200	680	370	64	8.3
28	1130	1300	6.75	14.5	1100	0	330	55	6.5
		ALKA-							
	POTAS- SIUM, DIS-	LINITY WH WAT TOTAL	SULFATE DIS-	CHLO- RIDE, DIS-	RESIDUE AT 180 DEG. C	ALUM- INUM, DIS-	IRON, DIS-	MANGA- NESE, DIS-	
DAME		FIELD	SOLVED	SOLVED	DIS-	SOLVED	SOLVED	SOLVED	
DATE	(MG/L AS K)	MG/L AS CACO3	(MG/L AS SO4)	(MG/L AS CL)	SOLVED (MG/L)	(UG/L AS AL)	(UG/L AS FE)	(UG/L AS MN)	
NOV 1986									
04 MAY 1987	2.2	510	840	2.7	1310	<10	7	1200	
28	2.2	M404	700	2.0	1350	10	5	930	

394582081462003. Local number, MO9 P9-2.
LOCATION.--LAT 39°48'52", long 81°46'20", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in, depth 119 ft, cased to 60.0 ft.
DATUM.--Altitude of land-surface datum is 1,039.24 ft. Measuring point: Top of casing, 3.0 ft above land surface datum.

PERIOD OF RECORD.--highest water level, 54.62 ft below land-surface datum, April 15, 1980; lowest measured, 67.45 ft below land-surface datum, Aug. 2, 1979.

EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 29.92 ft below land-surface datum, Jan. 18, 1986,

lowest measured, dry, prior to January 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29, 1986	65.47	Nov 4, 1986	65.53	Dec 23, 1986	59.81	Feb 25, 1987	61.11
Apr 13, 1987	58.62	May 28, 1987	61.63	Jun 16, 1987	66.58	Aug 20, 1987	65.45

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 1986									
04 MAY 1987	1340	919	7.35	12.0	230	0	55	22	140
28	1300	905	7.45	14.0	220	0	55	21	120
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
NOV 1986 04 MAY 1987	2.2	347	160	5.3	614	30	9	75	
28	2.4	363	130	2.6	553	<10	23	96	

394841081463200. Local number, M09 W10-3.
LOCATION.--LAT 39°48'41", long 81°46'32", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in, depth 190 ft, cased to 41 ft. After
Sept. 29, 1976, slotted casing from 140 ft to bottom of well.

DATUM.--Altitude of land-surface datum is 941.51 ft. Measuring point: Top of casing, 0.98 ft above land surface
datum. Prior to Sept. 29, 1976, top of casing, 2.8 ft above land-surface datum
REMARKS.--Well redrilled September 29, 1976 because well collapsed.
PERIOD OF RECORD.-March 1976 to current year.

PERIOD OF RECORD.-March 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 7.92 ft below land-surface datum, Apr 13, 1987, lowest measured, 37.55 ft below land-surface datum, Dec. 21, 1976.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL DATE		WATER LEVEL
Oct 29, 1986 June 16, 1987		Dec 23, 1986 Aug 20, 1987	12.35 22.43	Feb 25, 1987	12.02	Apr 13, 1987	7.92

394853081462803. Local number, M09 Pll-2.
LOCATION.--LAT 39°48'53", long 81°46'28", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in, depth 97 ft, cased to 26.8 ft.
DATUM.--Altitude of land-surface datum is 1,022.15 ft. Measuring point: Top of casing, 2.5 ft above land surface
PERIOD OF RECORD.--September 1978 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 23.17 ft below land-surface datum, Feb. 20, 1986,
lowest measured, 28.97 ft below land-surface datum, Sept. 27, 1978.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	DATE WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL
Oct 29, 1986 May 28, 1987	24.82 24.25	Dec 23, 1986 June 16, 1987	23.75 24.55	Feb 25, 1987 Aug 20, 1987	24.36 24.73	Apr 13, 1987	22.71

394858081462801. Local number. M09 P12-1.
LOCATION.--LAT 39⁰46'58", long 81⁰46'28", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 4 in, depth 62.2 ft, cased to 62.0 ft. bottom 10 ft slotted.

DATUM. -- Altitude of land-surface datum is 1,071.07 ft. Measuring point: Top of casing, 2.2 ft above land surface datum.

PERIOD OF RECORD.--August 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 54.32 ft below land-surface datum, Feb. 20, 1986; lowest water level measured, 60.76 ft below land-surface datum, Jan. 15, 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL DAT		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29, 1986 May 27, 1987	59.82 57.75	Dec 23, 1986 June 16, 1987	59.22 58.10	Feb 25, 1987 Aug 20, 1987	58.89 59.23	Apr 13, 1987	58.19

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

		SPE- CIFIC CON- DUCT-	PH (STAND-	TEMPER- ATURE	(MG/L	HARD- NESS NONCARB WH WAT TOT FLD	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED
DATE	TIME	ANCE (US/CM)	ARD UNITS)	WATER (DEG C)	AS CACO3)	MG/L AS CACO3	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)
NOV 1986									
04 MAY 1987	1130	4340	6.94	14.0	3400	3000	490	530	56
27	1230	4100	6.70	18.0	3300	2700	530	470	47
	F-12-12-12-12-12-12-12-12-12-12-12-12-12-	ALKA-		Marina	100000000	. No. Care			
	POTAS- SIUM,	LINITY WH WAT	SULFATE	CHLO- RIDE,	RESIDUE AT 180	ALUM- INUM,	IRON,	MANGA- NESE,	
	DIS-	TOTAL	DIS-	DIS-	DEG. C	DIS-	DIS-	DIS-	
	SOLVED	FIELD	SOLVED	SOLVED	DIS-	SOLVED	SOLVED	SOLVED	
DATE	(MG/L	MG/L AS	(MG/L	(MG/L	SOLVED	(UG/L	(UG/L	(UG/L	
	AS K)	CACO3	AS SO4)	AS CL)	(MG/L)	AS AL)	AS FE)	AS MN)	
NOV 1986									
04 MAY 1987	9.7	554	3000	4.6	4610	20	600	1500	
27	9.2	581	2900	11	4650	10	1400	1900	

394855081462802. Local number, M09 Pl3-1.
LOCATION.--LAT 39°48'55", long 81°46'28", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Sand, shales and coals of Middle Pennsylvanian Age.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 4 in, depth 53.2 ft, cased to 53.2 ft. bottom 10 ft slotted.

DATUM .-- Altitude of land-surface datum is 1,059.98 ft. Measuring point: Top of casing, 3.0 ft above land surface datum.

PERIOD OF RECORD.--August 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 43.70 ft below land-surface datum, July 23, 1986; lowest measured, 49.50 ft below land-surface datum, Jan. 15, 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 26, 1986 May 27, 1987	48.77 46.73	Dec 23, 1986 June 16, 1987	48.14 46.95	Feb 25, 1987 Aug 20, 1987	47.80 48.05	Apr 13, 1987	47.10

394851081462803. Local number. M09 P14-1.
LOCATION.--LAT 39°48'51", long 81°46'28", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Overburden spoils, replaced after mining.
WELL CHARACTERISTICS.--Drilled observation water well, diameter 4 in, depth 56.0 ft, cased to 56.0 ft. 10 ft slotted.

DATUM.--Altitude of land-surface datum is 1,046.03 ft. Measuring point: Top of casing, 3.0 ft above land surface datum.

PERIOD OF RECORD.--August 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water-level measured, 19.87 ft below land-surface datum, Feb. 25, 1981; lowest water level measured, 39.31 ft below land-surface datum, Oct. 16, 1985.

WATER LEVELS, IN FEET BELOW LAND SURFACE DATUM

DATE WATER LEVEL		DATE	DATE WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL
Oct 29, 1986 May 27, 1987	31.18 30.70	Dec 23, 1986 June 16, 1987	31.91 34.70	Feb 25, 1987 Aug 20, 1987	31.40 31.33	Apr 13, 1987	30.25

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 1986									
29	0900	1510	6.74	14.0	810	0	230	58	13
MAY 1987 27	1430	1100	6.75	14.5	860	0	250	58	13
		ALKA-							
	POTAS-	LINITY		CHLO-	RESIDUE	ALUM-		MANGA-	
	SIUM,	WH WAT	SULFATE	RIDE,	AT 180	INUM,	IRON,	NESE,	
	DIS-	TOTAL	DIS-	DIS-	DEG. C	DIS-	DIS-	DIS-	
DATE	SOLVED (MG/L	FIELD MG/L AS	SOLVED (MG/L	SOLVED (MG/L	DIS- SOLVED	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	
DATE	AS K)	CACO3	AS SO4)	AS CL)	(MG/L)	AS AL)	AS FE)	AS MN)	
OCT 1986									
29	1.1	992	9.3	5.7	833	10	32000	3100	
MAY 1987	1.0	1120	0 5	11	010	<10	41000	3300	
27	1.0	1120	8.5	11	918	(10	41000	3300	

394839081463000. Local number. M09 Stream
LOCATION.--LAT 39 48'39", long 81 46'30", Hydrologic Unit 05040004, near Chandlersville.
DRAINAGE AREA.--0.06 mi .

DATUM.--Altitude of land-surface datum is 920 ft.
PERIOD OF RECORD.--July 1986 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND ARD UNITS)	WATER	(MG	D- N S W /L T	NESS ONCARB H WAT OT FLD G/L AS CACO3	CALCIU DIS- SOLVI (MG/I	DIS ED SOLV L (MG/	M, SODIUM, - DIS- ED SOLVED L (MG/L
OCT 1986	1030	2200	7.7	9 16.	0 1	300	1100	310	130	15
MAY 1987							2200	020	100	
28	1015	1850	7.8	21.	5 1	500	0	370	140	14
DATE	S (1	OTAS- LI SIUM, WE DIS- T DLVED F MG/L MG	TOTAL FIELD S/L AS	ULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RESID AT 18 DEG. DIS SOLV (MG/	O IN C D - SC ED (U	UM- IUM, IS- LVED IG/L AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 19 29 MAY 19		2.1	225	1300	3.0	19	80	10	<10	1800
28		1.6	243	1200	11	20	00	10	20	580

GROUND-WATER RECORDS IN STRIP MINES--Continued

MUSKINGUM COUNTY--Continued

394846081463100. Local number. M09 Seep.
LOCATION.--LAT 39°48'46", long 81°46'31", Hydrologic Unit 05040004, near Chandlersville.
AQUIFER.--Overburden spoils, replaced after mining.
DATUM.--Altitude of land-surface datum is 985 ft.
PERIOD OF RECORD.--July 1986 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	SPE CIF CON DUC ANC	IC I- PI IT- (STA	ND- ATU	RE (MG ER AS	S WH W	SS CARB CALC VAT DIS FLD SOI L AS (MG	SIUM SI S- DI EVED SOL	NE- UM, SODIUM, S- DIS- NVED SOLVED (/L (MG/L MG) AS NA)
OCT 1986									
29 MAY 1987	1000	314	0 7.60	15.0	2400	2000	560	240	19
28	1200	Dr	у						
	P	POTAS-	LINITY		CHLO-	RESIDUE	ALUM-		MANGA-
		SIUM,	WH WAT	SULFATE	RIDE,	AT 180	INUM,	IRON,	NESE,
		DIS-	TOTAL	DIS-	DIS-	DEG. C	DIS-	DIS-	DIS-
222		OLVED	FIELD	SOLVED	SOLVED	DIS-	SOLVED	SOLVED	SOLVED
DAT		(MG/L AS K)	MG/L AS CACO3	(MG/L AS SO4)	(MG/L AS CL)	SOLVED (MG/L)	(UG/L AS AL)	(UG/L AS FE)	(UG/L AS MN)
OCT 1	986								
29. MAY 19		3.1	374	2000	3.5	2980	<10	20	2100
28.									

175

The following table contains water-level measurements from a network of wells in Portage County. The data was collected as part of a cooperative study with the City of Akron for evaluating the possible degradation of ambient ground-water quality by brine injection wells.

Geologic Unit Codes: 1120TSH, Pleistocene outwash; 324PSVL, Pennsylvanian Pottsville Formation.

Site No.	Geologic Local No.	Unit	Da	ate	Water ¹ Level
411038081190200	PO-19	1120TSH	Sept.	16, 1987	3.39
411038081190201	PO-20	1120TSH	Sept.	16, 1987	3.40
411418081141200	PO-21	324PSVL	Sept.	10, 1987	31.45
411404081135500	PO-22	324PSVL	Sept.	10, 1987	29.15
411319081141400	PO-23	324PSVL	Sept.	11, 1987	24.25
411258081165300	PO-24	324PSVL	Sept.	11, 1987	54.20
411311081161600	PO-25	324PSVL	Sept.	11, 1987	42.10
411041081172100	PO-26	1120TSH	Sept.	14, 1987	14.84
411040081172800	PO-27	1120TSH	Sept.	14, 1987	2.03
411049081174500	PO-28	324PSVL	Sept.	14, 1987	51.70
411126081175900	PO-29	1120TSH	Sept.	15, 1987	62.08
411509081123300	PO-30	324PSVL	Sept.	10, 1987	27.66
411508081120800	PO-31	324PSVL	Sept.	10, 1987	31.29
411558081141000	PO-32	324PSVL	Sept.	10, 1987	14.08
411556081142900	PO-33	324PSVL	Sept.	10, 1987	34.14
411517081114200 411550081144900	PO-34	324PSVL	Sept.	11, 1987 11, 1987	71.06
411541081171300	PO-35 PO-36	1120TSH 1120TSH	Sept.	11, 1987	16.04
411512081120500	PO-37	324PSVL	Sept.	15, 1987	26.72
411559081142100	PO-38	324F3VD	Sept.	15, 1987	41.51
411559081142400	PO-39	324PSVL	Sept.	15, 1987	42.40
411540081150100	PO-40	324PSVL	Sept.	15, 1987	12.09
411539081164600	PO-41	1120TSH	Sept.	15, 1987	17.96
411635081185500	PO-42	1120TSH	Sept.	16, 1987	42.80
411635081185501	PO-42A		Sept.	16, 1987	48.45
411631081181500	PO-43	112OTSH	Sept.	16, 1987	96.98
411539081180800	PO-44	1120TSH	Sept.	16, 1987	60.70
411432081200100	PO-45	324PSVL	Sept.	16, 1987	76.43
411405081192200	PO-46	324PSVL	Sept.	16, 1987	52.40
411441081193400	PO-47	1120TSH	Sept.	16, 1987	74.08
411341081203800	PO-48	1120TSH	Sept.	16, 1987	85.24
412017081052100	PO-49	324PSVL	Sept.	17, 1987	76.97
411243081121100 411242081120600	PO-50	1120TSH 1120TSH	Sept.	14, 1987 14, 1987	43.40 52.05
411242081120800	PO-51 PO-52	11201SH	Sept.	14, 1987	38.88
411417081114100	PO-52	324PSVL	Sept.	14, 1987	37.02
411418081131300	PO-54	1120TSH	Sept.	15, 1987	6.72
411701081152600	PO-55	324PSVL	Sept.	15, 1987	29.96
411729081124600	PO-56	324PSVL	Sept.	15, 1987	22.05
412033081124900	PO-57	1120TSH	Sept.	15, 1987	13.63
412033081122600	PO-58	324PSVL	Sept.	15, 1987	23.50
411741081132400	PO-59	324PSVL	Sept.	15, 1987	31.19
411405081041400	PO-60	324PSVL	Sept.	16, 1987	10.54
411423081050800	PO-61	324PSVL	Sept.	16, 1987	77.02
411500081050500	PO-62	324PSVL	Sept.	16, 1987	57.44
411536081032800	PO-63	324PSVL	Sept.	16, 1987	10.60
411528081024400	PO-64	324PSVL	Sept.	16, 1987	10.62
411515081013200	PO-65	324PSVL	Sept.	16, 1987	14.40
4115340810C3300 411452081023300	PO-66 PO-67	324PSVL 324PSVL	Sept.	16, 1987 16, 1987	11.52 16.20
411409081044400	PO-68	324PSVL	Sept.	16, 1987	88.84
411450081174100	PO-69	324PSVL	Sept.	16, 1987	9.29
411119081165100	PO-70	324PSVL	Sept.	15, 1987	1.19
411125081170800	PO-71	1120TSH	Sept.	15, 1987	9.41
411205081170700	PO-72	324PSVL	Sept.	15, 1987	9.41
411155081115700	PO-73	324PSVL	Sept.	15, 1987	33.80
411418081143800	PO-74	324PSVL	Sept.	15, 1987	24.52
411435081151800	PO-75	1120TSH	Sept.	15, 1987	18.20
411209081165900	PO-76	1120TSH	Sept.	16, 1987	27.26
411317081175600	PO-77	112OTSH	Sept.	16, 1987	11.66
411315081155100	PO-78	324PSVL	Sept.	16, 1987	24.41
411325081154400	PO-79	324PSVL	Sept.	16, 1987	23.88
411327081164900	PO-80	1120TSH	Sept.	16, 1987	10.67

Site No.	Local No.	Geologic Unit		Date	Water ¹ Level
411344081175500	PO-81	324PSVL	Sept.	16, 1987	8.90
411427081172100	PO-82	324PSVL	Sept.	16, 1987	20.93
411448081172100	PO-83	324PSVL	Sept.	16, 1987	22.65
411448081171900	PO-84		Sept.	16, 1987	21.66
411840081052200	PO-85	324PSVL	Sept.	17, 1987	45.72
411857081054300	PO-86	1120TSH	Sept.	17, 1987	30.92
411958081044700	PO-87		Sept.	17, 1987	50.68
412031081051700	PO-88	324PSVL	Sept.	17, 1987	66.38
411956081064400	PO-89	1120TSH	Sept.	17, 1987	27.57
411221081205100	PO-90	1120TSH	Sept.	16, 1987	70.96
411851081044400	PO-91	324PSVL	Sept.	17, 1987	74.20
411418081122100	PO-92	324PSVL	Sept.	23, 1987	17.10
411709081140800	PO-93	324PSVL	Sept.	22, 1987	15.04
411743081135400	PO-94	324PSVL	Sept.	22, 1987	55.07
411824081140000	PO-95	324PSVL	Sept.	22, 1987	30.72
411858081122600	PO-96	324PSVL	Sept.	22, 1987	12.42
411954081120600	PO-97	324PSVL	Sept.	22, 1987	51.25
411939081113600	PO-98	324PSVL	Sept.	22, 1987	42.03
411714081113500	PO-99	324PSVL	Sept.	23, 1987	32.29
411752081120800	PO-100	1120TSH	Sept.	23, 1987	16.00
411834081112800	PO-101	1120TSH	Sept.	23, 1987	27.48
411837081102000	PO-102	1120TSH	Sept.	23, 1987	22.90
411956081094100	PO-103	324PSVL	Sept.	23, 1987	28.09
412034081091900	PO-104	324PSVL	Sept.	23, 1987	20.07
412041081101600	PO-105	324PSVL	Sept.	23, 1987	9.89
412040081101000	PO-106	112OTSH	Sept.	23, 1987	12.89

 $^{^{1}\}mathrm{Depth}$ of water level below land surface, in feet.

The following tables contain ground-water levels from a network of 412 domestic, industrial, and observation water wells in Lucas, Wood, and Sandusky Counties. Also, the tables list water-quality data for ground water from 147 wells and springs. The well network and spring network has been established as part of an ongoing assessment of ground-water movement and ground-water quality in the regional Silurian and Devonian Carbonate aquifer and selected unconsolidated aquifers of Quaternary age.

Local well numbers are comprised of a county prefix and township and section number suffix. City and township abbreviations used for well identification in Lucas, Wood, and Sandusky Counties are shown below:

Lucas		Sand	lusky	Wood	
City or township	Abbrevi- ation	City or township	Abbrevi- ation	City or township	Abbrevi- ation
Jerusalem	J	Ballville	В	Bloom	В
City of Maumee	MA	Green Creek	GC	Center	C
Monclova	М	Jackson	J	Freedom	F
City of Oregon	0	Madison	M	Grand Rapids	GR
Providence	P	Rice	R	Henry	H
Richfield	R	Riley	RL	Jackson	J
Spencer	SP	Sandusky	s	Liberty	LI
Springfield	SF	Scott	sc	Lake	LK
Swanton	SW	Townsend	T	Middleton	MD
Sylvania	SY	Washington	W	Milton	ML
City of Toledo	T	Woodville	WO	Montgomery	МО
Washington	WA	York	Y	City of Northwood	N
Waterville	W			Perry	PE
				Perrysburg	PB
				Plain	PI.
				Portage	PO
		7		City of Rossford	R
				Troy	T
				Washington	WA
				Webster	WB
				Weston	WS

The ground-water assessment is being conducted in cooperation with: Wood County; Sandusky County Department of Public Health; Lucas County; City of Toledo, Ohio; City of Oregon, Ohio; City of Sylvania, Ohio; and City of Maumee, Ohio.

GROUND-WATER LEVELS FOR LUCAS COUNTY

413728083393900. Local number, LU-110-T.
LOCATION.--Lat 41037'28", long 83039'39", Hydrologic Unit 04100001, 5020 Angola Rd. at Toledo.
Owner: Gelco Truck Leasing.
AQUIFER.--Dolomite of Silurian Age.
WELL CHARACTERISTICS.--Drilled commercial water well converted for observation, diameter 4.25 in., depth, 342 ft., cased to 122 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute punch.

DATUM. -- Elevation of land-surface datum is 626 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Floor of instrument shelter, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--June 10, 1986 to September 30, 1987.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 47.46 ft below land-surface datum, Apr. 16 and 29, 1987; lowest water level, 50.86 ft below land-surface datum, Aug. 24, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	49.96	49.00	49.20	48.58	48.35	47.99	47.96	47.50	48.33	48.92	49.92	50.47
2	49.98	49.05	48.96	48.44	48.10	48.27	47.96	47.47	48.49	48.86	49.89	50.39
3	49.92	48.99	48.74	48.57	48.39	48.50	48.09	47.62	48.59	48.83	50.03	50.51
4	49.71	48.87	48.91	48.65	48.62	48.59	48.00	47.74	48.69	48.86	50.07	50.47
5	49.64	48.91	49.06	48.64	48.63	48.49	47.91	47.72	48.74	48.87	50.23	50.38
6	49.72	48.83	48.99	48.46	48.53	48.44	47.86	47.62	48.79	48.78	50.31	50.27
7	49.75	48.92	48.91	48.54	48.43	48.36	47.77	47.59	48.66	48.79	50.35	50.22
8	49.58	48.79	48.79	48.51	48.64	48.20	47.73	47.63	48.60	48.78	50.37	50.16
9	49.61	48.99	48.59	48.47	48.66	48.43	47.71	47.60	48.73	48.80	50.23	50.19
10	49.68	49.11	48.79	48.18	48.56	48.47	47.67	47.59	48.84	48.75	50.41	50.23
11	49.51	48.96	48.74	48.26	48.56	48.45	47.53	47.58	48.67	48.73	50.41	50.19
12	49.36	49.00	48.86	48.45	48.49	48.40	47.68	47.81	48.50	48.67	50.36	50.20
13	49.28	49.22	48.97	48.45	48.51	48.40	47.79	47.84	48.51	48.60	50.34	50.23
14	49.15	49.22	48.89	48.45	48.46	48.27	47.66	47.78	48.45	48.71	50.40	50.38
15	49.23	48.93	48.74	48.99	48.54	48.27	47.48	48.01	48.49	48.72	50.41	50.37
16	49.21	48.82	48.73	49.08	48.54	48.38	47.46	47.97	48.49	48.85	50.37	50.31
17	49.25	48.81	48.71	49.03	48.34	48.38	47.48	47.90	48.59	48.96	50.38	50.20
18	49.31	48.92	48.54	48.66	48.43	48.25	47.60	47.93	48.63	48.99	50.52	50.16
19	49.32	49.05	48.58	48.53	48.56	48.17	47.66	47.98	48.62	49.04	50.52	50.23
20	49.18	48.85	48.66	48.56	48.55	48.12	47.62	48.05	48.62	49.13	50.67	50.22
21	48.98	48.94	48.77	48.47	48.42	48.14	47.64	48.08	48.62	49.25	50.65	50.22
22	48.94	48.99	48.77	48.30	48.31	48.13	47.62	48.13	48.68	49.33	50.59	50.23
23	48.89	48.88	48.61	48.38	48.52	48.10	47.55	48.26	48.88	49.37	50.79	50.23
24	48.96	49.04	48.53	48.57	48.61	48.04	47.72	48.30	48.96	49.47	50.86	50.14
25	48.87	49.04	48.57	48.55	48.66	47.96	47.79	48.26	48.85	49.58	50.81	50.23
26	48.67	48.95	48.69	48.54	48.66	48.08	47.74	48.22	48.80	49.62	50.76	50.23
27	48.72	49.06	48.69	48.54	48.62	48.08	47.64	48.25	48.81	49.67	50.58	50.24
28	48.84	49.05	48.68	48.56	48.41	48.17	47.60	48.28	48.86	49.75	50.58	50.25
29	48.89	49.11	48.66	48.57		48.16	47.46	48.28	48.85	49.77	50.65	50.11
30	49.06	49.17	48.62	48.26		47.98	47.59	48.26	48.95	49.82	50.63	50.01
31	49.07		48.64	48.40		47.94	47.59	48.31		49.89	50.45	
MAX	49.98	49.22	49.20	49.08	48.66	48.59	48.09	48.31	48.96	49.89	50.86	50.51
time we	1007 MT	1231 40	0.7	111011	7 46 35	D 16 NM	OMITTED	T OW	FO 06	NIG 24		

WTR YR 1987 MEAN 48.87 HIGH 47.46 APR 16 AND OTHERS LOW 50.86 AUG 24

GROUND-WATER LEVELS FOR LUCAS COUNTY--Continued

413300083510500. Local number, LU-303-SW20
LOCATION.--Lat 41°33'00", long 83°51'05", Hydrologic Unit 04100009, 300 ft north of Reed Rd, 700 ft east of Girdham Rd., Oak Openings Park.

Owner: City of Toledo Metropolitan Parks.

AQUIFER.--Sand of Quaternary Age.

WELL CHARACTERISTICS.--Driven observation point with 2 ft of 0.007 in. well screen, diameter 1.25 in.,

depth, 11.8 ft.

INSTRUMENTATION.--Pressure tranducer and data logger -- 60-minute recording interval.

DATUM.--Elevation of land-surface datum is 675 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of coupling, 2.60 ft above land-surface datum.

PERIOD OF RECORD.--October 1, 1986 to September 30, 1987.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.79	3.26	3.23	3.21	3.39	3.26		3.15	3.59	3.84	5.10	5.59
2	3.68	3.27	3.18	3.24	3.33	3.10		3.14	3.46	3.81	5.13	5.59
2 3	3.59	3.39	2.91	3.27	3.30	3.15		3.02	3.30	3.84	5.17	5.60
4	2.91	3.42	2.98	3.31	3.28	3.17		2.52	3.43	3.81	5.21	5.63
5	2.94	3.43	3.02	3.33	3.27	3.17		2.57	3.55	3.84	5.26	5.65
6	3.01	3.47	3.05	3.28	3.26	3.17		2.65	3.60	3.81	5.29	5.69
7	3.04	3.47	3.04	3.34	3.20	3.17		2.73	3.68	3.86	5.33	5.72
8	3.11	3.49	2.84	3.36	3.10	3.15		2.81	3.73	3.97	5.33	5.75
9	3.14	3.55	2.75	3.36	3.14	3.24		2.86	3.81	4.05	5.36	5.79
10	3.17	3.56	2.68	3.37	3.15	3.27		2.94	3.85	4.14	5.39	5.81
11	3.18	3.59	2.69	3.39	3.15	3.28		3.01	3.88	4.21	5.40	5.82
12	3.21	3.62	2.84	3.40	3.14	3.31		3.11	3.91	4.26	5.42	5.81
13	3.04	3.63	2.91	3.43	3.14	3.34		3.13	3.91	4.30	5.45	5.81
14	2.75	3.65	2.91	3.42	3.18	3.33		3.18	3.97	4.34	5.47	5.82
15	2.81	3.65	2.95	3.21	3.24	3.30	2.60	3.23	4.04	4.37	5.50	5.76
16	2.85	3.66	2.97	3.08	3.26	3.24	2.56	3.27	4.08	4.40	5.53	5.79
17	2.94	3.69	2.95	3.10	3.30	3.15	2.62	3.33	4.15	4.44	5.58	
18	3.00	3.69	2.85	3.10	3.36	3.10	2.69	3.33	4.20	4.49	5.60	
19	3.03	3.68	2.89	3.14	3.40	3.20	2.75	2.78	4.26	4.55	5.65	
20	3.05	3.62	2.97	3.15	3.42		2.78	2.81	4.26	4.60	5.68	
21	3.08	3.44	3.01	3.18	3.42		2.85	2.89	4.01	4.65	5.69	
22	3.11	3.42	3.04	3.15	3.42		2.86	3.01	3.95	4.69	5.74	
23	3.16	3.42	3.02	3.24	3.44		2.86	3.10	3.72	4.73	5.75	
24	3.18	3.46	3.01	3.30	3.46		2.95	3.15	3.79	4.79	5.78	
25	3.18	3.49	3.08	3.31	3.46		2.98	3.20	3.86	4.82	5.78	
26	3.13	3.46	3.13	3.34	3.47		3.01	3.26	3.97	4.87	5.78	
27	3.08	3.15	3.14	3.36	3.46		3.02	3.34	4.08	4.91	5.76	
28	3.13	3.15	3.17	3.40	3.44		3.08	3.42	4.15	4.94	5.76	
29	3.18	3.18	3.17	3.40			3.08	3.49	4.21	4.98	5.72	
30	3.23	3.20	3.20	3.40			3.14	3.55	4.23	5.02	5.65	
31	3.24		3.21	3.43				3.57		5.05	5.60	
MAX	3.79	3.69	3.23	3.43	3.47			3.57	4.26	5.05	5.78	
WTR YR	1987 ME	AN 3.7	71	HIGH	2.52 MAY	4	LOW 5	.82 SEP	11 and 14			

WATER

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	LEVEL (FEET BELOW LAND- SURFACE DATUM)
Wells Completed i	n Carbonate Aquife	er			
414127083424800 414125083423500 414132083423300 414213083432000 414238083395700 414209083405800	LU-100-SY16 LU-101-SY16 LU-102-SY16 LU-103-SY9 LU-104-SY11 LU-105-SY14	414127 414125 414132 414213 414238 414209	0834248 0834235 0834233 0834320 0833957 0834058	02-04-87 02-04-87 02-04-87 02-04-87 02-05-87 02-05-87	53.32 51.57 53.58 21.85 54.43 40.99
413824083435100 413914083441000 413728083393900	LU-106-SF5 LU-108-SF32 LU-110-T	413824 413914 413728	0834351 0834410 0833939	06-17-87 02-04-87 02-04-87 10-01-86 12-10-86 01-27-87 04-14-87	49.60 20.50 46.45 49.90 48.63 48.29 47.57
413447083382500 413328083410500	LU-111-MA36 LU-112-MA3	413447 413328	0833825 0834105	06-16-87 07-28-87 01-26-87 01-26-87	48.47 49.75 58 69.19
413246083415400	LU-113-M10	413246	0834154	07-07-87 01-26-87	72.22
413213083445000 413332083440500 413436083441300	LU-114-M7 LU-115-M5 LU-116-M32	413213 413332 413436	0834450 0834405 0834413	06-17-87 01-26-87 01-27-87 01-27-87 06-25-87	46.52 15.83 22.66 15.43 19.19
413614083441600 413638083453200 413728083445600	LU-117-SF19 LU-118-SF18 LU-119-SF18	413614 413638 413728	0834416 0834532 0834456	01-27-87 02-05-87 01-27-87 06-24-87	16.47 20.15 21.74 23.63
413534083470900	LU-120-SF1	413534	0834709	02-03-87 06-23-87	40.07
413424083421400 414126083395300 413939083420700 413922083384800 413942083364400 413819083370200 413748083321600 414321083303300	LU-121-M33 LU-123-SY23 LU-124-SY27 LU-125-T LU-127-T LU-128-T LU-129-T LU-130-T	413424 414126 413939 413922 413942 413819 413748 414321	0834214 0833953 0834207 0833848 0833644 0833702 0833216 0833033	01-27-87 02-05-87 02-04-87 02-04-87 06-17-87 01-27-87 01-27-87	38.15 48.54 65.28 37.00 25.80 48.68 55.15 30.63
414317083424100 414315083445400 414024083435500	LU-131-SY4 LU-132-SY6 LU-133-SY29	414317 414315 414024	0834241 0834454 0834355	02-04-87 06-10-87 02-04-87 02-04-87	16.03 16.91 33.20 39.03
413429083511200	LU-134-SW8	413429	0835112	06-16-87 02-03-87	40.87
413535083502800	LU-135-SW4	413535	0835028	06-16-87 02-03-87	31.90 23.45 25.82
413303083492800	LU-136-SW22	413303	0834928	06-24-87 02-03-87 06-23-87	44.72 45.88
413217083475300 413327083470800 413426083474800 413003083441300	LU-137-W26 LU-138-M24 LU-139-M14 LU-141-W29	413217 413327 413426 413003	0834753 0834708 0834748 0834413	02-03-87 02-03-87 02-03-87 01-26-87 07-07-87	31.81 31.62 44.23 25.06 25.90
412803083454500	LU-142-W19	412803	0834545	02-03-87 06-26-87	37.12 38.60
412736083471500 412843083474800 412929083460300 412945083485700	LU-143-W24 LU-144-P14 LU-145-W12 LU-146-W10	412736 412843 412929 412945	0834715 0834748 0834603 0834857	02-03-87 02-03-87 02-03-87 02-03-87 07-08-87	35.78 25.10 25.93 31.82 29.59
412731083492100 412633083482400	LU-147-P27 LU-148-P34	412731 412633	0834921 0834824	02-03-87 02-03-87 06-24-87	26.61 36.79 37.26
412539083503800 412704083511200 412906083512200 413102083504600	LU-149-P33 LU-150-P29 LU-151-P17 LU-152-SW32	412539 412704 412906 413102	0835038 0835112 0835122 0835046	02-03-87 02-03-87 02-03-87 02-03-87 06-25-87	34.68 28.31 41.49 45.42 46.00
413927083221300 414029083214100 413909083195300 413939083154200 413820083181400 413830083162800 413727083190500	LU-154-J33 LU-155-J28 LU-156-J2 LU-157-J32 LU-158-J1 LU-159-J6 LU-160-J11	413927 414029 413909 413939 413820 413830 413727	0832213 0832141 0831953 0831542 0831814 0831628 0831905	01-29-87 01-29-87 01-29-87 01-29-87 01-29-87 01-29-87 01-29-87 07-14-87	29.30 22.41 24.19 0.14 18.03 10.10 20.78 21.18
414022083171800	LU-161-J30	414022	0831718	01-29-87 07-09-87	8.22 10.50

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	WATER LEVEL (FEET BELOW LAND- SURFACE DATUM)
413734083210300	LU-162-J10	413734	0832103	01-29-87	35.44
413728083173500 413719083221300 413730083250200	LU-163-J12 LU-164-J17 LU-165-O12	413728 413719 413730	0831735 0832213 0832502	01-29-87 01-29-87 01-29-87	16.30 42.02 45.93
413749083234300	LU-166-07	413749	0832343	07-06-87 01-28-87	51.81 42.33
413937083223700	LU-167-032	413937	0832237	01-28-87 07-13-87	27.44
413931083274200	LU-168-034	413931	0832742	01-28-87 07-14-87	40.29
414019083261400 413723083280300	LU-170-026 LU-171-09	414019 413723	0832614 0832803	07-07-87 01-30-87	38.96 55.21
414314083351000 414151083352200	LU-173-T LU-174-T	414314 414151	0833510 0833522	01-28-87 01-28-87	35.47 61.57
414142083290400	LU-175-T	414142	0832904	06-23-87 01-29-87	65.20 20.80
413819083195600 414029083201000	LU-176-J3 LU-177-J27	413819 414029	0831956 0832010	01-29-87 01-29-87	29.07 20.52 25.07
413926083173300 413915083144200	LU-178-J31 LU-179-J33	413926 413915	0831733 0831442	07-15-87 01-29-87 02-02-87	12.12
413743083112300	LU-180-J12	413743	0831123	07-14-87 02-02-87	6.21
413742083111600	LU-181-J12	413743	0831116	07-23-87 02-02-87	4.62
413730083153500 413747083265200	LU-182-J8 LU-183-O10	413730 413747	0831535 0832652	01-29-87 01-28-87	5.90 49.46
413817083242700	LU-184-06	413817	0832427	09-02-87 01-28-87	58.86 39.71
413912083221400	LU-185-J33	413912	0832214	07-08-87 01-29-87	46.29 30.03
414128083314800	LU-193-T	414128	0833148	01-27-87 06-22-87	75.47 82.97
414330083315700	LU-194-T	414330	0833157	01-28-87 06-23-87	36.00 32.14
414344083292000	LU-195-WA4	414344	0832920	01-29-87 07-06-87 07-21-87	21.38 25.31 26.31
414328083281300	LU-196-T	414328	0832813	01-28-87	22.05
Wells Completed in	Sand Aquifer				
413408083512400	LU-301-SW17	413408	0835124	10-01-86	6.77
				02-03-87 06-02-87	5.82 6.18
413212083514300	LU-302-SW29	413212	0835143	10-01-86 02-03-87	4.17 3.46
413300083510500	LU-303-SW20	413300	0835105	06-02-87 10-01-86	4.17 3.81
				11-03-86 12-10-86 12-11-86	3.39 2.64 2.70
				02-03-87 02-04-87	3.32 3.28
				04-15-87 04-28-87	2.60 3.10
				06-03-87 06-16-87	3.19 4.08
413328083501100	LU-304-SW21	413328	0835011	07-28-87 10-01-86	4.96 8.68
				02-03-87 06-03-87	7.65 7.71
414133083424800	LU-305-SY16	414133	0834248	10-02-86 02-04-87	6.53 5.92 6.04
414314083403100	LU-306-SY2	414314	0834031	06-03-87 10-02-86 02-05-87	5.04
414203083411700	LU-307-SY15	414203	0834117	06-03-87 10-02-86	4.73 8.69
413503083473900	LU-308-M11	413503	0834739	06-10-87 11-14-86	7.75 8.45
		1	1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11-20-86 02-03-87	3.36 3.19
414242083395100	LU-309-SY12	414242	0833951	06-09-87 02-05-87	3.98 8.32
413823083435200	LU-310-SF5	413823	0834352	06-04-87 11-20-86	9.15
414250002402100	T.II_212_6911	414250	0024021	02-04-87 06-09-87 02-05-87	3.60 4.05 3.72
414258083403100 414203083425500	LU-312-SY11 LU-315-SY16	414258 414203	0834031 0834255	02-04-87	5.60

GROUND-WATER QUALITY IN LUCAS COUNTY

The following tables contain results of analyses of ground waters collected for the purpose of establishing a data base of water-quality information for wells completed in the Silurian-Devonian carbonate aquifer and in selected surficial-sand aquifers of Quaternary age. Ground water also was collected from a spring (LU-14) that discharges from the Silurian-Devonian carbonate aquifer at a quarry sump. Water characteristics, major and minor dissolved inorganic constituents, dissolved trace elements, nitrogen and phosphorus compounds, and dissolved organic carbon are reported.

The notation "ND" means the constituent of interest was not detectable at the analytical limit. Sulfide concentrations listed as ND were based on titrations for which the sample aliquot required more titrant than a blank aliquot of equal volume.

In data for total coliform, fecal coliform, and fecal streptococcus bacteria counts, the prefix "K" indicates an estimated count based on a non-ideal colony number of less than 20 per filter. The ">" symbol preceding a value indicates that the number of colonies per filter was too numerous to count; therefore, an estimate was made based on the smallest filtered volume.

Samples for total recoverable purgeable organic compound analysis by GC-MS were collected from the following: wells (county prefix is omitted)--116-M32, 127-T, 131-SY4, 133-SY29, 141-W29, 148-P34, 169-05, 170-026, 179-J33, 180-J12, 193-T, 197-027, 198-W3, 301-SW17, 302-SW29, 305-SY16, 306-SY2; Spring--14. The results for the specific purgeable compounds were found to be less than the reporting concentration listed in the table below for all wells and the spring.

DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)
<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)
<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.00	<3.0	<3.0
1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,2- DIBROMO ETHYL- ENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI - CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE WATER WHOLE TOT REC (UG/L)
<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413431083403400. Local number, LU-14 at Maumee.
LOCATION.--Lat 41°34'31", long 83°40'03", Hydrologic Unit 04100009.
OWNER: Stoneco, Inc.
AQUIFER.--Dolomite of Silurian age.
SPRING CHARACTERISTICS.--Quarry sump spring.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 05	0900	1350	8.05	7.50	22.0	19.0	7.8	K16	Kll	K16
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 05	560	300	120	53	5.4	1.0	318	0	261	4.5
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 05	ND	250	9.7	1.3	0.075	7.7	674	640	0.011	0.537
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 05	0.207	0.60	0.001	20	<1	30	260	25	35000	3.7

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414209083405800. Local number, LU-105-SY14 at Sylvania.
LOCATION.--Lat 41°42'09", long 83°40'58", Hydrologic Unit 04100001.

OWNER: Sylvania Country Club.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 6 in., depth 71 ft., cased to 59.9 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN 17	0940	49.60	360	8.00	8.00	24.0	13.0	ND	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 17	<1	140	0	31	10	25	1.0	214	0	173
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUN 17	3.4	38	1.4	2.0	<0.010	10	216	239	<0.010	<0.100
DATE	NITI GE) AMMO DI; SOL' (MG,	N, GEN, NIA MONI S- ORGA VED DIS /L (MG	A + ORT NIC DIS SOLV	OUS ALU HO, INU - DI ED SOL L (UG	M, BOF S- DI VED SOI	S- D VED SO	ON, NES	SE, T: IS- D: LVED SOI G/L (UC	RON- CARB IUM, ORGA IS- DIS LVED SOLV G/L (MG SR) AS	NIC - ED /L
JUN 17	0.09	90 0.	20 <0.0	01 10	29	0	4 <	1 1	5000 2	. 4

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413328083410500. Local number, LU-112-MA3 at Maumee.
LOCATION.--Lat 41°33'28", long 83°41'05", Hydrologic Unit 04100009.

OWNER: St. Lukes Hospital.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 5.62 in., depth 305 ft., cased to 72.7 ft.

CARBON CHLO- FLUO- SILICA, RESIDUE SUM OF GE DIOXIDE SULFATE RIDE, RIDE, BROMIDE DIS- AT 180 CONSTI- NITR	MF S./ ML)
TOCOCCI	<1
JUL 07 <1 1700 1600 460 140 100 7.4 184 0 SOLIDS, NITT CARBON CHLO- FLUO- SILICA, RESIDUE SUM OF GENERAL SULFATE RIDE, RIDE, BROMIDE DIS- AT 180 CONSTI- NITR	TY AT AL LD
CARBON CHLO- FLUO- SILICA, RESIDUE SUM OF GE DIOXIDE SULFATE RIDE, RIDE, BROMIDE DIS- AT 180 CONSTI- NITR	03 153
CARBON CHLO- FLUO- SILICA, RESIDUE SUM OF GE DIOXIDE SULFATE RIDE, RIDE, BROMIDE DIS- AT 180 CONSTI- NITR	
SOLVED TOTAL SOLVED SOLVED SOLVED SOLVED (MG/L DIS- DIS- SOLVED DATE (MG/L (MG/L (MG/L (MG/L (MG/L AS SOLVED SOLVED (MG/L	N, ITE S- VED /L
AS CO2) AS S) AS SO4) AS CL) AS F) AS BR) SIO2) (MG/L) (MG/L) AS I	N)
	010
NITRO-	NIC - ED /L
JUL 07 <0.100 0.900 1.0 0.004 10 1400 100 20 11000 1	. 2

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413246083415400. Local number, LU-113-M10 at Maumee.
LOCATION.--Lat 41°32'46", long 83°41'54", Hydrologic Unit 04100009.

OWNER: Arthur Graham.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.0 in., depth 57 ft., cased to 45.7 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN 17	1800	46.52	1760	6.95	7.00	10 5	10 5	ND	71.0	K1
17	1800	40.52	1760	6.95	7.00	19.5	12.5	ND	K12	KI
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 17	K17	1000	620	444		22				407
17	KIT	1000	020	210	120	38	3.6	510	0	407
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN 17	91	ND	700	14	1.4	0.050	15	1420	1.270	(0.010
17	91	ND	700	14	1.4	0.059	15	1430	1370	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN										
17	<0.100	0.310	0.30	<0.001	20	460	860	35	20000	2.5

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413436083441300. Local number, LU-116-M32 at Monclova.
LOCATION.--Lat 41°34'36", long 83°44'13", Hydrologic Unit 04100009.

OWNER: Jason Wildarger.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5 in., depth 55 ft., cased to 45 ft.

JUN 25 DATE JUN 25	HARD-NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED	BICAR- BONATE IT-FLD	CAR-BONATE	K14 ALKA- LINITY WH WAT TOTAL	CARBON DIOXIDE	<1
JUN	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED	BONATE IT-FLD	BONATE IT-FLD	LINITY WH WAT	DIOXIDE	
JUN	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED	BONATE IT-FLD	BONATE IT-FLD	LINITY WH WAT	DIOXIDE	
	1100	920	200		AS NA)	(MG/L AS K)	(MG/L AS HCO3)	(MG/L AS CO3)	FIELD MG/L AS CACO3	SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
			280	100	52	3.6	244	0	199	18	<0.5
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN											
25	1000	73	0.8	0.54	11	1870	1650	<0.010	<0.100	0.470	1.3
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUN 25	0.008	10	<1	<1	<100	350	<1	<10	7	460	<5
2011		20	1.	,_	1100	330		120		400	
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	
JUN 25	50	50	0.2	4	<1	1.0	10000	40	1.6	<0.010	

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413728083445600. Local number, LU-119-SF18 near Crissey.
LOCATION.--Lat 41037'28", long 83044'56", Hydrologic Unit 04100009.
OWNER: Joseph Nowowiejski.
AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.56 in., depth 80 ft., cased to 65.9 ft.

		WATER C	QUALITY DA	TA, WATER	YEAR OCT	OBER 1986	TO SEPTE	MBER 1987		
DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN 24	1220	23.63	347	7.75	7.80	34.0	13.0	0.1	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 24	<1	150	0	40	10	17	0.9	228	0	185
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN 24	6.4	ND	3.1	1.0	1.0	<0.010	16	203	207	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN 24	<0.100	0.330	0.60	0.006	<10	190	610	6	4200	4.0

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413534083470900. Local number, LU-120-SF1 near Crissey.
LOCATION.--Lat 41035'34", long 83047'09", Hydrologic Unit 04100009.
OWNER: Harry Wagner
AQUIFER.--Dolomite of Devonian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.50 in., depth 90 ft., cased to 66.1 ft.

		MUITE A	MUNITITE DA	TA, WATER	I LAR OCI	OBER 1960	10 SEPIE	MDER 1907		
DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,520 07		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
JUN	1545	40.00								
23	1545	40.06	284	8.38	8.30	30.0	15.5	ND	<1	Kl
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER	HARD- NESS TOTAL (MG/L AS	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE IT-FLD (MG/L AS	CAR- BONATE IT-FLD (MG/L AS	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS
DATE	100 ML)	CACO3)	CACO3	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	CO3)	CACO3
JUN										
23	К2	47	0	10	4.5	48	0.9	162	0	135
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN										
23	1.1	<0.5	8.6	2.8	2.1	0.030	11	173	172	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN										
23	<0.100	0.180	0.40	0.004	<10	840	77	3	3000	2.5

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413942083364400. Local number, LU-127-T at Toledo.
LOCATION.--Lat 41°39'42", long 83°36'44", Hydrologic Unit 04100009.

OWNER: University of Toledo.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 7 in., depth 200 ft., cased to 86.0 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN 17	1245	25.80	1990	7.30	7.30	34.0	14.0	ND	K2	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUN 17	1100	910	250	110	40	3.2	221	0	178	18	0.6
17	1100	910	250	110	40	3.2	221	U	176	10	0.6
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN 17	910	44	1.7	0.27	13	1790	1500	<0.010	<0.100	0.400	0.80
DATE	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUN 17	<0.001	10	<1	<1	100	350	<1	20	<1	30	<5
DATE JUN 17	SC (U	THIUM NE DIS- I DLVED SO JG/L (U	DIS- D DLVED SC UG/L (U G MN) AS	DIS- DI DLVED SO G/L (U	CKEL, NI CS- D DLVED SO UG/L (U	DIS- IDLVED SO	CVER, TO DIS- I DIVED SO DIS/L (US AG) AS	DIS- I DLVED SO JG/L (U S SR) AS	INC, ORG DIS- DI DLVED SOI JG/L (N	LVED TO MG/L (M S C) AS	NIDE TAL G/L CN)

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413748083321600. Local number, LU-129-T at Toledo.
LOCATION.--Lat 41°37'48", long 83°32'16", Hydrologic Unit 04100009.
OWNER: Kuhlman Building Supply.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 10.0 in., depth 550 ft., cased to 79.9 ft.

								2011		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN 17	1600	1560	7.30	7.40	29.0	13.0	4.0	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUN 17	740	590	190	66	56	4.0	188	0	154	15
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUN 17	ND	670	70	2.1	0.50	9.2	1210	1220	0.030	0.230
DATE	GE AMMO DI	S- ORGAN VED DIS /L (MG/	AM- PHORE A + ORTH NIC DIS- SOLVE /L (MG/)	OUS ALU HO, INU - DI ED SOL L (UG	M, BOR S- DI VED SOI /L (UG	VED SOI	ON, NES SS- DI LVED SOI G/L (UG	SE, TI S- DI LVED SOI G/L (UG	RON- CARB LUM, ORGA S- DIS LVED SOLV S/L (MG SR) AS	NIĊ - ED /L
JUN 17	0.	770 0.	.80 <0.0	001	10	270	70	14 19	000 2	. 4

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414317083424100. Local number, LU-131-SY4 at Sylvania.
LOCATION.--Lat 41°43'17", long 83°42'41", Hydrologic Unit 04100001.

OWNER: Westgate.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 52 ft., cased to 16.4 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987	WATER	QUALITY	DATA,	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987	
---	-------	---------	-------	-------	------	---------	------	----	-----------	------	--

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN 10	1000	16.91	830	7.15	7.60	18.0	13.0	ND	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)		ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUN 10	440	150	120	30	8.5	1.7	356	0	291	40	<0.5
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN,	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN 10	140	25	1.0	0.048	12	555	529	<0.010	<0.100	0.110	1.8
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)		ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUN 10	0.002	20	<1	<1	230	30	<1	110	1	300	<5
DATE JUN 10	LITHIUM DIS- SOLVED (UG/L	MANGA- NESE, ME DIS- SOLVED S (UG/L (AS MN) A	CRCURY NI DIS- D COLVED S	SCKEL, N IS- OLVED S UG/L (SELE- HIUM, SI DIS- SOLVED S	LVER, DIS- COLVED S UG/L S AG)	STRON- TIUM, DIS- SOLVED (ZINC, OR DIS- D SOLVED SO (UG/L (AS ZN) A	RBON, GANIC IS- CY LVED T MG/L (S C) A	VANIDE COTAL (MG/L AS CN)	

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414024083435500. Local number, LU-133-SY29 near Sylvania.
LOCATION.--Lat 41°40'24", long 83°43'55", Hydrologic Unit 04100001.

OWNER: Conventry Furniture.

AQUIFER.--Dolomite of Upper Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 6 in., depth 100 ft., cased to 51.1 ft.

JUN DATE JUN 16	HARD-NESS TOTAL (MG/L AS CACO3)	40.87 HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L	7.90 SODIUM, DIS- SOLVED	35.0 POTAS- SIUM, DIS-	12.5 BICAR-BONATE	ND CAR- BONATE	<1 ALKA- LINITY WH WAT	<1 CARBON DIOXIDE	<1
JUN	NESS TOTAL (MG/L AS CACO3)	NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED	DIS-	SIUM,	BONATE		LINITY		
	150	16		AS MG)	(MG/L AS NA)	SOLVED (MG/L AS K)	IT-FLD (MG/L AS HCO3)	IT-FLD (MG/L AS CO3)	TOTAL FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
16	150	1.0	4.5				1.67		1.27		40.5
		10	46	7.2	7.8	1.0	167	0	137	4.2	<0.5
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN 16	13	8.0	0.7	<0.010	15	190	189	<0.010	<0.100	0.200	<0.20
DATE	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUN											
16	0.009	20	<1	9	320	30	<1	<10	<1	190	<5
DAT	D SO E (U	HIUM NE DIS- D DLVED SC IG/L (U	DIS- D DLVED SO IG/L (U	DIS- DI DLVED SO G/L (U	CKEL, NI S- D DLVED SC IG/L (U	OIS- D DLVED SO G/L (U	VER, TOUS- IN SIGNAL (U	DIS- D DLVED SC IG/L (U	NC, ORG DIS- DI DLVED SOL UG/L (M	VED TO	NIDE TAL G/L CN)
JUN		7	7 1.						7 3.4	<0.01	

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413429083511200. Local number, LU-134-SW8 near Swanton.
LOCATION.--Lat 41°34'29", long 83°51'12", Hydrologic Unit 04100009.
OWNER: Robert Lambdin.
AQUIFER.--Dolomite of Devonian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 95 ft., cased to 73 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN										
16	1800	31.90	315	8.10	8.00	33.0	13.0	ND	>80	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN										
16	<1	82	0	18	8.4	42	2.0	210	0	170
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN			-						105	
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN 16	<0.100	0.250	0.30	0.005	<10	650	8	10	2100	4.1
10	(0.100	0.230	0.30	0.005	(10	050	0	10	2100	4.1

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413535083502800. Local number, LU-135-SW4 near Swanton.
LOCATION.--Lat 41⁰35'35", long 83⁰50'28", Hydrologic Unit 04100009.

OWNER: Daniel Pietraszak.

AQUIFER.--Dolomite of Devonian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.50 in., depth 80 ft., cased to 48.2 ft.

			WATER (QUALITY D	ATA, WATE	R YEAR OC	OBER 198	6 TO SEPTE	MBER 1987		
DATE	3	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN											
24		0930	25.82	480	7.90	8.10	12.5	9.5	К2	<1	K2
DATI	3	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUN											
24		150	0	34	15	47	5.4	282	0	230	5.6
DATI		SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUN 24		9.3	58	2.5	1.4	0.020	7.7	285	319	<0.010	<0.100
	DATE	GE AMMO DI	N, GEN, NIA MONI S- ORGA VED DIS	AM- PHODIANIC DIS	THO, IN S- D VED SO /L (U	IS- DI	IS- DE LVED SOI G/L (UC	ON, NES	S- DI VED SOI	ON- CARE UM, ORGA S- DIS VED SOLV //L (MG SR) AS	NIC - VED S/L
JUN											
24	4	0.	530 (0.70 <0	.001	<10	1200	43	3 7	200 2	.0

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413303083492800. Local number, LU-136-SW22 near Whitehouse.
LOCATION.--Lat 41°33'03", long 83°49'28", Hydrologic Unit 04100009.

OWNER: James Webber.

AQUIFER.--Dolomite of Devonian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5 in., depth 83 ft., cased to 70.1 ft.

STREP-	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
STREP-		1000	45 00	400	7 60	7 00	25 0	12.5	ND	/1	41
TOCOCCI	23	1900	45.00	490	7.00	7.90	35.0	13.5	ND	11	(1
CARBON CHLO- FLUO- FLUO- SILICA, RESIDUE SUM OF GEN, OF GE	DATE	TOCOCCI FECAL, KF AGAR (COLS. PER	NESS TOTAL (MG/L AS	NESS NONCARB WH WAT TOT FLD MG/L AS	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	BONATE IT-FLD (MG/L AS	BONATE IT-FLD (MG/L AS	LINITY WH WAT TOTAL FIELD MG/L AS
CARBON DIOXIDE SULFATE RIDE RIDE RIDE RIDE RIDE DIS-		<1	220	0	30	26	25	1.4	314	0	255
23 10 <0.5 22 1.0 1.5 <0.010 22 320 318 <0.010 NITRO-	DATE	DIOXIDE DIS- SOLVED (MG/L	TOTAL (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN, NITRITE DIS- SOLVED (MG/L
NITRO-		2.0	.0.5								
GEN, GEN, GEN, AM PHOROUS ALUM- MANGA STRON- CARBON, NO2+NO3 AMMONIA MONIA + ORTHO, INUM, BORON, IRON, NESE, TIUM, ORGANIC DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	23	10	<0.5	22	1.0	1.5	<0.010	22	320	318	<0.010
	DATE	GEN, NO2+NO3 DIS- SOLVED (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, AM- MONIA + ORGANIC DIS. (MG/L	PHOROUS ORTHO, DIS- SOLVED (MG/L	INUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L	ORGANIC DIS- SOLVED (MG/L
Z3*** \U**1UU U**44U U**/U U**UU6 /U 34U 13U A 34U00 65	JUN 23	<0.100	0.440	0.70	0.006	20	340	130	4	34000	6.5

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413003083441300. Local number, LU-141-W29 at Waterville.
LOCATION.--Lat 41°30'03", long 83°44'13", Hydrologic Unit 04100009.

OWNER: Craddock.

AQUIFER.--Dolomite of Upper Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 77 ft., cased to 32 ft.

			WALL	SK QUALIT.	DAIA, WA	ALEK IEAK	OCTOBER 1	1960 10 51	SPIEMBER I	307	
DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
		(1001)	(00) (11)	ONT ID/	ONIID	(DEG C)	(DEG C)	(HG/ H/	100 1117	TOO HII/	TOO III)
JUL		- 12021		2 22				4	Short	6.2	-
07	1310	25.90	950	7.15	7.70	25.0	12.5	0	K16	K1	K6
DATE	TOTAL (MG/L	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	TOTAL FIELD MG/L AS	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUL											
07	520	210	120	47	19	3.9	379	0	314	43	0.8
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUL											
07	160	7.4	0.4	0.067	13	646	578	<0.010	<0.100	0.400	0.80
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUL											
07	0.005	<10	<1	<1	42	350	<1	<10	<1	39	<5
DATE	LITHIUM DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	MERCURY DIS- SOLVEI (UG/L	DIS- SOLVEI (UG/L	DIS- SOLVED (UG/L	(UG/L	DIS- SOLVED (UG/L	ZINC, DIS-	(MG/L	CYANIDE TOTAL (MG/L AS CN)	
	AS LI)	AS MN)	AS HG)	AS NI)	AD DE)	AS AG)	AS SK)	AS ZN)	AS C)	AB CN/	
JUL 07	40	7	0.4	1 2	2 <1	<1.0	20000	3	1.3	<0.010	

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

412803083454500. Local number, LU-142-W19 near Waterville.
LOCATION.--Lat 41°28'03", long 83°45'45", Hydrologic Unit 04100009.

OWNER: Robert Seeman.

AQUIFER.--Dolomite of Upper Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 85 ft., cased to 61.6 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN					2022	22.3			22	2.2
26	1045	38.60	2060	7.22	7.30	27.0	17.5	ND	K7	Kl
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 26	K11	1200	910	300	98	55	3.6	309	0	251
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN	20	7.0	1100	20	1.0	0.27	10	1050	1780	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN 26	<0.100	0.610	2.2	0.010	30	630	80	20	13000	1.5
20	70.100	0.010	2.2	0.010	30	030	30	20	13000	1.3

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

412945083485700. Local number, LU-146-W10 near Whitehouse.
LOCATION.--Lat 41°29'45", long 83°48'57", Hydrologic Unit 04100009.

OWNER: David Senancik.

AQUIFER.--Dolomite of Devonian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 74.5 ft., cased to 23.2 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUL										
08	1430	29.59	640	8.08	7.70	30.0	12.5	0.1	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUL 08	<1	290	45	65	29	23	1.6	299	0	245
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUL										
08	4.0	ND	120	1.8	1.9	0.022	11	390	4 09	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL		4 13 4								
08	<0.100	0.180	1.1	0.001	<10	300	25	<1	7600	1.5

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

412633083482400. Local number, LU-148-P34 at Providence Township.
LOCATION.--Lat 41°26'33", long 83°48'24", Hydrologic Unit 04100009.

OWNER: Wilbur Kunkle.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 61 ft., cased to 57.3 ft.

WATER	OTIAT.T TY	DATA.	WATER	VEAR	OCTORER	1986	TO	SEPTEMBER	1987

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL KF AGAR (COLS. PER 100 ML)
JUN 25	1300	37.26	1120	7.40	7.20	33.0	12.0	ND	кі	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUN 25	600	260	150	52	27	2.0	415	0	347	26	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN											
25	230	51	0.6	0.060	15	782	741	<0.010	<0.100	0.260	1.2
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUN											
25	<0.001	<10	<1	<1	110	210	1	<10	2	1200	<5
JUN	DATE (U	THIUM NE DIS- D DLVED SC UG/L (U	OIS- D DLVED SO IG/L (U	DIS- DI DLVED SO IG/L (U	CKEL, NI S- D DLVED SO IG/L (U	IS- D LVED SO G/L (U	VER, TO DE SOUCH S	IS- D LVED SO G/L (U	NC, ORG IS- DI LVED SOL G/L (M	VED TO	ANIDE DTAL IG/L S CN)
	· · · ·	29	<1	0.8	3	<1	7.0	7800	75	2.5 <0	.010

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413102083504600. Local number, LU-152-SW32 near Whitehouse.
LOCATION.--Lat 41°31'02", long 83°50'46", Hydrologic Unit 04100009.

OWNER: Bittersweet Farms Inc.

AQUIFER.--Dolomite of Devonian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 5.62, depth 143 ft., cased to 63 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN										
24	1015	46.00	344	8.28	8.20	35.0	12.5	0.6	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 24	<1	64	0	14	6.1	57	1.8	217	0	193
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN 24	1.8	<0.5	3.0	4.9	1.9	0.071	9.4	212	210	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN 24	<0.100	0.170	1.3	0.001	10	1100	18	<1	35 00	2.1
44	(0.100	0.170	1.3	0.001	10	1100	10	11	3300	2.1

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413727083190500. Local number, LU-160-J11 near Curtice.
,LOCATION.--Lat 41°37'27", long 83°19'05", Hydrologic Unit 04100010.

OWNER: Helen Courtay.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 83 ft., cased to 40.1 ft.

DATE	TIME	LEV	OW SPI ID CIE PACE CON TER DUC (EL) AND	PIC N- PI CT- (ST	AND- (STA	AB TEMI		RE DI		RM, FOI FAL, FEG IED. 0.1 IS. UM- IR (COI	CAL, FECAL KF AGAR -MF (COLS. LS./ PER
JUL 14	1610	21	.18	870	7.32	7.30	23.0	4.5	0 F	13	<1 <1
DATE	TO:	TAL G/L	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL 14		510	240	110	49	15	2.4	325	0	266	25
DATE	SULI TO (MC AS	G/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUL 14		<0.5	240	2.1	2.0	0.050	17	624	623	<0.010	<0.100
DATE	AMMO DI SOI	FRO- EN, ONIA IS- LVED G/L N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 14	0.2	260	0.20	0.003	<10	<1	170	130	6	25000	1.2

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414022083171800. Local number, LU-161-J30 near Reno Beach.
LOCATION.--Lat 41°40'22", long 83°17'18", Hydrologic Unit 04100010.

OWNER: City of Oregon.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 6 in., depth 100 ft., cased to 71.8 ft.

9		DEPTH BELOW LAND SURFACE	SPE- CIFIC CON-	РН	PH LAB	TEMPER-	TEMPER-	OXYGEN,	COLI- FORM, TOTAL, IMMED.	COLI- FORM, FECAL, 0.7
DATE	TIME	(WATER LEVEL) (FEET)	DUCT- ANCE (US/CM)	(STAND- ARD UNITS)	(STAND- ARD UNITS)	ATURE AIR (DEG C)	ATURE WATER (DEG C)	DIS- SOLVED (MG/L)	(COLS. PER 100 ML)	UM-MF (COLS./ 100 ML)
JUL 09	0920	10.50	1150	7.71	7.90	25.0	12.5	0.1	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUL 09	<1	520	420	120	49	43	2.2	121	0	99
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUL 09	3.7	ND	490	30	2.1	0.28	8.7	858	826	<0.010
	NITRO- GEN, NO2+NO3 DIS- SOLVED	NITRO- GEN, AMMONIA DIS- SOLVED	NITRO- GEN,AM- MONIA + ORGANIC DIS.	PHOS- PHOROUS ORTHO, DIS- SOLVED	ALUM- INUM, DIS- SOLVED	BORON, DIS- SOLVED	IRON, DIS- SOLVED	MANGA- NESE, DIS- SOLVED	STRON- TIUM, DIS- SOLVED	CARBON, ORGANIC DIS- SOLVED
DATE	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(UG/L AS AL)	(UG/L AS B)	(UG/L AS FE)	(UG/L AS MN)	(UG/L AS SR)	(MG/L AS C)
JUL	ZO 100	0 070	1.0	40.003	41.0	260	200		10000	0.0
09	<0.100	0.870	1.0	<0.001	<10	360	300	5	19000	0.9

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413730083250200. Local number, LU-165-O12 at Oregon.
LOCATION.--Lat 41⁰37'30", long 83⁰25'02", Hydrologic Unit 04100010.

OWNER: Charles Schroeder.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 102 ft., cased to 81 ft.

		WALLIN	QUAL	III DAIA,	WAIDK IL	AR OCTOL	EK 13	00 10	, DUI I DINDI	IK IJO			
DATE	S	DEPTH BELOW LAND JRFACE (WATER LEVEL) (FEET)	SPE CIF CON DUC ANC	IC - PH T- (STA E AR	ND- (STA	AB TEM	PER- URE IR G C)	TEMF ATU WAT (DEG	RE DI	GEN, I GEN, I IS- (C	ORM, OTAL, MMED. OLS. PER (COLI- FORM, FECAL, 0.7 UM-MF COLS.,	KF AGAI (COLS. PER
JUL 06	1730	51.81	1	270 7	.29 7	.60	20.0	1	2.5	0.1	K13	<1	K1
111111					,		20.0			•••			
DATE	HARD NESS TOTA (MG/ AS CACO	NONG WH V TOT MG/1	CARB WAT FLD L AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SC SC (M	OTAS- SIUM, DIS- DLVED IG/L S K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONAT IT-FL (MG/L AS CO3)	E WH WA D TOTA FIEL MG/L	Y O T D: L D S AS	CARBON LOXIDE DIS- GOLVED (MG/L S CO2)
JUL 06	6	20	470	150	55	50		2.4	182	0	1	50	15
DATE	SULFI TOTA (MG/ AS S	DE DIS	LVED G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	DI SC (M	JICA, SS- DLVED IG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	GEN - NITRI , DIS SOLV D (MG/	TE NO ED S	NITRO- GEN, D2+NO3 DIS- GOLVED (MG/L AS N)
JUL 06	<0	5 540	0	44	1.7	0.31	1	.1	992	96	3 <0.0	10	<0.100
DATE	NITR GEN AMMON DIS- SOLV (MG/ AS N	GEN, A MONI ORGA DIS	ANIC S.	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	SC (U	PRON, DIS- DLVED JG/L B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA NESE, DIS- SOLVE (UG/L AS MN	TIU DIS D SOLV (UG/	M, OI - I ED SC	ARBON, RGANIC DIS- DLVED (MG/L AS C)
JUL 06	0.3	10 1	L.8	<0.001	<10	8		330	450		2 180	00	1.5

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413937083223700. Local number, LU-167-032 at Oregon.
LOCATION.--Lat 41°39'37", long 83°22'37", Hydrologic Unit 04100010.
OWNER: Joe Dusseau.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 100 ft., cased to 74.8 ft.

WATER	QUALITY	DATA,	WATER	YEAR	OCTOBER	1980	TO	SEPTEMBER	198/	

		WATER QUA	LITY DATA,	WATER YE	EAR OCTOBE	R 1986 TO	SEPTEMBE	R 1987		
DATE	BE LA SUR (W TIME LE	FACE CO VATER DU	FIC N- PH CT- (STA	ND- (STA	AB TEME AND- ATU RD AI	RE ATU	RE DI	EN, IMM S- (COL	RM, FOF FAL, FEC MED. 0.7 LS. UM- ER (COL	RM, TOCOCCI CAL, FECAL, KF AGAR -MF (COLS. S./ PER
	,,	4417 (00	, 0	D, 01111		, 0, 1,000		, 1, 100		
JUL 13	1530 3	4.29	890 7	.75 7	7.90 3	1.0 1	3.5	0 2	21 <1	>100
25***	1000				.,,,					
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL										
13	350	280	80	31	69	1.6	87	0	71	2.5
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUL 13	ND	390	12	1.3	0.15	10	675	657	<0.010	<0.100
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC	PHOROUS ORTHO,	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 13	0.340	0.60	0.003	<10	<1	540	360	10	18000	1.3

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413931083274200. Local number, LU-168-034 at Oregon.
LOCATION.--Lat 41°39'31", long 83°27'42", Hydrologic Unit 04100010.

OWNER: William Frigmanski.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 110 ft., cased to 95.7 ft.

DATE	TIME	LEV	OW SP D CI ACE CO TER DU (EL) AN	CE	PH STAND- ARD NITS)	PH LA (STA AH UNIT	AB TH AND- A RD	EMPER ATURE AIR DEG C	A'T' WA'	PER- (URE IER G C)	OXYG DI SOL (MG	S- VED		M, AL, ED. S.	COL FOR FEC 0.7 UM- (COL 100	MF S./	STREP- TOCOCCI FECAL KF AGAR (COLS. PER 100 ML
JUL 14	0910	47	. 68	2110	7.33		7.40	17.	0	13.0		0.7	К	5		1	K7
					7.55					13.0			•		,	-	
DATE	NES TO (MC	PAL G/L	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS-	UM I	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM DIS- SOLVEI (MG/I AS NA	M,	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICA BONA IT-FI (MGA AS	ATE LD /L	BON IT- (MG AS		LIN: WH TO: FII: MG/I		DIO D SO (M	RBON XIDE IS- LVED G/L CO2)
JUL 14		960	840			70	60		2.5	146		0			120		11
DATE	TO	FIDE FAL G/L S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	, R: ED S: L (1	LUO- IDE, DIS- OLVED MG/L S F)	BROMID DIS- SOLVE (MG/I AS BE	DE :	ILICA, DIS- SOLVED (MG/L AS SIO2)	SOLII RESII AT 18 DEG DIS SOLV	DUE BO C S- VED	SOL	OF TI-	NITI DI SOI	TRO- EN, RITE IS- LVED G/L N)	NO2 D SO (M	TRO- EN, +NO3 IS- LVED G/L N)
JUL 14	NI	0	1100	27		1.5	0.22	2	12	19	900	1	620	<0.	.010	<0	.100
DATE	AMMO DI SOI (MO	PRO- EN, ONIA IS- LVED G/L N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS PHORO ORTH DIS- SOLVE (MG/L AS P)	US A1 O, I1 D SO	LUM- NUM, DIS- DLVED UG/L G AL)	ARSENI DIS- SOLVE (UG/I AS AS	ED :	BORON, DIS- SOLVED (UG/L AS B)	IRON DIS SOLV (UG/ AS I	S- VED /L	MAN NES DI SOL (UG	E, S- VED	DI SOI (UC	RON- IUM, IS- LVED G/L SR)	ORG DI SOL (M	
JUL 14	0.	.520	0.50	0.0	05	<10		2	580	8	860		50	10	5000		1.4

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413830083293800. Local number, LU-169 at Oregon.
LOCATION.--Lat 41°38'30", long 83°29'38", Hydrologic Unit 04100009.

OWNER: Al Kish-Fun Spot Skate.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 6 in., depth 256 ft., cased to 82 ft.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAN ARD UNITS	AR	B TEI ND- A' D	MPER- TURE AIR EG C)	TEMPI ATUI WATI (DEG	RE ER	OXYGEN DIS- SOLVE (MG/L	, IMM (COL	M, AL, ED. S.	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STRE TOCOC FECA KF AC (COLS PER 100 M	CCI II AL, II GAR T	HARD- NESS COTAL (MG/L AS CACO3)
JUL 23	1440	810			.10	30.0		7.5	0	, 100 K1		к3		12	280
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED	DIS SOLV (MG/	M, SODI - DIS ED SOLV L (MG	UM, S ED SO /L (1	OTAS- SIUM, DIS- OLVED MG/L S K)	BICA BONA IT-FI (MGA AS	TE D L	CAR- BONAT IT-FL (MG/L AS CO3)	E WH W	TY AT AL LD AS	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFI	DE I	JLFATE DIS- DLVED (MG/L S SO4)
JUL 23	150	66	27	56		1.3	154		0		125	6.9	ND		270
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMI DIS SOLV (MG/ AS B	ED (MG	CA, RE	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	SOLII SUM (CONST TUENT DIS SOLV (MG/	OF CI- CS, CS- VED	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	GE NO2+ DI D SOL	NO3 S- VED	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, A MONIA ORGAN	M- I A + C IIC I	PHOS- PHOROUS DRTHO- DIS- SOLVED (MG/L AS P)
JUL 23	11	2.1	0.1	5 9	.7	652		523	0.00	3 0.	028	0.450	0.	60	<0.001
DATE	I S (NUM, M DIS- OLVED S UG/L (NTI- IONY, DIS- OLVED UG/L S SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM DIS- SOLVED (UG/L AS BA	SC (U	DRON, DIS- DLVED JG/L S B)	SO (U	MIUM IS- LVED G/L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	DI:	S- LVED S G/L (RON, DIS- OLVED UG/L S FE)	LEAD DIS- SOLVI (UG/I	ED
3UL 23		<10	<1	<1	1	9	560		<1	10		<1	100		<5
	DATE (THIUM N DIS- OLVED S UG/L (ANGA- HESE, DIS- COLVED UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL DIS- SOLVE (UG/L AS NI	, NI D SC	ELE- IUM, DIS- DLVED IG/L S SE)	SO (U	VER, IS- LVED G/L	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	SO:	NC, OR IS- D LVED SO G/L (RBON, GANIC IS- LVED MG/L S C)	CYANII TOTAI (MG/I	
JUL 23		24	4	0.6	<	1	4		<1.0	2300		170	2.0	<0.0	10

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414019083261400. Local number, LU-170-026 at Oregon.
LOCATION.--Lat 41°40'19", long 83°26'14", Hydrologic Unit 04100010.
OWNER: Joe Fox.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 110 ft., cased to 83.3 ft.

WATER OUA	LITY DATA	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987
-----------	-----------	-------	------	---------	------	----	-----------	------

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 07	1800	38.96	2710	7.32	7.70	22.0	12.5	0	Kl	<1	Kl
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUL 07	1300	1200	360	98	150	4.1	122	0	100	9.3	5.4
DATE JUL 07	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
DATE	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUL 07	0.001	10	<1	<1	<100	1000	<1	<10	<1	360	<5
DATE	so (U	THIUM NE DIS- D DLVED SO UG/L (U	DIS- D DLVED SC IG/L (U	DIS- DI DLVED SO G/L (U	CKEL, NI CS- D DLVED SC UG/L (U	OIS- D DLVED SO IG/L (U	VER, TOUS OF SOLVED SOL	DIS- D DLVED SC IG/L (U	NC, ORG	VED TO	NIDE TAL G/L CN)
07		40	50 3	.9	4	<1 <1	.0 110	000	20 0.	9 <0.0	10

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414151083352200. Local number, LU-174-T at Toledo.
LOCATION.--Lat 41°41'51", long 83°35'22", Hydrologic Unit 04100001.

OWNER: E. I. Dupont.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 8 in., depth 180 ft., cased to unknown depth.

WATED	OHAT THY	DAMA	WAMED	VEAD	OCHOPPD	1006 m	SEPTEMBER	1007
WATER	CHALLTY	DATA -	WATER	YEAR	OCTOBER	1480 10) SEPTEMBER	196/

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN 23	1215	65.20	2540	7.40	7.10	26.0	12.5	3.0	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 23	<1	1500	1200	410	100	33	2.7	259	0	212
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN 23	16	2.2	1400	59	1.7	0.20	13	2400	2160	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN 23	<0.100	0.440	1.8	<0.001	10	470	220	20	14000	2.1

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414029083201000. Local number, LU-177-J27 east of Oregon.
LOCATION.--Lat 41°40'29", long 83°20'10", Hydrologic Unit 04100010.

OWNER: Mike Lewis.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 83 ft., cased to 65.9 ft.

		mnn	01111				amann	n 1005	mo an		n 100	7			
DATE	S	WATER DEPTH BELOW LAND URFACE (WATER LEVEL) (FEET)	SPE- CIFI CON- DUCT ANCE	C PI - PI - (STA	H AND- (S	PH LAB STAND- ARD WITS)	TEMP ATU AI (DEG	ER- T	TO SEI EMPER- ATURE WATER DEG C)	OXYO D: SOI	GEN, IS- LVED	COL	M, FO AL, FE ED. 0. S. UM R (CO	CAL, 7 -MF LS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 15	1800	25.07	11	150	7.73	7.80	2	3.0	12.5		0	K	1 <	1	Kl
DATE	HARD NESS TOTA (MG/ AS CACO	NE NON WH TOT MG/	CARB	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/I AS MG	DI D SOL		POTA SIUI DIS- SOLVI (MG/I	M, BC - IT- ED (N	CAR- ONATE -FLD MG/L AS CO3)	CA BON IT- (MG AS CO	ATE FLD /L	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	DIO D SO (M	RBON XIDE IS- LVED G/L CO2)
JUL 15	5	50	490	130	52	4	2	1.	8 82	2	0		66		2.4
DATE	SULFI TOTA (MG/) AS S	DE DI L SO L (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/I AS F)	BRO D SO	MIDE IS- LVED G/L BR)	SILICA DIS- SOLVI (MG/I AS SIO2	A, RES	LIDS, SIDUE 180 EG. C DIS- DLVED	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2 D SO (M	TRO- EN, +NO3 IS- LVED G/L N)
JUL 15	<0	5 53	0	16	1.7	0	.15	9.	7	875		842	<0.010	0	.150
DATE	NITRO GEN AMMONI DIS- SOLVI (MG/I AS NI	GEN A MON ORG D DIS	G/L	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVE (UG/L AS AL	ARS D SO	ENIC IS- LVED G/L AS)	BOROL DIS- SOLVI (UG/I AS B	- I ED SC L (U	RON, DIS- DLVED JG/L S FE)	MANINES DI SOL' (UG AS	E, S- VED /L	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ORG DI SOL	
JUL 15	0.3	10	0.60	0.011	<1	.0	1	3:	20	350		11	17000		1.6

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413915083144200. Local number, LU-179-J33 at Reno Beach.
LOCATION.--Lat 41°39'15", long 83°14'42", Hydrologic Unit 04100010.

OWNER: Anna Davis.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 91 ft., cased to 59.7 ft.

		DEPTH BELOW LAND	SPE- CIFIC		РН				COLI- FORM, TOTAL,	COLI- FORM, T FECAL,	OCOCCI FECAL,
DATE	TIME	SURFACE (WATER LEVEL) (FEET)	CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	IMMED. (COLS. PER 100 ML)	0.7 UM-MF (COLS./ 100 ML)	KF AGAR (COLS. PER 100
JUL											
14	1215	6.21	1350	7.60	7.60	29.0	12.5	0	K4	<1	<1
		HARD-							ALKA-		
	HARD-	NESS	200	MAGNE-		POTAS-	BICAR-	CAR-	LINITY	CARBON	
	NESS	NONCARB WH WAT	CALCIUM DIS-	SIUM, DIS-	SODIUM, DIS-	SIUM, DIS-	BONATE IT-FLD	BONATE IT-FLD	WH WAT	DIOXIDE DIS-	SULFIDE
	(MG/L	TOT FLD	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	(MG/L	FIELD	SOLVED	TOTAL
DATE	AS	MG/L AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	AS	MG/L AS	(MG/L	(MG/L
	CACO3)	CACO3	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	CO3)	CACO3	AS CO2)	AS S)
JUL											
14	700	620	160	69	38	2.6	109	0	90	4.4	<0.5
						SOLIDS,	SOLIDS,	NITRO-	NITRO-	NITRO-	NITRO
		CHLO-	FLUO-		SILICA,	RESIDUE	SUM OF	GEN,	GEN,	GEN,	GEN, AM
	SULFATE DIS-	RIDE, DIS-	RIDE, DIS-	BROMIDE DIS-	DIS- SOLVED	AT 180 DEG. C	CONSTI-	NITRITE DIS-	NO2+NO3 DIS-	AMMONIA DIS-	MONIA +
	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	DIS-	SOLVED	SOLVED	SOLVED	DIS.
DATE	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	(MG/L AS BR)	AS SIO2)	SOLVED (MG/L)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)
JUL											
14	650	34	1.7	0.30	10	1080	1040	<0.010	<0.100	0.340	0.40
	PHOS-										
	PHOROUS	ALUM-	ANTI-			ye.		CHRO-			
	ORTHO, DIS-	INUM, DIS-	MONY, DIS-	ARSENIC DIS-	BARIUM, DIS-	BORON, DIS-	CADMIUM DIS-	MIUM, DIS-	COPPER, DIS-	IRON, DIS-	LEAD, DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVE
DATE	(MG/L AS P)	(UG/L AS AL)	(UG/L AS SB)	(UG/L AS AS)	(UG/L AS BA)	(UG/L AS B)	(UG/L AS CD)	(UG/L AS CR)	(UG/L AS CU)	(UG/L AS FE)	(UG/L AS PB
JUL											
14	0.005	10	<1	3	12	330	<1	<10	<1	1100	<5
		HIUM NE			KEL, NI		VER, T		NC, ORG	BON, ANIC S- CYA	NIDE
	sc	LVED SC	DLVED SC	LVED SC	LVED SO	LVED SC	LVED SC	LVED SO	LVED SOL	VED TO	TAL
DATE											IG/L CN)
JUL											

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413743083112300. Local number, LU-180-J12 Crane Cr Park near Reno Beach.
LOCATION.--Lat 41°37'43", long 83°11'23", Hydrologic Unit 04100010.

OWNER: State of Ohio
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commerical water well, diameter 5.62 in., depth 105 ft., cased to 57.6 ft.

WATER QUALITY DAT	A. WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987
-------------------	----------	------	---------	------	----	-----------	------

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 23	1045	4.62	1940	7.14	7.70	28.0	13.0	0.8	к3	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUL 23	1100	990	260	110	47	2.4	150	0	123	17	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUL 23	1000	29	1.8	0.26	9.4	1710	1550	0.002	0.010	0.490	1.3
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUL 23	<0.001	<10	<1	<1	10	500	<1	10	<1	220	<5
DATE JUL	so (U	HIUM NE DIS- D DLVED SC UG/L (U	DIS- D DLVED SC G/L (U	DIS- DI DLVED SC IG/L (U	KEL, NI S- D LVED SO G/L (U	IS- D LVED SC G/L (U	VER, TO DE SCORE (U	DIS- D DLVED SC IG/L (U	NC, ORG	VED TO	NIDE TAL G/L CN)
23.		63	6	<0.1	<1	<1	<1.0 1	3000	150	1.8 <0	.010

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413817083242700. Local number, LU-184-06 at Oregon.
LOCATION.--Lat 41°38'17", long 83°24'27", Hydrologic Unit 04100010.

OWNER: William Iman.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 5.62 in., depth 112 ft., cased to 83.7 ft.

WATER	QUALITY	DATA.	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUL 08	1830	46.29	1450	7.29	7.50	20.0	12.0	0.1	Kl	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 10G ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUL 08	K1	720	570	180	60	50	2.5	182	0	148
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUL 08	15	<0.5	600	58	1.7	0.18	11	1110	1070	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 08	<0.100	0.250	2.5	<0.001	<10	290	320	5	19000	1.1

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414128083314800. Local number, LU-193-T at Toledo.
LOCATION.--Lat 41°41'28", long 83°31'48", Hydrologic Unit 04100010.

OWNER: Diversitech Corp.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 10 in., depth 518 ft., cased to 107 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL KF AGAR (COLS. PER 100 ML)
JUN 22	1600	82.97	2560	7.10	7.20	21.0	14.0	0.1	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUN 22	1500	1400	360	150	48	3.8	182	0	149	23	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN 22	1600	55	1.6	0.41	12	2580	2340	<0.010	<0.100	0.630	0.60
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB
JUN 22	<0.001	20	<1	<1	<100	710	<1	<10	<1	1800	<5
	DATE (1	THIUM NE DIS- D OLVED SO UG/L (U	DIS- D DLVED SO JG/L (U	DIS- DI DLVED SO IG/L (U	CKEL, NI CS- D DLVED SO UG/L (U	DIS- D DLVED SO G/L (U	VER, TO DESCRIPTION OF THE PROPERTY OF THE PRO	DIS- D DLVED SO G/L (U	NC, ORG	VED TO	NIDE DTAL IG/L CN)
JUN 22		70	40	1.5	<1	<1	1.0 1	2000	100	1.4 <0	.010

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414330083315700. Local number, LU-194-T at Toledo.
LOCATION.--Lat 41°43'30", long 83°31'57", Hydrologic Unit 04100001.
OWNER: Lucas County Asphalt.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 4.25 in., depth 135 ft., cased to 62 ft.

WATER	OTIAT.TTV	DATA -	WATER	VEAD	OCTORER	1986	TO	SEPTEMBER	1987

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN	00.40	20.14								
23	0940	32.14	2340	7.04	7.10	20.0	18.0	0	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN										
23	K1	1500	1300	400	120	46	3.3	215	0	175
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN	1.22	27.4	2722							
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED	VITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L	ALUM- INUM, DIS- SOLVED (UG/L	BORON, DIS- SOLVED	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L)	STRON- TIUM, DIS- SOLVED (UG/L)	CARBON, ORGANIC DIS- SOLVED (MG/L
	AS N)	AS N)	AS N)	AS P)	AS AL)	AS B)	AS FE)	AS MN)	AS SR)	AS C)
JUN										
23	<0.100	0.710	0.70	<0.001	20	360	1500	90	13000	1.4

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414032083274600. Local number, LU-197-027 at Oregon.
LOCATION.--Lat 41°40'32", long 83°27'46", Hydrologic Unit 04100010.

OWNER: Sohio, Toledo Refinery.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 12 in., depth 215 ft., cased to 121 ft.

DATE	TI	ME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STA AR UNIT	ND- D	PH LAB (STAN ARD UNITS	D-	TEMPER- ATURE AIR (DEG C)	TEMI ATU WAT (DEG	IRE ER	OXYGI DIS SOLV	S- /ED		M, AL, ED. S.	COL FOR FEC 0.7 UM- (COL 100	M, AL, MF S./	STR TOCO FEC KF A (COL PE 100	CCI AL, GAR S. R	HARD- NESS TOTAL (MG/L AS CACO3)
JUL 15	10	20	2520	7	.36	7.	60	26.0	1	2.0	14	1.0	<	1	<	1	<1		1800
DATE	HAR NES NONC WH W TOT MG/L CAC	S ARB AT FLD AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAG SI DI SOL (MG AS	UM, S- VED /L	SODIU DIS- SOLVE (MG/ AS N	D L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BON IT-F	G/L	CAI BONA IT-H (MGA AS	TE LD L	ALK LINI WH W TOT FIE MG/L CAC	TY AT AL LD AS	CAR DIOX DI SOL (MG AS C	IDE S- VED /L	SULF TOT (MG AS	AL /L	SULFATE DIS- SOLVED (MG/L AS SO4
JUL 15	1	700	490	130		40		2.7	107		0			87		7.4	<	0.5	1600
DATE	CHL RID DIS SOL (MG AS	E, VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROM DI SOL (MG AS	S- VED /L	SILIC DIS- SOLV (MG/ AS SIO2	ED L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOL	OF STI-	NITH GEN NITRI DIS SOLV (MG/ AS N	N, TE S- VED 'L	NIT GE NO2+ DI SOL (MG AS	NO3 S- VED /L	NIT GE AMMO DI SOL (MG AS	N, NIA S- VED /L	NIT GEN, MONI ORGA DIS (MG AS	AM- A + NIC	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
JUL 15	35		1.6	0.	31	8.	7	2520	2	370	<0.0	50	<0.	100	0.	430	5	.8	0.008
	DATE	ALU INU DI SOL (UG AS	M, MC S- I VED SC /L (U	WTI- DNY, DIS- DLVED JG/L S SB)	SOI (UC	S- LVED		FED S	ORON, DIS- OLVED UG/L S B)	SO (U	MIUM IS- LVED G/L CD)	MI DI SO (U	RO- UM, S- LVED G/L CR)	SO (U	PER, S- LVED G/L CU)	SO:	ON, IS- LVED G/L FE)	SO:	AD, IS- LVED G/L PB)
JUL 15			10	<1		<1	<	(100	310		<1		<10		<1		260		<5
	DATE	LITH DI SOL (UG AS	IUM NE S- I VED SC /L (U	ANGA- ESE, DIS- DLVED UG/L S MN)	SOL (UC	S- LVED	(UG	KEL, NES- 1 LVED SOS/L (1	ELE- IUM, DIS- DLVED JG/L S SE)	SO (U	VER, IS- LVED G/L AG)	D SO:	RON- IUM, IS- LVED G/L SR)	SO (U	NC, IS- LVED G/L ZN)	ORG DIS SOLY (M		TO'	NIDE FAL G/L CN)
JUL 15			30	20		0.2		<1	<1		<1.0	1	2000		20		1.4	<0	.010

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413049083483800. Local number, LU-198 at Whitehouse.
LOCATION.--Lat 41°30'49", long 83°48'38", Hydrologic Unit 04100009.

OWNER: Village of Whitehouse.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 10 in., depth 170 ft., cased to 41.8 ft.

DATE	TI	ME A	SPE- CIFIC CON- OUCT- ANCE JS/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND ARD UNITS)	TEMPH - ATUI AII (DEG	RE AT	PER- URE TER G C)	OXYGEN DIS- SOLVEI (MG/L	(COLS	FOF L, FEC D. 0.7 UM-	M, T AL, K MF (STREP- OCOCCI FECAL, F AGAR COLS. PER 00 ML)	HARD- NESS TOTAL (MG/L AS CACO3
JUL 08	11	30	750	7.58	7.8	0 30	0.0	12.5	0	K7		<1	K1	390
DATE	HAR NES NONC WH W TOT MG/L CACO	S ARB CA AT D FLD S AS	ALCIUM DIS- SOLVED (MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS-	DIS	JM, BC S- IT- /ED (M	CAR- NATE FLD IG/L IS	CAR-BONATIT-FLI	D TOTA	Y CAR T DIOX L DI D SOL AS (MG	S- S VED	ULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)
JUL 08		170	90	34	14	1.	.9 268		0	2	22 1	1	<0.5	210
DATE JUL	CHL RID DIS SOL (MG AS	E, F - VED S /L	PLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SOLVE (MG/L AS	AT 18 D DEG	OUE SUM 30 COM C TUE 5- II 7ED SC	IDS, OF STI- NTS, OIS- DLVED	NITROGEN, NITRITEDIS- SOLVE (MG/L AS N)	GEN E NO2+N DIS D SOLV	, GE O3 AMMO - DI ED SOL L (MG	N, G NIA M S- O VED	NITRO- EN,AM- IONIA + PGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
08	9	.7	1.2	0.045	8.5		199	525	<0.01	0 <0.1	00 0.	180	0.60	0.002
	DATE	ALUM- INUM, DIS- SOLVE (UG/I AS AI	MO D SO	IS- LVED S G/L	DIS- OLVED S UG/L	ARIUM, DIS- OLVED (UG/L AS BA)	BORON, DIS- SOLVEI (UG/L AS B)	SO (U	MIUM IS- LVED G/L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON DIS SOLV (UG/ AS F	ED SO	AD, IS- LVED G/L PB)
JUL														
08		<10	<	1	<1	57	180	<	1	<10	<1	110	<	5
	DATE	LITHIU DIS- SOLVE (UG/I	JM NE - D ED SC L (U	IS- LVED S G/L	DIS- OLVED UG/L	ICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVEI (UG/L AS SE)) SC (U	VER, IS- LVED G/L	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBO ORGAN DIS- SOLVE (MG/ AS C	CYA D TO L (M	NIDE TAL G/L CN)
JUL 08		1	12	5	3.4	2	<1		<1.0	23000	4	1.	5 <0	.010

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

DATE	TIME	DEPTH BELOW LAND SURFACI (WATE) LEVEL (FEET)	DUCT-	PH (STAND- ARD UNITS)	PH LAB - (STAN ARD UNITS	D- ATO		TEMPER ATURE WATER (DEG C	DIS- SOLVEI	(COLS.	0.7 UM-MF (COLS./	KF AGAR (COLS. PER
JUN 02	1320	6.18	3 117	7.30	7.	60 :	27.0	10.	0 2.6	5 <1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARI WH WAT TOT FLI MG/L AS CACO3	DIS- SOLVED	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODIU DIS- SOLVE (MG/	D SOIL (MC	PAS- IUM, IS- LVED G/L K)	BICAR BONAT IT-FLD (MG/L AS HCO3)			CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L
JUN 02	44		9 13	2.9	1.		0.6	43	0	35	3.4	ND
02	44		9 13	2.9	1.	4	. 0	43	U	33	3.4	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	(MG/L	BROMIDE DIS- SOLVEI (MG/L AS BR)	SOLV (MG/ AS	ED DEC	DUE	SOLIDS SUM OF CONSTI- TUENTS DIS- SOLVEI (MG/L	GEN, NITRITE DIS- SOLVEI D (MG/L	GEN, NO2+NO3 DIS-	GEN, AMMONIA DIS-	GEN, AM- MONIA + ORGANIC
JUN												
02	16	1.0	<0.1	<0.010) 11		66	6	8 <0.010	<0.100	0.030	0.40
D/	PHO OI DI SOI ATE (MO	RTHO, I IS- LVED S G/L	INUM, M DIS- SOLVED S (UG/L (DIS- DLVED S UG/L	DIS-	BARIUM, DIS- SOLVED (UG/L AS BA)	SOI	IS- LVED :	ADMIUM M DIS- D SOLVED S (UG/L	OIS- D SOLVED S	IS- OLVED S UG/L (RON, DIS- OLVED UG/L S FE)
JUN 02.		0.004	20	<1	2	20		20	<1	20	2	550
D/ JUN	SC ATE (1	DIS- DLVED S UG/L	THIUM N DIS- SOLVED S (UG/L (DIS- OLVED S UG/L	RCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	NIU SOI (UC	S- LVED : G/L	ILVER, DIS- SOLVED S (UG/L	DIS- SOLVED S	INC, OR DIS- D OLVED SO UG/L (RBON, GANIC IS- LVED MG/L S C)
02.		<5	5	47	<0.1	1		<1	<1.0	47	120	1.1

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413212083514300. Local number, LU-302-SW29 near Swanton. LOCATION.--Lat 41032'12", long 83051'43", Hydrologic Unit 04100009.

OWNER: USGS-Toledo Metro Parks. AQUIFER.--Sand of Quaternary age.

DATE

JUN 02...

(UG/L

AS LI)

<4

(UG/L

AS MN)

55

(UG/L

AS HG)

<0.1

(UG/L

AS NI)

<1

(UG/L

AS SE)

<1

(UG/L

AS AG)

<1.0

(UG/L

AS SR)

32

(UG/L

AS ZN)

40

(MG/L

AS C)

0.8

(MG/L

AS CN)

0.300

WELL CHARACTERISTICS. -- Driven observation point, diameter 1.25 in., depth 11.3 ft., finish is 1.5 ft. of 0.010-inch well screen.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DEPTH COLI-COLI-STREP-SPE-TOCOCCI BELOW FORM, FORM . LAND CIFIC FECAL, TOTAL. FECAL. PH SURFACE CON-PH LAB TEMPER-TEMPER-OXYGEN, IMMED. 0.7 KF AGAR UM-MF (COLS. (WATER DUCT-(STAND-(STAND-ATURE ATURE (COLS. DIS-SOLVED DATE TIME LEVEL) ANCE ARD ARD AIR WATER PER (COLS./ PER (FEET) (US/CM) UNITS) UNITS) (DEG C) (DEG C) (MG/L) 100 ML) 100 ML) 100 ML) JUN 02... 1645 4.17 170 8.30 26.0 2.3 <1 K1 8.40 10.0 <1 HARD-ALKA-HARD-MAGNE-CARBON NESS POTAS-BICAR-CAR-LINITY CALCIUM NESS NONCARB SIUM, SODIUM, SIUM, BONATE BONATE WH WAT DIOXIDE TOTAL WH WAT DIS-TOTAL DIS-SULFIDE DIS-DIS-DIS-IT-FLD IT-FLD (MG/L TOT FLD SOLVED SOLVED SOLVED SOLVED (MG/L (MG/L FIELD SOLVED TOTAL DATE AS MG/L AS (MG/T. (MG/T. (MG/L (MG/L AS AS MG/L AS (MG/I. (MG/L CACO3 CO3) HCO3) CACO3 AS CA) AS MG) AS NA) AS K) CACO3 AS CO2) AS S) JUN 02... 74 7 22 ND 4.6 1.6 0.2 82 0 67 0.7 NITRO-NITRO-NITRO-NITRO-SOLIDS. SOLIDS. CHLO-FLUO-SILICA, GEN. GEN, AM-RESIDUE SUM OF GEN. GEN. SULFATE RIDE, RIDE, BROMIDE CONSTI-NITRITE NO2+NO3 AMMONIA MONTA + DIS-AT 180 DIS-DIS-DIS-DIS-SOLVED DEG. C TUENTS, DIS-DIS-DIS-ORGANIC SOLVED SOLVED SOLVED SOLVED (MG/L DIS-DIS-SOLVED SOLVED SOLVED DIS. DATE (MG/L (MG/L (MG/L (MG/L AS SOLVED SOLVED (MG/L (MG/L (MG/L (MG/L AS SO4) AS CL) AS F) AS BR) SIO2) (MG/L) (MG/L) AS N) AS N) AS N) AS N) JUN 02... 13 1.0 <0.1 <0.010 <0.010 0.030 8.8 89 92 <0.100 0.60 PHOS-PHOROUS ALUM-ANTI-CHRO-ORTHO, INUM, MONY, ARSENIC BARIUM, BORON, CADMIUM MIUM, COPPER, IRON, LEAD, DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-SOLVED SOLVED DATE (MG/L (UG/L AS P) AS AL) AS SB) AS BA) AS CU) AS FE) AS PB) AS AS) AS B) AS CD) AS CR) JUN 02. . . 0.012 20 <1 <1 20 <10 <1 <10 1 51 9 MANGA-SELE-STRON-CARBON, LITHIUM NESE, MERCURY NICKEL, NIUM, SILVER, TIUM, ZINC, ORGANIC DIS-DIS-CYANIDE DIS-DIS-DIS-DIS-DIS-DIS-DIS-SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TOTAL

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413300083510500. Local number, LU-303-SW20 near Swanton.
LOCATION.--Lat 41°33'00", long 83°51'05", Hydrologic Unit 04100009.

OWNER: USGS-Toledo Metro Parks.

AQUIFER.--Sand of Quaternary age.

WELL CHARACTERISTICS.--Driven observation point, diameter 1.25 in., depth 11.8 ft., finish is 2 ft. of 0.007-inch well screen.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN 03	0830	3.19	91	9.25	8.90	16.0	10.0	4.5	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 03	<1	39	5	12	2.2	1.1	0.4	31	5.0	36
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN 03	0.0	ND	9.7	0.40	0.2	<0.010	9.3	51	61	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN 03	<0.100	0.020	0.20	0.012	30	10	<3	3	24	0.6

JUN 03...

<0.010

<0.20

0.009

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT -- Continued

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413328083501100. Local number, LU-304-SW21 near Swanton. LOCATION.--Lat 41°33'28", long 83°50'11", Hydrologic Unit 04100009. OWNER: USGS-Toledo Metro Parks.

AQUIFER .-- SAND OF Quaternary age.

WELL CHARACTERISTICS. -- Driven observation point, diameter 1.25 in., depth 12.7 ft., finish is 2 ft. of 0.007-inch well screen.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 DEPTH COLI-COLI-SPE-FORM, FORM. LAND CIFIC PH TOTAL. FECAL. SURFACE CON-TEMPER-0.7 PH LAB TEMPER-OXYGEN, IMMED. (WATER DUCT-(STAND-(STAND-ATURE ATURE DIS-(COLS. UM-MF DATE TIME LEVEL) ANCE ARD ARD AIR WATER SOLVED PER (COLS./ 100 ML) (FEET) (US/CM) UNITS) UNITS) (DEG C) (DEG C) (MG/L) 100 ML) JUN 03... 1115 7.71 170 8.65 8.50 20.0 9.0 4.3 <1 <1 STREP-HARD-ALKA-TOCOCCI HARD-NESS MAGNE-POTAS-BICAR-CAR-LINITY FECAL, NONCARB CALCIUM SODIUM, NESS SIUM, SIUM, BONATE BONATE WH WAT KF AGAR TOTAL WH WAT DIS-DIS-DIS-DIS-TOTAL IT-FLD IT-FLD SOLVED SOLVED SOLVED (COLS. (MG/L TOT FLD SOLVED (MG/L (MG/L FIELD DATE MG/L AS CACO3 AS HCO3) AS CO3) PER AS (MG/L (MG/L (MG/L (MG/L MG/L AS CACO3) 100 ML) AS CA) AS MG) AS NA) AS K) CACO3 JUN 03. . . <1 76 10 24 3.8 1.9 <0.1 78 1.0 66 SOLIDS, NITRO-NITRO-CARBON CHLO-FLUO-SILICA, RESIDUE GEN, GEN, DIOXIDE SULFATE RIDE, RIDE, BROMIDE DIS-AT 180 NITRITE NO2+NO3 DIS-SULFIDE DIS-DIS-DIS-DIS-SOLVED DEG. C DIS-DIS-SOLVED TOTAL SOLVED SOLVED SOLVED SOLVED (MG/L DIS-SOLVED SOLVED SOLVED DATE (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L AS (MG/L (MG/L SIO2) AS BR) (MG/L) AS N) AS N) AS CO2) AS S) AS SO4) AS CL.) AS F) JUN 03... 0.3 ND 19 1.6 <0.1 0.010 15 105 <0.010 <0.100 NITRO-NITRO-PHOS-GEN, GEN, AM-PHOROUS ALUM-MANGA-STRON-CARBON, ORGANIC AMMONIA MONIA + ORTHO, INUM, BORON, IRON, NESE, TIUM, DIS-ORGANIC DIS-DIS-DIS-DIS-DIS-DIS-DIS-SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED DIS. DATE (MG/L (UG/L (UG/L (MG/L (UG/L (UG/L (UG/L (MG/L (MG/L AS SR) AS C) AS N) AS N) AS P) AS B) AS FE) AS MN) AS AL)

20

40

<3

2

44

0.8

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414133083424800. Local number, LU-305-SY16 at Sylvania.
LOCATION.--Lat 41 41 33", long 83 42 48", Hydrologic Unit 04100001.

OWNER: USGS-Sylvania City Parks.

AQUIFER.--Sand of Quaternary Age.

WELL CHARACTERISTICS.--Driven observation point, diameter 1.25 in., depth 15.1 ft., finish is 1.5 ft. of 0.010-inch well screen.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN 03	1430	6.04	270	7.43	7.50	23.0	9.5	1.5	<1	<1	K4
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUN 03	140	19	44	7.4	2.5	0.2	148	0	118	8.7	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN 03	42	2.8	<0.1	<0.010	18	196	191	<0.010	<0.100	0.080	1.2
DATE	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	
JUN 03	0.010	60	<1	1	21	50	<1	20	1	680	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	
JUN 03	<5	7	40	<0.1	1	<1	1.0	63	210	11	

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414314083403100. Local number, LU-306-SY2 at Sylvania.

LOCATION.--Lat 41°43'14", long 83°40'31", Hydrologic Unit 04100001.

OWNER: USGS-Huntington Farms Inc.

AQUIFER.--Sand of Quaternary age.

WELL CHARACTERISTICS.--Driven observation point, diameter 1.25 in., depth 13.2 ft., finish is 2 ft. of 0.007-inch well screen.

			WATI	EK QUALI	TY DATA	, WAT	ER YEA	AR O	CTOBER	19	86 TO	SEP	TEMBER	1987				
DATE	T	s Me	DEPTH BELOW LAND SURFACI (WATEI LEVEL)	R DUCT	C PI	AND- RD	PH LAI (STAN ARI UNITS	3 ND-	TEMPE ATUR AIR (DEG	Е	TEMP ATU WAT (DEG	RE ER	OXYGEN DIS- SOLVI (MG/I	N, :	COLI- FORM, TOTAL, IMMED. COLS. PER	COL FOR FEC 0.7 UM- (COL 100	M, AL, MF S./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN																		120
03	17	700	4.7	3 8	20	7.58	7.	.70	25	.0	1	0.0	1.	. 3	<1	<1		<1
DATE	HAF NES TOT (MC AS	SS I	HARD- NESS NONCARI WH WAT FOT FLI MG/L AS CACO3	DIS- D SOLV S (MG/	ED SOIL	GNE- IUM, IS- LVED G/L MG)	SODIU DIS- SOLVE (MG/ AS N	ED /L	POTA SIU DIS SOLV (MG/ AS K	M, ED L	BIC BON IT-F (MG AS	ATE LD /L	CAR- BONAT IT-FI (MG/I AS CO3)	TE WI	ALKA- INITY H WAT TOTAL FIELD G/L AS CACO3	DIOX DI SOL	S- VED /L	SULFIDI TOTAL (MG/L AS S)
JUN																		
03		280	80	0 87	1	6	60		2.	1	249		0		203	1	0	ND
DATE	SULE DIS SOI (MG AS S	S- LVED S/L	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	(MG/	ED SOIL	MIDE IS- LVED G/L BR)	SILIC DIS- SOLV (MG/ AS SIO2	- /ED /L	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UE O C - ED	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	NITRO GEN, NITRO DIS- SOLVI (MG/I AS N	TE NO	NITRO- GEN, O2+NO3 DIS- SOLVED (MG/L AS N)	GE AMMO DI	S- VED /L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN 03	35	5	130	0.	1 <0	.010	6.	. 6	4	73		461	<0.0	10	0.340	0.	020	0.40
	DATE	PHOSE ORTHORIS SOLVE (MG/1)	OUS A HO, S ED S L	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	SO (U	ENIC IS- LVED G/L AS)	SOL'		SO (U	RON, IS- LVED G/L B)	SO (U	MIUM IS- LVED G/L CD)	CHROMIUM DIS-SOLV	, CC ED S L (OPPER, OIS- OLVED UG/L S CU)	SO (U	ON, IS- LVED G/L FE)
JUN 03		0.0	001	20	<1		<1		71		30		<1		20	1		240
		•		20	12		11		, ,		30		12		20	-		240
	DATE	LEAI DIS SOLV (UG,	S- VED S /L	ITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SO (U	CURY IS- LVED G/L HG)	SO (U	KEL, S- LVED G/L NI)	NI D SO (U	LE- UM, IS- LVED G/L SE)	SO (U	VER, IS- LVED G/L AG)	STRON TIUN DIS- SOLVI (UG/1) AS SI	M, Z - ED S L (INC, DIS- OLVED UG/L S ZN)	ORG DI SOL (M	
JUN			/E	11	200		(0.1		,		/1		<1.0		20	100		4.4
03	3		<5	11	290		<0.1		1		<1		<1.0	6.	20	100		4.4

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414203083411700. Local number, LU-307-SY15 at Sylvania.
LOCATION.--Lat 41°42'03", long 83°41'17", Hydrologic Unit 04100001.

OWNER: USGS-Camp Miakonda, Boy Scouts of America.
AQUIFER.--Sand of Quaternary age.
WELL CHARACTERISTICS.--Driven observation point, diameter 1.25 in., depth 14.6 ft., finish is 1.5 ft. of 0.010-inch well screen.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN 10	1240	7.75	298	8.27	8.30	20.0	10.0	1.6	<1	<1
10	1240	7.75	230	0.27	0.30	20.0	10.0	1.0	11	11
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 10	K1	140	48	45	6.5	3.6	0.4	111	0	94
	CARBON DIOXIDE		SULFATE	CHLO- RIDE,	FLUO- RIDE,	BROMIDE	SILICA, DIS-	SOLIDS, RESIDUE AT 180	SOLIDS, SUM OF CONSTI-	NITRO- GEN, NITRITE
DATE	SOLVED (MG/L AS CO2)	TOTAL (MG/L AS S)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS BR)	SOLVED (MG/L AS SIO2)	DEG. C DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L AS N)
JUN 10	0.9	ND	51	4.8	<0.1	<0.010	9.7	186	176	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN	AD III	AD A7	AD IV	AD I7	AD ALI	AD D7	AD TH	no my	no on,	110 07
10	<0.100	0.030	0.20	0.011	20	70	65	59	82	1.6

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413503083473900. Local number, LU-308-M11 near Swanton.
LOCATION.--Lat 41°35'03", long 83°47'39", Hydrologic Unit 04100009.
OWNER: USGS-Ohio Air Guard.
AQUIFER.--Sand of Quaternary age.
WELL CHARACTERISTICS.--Driven observation point, diameter 1.25 in., depth 8 ft., finish is 2 ft. of 0.007-inch well screen.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
JUN 09	1440	3.98	503	7.40	7.30	22.0	12.0	0.7	Kl	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
JUN 09	К3	260	33	79	14	2.5	0.4	271	0	223
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN 09	17	ND	49	4.0	0.1	0.030	14	335	302	<0.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUN 09	<0.100	0.120	1.6	0.010	30	40	5500	180	110	11

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

414242083395100. Local number, LU-309-SY12 at Sylvania.
LOCATION.--Lat 41°42'42", long 83°39'51", Hydrologic Unit 04100001.

OWNER: USGS-Arbor Jr. High, Sylvania Schools.

AQUIFER.--Sand of Quaternary age.

WELL CHARACTERISTICS.--Driven observation point, diameter 1.25 in., depth 15.5 ft., finish is 2 ft. of 0.007-inch well screen.

DATE	TI	ME	DEPT BELC LAND SURFA (WAT LEVE (FEE	OW ACE CER	SPE- CIFI CON- DUCT ANCE (US/C	c -	PH (STA AR UNIT	ND-	PH LA (STA AR UNIT	B ND- D	TEMPE ATUE AIE	RE	TEMP ATU WAT (DEG	RE	OXYGE DIS SOLV (MG/	ED -	COLI FORM TOTA IMME (COLS PEI 100 M	AL, ED. S.	COLI FORM FECA 0.7 UM-M (COLS 100 M	Ĺ, ' F	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUN 04	08	30	9.	15	14	50	7	.23	7	.40	15	5.0		9.0	3	. 2	<1	1	<1		<1
DATE	HAR NES TOT (MG AS CAC	S AL /L	HARE NESS NONCA WH WA TOT F MG/L CACO	RB AT LD AS	CALCI DIS- SOLV (MG/ AS C	ED L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	POTA SIL DIS SOLV (MG/ AS F	JM, S- ZED L		/L	CAF BONA IT-F (MG/ AS CO3	TE LD L	ALKA LINIT WH WA TOTA FIEL MG/L CACO	TY AT AL LD AS	CARB DIOXI DIS SOLV (MG/ AS CO	DE - ED L	SULFIDE TOTAL (MG/L AS S)
JUN 04		420		64	140		17		120		2.	2	434		0			354	41		ND
DATE	SULF. DIS SOL (MG AS S	- VED /L	CHLC RIDE DIS- SOLV (MG/ AS C	E, ZED L	FLUO RIDE DIS SOLV (MG/ AS F	ED L	BROM DI SOL (MG AS	S- VED /L	SILI DIS SOL (MG AS	- VED /L	SOLII RESII AT 18 DEG. DIS SOLV	OUE 30 C 3- 7ED	SOL	OF TI-	NITE GEN NITRI DIS SOLV (MG/ AS N	TE ED L	NITE GEN NO2+N DIS SOLV (MG/ AS N	N, NO3 S- VED /L	NITR GEN AMMON DIS SOLV (MG/ AS N	IA ED L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUN 04	120		170		<0.	1	0.	0 62	11		8	369		796	0.0	20	11.0	0	0.0	60	1.5
D	ATE	PHOPHOF ORT DISSOLV	ROUS THO, S- YED 'L	INU DI SOI (UC	UM- UM, IS- LVED G/L AL)	ANT MON DI SOL (UG	Y, S- VED	SO (U	ENIC IS- LVED G/L AS)	DI SOL (U	IUM, S- VED G/L BA)	SO (U	RON, IS- LVED G/L B)	SO (U	MIUM IS- LVED G/L CD)	MI DI SO (U	RO- UM, S- LVED G/L CR)	SOI (UC	S- LVED	SO:	ON, IS- LVED G/L FE)
JUN 04.	•	0.	002		20		<1		<1		62		250		<1		<10		3		12
D	ATE		S- VED G/L	SOI (U)	HIUM IS- LVED G/L LI)		SE, S- VED	SO (U	CURY IS- LVED G/L HG)	SO (U	KEL, S- LVED G/L NI)	NI D SO (U	LE- UM, IS- LVED G/L SE)	SO (U	VER, IS- LVED G/L AG)	D SO (U	RON- IUM, IS- LVED G/L SR)	SOI (UC	IC, IS- LVED	ORG. DI SOL' (M	
JUN 04.			10		14		8		<0.1		<1		<1		<1.0		410	1	100		2.5

WATER-QUALITY DATA FOR LUCAS COUNTY--Continued

413823083435200. Local number, LU-310-SF5 near Holland.
LOCATION.--Lat 41°38'23", long 83°43'52", Hydrologic Unit 04100001.

OWNER: USGS-Sewing Machine Sales.

AQUIFER.--Sand of Quaternary Age.

WELL CHARACTERISTICS.--Driven observation point, diameter 1.25 in., depth 12.3 ft., finish is 2 ft. of 0.007-inch well screen.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUN										
09	1700	4.05	590	7.90	7.60	22.0	11.0	0.4	<1	<1
22.00	STREP- TOCOCCI FECAL, KF AGAR (COLS.	HARD- NESS TOTAL (MG/L	HARD- NESS NONCARB WH WAT TOT FLD	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	BICAR- BONATE IT-FLD (MG/L	CAR- BONATE IT-FLD (MG/L	ALKA- LINITY WH WAT TOTAL FIELD
DATE	PER 100 ML)	AS CACO3)	MG/L AS CACO3	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	AS CO3)	MG/L AS CACO3
	(31673)	(00900)	(00902)	(00915)	(00925)	(00930)	(00935)	(99440)	(99445)	(00410)
JUN										
09	<1	240	63	74	14	29	0.6	220	0	179
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUN										
09	4.4	<0.5	56	54	0.1	<0.010	8.1	385	347	<0.010
	NITRO- GEN, NO2+NO3	NITRO- GEN, AMMONIA	NITRO- GEN, AM- MONIA +	PHOS- PHOROUS ORTHO,	ALUM- INUM,	BORON,	IRON,	MANGA- NESE,	STRON- TIUM,	CARBON, ORGANIC
DATE	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)	ORGANIC DIS. (MG/L AS N)	DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS AL)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS SR)	DIS- SOLVED (MG/L AS C)
JUN										
09	<0.100	0.220	0.80	0.027	20	1100	1300	230	170	8.2

GROUND-WATER LEVELS FOR SANDUSKY COUNTY

411644082511600. Local number, S-129-Y25
LOCATION.--Lat 41⁰16'44", long 82⁰51'16", Hydrologic Unit 04100011, at France Stone Quarry at Bellevue.

Owner: France Stone Company.

WTR YR 1987 MEAN

55.67

HIGH

44.43 APR 17

Owner: France Stone Company.

AQUIFER.--Dolomite of Upper Silurian and Lower Devonian Age.

WELL CHARACTERISTICS.--Drilled commercial water well converted to observation well, diameter 5.62 in.,
depth, 130 ft, cased to 8 ft.

INSTRUMENTATION.--Digital recorder -- 60-minute punch from July 8, 1986 to July 22, 1987. Pressure transducer
July 22 to October 5, 1987.

DATUM.--Elevation of land-surface datum is 730 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.40 ft above land-surface datum.

PERIOD OF RECORD.--July 8, 1986 to present.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 44.43 ft below land-surface datum, Apr. 17, 1987; lowest water level, 64.49 ft below land-surface datum, Nov. 18, 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		62.20	61.32	52.76	55.65	53.95				48.08	49.47	56.93
2		62.34	61.25	52.71	55.71	53.95				47.97	49.68	57.23
3	62.09	62.50	60.67	52.68	55.71	53.91				47.86	49.84	57.50
4	60.76	62.67	59.83	52.73	55.69	53.90				47.41	50.12	57.78
5	60.07	62.80	59.29	52.77	55.59	53.78				47.30	50.41	58.02
6	59.83	62.97	59.01	52.78	55.49	53.75				46.37	50.70	58.26
7	59.86	63.09	58.83	52.87	55.32	53.62	49.92			45.76	51.00	58.52
8	59.93	63.18	58.53	52.97	54.97	53.56	48.50			45.46	51.27	58.78
9	60.02	63.25	58.16	53.04	54.62	53.26	47.56			45.33	51.41	59.04
10	60.09	63.40	57.02	53.08	54.46	53.12	46.82				51.76	59.30
11	60.18	63.49	56.11	53.22	54.34	53.03	46.22			222	52.04	59.54
12	60.26	63.67	55.48	53.37	54.17	52.89	45.81				52.29	59.72
13	60.27	63.83	55.17	53.50	54.10	52.73	45.34				52.57	59.96
14	60.09	63.96	55.00	53.58	54.00	52.63	45.05				52.87	60.41
15	60.11	64.13	54.85	53.65	53.95	52.63	44.77				53.14	60.51
16	60.18	64.27	54.75	53.74	53.95	52.51	44.55				53.42	61.91
17	60.30	64.44	54.71	53.82	53.94	52.51	44.43				53.70	61.43
18	60.41	64.49	54.67	53.89	53.96	52.33					53.94	61.22
19	60.52	64.25	54.47	53.97	54.02	52.15					54.22	61.20
20	60.63	64.32	54.44	54.08	54.08	52.03			53.39		54.49	61.86
21	60.75	63.95	54.37	54.18	54.11	52.00			51.69		54.66	61.69
22	60.86	63.67	54.32	54.24	54.14	51.81			50.76		54.79	61.58
23	61.00	63.52	54.30	54.36	54.24	51.64			49.77		55.10	61.88
24	61.12	63.53	54.29	54.61	54.30	51.57			49.23		55.39	62.42
25	61.23	63.56	53.89	54.77	54.30	51.34			48.92		55.65	62.78
26	61.31	63.56	53.58	54.89	54.23	51.30			48.72		55.77	63.06
27	61.41	62.66	53.26	55.07	54.23	51.03			48.63		55.81	63.56
28	61.57	62.00	53.05	55.26	54.22	50.97			48.61	48.33	55.86	63.52
29	61.71	61.59	52.94	55.35		50.74			48.65	48.63	56.15	63.64
30	61.90	61.41	52.81	55.39					48.33	48.92	56.45	63.99
31	62.08		52.78	55.55						49.20	56.65	
MAX		64.49	61.32	55.55	55.71						56.65	63.99

LOW

64.49 NOV 18

GROUND-WATER LEVELS FOR SANDUSKY COUNTY--Continued

412409083110200. Local number, S-170-W12.

LOCATION.--Lat 41°24'09", long 83°11'02", Hydrologic Unit 04100011, 2188 County Road 122 near Lindsey.

Owner: Charles Wonderly.

AQUIFER.--Lockport dolomite of Middle Silurian Age.

WELL CHARACTERISTICS.--Drilled domestic water well converted to observation well, diameter 4.25 in., depth,
61 ft, cased to 20.7 ft.

INSTRUMENTATION.--Digital recorder -- 60-minute punch.

DATUM.---Elevation of land-surface datum is 630 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--June 19, 1986 to September 30, 1987.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.42 ft below land-surface datum, Apr. 7, 1987; lowest water
level, 11.88 ft below land-surface datum, Sept. 30, 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11.80	10.90	8.85		6.07	5.51	5.21	5.66	7.54	7.85	7.06	9.08
2	11.87	10.91	8.63		5.77	5.69	4.83	5.74	7.61	7.69	7.09	9.10
3	11.80	10.87	8.05		5.69	5.85	4.80	5.79	7.43	7.63	7.22	9.24
4	11.62	10.83	7.89		5.69	5.93	4.60	5.81	7.43	7.55	7.31	9.25
5	11.31	10.84	7.87		5.69	5.79	4.30	5.78	7.48	7.39	7.44	9.24
6	11.24	10.86	7.70		5.46	5.75	3.76	5.69	7.53	7.06	7.64	9.24
7	11.19	10.92	7.52		5.13	5.63	3.42	5.74	7.49	6.77	7.69	9.26
8	11.06	10.81	7.31		5.16	5.49	3.48	5.86	7.49	6.66	7.78	9.27
9	11.11	11.01	6.93		5.28	5.80	3.57	5.84	7.68	6.57	7.72	9.41
10	11.16	11.08	6.68		5.10	5.88	3.64	5.89	7.81	6.57	7.95	9.47
11	11.06	11.01	6.54		5.09	5.83	3.82	5.94	7.74	6.54	8.02	9.47
12	11.00	11.03	6.48		5.11	5.89	4.11	6.24	7.68	6.56	8.04	9.56
13	11.01	11.22	6.60		5.13	5.89	4.24	6.27	7.80	6.61	8.53	9.53
14	10.90	11.15	6.46		5.19	5.79	4.15	6.28	7.84	6.58	8.19	9.59
15	10.90	10.95	6.40		5.34	5.88	4.14	6.47	8.02	6.55	8.28	9.60
16	10.84	10.89	6.38		5.34	5.86	4.25	6.49	8.08	6.60	8.33	9.49
17	10.91	10.95	6.38		5.33	5.78	4.36	6.51	8.28	6.70	8.51	9.26
18	10.96	11.07	6.34		5.49	5.54	4.56	6.53	8.29	6.78	8.62	9.19
19	10.94	11.15	6.33		5.64	5.46	4.70	6.62	8.31	6.76	8.75	9.15
20	10.86	10.95	6.34		5.69	5.51	4.71	6.66	8.24	6.84	8.89	9.00
21	10.74	10.92	6.38		5.55	5.50	4.88	6.77	7.71	7.03	8.96	8.98
22	10.75	10.75	6.36		5.53	5.56	4.88	6.83	7.54	7.08	9.02	8.93
23	10.76	10.54			5.81	5.60	5.00	6.97	7.63	7.22	9.19	8.94
24	10.84	10.54			5.88	5.50	5.23	7.13	7.68	7.24	9.26	8.91
25	10.76	10.53			5.94	5.59	5.31	7.11	7.58	7.33	9.28	8.98
26	10.66	10.26			5.96	5.75	5.33	7.12	7.63	7.17	9.29	9.01
27	10.75	9.93		6.03	5.91	5.74	5.30	7.41	7.72	6.90	9.28	9.08
28	10.82	9.34		6.20	5.77	5.86	5.38	7.38	7.81	6.86	9.26	9.13
29	10.84	8.98		6.21		5.83	5.37	7.53	7.88	6.79	9.21	9.05
30	10.96	8.91		6.01		5.69	5.64	7.40	7.96	6.94	9.13	9.02
31	10.95			6.19		5.31		7.51		7.04	9.01	
MAX	11.87	11.22			6.07	5.93	5.64	7.53	8.31	7.85	9.29	9.60
WTR YF	R 1987 MI	EAN 7.	58	HIGH	3.42 AP	R 7	LOW 11	.87 OCT	2			

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued GROUND-WATER LEVELS FOR SANDUSKY COUNTY--Continued

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	WATER LEVEL (FEET BELOW LAND- SURFACE DATUM)
Wells completed in	n carbonate aquif	er			
411914083045300 412356083212600	S-3-B12 S-11-M15	411914 412356	0830453 0832126	01-28-87 02-03-87	14.74 3.25
412537083040100	S-18-R1	412537	0830401	09-02-87 02-02-87	5.45
411531083044600 412435083071800 412604083062100	S-23-B36 S-101-S10 S-102-R35	411531 412435 412604	0830446 0830718 0830621	08-13-87 01-28-87 02-02-87 02-02-87	6.05 7.73 16.59 4.00
412527083042300 412450083051000 412314083040600	S-103-R1 S-104-R12 S-105-RL18	412527 412450 412314	0830423 0830510 0830406	08-18-87 02-02-87 02-02-87 02-02-87	7.15 6.52 7.89 18.52
412427083022800 412123083012000	S-106-RL8 S-107-RL33	412427 412123	0830228 0830120	08-19-87 02-11-87 01-28-87	23.45 0.13 2.02
412214083025700 412143083053500	S-108-RL29 S-110-S26	412214 412143	0830257 0830535	08-18-87 01-27-87 02-04-87	4.43 20.48 37
412128083054000 411918083040000 411927083010700 411731083001200 411615083001900 411652083031000 411751083041800 411920083071600	S-111-S26 S-112-G7 S-113-G9 S-114-G22 S-115-G27 S-116-G30 S-117-B24 S-118-B10	412128 411918 411927 411731 411615 411652 411751 411920	0830540 0830400 0830107 0830012 0830019 0830310 0830418 0830716	08-20-87 02-04-87 01-28-87 01-27-87 01-29-87 01-28-87 01-28-87 01-28-87	222 27 23.35 6.36 22.56 9.09 40.97 42.59 37.18
411729083061700 411549083064300 411711083075000 411755083111000	S-119-B23 S-120-B35 S-121-B21 S-122-B19	411729 411549 411711 411755	0830617 0830643 0830750 0831110	08-26-87 08-27-87 01-28-87 01-28-87 01-27-87	41.90 35 17.49 18.26 5.98
411547083093900	S-123-B32	411547	0830939	08-17-87 01-27-87	9.50 24.18
411536083124100 411656083130100 411602083145400	S-124-J35 S-125-J26 S-126-J33	411536 411656 411602	0831241 0831301 0831454	08-20-87 01-27-87 01-27-87 01-27-87	25.75 16.40 6.50 3.47
411622082502900 411615082505100 411644082511600	S-127-Y25 S-128-Y25 S-129-Y25	411622 411615 411644	0825029 0825051 0825116	08-27-87 02-10-87 10-01-86 10-03-86 12-10-86 01-29-87 04-14-87 06-16-87 07-22-87	7.47 56.04 72.59 65.56 62.09 56.49 55.38 44.85 53.48
411757082504300	S-130-Y13	411757	0825043	07-28-87 08-05-87 10-03-86 01-29-87	48.37 50.46 55.18 62.66
411851082521800	S-131-Y11	411851	0825218	08-18-87 10-03-86	61.72 49.31
412026082505000	S-132-Y1	412026	0825050	01-29-87 10-03-86 01-30-87	42.32 77.86 89.19
412153082514100 412052082531900 411935082560300	S-133-T26 S-134-T34 S-135-Y8	412153 412052 411935	0825141 0825319 0825603	08-19-87 01-30-87 01-29-87 01-29-87 08-20-87	89.65 44.38 57.97 26.79 28.75
411835082550000	S-137-Y16	411835	0825500	01-29-87 08-21-87	37.97 38.15
411627082554200 411526082564500 411521082535700 411722082540200	S-138-Y29 S-139-Y31 S-140-Y33 S-141-Y21	411627 411526 411521 411722	0825542 0825645 0825357 0825402	01-29-87 01-29-87 01-29-87 01-29-87	33.91 26.47 31.19 37.96
412115082560800 412102082585000	S-143-T32 S-144-RL35	412115 412102	0825608 0825850	08-18-87 02-10-87 02-10-87	41.28 7.76 -0.59
411938082592000 411729082585300	S-145-G11 S-146-G23	411938 411729	0825920 0825853	08-11-87 01-28-87 02-10-87	0.45 3.41 2.98

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued GROUND-WATER LEVELS FOR SANDUSKY COUNTY--Continued

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	WATER LEVEL (FEET BELOW LAND- SURFACE DATUM)
411632082580300	S-147-G25	411632	0825803	01-29-87	16.28
411627082584000	S-148-G26	411627	0825840	08-14-87 01-29-87	19.64 20.78
411534082585900 411831082575200	S-149-G35 S-150-G13	411534 411831	0825859 0825752	01-29-87 01-29-87	31.32 28.50
411831082575400	S-150-G13 S-151-G13	411831	0825754	01-29-87	27.53
412055083073200 412055083073201	S-152-S33 S-153-S33	412055 412055	0830732 0830732	01-28-87 01-28-87	52.38 50.14
412150083083000	S-154-S28	412150	0830830	01-27-87	31.13
412050083091400 412226083102900	S-156-S32 S-157-S19	412050 412226	0830914 0831029	01-27-87 01-27-87	28.18 7.79
412003083081800 411855083085600	S-158-B4 S-159-B9	412003 411855	0830818 0830856	01-28-87 01-28-87	12.44
411806083145400	S-160-J16	411806	0831454	01-27-87	10.73
412013083142400	S-161-J3	412013	0831424	01-27-87 08-27-87	8.89 14.15
412146002124000	0 160 806	410146	0021240	09-03-87	14.30
412146083124900 412241083131600	S-162-W26 S-163-W23	412146 412241	0831249 0831316	02-10-87 02-03-87	3.02 20.97
412404083143100	S-164-W9	412404	0831431	08-26-87 02-03-87	26.09 14.10
412241083080400	S-165-S21	412241	0830804	02-03-87	36.80
412420083081600	S-166-S9	412420	0830816	08-19-87 02-03-87	43.59 24.39
412636083080900	S-167-R28	412636	0830809	08-18-87 02-03-87	26.72 12.65
412455083094300	S-168-R5	412455	0830943	02-03-87	23.57
412410083110000 412409083110200	S-169-W12 S-170-W12	412410 412409	0831100 0831102	02-03-87 10-01-86	10.03
				12-10-86 02-03-87	6.62 5.69
				02-27-87	5.80
				04-14-87 06-16-87	4.07 8.02
				07-28-87	6.82
412449083130400	S-171-W11	412449	0831304	08-13-87 08-25-87	8.07 18.13
412620083131700 412621083102400	S-172-W35 S-173-R31	412620 412621	0831317 0831024	02-03-87 02-11-87	14.89 18.50
				08-24-87	21.81
412619083150400 412451083153600	S-174-W33 S-175-W5	412619 412451	0831504 0831536	02-11-87 02-03-87	7.41 6.19
412240083151400	S-176-W21	412240	0831514	08-19-87 02-03-87	8.46 1.57
412303083180500	S-178-M24	412303	0831805	02-03-87	3.39
412249083191400	S-179-M23	412249	0831914	02-04-87 08-26-87	53 64
412359083191300 412329083213200	S-180-M11 S-181-M16	412359 412329	0831913 0832132	02-03-87	7.26 2.56
412451083232500	S-182-W05	412451	0832325	02-04-87	7.13
412318083244600 412241083224000	S-183-M18 S-184-M21	412318 412241	0832446 0832240	02-11-87 02-04-87	34.36 1.77
412627083230800 412537083181100	S-185-W032 S-186-W01	412627 412537	0832308 0831811	02-04-87 08-25-87	10.89
412722083221200	S-188-WO28	412722	0832212	02-04-87	40.73
412909083214500 412909083245100	S-189-W016 S-190-W07	412909 412909	0832145 0832451	02-10-87 02-04-87	5.13 3.34
412745083245300	S-191-W019	412745	0832453	08-25-87 02-04-87	6.58
412619083211900	S-192-W034	412619	0832119	02-03-87	5.77 32.84
411602083224900 411754083241600	S-194-SC32 S-195-SC18	411602 411754	0832249 0832416	01-26-87 01-26-87	12.32 8.87
412001083244500	S-196-SC6	412001	0832445	02-04-87	11.53
411951083224000 412118083231400	S-197-SC4 S-198-M32	411951 412118	0832240 0832314	02-11-87 08-26-87	4.90 8.05
412214083245600 412119083205800	S-199-M19 S-200-M34	412214 412119	0832456 0832058	01-26-87 01-26-87	10.02
				08-26-87	9.25
412158083191700 412120083172400	S-201-M26 S-202-W31	412158 412120	0831917 0831724	01-26-87 01-27-87	2.08 9.67
411914083164200	S-204-J8	411914	0831642	08-27-87 01-27-87	14.46 7.69
411911083165100	S-205-J8	411911	0831651	08-12-87	30.16
411757083171100	S-206-J18	411757	0831711	01-27-87 08-27-87	4.94 7.65
411715083153200	S-207-J21	411715	0831532	01-27-87	6.80

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued GROUND-WATER LEVELS FOR SANDUSKY COUNTY--Continued

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	WATER LEVEL (FEET BELOW LAND- SURFACE DATUM)
411613083193300	S-208-SC26	411613	0831933	01-26-87	2.64
	20212 2027		2011000	08-27-87	4.64
411519083211800	S-209-SC34	411519	0832118	01-26-87	3.43
411654083213400	S-210-SC27	411654	0832134	08-26-87	18.68
412023083194900	S-211-SC2	412023	0831949	01-26-87	12.87
411921083202500	S-212-SC10	411921	0832025	01-26-87	2.30
411959083181900	S-213-SC1	411959	0831819	01-26-87	3.89
411935083213900	S-214-SC9	411935	0832139	01-26-87	3.64
411754083185500	S-215-SC13	411754	0831855	01-26-87	4.89
412311082510800	S-216-T24	412311	0825108	01-30-87	FLOWING
412505082512400	S-217-T1	412505	0825124	08-19-87	FLOWING
412314082533000	S-218-T15	412314	0825330	08-20-87	FLOWING
411751082531000	S-220-Y22	411751	0825310	01-29-87	52.93
412405082545700	S-227-T9	412405	0825457	01-30-87	FLOWING
412546082540400	S-228-T4	412546	0825404	02-02-87	FLOWING
412310082560900	S-229-T19	412310	0825609	01-30-87	-2.13
412312082570500	S-230-T19	412312	0825705	01-30-87	FLOWING
412605082574900	S-231-RL36	412605	0825749	08-11-87	FLOWING
412417082593300	S-232-RL10	412417	0825933	01-30-87	FLOWING
412453082595500	S-233-RL10	412453	0825955	01-30-87	FLOWING
412340083011400	S-234-RL16	412340	0830114	02-02-87	FLOWING
	100			08-13-87	FLOWING
412313082573500	S-235-RL13	412313	0825735	01-30-87	FLOWING
412252082582600	S-236-RL23	412252	0825826	01-30-87 08-20-87	5.49 13.10

GROUND-WATER QUALITY IN SANDUSKY COUNTY

The following tables contain results of analyses of ground waters collected for the purpose of establishing a data base of water-quality information for wells completed in the Silurian-Devonian carbonate aquifer. Ground water also was collected from five springs; three that discharge from the Silurian-Devonian carbonate aquifer into selected quarries, and two that discharge naturally at land surface. Water characteristics, major and minor inorganic constituents, nitrogen and phosphorus compounds, radiochemical constituents, and dissolved organic carbon are reported. A sample from one site, 188-WO28 was collected during the 1986 water year.

The notation "ND" means the constituent of interest was not detectable at the analytical limit. Sulfide concentrations listed as ND were based on titrations for which the sample aliquot required more titrant than a blank aliquot of equal volume.

In data for total coliform, fecal coliform, and fecal streptococcus bacteria counts, the prefix "K" indicates an estimated count based on a non-ideal colony number of less than 20 per filter. The ">" symbol preceding a value indicates that the number of colonies per filter was too numerous to count; therefore, an estimate was made based on the smallest filtered volume.

WATER-QUALITY DATA FOR SANDUSKY COUNTY

412356083212600. Local number, S-11 near Gibsonburg. LOCATION.--Lat 41°23'56", long 83°21'26", Hydrologic Unit 04100010.

OWNER: James Ackerman.

AQUIFER.--Dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled test well, diameter 12 in., depth 250 ft., cased to 24 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
SEP										
02	1615	5.45	651	7.40	7.50	21.5	11.5	0	>80	K4
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
SEP 02	<1	350	77	77	27	8.8	1.9	328	0	269
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
02	21	ND	84	11	0.7	13	419	423	<0.005	<0.010
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
SEP										
02	0.167	0.50	0.003	<10	55	650	<1	37000	34	1.3

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412537083040100. Local number, S-18 near Wightmans Grove.
LOCATION.--Lat 41°25'37", long 83°04'01", Hydrologic Unit 04100011.

OWNER: Lamalie Farms.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled test well converted to water supply, diameter 12 in., depth 340 ft., cased to 180 ft.

DATE	B L SU (TIME L	AND CI RFACE CO WATER DU EVEL) AN	CT- (STA	ND- (STA	AB TEMI AND- ATO RD A	IRE AT	TER SOL		RM, FOI PAL, FEO MED. 0.7 MS. UM- CR (COI	MF (COLS.
AUG 13	1300	6.05	2680 7	.23	7.20 2	26.0	13.0	0 кј	.0	<1 K9
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS) CACO3	DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 13	170	0 1500	430	150	26	4.4	286	0	2 35	27
DATE	SULFID TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 13	ND	1600	40	1.4	10	2610	2410	0.001	<0.010	0.520
DATE	NITROGEN, AM MONIA ORGANIO DIS. (MG/L AS N)	PHOS-	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 13	0.9	0 <0.005	<0.001	20	100	4800	80	290	<10	1.1

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412417082543000. Local number, S-30-T9 near Vickery.
LOCATION.--Lat 41°24'17", long 82°54'30", Hydrologic Unit 04100011.

OWNER: Ohio Department of Natural Resources, Wildlife.

AQUIFER.--Dolomite of Silurian age.

SPRING CHARACTERISTICS.--Blue hole spring, discharge measured at 2.1 cubic feet per second.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 13	1630	2250	7.32	7.40	30.0	14.5	5.5	>80	56	>100
13	1630	2250	7.32	7.40	30.0	14.5	5.5	>80	36	>100
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG										
13	1700	1400	590	44	9.0	2.2	316	0	259	24
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG										
13	ND	1300	21	1.1	9.8	2250	2150	0.001	<0.010	0.250
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG										
13	0.50	<0.005	<0.001	20	100	40	<10	19000	10	1.8

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412045083090600. Local number, S-31 at Fremont.
LOCATION.--Lat 41°20'45", long 83°09'06", Hydrologic Unit 04100011.

OWNER: Gottron Brothers Co.
AQUIFER.--Dolomite of Silurian age.
SPRING CHARACTERISTICS.--Discharge from fracture on quarry bench.

		ARD UNITS)	(STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	TOTAL, IMMED. (COLS. PER 100 ML)	FECAL, 0.7 UM-MF (COLS./ 100 ML)	FECAL, KF AGAR (COLS. PER 100 ML)	NESS TOTAL (MG/L AS CACO3)
1000	840	7.25	7.60	24.0	18.0	25	к5	23	410
HARD- HESS DNCARB H WAT DT FLD G/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
170	89	38	17	8.3	289	0	241	26	ND
ULFATE DIS- GOLVED (MG/L G SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
40	34	1.3	5.6	528	502	0.002	1.10	0.035	0.70
PHORO DIS SOLV (MG/ AS F	S- PHORO DUS ORTH S- DIS- ZED SOLVE L (MG/I P) AS P)	OUS ALU HO, INU DI ED SOL L (UG AS	M, BARI S- DIS VED SOLV /L (UG AL) AS	- DI ED SOL /L (UG BA) AS	N, NES S- DI VED SOL /L (UG FE) AS	E, TI S- DI VED SOL /L (UG MN) AS	UM, ZIN S- DI VED SOL /L (UG SR) AS	C, ORGA S- DIS VED SOLV /L (MG ZN) AS	NIC - ED /L
HUOHOGG	ARD- ESS WAT T FLD /L AS ACO3 170 LFATE IS- OLVED MG/L SO4) 40 PHOR DIS SOL (MG/AS I	ARD- ESS WAT WAT DIS- T FLD SOLVED /L AS (MG/L 'ACO3 AS CA) 170 89 CHLO- RIDE, IS- OLVED MG/L SOLVED MG/L SOLVED MG/L SOLVED MG/L SOLVED PHOS- PHOROUS PHOROUS ORTI DIS- SOLVED SOLVED MG/L MG/L AS P) AS P	CHLO- FLUO- RISS OLVED SOLVED (MACO3 AS CA) AS MG) CHLO- FLUO- RISS OLVED SOLVED (LEATE RIDE, RIDE, LIS- OLVED SOLVED SOLVED MG/L (MG/L (MG/L SO4) AS CL) AS F) PHOS- PHOROUS ALUI PHOROUS ORTHO, INUI DIS- DIS- SOLVED SOLVED SOL MG/L (MG/L (MG/L AS P) AS P) AS AS AS AS AS AS AS AS AS P) AS P) AS P) AS P	ARD-	ARD- LESS MAGNE- POTAS- INCARB CALCIUM SIUM, SODIUM, SIUM, WAT DIS- DIS- DIS- DIS- T FLD SOLVED SOLVED SOLVED SOLVED /L AS (MG/L (MG/L (MG/L (MG/L ACO3 AS CA) AS MG) AS NA) AS K) 170 89 38 17 8.3 SOLIDS, CHLO- FLUO- SILICA, RESIDUE AT 180 LIS- DIS- DIS- AT 180 OLVED SOLVED SOLVED MG/L SOLVED SOLVED (MG/L DIS- MG/L (MG/L (MG/L AS SOLVED MG/L (MG/L (MG/L AS SOLVED SOLVED SOLVED (MG/L) 40 34 1.3 5.6 528 PHOS- PHOS- PHOROUS ALUM- PHOROUS ORTHO, INUM, BARIUM, IRO DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED MG/L (MG/L (MG/L (UG/L (U	ARD-	ARD-	ARRD- RARD- R	ARRD- RARD- RAGNE- POTAS- BICAR- CAR- LINITY CARBON CALCIUM SIUM, SODIUM, SIUM, BONATE BONATE WH WAT DIOXIDE WAT DIS- DIS- DIS- DIS- DIS- T-FLD T-FLD TOTAL DIS- D

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412048083085500. Local number, S-32 at Fremont.
LOCATION.--Lat 41 20'48", long 83 08'55", Hydrologic Unit 04100011.

OWNER: Gottron Brothers Co.
AQUIFER.--Dolomite of Silurian age.
SPRING CHARACTERISTICS.--Discharge from fracture in quarry floor.

								COI	ı- coi	I- STREP-
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 06	1200	950	6.96	7.30	24.0	12.0	0	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 06	480	180	110	43	19	10	366	0	296	64
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 06	ND	160	38	1.7	4.5	619	594	0.004	0.495	0.046
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 06	0.70	<0.005	<0.001	<10	190	17	19	28000	37	2.7

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412805083211400. Local number, 8-33 at Woodville.
LOCATION.--Lat 41°28°05", long 83°21'14", Hydrologic Unit 04100010.

OWNER: Martin-Marietta Co.
AQUIFER.--Dolomite of Silurian age.
SPRING CHARACTERISTICS.--Discharge from fracture in quarry floor.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 12	1030	1100	7.14	7.30	23.0	20.5	0.6	80	<1	К9
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 12	580	280	120	63	9.7	2.8	366	0	299	42
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 12	ND	250	26	0.6	5.3	703	675	<0.003	0.417	0.040
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 12	0.50	<0.005	<0.001	20	77	3	7	17000	27	1.4

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411551083030900. Local number, S-34 at Green Springs.
LOCATION.--Lat 41°15'51", long 83°03'09", Hydrologic Unit 04100011.

OWNER: St. Francis of Oak Ridge Hospital.

AQUIFER.--Dolomite of Silurian age.

SPRING CHARACTERISTICS.--Artesian discharge in topographic depression, reported discharge = 12 cubic feet per second. Sample taken at artesian fountain.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
AUG 14	1200	2520	7.05	7.00	26.0	11.0	0	<1	<1	<1	1700
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS-	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 14	1400	570	67	12	2.8	364	0	299	52	2.6	1500
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)
AUG 14	11	1.3	0.080	12	2530	2370	0.002	<0.010	0.440	1.1	0.022
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
AUG				42	100	240	<1	10	<1	30	<5
14	0.014	20	<1	<1	100	240	(1	10	(1	30	(5
	DATE (THIUM NE DIS- D DLVED SO JG/L (U	IS- D LVED SO G/L (U	IS- DI LVED SO G/L (U	SEEL, NI S- D DLVED SO IG/L (U	DIS- D DLVED SO G/L (U	VER, T IS- D LVED SO G/L (U	IS- D LVED SO G/L (U	NC, ORG DIS- DI DLVED SOL G/L (M	VED TO	NIDE TAL G/L CN)
AUG 1	4	40	10	<0.1	1	<1	<1.0 1	5000	<10	2.0 <0	.010

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412604083062100. Local number, S-102-R35 near Wightmans Grove.
LOCATION.--Lat 41⁰26'04", long 83⁰06'21", Hydrologic Unit 04100011.

OWNER: James Thrun.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 55 ft., cased to 51.1 ft.

DATE	TIME	BEI LAI SURI (WI LEV		SPE- CIFI CON- DUCT ANCE (US/C	C PH - (STA	ND- D	PH LAI (STAI ARI UNITS	B ND- D	TEMP ATU AI (DEG	RE R			SOI	GEN, IS- LVED G/L)	COL: FORI TOT: IMM; (COL: PE:	M, AL, ED. S.	COLI FORM FECA 0.7 UM-M (COLS	L,	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
18	0930	7.	.15	75	9 7.	70	7.6	50	26	. 0	1:	2.0		0.2	<1		<	1	<1
												100		2/3/231					
DATE		HARD- NESS TOTAL (MG/L AS CACO3)	NO N	ARD- SSS ICARB WAT FLD L AS	CALCIUM DIS- SOLVED (MG/L AS CA)	SO (M	GNE- IUM, IS- LVED G/L MG)	SOL (M		5	POTAS- SIUM, DIS- SOLVEI (MG/L	ı	BICAR- BONATH T-FLD (MG/L AS HCO3)	E I	CAR- BONATE T-FLD (MG/L AS CO3)	LIN WH TO FI MG/		DIO SO (M	RBON XIDE IS- LVED G/L CO2)
AUG																			
18		41	0	150	85	3	8	2	2		2.5	3	06		0		250		9.7
DATE	T(LFIDE OTAL MG/L S S)	SULFA DIS- SOLV (MG/ AS SO	TE ED L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILIC DIS- SOLV (MG/ AS SIO2	A, ED L	SOL	DUE	SUM CON TUE D SO	IDS, OF STI- NTS, IS- LVED G/L)	GI NITI DI	S- LVED S/L	NITR GEN NO2+N DIS SOLV (MG/ AS N	O3 A ED L	NITR GEN MMON DIS SOLV (MG/ AS N	IA - ED L
AUG			2412								222		2.32		222				
18	ľ	ND	210		11	1.	5	15			551		569	0.	001	0.0	31	0.2	60
DATE		GEN MON ORG DI (M	TRO- I, AM- IIA + GANIC IS. IG/L IN)	PHO PHOR DI SOL (MG AS	S- PHO OUS OR S- DI VED SOL /L (MG	VED /L	SOI (UC		SOL (U		so (t	ON, DIS- DLVE JG/L FE	D SC	ANGA- ESE, DIS- DLVEI UG/L E MN)	DI SOI (UC	RON- IUM, IS- LVED G/L SR)	ZIN DI SOL (UG AS	S- VED /L	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG																			
18		0.	50	<0.0	05 <0.	001	<10)	2	0	10	000		7	320	00	25		1.1

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

41231408304040600 Local number, S-105-RL18 near Fremont.
LOCATION.--Lat 41°23'14", long 83°04'06", Hydrologic Unit 04100011.

OWNER: Helen Overmyer.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 86 ft., cased to unknown depth.

	W	NATER QUAL	ITY DATA,	WATER YE	AR OCTOBE	R 1986 TO	SEPTEMBE	R 1987		
DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
AUG										
19	1150	23.45	2240	7.05	7.10	27.0	12.0	0	K10	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
AUG										
19	K1	1400	1200	370	110	33	3.4	201	0	164
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG										
19	28	ND	1400	12	1.0	12	2250	2050	0.004	<0.010
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG										
19	0.302	4.8	<0.005	0.003	10	3100	20	8700	20	1.5

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412123083012000. Local number, S-107-RL33 near Erlin.
LOCATION.--Lat 41°21'23", long 83°01'20", Hydrologic Unit 04100011.

OWNER: Jim Diedrich.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 100 ft., cased to 94.8 ft.

DATE	BE LA SUR (W TIME LE	FACE CON VATER DUC VEL) AND	FIC N- PH CT- (STA	AND- (STARD AL	AB TEMI AND- ATO RD AI	JRE ATO		M/ML DI	FOI TO: GEN, IMM S- (COI	FECAL FECAL O.7 UM-MF CCOLS.
AUG 18	1440	4.43	2630	7.30	7.90	30.0	13.0 1.	.002	0 <	(1 <1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
AUG 18	Kl	1700	1500	450	140	27	3.6	236	0	192
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	IODIDE, DIS- SOLVED (MG/L AS I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
AUG 18	19	ND	1600	16	1.1	0.004	13	2260	2380	0.001
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	DIS-	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
AUG 18	0.015	0.480	0.90	<0.005	<0.001	20	<1	<100	<1	40
DATE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 18	<1	2100	<5	40	1.6	<1	<1.0	9200	60	1.6

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412143083053500. Local number, S-110-S26 at Fremont.
LOCATION.--Lat 41021'43", long 8305'35", Hydrologic Unit 04100011.

OWNER: H. J. Heinz.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 8 in., depth 315 ft., cased to 88 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
AUG 20	0830	222	2150	7.14	7.50	23.0	13.0	15.0	K10	K2
20111	0030	222	2150	7.14	7.50	25.0	15.0	13.0	KIO	K2
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
AUG										
20	K6	1200	970	300	100	38	3.7	253	0	206
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG										
20	29	ND	1100	30	1.5	14	2000	1720	0.010	0.125
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG										
20	0.650	0.60	0.005	0.006	<100	290	20	11000	20	1.8

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411920083071600. Local number, S-118-B10 south of Fremont.
LOCATION.--Lat 41⁰19'20", long 83⁰07'16", Hydrologic Unit 04100011.

OWNER: David Loew.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5 in., depth 66 ft., cased to 62.3 ft.

BELOW SPE- LAND CIFIC PH FORM, FORM, TOCOCCI TOTAL, FECAL, FECAL,			W	VATER	QUAL	TTY DA	TA,	WATER	YEAR	OCTOBE	R 19	86 TC) SEPT	EMBE	R 1987				
AUG 26 1330 41.90 607 7.20 7.60 15.0 12.5 0 <1 <1 K7 HARD-	DATE	TIME	BEI LAN SURF (WA LEV	OW ID FACE TER VEL)	CIF CON DUC ANC	IC T- (E	STAN	ND- (S	LAB TAND- ARD	ATU	RE	ATU	IRE ER	SOL	EN, S- (VED	FOR TOT IMM COL PE	AL, FE	RM, CAL, 7 -MF LS./	PER
26 1330 41.90 607 7.20 7.60 15.0 12.5 0 <1 <1 K7 HARD-			(11	,	100/	CH) 0	14111	or on	1107	(DDC		(DDG	, 0,	(110	, 11, 1	.00	1117 100	1111	100 ML/
HARD- NESS NONCARB CALCIUM SIUM, SODIUM, SIUM, BONATE BICAR- CAR- LINITY CARBON MITTO- CAR		1111	123	1.1			- 6		2000				de se		.5.		2	2.5	1925
HARD- NESS NMGNER POTAS BICAR CAR LINITY CARBON	26	1330	41	.90		607	7.	.20	7.60	1	5.0	1	12.5		0	<	1	<1	К7
26 330 49 67 32 19 1.9 347 0 285 35 SULFIDE CHLO- FLUO- SILICA, RESIDUE SUM OF GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	DATE	NE TC (M	SS TAL IG/L S	NES NONC WH W TOT MG/L	S ARB AT FLD AS	DIS- SOLV (MG/	ED L	SIUM DIS- SOLVE (MG/L	, SO	IS- LVED MG/L	SO (M	IUM, IS- LVED G/L	BON IT-F (MC	ATE LD LL	BONA IT-F (MG/ AS	TE LD L	LINITY WH WAT TOTAL FIELD MG/L AS	DIC SC (1	OXIDE DIS- DLVED MG/L
26 330 49 67 32 19 1.9 347 0 285 35 SULFIDE CHLO- FLUO- SILICA, RESIDUE SUM OF GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	AUG																		
SULFIDE DIS- DIS- DIS- DIS- AT 180 CONSTI- NITRITE NO2+NO3 AMMONIA			330		49	67		32		19		1.9	347		0		285		35
NITRO-	DATE	TO (M	TAL G/L	DIS SOL (MG	- VED /L	RIDE DIS- SOLV (MG/	ED L	RIDE, DIS- SOLVE (MG/L	D S	IS- OLVED MG/L AS	RES AT DE D SO	IDUE 180 G. C IS- LVED	SUM CONS TUEN DI SOL	OF TI- ITS, S- VED	GEN NITRI DIS SOLV (MG/	TE ED L	GEN, NO2+NO3 DIS- SOLVED (MG/L	AMI S (1	GEN, MONIA DIS- DLVED MG/L
NITRO-	AUG																		
GEN, AM-	26	N	D	89		2.	0	1.1		18		419		432	<0.0	01	<0.010	0	.840
	DATE	GEN MON ORG DI (M	AM- IA + ANIC S. IG/L	PHOR DI SOL (MG	OUS S- VED /L	PHORO ORTH DIS- SOLVE (MG/L	US O, D	INUM, DIS- SOLVE (UG/L	D SO	IS- LVED UG/L	SO (U	IS- LVED G/L	NES DI SOI (UC	SE, S- VED S/L	TIU DIS SOLV (UG/	M, ED	DIS- SOLVED (UG/L	ORG D: SOI	GANIC IS- LVED MG/L
	AUG																		
			0.70	0.	007	<0.0	01	<1	0	150		610		8	300	000	17	1	.5

411729083061700. Local number, S-119-B23 south of Fremont.
LOCATION.--Lat 41017'29", long 83006'17", Hydrologic Unit 04100011.
OWNER: Howard Sacks.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial irrigation well, diameter 12 in., depth 355 ft., cased to 94 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME I	EPTH ELOW AND RFACE WATER EVEL) FEET)	SPE CIF CON DUC ANC	PIC I- PH ET- (STA E AR	ND- (ST	AB AND- RD	TEMP ATU AI (DEG	RE R	TEMP ATU WAT (DEG	RE ER	OXYG DI SOL (MG	S- VED	TO'	ral, MED. LS. ER	UM-	RM, CAL, MF	STREP TOCOCC FECAL KF AGA (COLS. PER 100 ML
UG 27	0900	34.67	1	.270 7	.35	7.30	1	9.0	1	1.0		0	K	10		<1	K
DATE	HARD- NESS TOTAL (MG/I AS CACO3	NE NON WH TOT MG/	RD- SS CARB WAT FLD L AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	3-	SO SO (M	TAS- IUM, IS- LVED G/L K)	BIC BON IT-F (MG AS	ATE LD /L	BOI IT- (MC	AR- NATE -FLD G/L S	ALKA LINIS WH WA TOTA FIEL MG/L CACC	TY AT AL AD AS	CAR DIOX DI SOL (MG AS C	IDE S- VED /L
AUG 27	70	0	490	180	57	29			1.7	257		0		2	211	1	8
DATE	SULFIC TOTAL (MG/I AS S)	E DI SO (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		S- LVED S/L	RES AT DE D SO	IDS, IDUE 180 G. C IS- LVED G/L)		OF TI- TS, S- VED	NITI DI SOI	FRO- EN, RITE IS- LVED G/L N)	NITE GEN NO2+N DIS SOLV (MG/AS N	N, NO3 S- VED 'L	NIT GE AMMO DI SOL (MG AS	N, NIA S- VED /L
AUG 27	ND	52	0	6.5	1.3	15	5		986		957	0.	004	0.0	15	0.	475
DATE	NITRO GEN, AM MONIA ORGANI DIS. (MG/I AS N)	- PH + PHO C D SO (M	OS- ROUS IS- LVED G/L P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARI DIS SOLV (UG AS	ED	SO (U	ON, IS- LVED G/L FE)	MAN NES DI SOL (UG AS	E, S- VED /L	DI SOI (UC	RON- IUM, IS- LVED G/L SR)	ZINO DIS SOLV (UG/ AS 2	ED L	CARBORGA DIS- SOLV (MG AS	NIC ED /L
AUG 27	0.6	0 0	.005	<0.001	20		40		1300		18	18	3000		<3	1	. 7

411755083111000. Local number, S-122-B19 near Havens.
LOCATION.--Lat 41017'55", long 83011'10", Hydrologic Unit 04100011.

OWNER: Joseph Roth.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 61 ft., cased to 23.3 ft.

DATE	BE LA SUF (W TIME LE	RFACE CON VATER DU EVEL) AN	FIC N- PI CT- (ST)	AND- (ST	AB TEM AND- AT RD A	URE AT	URE DI	YGEN, IN IS- (C	ORM, FOOTAL, FI	DLI- DRM, ECAL, .7 UM-MF DLS./ 0 ML)
AUG 17	1425	9.50	899	7.40	7.30	29.0	14.0	0	<1	<1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
AUG 17	<1	500	160	120	40	10	2.1	421	0	347
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	IODIDE, DIS- SOLVED (MG/L AS I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
AUG 17	27	<0.5	160	12	1.0	0.004	12	603	601	<0.001
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS-	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS DIS-SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
AUG 17	0.025	0.153	0.40	0.009	0.002	<10	1	120	<1	20
DATE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 17	1	1400	<5	18	<0.1	<1	<1.0	35 000	10	2.2

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411547083093900. Local number, S-123-B32 near Green Springs.
LOCATION.--Lat 41⁰15'47", long 83⁰09'39", Hydrologic Unit 04100011.

OWNER: Gerald Guth.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 92 ft., cased to 85.7 ft.

20 ...

0.50

<0.005

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME I	JRFACE CO (WATER DU JEVEL) AN	FIC N- PH CT- (STA CE AR	ND- (STA	AB TEMP AND- ATU RD AI	RE ATU	RE DI	EN, IMM S- (COL VED PE	RM, FOR PAL, FEC IED. 0.7 IS. UM- IR (COI	RM, TOCOCC CAL, FECAL KF AGAI -MF (COLS. SS./ PER
AUG 20	1210	25.75	633 7	.24 7	7.40 3	0.0 1	5.0	0 K	:3	<1 <1
DATE	HARD- NESS TOTAI (MG/I AS CACO:	NONCARE WH WAT TOT FLE MG/L AS	DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 20	38	30 57	78	35	3.0	1.4	390	0	319	36
DATE	SULFII TOTAI (MG/)	SOLVE	DIS-	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L
	AS S			AS F)	SIO2)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)
AUG 20	ND	57	1.3	1.2	10	411	413	0.002	<0.010	0.062
DATE	NITRO GEN, AI MONIA ORGAN: DIS. (MG/) AS N	H- PHOS- + PHOROUS IC DIS- SOLVEI L (MG/L	DIS-	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG		- 0 00		43.0	100	500		22000	-	

120

620

<10

33000

1.4

65

0.006

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411602083145400. Local number, S-126-J33 near Burgoon.
LOCATION.--Lat 41016'02", long 83014'54", Hydrologic Unit 04100011.

OWNER: Wayne Mutchler.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 83 ft., cased to 24.3 ft.

DATE	B L SU (TIME L	AND C RFACE CO WATER DO EVEL) A		AND- (ST.	AB TEM AND- AT RD A	URE IR	TEMPE ATUI WATE (DEG	RE DI	FOR	PAL, FEO MED. 0.7 LS. UM- ER (COI	RM, TOCOCC CAL, FECAL KF AGA -MF (COLS. LS./ PER
UG 27	1100	7.47	630	7.25	7.40	18.0	12	2.0	0 F	K2 <1	65
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HARD- NESS NONCARI WH WAT TOT FLI MG/L A	DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POT: SI DI: SOL (MG,	UM, S- VED /L	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 27	35	0 6	0 87	30	4.9		.3	358	0	293	32
27	33	0 0	0 67	30	4.9	1	. 3	336	U	293	32
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATI DIS- SOLVEI (MG/L AS SO4	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 18	DUE 80 . C S- VED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 27	ND	42	4.8	0.6	11		373	370	0.003	0.025	0.134
DATE	NITROGEN, AM MONIA ORGANIO DIS. (MG/L AS N)	PHOS-	DIS-	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON DIS SOLV (UG, AS 1	S- VED /L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 27	<0.2	0.00	6 <0.001	<10	570	11	100	16	10000	110	1.9

AUG 05...

0.520

0.80

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT -- Continued

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411644082511600. Local number, S-129-Y25 at Bellevue.

LOCATION.--Lat 41⁰16'44", long 82⁰51'16", Hydrologic Unit 04100011.

OWNER: France Stone Company.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well (unused), converted for observation, diameter 5.62 in., depth 130 ft., cased to 8 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

BEI LAN SURN (WA TIME LEV	LOW SPEND CIE FACE CON ATER DUC 7EL) AND	FIC N- PH CT- (STA) CE ARI	ND- (STA	B TEMP ND- ATU D AI	RE ATU	RE DI	FOF TOT EN, IMM S- (COL VED PE	M, FOF PAL, FEC ED. 0.7 S. UM- ER (COL	RM, TOCO CAL, FEC KF A -MF (COL SS./ PE	CAL, AGAR LS. ER
1700 50	0.46	2080 7	.09 7	.20 2	2.0 1	2.0	0 к	:3	<1	<1
HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	
1100	810	350	44	10	2.1	311	0	255	40	
SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	
<0.5	1100	26	1.2	0.098	8.9	1890	1710	0.002	<0.010	
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	
	BEILAN SURRI (WATTIME LET (FF) 1700 50 HARD-NESS TOTAL (MG/L AS CACO3) 1100 SULFIDE TOTAL (MG/L AS S) <0.5 NITRO-GEN, AMMONIA DIS-SOLVED (MG/L CMG/L C	LAND CIE SURFACE CON (WATER DUC TIME LEVEL) ANC (FEET) (US/ 1700 50.46 2 1700 50.46 2 1700 50.46 2 HARD- NESS NONCARB TOTAL WH WAT (MG/L TOT FLD AS MG/L AS CACO3) CACO3 1100 810 SULFATE SULFIDE DIS- TOTAL (MG/L AS S) AS SO4) <0.5 1100 NITRO- GEN, GEN, AM- AMMONIA MONIA + DIS- ORGANIC SOLVED DIS. (MG/L (MG/L CMG/L (MG/L	BELOW	BELOW SPELAND CIFIC PH	BELOW SPE-LAND CIFIC PH	BELOW	BELOW SPELAND CIFIC PH SURFACE CON- PH LAB TEMPER- TEMPER- OXYG (WATER DUCT- (STAND- (STAND- ATURE ATURE DI ANCE ARD ARD ARD AIR WATER SOL (FEET) (US/CM) UNITS) UNITS) (DEG C) (DEG C) (MG C) (MG C) (MG C) (DEG C) (MG C)	BELOW SPE-	BELOW SPE-	BELOW SPE-

100

<1

80

10

11000

0.002

<10

411757082504300. Local number, S-130-Y13 near Bellevue.
LOCATION.--Lat 41 17'57", long 82 50'43", Hydrologic Unit 04100011.

OWNER: Larry Gardner.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 140 ft., cased to 29.6 ft.

		DEP BEL LAN SURF	OW SI D CI ACE CO	PE- IFIC	PH (STAND-	Pl Li		TEMP ATU	ER-	TEMP ATU	PER- O	XYGE	COI FOR TOT	RM, FO PAL, FE MED. 0.	RM, T CAL, 7 K	STREP- COCOCCI FECAL, F AGAR
DATE	TIME	LEV	EL) AN	ICE	ARD UNITS)		RD	AI (DEG	R	WAT (DEG	ER	SOLV (MG/	ED PE	R (CO	LS./	PER 00 ML)
AUG 18	1730	61	.72	648	7.38		7.40	3	0.0	1	2.0	0	кз	6	<1	>100
37777	3120		117		,,,,,,											1376
DATE	NE TO (M A	TAL G/L	HARD- NESS NONCARE WH WAT TOT FLI MG/L AS CACO3	DIS-	IUM - VED S	AGNE- SIUM, DIS- OLVED (MG/L AS MG)	SOL'		D: SOI	TAS- IUM, IS- LVED G/L K)	BICA BONA IT-FLI (MG/I AS HCO3	TE D L	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARB DIOXI DIS SOLV (MG/ AS CO	DE - ED L
AUG 18		360	110	92		31		4.2		1.8	301		0	246	20	1.
DATE	TO (M	FIDE TAL G/L S)	SULFATE DIS- SOLVEI (MG/L AS SO4)	DIS- SOLV (MG)	E, F VED S	LUO- RIDE, DIS- COLVED MG/L AS F)	DIS SOI (MC	LVED G/L	SOI	DUE	SOLID: SUM OF CONST: TUENT: DIS- SOLVE (MG/1	F I- S, ED	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITR GEN AMMON DIS SOLV (MG/ AS N	IA ED L
AUG 18	N	D	100	5	. 5	1.4	9	9.1		401	3	9 4	<0.001	<0.010	0.1	46
DATE	GEN MON ORG DI (M	TRO-,AM- IA + ANIC S. G/L N)	PHOS- PHOROUS DIS- SOLVEI (MG/L AS P)	DIS-	OUS A HO, I ED S L (LUM- NUM, DIS- OLVED UG/L	SOL'S (U		SOI (UC	ON, IS- LVED G/L FE)	MANGA NESE DIS- SOLV/ (UG/)	ED L	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBO ORGAN DIS- SOLVE (MG/ AS C	IC D L
AUG 18		1.1	0.014	0.0	010	10		160		11		6	660	3	1.	6

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412026082505000. Local number, S-132-Y1 north of Bellevue.
LOCATION.--Lat 41°20'26", long 82°50'50", Hydrologic Unit 04100011.

OWNER: Terry Groves.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 150 ft., cased to 31 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	LEV	OW ID PACE TER VEL)	SPE- CIFI CON- DUCT ANCE	C PH - PH - (STA)	ND- (ST D A	AB AND- RD	TEMP ATU AI (DEG	RE R	TEME ATU WAT (DEG	RE ER	DX YGE DIS SOLV (MG/	F T EN, I S- (C /ED	OLI- ORM, OTAL MMED OLS. PER 0 ML	FOR FEC 0.7 UM- (COL	M, TO	STREP- DCOCCI FECAL, F AGAR COLS. PER DO ML)
AUG 19	0930	89	.65	16	520 7	.28	7.30	2	8.0	1	1.5	()	<1	<	1	<1
DATE	NE TO (M	RD- SS TAL IG/L S .CO3)	HARI NESS NONCA WH WA TOT H MG/L CACO	RB T LD AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DI SOL (M	IUM, S- VED G/L NA)	SO (M	TAS- IUM, IS- LVED G/L K)	BICA BONA IT-FI (MG/ AS HCO	ATE LD 'L	CAR- BONAT IT-FL (MG/L AS CO3)	E W	ALKA- INITY H WAT TOTAL FIELD G/L AS CACO3	CARBO DIOXII DIS- SOLVE (MG/I AS CO2	DE ED
AUG 19		940	7	00	310	37	1	0		2.3	288		0		236	24	
DATE	TO (M	FIDE TAL G/L S)	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SO (M A	LVED G/L	RES AT DE	IDS, IDUE 180 G. C IS- LVED G/L)	SOLII SUM (CONST TUENT DIS SOLV (MG/	OF FI- FS, S- VED	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	E N	NITRO- GEN, O2+NO3 DIS- SOLVED (MG/L AS N)	NITRO GEN, AMMONI DIS- SOLVE (MG/I AS N)	A ED
AUG 19		<0.5	680		22	0.9	8	. 6	1	340	122	20	0.003		0.856	0.117	7
DATE	GEN MON ORG DI (M	TRO- , AM- IA + ANIC S. G/L N)	PHOS PHORO DIS SOLV (MG/ AS P	ED L	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	SOL'		SOI (U	ON, IS- LVED G/L FE)	MANO NESE DIS SOLV (UG/ AS M	6, 6- /ED 'L	STRON TIUM DIS- SOLVE (UG/L AS SR	, D	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON ORGANI DIS- SOLVEI (MG/I AS C)	ić D
AUG 19		0.50	<0.0	05	0.002	10		36		21		<1	760	0	460	1.4	1

COLI-

COLI-

STREP-

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

DEPTH

411935082560300. Local number, S-135-Y8 near Clyde.
LOCATION.--Lat 41⁰19'35", long 82⁰56'03", Hydrologic Unit 04100011.

OWNER: Denny Snyder.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 70 ft., cased to 63.7 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	s	DEPTH BELOW LAND URFACE (WATER LEVEL) (FEET)	SPE CIF CON DUC ANC (US/	IC - PH T- (STA E AR	ND- (STA	AB TEM AND- AT RD A	PER- URE IR G C)	TEMPE: ATUR: WATE: (DEG (E DI R SOL	EN, IMN S- (COI VED PI	RM, FOI FAL, FEC MED. 0.7 LS. UM- ER (COI	RM, TOCO CAL, FEC KF A -MF (COL LS./ PE	GAR S. CR
AUG													
20	1145	28.75	1	020 7	.07	7.30	30.0	12	. 5	0 <	(1	<1	<1
DATE	HARD NESS TOTA (MG/ AS CACO	NON L WH L TOTAL MG/	ARD- ESS NCARB WAT F FLD 'L AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SI	LVED S/L	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	
AUG													
20	5	90	240	120	60	19	2	2.8	416	0	339	56	
DATE	SULFI TOTA (MG/ AS S	DE DI L SC L (M	FATE S- DLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 1 DEG DI SOL	DUE :	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	
AUG 20	ND	25	50	2.8	1.6	18		738	714	0.002	<0.010	0.590	
DATE	NITR GEN, A MONIA ORGAN DIS. (MG/ AS N	M- PH + PHO IC D SO L (M	OS- OROUS OIS- OLVED MG/L S P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	DI	S- VED	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	
AUG 20	1.	0 0	.005	0.007	10	30		160	6	34000	69	1.8	

411806082554800. Local number, S-136A near Clyde.
LOCATION.--Lat 41⁰18'06", long 82⁰55'48", Hydrologic Unit 04100011.

OWNER: Steinbauer Farms.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial irrigation water well, diameter 14 in., depth 250 ft., cased to unknown depth.

				,						
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 20	1700	1220	6.75	7.60	32.0	11.5	0	K5	кз	K1
20	1700	1220	0.75	7.00	32.0	11.5	Ü			***
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG										
20	730	470	220	38	7.9	2.2	308	0	254	87
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG										1
20	ND	430	23	0.8	9.1	950	900	0.003	0.024	0.044
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG										
20	0.50	0.006	0.006	20	140	77	27	17000	12	1.5

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411722082540200. Local number, S-141-Y21 near Wales Corners.
LOCATION.--Lat 41017'22", long 82054'02", Hydrologic Unit 04100011.

OWNER: Bill Gore.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 100 ft., cased to 28 ft.

		V	VATER QUAI	LITY DATA,	WATER YE	EAR OCTOB	ER 1986	O SEP	TEMBE	R 1987			
DATE	TIM	E LEV	OW SPE	PIC N- PH CT- (STA CE AR	ND- (STA	AB TEMI AND- ATO RD A	JRE AT	MPER- FURE ATER EG C)	OXYG DI SOL (MG	EN, IMM S- (COI VED PE	RM, FOR FAL, FEG. 0.7 LS. UM-	RM, TOCO CAL, FEG KF / CMF (COL	REP- OCCI CAL, AGAR LS. ER ML)
AUG			929	446 1				20.0				3.2	
18	153	0 41	.28	910 7	.36	7.50	32.0	12.0		0 K	(2	<1	<1
DA?	гЕ	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	BOI IT-I O (MC	G/L	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	
AUG													
18		350	120	98	24	52	2.2	290		0	237	20	
DA?		SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. (DIS- SOLVEI (MG/L)	CONSTUE	STI-	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	
AUG		100	141			22	200			0.000			
18	•	ND	100	80	0.3	11	540)	519	0.001	0.014	0.048	
DAT		NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVEI (UG/L AS FE)	NES D: SOI (UC	NGA- SE, IS- LVED G/L MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	
AUG				1 111	2.2	427-9					14		
18		0.40	<0.005	0.003	10	220	180)	13	8300	6	2.1	

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412102082585000. Local number, S-144-RL35 north of Clyde.
LOCATION.--Lat 41°21'02", long 82°58'50", Hydrologic Unit 04100011.

OWNER: John Huffman.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well (unused), diameter 5.62 in., depth 48 ft., cased to 46.9 ft.

		W	ATER QUAL	ITY DATA,	WATER YE	AR OCTOBE	R 1986 TO	SEPTEMBE	SR 1987			
		DEPTH BELOW LAND	SPE- CIFIC		PH				COLI- FORM, TOTAL,	COLI- FORM, FECAL,	STREP- TOCOCCI FECAL,	
SODIUM,												
		SURFACE (WATER		PH (STAND-	LAB (STAND-	ATURE	TEMPER- ATURE	OXYGEN, DIS-	IMMED.	0.7 UM-MF	KF AGAR (COLS.	DIS- SOLVED
DATE	TIME	LEVEL) (FEET)	ANCE	ARD	ARD	AIR	WATER	SOLVED	PER	(COLS./ 100 ML)	PER 100 ML)	(MG/L
NA) AUG		(FEET)	(US/CM)	UNITS)	UNITS)	(DEG C)	(DEG C)	(MG/L)	100 ML)	100 ML)	100 ML)	Ab
11	1600	0.45	4000	7.29	7.30	24.0	12.5	0	K7	K2	<1	160
											201 102	
	POTAS-	BICAR-	CAR-	ALKA- LINITY	CARBON			CHLO-	FLUO-	SILICA	SOLIDS, RESIDUE	
	SIUM,				DIOXIDE		SULFATE		RIDE,	DIS-	AT 180	
	DIS-	IT-FLD	IT-FLD		DIS-	SULFIDE		DIS-	DIS-	SOLVEI		3
	SOLVED	(MG/L	(MG/L	FIELD	SOLVEI	TOTAL	SOLVEI	SOLVEI	SOLVEI	MG/L	DIS-	
DATE	(MG/L	AS	AS	MG/L AS		(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVEI	
	AS K)	HCO3)	CO3)	CACO3	AS CO2)	AS S)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	
AUG												
11	15	192	0	155	16	26	2100	310	1.4	16	3830	
					17							
	NITRO-	NITRO-	NITRO-	NITRO-		PHOS-						
	GEN,	GEN,	GEN,	GEN, AM-		PHOROUS			STRON-		CARBON,	
	NITRITE								TIUM		ORGANIC	
	DIS-	DIS-	DIS-	ORGANIC		DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	
DATE	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	DIS.	SOLVEI (MG/L		SOLVED (UG/L	SOLVEI (UG/L	SOLVEI (UG/L	SOLVEI (UG/L	SOLVED (MG/L	
DAIL	AS N)	AS N)	AS N)	AS N)	AS P)	(MG/L AS P)	AS BA					
AUG												
11	<0.001	0.028	2.90	2.6	<0.005	0.023	100	0 20	9500	2 (0.2	

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411632082580300. Local number, S-147-G25 south of Clyde.
LOCATION.--Lat 41°16'32", long 82°58'03", Hydrologic Unit 04100011.

OWNER: Green Hills Golf Club.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 8 in., depth 138 ft., cased to 75.7 ft.

			WATE	ER QU	JALITY I	DATA,	WATER	YEAR	OCTO	BER	1986	TO S	EPTEM	BER 19	87				
DATE	TIME	LEV	LOW	SPE CIF CON DUC ANC	IC - T- (S	PH STAND- ARD NITS)		AB AND- RD	TEMP ATU AI (DEG	RE R	TEME ATU WAI (DEG	RE ER	SOI	EN, S- (M, F AL, F ED. 0 S. U R (C	. 7 M-1	M, TOCO AL, FEO KF / MF (COI	AGAI LS. ER
UG																			
14	0845	19	.64	1	.580	7.15		7.40	2	4.0	1	1.5		0	<	1		<1	<1
DATE	NE TO (M A	TAL G/L	HAR NES NONC WH W TOT MG/L CAC	ARB VAT FLD AS	CALCIU DIS- SOLVE (MG/I AS CA	JM ED S	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODI DIS SOLV (MG AS	ED /L	SOI SOI (MC	TAS- IUM, IS- LVED G/L K)	BOI	G/L S	CAR BONA IT-F: (MG/ AS CO3	TE LD L	ALKA- LINITY WH WAT TOTAL FIELD MG/L A CACO3	s	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	
AUG																			
14		960		680	300		44	9	.1	2	2.3	345		0		28	2	39	
DATE	TO (M	FIDE TAL G/L S)	SULF DIS SOL (MG	VED	CHLO- RIDE, DIS- SOLVE (MG/I AS CI	R ED S	LUO- IDE, DIS- OLVED MG/L S F)	SILI DIS SOL (MG AS	- VED /L	RES: AT DEC D: SOI	IDS, IDUE 180 G. C IS- LVED G/L)	CONS TUES D: SOI	IDS, OF STI- NTS, IS- LVED G/L)	NITRO GEN NITRI' DIS- SOLV' (MG/ AS N	TE ED L	NITRO GEN, NO2+NO DIS- SOLVE (MG/L AS N)	3 D	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	
AUG 14		0.6	720)	8.7	,	1.3	13			1390		1300	0.0	01	<0.01	0	0.380	
DATE	GEN MON ORG. DI (M	TRO- ,AM- IA + ANIC S. G/L N)		OUS S- VED	PHOS- PHOROU ORTHO DIS- SOLVED (MG/L AS P)), I	LUM- NUM, DIS- OLVED UG/L S AL)	BARI DIS SOLV (UG AS	ED /L	SOI (UC	ON, IS- LVED G/L FE)	NES SOI (UC	NGA- SE, IS- LVED G/L MN)	STRO TIU DIS SOLV (UG/ AS S	M, ED L	ZINC, DIS- SOLVE (UG/L AS ZN	D	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	
AUG																			
14		0.70	0.	009	0.00	12	20		35		68		7	290	00		4	2.0	

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412013083142400. Local number, S-161-J3 northwest of Gabels Corner.
LOCATION.--Lat 41°20'13", long 83°14'24", Hydrologic Unit 04100011.

OWNER: Douglas Hallbert.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 81 ft., cased to 20.2 ft.

		WAIER QUAI	LITY DATA,	WATER II	SAR OCTOBE	K 1986 TO	SEPTEMBE	K 1987		
	BE LA SUR	FACE CON	FIC N- PH		AB TEM			FOI TOT SEN, IMM	RM, FOI PAL, FEO MED. 0.7	CAL, FECAL,
DATE	TIME LE	ATER DUC VEL) ANG EET) (US)		D AF		R WAT	ER SOI	S- (COI LVED PE S/L) 100	R (COI	S./ PER
SEP										
03	1130 1	4.30	880 7	.02	7.60	19.5	12.0	1.4 F	(4	<1 <1
	HARD-	HARD- NESS		MAGNE-		POTAS-	BICAR-	CAR-	ALKA- LINITY	CARBON
	NESS TOTAL (MG/L	NONCARB WH WAT TOT FLD	CALCIUM DIS- SOLVED	SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	SIUM, DIS- SOLVED	BONATE IT-FLD (MG/L	BONATE IT-FLD (MG/L	WH WAT TOTAL FIELD	DIOXIDE DIS- SOLVED
DATE	AS CACO3)	MG/L AS CACO3	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	AS CO3)	MG/L AS CACO3	(MG/L AS CO2)
SEP										
03	450	97	96	50	22	2.8	436	0	356	66
	QUI DIND	SULFATE	CHLO- RIDE,	FLUO- RIDE,	SILICA, DIS-	SOLIDS, RESIDUE AT 180	SOLIDS, SUM OF CONSTI-	NITRO- GEN, NITRITE	NITRO- GEN, NO2+NO3	NITRO- GEN, AMMONIA
DATE	SULFIDE TOTAL (MG/L AS S)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS F)	SOLVED (MG/L AS SIO2)	DEG. C DIS- SOLVED (MG/L)	TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)
SEP										
03	ND	94	19	1.1	6.0	536	513	0.039	8.90	0.022
	NITRO-		PHOS-							
	GEN, AM- MONIA + ORGANIC	PHOS- PHOROUS DIS-	PHOROUS ORTHO, DIS-	ALUM- INUM, DIS-	BARIUM, DIS-	IRON, DIS-	MANGA- NESE, DIS-	STRON- TIUM, DIS-	ZINC, DIS-	CARBON, ORGANIC DIS-
DATE	DIS. (MG/L AS N)	SOLVED (MG/L AS P)	SOLVED (MG/L AS P)	SOLVED (UG/L AS AL)	SOLVED (UG/L AS BA)	SOLVED (UG/L AS FE)	SOLVED (UG/L AS MN)	SOLVED (UG/L AS SR)	SOLVED (UG/L AS ZN)	SOLVED (MG/L AS C)
SEP			,							
03	0.80	<0.005	<0.001	<10	220	5	<1	7100	32	3.0

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412241083131600. Local number, S-163-W23 southeast of Hessville.
LOCATION.--Lat 41°22'41", long 83°13'16", Hydrologic Unit 04100011.

OWNER: Don Zimmerman.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 5.62 in., depth 66 ft., cased to 17.5 ft.

DATE	BI Li SUI (I TIME LI	AND CI RFACE CO WATER DU EVEL) AN	E- FIC N- PH CT- (STA CE AR /CM) UNIT	ND- (STA	AB TEME AND- ATU RD AI	RE ATU	RE DI		RM, FOR PAL, FEC IED. 0.7 IS. UM- IR (COL	M, TOCOCCI CAL, FECAL, KF AGAI MF (COLS. S./ PER
AUG 26	1050	26.09	682 7	.19 7	7.40 1	5.0 1	4.0	0 K	(1 <	:1 K1
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 26	4 0	110	84	35	8.6	3.2	354	0	289	36
DATE	SULFIDI TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 26	<0.	5 99	14	1.5	5.6	468	461	0.004	0.381	0.055
DATE	NITROGEN, AM MONIA - ORGANI DIS. (MG/L AS N)	PHOS-	DIS-	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 26	0.2	0.008	0.002	<10	70	25	3	36000	64	1.7

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

0.90 <0.005

<0.001

<10

412241083080400. Local number, S-165-S21 north of Fremont.
LOCATION.--Lat 41°22'41", long 83°08'04", Hydrologic Unit 04100011.

OWNER: Edward Dick.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 150 ft., cased to unknown depth depth.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	BI LI SUI (1 TIME LI	RFACE CO WATER DU EVEL) AN	FIC N- PH CT- (STA	ND- (STA	AB TEME AND- ATU RD AI	RE ATU	TER SOL		RM, FOR PAL, FEC MED. 0.7 MS. UM- GR (COL	CAL, FECAL, KF AGAR -MF (COLS.
AUG 19	0945	43.59	666 7	.60	7.40 2	5.0	13.0	0.2	:1 <1	. <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS O CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 19	38	0, 67	76	32	6.1	1.8	384	0	308	15
DATE	SULFID TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 19	ND	84	7.0	1.4	11	463	462	0.001	0.016	0.196
DATE	NITROGEN, AM MONIA ORGANI DIS. (MG/L AS N)	PHOS-	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG										

180

53000

76 1.7

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412420083081600. Local number, S-166-S9 south of Kingsway.
LOCATION.--Lat 41°24'20", long 83°08'16", Hydrologic Unit 04100011.
OWNER: Bernard Schneider.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 98 ft., cased to 60.9 ft.

DATE	BE LA SUR (W TIME LE	FACE COL ATER DU VEL) AN	FIC N- PI CT- (ST)	AND- (STA	AB TEM: AND- AT RD A	URE AT	URE (GN	AT SOI	FO: TO' GEN, IMI IS- (COI LVED PI	LI- COLI- RM, FORM, TAL, FECAL, MED. 0.7 LS. UM-MF ER (COLS., ML) 100 ML)
AUG 18	1135 2	6.72	727	7.60	7.50	28.0	12.5 0.	999	0.4	<1 <1
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
AUG 18	<1	370	100	77	34	21	2.4	329	0	269
DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	IODIDE, DIS- SOLVED (MG/L AS I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
AUG 18	13	ND	140	5.5	1.4	0.010	13	496	494	0.001
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS-	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
AUG 18	0.019	0.300	0.60	<0.005	<0.001	<10	2	42	<1	30
DATE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 18	<1	670	<5	19	0.4	<1	<1.0	37000	21	1.2

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412409083110200. Local number, S-170-W12 near Lindsey.
LOCATION.--Lat 41°24'09, long 83°11'02", Hydrologic Unit 04100011.

OWNER: Charles Wonderly.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well (unused), diameter 4.25 in., depth 61 ft., cased to 20.7 ft.

DATE	TIME	DEP BEL LAN SURF (WA LEV (FE	OW SP. D CI. ACE CO. TER DU. EL) AN	FIC N- P CT- (ST	RD	PH LAB STAND- ARD NITS)	TEME ATU AI (DEC	RE	TEMP ATU WAT (DEG	RE ER S	YGEN, DIS- OLVED MG/L)	(COI	RM, IRAL, IR	FORM FECA 0.7 UM-M COLS	KF AC	CCI AL, GAF S. R
AUG 13	1020	8	.07	670	7.17	7.40	2	4.0	1	2.0	0		52		K1	<1
DATE	NE TO (M A	RD- SS TAL G/L S CO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	DI ED SOI	DIUM, IS- LVED MG/L S NA)	DI SOI	TAS- IUM, IS- LVED G/L K)	BICAR BONAT IT-FLD (MG/I AS HCO3)	E B	CAR- ONATE T-FLD MG/L AS CO3)	ALKA- LINITY WH WAY TOTAL FIELD MG/L A CACO	r L As	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	
AUG 13		370	42	82	36		5.3	1	1.4	399		0	3:	21	43	
DATE	TO	FIDE TAL G/L S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVH (MG/I AS F)	SC (N	CICA, IS- DLVED MG/L AS IO2)	SOI	DUE	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	- NI S D (ITRO- GEN, TRITE DIS- OLVED MG/L S N)	NITRO GEN NO2+NO DIS- SOLVI (MG/I AS N))3 - ED	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	
AUG 13	N	D	53	8.3	1.6	5	5.7		405	4 0	4	0.004	0.03	25	0.031	
DATE	GEN MON ORG DI (M	TRO- ,AM- IA + ANIC S. G/L N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVE (UG/I AS AI	BAF DI D SOI	RIUM, S- VED UG/L BA)	SOI (UC	S- VED	MANGA NESE, DIS- SOLVE (UG/L	D S	TRON- TIUM, DIS- OLVED UG/L S SR)	ZINC, DIS- SOLVI (UG/I	ED	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	
AUG 13		0.60	<0.005	<0.001		0	100		21			14000	19		1.6	

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412449083130400. Local number, S-171-Wll near Lindsey.
LOCATION.--Lat 41°24'49", long 83°13'04", Hydrologic Unit 04100011.

OWNER: Vernon Roepke.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.5 in., depth 87 ft., cased to 21.5 ft.

DATE	BI LA SUI (V	EPTH ELOW SPI ND CII FACE CON NATER DUC EVEL) AND	FIC N- PH CT- (STA	ND- (STA	AB TEMP	JRE AT		FOI TO	RM, FOR FOR MED. 0.7	CAL, FECAL KF AGA -MF (COLS.
		EET) (US						G/L) 100		
UG										
25	1510	8.13	801 7	.14	7.30 2	25.0	12.5	0 <	<1	<1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG										
25	460	140	100	41	7.7	2.0	392	0	321	45
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 25	ND	170	1.4	1.5	16	562	571	<0.002	<0.010	0.157
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 25	1.1	0.007	0.002	<10	23	120	2	38000	12	1.3

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412621083102400. Local number, S-173-R31 northeast of Lindsey.
LOCATION.--Lat 41°26'21", long 83°10'24", Hydrologic Unit 04100011.
OWNER: Edward Lagrou.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 80 ft., cased to 35.1 ft.

DATE	BE LA SUR (W TIME LE	FACE CONTACT DUCKEL) AND	FIC N- PH CT- (STA	ND- (STA	AB TEM	URE AT	TER SOL		RM, FOR FAL, FEG. 0.7 MED. 0.7 LS. UM-	RM, TOCOCCI FECAL, FECAL, KF AGAR (COLS. SS./ PER
AUG 24	1540 2	1.81	755 7		. 70	20.0	12.0	0	(1	<1 <1
24	1540 2	1.01	155 1	.21 7	7.70	20.0	12.0	•	.1	<1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	DIS-	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG										
24	410	77	79	40	16	2.3	409	0	335	40
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 180	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 24	ND	120	3.4	1.5	17	518	526	<0.001	0.031	0.425
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS	PHOS- PHOROUS ORTHO, DIS-	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS-	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 24	0.70	0.011	<0.001	20	77	1100	7	44000	15	1.4
		33355								

412451083153600. Local number, S-175-W5 northwest of Hessville.
LOCATION.--Lat 41°24'51", long 83°15'36", Hydrologic Unit 04100011.

OWNER: Richard Fahle.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 91 ft., cased to 23.8 ft.

DATE	BE LA SUF (V TIME LE	RFACE CO NATER DU EVEL) AN	FIC N- PH CT- (STA	ND- (STA	AB TEMI AND- ATO RD AI	RE AT	URE DI	FOR TOT GEN, IMM IS- (COI	RM, FOI FAL, FEG MED. 0. LS. UM- ER (COI	MF (COLS.
AUG 19	1430	8.46	700 7	.37	7.40	28.0	13.0	0 <	<1 <1	1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 19	410	97	84	34	4.3	1.4	381	0	312	26
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 19	ND	100	4.7	1.5	11	490	481	0.001	<0.010	0.153
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 19	0.40	<0.005	<0.001	<10	34	77	2	52000	21	1.4

412249083191400. Local number, S-179-M23 at Gibsonburg.
LOCATION.--Lat 41°22'49", long 83°19'14", Hydrologic Unit 04100010.

OWNER: Village of Gibsonburg, well No. 4.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled public water supply well, diameter 10 in., depth 301 ft., cased to 25.9 ft.

DATE	BE LA SUR (W TIME LE	FACE CON ATER DUC VEL) AND	PIC N- PH CT- (STA	ND- (STA	AB TEME	RE ATT		EN, IMM S- (COI VED PE	RM, FOI PAL, FEG MED. 0.7 UM- UR (COI	RM, TOCOCCI CAL, FECAL, KF AGAR -MF (COLS. SS./ PER
AUG 26	0830	64	722 7	.14 7	.50	4.0	11.5	0 <	1	<1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 26	420	110	87	38	8.2	1.5	378	0	310	44
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 26	ND	120	17	0.9	7.4	502	507	<0.001	<0.010	0.024
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 26	0.20	0.009	0.003	<10	28	160	3	41000	<3	1.4

412537083181100. Local number, S-186-WOl near Busy Corners.
LOCATION.--Lat 41°25'37", long 83°18'11", Hydrologic Unit 04100010.

OWNER: Sam James.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 105 ft., cased to 24 ft.

DATE	S	DEPTH BELOW LAND JRFACE (WATER LEVEL) (FEET)	SPE CIF CON DUC ANC	IC - PH T- (STA E AR	ND- (STA	AB TEM AND- AT RD A	URE I	EMPER- ATURE WATER DEG C)	SOI	SEN, IMP	RM, FOI FAL, FEC MED. 0.7 LS. UM- ER (COI	RM, TOCOCO CAL, FECAL KF AGA -MF (COLS. SS./ PER
AUG 25	1255	12.70		697 6	.99	7.20	18.0	12.5		0	<1	<1 K
DATE	HARD NESS TOTA (MG/ AS CACO	NE NON WH TOT MG/	CARB	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTA SIUI DIS SOLV (MG/ AS K	M, B - II ED (L	ICAR- ONATE -FLD MG/L AS	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 25	4	.0	64	83	50	5.2	1.	8 42	7	0	349	69
DATE	SULFI TOTA (MG/ AS S	E DI	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 18	JE SU O CO C TU - ED S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 25	ND	6	3	7.9	0.3	3.8	4	29	426	0.002	0.369	0.024
DATE	NITR GEN,AI MONIA ORGAN DIS. (MG/)	H PHO C D SO (Mo	OS- ROUS IS- LVED G/L P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON DIS- SOLVI (UG/1 AS FI	ED S	ANGA- ESE, DIS- OLVED UG/L S MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 25	0.	0 0	.008	0.003	<10	80	2:	20	9	680	35	5.1

412722083221200. Local number, S-188-WO28 at Woodville.
LOCATION.--Lat 41°27'22", long 83°22'12", Hydrologic Unit 04100010.

OWNER: Woodmore Schools.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 6 in., depth 142 ft., cased to 35.4 ft.

		WATE	R QUALITY	DATA, WAS	TER YEAR	OCTOBER 1	985 TO S	EPTEMBER 1	1986	
	DATE	B L SU (' TIME L	AND C RFACE CO WATER DO EVEL) A	UCT- (ST	PH I PAND- (ST ARD A	AND- A	MPER- TURE ATER (FECAL, 10.7 DIM-MF	HARD- NESS NOT WH (MG/L TOTAL AS MG/	ARD- ESS NCARB CALCIU WAT DIS- FFLD SOLVE //L AS (MG/I ACO3 AS CA
	SEP									
	04	1015	40.85	1120	7.10	7.30	12.0	<1	600	240 140
		MAGNE- SIUM, DIS-	SODIUM, DIS-	POTAS- SIUM, DIS-	BICAR- BONATE IT-FLD	CAR- BONATE IT-FLD	TOTAL	CARBON DIOXIDE DIS-	SULFIDE	SULFATE
*	DATE	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	(MG/L AS K)	(MG/L AS HCO3)	(MG/L AS CO3)	MG/L AS CACO3	SOLVEI S (MG/L AS CO2)	(MG/L	SOLVED (MG/L AS SO4)
	SEP									
	04	61	10	2.3	445	0	35	8 56	0.3	250
	2150	CHLO- RIDE, DIS- SOLVED			SOLIDS, RESIDUE AT 180 DEG. C DIS-	SOLIDS, SUM OF CONSTI- TUENTS, DIS-	NITRO GEN, NITRITI DIS- SOLVE	GEN, E NO2+NO3 DIS- D SOLVEI	GEN, AMMONIA DIS- SOLVED	NITRO- GEN, AM- MONIA + ORGANIC DIS.
	DATE	(MG/L AS CL)	(MG/L AS F)	AS SIO2)	SOLVED (MG/L)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)
	SEP 04	23	0.4	6.6	860	714	<0.010	2.40	0.040	0.40
	DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)		DIS- SOLVEI (PCI/L AS	(PCI/L AS SR/	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
	SEP	40.030								- 0
	04	<0.010	<10	22	<1	2100	7.	8.6	5.6	5.8

412909083245100. Local number, S-190-WO7 northwest of Woodville.
LOCATION.--Lat 41⁰29'09", long 83⁰24'51", Hydrologic Unit 04100010.

OWNER: Edward Minke.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 71 ft., cased to 29.8 ft.

DATE	BE LA SUF (V TIME LE	ND CI RFACE CO NATER DU CVEL) AN	CT- (STA	ND- (STA	AB TEME AND- ATU RD AI	RE ATT	JRE DI FER SOI	FOI TO: GEN, IMM S- (COI	RM, FOI FAL, FEO MED. 0.7 LS. UM- ER (COI	CAL, FECAL, KF AGAR -MF (COLS. LS./ PER
AUG 25	0940	6.58	799 7	.09	7.20 1	8.0	12.0	0	<1 .	<1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 25	420	47	90	38	11	1.4	450	0	3 68	58
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 25	<0.5	61	25	0.3	8.7	496	489	0.002	0.294	0.815
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 25	1.0	0.006	0.001	<10	220	1500	10	30000	34	4.8

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412118083231400. Local number, S-198-M32 northeast of Bradner.
LOCATION.--Lat 41°21'18", long 83°23'14", Hydrologic Unit 04100010.

OWNER: Kenneth Holcomb.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 52 ft., cased to unknown depth.

DATE	BI LA SUI (V TIME LI	RFACE CON VATER DU EVEL) AN	FIC N- PH CT- (STA)	ND- (STA	AB TEME AND- ATU RD AI	RE ATO	TER SOI	FOI TO: GEN, IMM	RM, FOI FAL, FEG MED. 0. LS. UM- ER (COI	-MF (COLS. LS./ PER
AUG 26	1245	8.05	665 7	.40 7	7.50	5.0	11.0	0	<1 .	K2 K2
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 26	350	90	83	31	5.4	0.9	312	0	254	20
		/-		31			312			
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 26	ND	87	8.4	1.1	10	381	390	<0.001	<0.010	0.129
DATE	NITRO- GEN, AM- MONIA + ORGANIO DIS. (MG/L AS N)	PHOS- PHOROUS	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 26	0.60	0.012	0.007	<10	150	400	6	9500	21	2.0

412119083205800. Local number, S-200-M34 near Rollersville.
LOCATION.--Lat 41°21'19", long 83°20'58", Hydrologic Unit 04100010.

OWNER: Walter Underwood.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 85 ft., cased to 22.5 ft.

DATE	BE LA SUR (W TIME LE	PTH LOW SPI ND CIE FACE CON ATER DUC VEL) ANC EET) (US)	FIC N- PH CT- (STA) CE AR	ND- (STA	AB TEME AND- ATO RD AI	RE ATU	TER SOI	FOI TO: GEN, IMM	RM, FOR FAL, FECTOR OF TALL, FECTOR OF TALL, FECTOR OF TALL, FECTOR OF TALL, FOR FOR FALL, FOR F	CAL, FECAL, KF AGAR -MF (COLS. LS./ PER
AUG 26	1000	9.25	885 7	.32 7	7.40]	5.0 1	1.0	0.8	(1	(1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 26	370	95	100	29	9.5	45	342	0	279	26
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 26	ND	110	28	0.1	10	532	5 0 6	0.182	0.988	0.200
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 26	0.50	0.006	<0.001	<10	150	200	140	4700	320	4.2

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412120083172400. Local number, S-202-W31 north of Helena.
LOCATION.--Lat 41°21'20", long 83°17'24", Hydrologic Unit 04100011.

OWNER: Ron Wasserman.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 80 ft., cased to 23.7 ft.

DATE	BI LA SUI () TIME L	EPTH ELOW SPI AND CII RFACE COI WATER DUG EVEL) ANG	FIC N- PH CT- (STA	PH LA ND- (STA D AF	I AB TEMI AND- ATU RD AI	PER- TEMI IRE ATU	PER- OXYO JRE DI FER SOI	COI FOF TO	RM, FOR PAL, FECTOR OF THE COLUMN TERMS (COLUMN TERMS COLUMN TERMS (COLUMN TERMS TER	RM, TOCOCCI CAL, FECAL, KF AGAR (COLS. JS./ PER
AUG 27	1430	14.46	675 7	.27	7.40	6.0	11.0	2.8	:1 <	K1 K6
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 27	370	90	80	34	3.0	0.7	343	0	280	29
DATE	SULFID TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 27	ND	68	8.1	1.0	6.7	411	397	0.004	0.971	<0.002
DATE	NITROGEN, AMMONIA ORGANI DIS. (MG/L AS N)	PHOS-	PHCS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 27	0.3	0.006	<0.001	20	160	15	1	27000	39	1.2

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411911083165100. Local number, S-205-J8 near Millersville.
LOCATION.--Lat 41⁰19'11", long 83⁰16'51", Hydrologic Unit 04100011.

OWNER: Ohio Lime Company.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 8 in., depth 300 ft., cased to 23.8 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	BE: LAI SUR: (WI TIME LE'	PTH LOW SPE ND CIE FACE CON ATER DUC VEL) ANG	FIC N- PH CT- (STA CE AR	ND- (STA	AB TEMI AND- ATO RD AI	RE AT	TER SOI		RM, FOI PAL, FEG MED. 0.7 MS. UM- UR (COI	RM, TOCOCCI CAL, FECAL, KF AGAR -MF (COLS. LS./ PER
AUG 12	1530 3	0.16	910 7	.04	7.20 2	24.0	12.0	0 .	(1 (<1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 12	510	150	93	60	9.6	2.8	445	0	360	64
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 12	ND	130	18	0.8	9.5	590	571	<0.001	<0.010	0.147
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 12	0.40	<0.005	0.003	10	97	690	11	27000	23	9.7

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411757083171100. Local number, S-206-J18 south of Millersville.
LOCATION.--Lat 41017'57", long 83017'11", Hydrologic Unit 04100011.

OWNER: Birdell Bender.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 50 ft., cased to 23.6 ft.

DATE	BE LA SUR (W	PTH LOW SPH ND CIM FACE COM ATER DUC VEL) ANG	PIC N- PH CT- (STA	ND- (STA	AB TEM		JRE DI	EN, IMM	RM, FOR FOR MED. 0.7	CAL, FECAL,
	(F	EET) (US/	(CM) UNIT	s) unii	S) (DEC	G C) (DEC	G C) (MC	(L) 100	ML) 100	ML) 100 ML
AUG										
27	1310	7.65	765 7	.03	.70	18.0	12.0	0 2	21 <	L 40
		HARD-							ALKA-	
	HARD- NESS TOTAL	NESS NONCARB WH WAT	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM, DIS-	POTAS- SIUM, DIS-	BICAR- BONATE IT-FLD	CAR- BONATE IT-FLD	LINITY WH WAT TOTAL	CARBON DIOXIDE DIS-
DATE	(MG/L AS CACO3)	TOT FLD MG/L AS CACO3	SOLVED (MG/L AS CA)	(MG/L AS MG)	SOLVED (MG/L AS NA)	(MG/L AS K)	(MG/L AS HCO3)	(MG/L AS CO3)	MG/L AS CACO3	(MG/L AS CO2)
AUG										
27	410	140	110	32	5.3	1.1	326	0	268	48
			200		0.000	SOLIDS,	SOLIDS,	NITRO-	NITRO-	NITRO-
		SULFATE	CHLO- RIDE,	FLUO- RIDE,	SILICA, DIS-	RESIDUE AT 180	SUM OF CONSTI-	GEN, NITRITE	GEN, NO2+NO3	GEN, AMMONIA
	SULFIDE		DIS-	DIS-	SOLVED	DEG. C	TUENTS,	DIS-	DIS-	DIS-
	TOTAL	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	DIS-	SOLVED	SOLVED	SOLVED
DATE	(MG/L AS S)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS SIO2)	SOLVED (MG/L)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)
AUG										
27	ND	97	31	0.6	8.8	474	450	0.017	0.962	0.051
	NITRO-		PHOS-							
	GEN, AM-	PHOS-	PHOROUS	ALUM-			MANGA-	STRON-	en la	CARBON,
	MONIA + ORGANIC		ORTHO, DIS-	INUM, DIS-	BARIUM, DIS-	IRON, DIS-	NESE, DIS-	TIUM, DIS-	ZINC, DIS-	ORGANIC DIS-
	DIS.	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
DATE		(MG/L AS P)	(MG/L AS P)	(UG/L AS AL)	(UG/L AS BA)	(UG/L AS FE)	(UG/L AS MN)	(UG/L AS SR)	(UG/L AS ZN)	(MG/L AS C)
AUG										
27	<0.20	0.005	<0.001	<10	47	15	11	3600	38	1.4

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411613083193300. Local number, S-208-SC26 southeast of Girton.
LOCATION.--Lat 41°16'13", long 83°19'33", Hydrologic Unit 04100011.

OWNER: Lakota High School.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 8 in., depth 230 ft., cased to 30.9 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	BE. LAI SUR. (W. TIME LE	FACE CON ATER DUC VEL) AND	FIC N- PH CT- (STA)	ND- (STA	AB TEMP	RE ATU	RE DI		RM, FOR PAL, FECTION OF TALL, FETION OF TALL, FETI	M, TOCOCCI FAL, FECAL, KF AGAR MF (COLS. S./ PER
AUG 27	1200	4.64	590 7	.28 7	.50 1	9.0 1	4.0	0.3 F	(5	1 K10
DATE AUG 27	HARD-NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR-BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 27	ND	33	12	0.6	16	349	350	0.002	<0.010	0.218
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 27	<0.20	0.007	0.001	<10	170	240	5	11000	24	1.2

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

411654083213400. Local number, S-210-SC27 at Girton.
LOCATION.--Lat 41⁰16'54", long 83⁰21'34", Hydrologic Unit 04100011.

OWNER: William Dieter.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 5.62 in., depth 102 ft., cased to 21.5 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	S	DEPTH BELOW LAND URFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	ARD	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	WAT	RE DI ER SOL		RM, FOR PAL, FEG. 0.7 S. UM-	RM, TOCOCCI CAL, FECAL, KF AGAR -MF (COLS. LS./ PER
AUG 26	1530	18.68	1280	6.98	7.10	20.0) 1	2.5	3.0	:1 <	(1 <1
DATE	HARD NESS TOTA (MG/ AS CACO	NONCA L WH WA L TOT I MG/L	ARB CALC AT DIS FLD SOL AS (MG	VED SOLV	UM, SOD S- DI VED SOL /L (M	IUM, S- VED S G/L	POTAS- SIUM, DIS- GOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 26		30	70 92		7		6.3	442	0	3 62	74
DATE	SULFI TOTA (MG/ AS S	L SOLV	ED SOL	E, RIDI - DIS VED SOLV /L (MG/	E, DI S- SO VED (M /L A	ICA, RES- ATLVED IG/L	DLIDS, ESIDUE T 180 DEG. C DIS- GOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 26	ND	47	130	0.	.1	4.8	647	624	0.005	1.00	0.038
DATE	NITR GEN, A MONIA ORGAN DIS. (MG/ AS N	M- PHOS + PHORO IC DIS SOLV L (MG/	OUS ORTH	OUS ALUM HO, INUM DIS ED SOLV L (UG/	M, BAR S- DI VED SOL' VL (U	S- VED S G/L (RON, DIS- SOLVED (UG/L S FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 26	5.	4 0.0	20 0.	016	10	30	<3	<1	290	77	3.7

412505082512400. Local number, S-217-T1 near Castalia.
LOCATION.--Lat 41025'05", long 82051'24", Hydrologic Unit 04100011.

OWNER: Roger Hall.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 76 ft., cased to 64 ft.

		WATER QU	ALITY DA	TA, WATE	R YEAR	ОСТОВЕ	R 1986 T	O SEPTEME	BER 1987		
DATE	B L SU (TIME L	AND C RFACE C WATER D EVEL) A	NCE	ARD	PH LAB (STAND- ARD UNITS)	TEMP ATU AI (DEG	RE AT R WA	URE D	FOI TO: GEN, IMI OIS- (COI	RM, FOI PAL, FEO MED. 0.1 LS. UM- ER (COI	-MF (COLS. LS./ PER
AUG 19	1200 F1	owing	2340	7.18	7.20	3	0.0	11.0	0	<1	<1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3	TOT FL MG/L A	B CALCI DIS- D SOLV S (MG/	ED SOL'	UM, SON S- D VED SON /L (1	DIUM, IS- LVED MG/L S NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONATE IT-FLD		ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 19	150	0 120	0 480	60		6.5	3.2	312	0	255	33
DATE	SULFID TOTAL (MG/L AS S)	SULFAT E DIS- SOLVE (MG/L AS SO4	DIS- D SOLV (MG/	, RIDI DIS ED SOL' L (MG,	E, D: S- SC VED (I	LICA, IS- OLVED MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 19	ND	1300	12	1	.4 19	90	2230	2220	0.001	<0.010	0.304
DATE	NITRO GEN, AM MONIA ORGANI DIS. (MG/L AS N)	- PHOS- + PHOROU C DIS- SOLVE	S ORTH DIS- D SOLVE (MG/L	US ALUI O, INUI DIS D SOLV	M, BAI S- D: VED SOI /L (1	RIUM, IS- LVED UG/L S BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	TIUM, DIS-	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 19	0.8	0 <0.00	5 0.0	02	20	<100	570	20	11000	80	1.6

412314082533000. Local number, S-218-T15 near Vickery.
LOCATION.--Lat 41023'14", long 82053'30", Hydrologic Unit 04100011.
OWNER: William Warner.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 109 ft., cased to 108 ft.

		MIEK QUAL	IIII DAIA,	WAIER IE	AR OCTOBE	K 1900 1	SEPTEMBE	K 190/		
141	BEI LAN SURI		PIC PH		AB TEMI				RM, FOR	RM, TOCOCO CAL, FECAL KF AGA
DATE	TIME LEV	/EL) ANC	E AR	D AF	RD A	R WA	TER SOI	LVED PE	R (COI	S./ PER
UG										
20	1415 Flow	ving 2	2230 7	.09 7	.80	32.0	11.5	0 <1		:1 <1
	HARD- NESS	HARD- NESS NONCARB	CALCIUM	MAGNE- SIUM,	SODIUM,	POTAS- SIUM,	BICAR- BONATE	CAR- BONATE	ALKA- LINITY WH WAT	CARBON DIOXIDE
DATE	TOTAL (MG/L AS CACO3)	WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L AS K)	IT-FLD (MG/L AS HCO3)	IT-FLD (MG/L AS CO3)	TOTAL FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS CO2)
AUG										
20	1300	1100	410	64	8.0	2.5	305	0	247	39
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 20	<0.5	1200	17	1.4	12	2190	1880	<0.001	<0.010	0.259
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 20	0.60	0.010	<0.001	10	200	150	20	13000	10	1.6

412310082533000. Local number, S-218A near Vickery.
LOCATION.--Lat 41°23'10", long 82°53'30", Hydrologic Unit 04100011.

OWNER: William Warner.
AQUIFER.--Gravel of Quaternary age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.82 in., depth 80 ft., cased to 80 ft.

DATE	TIME	DEPTH BELOW LAND SURFAC (WATE LEVEL (FEET	SPE- CIFIC E CON- R DUCT-) ANCE	PH (STAND- ARD) UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	ATURE WATER	DIS- SOLVED	(COLS.	0.7 UM-MF (COLS./	KF AGAR (COLS. PER
AUG 19	1400	FLOWIN	G 2300	7.18	7.20	30.0	11.5	0	<1	<1	<1
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 1	9	1100	870	340	62	7.3	2.4 30	06	0	251	32
	DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG	9	ND	1200	15	1.0	7.5	2170	1800	0.002	<0.010	0.304
	DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS DIS-SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 1	9	0.50	<0.005	0.003	20	<100	80	20	13000	30	1.5

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412605082574900. Local number, S-231-RL36 at Bayview.
LOCATION.--Lat 41°26'05", long 82°57'49", Hydrologic Unit 04100011.

OWNER: Ohio Department of Natural Resources, Wildlife
AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled water well (unused), diameter 6 in., depth 300 ft., cased to 45 ft.

		DEPTH BELOW LAND SURFACE (WATER	SPE- CIFIC CON- DUCT-	PH (STAND-	PH LAB (STAND-	TEMPER- ATURE	TEMPER- ATURE	DENSITY (GM/ML	OXYGEN, DIS-	COLI- FORM, TOTAL, IMMED. (COLS.
DATE	TIME	(FEET)	ANCE (US/CM)	ARD UNITS)	ARD UNITS)	(DEG C)	WATER (DEG C)	AT 20 C)	SOLVED (MG/L)	PER 100 ML)
AUG										
11	1730	Flowing	100000	6.33	6.20	23.0	12.0	1.050	0	K3
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)
AUG										
11	<1	<1	15000	15000	5800	150	15000	480	328	0
DATE	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	IODIDE, DIS- SOLVED (MG/L AS I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
AUG 11	269	244	300	1200	37000	0.6	2.2	8.8	72400	59900
DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)
AUG										
11	0.005	0.030	0.800	4.5	<0.005	0.133	40	6	300	<1
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG										
11	<10	<1	500	<5	190	<1	<1.0	84000	100	0.2

412340083011400. Local number, S-234-RL16 near Wightmans Grove.
LOCATION.--Lat 41°23'40", long 83°01'14", Hydrologic Unit 04100011.

OWNER: Merle Pearson.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth unknown, cased to unknown depth.

DATE	BI LA SUE (V TIME LE	EPTH ELOW SPI AND CIR RFACE COM MATER DUC EVEL) AND	FIC N- PH CT- (STA	PH LZ ND- (STZ D AI	H AB TEMI AND- ATO RD A	PER- TEM JRE AT IR WA	PER- OXYO URE DI TER SOI	COI FOI TOI SEN, IMM	RM, FOI FAL, FEC MED. 0.7 LS. UM- ER (COI	CAL, FECAL, KF AGAR -MF (COLS. LS./ PER
AUG 13	1430 Flo	wing :	2730 7	.11	7.30	29.0	11.5 3	10.0	(1	<1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 13	1600	1400	400	150	25	3.8	273	0	225	34
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 13	0.6	1700	33	1.3	14	2720	2470	0.001	<0.010	0.600
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 13	0.90	<0.005	<0.001	20	100	350	20	9000	<10	2.0

WATER-QUALITY DATA FOR SANDUSKY COUNTY--Continued

412252082582600. Local number, S-236-RL23 near Vickery.
LOCATION.--Lat 41022'52", long 82058'26", Hydrologic Unit 04100011.

OWNER: C. R. Griffaw.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5 in., depth 62 ft., cased to 58 ft.

AUG

20...

2.8

<0.005

0.003

20

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	I SU	AND C	PE- IFIC DN- PE						RM, FOR PAL, FEC MED. 0.7	RM, TOCOCC CAL, FECAL KF AGA
DATE	TIME I	EVEL) AM	NCE AF	RD AI	RD AI	R WAT	ER SOL	LVED PE	R (COI	S./ PER
UG										
20	1900	13.10	3980	5.56	7.40 2	28.0 1	.6.5	5.6 F	(2	(1)
		HARD-							ALKA-	
	HARD-	NESS		MAGNE-		POTAS-	BICAR-	CAR-	LINITY	CARBON
	NESS TOTAL	NONCARE WH WAT	DIS-	SIUM, DIS-	SODIUM, DIS-	SIUM, DIS-	BONATE IT-FLD	BONATE IT-FLD	WH WAT TOTAL	DIOXIDE DIS-
	(MG/L	TOT FLI	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	(MG/L	FIELD	SOLVED
DAT	E AS CACO3	MG/L AS CACO3	AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS HCO3)	AS CO3)	MG/L AS CACO3	(MG/L AS CO2)
AUG										
20	240	0 2200	590	210	140	34	133	0	109	58
			CHLO-	FLUO-	SILICA,	SOLIDS, RESIDUE	SOLIDS, SUM OF	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,
		SULFATE	RIDE,	RIDE,	DIS-	AT 180	CONSTI-	NITRITE	NO2+NO3	AMMONIA
	SULFID		DIS- SOLVED	DIS- SOLVED	SOLVED (MG/L	DEG. C	TUENTS, DIS-	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED
DATI	E (MG/L		(MG/L	(MG/L	AS	SOLVED	SOLVED	(MG/L	(MG/L	(MG/L
	AS S)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)
AUG										
20	1.	1 2000	380	1.7	11	3570	3450	0.041	0.516	1.40
	NITRO		PHOS-							
	GEN, AM	- PHOS-	PHOROUS	ALUM-			MANGA-	STRON-	Lane Lane	CARBON,
	MONIA	+ PHOROUS	ORTHO,	INUM,	BARIUM,	IRON,	NESE,	TIUM,	ZINC,	ORGANIC
14	ORGANI	C DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
DAT	ORGANI DIS.	C DIS- SOLVED	DIS-	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (MG/L

100

14

1900 1.5

11000

GROUND-WATER LEVELS FOR WOOD COUNTY

413629083304400. Local number, WQ-121-N.
LOCATION.--Lat 41°36'29", long 83°30'44", Hydrologic Unit 04100010, 6585 Wales Road at Northwood.

OWNER; Waste Management Inc.
AQUIFER.--Dolomite of Upper Silurian Age.
WELL CHARACTERISTICS.--Drilled domestic water well converted to observation well, diameter 6.0 in., depth, 188.5 ft, cased to unknown depth.

INSTRUMENTATION.--Digital recorder -- 60-minute punch.
DATUM.--Elevation of land-surface datum is 616.47 ft above National Geodetic Vertical Datum of 1929, from levels.
Measuring point: Top of casing, 2.12 ft below land-surface datum.

PERIOD OF RECORD.--August 22, 1984 to present.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 55.60 ft below land-surface datum, Jan. 8, 1986; lowest water level, 63.46 ft below land-surface datum, Nov. 21, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAD	APR	MAY	JUN	JUL	AUG	SEP
DAI	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	000	AUG	SEP
1	59.57	59.99	59.85	59.25	58.66	57.91	57.71	57.61	57.52	57.84	58.41	58.72
2	59.65	60.02	59.59	58.99	58.27	58.14	57.72	57.51	57.53	57.72	58.27	59.19
3	59.56	59.97	59.25	59.24	58.65	58.55	57.93	57.63	57.54	57.74	58.36	58.88
4	59.25	59.79	59.53	59.32	58.98	58.71	57.86	57.89	57.61	57.85	58.44	58.93
5	58.74	59.85	59.72	59.36	59.04	58.62	57.64	57.88	57.60	57.96	58.59	58.89
6	58.45	59.74	59.75	59.15	58.92	58.55	57.60	57.74	57.63	57.90	58.68	58.82
7	58.35	59.86	59.67	59.10	58.64	58.45	57.35	57.67	57.47	57.98	58.70	58.78
8	58.09	59.71	59.46	59.10	58.67	58.20	57.04	57.69	57.41	58.04	58.69	58.74
9	58.36	59.93	59.21	59.06	58.76	58.42	56.93	57.63	57.62	58.14	58.44	58.83
10	58.52	60.12	59.42	58.64	58.74	58.58	56.90	57.54	57.85	58.12	58.65	58.89
11	58.57	59.94	59.40	58.66	58.75	58.57	56.81	57.49	57.73	58.12	58.69	58.85
12	58.59	59.99	59.49	58.88	58.64	58.54	57.13	57.75	57.52	58.08	58.63	58.87
13	58.77	60.29	59.75	58.88	58.66	58.54	57.32	57.80	57.59	57.96	58.59	58.72
14	58.87	60.28	59.71	58.82	58.61	58.37	57.25	57.64	57.53	58.11	58.67	58.40
15	59.14	59.93	59.48	59.00	58.76	58.35	57.09	57.85	57.63	58.14	58.74	58.00
16	59.19	59.67	59.49	59.19	58.79	58.49	57.09	57.75	57.70	58.29	58.66	57.53
17	59.57	59.55	59.47	59.21	58.55	58.53	57.18	57.55	57.87	58.44	58.65	57.06
18	59.77	59.67	59.27	58.88	58.64	58.36	57.39	57.49	57.89	58.47	58.79	56.55
19	59.81	59.82	59.29	58.73	58.84	58.15	57.58	57.49	57.82	58.44	58.79	56.53
20	59.76	59.62	59.42	58.79	58.81	58.09	57.58	57.53	57.76	58.45	58.99	56.54
21	59.60	59.59	59.53	58.77	58.65	58.06	57.61	57.59	57.59	58.55	58.97	56.56
22	59.59	59.68	59.57	58.61	58.44	58.06	57.60	57.63	57.50	58.61	58.85	56.68
23	59.59	59.53	59.40	58.61	58.64	58.00	57.52	57.79	57.65	58.63	59.07	56.71
24	59.73	59.73	59.25	58.94	58.80	57.91	57.80	57.84	57.75	58.64	59.18	56.83
25	59.67	59.73	59.16	58.91	58.89	57.74	57.91	57.79	57.59	58.61	59.15	57.06
26	59.40	59.47	59.38	58.96	58.89	57.89	57.89	57.69	57.53	58.47	59.08	57.23
27	59.46	59.66	59.39	58.95	58.85	57.89	57.75	57.76	57.60	58.45	58.87	57.41
28	59.63	59.64	59.37	58.95	58.55	57.97	57.65	57.77	57.70	58.45	58.86	57.55
29	59.76	59.68	59.36	58.95		57.98	57.49	57.72	57.72	58.42	58.94	57.52
30	60.02	59.82	59.25	58.47		57.69	57.63	57.63	57.86	58.40	58.91	57.62
31	60.03		59.27	58.67		57.66		57.61		58.44	58.70	
MAX	60.03	60.29	59.85	59.36	59.04	58.71	57.93	57.89	57.89	58.64	59.18	59.19

58.51 HIGH 60.29 NOV 13 WTR YR 1987 MEAN 56.53 SEP 19 LOW

GROUND-WATER LEVELS FOR WOOD COUNTY--Continued

411721083250900. Local number, WO-200-M024
LOCATION.--Lat 41°17'21", long 83°25'09", Hydrologic Unit 04100010, on SR 23, 1.15 mi north of Risingsun.

Owner: Cletus Brockschmidt.

AQUIFER.--Lockport Dolomite of Middle Silurian Age.

WELL CHARACTERISTICS.--Drilled observation water well, diameter 6 in., depth 265 ft, cased to unknown depth.

INSTRUMENTATION.--Digital recorder -- 60-minute punch.

DATUM.--Elevation of land-surface datum is 704.66 ft above National Geodetic Vertical Datum of 1929, from levels.

Measuring point: floor of shelter, 0.70 ft above land-surface datum.

PERIOD OF RECORD.--November 6, 1985 to September 30, 1987.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.06 ft below land-surface datum, Dec. 12, 1985; lowest water level, 9.62 ft below land-surface datum, Aug. 23, 1987.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MAXIMUM VALUES

										Carl		0.47
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.25	5.53	4.27	4.26	4.53	4.07	3.73	4.58	5.26	5.87	7.32	9.06
2	6.89	5.51	4.11	4.29	4.35	4.07	3.72	4.57	5.27	5.80	7.44	9.19
3	6.70	5.52	3.60	4.46	4.19	4.09	3.69	4.63	5.27	5.92	7.56	9.11
2 3 4	6.12	5.58	3.90	4.50	4.14	4.21	3.61	4.29	5.30	5.95	7.57	9.10
5	5.67	5.55	4.03	4.39	4.03	4.17	3.54	4.25	5.35	5.92	7.79	9.09
6	5.64	5.53	4.12	4.22	3.86	4.16	3.16	4.21	5.41	5.79	7.82	9.10
7	5.60	5.78	4.06	4.53	3.75	4.11	3.25	4.29	5.32	5.80	7.85	9.15
8	5.56	5.45	3.88	4.43	3.83	4.07	3.35	4.38	5.39	5.81	8.00	9.11
9	5.79	5.72	3.50	4.36	3.89	4.36	3.50	4.46	5.46	5.95	7.86	9.21
10	5.73	5.78	3.62	4.24	3.94	4.44	3.50	4.59	5.51	5.84	8.13	9.18
11	5.76	5.69	3.60	4.49	3.98	4.40	3.57	4.50	5.38	6.00	8.13	9.14
12	5.62	5.64	4.04	4.66	4.03	4.61	3.86	4.68	5.30	6.02	8.20	9.20
13	5.57	5.87	4.30	4.63	4.05	4.48	3.92	4.66	5.31	6.02	8.49	9.34
14	5.40	5.78	4.11	4.57	4.09	4.39	3.81	4.63	5.30	6.04	8.54	9.36
15	5.29	5.53	4.25	4.25	4.33	4.51	3.78	4.80	5.49	6.05	8.60	9.30
16	5.23	5.55	4.20	4.24	4.21	4.41	3.90	4.80	5.58	6.17	8.77	9.24
17	5.39	5.57	4.22	4.17	4.21	4.42	4.04	4.88	5.63	6.44	9.01	9.19
18	5.51	5.65	4.17	4.24	4.39	4.32	4.23	4.79	5.61	6.39	9.16	9.20
19	5.54	5.71	4.15	4.27	4.48	4.28	4.30	4.82	5.59	6.35	9.36	9.28
20	5.38	5.43	4.30	4.32	4.48	4.32	4.18	4.89	5.57	6.60	9.43	9.23
21	5.40	5.18	4.32	4.35	4.49	4.41	4.27	4.92	5.56	6.59	9.38	9.31
22	5.53	5.00	4.29	4.18	4.41	4.52	4.18	5.12	5.59	6.69	9.47	9.28
23	5.41	5.06	4.22	4.44	4.62	4.38	4.24	5.10	5.59	6.75	9.62	9.33
24	5.45	5.16	4.13	4.63	4.70	4.35	4.39	5.21	5.59	6.66	9.47	9.23
25	5.36	5.04	4.01	4.60	4.80	4.50	4.47	5.15	5.40	6.72	9.40	9.31
26	5.38	4.77	4.08	4.59	4.70	4.52	4.51	5.13	5.47	6.82	9.34	9.32
27	5.41	4.13	4.20	4.55	4.61	4.51	4.37	5.20	5.56	6.96	9.21	9.37
28	5.47	3.96	4.22	4.70	4.45	4.61	4.51	5.19	5.83	6.89	9.22	9.59
29	5.50	4.12	4.11	4.67		4.57	4.44	5.20	5.80	7.03	9.20	9.31
30	5.65	4.26	4.28	4.53		4.43	4.61	5.22	5.84	7.16	9.19	9.36
31	5.62		4.27	4.65		3.77		5.30		7.15	9.05	
MAX	7.25	5.87	4.32	4.70	4.80	4.61	4.61	5.30	5.84	7.16	9.62	9.59
WTR YR	1987 ME	AN 5.	55	HIGH	3.16 API	R 6	LOW 9	.62 AUG	23			

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued GROUND-WATER LEVELS FOR WOOD COUNTY--Continued

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	WATER LEVEL (FEET BELOW LAND- SURFACE DATUM)
Wells Completed in	n Carbonate Aquife	er			
411007083401600 411705083254100 412645083315800 412140083352700	WO-11-H35 WO-12-MO24 WO-13-WB25 WO-23-C27	411007 411705 412645 412140	0834016 0832541 0833158 0833527	01-27-87 01-26-87 02-04-87 01-27-87 08-03-87	11.97 3.94 2.65 5.43 6.74
413512083320900 413631083314200 413635083293400 413551083293900 413620083304100 413630083302300 413515083304300	WO-100-PB25 WO-101-N WO-102-N WO-103-L5 WO-104-N WO-115-N WO-118-L8	413512 413631 413625 413551 413620 413629 413515	0833209 0833142 0832934 0832939 0833041 0833023 0833043	02-04-87 02-04-87 02-04-87 02-04-87 02-04-87 02-04-87 02-04-87	52.28 58.43 59.87 63.20 59.22 57.23 57.39
413515083313700	WO-119-L7	413515	0833137	09-01-87 02-04-87	57.01 53.22
413629083304400	WO-121-N	413629	0833044	09-01-87 10-01-86 12-10-86 02-11-87 04-14-87 06-17-87 07-29-87	52.38 59.51 59.27 58.58 57.23 57.76
413655083305800 413557083332300	WO-124-N WO-129-PB23	413655 413557	0833058 0833323	09-02-87 02-04-87 02-04-87	58.67 59.69 41.18
413540083322200 413546083292000 412726083283100 412103083272200 411721083250900	WO-131-PB24 WO-141-LK4 WO-198-T21 WO-199-F34 WO-200-MO24	413540 413546 412726 412103 411721	0833222 0832920 0832831 0832722 0832509	07-21-87 02-04-87 02-04-87 08-13-87 08-06-87 10-01-86 12-11-86 01-26-87 03-24-87 06-17-87	40.82 55.58 65.47 8.89 8.22 7.02 3.59 4.50 4.23 5.49
411130083253300 411411083260600	WO-202-PE25 WO-203-PE12	411130 411411	0832533 0832606	07-29-87 01-27-87 01-27-87	6.89 6.61 2.17
411209083273500	WO-204-PE22	411209	0832735	07-30-87 01-27-87 07-22-87	4.20 8.90 10.49
411443083291500 411235083324000 411036083320500 411050083333400 411150083332000 411429083362200	WO-206-PE4 WO-207-B24 WO-208-PE31 WO-210-B35 WO-211-B23 WO-212-B4	411443 411235 411036 411050 411150 411429	0832915 0833240 0833205 0833334 0833320 0833622	01-27-87 01-26-87 01-27-87 07-30-87 01-26-87 01-26-87	20.80 3.18 4.10 5.50 9.26 3.67
411331083360600 411031083364400 411352083371800 411428083395400	WO-213-B16 WO-214-B32 WO-215-B8 WO-216-H1	411331 411031 411352 411428	0833606 0833644 0833718 0833954	07-22-87 01-26-87 01-27-87 01-26-87 01-28-87 08-04-87	2.73 3.99 5.72 11.66 3.50 4.94
411022083394000 411336083411200 411354083422700 411339083430200 411253083434000 411250083434000	WO-218-H36 WO-219-H11 WO-220-H10 WO-221-H9 WO-222-H17 WO-223-H17	411022 411336 411354 411339 411253 411250	0833940 0834112 0834227 0834302 0834340 0834340	07-28-87 01-28-87 01-28-87 01-28-87 01-28-87 01-28-87 08-05-87	12.28 6.31 8.14 11.93 1.17 2.81
411101083442900 411425083441600 411429083440800 411256083453100 411216083470300	WO-224-H29 WO-225-H8 WO-226-H5 WO-228-H18 WO-230-J24	411101 411425 411429 411256 411216	0834429 0834416 0834408 0834531 0834703	01-28-87 01-28-87 01-28-87 02-05-87 01-29-87 08-04-87	5.35 12.27 10.54 9.68 15.64 22.09 23.79
411059083484900 411217083510900 411217083515300 411337083503800	WO-232-J27 WO-234-J20 WO-235-J19 WO-236-J8	411059 411217 411217 411337	0834849 0835109 0835153 0835038	01-29-87 01-29-87 01-29-87 01-29-87 08-03-87	18.74 28.49 29.19 26.21 23.60
411520083520900 411944083525700 411940083511600 411706083503200 411943083493200 411652083495700 411706083455600	WO-237-ML31 WO-239-ML6 WO-240-ML8 WO-241-ML21 WO-242-ML4 WO-244-ML22 WO-246-L119	411520 411944 411940 411706 411943 411652 411706	0835209 0835257 0835116 0835032 0834932 0834957 0834556	08-04-87 01-29-87 01-29-87 01-29-87 01-29-87 01-29-87	24.24 70.41 18.55 16.69 7.81 16.50 9.22
411521083462500 411609083441300	WO-247-ML36 WO-248-LI32	411521 411609	0834625 0834413	07-31-87 01-29-87 01-28-87	10.30 15.14 5.08

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued GROUND-WATER LEVELS FOR WOOD COUNTY--Continued

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	WATER LEVEL (FEET BELOW LAND- SURFACE DATUM)
411945083410600	WO-250-LI2	411945	0834106	01-28-87	9.91
411749083401900	WO-251-LI23	411749	0834019	08-05-87 01-28-87	11.70
411603083401200		411603	0834012	01-28-87	1.98
411752083384700	WO-253-P018	411752	0833847	01-28-87	11.70
411749083361000	WO-255-P016	411749	0833610	01-26-87	6.41
411516083360900		411516	0833609	01-26-87	12.86
411828083345200 411658083323500		411828 411658	0833452 0833235	01-26-87	3.53 7.59
	,			07-29-87	9.64
411911083285300	WO-260-MO9	411911	0832853	01-26-87 07-28-87	6.21
411533083284200	WO-262-MO33	411533	0832842	01-26-87	4.89
411943083261300	WO-263-MO1	411943	0832613	01-26-87 07-29-87	2.08 3.38
411700083261100	WO-264-MO24	411700	0832611	01-26-87	2.34
411616083251900	WO-265-MO25	411616	0832519	01-26-87	9.97
412204083271800	WO-266-F26	412204	0832718	07-22-87 01-26-87	12.79 5.82
412524083252800	WO-267-F1	412524	0832528	02-04-87	8.07
412453083291700 412237083301800		412453 412237	0832917 0833018	02-04-87	5.14 6.79
412237063301600	WO-209-F20	412237	0833018	08-07-87	10.80
412136083300300		412136	0833003	01-26-87	11.24
412316083334800 412542083330700		412316 412542	0833348 0833307	02-04-87	9.44 5.96
				08-13-87	6.20
4127210833333900 412635083362700		412721 412635	0833339 0833627	02-04-87	18.43
412033003302700	WO-2/4-MD20	412033	0033027	08-06-87	8.72
412114083380400	WO-275-C31	412114	0833804	01-28-87	8.04
412253083372400	WO-276-C20	412253	0833724	08-13-87 02-04-87	13.67 3.65
412357083371400		412357	0833714	02-04-87	4.36
412431083374500 412305083390900		412431 412305	0833745 0833909	02-03-87 01-30-87	1.49
412117083410500	WO-282-PL35	412117	0834105	01-28-87	14.29
412235083441200 412236083435300		412235 412236	0834412 0834353	01-30-87 01-30-87	4.70 5.03
412244083441400		412244	0834414	01-30-87	6.15
412350083444900		412350	0834449	08-05-87	14.05
412541083443000 412131083460500		412541 412131	0834430 0834605	01-30-87 01-29-87	35.79 9.77
412218083463400	WO-289-WS25	412218	0834634	01-29-87	6.22
412225083492700 412457083482900		412225 412457	0834927 0834829	01-29-87 02-03-87	14.58
412630083465000	WO-292-WA36	412630	0834650	02-03-87	34.58
412554083483200 412453083504600		412554 412453	0834832 0835046	02-03-87 02-03-87	35.79 18.59
412438083521000		412438	0835210	02-03-87	18.19
412200083514800	WO 206 CD20	412200	0035140	07-24-87	20.29
412124083514800		412200 412124	0835148 0835130	01-29-87 08-04-87	22.00
412735083460800	WO-299-WA24	412735	0834608	02-03-87	12.47
412802083435700	WO-300-MD20	412802	0834357	07-27-87 01-30-87	14.15 31.97
412804083435200	WO-301-MD20	412804	0834352	01-30-87	31.97
413025083423000 413026083420800		413025 413026	0834230 0834208	02-03-87 02-03-87	40.92 34.94
		415020	0034200	07-28-87	41.10
413210083380600 413345083371500		413210	0833806 0833715	02-03-87 02-04-87	36.64 42.65
413343063371300	WO-300-PB	413345	0633713	07-16-87	44.18
412839083352000	WO-307-WB15	412839	0833520	02-04-87	4.34
413117083303900	WO-308-LK32	413117	0833039	08-11-87 02-04-87	8.70 5.62
413147083275800		413147	0832758	02-04-87	32.44
413302083260600	WO-310-LK23	413302	0832606	08-12-87 02-04-87	38.65 37.30
413535083343800	WO-311-PB27	413535	0833438	02-04-87	50.47
413658083332900	WO-313-R	413658	0833329	02-04-87 07-21-87	101 126
413656083333000	WO-314-R	413656	0833330	07-21-87	138
413700083291000		413700	0832910	02-04-87	59.88
413542083282700	WO-310-DK4	413542	0832827	02-04-87	61.02 63.22
413515083271800		413515	0832718	02-04-87	60.55
413657083263000 413628083260800		413657 413628	0832630 0832608	02-04-87	52.66 55.09
413608083255500		413608	0832555	09-03-87	63.53

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued GROUND-WATER LEVELS FOR WOOD COUNTY--Continued

SITE NUMBER	LOCAL NO. CO. SEC.& ID. NO.	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	DATE	WATER LEVEL (FEET BELOW LAND- SURFACE DATUM)
413455083260400	WO-321-LK12	413455	0832604	02-04-87	64.70
413433003200400	WO-521-BK12	413433	0032004	08-10-87	63.16
412411083464101	WO-322-WA12	412411	0834641	02-03-87	6.37
413123083420200	WO-323-PB57	413123	0834202	02-03-87	44.87
411309083453500	WO-324-H18	411309	0834535	02-05-87	13.24
412123083512900	WO-326-WS32	412123	0835129	01-29-87	22.43
412123003312300	WO-320-WB32	412123	0033123	08-04-87	26.17
412220083441400	WO-327-PL20	412220	0834414	01-28-87	5.57
413226083345200	WO-328-PB10	413226	0833452	02-04-87	39.10
413355083344100	WO-329-PB34	413355	0833441	02-04-87	45.40
413345083314200	WO-330-PB1	413345	0833142	02-04-87	31.58
415545005514200	NO 330 1B1	413343	0033142	08-12-87	32.38
413101083325300	WO-331-PB23	413101	0833253	02-04-87	7.82
413101003323300	WO 331 1B23	413101	0033233	08-11-87	9.70
413027083353300	WO-332-PB21	413027	0833533	02-03-87	13.37
413025083374000	WO-333-PB19	413025	0833740	02-03-87	34.07
413023003374000	WO 333-FB19	413023	0033740	08-14-87	38.37
413239083401500	WO-334-PB11	413239	0834015	02-03-87	13.94
412430083415200	WO-334-PB11	412430	0834152	01-30-87	5.09
412847083313200	WO-338-T18	412847	0833132	02-04-87	4.73
413331083283600	WO-340-LK16	413331	0832836	02-04-87	46.72
413055083254300	WO-341-LK36	413055	0832543	02-04-87	11.90
413033063234300	WO-341-LK30	413033	0032343	08-11-87	13.00
412950083282500	WO-342-T9	412950	0832825	02-04-87	10.46
412930063262300	WO-342-19	412950	0032023	08-12-87	13.80
412657083260200	WO-343-T25	412657	0832602	02-04-87	11.96
412202083423000	WO-344-PL27	412202	0834230	01-28-87	4.76
412202083423000	WU-344-PL27	412202	0834230	08-06-87	7.19
412050083435700	WO-345-PL32	412050	0834357	01-28-87	9.98
411913083445200	WO-346-LI7	411913	0834452	01-28-87	5.71
411354083322000	WO-347-B12	411354	0833220	01-26-87	3.79
411354065322000	WO-34/-DIZ	411334	0033220	07-30-87	5.17
411242083353200	WO-348-B15	411242	0833532	01-26-87	6.09
412451083280200	WO-349-F3	412451	0832802	02-04-87	15.35
411432083385100	WO-351-B6	411432	0833851	01-28-87	5.49
411432003303100	MO-33T-B0	411432	0933031	08-05-87	7.07
412144083515100	WO-353-GR30	412144	0835151	01-29-87	21.17

GROUND-WATER QUALITY IN WOOD COUNTY

The following tables contain results of analyses of ground waters collected for the purpose of establishing a data base of water-quality information for wells completed in the Silurian-Devonian carbonate aquifer. Ground waters also were collected from three springs that discharge from the Silurian-Devonian carbonate aquifer into selected quarries. Water characteristics, major and minor dissolved inorganic constituents, dissolved trace elements, nitrogen and phosphorus compounds, radiochemical constituents, and dissolved organic carbon are reported. Samples from sites 349-F3 and 352-B36 were collected during the 1986 water year.

The notation "ND" means the constituent of interest was not detectable at the analytical limit. Sulfide concentrations listed as ND were based on titrations for which the sample aliquot required more titrant than a blank aliquot of equal volume.

In data for total coliform, fecal coliform, and fecal streptococcus bacteria counts, the prefix "K" indicates an estimated count based on a non-ideal colony number of less than 20 per filter. The ">" symbol preceding a value indicates that the number of colonies per filter was too numerous to count; therefore, an estimate was made based on the smallest filtered volume.

Samples for total recoverable purgeable organic compound analysis by GC-MS were collected from the following wells (county prefix is omitted): 23-C27, 121-N, 198-T21, 204-PE22, 210-B35, 212-B4, 230-J24, 236-J8, 246-L119, 250-L12, 260-M09, 263-M01, 265-M025, 299-WA24, 303-MD23, 306-PB, 307-WB15, 309-LK27, 320-N36, 326-WS32, 333-PB19, 341-LK36, 342-T9, and 351-B6. The results for the specific purgeable compounds were found to be less than the reporting concentration listed in the table below for all wells except 326-WS32. The detection level of methylene chloride changed from sample to sample and is provided with the water-quality data for the above wells. The purgeable organic data for well 326-WS32 are included with the water-quality data for that well.

DI- CHLORO-	CARBON- TETRA-	1,2-DI-		CHLORO- DI-							
BROMO-	CHLO-	CHLORO-	BROMO-	BROMO-	CHLORO-			CHLORO-	CHLORO-	ETHYL-	METHYL-
METHANE	RIDE	ETHANE	FORM	METHANE	FORM	TOLUENE	BENZENE	BENZENE	ETHANE	BENZENE	BROMIDE
TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
	METHYL-	TETRA-	TRI-		1,1-DI-	1,1,1-	1,1,2-	1,1,2,2			1,2-
METHYL-	ENE	CHLORO-	CHLORO-	1,1-DI-	CHLORO-	TRI-	TRI-	TETRA-	1,2-DI-	1,2-DI-	TRANSDI
CHLO-	CHLO-	ETHYL-	FLUORO-	CHLORO-	ETHYL-	CHLORO-	CHLORO-	CHLORO-	CHLORO-	CHLORO-	CHLORO-
RIDE	RIDE	ENE	METHANE	ETHANE	ENE	ETHANE	ETHANE	ETHANE	BENZENE	PROPANE	ETHENE
TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.00	<3.0	<3.0
			2-	DI-							
			CHLORO-	CHLORO-	TRANS-	CIS	1,2-		TRI-		XYLENE
1,3-DI-	1,3-DI-	1,4-DI-	ETHYL-	DI-	1,3-DI-	1,3-DI-	DIBROMO	VINYL	CHLORO-		TOTAL
CHLORO-	CHLORO-	CHLORO-	VINYL-	FLUORO-	CHLORO-	CHLORO-	ETHYL-	CHLO-	ETHYL-		WATER
PROPENE	BENZENE	BENZENE	ETHER	METHANE	PROPENE	PROPENE	ENE	RIDE	ENE	STYRENE	WHOLE
TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOT REC
(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
· .	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
<3.0	<3.0	43.0	13.0	13.0	(3.0	(3.0	13.0	13.0	13.0	13.0	13.0

412140083352700. Local number, WO-23-C27 near Bowling Green.
LOCATION.--Lat 41°21'40", long 83°35'27", Hydrologic Unit 04100010.
OWNER: Edgar Stewart.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled test well, diameter 12 in., depth 235 ft., cased to 22 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATEI LEVEL) (FEET)	DUCT-	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	(COLS.	0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 03	1830	6.74	3040	6.86	7.10	30.0	12.0	0	K12	к4	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARE WH WAT TOT FLI MG/L AS CACO3	DIS- SOLVEI	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLE (MG/L AS CO3)		CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG 03	1900	1600	500	150	19	3.3	301	0	245	66	1.0
03	1300	1000	300	150	19	3.3	301	Ü	243	00	1.0
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	(MG/L	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 180	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS-	GEN, AMMONIA DIS-	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG											
03	1.700	25	1.6	0.23	16	2830	2570	0.002	<0.010	0.825	0.90
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVEI (UG/L AS AL)	(UG/L	(UG/L	BARIUM, DIS- SOLVED (UG/L AS BA)	DIS- SOLVED (UG/L	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	(UG/L	DIS- SOLVED (UG/L	LEAD, DIS- SOLVED (UG/L AS PB)
AUG	<0.001	20) 2	<1	<100	210	<1	40	<1	180	<5
03	<0.001	20	2	(1	<100	210	(1	40	(1	180	(5
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS-	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG											
03	30	20	<0.1	<1	1	<1.0	9100	10	1.6	<0.010	<6.0

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413515083304300. Local number, WO-118 near Walbridge.
LOCATION.--Lat 41°31'15", long 83°30'43", Hydrologic Unit 04100010.

OWNER: Robert Elvy.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 160 ft., cased to 65.8 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
SEP								
01	1550	57.01	971	7.76	21.0	12.0	0	K5
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
SEP								
01	<1	Kl	139	0	114	3.8	ND	1.1

413515083313700. Local number, WQ-119 near Walbridge.
LOCATION.--Lat 41°35'15", long 83°31'37", Hydrologic Unit 04100010.
OWNER: Ramon E. Siewert.
AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 132 ft., cased to 55 ft.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
52.38	1110	7.46	21.0	12.0	0	K6
CERTER			ATVA			11
	BICAR-	CAR-		CARBON		CARBON,
	BONATE	BONATE	WH WAT	DIOXIDE		ORGANIC
KF AGAR	IT-FLD	IT-FLD	TOTAL	DIS-	SULFIDE	DIS-
COLS.	(MG/L	(MG/L	FIELD	SOLVED	TOTAL	SOLVED
	AS	AS			10 / 10 S - 10 E	(MG/L
L) 100 ML)	HCO3)	CO3)	CAC03	AS CO2)	AS S)	AS C)
(1 (1	218	0	179	12	<0.5	1.2
	BELOW LAND SURFACE (WATER LEVEL) (FEET) 52.38 STREP- TOCOCCI L, FECAL, KF AGAR (COLS. PER L) 100 ML)	BELOW SPE- LAND CIFIC SURFACE CON- (WATER DUCT- ELEVEL) ANCE (FEET) (US/CM) 52.38 1110 52.38 1110 52.38 1110 STREP- TOCOCCI BICAR- E, FECAL, BONATE E, FECA	BELOW SPE- LAND CIFIC SURFACE CON- (WATER DUCT- ELEVEL) ANCE ARD (FEET) (US/CM) UNITS) 52.38 1110 7.46 STREP- TOCOCCI BICAR- L, FECAL, BONATE BONATE KF AGAR IT-FLD IT-FLD F (COLS. (MG/L L, PER AS AS L) 100 ML) HCO3) CO3)	BELOW SPELAND CIFIC SURFACE CON- PH TEMPER- (WATER DUCT- (STAND- ATURE LEVEL) ANCE ARD AIR (FEET) (US/CM) UNITS) (DEG C) 52.38 1110 7.46 21.0 52.38 1110 7.46 21.0 52.38 1110 7.46 21.0 ALKA- LOCOCCI BICAR- CAR- LINITY LOCOCCI BICAR- C	BELOW SPELAND CIFIC SURFACE CON- PH TEMPER- TEMPER- (WATER DUCT- (STAND- ATURE ATURE LEVEL) ANCE ARD AIR WATER (FEET) (US/CM) UNITS) (DEG C) (DEG C) 52.38 1110 7.46 21.0 12.0 52.38 1110 7.46 21.0 12.0 STREP- CALL BONATE BONATE WH WAT DIOXIDE W	BELOW SPELAND CIFIC SURFACE CON- PH TEMPER- TEMPER- OXYGEN, (WATER DUCT- (STAND- ATURE ATURE DIS- E LEVEL) ANCE ARD AIR WATER SOLVED (FEET) (US/CM) UNITS) (DEG C) (DEG C) (MG/L) 52.38 1110 7.46 21.0 12.0 0 STREP- TOCOCCI BICAR- CAR- LINITY CARBON E, FECAL, BONATE BONATE WH WAT DIOXIDE E KF AGAR IT-FLD IT-FLD TOTAL DIS- SULFIDE F (COLS. (MG/L (MG/L FIELD SOLVED TOTAL L./ PER AS AS MG/L AS (MG/L (MG/L L.) 100 ML) HCO3) CO3) CACO3 AS CO2) AS S)

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413629083304400. Local number, WO-121-N at Northwood.
LOCATION.--Lat 41°36'29", long 83°30'44", Hydrologic Unit 04100010.

OWNER: Waste Management Inc.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well converted for observation, diameter 6 in., depth 188.5 ft., cased to unknown depth.

DATE	TIME	DEPT BELO LAND SURFA (WAT LEVE (FEE	W SPE CIF CE CON ER DUC L) ANC	IC - PI T- (STA E Al	ND-	PH LAB (STAND- ARD JNITS)	TEMPER- ATURE AIR (DEG C)	TEMPH ATUF WATE (DEG	RE D	GEN, I IS- (C LVED	OLI- ORM, OTAL, MMED. OLS. PER 0 ML)	COLI- FORM, FECAL 0.7 UM-MF (COLS.,	KF AGAR (COLS. PER
SEP 02	1130	58.	67	880	7.85	7.80	16.5	12	2.0	0	>80	52	к3
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD NESS NONCA WH WA TOT F MG/L CACO	RB CALC T DIS LD SOL AS (MG	IUM S: - D: VED SOI /L (MC	S-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONA IT-FI	TE BO LD IT L (M A	AR- LI NATE WH -FLD T G/L F S MG	LKA- NITY WAT OTAL IELD /L AS ACO3	CARBOI DIOXIDI DIS- SOLVEI (MG/L AS CO2)	SULFIDE TOTAL (MG/L
SEP 02	340	2	40 76	3:		56	1.6	122		0	100	2.7	<0.5
DATE SEP 02	DI SC (M	FATE S- DLVED IG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMI DIS SOLV (MG/ AS I	IDE DI S- SO VED (M /L A BR) SI	ICA, RE S- AT LVED D G/L S S	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT DIS- SOLVE (MG/I AS N)	ED SC	SEN, 2+NO3 AI DIS- DLVED S MG/L	NITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N)
DATE	GEN MON ORG DI (M	IIA + SANIC S. IG/L	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI MONY DIS SOLV (UG,	Y, ARS S- D VED SO /L (U	IS- D LVED SC G/L (RIUM, DIS- DLVED UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIU DIS- SOLVE (UG/I AS CI	M M: D: ED SC	IS- OLVED UG/L	OPPER, DIS- SOLVED (UG/L AS CU)
SEP 02		0.60	0.004	50		<1	1	5	250		(1	20	<1
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD DIS SOLV (UG/ AS P	ED SOL	IUM NES S- DS VED SOI /L (UC	NGA- SE, I IS- LVED G/L MN)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVI DIS SOLV (UG,	ER, T S- D VED SO /L (U	IS- LVED S G/L (CINC, DIS- SOLVED (UG/L AS ZN)	CARBON ORGANI DIS- SOLVED (MG/L AS C)	
SEP 02	56	<5	17)	<1	<1	<1.0	2200	0	13	1.4	<3.0

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413557083332300. Local number, WQ-129-PB23 near Northwood.
LOCATION.--Lat 41°35'57", long 83°33'23", Hydrologic Unit 04100010.

OWNER: Bruns Greenhouse and Florist.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 5.62 in., depth 149 ft., cased to 74 ft.

	I		'E-					COI	RM, FOI	RM, TOCOCO
			FIC	PI		17"				AL, FECAL
			N- PH		AB TEME				MED. 0.7	
			CT- (STA		AND- ATU			IS- (COI		
DATE			ICE AR		RD A					S./ PER
		(FEET) (US	CM) UNIT	S) UNI	rs) (DEC	C) (DEC	G C) (MC	G/L) 100	ML) 100	ML) 100 M
UL										
21	1800	40.82	1350 7	.47	7.40	35.5	15.5	1.3	(1 (1	<1
		HARD-							ALKA-	
	HARD-			MAGNE-	4.000	POTAS-	BICAR-	CAR-	LINITY	CARBON
	NESS	NONCARE		SIUM,	SODIUM,	SIUM,	BONATE	BONATE	WH WAT	DIOXIDE
	TOTAL		DIS-	DIS-	DIS-	DIS-	IT-FLD	IT-FLD	TOTAL	DIS-
D3.000	(MG/I			SOLVED	SOLVED	SOLVED	(MG/L	(MG/L	FIELD	SOLVED
DATE		MG/L AS		(MG/L	(MG/L	(MG/L	AS	AS	MG/L AS	(MG/L
	CACO	CACO3	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	CO3)	CAC03	AS CO2)
JUL .										
21	60	00 470	130	61	61	2.3	150	0	123	8.1
		SULFATE	CHLO-	FLUO-	BROMIDE	SILICA, DIS-	SOLIDS, RESIDUE AT 180	SOLIDS, SUM OF CONSTI-	NITRO- GEN, NITRITE	NITRO- GEN, NO2+NO3
	SULFII		DIS-	DIS-	DIS-	SOLVED	DEG. C	TUENTS,	DIS-	DIS-
	TOTAL			SOLVED	SOLVED	(MG/L	DIS-	DIS-	SOLVED	SOLVED
DATE	(MG/1		(MG/L	(MG/L	(MG/L	AS	SOLVED	SOLVED	(MG/L	(MG/L
21112	AS S			AS F)	AS BR)	SIO2)	(MG/L)	(MG/L)	AS N)	AS N)
JUL										
21	ND	630	6.4	1.2	0.065	12	1050	997	0.001	0.056
	NITRO	- NITRO-	PHOS-							
	GEN	GEN, AM-	PHOROUS	ALUM-				MANGA-	STRON-	CARBON,
	AMMON	A MONIA +	ORTHO,	INUM,	ARSENIC	BORON,	IRON,	NESE,	TIUM,	ORGANIC
	DIS-		DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	SOLVI		SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
DATE	(MG/1	MG/L	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(MG/L
	AS N	AS N)	AS P)	AS AL)	AS AS)	AS B)	AS FE)	AS MN)	AS SR)	AS C)
JUL										
21	0.65	0.60	<0.001	<10	<1	730	460	22	17000	2.2
277	79505	7/2/2/2	100000000000000000000000000000000000000		-					

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411426083290700. Local number, WQ-150 at West Millgrove.
LOCATION.--Lat 41°14'26", long 83°29'07", Hydrologic Unit 04100010.
OWNER: MacRitchie Materials Inc.
AQUIFER.--Dolomite of Silurian age.
SPRING CHARACTERISTICS.--Discharge from fracture above quarry sump.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 03	1350	880	7.31	7.80	29.0	16.0	0	33	к13	к13
03	1550	000	7.51	7.00	23.0	10.0	·	33	NI3	KIS
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG	2.00									
03	480	210	100	50	14	3.1	332	0	272	26
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG		.2.2.2	2.4	1200	1500016		222	22		
03	ND	180	30	0.8	0.18	9.2	555	570	0.002	0.433
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG	3 252	2.22	1 141			3.5	1.2		r i iii	
03	0.036	0.50	0.002	<10	<1	60	41	<3	19000	1.9

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413219083334300. Local number, WQ-151 at Lime City.
LOCATION.--Lat 41°32'19", long 83°33'43", Hydrologic Unit 04100010.
OWNER: Stoneco Inc.
AQUIFER.--Dolomite of Silurian age.
SPRING CHARACTERISTICS.-- Discharge from fracture at quarry floor.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
AUG 04	0900	1010	7.12	8.00	26.0	11.0	<1	<1	<1	750
DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG 04	460	160	78	18	2.6	358	0	294	43	ND
					2.0	330				.,5
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG										
04	490	26	2.0	0.16	6.7	1020	990	0.003	0.028	0.077
DAT	GEN, MONI ORGA DIS	A + ORT NIC DIS . SOLV /L (MG/	OUS ALU HO, INU - DI ED SOL L (UG	M, ARSE S- DI VED SOL /L (UG	S- DI VED SOL /L (UG		S- DI VED SOL /L (UG	E, TI S- DI VED SOL /L (UG		NIC - ED /L
AUG 04	0	.50 0.	010 10	<1	90	53	2	4 300	00 2.	2

411912083384800. Local number, WO-152 at Portage.
LOCATION.--Lat 41°19'12", long 83°38'48", Hydrologic Unit 04100010.
OWNER: Stoneco Inc.
AQUIFER.--Dolomite of Silurian age.
SPRING CHARACTERISTICS.--Discharge from fracture above quarry sump.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 04	1230	1810	7.19	7.30	28.0	13.5	0	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG										
04	830	560	190	80	73	3.8	332	0	272	34
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG		122	4.54		- 45.750	-	2.222	2000	22.20	1 121
04	3.2	490	150	1.5	0.81	10	1220	1190	0.044	0.053
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG										
04	1.60	1.4	<0.001	50	<1	150	200	18	22000	2.3

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412726083283100. Local number, WO-198-T21 at Luckey.
LOCATION.--Lat 41°27'26", long 83°28'31", Hydrologic Unit 04100010.

OWNER: Jerry Vestal.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.82 in., depth 55 ft., cased to 25 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG					15.25		22.2				
13	0910	8.89	765	7.12	7.30	22.0	12.5	1.0	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG					6.0						
13	390	120	75	49	15	6.7	333	0	271	40	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG	60	0.2				400	425				
13	69	23	0.1	<0.010	6.3	482	436	0.010	12.0	2.30	2.9
DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
AUG 13	10.0	7.90	<10	1	6	20	60	<1	<10	2	6
13	10.0	7.90	(10	1	6	20	80	(1	(10	2	•
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DIS-	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG											
13	<5	11	<0.1	5	<1	<1.0	460	100	5.5	<0.010	<3.0

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412103083272200. Local number, WO-199-F34 near Bradner.
LOCATION.--Lat 41°21'03", long 83°27'22", Hydrologic Unit 04100010.

OWNER: William Libbe.
AQUIFER.--Dolomite of SILURIAN age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 72 ft., cased to 28 ft.

DATE	TIME 1	JAND CI JRFACE CO (WATER DU LEVEL) AN	PE- IFIC ON- PH OCT- (STA OCE AN	AND- (STA	AB TEMP AND- ATU RD AI	RE ATU	RE DI	EN, IMM	RM, FOI FAL, FEC MED. 0.7 LS. UM- ER (COI	RM, TOCOCCI PAL, FECAL, KF AGAR MF (COLS.
AUG 06	1655	8.22	695	7.28	7.50 2	6.0 1	2.5	0.3	(1	<1 <1
DATE	HARD- NESS TOTAI (MG/) AS CACO:	NONCARE WH WAT TOT FLI MG/L AS	DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 06	3:	30 81	. 72	35	14	2.1	306	0	250	26
DATE	SULFII TOTAI (MG/I AS S)	SOLVEI (MG/L	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 06	ND	140	6.2	1.8	0.059	13	468	443	<0.001	0.021
DATE	NITRO GEN, AMMONI DIS- SOLVI (MG/I AS N)	GEN, AM- A MONIA + ORGANIC D DIS. (MG/L	PHOROUS ORTHO,	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 06	0.3	1.0	0.002	<10	1	140	290	6	7400	1.3

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411411083260600. Local number, WO-203-PE12 near West Millgrove.
LOCATION.--Lat 41⁰14'11", long 83⁰26'06", Hydrologic Unit 04100010.

OWNER: Alton Mauholland.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 70 ft., cased to 26.9 ft.

30...

0.011

0.068

0.60 <0.001

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DATE	BE LA SUR (W. TIME LE	FACE COL ATER DUC VEL) AND	FIC N- PH CT- (STA	ND- (STA	AB TEM AND- AT RD F	PER- URE IR G C)	TEMPI ATUI WATI	RE DI ER SOL		RM, FOR FAL, FEG. 0.1 IED. 0.1 IED. UM- IR (COI	LI- STREP RM, TOCOCC CAL, FECAL 7 KF AGA -MF (COLS. LS./ PER ML) 100 ML
UL	1015 4	20 5				7.0					71 710
30	1215 4.	20 50	66 7.1	5 7.8	30 2	7.0	14	.5 0	<1		K1 K18
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SOI (MC	TAS- IUM, IS- LVED G/L K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL											
30	340	18	81	33	1.8	0.	. 6	390	0	320	44
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVEI (MG/L AS BR)	SOI (MC	IDE, IS- LVED G/L I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUL 30	<0.5	9.1	1.3	0.2	0.042		.002	12	314	333	0.004
30	NITRO-	NITRO-	NITRO-	PHOS-	0.042	. 0.	.002	12	314	333	0.004
	GEN, NO2+NO3 DIS- SOLVED	GEN, AMMONIA DIS-	GEN, AM- MONIA + ORGANIC DIS.	PHOROUS ORTHO, DIS- SOLVED	ALUM- INUM, DIS- SOLVEI		ON, IS- LVED	IRON, DIS- SOLVED	MANGA- NESE, DIS- SOLVED	STRON- TIUM, DIS- SOLVED	ORGANIC DIS-
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L		G/L	(UG/L	(UG/L	(UG/L	(MG/L

<10

1900

11

10

3.5

240

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411209083273500. Local number, WO-204-PE22 near Fostoria.
LOCATION.--Lat 41⁰12'09", long 83⁰27'35", Hydrologic Unit 04100010.

OWNER: Paul R. Dibling.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 65 ft., cased to 24.1 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	R DUCT-	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- - ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVEI (MG/L)	(COLS.	. 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 22	1325	10.49	655	7.36	7.50	35.0	12.5	0.4	4 K2	<1	K2
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARE WH WAT TOT FLE MG/L AS CACO3	DIS- SOLVED	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	BONATE IT-FLD	CAR- BONATE IT-FLI (MG/L AS CO3)		CARBON DIOXIDE DIS- SOLVED S (MG/L AS CO2)	
JUL		22	-20		5.00		22.2		5.26		2.2
22	350	57	87	29	4.4	3.8	358	0	293	25	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 180	CONSTI-	NITRO- GEN, NITRITE DIS- SOLVEI (MG/L AS N)	GEN, E NO2+NO: DIS-	GEN, 3 AMMONIA DIS-	ORGANIC
JUL	59		0.5	0.000		396	390	0.002	0.70	3 0.096	0.40
22	59	2.7	0.5	0.020	14	396	390	0.002	2 0.70	0.096	0.40
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	(UG/L	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	DIS- SOLVED (UG/L	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVEI (UG/L AS CR)	(UG/L	DIS- SOLVED (UG/L	LEAD, DIS- SOLVED (UG/L AS PB)
JUL											
22	0.002	<10	<1	<1	92	40	<1	<10	<1	700	<5
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUL											
22	26	7	<0.1	3	<1	<1.0	12000	84	1.7 <	0.010	<3.0

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411050083333400. Local number, WO-210-B35 at Bloomdale.
LOCATION.--Lat 41°10'50", long 83°33'34", Hydrologic Unit 04100010.

OWNER: Claude Baird.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 80 ft., cased to 23.1 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL)	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD	PH LAB (STAND- ARD	TEMPER- ATURE AIR	TEMPER- ATURE WATER	OXYGEN, DIS- SOLVED	COLI- FORM, TOTAL, IMMED. (COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP TOCOCC FECAL KF AGA (COLS. PER
		(FEET)	(US/CM)	UNITS)	UNITS)	(DEG C)	(DEG C)	(MG/L)	100 ML)	100 ML)	100 ML
JUL											
30	0950	5.50	1320	7.13	8.10	25.0	13.0	0	Kl	<1	5
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFID TOTAL (MG/L AS S)
JUL											
30	620	430	140	62	63	2.9	243	0	198	29	14
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	IODIDE, DIS- SOLVED (MG/L AS I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO GEN, AMMONI DIS- SOLVE (MG/L AS N)
JUL 30	530	19	1.5	0.069	0.009	15	996	971	0.001	<0.010	0.305
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVE (UG/L AS FE
JUL 30	0.70	<0.001	20	<1	<1	23	380	<1	<10	1	10
LEAD, DIS- SOLVED (UG/L FE AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHY ENE CHLO RIDE TOTA (UG/
JL D <5	47	<1	0.1	2	<1	<1.0	17000	9	2.5	<0.010	<3.0

411429083362200. Local number, WO-212-B4 at Jerry City.
LOCATION.--Lat 41°14'29", long 83°36'22", Hydrologic Unit 04100010.
OWNER: Jerry Roberts.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 30 ft., cased to 19.3 ft.

			9	WATER (UALIT	DAT	A, WATE	R YEAR	OCTO	BER 19	86 TO SI	EPTEMB	ER 19	87			
DATE JUL	TIME	LEV (FE	OW D ACE TER (EL) (ET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	UNI	AND- RD IS)	PH LAB (STAND ARD UNITS)	AIR (DEG	RE C)	TEMPER ATURE VATER (DEG C	SOLVE SOLVE (MG/	EN, 3- (ED 'L) 1	COLI- FORM, TOTAL IMMED COLS. PER 00 ML	FORM FECA 0.7 UM-N (COLS.	AL, KAL, KAF (STREP- OCOCCI FECAL, F AGAR COLS. PER 00 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
22	1700	2	.73	1890) (5.79	7.00	31.	0	12.5	1.5	,	K2	<1	L	К3	1100
DAT: JUL 22	NE NON WH TOT	CARB	CALC: DIS- SOL' (MG, AS (IUM - VED S /L (CA) A	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOLY (MC	IUM, S- VED G/L NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)		5/L	CAR- BONATE IT-FLD (MG/L AS CO3)	ALK LINI WH W TOT FIE MG/L CAC	TY AT AL LD AS	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULF TOT (MG AS	IDE I AL S /L S) AS	ULFATE DIS- SOLVED MG/L S SO4)
DATE JUL 22	CHLARIDO DISSOL (MG/AS)	E, VED L CL)	FLUORIDE DISSOLVI	BRC ED SC (MC	OMIDE DIS- DLVED S/L S BR)	SILIO DIS- SOLV (MG, AS SIO:	CA, REVED D	DLIDS, ESIDUE 180 DEG. C DIS- DLVED MG/L)	SOLII SUM C CONST TUENT DIS SOLVE (MG/	OF PI- N PS, S- ED (/L)	NITRO- GEN, HITRITE DIS- SOLVED MG/L AS N)	NITR GEN NO2+N DIS SOLV (MG/L AS N	O3 A - ED (NITRO- GEN, MMONIA DIS- SOLVED MG/L AS N) 0.274	NITR GEN,A MONIA ORGAN DIS. (MG/L AS N	M- PHO + OF IC DI SOI (MG/	
DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANT MON DIS SOL (UG AS	Y, - VED /L	BORON, DIS- SOLVED (UG/L AS B)	DIS SOI (UC	JM,	IRON, DIS- SOLVE (UG/L AS FE	DI:		MANG NESE DIS- SOLV (UG/ AS M	E, NICE DIS ED SOI L (UC	VED	STR TIU DIS SOLV (UG/ AS S	ED SOLV	ANIC S- ZED S/L	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUL 22	<10	<1		150	30	0	1000	10	0	26	1	. 2	4000	2.4		<0.010	<3.0

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411428083395400. Local number, WO-216-H1 at Cygnet.
LOCATION.--Lat 41°14'28", long 83°39'54", Hydrologic Unit 04100010.
OWNER: Louis Wagner.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 48 ft., cased to 27.7 ft.

		W	ATER QUAI	LITY DATA,	WATER YE	AR OCTOBE	ER 1986 T	O SEPTEMBE	R 1987		
DATE	TIME	LEV	OW SPE D CIE ACE COM TER DUC	PIC N- PH CT- (STA CE AR	ND- (STA	AB TEMI AND- ATO RD AI	IRE AT	TER SOI		RM, FOR PAL, FEG. 0.7 IED. 0.7 IS. UM-	RM, TOCOCC CAL, FECAL KF AGA -MF (COLS. LS./ PER
AUG											
04	1615	4	.94	1230 7	.12 7	7.50	30.0	13.0	0 2	22	<1 <1
DAS	NI TC (1	ARD- ESS OTAL MG/L AS ACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG			150		-						
04	•	570	150	110	67	32	3.8	515	0	421	62
DAT	TC (I	LFIDE OTAL MG/L S S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 180	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 04		47	270	50	1.4	0.34	15	720	820	0.002	<0.010
04		4 /	270	50	1.4	0.34	15	738	820	0.002	<0.010
DA?	AMI I SO TE (1	TRO- GEN, MONIA DIS- DLVED MG/L S N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG											
04		0.650	1.0	<0.001	40	2	230	36	6	16000	2.0

411022083394000. Local number, WQ-218-H36 at North Baltimore.
LOCATION.--Lat 41010'22", long 83039'40", Hydrologic Unit 04100010.

CWNER: Len's Implement.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled commercial water well, diameter 4.25 in., depth 62 ft., cased to 22 ft.

		WATER QUAL	ITY DATA,	WATER YE	AR OCTOBE	R 1986 TO	SEPTEMBE	R 1987		
DATE	BE LA SUR (W TIME LE	PTH LOW SPE ND CIF FACE CON ATER DUC VEL) ANC EET) (US/	PIC N- PH CT- (STA CE AR	ND- (STA	AB TEME	RE ATU	RE DI	COL FOR TOT EEN, IMM S- (COL VED PE	AM, FOR PAL, FEC S. UM- R (COL	RM, TOCOCCI FAL, FECAL, KF AGAR (COLS. SS./ PER
JUL 28	1015 1	2.28	170 7	.03 7	7.50 2	4.0 1	5.5	0 к	11 <	(1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL 28	610	240	130	68	28	3.4	455	0	372	67
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUL 28	22	340	6.1	0.8	0.079	26	818	835	0.003	<0.010
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 28	0.310	0.70	0.004	<10	<1	260	18	. 2	7800	2.2

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411250083434000. Local number, WQ-223-H17 near Hammansburg.
LOCATION.--Lat 41012'50", long 83043'40", Hydrologic Unit 04100010.

OWNER: Chris Smith.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 40 ft., cased to 28.2 ft.

DATE	TIME I	AND C RFACE C WATER I EVEL)	OUCT- (ST		AB TEME AND- ATU RD AI	RE ATU	RE DI		RM, FOR FAL, FECTION OF TALL, FOR FECTION OF TALL, FETION OF TALL, FE	RM, TOCOCCI CAL, FECAL, KF AGAR -MF (COLS. JS./ PER
AUG 05	0950	5.35	140 7.	57 7.3	30 21.	0 12.	0 0	<1		a a
DATE	HARD- NESS TOTAL (MG/I AS CACO3	NONCAL WH WAT TOT FI MG/L A	RB CALCIUM DIS- D SOLVED AS (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 05	58	0 26	0 130	51	32	2.9	390	0	317	17
DATE	SULFII TOTAI (MG/I AS S)	SOLVE (MG/I	DIS- ED SOLVED (MG/L	(MG/L	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 05	2.	7 260	60	1.0	0.41	14	776	783	0.002	<0.010
DATE	NITRO GEN, AMMONI DIS- SOLVI (MG/I AS N)	GEN, AM A MONIA ORGANI D DIS. (MG/I	H- PHOROUS + ORTHO, IC DIS- SOLVED (MG/L		ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 05	0.28	6 1.0	0.003	3 <10	<1	200	27	4	39000	2.2

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411216083470300. Local number, WO-230-J24 at Hoytville.
LOCATION.--Lat 41⁰12'16", long 83⁰47'03", Hydrologic Unit 04100010.

OWNER: Grace E. Smith.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 89 ft., cased to 60.3 ft.

WATER	QUALITY	DATA,	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987

DATE	TIME	DEPTH BELOW LAND SURFAC (WATE LEVEL (FEET	SPE- CIFIC E CON- R DUCT-) ANCE	PH (STAND- ARD UNITS)	PH LAB - (STAND- ARD UNITS)	TEMPER ATURE AIR (DEG C	ATURE WATER	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 04	1000	23.7	9 1770	7.52	2 7.50	22.	0 13.0	0	20	<1	<1
						-					
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HARD- NESS NONCAR WH WAT TOT FL MG/L A) CACO3	B CALCIUM DIS- D SOLVED S (MG/L	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L	POTAS SIUM DIS- SOLVE (MG/L AS K)	BONATE IT-FLD MG/L AS		ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG	0.7						100		100		***
04	87	0 77	0 200	84	110	2.6	123	0	102	5.9	ND
DATE	SULFATI DIS- SOLVEI (MG/L AS SO4	DIS- D SOLVE (MG/L	RIDE, DIS- D SOLVED (MG/L	BROMIDE DIS- SOLVEI (MG/L AS BR)	SOLVED (MG/L AS	AT 180	C TUENTS, DIS- D SOLVED	DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG	443	2.5		12.02.2		Sales a		2 544	00.000	to beat	3-2
04	960	13	1.2	0.14	9.2	158	0 1460	0.003	<0.010	0.650	1.0
DATE	PHOS-PHOROUS ORTHODIS-SOLVED (MG/L		(UG/L	ARSENIC DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L	BORON DIS- SOLVE (UG/L AS B)	DIS- D SOLVED	DIS-	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
AUG	40.00				- 14						
04	<0.00	1 <1	0 <1	<1	13	230	<1	20	<1	120	<5
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	DIS- I SOLVED S (UG/L	CKEL, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	ILVER, DIS- SOLVED (UG/L AS AG)	DIS- SOLVED (UG/L	ZINC, OF DIS- E SOLVED SO (UG/L	DLVED TO	METH ENE NIDE CHLO TAL RIDE G/L TOTA CN) (UG/	- L
AUG											
04	32	7	0.1	<1	<1 <	1.0 2	2000	110 1.	5 <0	.010 <6	. 0

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411337083503800. Local number, WQ-236-J8 near Deshler.
LOCATION.--Lat 41°13'37", long 83°50'38", Hydrologic Unit 04100009
OWNER: Eugene Moses.
AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 100 ft., cased to 64.4 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL)	ANCE	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/I AS CACO3)
AUG 03	. 1445	23.60			7.60	33.0	13.0	0	<1	<1	К9	380
••••	HARD-	2000	MAGNE-		POTAS-	BICAR-	CAR-	ALKA- LINITY	CARBON			CHLO-
DATE	NONCARI WH WAT TOT FLI MG/L AS	DIS- SOLVEI MG/L	SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	BONATE IT-FLD (MG/L AS	BONATE IT-FLD (MG/L AS	WH WAT TOTAL FIELD MG/L AS	DIS- SOLVED (MG/L	SULFIDE TOTAL (MG/L	SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L
AUG	CACO3	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	CO3)	CACO3	AS CO2)	AS S)	AS SO4)	AS CL)
03	. 27	95	28	110	2.3	129	0	106	5.1	ND	460	10
D. W.	FLUO- RIDE, DIS- SOLVEI		SOLVED (MG/L	AT 180 DEG. C DIS-	SUM OF CONSTI- TUENTS, DIS-	ALUM- INUM, DIS- SOLVED	ANTI- MONY, DIS- SOLVED	DIS- SOLVED	BARIUM, DIS- SOLVED (UG/L	BORON, DIS- SOLVED (UG/L	CADMIUM DIS- SOLVED (UG/L	CHRO-MIUM, DIS-SOLVED
DATE	(MG/L AS F)	(MG/L AS BR)	AS SIO2)	SOLVED (MG/L)	SOLVED (MG/L)	(UG/L AS AL)	(UG/L AS SB)	(UG/L AS AS)	AS BA)	AS B)	AS CD)	AS CR)
AUG 03	. 1.5	0.14	10	811	802	<10	1	1	13	600	<1	<10
1		DIS- SOLVED S	DIS-	DIS- DOLVED SO		VED SOLVE	DIS-	SILVER, DIS-	DIS- SOLVED (UG/L	ZINC, DIS- C SOLVED (UG/L	YANIDE (TOTAL I	METHYL- ENE CHLO- RIDE FOTAL
AUG	AS CU) A	AS FE) A	S PB) A	S LI) AS	MN) AS	HG) AS NI) AS SE)	AS AG)	AS SR)	AS ZN)	AS CN)	(UG/L)

411520083520900. Local number, WO-237-ML31 near Custer.
LOCATION.--Lat 41⁰15'20", long 83⁰52'09", Hydrologic Unit 04100009.

OWNER: Terry Feehan.

AQUIFER.--Dolomite of Upper Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 93 ft., cased to 68.5 ft.

DATE	TIME	LEV	OW SP. D CI. CACE CO. TER DUCKEL) AN	FIC N- PH CT- (STA	I L AND- (ST ED A	AND- A	TURE ATT	TER SOI		RM, FOI FAL, FEC MED. 0.7 S. UM- ER (COI	RM, TOCOCCI CAL, FECAL, KF AGAR COLS. CS./ PER
AUG 04	1215	24.	24 9	44 7.9	4 7.	80 2	5.0 13.	.0 () к	7 <1	к9
DAT	E E	HARD- NESS FOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DIS- SOLVED (MG/L	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 04		290	160	69	22	90	1.9	159	0	129	2.9
DAT	E	JLFIDE FOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMID: DIS- SOLVE! (MG/L AS BR	SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 04		<0.5	370	16	1.3	0.21	8.9	695	681	0.003	0.048
DAT	Al S	NITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVE (UG/L AS AS	DIS- D SOLVED (UG/L	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 04		0.520	0.80	<0.001	<10	<1	500	200	5	22000	1.5

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411706083455600. Local number, WO-246-LI19 near Custar.
LOCATION.--Lat 41⁰17'06", long 83⁰45'56", Hydrologic Unit 04100010.

OWNER: Richard Wensink
AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 57 ft., cased to 43.6 ft.

	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 31	ı	0930	10.30	605	7.71	8.10	28.0	12.0	0	>80	<1	K14
		HARD- NESS	HARD- NESS NONCARB	CALCIUM	MAGNE- SIUM,	SODIUM,	POTAS- SIUM,	BICAR- BONATE	CAR- BONATE	ALKA- LINITY WH WAT	CARBON DIOXIDE	
	DATE	TOTAL (MG/L AS CACO3)	WH WAT TOT FLD MG/L AS CACO3	DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	IT-FLD (MG/L AS HCO3)	IT-FLD (MG/L AS	TOTAL FIELD MG/L AS	DIS- SOLVED (MG/L AS CO2)	TOTAL (MG/L AS S)
JUL		CACOST	CACOS	AS CA)	AS MG)	AS NA)	AS K)	HCO37	CO3)	CAC03	AS CO27	AS SI
	l	240	72	49	20	35	2.1	2 0 5	0	168	6.4	<0.5
	DATE	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED	BROMIDE DIS- SOLVED (MG/L	IODIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L
1		AS SO4)	AS CL)	AS F)	AS BR)	AS I)	SIO2)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)
JUL 31	1.,.	140	10	1.5	0.089	0.011	14	395	405	<0.001	<0.010	0.311
	DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L	ALUM- INUM, DIS- SOLVED (UG/L	ANTI- MONY, DIS- SOLVED (UG/L	ARSENIC DIS- SOLVED (UG/L	BARIUM, DIS- SOLVED (UG/L	BORON, DIS- SOLVED (UG/L	CADMIUM DIS- SOLVED (UG/L	CHRO- MIUM, DIS- SOLVED (UG/L	COPPER, DIS- SOLVED (UG/L	IRON, DIS- SOLVED (UG/L
	DATE	AS N)	AS P)	AS AL)	AS SB)	AS AS)	AS BA)	AS B)	AS CD)	AS CR)	AS CU)	AS FE)
JUL 31	1	0.50	0.001	20	<1	<1	37	390	<1	<10	1	320
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	DIS-	MERCURY DIS- SOLVED (UG/L AS HG)	DIS-	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUL 31	<5	27	4	<0.1	2	<1	<1.0	31000	14	2.7	<0.010	<3.0

411945083410600. Local number, WO-250-LI2 near Portage.
LOCATION.--Lat 41⁰19'45", long 83⁰41'06", Hydrologic Unit 04100010.

OWNER: Pat Maidment.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 31 ft., cased to 23.2 ft.

	DAT	re	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
				(FEET)	(US/CM)	UNITS	UNITS)	(DEG C)	(DEG C)	(MG/L)	100 ML)	100 ML)	100 1117
AUG 05	5		1150	11.70	1220	7.26	7.40	26.0	13.5	0	K11	<1	<1
	DA	ΓE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	TOTAL FIELD MG/L AS	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG			520	2.50	240	-					0.00		
05	5		630	360	140	65	38	6.1	333	0	272	29	0.8
	DA.	re	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG				100		3 53	100	332	200	4 4 5 5	0.022		0.00
0:	5		370	48	1.1	0.28	18	889	864	0.033	0.127	0.670	0.70
	DA!	TE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
AUG	_		<0.001	10	<1	41	32	540	41	20	~1	470	<5
0:	5		(0.001	10	(1	<1	32	540	<1	20	<1	4/0	(5
DATE		LITHIU DIS- SOLVED (UG/L AS LI)	MANGA NESE, DIS- SOLVED (UG/L AS MN)	MERCUF DIS- SOLVED (UG/L	DIS- SOLVEI (UG/L	DIS- SOLVE	, SILVER DIS- D SOLVED (UG/L	DIS-	DIS- D SOLVEI (UG/L	DIS- SOLVED (MG/L		METHY ENE CHLO- RIDE TOTAL (UG/L	
AUG													
05.	• •	31	21	0.1	<1	<1	<1.0	12000	14	2.3	<0.010	<5.0	

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411752083384700. Local number, WQ-253-PO18 at Mermill.
LOCATION.--Lat 41017'52", long 83 38'47", Hydrologic Unit 04100010.

CWNER: James Copus.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 50 ft., cased to 31.3 ft.

		WATER QUAL	JITI DATA,	WATER IE	AR OCTOBE	K 1986 TC	SEPTEMBE	K 196/		
DATE	BE LA SUR (W TIME LE	PTH LOW SPE ND CIE FACE CON ATER DUC VEL) ANC EET) (US)	PIC N- PH CT- (STA CE AR	ND- (STA	AB TEME	RE ATT	TER SOI		RM, FOR FAL, FEG. 0.7 IED. 0.7 IED. UM-	RM, TOCOCC CAL, FECAL KF AGA -MF (COLS. SS./ PER
TUL 29	1515 1	3.34	1230 6	.94 7	.20 3	33.0	4.0	0.5	1 4	(1 K1
23	1515 1	3.34	1230 6	.94	.20	33.0 .	4.0	0.5	.1	.1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL										
29	65 0	240	160	55	43	14	5 0 5	0	413	92
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUL 29	ND	250	68	0.9	0.11	21	918	883	<0.001	<0.010
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 29	0.310	0.60	0.012	<10	<1	290	980	63	21000	6.5

411658083323500. Local number, WQ-259-PO24 near Jerry City.
LOCATION.--Lat 41°16'58", long 83°32'35", Hydrologic Unit 04100010.

OWNER: Bill Aurand.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 33 ft., cased to 28.2 ft.

			1000000		7,100			3 3 3 3 5 5 5 7 3			
DATE	TIME	DEP BEL LAN SURF (WA LEV (FE	OW SPE D CIE PACE COM TER DUC TEL) AND	FIC N- PH CT- (STAN CE ARD	AR	AB TEMP AND- ATU RD AI	RE ATU R WAT	RE DI		RM, FOF PAL, FEC SED. 0.7 S. UM-	M, TOCOCCI CAL, FECAL, KF AGAR (COLS. S./ PER
JUL 29	1310	9.6	4 120	00 6.87	7.6	50 30.	0 13.	5 0	К2	<1	>100
DATE	AS	SS TAL S/L	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL 29	7:	LO	420	150	75	31	3.3	348	0	285	75
DATE	SULI TO: (MC AS	TAL G/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUL 29		(0.5	420	21	1.9	0.20	20	977	916	<0.001	<0.010
DATE	AMMO DI SOI	TRO- EN, ONIA IS- LVED G/L N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 29	0.3	310	0.60	<0.001	<10	<1	350	700	10	21000	2.2

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411911083285300. Local number, WQ-260-M09 near Wayne.
LOCATION.--Lat 41 09 11", long 83 28 53", Hydrologic Unit 04100010.

OWNER: John Firsdon, Jr.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 40 ft., cased to unknown depth.

		WATER	QUALITY	DATA, WAT	ER YEAR O	CTOBER 19	86 TO SEP	TEMBER 19	87		
DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL											
28	1330	20.80	711	7.42	7.60	32.0	12.0	0	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUL											
28	350	120	67	33	24	2.2	275	0	225	17	ND
DATE JUL 28	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
20	PHOS- PHOROUS	ALUM-	ANTI-					CHRO-			
DATE	ORTHO, DIS- SOLVED (MG/L AS P)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)
JUL											
28	0.001	20	<1	1	46	300	<1	30	<1	720	<5
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	DIS-	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUL 28		6	0.3			<1.0	37000	14	2.4	<0.010	<3.0

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411943083261300. Local number, WQ-263-MO1 at Bradner.
LOCATION.--Lat 41⁰19'43", long 83⁰26'13", Hydrologic Unit 04100010.

OWNER: Larry Beckford.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 75 ft., cased to 20.3 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 29	1040	3.38	966	7.05	7.30	27.0	13.5	1.0	K8	<1	K13
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUL 29	430	48	100	44	42	7.6	469	0	381	66	ND
23	450	40	100	44	42	7.0	403	U	201	00	ND
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUL					2.5						
29	68	53	0.2	0.079	9.4	563	557	<0.001	8.30	0.029	0.90
DATE	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUL					20	20.02	0.4	0.00		5.12	2
29	0.058	30	<1	<1	58	320	<1	710	3	<3	5
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- IDE TOTAL (UG/L)
JUL	13	1	<0.1	<1	1	<1.0	840	170	3.0	<0.010	/13
29	13	1	\U.1	<1	1	11.0	040	1/0	3.0	(0.010	113

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411616083251900. Local number, WO-265-MO25 at Risingsun.
LOCATION.--Lat 41⁰16'16", long 83⁰25'19", Hydrologic Unit 04100010.

OWNER: Chuck Bowen.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 74 ft., cased to 41.5 ft.

		DEPTH BELOW LAND SURFACE (WATER	SPE- CIFIC CON- DUCT-	PH (STAND-	PH LAB (STAND-	TEMPER-	TEMPER-	OXYGEN, DIS-	COLI- FORM, TOTAL, IMMED. (COLS.	COLI- FORM, FECAL, 0.7 UM-MF	STREP- TOCOCCI FECAL, KF AGAR (COLS.
DATE	TIME	LEVEL) (FEET)	ANCE (US/CM)	ARD UNITS)	ARD UNITS)	AIR (DEG C)	WATER (DEG C)	SOLVED (MG/L)	PER 100 ML)	(COLS./ 100 ML)	PER 100 ML)
JUL											
22	0930	12.79	1040	6.93	7.10	35.0	13.5	0	>80	<1	38
		WA DD									
	HARD-	HARD- NESS		MAGNE-		POTAS-	BICAR-	CAR-	ALKA- LINITY	CARBON	
	NESS	NONCARB	CALCIUM	SIUM,	SODIUM,	SIUM,	BONATE	BONATE	WH WAT	DIOXIDE	
	TOTAL	WH WAT	DIS-	DIS-	DIS-	DIS-	IT-FLD	IT-FLD	TOTAL	DIS-	SULFIDE
D.1. MD	(MG/L	TOT FLD	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	(MG/L	FIELD	SOLVED	TOTAL
DATE	AS CACO3)	MG/L AS CACO3	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L	AS HCO3)	AS CO3)	MG/L AS CACO3	(MG/L AS CO2)	(MG/L AS S)
	CACOST	CACOS	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	C037	CACOS	AS COZ)	AD DI
JUL			4.2								
22	440	0	92	50	51	11	533	0	435	100	ND
						SOLIDS,	SOLIDS,	NITRO-	NITRO-	NITRO-	NITRO-
		CHLO-	FLUO-		SILICA,	RESIDUE	SUM OF	GEN,	GEN,	GEN,	GEN, AM-
	SULFATE	RIDE,	RIDE,	BROMIDE	DIS-	AT 180	CONSTI-	NITRITE	NO2+NO3	AMMONIA	MONIA +
	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C	TUENTS,	DIS-	DIS-	DIS-	ORGANIC
DATE	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	DIS-	SOLVED	SOLVED	SOLVED	DIS.
DATE	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	(MG/L AS BR)	AS SIO2)	SOLVED (MG/L)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)
JUL 22	39	48	0.2	0.054	11	589	574	0.004	3.50	3.20	8.4
22	33	40	0.2	0.034	11	309	3/4	0.004	3.30	3.20	0.4
	PHOS-										
	PHOROUS	ALUM-	ANTI-	********		DODOM	CARNTIN	CHRO-	CORRER	TROM	
	ORTHO, DIS-	INUM, DIS-	MONY, DIS-	ARSENIC DIS-	BARIUM, DIS-	BORON, DIS-	CADMIUM DIS-	MIUM, DIS-	COPPER, DIS-	IRON, DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
DATE	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
	AS P)	AS AL)	AS SB)	AS AS)	AS BA)	AS B)	AS CD)	AS CR)	AS CU)	AS FE)	AS PB)
JUL											
22	1.40	<10	2	15	28	230	<1	10	3	280	<5
		MANGA-			SELE-		STRON-		CARBON,		METHYL-
	LITHIUM	NESE,	MERCURY	NICKEL,	NIUM,	SILVER,	TIUM,	ZINC,	ORGANIC		ENE
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	CYANIDE	CHLO-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	RIDE
DATE	(UG/L AS LI)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS AG)	(UG/L AS SR)	(UG/L AS ZN)	(MG/L AS C)	(MG/L AS CN)	TOTAL (UG/L)
	WO TIT)	AS PIN)	AD IIG)	NO NI)	No SE)	MD AG)	(AG GA	AS AN)	AD C	NO CIV)	(00/11)
UL		10.20	200					2.0			
22	10	130	0.2	14	<1	<1.0	790	24	5.0	<0.010	<3.0

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412237083301800. Local number, WQ-269-F20 at New Rochester.
LOCATION.--Lat 41°22'37", long 83°30'18", Hydrologic Unit 04100010.

OWNER: Donald Contries.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 82 ft., cased to 17 ft.

		WATER QU	ALITY DATA	, WATER YE	EAR OCTOBE	R 1986 TO	SEPTEMBE	R 1987		
DATE	TIME I	AND CURFACE COMMETER DEVELO A		AND- (STA	AB TEMI AND- ATU RD AI	RE ATT	IRE DI		RM, FOR PAL, FEC IED. 0.7 IS. UM- IR (COI	RM, TOCOCCI CAL, FECAL, KF AGAR -MF (COLS. SS./ PER
		0) (1441.	S/CM/ UNI	15) UNI	10) (050	((() () ()	C) (MC	717 100	мы, тоо	иц, 100 мц,
AUG	00.45	10.00	455							
07	0945	10.80	455	7.41 7	7.50 2	23.0	12.5	0.5	1 4	(1 <1
DATE	HARD- NESS TOTAI (MG/I AS CACO:	NONCAR WH WAT TOT FL MG/L A	DIS- D SOLVED S (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG										
07	20	0	4 62	25	1.4	0.7	310	0	253	19
DATE	SULFII TOTAI (MG/I AS S)	SOLVE (MG/L	DIS- D SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
AUG 07	ND	6.0	1.0	1.6	<0.010	8.4	240	259	0.006	0.982
DATE	NITRO GEN, AMMONI DIS- SOLVI (MG/) AS N	O- NITRO GEN,AM A MONIA ORGANI DIS. (MG/L	- PHOS- - PHOROUS + ORTHO, C DIS- SOLVED	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 07	0.0	58 2.1	<0.001	<10	<1	<10	<3	<1	77	2.8

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412542083330700. Local number, WO-272-WB36 near Scotch Ridge.
LOCATION.--Lat 41°25'42", long 83°33'07", Hydrologic Unit 04100010.

OWNER: Webster Methodist Church.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 69 ft., cased to 49.7 ft.

WATER	OUALITY	DATA.	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987

DATE	TIME	LEV	OW SID CONTER DIVIDEL) A	UCT- (ST	H L AND- (ST	AND- A	EMPER- ATURE AIR DEG C)	TEMPI ATUI WATI (DEG	RE DIS	EN, IMM S- (COL VED PE	M, FOR PAL, FEC IED. 0.7 IS. UM- IR (COI	RM, TOCOCCI CAL, FECAL, KF AGAR MF (COLS.
AUG 13	1430	6	.20	1210	7.17	7.30	28.0	1	5.5	1.1	1	<1 K14
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HAR NES NONC WH W TOT MG/L	SARB CAN NAT DI FLD SO AS (1	LCIUM SIS- DOLVED SOMG/L (M	DIS- DI DLVED SOL IG/L (M	IUM, S- VED S G/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICA BONA IT-FI (MGA AS	ATE BONZ LD IT-1 L (MGZ AS	ATE WH W FLD TOT /L FIE MG/L	TY CAR NAT DIOX NAL DI ELD SOI LAS (MO	S- SULFIDE LVED TOTAL G/L (MG/L
AUG 13	67	0	420 1	40 7	3 2	5	2.8	304	0		247	33 <0.5
D₽	ATE	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	(MG/L	BROMIDE DIS- SOLVED (MG/L AS BR)	SOLVI (MG/I	A, RES	IDS, BIDUE 180 GG. C DIS- DLVED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG 13.	2.0	490	5.0	1.2	0.059	19		967	927	0.002	0.031	0.600
D.	G M O ATE	NITRO- EN,AM- ONIA + RGANIC DIS. (MG/L AS N)	PHOS- PHOROU DIS- SOLVE (MG/L AS P)	DIS-		(UG/	ED SC	DRON, DIS- DLVED JG/L S B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 13.		0.60	0.00	8 0.029	<10		<1	320	470	4	20000	2.1

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412635083362700. Local number, WO-274-MD28 at Dunbridge.
LOCATION.--Lat 41^o26'35", long 83^o36'27", Hydrologic Unit 04100010.

OWNER: John Schaller.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 75 ft., cased to 46 ft.

SOLVED

(MG/L

0.600

AS N)

DATE

AUG

06...

DIS.

(MG/L

0.50

SOLVED

(MG/L

AS P)

0.003

SOLVED

(UG/L

AS AL)

<10

SOLVED

(UG/L

AS AS)

<1

SOLVED

(UG/L

AS B)

330

SOLVED

(UG/L

AS FE)

360

SOLVED

(UG/L

AS MN)

SOLVED

(UG/L

AS SR)

22000

SOLVED

(MG/L

AS C)

1.3

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STA AR UNI T	ND- (STA	AND- ED	EMPER- ATURE AIR DEG C)	TEMF ATU WAT (DEG	TRE DE	FO TO GEN, IM IS- (CO LVED P	TAL, FEG MED. 0. LS. UM-	RM, TOO CAL, FI KF -MF (CO LS./	TREP- COCCI ECAL, AGAR OLS. PER 0 ML)
AUG 06	1020	8.72	950	7	.38	.50	26.0	1	.2.0	0	<1	<1	<1
DATE	HARI NES TOT (MG, AS	S NONC AL WH W /L TOT MG/I	SS CARB CA VAT D FLD S C AS (ALCIUM DIS- GOLVED MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	M, D S L (OTAS- SIUM, DIS- OLVED MG/L S K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBO! DIOXIDE DIS- SOLVEE (MG/L AS CO2)	E O
AUG 06		450	250	96	46	32		1.9	250	0	207	17	
DATE	SULF TOT (MG, AS	AL SOI	FATE F S- D SVED S G/L (CHLO- RIDE, DIS- SOLVED (MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMI DIS SOLV (MG/ AS B	DE D - S ED (LICA, IS- OLVED MG/L AS IO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITROGEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	3
AUG 06	ND	310)	6.0	1.0	0.0	61	13	643	652	0.003	0.065	5
	NITT GE AMMO DI	N, GEN, NIA MONI S- ORGA	AM- PH IA + C ANIC D	PHOS- IOROUS PRTHO,	ALUM- INUM, DIS-	ARSEN	-	ORON, DIS-	IRON, DIS-	MANGA- NESE, DIS-	STRON- TIUM, DIS-	CARBON, ORGANIC DIS-	

412114083380400. Local number, WO-275-C31 at Bowling Green.
LOCATION.--Lat 41°21'14", long 83°38'04", Hydrologic Unit 04100010.

OWNER: Richard Mlinarik.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 42 ft., cased to 21.8 ft.

WATED	OTTAT.T TTV	DATA	WATED	VEAD	OCTORED	1086	TO	SEPTEMBER	1997
MWITT	COMPLIA	DWIM	WAILK	ILAR	OCTOBER	T300	1.0	SEPTEMBER	T30/

		712	1121	QUAL	111 0	110,	WIEK II	ann c	CI OBE.		00 10	DISE	LEMBER	130				
DATE	TIME	DEPTER SURFACE (WAS LEVI	OW O ACE FER EL)	SPE CIF CON DUC ANC (US/	IC - T- E	PH (STANI ARD UNI TS)	AI	AB AND – RD	TEMPI ATU AII (DEG	RE R	TEMP	RE ER	OXYGE DIS SOLV (MG/	ED (COLI FORM TOTA IMME (COLS PER	FOR L, FEC D. 0.7 UM-	M, SAL, SAL, SAL, SAL, SAL, SAL, SAL, SAL	STREP- FOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG																		
13	1630	13.	. 67	1	160	7.2	26	7.40	3	2.0	1	4.5	0	. 5	кз		<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARI NESS NONCA WH WA TOT I MG/L CACO	ARB AT FLD AS	CALC DIS SOL (MG AS	- VED /L	MAGNE SIUN DIS- SOLVE (MG/I	M, SODI DIS ED SOLV	ED	POTAS SIUM DIS- SOLVI (MG/I	ED L	BICA BONAT IT-FL (MG/ AS HCO3	E D L	CAR- BONATE IT-FLD (MG/L AS CO3)	WH TO FI MG/	(A- NITY WAT OTAL ELD 'L AS	CARBO DIOXID DIS- SOLVE (MG/L AS CO2	E SUI	LFIDE DTAL MG/L S S)
AUG																		
13	450	1	150	97		46	63	3	1.2		375		0	30	7	33	<	0.5
D A ?	DI SC TE (N	FATE S- DLVED IG/L SO4)	(MG	DE,	FLUC RID: DI: SOL' (MG,	E, E S- VED /L	BROMIDE DIS- SOLVED (MG/L AS BR)	DI SC (M	ICA, S- DLVED IG/L S O2)	AT DE	LIDS, SIDUE 180 EG. C DIS- DLVED	CON TUE SC	IDS, OF STI- NTS, IS- LVED G/L)	NITE GEN NITRI DIS SOLV (MG/ AS N	TE :	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	MITI GEI AMMOI DI: SOL' (MG,	N, NIA S- VED /L
AUG 13		33	160	1	0	. 6	0.034		6.7		696		661	0.0	101	0.031	0.:	114
DA	NI GEN MON ORC DI TE (N	TTRO- N,AM- NIA + GANIC IS.	PHOP DI SOI (MG	OS- ROUS IS- LVED	PHORE ORTHOUS SOLVE	S- OUS HO, - ED	ALUM- INUM, DIS- SOLVED (UG/L	ARS	ENIC IS- LVED G/L	SC (U	DRON, DIS- DLVED UG/L	SC (U	ON, IS- LVED G/L	MANG NESE DIS SOLV (UG/	GA- G, G- VED	STRON- TIUM, DIS- SOLVED (UG/L	CARBO ORGAI DIS- SOLVI (MG/	ON, NIC - ED /L
	AS	5 N)	AS	P)	AS P		AS AL)	AS	AS)	AS	5 B)	AS	FE)	AS M	IN)	AS SR)	AS (:)
AUG																		_
13	•	0.80	<0.	005	0.0	030	<10		<1		20		98		8	19000	2.	1

412350083444900. Local number, WO-286-PL17 near Tontogany.
LOCATION.--Lat 41°23'50", long 83°44'49", Hydrologic Unit 04100009.

OWNER: John Spangler.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 6 in., depth 88 ft., cased to 80 ft.

DATE	S	DEPTH BELOW LAND JRFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND ARD UNITS)	- (ST	AB AND- RD	TEME ATU AI (DEC	RE R	TEME ATU WAT	JRE TER	SOL	EN, S- VED /L)		RM, F PAL, F MED. (LS. U ER (C	OCLI- ORM, ECAL, 1.7 M-MF OCLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 05	1520	14.05	2500	7.6	2	8.00	2	28.0	1	12.5		0	<	(1	<1	<1
DATE	HARD NESS TOTA (MG/) AS CACO:	NONC. WH W. TOT MG/L	S ARB CAL AT DI FLD SC AS (N	LCIUM IS- DLVED MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	ED	DI SOI	TAS- UM, S- VED (/L K)	BON IT-E	G/L	BON IT- (MC AS		ALKA- LINITY WH WAT TOTAL FIELD MG/L A CACO3	C. DI	ARBON OXIDE DIS- OLVED MG/L CO2)
AUG 05	14	00 1	300 36	50	110	100)	2	. 6	89		0		73		3.4
DATE	SULFII TOTAI (MG/I AS S)	SOL	ATE RI - DI /ED SO /L (N	DE, IS- DLVED MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		S- VED S/L	SILI DIS SOI (MG AS	VED	SOL	DUE	SOL	OF TI-	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	E NO: D S(ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)
AUG 05	ND	1600	4	17	1.3	0.	37	17		2	2400	2	290	<0.00	2 0	.036
DATE	NITRO GEN, AMMONI DIS- SOLVE (MG/I AS N)	GEN, A A MONIA ORGAN D DIS.	M- PHO A + OR HIC DI SOI L (MG	THO, S- VED	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSE DI SOL (UG AS	S- VED /L	BARI DIS SOLV (UG AS	ED /L	DI		CADM DI SOL (UG AS	S- VED /L	CHRO- MIUM, DIS- SOLVE (UG/L AS CR	D 50	PPER, IS- DLVED UG/L S CU)
AUG 05	1.00	1.	2 <0	.006	10		1	<	100		780		1	<10		<1
DATE	IRON, DIS- SOLVE (UG/L AS FE	(UG/	ED SO	HIUM I IS- LVED :	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	NICK DIS SOL (UG AS	VED /L	SEL NIU DI SOL (UG AS	M, S- VED /L		S- VED	STR TI DI SOL (UG AS	UM, S- VED /L	ZINC, DIS- SOLVE (UG/L AS ZN	ORC DI D SOI	RBON, SANIC IS- LVED MG/L S C)
AUG 05	150	0	<5	30	40		<1		<1	<	1.0	8	300	50	1.	. 3

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412438083521000. Local number, WO-295-GR7 at Grand Rapids.
LOCATION.--Lat 41°24'38", long 83°52'10", Hydrologic Unit 04100009.
OWNER: Douglas Scott.
AQUIFER.--Dolomite of Devonian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 50 ft., cased to 26.5 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 198	WATER	OUALITY	DATA.	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	198	7
--	-------	---------	-------	-------	------	---------	------	----	-----------	-----	---

DATE	TIME	LEV	OW SPI D CII ACE CON TER DUC	PIC N- PH CT- (STA CE AR	ND- (STA	AB TEME AND- ATU RD AI	RE ATU	RE DI		CM, FOR CAL, FECTOR O. 7. S. UM-	RM, TOCOCCI FECAL, KF AGAR COLS. S./ PER
JUL 24	0920	20	.29	2080 7	.01 7	7.30 2	25.0 1	2.5	0.6 3	0 <	(1 K8
DATE	NES TO (Mo	TAL G/L	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL 24		1300	990	200	190	67	3.4	379	0	311	59
DATE	TO'	FIDE TAL G/L S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUL 24	N	D	1100	10	1.4	0.13	19	1890	1800	0.001	0.023
DATE	AMMO Di SOI (MO	TRO- EN, ONIA IS- LVED G/L N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 24	0	.795	0.80	0.001	10	1	690	2500	21	15000	2.1

412735083460800. Local number, WO-299-WA24 near Grand Rapids.
LOCATION.--Lat 41027'35", long 83046'08", Hydrologic Unit 04100009.

OWNER: Bruce Seeger.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 7 in., depth 36 ft., cased to 27.7 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 27	1540	14.15	2560	6.90	7.1Ó	32.0	14.5	0	K1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS O CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUL 27	170	0 1500	430	160	56	5.0	325	0	266	65	1.9
DATE JUL 27	SULFATI DIS- SOLVE (MG/L AS SO4	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
DATE	PHOS-PHOROUS ORTHODIS-SOLVED (MG/LAS P)		ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUL 27	<0.00	1 <10	<1	<1	<100	360	<1	20	<1	660	<5
DATE	DIS- SOLVED S (UG/L	DIS- I SOLVED SO (UG/L (U	DIS- DI DLVED SO JG/L (U	CKEL, NI CS- I DLVED SO IG/L (U	DIS- D DLVED SO JG/L (U	VER, I IS- D LVED SO G/L (U	DIS- I DLVED SO IG/L (U	INC, ORG DIS- DI DLVED SOI JG/L (N	VED TO	NIDE C	ETHYL- ENE HLO- IDE OTAL UG/L)
JUL 27	80	40 0.	.3	:1 <	a a.	0 840	10 1	10 2.6	· <0.	010 <	3.0

413026083420800. Local number, WO-303-MD23 near Waterville.
LOCATION.--Lat 41030'26", long 83042'08", Hydrologic Unit 04100009.

OWNER: Frank Ferris.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 48 ft., cased to 37.7 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JUL 28	1745	41.10	1910	7.06	7.50	26.0	13.0	0	K1	<1	<1
DATE	HARD- NESS TOTAL (MG/I AS CACO3	NONCARB WH WAT TOT FLD MG/L AS	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONATE IT-FLD	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
JUL 28	120	00 810	190	160	56	3.3	411	0	381	57	17
DATE	SULFAT DIS- SOLVE (MG/I AS SO4	DIS- D SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
JUL 28	970	9.2	1.0	0.080	16	1670	1620	0.003	<0.010	0.305	0.60
DATE	PHOS- PHOROU ORTHO DIS- SOLVEI (MG/L AS P)	IS ALUM- INUM, DIS-	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	DIS-	DIS-	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUL 28	0.02	20 10	<1	<1	53	660	<1	<10	<1	85	<5
	LITHIUM DIS-	DIS-	DIS- DI	CKEL, NI	ors- r	VER,	DIS-	INC, OR		YANIDE	METHYL- ENE CHLO-
DATE	SOLVED (UG/L AS LI)	(UG/L (UG/L (U	JG/L (C	JG/L (U	JG/L (UG/L (UG/L (MG/L	TOTAL (MG/L AS CN)	RIDE TOTAL (UG/L)
JUL 28	95	260 <0	.1 <	(1	i (1.	.0 150	000	10	2.6	<0.010	<5.0

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413345083371500. Local number, WQ-306-PB at Perrysburg.
LOCATION.--Lat 41°33'45", long 83°37'15", Hydrologic Unit 04100009.

OWNER: Herman Mizer.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 192 ft., cased to 71.9 ft.

WATER OUR	LITY DA	TA. WATE	R YEAR	OCTOBER	1986	TO	SEPTEMBER	1987
-----------	---------	----------	--------	---------	------	----	-----------	------

DATE	TIM	DEPT BELC LANI SURFA (WAT IE LEVI (FEI	DW SPE C CIF ACE CON FER DUC EL) ANC	IC - PH T- (STA E AF	ND- (STA	B TEME ND- ATU D WAT	RE	DXYGEN, DIS- SOLVED (MG/L)	COLI FORM TOTA IMME (COLS PER 100 M	L, FORM L, FECA D. 0.7 . UM-1 (COL	M, TOCOC AL, FECA KF AC MF (COLS	CCI HARD- NESS GAR TOTAL (MG/L AS
JUL 16	092	20 44.	.18 2	110 7	.40 7	.70 1	2.5	3.2	>80	<:	1 >100	980
DATE	HARD NESS NONCA WH WA TOT F MG/L CACO	RB CALCI T DIS- LD SOLV AS (MG/	TED SOL	UM, SODI S- DIS VED SOLV /L (MG	- DI ED SOL	UM, BON S- IT-F VED (MO /L AS	LD /L	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA LINIT WH WA TOTA FIEL MG/L CACO	Y CARI T DIOX: L DIS D SOLV AS (MG/	IDE 5- SULFI VED TOTA /L (MG/	L SOLVED
JUL 16	9	30 240	89	140	2	.2 67		0		56	4.2 ND	1200
DATE JUL 16	CHLO RIDE DIS- SOLV (MG/ AS C	E RIDE DIS ED SOLV L (MG/ CL) AS E	E, BROM S- DI VED SOL' (L (MG F) AS	S- SOL VED (MG /L AS BR) SIC	- AT 1 VED DEG /L DI SOL (2) (MG	DUE SUM 80 CONS C TUEN S- DI VED SOL /L) (MG	OF TI- N TS, S- VED	NITRO- GEN, ITRITE DIS- SOLVED (MG/L AS N)	NITR GEN NO2+N DIS SOLV (MG/ AS N	GENOS AMMONION DISCOMPANION DIS	N, GEN, A NIA MONIA S- ORGAN VED DIS. /L (MG/ N) AS N	M- PHOROUS A + ORTHO, IIC DIS- SOLVED L (MG/L AS P)
	DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMI DIS SOLV (UG/ AS C	UM MI - DI ED SC	IRO- IUM, IS- DLVED IG/L S CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUL 1	6	<10	<1	<1	200	890	<1		60	<1	420	<5
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	DIS-	SILVER, DIS- SOLVED (UG/L AS AG)	TI	S- VED S	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUL 16	20	40	2.4	<1	<1	<1.0	13000		30	1.7	<0.010	<3.0

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412839083352000. Local number, WO-307-WB15 at Dowling.
LOCATION.--Lat 41028'39", long 83035'20", Hydrologic Unit 04100010.

OWNER: Jim Roth.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 82 ft., cased to 20 ft.

	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG			2.22	200				1412				
1	1	1200	8.70	634	7.41	7.40	23.0	12.5	0	<1	<1	<1
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG 1	1	340	86	81	33	8.7	3.0	310	0	254	19	ND
	DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG 1	1	84	13	0.3	0.045	9.7	382	388	0.001	<0.010	0.047	0.80
	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
AUG 1	1	<0.005	<0.001	<10	<1	<1	240	10	<1	<10	<1	350
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG 11	. <5	<4	15	0.2	<1	<1	<1.0	1700	94	1.9	<0.010	<24

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413147083275800. Local number, WQ-309-LK27 near Millbury.
LOCATION.--Lat 41°31'47", long 83°27'58", Hydrologic Unit 04100010.

OWNER: Robert Sibberson.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 149 ft., cased to 60.8 ft.

	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG	g 12	0855	38.65	892	7.24	7.40	23.0	12.0	0.5	30	<1	K1
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUC	3 12	470	270	110	40	20	1.8	254	0	207	23	ND
	DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG 1	2	260	8.8	1.7	0.091	11	638	6 0 9	<0.001	0.014	0.505	1.0
AUG	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
	2	<0.005	<0.001	20	<1	<1	16	200	<1	<10	2	47
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG 12	. <5	11	2	0.2	<1	<1	<1.0	30000	31	1.6	<0.010	<7.4

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413658083332900. Local number, WQ-313-R at Rossford.
LOCATION.--Lat 41°36'58", long 83°33'29", Hydrologic Unit 04100009.

OWNER: Libbey Owens Ford.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 10.0 in., depth 541 ft., cased to 92.8 ft.

DATE	BE LA SUR (W TIME LE	PTH CLOW SPE ND CIE FACE COM ATER DUC VEL) AND EET) (US	FIC N- PH CT- (STAM) AF	AB TEMI AND- ATO RD AI	RE ATU	RE DI		RM, FOR PAL, FEC. 10.7 S. UM-	RM, TOCOCC CAL, FECAL KF AGA -MF (COLS. SS./ PER
IOL										
21	0940 12	6 960	7.50	7.80	27.0	16.5	6.1	<1	<1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL										
21	380	220	85	32	56	2.7	193	0	157	9.7
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JUL										
21	<0.5	320	19	1.7	0.15	8.9	673	650	0.001	0.011
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL										
21	0.680	0.70	0.001	20	<1	420	180	14	28000	2.2

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413542083282700. Local number, WO-316-LK4 at Walbridge.
LOCATION.--Lat 41035'42", long 83028'27", Hydrologic Unit 04100010.

OWNER: Don Billings.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 149 ft., cased to 77.1 ft.

DATE	TIME	LEV	OW SPI ID CII CACE COI CTER DUC (EL) ANG	FIC N- PI CT- (ST.	AND- (ST	AB T AND- RD	EMPER- ATURE AIR DEG C)	TEMF ATU WAT (DEG	TER SO	GEN, IMI	RM, FOI TAL, FEO MED. 0.1 LS. UM-	-MF (COLS. LS./ PER
02	1400	63	3.22	960	7.85	7.80	18.5	1	1.5	0	<1 <	1 <1
DATE	NE TO (M A	RD- SS TAL G/L S CO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	M, S D SC L (N	OTAS- SIUM, DIS- DLVED MG/L S K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
SEP 02		380	280	83	35	63		2.2	118	0	98	2.6
DATE	TO (M	FIDE TAL G/L S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMI DIS SOLV (MG/ AS B	DE DI - SC ED (N L A	LICA, IS- DLVED MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
SEP 02		<0.5	380	12	2.6	0.7	5	6.4	699	6 65	<0.001	<0.010
DATE	G AMM D SO (M	TRO- EN, ONIA IS- LVED G/L N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSEN DIS SOLV (UG/ AS A	- I ED SC L (U	DRON, DIS- DLVED JG/L S B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
SEP 02	0	.305	0.90	<0.001	<10		<1	300	<3	<1	21000	1.2

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413608083255500. Local number, WO-320-N36 near Woodville Gardens.
LOCATION.--Lat 41°36'08", long 83°25'55", Hydrologic Unit 04100010.

OWNER: Fred Draper.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 110 ft., cased to 82.5 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL)	SPE- CIFIC CON- DUCT- ANCE	PH (STAND-	PH LAB (STAND- ARD	TEMPER- ATURE AIR	TEMPER- ATURE WATER	OXYGEN, DIS- SOLVED	COLI- FORM, TOTAL, IMMED. (COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER
DATE	IIME	(FEET)	(US/CM)	UNITS)	UNITS)	(DEG C)	(DEG C)	(MG/L)	100 ML)	100 ML)	100 ML)
SEP											
03	0900	63.53	745	7.50	7.50	13.0	11.5	0	K18	<1	<1
	HARD- NESS	HARD- NESS NONCARB	CALCIUM	MAGNE- SIUM,	SODIUM,	POTAS- SIUM,	BICAR- BONATE	CAR- BONATE	ALKA- LINITY WH WAT	CARBON DIOXIDE	
	TOTAL	WH WAT	DIS-	DIS-	DIS-	DIS-	IT-FLD	IT-FLD	TOTAL	DIS- SOLVED	SULFIDE
DATE	(MG/L AS	TOT FLD	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	(MG/L AS	FIELD MG/L AS	(MG/L	TOTAL (MG/L
	CACO3)	CACO3	AS CA)	AS MG)	AS NA)	AS K)	HCO3)	CO3)	CACO3	AS CO2)	AS S)
SEP											
03	770	650	190	68	48	2.4	150	0	123	7.5	<0.5
						SOLIDS,	SOLIDS,	NITRO-	NITRO-	NITRO-	NITRO-
	SULFATE	CHLO- RIDE,	FLUO- RIDE,	BROMIDE	SILICA, DIS-	RESIDUE AT 180	SUM OF CONSTI-	GEN, NITRITE	GEN, NO2+NO3	GEN, AMMONIA	GEN, AM
	DIS-	DIS-	DIS-	DIS-	SOLVED	DEG. C		DIS-	DIS-	DIS-	ORGANI
	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	DIS-	SOLVED	SOLVED	SOLVED	DIS.
DATE	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED		(MG/L	(MG/L	(MG/L	(MG/L
	AS SO4)	AS CL)	AS F)	AS BR)	SIO2)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)
SEP	500	16	2.0			1100	1100	40.001	40.010	0 205	0.00
03	690	16	2.0	10	9.5	1180	1130	<0.001	<0.010	0.305	0.80
	PHOS- PHOROUS	ALUM-	ANTI-					CHRO-			
	ORTHO,	INUM,	MONY,	ARSENIC	BARIUM,	BORON,		MIUM,	COPPER,	IRON,	LEAD,
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
DATE	SOLVED (MG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVE (UG/L
DATE	AS P)	AS AL)	AS SB)	AS AS)	AS BA)	AS B)	AS CD)	AS CR)	AS CU)	AS FE)	AS PB
SEP						20.2					
03	<0.001	<10	1	3	6	310	<1	20	<1	480	<5
	LITHIUM DIS- SOLVED	MANGA- NESE, DIS- SOLVED	MERCURY DIS- SOLVED	NICKEL, DIS- SOLVED	SELE- NIUM, DIS- SOLVED	SILVER, DIS- SOLVED	STRON- TIUM, DIS- SOLVED	ZINC, DIS- SOLVED	CARBON, ORGANIC DIS- SOLVED	CYANIDE TOTAL	METHYL- ENE CHLO- RIDE
DATE	(UG/L AS LI)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS AG)	(UG/L AS SR)	(UG/L AS ZN)	(MG/L AS C)	(MG/L	TOTAL (UG/L)
SEP											
03	23	3	<0.1	<1	<1	<1.0	14000	150	1.2 <	0.010	<3.0

413455083260400. Local number, WQ-321-LK12 at East Lawn.
LOCATION.--Lat 41°34'55", long 83°26'04", Hydrologic Unit 04100010.

OWNER: Gerald Traver.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 115 ft., cased to 78.5 ft.

DATE		TIME	LEV	OW	SPE CIF CON DUC ANC	IC - T- E	PH (STA AR UNIT	ND-	PH LA (STA AF UNIT	AB AND- RD	TEMP ATU AI (DEG	RE R	TEMP ATU WAT (DEG	RE ER		S- VED		RM, PAL, IED. S.	COL FOR FEC 0.7 UM- (COL 100	M, AL, MF S./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 10		1600	63	3.16	1	860	7	.22	7	.30	2	7.0	1	2.5		0.1	<	1	<	1	<1
DATE		HARD- NESS TOTAL (MG/L AS CACO3)	HAF NES NONC WH W TOT MG/I CAC	CARB VAT FLD AS	CALC DIS SOL (MG AS	- VED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	ED	DI	UM, S- VED /L		/L	CA BON IT- (MG AS CO	FLD /L	ALK LINI WH W TOT FIE MG/I CAC	TY IAT IAL ILD AS	CAR DIOX DI SOL (MG AS C	IDE S- VED /L	SULFIDE TOTAL (MG/L AS S)
AUG 10		1100		950	270		100		45		2	. 4	184		0			149	1	8	ND
I)ATE	DI SO (M	FATE S- LVED G/L SO4)	RI DI SO (M	LO- DE, S- LVED G/L CL)		E, S- VED	SOI (MC	MIDE IS- LVED E/L BR)	DI SO (M	LVED G/L	RES AT DE D SO	IDS, IDUE 180 G. C IS- LVED	CONSTUE	IDS, OF STI- NTS, IS- LVED G/L)	NIT D SO (M	TRO- EN, RITE IS- LVED G/L N)	NO2- DI SOI	S- LVED G/L	AMM D SO (M	TRO- EN, ONIA IS- LVED G/L N)
AUG 10.		9 4	0	1	6	1	. 6	0.	16	1	1		1690		1490	<0	.001	<0.	010	0	. 655
ī)ATE	GEN MON ORG DI (M	TRO- ,AM- IA + ANIC S. G/L N)	PHO D SO (M	OS- ROUS IS- LVED G/L P)	PHO PHOR ORT DIS SOLV (MG/ AS P	HO,	SOI (UC		SO:	ENIC IS- LVED G/L AS)	SO (U	RON, IS- LVED G/L B)	SOI (U	ON, IS- LVED G/L FE)	NE D SO (U	NGA- SE, IS- LVED G/L MN)	DI SOI (UC	RON- IUM, IS- LVED G/L SR)	ORG DI SOL	
AUG 10.			0.80	<0	.005	<0.	001		<10		2		360		890		9	13	3000	1	.7

412123083512900. Local number, WO-326-WS32 near Weston.
LOCATION.--Lat 41°21'23", long 83°51'29", Hydrologic Unit 04100009.

OWNER: Vernon Weaver.

AQUIFER.--Dolomite of Upper Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 55 ft., cased to 36.4 ft.

DAT	Е Т	IME .	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CI	PH - (STA	ND-	PH LAB (STAND ARD UNITS)	TEME - ATU AI (DEG	RE	TEMP ATU WAT	RE ER	OXYGI DIS SOLI (MG,	S- VED	COL FOR TOT IMM (COL PE 100	M, AL, ED. S.	COL FOR FEC 0.7 UM- (COL 100	M, TOO AL, FI KF MF (CO S./	FREP- COCCI ECAL, AGAR DLS. PER D ML)
AUG 04	14	455	26.17	26	60 7	.18	7.3	0 2	7.0	1	7.0		0	7	0		K7	28
DAT	NES TO (MC	TAL V	HARD- NESS NONCARB WH WAT FOT FLD MG/L AS CACO3	CALCII DIS- SOLVI (MG/I	UM SI DI ED SOI L (MG	NE- UM, S- VED (/L MG)	SODIUM DIS- SOLVED (MG/L AS NA	, SI SOI (MG		BIC BON IT-F (MG AS HCO	ATE LD /L	CAN BONN IT-1 (MG, AS	ATE FLD /L	ALK LINI WH W TOT FIE MG/L CAC	TY AT AL LD AS	CAR DIOX DI SOL (MG AS C	IDE S- SUI VED TO /L (I	LFIDE DTAL MG/L S S)
AUG 04		1600	1400	390	140		63	4	. 6	196		0			161	2	1	8.2
					-													
DAT	DIS	LVED G/L GO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE DIS- SOLVI (MG/I AS F)	BROM DI ED SOL (MG) AS	S- VED	SILICA DIS- SOLVE (MG/L AS SIO2)	AT I D DEG DI SOI (MG	DUE	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	NITH GEI NITE DIS SOLY (MG, AS I	N, ITE S- VED /L	GE NO2+ DI SOL (MG AS	NO3 S- VED /L	NIT GE AMMO DI SOL (MG AS	N, GEI NIA MOI S- ORO VED D: /L (I N) AS	TTRO- N,AM- NIA + GANIC IS. MG/L S N)
DAT	PHOTO DIS	THO, S- VED /L	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY DIS- SOLVI (UG/I AS SI	ARSE DI ED SOL L (UG	S- VED	BARIUM DIS- SOLVED (UG/L AS BA	SOI (UG		CADM DI SOL (UG AS	S- VED /L	CHRO MIUN DIS- SOLY (UG,	M, VED	COPP DIS SOL (UG AS	VED	IRO DI SOL (UG	S- I VED SO /L (1	EAD, DIS- DLVED UG/L S PB)
AUG 04	0.	.004	10		<1	<1	<10	0	570		<1		20		<1		70	<5
AUG		LITHI DIS SOLV (UG/ AS I	IUM NI S- I VED SI /L (I LI) A	DIS- OLVED UG/L S MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SO: (UC	KEL, S- LVED G/L NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SO (U	VER, IS- LVED G/L AG)	D SO (UC AS	RON- IUM, IS- LVED G/L SR)	SOI (U	IS- LVED G/L ZN)	CARE ORGA DIS SOLV (MC	ANIC S- VED S/L C)	CYANIDI TOTAL (MG/L AS CN)	
	04		60	10	<0.1		<1	<1		<1.0		4800		<10	3	. 7	<0.010)
DATE AUG	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBO TETH CHLO RIDH TOTA (UG/	RA- 1,2 O- CH E E' AL TO	2-DI- LORO- I THANE OTAL UG/L)	BROMO- FORM TOTAL (UG/L)	BR MET	HANE TAL	HLORO- FORM TOTAL UG/L)		UENE TAL /L)	TO (UG		TOT:	ZENE AL /L)	CHLO ETHA TOT (UG/	NE	ETHYL- BENZENI TOTAL (UG/L)	METHYL- E BROMIDE TOTAL (UG/L)
04	<15	<15	<:	15	<15	<1	5	<15	<1	5	<1	5	<1!	5	<15	5	<15	<15
DATE AUG	METHYL- CHLO- RIDE TOTAL (UG/L)	METHY END CHLO RIDE TOTAL (UG/I	E CH C- ET E E	HYL- I NE I OTAL	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	CHL	-DI- C ORO- E ANE TAL	,1-DI- HLORO- THYL- ENE TOTAL UG/L)	ETH	I- ORO- ANE TAL	ETH	I- ORO- ANE FAL	1,1 TETH CHLO ETHA TO:	RA- DRO- ANE FAL	1,2- CHLO BENZ TOT (UG/	RO- ENE AL	1,2-DI- CHLORO- PROPANI TOTAL (UG/L)	- CHLORO-
04	<15.0	29	3	10	<15	<1	5	<15	22	0	<1	5	<1	5	<15	. 0	<15	<15
DATE	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-I CHLOI BENZI TOTA (UG/I	RO- CH ENE BE AL T	4-DI- H LORO- N NZENE OTAL	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- FLU	ORO- ORO- C HANE P	TRANS-,3-DI- HLORO- ROPENE TOTAL UG/L)	1,3 CHL PRO	IS -DI- ORO- PENE TAL /L)	ET	ROMO HYL- NE TAL	VII CHI RII TO	LO-	TRI CHLO ETHY EN TOT (UC	RO- L- IE	STYRENI TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG 04	<15	<15.	.0 <	15.0	<15	<1	5	<15.0	<1	5.0	<	15	<1	5	<1	5.0	<15	<15

413345083314200. Local number, WQ-330-PBl near Moline.
LOCATION.--Lat 41°33'45", long 83°31'42", Hydrologic Unit 04100010.

OWNER: Donald Snyder.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 130 ft., cased to 43.3 ft.

WATER QUALITY	DATA,	WATER	YEAR	OCTOBER	1986	TO	SEPTEMBER	1987	
---------------	-------	-------	------	---------	------	----	-----------	------	--

DATE	TIME	DEPTI BELOI LAND SURFA (WATI LEVE)	W SPE CIF CE CON ER DUC L) ANC	TIC I- PI T- (STA	AND- (ST	AB ' AND- RD	TEMPER- ATURE AIR (DEG C)	TEMP ATU WAT (DEG	RE DI	GEN, S- (COLI- FORM, TOTAL, IMMED. COLS. PER 00 ML)	COLI- FORM, FECAL 0.7 UM-MF (COLS. 100 ML	TOCOCCI , FECAL, KF AGAR (COLS. / PER
AUG 12	1335	32.	38 1	200	7.08	7.20	28.0	1	2.5	1.1	<1	<	1 <1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCAL WH WA! TOT FI MG/L A CACO	RB CALC I DIS LD SOL AS (MG	IUM SI - DI VED SOI /L (MC	IS- DIS LVED SOL		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BIC BON IT-F (MG AS HCO	ATE BON LD IT- /L (MG AS	R- L NATE W FLD S/L	ALKA- INITY H WAT TOTAL FIELD G/L AS CACO3	CARBO DIOXID DIS- SOLVE (MG/L AS CO2	E SULFIDE D TOTAL (MG/L
AUG 12	65 0	38	30 140	60	5 2	В	2.8	329	0		268	43	<0.5
DA	D S TE (LFATE IS- OLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILIO DIS- SOLV (MG/ AS SIO	CA, RES AT VED DE /L I	IIDS, SIDUE 180 GG. C DIS- DLVED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITR GEN NITRI DIS SOLV (MG/ AS N	TE NO2 - D ED SO	EN, +NO3 A DIS- DLVED	NITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N)
AUG 12	. 3	60	35	1.3	0.083	16		890	841	<0.0	01 <0	.010 0	.590
DA	GE MO OR D TE (ITRO- N,AM- NIA + I GANIC IS. MG/L S N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSEN DIS SOLV (UG/ AS A	S- D VED SC /L (U	RON, DIS- DLVED JG/L B)	IRON, DIS- SOLVED (UG/L AS FE)	MANG NESE DIS- SOLV (UG/	, T - D ED SO L (U	IUM, O IS- LVED S G/L	ARBON, RGANIC DIS- OLVED (MG/L AS C)
AUG 12		0.40	<0.005	<0.001	10		<1	280	750		10 2	8000	2.2

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413101083325300. Local number, WO-331-PB23 near Lime City.
LOCATION.--Lat 41°31'01", long 83°32'53", Hydrologic Unit 04100010.

OWNER: Lowell Gurtzweiler.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 85 ft., cased to 33.6 ft.

		WA	TER QUAL	ITY DATA	, WATER	YEAR C	CTOBE	R 198	36 TO	SEPTE	MBER 19	87			
DATE	TIME	DEPT BELO LAND SURFA (WAT	W SPE CIF CE CON ER DUC	TC T- P		PH LAB TAND- ARD	TEMPE ATUI	RE	TEMPI ATUI WATI	RE	XYGEN, DIS-	COL FOR TOT IMM (COL PE	M, FO AL, FE ED. 0.	OLI- ORM, CCAL, 7 I-MF	TOCOCC FECAL KF AGA (COLS. PER
DATE	TIME	LEVE (FEE			RD TS) UN	IITS)	(DEG		(DEG		SOLVED (MG/L)	100		ML)	100 ML
			-, ,,,				,			•	, -,				
AUG 11	00.50	9.	70	770							•		2	27	K4
11	0950	9.	70	772	7.57	7.60	2.	1.0	1.	1.5	0	3	2	21	K4
	HARD-	HARD NESS		MA	GNE-		POTA	AS-	BIC	AR-	CAR-	ALK		RBON	
	NESS TOTAL	NONCA WH WA	RB CALC	IUM S	IUM, SO	DIUM, DIS-	SIU	UM, S-	BONZ IT-FI	ATE I	BONATE IT-FLD	WH W	AT DIC	XIDE OIS-	SULFID
DATE	(MG/L AS	TOT F	AS (MG	/L (M	G/L	MG/L	SOLV (MG/	/L	(MG,		(MG/L AS	FIE MG/L	AS (N	IG/L	TOTAL (MG/L
	CACO3)	CACO	3 AS	CA) AS	MG) A	S NA)	AS F	K)	HCO:	3)	CO3)	CAC	03 AS	CO2)	AS S)
AUG															
11	39 0	2	30 88	3	7	23	2.	. 0	204		0		169	8.7	<0.5
	D S	LFATE IS- OLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED		DE DI	ICA, S- DLVED	D)	DUE 180 G. C	SOLID SUM OF CONST TUENTS DIS-	F G I- NIT S, E - SC	TRO- EN, PRITE DIS- DLVED	NITRO- GEN, NO2+NO3 DIS- SOLVEI	AMM D SO	TRO- EN, ONIA IS- DLVED
DA		MG/L SO4)	(MG/L AS CL)	(MG/L AS F)	(MG/I		S (02)		LVED	SOLVI (MG/		IG/L N)	(MG/L AS N)		G/L N)
AUG															
11	. 2	20	13	1.0	0.11	. 1	. 0		534	5.	14 <0	.001	0.011	. 0	.525
		ITRO-		PHOS-											
	MO OR	N,AM- NIA + GANIC IS.	PHOS- PHOROUS DIS- SOLVED	PHOROUS ORTHO, DIS- SOLVED		ARS	ENIC DIS- DLVED	D	RON, IS- LVED	IRON DIS- SOLVI	, NE	NGA- SE, DIS- DLVED	STRON- TIUM, DIS- SOLVEI	ORG	BON, ANIC S- VED
DA	TE (MG/L S N)	(MG/L AS P)	(MG/L AS P)	(UG/I	. (1	G/L AS)		J/L	(UG/)	L (U	IG/L MN)	(UG/L AS SR)	(M	G/L C)
AUG															
11		0.70	0.013	0.010	<1	0	<1		220		46	2	19000	1	.8

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413025083374000. Local number, WQ-333-PB19 near Five Points.
LOCATION.--Lat 41°30'25", long 83°37'40", Hydrologic Unit 04100009.

OWNER: John Voland.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 112 ft., cased to 62.8 ft.

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
1	0840	38.37	1250	7.41	7.60	24.0	15.0	0	K14	K2	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
1	580	440	130	58	64	2.8	173	0	141	11	<0.5
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
	2310										2.110
	570	10	2.0	0.088	8.4	977	949	0.001	0.033	0.900	1.3
DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
	0.007	0.012	20	<1	<1	9	460	<1	30	<1	260
LEAD.	LITHIUM		MERCURY	NICKEL,	SELE- NIUM, DIS-	SILVER, DIS-	STRON- TIUM, DIS-	ZINC, DIS-	CARBON, ORGANIC DIS-	CYANIDE	METHYL- ENE CHLO-
DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	DIS- SOLVED (UG/L AS MN)	SOLVED (UG/L AS HG)	SOLVED (UG/L AS NI)	SOLVED (UG/L AS SE)	SOLVED (UG/L AS AG)	SOLVED (UG/L AS SR)	SOLVED (UG/L AS ZN)	SOLVED (MG/L AS C)	TOTAL (MG/L AS CN)	RIDE TOTAL (UG/L)
	DATE DATE	HARD- NESS TOTAL (MG/L AS CACO3) SULFATE DIS- SOLVED (MG/L AS SO4) PHOS- PHOROUS DIS- SOLVED (MG/L AS P) AS P) LEAD, LITHIUM	DATE TIME LEVEL) (WATER LEVEL) (FEET) 1 0840 38.37 HARD- NESS NONCARB TOTAL WH WAT (MG/L TOT FLD AS MG/L AS CACO3) CACO3 1 580 440 CHLO- SULFATE RIDE, DIS- SOLVED SOLVED DIS- SOLVED SOLVED (MG/L (MG/L AS SO4) AS CL) DATE (MG/L (MG/L AS P) AS P) DATE (MG/L (MG/L AS P) AS P) LEAD, LITHIUM MANGA- NESE,	DATE TIME LAND CIFIC SURFACE CON- (WATER DUCT- LEVEL) ANCE (FEET) (US/CM) HARD- NESS NONCARB CALCIUM TOTAL WH WAT DIS- (MG/L TOT FLD SOLVED AS CA) LOATE AS MG/L AS (MG/L CACO3) CACO3 AS CA) CHLO- FLUO- FLUO- SULFATE RIDE, RIDE, DIS- SOLVED SOLV	DATE TIME BELOW CIFIC SURFACE CON- PH (WATER DUCT- ARD LEVEL) ANCE ARD (WESTEN LEVEL) ANCE ARD (WESTEN LEVEL) ANCE ARD (US/CM) UNITS)	DATE TIME CHLO- FLUO- RIDE- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS	DATE TIME BELOW SPE LAND CIFIC SURPACE CON- (WATER DUCT STAND ARD ARD	DATE TIME LAND CIFIC SURFACE CON- (WATER DUCT- (STAND- AT THE LAND CIFIC STAND- AT THE (EVEL) ANCE (ARD ARD ARD ARD AT THE ARD CIFIC STAND- ARD AT THE ARD	BELOW SPE- LAND CIPIC SURPACE CON- PH LAB TEMPER TEMPER DAYGEN DIS- SULPATE CHIO- PH LAB TEMPER ATURE DIS- DATE CHIO- PH LAB TEMPER ATURE ATURE DIS- DATE CHIO- PH LAB TEMPER ATURE DIS- DATE CHIO- PH LAB TEMPER ATURE DIS- DATE CHIO- PH LAB TEMPER ATURE DIS- DATE CHIO- PH LAB ATURE ATURE DIS- DATE CHIO- PH LAB TEMPER ATURE DIS- DATE DAT	BELOW SPE- PH	BELOW SEP- LAND CIFIC SURPACE CON- PH SURPACE CON- PH CON- CON

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

413055083254300. Local number, WQ-341-LK36 near Forest Park.
LOCATION.--Lat 41030'55", long 83025'43", Hydrologic Unit 04100010.

OWNER: Lowell Baker.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 80 ft., cased to 34.6 ft.

	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 11		1455	13.00	763	7.29	7.30	25.0	12.5	0	<1	<1	<1
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG 11		430	130	87	39	7.5	1.4	366	0	299	30	<0.5
	DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG 11		120	5.1	1.8	0.047	11	511	502	<0.001	0.011	0.276	0.70
	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
AUG 11		<0.005	<0.001	10	<1	<1	36	70	<1	<10	<1	93
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DIS-	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG 11	5	10	<3	0.2	<1	<1	<1.0	49000	44	1.6	<0.010	<22

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412950083282500. Local number, WO-342-T9 at Lemoyne.
LOCATION.--Lat 41029'50", long 83028'25", Hydrologic Unit 04100010.

OWNER: Luckey Farmers.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled commercial water well, diameter 5.62 in., depth 135 ft., cased to 38.4 ft.

1	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 12		1055	13.80	687	7.33	7.50	24.0	16.5	0.4	<1	<1	<1
1	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	TOTAL FIELD MG/L AS	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG 12		35 0	130	77	29	15	2.0	267	0	215	20	<0.5
I	DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMONIA	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)
AUG 12.		140	3.9	1.5	0.034	11	461	443	<0.001	0.013	0.645	1.2
I	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
AUG 12.		<0.005	<0.001	<10	<1	<1	30	160	<1	<10	<1	210
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	(UG/L	DIS- SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L AS HG)	DIS-	DIS- SOLVEI (UG/L	(UG/L	DIS- SOLVEI (UG/L	DIS- SOLVEI (UG/L	(MG/L	CYANIDE TOTAL (MG/L	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
12	<5	10	2	<0.1	<1	<1	<1.0	31000	16	1.7	<0.010	<24

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

412202083423000. Local number, WO-344-PL27 near Bowling Green.
LOCATION.--Lat 41°22'02", long 83°42'30", Hydrologic Unit 04100009.

OWNER: William Howard.

AQUIFER.--Dolomite of Upper Silurian age.

WELL CHARACTERISTICS.--Drilled domestic water well, diameter 4.25 in., depth 38 ft., cased to 30.1 ft.

		WATER QUAI	LITY DATA,	WATER YE	EAR OCTOBE	ER 1986 TO	SEPTEMBE	R 1987		
DATE	BE LA SUR (W TIME LE	FACE CON VATER DUC EVEL) AND	FIC N- PH CT- (STA	ND- (STA	AB TEMI AND- ATO RD A	JRE ATU	RE DI		M, FOR PAL, FEC IED. 0.7 S. UM- ER (COL	M, TOCOCCI FAL, FECAL, KF AGAR MF (COLS. S./ PER
AUG	1045	- 10								
06	1245	7.19	930 7	.20 7	7.40	27.0	3.5	0 <	1 <1	<1
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
AUG 06	530	200	97	66	23	3.6	403	0	322	40
	SULFIDE	SULFATE DIS-	CHLO- RIDE, DIS-	FLUO- RIDE, DIS-	BROMIDE DIS-	SILICA, DIS- SOLVED	SOLIDS, RESIDUE AT 180 DEG. C	SOLIDS, SUM OF CONSTI- TUENTS,	NITRO- GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS-
DATE	TOTAL (MG/L AS S)	(MG/L AS SO4)	SOLVED (MG/L AS CL)	SOLVED (MG/L AS F)	(MG/L AS BR)	(MG/L AS SIO2)	DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L)	SOLVED (MG/L AS N)	(MG/L AS N)
AUG 06	<0.5	220	12	1.3	0.093	30	681	666	0.003	0.084
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
AUG 06	0.320	1.5	0.003	<10	<1	580	160	14	14000	1.4

337

GROUND-WATER RECORDS FOR THE NORTHWEST OHIO PROJECT--Continued

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411354083322000. Local number, WO-347-B12 near Eagleville.
LOCATION.--Lat 41013'54", long 830 32'20", Hydrologic Unit 04100010.

OWNER: Allen Fredrick.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled domestic water well, diameter 5.62 in., depth 41 ft., cased to 19.3 ft.

DATE	BE LA SUR (W TIME LE	FACE CON VATER DUC VEL) AND	FIC N- PH CT- (STA	AND- (STA	AB TEME AND- ATO RD AI	RE ATO	JRE DI TER SOL		RM, FOR PAL, FEG. 0.7 IED. 0.7 IS. UM-	RM, TOCOCCI CAL, FECAL, KF AGAR -MF (COLS. LS./ PER
JUL 30	1530	5.17	1260 7	7.00 7	7.60 2	7.0	13.5	0 F	(1 <1	к8
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)
JUL 30	75 0	400	180	68	15	3.4	433	0	354	69
DATE	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	IODIDE, DIS- SOLVED (MG/L AS I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
JUL 30	<0.5	370	3.8	1.5	0.052	0.003	23	945	901	<0.001
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
JUL 30	<0.010	0.277	0.50	<0.001	10	190	1400	13	21000	2.7

412451083280200. Local number, WQ-349-F3 at Pemberville.

LOCATION.--Lat 41°24'51", long 83°28'02", Hydrologic Unit 04100010.

OWNER: City of Pemberville, north wellfield well, No. 1.

AQUIFER.--Dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled public supply water well, diameter 10.0 in., depth 227 ft., cased to unknown depth.

DATE	s	DEPTH BELOW LAND URFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM	- (ST	ARD	PH LAB (STAND- ARD JNITS)	AT WA	PER- OURE UTER (C	.7 M-MF OLS./	HARI NESS TOTA (MG/ AS CACO	D- NE S NON AL WH /L TOT MG/	ARD- ESS HCARB WAT FLD LAS ACO3	DI SC	CIUM S S- I DLVED SO IG/L (I	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
03	1530	36.90	96	55	7.40	7.60		11.5	<1	:	390	160	9	5	37	36
DATE	POTAS SIUM DIS- SOLVE (MG/L AS K)	D FIEL MG/L	TY (AT DI AL AD S AS	CARBON LOXIDE DIS- SOLVED (MG/L S CO2)	SULFAT DIS- SOLVE (MG/I AS SO4	DIS D SOL	E, VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMID DIS- SOLVE (MG/I AS BR	E	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLID RESID AT 18 DEG. DIS SOLV (MG/	C C C ED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NIT GEN, MONI ORGA DIS (MG	AM- A + NIC · /L
SEP 03	3.4	:	225	18	180	75		1.1	0.39		12	6	10	575	0	.60
DATE	ALUM- INUM, DIS- SOLVE (UG/L AS AL	MONY DIS D SOLV	/, AFS- /ED S	RSENIC DIS- SOLVED (UG/L AS AS)	BARIUM DIS- SOLVEI (UG/I AS BA	DI SOL (UG	S- VED /L	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS- SOLVE (UG/L	D	COPPER, DIS- SOLVED (UG/L AS CU)	IRON DIS SOLV (UG/ AS F	ED L	LEAD, DIS- SOLVED (UG/L AS PB)	LITH DI SOL (UG AS	S- VED /L
SEP 03	<1	0	<1	<1	31	160		<1	<10		4	15		<5	4 0	
DATE	MANGA NESE, DIS- SOLVE (UG/L AS MN	DIS- D SOLV	EL, M	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER DIS- SOLVE (UG/I AS AC	DI SOL	UM, S- VED /L	ZINC, DIS- SOLVED (UG/L AS ZN)	GROSS ALPHA DIS- SOLVE (UG/I AS U-NAT	D	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROS BETA DIS SOLV (PCI AS S	ED /L	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)	CYAN TOT (MG AS	AL /L
SEP 03	<	1	3	<1	<1.	. 0	32	10	20		5.2	3	.6	0.06	<0.	010

WATER-QUALITY DATA FOR WOOD COUNTY--Continued

411432083385100. Local number, WQ-351-B6 at Cygnet.
LOCATION.--Lat 41°14'32", long 83°38'51", Hydrologic Unit 04100010.

OWNER: Village of Cygnet, well No. 9.

AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled public supply water well (unused), diameter 6.5 in., depth 100 ft., cased to 25 ft.

DA	ATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	PH LAB (STAND- ARD UNITS)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
AUG 05		1130	7.07	1490	7.15	7.40	24.0	16.0	0	K12	<1	<1
D#	ATE	HARD- NESS TOTAL (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFIDE TOTAL (MG/L AS S)
AUG 05		640	220	140	62	69	3.2	516	0	420	58	19
D#	ATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	IODIDE, DIS- SOLVED (MG/L AS I)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
AUG												
05.	••	190	190	0.5	1.1	0.039	12	981	955	0.006	<0.010	0.298
DĀ	ATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
AUG 05.		0.50	0.007	20	<1	<1	280	110	<1	30	<1	19
03.		0.50	0.007	20	/1	1	200	110	/1	30	/1	19
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	DIS-	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG 05	<5	25	9	0.1	<1	<1	<1.0	33000	12	4.6	<0.010	<6.0

411003083330200. Local number, WO-352-B36 at Bloomdale.
LOCATION.--Lat 41°10'03", long 83°33'02", Hydrologic Unit 04100010.

OWNER: Village of Bloomdale, Well No. 5.
AQUIFER.--Dolomite of Silurian age.
WELL CHARACTERISTICS.--Drilled public supply water well, diameter 8.0 in., depth 185 ft., cased to 28.6 ft.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	T	BE: LA: SUR: (W: IME LE:	ND CI FACE CO ATER DU VEL) AN	CT- (ST	H L AND- (ST RD A	AND- RD	EMPER- ATURE WATER DEG C)	COL FOR FEC. 0.7 UM-1 (COL 100	M, HA AL, NE TO MF (MS./ A	RD- SS TAL G/L S	HARI NESS NONCA WH WA TOT I MG/L CACO	ARB CALCAT DIS FLD SOI AS (MC	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
SEP											178			
03	1	200 2	7.00	1920	7.40	7.20	11.5		<1	1000	3	390 230)	100
DATE	SOL' (M	IUM, S: S- D: VED SOI	IUM, BO IS- IT- LVED (M G/L A	NATE BO FLD IT G/L (M S A	AR- LIN NATE WH -FLD TO G/L FI S MG/	WAT D TAL ELD L AS	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULF TOT (MG AS	IDE DI AL SC /L (N	FATE S- LVED G/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	E, RII - DI VED SOI /L (MC	DE, IS- LVED	BROMIDE DIS- SOLVED (MG/L AS BR)
SEP														
03	8	4	4.5 129	0		109	8.2		0.2 100	0	37		1.9	0.31
SEP	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN,	DIS	703 AMM 6- D 7ED SO 7L (M	TRO- EN, ONIA IS- LVED G/L N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHO OR DI		ALUM- INUM, DIS- SOLVED (UG/L AS AL)	SOI (UC	
		11	1620	1550	<0.010	<0.1	.00 0	.660	0.90	0	.010	20		(1
	DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO MIUM DIS- SOLV (UG/ AS C	ED SO	PER, S- LVED G/L CU)	IRON, DIS- SOLVED (UG/L AS FE)	SO (U	AD, DIS- DLVED G/L PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	NES DI SOI (UC	NGA- SE, IS- LVED G/L MN)
SEP 03		<1	9	610	2	<10		2	6	<	5	57	2	
	DATE	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC DIS SOLV (UG/ AS Z	, D - SO ED (U L A	OSS PHA, IS- LVED G/L S NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	BE SO (P AS	OSS TA, IS- LVED CI/L SR/	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)		
SEP		1			10000									
03	•••	. 2	<1	<1.0	12000		18	<0.4	11		6.9	<0.01	<0.	010

		SPE- CIFIC					FORM,
		CON- DUCT-	PH (STAND-	TEMPER-	TEMPER- ATURE	OXYGEN, DIS-	IMMED.
DATE	TIME	ANCE (US/CM)	ARD UNITS)	AIR (DEG C)	WATER (DEG C)	SOLVED (MG/L)	PER 100 ML)
AUG						,	2000
05	1330	1990	7.44	23.0	12.5	0	<1
	COLI-	STREP-			ALKA-		
	FORM,	TOCOCCI	BICAR-	CAR-	LINITY	CARBON	
	FECAL,	FECAL,	BONATE	BONATE	WH WAT	DIOXIDE	
	0.7	KF AGAR	IT-FLD	IT-FLD	TOTAL	DIS-	SULFIDE
	UM-MF	(COLS.	(MG/L	(MG/L	FIELD	SOLVED	TOTAL
DATE	(COLS./	PER	AS	AS	MG/L AS	(MG/L	(MG/L
	100 ML)	100 ML)	HCO3)	CO3)	CACO3	AS CO2)	AS S)
AUG							
05	<1	<1	148	0	121	8.5	ND

INDEX 341

F	age		Page
Access to WATSTORE	18	Fecal streptococcal, definition of	19
Accuracy of records	14	Fields Brook at Ashtabula	92
Acknowledgments	III	Findlay, Blanchard River near	36
Acre-foot, definition of	19	Fitchville, Vermilion River near	62
Adenosine triphosphate (ATP), definition of	19	Fort Jennings, Auglaize River near	36
Algae, definition of	19	Fremont, Sandusky River near	55
Algal growth potential (AGP), definition of	19		
Aquifer, definition of	19	Gage height, definition of	20
Artificial substrate, definition of	24	Gaging station, definition of	20
Artesian, definition of	19	Gaging stations, in downstream order,	
Ash mass, definition of	19	for which records are published	32
Ashtabula, Fields Brook at	92	Geauga County Ground-Water Project	156
Auglaize River near Defiance	37	Grand River at Painesville (NASQAN)	90
near Fort Jennings	36	near Painesville	86
		Green algae, definition of	32
Bacteria, definition of	19	Ground Water Records	14.7
Bacteriological and selected water-quality		Data Collection and Computation,	
data of Scioto and Olentangy Rivers	121	explanation of	11
Bed load, definition of	22	Data presentation, explanation of	12
Bed load discharge, definition of	22		101
	19	Ground Water Records, network stations	202
Bed material, definition of	69	Ground-Water Records for	125
		Coal Mining Areas	164
Berea, Rocky River near	66	Southern Franklin County project	156
Biochemical oxygen demand, definition of	19	Geauga County project	178
Biomass, definition of	19	Northwest Ohio project	179
Black River, at Elyria	65	Lucas County	
Blanchard River near Findlay	36	Sandusky County	229
Blue-green algae, definition of	22	Shalersville Brine Disposal Project	176
Bottom material (See bed material)	20	Wood County	283
	. 14	Ground-Water Records in Strip Mines Project .	162
Cells/volume, definition of	20		
Cfs-day, definition of	20	Hardness, definition of	21
Chemical oxygen demand, definition of	20	Hiram Rapids, Cuyahoga River at	67
Chlorophyll, definition of	20	Honey Creek at Melmore	53
Cleveland, Cuyahoga River at West Third		near New Washington	52
Street Bridge in	79	Huron:	
Coal Mining Areas Project	125	Old Woman's Creek at U.S. 6 at	60
Color unit, definition of	20	Hydrologic bench-mark stations,	
Conneaut Creek at Conneaut	99	definition of	21
Conneaut, Conneaut Creek at	99	Hydrologic conditions for 1986 water year	1
Contents, definition of	20	Hydrologic index stations, definition of	21
Control, definition of	20	Hydrologic unit, definition of	21
Control structure, definition of	20	**************************************	
Cooperation	1	Independence, Cuyahoga River at	70
Crawford, Tymochtee Creek at	51	Instantaneous discharge, explanation of	20
Crest-stage partial record stations	100	Introduction	1
Cubic feet per second per square mile,		111010000010111111111111111111111111111	
definition of	20	Lake Erie at Reno Beach	49
Cubic foot per second, definition of	20	at Ruggles Beach	61
Cuyahoga River, at Hiram Rapids	67	Latitude-longitude system	11
	70	List of gaging stations, in downstream order,	1
at Independence (NASQAN)	68	for which records are published	VI
at Old Portage	79	List of discontinued stations	VII
at west filled street bridge, Creverand	13	List of ground water stations	
nidiana Amalaina pinan man	27	for which records are published	X
Defiance, Auglaize River near	37		
Maumee River near	38	Lucas County, ground-water records	179
Definition of terms	19	(Northwest Ohio project)	113
Diatoms, definition of	22		47
Discharge, definition of	20	Maumee River, at Waterville	47
Dissolved, definition of	20	near Defiance	38
Dissolved-solids concentration, definition of	20	near Waterville	39
Downstream order system	10	Mean concentration, definition of	23
Drainage area, definition of	20	Mean discharge, definition of	2.0
Drainage basin, definition of	20	Measuring point (MP), definition of	21
Dry mass, definition of	19	Melmore, Honey Creek at	53
		Metamorphic stage, definition of	21
Elyria, Black River at	65	Methylene blue active substance,	
Explanation of ground-water level records	17	definition of	21
of stage and water-discharge records	11	Micrograms per gram, definition of	21
of stage and water-quality records	17	Micrograms per kilogram, definition of	21
Explanation of the records	10	Micrograms per liter, definition of	21
Factors for converting inch-pound units to		Milligrams of carbon per acre or volume	
International System (SI) unitsInside back	cover	per unit time, definition of	23
Farmer, Unnamed Tributary to Lost Creek	34	Milligrams of oxygen per area or volume	125
Fecal coliform, definition of	19	per unit time	23
various as experies a community to the fitting of the second		Milligrams per liter, definition of	21
			-

	Page		Page
National Geodetic Vertical Datum of		Station identification numbers	10
1929 (NGVD)	21	Stage-discharge relation, definition of	24
National stream-quality accountng network,		Streamflow, definition of	24
(NASQAN), definition of	21	Stryker, Tiffin River at	23
Natural substrate, definition of	21	Substrate, definition of	24
New Washington, Honey Creek near	52	Summary of Hydrologic Conditions	1
Northwest Ohio Ground-Water project	178	Surface area, definition of	24
Numbering system for wells and		Surface Water Records	
miscellaneous sites	10	Data Collection and Computation,	100
		explanation of	17
Old Portage, Cuyahoga River at	68	Data Presentation, explanation of	12
Old Woman's Creek at U.S. 6 at Huron	56	Surface Water records for network stations	32
Organic mass, definition of	19	Surface-water records for	100
Organism, definition of	21	Coal mining areas	125
count/area, definition of	21	Scioto and Olentangy Rivers Project	121
count/volume, definition of	21	Southern Franklin County Project	143
Other Records available	14	Surface Water Quality Records	15
Ottawa River (tributary to Lake Erie)	22	Arrangement of records, explanation of Classification of records,	13
at Toledo University, Toledo	32		14
Painoguille Grand Biver at (NACOAN)	90	explanation of	7.4
Painesville, Grand River at (NASQAN) Grand River near	86	explanation of	15
Parameter code, definition of	22	Water temperature, explanation of	15
Partial-record station, definition of	22	Sediment, explanation of	15
Partial-record stations and miscellaneous	22	Laboratory measurements, explanation of .	16
sites	100	Data presentation, explanation of	16
Particle size, definition of	22	Surficial bed material, definition of	24
Particle size classification, definition of	22	Suspended, definition of	24
Percent composition, definition of	22	Suspended, recoverable, definition of	24
Periphyton, definition of	22	Suspended sediment, definition of	23
Pesticides, definition of	22	Suspended-sediment concentration,	
Pesticides program, definition of	22	definition of	23
Phytoplankton, definition of	22	Suspended-sediment discharge, definition of	23
Picocurie, definition of	22	Suspended-sediment load, definition of	23
Plankton, definition of	22	Suspended, total, definition of	23
Portage River, at Woodville	50		
Preface	III	Taxonomy, definition of	24
Primary productivity, definition of	23	Terms, definition of	19
Projects:		Thermograph, definition of	25
Active coal mining areas	125	Tiffin, Rock Creek at	54
Southern Franklin County	164	Tiffin River, at Stryker	33
Geauga County Ground Water	156	Time-weighted average, definition	25
Ground water in strip mines	162	Tinkers Creek, at Bedford	69
Northwest Ohio	178	Toledo,	
Scioto and Olentangy Rivers	121	Ottawa River at Toledo University	32
Shalersville Brine Disposal	176	Tons per acre foot, definition of	25
Publications on Techniques of	25	Tons per day, definition of	25
water-resources investigations	26	Total, definition of	25
Procede of Confess Water Conlite	1.4	Total coliform bacteria, definition of	19
Records of Surface-Water Quality	14	Total discharge, definition of	25
Records of Ground-Water Quality	17	Total in bottom material, definition of	25 25
Radiochemical program, definition of	23	Total load, definition of	21
Records of stage and water discharge Recoverable from bottom material,	11	Total organism count, definition of Total recoverable, definition of	25
definition of	23	Total sediment discharge, definition of	23
Reno Beach, Lake Erie at	49	Tymochtee Creek at Crawford	51
Return period, definition of	23	Tymochice Creek at Crawfold	31
Rock Creek at Tiffin	54	Unnamed Tributary to Lost Creek near Farmer	34
Rocky River near Berea	66	omand illudeary to bost oreas mear rainers.	34
Ruggles Beach, Lake Erie at	61	Vermilion River near Fitchville	62
Runoff in inches, definition of	23	VOLUME TO THE PROPERTY OF THE	0.2
	2.5	Water temperature	15
Sandusky County, ground-water records		Water year, definition of	25
(Northwest Ohio project)	229	Waterville, Maumee River at	47
Sandusky River near Fremont	55	Maumee River near	39
Scioto and Olentangy Rivers Project	121	Weighted average, definition of	25
Sediment	15	Wet mass, definition of	20
Sediment, definition of	23	Wood County, Ground Water records	
Seven day/10-year, definition of	23	(Northwest Ohio project)	283
Shalersville Brine Disposal Project	126	Woodville, Portage River at	56
Sodium adsorption ratio (SAR), definition of.	24	WDR, definition of	25
Solute, definition of	24	WRD, definition of	25
Southern Franklin County Project	164	WSP, definition of	25
Special networks and program	10		
Specific conductance, definition of	2.4	Zooplankton, definition of	22

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x101	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km ²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft³)	2.832x101	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
	2.447x10 ⁻³	cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x101	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 975 West Third Avenue Columbus, OH 43212

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE