

Water Resources Data Florida Water Year 1988

Volume 1B. Northeast Florida Ground Water

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT FL-88-1B Prepared in cooperation with the State of Florida and with other agencies

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm ³)
	3.785x10 ⁻³	cubic meters (m ³) cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x101	cubic decimeters per second (dm³/s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm³/s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x101	cubic decimeters per second (dm ³ /s)
3	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

Water Resources Data Florida Water Year 1988

Volume 1B. Northeast Florida Ground Water

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT FL-88-1B Prepared in cooperation with the State of Florida and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

Prepared in cooperation with the State of Florida and with other agencies as listed under cooperation

For additional information write to Subdistrict Chief, Water Resources Division U.S. Geological Survey 224 West Center Street, Suite 1006 Altamonte Springs, Florida 32714

PREFACE

This volume of the annual hydrologic data report of Florida is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Florida are contained in four volumes:

Volume 1. Northeast Florida Volume 2. South Florida Volume 3. Southwest Florida Volume 4. Northwest Florida

ACKNOWLEDGMENT

The water-resources data for northeast Florida were processed and prepared for publication under the supervision of Larry D. Fayard, Chief, Hydrologic Surveillance and Data Analysis Section.

Orlando Subdistrict Office

C.J. Cash	E.J. Duffy	R.E. Jones	J.L. Oberg
R.A. Craig	H.G. George	D.E. Laughlin	M.J. Orr
L.L. Braley	W.R. Hopkins	A.P. Nazarian	E.P. Simonds
D B Dale	The second secon		

Jacksonville Field Headquarters

M.S.	Bass	R.A.	Broxton	S.M.	Dickerson	M.A.	Reddy
P.L.	Bradt	J.E.	Coffin	M.A.	Holmes		Savarino

This report was prepared in cooperation with the State of Florida and with other agencies under the general supervision of I.H. Kantrowitz, District Chief, Florida.

REPORT DOCUMENTATION L REPORT NO. USGS/WRD/HD-89/213	2	3. Recipient's Accession No.	
Water Resources Data - Florida, Water Year 198 Volume 1B: Northeast Florida - Ground Water	5. Report Date December 1988 6.		
7. Author(s)	8. Performing Organization Rept. No. USGS-WDR-FL-88-1B		
U.S. Geological Survey Water Resources Division 224 West Center Street, Suite 1006 Altamonte Springs, FL 32714	10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G)		
U.S. Geological Survey Water Resources Division 227 North Bronough Street, Suite 3015 Tallahassee, FL 32301		13. Type of Report & Period Covered Annual - Oct. 1, 1987 to Sept. 30, 1988	

15. Supplementary Notes

Prepared in cooperation with the State of Florida and other agencies.

15. Abstract (Limit: 200 words)

Water-resources data for the 1988 water year in Florida consist of continuous or daily discharge for 338 streams, periodic discharge for 34 streams, miscellaneous discharge for 28 streams, continuous or daily stage for 152 streams, periodic stage for 29 streams, peak discharge for 71 streams, continuous daily tide stage 8, and peak stage for 84 streams; continuous or daily elevations for 73 lakes, periodic elevations for 72 lakes; continuous ground-water levels for 490 wells, periodic ground-water levels for 1,620 wells, and miscellaneous water-level measurements for 2,678 wells; quality-of-water data for 158 surface-water sites and 884 wells.

The data for northeast Florida include continuous or daily discharge for 132 streams, periodic discharge for 15 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 45 streams, periodic stage for 27 streams, peak discharge for 26 streams, and peak stage for 27 streams; continuous or daily elevations for 39 lakes, periodic elevations for 53 lakes; continuous ground-water levels for 81 wells, periodic ground-water levels for 150 wells, and miscellaneous water-level measurements for 970 wells; quality-of-water data for 59 surface-water sites and 100 wells.

These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, state and federal agencies in Florida.

17. Document Analysis. a. Descriptors

*Florida, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Elevations, Water wells.

b. Identifiers/Open-Ended Terms

C COSATI Field/Group

No restrictions on distribution. This report may be purchased from: National Technical Information Center, Springfield, VA 22161

19.	Security Class (This Report) UNCLASSIFIED	21. No. of Pages 406	
20.	s-cunc fass Triede.	22. Price	

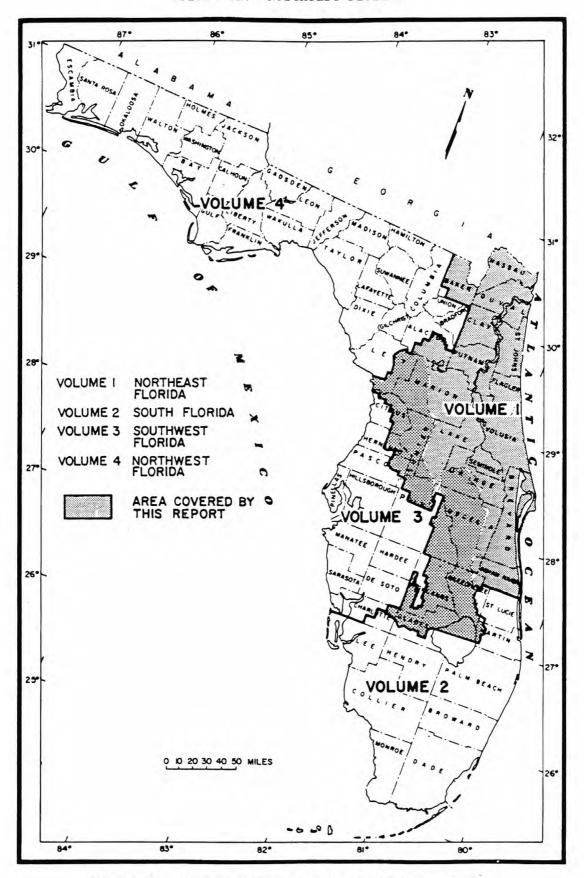


Figure 1. Geographic area covered by this report.

	•	

CONTENTS

	Page
Preface	iii
Introduction	1
Cooperation	1
Summary of hydrologic conditions	2
Special networks and programs	10
Explanation of the records	11
Station identification numbers	11
Downstream order system	11
Latitude-longitude system	11
Records of stage and water discharge	12
Data collection and computation	12
Data presentation	12
Identifying estimated daily discharge	14
Accuracy of the records	14
Other records available	14
Records of surface-water quality	14
Classification of records.	14
	14
Arrangement of records	15
Onsite measurements and sample collection	15
Water temperature	15
Sediment	
Laboratory measurements	15
Data presentation	15
Remark codes	16
Records of ground-water levels	16
Data collection and computation	16
Data presentation	17
Records of ground-water quality	17
Data collection and computation	17
Data presentation	17
Access to WATSTORE data	18
Definition of terms	19
Publications on techniques of water-resources investigations	24
Selected references	26
Well descriptions and ground-water data	27
Alachua County	28
Miscellaneous water level measurements	31
Baker County	32
Miscellaneous water level measurements	37
Brevard County	38
Miscellaneous water level measurements	42
Citrus County	44
Miscellaneous water level measurements	51
Clay County	52
Miscellaneous water level measurements	61
Duval County	62
Miscellaneous water level measurements	115
Miscellaneous water-quality records	118
vii	

CONTENTS--Continued

		Page
	descriptions and ground-water dataContinued	
	Flagler County	142
	Miscellaneous water level measurements	145
	Glades County	146
	Miscellaneous water level measurements	149
	Hernando County	150
	Miscellaneous water level measurements	153
	Highlands County	154
	Miscellaneous water level measurements	159
	Indian River County	160
	Miscellaneous water level measurements	164
	Lake County	166
	Miscellaneous water level measurements.	174
		177
	Miscellaneous water-quality records	
	Levy County	
	Miscellaneous water level measurements	189
	Marion County	190
	Miscellaneous water level measurements	204
	Miscellaneous water-quality records	
	Nassau County	. 216
	Miscellaneous water level measurements	. 225
	Miscellaneous water-quality records	. 226
	Okeechobee County	. 230
	Miscellaneous water level measurements	. 235
	Orange County.	. 236
	Miscellaneous water level measurements.	. 255
	Miscellaneous water-quality records.	. 258
	Osceola County	. 290
	Miscellaneous water level measurements	. 296
	Pasco County	. 298
	Miscellaneous water level measurements	
	Polk County	. 304
	Miscellaneous water level measurements.	
	Miscellaneous water-quality records	
	Putnam County.	
	Miscellaneous water level measurements.	
	St. Johns County	
	Miscellaneous water level measurements.	
	Miscellaneous water-quality records	
	Seminole County	
	Miscellaneous water level measurements	
	Sumter County	
	Miscellaneous water level measurements	
	Volusia County	
	Miscellaneous water level measurements	
Index	to introductory text	. 395

ILLUSTRATIONS

		Page		
Figure 1.	Geographic area covered by this report	v		
2.				
3-14.	Water-year and long-term hydrographs for well:			
	3. 265529081185201 (GL-267) near Palmdale in Glades County	4		
	4. 272932080482201 (OK-3) near Fort Drum in Okeechobee County	4		
	5. 281008081441801 (Lake Alfred Deep) near Lake Alfred in Polk County	5		
	6. 282127082022501 (Cumpressco Ranch) near Tarrytown in Sumter County	5		
	7. 283249081053201 (Bithlo-1) at Bithlo in Orange County	6		
	8. 283253081283401 (OR-47) at Orlo Vista in Orange County	6		
	9. 285102082204001 (Dot-41 observation) at Inverness in Citrus County	7		
	10. 291115081592501 (Sharpes Ferry) near Ocala in Marion County	7		
	11. 291344081155701 (Union Camp Deep) near Barberville in Volusia County	8		
	12. 293729081221201 (Florida Department of Transportation) near Hastings in St. Johns County	8		
	13. 294807082020903 (USGS, local number 948-202-8) at Keystone Heights in Clay County	9		
	14. 302304081383202 (City of Jacksonville Panama Park) in Duval County	9		
15.	NASQAN stations in the State of Florida	10		
16.	System for numbering wells and miscellaneous sites (latitude and longitude)	11		
17-41.	Maps showing location of wells in:			
	17. Alachua County	29		
	18. Baker County	33		
	19. Brevard County	39		
	20. Citrus County	45		
	21. Clay County	53		
	22. Duval County	63		
	23. Flagler County	143		
	24. Glades County	147		
	25. Hernando County	151		
	26. Highlands County	155		
	27. Indian River County	161		
	28. Lake County	167		
	29. Levy County	181		
	30. Marion County	191		
	31. Nassau County	217		
	32. Okeechobee County	231		
	33. Orange County	237		
	34. Osceola County	291		
	35. Pasco County	299		
	36. Polk County	305		
	37. Putnam County	327		
	38. St. Johns County	333		
	39. Seminole County	357		
	40. Sumter County	363		
	41. Volusia County	379		

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State, County, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Florida each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State.

The data for northeast Florida include continuous or daily discharge for 132 streams, periodic discharge for 15 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 45 streams, periodic stage for 27 streams, peak discharge for 26 streams, and peak stage for 27 streams; continuous or daily elevations for 39 lakes, periodic elevations for 53 lakes; continuous ground-water levels for 81 wells, periodic ground-water levels for 150 wells, and miscellaneous water-level measurements for 970 wells; quality-of-water data for 59 surface-water sites and 100 wells.

This series of annual reports for Florida began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Florida were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Distribution Branch, Text Products Section, U.S. Geological Survey, Books and Open-File Reports, Federal Center, Building 41, Box 25425, Denver, CO 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report FL-88-1B." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the Office Chief at the address given on the back of the title page or by telephone (407) 648-6191.

COOPERATION

The U.S. Geological Survey and agencies of the State of Florida have had cooperative agreements for the collection of water-resource records since 1930. Organizations that assisted in collecting the data in this report through cooperative agreement with the Survey are:

U.S. Army Corps of Engineers, Savannah District Florida Department of Environmental Regulation Florida Department of Natural Resources St. Johns River Water Management District South Florida Water Management District Southwest Florida Water Management District County of Lake County of Folk County of St. Johns County of Volusia
City of Cocoa
City of Edgewater
City of Jacksonville
City of Jacksonville Beach
City of Lake Mary
City of Sanford
Jacksonville Electric Authority
Reedy Creek Improvement District

Assistance with funds or services was given by the U.S. Army Corps of Engineers, Jacksonville District, in collecting records at hydrologic stations throughout the Subdistrict.

Organizations that provided data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Rainfall during the water year was generally above normal throughout the report area in November, January, March, and September. Below normal rainfall was evident during April, May, and June. Ground-water levels reacted accordingly. Total rainfall for the year was above normal in most of the area.

Rainfall in the St. Johns River Basin, including the Oklawaha River, ranged from 6 inches above normal at Jacksonville to 9 inches above normal at Orlando, for the year. Ground-water levels lagged below recorded averages.

In the Kissimmee River Basin and parts of the Withlacoochee River Basin, ground-water levels were near or above average for periods of record. Representative rainfall totals for the year were 3 inches above normal near Dade City and 4 inches above normal at the Archbold Biologic Station.

Figures 3-14 present hydrographs for 12 wells representing selected areas of the above basins. The upper hydrograph gives daily maximum values of water-level elevations available for the water year, and the lower is a plot of the annual average elevations for the period of record.

SUMMARY OF HYDROLOGIC CONDITIONS-Continued

Figure 2. -- Location of wells for long-term hydrographs (figs. 3-14).

4

SUMMARY OF HYDROLOGIC CONDITIONS-Continued

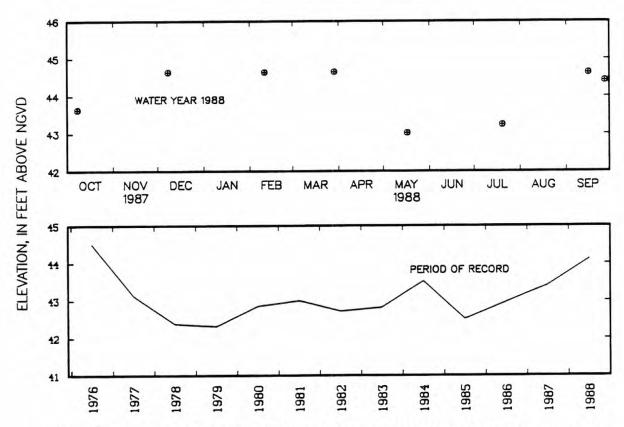


Figure 3.--Water-year and long-term hydrographs for well 265529081185201 (GL-267) near Falmdale in Glades County. Map, No. 1.



Figure 4.--Water-year and long-term hydrographs for well 272932080482201 (OK-3) near Fort Drum in Okeechobee County. Map. No. 2

SUMMARY OF HYDROLOGIC CONDITIONS--Continued

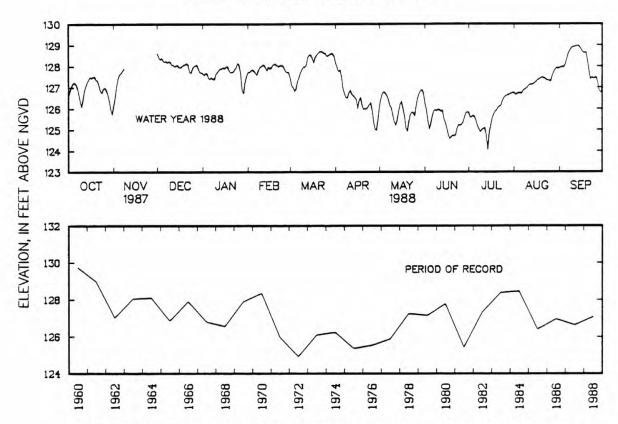


Figure 5.--Water-year and long-term hydrographs for well 281008081441801 (Lake Alfred Deep) near Lake Alfred in Polk County. Map, No. 3.

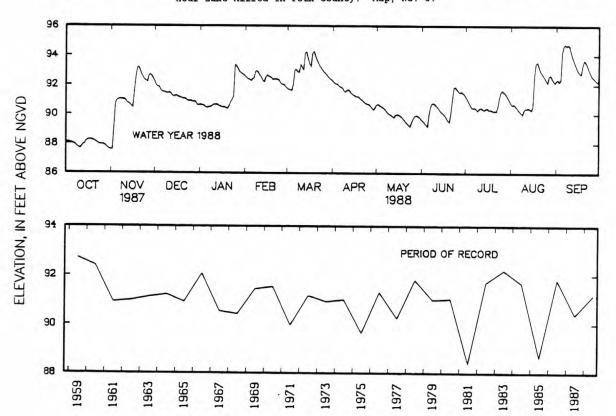


Figure 6.--Water-year and long-term hydrographs for well 282127082022501 (Cumpressco Ranch) near Tarrytown in Sumter County. Map, No. 4.

SUPPARY OF HYDROLOGIC CONDITIONS--Continued

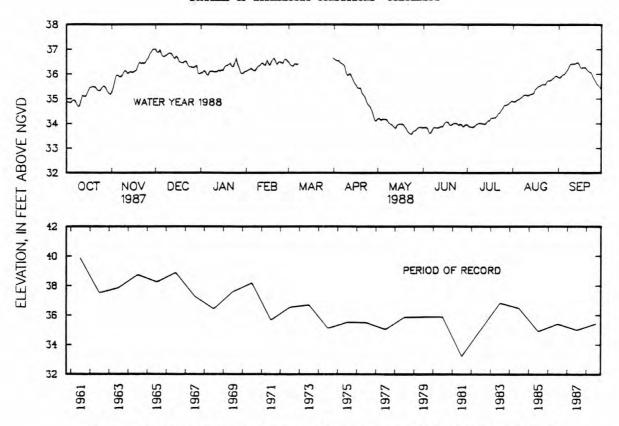


Figure 7.--Water-year and long-term hydrographs for well 283249081053201 (Bithlo-1) at Bithlo in Orange County. Map, No. 5.

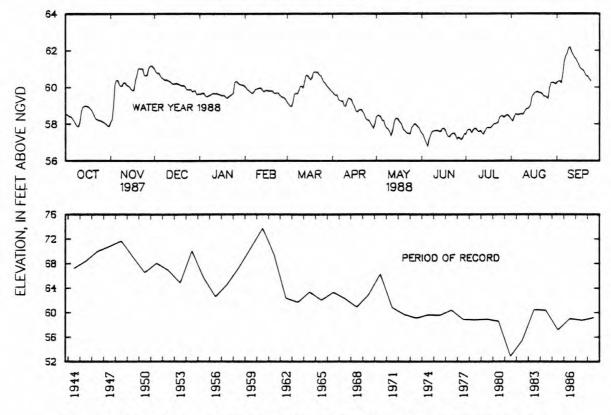


Figure 8.--Water-year and long-term hydrographs Well 283253081283401 (OR-47) at Orlo Vista in Orange County. Map, No. 6.

SUMMARY OF HYDROLOGIC CONDITIONS--Continued

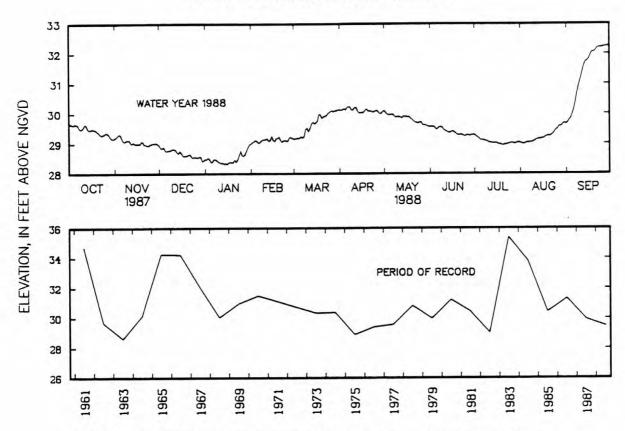


Figure 9.--Water-year and long-term hydrographs for well 285102082204001 (DOT-41 observation) at Inverness in Citrus County. Map, No. 7.

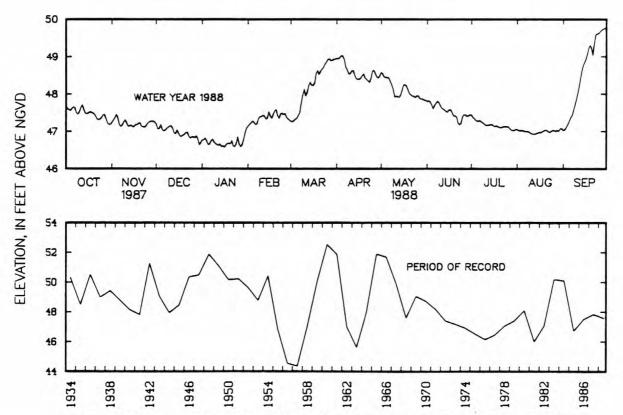


Figure 10.--Water-year and long-term hydrographs for well 291115081592501 (Sharpes Ferry) near Ocala in Marion County. Map, No. 8.

SUMMARY OF HYDROLOGIC CONDITIONS--Continued

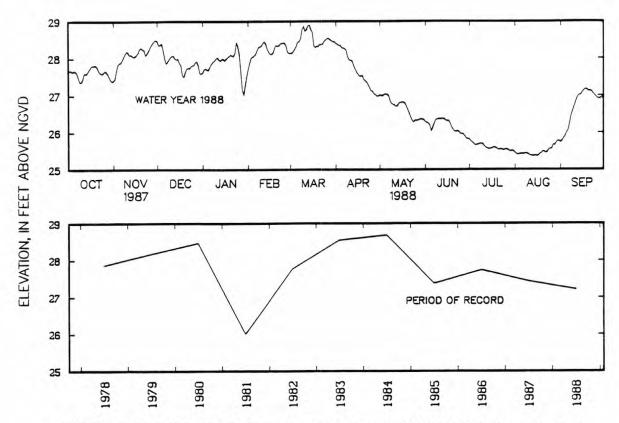


Figure 11.--Water-year and long-term hydrographs for well 291344081155701 (Union Camp Deep) near Barberville in Volusia County. Map, No. 9.

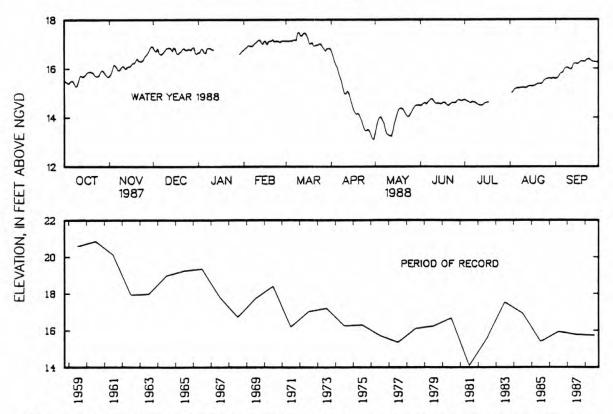


Figure 12.--Water-year and long-term hydrographs for well 293729081221201 (Florida Department of Transportation) near Hastings in St. Johns County. Map, No. 10.

SURMARY OF HYDROLOGIC CONDITIONS--Continued

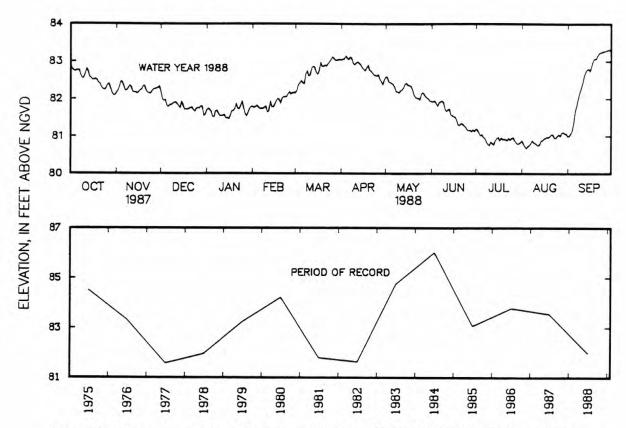


Figure 13.--Water-year and long-term hydrographs for well 294807082020903 (USGS local number 948-202-8) at Keystone Heights in Clay County. Map, No. 11.

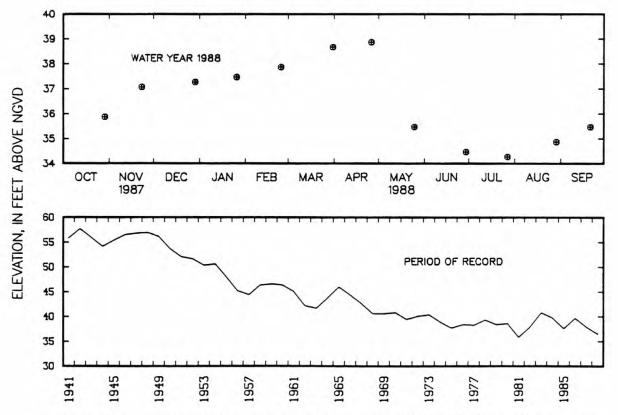


Figure 14.--Water-year and long-term hydrographs for well 302304081383202 (City of Jacksonville Panama Park) in Duval County. Map, No. 12.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>National Stream Quality Accounting Network</u> (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council.

The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Sation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. The NASQAN stations in Florida are shown in figure 14

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Figure 15. NASQAN stations in the State of Florida.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1988 water year that began October 1, 1987, and ended September 30, 1988. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and for surface-water stations where only miscellaneous observations are made.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 02228500, which appears just to the left of the station name, includes the 2-digit part number "02" plus the 6- to 12-digit downstream-order number "228500." The part number designates the major river basin; for example, part "02" is the South Atlantic Slope and eastern Gulf of Mexico basins.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

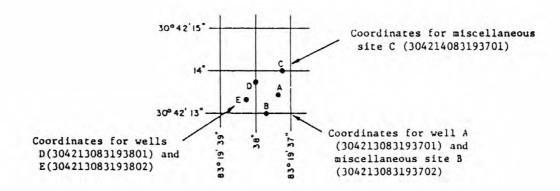


Figure 16. System for numbering wells and miscellaneous sites.

(latitude and longitude)

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake elevation, similarly, are those for which stage may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a stage-recording device or daily or weekly observations, but need not be. Because daily mean discharges and lake elevations commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report.

Location of all complete-record and partial-record stations for which data are given in this report are shown in figures preceding each sub-basin.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily mean discharges.

Records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location, period of record, average discharge, historical extremes, record accuracy, and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate base maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given.

DRAINAGE AREA. -- Drainage areas are delineated and measured using the most accurate topographic maps available, and are updated as necessary.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS. --Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see DEFINITION OF TERMS), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE. --The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown

are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than $1 \text{ ft}^3/\text{s}$; to the nearest tenth between 1.0 and 10 $\text{ ft}^3/\text{s}$; to whole numbers between 10 and 1,000 $\text{ ft}^3/\text{s}$; and to 3 significant figures for more than 1,000 $\text{ ft}^3/\text{s}$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the Orlando Subdistrict Office of the Florida District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record</u> <u>station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where water-quality data are collected systematically over a period of years, usually less frequently than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records," as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station or a periodic observation station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or

where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represent the quality of the water in its natural state. To assure this, certain measurements, such as water temperature, pH, alkalinity, specific conductance, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the natural water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4, All of these references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For stations equipped with water-quality monitors, the records consist of daily mean values for each constituent measured and are based upon unit values (hourly or 15-minute recordings). These unit values may be obtained from the Orlando Subdistrict Office, 224 West Center Street, Suite 1006, Altamonte Springs, FL 32714.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and

extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge"; same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.—This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION. --Information on instrumentation is given only if a recording or sampling device, which may be time- or event-activated, is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to ensure the most recent updates.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

Printed output	Remark
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

Records of Ground-Water Levels

Ground-water level data from a statewide network of observation wells are published herein. The records include data from wells equipped with water-level recorders and data from wells where water levels are measured periodically.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table.

Water-level records are obtained from direct measurements with a steel tape, pressure gage, manometer, or from the graph or punched tape of a water-level recorder. The measurements in this report are given in feet above National Geodetic Vertical Datum of 1929 or in some tables as feet below land-surface datum. Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

Data Presentation

Each well record consists of two parts, the station description and the data table of water levels observed during the water year. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER. -- This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on hourly, daily, weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels of the period of record, with reference to National Geodetic Vertical Datum of 1929, and the dates of their occurrence.

A table of water levels follows the station description for each well. For wells equipped with recorders, only abbreviated tables are published; generally, daily maximums are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that, for most sampling sites, they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes slowly; therefore, for most general purposes, one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality in the report area. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed at the end of the introductory text. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published immediately following the ground-water-level records of each county. Data for quality of ground water are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. The Remark Codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The National <u>WAT</u>er Data <u>STO</u>rage and <u>RE</u>trieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the offices whose addresses are given on the back of the title page.

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, VA 22092

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m 3), and periphyton and benthic organisms in grams per square mile (g/m 2).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day (cubic feet per second per day) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

<u>CFSM</u> (cubic foot per second per square mile) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloro-platinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

 $\underline{\text{Control structure}}$ as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

<u>Cubic foot per second</u> (ft³/s or cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Cubic foot per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

 $\underline{\text{Discharge}}$ is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage</u> area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO3).

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

<u>Land-surface datum</u> (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

 $\frac{\text{Measuring point}}{\text{well is measured}} \text{ (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.}$

<u>Micrograms per gram</u> ($\mu g/g$) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Organism is any living entity.

 $\frac{\text{Organism count/area}}{\text{number per area habitat, usually square meter } (\text{m}^2), \text{ acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.}$

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

 $\underline{\text{Total organism count}}$ is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Partical-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024	- 0.004	Sedimentation
Silt	.004	062	Sedimentation
Sand	.062	- 2.0	Sedimentation or sieve
Gravel	2.0	- 64 0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (PC, pCi) is one millionth of the amount of radioactivity represented by a micro-curie, which is the quantity of radiation represented by one millionth of a gram of radium-226. A picocurie of radium results in 2.22 disintegrations per minute.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

 $\underline{\text{Bed load}}$ is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and $\underline{\text{very close}}$ to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

 $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft^3/s) x 0.0027.

Suspended-sediment load is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Total-sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

 $\underline{\text{Suspended}}$ (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45 μ m filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μ m membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 μ m membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia Limbata, is the following:

 Kingdom.
 Animal

 Phylum.
 Arthropoda

 Class.
 Insecta

 Order.
 Ephemeroptera

 Family.
 Ephemeridae

 Genus.
 Hexagenia

 Species.
 Hexagenia

 Limbata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative watersuspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in
dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved
by the digestion treatment, and thus the determination represents something less than the "total" amount (that
is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To
achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories
performing such analyses because different digestion procedures are likely to produce different analytical
results

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1988, is called the "1988 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. WATER TEMPERATURE-INFLUENTIAL FACTORS, FIELD MEASUREMENT, AND DATA PRESENTATION, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. GUIDELINES FOR COLLECTION AND FIELD ANALYSIS OF GROUND-WATER SAMPLES FOR SELECTED UNSTABLE CONSTITUENTS, W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. APPLICATION OF SURFACE GEOPHYSICS TO GROUND-WATER INVESTIGATIONS, by A A.R. Zohdy, G.P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. APPLICATION OF BOREHOLE GEOPHYSICS TO WATER-RESOURCES INVESTIGATIONS, by W.S. Keys and L.M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-A1. GENERAL FIELD AND OFFICE PROCEDURES FOR INDIRECT DISCHARGE MEASUREMENTS, by M.A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. MEASUREMENT OF PEAK DISCHARGE BY THE SLOPE-AREA METHOD, by Tate Dalrymple and M.A. Benson, USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. MEASUREMENT OF PEAK DISCHARGE AT CULVERTS BY INDIRECT METHODS, by G.L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. MEASUREMENT OF PEAK DISCHARGE AT WIDTH CONTRACTIONS BY INDIRECT METHODS, by H.F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. MEASUREMENT OF PEAK DISCHARGE AT DAMS BY INDIRECT METHODS, by Harry Hulsing: USGS-TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. GENERAL PROCEDURE FOR GAGING STREAMS, by R.W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. STAGE MEASUREMENTS AT GAGING STATIONS, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. DISCHARGE MEASUREMENTS AT GAGING STATIONS, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. MEASUREMENT OF TIME OF TRAVEL AND DISPERSION IN STREAMS BY DYE TRACING, by E.F. Hubbard, F.A. Kilpatrick, L.A. Martens, and J.F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. DISCHARGE RATINGS AT GAGING STATIONS, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11 MEASUREMENT OF DISCHARGE BY MOVING-BOAT METHOD, by G.F. Smoot and C.E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A13 COMPUTATION OF CONTINUOUS RECORDS OF STREAMFLOW, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A13, 1983. 53 pages.
- 3-A14 USE OF FLUMES IN MEASURING DISCHARGE, by F.A. Kilpatrick and V.R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15 COMPUTATION OF WATER-SURFACE PROFILES IN OPEN CHANNELS, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. AQUIFER-TEST DESIGN, OBSERVATION, AND DATA ANALYSIS, by R.W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. INTRODUCTION TO GROUND-WATER HYDRAULICS, A PROGRAMED TEXT FOR SELF-INSTRUCTION, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. TYPE CURVES FOR SELECTED PROBLEMS OF FLOW TO WELLS IN CONFINED AQUIFERS, by J.E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-C1. FLUVIAL SEDIMENT SEDIMENT CONCEPTS, by H.P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. FIELD METHODS FOR MEASUREMENT OF FLUVIAL SEDIMENT, by H.P. Guy and V.W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. COMPUTATION OF FLUVIAL-SEDIMENT DISCHARGE, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS -- Continued

- 4-A1. SOME STATISTICAL TOOLS IN HYDROLOGY, by H.C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. FREQUENCY CURVES, by H.C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. LOW-FLOW INVESTIGATIONS, by H.C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. STORAGE ANALYSES FOR WATER SUPPLY, by H.C. Riggs and C.H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. REGIONAL ANALYSES OF STREAMFLOW CHARACTERISTICS, by H.C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. COMPUTATION OF RATE AND VOLUME OF STREAM DEPLETION BY WELLS, by C.T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. METHODS FOR DETERMINATION OF INORGANIC SUBSTANCES IN WATER AND FLUVIAL SEDIMENTS, by M.W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter A1. 1979. 626 pages.
- 5-A2. DETERMINATION OF MINOR ELEMENTS IN WATER BY EMISSION SPECTROSCOPY, by P.R. Barnett and E.C. Mallor, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. METHODS FOR ANALYSIS OF ORGANIC SUBSTANCES IN WATER, by D.F. Goerlitz and Eugene Brown: USGS--TWRI 5, Chapter A3. 1972. 40 pages.
- 5-A4. METHODS FOR COLLECTION AND ANALYSIS OF AQUATIC BIOLOGICAL AND MICROBIOLOGICAL SAMPLES, edited by P.E. Greeson, T.A. Ehlke, G.A. Irwin, B.W. Lium, and K.V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. METHODS FOR DETERMINATION OF RADIOACTIVE SUBSTANCES IN WATER AND FLUVIAL SEDIMENTS, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. QUALITY ASSURANCE PRACTICES FOR THE CHEMICAL AND BIOLOGICAL ANALYSES OF WATER AND FLUVIAL SEDIMENTS, by L.C. Friedman and D.E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. LABORATORY THEORY AND METHODS FOR SEDIMENT ANALYSIS, by H.P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. FINITE DIFFERENCES MODEL FOR AQUIFER SIMULATION IN TWO DIMENSIONS WITH RESULTS OF NUMERICAL EXPERIMENTS, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. COMPUTER MODEL OF TWO-DIMENSIONAL SOLUTE TRANSPORT AND DISPERSION IN GROUND WATER, by L.F. Konikow and J.D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A MODEL FOR SIMULATION OF FLOW IN SINGULAR AND INTERCONNECTED CHANNELS, by R.W. Schaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. METHODS OF MEASURING WATER LEVELS IN DEEP WELLS, by M.S. Garber and F.C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. INSTALLATION AND SERVICE MANUAL FOR U.S. GEOLOGICAL SURVEY MANOMETERS, by J.D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. CALIBRATION AND MAINTENANCE OF VERTICAL-AXIS TYPE CURRENT METERS, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages.

SELECTED REFERENCES

- American Public Health Association, and others 1965, Standard methods for the examination of water and wastewater, 12th edition: American Public Health Association, New York, 769 p.
- California State Water Quality Control Board, 1963, Water quality criteria; Pub. 3-A, 226 p.
- Conover, C.S., and Leach, S.D., 1975, River basin and hydrologic unit map of Florida: Florida Bureau of Geology Map Series 72.
- Ellis, M.M., Westfall, B.A., and Ellis, M.D., 1946, Determination of water quality, U.S. Fish and Wildlife Reserve Report 9, 122 p.
- Florida Department of Environmental Regulation, 1983, Water quality standards: Chapter 17-3 in Florida Administrative Code.
- ----1984, Public drinking water systems: Chapter 17-22 in Florida Administrative Code.
- Hem, J.D., 1970, Study and interpretations of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 1473, second edition, 363 p.
- Kirkor, Teodor, 1951, Protecting public waters from pollution in the USSR: Sewage Works Journal, v. 23, p. 938.
- Langbein, W.B., and Iseri, K.T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Maier, F.J., 1950, Fluoridation of public water supplies: Journal of the American Water Works Association, v. 42, pt. 1, p. 1120-1132.
- Maxcy, K.F., 1950, Report on the relation of nitrite concentrations in well waters to the occurrence of methemoglobinemia: National Research Council, Sanitary Engineering and Environment Bulletin, Appendix D, 271 p.
- Paynter, O.E., 1960, The chronic toxicity of dodecylbenzene sodium sulfonate: U.S. Public Health Conference on Physiological Aspects of Water Quality Proc., Washington, D.C., Sept. 8-9, 1960, 175-179 p.
- Rose, Arthur and Elizabeth, 1966, The condensed chemical dictionary: Reinhold Publishing Corporation, New York, 7th ed., 285 p.
- Swenson, H.A., and Baldwin, H.L., 1965, A primer on water quality: Washington, U.S. Government Printing Office, 27 p.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking water regulations: Federal Register, v. 40, no. 51, March 14, p. 11990-11998.
- ----1976 (1977), Quality criteria for water: U.S. Government Printing Office, 256 p.
- ----1977, National secondary drinking water regulations: Federal Register, v. 42, no. 62, March 31, 1977, p. 17143-17146.
- U.S. Public Health Service, 1962, Drinking water standards: U.S. Department of Health, Education, and Welfare, Public Health Service: Pub. no. 956.
- Wayman, C.H., Robertson, J.B., and Page, H.G., 1962, Foaming characteristics of synthetic detergent solutions: U.S. Geological Survey Professional Paper 450D, art. 178, D198 p.

WELL DESCRIPTIONS AND GROUND-WATER DATA

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 17 ALACHUA COUNTY

Index	Site	Page
number	number	number
1	294207082163201	30

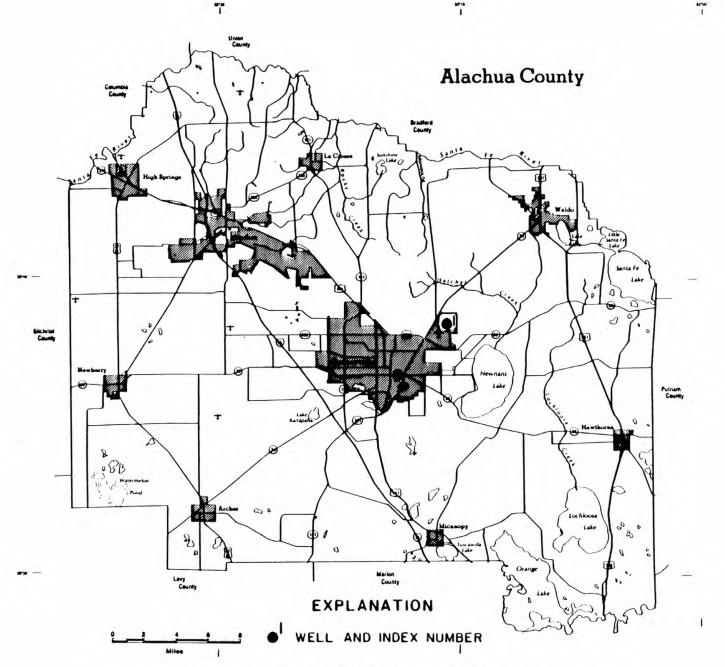


Figure 17.--Location of wells in Alachua County.

ALACHUA COUNTY

WELL NUMBER. -- 294207082163201. Sperry Rand Well at Gainesville, FL.

LOCATION.--Lat 29°42'07", long 82°16'32", in NW\nE\nE\sec. 23, T.9 S., R.20 E., Hydrologic Unit 03080102, on north side of Gainesville Airport property, east of State Highway 24, and about 2 mi north of State Highway 232 in Gainesville. Owner: City of Gainesville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, diameter 10 in., depth 447 ft, cased to 175 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by observer.

DATUM.--Land-surface datum is 153.20 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 1.25 in. pipe, 0.16 ft above land-surface datum.

PERIOD OF RECORD.--June 1957 to December 1958, January 1961 to September 1981 (bimonthly); October 1981 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 66.71 ft NGVD, Sept. 2, 1965; lowest measured, 49.48 ft NGVD, May 16, 1985.

OCT MAY 08 1230 51.56 05 1135 5	EV- ION OVE GVD EET)
08 1230 51.56 05 1135 5	
	2.74
31 0815 50.36 18 1235 5	1.39
	0.98
02 0945 51.81 JUN	
30 1000 53.24 23 0915 5	0.58
JAN JUL	
	1.36
FEB AUG	
	0.44
	0.51
01 0800 53.77 SEP	
	1.20
	1.47
01 1530 52.41 29 1400 5	2.56

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

ALACHUA COUNTY

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
292909082095101	05-17-88 09-13-88	0820 0815	55.38 56.43	293723082120102	05-18-88 09-14-88	0710 0710	76.34 78.95
292951082174001	05-17-88 09-13-88	0905 0855	56.33 55.18	293728082282401	05-18-88 09-14-88	0935 0855	47.73 47.98
293148082251201	05-17-88 09-13-88	0935 0941	52.74 58.08	293737082212501	05-18-88 09-14-88	0845 0810	64.50 68.14
293203082200601	05-17-88 09-13-88	0915 0920	57.77 56.65	293857082203901	05-19-88 09-15-88	0845 0750	50.72 51.15
293252082292301	05-17-88	1100	48.69	294108082293101	05-18-88 09-14-88	0950 0915	46.87 46.66
293253082055701	05-17-88 09-13-88	0750 0755	71.04 71.86	294121082231801	05-18-88 09-14-88	1010 0940	46.56 44.73
293301082153501	05-17-88 09-13-88	0845 0845	58.66 60.56	294209082173101	05-19-88 09-15-88	1110 0855	28.20 2.68
293329082243801	05-17-88 09-13-88	1030 1005	49.43 36.54	294209082180301	05-19-88	1045	6.05
293542082253801	05-18-88 09-14-88	0915 0845	48.68 51.39	294209082181801	09-15-88	0950	18.76
293548082044101	05-17-88 09-13-88	0725 0615	78.69 79.96	294228082181801	05-19-88 09-15-88	1000 0935	-12.72 23.13
293556082043401	05-17-88 09-13-88	0705 0650	77.27 78.54	294259082083401	05-17-88 09-13-88	1425 1315	76.40 77.39
293556082043402	05-17-88 09-13-88	0712 0657	122.37 124.45	294415082170701	05-18-88 09-14-88	1200 1045	57.54 57.30
293620082362001	05-17-88 09-13-88	1140 1047	46.12 45.92	294501082131001	05-18-88 09-14-88	1250 1125	70.57 70.23
293631082180501	05-18-88 09-14-88	0810 0745	53.44 54.49	294530082232001	05-18-88 09-14-88	1035 1015	44.56 43.26
293634082144901	05-18-88 09-15-88	0730 0725	62.55 65.61	294839082230701	05-17-88 09-13-88	1255 1155	46.95 45.67
293644082244201	05-18-88 09-14-88	0900 0830	48.11 48.53	294923082174501	05-17-88 09-13-88	1335 1225	60.53 58.42
293645082202701	05-18-88 09-14-88	0825 0800	55.90 58.66	294928082355301	05-17-88 09-13-88	1225 1120	35.24 39.20

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 18 BAKER COUNTY

Index number	Site number	Page number
	4 4	
1	301535082162001	34
2	302610082143001	35
3	302620082173501	36

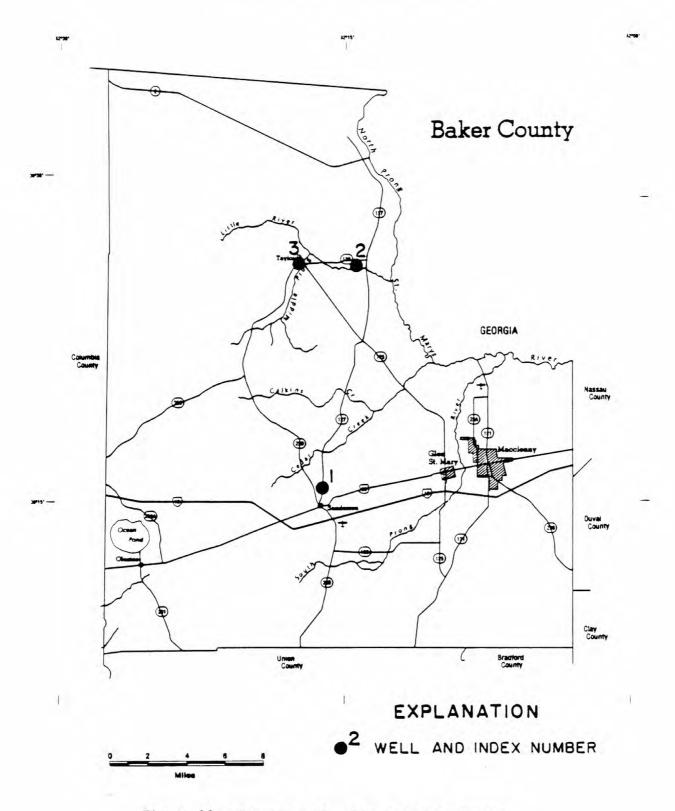


Figure 18.--Location of wells in Baker County.

BAKER COUNTY

WELL NUMBER. -- 301535082162001. Local Number B-11. USGS Well at Sanderson, FL.

LOCATION.--Lat 30°15'35", long 82°16'20", in SW\nW\sW\sec.1, T.3 S., R.20 E., Hydrologic Unit 03070204, 0.4 mi northwest of Sanderson Public School, and 0.7 mi, north of U.S. Highway 90 in Sanderson. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, diameter 6 in., depth 825 ft, cased to 282 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 157.68 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling, 2.30 ft above land-surface datum.

PERIOD OF RECORD.--August 1963 to September 1983 (bimonthly); October 1983 to current year (monthly). Records prior to 1975 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 64.05 ft NGVD, Mar. 1, 1965; lowest measured, 48.57 ft NGVD, July 30, 1979.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
28	0840	53.02	27	1025	54.72
NOA			MAY		
25	1040	52.89	23	1450	53.96
DEC			JUN		
28	1150	52.93	29	1300	52.42
JAN			JUL		
27	1035	52.79	26	1105	51.53
FEB			AUG		
25	1110	53.80	29	1155	51.39
MAR			SEP		
31	1055	55.51	19	1450	52.69

BAKER COUNTY

WELL NUMBER. -- 302610082143001. Local Number B-12. Baker County Well near Taylor, FL.

LOCATION.--Lat 30°26'10", long 82°14'30", in NE\nE\sE\sec.6, T.1 S., R.21 E., Hydrologic Unit 03070204, 10 ft east of Camp Tracey, 545 ft south of State Highway 122, and 2.9 mi east of Taylor. Owner: Baker County.

AQUIFER.--Hawthorn sand and gravel aquifer of the Miocene Series, Geologic Unit 122 HTRNS.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, diameter 2 in., depth 198 ft, cased to 102 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 120 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. casing, 0.50 ft above land-surface datum.

PERIOD OF RECORD.--December 1960 to current year (bimonthly). Records prior to 1975 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.96 ft below land-surface datum, Sept. 15, 1964; lowest measured, 23.58 ft below land-surface datum, Aug. 29, 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			MAY		
28 DEC	0915	21.47	23 JUL	1420	20.44
28 JAN	1220	22.47	26 SEP	1140	23.45
27 MAR	1105	22.72	21	0945	20.18
31	1135	20.03			

BAKER COUNTY

WELL NUMBER. -- 302620082173501. Local Number B-9. USGS Well at Taylor, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 6 in., depth 905 ft, cased to 417 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 116.30 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling, 2.00 ft above land-surface datum.

PERIOD OF RECORD. --October 1963 to September 1983 (bimonthly); October 1983 to current year (monthly). Records prior to 1973 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 62.50 ft NGVD, Jan. 1, 1973; lowest measured, 47.88 ft NGVD, Aug. 4, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
28	0900	50.21	27	1050	52.06
NOV			MAY		
25	1100	50.07	23	1405	51.41
DEC			JUN		
28	1210	50.15	29	1330	49.70
JAN			JUL		
27	1055	50.00	26	1130	48.72
FEB			AUG		
25	1130	51.27	29	1220	48.48
MAR			SEP		
31	1120	52.99	19	1430	49.70

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

BAKER COUNTY

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
301022082103301	05-23-88 09-19-88	1110 1510	56.06 55.00	302251082194901	05-23-88 09-19-88	1355 1415	51.87 50.27
301423082261101	05-23-88 09-19-88	1310 1345	57.07 56.93				

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 19 BREVARD COUNTY

Index number	Site number	Page number
1	275508080510701	40
2	275955080434601	40
3	282245080471601	41
4	283627080512001	41

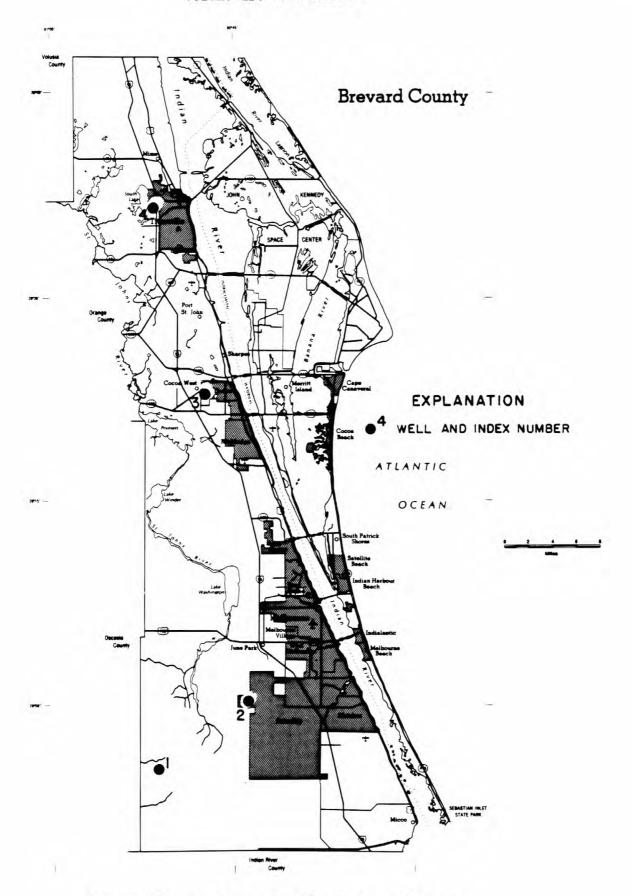


Figure 19.--Location of wells in Brevard County.

BREVARD COUNTY

WELL NUMBER. -- 275508080510701. Ten-Mile Ranch Well near Kenansville, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, irrigation, artesian well, diameter 3 in., depth 272 ft, casing unknown.

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 28.07 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of concrete slab, 0.51 ft above land-surface datum.

PERIOD OF RECORD.--June 1956 (annually); 1957 (semiannually); May 1973 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.07 ft NGVD, July 11, 1957; lowest measured, 37.12 ft NGVD, May 13, 1974.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
DEC			MAY		
17 FEB	1200	42.78	20 JUL	1240	40.78
16 APR	0920	43.28	22 SEP	1345	41.38
01	1230	43.48	30	1415	41.68

WELL NUMBER. -- 275955080434601. Platt Well near Melbourne, FL.

LOCATION.--Lat 27°59'55", long 80°43'46", in NE%NE%NW% sec.4, T.29 S., R.36 E., Hydrologic Unit 03080203, on south side of extension of State Highway 514, 3.5 mi west of State Highway 509, and 9.5 mi southwest of Melbourne. Owner: Marion Platt.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geological Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, irrigation, artesian well, diameter 4 in., depth 447 ft, cased to 125 ft.

INSTRUMENTATION. -- Monthly measurement with pressure gage by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 21.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. tee, 1.25 ft above land-surface datum.

COOPERATION. -- Since Oct. 1, 1985, data provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. --August 1934, July 1942, November 1946 (annually); May 1947 to December 1949 (semiannually); January 1950 to November 1975 (bimonthly); December 1977 to September 1983 (bimonthly); October 1983 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 52.53 ft NGVD, Aug. 14, 1934; lowest measured, 34.23 ft NGVD, May 19, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
28	1200	39.53	09	1320	38.73
NOV	1040	20.02	JUN	0007	20.00
24 DEC	1049	39.03	03 30	0827 1100	39.23 38.53
29	1018	40.03	JUL		
JAN			26	1300	39.28
26	0736	40.78	AUG		
MAR			26	0900	40.53
01	1007	40.53	SEP		
29	1006	41.03	12	1330	41.13
APR			30	0827	39.73
26	0940	38.63			

BREVARD COUNTY

WELL NUMBER. -- 282245080471601. Local Number BR-202. Cocoa Recorder Well at Cocoa, FL.

LOCATION.--Lat 28°22'45", long 80°47'16", in SW\SW\sec.24, T.24 S., R.35 E., Hydrologic Unit 03080101, on east side of Cox Road, and 1.3 mi north of State Highway 520 in Cocoa. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, diameter 4 in., depth 129 ft, cased to 114 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 24.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter floor, 9.14 ft above land-surface datum.

COOPERATION.--Since October 1985, records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--August 1955 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 34.69 ft NGVD, Aug. 16, 1955; lowest, 22.57 ft NGVD, May 23, 1981.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988	
	ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES										

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	27.10	28.03	28.78	28.07	28,24	28.42	222	25.68	25.58	25.96		
10			28.87	28.19	28.38			25.59	25.71	26.06		
15	27.43	28.09	28.74	28.24	28.47			25.53	25.91	26.18		
20			28.49	28.39	28.48			25.51	25.96	26.30		
25			28.31	28.36			25.98	25.47	26.03	26.55		
EOM	27.45		28.08	28.07			25.66	25.64	26.07	26.75		
MAX				28.42				25.72	26,08	26.75		

WELL NUMBER. -- 283627080512001. Champion Road Well at Titusville, FL.

LOCATION.--Lat 28°36'27", long 80°51'20", in NW\SE\ sec.6, T. 22S., R. 35E., Hydrologic Unit 03080202, on north side of Champion Road, 0.1 mi west of Carpenter Road, 0.7 mi south of Garden Street, and 0.5 mi west of Interstate Highway 95 in Titusville. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary system, Geological Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 2 in., depth 136 ft, cased to 132 ft.

INSTRUMENTATION . -- Monthly measurement with chalked tape by USGS personnel.

DATUM, --Land-surface datum is 38.70 ft above National Geodetic Vertical Datum of 1929. Measuring point: Hole in pvc cap, at land-surface datum.

PERIOD OF RECORD.--May 1977 (annually); October 1978 to September 1980 (semiannually); May 1981 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.40 ft NGVD, July 6, 1983; lowest measured, 10.77 ft NGVD, June 2, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
01	1150	14.40	29	1305	14.20
NOV			MAY		
03	1126	14.91	11	1450	14.08
27	1330	15.95	JUN		
DEC			01	1630	13.82
31	1115	15.40	30	1414	14.11
JAN			AUG		
28	0941	15.22	01	1515	14.70
MAR			31	1400	15.74
01	1353	15.55	SEP		
31	1220	15.77	14	1155	16.04

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

BREVARD COUNTY

	DATE							ELEVA- TION ABOVE
STATION NUMBER	SAMPLE	TIME		ST	ATION NAME			NGVD (FEET)
274925080361701	05-09-88 09-12-88	1500 1418	749036002	30S37E35	433 37527	FELLSMERE	TP	38.76 41.06
275125080485501	05-09-88 09-12-88	1120 1117	751048003	30S35E22	123 31139	KENANSVILLE SE	TP	38.10 41.30
275422080374001	05-09-88 09-12-88	1414 1400	754037007	29S37E04	232 09840	FELLSMERE NW	TP	37.40 39.60
275425080283101	05-10-88 09-13-88	1014 1012	754028002					31.87 34.87
275435080311001	05-09-88 09-12-88	1530 1444	754031001	29S38E34	343 04383	GRANT	82	33.20 37.10
275629080504901	05-13-88 09-23-88	1025 1030	756050001	29S35E20	243 22042	KENANSVILLE NE	TP	38.67 37.72
275720080300601	05-10-88 09-13-88	1030 1022	757030004	29S38E14	334 01412	GRANT	25	34.10 37.60
275948080393501	05-09-88 09-12-88	1330 1340	759039005	29S37E06	322 37578	FELLSMERE NW	TP	36.35 39.15
280008080342601	05-09-88 09-12-88	1550 1500	800034072	28S37E36	424 08182	MELBOURNE EAST	TP	31.02 33.73
280256080325601	05-10-88 09-13-88	1045 1036	802032002	28S38E17	432 1645	MELBOURNE EAST	49	26.00 28.80
280348080431201	05-09-88 09-12-88	1245 1300	803043006	28S36E10	313 37563	MELBOURNE WEST	TP	38.10 41.10
280532080514501	05-09-88 09-12-88	0730 0905	805051003	27S35E31	331 30139	DEER PARK SE	TP	39.30 41.60
280534080465101	05-09-88 09-12-88	0750 0847	805046002	27S35E36	331 37472	DEER PARK SE	TP	39.03 40.93
281109080373701	05-10-88 09-12-88	0915 0950	811037014	26S37E33	122 18134	EAU GALLIE	09	26.69 24.39
281215080474601	05-11-88 09-14-88	1200 1000	812047001	26S35E23	234 28390	DEER PARK NE	TP	36.80 39.30
281306080401201	05-11-88 09-14-88	1045 0851	813040016	26S37E18	233 24103	EAU GALLIE	88	30.07 32.57
281347080433201	05-10-88 09-12-88	1730 1712	813043	26S36E09	DUDA B-3			33.60 35.90
281447080392601	05-10-88 09-13-88	0700 0912	814039076	26S36E06	444 37577	EAU GALLIE	79	27.14 28.74
281509080363001	05-10-88 09-13-88	1125 1105	815036012	26S37E03	224 01562	COCOA BEACH	TP	26.20 28.50
281744080444001	05-11-88 09-14-88	1115 0910	817044004	25S36E20	I-95 & FI	SKE BLVD		31.54 33.64
281905080375001	05-10-88 09-13-88	1141 1125	819037196	25S37E16	212 27337	COCOA		20.45 22.25
282143080403401	05-09-88 09-13-88	0800 0850			KIWANIS P	ARK		18.40 19.70
282204080514301	05-11-88 09-14-88	1340 1038	822051001	24S35E30	342 00767	LAKE POINSETT		29.88 32.18
282423080353601	05-10-88 05-11-88 09-13-88	1300 1108 1150	824035001	24S37E11	444 15764	CAPE CANAVERAL	TP	15.18 16.65 19.80
282647080331301	05-10-88 09-13-88	1330 1217	826033001	23S38E32	321 28485	CAPE CANAVERAL	TP	20.10 22.20

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

BREVARD COUNTY--Continued

STATION NUMBER	DATE OF SAMPLE	TIME		SI	TATION NAME		ELEVA- TION ABOVE NGVD (FEET)
282929080343601	05-10-88 09-13-88	1345 1230	829034001	23S37E13	222 28488 CAPE CANAVERAL	TP	16.28 18.08
283027080403601	05-10-88 09-13-88	1445 1335	830040002	23S37E01	444 00155 ORSINO	TP	10.46 12.46
283236080535101	05-11-88 09-14-88	1430 1135	832053001	22S34ESG	00773 TITUSVILLE SW	TP	16.48 18.40
283644080574901	05-11-88 09-14-88	1625 1305	8360573				15.00 16.40
283835080424501	05-10-88 09-13-88	1417 1306	838042002	21S36E27	MERRITT ISLE WILDLIFE		8.99 10.65
283906080514501	05-11-88 09-14-88	1510 1210	839051005	21S35E19	431 00864 MIMS	15	13.08 14.32
283955080565701	05-11-88 09-14-88	1600 1245	839056002				11.70 13.58
284116080514001	05-11-88 09-14-88	1540 1230	841051226	21S35E06	343 05242 MIMS	20	5.55 6.66

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 20 CITRUS COUNTY

Index	Site	Page
number	number	number
1	284330082215401	46
2	284508082174601	47
3	285102082204001	48
4	285124082245601	48
5	285414082284201	49
6	285608082233401	49
7	285720082201301	50

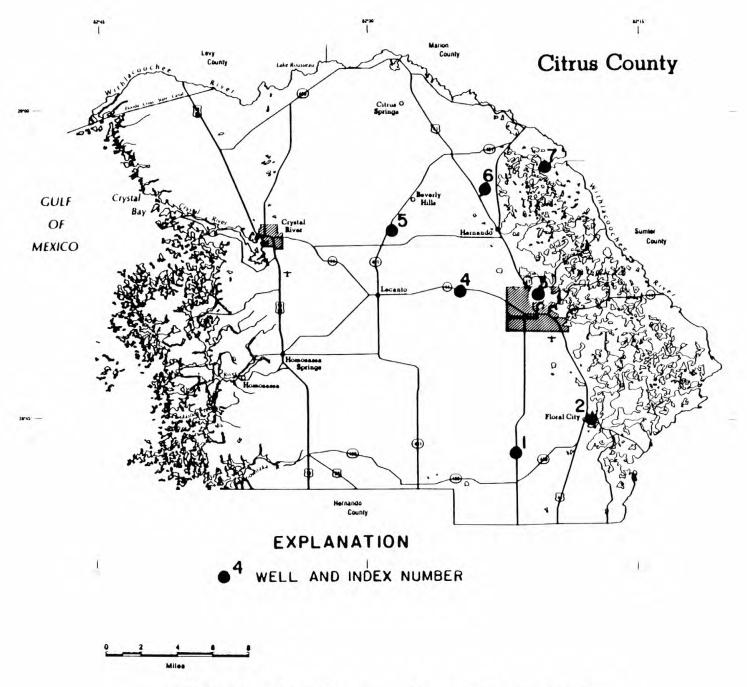


Figure 20.--Location of wells in Citrus County.

CITRUS COUNTY

WELL NUMBER. -- 284330082215401. Romp 109 Well near Floral City, FL.

LOCATION.--Lat 28°43'30", long 82°21'54", in SW\sE\sW\s, sec.24, T.20 S., R.19 E., Hydrologic Unit 03100208, 0.5 mi west of State Highway 581, 4.5 mi southwest of Floral City. Owner: Southwest Florida Water Management District.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 6 in., depth 260 ft, cased to 189 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 157.13 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. flange, 2.67 ft above land-surface datum.

PERIOD OF RECORD. -- May 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 22.15 ft NGVD, Aug. 23, 1984; lowest, 15.67 ft NGVD, June 16, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5			17.45	17.02	16.90	17.07	17.99	18.33	17.91	17.45	17.16	17.41
10			17.40	16.94	16.95	17.14	18.10	18.27	17.84	17.37	17.14	18.21
15			17.33	16.86	16.98	17.31	18.18	18.22	17.76	17.29	17.16	19.15
20		17.61	17.25	16.79	17.00	17.49	18.28	18.14	17.65	17.20	17.20	20.09
25		17.54	17.19	16.86	17.06	17.69	18.37	18.10	17.58	17.18	17.23	20.83
EOM		17.51	17.10	16.89	17.06	17.87	18.40	18.00	17.50	17.17	17.27	21.33
MAX	222		17.50	17.09	17.07	17.87	18.40	18.35	17.99	17.49	17.28	21.33

CITRUS COUNTY

WELL NUMBER. -- 284508082174601. Ferris Packing Company Well at Floral City, FL.

LOCATION.--Lat 28°45'08", long 82°17'46", in NE\nE\n\subset \nu\subset sec.15, T.20 S., R.20 E., Hydrologic Unit 03100208, on east side of U.S. Highway 41, in rear of packing house, 0.2 mi north of State Highway 48 in Floral City. Owner: Ferris Packing Company.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, artesian well, diameter 8 in., depth 400 ft, cased to 200 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 70.43 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--March and May 1961, January 1964 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office .

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 40.32 ft NGVD, Aug. 23, 1965; lowest measured, 29.65 ft NGVD, Dec. 17, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
DEC			JUL		
01	1610	33.91	08	1515	33.85
JAN			AUG		
14	1045	33.66	19	1550	34.10
MAR			SEP		
02	1120	34.80	22	1705	37.62
MAY					
18	1220	35.31			

CITRUS COUNTY

WELL NUMBER. -- 285102082204001. DOT-41 Observation Well at Inverness, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 18 in., depth 450 ft, cased to 290 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 41.56 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 1.99 ft above land-surface datum.

PERIOD OF RECORD. -- March 1961 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 37.80 ft NGVD, Oct. 14, 1982; lowest, 26.76 ft NGVD, July 5, 1962.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	29.66	29.28	28.78	28.38	29.09	29.19	30.13	29.97	29.46	29.12	29.03	29.99
10	29.51	29.12	28.83	28.39	29.14	29.53	30.13	29.90	29.46	29.06	29.08	31.06
15	29.46	28.99	28.76	28.35	29.26	29.67	30.03	29.91	29.38	29.02	29.17	31.76
20	29.41	29.06	28.61	28.38	29.23	29.85	30.09	29.79	29.28	28.94	29.26	32.06
25	29.33	28.99	28.56	28.76	29.09	30.05	30.09	29.73	29.25	29.01	29.46	32.21
EOM	29.16	28.99	28.44	28.98	29.18	30.13	30.07	29.56	29.29	29.04	29.68	32.25
MAX	29.77	29.32	28.95	28.98	29.26	30.13	30.23	30.10	29.57	29.29	29.68	32.26

CAL YR 1987 MAX 31.07 WTR YR 1988 MAX 32.26

WELL NUMBER. -- 285124082245601. ROMP 113 Well near Inverness, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, observation well, diameter 6 in., depth 150 ft, cased to 130 ft, screened 130 to 150 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 129.93 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 4.01 ft above land-surface datum.

PERIOD OF RECORD.--October 1975, September 1976 to September 1977 (bimonthly); October 1977 to September 1980; October 1980 to September 1981 (bimonthly); October 1981 to current year. Records prior to October 1976 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 12.72 ft NGVD, Oct. 23, 1982; lowest, 5.75 ft NGVD, Feb. 11,16, 1982.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	7.63	7.09	6.99	6.57	6.61	6.57	7.01	7.23	14-2	6.98	6.94	7.25
10	7.56	7.06	6.92	6.51	6.55	6.62	7.10	7.22		6.84	6.94	8.12
15	7.43	7.01	6.87	6.44	6.53	6.82	7.18	7.18		6.76	7.11	9.08
20	7.31	6.97	6.82	6.39	6.59	6.92	7.24			6.74	7.13	9.79
25	7.25	6.97	6.76	6.58	6.62	6.96	7.28		6.80	6.86	7.13	10.27
EOM	7.19	7.01	6.69	6.65	6.58	6.99	7.30		6.92	6.94	7.20	10.55
MAX	7.83	7.15	7.02	6.67	6.63	6.99	7.30			6.98	7.20	10.55

CITRUS COUNTY

WELL NUMBER. -- 285414082284201. North Lecanto Well near Lecanto, FL.

LOCATION.--Lat 28°54'14", long 82°28'42", in SWkNEkNWk sec.22, T.18 S., R.18 E., Hydrologic Unit 03100207, 40 ft east of State Highway 491, and 3.8 mi north of Lecanto. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 335 ft, cased to 288 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM. -- Land-surface datum is 68.87 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.07 ft above land-surface datum.

PERIOD OF RECORD. --November 1965 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 8.10 ft NGVD, Oct. 15, 1982; lowest 3.40 ft NGVD, Mar. 25, 1976.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

			MA	XIMUM VAL	UES					
NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
4.67	4.69	4.22	4.44	4.42	4.72	4.72	4.46	4.66	4.72	
4.65	4.60	4.16	4.21	4.64	4.71	4.60	4.64	4.41	5.00	

DAY OCT SEP 5.07 5 27 10 4.97 4.56 15 4.73 4.52 4.01 4.29 4.80 4.80 4.63 4.37 4.41 4.92 4.74 20 4.68 4.29 4.49 4.80 4.97 4.34 4.34 4.48 4.65 25 4.67 4.63 4.43 4.58 4.42 4.67 4.90 4.65 4.82 4.89 FOM 4.57 4.76 4.27 4.41 4.32 4.63 4.75 4.46 4.74 4.74 4.97 7.92 MAX 5 24 4 76 4 73 4.60 4.49 4.82 4.74 ---4.74 4.83 ---

CAL YR 1987 MAX 5.82

WELL NUMBER. -- 285608082233401. Camp Mining Well (CE-64) near Holder, FL.

LOCATION.--Lat 28°56'08", long 82°23'34", in SWkNWkSEk sec.10, T.18 S., R.19 E., Hydrologic Unit 03100208, field about 0.5 mi east of U.S. Highway 41, at a point 2.5 mi south of State Highway 200 in Holder. in a Owner:

AQUIFER. -- Floridan aquifer of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 14 in., depth 91 ft, casing length unknown.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 65.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.14 ft above land-surface datum.

PERIOD OF RECORD. -- March 1961, December 1961 to current year (bimonthly). Records prior to January 1974 are unpublished and are available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 31.01 ft NGVD, Nov. 20, 1964; lowest measured, 12.04 ft NGVD, Apr. 13, 1982.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
19	1655	20.67	19	1435	21.02
JAN			JUN		
08	1543	19.79	22	1431	20.54
MAR			AUG	- 17.	==,-,
03	1640	20.27	18	1105	19.93
APR			SEP	77.77	21347
28	1830	20.97	21	1459	22.89

CITRUS COUNTY

WELL NUMBER. -- 285720082201301. ROMP 116 Well near Tsala Apopka, FL.

LOCATION.--Lat 28°57'20", long 82°20'13", in NE\SE\NE\ sec.32, T.18 S., R.20 E., Hydrologic Unit 03100208, 100 ft west of Tsala Apopka outfall canal at control structure S-353, and 2.3 mi northeast of Hernando. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, observation well, diameter 6 in., depth 55 ft, cased to 39 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 41.96 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top edge of flange on casing, 3.20 ft above land-surface datum.

PERIOD OF RECORD.--June 1974, September 1976 to March 1977 (bimonthly); April 1977 to current year. Records prior to September 1976 are unpublished and available in files of the Orlando Subdistrict Office.

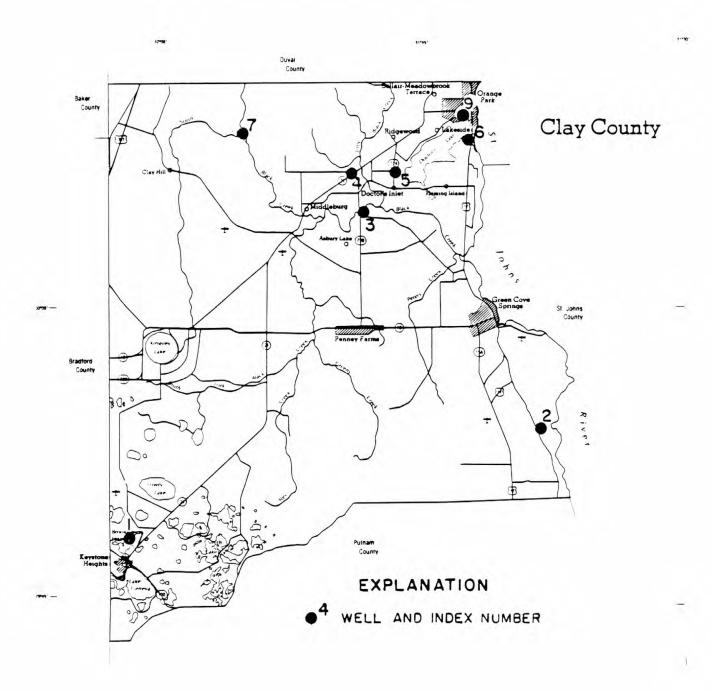
EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 37.91 ft NGVD, Oct. 6, 1982; lowest, 30.54 ft NGVD, June 5,6, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	32.71	32.28	32.64	32.15	33.50	33.98	34.43	33.23	32.82	32.70	33.55	34.93
10	32.51	32.11	32.53	32.38	33.48	34.87	34.07	32.99	33.43	32.39	33.65	36.85
15	32.48	32.36	32.67	32.15	33.54	34.95	33.92	33.04	33.14	32.91	33.44	36.52
20	32.30	32.77	32,50	32.22	33.87	34.71	33.78	32.69	32.94	32.83	33.37	36.50
25	32.12	32.62	32.36	33.73	33.79	34.54	33.74	32.74	32.73	33.45	33.39	36.71
EOM	31.99	32.82	32.21	33.62	33.54	34.48	33.40	32.40	33.17	33.38	33.73	36.81
MAX	33.26	32.96	32.77	33.73	33.96	35.00	34.46	33.44	33.50	33.61	33.79	36.95

WTR YR 1988 MAX 36.95

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988


CITRUS COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME		STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
284101082184301	09-22-88	1626	84121801	21S20E04 OAK FOREST SUBMERSIBLE	35.36
284439082131401	05-18-88 09-22-88	1040 1840	84421301	TRAILS END FISH CAMP WELL NR FLORAL CITY	41.11 43.33
284519082150701	05-18-88 09-22-88	1110 1818	84521501	20S21E07 HOMER N FISHER	41.20 47.74
284528082211801	09-22-88	1502	84522101	20S19E12 WSF-MUTUAL MINE REC AREA	20.58
284609082163001	05-18-88 09-22-88	1155 1738		DUVAL ISLAND WELL NR FLORAL CITY	40.92 42.03
284752082202501	05-18-88 09-22-88	1430 1411	84722001	19S20E31 HIGHLANDS VFD NR INVERNESS	20.50 22.17
284844082282801	09-22-88	1328	84822801	19S18E22 WSF-PERRYMAN TRACT	10.46
284852082162301	05-20-88 09-23-88	1026 0810	84821601	19S20E23 7 LAKES PARK ENTRANCE	39.78 41.26
284958082190401	05-18-88 09-23-88	1628 0655	84921901	19S20E16 CITRUS 8 U S GEOL SURVEY	37.51 39.17
285026082174101	05-18-88 09-23-88	1638 0918	85021701	19S20E15 CITRUS 9 U S GEOL SURVEY	39.50 40.34
285037082213801	05-19-88 09-22-88	0910 1218	85022101	19S19E12 INVERNESS VILLAGE EASTW	21.65 23.72
285056082163001	05-18-88 09-23-88	1655 0948	85021601	19S20E11 CITRUS 10 U S GEOL SURVEY	38.49 39.78
285105082135802	05-18-88 09-23-88	1705 1027	USGS WELL	0.7 MI W OF WITH. R. ON SR44 .47 FT N RD	38.41 41.00
285248082183201	05-18-88 09-22-88	1600 1131	85221801	18S20E33 ELMER HEATH	38.93 39.81
285514082275402	05-19-88 09-21-88	1045 1327	85522704	18S18E14 BEVERLY HILLS WELL 6-T	4.86 8.37
285612082294201	05-19-88 09-21-88	1123 1349	85622901	18S18E04 PINE RIDGE NO 3	4.98 6.64
285812082360901	05-20-88 09-21-88	1342 1056	85823601	17S17E29 CE 7 U S GEOL SURVEY	12.81 18.49
285833082233301	05-20-88 09-21-88	1540 1427	85822301	17S19E34 CE 16	15.32 18.35
285930082283702	05-19-88 09-21-88	1250 0700	85922803	17S18E22 CITRUS SPRINGS RECORDER	8.53 12.45
285935082324501	05-20-88 09-21-88	1415 1001	85923201	17S17E24 MELODY JOHNSON	7.83 12.07
285951082350901	05-20-88 09-21-88	1355 1029	85923501	17S17E15 CE 6 U S GEOL SURVEY	19.06 24.00
290023082393601	05-20-88 09-21-88	1200 1205	90023901	17S16E11 CE 89 U S GEOL SURVEY	12.52 15.42
290041082265101	05-19-88 09-20-88	1312 1402	90022601	17S18E12 SECTION 12 MINE WELL	12.19 13.20
290107082400501	05-20-88 09-21-88	1210 1125	90124001	17S16E11 CE 88 U S GEOL SURVEY	3.01 8.13
290132082324201	05-20-88 09-21-88	1440 0927	90123202	17S17E01 EMORY COWART HOUSE WELL	15.09 20.38

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 21 CLAY COUNTY

Index number	Site number	Page number
1	294807082020903	54
2	295353081381901	54
3	300450081482801	55
4	300649081485901	56
5	300656081463401	57
6	300834081421301	58
7	300850081552001	59
8	300957081423501	60

0 2 4 6 8

Figure 21.--Location of wells in Clay County.

CLAY COUNTY

WELL NUMBER. -- 294807082020903. Local Number 948-202-8. USGS Well at Keystone Heights, FL.

LOCATION.--Lat 29°48'07", long 82°02'09", in SE\nW\nE\n sec.18, T.8 S., R.23 E., Hydrologic Unit 03080103, on graded road on west side of Brooklyn Lake, 1.2 mi north of intersection of State Highways 100 and 21 at Keystone Heights. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, test, artesian well, diameter 6 in., depth 250 ft, cased to 193 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 145.16 ft above National Geodetic Vertical Datum of 1929. Measuring point: Recorder shelf, 2.06 ft above land-surface datum.

PERIOD OF RECORD. -- August 1960 to current year. Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 89.50 ft NGVD, Oct. 31, 1960; lowest, 79.77 ft NGVD, Dec. 11, 1977.

			ELEVATI	ON, IN FI	EET NGVD,	WATER YEA MAXIMUM V		1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	82.76	82.44	81.82	81.51	81.77	82.49	83.09	82.41	81.80	81.04	80.73	81.37
10	82,56	82.36	81.90	81.54	81.80	82.60	82.91	82.16	81.72	80.75	80.81	82.29
15	82.55	82.14	81.93	81.49	81.77	82.71	82.83	82.42	81.55	80.95	80.90	82.80
20	82.42	82.34	81.74	81.73	81.88	82.87	82.77	82.10	81.30	80.92	81.01	83.07
25	82.28	82.21	81.74	81.94	82.13	83.05	82.61	82.14	81.17	80.95	81.01	83.27
EOM	82.09	82.34	81.58	81.79	82.17	83.05	82.51	81.93	81.13	80.84	81.06	83.36
MAX	82.94	82.47	82.19	81.94	82.19	83.12	83.15	82.59	81.95	81.20	81.10	83.36
	YR 1987 YR 1988	MAX 85.64 MAX 83.36										

WELL NUMBER. -- 295353081381901. Local Number C-111. Williamson Well near Green Cove Springs, FL.

LOCATION.--Lat 29°53'53", long 81°38'19", in SE\SE\SE\SW\ sec.7, T.7 S., R.27 E., Hydrologic Unit 03080103, 100 ft east of State Road 209, and 5.2 mi from U.S. Highway 17. Owner: P.L. Williamson.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 4 in., depth 494 ft, cased to 274 ft.

WATER LEVEL RECORDS

INSTRUMENTATION . -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 12 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 4 in. tee, 0.5 ft above land-surface datum.

PERIOD OF RECORD. -- May 1977 to May 1986 (semiannually); July 1986 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 22.30 ft above land-surface datum, Sept. 15, 1982; lowest measured, 14.60 ft above land-surface datum, May 6, 1987.

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1984 to current year (discontinued).

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY				
07	1045	-19.10			19	0940	-17.50		164
DEC					JUN				
02	1055	-20.40	210	24.0	22	1640	-17.00		
JAN					SEP				
10	0740	-21.70	220	23.0	14	1150	-20.00		
12	1600	-20.70	225	24.0					
MAR									
10	0740	-21.70	220	23.0					

Note. -- Negative figures indicate water level above land surface.

CLAY COUNTY

WELL NUMBER. -- 300450081482801. Local Number C-18. Muir Well near Doctors Inlet, FL.

LOCATION.--Lat 30°04'51", long 81°48'31", in NW\sE\nW\sec.9, T.5 S., R.25 E., Hydrologic Unit 03080103, 300 ft east on first paved road south of bridge crossing Black Creek, 3.4 mi southwest of Doctors Inlet. Owner: A.B. Muir, III.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 3 in., depth 500 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION, -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 3 in. tee, 1.0 ft above land-surface datum.

PERIOD OF RECORD.--June 1970 to May 1972 (monthly); May 1974, May 1976, May 1977 to September 1985 (semiannually); May 1986 to current year (bimonthly). Records prior to 1976 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 51.20 ft above land-surface datum, Sept. 22, 1970; lowest measured, 37.00 ft above land-surface datum, June 24, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1984 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY				
08 DEC	0900	-39.40	180	22.5	24 JUN	1145	-38.80	180	23.5
03 JAN	0800	-40.50	180	22.0	24 AUG	0925	-37.00	185	23.0
14 MAR	0950	-40.30	180	22.0	15 SEP	0840	-38.30	185	22.5
11	0900	-41.90	180	22.0	20	0945	-39.50	182	23.5

Note. -- Negative figures indicate water level above land surface.

CLAY COUNTY

WELL NUMBER. -- 300649081485901. Local Number C-5. John Huntley Well near Middleburg, FL.

LOCATION.--Lat 30°06'49", long 81°48'59", in SE\sW\sW\s sec.28, T.4 S., R.25 E., Hydrologic Unit 03080103, 200 ft north of State Highway 21, 0.4 mi southwest of Little Black Creek, and 3.8 mi northeast of Middleburg. Owner: John Huntley.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, artesian well, diameter 4 in., depth 530 ft, cased to 157 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 24.02 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. tee, 2.20 ft above land-surface datum.

PERIOD OF RECORD.--1940-41, 1944 to September 1978 (semiannually); January 1979 to current year (bimonthly). Records prior to May 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.92 ft NGVD, Apr. 26, 1944; lowest measured, 35.32 ft NGVD, June 24, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1984 to current year.

ELEVATION AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY				
08	1140	38.12	180	22.0	24	1035	37.42	175	23.5
DEC 03	0950	40.12	180	23.0	JUN 24	1120	35.32	190	23.5
JAN 14	1010	40.02	180	23.0	AUG 15	0900	37.02	185	22.5
MAR 11	0920	41.62	180	21.5	SEP 20	1000	38.42	179	23.0

CLAY COUNTY

WELL NUMBER. -- 300656081463401. Local Number C-94. USGS Test Well near Orange Park, FL.

LOCATION.--Lat 30°06'56", long 81°46'34", in SW\sE\sW\s sec.26, T.4 S., R.25 E., Hydrologic Unit 03080103, at St. Johns River Community College, 150 ft east of State Highway 224, 1.5 mi south of intersection of State Highways 224 and 21, and 5.0 mi southwest of Orange Park. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 8 in., depth 1,197 ft, cased to 391 ft.

INSTRUMENTATION .-- Monthly measurement with chalked taped by USGS personnel.

DATUM.--Land-surface datum is 46.22 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2.5 in. coupling, 1.29 ft above land-surface datum.

PERIOD OF RECORD. -- February 1974 to April 1979 (quarterly); July 1979 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 41.59 ft NGVD, Feb. 28, 1983; lowest measured, 29.79 ft NGVD, June 29, 1988.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
28	1050	33,74	27	0900	33.13
NOA			MAY		
25	0910	35.69	24	1015	31.28
DEC			JUN		
28	0945	36.45	29	1130	29.79
JAN			JUL		
27	0855	36.23	26	0915	31.26
FEB			AUG		
25	0945	36.01	29	1020	32.04
MAR			SEP		
31	0835	36.11	20	1015	33.35

CLAY COUNTY

WELL NUMBER. -- 300834081421301. Local Number C-7. Hanson Well near Orange Park, FL.

LOCATION.--Lat 30°08'34", long 81°42'13", in land grant 44, T.4 S., R.26 E., Hydrologic Unit 03080103, 350 ft north of Creighton Road, 500 ft west of U.S. Highway 17, and 1.5 mi south of Orange Park. Owner: Mr. Hanson.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 3 in., depth 550 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 5.0 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 3 in. cross, 1.0 ft above land-surface datum.

PERIOD OF RECORD.--May 1978 to September 1980 (biannually); May 1981 to current year (monthly). Records prior to October 1981 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 31.20 ft above land-surface datum, Mar. 24, 1983; lowest measured, 19.80 ft above land-surface datum, May 14, 1985.

WATER-QUALITY RECORDS

PERIOD OF RECORDS. -- Water years 1984 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
28 DEC	1105	-22.50	285	23.0	27 MAY	0835	-22.90	295	21.0
28 JAN	0930	-25.70		- 	24 JUL	1305	-19.90	295	23.0
27 FEB	0840	-24.70	305	23.0	26 AUG	0850	-21.30	295	23.5
25 MAR	0915	-26.00	305	21.5	29 SEP	1000	-21.80	295	23.5
31	0805	-25.90	300	22.0	20	1045	-23,20	187	23.0

Note. -- Negative figures indicate water level above land surface.

CLAY COUNTY

WELL NUMBER. -- 300850081552001. Local Number C-29. Jennings Well near Maxville, FL.

LOCATION.--Lat 30°08'50", long 81°55'20", in NW\SE\ sec. 17, T.4 S., R.24 E., Hydrologic Unit 03080103, on east side of wooded trail, 0.15 mi south of Long Branch Road, 5.4 mi east of junction of State Road 217 and Long Branch Road, and 6.3 mi southeast of Maxville. Owner: Mr. Jennings.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 3 in., depth 330 ft, cased to 300 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 35 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 6 in. flare, 1.0 ft above land-surface datum.

PERIOD OF RECORD.--March 1968, May 1977 to September 1986 (semiannually); October 1986 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 20.90 ft above land-surface datum, May 13, 1980; lowest measured, 10.50 ft above land-surface datum, Aug. 15, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- October 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY				
08 DEC	1645	-16.50	260	22.0	25 JUN	1050	-16.30	234	21.5
03 JAN	1415	-17.00	260	22.0	24 AUG	1340	-11.50	250	22.0
14 MAR	1515	-16.00	250	22.0	15 SEP	1140	-10.50	260	22.0
11	1315	-17.80	260	22.0	22	1105	-16.10	245	22.0

Note. -- Negative figures indicate water level above land surface.

CLAY COUNTY

WELL NUMBER. -- 300957081423501. Local Number C-2. A.H. Harrington Well at Orange Park, FL.

LOCATION.--Lat 30°09'57", long 81°42'35", in land grant 41, T.4 S., R.26 E., Hydrologic Unit 03080103, 350 ft north of Kingsley Avenue, 150 ft east of Railroad Avenue at Orange Park. Owner: A.H. Harrington.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, domestic, artesian well, diameter 3 in., depth 450 ft, casing length unknown.

INSTRUMENTATION . -- Bimonthly measurement with pressure gage by USGS personnel.

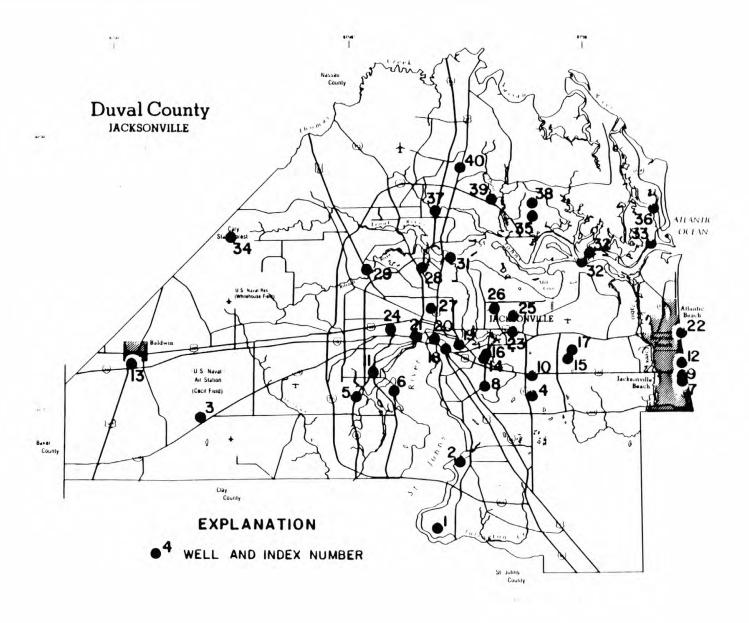
DATUM.--Land-surface datum is 15.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. gate valve, 2.2 ft above land-surface datum.

PERIOD OF RECORD.--1934, 1958, 1966 to 1977 (annually); April 1979 to current year (bimonthly) incomplete. Records prior to February 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 57.50 ft NGVD, May 16, 1934; lowest measured, 22.51 ft NGVD, June 24, 1988.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
08	0735	26.10	17	1615	26.60
DEC			JUN		
03	0730	30.00	24	0735	22.51
JAN			AUG		
14	0810	29.90	15	0650	26.20
MAR					
11	0720	31.90			

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988


CLAY COUNTY

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
294307082020903	05-18-88 09-14-88	1000 0750	83.58 84.61	=======================================	===	1	Ξ
295315081532201	05-18-88 09-14-88	1130 1010	75.37 75.29	- 11			==
295615081394701	05-19-88 09-14-88	0928 1140	33.00 34.50	1.5	7	127	
295835081515001	05-19-88 09-14-88	0825 1040	69.12 68.67	=	<u> </u>	7	
295838081582501	05-18-88 09-14-88	1330 0930	69.32 68,56		==	=	=
295847081380601	05-19-88 09-14-88	0910 1125	19.40 22.40	Ξ	= =	=	= ==
295900081403201	05-19-88 09-14-88	0855 1110	23.50 25.50				==
300048081414301	05-24-88 09-20-88	1240 0845	27.37 29.17		185 190	4.8 5.6	11 13
300242081532002	05-24-88 09-20-88	1100 0915	55.72 55.32		139 165	4.6 5.4	0.10 5.5
300300081422501	05-27-88 09-23-88	0830 0915	26.30 27.30		168 175	4.8 5.9	5.0 4.2
300604081441501	05-24-88 09-20-88	1205 1035	28.50 31.10		180 182	4.8 5.7	7.5 10
301018081415101	05-24-88 09-20-88	1340 1130	25.90 29.10		405 415	6.1 7.7	110 100

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 22 DUVAL COUNTY

Index number	Site number	Page number	10	Index number	Site number	Page number
number	Hamber	Hamber		Trumb 0 1	Trumb 0 L	110411002
1	300812081390801	64		22	301846081240201	90
1	300820081354001	65		22	301852081234201	91
	301157081374301	66		23	301900081342801	91
3	301422081541201	67		24	301907081420901	92
2 3 3 3	301422081541202	67		25	301957081342301	93
3	301422081541203	68		26	302007081353201	94
4	301522081331301	68		26	302013081353801	95
5	301537081441901	69		27	302015081384501	96
6	301551081415701	70		27	302022081393501	97
7	301552081234301	71		28	302130081411802	98
7	301604081234601	72		28	302236081401501	99
8	301604081361501	73		29	302227081435001	100
9	301620081234201	74		30	302243081300401	101
10	301639081330802	75		31	302304081383202	102
11	301648081431801	76		32	302307081293801	103
12	301657081233301	77		33	302339081254702	104
12	301704081233401	78		34	302416081522601	105
12	301716081234301	79		34	302416081522602	105
13	301725081584501	80		35	302502081330701	106
14	301740081361001	81		35	302503081332001	107
15	301743081304701	81		35	302505081331001	108
16	301743081362301	82		35	302511081331201	109
16	301744081363301	82		35	302519081331501	109
16	301752081360501	83		36	302538081253101	110
17	301758081303901	84		37	302538081392501	111
18	301801081384302	85		38	302559081331501	112
19	301817081374901	86		39	302608081354901	112
19	301817081374902	87		39	302608081354902	113
20	301839081392101	88		39	302608081354903	113
21	301844081403801	89		40	302801081375101	114

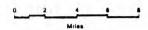


Figure 22. -- Location of wells in Duval County.

DUVAL COUNTY

WELL NUMBER. -- 300812081390801. Local Number D-1097. D. Barnes Well at Mandarin, FL.

LOCATION.--Lat 30°08'12", long 81°39'08", in land grant 35, T.4 S., R.26 E., Hydrologic Unit 03080103, 0.9 mi northwest of Westberry Road, 100 ft west of Mandarin Road in Mandarin. Owner: D. Barnes.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 3 in., depth 560 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 3 in. tee, 1.1 ft above land-surface datum.

PERIOD OF RECORD. -- May 1977 to September 1985 (semiannually); May 1986 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.40 ft above land-surface datum, Sept. 16, 1982; lowest measured, 9.70 ft above land-surface datum, May 24, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- Water years 1983 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT 28	1350	-13.00	360	22.0	MAY 24	1120	-9.70	350	23.5
DEC	1330	13.00	300	22.0	JUL	1120	9.70	330	23.3
29 JAN	1325	-15.80	350	22.0	27 SEP	1100	-11.70	22	2-
26 MAR	0945	-16.30	350	22.0	21	1535	-12.90	342	22.0
31	1055	-16.00	360	21.5					

DUVAL COUNTY

WELL NUMBER. -- 300820081354001. Local Number D-296. Hood Landing Well at Mandarin, FL.

LOCATION.--Lat 30°08'20", long 81°35'40", in land grant 43, T.4 S., R.27 E., Hydrologic Unit 03080103, 50 ft east of Hood Landing Road, 150 ft south of Julington Creek Road. Owner: W.C. Clark.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, private, domestic, artesian well, diameter 3 in., depth 487 ft, casing length unkown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 3 in. reducer, 1.2 ft above land-surface datum.

PERIOD OF RECORD.--November 1961 to May 1976 (annually); May 1977 to September 1985 (semiannually); May 1986 to current year (bimonthly). Records prior to May 1976 are unpublished and available in the files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.20 ft above land-surface datum, May 13, 1966; lowest measured, 13.50 ft above land-surface datum, May 24, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1983 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
28 DEC	1320	-15.60	680	23.0	26 MAY	1010	-14.90	122	
29 JAN	1305	-17.80	680	21.5	24 JUL	1220	-13.50	665	23.5
26 MAR	1005	-17.80	665	23.0	27 SEP	1045	-14.30		
31	1040	-18.10	675	23.0	21	1510	-15.90	643	22.0

DUVAL COUNTY

WELL NUMBER. --301157081374301. Local Number D-538. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°11'57", long 81°37'43", in land grant 40, T.3 S., R.27 E., Hydrologic Unit 03080103, well located in Beauclerc Gardens pumping station, 3054 Shady Drive, 50 ft south of station entrance, in the Beauclerc Gardens area of Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 12 in., depth 1,000 ft, cased to 484 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1973-78, 1983 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
28 JAN	0815	790		26.0			22		
26 APR	1130	580		24.0					
18 JUL	0930	730	7.60	28.0	<5	370	83	37	14
25	0950	675		27.5					

DATE	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	STRON- TIUM, DIS- SOLVED (UG/L
	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AS SR)
OCT								
28				22				1951
JAN								
26				19				
APR								
18	2.8	121	230	23	0.40	22	544	6000
JUL								
25			1.55	19				

DUVAL COUNTY

WELL NUMBER. -- 301422081541201. Local Number DS-226. USGS Observation Well at Jacksonville, FL.

LOCATION.--Lat 30°14'22", long 81°54'12", in SW\sE\nW\sec.16, T.3 S., R.24 E., Hydrologic Unit 03080103, 250 ft south of State Highway 228 (Normandy Boulevard), 0.8 mi west of main gate of NAS Cecil Field in Jacksonville. Owner: U.S. Geological Survey.

AQUIFER. -- Hawthorn Formation of Miocene Age, Geologic Unit 122 HTRN.

WELL CHARACTERISTICS .-- Drilled, unused, nonartesian well, diameter 2 in., depth 210 ft, cased to 210 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 80 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. PVC casing, at land-surface datum.

PERIOD OF RECORD.--January 1976, May 1977, February 1979 to current year (bimonthly). Records prior to 1979 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.11 ft below land-surface datum, Feb. 26, 1986; lowest measured, 10.18 ft below land-surface datum, Jan. 26, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			MAY		
28	1000	8.46	24	0820	7.68
DEC			JUL		
28	1040	8.11	26	0955	9.54
JAN			SEP	7.7-5	9,150
27	0930	7.78	22	0845	8.09
MAR	0000			00.5	0,00
31	0945	6.79			

WELL NUMBER, --301422081541202. Local Number DS-227. USGS Observation Well at Jacksonville, FL.

LOCATION.--Lat 30°14'22", long 81°54'12", in SW\sE\nE\s sec.16, T.3 S., R.24 E., Hydrologic Unit 03080103, 200 ft south of Normandy Boulevard (State Highway 228), 0.8 mi west of main gate NAS Cecil Field in Jacksonville. Owner: City of Jacksonville.

AQUIFER .-- Hawthorn Formation of the Miocene Age, Geologic Unit 122 HTRN.

WELL CHARACTERISTICS .-- Drilled, unused, nonartesian well, diameter 2 in., depth 401 ft, cased to 396 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 80 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. PVC casing, at land-surface datum.

PERIOD OF RECORD.--January 1976, March to May 1977, February 1979 to current year (bimonthly). Records prior to 1979 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.70 ft below land-surface datum, May 21,1984; lowest measured, 34.30 ft below land-surface datum, July 29, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			MAY		
28 DEC	1005	32.46	24 JUL	0825	32.74
28 JAN	1045	31.70	26 SEP	1000	34.22
27 MAR	0935	31.51	22	0850	33.31
31	0950	29.98			

DUVAL COUNTY

WELL NUMBER. --301422081541203. Local Number DS-238. USGS Observation Well at Jacksonville, FL.

LOCATION.--Lat 30°14'22", long 81°54'12", in SW\sE\nE\sec.16, T.3 S., R.24 E., Hydrologic Unit 03080103, 220 ft south of Normandy Boulevard (State Highway 228), 0.8 mi west of main gate NAS Cecil Field in Jacksonville. Owner: Baptist Hospital.

AQUIFER. -- Limestone aquifer of the Miocene Age, Geologic Unit 122 LMSN.

WELL CHARACTERISTICS. -- Drilled, unused, nonartesian well, diameter 2 in., depth 101 ft, cased to 82 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 80 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. casing, at land-surface datum.

PERIOD OF RECORD.--March 1976 to May 1977, February 1979 to current year (bimonthly). Records prior to 1979 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.04 ft below land-surface datum, Sept. 25, 1979; lowest measured, 8.29 ft below land-surface datum, Jan. 26, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			MAY		
28 DEC	1010	6.51	24 JUL	0830	5.81
28 JAN	1050	5.45	26 SEP	1005	7.64
27 MAR	0940	3.88	22	0855	4.32
31	0955	3.57			

WELL NUMBER. --301522081331301. Local Number D-291. Humphries Mining Company Well at Jacksonville, FL.

LOCATION.--Lat 30°15'22", long 81°33'13", in NW\[\] sec.12, T.3 S., R.27 E., Hydrologic Unit 03080103, 2.2 mi south of U.S. Highway 90 (Beach Boulevard), and 200 ft east of Alternate U.S. Highway 1 in Jacksonville. Owner: Humphries Mining Company.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, diameter 12 in., depth 1,246 ft, cased to 520 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of iron plate at land-surface datum.

PERIOD OF RECORD.--February 1973 to current year (monthly). Records prior to 1976 are unpublished and available in the files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.87 ft below land-surface datum, Apr. 4, 1973; lowest measured, 18.73 ft below land-surface datum, June 28, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			APR		
28 NOV	1435	16.84	26 MAY	1050	16.35
23 DEC	1235	15.80	23 JUN	1650	17.95
29 JAN	1400	15.14	28 JUL	1445	18.73
26 FEB	0905	14.94	27 AUG	1235	18.22
26 MAR	1545	14.65	30 SEP	1510	17.37
30	1555	14.63	22	0830	16.53

DUVAL COUNTY

Well Number. --301537081441901. Local Number D-75. City of Jacksonville Confederate Point Well at Jacksonville, FL.

LOCATION.--Lat 30°15'37", long 81°44'19", in land grant 42, T.3 S., R.26 E., Hydrologic Unit 03080103, at water plant lot, 200 ft north of west end of Swamp Fox Road, in Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, observation, artesian well, diameter 12 in., depth 1,302 ft, cased to 488 ft.

WATER LEVEL RECORDS

INSTRUMENTATION, -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of concrete slab, 0.5 ft above land-surface datum.

PERIOD OF RECORD . -- October 1986 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.10 ft above land-surface datum, Mar. 26, 1987; lowest measured, 19.40 ft above land-surface datum, July 25, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD, -- Water years 1986 to current year.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DEPTH

	DATE	TIME	BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
	OCT 29 NOV	1400	-21.30	351	25.0	7.2	
	25 DEC	0935	-22,20				
	28 JAN	1015	-22.80			-	
	25	1310	-23.30	358	25.0	7.2	
	FEB 25	1415	-23.00			(
	MAR 31	0915	-23.90				
	APR 18	1025		365	26.0	7.2	
	26 MAY	1140	-23.00	7.22			
	26 JUN	1040	-21.10				
	29	1215	-19.60				
	JUL 25	1050	-19.40	367	26.0	7.9	
	AUG 29	1050	-19.90				
	SEP 21	0825	-20.50				
				*		A. 100	
DATE	TIME	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR	446.5	2750		5-2	52	5.2	2.2
18	1025	7.90	<5	170	40	16	6.3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR	7 "		02.000			,,/	/
18	1.9	106	65	0.50	18	230	3200

DUVAL COUNTY

WELL NUMBER. --301551081415701. Local Number D-129. K.A. Merrill Well at Jacksonville, FL.

LOCATION.--Lat 30°15'51", long 81°41'57", in land grant 42, T.3 S., R.26 E., Hydrologic Unit 03080103, 44 ft north of Merrill driveway, and 45 ft east of Ortega Boulevard in Jacksonville. Owner: K.A. Merrill.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 4 in., depth 600 ft, cased to 470 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 8.63 ft above National Geodetic Vertical Datum of 1929. Measuring point: 0.5 in. corporation cock, 1.20 ft above land-surface datum.

PERIOD OF RECORD.--July 1940 to April 1942, January to April 1944, August 1945 to September 1978 (semiannually); February 1979 to July 1980 (bimonthly); August 1980 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 50.93 ft NGVD, July 9, 1940; lowest measured, 20.53 ft NGVD, June 29, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1983 to current year.

ELEVATION AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
28 NOV	1130	25.23	410	22.0	26 MAY	1200	26.03		
25 DEC	0820	25.33			25 JUN	0925	21.83	445	22.0
28 JAN	0910	28.63			29 JUL	1035	20.53	400	23.0
27 FEB	0815	27.13	420	22.0	26 AUG	0830	23.23	410	22.5
25 MAR	0855	28.73	420	21.0	29 SEP	0940	22.73	400	22.5
31	0745	29.33	418	21.0	20	1400	24.73	428	23.0

DUVAL COUNTY

WELL NUMBER. --301552081234301. Local Number D-2707. City of Jacksonville Beach Well at Jacksonville Beach, FL.

LOCATION.--Lat 30°15'52", long 81°23'43", in SE\nE\nW\s sec. 9, T.3 S., R.29 E., Hydrologic Unit 03080103, well in pumphouse at 900 Seabreeze Avenue, 300 ft west of road in Jacksonville Beach. Owner: City of Jacksonville Beach.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 16 in., depth 900 ft, cased to 263 ft.

WATER LEVEL RECORDS

INSTRUMENTATION .-- Semiannual measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 16 in. flange, 4.1 ft above land-surface datum.

PERIOD OF RECORD. -- October 1985 to current year (semiannually).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.30 ft above land-surface datum, June 14, 1988; lowest measured, 3.51 ft above land-surface datum, May 12, 1986.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC									
15 JUN	0930	-9.10	518	8.50	22.0	<5	260	37	39
14	0945	-10.30	641	7.68	24.5	<5	290	62	33
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC	22			22	100	-2.2	- 2		
15 JUN	14	2.2	104	140	13	1.0	16	355	2000
14	13	2.2	126	180	15	0.80	23	444	2200

DUVAL COUNTY

WELL NUMBER. -- 301604081234601. Local Number D-2747. City of Jacksonville Beach Well at Jacksonville Beach, FL.

LOCATION.--Lat 30°16'04", long 81°23'46", in SE\sE\sW\ sec. 4, T.3 S., R.29 E., Hydrologic Unit 03080103, well at pumphouse, 560 ft west of Coastal Boulevard, and 150 ft south of Pullian Road in Jacksonville Beach. Owner: City of Jacksonville Beach.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 16 in., depth 900 ft, cased to 263 ft.

WATER LEVEL RECORDS

INSTRUMENTATION .-- Semiannual measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of spigot at well, 3.5 ft above land-surface datum.

PERIOD OF RECORD, -- June 1986 to current year (semiannually).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.30 ft above land-surface datum, Dec. 15, 1987; lowest measured, 7.10 ft above land-surface datum, June 14, 1988.

WATER-OUALITY RECORDS

PERIOD OF RECORD .-- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC	5500	2002	2.7.1	2.62			25.0		
15 JUN	0950	-9.30	644	7.70	24.5	<5	310	65	36
14	1030	-7.10	637	7.65	24.5	<5	300	62	34
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC 15 JUN	14	2.3	124	180	14	0.90	23	436	2300
14	13	2.3	125	180	13	0.70	22	436	2200

DUVAL COUNTY

WELL NUMBER. -- 301604081361501. Local Number D-450. City of Jacksonville Santa Monica Well at Jacksonville, FL.

LOCATION.--Lat 30°16'08", long 81°36'28", in land grant 56, T.3 S., R.27 E., Hydrologic Unit 03080103, at water treatment plant, 75 ft east of the end of J-Ray Circle, 1 block east of Interstate Highway 95. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation, artesian well, diameter 12 to 8 in., depth 1,304 ft, cased to 502 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM. -- Land-surface datum is 22 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of concrete slab, 0.5 ft above land-surface datum.

PERIOD OF RECORD, -- October 1986 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.90 ft above land-surface datum, Mar. 26, 1987; lowest measured, 12.70 ft above land-surface datum, June 29, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

SPE-

CIFIC

TEMPER-

CON-

CHLO-

RIDE,

DEPTH

BELOW LAND

SURFACE

	DATE	TIME	(WATER LEVEL) (FEET)	DUCT- ANCE (US/CM)	ATURE WATER (DEG C)	SOLVED (MG/L AS CL)	
	OCT 29 NOV	1500	-14.50	662	25.0	32	
	23 DEC	1345	-15.70				
	29 JAN	1145	-16,30	44	++	**	
	26 FEB	1110	-16.90	752	25.0	40	
	25	1430	-16.90	77			
	MAR 31	1320	-17.30			14-1	
	APR 18	0910	-15.70	715	26.5	51	
	MAY 23	1430	-13.90	44			
	JUN 29	0930	-12.70				
	JUL 25	0845	-13.00	758	26.5	65	
	29 SEP	1400	-13.50				
	19	1430	-14.60				
-	2.5	PH (STAND-	COLOR (PLAT- INUM-	HARD- NESS TOTAL (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED
DATE	TIME	ARD UNITS)	COBALT UNITS)	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)
APR							
18	0910	7.62	<5	330	78	31	20
	POTAS- SIUM, DIS-	ALKA- LINITY LAB	SULFATE DIS-	FLUO- RIDE, DIS-	SILICA, DIS-	SOLIDS, RESIDUE AT 180	STRON- TIUM,
DATE	SOLVED (MG/L AS K)	(MG/L AS CACO3)	SOLVED (MG/L AS SO4)	SOLVED (MG/L AS F)	SOLVED (MG/L AS SIO2)	DEG. C DIS- SOLVED (MG/L)	DIS- SOLVED (UG/L AS SR)
APR							
18	2.2	139	150	0.70	24	475	3500
	AND ARREST						

DUVAL COUNTY

WELL NUMBER. --301620081234201. Local Number D-3034. City of Jacksonville Beach Well at Jacksonville Beach, FL.

LOCATION.--Lat 30°16'20", long 81°23'42", in SE\SE\SU\sec. 4, T.3 S., R.29 E., Hydrologic Unit 03080103, well in pumphouse at 2771 Pullian Street in Jacksonville Beach. Owner: City of Jacksonville Beach.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 16 in., depth 900 ft, cased to 263 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Semiannual measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 16 in. flange, 4.05 ft above land-surface datum.

PERIOD OF RECORD. -- October 1985 to current year (semiannually).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.85 ft above land-surface datum, Dec. 16, 1986; lowest measured, 4.82 ft above land-surface datum, June 14, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC	200				-12. 15				
15 JUN	1015	-13.65	645	7.70	25.0	<5	310	65	36
14	1015	-4.82	617	8.06	22.0	<5	290	54	37
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC 15 JUN	14	2.2	125	190	14	0.70	23	431	2300
14	13	2.3	135	170	12	1.1	22	417	2000

DUVAL COUNTY

WELL NUMBER.--301639081330802. Local Number D-1155. City of Jacksonville Southside Estates Well at Jacksonville, FL.

LOCATION.--Lat 30°16'39", long 81°33'08", in SWkNEkNWk, sec. 1, T.3S., R.27 E., Hydrologic Unit 03080103, 0.35 mi east of Southside Boulevard, and 0.60 mi south of U.S. Highway 90 (Beach Boulevard) in pumphouse south of Anders Boulevard. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation, artesian well, diameter 10 in., depth 1,100 ft, cased to 500 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 50 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. casing, 1.76 ft above land-surface datum.

PERIOD OF RECORD. -- October 1986 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.75 ft below land-surface datum, Mar. 26, 1987; lowest measured, 17.20 ft below land-surface datum, June 28, 1988.

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DEDTH

	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL)	SPE- CIFIC CON- DUCT- ANCE	TEMPER- ATURE WATER	CHLO- RIDE, DIS- SOLVED (MG/L	
			(FEET)	(US/CM)	(DEG C)	AS CL)	
	OCT						
	30	1140	15.78	1020	26.0	130	
	23 DEC	1235	14.53				
	30 JAN	1445	14.00				
	26 FEB	1045	13.61	951	27.0	140	
	26 MAR	1600	13.43		: ++	++	
	30 APR	1610	13.25				
	20	1240		780	28.5	73	
	26 MAY	1100	14.83			75	
	23 JUN	1705	16.49	440			
	28 JUL	1500	17.20				
	27	1250	16.76			24	
	29 AUG	1015		988	28.0	110	
	30 SEP	1530	16.02				
	22	0855	15.14				
DATE	TIME	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR							
20	1240	7.71	<5	360	88	33	22
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
	777	/			/	(, 2)	,
APR 20	2.3	134	160	0.70	25	517	3800

DUVAL COUNTY

WELL NUMBER. --301648081431801. Local Number D-103. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°16'48", long 81°43'18", in land grant 59, T.2 S., R.26 E., Hydrologic Unit 03080103, well located in Lakeshore pumping station at intersection of Hamilton and Appleton Streets, 0.1 mi south of intersection of San Juan Avenue and Roosevelt Boulevard in Lakeshore area of Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 12 in., depth 1,332 ft, casing length unknown.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968-76, 1983 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CI	PH - (STA AR	ND- D	TEMPE ATUR WATE (DEG	ER	COLO (PLA INUM COBA UNIT	R NE T- TO - (M LT A	TAL G/L	CALC: DIS- SOL' (MG AS (TUM VED S	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	ED
OCT 29 JAN	1430	4	82		27	.0								
26 APR	1240	5	05		27	.0								
18 JUL	1045	4	60 7	. 83	27	.0		<5	210	48		22	8	3.1
25	1030	4	74		27	.0		-6				44		
DATI	S(OTAS- SIUM, DIS- OLVED MG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	DIS	LVED G/L	CHL RID DIS SOL (MG AS	E, VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SC (M	ICA, S- DLVED IG/L S (O2)	SOLIDS RESID AT 186 DEG. DIS SOLV (MG/)	UÉ S O C - S ED (TRON- TIUM, DIS- OLVED UG/L S SR)	
OCT 29 JAN						11				22				
26 APR						9	. 4				1			
18 JUL		2.1	116	110	0	9	. 5	0.50	2	0.0	3	02	3800	
25		77				9	.6				-			

DUVAL COUNTY

WELL NUMBER. -- 301657081233301. Local Number D-483. City of Jacksonville Beach Well at Jacksonville Beach, FL.

LOCATION.--Lat 30°16'57", long 81°23'33", in SE\sE\sE\sW\s Sec. 33, T.2 S., R.29 E., Hydrologic Unit 03080201, well located in manhole, 10 ft northwest of intersection of 6th Avenue South and 4th Street South in Jacksonville Beach. Owner: City of Jacksonville Beach.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 12 in., depth 1,200 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION .-- Semiannual measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 8 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 12 in. flange, 1.0 ft below land-surface datum.

PERIOD OF RECORD. -- May 1974, May 1975 (annually); October 1986 to current year (semiannually).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 33.20 ft above land-surface datum, Dec. 16, 1986; lowest measured, 27.40 ft above land-surface datum, June 16, 1986.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974-75, 1979, 1981, 1983, October 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC									
15 JUN	0900	-29.20	827	7.60	28.0	<5	340	77	35
14	0920	-27.50	832	7.68	28.5	<5	320	74	33
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC 15	39	2.2	148	140	86	0.80	28	522	2400
JUN 14	39	2.3	149	130	94	0.50	28	532	2300

DUVAL COUNTY

WELL NUMBER. --301704081233401. Local Humber D-484. City of Jacksonville Beach Well at Jacksonville Beach, FL.

LOCATION.--Lat 30°17'04", long 81°23'34", in NE\SE\SW\sec. 33, T.2 S., R.29 E., Hydrologic Unit 03080201, well in manhole 25 ft northwest of intersection of 4th Avenue South and 4th Street South in Jacksonville Beach.

Owner: City of Jacksonville Beach.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 12 in., depth 1,181 ft, cased to 357 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Semiannual measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 8.0 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 12 in. flange, 1.15 ft below land-surface datum.

PERIOD OF RECORD. -- May 1974 to May 1977 (annually); October 1985 to current year (semiannually) incomplete.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.90 ft above land-surface datum, May 7, 1974; lowest measured, 26.10 ft above land-surface datum, May 3, 1977.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974-76, 1979-81, 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC									
15 JUN	0850	-31.05	1150	7.50	28.0	<5	410	95	42
14	0900	-29.15	1160	7.38	28.5	<5	390	90	40
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC 15 JUN	71	2.6	147	150	180	0.70	30	691	2500
14	71,	2.6	146	140	190	0.60	30	716	2400

DUVAL COUNTY

WELL NUMBER. -- 301716081234301. Local Number D-482. City of Jacksonville Beach Well at Jacksonville Beach, FL.

LOCATION.--Lat 30°17'16", long 81°23'43", in NW\xNE\xSW\x Sec. 33, T.2 S., R.29 E., Hydrologic Unit 03080201, well in manhole 25 ft northeast of intersection of 6th Street south and Shetter Avenue in Jacksonville Beach.

Owner: City of Jacksonville Beach.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 12 in., depth 1,200 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Semiannual measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 11.0 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 12 in. flange, 1.5 ft below land-surface datum.

PERIOD OF RECORD. -- May 1974 and July 1975 (annually); June 1986 to current year (semiannually).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.60 ft above land-surface datum, Dec. 16, 1986; lowest measured, 17.30 ft above land-surface datum, May 8, 1973.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974, 1975, 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
2163	37 23	200				25.20		
0830	-24.70	726	7.60	27.0	<5	300	66	33
0840	-23.50	661	7.93	.27.0	<5	290	63	31
SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
21	2.1	146	140	36	0.80	27	438	2300
21	2.2	146	140	37	0.70	27	462	2300
	0830 0840 SODIUM, DIS- SOLVED (MG/L AS NA)	BELOW LAND SURFACE (WATER TIME LEVEL) (FEET) 0830 -24.70 0840 -23.50 POTAS-SODIUM, DIS-SOLVED SOLVED (MG/L (MG/L AS NA) AS K) 21 2.1	BELOW CIFIC SURFACE CON- (WATER DUCT- LEVEL) ANCE (FEET) (US/CM) 0830 -24.70 726 0840 -23.50 661 POTAS- SODIUM, DIS- SOLVED SOLVED (MG/L (MG/L AS NA) AS K) CACO3) 21 2.1 146	BELOW SPE- LAND CIFIC SURFACE CON- (WATER DUCT- (WATER DUCT- (STAND- ARD (FEET) (US/CM) UNITS) 0830 -24.70 726 7.60 0840 -23.50 661 7.93 POTAS- SODIUM, SIUM, LINITY SULFATE DIS- SOLVED SOLVED (MG/L SOLVED (MG/L (MG/L AS NA) AS K) CACO3) AS SO4) 21 2.1 146 140	BELOW SPE	BELOW SPE- LAND CIFIC SURFACE CON- PH TEMPER- (PLAT- (WATER DUCT- (STAND- ATURE INUM- (FEET) (US/CM) UNITS) (DEG C) UNITS)	BELOW SPE- LAND CIFIC SURFACE CON- COLOR NESS COLOR COLOR	BELOW SPE- LAND CIFIC SURFACE CON- PH TEMPER- (PLAT- TOTAL DIS- CMATER DUCT- (STAND- ATURE INUM- (MG/L SOLVED CFET) (US/CM) UNITS) (DEG C) UNITS) CACO3) AS CA)

DUVAL COUNTY

WELL NUMBER. -- 301725081584501. Local Number D-254. Seaboard Coastline Well at Baldwin, FL.

LOCATION.--Lat 30°17'25", long 81°58'45", in NE\sW\sw\sw. sec.26, T.2 S., R.23 E., Hydrologic Unit 03080103, 0.5 mi east of U.S. Highway 301, and 0.4 mi north of Interstate Highway 10 on property of Seaboard Railroad in Baldwin. Owner: Seaboard Coastline Railroad.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, industrial, artesian well, diameter 8 in., depth 750 ft, cased to 433 ft.

INSTRUMENTATION . -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 85 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: 1.25 in. tap in pump base, 1.80 ft above land-surface datum.

PERIOD OF RECORD.--January 1961 to May 1962, May 1964 to September 1978 (annually); February 1979 to March 1983 (periodic); May 1983 to current year (monthly). Records prior to May 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.25 ft below land-surface datum, Jan. 11, 1961; lowest measured, 36.53 ft below land-surface datum, July 1, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			APR		
28 NOV	0815	33.97	27 MAY	0955	32.23
25 DEC	1010	33.76	26 JUN	1005	33.34
28	1115	33.55	29	1400	34.65
JAN 27	1005	33.70	JUL 26	1030	35.30
FEB 25	1335	33.06	AUG 29	1130	35.13
MAR 31	1020	31,71	SEP 21	0900	34.34

DUVAL COUNTY

WELL NUMBER. --301740081361001. Local Number D-275. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°17'40", long 81°36'10", in land grant 52, T.2 S., R.27 E., Hydrologic Unit 03080103, well located 0.15 mi North and 300 ft west of intersection of U.S. Highway 90 (Beach Boulevard) and University Boulevard in Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 18 in., depth 1,234 ft, cased to 515 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1973-80, 1983 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT					JUL				
28 NOV	0920	1090	27.0	160	26 AUG	1400	1060	28.0	160
24	0915	1020	26.0	170	30	1115	1070	28.5	160
MAY 25	1405	1050	28.5	170	SEP 22	1205	1000	28.0	170
JUN	1403	1050	20.5	170	22	1203	1000	20.0	170
28	1320	1060	28.0	160					

WELL NUMBER. -- 301743081304701. Local Number D-224. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°17'43", long 81°30'47", in SW\SW\SE\Sec. 29, T.2 S., R.28 E., Hydrologic Unit 03080103, well located at Sandalwood High School at intersection of Saints and John Prom Roads, 0.15 mi west of Oakridge Pumping Station in Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System; Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 12 in., depth 1,179 ft, cased to 423 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1973-78, 1983 to current year.

	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
0	CT		-	44.45					
J	28 AN	1030	650	29.0	7				
	25 PR	0955	704	26.0					+=
J	19 UL	1200	650	25.0	<5	300	69	29	16
	26	1320	655	25.5					
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
0	CT								
J	28 AN				31		75		
A	25 PR		1.55		32			- 22	-44
J	19 UL	2.0	139	150	32	0.70	25	443	2900
	26			44	32				44

DUVAL COUNTY

WELL NUMBER. --301743081362301. Local Number D-225. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°17'43", long 81°36'23", in land grant 52, T.2 S., R.27 E., Hydrologic Unit 03080103, well located in pumphouse at Love Grove Water Plant at the end of Wilman Way, 600 ft north of Beach Boulevard, 0.4 mi east of intersection of Wilman Way and Spring Glen Road in Jacksonville. Owner: City of Jacksonville.

AQUIFER. --Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 18 in., depth 1,277 ft, cased to 547 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1973-75, 1978-80, 1982 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT					APR				
28 NOV	0910	1050	27.5	140	19 MAY	0910	705	25.5	46
24 DEC	0900	1100	28.0	170	25 JUN	1420	725	27.0	54
29 JAN	0845	760	24.0	42	28 JUL	1345	857	27.5	90
26 FEB	0830	787	24.0	59	26 AUG	1325	794	29.0	70
25 MAR	0930	1140	25.0	160	30 SEP	1110	1100	28.0	170
31	0755	724	25.0	50	22	1230	842	28.0	86

WELL NUMBER. -- 301744081363301. Local Number D-2193. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°17'44", long 81°36'63", in NE\SE\NW\x sec. 52, T.2 S., R.27 E., Hydrologic Unit 03080103, well located in pumphouse 85 ft south of Wilman Way, 165 ft northeast of intersection of Beach Boulevard and Spring Glen Road in Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 18 in., depth 1,304 ft, cased to 550 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1979, 1982 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT						APR				
28 NOV	0900	962	28.0	120		19 MAY	0800	925	28.5	120
24 DEC	0850	946	28.5	130		25 JUN	1410	925	29.0	120
29 JAN	0835	970	28.0	120	1-4	28 JUL	1330	864	27.0	96
26 FEB	0815	965	27.5	120		26 AUG	1420	948	29.0	120
25 MAR	0920	982	28.0	110		30 SEP	1100	971	29.0	130
31	0745	965	27.0	130		22	1225	908	29.0	120

DUVAL COUNTY

WELL NUMBER. --301752081360501. Local Number D-649. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°17'52", long 81°36'05", in land grant 52, T.2 S., R.27 E., Hydrologic Unit 03080103, well located 50 ft east and 150 ft north of Hart Toll Bridge on-ramp on University Boulevard, 4.0 mi north of intersection of Beach and University Boulevards in Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 18 in., depth 1,005 ft, cased to 534 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974, 1975, 1979, 1982 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DA	TE	TIME (SPE- CIFIC CON- DUCT- ANCE US/CM)	TEMP ATU WAT (DEG	ER- DI RE SO ER (N	HLO- IDE, IS- DLVED MG/L S CL)	
	OCT 28		0930	655	2	5.0	20	
	NOV	•	0000	033	-	3.0		
	24 DEC		0925	658	2	6.0	20	
	29 JAN		0905	650	2	5.5	19	
	26		0840	680	2	5.0	20	
	FEB 25		0945	718	2	5.0	19	
	MAR 31		0805	678	2	5.0 2	20	
	APR 19		0830	630	2	6.0	20	
	MAY							
	25 JUN		1400	624	2	6.5	21	
	28 JUL		1200	638	2	6.0	20	
	26		1405	636	2	6.0	20	
	AUG 30		1125	609	2	6.0	20	
	SEP 22		1215	603	2	7.0	20	
DATE	TIME	PH (STAND- ARD	COLOR (PLAT INUM- COBAL	TOT (MG	S AL /L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L
		UNITS)	UNITS	CAC	03)	AS CA)	AS MG)	AS NA)
APR								
19	0830	7.60	<	:5	290	69	28	13
				100				
	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY LAB (MG/L	SULFAT DIS- SOLVE	DI		SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS-	STRON- TIUM, DIS- SOLVED
DATE	(MG/L AS K)	AS CACO3)	(MG/L	(MG	/L	AS SIO2)	SOLVED (MG/L)	(UG/L AS SR)
APR								
19	2.0	134	160	0	.80	24	435	3300

DUVAL COUNTY

WELL NUMBER. --301758081303901. Local Number D-665. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°17'58", long 81°30'39", in SE\n\w\sets\sec. 29, T.2 S., R.28 E., Hydrologic Unit 03080103, well located at School for Exceptional Children, 11770 Alden Road, 0.9 mi east of intersection of Alden and St. Johns Bluff Roads in Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 18 in., depth 1,185 ft, cased to 422 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1984 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

SOT TOS

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT	2272	1212							
28 JAN	1040	1340		26.0					
25 APR	0945	1360		26.0					
19 JUL	1245	1280	7.50	26.0	<5	430	100	42	90
26	1330	1340		26.5					

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT								
28				240				
JAN 25				230				- 22
APR				230				
19	2.5	138	160	230	0.70	27	817	2700
JUL 26				230				12

DUVAL COUNTY

WELL NUMBER. --301801081384302. Local Number D-54A. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°18'02", long 81°38'43", in land grant 47, T.2 S., R.26 E., Hydrologic Unit 03080103, well located at River Oaks Water Treatment Plant, at intersection of Trinity and Mitchell Place, 0.15 mi west of U.S. Highway 1, in River Oaks area of Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 10 in., depth 1,348 ft, cased to 505 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-61, 1969-78, 1983 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	INUM	T- TOT - (MG LT AS	S CALC CAL DIS G/L SOL G (MG	- DIS	JM, SODIUM, S- DIS- VED SOLVED /L (MG/L
OCT 28 JAN	0745	712		27.)				
25	0820	718		27.)				
APR 18 JUL	0800	630	7.57	27.	5	<5	310 71	30	11
25	0915	656	199	27.	5				
DATE	SC (N	SIUM, LIN DIS- I DLVED (N MG/L	AB D	LFATE I IS- I OLVED I MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT 28 JAN 25			-		13 13	177	2		
APR 18 JUL		2.3 127	1	80	13	0.60	22	444	4100
25					13			()	

DIIVAL COUNTY

WELL NUMBER, --301817081374901. Local Number D-425 Top Zone. USGS Well at Jacksonville, FL.

LOCATION.--Lat 30°18'17", long 81°37'49", in land grant 55, T.2 S., R.27 E., Hydrologic Unit 03080103, 300 ft south of State Highway 10 (Atlantic Boulevard), and 450 ft north of U.S. Highway 90 (Beach Boulevard) in Jacksonville. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 8 in., depth 2,486 ft, cased to 752 ft.

WATER LEVEL RECORDS

INSTRUMENTATION . -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 8 in. casing, 2.00 ft above land-surface datum.

REMARKS.--Multiple completion packers set at 750 and 2,050 ft. This well monitors the zone between 750 and 2,050 ft.

PERIOD OF RECORD. -- September 1966 to current year (monthly). Records prior to 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.40 ft above land-surface datum, Oct. 19, 1966; lowest measured, 10.20 ft above land-surface datum, June 30, 1988.

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1966 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DATE	TIME	LEV	OW D ACE TER	SPE- CIFIC CON- DUCT- ANCE (US/CM	TEME ATU WAT (DEG	RE ER	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D	
OCT										
2 NOV	9	0720	-12	.40	603	3 2	9.0	15		
	3	0825	-13	.60		-		-	-,	
	8	1320	-14	.70	-			-	-	
2	6	0755	-15	.60	688	3 2	9.0	15		
FEB 2 MAR	5	0840	-15	.40		2		-	-9	
	1	0730	-15	.40				-	4	
	2	0715	-14	.60	580	2	9.0	16		
2	4	0805	-11	.60	-			-	- 1	
JUN 3 JUL	0	0700	-10	.20				, .	- 1	
2	6	0810	-10	.60	58	9 3	80.0	14		
	9	0935	-11	.00	4				-	
SEP 2	1	1410	-12	. 20		-	55	-	-	
DATE	TIME	PH (STAND ARD UNITS)	- INU	AT-	HARD- NESS TOTAL (MG/L AS CACO3	(MC		MAGNE SIUM DIS- SOLVE (MG/L AS MG	DIS- DIS- D SOLVE (MG)	ED /L
APR 22	0715	7.8	9	<5	28	0 69	9	26	12	
DAT	LIN I (N E	AB MG/L AS	ULFATE DIS- SOLVED (MG/L S SO4)	SOI	DE, I IS- I VED 5/L	ILICA, DIS- SOLVED (MG/L AS SIO2)	SOI	DUÉ 180 3. C IS- VED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
APR 22	137		140	(.60	24		387	3200	

DUVAL COUNTY

WELL NUMBER. -- 301817081374902. Local Number D-425 Bottom Zone. USGS Well at Jacksonville, FL.

LOCATION.--Lat 30°18'17", long 81°37'49", in land grant 55, T.2 S., R.27 E., Hydrologic Unit 03080103, 300 ft south of State Highway 10 (Atlantic Boulevard), and 450 ft north of U.S. Highway 90 (Beach Boulevard) in Jacksonville. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 8 in., depth 2,486 ft, cased to 752 ft.

WATER LEVEL RECORDS

INSTRUMENTATION .-- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 8 in. casing, 2.00 ft above land-surface datum.

REMARKS.--Multiple completion packers set at 750 and 2,050 ft. This well monitors the zone between 2,050 and 2,486 ft.

PERIOD OF RECORD.--September 1966 to current year (monthly). Records prior to 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 27.80 ft above land-surface datum, Dec. 19, 1966; lowest measured, 13.80 ft above land-surface datum, June 30, 1988.

WATER-OUALITY RECORDS

PERIOD OF RECORD .-- Water years 1966 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
	OCT						
	29 NOV	0730	-15.00	1530	29.0	59	
	23 DEC	0830	-16.40				
	28 JAN	1325	-17.70	- -			
	26 FEB	0745	-18.00	1880	28.0	78	
	25 MAR	0845	-18.20				
	31 APR	0735	-18.80				
	22 MAY	0740	-17.20	1570	29.0	75	
	24 JUN	0815	-15.80				
	30 JUL	0705	-13.80				
	26 AUG	0805	-14.10	1640	29.5	76	
~	29 SEP	0930	-14.40		1 77		
	21	1415	-15.20		20		
DATE	TIME	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR	2014			100	24.3		
22	0740	7.78	<5	820	240	52	50
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR			700		9.5	2202	7100
22	4.1	111	700	0.90	25	1330	7400

DUVAL COUNTY

WELL NUMBER. --301839081392101. Local Number D-198. City of Jacksonville Well at Jacksonville, FL.

LOCATION. -- Lat 30°18'39", long 81°39'21", in land grant 44, T.2 S., R.26 E., Hydrologic Unit 03080103, well located in Hendricks Avenue pumping station, 50 ft north of intersection of Cedar Street and Naldo Avenue, in Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 12 in., depth 1,297 ft, casing length unknown.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974-77, 1983 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 28 JAN	0755	580		26.0				
25	0830	612		29.0		4.5	144	44
APR 18 JUL	0830	560	7.58	28.0	270	64	25	11
25	0930	587	32	29.0				
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT								
28 JAN	77	7.7		15			7.0	77
25 APR				15				
18 JUL	2.0	1320	140	14	0.70	23	388	3600
25				13				

DUVAL COUNTY

WELL NUMBER, --301844081403801. Local Number D-18. Riverside Avenue and Lomax Street at Jacksonville, FL.

LOCATION.--Lat 30°18'44", long 81°40'38", in land grant 56, T.2 S., R.26 E., Hydrologic Unit 03080103, 350 ft east of Riverside Avenue and 70 ft north of Lomax Street in Jacksonville. Owner: Unknown.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 8 in., depth and casing length unknown.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 4.48 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 8 in. tee, 1.90 ft above land-surface datum.

PERIOD OF RECORD.--November 1938, July 1940 to May 1941, May 1946 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.68 ft NGVD, Nov. 26, 1968; lowest measured, 22.48 ft NGVD, June 29, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
28	1155	26.68	26	1215	27.98
NOV			MAY		
25	0800	28.68	25	0840	24.48
DEC			JUN		
28	0855	29.48	29	1015	22.48
JAN			JUL		
27	0800	28.68	26	0810	24.38
FEB			AUG		
25	0835	30.18	29	0920	25.28
MAR			SEP		
31	0725	30.08	20	1430	25.58

DUVAL COUNTY

WELL NUMBER. --301846081240201. Local Number D-246. Neptune Beach Park Well at Neptune Beach, FL.

LOCATION.--Lat 30°18'52", long 81°24'02", in NW\SE\SW\sec.21, T.2 S., R.29 E., Hydrologic Unit 03080201, 25 ft north of Florida Boulevard and 0.2 mi west of State Highway AlA. Owner: City of Neptune Beach.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 12 in., depth 1,212 ft, cased to 388 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 14 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 9 in. flange, 5.20 ft above land-surface datum.

PERIOD OF RECORD. -- May 1977 to May 1986 (semiannually); July 1986 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.50 ft above land-surface datum, May 17, 1983; lowest measured, 18.30 ft above land-surface datum, May 2, 1978.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1983 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY				
07 DEC	1720	-19.70	650	26.5	23 JUN	0720	-19.10	600	26.5
02 JAN	1645	-19.70	600	26.0	24 AUG	1710	-19.50	635	26.5
13 MAR	1725	-19.90	605	26.5	23 SEP	1605	-19.30	620	26.5
11	1705	-19.90	600	26.5	19	0745	-19.50	615	26.5

DUVAL COUNTY

WELL NUMBER. --301852081234201. Local Number D-160. City of Neptune Beach Well at Neptune Beach, FL.

LOCATION.--Lat 30°18'52", long 81°23'42", in NW\SW\SE\sec.21, T.2 S., R.29 E., Hydrologic Unit 03080103, 20 ft south of Florida Avenue, 70 ft east of Third Street in Neptune Beach. Owner: City of Neptune Beach.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, diameter 8 in., depth 585 ft, cased to 357 ft.

INSTRUMENTATION .-- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 12.05 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 8 in. tee, 0.50 ft below land-surface datum.

PERIOD OF RECORD.--June 1934, October 1939, September 1940 to February 1942, January 1944 to April 1980 (bimonthly); May 1980 to current year (monthly). Records prior to 1936 are unpublished and available in the files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.75 ft NGVD, June 15, 1934; lowest measured, 24.75 ft NGVD, July 27, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

ATION ABOVE DATE TIME NGVD (FEET)	TIME	ABOVE NGVD (FEET)
OCT APR		
28 0835 28.65 27	0930	25.75
NOV		
23 0900 30.75 23	0735	26.05
DEC JUN		
29 0915 30.05 28	1045	25.55
JAN JUL		
26 1355 31.35 27	1240	24.75
FEB AUG		
26 0955 31.15 30	1215	28.55
MAR SEP		
31 0705 30.85 19	0910	28.55

WELL NUMBER. -- 301900081342801. Local Number D-94. Jerry Jarvis Well at Arlington, FL.

LOCATION.--Lat 30°19'07", long 81°34'54", in land grant 52, T.2 S., R.27 E., Hydrologic Unit 03080103, at residence of Jerry Jarvis, 453 Arlington Road, 500 ft south of Strawberry Creek in Arlington. Owner: Jerry Jarvis.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 2 in., depth 635 ft, cased to 520 ft.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 24.09 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. tee, 2.50 ft above land-surface datum.

PERIOD OF RECORD. -- May 1977 to September 1980 (semiannually); May 1981 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.99 ft NGVD, Apr. 27, 1983, Jan. 27, Feb. 29, 1984; lowest measured, 27.59 ft NGVD, July 16, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAR		
28	1310	28.99	31	0820	32.39
NOV			APR		
24	0940	30.59	27	1020	30.39
DEC			MAY		
29	0935	31.01	23	1315	28.39
JAN			AUG		
25	1030	31.59	29	0815	27.91
FEB			SEP		
25	1000	31.79	19	1200	29.79

DUVAL COUNTY

WELL NUMBER. -- 301907081420901. Local Number D-241. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°19'07", long 81°42'09", in SEXNWXNEX sec.21, T.2 S., R.26 E., Hydrologic Unit 03080103, well located in 2900 block of Rosselle Street, 2 blocks east of intersection of McDuff Avenue and Rosselle Street, in Riverside area of Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 18 in., depth 1,324 ft, cased to 594 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974-78, 1983 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
28 JAN	1430	592		29.0	-		(E)	77	77
25 APR	1240	581	**	29.0	3 ==		-2		
18 JUL	1110	560	7.60	29.5	<5	270	64	25	10
25	1110	573		29.0					

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT	22	1	- 2	13	1	-		
JAN				13				
25 APR				13	*-		49	1.44
18 JUL	2.0	128	140	12	0.70	22	386	3300
25				13				

DUVAL COUNTY

WELL NUMBER. -- 301957081342301. Local Number D-313. Jacksonville Suburban Utilities Well at Jacksonville, FL.

LOCATION.--Lat 30°19'57", long 81°34'23", in land grant 52, T.2 S., R.26 E., Hydrologic Unit 03080103, well located at Alderman Park pumping station on Carlotta Road North, 1 block east of intersection of Townsend Boulevard and Carlotta Road North, in Alderman Park area of Jacksonville. Owner: Jacksonville Suburban Utilities.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 8 in., depth 1,150 ft, cased to 576 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- Water years 1974 to current year.

WATER-OUALITY	DATA	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
28	1015	702		26.0					
JAN									
26	0900	794		27.0					
APR									
19	0930	720	7.60	27.5	<5	290	71	28	27
JUL									
26	1345	558		28.0					
							SOL	IDS.	

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT								
28				54				
JAN				7.				
26 APR		N		74			77	
19 JUL	1.8	144	110	72	0.60	27	454	2000
26			757	16		(77	22	100

DUVAL COUNTY

WELL NUMBER. -- 302007081353201. Local Number D-479. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°20'07", long 81°35'32", in land grant 52, T.2 S., R.27 E., Hydrologic Unit 03080103, well located at Arlington Lions Club, at intersection of Commerce Avenue and Sprinkle Drive in Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 18 in., depth 1,350 ft, cased to 606 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974-79, 1983 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
28	1000	740		28.0	1				
JAN									
25	1020	796		28.0			144		
APR									
18 JUL	1440	700	7.60	28.0	<5	300	73	28	24
26	1110	710		28.0					
							SOL	IDS,	
		OTAS- ALI	KA- ITY SUL	FATE RI	DE, RI	DE, DI		180 1	TRON-

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT								
28		1		63				
JAN				24				
25 APR			-	67				
18	1.8	143	110	64	0.50	27	447	2200
JUL	-					-		
26			77	65		95		

DUVAL COUNTY

WELL NUMBER. -- 302013081353801. Local Number D-673. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°20'13", long 81°35'38", in land grant 52, T.2 S., R.27 E., Hydrologic Unit 03080103, well located inside pumphouse at 1595 Maitland Street, 0.25 mi north of intersection of Arlington Road and Maitland Street, in Arlington area of Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, public supply, artesian well, diameter 18 in., depth 814 ft, cased to 578 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975, 1977-80, 1983 to current year.

	DA	TE	TIME (SPE- CIFIC CON- DUCT- ANCE (US/CM)	AT WA	PER- CURE TER CG C)	CHLC RIDE DIS- SOLV (MG/ AS C	E, TED L	
	OCT 28		0950	785		28.0	68		
	NOV		0955	760			70		
	DEC 24					28.0			
	29 JAN	•	0920	777		28.0	70		
	25		1030	770		28.0	71		
	FEB 25		1010			28.0	70		
	MAR 31		0840	755		27.0	70		
	APR 18		1500	715		28.5	71		
	MAY 24		1400	732		28.0	74		
	JUN								
	28 JUL		1215	750		28.0	. 75		
	26 AUG		1100	751		28.0	74		
	30 SEP		1135	740		28.0	73		
	22		1130	756		28.0	75		
DATE	TIME	PH (STAND- ARD UNITS)	COLOR (PLAT INUM- COBAL UNITS	TOT (MG	S AL /L	CALCIU DIS- SOLVE (MG/I AS CA	ED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR									
18	1500	7.62	. <	×5	310	75		29	22
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFAT DIS- SOLVE (MG/I AS SO4	DI SD SOL	E, S- VED	SILICA DIS- SOLVE (MG/I AS SIO2)	A, F ED	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR									
18	1.8	141	120	0	.60	27		463	2300

DUVAL COUNTY

WELL NUMBER. -- 302015081384501. Local Number D-335. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°20'15", long 81°38'45", in land grant 37, T.2 S., R.26 E., Hydrologic Unit 03080103, well located at rear of Robert Kennedy Community Center, 1133 Ionia Street, near intersection of 2nd and Clark Streets, in Springfield area of Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public-supply, artesian well, diameter 12 in., depth 1,286 ft, cased to 531 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1966, 1969-79, 1984 to current year.

DATE	TIME	SPE CIF CON DUC ANC	IC I- IT- IE	PH (STA AR UNIT	ND- D	TEMPI ATUI WATI	RE ER	COLO (PL INUI COB UNI:	AT- M- ALT	HAR NES TOT (MG AS	S AL /L	(MG	- VED	MAGN SIU DIS SOLV (MG/ AS N	IM, S- VED 'L	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 18	1145		525	7	. 60	21	8.5		<5		250	61		22		12
JUL	114.	,	323	,	. 00	20	0.5		-3		250	01		22		12
26	1030)	517			29	9.0									
DAT	'E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LIN L (M	AB G/L	DI SO (M	FATE S- LVED G/L SO4)	(MG	E, - VED		E, S- VED	DI SO (M A	ICA, S- LVED G/L S	SOI	DUÉ	DI SOI (UC	RON- IUM, IS- LVED G/L SR)
APR 18 JUL		1.7	144		10	0	16		C	.70	2	7		355	2	2200
26							16									

DUVAL COUNTY

WELL NUMBER. -- 302022081393501. Local Number D-176. City of Jacksonville Main Street Well at Jacksonville, FL.

LOCATION.--Lat 30°20'22", long 81°39'35", in land grant 37, T.2 S., R.26 E., Hydrologic Unit 03080103, at pumphouse next to Hogan Creek Bridge, 50 ft west of intersection of Pearl and 3rd Streets. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation, artesian well, diameter 10 in., depth 1,283 ft, cased to

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 3.0 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of concrete slab, 0.5 ft above land-surface datum.

PERIOD OF RECORD. -- October 1986 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.70 ft above land-surface datum, Dec. 30, 1986, Feb. 25, 1987; lowest measured, 20.30 ft above land-surface datum, June 29, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	HARD- NESS TOTAL (MG/L AS CACO3)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT							
29 NOV	0800	-20.50	23.50	627	25.0	44	13
23 DEC	1050	-23.70	26.70		1.50		
29 JAN	1110	-22.30	25.30			85	124
25 FEB	1130	-25.70	28.70	662	25.0	-55	13
25 MAR	1050	-25.10	28.10	- 75			
31 APR	1240	-26.30	29.30			300	25
18 MAY	1130	-21.70	24.70				
23 JUN	1005	-24.30	27.30		94		77
29 JUL	1005	-20.30	23.30			199	1,55
26 AUG	1040	-24.40	27.40	633	27.0		12
29 SEP	1340	-25.90	28.90				
19	1040	-23.70	26.70				

Note. -- Negative figures indicate water above land surface.

DUVAL COUNTY

WELL NUMBER. -- 302130081411802. Local Number D-46A. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°21'30", long 81°41'18", in land grant 35, T.2 S., R.26 E., Hydrologic Unit 03080103, well located at intersection of Fairfax and 25th Streets, in Moncrief Park area of Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 10 in., depth 1,234 ft, cased to 530 ft.

REMARKS.--Well originally drilled to 1,064 ft in 1939, later drilled to 1,234 ft in 1963.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1941, 1964, 1969-81, 1986 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

SOLIDS.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
28	1350	574	77	27.0					
JAN									
25	1140	642		27.0					
APR									
18	1200	550	7.60	27.0	<5	260	64	23	11
JUL									
25	1230	545		27.0	()				1022

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT								
28				16				
JAN								
25				14				
APR								
18	1.7	137	120	9.2	0.70	24	378	2500
JUL								
25				14				

DUVAL COUNTY

WELL NUMBER. -- 302236081401501. Local Number D-336. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°22'36", long 81°40'15", in land grant 50, T.1 S., R.26 E., Hydrologic Unit 03080103, well located at 1025 Kenmore Street, 0.4 mi west of Norwood Avenue, and 0.4 mi southeast of intersection of Norwood Avenue and Interstate Highway 95 in Jacksonville. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter unknown, depth 1,303 ft, cased to 520 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975, 1978 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/C	PH STA AR	ND- D	TEMPE ATUR WATE (DEG	R- E R	COLOR (PLAT- INUM- COBALT UNITS)	HARD NESS TOTA (MG/ AS CACO	L DIS L SOL (MG	IUM S - D VED SO /L (M	GNE- IUM, IS- LVED G/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 29 JAN	1130	4:	30	==	28	.0				-	=	
25	1220	5	32		28	.0					'	
APR 18 JUL	1245	4	35 7	.70	27	. 5	<5	2	20 54	2	1	11
25	1245	4	91		27	.0						
DATE	S(OTAS- SIUM, 1 DIS- OLVED MG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	DI SO (M	FATE S- LVED G/L SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	, RI D ED SC L (M	UO- DE, DIS- DLVED G/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DI SOI (UC	RON- IUM, IS- LVED G/L SR)
OCT 29 JAN			-			14				42		14
25 APR 18		1.5	143		4	15	•	0.70				
JUL 25		1.5		8		9. 14		0.70	26	315		

DUVAL COUNTY

WELL NUMBER. -- 302227081435001. Local Number D-592. City of Jacksonville Lincoln Estates Well at Jacksonville, FL.

LOCATION.--Lat 30°22'27", long 81°43'50", in land grant 39, T.1 S., R.26 E., Hydrologic Unit 03080103, at water treatment plant, on south side of Kinlock Drive South, 0.3 mile west of U.S. Highway 1. Owner: City of Jacksonville.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, observation, artesian well, diameter 16 to 10 in., depth 1,326 ft, cased to 528 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of concrete slab, 0.5 ft above land-surface datum.

PERIOD OF RECORD. -- October 1986 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 31.90 ft above land-surface datum, Mar. 26, 1987; lowest measured, 26.20 ft above land-surface datum, July 25, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

SPE-

CIFIC

CHLO-

RIDE.

DEPTH

BELOW

	DATE	TIME	LAND SURFACE (WATER LEVEL) (FEET)	CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	RIDE, DIS- SOLVED (MG/L AS CL)	
	OCT						
	29	1220	-27.70	550	24.0	12	
	23 DEC	1020	-28.30				
	29 JAN	1050	-28.80				
	25 FEB	1200	-29.00	627	25.0	12	
	25 MAR	1350	-29.30				
	31 APR	1215	-30.10				
	18 MAY	1230	-29.70	575	26.0	12	
	23 JUN	0925	-28.10				
	29 JUL	1425	-26.70				
	25 AUG	1145	-26.20	600	26.0	12	
	29 SEP	1000	-26.70	- CER			
	20	1010	-26.90				
DATE	TIME	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR	3522	0.40	10.27		44	2.2	4.2
18	1230	8.10	<5	290	72	25	10
7	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY LAB (MG/L	SULFATE DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS-	STRON- TIUM, DIS- SOLVED
DATE	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS F)	AS SIO2)	SOLVED (MG/L)	(UG/L AS SR)
AFR							
18	1.7	129	160	0.60	23	414	2700

Note. -- Negative figures indicate water level above land surface.

DUVAL COUNTY

WELL NUMBER. -- 302243081300401. Local Number D-360. Hidden Hills Country Club Well at Jacksonville, FL.

LOCATION.--Lat 30°22'43", long 81°30'04", in land grant 33, T.1 S., R.28 E., Hydrologic Unit 03080103, near fourth hole of Hidden Hills Golf Course, 0.25 mi east of intersection of Monument and Fort Caroline Roads. Owner: Hidden Hills Country Club.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 5 in., depth 665 ft, cased to 462 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975-79, 1984 to current year.

	DATE	TIME	SPE- CIF: CON- DUC: ANCI (US/C	IC - I-	PH (STAN ARI UNITS)	TEMPE ATUR WATE (DEG	E R	INU	AT-	HAR NES TOT (MG AS CAC	S AL /L	CALC: DIS- SOL' (MG AS (VED /L	MAGI SII DIS SOLY (MG,	JM, S- VED /L	SODII DIS- SOLVI (MG AS 1	ED /L
JAN	3 5	1240 0915		290 520				.0										77
APR 20 JUL	o	1320	12	270	7.	60	27	.0		<5		400	94		40		94	
21	6	1	OTAS- SIUM, DIS-	ALK LINI LA	TY B	DI	FATE S-	RI			E, S-	DI	LVED		DUÉ 80	T D	RON- IUM, IS-	
	DATE	(1	OLVED MG/L S K)	(MG AS CAC		(M	LVED G/L SO4)	(M	LVED G/L CL)	(MG AS		A	G/L S O2)	SOL	S- VED	(U	LVED G/L SR)	
	OCT 28 JAN 26							24 26										
	APR 20 JUL		2.4	140		14	0	25	0	0	.60	2	8		780		2500	
	26				77			25	0									

DUVAL COUNTY

WELL NUMBER. -- 302304081383202. Local Number D-122A. City of Jacksonville Panama Park Well at Jacksonville, FL.

LOCATION.--Lat 30°23'04", long 81°38'32", in land grant 50, T.1 S., R.27 E., Hydrologic Unit 03080103, well between Eastland and Russell Streets, 20 ft north of 63rd Street, and 0.4 mi east of U.S. Highway 17 in Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 8 in., depth 905 ft, cased to 571 ft.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 14.87 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange at land-surface datum.

REMARKS.--Well originally drilled to 700 ft in 1914, later drilled to 905 ft in 1925.

PERIOD OF RECORD. --August 1930, June 1938, November 1940 to April 1942, January 1944 to June 1944, August 1945 to current year (monthly). Records prior to 1936 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 62.47 ft NGVD, Aug. 21, 1930; lowest measured, 31.07 ft NGVD, Apr. 24, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29 NOV	0820	35.87	26 MAY	0810	38.87
23 DEC	1100	37.07	25 JUN	0840	35.47
29 JAN	1025	37.27	29 JUL	1020	34.47
26 FEB	1440	37.47	27 AUG	0830	34.27
25 MAR	1105	37.87	29 SEP	1325	34.87
31	0920	38.67	21	0835	35.47

DUVAL COUNTY

WELL NUMBER. -- 302307081293801. Local Number D-424. U.S. Park Service Well at Jacksonville, FL.

LOCATION.--Lat 30°23'07", long 81°29'38", in NW\sE\sE\sec.28, T.1 S., R.28 E., Hydrologic Unit 03080103, 106 ft southeast of Fort Caroline Road, and 0.2 mi northeast of Fort Caroline National Park entrance in Jacksonville. Owner: U.S. Park Service.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, artesian well, diameter 6 in., depth 700 ft, cased to 426 ft.

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of flange on 6 in. tee, 3.60 ft above land-surface datum.

PERIOD OF RECORD. -- December 1966, May 1968 to September 1978 (semiannually); January 1979 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 32.30 ft above land-surface datum, Dec. 19, 1966; lowest measured, 19.00 ft above land-surface datum, June 24, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			MAY		
06	1430	-19.60	03	1500	-21.00
DEC			23	1100	-20.60
01	1415	-21.00	JUN		
JAN			24	1145	-19.00
11	1430	-22.40	AUG		
MAR			18	1440	-19.60
07	1505	-23.20	SEP		
		1000	19	1340	-21.00

Note. -- Negative figures indicate water level above land surface.

DUVAL COUNTY

WELL NUMBER. -- 302339081254702. Local Number D-464A. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°23'39", long 81°25'47", in land grant 38, T.15 S., R.29 E., Hydrologic Unit 03080103, well in Julia Street pumping station, 1 block east of Ocean Street (State Highway AlA), 0.2 mi south of Mayport Ferry landing in Mayport. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 10 in., depth 1,000 ft, cased to 427 ft.

WATER LEVEL RECORDS

INSTRUMENTATION . -- Quarterly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 7.0 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring Point: Top of 10 in. flange 1.5 ft above land-surface datum.

PERIOD OF RECORD.--May 1977 to current year (semiannually). Records prior to 1984 are unpublished and available in the files of Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 33.30 ft above land-surface datum, Sept. 15, 1982; lowest measured, 17.90 ft above land-surface datum, Sept. 19, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

ELEVATION AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DEDTH

	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		
	OCT							
	28	1105		568	25.0	17		
	JAN 25 APR	0915		625	24.0	17		
	21 MAY	1200		565	25.0			
	23 JUL	1200	-18.00	580	25.0			
	26 SEP	1140		565	25.0	14		
	19	1100	-17.90	575	25.0	14		
DATE	TIME	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
APR								
21	1200	7.86	<5	270	61	28	11	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
APR								
21	1.7	132	140	0.70	25	417	1500	

DUVAL COUNTY

WELL NUMBER. -- 302416081522601. Local Number D-348. Monticello Drug Company Well at Jacksonville, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, temporary water supply, artesian well, diameter 6 in., depth 708 ft, cased to 416 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 86 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 11 in. flange, 1.50 ft above land-surface datum.

PERIOD OF RECORD.--March 1971 to current year. Records prior to 1976 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 41.01 ft below land-surface datum, Apr. 23,24, 1984; lowest, 49.47 ft below land-surface datum, July 18, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MINIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	47.63	47.35	46.73	46.55	46.62	45.93	45.10	46.13	47.71	49.05	49.19	48.49
10	47.88	47.26	46.52	46.41	46.56	45.32	45.25	46.69	47.59	49.18	49.22	48.38
15	47.74	47.42	46.43	46.66	46.14	45.31	45.47	46.82	47.86	49.23	49.09	48.35
20	47.68	47.09	46.64	46.35	45.99	45.27	45.62	47.06	48.23	49.41	48.93	48.23
25	47.82	46.92	46.58	46.21	46.19	45.20	45.67	47.16	48.61	49.27	49.02	48.10
EOM	47.87	46.47	46.68	46.75	45.98	45.14	46.21	47.37	48.88	49.12	48.87	48.09
MIN	47.46	46.47	46.33	46.21	45.98	45.10	44.98	46.07	47.43	48.89	48.82	48.09

CAL YR 1987 MAX 42.67 MAR 30 WTR YR 1988 MAX 44.98 APR 7

WELL NUMBER. -- 302416081522602. Local Number D-349. Monticello Drug Co. Well at Jacksonville, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, artesian oil test well, diameter 10 in., depth 2,230 ft, cased to 444 ft. INSTRUMENTATION.--Digital recorder--60-minute interval.

DATUM.--Land-surface datum is 86 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 10 in. casing, 3.50 ft above land-surface datum.

PERIOD OF RECORD.--March 1971 to current year. Records prior to 1976 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 29.10 ft below land-surface datum, Mar. 10, 1971; lowest, 45.22 ft below land-surface datum, Aug. 12, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MINIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	43.11	43.00	42.60	42.57	42.25	41.52	40.93	41.67	43.55	44.65	45.17	44.36
10	43.39	42.86	42.41	42.38	42.18	40.95	41.09	42.19	43.46	44.82	45.20	44.04
15	43.30	43.08	42.35	42.43	41.84	41.00	41.31	42.32	43.71	44.85	45.03	43.97
20	43.28	42.76	42.56	42.14	41.49	40.98	41.47	42.59	44.10	45.04	44.89	43.83
25	43.42	42.70	42.53	41.90	41.75	40.97	41.55	42.96	44.48	44.92	44.96	43.75
EOM	43.51	42.31	42.67	42.32	41.58	40.93	41.79	43.20	44.47	45.09	44.79	43.76
MIN	42.99	42.31	42.34	41.90	41.49	40.81	40.83	41.59	43.27	44.47	44.79	43.74

CAL YR 1987 MAX 38.55 MAR 30 WTR YR 1988 MAX 40.81 MAR 18

DUVAL COUNTY

WELL NUMBER. -- 302502081330701. Local Number D-228. Jacksonville Electric Authority Well at Jacksonville, FL.

LOCATION.--Lat 30°25'02", long 81°33'30", in NW\n\xSE\x, sec. 13, T.1 S., R.27 E., Hydrologic Unit 03080103, well located at Jacksonville Electric Authority Northside Generating Station at 4377 Heckscher Drive, 6.8 mi east of intersection of U.S. Highway 17 and Heckscher Drive in Jacksonville. Owner: Jacksonville Electric Authority.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, industrial, artesian well, diameter 16 in., depth 850 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Quarterly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 16 in. flange, 1.0 ft, above land-surface datum.

REMARKS .-- No water level data this year--well in use.

PERIOD OF RECORD.--October 1979 to current year (quarterly) incomplete. Records prior to 1984 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.40 ft above land-surface datum, Mar. 9, 1983; lowest measured, 22.80 ft above land-surface datum, Oct. 22, 1981.

WATER-OUALITY RECORDS

PERIOD OF RECORD .-- Water years 1974, 1976, 1979 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 29	0945	520	23.0	28	APR 20	0930	510	22.5	25
JAN			25.0	20	JUL	0930	310	22.3	23
27	0945	565	23.0	36	27	0910	523	23.5	24

DUVAL COUNTY

WELL NUMBER. -- 302503081332001. Local Number D-1149. Jacksonville Electric Authority Well at Jacksonville, FL.

LOCATION.--Lat 30°25'03", long 81°33'20", in NE\sNE\sN\s sec. 13, T.1 S., R.27 E., Hydrologic Unit 03080103, well located at Jacksonville Electric Authority Northside Generating Station at 4377 Heckscher Drive, 6.8 mi east of intersection of U.S. Highway 17 and Heckscher Drive in Jacksonville. Owner: Jacksonville Electric Authority.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, industrial, artesian well, diameter 16 in., depth 1,104 ft, cased to 520 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Quarterly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of concrete slab, 1.15 ft, above land-surface datum.

REMARKS .-- No water level data this year--well in use.

PERIOD OF RECORD .-- January 1980 to current year (quarterly) incomplete.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.00 ft above land-surface datum, Feb. 3, 1983; lowest measured, 17.00 ft above land-surface datum, July 24, 1981.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1977 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT					APR				
29 JAN	0935	211	23.0	24	20	1025	495	22.5	20
27	0935	476	20.0	19	JUL 27	0940	374	26.0	18

DUVAL COUNTY

WELL NUMBER. --302505081331001. Local Number D-1150. Jacksonville Electric Authority Well at Jacksonville, FL.

LOCATION.--Lat 30°25'05", long 81°33'10", in NW\sNE\s, sec. 13, T.1 S., R.27 E., Hydrologic Unit 03080103, well located at Jacksonville Electric Authority Northside Generating Station at 4377 Heckscher Drive, 6.8 mi east of intersection of U.S. Highway 17 and Heckscher Drive in Jacksonville. Owner: Jacksonville Electric Authority.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, industrial, artesian well, diameter 16 in., depth 1,104 ft, cased to 520 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Quarterly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 16 in. flange, 3.1 ft, above land-surface datum.

REMARKS. -- No water level data this year--well in use.

PERIOD OF RECORD. -- January 1981 to current year (quarterly) incomplete.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.70 ft above land-surface datum, Mar. 9, 1984; lowest measured, 18.60 ft above land-surface datum, July 24, 1981.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976, 1979 to current year.

DATE	TIME	SPE CIF CON DUC ANO (US/	TIC - T- () E	PH STAND- ARD NITS)	TEMPI ATUI WATI (DEG	ER- (I RE II ER CO	OLOR PLAT- NUM- OBALT	HARD- NESS TOTAL (MG/L AS CACO3	(MG	IUM - VED S	MAGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT	0930		594		2.	3.0		-		52.	22	
29 JAN	0930		394	1.25	2.	3.0	7.7	-			2.5	
27 APR	0925		632		2:	5.0					22	
20 JUL	0955		550	8.10	2	4.5	<5	250	59		25	17
27	0935		569		2	7.5						
DATE	: 6	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKALINITY LAB (MG/I AS CACO	SUL DI SC (M	FATE S- DLVED IG/L SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	(MG/	, I - S ED (ILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	É ST C D SO	RON- IUM, IS- LVED G/L SR)
OCT 29 JAN				-		28					-	
27 APR		24				31				-	-	
20 JUL		1.6	155	8	2	32	0.	60	31	37	3	820
27				-		31			i c și	-	=:	

DUVAL COUNTY

WELL NUMBER. -- 302511081331201. Local Number D-1151. Jacksonville Electric Authority Well at Jacksonville, FL.

LOCATION.--Lat 30°25'11", long 81°33'12", in SW\sW\sNE\s sec. 13, T.1 S., R.27 E., Hydrologic Unit 03080103, well located at Jacksonville Electric Authority Northside Generating Station at 4377 Heckscher Drive, 6.8 mi east of intersection of U.S. Highway 17 and Heckscher Drive, in Jacksonville. Owner: Jacksonville Electric Authority.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, industrial, artesian well, diameter 16 in., depth 1,104 ft, cased to 520 ft.

WATER LEVEL RECORDS

INSTRUMENTATION . -- Quarterly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 16 in. flange, 1.2 ft, above land-surface datum.

REMARKS .-- No water level data this year--well in use.

PERIOD OF RECORD. -- September 1976, July 1979, October 1980 to current year (quarterly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.70 ft below land-surface datum, Jan. 31, 1986; lowest measured, 22.50 ft below land-surface datum, June 5, 1984.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976, 1979 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT					APR				
29 JAN	0920	380	22.0	22	20 JUL	0945	500	20.0	20
27	0950	548	25.0	20	27	0930	515	26.0	19

WELL NUMBER, -- 302519081331501. Local Number D-1152. Jacksonville Electric Authority Well at Jacksonville, FL.

LOCATION.--Lat 30°25'19", long 81°33'15", in NE\SE\NW\s sec. 13, T.1 S., R.27 E., Hydrologic Unit 03080103, well located at Jacksonville Electric Authority Northside Generating Station at 4377 Heckscher Drive, 6.8 mi east of intersection of U.S. Highway 17 and Heckscher Drive in Jacksonville. Owner: Jacksonville Electric Authority.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, industrial, artesian well, diameter 16 in., depth 1,104 ft, cased to 520 ft.

WATER LEVEL RECORDS

INSTRUMENTATION . -- Quarterly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of spigot handle, at land-surface datum.

REMARKS .-- No water level data this year--well in use.

PERIOD OF RECORD.--October 1980 to current year (quarterly) incomplete. Records prior to 1984 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.50 ft above land-surface datum, Feb. 3, 1983; lowest measured, 16.30 ft above land-surface datum, July 24, 1981.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1980 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	÷	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT	0010	270	22.0	0.5		APR	0025	510	24.5	21
29 JAN	0910	370	22.0	25		20 JUL	0935	510	24.5	21
27	0915	567	25.0	24		27	0920	525	27.0	22

DUVAL COUNTY

WELL NUMBER. -- 302538081253101. Local Number D-164. Golf Course Well at Fort George Island, FL.

LOCATION.--Lat 30°25'38", long 81°25'31", in land grant 37, T.1 S., R.29 E., Hydrologic Unit 03080103, 75 ft south of clubhouse, 500 ft east of Fort George Road, 2.3 mi north of State Highway 105 in Jacksonville. Owner: Fairfield Industries.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, irrigation, artesian well, diameter 8 in., depth 840 ft, cased to 450 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATE

DATUM. --Land-surface datum is 15.71 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of faucet, 1.30 ft above land-surface datum.

PERIOD OF RECORD. --October 1930, May 1931, September 1940 to September 1941 (semiannually); January 1944, August 1944, August 1945, June 1946 to December 1962 (monthly) incomplete, February 1963 to July 1964 (bimonthly); January 1965 to September 1978 (semiannually); February 1979 to November 1981 (monthly); May 1982 to September 1983 (semiannually); January 1984 to current year (bimonthly) incomplete. Records prior to May 1978 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.01 ft NGVD, Oct. 9, 1930; lowest measured, 34.51 ft NGVD, July 24, 1981.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1930, 1931, 1940, 1941, 1965, 1979, 1985 to current year.

TIME

ELEV-

ATION

ABOVE

NGVD

(FEET)

ELEVATION AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 SPE-

CIFIC

TEMPER-

ATURE

WATER

(US/CM) (DEG C)

CON-

DUCT-

ANCE

CHLO-

RIDE,

(MG/L

AS CL)

DIS-SOLVED

	OCT							
	20	1110		1420	28.0			
	30	0940	37.81	1460	27.0	250		
	DEC							
	04	1030	39.21	1520	27.0			
	JAN							
	14	1250	39.81	1640	27.0			
	MAR							
	10	1340	41.21	1570	26.0	7-1		
	MAY 04	1130	39.21	1390	28.0	4.0		
	23	1315	37.61	1400	29.0	250		
	JUN	1313	37.01	1400	29.0	230		
	29	1200		1350	28.5			
	JUL	1200			20.0			
	06	0930	36.61	1390	29.0	210		
	AUG							
	30	0945	36.81	1410	28.0			
	SEP							
	19	1420	38.11	1420	29.0			
				HARD-		MAGNE-		
			COLOR	NESS	CALCIUM	SIUM.	SODIUM.	
		PH	(PLAT-	TOTAL	DIS-	DIS-	DIS-	
		(STAND-	INUM-	(MG/L	SOLVED	SOLVED	SOLVED	
DATE	TIME	ARD	COBALT	AS	(MG/L	(MG/L	(MG/L	
		UNITS)	UNITS)	CACO3)	AS CA)	AS MG)	AS NA)	
JUL	2.25	2.52	100	122	120	5.22	100	
06	0930	7.45	<5	430	90	50	100	
						SOLIDS.		
	POTAS-	ALKA-		FLUO-	SILICA.	RESIDUE	STRON-	
	SIUM.	LINITY	SULFATE	RIDE.	DIS-	AT 180	TIUM.	
	DIS-	LAB	DIS-	DIS-	SOLVED	DEG. C	DIS-	
	SOLVED	(MG/L	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	
DATE	(MG/L	AS	(MG/L	(MG/L	AS	SOLVED	(UG/L	
22	AS K)	CACO3)	AS SO4)	AS F)	SIO2)	(MG/L)	AS SR)	
		111-116	VI-7-7-7-1	7.5	7777	*****		
JUL								
06	3.2	144	170	0.80	30	861	1600	

DUVAL COUNTY

WELL NUMBER. --302538081392501. Local Number D-329. City of Jacksonville Well at Jacksonville, FL.

LOCATION.--Lat 30°25'38", long 81°39'25", in land grant 49, T.1 S., R.26 E., Hydrologic Unit 03080103, well located in Highlands pumping station at end of Beckner Drive, 2 blocks south of intersection of Monaco Drive and Dunn Avenue in Jacksonville. Owner: City of Jacksonville.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public supply, artesian well, diameter 20 in., depth 1,209 ft, cased to 545 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967, 1972-78, 1983 to current year.

25...

		1015-201	31-21-21-21-2					225 25	41 - 27 - 27	25212000	25.5.0	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAI ARI UNIT:	ND- D	TEMPE ATUR WATE (DEG	R- E : R (COLOR (PLAT- INUM- COBALT JNITS)	HARD NESS TOTA (MG/ AS CACO	CALC L DIS L SOI (MC	IUM :	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT												
29 JAN	1105	520			26	.0						
26	1400	533			25	.0						
APR 18	1400	525	7	.70	26	. 0	<5	2	30 55		23	14
JUL 25	1300	520			27	0						
DATE	SC (I	SIUM, LI DIS- DLVED (MG/L	LKA- NITY LAB MG/L AS	DI:	FATE S- LVED G/L SO4)	CHLO- RIDE DIS- SOLVI (MG/I AS CI	RID DI ED SOI (MG	E, S- VED J/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS RESIDU AT 180 DEG. (DIS- SOLVE (MG/L	E ST T D SO O (U	RON- IUM, IS- LVED G/L SR)
OCT 29 JAN						20				4.		44
26 APR						20				-	-	22
18 JUL		1.5 15	7	7	9	20	C	.60	31	33	7	550
0.5												

DUVAL COUNTY

WELL NUMBER. -- 302559081331501. Local Humber D-2399. St. Johns River Power Park Well at Jacksonville, FL.

LOCATION.--Lat 30°25'59", long 81°33'15", in NE\NE\SW\ sec. 12, T.1 S., R.27 E., Hydrologic Unit 03080103, 1,700 ft east of the intersection of New Berlin and Faye Roads in Jacksonville. Owner: Jacksonville Electric Authority.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 18 to 12 in., depth 752 ft, cased to 521 ft.

INSTRUMENTATION . -- Continuous pressure gage recorder.

DATUM.--Land-surface datum is 14.24 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 2.5 ft above land-surface datum.

PERIOD OF RECORD, -- October 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 41.44 ft NGVD, Jan. 27,28, 1986; lowest, 21.79 ft NGVD, Sept. 12, 1987.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	26.39	35.01	35.60	32.58	30.18	36.21	33.99	30.53	31.66	28.44	29.10	32.16
10	28.78	34.68	35.87	34:47	32.01	34.89	31.56	29.56	27.79	28.38	28.41	30.69
15	32.01	34.50	33.49	32.19	32.31	34.71	32.94	31.67	27.81	27.78	28.50	29.34
20	28.11	35.74	35.77	32.01	33.84	35.61	34.11	31.93	27.33	28.44	28.20	28.98
25	28.91	36.24	35.74	35.31	32.70	34.86	31.74	28.70	27.68	29.94	30.21	30.57
EOM	33.29	34.41		31.95	35.28	34.74	34.50	28.04	29.40	29.19	30.51	31.59
MAX	34.08	36.24			35.34	36.21	35.70	34.71		31.41	30.54	32.16

WELL NUMBER. -- 302608081354901. Local Number D-262. St. Regis Paper Company Well at Jacksonville, FL.

LOCATION.--Lat 30°26'10", long 81°35'48", in land grant 46, T.1 S., R.27 E., Hydrologic Unit 03080103, 75 ft south of dirt road, 0.4 mi east of Eastport Road in Jacksonville. Owner: Kraft Paper Company.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, industrial, artesian well, diameter 4 in., depth 1,393 ft, cased to 584 ft.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 16.32 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of well flange, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--June 1951 to April 1981 (bimonthly); May 1981 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.32 ft NGVD, June 12, 1951; lowest measured, 32.52 ft NGVD, June 29, July 29, 1981, July 27, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29 NOV	1035	34.12	26 MAY	1320	36.32
23 DEC	1210	35.12	25 JUN	1100	33.52
28 JAN	0850	35.62	29 JUL	1110	32.72
27 FEB	0830	35.52	27 AUG	1115	32.52
25 MAR	1125	36.12	29 SEP	1230	33.12
31	1030	36.52	19	0905	33.52

DUVAL COUNTY

WELL NUMBER. --302608081354902. Local Number D-263. St. Regis Paper Company Well at Jacksonville, FL.

LOCATION.--Lat 30°26'08", long 81°35'49", in land grant 46, T.1 S., R.27 E., Hydrologic Unit 03080103, 75 ft south of dirt road, 0.4 mi east of Eastport Road in Jacksonville. Owner: Kraft Paper Company.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 4 in., depth 1,025 ft, cased to 850 ft.

INSTRUMENTATION . -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 15.96 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of tee flange, 1.00 ft above land-surface datum.

PERIOD OF RECORD. --October 1951 to April 1979 (semiannually); January 1980 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 52.16 ft NGVD, Feb. 4, 1954; lowest measured, 32.56 ft NGVD, June 29, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29 NOV	1030	35.16	26 MAY	1315	37.96
23 DEC	1215	36.36	25 JUN	1055	34.96
28 JAN	0900	37.06	29 JUL	1105	34.16
27 FEB	0820	36.96	27 AUG	1110	33.76
25 MAR	1125	37.36	29 SEP	1225	34.36
31	1025	38,16	19	0900	35.06

WELL NUMBER. -- 302608081354903. Local Number D-264. St. Regis Paper Company Well at Jacksonville, FL.

LOCATION.--Lat 30°25'10", long 81°35'49", in land grant 46, T.1 S., R.27 E., Hydrologic Unit 03080103, 75 ft south of dirt road, 0.4 mi east of Eastport Road in Jacksonville. Owner: Kraft Paper Company.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, industrial, artesian well, diameter 4 in., depth 700 ft, cased to 450 ft. INSTRUMENTATION.--Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 15.87 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of well flange, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--October 1951 to September 1978 (semiannually); February 1979 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 51.87 ft NGVD, Jan. 9, 1952; lowest measured, 32.27 ft NGVD, June 29, 1981, June 29, July 27, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29	1020	33.87	26	1310	36.47
NOV			MAY		
23	1205	35.07	25	1050	33.27
DEC			JUN		
28	0850	35.37	29	1100	32.27
JAN			JUL		
27	0825	35.27	27	1110	32.27
FEB			AUG		
25	1120	35.47	29	1220	33.07
MAR			SEP		
31	1020	36.27	19	0855	33.67

DUVAL COUNTY

WELL NUMBER. -- 302801081375101. Local Number D-145. Duval County School Board Observation Well at Oceanway, FL.

LOCATION.--Lat 30°28'01", long 81°37'51", in land grant 37, T.1 N., R.27 E*, Hydrologic Unit 03080103, at Oceanway School on Oceanway Avenue, and 600 ft east of U.S. Highway 17 in Oceanway. Owner: Duval County School Board.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 2 in., depth and casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape or pressure gage by USGS personnel.

DATUM.--Land-surface datum is 34.79 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. tee, 1.50 ft above land-surface datum.

PERIOD OF RECORD.--July 1940 to September 1978 (semiannually); February 1979 to March 1981 (bimonthly); May 1981 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 58.99 ft NGVD, June 3, 1947; lowest measured, 32.75 ft NGVD, July 27, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29 NOV	1050	33.99	26 MAY	1340	37.19
23 DEC	1120	35.21	25 JUN	1130	33.83
29 JAN	0830	35.74	29 JUL	1055	32.99
27 FEB	1140	35.21	27 AUG	1050	32.75
25 MAR	1230	33.87	29 SEP	1200	33.17
31	1050	37.49	19	0920	33.96

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
300824081305401	05-24-88	1310	37.17	26.5	663	20	180
	09-21-88	1320	38.57	28.0	682	19	190
301032081380401	05-24-88	1035	25.10	24.5	405	9.0	78
	09-21-88	1550	28.70	23.5	402	11	74
301144081413801	05-24-88	1420	24.10	23.0	350	7.4	57
	09-20-88	1235	27.50	23.0	365	8.6	57
301216081451201	05-24-88 09-20-88	0930 1310	21.91 24.99	23.0	153	31	1.1
301255081371001	05-24-88	1435	16.70	25.0	505	12	120
	09-22-88	1700	20.80	25.0	509	12	120
301333081324101	05-25-88 09-22-88	0715 1345	31.75 35.10	=	678	15 17	190 190
301335081355001	05-24-88 09-22-88	0830 1535	28.90 29.30	=	1010 1030	110 110	230 230
301337081354801	05-24-88 09-22-88	0845 1505	Ξ	27.5 26.0	1000 727	100 34	240 200
301339081433401	05-24-88	0900	26.76	22.5	318	7.0	51
	09-20-88	1340	28.56	23.0	325	7.3	49
301339081531203	05-26-88	1535	45.61	24.0	245	5.8	25
	09-22-88	0920	44.13	24.5	250	6.5	23
301415081284801	05-20-88 09-22-88	0920 1055	30.90 29.91	24.0	684	18	190
301434082021401	05-26-88 09-22-88	0930 1005	52.50 51.40	=	7	4	7
301607081301001	05-26-88	0800	28.38	25.0	595	16	140
	09-20-88	1320	30.43	26.0	557	15	150
301617081421601	05-25-88 09-20-88	0910 1405	24.35 26.35	23.0 27.5	130	17 17	1.3
301712081233301	05-23-88	0645	23.30	24.5	650	13	190
	09-19-88	0825	24.40	23.5	635	13	190
301715081300001	05-31-88	1330	29.83	27.0		16	160
	09-20-88	1250	30.27	26.0	497	15	140
301725081392101	05-20-88	1230	21.60	25.0	602	13	180
	09-19-88	1135	22.60	26.0	608	13	190
301740081361001	05-25-88 09-22-88	1405 1205	==	28.5 28.0	1050 1000	170 170	140 150
301743081362301	05-25-88 09-22-88	1420 1230	=	27.0 28.0	725 842	54 86	160 150

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

DUVAL COUNTY--Continued

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
301744081363301	05-25-88 09-22-88	1410 1225		29.0 29.0	925 908	120 120	150 150
301752081360501	05-25-88 09-22-88	1400 1215	=	26.5 27.0	624 603	75 75	120 120
301900081342801	05-23-88 09-19-88	1315 1200	28.39 29.79	24.0	568	58	110
301902081394601	05-23-88 09-19-88	1015 1115	22.90 23.60	26.0 28.0	586 592	12 12	160 160
301919081375401	05-20-88 09-19-88	1305 1050	32.10	26.0 27.0	172 168	23 24	1.3
301925081262501	05-23-88 09-19-88	0900 0700	24.00 28.00	23.0 23.5	660 650	15 15	180 180
302013081353801	05-24-88 09-22-88	1400 1130	12	28.0 28.0	732 756	74 75	120 120
302037081455301	05-25-88 09-21-88	1215 1100	34.30 33.30	23.0 29.0	587 415	13 14	170 120
302112081384701	05-23-88 09-19-88	0950 1020	33.60 34.20	27.0 27.0	518 433	17 16	75 52
302120081361801	05-23-88 09-20-88	1330 1045		28.0 27.0	510 542	20 19	88 90
302120081362201	05-23-88 09-20-88	1350 1100	30.43 30.50	==			==
302120081363001	05-23-88 09-20-88	1340 1050		26.0 28.0	468 550	21 20	76 91
302122081274001	05-23-88 09-20-88	1150 1215	29.40 30.40	24.0 26.0	516 523	18 17	120 120
302137081240001	05-23-88 09-19-88	0810 0935	26.55 28.55	22.5 23.0	645 620	15 15	150 160
302142081330701	05-23-88 09-20-88	1240 1120	28.70 29.70	24.0	 572	 16	140
302145081394201	05-25-88 09-19-88	1330 1000	33.24 33.44	25.5	 180	15	14
302159081235601	05-23-88 09-19-88	0830 1000	31.60 34.10	==	7.5	12	
302300081295101	05-23-88 09-19-88	1120 1320	32.60 33.80	25.0 25.0	519 505	17 16	100 100

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

DUVAL COUNTY--Continued

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
302317081330401	05-25-88	0905	30.20	25.0	525	23	86
	09-21-88	0910	35.00	25.0	570	23	92
302330081463001	05-25-88	1150	37.40	23.0	534	11	130
	09-21-88	1045	36.10	24.0	525	11	130
302339081254702	05-23-88 09-19-88	1200 1100	25.00 24.90	25.0 25.0	580 575	14	140
302345081261301	05-23-88 09-19-88	1240 1125	31.90 34.00	22.5	 535	18	90
302351081390201	05-25-88	1300	24.64	24.0	545	14	120
	09-21-88	1010	29.44	24.0	524	14	130
302416081522601	05-23-88 09-20-88	0845 0930	38.88 37.68			44	22
302416081522602	05-23-88 09-20-88	0840 0920	43.09 42.07	7	I	11	
302502081321001	05-25-88	0940	30.80	24.0	510	19	80
	09-19-88	0830	31.30	24.0	525	19	84
302514081393701	05-25-88	1230	33.30	27.0	495	18	70
	09-19-88	0800	33.60	26.5	522	19	74
302616081413901	05-25-88	1320	37.50	24.0	500	18	68
	09-21-88	1140	36.50	24.5	480	18	68
302647081460201	05-25-88	1300	44.40	21.0	544	22	96
	09-21-88	1120	43.20	23.0	545	22	96
302724081244801	05-23-88 09-19-88 09-20-88	1355 1300 0800	35.67 33.57	24.5 24.5	550 495 	20 20 	70 74
302738081290001	05-25-88	1555	29.80	23.0	535	22	91
	09-21-88	1620	29.30	23.0	540	21	91
303015081343301	05-25-88 09-23-88	1510 1045	25.70 33.10	Ξ	=	=	X
303216081433301	05-25-88	1430	35.70	25.5	585	24	120
	09-21-88	0810	34.40	25.0	590	23	120
303458081364001	05-24-88	1600	30.40	21.5	585	23	110
	09-20-88	1635	29.50	22.0	585	23	110

DUVAL COUNTY

		30081	208139080	1 - N	D-1097	BARNE	S AT MA	NDARIN		
DATE	TIME	ELEV- ATION S ABOVE NGVD	LAND URFACE (WATER LEVEL)	SPE- CIFIC CON- DUCT- ANCE US/CM)	PH (STAND- ARD UNITS)	TEMPE ATUR WATE (DEG (R- (P) E IN R CO	LOR NE LAT- TO UM- (M BALT A	OTAL DI MG/L SC MS (M	MAGNE- CIUM SIUM, SS- DIS- DLVED SOLVED GG/L (MG/L S CA) AS MG)
MAY 24	1120	24.70	-9.70	350	8.10	23	. 5	<5	150 3	18
DATE	SODIU DIS- SOLVE (MG/ AS N	DIS- D SOLVE L (MG/L	, LINITY LAB	SULF. DIS SOL (MG	ATE RII - DIS VED SOI /L (MC	DE, 1 S- LVED :	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY 24	7.	4 2.4	102	62		8.8	0.60	16	214	2700
		30082008	1354001 -	N D-	0296 B	OOD LAN	DING AT	MANDARIN	i	
DATE	TIME	ELEV- ATION S ABOVE NGVD	LAND URFACE (WATER LEVEL)	SPE- CIFIC CON- DUCT- ANCE US/CM)	PH (STAND- ARD UNITS)	TEMPE ATUR WATE (DEG	R- (P E IN R CO	LOR NE LAT- TO UM- (M BALT A	OTAL DI MG/L SC AS (N	MAGNE- CIUM SIUM, IS- DIS- DLVED SOLVED IG/L (MG/L S CA) AS MG)
MAY 24	1220	33.50	-13.50	665	7.95	23	. 5	<5	320	51 40
DATE	SODIU DIS- SOLVE (MG/ AS N	DIS- D SOLVE L (MG/L	, LINITY LAB D (MG/L AS	SULF DIS SOL (MG	ATE RI	DE, S- LVED G/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY 24	14	3.0	113	220	1	7	0,60	20	491	5200
		3008	240813054	01 - N	D-0169	POWE	L AT BA	YARD		
DATE	TIM	SPE- CIFIC CON- DUCT- E ANCE (US/CM	PH (STAND ARD	TEMF - ATU WAT (DEG	PER- (P. IN ER CO.	LOR LAT- JM- BALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 15	100	0 67	5 7.5	2 2	4.5	<5	320	71	34	14
	DATE	SIUM, L DIS- SOLVED (MG/L	LAB (MG/L AS	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	, DI - SO ED (M L A	ICA, RES S- AT LVED DE G/L D S SC	180 1 G. C I DIS- SC DLVED (U	FRON- FIUM, DIS- DLVED JG/L S SR)
JUN 15		2.5 1	39	190	19	0.	60 2	4	468	4400

DUVAL COUNTY--Continued

301150081411901 - D-2863 J-3104

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	INUM COBA	R NES T- TOS - (MC LT AS	TAL DIS	VED SOLV	UM, SODIUM, S- DIS- VED SOLVED /L (MG/L
JAN 19	1030	383	7.99	23.	5	5	170 36	19	6.8
19	1030	303	7.33	20.	,	5	170 00	13	0.0
DATE	SI	UM, LIN S- LA VED (MO	AB DI G/L SC S (M	FATE S- DLVED MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JAN 19	2	.2 105	7	7	8.1	0.60	18	238	3300
			2011500		D 000				
				31423001	L - D-286		01		
DATE	TI	ME AN	FIC N- TEN CT- AT CE WA	MPER- TURE ATER EG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
DEC 17	16	00	362	22.0	<5	150	34	16	7.3
1,	10	.00	502	22.0		150		10	7.0
DATE	SI DI SOI	UM, LIN S- L VED (M	AB DI G/L SC S (N	LFATE IS- DLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC						0.50	10	210	2000
17	-	.0 108		55	6.5	0.50	16	216	2900
		ann	3011570	8137430	L - D-053				
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	E INUM R COBA	OR NE AT- TO I- (M ALT A		- DI VED SOL /L (MG	UM, SODIUM, S- DIS- VED SOLVED /L (MG/L
APR									
18	0930	730	7.62	28.	. 0	<5	370 83	37	14
DATE	SI	UM, LIN S- L VED (M	AB DI G/L SC S (N	FATE IS- DLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR 18	2	.8 121	23	30	23	0.40	22	544	6000
		1	-					4.07	2.00

DUVAL COUNTY--Continued

301211081405801 - GG QUARTERS

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JAN	0900	410	7.90	25.0	E5	170	37	19	7.6
19	0900	410	7.90	25.0	23	170	37	19	7.0
	SOATE (I	OTAS- ALK SIUM, LINI DIS- LA OLVED (MG MG/L AS S K) CAC	TY SULI	FATE RI S- DI LVED SO G/L (M	DE, RII S- D: LVED SOI G/L (M	DE, DI IS- SO LVED (M G/L A	ICA, RES S- AT LVED DE G/L D S SO	180 T G. C D IS- SO LVED (U	RON- IUM, IS- LVED G/L SR)
JAN 19.		2.2 112	7.	5	8.8	0.60 1	8	242	3400
	3012	55081371001	- D-028	2 J-0347	3715 RUBI	NS ROAD,	JACKSONVI	LLE	
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNÉ- SIUM, DIS- SOLVED (MG/L AS MG)
MAY									
24	1435	16.70	505	7.98	25.0	<5	230	46	27
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY	12	2.7	121	120	12	0.60	21	341	3700
24	12	2.7	121	120	12	0.00	21	341	3700
			20122500	1255001	D 0525	7 0000			
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 24	0830	28.90	1010	7.54	<5	430	100	42	32
27.11	0000	20.00	1010	7.54	-5	455	100	74	02
I YAM	S DATE (OTAS- ALK SIUM, LINI DIS- LA OLVED (MC MG/L AS S K) CAC	TY SUL B DI C/L SO C (M	FATE RI S- DI LVED SC G/L (M	DE, RI S- D LVED SO G/L (M	DE, DI IS- SO LVED (M G/L A	ICA, RES S- AT LVED DE G/L D S SC	180 T G. C D IS- SC LVED (U	RON- IUM, IS- LVED G/L SR)
24		4.3 131	23	0 11	0	0.70 2	4	691	5800

DUVAL COUNTY--Continued

301337081354801 - D-3823

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
SEP 22	1505	727	7.64	26.0	<5	340	76	35	17
24	1505	, 2,	7.04	20.0		0.10	, ,		
DATE	S D SC (M	SIUM, LIN DIS- L DLVED (M MG/L A	AB DIS G/L SO S (M	FATE RII S- DIS LVED SOI G/L (MO	DE, RI S- D LVED SO G/L (M	DE, DI IS- SO LVED (N G/L	LICA, RES IS- AT OLVED DE MG/L D AS SO	180 I G. C D IS- SC LVED (U	CRON- CIUM, DIS- DLVED JG/L S SR)
SEP 22		2.7 130	20	0 34	4	0.80	23	500	4700
			30133908	1531203 -	D-0326	J-0391			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 20	1200	250	7.86	24.5	<5	110	27	11	4.3
20	1200	250	7.00	21.5					1.0
DATE	S S S (M	SIUM, LIN DIS- L DLVED (M MG/L A	AB DI IG/L SO IS (M	FATE RII S- DIS LVED SOI G/L (M	DE, RI S- D LVED SO G/L (M	DE, D: IS- SC LVED (N G/L	LICA, RES IS- AT OLVED DE MG/L D AS SO	180 I G. C I IS- SC LVED (U	TRON- TIUM, DIS- DLVED JG/L S SR)
JUN 20		1.5 99	2	1	5.0	0.30	15	144	1200
			30135408	1420401 -	D-2870	J-3111			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE - WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JAN 19	1300	366	7.90	24.0	5	160	34	18	8.1
DATE	PC S I SC (N	SIUM, LIN DIS- I DLVED (N MG/L A	AB DI MG/L SO AS (M	FATE RISS- DISLUVED SO	DE, RI S- D LVED SC G/L (M	DE, D IS- S DLVED (I IG/L	LICA, RES IS- AT OLVED DE MG/L D AS SO	180 I G. C I DIS- SC DLVED (U	IRON- IIUM, DIS- DLVED JG/L S SR)
JAN 19		2.1 114	6	1 1	1	0.60	17	227	3100

DUVAL COUNTY--Continued

301415081284801 - D-0658 J-0721 BEACH BLVD AND ST. JOHNS, JACKSONVILLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLA: INUM- COBAL UNIT:	T- TOT. - (MG LT AS	S CALC: AL DIS: /L SOL' (MG	VED SOLV	JM, SODIUM, S- DIS- VED SOLVED /L (MG/L
JUN 28	0915	672	7.78	26.0		<5	320 74	32	14
DATE	SI		TY SUL AB DI G/L SO G (M	FATE R S- D LVED SO IG/L (I	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 28	2	.4 137	19	10	18	0.90	24	458	3700
			30145008	31485001	- D-196	3 J-168	1		
DATE	TI	PF (STA ME AF UNIT	AND- AT	IPER- (INTER INTER C	OLOR PLAT- NUM- OBALT NITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 21	09	30	7.56	23.5	5	210	54	18	15
DATE	SI	UM, LINI IS- LA LVED (MO	AB DI G/L SC S (N	LFATE R IS- D DLVED S MG/L (HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 21	1	1.6 227		6.0	9.0	0.70	27	267	510
			30153708	31441901	- D-007	5 J-013	19		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLO (PLA INUM COBA	HAR R NES T- TOT I- (MG	D- S CALC AL DIS	- DI VED SOL /L (MG	UM, SODIUM, S- DIS- VED SOLVED /L (MG/L
APR 18	1025	365	7.90	26.0	V 18	<5	170 40	16	6.3
DATE	SI	UM, LINI S- LA VED (MC	AB DI G/L SC S (M	FATE R S- D DLVED S MG/L (HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR 18	1	9 106	6	55	7.2	0.50	18	230	3200

DUVAL COUNTY--Continued

301552081234301 - D-2707 J-2518

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	BE LA SUR (W. LE	FACE ATER VEL)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STA AF UNIT	SD VND-	WAT	PER- JRE IER F C)	COL (PL INU COB UNI	OR AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVEI (MG/L AS CA	DIS- SOLVED (MG/L
DEC 15	0930	19.10	_	9.10	518	8	3.50		22.0		<5	260	37	39
JUN 14	0945	20.30	-1	0.30	641	7	7.68		24.5		<5	290	62	33
DATE	SODII DIS- SOLVI (MG AS I	UM, S - D ED SO /L (M	TAS- IUM, IS- LVED G/L K)	ALKA LINIT LAB (MG/ AS CACO	Y SULF DIS L SOL (MG	S- LVED S/L	CHLC RIDE DIS- SOLV (MG,	E, ZED L	FLUC RIDE DIS SOLV (MG/ AS F	ED L	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 1 D DEG DI SOL	DUÉ S: 80 : 5. C I S- SC VED (I	TRON- TIUM, TIS- DLVED JG/L S SR)
DEC 15	14		2.2	104	140)	13		1.	0	16	4	355	2000
JUN 14	13		2.2	126	180)	15		0.	80	23		444	2200
				30160	40812346	501 -	D-274	67 .	J-3164					
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	BE LA SUR (W LE	PTH LOW ND FACE ATER VEL) EET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STA AF UNIT	I AND- RD	TEMI ATI	PER- JRE FER G C)	COL (PL INU	OR AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- SOLVED (MG/L
DEC 15	0950	19.30	-	9.30	644	7	7.70		24.5		<5	310	65	36
JUN 14	1030	17.10	-	7.10	637	7	7.65		24.5		<5	300	62	34
DATE	SODI DIS- SOLV (MG AS 1	UM, S - D ED SO /L (M	TAS- IUM, IS- LVED G/L K)	ALKA LINIT LAB (MG/ AS CACO	Y SULF DIS L SOL (MG	S- LVED S/L	CHLO RIDI DIS- SOLV (MG,	E, VED /L	FLUC RIDE DIS SOLV (MG/ AS F	ED L	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 1 D DEG DI SOL	DUÉ S: .80 : . C I .S- SC .VED (1	TRON- TIUM, DIS- DIS- DIVED JG/L S SR)
DEC 15 JUN	14		2.3	124	180)	14		0.	90	23		436	2300
14	13		2.3	125	180)	13		0.	70	22		436	2200
				20160	4001761	-01	D 04		T 0517					
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	BE LA SUR (W LE	PTH LOW ND FACE ATER VEL) EET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PI (STA	H AND- RD	TEM AT WA	J-0517 PER- URE TER G C)	COL (PL INU COB	OR AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVE (MG/L AS CA	DIS- D SOLVED (MG/L
APR														
18	0910	37.70	-1	5.70	715		7.62		26.5		<5	330	78	31
DATE	SODI DIS SOLV (MG AS	UM, S - D ED SC /L (M	TAS- IUM, IS- LVED G/L K)	ALKA LINIT LAB (MG/ AS CACO	Y SULF DIS L SOI (MC	S- LVED G/L	CHLO RIDI DIS- SOL' (MG AS (E, VED /L	FLUC RIDE DIS SOLV (MG/ AS F	ED L	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 1 D DEG DI SOL	DUE S' 80 5. C S S- SO VED (1	TRON- TIUM, DIS- DLVED JG/L S SR)
APR 18	20		2.2	139	150)	51		0.	70	24		475	3500

DUVAL COUNTY--Continued

301620081234201 - D-3034 J-3163

DATE	TIME	ELEV- ATION S ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	- (PI INU COI	LOR NI LAT- TO UM- (I BALT	ARD- ESS OTAL MG/L AS ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC 15	1015	33.65	-13.65	645	7.70	25.	0	<5	310	65	36
JUN 14	1015	24.82	-4.82	617	8.06	22.	0	<5	290	54	37
DATE	SODIUM DIS- SOLVEI (MG/I AS NA	DIS- SOLVE (MG/I	i, Lini: Lai ED (MG, AS	TY SULF B DIS L SOL (MG	- DIS VED SOL	E, R - VED S //L (LUO- IDE, DIS- OLVED MG/L S F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 18	DUÉ STRO BO TIU C DIS S- SOLV VED (UG)	UM, S- VED /L
15 JUN	14	2.2	125	190	14		0.70	23		431 23	300
14	13	2.3	135	170	12		1.1	22	4	417 20	000
			3016	390813308	02 - D-11	.55 J-1	285				
DATE	TIM	SPE- CIFIC CON- DUCT- ANCE (US/CN	PH - (STAL AR	D WAT	RE INU	OR N AT- T M- (BALT	ARD- ESS OTAL MG/L AS ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SOLY (MG)	UM, SODII S- DIS VED SOLVI /L (MG	ED /L
APR 20	1240	0 78	30 7	.71 2	8.5	<5	360	88	33	22	
APR	DATE	POTAS- SIUM, I DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DI: SO: D (M	ICA, RE S- AT LVED D G/L S S	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
20		2.3	134	160	73	0.7	0 2	5	517	3800	
			3016	480814318	301 - D-01	LO3 J-0	167				
DATE	TIM	SPE- CIFIC CON- DUCT- E ANCE (US/CN	PH (STA) AR	TAW C	RE INC	OR N AT- T IM- (BALT	ARD- ESS OTAL MG/L AS ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SOLY (MG)	UM, SODII S- DIS VED SOLVI /L (MG	ED /L
APR	104			00 0	7.0	46	210		00		
18	1045	5 48	50 7	. 83 2	7.0	<5	210	48	22	8	. 1
	DATE	POTAS- SIUM, I DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS SOI D (MC	ICA, RE S- AT LVED D G/L S S	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
APR 18		2.1	116	110	9.5	0.5	0 20	0	302	3800	

DUVAL COUNTY--Continued

301657081233301 - D-0483 J-0550

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT	TOTAL DI (MG/L SC AS (M	MAGNE- SIUM, SIUM, SIS- DIS- DIVED SOLVED MG/L (MG/L G CA) AS MG)
DEC 15 JUN	0900	37.20	-29.20	827	7.60	28.0	<5	340 7	77 35
14	0920	35.50	-27.50	832	7.68	28.5	<5	320 7	4 33
DATE	SODIU DIS- SOLVE (MG/ AS N	D SOL L (MG	UM, LINI S- LA VED (MG /L AS	TY SULF B DIS /L SOL (MG	- DIS VED SOL /L (MG	DE, RIDI S- DIS VED SOL	E, DIS- S- SOLVE WED (MG/L /L AS	AT 180 D DEG. C	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC 15 JUN	39	2	.2 148	140	86	0	.80 28	522	2400
14	39	2	.3 149	130	94	0	.50 28	532	2300
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND-ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT	TOTAL DI (MG/L SC AS (M	MAGNE- CIUM SIUM, S- DIS- DLVED SOLVED GG/L (MG/L G CA) AS MG)
DEC 15	0850	39.05	-31.05	1150	7.50	28.0	<5		95 42
JUN 14	0900	37.15	-29.15	1160	7.38	28.5	<5	390	90 40
DATE	SODIU DIS- SOLVE (MG/ AS N	DI D SOL L (MG	UM, LINI S- LA VED (MG /L AS	TY SULF B DIS /L SOL	VED SOI	DE, RID: S- DI: LVED SOL	E, DIS- S- SOLVE VED (MG/L /L AS	AT 180 D DEG. C DIS- SOLVED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
DEC 15 JUN	71	2	.6 147	150	180	0	.70 30	691	2500
14	71	2	.6 146	140	190	0	.60 30	716	2400

DUVAL COUNTY--Continued

301716081234301 - D-0482 J-0549

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
DEC 15	0830	35.70	-24.70	726	7.60	27.0	<5	300	66	33
JUN 14	0840	34.50	-23.50	661	7.93	27.0	<5	290	63	31
	02.472	7.12.23	200-0	15-5	104.7.5	7				
DATE	SODIU DIS- SOLVE (MG/ AS N	DIS D SOLV L (MG)	JM, LINI S- LA VED (MG /L AS	TY SULF B DIS /L SOL (MG	- DIS VED SOL	E, RID - DI VED SOL	E, DIS S- SOL VED (MG I/L AS	- AT 1 VED DEC /L DI SOI	DUÉ STR 180 TI 5. C DI IS- SOL LVED (UG	ON- UM, S- VED V/L SR)
DEC 15	21	2	.1 146	140	36	- 0	.80 27		438 2	300
JUN 14	21	2	.2 146	140	37	0	.70 27		462 2	300
500,10										
			2017	250012050	102 - D-06	50 T-002				
				230613030	10Z - D-00		.0			
	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
DEC 16	5	1130	629	27.0	<5	280	67	27	14	
-		1100	020	27.0		200	0,		-	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
DEC 16	S	1.8	141	140	20	0.80	23	401	2700	
			3017	430813047	01 - D-02	24 J-029	1			
	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
APR		1200	650	25.0	<5	300	60	20	16	
18	9	1200	030	23.0	-3	300	69	29	16	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
APR 19	9	2.0	139	150	32	0.70	25	443	2900	
	0.00	100	47.0	12.00	120.0	7	W.5/.	77	75.0-1	

DUVAL COUNTY--Continued

301752081360501 - D-0649 J-0027

			30173200	1300301	D 0043	0 0027			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR								12.0	14
19	0830	630	7.60	26.0	<5	290	69	28	13
DATE	Si (1	SIUM, LIN DIS- I OLVED (N MG/L	AB DI MG/L SC AS (M	FATE RI S- DI DLVED SO MG/L (M	DE, RI S- D LVED SO G/L (M	DE, DI IS- SO LVED (M IG/L A	ICA, RES S- AT LVED DEG G/L D S SO	180 T G. C D IS- SO LVED (U	RON- IUM, IS- LVED G/L SR)
APR		2.0 12	16		0	0 00 2	4	435	3300
19		2.0 134	16	0 2	0	0.80 2	.4	433	3300
		SPE- CIFIC CON-	30175808	31303901 - TEMPER-	D-0665 COLOR (PLAT-	J-0801 HARD- NESS TOTAL	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM, DIS-
		DUCT-	(STAND-	ATURE	INUM-	(MG/L	SOLVED	SOLVED	SOLVED
DATE	TIME	ANCE (US/CM)	ARD UNITS)	(DEG C)	COBALT UNITS)	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)
122		(00)011)	OHIID,	(DEO O)	OHIII)	OHOOO,	iib oii,	110 110)	110 1117
APR 19	1245	1280	7.54	26.0	<5	430	100	42	90
20	10.0	2000		20.0			44.5		7.7
DATE	Si (I	SIUM, LINDIS- I OLVED (N MG/L	AB DI	FATE RI S- DI DLVED SO MG/L (M	DE, RI S- D LVED SC G/L (M	DE, DI IS- SO LVED (M IG/L A	ICA, RES S- AT LVED DEG IG/L D S SO	180 T G. C D IS- SO LVED (U	RON- IUM, IS- LVED G/L SR)
APR 19		2.5 138	3 16	0 23	0	0.70 2	7	817	2700
			30180108	31384302 -	D-0054A	J-0118			
		SPE- CIFIC CON- DUCT-	PH (STAND-	TEMPER- ATURE	COLOR (PLAT- INUM-	HARD- NESS TOTAL (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED
DATE	TIME	(US/CM)	ARD UNITS)	WATER (DEG C)	COBALT UNITS)	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)
APR		, , , , , , , ,	431777	15.55			200		
18	0800	630	7.57	27.5	<5	310	71	30	11
DATE	S (1	SIUM, LINDIS- I OLVED (N MG/L	AB DI AG/L SC AS (M	FATE RI S- DI DLVED SO MG/L (M	DE, RI S- D LVED SC G/L (M	DE, DI IS- SO LVED (M IG/L A	ICA, RES S- AT LVED DE IG/L D S SO	180 T G. C D IS- SO LVED (U	RON- IUM, IS- LVED G/L SR)
APR									
18		2.3 12	7 18	30 1	3	0.60 2	2	444	4100

DUVAL COUNTY--Continued

301817081374901 - D-425T J-492

			301	817081374	901 - D-4	25T J-49	2			
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 22	0715	34.60	-14.60	580	7.89	29.0	<5	280	69	26
DATE	SODIU DIS- SOLVE (MG/ AS N	M, SI DI D SOL L (MG		TY SULF B DIS /L SOL (MG	VED SOL	E, RIDI - DIS VED SOL' /L (MG)	E, DIS- S- SOLV VED (MG/ /L AS	AT 1 /ED DEG /L DI SOL	DUE STR	UM, S- VED /L
APR 22	12	1	.9 137	140	16	0	.60 24		387 3	200
			301	817081374	902 - D-4	25B J-49	2			
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 22	0740	37.20	-17.20	1570	7.78	29.0	<5	820	240	52
DATE APR 22	SODIU DIS- SOLVH (MG, AS 1	IM, SI DI SOL (L (MG		TY SULF B DIS J/L SOI	S- DIS LVED SOL S/L (MG SO4) AS	E, RID - DI VED SOL /L (MG CL) AS	E, DIS- S- SOLV VED (MG, /L AS	- AT 1 VED DEG /L DI SOL 2) (MG	DUE STR 80 TI 6. C DI SS- SOL VED (UG G/L) AS	UM, S- VED /L
	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
APR 18	less.	0830	560	7.58	28.0	270	64	25	11	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
APR 18	i	2.0	1320	140	14	0.70	23	388	3600	

DUVAL COUNTY--Continued

301852081240301 - D-0605 J-0671

			301	85208	124030	T - D-0	PO2 7	-067	L			
DATE	TIME	SPE CIF CON DUC ANC	IC - F T- (ST E A	H AND- RD TS)	TEMPE ATUR WATE (DEG	R- (P E IN R CO	LOR LAT- UM- BALT ITS)	HARI NESS TOTA (MG, AS CACO	S CAL AL DI /L SO (M	CIUM S- LVED G/L CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	DIS- D SOLVED (MG/L
JUN 16	0830		580	7.66	26	.0	<5		280 5	8	33	11
DATE	Se (I	OTAS- SIUM, DIS- OLVED MG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	DI SO (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOI (MC	E, S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 1 DEC DI SOL	DUE 80 5. C S- VED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 16	-	1.9	132	15	n	15		.90	24		397	1800
10		1.3	152	13		13		7.30	24		007	1000
			301	onzna	142000	01 - D-0	241	T-030	Q			
		SPE		30700	142030		241	HAR			MAGNE	
DATE	TIME	CIF CON DUC ANC (US/	IC - I T- (ST E A	PH CAND- ARD CTS)	TEMPE ATUR WATE (DEG	ER- (F EE IN ER CO	LOR LAT- UM- BALT ITS)	NES TOT (MG AS CAC	S CAL AL DI /L SC (M	CIUM S- DLVED G/L CA)	SIUM DIS- SOLVE (MG/L AS MG	DIS- DIS- D SOLVED (MG/L
APR	-252		222	2002			_					
18	1110		560	7.65	29	9.5	<5		270 6	4	25	10
DATE	S (I	OTAS- SIUM, DIS- OLVED MG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	DI SO (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOI (MC	DE, IS- LVED S/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 1 DEC DI SOI	DUÉ 180 3. C IS- VED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
18		2.0	128	14	0	12	(.70	22		386	3300
			301	91308	153460	1 - D-0	049	J-011	3			
DATE		TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	(ST	H AND- RD TS)	TEMPER- ATURE WATER (DEG C)	INU	AT-	HARD- NESS TOTAL (MG/L AS CACO3)	(MC	CIUM S- .VED S/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
JUN 20		1400	350		7.73	23.5		<5	150	2.4		16
20		1400	330		7.75	23.3		-5	150	34		16
DATE	SOI (I	DIUM, IS- LVED MG/L S NA)	ALKA- LINITY LAB (MG/L AS CACO3)	DI SO (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		E, S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)	DI	DUE 80 . C S- VED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN		10	126		0	11		. 50	0.1		216	1200
20		12	136	2	8	11	C	.50	21		216	1200

DUVAL COUNTY--Continued

301955081485701 - D-2069 J-2188

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN	1111	111.29	Leves						
20	1430	430	7.73	22.0	<5	190	42	21	11
DATE	SOI (MC	TAS- ALK IUM, LINI IS- LA LVED (MC G/L AS K) CAC	TY SULE B DI G/L SO G (M	FATE RII S- DIS LVED SOI G/L (M	DE, RI S- D LVED SC G/L (M	DE, DI DIS- SC DLVED (N MG/L	LICA, RES IS- AT DLVED DE MG/L D AS SO	180 1 G. C I IS- SC LVED (U	CRON- CIUM, DIS- DLVED JG/L S SR)
JUN 20	-	2.3 132	7	3 1:	1	0.70 2	24	271	2400
			30195708	1342301 -	D-0313	.I-0378			
		SPE-	50155700	1042001	D 0010	HARD-		MAGNE-	
DATE	TIME	CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 19	0930	720	7.56	27.5	<5	290	71	28	27
DATE	D: SOI (MC	TAS- ALE IUM, LINI IS- LA LVED (MC G/L AS K) CAC	TY SUL AB DI S/L SO S (M	FATE RII S- DIS LVED SOI G/L (M	DE, RI S- D LVED SC G/L (M	DE, DI DIS- SO DLVED (N MG/L	LICA, RES IS- AT DLVED DE MG/L D AS SO	180 7 G. C I IS- SC LVED (U	CRON- CIUM, DIS- DLVED JG/L S SR)
APR 19		1.8 144	11	0 7:	2	0.60 2	27	454	2000
10		1.0 144		, ,		0.00		454	2000
			20000700	1050001	D 0170	T 0515			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 18	1440	700	7.58	28.0	<5	300	73	28	24
DATE	SI DI SOI	TAS- ALK IUM, LINI IS- LA LVED (MC G/L AS K) CAC	TY SULE B DIS C/L SOI C (M	FATE RII S- DIS LVED SOI G/L (M	DE, RI S- D LVED SC G/L (M	DE, DI DIS- SC DLVED (N IG/L A	ICA, RES IS- AT DLVED DE MG/L D AS SO	180 1 G. C I IS- SC LVED (U	TRON- TIUM, DIS- DLVED GG/L S SR)
APR 18	13	1.8 143	11	0 64	4	0.50 2	27	447	2200
20.00			-	-					Carren.

DUVAL COUNTY--Continued

302008081242101 - D-0307 J-0372

DATE	TIME	SPE CIF CON DUC ANC	IC - T- (E	PH (STAND- ARD JNITS)	TEMPER- ATURE WATER (DEG C)	INU	OR AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIU DIS- SOLVE (MG/L AS CA	DIS D SOLV	M, SODIUM, - DIS- ED SOLVED L (MG/L
JUL 06	1150		605	7.83	25.5	5	5	280	57	34	10
nrwar -	rY8		***	111120				7.3			1772
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAN (MG) AS CACO	Y SUL	FATE F S- I LVED S G/L (CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	, DI - SO ED (M L A	ICA, R S- A LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUL 06		1.9	118	17	0	12	1.	0 2	2	421	1700
00		1.5	110	17		12	*.	0 2	2	421	1700
				30201308	1353801	- D-06	73 J-	0790			
DATE	TIME	SPE CON DUC ANO (US)	IC I- IT- (E	PH (STAND- ARD JNITS)	TEMPER- ATURE WATER (DEG C)	INU	OR AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIU DIS- SOLVE (MG/L AS CA	DIS D SOLV (MG/	M, SODIUM, - DIS- ED SOLVED L (MG/L
APR 18	1500		715	7.62	28.5		<5	310	75	29	22
10	1500		/13	7.02	20	,	~3	310	/3	23	22
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAH (MG/ AS CACO	Y SULI B DIS L SOI (M	FATE F S- I LVED S G/L (CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	, DI - SO ED (M L A	ICA, R S- A LVED G/L	GOLIDS, DESIDUE T 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR 18		1.8	141	12	0	71	0.	60 2	7	463	2300
			3	30201508	1384501	- D-03	35 J-	0400			100
DATE	TIME	SPE CIF COM DUC ANC	IC I- IT- (IE	PH (STAND- ARD JNITS)	TEMPER- ATURE WATER (DEG C)	INU	OR AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIU DIS- SOLVE (MG/L AS CA	DIS D SOLV (MG/	M, SODIUM, - DIS- ED SOLVED L (MG/L
APR 18	1145	í	525	7.62	28.5	5	<5	250	61	22	12
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAI (MG, AS CACO	A- TY SUL B DI /L SO	FATE H S- I LVED S G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	- SIL - DI - SO ED (M L A	ICA, R	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR 18		1.7	144	10	0	16	0	70 2	7	355	2200
		= • • •	- Act				٠.			555	2200

DUVAL COUNTY--Continued

302022081393501 - D-0176 J-0240

DATE	TIME	ELEV- ATION S ABOVE NGVD	LAND (URFACE ((WATER I LEVEL)	SPE- CIFIC CON- DUCT- ANCE US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	INUM- COBALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 18	1130	24.70	-21.70	625	7.62	26.5	5	300	73	27
DATE	SODIU DIS- SOLVE (MG/ AS N	DIS- D SOLVE L (MG/L	, LINITY LAB D (MG/L AS	SULF DIS SOL (MG) AS S	- DIS VED SOL /L (MG	E, RI - D VED SO /L (M	DE, DIS IS- SOI LVED (MG G/L AS	S- AT I LVED DEC G/L DI S SOI	DUE STRO	M, - ED L
APR 18	11	2.0	130	170	12		0.70 2:	2	425 38	00
			302045	0813231	.01 - D-13	23 J-12	97			
DATE	TIM	SPE- CIFIC CON- DUCT- E ANCE (US/CM	PH (STAND- ARD	TEMP - ATU WAT	COL ER- (PL RE INU ER COB	HA OR NE AT- TO M- (M ALT A	RD- SS CALO TAL DI: G/L SO: S (M	CIUM SI S- DI LVED SOI G/L (MC	GNE- IUM, SODIU IS- DIS- LVED SOLVE G/L (MG/ MG) AS N	D L
JUN 15	140	0 102	0 8.18	8 2	7.0	<5	330 7	4 34	4 66	
JUN	DATE	SIUM, L DIS- SOLVED (MG/L AS K)	LAB I (MG/L : AS CACO3) A:	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
13	***	2.2	20	110	170	0.50	23	918	2300	
			302052	0813232	201 - D-30	60 J-32	80			
DATE	TIM	SPE- CIFIC CON- DUCT- E ANCE (US/CM	PH (STAND ARD	WAT	RE INU	OR NE AT- TO M- (M BALT A	TAL DI IG/L SO IS (M	CIUM S: S- D: LVED SOI G/L (M	GNE- IUM, SODIU IS- DIS- LVED SOLVE G/L (MG/ MG) AS N	D L
APR 22	113	0 1850	0 7.4	0 2	9.5	5	3300 65	0 400	2700	
	DATE	SIUM, L DIS- SOLVED (MG/L	LAB I (MG/L S AS	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
APR 22	,,,	40 3	19 10	000	6000	0.40	26	12300	19000	

DUVAL COUNTY--Continued

302124081344601 - D-0430 J-0497

DATE	TIME	SPE- CIFI CON- DUCT ANCI (US/C	IC - PF I- (STA E AF	AND-	TEMPER- ATURE WATER (DEG C)	COLO (PLA INUN COBA UNI	OR AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALCI DIS- SOLV (MG) AS (TED SOL	UM, S- VED	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 15	0830		500	7.60	27.5		<5	260	64	24		17
					1							
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULF DIS SOL (MG AS S	VED SOI	E,	FLUC RIDE DIS SOLV (MG/ AS E	F, D F- S VED (LICA, IS- OLVED MG/L AS IO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	D SO (U	RON- IUM, IS- LVED G/L SR)
JUN 15		1.7	148	100	39	9	0	70	27	407		1700
15		1.7	140	100			0.	,,,	27	407		1700
			302	130081	411802 -	D-00	46A J-	-0110				
DATE	TIME	SPE CIF CON DUC ANC	IC - PI T- (STA E Al	AND- RD	TEMPER- ATURE WATER (DEG C)	COL (PL INU COB UNI	AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALC: DIS- SOL' (MG AS (IUM SI - DI VED SOI /L (MG	NE- UM, S- VED J/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 18	1200		550	7.61	27.0		<5	260	64	23		11
10	1200		550	7.01	27.0		-3	200	04	20		11
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULF DIS SOL (MG AS S	FATE RII S- DIS LVED SOI S/L (MC	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG, AS E	E, D S- S /ED ('L	LICA, OIS- OLVED MG/L AS (102)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	D SO (U	RON- IUM, IS- LVED G/L SR)
APR 18		1.7	137	120		9.2	0	.70	24	378		2500
10		1.7	137	120		5.4	0.	. 70	24	3/6		2300
		30:	21590812	35601	- D-2386	HAN	NA PAI	K TEST	WELL			
DATE	TIME	SPE CIF CON DUC ANC	IC - PI T- (STA E AI	AND- RD	TEMPER- ATURE WATER (DEG C)	COLO (PL. INUI COB. UNI	AT- M- ALT	HARD- NESS TOTAL (MG/L AS CACO3)	CALC: DIS: SOL' (MG,	IUM SI - DI VED SOL /L (MG	NE- UM, S- VED (/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 21	1430	125	000	7.30	29.5		<5	1900	380	240		1700
												7
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULF DIS SOL (MG AS S	ATE RII - DIS VED SOI 5/L (MC		FLUC RIDE DIS SOLV (MG/ AS F	E, D S- S 7ED ('L	LICA, IS- OLVED MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	D SO (U	RON- IUM, IS- LVED G/L SR)
APR		0.0	107	70-				20	2.0	****		2000
21		26	137	700	3500	J	0.	20	30	7380		8200

DUVAL COUNTY--Continued

302227081435001 - D-0592 J-0658

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	INUM- COBALT	(MG/I	CAL DI SC (M	MAGNE- CIUM SIUM, S- DIS- DLVED SOLVED G/L (MG/L S CA) AS MG)
APR 18	1230	39.70	-29.70	575	8.10	26.0	<5	5 29	90 7	2 25
DATE	SODIU DIS- SOLVE (MG/ AS N	DIS D SOLV L (MG/	M, LINI: - LAI ED (MG, L AS	TY SULF B DIS /L SOL (MG	S- DIS .VED SOL S/L (MG	DE, RI S- D LVED SC S/L (M	DE, DI DIS- SC DLVED (N IG/L A	ICA, REIS- AIDLVED ING/L	DLIDS, SSIDUE 180 DEG. C DIS- SOLVED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
APR 18	10	1.	7 129	160	12		0.60 2	23	414	2700
			3022	360814015	501 - D-03	36 J-04	01			
DATE	TIM	SPE- CIFI CON- DUCT E ANCE (US/C	C PH - (STAL	ND- ATU D WAI	RE INU	OR NE	TAL DI NG/L SO S (N	CIUM S- DLVED S MG/L (MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 18	124	5 4	85 7	.68 2	27.5	<5	220	54	21	11
APR	DATE	DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	AS SIO2)	AT 180	JÉ ST C I C SC CD (U	TRON- TIUM, DIS- DLVED IG/L S SR)
			3022	430813004	01 - D-03	60 J-04	25			
DATE	TIM	SPE- CIFI CON- DUCT E ANCE (US/C	C PH - (STAI ARI	D WAT	RE INU	OR NE AT- TO M- (M SALT A	TAL DI G/L SC S (M	CIUM S- DLVED S G/L (AGNE- SIUM, DIS- SOLVED MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 20	132	0 12	70 7	, 61 2	.7.0	<5	400 9	14	40	94
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVEI (MG/L AS SIO2)	AT 180	DE ST	TRON- TIUM, DIS- DLVED DG/L S SR)
APR 20		2.4	140	140	250	0.60	28	78	30	2500

DUVAL COUNTY--Continued

		30231708	1330401 -	D-0488	J-0555	IPA AT E	LOUNT	ISLAND		
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STANI ARD UNITS)	WATE	ER- (F EE IN ER CO	LOR LAT- UM- BALT (ITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 25	0905	30.20	525	7.6	52 25	5.0	<5	240	56	23
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	LINITY LAB	SULFAT DIS- SOLVE (MG/I AS SO4	DIS- ED SOLV (MG)	E, RI FED SO L (M	UO- DE, IS- LVED G/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY 25	15	1.7	148	86	23		0.70	28	349	1400
		202220081	251702	D 4544	. 0521 1	50 TH 1	A C=	MA VIDOD#		
DA	TE	S C C C D TIME A	UCT- (S	PH T TAND- ARD	EMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALI UNITS)	HAR NES TOT (MG	D- S CAL AL DI J/L SO	CIUM S S- D LVED SC G/L (M	GNE- SIUM, DIS- DLVED G/L S MG)
APR 21		1200	565	7.86	25.0	<5		270 6	1 2	28
DA	SC TE (DIUM, DIS- DLVED S MG/L (SIUM, LI DIS- OLVED (MG/L	LAB MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		CA, RES - AT VED DE G/L D S SO	180 1 G. C I IS- SC LVED (U	CRON- CIUM, DIS- DLVED JG/L S SR)
APR 21		11	1.7 13	2	140	0.70	25		417	1500
			V2-02-V2-1							
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD	TEMPE	E INUI	DR NEAT- TO	RD-	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUL. 12	0930	910	7.73	27	. 0	5	320	76	32	51
									222	

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUL 12	2.0	150	120	120	0.70	29	584	1700

DUVAL COUNTY--Continued

302351081390201 - D-0151 J-0215 OLD BROWARD RD NR TROUT RI, JACKSONVILLE

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
1AY 25	1300	24.64	545	7.58	24.0	<5	250	63	23
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
1AY 25	12	1.7	141	120	14	0.70	24	383	1800
			30242808	31313101 -	D-1290	J-1432			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
TUL 12	1145	640	7.64	23.5	<5	230	52	23	13
							SOT	IDS	
JUL 12.	SO DATE (I	SIUM, LIN DIS- L OLVED (M MG/L A	AB DI IG/L SC IS (M ICO3) AS	FATE RI S- DI DLVED SO IG/L (M SO4) AS	DE, RI S- D DLVED SO MG/L (M S CL) AS	DE, DI DIS- SC DLVED (M G/L A F) SI	AICA, RES S- AT DLVED DE MG/L D AS SO	180 I GG. C D DIS- SC DLVED (U	RON- TIUM, DIS- LIVED IG/L S SR)
JUL	I SO DATE (I AS	SIUM, LIN DIS- L OLVED (M MG/L A S K) CA	ITY SUL AB DI IG/L SC S (M .CO3) AS	FATE RI S- DI LVED SC IG/L (M SO4) AS	DE, RI S- D DLVED SO MG/L (M S CL) AS	DE, DI IS- SC LVED (N IG/L A F) SI	ICA, RES S- AT DLVED DE IG/L D IS SC (O2) (M	SIDUÉ ST 180 T GG. C E DIS- SC DLVED (U MG/L) AS	IUM, DIS- DLVED G/L S SR)
JUL	I SO DATE (I AS	SIUM, LIN DIS- L OLVED (M MG/L A S K) CA	ITY SUL AB DI IG/L SC S (M .CO3) AS	FATE RI S- DI LVED SC IG/L (M SO4) AS	DE, RI S- D DLVED SC GG/L (M S CL) AS	DE, DI IS- SC LVED (N IG/L A F) SI	ICA, RES S- AT DLVED DE IG/L D IS SC (O2) (M	SIDUÉ ST 180 T GG. C E DIS- SC DLVED (U MG/L) AS	IUM, DIS- DLVED G/L S SR)
JUL 12.	DATE (I	SIUM, LIN DIS- L DIVED (M MG/L A S K) CA 1.8 154 SPE- CIFIC CON- DUCT- ANCE	ITY SULAB DI G/L SC S. (M. CO3) AS	FATE RI S- DI DIUVED SC GG/L (M SO4) AS 8 1 81493401 TEMPER- ATURE WATER	DE, RI S- D DLVED SC MS/L (M CL) AS 8 - D-3390 COLOR (PLAT- INUM- COBALT	DE, DI SI SC LIVED (N SI SI SI SI SI SI SI S	CALCIUM DIS-SOLVED (MG/L	MAGNE-SIUM, DIS-SOLVED (MG/L)	SODIUM, DIS- SOLVED SOLVED SOLVED (MG/L
JUL 12. DATE JUN 21	DATE (I	SIUM, LIN DIS- L DIS- L DIVED (M MG/L A S K) CA 1.8 154 SPE- CIFIC CON- DUCT- ANCE (US/CM) 490 DTAS- AL SIUM, LIN DIS- L DUVED (M MG/L A	PH (STAND-ARD UNITS) KA- ITY SUL AB DI (STAND-ARD UNITS) 7.58 KA- ITY SUL AB DI (SJAND-S) KA- ITY SUL AB DI (SJAND-S) S (M	FATE RI S- DI	CDE, RI S- D DLVED SC G/L (M GCL) AS - D-3390 COLOR (PLAT- INUM- COBALT UNITS) <5	DE, DI DI SI DI DI DI DI DI	CALCIUM DIS-SOLVED (MG/L AS CA) 46 CALCIUM DIS-SOLVED (MG/L AS CA) 46 CALCIUM DIS-SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L) AS 328 MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 26 JIDS, JIDS, JIDUE JIS- SOLVED (MG/L AS MG) 26 JIDS, JIDUE JIS- SOLVED JIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SODIUM, DIS- SOLVED (MG/L AS NA)

DUVAL COUNTY--Continued

302502081321001	- D-0270	T-0335	5186	HEALKGHED	DDIAL	TACKCOMOTTIE

	302502	2081321001	- D-0270	J-0335 5	186 HECKSI	HER DRIVE	, JACKSON	VILLE	
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY									
25	0940	30.80	510	7.62	24.0	<5	230	53	23
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY									
25	14	1.6	156	80	19	0.60	29	341	920
			30250508	1331001 -	D-1150	J-1139			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR									
20	0955	550	8.06	24.5	<5	250	59	25	17
APR	DATE (N	SIUM, LIN DIS- L DLVED (M MG/L A	AB DI G/L SO S (M	FATE RI S- DI LVED SO G/L (M	DE, RII S- DI LVED SOI G/L (M	DE, DI IS- SO LVED (M G/L A	S- AT LVED DE IG/L D S SO	180 T G. C D IS- SO LVED (U	RON- IUM, IS- LVED G/L SR)
)	1.6 155	8	2 3	2	0.60 3	1	373	820
	302514081	1393701 -	D-0227 J-	0294 1040	2 MORACO	DRIVE NOR	HARD-	ONVILLE	MAGNE-
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)
MAY									
25	1230	33.30	495	7.64	27.0	<5	220	52	22
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY									
25	14	1.6	161	70	18	0.50	31	318	540

DUVAL COUNTY--Continued

302538081253101 - D-164 J-228 GOLF COURSE AT FORT GEORGE ISLAND

DATE	TIME	ELEV- ATION S ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM SIUM DIS- DIS- SOLVED SOLVI (MG/L (MG/L AS CA) AS MO	M, ED L
JUL 06	0930	36.61	-20.90	1390	7.45	29.0	<5	430	90 50	
DATE	SODIUM DIS- SOLVEI (MG/I AS N	DIS- D SOLVE L (MG/I	A, LINIT LAB ED (MG/ L AS	Y SULF DIS L SOL (MG	- DIS VED SOL /L (MG	E, RID - DI VED SOL /L (MG	E, DIS S- SOL VED (MG /L AS	- AT 18 VED DEG. /L DIS SOLV	UÉ STRON- 0 TIUM, C DIS SOLVED ED (UG/L	
JUL 06	100	3.2	2 144	170	210	0	.80 30	8	61 1600	
			30253	80813925	01 - D-03	29 J-039	4			
DATE	TIM	SPE- CIFIC CON- DUCT- E ANCE	PH	D- ATU	RE INU	AT- TOI M- (MG	S CALC AL DIS /L SOL	- DIS VED SOLV	M, SODIUM, - DIS- ED SOLVED	
52		(US/CI					03) AS			
APR 18	140	0 52	25 7.	66 2	6.0	<5	230 55	23	14	
APR	DATE	DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
10		1.3	137	79		0.80	31	337	330	
			30255	520812437	01 - D-16	61 J-15	9			
DATE	TIM	SPE- CIFIC CON- DUCT E ANCE (US/CI	PH STAN	ND- ATU XAT	RE INU	AT- TOT M- (MC ALT AS	S CALC CAL DIS S/L SOL	- DIS VED SOLV /L (MG/	M, SODIUM, S- DIS- YED SOLVED L (MG/L	
JUN 16	120	0 6:	25 7.	.66 2	3.0	<5	260 57	28	25	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
JUN 16		2.0	153	100	44	0.50	31	444	590	

DUVAL COUNTY--Continued

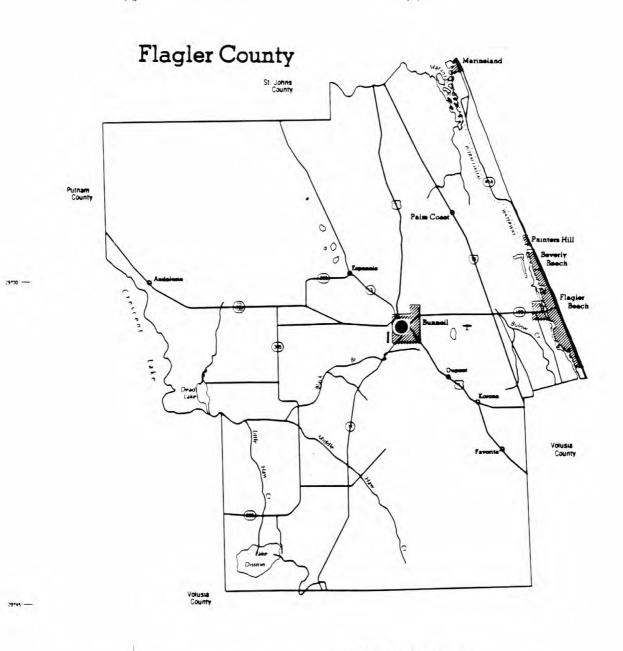
302647081460201 - D-1068 J-1127

				30264/0	8146020	11 -	D-106	8 J	-112/				
DATE	TIME	SPI CII CON DUC ANC (US)	IC I- CT- CE	PH (STAND- ARD UNITS)	TEMPH ATUR WATH (DEG	RE ER	COLO (PLA INUM COBA UNIT	T- I- LT	HARD NESS TOTA (MG/ AS CACO	L DI	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	DIS- SOLVED (MG/L
JUN	1200		550	7 40	2.	2.0		<5	2	.50 5	0	25	15
21	1200		550	7.40	24	2.0		-3	2	.50 5	0	23	15
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALK LINI LA (MG AS CAC	TY SU B D /L S	LFATE IS- OLVED MG/L SO4)	CHL RID DIS SOL (MG AS	E, - VED		E, S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOI	IDUÉ S 180 3. C IS- S LVED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 21		1.6	158		94	23		0	.60	31		370	340
21		1.0	130		34	25			.00	31		370	540
DATE	40812	SPI CII COI DU	E- FIC N- CT- CE	PH (STAND- ARD UNITS)	TEMP:	ER- RE ER	COLO (PLA INUN COBA UNIT	OR AT- A- ALT	HARI NESS TOTA (MG/ AS CACO	CAL DI	CIUM S- LVED G/L CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODIUM, DIS- D SOLVED (MG/L
JUN 16	1130		485	7.57	2	3.5		<5		210 4	7	23	15
10	1130		405	1.51	2	3.3		-5	-	.10 4	'	23	15
DATE JUN 16		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALK LINI LA (MG AS CAC	TY SUB DILL S (03) AS	LFATE IS- OLVED MG/L SO4)	(MG	E, VED J/L CL)	SOI (MG AS	E, S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)	DEC D: SOI	IDUÉ 180 G. C IS- LVED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
- 3	30273	808129	0001 -	D-1078	J-110	6 712	4 CE	DAR I	THIO	ROAD, J	ACKSO	ATILIE	
DATE	TIME	DU(AN(FIC N- CT- CE	PH (STAND- ARD UNITS)	TEMPI ATUI WATI (DEG	RE ER	COLO (PLA INUN COBA UNIT	AT- ALT	HARD NESS TOTA (MG/ AS CACO	CAL L DI L SO (M	CIUM S- LVED G/L CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODIUM, DIS- D SOLVED (MG/L
JUN													
22	0900		530	7.59	2	3.0		<5	2	240 5	4	25	14
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALK LINI LA (MG AS CAC	TY SUB D/L S	LFATE IS- OLVED MG/L SO4)	(MG AS	E, VED :/L CL)	SOL (MG AS	E, S- VED G/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	DEC DEC SOI	IDUE : 180 3. C IS- : LVED 3/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
22		1.6	152		87	21		C	.60	30		366	430

DUVAL COUNTY--Continued

302919081314601 - D-1362 J-1354

			302	a1300	1314601 -	D-130Z	3-13.	,4			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM	PI (STA	AND- RD	TEMPER- ATURE WATER (DEG C)	COLOR (PLATINUM- COBAL) UNITS	(MG	SAL F/L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN											
22	1100	52	0	7.63	23.0	<	5	230	52	25	14
DATE	S	DIS- OLVED MG/L	ALKA- INITY LAB (MG/L AS CACO3)	DI SO (M	LVED SOL G/L (MG	E, I - VED :	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIO DIS- SOL' (MG AS SIO	CA, RES - AT VED DEC /L D	180 G. C IS- S LVED (TRON- TIUM, DIS- OLVED UG/L S SR)
JUN		1 4 1	50		6 21		0 60	20		252	240
22		1.4 1	50	8	6 21		0.60	30		353	340
		SPE-		02908	1342901 -		HAF	D-	CALCTIN	MAGNE-	CODIUM
		CIFIC CON-	PI	н	TEMPER-	COLOR (PLAT			DIS-	SIUM, DIS-	SODIUM, DIS-
		DUCT-		AND-	ATURE	INUM-			SOLVED	SOLVED	SOLVED
DATE	TIME	ANCE	Al	RD	WATER	COBAL	r AS	5	(MG/L	(MG/L	(MG/L
		(US/CM) UNI	TS)	(DEG C)	UNITS) CAC	:03)	AS CA)	AS MG)	AS NA)
JUN											
22	1200	55	5	7.63	23.0	<	5	250	58	26	15
DATE	S	SIUM, L DIS- OLVED MG/L	ALKA- INITY LAB (MG/L AS CACO3)	DI SO (M	LVED SOL	E, 1 - VED :	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIC DIS- SOLI (MG, AS SIO	CA, RES - AT VED DEC /L D: SOI	180 G. C I IS- SO LVED (1	TRON- TIUM, DIS- OLVED UG/L S SR)
JUN											
22		1.6 1	51	10	0 23	-	0.60	31		373	350
DATE	321608	SPE- CIFIC CON- DUCT- ANCE (US/CM	PI (STA	H AND- RD	TEMPER- ATURE WATER (DEG C)	COUNT COLOR (PLAT INUM- COBAL UNITS	HAR NES TOT (MG	D- SS (CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 21	1500	58	5	7 54	26.0	<	5	260	57	29	15
41	1500	20	-		20.0			200	3,	23	13
DATE	S		ALKA- INITY LAB (MG/L AS CACO3)	DI SO (M	LVED SOL G/L (MG	E, ;- .VED :	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIO DIS SOL' (MG AS SIO	CA, RES - AT VED DEC /L D SO	180 G. C IS- S LVED (TRON- TIUM, DIS- OLVED UG/L S SR)
JUN											
21		1.6 1	48	12	0 23		0.60	30		391	510


DUVAL COUNTY--Continued

				3	03458	0813	64001	-	D-0	0411	J-0	478					
DATE		TIME	SPE CIF CON DUC ANC (US/	IC - T- E	PH (STA AR UNIT	D-D	TEMPI ATUI WATI (DEG	RE ER	COLO (PLA INUN COBA UNIT	AT- ALT	HAR NES TOT (MG AS CAC	S AL /L	CALC DIS SOL (MG AS	VED /L	MAGN SIU DIS SOLV (MG) AS N	IM, S- /ED /L	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 22		1330		560	7	.92	2:	1.5		<5		260	58		28		15
	DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LIN L (M A	AB G/L	DI SO (M	FATE S- LVED G/L SO4)	(MC	E, - VED		E, S- VED	DI SO (M	ICA, S- LVED G/L S	RESI AT : DEC DI SOI	IDS, IDUE 180 G. C IS- LVED G/L)	D SO (U	RON- IUM, IS- LVED G/L SR)
JUN 2	2		1.8	154		11	0	23		C	.60	3	0		382		480

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 23 FLAGLER COUNTY Index Site

Index	Site	Page
number	number	number
1	292750081152001	144

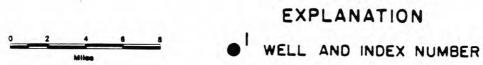


Figure 23.--Location of wells in Flagler County.

FLAGLER COUNTY

WELL NUMBER. -- 292750081152001. USGS Well Flagler 14 at Bunnell, FL.

LOCATION.--Lat 29°27'50", long 81°15'20", in NE% sec.15, T.12 S., R.30 E., Hydrologic Unit 03080201, 200 ft south of intersection of West Court and South Railroad Streets, and 600 ft southwest of intersection of State Highway 11 and U.S. Highway 1 at Bunnell. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 6 to 4 in., depth 417 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 21.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling at land-surface datum.

COOPERATION. -- Since Oct. 1, 1985, records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--March 1936 to December 1962 (monthly); February 1963 to September 1985 (bimonthly); October 1985 to current year (monthly). Records of water levels prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.30 ft NGVD, Sept. 9, 1947; lowest measured, 10.46 ft NGVD, July 10, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
27 DEC	0945	13.15	16 JUN	1040	12.62
03	1350	13.77	02	1920	12.54
29 JAN	0945	13.93	29 JUL	1200	12.50
22 MAR	1027	14.22	26 AUG	0820	12.98
02	0953	14.65	26	1040	13.04
29	1040	14.75	SEP		
APR			12	1015	14.00
27	1215	12.88	28	0900	13.89

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

FLAGLER COUNTY

	DATE OF		OTATION VALUE	ELEVA- TION ABOVE NGVD
STATION NUMBER	SAMPLE	TIME	STATION NAME	(FEET)
291720081194401	05-16-88 09-12-88	0945 0920	91711901 14S29E13	18.38
291818081190401	05-16-88 09-12-88	0930 0908	RELAY TOWER DEEP WELL (F0251)	15.95 17.33
291913081224201	05-16-88 09-12-88	0900 0840	13S29E33	17.32 18.92
291955081200901	05-16-88 09-12-88	0918 0855	91912003 13S29E36	10.45 12.08
292156081215001	05-16-88 09-12-88	0845 0820	92112103 13S29E37	8.77 10.48
292302081155901	05-16-88 09-12-88	1000 0938	SR304 WELL AT SWEETWATER BRANCH	11.61 12.90
292342081183701	05-16-88 09-12-88	1025 0955	92311805 13S30E06	7.49 9.32
292448081121301	05-18-88 09-14-88	1022 1035	ITT-PALM COAST WELL LW-15	16.35 17.12
292603081082502	05-18-88 09-13-88	1155 1047	F-176 BULLOW RUINS	7.65 8.89
292604081062401	05-18-88 09-13-88	1248 1215	SJRWMD SHALLOW WELL F174	5.16 6.62
292645081110301	05-18-88 09-14-88	0930 0945	ITT PALM COAST WELL SW-82	13.00 14.21
292647081182001	05-16-88 09-12-88	1155 1045	92611803 12S30E19	7.77 9.66
292728081125601	05-18-88 09-13-88	1130 1021	BUNNELL AIRPORT WELL AT GORE LK	14.89 15.93
292853081082501	05-18-88 09-13-88	1230 1200	928108 12S31E12 SR201 WELL AT FLAGLER BEACH	8.90 10.02
292947081164401	05-16-88 09-12-88	1230 1215	ITT-PALM COAST WELL LW-6	14.00 15.27
293034081293001	05-16-88 09-12-88	0710 0700	93012901 11S28E32	12.96 14.69
293128081090501	05-18-88 09-13-88	1312 1250	LENSSEN WELL AT BEVERLY BCH	9.50 9.45
293257081171601	05-18-88 09-14-88	0920 1025	93211702 11S30E16	14.29 15.61
293337081230301	05-16-88 09-13-88	1310 0850	CONTAINER CORP WELL AT DINNER ISLAND	13.91 15.58
293337081230302	05-16-88 09-13-88	1313 0852	CONTAINER CORP SHALLOW WELL AT DINNER ISLAND	23.05 23.15
293529081191701	05-18-88 09-13-88	0810 0800	*SJ* F165 10S30E31 PALM COAST ITT-LW-20 WESTBOUNDR	13.89 15.14
293724081160101	05-16-88 09-12-88	1035 1045	ITT-PALM COAST WELL LW-53	13.67 14.98
293754081121901	05-19-88 09-14-88	0925 0905	*SJ* F200 10S31E WASHINGTON OAKS PARK WEATHER STA	13.32 14.66
293754081121902	05-19-88 09-14-88	0910 0845	F-191 WASHINGTON OAKS STATE PARK	1.96 1.83
29390508,1142701	05-19-88 09-15-88	0723 0740	939114 10S30E39 WADSWORTH WELL AT STYLES CK	12.29 13.54
293943081124301	05-19-88 09-14-88	0830 0805	93911201	9.79 11.26

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 24 GLADES COUNTY

Index number	Site number	Page number
1	265529081185201	148
2	271150081054401	148

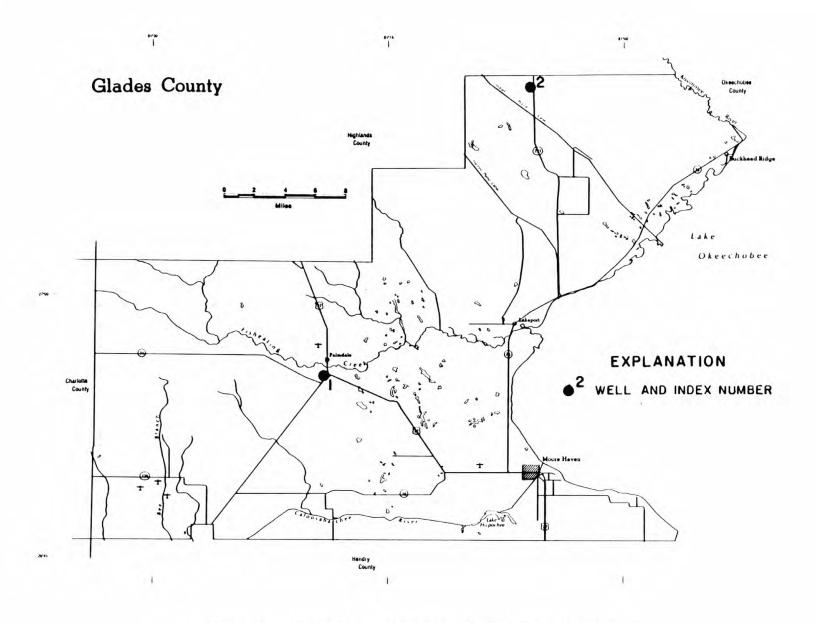


Figure 24.--Location of wells in Glades County.

GLADES COUNTY

WELL NUMBER. -- 265529081185201. GL-267 Well near Palmdale. FL.

LOCATION.--Lat 26°55'29", long 81°18'52", in NE\SW\NW\sec.10, T.41 S., R.30 E., Hydrologic Unit 03090103, 100 ft north of Palmdale Fire Tower, 500 ft northwest of intersection of U.S. Highway 27 and State Highway 29, and 2.0 mi south of Palmdale. Owner: Florida Division of Forestry.

AQUIFER .-- Hawthorn Limestone aquifer of the Miocene Series, Geologic Unit 122 HTRNN.

WELL CHARACTERISTICS .-- Drilled, domestic, artesian well, diameter 4 in., depth 600 ft, cased to 450 ft.

INSTRUMENTATION .-- Bimonthly measurement with pressure gage or chalked tape by USGS personnel.

DATUM.--Land-surface datum is 42.15 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1978, land-surface datum was considered to be 41 ft, from topographic map. Oct. 1, 1978 to Mar. 25, 1980 at datum 0.60 ft lower. Measuring point: Top of 3/4 in. tee, 0.89 ft above land-surface datum.

PERIOD OF RECORD.--December 1971 to May 1976 (annually); July 1976 to current year (bimonthly). Records prior to January 1974 are unpublished and are available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 47.25 ft NGVD, present datum, Sept. 7, 1976; lowest measured, 41.32 ft NGVD, May 20, 1986.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
08	0840	43.64	17	1012	43.02
DEC			JUL		
08	0920	44.64	20	0945	43.24
FEB			SEP		
11	0940	44.64	16	1200	44.63
MAR			27	0954	44.42
29	1407	44.65			

WELL NUMBER. -- 271150081054401. GL-155 Well near Brighton, FL.

LOCATION.--Lat 27°11'50", long 81°05'44", in NE\SE\SW\sec.2, T.38 S., R.32 E., Hydrologic Unit 03090103, in front of Lykes Ranch headquarters, 300 ft west of State Highway 721, and 1.9 mi south of State Highway 70 in Brighton. Owner: Lykes Ranch.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, domestic, artesian well, diameter 6 in., depth 500 ft, casing length unknown.

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 29.35 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. casing, 1.80 ft above land-surface datum.

PERIOD OF RECORD. --December 1971 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.15 ft NGVD, Apr. 1, 1983; lowest measured, 38.15 ft NGVD, present datum, May 11, 1976.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			JUL		
02	1600	46.35	01	1355	47.25
MAR			AUG		
01	1110	47.05	01	1650	48.25
MAY			SEP		
02	1340	47.05	01	1155	46.95
17	1700	47.55	16	1520	49.05

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

GLADES COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
265452081165401	05-17-88 09-16-88	1340 1240	65411601 41S30E12 CLEMONS, PALMDALE	47.10 48.74
265454081151001	05-18-88 09-22-88	1000 0842	LYKES 12 INCH	44.59 46.23
270115081212901	05-17-88 09-22-88	1050 0930	GLF-3 R B OXER NO 2	49.21 51.49

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 25 HERNANDO COUNTY

Index	Site	Page
number	number	number
1 2	283537082151501 283840082154801	152 152

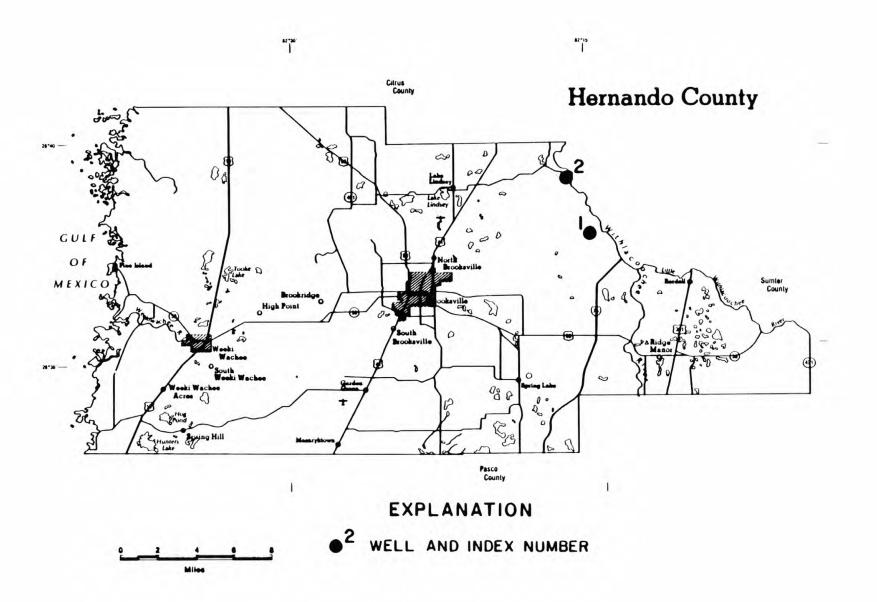


Figure 25.--Location of wells in Hernando County.

HERNANDO COUNTY

WELL NUMBER. -- 283537082151501. ROMP 103 Well near Brooksville, FL.

LOCATION.--Lat 28°35'37", long 82°15'15", in NE%NE%NE% sec.12, T.22 S., R.20 E., Hydrologic Unit 03100208, on south side of Croom Road, 2.6 mi east of Tucker Hill Fire Tower, and 6.3 mi northeast of Brooksville. Owner: Southwest Florida Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, observation well, diameter 8 in., depth 198 ft, cased to 111 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 92.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.42 ft above land-surface datum.

PERIOD OF RECORD . -- April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 48.95 ft NGVD, Oct. 14, 1982; lowest, 36.37 ft NGVD, Aug. 2-4, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
42.18	41.69	41.45	40.99	40.93	40.90	43.16	42.74	41.72	40.87	41.15	42.76
42.09	41.61	41.42	40.91	41.00	40.96	43.25	42.56	41.57	40.70	41.22	44.28
42.04	41.57	41.35	40.84	41.05	41.37	43.22	42.40	41.43	40.63	41.32	46.17
41.97	41.55	41.26	40.73	41.05	42.02	43.15	42.24	41.26	40.62	41.58	47.26
41.88	41.52	41.19	40.71	40.98	42.55	43.04	42.08	41.16	40.74	41.96	47.59
41.75	41.51	41.10	40.86	40.95	42.96	42.89	41.90	41.04	41.02	42.33	47.66
42.24	41.74	41.50	41.08	41.05	42.96	43.33	42.88	41.87	41.02	42.33	47.68
	42.18 42.09 42.04 41.97 41.88 41.75	42.18 41.69 42.09 41.61 42.04 41.57 41.97 41.55 41.88 41.52 41.75 41.51	42.18 41.69 41.45 42.09 41.61 41.42 42.04 41.57 41.35 41.97 41.55 41.26 41.88 41.52 41.19 41.75 41.51 41.10	42.18 41.69 41.45 40.99 42.09 41.61 41.42 40.91 42.04 41.57 41.35 40.84 41.97 41.55 41.26 40.73 41.88 41.52 41.19 40.71 41.75 41.51 41.10 40.86	42.18 41.69 41.45 40.99 40.93 42.09 41.61 41.42 40.91 41.00 42.04 41.57 41.35 40.84 41.05 41.97 41.55 41.26 40.73 41.05 41.88 41.52 41.19 40.71 40.98 41.75 41.51 41.10 40.86 40.95	42.18 41.69 41.45 40.99 40.93 40.90 42.09 41.61 41.42 40.91 41.00 40.96 42.04 41.57 41.35 40.84 41.05 41.37 41.97 41.55 41.26 40.73 41.05 42.02 41.88 41.52 41.19 40.71 40.98 42.55 41.75 41.51 41.10 40.86 40.95 42.96	42.18 41.69 41.45 40.99 40.93 40.90 43.16 42.09 41.61 41.42 40.91 41.00 40.96 43.25 42.04 41.57 41.35 40.84 41.05 41.37 43.22 41.97 41.55 41.26 40.73 41.05 42.02 43.15 41.88 41.52 41.19 40.71 40.98 42.55 43.04 41.75 41.51 41.10 40.86 40.95 42.96 42.89	42.18 41.69 41.45 40.99 40.93 40.90 43.16 42.74 42.09 41.61 41.42 40.91 41.00 40.96 43.25 42.56 42.04 41.57 41.35 40.84 41.05 41.37 43.22 42.40 41.97 41.55 41.26 40.73 41.05 42.02 43.15 42.24 41.88 41.52 41.19 40.71 40.98 42.55 43.04 42.08 41.75 41.51 41.10 40.86 40.95 42.96 42.89 41.90	42.18 41.69 41.45 40.99 40.93 40.90 43.16 42.74 41.72 42.09 41.61 41.42 40.91 41.00 40.96 43.25 42.56 41.57 42.04 41.57 41.35 40.84 41.05 41.37 43.22 42.40 41.43 41.97 41.55 41.26 40.73 41.05 42.02 43.15 42.24 41.26 41.88 41.52 41.19 40.71 40.98 42.55 43.04 42.08 41.16 41.75 41.51 41.10 40.86 40.95 42.96 42.89 41.90 41.04	42.18 41.69 41.45 40.99 40.93 40.90 43.16 42.74 41.72 40.87 42.09 41.61 41.42 40.91 41.00 40.96 43.25 42.56 41.57 40.70 42.04 41.57 41.35 40.84 41.05 41.37 43.22 42.40 41.43 40.63 41.97 41.55 41.26 40.73 41.05 42.02 43.15 42.24 41.26 40.62 41.88 41.52 41.19 40.71 40.98 42.55 43.04 42.08 41.16 40.74 41.75 41.51 41.10 40.86 40.95 42.96 42.89 41.90 41.04 41.02	42.18 41.69 41.45 40.99 40.93 40.90 43.16 42.74 41.72 40.87 41.15 42.09 41.61 41.42 40.91 41.00 40.96 43.25 42.56 41.57 40.70 41.22 42.04 41.57 41.35 40.84 41.05 41.37 43.22 42.40 41.43 40.63 41.32 41.97 41.55 41.26 40.73 41.05 42.02 43.15 42.24 41.26 40.62 41.58 41.88 41.52 41.19 40.71 40.98 42.55 43.04 42.08 41.16 40.74 41.96 41.75 41.51 41.10 40.86 40.95 42.96 42.89 41.90 41.04 41.02 42.33

WTR YR 1988 MAX 47.68

WELL NUMBER. -- 283840082154801. Barnhart Well (CE-25) at Nobleton, FL.

LOCATION.--Lat 28°38'40", long 82°15'48", in NW\N\SW\sec.24, T.21 S., R.20 E., Hydrologic Unit 03100208, on Second Street, 200 ft east of Edgewater Avenue in Nobleton. Owner: C.C. Chandler.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, diameter 6 in., depth 140 ft, casing length unknown.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 59.37 ft above National Geodetic Vertical Datum of 1929. Measuring point: Hole in sanitary seal, 0.26 ft above land-surface datum.

PERIOD OF RECORD.--March 1961 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.33 ft NGVD, Aug. 23, 1965; lowest measured, 36.33 ft NGVD, July 20, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
06	0840	40.83	17	0940	41.49
JAN			JUN		
05	1140	40.71	06	0840	40.86
FEB			AUG		
24	1200	41.05	01	0835	42.36
APR			SEP		
11	0925	42.72	19	1601	45.46

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

HERNANDO COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
282620082193801	05-16-88 09-19-88	1410 1309	82621901	75.44 81.25
282839082190801	05-16-88 09-19-88	1330 1230	82821901 RUSSELL BLACKETT LAKE NEFF	75.47 80.83
282851082035301	05-17-88 09-19-88	1525 1032	82820301 23S22E13 E H BOYETTE	82.60 84.87
283001082064702	05-17-88 09-19-88	1510 1015	83020602 23S22E09 WSF-RICHLOAM FIRE TOWER	72.13 74.56
283036082105502	05-17-88 09-19-88	1400 1125	83021002 23S21E02 RIDGE MANOR NO 2	54.16 59.40
283108082123401	05-16-88 09-19-88	1555 1140	83121201 22S21E04 LE:COMPTE WELL	48.17 55.95
283237082181901	05-16-88	1245	83221801 22S20E28 WAYNE THOMAS MUNDEN HIL	42.16
283508082215101	05-17-88 09-19-88	1145 1354	83522101 22S19E12 CLARENCE SMITH	38.84 44.30
283510082133701	05-17-88 09-19-88	1325 1552	CROOM RR SIDING WELL NEAR CROOM	43.48 48.69
283613082184301	05-17-88 09-19-88	1245 1529	83621801 22S20E04 DELMAS C NIX	37.99 43.10
283632082245101	05-17-88 09-19-88	1110 1422	SEABOARD COASTLINE RR WELL NEAR BROOKSVILLE	35.22 38.85
283806082214801	05-17-88 09-19-88	1040 1410	83822101 21S19E25 EDEN CHRISTIAN SCHOOL	33.78 37.13
283957082181001	05-17-88 09-19-88	1005 1611	83921801 21S20E16 W A BLIZZARD	35.80 38.05

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 26 HIGHLANDS COUNTY

Index number	Site number	Page number
1	270157081203101	156
2	272504081120101	157
3	273751081155802	158

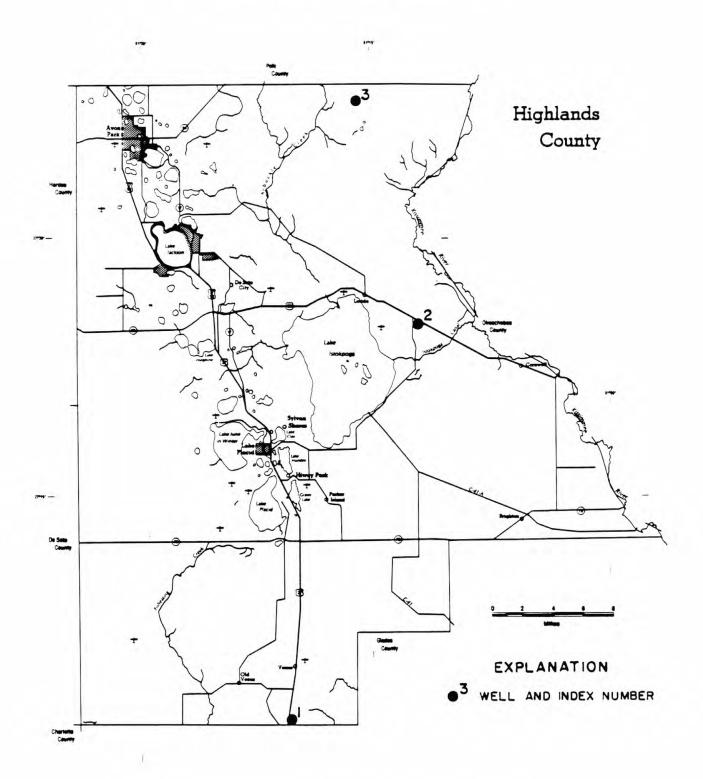


Figure 26.--Location of wells in Highlands County.

HIGHLANDS COUNTY

WELL NUMBER. -- 270157081203101. H-15A Well near Palmdale, FL.

LOCATION.--Lat 27°02'02", long 81°20'33", in SE\sE\sSE\sW\s sec.32, T.39 S., R.30 E., Hydrologic Unit 03090103, on east side of U.S. Highway 27, 200 ft north of Glades-Highlands County line, 2.4 mi southeast of Venus, and 6.7 mi northwest of Palmdale. Owner: U.S. Geological Survey.

AQUIFER .-- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 23 ft, cased to 19 ft, gravel-packed screen from 19 to 23 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 58.52 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.50 ft above land-surface datum.

PERIOD OF RECORD.--December 1948 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 60.26 ft NGVD, Oct. 1, 1982; lowest, 53.49 ft NGVD, June 27, 1956.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	57.92	58.50	57.90	57.83	57.70	57.91	57.66	57.53	57.55	57.12	57.65	58.28
10	58.36	57.98	58.17	58.25	58.23	58.21	57.40	57.14	57.84	58.04	58.27	58.04
15	58.84	57.75	58.51	57.81	58.18	57.93	57.28	57.60	57.44	57.65	59.48	57.68
20	58.13	60.00	57.99	57.64	57.83	58.69	57.14	57.58	57.32	57.50	58.33	57.88
25	57.82	58.39	57.93	58.51	58.09	57.88	56.97	57.10	57.24	58.97	59.41	57.83
EOM	57.59	58.17	57.67	57.85	57.70	57.99	57.76	57.11	56.92	57.97	58.83	57.51
MAX	60.15	60.09	58.67	58.54	58.62	58.97	57.89	57.89	58,27	58.97	59.67	58.59

CAL YR 1987 MAX 60.15 WTR YR 1988 MAX 60.15

HIGHLANDS COUNTY

WELL NUMBER. -- 272504081120101. H-11A Well near Lake Placid, FL.

LOCATION.--Lat 27°25'04", long 81°12'01", in NE%NE%SW% sec.23, T.35 S., R.31 E., Hydrologic Unit 03090101, on north side of U.S. Highway 98, 0.4 mi east of State Highway 621, 2.6 mi northwest of the Istokpoga Canal, and 9.0 mi east of Lake Placid. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 16 ft, cased to 13 ft, gravel-packed screen from 13 to 16 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 49.02 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.00 ft above land-surface datum.

PERIOD OF RECORD.--February 1956 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 49.04 ft NGVD, Sept. 10, 1960; lowest, 43.26 ft NGVD, June 18, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	47.50	48.49	47.72	47.42	47.25	47.74	47.14	46.29	45.57	46.40	47.53	48.13
10	47.14	48.14	47.67	47.43	47.88	48.03	46.84	45.88	47.57	46.36	48.09	48.12
15	48.45	47.87	47.47	47.37	47.59	47.81	46.64	46.66	47.28	47.27	47.81	47.63
20	48.04	48.41	47.29	47.12	47.59	48.26	46.49	46.43	46.79	47.87	47.60	47.34
25	47.70	48.15	47.25	47.81	47.51	47.76	46.28	46.07	46.73	48.17	47.60	47.08
EOM	47.41	48.01	47.05	47.48	47.15	47.42	46.18	45.74	46.82	47.47	47.54	46.85
MAX	48.65	48.55	47.94	47.86	47.90	48.26	47.35	46.68	47.61	48.24	48.12	48.21

CAL YR 1987 MAX 48.65 WTR YR 1988 MAX 48.65

HIGHLANDS COUNTY

WELL NUMBER. -- 273751081155802. GW-157 Well near Avon Park, FL.

LOCATION.--Lat 27°37'51", long 81°15'58", in NE\nW\n\w\n sec.7, T.33 S., R.31 E., Hydrologic Unit 03090101, on south side of Fort Kissimmee Road, 8.0 mi southeast of Avon Park Bombing Range main gate, and 14.0 mi east of Avon Park. Owner: South Florida Water Management District.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS. -- Drilled, observation, nonartesian well, diameter 3 in., depth unknown, cased to 9 ft.

INSTRUMENTATION . -- Continuous strip-chart recorder.

DATUM.--Land-surface datum is 131.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.65 ft above land-surface datum.

REMARKS. -- Published as H-9 Well near Avon Park, FL (273751081155801) from January 1976 to September 1984.

COOPERATION.--Since January 1976, records provided by South Florida Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- January 1976 to current year.

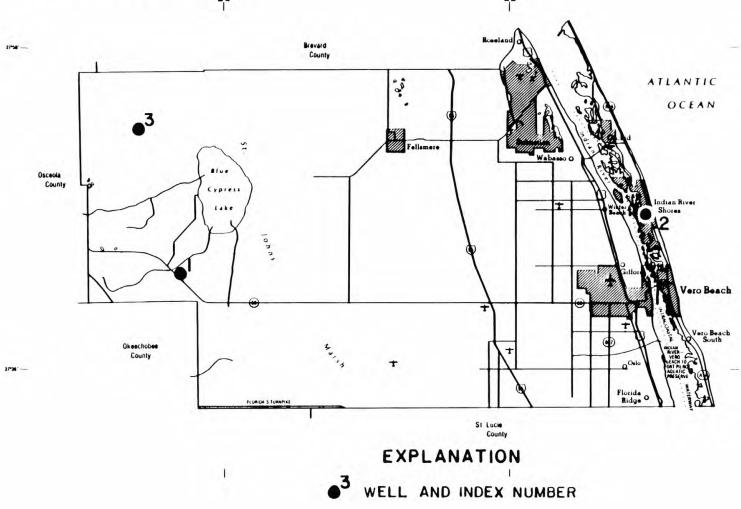
EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 132.22 ft NGVD, June 12, 1978; lowest, 126.23 ft NGVD, Jan. 14, 1982.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	128.39	130.27	128.96	128.10	128.30	128.67	128.37	127.62	126.80	126.90	128.60	129.29
10	128.14	129.37	129.31	128.00	129.04	129.49	128.10	127.36	127.50	127.50	129.84	129.46
15	129.51	128.96	128.79	128.10	128.75	128.99	127.90	127.30	127.20	127.80	129.05	129.06
20	129.06	130.35	128.58	127.90	128.84	129.53	127.74	127.20	127.00	127.82	129.41	128.63
25	128.71	129.58	128.43	128.94	128.90	128.80	127.58	127.03	126.90	128.55	129.23	128.44
EOM	128.41	129.35	128.16	128.55	128.50	128.65	127.44	126.90	127.20	128.02	129.37	128.17
MEAN	128.82	129.62	128.72	128.31	128.79	128.99	127.92	127.28	127.09	127.75	129.20	128.94
MAX	130.20	130.37	129.31	129.03	129.26	129.82	128.53	127.80	127.50	128.60	130.09	130.05
MIN	128.10	128.91	128.16	127.90	128.30	128.30	127.40	126.90	126.80	126.90	128.17	128.17
CAL YR	1987	MEAN 128.	43 MAX 1	30.43 MIN	127.00							
WTR YR	1988	MEAN 128	45 MAX 1	30 37 MTN	126 80	17.0						

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

HIGHLANDS COUNTY


	DATE			ELEVA- TION
STATION NUMBER	OF SAMPLE	TIME	STATION NAME	ABOVE NGVD (FEET)
270556081204701	05-25-88 09-30-88	1241 1800	HIF-26 J H HENDRIE DAIRY	47.20 49.16
270627081313101	05-18-88 09-22-88	1145 1045	HIF-23 GRAHAM CO DAIRY	46.69 50.92
270751081245301	05-25-88 09-30-88	1241 1750	HIF-28 RANDY DRESSEL	46.71 49.19
271028081264901	05-25-88 09-30-88	1224 1735	HIF-20 KAYO WELLS	46.42 49.16
271045081283001	05-25-88 09-30-88	1209 1725	HIF-25 BLUE HEAD RANCH	47.67 50.67
271134081234301	05-17-88 09-21-88	1250 1520	HIF-5 CHARLES STIDHAM	47.81 50.42
271303081080501	05-17-88 09-16-88	1530 1400	71310801 37S32E33 LYKES BROS	44.90 47.10
271306081284801	05-17-88 09-21-88	1330 1615	HIF-8 BOX RANCH	46.67 50.73
271330081113401	05-17-88 09-21-88	1420 1310	HIF-37 SUN-RAY FARMS	46.85 49.00
271456081074701	05-17-88 09-21-88	1500 1415	HIF-6 LYKES BROW 4-IN FLOW	44.43 46.38
271503081080901	05-17-88 09-16-88	1625 1450	71510801 37S32E20 LYKES BROS	43.00 46.10
271726081163901	05-18-88 09-21-88	0740 1209	HIF-14 P G PHYPERS	48.45 50.91
271842081322701	05-25-88 09-30-88	1150 1702	HIF-17 MITCHELL MILLER	45.97 56.09
272048081322101	05-25-88 09-30-88	1140 1650	HIF-16 C M PAYNE	52.77 65.83
272512081122901	05-12-88 09-16-88	1100 1040	HIF-13 PHILLIP METZGER	44.73 47.80
272906081142001	05-12-88 09-21-88	1135 1130	729114 34S31E28 YUCAN RANCH NEAR LORIDA	44.64 47.06
272915081190201	05-12-88 09-16-88	1245 1210	HIF-32 GUILFORD TOMLINSON	50.67 55.54
273138081154201	05-12-88 09-16-88	1210 1130	73111501	51.12 53.91
273603081270501	05-17-88 09-16-88	1108 1845	73612701 33S29E19 DRESSLERS DIARY	76.45 83.29

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 27 INDIAN RIVER COUNTY

Index	Site	Page
number	number	number
1	273923080471801	162
2	274206080225501	162
3	274607080493001	163

Indian River County

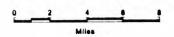


Figure 27.--Location of wells in Indian River County.

INDIAN RIVER COUNTY

WELL NUMBER .-- 273923080471801. IR-25 Well near Yeehaw Junction, FL.

LOCATION.--Lat 27°39'23", long 80°47'18", in NW\nE\nW\sec.36, T.32 S., R.35 E., Hydrologic Unit 03080101, on north side of State Highway 60, 1.3 mi east of Blue Cypress Road, and 7.9 mi east of U.S. Highway 441 in Yeehaw Junction. Owner: U.S. Geological Survey

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS .-- Drilled, observation, nonartesian well, diameter 6 in., depth 19 ft, cased to 13 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 30.01 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.20 ft above land-surface datum.

PERIOD OF RECORD.--October 1950 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office

PERIOD OF RECORD.--Highest daily maximum water level, 31.99 ft NGVD, Sept. 4, 1979; lowest, 25.17 ft NGVD, May 31, 1967.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	27.73	30.29	28.69	28.05	28.13	28.80	28.26	27.66	26.39	26.88	29.13	28.36
10	27.44	29.70	28.55	28.82	28.58	28.89	28.17	27.26	27.18	28.94	29.33	28.74
15	29.54	29.13	28.42	28.55	28.71	28.84	27.85	27.06	26.85	29.22	28.76	28.10
20	29.06	29.94	28.26	28.21	28.31	29.24	27.63	26.87	26.54	29.75	28.89	27.80
25	28.71	29.21	28.14	28.92	28.10	28.86	27.38	26.90	26.38	29.61	28.64	27.51
EOM	28.47	28.94	27.92	28.39	27.89	28.54	27.48	26.61	27.10	28.88	28.42	27.28
MAX	29.85	30.35	28.89	28.92	28.72	29.38	28.49	27.99	27.21	29.88	29.64	28.74

WTR YR 1988 MAX 30.35

WELL NUMBER. -- 274206080225501. Johns Island Well near Vero Beach, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 12 in., depth 2,020 ft, cased to 424 ft.

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 2.93 ft above National Geodetic Vertical Datum of 1929. Measuring point: Mark on casing, 0.70 ft above land-surface datum.

PERIOD OF RECORD. -- June 1977 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.83 ft NGVD, Dec. 22, 1982; lowest measured, 29.28 ft NGVD, May 22, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1700	31.03	23	1525	30.23
DEC			AUG		
15	1528	32.43	04	1355	31.53
FEB			SEP		
18	1330	32.13	30	1030	31.23
APR					
0.5	1120	32 23			

INDIAN RIVER COUNTY

WELL NUMBER. -- 274607080493001. IR-189 Well near Yeehaw Junction, FL.

LOCATION.--Lat 27°46'07", long 80°49'30", in SE\nE\sW\sec.22, T.31 S., R.35 E., Hydrologic Unit 03080101, on north side of private road at Rollins Ranch, 10 mi north of Yeehaw Junction. Owner: Rollins Ranch.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, stock, artesian well, diameter 4 in., depth 630 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 33.66 ft above National Geodetic Vertical Datum of 1929. Prior to April 1983, land-surface datum was 33.16 ft. Measuring point: Top of 4 in. tee, 1.63 ft above land-surface datum.

PERIOD OF RECORD.--1951, 1957, 1970 (annually); January 1976 to October 1983 (bimonthly); November 1983 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 48.16 ft NGVD, Nov. 13, 1951, July 10, 1957; lowest measured, 36.67 ft NGVD, May 6, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
01	0930	41.69	29	0950	40.29
NOV			MAY		
02	1330	42.54	17	1035	39.79
27	1030	42.29	JUN		
DEC			01	1230	40.39
31	1505	42.59	30	1106	40.49
JAN			AUG		
28	1300	42.29	01	1217	40.99
MAR			31	1016	42.09
02	1010	43.19	SEP		
31	0910	42.09	18	0759	41.29

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

INDIAN RIVER COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
273355080355601	05-17-88 09-13-88	0803 1206	73303501 BRADY GROVES WEST OF OSLO	40.40 46.70
273357080220201	05-16-88 09-13-88	1114 0947	73302201 MIDWAY MHP SOUTH OF OSLO	33.17 37.07
273423080332201	05-17-88 09-13-88	0742 1142	73403301 MORRISON GROVE 1 JIMROD 1 WEST OF OSLO	36.50 41.00
273430080195301	05-18-88 09-13-88	0710 0921	73401901	31.63 36.13
273435080255101	05-16-88 09-13-88	1211 1022	73402501 USDA SOUTH WELL 43RD AVE SW OF OSLO	32.83 37.13
273522080235801	05-16-88 09-13-88	1150 1005	73502302 OSLO NURSERY OSLO RD WEST OF OSLO	26.50 31.50
273536080240201	05-16-88 09-13-88	1200 1015	73502403 REVERSE OSMOSIS MONITOR W OF OSLO	33.30 35.80
273633080364301	05-17-88 09-13-88	0710 1231	73603601 RIO GROVES MCCLELLAND RD W OF VERO BCH	33.20 39.40
273758080301501	05-16-88 09-13-88	1250 1101	73703001 VILLAGE GREEN SOUTH WEST OF VERO BEACH	30.00 34.60
273814080245201	05-16-88 09-13-88	0850 1039	73802402 IR 24 1ST CHRIST CHURCH SR 60 VERO BCH	30.00 34.00
273821080273901	05-16-88 09-13-88	1246 1050	73802701 CHAUNCEY HATCH JR SR 60 W OF VERO BEACH	32.15 36.15
273822080374402	05-17-88 09-13-88	0639 1244	73803703 CARDINAL GROVES UNUSED 122ND AVE	38.73 42.73
273827080322001	05-16-88 09-13-88	1318 1315	73803201 SR 60 WEST OF I-95 WEST OF VERO BEACH	35,30 39,10
273835080345801	05-18-88 09-13-88	0628 1300	73803401 KROMHOUT GROVE SR 60 WEST OF VERO BEACH	38.00 44.70
274005080244901	05-16-88 09-14-88	1045 1005	74002401 IR 230 S GIFFORD RD WEST OF GIFFORD	29.33 33.83
274047080513701	05-17-88 09-15-88	0928 0807	74005101 USGS TH SITE OF VILLAGE OF YEEHAW	50.57 51.52
274055080281301	05-16-88 09-14-88	1026 0951	74002801 IR 210 WALTER POOL LINDSEY RD GIFFORD	32.00 34.00
274156080344301	05-16-88 09-14-88	0721 0817	74103401 JACK BERRY GROVE BLK 99 S OF FELLSMERE	25.75 27.75
274250080355001	05-16-88 09-14-88	0704 0801	74203502 JACK BERRY GROVE BLK 54 S OF FELLSMERE	26.50 29.50
274350080364501	05-16-88 09-14-88	0650 0733	74303601 JACK BERRY GROVE BLK 11 S OF FELLSMERE	28.25 39.50
274452080275501	05-16-88 09-14-88	0811 0922	74402701 IR 147 A S PFARR SR 510 W OF WABASSO	33.70 37.45
274522080304301	05-16-88 09-14-88	0757 0900	74503003 SR 510 SOUTH OF RIVER BRIDGE	32.52 39.02
274524080240801	05-16-88 09-13-88	0918 0834	74502406 NORTH BEACH WAT CO NO 2 S OF ORCHID	30.00 34.00
274534080251101	05-16-88 09-13-88	0931 0851	74502502 MARSH ISLAND SR 510 EAST OF WABASSO	32.63 34.13

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

INDIAN RIVER COUNTY--Continued

	DATE			ELEVA- TION ABOVE
STATION NUMBER	SAMPLE	TIME	STATION NAME	NGVD (FEET)
274606080335401	05-16-88 09-14-88	0744 0851	74603301 SCHINER MEMORIAL WELL E OF FELLSMERE	34.00 37.50
274635080363001	05-16-88 09-14-88	0622 0713	74603601 IR 183 JOE SCREWS SR 507 FELLSMERE	32.50 40.50
274705080460301	05-17-88 09-15-88	1019 0902	74704603 ROLLINS RANCH SILAGE ROAD	39.00 45.00
274801080482001	05-17-88 09-15-88	1152 1055	74804801 BLUE CYPRESS RANCH AT OLD SHOP UNUSED	43.80 45.80
274815080254101	05-17-88 09-13-88	1400 0804	74802501 IR 33 A J BYRD JUNGLE TR N OF ORCHID	26.00 29.00
274857080493401	05-17-88 09-15-88	1123 1225	74804901 YATES WELL NEAR SEBASTIAN	36.00 48.00
274915080362501	05-16-88 09-14-88	0606 0701	74903601 IR 180 A BECKMAN SR 507 N OF FELLSMERE	36.40 40.40
274916080520701	05-09-88 05-17-88 09-12-88 09-15-88	0920 1117 1000 1026	74905201 USGS TH MACE RANCH FELLSMERE GRADE	48.14 47.83 50.13 49.50
274921080254201	05-17-88 09-13-88	1430 0730	74902501 IND RIV CO ALA NORTH OF WABASSO BCH	30.00 35.50
275117080270401	05-17-88 09-13-88	1500 0704	75102702 STATE PARK SEBASTIAN INLET, UNUSED	22.46 26.46

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 28 LAKE COUNTY

Index	Site	Page
number	number	number
1	282245081492601	168
1	282245081492602	168
2	282717081553101	169
3	283204081544901	169
3	283204081544902	170
4	283314081455501	170
5	284445081462101	171
6	284842081533001	171
7	284855081520401	172
8	290647081342101	172
9	290950081315501	173

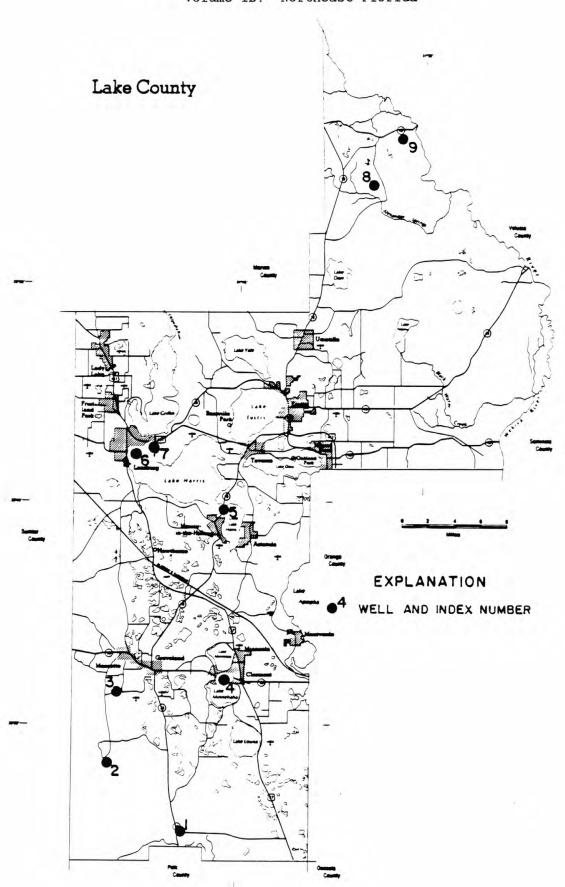


Figure 28.--Location of wells in Lake County.

LAKE COUNTY

WELL NUMBER. -- 282245081492601. Eva Deep Well at Eva, FL.

LOCATION.--Lat 28°22'45", long 81°49'26", in NE\SE\SE\sec.20, T.24 S., R.25 E., Hydrologic Unit 03100208, on east side of State Highway 33, 1,000 ft north of State Highway 474 at Eva. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 192 ft, cased to 100 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 113.47 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. nipple, 3.40 ft above land-surface datum.

PERIOD OF RECORD.--January 1959 to December 1962; January 1963 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 112.72 ft NGVD, Sept. 10, 1960; lowest measured, 105.52 ft NGVD, May 13, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
05	1100	110.15	24	1501	108.40
JAN			JUN		
04	1205	110.17	09	0950	110.00
FEB			AUG		
22	0805	110.73	04	1350	110.42
APR			SEP		
14	1450	109.77	19	1435	110.97

WELL NUMBER. -- 282245081492602. Eva Shallow Well at Eva, FL.

LOCATION.--Lat 28°22'45", long 81°49'26", in NE\SE\SE\sec.20, T.24 S., R.25 E., Hydrologic Unit 03100208, on east side of State Highway 33, 1,000 ft north of State Highway 474 at Eva. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Tertiary Quaternary Age, Geologic Unit 111 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 23 ft, cased to 18 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 113.44 ft above National Geodetic Vertical Datum of 1929. Measuring point: Hole in 6 in. cap, 3.62 ft above land-surface datum.

PERIOD OF RECORD.--January 1959 to June 1962; July 1962 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 114.44 ft NGVD, Sept. 10, 1960; lowest measured, 107.21 ft NGVD, May 13, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
05	1105	111.90	24	1504	109.32
JAN			JUN		
04	1200	110.89	09	0945	111.25
FEB			AUG		
22	0805	111.83	04	1345	111.61
APR			SEP		
14	1450	111.41	19	1440	112.10

LAKE COUNTY

WELL NUMBER. -- 282717081553101. ROMP 101 Well near Bay Lake, FL.

LOCATION.--Lat 28°27'17", long 81°55'31", in NE\NE\SE\sec.29, T.23 S., R.24 E., Hydrologic Unit 03100208, 75 ft south of State Highway 565, 800 ft west of Seaboard Coastline Railroad crossing, and 2.3 mi southwest of intersection of Bay Lake Road and State Highway 565 at Bay Lake. Owner: Southwest Florida Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 8 in., depth 404 ft, cased to 118 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 101.35 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.58 ft above land-surface datum.

PERIOD OF RECORD . -- July 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 100.30 ft NGVD, Sept. 11, 1988; lowest, 93.87 ft NGVD, Dec. 22, 1978.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	97.62	98.24	98.22	97.73	98.61	98.63	99.16	98.37	97.75	97.86	98.27	99.40
10	97.26	98.11	98.16	97.90	98.76	99.10	98.95	98.09	98.58	97.63	98.57	100.28
15	97.75	97.90	98.15	97.80	98.70	99.60	98.73	98.15	98.33	97.84	98.80	100.10
20	97.46	98.61	98.05	97.70	98.65	99.70	98.36	97.74	98.16	98.34	99.08	99.82
25	97.20	98.37	97.97	98.75	98.55	99.56	98.51	98.02	98.32	98.83	98.95	99.55
EOM	96.93	98.48	97.83	98.70	98.49	99.35	98.60	97.85	98.27	98.52	98.94	99.50
MAX	97.93	98.61	98.40	98.75	98.80	99.78	99.30	98.71	98.75	98.84	99.16	100.30

WTR YR 1988 MAX 100.30

WELL NUMBER. -- 283204081544901. Mascotte Deep Well near Mascotte, FL.

LOCATION.--Lat 28°32'04", long 81°54'49", in SW\u00e4NW\u00e4NE\u00e4 sec.33, T.22 S., R.24 E., Hydrologic Unit 03100208, on east side of State Highway 565, 75 ft east of Midway Baptist Church, and 3.6 mi south of State Highway 50 in Mascotte. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 6 in., depth 160 ft, cased to 63 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 103.51 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.35 ft above land-surface datum.

PERIOD OF RECORD.--January 1959 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 102.66 ft NGVD, Sept. 10, 1988; lowest, 96.66 ft NGVD, May 25, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	98.86	100.26	100.08	99.64	100.28	100.61	100.94	100.16	99.99	100.66	100.98	102.18
10	98.65	100.08	100.00	99.75	100.44	101.14	100.77	99.90	100.40	100.46	101.35	102.66
15	99.00	99.88	100.04	99.64	100.37	101.51	100.58	99.84	100.11	100.83	101.48	102.00
20	98.78	100.59	99.91	99.55	100.27	101.67	100.51	99.53	100.70	101.24	101.65	101.72
25	98.58	100.26	99.85	100.71	100.29	101.34	100.24	100.13	101.16	101.34	101.32	101.45
EOM	98.40	100.27	99.72	100.41	100.17	101.05	100.41	99.92	101.10	100.91	101.43	101.30
MAX	99.17	100.60	100.23	100.71	100.50	101.90	101.05	100.48	101,22	101.48	101.82	102.66

WTR YR 1988 MAX 102.66

LAKE COUNTY

WELL NUMBER .-- 283204081544902. Mascotte Shallow Well near Mascotte, FL.

LOCATION.--Lat 28°32'04", long 81°54'49", in SWkNWkNEk sec.33, T.22 S., R.24 E., Hydrologic Unit 03100208, on east side of State Highway 565, 75 ft east of Midway Baptist Church, and 3.6 mi south of State Highway 50 in Mascotte. Owner: U.S. Geological Survey.

AQUIFER.--Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS. -- Drilled, observation, nonartesian well, diameter 6 in., depth 30 ft, cased to 16 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 103.51 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.49 ft above land-surface datum.

PERIOD OF RECORD.--January 1959 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 103.51 ft NGVD, estimated, Sept. 11, 1960; lowest, 97.34 ft NGVD, May 27, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	99.64	101.47	100.73	100.37	100.99	102.17	101.57	100.96	101.88	101.33	102.25	103.29
10	99.49	100.89	100.65	100.48	101.15	102.52	101.51	100.69	101.16	101.12	102.26	103.24
15	99.88	100.61	100.80	100.36	101.19	102.27	101.28	100.58	100.81	101.82	102.79	102.49
20	99.61	101.48	100.57	100.31	100.93	102.38	101.28	100.42	102.36	102.30	102.42	102.27
25	99.41	100.94	100.52	102.20	101.00	101.93	101.02	101.37	102.54	102.02	101.98	102.09
EOM	99.29	100.92	100.41	101.14	100.86	101.72	101.59	100.69	102.04	101.52	102.49	102.03
MAX	100.09	101.89	100.86	102.20	101.35	103.16	101.68	101.57	102.70	102.73	102.99	103.35

WTR YR 1988 MAX 103.35

WELL NUMBER. -- 283314081455501. City Well Replacement in Clermont, FL.

LOCATION.--Lat 28°33'14", long 81°45'55", in NE\SE\SW\ sec.24, T.22 S., R.25 E., Hydrologic Unit 03080102, on Lake Avenue, 0.2 mi north of State Highway 50 in Clermont. Owner: City of Clermont.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic well, diameter 8 in., depth 525 ft, casing length unknown.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval .

DATUM.--Land-surface datum is 150 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 1.03 ft above land-surface datum.

PERIOD OF RECORD . -- May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 85.89 ft NGVD, Sept. 9,10, 1984; lowest, 80.62 ft, May 22, 1982.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	84.30	84.36	84.60	84.22	84.46	84.42	84.97	84.60	84.11	84.35	84.40	84.80
10	84.06	84.48	84.59	84.29	84.56	84.67	84.83	84.43	84.26	84.24	84.43	85.22
15	84.22	84.46	84.51	84.20	84.61	84.78	84.74	84.44	84.29	84.27	84.45	85.33
20	84.16	84.63	84.41	84.23	84.57	84.88	84.80	84.21	84.27	84.29	84.51	85.35
25	84.05	84.63	84.42	84.44	84.46	85.01	84.69	84.24	84.41	84.38	84.48	85.24
EOM	83.84	84.86	84.29	84.39	84.43	84.95	84.61	84.30	84.44	84.45	84.57	85.12
MAX	84.39	84.86	84.79	84.44	84.61	85.07	85.01	84.66	84.50	84.45	84.57	85.39

WTR YR 1988 MAX 85.39

LAKE COUNTY

WELL NUMBER. -- 284445081462101. Lake Yale Groves Well near Tavares, FL.

LOCATION.--Lat 28°44'45", long 81°46'21", in SE\SW\ sec.13, T.20 S., R.25 E., Hydrologic Unit 03080102, on north side of Little Lake Harris, 0.2 mi west of State Highway 19, and 3.8 mi south of Tavares. Owner: Lake Yale Groves.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, irrigation, artesian well, diameter 8 in., depth 200 ft, cased to 112 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM. -- Land-surface datum is 64.75 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 8 in. coupling at land-surface datum.

COOPERATION. -- Since Oct. 1, 1985, data provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--May 1963 (annually); October 1963 to September 1985 (bimonthly); October 1985 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 70.45 ft NGVD, Mar. 13, 1970; lowest measured, 62.36 ft NGVD, May 15, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)		DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT				MAY		
29	0920	65.45		27	1330	64.80
NOV				JUN		
30	1350	66.25		02	0835	65.76
DEC				29	0920	66.12
28	1020	66.07		JUL		
JAN				25	0800	66.50
25	1015	66.31		AUG		
MAR				30	1000	66.35
02	0855	65.62		SEP		
29	1335	66.51		22	1015	66.34
APR				27	0820	66.66
28	0820	65.66	1.0			

WELL NUMBER. -- 284842081533001. College Street Well at Leesburg, FL.

LOCATION.--Lat 28°48'42", long 81°53'30", in SWkNEkNEk sec.27, T.19 S., R.24 E., Hydrologic Unit 03080102, on west side of College Street, near water tank, 350 ft north of West Main Street in Leesburg. Owner: City of

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 12 in., depth 245 ft, cased to 90 ft.

INSTRUMENTATION. -- Digital recorder -- 15-minute interval.

DATUM. --Land-surface datum is 93.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Edge of flange, 1.2 ft above land-surface datum.

PERIOD OF RECORD.--September 1973 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 69.07 ft NGVD, Oct. 8, 1982; lowest, 57.29 ft NGVD, May 16, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	65.39	65.81	66.11	65.41	65.67	65.83	66.47	65.11	64.54	65.10	64.83	65.78
10	65.06	66.09	65.81	65.31	65.97	66.82	66.15	64.90	65.68	65.11	65.47	66.96
15	65.27	66.08	65.83	65.04	65.76	67.07	65.90	65.05	65.74	65.56	65.66	66.98
20	65.08	66.43	65.77	65.17	65.99	67.15	65.90	64.43	65.43	65.89	65.25	66.71
25	64.76	66.17	65.65	65.63	65.95	66.92	65.70	64.74	65.62	66.13	65.31	66.44
EOM	64.51	66.54	65.14	65.89	65.85	66.40	65.49	64.66	65.23	65.64	65.43	66.62
MAX	65.44	66.54	66.25	65.89	66.13	67.39	66.78	65.77	65.93	66.13	65.66	67.11

CAL YR 1987 MAX 68 57

WTR YR 1988 MAX 67.39

LAKE COUNTY

WELL NUMBER. -- 284855081520401. Herlong Park Well at Leesburg, FL.

LOCATION.--Lat 28°48'55", long 81°52'04", in SE\sW\sSW\s sec.24, T.19 S., R.24 E., Hydrologic Unit 03080102, on north side of Herlong Park, 450 ft north of U.S. Highway 441 in Leesburg. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 4 in., depth 105 ft, cased to 100 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 60.61 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.30 ft above Land-surface datum.

PERIOD OF RECORD. -- April 1974 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 65.46 ft NGVD, Sept. 13, 1982; lowest measured, 49.67 ft NGVD, May 1, 1974.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1700	61.22	11	1040	59.78
JAN			31	1455	59.89
27	1000	61.71	JUL		
MAR			19	1000	61.85
28	0810	63.28	SEP		
			08	0845	62.49
			23	1115	61.93

WELL NUMBER.--290647081342101. USGS Well 2 mi north of Alexander Springs near Astor Park, FL.

LOCATION.--Lat 29°06'47", long 81°34'21", in Land Grant 39, T.16 S., R.27 E., Hydrologic Unit 03080101, 70 ft east of State Highway 445, and 2.7 mi south of Astor Park. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 190 ft, casing length 140 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 48.94 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 1.57 ft above land-surface datum.

PERIOD OF RECORD. -- January 1983 to September 1984 (bimonthly); October 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.54 ft NGVD, July 13, Dec. 14, 1983; lowest, 35.68 ft NGVD, June 11, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	37.23	37.28	37.30	36.93	37.37	37.47	37.78	37.12	36.93	36.53	36.58	37.33
10	37.05	37.38	37.29	37.02	37.45	37.88	37.61	36.98	37.07	36.49	36.53	37.81
15	37.14	37.26	37.25	36,96	37.52	37.90	37.47	37.23	36.96	36.40	36.58	37.90
20	37.13	37.46	37.08	36.98	37.47	37.83	37.46	37.15	36.85	36.35	36.69	37.99
25	37.06	37.42	37.07	37.34	37.48	37.89	37.26	37.09	36.85	36.48	36.75	37.92
EOM	36.88	37.57	36.94	37.27	37.46	37.82	37.19	37.06	36.76	36.47	37.14	37.88
MAX	37.34	37.57	37.46	37.34	37.56	37.98	37.81	37.23	37.13		37.14	37.99

CAL YR 1987 MAX 38.18

LAKE COUNTY

WELL NUMBER. -- 290950081315501. Astor Park Well at Astor Park, FL.

LOCATION.--Lat 29°09'50", long 81°31'55", in land grant 37, T.15 S., R.28 E., Hydrologic Unit 03080101, at residence, 200 ft north of State Highway 40, and 1.0 mi west of St. Johns River at Astor Park. Owner: Earl Little.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 6 in., depth 254 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 17.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling, 2.30 ft above land-surface datum.

COOPERATION. -- Since Oct. 1, 1985, data provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- February 1936 to December 1949 (monthly); January 1950 to September 1985 (bimonthly); October 1985 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.15 ft NGVD, in October 1945; lowest measured, 10.69 ft NGVD, June 17, 1981.

40-2	TIME	ELEV- ATION ABOVE NGVD		TIME	ELEV- ATION ABOVE NGVD
DATE		(FEET)	DATE		(FEET)
OCT			MAY		
28	1100	13.15	10	1926	12.82
DEC			31	0955	13.01
02	1200	13.68	JUN		
JAN			27	1355	12.83
04	1040	13.38	JUL		
26	0840	13.75	26	0920	12.61
27		13.41	AUG		
28	1135	13.15	30	0940	13.53
FEB			SEP		
29	1440	14.00	27	1140	13.83
MAR			27	1325	13.79
29	1040	14.01			
APR					
25	1055	13.13			

LAKE COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
282126081403901	05-24-88 09-19-88	1429 1415	821140 24S26E35	116.96 118.40
282532081511801	05-24-88 09-19-88	1600 1500	82515101 24S25E06 JACK M BARRY	104.26 107.78
282633081425601	05-24-88 09-19-88	1339 1400	BRADSHAW WINDMILL	96.06 97.77
282643081395401	05-24-88	1311	826139 23S26E36 MCMILLIAN BROS	95.70
282729081443301	05-26-88 09-19-88	1048 1555	LK LOUISA STATE PARK (SJRWMD L-0053) NEAR CLERMONT	97.56 99.12
282823081500401	05-24-88	1636	82815001 23S25E20 D D GAFFNEY	101.93
282833081544201	05-26-88 09-21-88	1152 1455	82815402 23S24E21 BROWN	96.71 98.25
282954081463001	05-24-88 09-21-88	1723 1330	LAKE 829-146-02 J PRIEBE	91.03 92.40
283111081502001	05-24-88 09-21-88	1659 1400	831150 23S25E06	98.61 101.66
283116081442301	05-24-88 09-19-88	1226 1230	83114401 23S26E05 RINGS POND	81.80 82.90
283128081404701	05-26-88 09-21-88	0810 1040	JOHNS LAKE WELL NEAR CLERMONT (SJ L-0052)	84.00 84.62
283232081394101	05-24-88 09-21-88	1131 1020	83213902 22S26E25	82.43 83.56
283307081435301	05-26-88 09-21-88	0901 1110	83314301 22S26E20 JACKS LAKE WELL	80.35 81.08
283351081400101	09-19-88	1000	833140 22S26E24 RD KEENE	62.46
283359081411501	05-09-88 09-21-88	1300 1000	22S26E14 332	74.62 74.97
283422081480401	09-21-88	1620	834148 22S25E15 SAND MINE 565A	93.69
283530081514501	05-26-88 09-22-88	1309 1610	83515101 22S24E12 NEAR LAKE LUCY	87.49 88.62
283540081402401	05-27-88 09-21-88	1015 0935	22S26E01 333	75.19 74.90
283829081481701	05-26-88 09-19-88	1358 1132	83814801 TURNPIKE CHEVRON	82.56 83.93
283830081534901	05-26-88 09-22-88	1333 1540	83815301 21S24E27 M J VITTI	88.15 87.86
284129081414201	05-27-88 09-19-88	1123 1032	21S26E03 214	69.48 69.69
284135081565501	05-27-88 09-22-88	1510 1440	84115601 21S24E06 841156113 BUSH CITRUS	76.75 77.89
284232081533001	05-27-88 09-22-88	1536 1516	842153142 20S24E34	80.32 81.55
284234081440001	09-19-88	1108	ASTATULA REPLACEMENT	69.28
284241081402601	05-27-88 09-19-88	1050 1000	84214001 20S26E25 USGS	58.09 61.81
284245081463301	09-22-88	1100	843145331 20S25E26 HOWEY IN HILLS	76.86
284258081495701	05-27-88 09-22-88	1441 1130	84214901 20S25E29	76.36 76.95

LAKE COUNTY--Continued

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
284328081515901	05-27-88 09-22-88	1600 1410	843151 20S24E25	78.72 79.29
284728081322201	05-11-88 09-26-88	0657 1030	LAKE 847-132-1 SORRENTO	47.59 49.38
284757081543002	09-22-88	1345	C R WILLIAMS WELL	69.24
284808081432801	05-11-88 09-23-88	0959 1043	84814301 19S26E28 TAVERAS WELL 3	58.85 60.82
284826081254601	05-10-88 09-26-88	0710 1000	84812502 19S29E29 SPENCER HARDIN	21.29 22.81
284827081403501	05-11-88 09-23-88	0940 1020	848140 19S26E26 D BARTHOLOW	57.12 59.82
284856081383001	09-23-88	0950	CITY OF MT DORA WELL NO 3	57.40
284857081570901	05-11-88 09-22-88	1133 1300	84815701 19S24E19 848157444 J ALIBRANI	0I 68.88 70.79
284917081353701	05-11-88 09-26-88	0811 1550	84913501 19S27E22 RICKEY AND REED	48.05 51.64
284934081474801	05-12-88 09-23-88	1655 1105	849147 19S25E22 LAKE SUMTER JC	60.82 63.12
285028081253301	05-10-88	1011	85012501 19S29E	22.24
285034081520502	05-11-88	1240	850152244A19S24E11 CENT FLA UNIT	59.70
285057081321301	09-26-88	1050	NEW HEINDRICK WELL NEAR MOUNT PLYMOUTH	42.64
285106081234801	05-10-88	0918	85112301 19S29E	15.65
285129081541002	09-23-88	1210	CITY OF FRUITLAND PK NO 2 S COMM BLDG	64.47
285244081471401	05-12-88 09-23-88	1612 1500	852147 18S25E35	58.54 60.25
285257081434201	05-12-88 09-23-88	1522 1430	852143121 18S26E32 J EICHEL BADGER	57.30 59.08
285301081285401	09-26-88	1230	REESE WELL NEAR CASSIA	38.83
285318081340601	05-12-88 09-26-88	0800 1133	853134 18S27E25 EUSTIS SAND CO	46.68 48.20
285426081380901	05-10-88 09-23-88	2002 1715	854138 18S27E20 N B MARSHALL	52.19 53.77
285452081563201	05-11-88 09-23-88	1330 1245	85415601 18S24E19	53.20 55.76
285504081405901	05-12-88 09-23-88	1442 1650	855140 18S26E14 AUSTIN GROVES	44.83 52.08
285514081243201	09-26-88	1300	LOIL SILES FERNERY WELL NEAR PINE LAKES	26.27
285523081314701	05-12-88 09-26-88	0725 1210	BAY LAKE WELL	46.28 45.03
285539081262901	05-10-88 09-27-88	1150 0845	PINE LAKES WELL ON SR 44	35.28 36.20
285645081492401	05-11-88 09-23-88	1410 1522	856149 18S25E09 D K HARTMAN	55.41 56.79
285707081441101	05-11-88 09-23-88	1510 1610	857144 18S26E05 J F ERVIN EST	49.94 50.74

LAKE COUNTY--Continued

STATION NUMBER SAMPLE TIME STATION NAME	(FEET)
285722081360501 05-10-88 1559 85713601 18S27E03 09-26-88 1505	45.40 46.48
285726081465601 05-11-88 1440 857146 18S25E02 09-23-88 1535	55.96 57.13
285827081331401 05-12-88 0833 85813301 17S28E31 09-26-88 1445	43.08 44.15
290000081380001 05-12-88 0917 90013801 17S27E17 PITMAW WORKS 09-27-88 0950	46.29 47.28
290047081232501 05-10-88 1352 900123 17S29E U S FOREST SERVICE 09-26-88 1340	14.84 15.46
290153081272501 09-26-88 1420 HUNT CAMP AT CLAY LAKE NEAR FULLERVILLE	34.43
290208081250201 05-10-88 1458 ST FRANCIS WELL NEAR CROWS BLUFF	11.64
290244081302601 05-10-88 1708 90213001 17S28E03 09-28-88 0855	15.57 15.96
290420081311701 09-28-88 0425 AMOCO WATER WELL #1A	40.82
290445081344001 09-28-88 1020 90413401S27E U S FOREST SERVICE	16.73
290633081375201 05-12-88 0958 90613701 16S27E18 CAMP OCALA 09-27-88 1018	32.31 33.13
290650081314001 05-10-88 1839 906131 15S28E JOHNSON 09-27-88 1505	19.04 18.59
290820081305001 05-10-88 1852 908130 16S28E FRANK SAUL 09-27-88 1437	16.54 14.69
290900081342002 05-12-88 1035 909134 15S27E ASTOR PARK 09-27-88 1400	31.71 31.29
290910081360001 05-12-88 1100 909136 15S27E33 4-H CLUB FOUND 09-27-88 1220	44.29 44.50
291107081340601 05-12-88 1132 91113401 15S27E14 BROWN 09-27-88 1250	12.23 11.51
291449081381701 05-12-88 1318 91413801 14S27E30 ENGLISH 09-27-88 1050	5.85 1.12

MISCELLANEOUS WATER-QUALITY RECORDS OCTOBER 1987 TO SEPTEMBER 1988

LAKE COUNTY

282633081410901 - DRIVE PT SAMPLE NEAR ISLAND LAKE NEAR WINTER GARDEN

DATE	Т	IME	SPE- CIF: CON- DUC' ANC: (US/	IC - I- E	PH (STA AR UNIT	ND- D	TEMP ATU WAT (DEG	RE ER	COL (PL INU COB UNI	AT- M- ALT	CALC DIS SOL (MG AS	- VED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	POTA SIU DIS SOLV (MG AS I	UM, S- VED /L	ALK LINI LA (MG AS CAC	TY B /L	SULFATE DIS- SOLVED (MG/L AS SO4)
JUL 14	1	245		96	4	.30	2	5.0		<5	4	. 8	1	.7	1	. 0	2	. 8	<0.	1	31
DATE	RI DI SC (M	LO- DE, S- LVED G/L	NIT GE NITR TOT (MG AS	N, ITE AL /L	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NIT GEN, MONI ORGA TOT (MG	A + NIC AL /L	PHOR PHOR TOT (MG AS	OUS AL /L	PHOR PHOR ORT TOT (MG AS	US, HO, AL	DI CHLO BRO METH TOT (UG	RO- MO- ANE AL	CARBO TETI CHLO RIDI TOTA (UG	RA- O- E AL	1,2- CHLO ETH TOT (UG	RO- ANE AL	BROMO- FORM TOTAL (UG/L)
JUL 14	1	1	<0.	010	0	650	0	020		.50	0	020	0	010	-0	.20	-0	. 20	-0	.20	<0.20
14,	1	1	-0.	010	0.	630	0.	020	Ü	.50	0.	020	0.	010	-0	. 20	-0	. 20	-0	. 20	~0.20
DATE	BR MET TO	ORO- II- OMO- HANE OTAL	CHLO FOR TOT (UG/	M AL	TOLU TOT (UG/	AL	BENZ TOT (UG/	AL	CHLC BENZ TOTA (UG/	ENE	CHLC ETHA TOT (UG/	NE AL	ETHY BENZ TOT (UG/	ENE	METH BROM TOT (UG/	IDE AL	METH CHL RID TOT (UG/	O- E AL	METH EN CHL RID TOTA (UG/	E O- E L	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
JUL 14	<	0.20	<0	. 20	<0	.20	<0	.20	<0	.20	<0	. 20	<0	.20	<0	. 20	<0	.20	<0	.30	<0.20
D	ATE	CHL FLU MET	ORO- ORO- HANE OTAL	ETH	-DI- ORO- IANE TAL	CHL ETH E TO	-DI- ORO- YL- NE TAL /L)	CHL ETH TO	,1- ORO- IANE OTAL	CHL ETH TO	L,2- RI- LORO- IANE DTAL E/L)	TET CHL ETH TO	,2,2 RA- ORO- ANE TAL	BEN	2-DI- LORO- IZENE OTAL G/L)	PRO	PANE OTAL	TRA CHL ETH TO	.,2- NSDI .ORO- IENE OTAL	PRO TO	-DI- ORO- PENE TAL
JUL 14.		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		0.20	<	0.20	<	0.20	<	0.20
D	ATE	CHL BEN TO	ORO- ZENE OTAL	CHL BEN TO	-DI- ORO- ZENE TAL	CHL ETH VIN ET TO	ORO- YL- YL- HER TAL /L)	DI- FLU MET TOT	ORO- HANE	1,3 CHL PRO TO	RANS- B-DI- LORO- DPENE DTAL G/L)	1,3 CHL PRO TO	IS -DI- ORO- PENE TAL /L)	RI	NYL ILO- IDE OTAL IG/L)	CHL ETH E TO	ORO- IYL- INE OTAL	TO	RENE OTAL S/L)	TO WA WH TOT	ENE TAL TER OLE REC /L)
JUL 14.		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		<0.2		<0.2		<0.2

MISCELLANEOUS WATER-QUALITY RECORDS OCTOBER 1987 TO SEPTEMBER 1988

LAKE COUNTY--Continued

	The second second second	and the same of the same	the second secon		
282748081425601	- SHALLOW	WELL ON	BRADSHAW ROA) NEAR	CLERMONT

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN 29	1205	190	4.80	23.5	<5	15	6.7	3.8	6.6	3.1	46
29	1205	190	4.00	23.3	-3	13	0.7	3.0	0.0	3.1	40
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JUN		44-222	42.55	2. 6.23	1	0.0275					
29	11	<0.010	5.00	0.010	0.46	0.010	<0.010	<1	<100	1	<10
	*										
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
JUN											
29	6	320	<5	70	0.20	2	<1	. 40	<0.20	<0.20	<0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
IUN											
29	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI-	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
JUN											
29	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	DATE TO	LORO- CHI NZENE BEN OTAL TO	CHL D-DI- ETH CORO- VIN ZENE ET OTAL TO	YL- DI- YL- FLU HER MET TAL TOT	ORO- TR 1,3 ORO- CHL HANE PRO	ORO- CHI OPENE PRO	LORO- COPENE ROTAL T	TINYL CHL CHLO- ETH CIDE E	TAL TO	TO WA TRENE WE TAL TO	LENE DTAL ATER HOLE TREC G/L)
JUN											
JUN) ·	<0.20 <	0.20 <	0.20 <	0.20			<0.20			

MISCELLANEOUS WATER-QUALITY RECORDS OCTOBER 1987 TO SEPTEMBER 1988

LAKE COUNTY--Continued

290424081350701 - SHALLOW WELL ON ROAD 538 0.1 MI S OF ROAD 445 NEAR ALTOONA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)
JUN 09	1120	24	5.30	22.0	<0.20	<0.20	<0.20	<0.20	<0.20	2.0
DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)
JUN	-0.00	-0.00			.0.00					
09	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
JUN										
09	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DAT	1,4- CHLC BENZ E TOT (UG/	RO- VINY ENE ETH AL TOT	ORO- CHLO TL- DI- TL- FLUC HER METE TAL TOTA	RO- TRA 1,3- RO- CHLO LANE PROF L TOT	RO- CHLO ENE PROP AL TOT	DI- VIN RO- CHL ENE RID AL TOT	O- ETHY E EN AL TOT	RO- L- E STYR	AL TOT	AL ER LE REC
JUN 09	<0	.20 <0	0.20 <0	.20 <0	.20 <0	.20 <0	.20 <	0.2 <	0.2 <	0.2

290640081354201 - 90613501 DRIVE PT SAMPLER, NINEMILE CREEK, ASTOR PARK

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 29 LEVY COUNTY

Index number	Site number	Page number
1	290112082371101	182
2	290200082432301	183
3	290202082403901	184
4	290230082412501	185
5	290743082341501	186
6	291910082341101	186
7	292430082283001	187
8	292615082272601	188

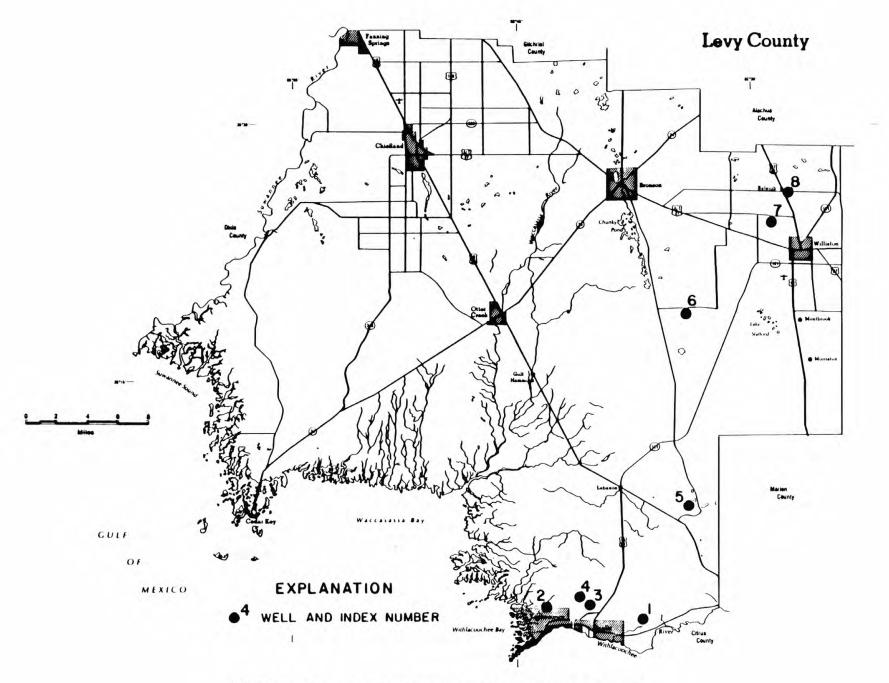


Figure 29.--Location of wells in Levy County.

LEVY COUNTY

WELL NUMBER. -- 290112082371101. CE-5 Well near Inglis, FL.

LOCATION.--Lat 29°01'12", long 82°37'11", in NE\helianek sec.7, T.17 S., R.17 E., Hydrologic Unit 03100208, on island 700 ft southwest of Inglis lock, and 3.2 mi southeast of Inglis. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 125 ft, cased to 84 ft.

INSTRUMENTATION. -- Digital recorder -- 15-minute interval.

DATUM.--Land-surface datum is 25.39 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--May 1966 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 9.41 ft NGVD, Sept. 6, 1968; lowest, 6.96 ft below NGVD, Sept. 16, 1966.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				MAYTE	ATTM TT	THES				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	5.89	6.33	5.33	4.86	5.47	5.16	6.01	5.86	5.34	4.86	5.15	6.64
10	5.34	6.09	5.74	4.59	4.96	5.91	5.54	5.48	5.58	5.28	5.52	7.94
15	5.09	5.35	5.64	4.51	6.14	5.15	5.87	5.69	5.43	5.34	5.18	8.36
20	6.21	5.95	5.92	6.09	5.65	5.33	5.87	5.45	4.81	4.98	5.19	7.97
25	5.92	5.74	5.51	5.31	4.59	5.35	5.52	5.84	5.13	5.12	5.94	8.17
EOM	5.23	5.79	5.18	5.22	5.15	5.74	5.48	5.40	5.78	5.65	5.58	7.48
MAX	6.34	6.33	6.04	6.09	6.14	6.10	6.65	6.04	5.89	5.69	6.02	8.36

CAL YR 1987 MAX 7.27 WTR YR 1988 MAX 8.36

LEVY COUNTY

WELL NUMBER. -- 290200082432301. ROMP 124 Well near Yankeetown, FL.

LOCATION.--Lat 29°02'00", long 82°43'23", in NW\[\] sec.6, T.17 S., R.16 E., Hydrologic Unit 03110101, 120 ft south of Bonita Club Road, and 1.2 mi west of Yankeetown. Owner: Southwest Florida Water Management District.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 250 ft, cased to 200 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 4.21 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.64 ft above land-surface datum.

PERIOD OF RECORD. -- March 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 6.11 ft NGVD, Aug. 31, 1985; lowest, 1.74 ft NGVD, June 12, 1981.

			ELEVATION,	IN FEET		ER YEAR C	CTOBER 198	87 TO SEP	TEMBER 19	88		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	3.64	3.35	3.32	2.70	3.45	3.53	3.58	3.16	2.87	3.80	4.36	4.56
10	3.23	3,30	3,41	2.76	3.14	4.19	3.29	2.71	3.52	3.64	4.40	4.83
15	2.87	2.89	3.36		3.67	3.79	3.34	3.36	3.03	3.71	4.52	4.44
15 20	3.32	3.62	3.26		3.78		3.42	3.22	2.71	3.68	4.58	4.14
25	3.08	3.53	3.16		3.36		3.23	3.41	2.61	4.09	3.80	4.16
EOM	2.58	3.60	2.76	3.33	3.38	3.49	2.90	3.06	4.26	4.25	3.72	3.71
MAX	3.89	3.70	3.63		3.78		3.97	3.50	4.26	4.26	4.68	5.35
CAL	YR 1987 M	AX 4.70										

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV					APR				
20 JAN	1400	2920	1800	60	29 JUN	1540	2930	1700	63
13	1530	2930	1800	70	28	1843	2950		60
MAR									
09	0930	2930	1800	70					

WATER-QUALITY DATA, OCTOBER 1987 TO SEPTEMBER 1988

LEVY COUNTY

WELL NUMBER. -- 290202082403901. Florida Power Corporation (CE-62) Well at Inglis, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, domestic, artesian well, diameter 4 in., depth 155 ft, casing length unknown.

INSTRUMENTATION . -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 12.67 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. coupling, 1.8 ft above land-surface datum.

PERIOD OF RECORD.--March 1961, October 1963 to current year (bimonthly). Records of prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.55 ft NGVD, Sept. 15, 1964; lowest measured, 1.34 ft NGVD, Mar. 14, 1968.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
20	1210	5.41	20	1300	5.36
JAN 13	1330	4.14	JUN 29	1248	4.62
MAR 09	0832	5.55	AUG 19	1255	6.83

LEVY COUNTY

WELL NUMBER. -- 290230082412501. ROMP 125 Well at Crackertown, FL.

LOCATION.--Lat 29°02'30", long 82°41'25", in SE\SW\SE\s sec.33, T.16 S., R.16 E., Hydrologic Unit 03110101, 40 ft southwest of intersection of State Highway 40A and Schoolcraft Road at Crackertown. Owner: Southwest Florida Water Management District.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, unused, artesian well, diameter 6 in., depth 280 ft, cased to 270 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 8.64 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.50 ft above land-surface datum.

PERIOD OF RECORD. -- August 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 8.29 ft NGVD, Sept. 9, 1988; lowest, 1.48 ft NGVD, June 11, 1985.

		E	LEVATION,	IN FEET		ER YEAR O	CTOBER 198 UES	37 TO SEP	TEMBER 198	38		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	6.02	4.30	4.71	3.85	4.92	5.08	5.15	4.01	3.87	3.80	5.40	6.80
10	5.47	4.29	4.59	3.94	4.80	6.23	4.86	3.67	4.71	3.42	5.42	8.05
15	5.01	4.18	4.42	3.77	4.93	6.18	4.72	4.72	4.16	3.34	5.75	6.97
20	4.84	5.10	4.40	4.06	5.17	6.19	4.65	4.53	3.82	3.46	5.68	6.59
25	4.49	4.88	4.27	5.30	5.21	5.78	4.37	4.45	3.52	4.50	5.50	6.27
EOM	4.12	4.98	3.99	5.22	5.03	5.39	4.04	4.10	4.04	4.69	5.49	5.74
MAX	6.24	5.10	4.96	5.31	5.26	6.37	5.40	4.75	4.73	4.69	5.89	8.29
GAT 15												

CAL YR 1987 MAX 7.19 WTR YR 1988 MAX 8.29

SPE-

WATER-QUALITY DATA, OCTOBER 1987 TO SEPTEMBER 19888

SPE-

DATE	TIME	CIFIC CON- DUCT- ANCE LAB (US/CM)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CIFIC CON- DUCT- ANCE LAB (US/CM)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV					MAR				
20	1300	753	350	8.0	09	1010	758	350	8.0
JAN 13	1415	762	350	8.0	JUN 28	1807	771		9.8

LEVY COUNTY

WELL NUMBER. -- 290743082341501. Tidewater No. 1 Well near Dunnellon, FL.

LOCATION.--Lat 29°07'43", long 82°34'15", in NE\SE\NE\s sec.34, T.15 S., R.17 E., Hydrologic Unit 03110101, on south side of State Highway 336 in Tidewater, 9.8 mi northwest of Dunnellon. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 12 in., depth 784 ft, cased to 298 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 70.07 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.82 ft above land-surface datum.

PERIOD OF RECORD . -- October 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 61.81 ft NGVD, Sept. 26, 1982; lowest, 55.19 ft NGVD, June 11, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
58.48	57.80		57.02	57.64	57.88	58.68	58.04	57.01	58.11	58.16	58.19
58.23	57.76	57.54	57.13	57.74	58.47	58.56	57.81	57.81	57.97	58.09	59.04
58.11	57.54	57.56	57.06	57.86	58.53	58.39	57.85	57.71	57.88	57.99	59.28
57.99	57.87	57.46	57.05	57.93	58.70	58.35	57.59	57.45	58.01	58.11	59.48
57.85	57.83	57.26	57.63	57.85	58.82	58.24	57.46	57.58	58.33	57.88	59.63
57.57	57.88	57.11	57.69	57.88	58.79	58.21	57.20	58.38	58.22	57.82	59.64
58.48	57.89		57.69	57.98	58.84	58.77	58.24	58.38	58.37	58.21	59.68
	58.48 58.23 58.11 57.99 57.85 57.57	58.48 57.80 58.23 57.76 58.11 57.54 57.99 57.87 57.85 57.83 57.57 57.88	58.48 57.80 58.23 57.76 57.54 58.11 57.54 57.56 57.99 57.87 57.46 57.85 57.83 57.26 57.57 57.88 57.11	58.48 57.80 57.02 58.23 57.76 57.54 57.13 58.11 57.54 57.56 57.06 57.99 57.87 57.46 57.05 57.85 57.83 57.26 57.63 57.57 57.88 57.11 57.69	58.48 57.80 57.02 57.64 58.23 57.76 57.54 57.13 57.74 58.11 57.54 57.56 57.06 57.86 57.99 57.87 57.46 57.05 57.93 57.85 57.83 57.26 57.63 57.85 57.57 57.88 57.11 57.69 57.88	58.48 57.80 57.02 57.64 57.88 58.23 57.76 57.54 57.13 57.74 58.47 58.11 57.54 57.56 57.06 57.86 58.53 57.99 57.87 57.46 57.05 57.93 58.70 57.85 57.83 57.26 57.63 57.85 58.82 57.57 57.88 57.11 57.69 57.88 58.79	58.48 57.80 57.02 57.64 57.88 58.68 58.23 57.76 57.54 57.13 57.74 58.47 58.56 58.11 57.54 57.56 57.06 57.86 58.53 58.39 57.99 57.87 57.46 57.05 57.93 58.70 58.35 57.85 57.83 57.26 57.63 57.85 58.82 58.24 57.57 57.88 57.11 57.69 57.88 58.79 58.21	58.48 57.80 57.02 57.64 57.88 58.68 58.04 58.23 57.76 57.54 57.13 57.74 58.47 58.56 57.81 58.11 57.54 57.56 57.06 57.86 58.53 58.39 57.85 57.99 57.87 57.46 57.05 57.93 58.70 58.35 57.59 57.85 57.83 57.26 57.63 57.85 58.82 58.24 57.46 57.57 57.88 57.11 57.69 57.88 58.79 58.21 57.20	58.48 57.80 57.02 57.64 57.88 58.68 58.04 57.01 58.23 57.76 57.54 57.13 57.74 58.47 58.56 57.81 57.81 58.11 57.54 57.56 57.06 57.86 58.53 58.39 57.85 57.71 57.99 57.87 57.46 57.05 57.93 58.70 58.35 57.59 57.45 57.85 57.83 57.26 57.63 57.85 58.82 58.24 57.46 57.58 57.57 57.88 57.11 57.69 57.88 58.79 58.21 57.20 58.38	58.48 57.80 57.02 57.64 57.88 58.68 58.04 57.01 58.11 58.23 57.76 57.54 57.13 57.74 58.47 58.56 57.81 57.81 57.97 58.11 57.54 57.56 57.06 57.86 58.53 58.39 57.85 57.71 57.88 57.99 57.87 57.46 57.05 57.93 58.70 58.35 57.59 57.45 58.01 57.85 57.83 57.26 57.63 57.85 58.82 58.24 57.46 57.58 58.33 57.57 57.88 57.11 57.69 57.88 58.79 58.21 57.20 58.38 58.22	58.48 57.80 57.02 57.64 57.88 58.68 58.04 57.01 58.11 58.16 58.23 57.76 57.54 57.13 57.74 58.47 58.56 57.81 57.81 57.97 58.09 58.11 57.54 57.56 57.06 57.86 58.53 58.39 57.85 57.71 57.88 57.99 57.99 57.87 57.46 57.05 57.93 58.70 58.35 57.59 57.45 58.01 58.11 57.85 57.83 57.26 57.63 57.85 58.82 58.24 57.46 57.58 58.33 57.88 57.57 57.88 57.11 57.69 57.88 58.79 58.21 57.20 58.38 58.22 57.82

WELL NUMBER. -- 291910082341101. Bullock-Huber Well near Williston, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 4 in., depth 91 ft, cased to 68 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 92.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--February 1974 to September 1977 (bimonthly); October 1977 to September 1979 (semiannually); October 1979 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 54.24 ft NGVD, Oct. 7, 1982; lowest measured, 42.51 ft NGVD, Feb. 12, 1982.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1415	49.21	03	1405	49.58
DEC			17	1305	48.38
01	1415	47.72	AUG		
JAN			17	0710	47.40
05	0830	46.84	SEP		
MAR			20	1515	53.54
09	1230	47.66			

LEVY COUNTY

WELL NUMBER. -- 292430082283001. Devils Den Sink CE-8 near Williston, FL.

LOCATION.--Lat 29°24'26", long 82°28'36", in NW\SE\SE\set sec.26, T.12 S., R.18 E., Hydrologic Unit 03080102, 1,000 ft west of county road, 1.3 mi north of Alternate U.S. Highway 27, at a point 1.0 mi west of U.S. Highway 41 in Williston. Owner: Hugh Barton.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Natural sinkhole, depth 32 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 71.55 ft above National Geodetic Vertical Datum of 1929. Measuring point: Painted mark on east side of sink at land-surface datum.

PERIOD OF RECORD.--November 1935 to December 1949, and March 1966 to September 1967 (monthly); November 1967 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.4 ft NGVD, October 1948; lowest measured, 43.09 ft NGVD, Feb. 12, 1982.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1445	51.17	03	1445	51.03
DEC			17	1110	50.62
01	1450	49.48	JUN		
JAN			22	0755	49.40
05	0905	48.53	AUG		
MAR			17	0750	48.66
09	1315	49.03	SEP		
			21	1335	53.88

LEVY COUNTY

WELL NUMBER. -- 292615082272601. ROMP 134 near Williston, FL.

LOCATION.--Lat 29°26'15", long 82°27'26", in SW\nW\n\sec.19, T.12 S., R.19 E., Hydrologic Unit 03080102, on east side of dirt road 0.2 mi south of intersection with State Highway 335, and 3.5 mi north of Williston. Owner: Southwest Florida Water Management District.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, observation well, diameter 8 in., depth 1,185 ft, cased to 70 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 70.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 8 in. adapter, 4.22 ft above land-surface datum.

PERIOD OF RECORD. -- January 1983, April 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 55.34 ft NGVD, Apr. 24, 1987; lowest, 46.01 ft NGVD, Aug. 3, 1985.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
MAXTMIM VALUES										

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
51.28	50.21	49.46	48.63	48.44	48.93	51.44	51.06	50.03	49.18	48.44	49.04
51.10	50.06	49.34	48.51	48.43	49.39	51.52	50.87	49.89	49.03	48.57	51.94
50.95	49.90	49.21	48.38	48.42	50.12	51.50	50.76	49.70	48.93	48.70	53.21
50.77	49.79	49.07	48.25	48.45	50.59	51.47	50.60	49.54	48.79	48.72	53.85
50.58	49.70	48.93	48.38	48.71	50.99	51.36	50.44	49.40	48.68	48.70	54.24
50.35	49.65	48.76	48.42	48.83	51.29	51.21	50.22	49.30	48.54	48.81	54.46
51.43	50.32	49.59	48.74	48.83	51.29	51.57	51.20	50.18	49.29	48.81	54.46
	51.28 51.10 50.95 50.77 50.58 50.35	51.28 50.21 51.10 50.06 50.95 49.90 50.77 49.79 50.58 49.70 50.35 49.65	51.28 50.21 49.46 51.10 50.06 49.34 50.95 49.90 49.21 50.77 49.79 49.07 50.58 49.70 48.93 50.35 49.65 48.76	51.28 50.21 49.46 48.63 51.10 50.06 49.34 48.51 50.95 49.90 49.21 48.38 50.77 49.79 49.07 48.25 50.58 49.70 48.93 48.38 50.35 49.65 48.76 48.42	51.28 50.21 49.46 48.63 48.44 51.10 50.06 49.34 48.51 48.43 50.95 49.90 49.21 48.38 48.42 50.77 49.79 49.07 48.25 48.45 50.58 49.70 48.93 48.38 48.71 50.35 49.65 48.76 48.42 48.83	51.28 50.21 49.46 48.63 48.44 48.93 51.10 50.06 49.34 48.51 48.43 49.39 50.95 49.90 49.21 48.38 48.42 50.12 50.77 49.79 49.07 48.25 48.45 50.59 50.58 49.70 48.93 48.38 48.71 50.99 50.35 49.65 48.76 48.42 48.83 51.29	51.28 50.21 49.46 48.63 48.44 48.93 51.44 51.10 50.06 49.34 48.51 48.43 49.39 51.52 50.95 49.90 49.21 48.38 48.42 50.12 51.50 50.77 49.79 49.07 48.25 48.45 50.59 51.47 50.58 49.70 48.93 48.38 48.71 50.99 51.36 50.35 49.65 48.76 48.42 48.83 51.29 51.21	51.28 50.21 49.46 48.63 48.44 48.93 51.44 51.06 51.10 50.06 49.34 48.51 48.43 49.39 51.52 50.87 50.95 49.90 49.21 48.38 48.42 50.12 51.50 50.76 50.77 49.79 49.07 48.25 48.45 50.59 51.47 50.60 50.58 49.70 48.93 48.38 48.71 50.99 51.36 50.44 50.35 49.65 48.76 48.42 48.83 51.29 51.21 50.22	51.28 50.21 49.46 48.63 48.44 48.93 51.44 51.06 50.03 51.10 50.06 49.34 48.51 48.43 49.39 51.52 50.87 49.89 50.95 49.90 49.21 48.38 48.42 50.12 51.50 50.76 49.70 50.77 49.79 49.07 48.25 48.45 50.59 51.47 50.60 49.54 50.58 49.70 48.93 48.38 48.71 50.99 51.36 50.44 49.40 50.35 49.65 48.76 48.42 48.83 51.29 51.21 50.22 49.30	51.28 50.21 49.46 48.63 48.44 48.93 51.44 51.06 50.03 49.18 51.10 50.06 49.34 48.51 48.43 49.39 51.52 50.87 49.89 49.03 50.95 49.90 49.21 48.38 48.42 50.12 51.50 50.76 49.70 48.93 50.77 49.79 49.07 48.25 48.45 50.59 51.47 50.60 49.54 48.79 50.58 49.70 48.93 48.38 48.71 50.99 51.36 50.44 49.40 48.68 50.35 49.65 48.76 48.42 48.83 51.29 51.21 50.22 49.30 48.54	51.28 50.21 49.46 48.63 48.44 48.93 51.44 51.06 50.03 49.18 48.44 51.10 50.06 49.34 48.51 48.43 49.39 51.52 50.87 49.89 49.03 48.57 50.95 49.90 49.21 48.38 48.42 50.12 51.50 50.76 49.70 48.93 48.70 50.77 49.79 49.07 48.25 48.45 50.59 51.47 50.60 49.54 48.79 48.72 50.58 49.70 48.93 48.38 48.71 50.99 51.36 50.44 49.40 48.68 48.70 50.35 49.65 48.76 48.42 48.83 51.29 51.21 50.22 49.30 48.54 48.81

CAL YR 1987 MAX 55.34 WTR YR 1988 MAX 54.46

LEVY COUNTY

DATE OF STATION NUMBER SAMPLE TIME STATION NAME	TION ABOVE NGVD (FEET)
290301082335601 05-16-88 0950 90323301 16S17E35 DEL WRIGHT CORRAL 09-20-88 1250	51.97 53.13
290503082323101 05-16-88 1220 90523201 16S17E13 SCE 108 T & J RANCH 09-20-88 1200	71.27 73.23
290605082372601 05-16-88 1055 90623701 16S17E07 GEOTHE ROAD 09-20-88 1335	27.14 33.28
291004082382901 05-16-88 1145 91023801 15S16E24 910238433 DIXIE LIME PR 09-20-88 1400	24.50 26.59
291048083011801 05-17-88 1658 15S13E17 910301212 09-21-88 1040	2.06 3.47
291250082341901 05-16-88 1255 91223401 15S17E03 NORMA CARVER 09-20-88 1415	46.26 52.71
291414082560901 05-17-88 1645 ROSEWOOD TOWER WELL NEAR CEDAR KEYS 09-21-88 1040	10.89 11.51
291508082432901 05-17-88 1420 GULF HAMMOCK 09-21-88 0930	9.69 10.62
291712082351801 05-16-88 1320 SOUTH OF BONSON-RO 09-20-88 1420	49.59 50.92
291855082472601 05-17-88 1445 HUDSON NEAR OTTER CREEK 09-21-88 1005	20.88 23.82
292143082282201 05-17-88 1155 92122801 13S18E11 WILLISTON AIRPORT 09-21-88 1415	49.90 53.84
292307082313901 05-17-88 1230 92323101 13S18E05 BULLOCK & HUBER	50.68
292310082373701 05-16-88 1430 ERCELL SMITH 09-20-88 1445	54.61 56.89
292507082560201 05-17-88 1555 A J MIMMS (121420) SR347 SW OF CHIEFLAND 09-21-88 1110	7.95 12.68
292632082312801 05-16-88 1715 92623101 USGS TEST WELL CR335 & CR241 09-21-88 1300	51.41 55.03
292640082381201 05-16-88 1545 92623801 12S17E17 926238241 HARDEE HOTEL 09-21-88 1245	54.16 57.79
292713082493601 05-17-88 1520 H E MILLS NEAR CHIEFLAND 09-21-88 1140	27.99 33.66

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 30 MARION COUNTY

Index number	Site number	Page number
1	285900082072001	192
2	285920081490501	192
3	290106082191001	193
4	290133082140901	193
5	290215082152401	194
6	290306082232802	194
7	290312082250801	195
8	290455081530401	195
9	290514082270701	196
10	290815082025701	196
11	291059082190801	197
12	291100082010003	197
13	291110082060001	198
14	291115081592501	198
15	291115082102901	199
16	291130082015001	199
17	291740081562001	200
18	291849081411401	200
19	292019082064201	201
20	292200081510001	202
21	292546081513301	203

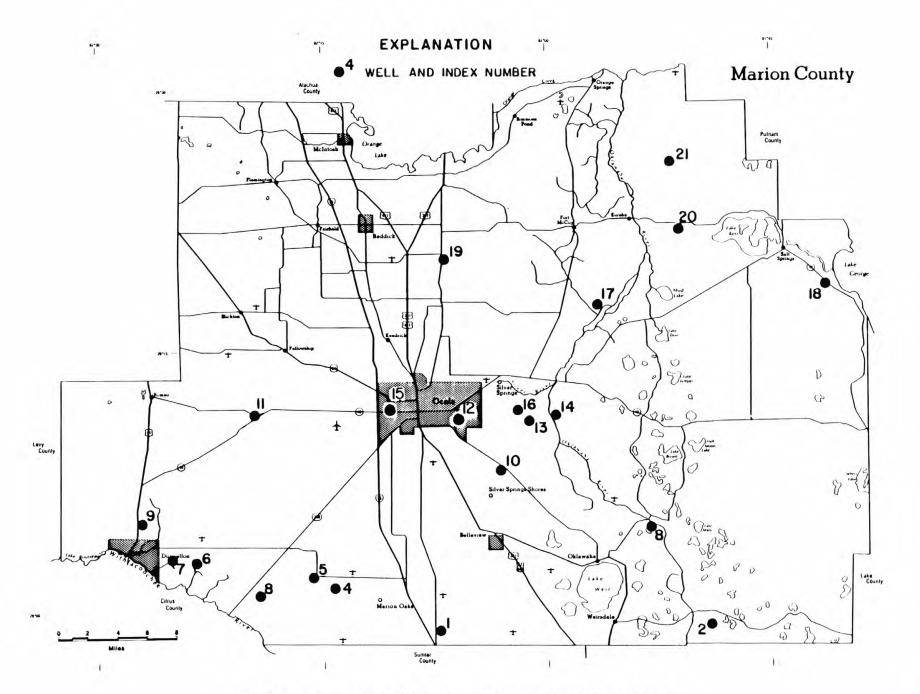


Figure 30.--Location of wells in Marion County.

MARION COUNTY

WELL NUMBER. -- 285900082072001. USGS Observation CE-36 Well at Pedro, FL.

LOCATION.--Lat 28°59'00", long 82°07'20:, in NE\SE\NE\s sec.29, T.17 S., R.22 E., Hydrologic Unit 03100208, on west side of State Highway 475A, 12.8 mi south of Ocala, and 0.2 mi north of State Highway 42 at Pedro. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 66 ft, cased to 45 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 74.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land-surface datum.

PERIOD OF RECORD.--March 1966 to September 1977; October 1977 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.38 ft NGVD, Sept. 13, 1982; lowest measured, 43.22 ft NGVD, Oct. 26, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
13	0900	47.27	19	0835	48.26
JAN			JUN		
07	1742	46.53	22	1300	47.33
MAR			AUG		
04	0850	48.41	18	1311	46.47
APR			SEP		
28	1105	49.27	19	1010	49.47

WELL NUMBER.--285920081490501. USGS Well Mar-48 near Oklawaha, FL. (Formerly Mar-48 Replacement Well near Oklawaha, FL.

LOCATION.--Lat 28°59'20", long 81°49'05", in SE\SW\s sec.20, T.17 S., R.25 E., Hydrologic Unit 03080102, at fish camp south of State Highway 42, on east side of Oklawaha River at Starkes Ferry, and 7 mi southeast of Oklawaha. Owner: E. Nelson.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, domestic, artesian well, diameter 6 in., depth 152 ft, casing length unknown.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 61.08 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.77 ft above land-surface datum.

REMARKS.--Record is equivalent to that for Mar 48 Replacement (285930081500501), available October 1980 to September 1983.

PERIOD OF RECORD.--March 1936 to December 1949 (monthly); January 1950 to September 1980, October 1983 to current year. Records of water levels prior to January 1974 are unpublished and available in the files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.28 ft NGVD, October 1945; lowest measured, 50.18 ft NGVD, Apr. 24, 1957.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1515	54.83	20	0755	54.43
DEC			JUL		
01	1353	53.90	19	0815	52.46
JAN			SEP		
26	1345	53.18	09	1100	53.75
MAR			21	1440	55.13
28	1407	55.05			

MARION COUNTY

WELL NUMBER .-- 290106082191001. CE-23 Well near Dummellon, FL.

Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 45 ft, cased to 19 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 62.64 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD. -- June 1966 to September 1977; October 1977 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 49.54 ft NGVD, Sept. 7, 1968; lowest measured, 37.10 ft NGVD, Feb. 10, 1982.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
13	1153	41.20	18	1100	43.36
JAN			JUN		
08	0955	41.03	22	1402	42.23
MAR			AUG		
07	1122	42.89	18	1130	41.51
APR			SEP		
26	1025	44.19	19	1310	46.15

WELL NUMBER. -- 290133082140901. ROMP 119 Well near Ocala, FL.

LOCATION.--Lat 29°01'33", long 82°14'09", in NWkNWkSWk sec.8, T.17 S., R.21 E., Hydrologic Unit 03080102, on south side of State Highway 484, 4.5 mi west from intersection with Interstate Highway 75, and 12 mi southwest of Ocala. Owner: Southwest Florida Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, unused, observation well, diameter 8 in., depth 502 ft, cased to 106 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM. -- Land-surface datum is 71.85 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.90 ft above land-surface datum.

PERIOD OF RECORD .-- December 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 49.41 ft Aug. 18,19, 1983; lowest, 41.89 ft, June 13, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	44.77	44.46	44.09	43.71	44.35	44.89	46.72	46.16	45.17	44.76	44.45	44.90
10	44.73	44.40	44.05	43.67	44.52	45.12	46.70	45.99	45.22	44.66	44.41	46.38
15	44.71	44.32	43.99	43.62	44.63	45.80	46.61	45.85	45.15	44.61	44.36	47.93
20	44.66	44.28	43.93	43.56	44.68	46.32	46.53	45.69	45.05	44.57	44.49	48.49
25	44.59	44.21	43.87	43.80	44.78	46.58	46.43	45.54	44.96	44.55	44.58	48.69
EOM	44.48	44.17	43.79	44.14	44.84	46.70	46.30	45.34	44.87	44.50	44.70	48.71
MAX	44.77	44.48	44.15	44.14	44.84	46.70	46.74	46.29	45.31	44.86	44.70	48.72

CAL YR 1987 MAX 47.50

WTR YR 1988 MAX 48.72

MARION COUNTY

WELL NUMBER. -- 290215082152401. CE-74 Well near Ocala, FL.

LOCATION.--Lat 29°02'15", long 82°15'24", in NE\SW\SE\ sec.1, T.17 S., R.20 E., Hydrologic Unit 03100208, 0.25 mi west of State Highway 484, 2.9 mi southeast of State Highway 200, and 13 mi southwest of Ocala. Owner: U.S. Army Corps of Engineers.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 2 in., depth 51 ft, casing length unknown.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 76.97 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD. -- July 1964 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 51.47 ft NGVD, Dec. 1, 1964; lowest measured, 40.64 ft NGVD, July 15, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			JUN		
13	1226	43.36	22	1347	44.16
JAN			AUG		
08	0835	42.74	18	1230	43.40
MAR			SEP		
07	1108	43.91	19	1253	48.65
APR					
26	1005	45.56			

WELL NUMBER. -- 290306082232802. Fire Tower (CE-73) Well at Dunnellon, FL.

LOCATION.--Lat 29°03'06", long 82°23'28", in SE\nW\sE\sec.34, T.16 S., R.19 E., Hydrologic Unit 03100208, on south side of State Highway 484, across from Dunnellon Fire Tower, and 4.4 mi east of U.S. Highway 41 in Dunnellon. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 36 ft, cased to 26 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 65.18 ft above National Geodetic Vertical Datum of 1929. Measuring point: Hole in cap, 2.00 ft above land-surface datum.

PERIOD OF RECORD. -- September 1964 to May 1966 (monthly), July 1966 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.52 ft NGVD, Sept. 21, 1970; lowest measured, 47.91 ft NGVD, July 15, 1975.

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		MAY		
1130	54.55	11	0945	55.60
		JUN		
0940	54.36	29	1932	55.07
		AUG		
1120	56.41	18	1210	55.51
		SEP		
1140	56.27	19	1500	59.71
	1130 0940 1120	ATION ABOVE TIME NGVD (FEET) 1130 54.55 0940 54.36 1120 56.41	ATION ABOVE TIME NGVD (FEET) DATE MAY 1130 54.55 11 JUN 0940 54.36 29 AUG 1120 56.41 18 SEP	ATION ABOVE TIME NGVD TIME (FEET) DATE MAY 1130 54.55 11 0945 JUN 0940 54.36 29 1932 AUG 1120 56.41 18 1210 SEP

MARION COUNTY

WELL NUMBER. -- 290312082250801. CE-14 Well near Dummellon, FL.

LOCATION.--Lat 29°03'12", long 82°25'08", in NWkNWkNWk sec.32, T.16 S., R.19 E., Hydrologic Unit 03100208, on north side of State Highway 484, 8.3 mi west of State Highway 200, and 2.7 mi east of Dunnellon. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 6 in., depth 190 ft, cased to 112 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 60.24 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--June 1966 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 50.18 ft NGVD, Aug. 27, 1970; lowest, 34.31 ft NGVD, Feb. 28, 1982.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	42.41	41.88	41.09	40.50	41.83	41.75	43.63	42.57	41.37	40.66	39.92	40.04
10	42.65	41.69	41.05	40.39	41.96	41.91	43.49	42.39	41.36	40.47	39.87	45.18
15	42.63	41.49	40.98	40.29	41.99	42.97	43.27	42.23	41.18	40.38	39.87	45.94
20	42.49	41.42	40.85	40.19	41.91	43.43	43.07	42.02	40.99	40.24	39.90	45.95
25	42.27	41.30	40.76	40.76	41.79	43.63	42.92	41.89	40.80	40.16	39.91	45.81
EOM	42.01	41.21	40.62	41.54	41.78	43.69	42.74	41.65	40.77	40.01	39.88	45.61
MAX	42.71	41.99	41.19	41.54	41.99	43.69	43.67	42.71	41.61	40.77	40.00	45.99

CAL YR 1987 MAX 45.25 WTR YR 1988 MAX 45.99

WELL NUMBER, -- 290455081530401. USGS Well at Moss Bluff Park, FL.

LOCATION.--Lat 29°04'55", long 81°53'04", in NE½NW½SW½ sec.23, T.16 S., R.24 E., Hydrologic Unit 03080102, in park and picnic area on south side of State Highway 464 at Moss Bluff Lock and Dam, 4.2 mi northeast of Oklawaha. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 8 in., depth 225 ft, cased to 80 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 50.12 ft above National Geodetic Vertical Datum of 1929. Measuring Point: Top of flange, 6.09 ft, above land-surface datum.

PERIOD OF RECORD. --October 1975 to June 1982, July 1982 to January 1985 (bimonthly); January 1985 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 57.90 ft NGVD, Oct. 11, 1982; lowest, 48.96 ft NGVD, Dec. 20, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
52.69	52.53	52.23	51.86	52.84	53.23		53.72	52.82	52.48	52.32	52.73
52.59	52.47	52.30	51,90	53.01	53.65		53.41	52.97	52.41	52.33	53.36
52.60	52.37	52.25	51.86	53.19	53.82		53.53	52.85	52.31	52.41	53.98
52.56	52.53	52.19	51.88	53.18	54.03		53.23	52.68	52.32	52.43	54.32
52.47	52.52	52.07	52.31	53.13	54.23		53.22	52.70	52.43	52.37	54.49
52.26	52.54	51.93	52.63	53.20			53.08	52.70	52,36	52.37	54.64
52.84	52.59	52.47	52.63	53.24	222	222		53.08	52,70	52.43	54.64
	52.69 52.59 52.60 52.56 52.47 52.26	52.69 52.53 52.59 52.47 52.60 52.37 52.56 52.53 52.47 52.52 52.26 52.54	52.69 52.53 52.23 52.59 52.47 52.30 52.60 52.37 52.25 52.56 52.53 52.19 52.47 52.52 52.07 52.26 52.54 51.93	52.69 52.53 52.23 51.86 52.59 52.47 52.30 51.90 52.60 52.37 52.25 51.86 52.56 52.53 52.19 51.88 52.47 52.52 52.07 52.31 52.26 52.54 51.93 52.63	52.69 52.53 52.23 51.86 52.84 52.59 52.47 52.30 51.90 53.01 52.60 52.37 52.25 51.86 53.19 52.56 52.53 52.19 51.88 53.18 52.47 52.52 52.07 52.31 53.13 52.26 52.54 51.93 52.63 53.20	52.69 52.53 52.23 51.86 52.84 53.23 52.59 52.47 52.30 51.90 53.01 53.65 52.60 52.37 52.25 51.86 53.19 53.82 52.56 52.53 52.19 51.88 53.18 54.03 52.47 52.52 52.07 52.31 53.13 54.23 52.26 52.54 51.93 52.63 53.20	52.69 52.53 52.23 51.86 52.84 53.23 52.59 52.47 52.30 51.90 53.01 53.65 52.60 52.37 52.25 51.86 53.19 53.82 52.56 52.53 52.19 51.88 53.18 54.03 52.47 52.52 52.07 52.31 53.13 54.23 52.26 52.54 51.93 52.63 53.20	52.69 52.53 52.23 51.86 52.84 53.23 53.72 52.59 52.47 52.30 51.90 53.01 53.65 53.41 52.60 52.37 52.25 51.86 53.19 53.82 53.53 52.56 52.53 52.19 51.88 53.18 54.03 53.23 52.47 52.52 52.07 52.31 53.13 54.23 53.22 52.26 52.54 51.93 52.63 53.20 53.08	52.69 52.53 52.23 51.86 52.84 53.23 53.72 52.82 52.59 52.47 52.30 51.90 53.01 53.65 53.41 52.97 52.60 52.37 52.25 51.86 53.19 53.82 53.53 52.85 52.56 52.53 52.19 51.88 53.18 54.03 53.23 52.68 52.47 52.52 52.07 52.31 53.13 54.23 53.22 52.70 52.26 52.54 51.93 52.63 53.20 53.08 52.70	52.69 52.53 52.23 51.86 52.84 53.23 53.72 52.82 52.48 52.59 52.47 52.30 51.90 53.01 53.65 53.41 52.97 52.41 52.60 52.37 52.25 51.86 53.19 53.82 53.53 52.85 52.31 52.56 52.53 52.19 51.88 53.18 54.03 53.23 52.68 52.32 52.47 52.52 52.07 52.31 53.13 54.23 53.22 52.70 52.43 52.26 52.54 51.93 52.63 53.20 53.08 52.70 52.36	52.69 52.53 52.23 51.86 52.84 53.23 53.72 52.82 52.48 52.32 52.59 52.47 52.30 51.90 53.01 53.65 53.41 52.97 52.41 52.33 52.60 52.37 52.25 51.86 53.19 53.82 53.53 52.85 52.31 52.41 52.56 52.53 52.19 51.88 53.18 54.03 53.23 52.68 52.32 52.43 52.47 52.52 52.07 52.31 53.13 54.23 53.22 52.70 52.43 52.37 52.26 52.54 51.93 52.63 53.20 53.08 52.70 52.36 52.37

CAL YR 1987 MAX 54.58

MARION COUNTY

WELL NUMBER. -- 290514082270701. Rainbow Springs Well near Dunnellon, FL.

LOCATION.--Lat 29°05'14", long 82°27'07", in SW\\SW\\sec.13, T.16 S., R.18 E., Hydrologic Unit 03100208, on east side of U.S. Highway 41, 2.8 mi north of Dunnellon. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 6 in., depth 442 ft, cased to 125 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 113.13 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

REMARKS. -- Well records used to determine flow of Rainbow Springs.

PERIOD OF RECORD.--October 1964 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily mean water level, 36.12 ft NGVD, Oct. 22, 1964; lowest, 29.88 ft NGVD, July 3-4, 1975.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
MEAN VALUES										

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	31.48 31.46	31.39 31.35	31.23 31.21	31.06 31.04	31.01 31.04	31.03 31.20	31.80 31.83	31.71 31.63	31.32 31.41	31.19 31.13	31.17 31.20	31.50 33.04
15	31.49	31.32	31.16	31.00	31.05	31.34	31.85	31.61	31.28	31.12	31.22	34.31
20 25	31.44	31.34	31.17	30.98	31.05	31.50	31.83	31.51	31.25	31.11	31.29	34.72
EOM	31.41 31.36	31.32 31.28	31.14 31.07	31.05 31.01	31.06 31.06	31.60 31.68	31.81 31.74	31.49 31.38	31.25 31.26	31.14 31.13	31.29 31.40	34.75 34.61
MEAN	31.45	31.34	31.17	31.03	31.04	31.35	31.81	31.57	31.30	31.15	31.25	33.61
MAX MIN	31.54 31.36	31.39 31.28	31.25 31.07	31.07 30.98	31.06 31.01	31.68 31.03	31.87 31.70	31.73 31.38	31.42 31.23	31.25 31.11	31.40 31.13	34.79 31.40

CAL YR 1987 MEAN 31.70 MAX 32.87 MIN 31.07 WTR YR 1988 MEAN 31.50 MAX 34.79 MIN 30.98

WELL NUMBER. -- 290815082025701. USGS Well CE-40 replacement near Ocala, FL.

LOCATION.--Lat 29°08'15", long 82°02'57", in SE\sE\sW\ sec.31, T.15 S., R.23 E., Hydrologic Unit 03100208, on south side of State Highway 464, 6.5 mi northwest of Candler, and 4.3 mi southeast of Ocala. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 3 in., depth 105 ft, cased to 47 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 91.45 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top edge of casing 2.8 ft above land-surface datum.

REMARKS.--Record is equivalent to that for CE-40 (290810082025001), available March 1966 to September 1982.

PERIOD OF RECORD. -- March 1986 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.15 ft NGVD, Sept. 21, 1988; lowest measured, 42.85 ft NGVD, Mar. 12, 1986, Jan. 4, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	0855	43.77	02	1205	44.96
NOV			20	0950	44.48
30	0925	43.23	JUN		
JAN			20	1115	43.87
04	1130	42.85	AUG		
MAR			15	1440	43.43
07	1450	43.97	SEP		
			21	1830	46.15

MARION COUNTY

WELL NUMBER. -- 291059082190801. Romp 120 near Cotton Plant, FL.

LOCATION.--Lat 29°10'59", long 82°19'08", in NE\SE\SE\sec.17, T.15 S., R.20 E., Hydrologic Unit 03080102, on south side of State Highway 328, 0.4 mi from intersection with State Highway 40 in Cotton Plant. Owner: Southwest Florida Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 8 in, depth 403 ft, cased to 110 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 76.04 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.22 ft above land-surface datum.

PERIOD OF RECORD. -- October 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 50.69 ft NGVD, Aug. 2,3, 1982; lowest, 41.03 ft NGVD, Feb. 14, 1982.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
MAXIMIM VALUES										

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
44.64	44.20	43.84	43.42		44.17	46.02	45.84	44.98	44.60	44.17	44.58
44.56	44.12	43.82	43.36		44.43	46.10	45.70	45.01	44.52	44.12	47.63
44.51	44.03	43.76	43.32		44.97	46.12	45.60	44.96	44.42	44.07	48.69
44.44	43.99	43.67	43.24	43.91	45.33	46.09	45.43	44.84	44.31	44.22	49.19
44.37	43.93	43.60		43.98	45.64	46.08	45.31	44.76	44.29	44.29	49.45
44.25	43.93	43.51		44.09	45.91	45.98	45.11	44.69	44.24	44.36	49.51
44.67	44.25	43.88	222		45.92	46.16	45.97	45.09	44.68	44.36	49.51
	44.64 44.56 44.51 44.44 44.37 44.25	44.64 44.20 44.56 44.12 44.51 44.03 44.44 43.99 44.37 43.93 44.25 43.93	44.64 44.20 43.84 44.56 44.12 43.82 44.51 44.03 43.76 44.44 43.99 43.67 44.37 43.93 43.60 44.25 43.93 43.51	44.64 44.20 43.84 43.42 44.56 44.12 43.82 43.36 44.51 44.03 43.76 43.32 44.44 43.99 43.67 43.24 44.37 43.93 43.51 44.25 43.93 43.51	44.64 44.20 43.84 43.42 44.56 44.12 43.82 43.36 44.51 44.03 43.76 43.32 44.44 43.99 43.67 43.24 43.91 44.37 43.93 43.60 43.98 44.25 43.93 43.51 44.09	44.64 44.20 43.84 43.42 44.17 44.56 44.12 43.82 43.36 44.43 44.51 44.03 43.76 43.32 44.97 44.44 43.99 43.67 43.24 43.91 45.33 44.37 43.93 43.60 43.98 45.64 44.25 43.93 43.51 44.09 45.91	44.64 44.20 43.84 43.42 44.17 46.02 44.56 44.12 43.82 43.36 44.43 46.10 44.51 44.03 43.76 43.32 44.97 46.12 44.44 43.99 43.67 43.24 43.91 45.33 46.09 44.37 43.93 43.60 43.98 45.64 46.08 44.25 43.93 43.51 44.09 45.91 45.98	44.64 44.20 43.84 43.42 44.17 46.02 45.84 44.56 44.12 43.82 43.36 44.43 46.10 45.70 44.51 44.03 43.76 43.32 44.97 46.12 45.60 44.44 43.99 43.67 43.24 43.91 45.33 46.09 45.43 44.37 43.93 43.60 43.98 45.64 46.08 45.31 44.25 43.93 43.51 44.09 45.91 45.98 45.11	44.64 44.20 43.84 43.42 44.17 46.02 45.84 44.98 44.56 44.12 43.82 43.36 44.43 46.10 45.70 45.01 44.51 44.03 43.76 43.32 44.97 46.12 45.60 44.96 44.44 43.99 43.67 43.24 43.91 45.33 46.09 45.43 44.84 44.37 43.93 43.60 43.98 45.64 46.08 45.31 44.76 44.25 43.93 43.51 44.09 45.91 45.98 45.11 44.69	44.64 44.20 43.84 43.42 44.17 46.02 45.84 44.98 44.60 44.56 44.12 43.82 43.36 44.43 46.10 45.70 45.01 44.52 44.51 44.03 43.76 43.32 44.97 46.12 45.60 44.96 44.42 44.44 43.99 43.67 43.24 43.91 45.33 46.09 45.43 44.84 44.31 44.37 43.93 43.60 43.98 45.64 46.08 45.31 44.76 44.29 44.25 43.93 43.51 44.09 45.91 45.98 45.11 44.69 44.24	44.64 44.20 43.84 43.42 44.17 46.02 45.84 44.98 44.60 44.17 44.56 44.12 43.82 43.36 44.43 46.10 45.70 45.01 44.52 44.12 44.51 44.03 43.76 43.32 44.97 46.12 45.60 44.96 44.42 44.07 44.44 43.99 43.67 43.24 43.91 45.33 46.09 45.43 44.84 44.31 44.22 44.37 43.93 43.60 43.98 45.64 46.08 45.31 44.76 44.29 44.29 44.25 43.93 43.51 44.09 45.91 45.98 45.11 44.69 44.24 44.36

CAL YR 1987 MAX 47.27

WELL NUMBER. -- 291100082010003. Local Number CE-76. USGS Observation Well CE-76 near Ocala, FL.

LOCATION.--Lat 29°11'00", long 82°01'00", in NE\nW\sW\sec.16, T.1S S., R.23 E., Hydrologic Unit 03080102, on south side of Sharpes Ferry Road, 6.5 mi east of Ocala. Owner: U.S. Geological Survey.

AQUIFER..--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 153 ft, cased to 124 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 64.51 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top edge of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--January 1968 to September 1977, October 1977 to current year (bimonthly). Records of water levels prior to January 1974 are available in files of the Jacksonville Field Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 46.78 ft NGVD, Apr. 19, 1970; lowest measured, 40.65 ft NGVD, Jan. 28, 1982.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	1315	42.81	02	1250	43.59
NOV			JUN		
30	1220	42.46	20	1155	42.77
JAN			AUG		
04	1205	42.10	15	1510	42.71
MAR					
07	1530	43 10			

MARION COUNTY

WELL NUMBER .-- 291110082060001. USGS Well CE-44 at Ocala, FL.

LOCATION.--Lat 29°11'10", long 82°06'00", in SW\xSW\xNW\x sec.15, T.15 S., R.22 E., Hydrologic Unit 03080102, on south side of State Highway 40, 120 ft east of Florida Highway Patrol Station at Ocala, and 3.0 mi west of Silver Springs. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 91 ft, cased to 34.2 ft.

INSTRUMENTATION . -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 102.73 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--April 1966 to September 1977, October 1977 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 46.50 ft NGVD, Sept. 13, 1982; lowest, 39.85 ft NGVD, July 12, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	1440	42.12	02	1450	42.90
NOV			19	0725	40.33
30	1330	41.63	JUN		
JAN			20	1555	42.16
04	1405	41.31	AUG		
MAR			16	0810	42.05
07	1550	42.23	SEP		
			22	0910	44.43

WELL NUMBER. -- 291115081592501. Sharpes Ferry Well, Marion 5 near Ocala, FL.

LOCATION.--Lat 29°11'15", long 81°59'25", in NE\SE\ sec.15, T.15 S., R.23 E., Hydrologic Unit 03080102, on north side of Sharpes Ferry Road, 0.1 mi east of Oklawaha River, and 7.6 mi east of Ocala. Owner: Florida Department of Transportation.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 135 ft, cased to 135 ft.

INSTRUMENTATION. -- Digital recorder--60-minute interval.

DATUM.--Land-surface datum is 39.83 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of reducer, 2.55 ft above land-surface datum.

REMARKS. -- Well records used to determine flow of Silver Springs.

PERIOD OF RECORD.--January 1933 to July 1947 (weekly); August 1947 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 55.42 ft NGVD, Oct. 14, 1960; lowest, 43.18 ft NGVD, May 7, 1957.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	47.61	47.36	47.05	46.64	47.24	47.35	49.01	48.44	47.60	47.27	47.02	47.27
10	47.51	47.31	47.14	46.67	47.40	48.13	48.55	47.92	47.68	47.18	46.95	47.88
15	47.47	47.12	47.04	46.61	47.53	48.23	48.39	48.11	47.53	47.18	46.96	48.82
20	47.46	47.23	46.92	46.67	47.58	48.52	48.43	48.01	47.41	47.10	47.04	49.24
25	47.37	47.21	46.85	46.86	47.45	48.86	48.62	47.96	47.40	47.13	47.03	49.63
EOM	47.18	47.24	46.69	47.09	47.30	48.94	48.49	47.82	47.45	47.06	47.08	49.78
MAX	47.71	47.46	47.19	47.09	47.58	48.94	49.03	48.59	47.81	47.44	47.08	49.78

CAL YR 1987 MAX 49.77 WTR YR 1988 MAX 49.78

MARION COUNTY

WELL NUMBER. -- 291115082102901. USGS Well CE-31 replacement at Ocala, FL.

LOCATION.--Lat 29°11'15", long 82°10'29", in SE\SW\nE\sec.14, T.15 S., R.21 E., Hydrologic Unit 03080102, 0.25 mi west of Alternate U.S. Highway 27, and 0.1 mi north of State Highway 40, about 2 mi west of Ocala. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 55 ft, cased to 27 feet.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 72.66 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.4 ft above land-surface datum.

REMARKS. -- Record is equivalent to that for CE-31 (291120082102501), available November 1935 to May 1983.

PERIOD OF RECORD . -- April 1986 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.51 ft NGVD, Sept. 20, 1988; lowest measured, 42.61 ft NGVD, Jan. 4, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	1510	43.64	02	1520	44.70
NOV			20	1155	44.30
30	1345	42.99	JUN		
JAN			20	1615	43.79
04	1425	42.61	AUG		
MAR			16	0715	43.45
07	1610	43.59	SEP		
			20	1430	46.51

WELL NUMBER, -- 291130082015001. Local Number CE-47. USGS Observation Well CE-47 near Ocala, FL.

LOCATION.--Lat 29°11'30", long 82°01'50", in NW\nE\nW\sec.17, T.15 S., R.23 E., Hydrologic Unit 03080102, on south side of Sharpes Ferry Road, 1.5 mi south of Silver Springs, and 5.3 mi east of Ocala. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 192 ft, cased to 174.4 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 53.93 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD. -- April 1966 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 45.50 ft NGVD, Sept. 13, 1982; lowest, 39.57 ft NGVD, July 9,10, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	41.64	41.40	41.29	40.93	41.44	41.83	222	42.29	41.80	41.62	41.69	41.84
10	41.56	41.35	41.19	40.92	41.50	42.46		42.17	41.84	41.59	41.68	43.29
15	41.54	41.28	41.14	40.89	41.54	42.85		42.14	41.75	41.64	41.68	43.60
20	41.48	41.33	41.09	40.85	41.57	42.92		42.03	41.65	41.72	41.74	43.71
25	41.42	41.28	41.05	41.22	41.70	42.98		41.97	41.65	41.77	41.69	43.72
EOM	41.35	41.27	40.99	41.42	41.70			41.85	41.70	41.77	41.70	43.81
MAX	41.64	41.41	41.29	41.42	41.72				41.88	41.77	41.77	43.82

CAL YR 1987 MAX 43.68

MARION COUNTY

WELL NUMBER. -- 291740081562001. USGS Well CE-54 near Ocala, FL.

LOCATION.--Lat 29°17'40", long 81°56'20", in SW\sW\sW\s sec.6, T.14 S., R.24 E., Hydrologic Unit 03080102, on east side of Gores Landing Road, 1.0 mi west of Oklawaha River at Gores Landing, 5.0 mi south of Fort McCoy, and 14.3 mi northeast of Ocala. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 280 ft, cased to 258 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 50.59 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--May 1966 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 50.45 ft NGVD, Apr. 19, 1970; lowest, 43.81 ft NGVD, Jan. 11, 1982.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	46.34	46.14	45.90	45.63	46.23	46.56	47.31	46.73	45.98	45.82	45.73	46.16
10	46.17	46.09	45.95	45.72	46.32	47.05	47.14	46.50	46.21	45.59	45.65	46.71
15	46.22	45.89	45.95	45.71	46.49	47.05	47.04	46.66	45.95	45.71	45.70	47.16
20	46.10	46.05	45.85	45.80	46.51	47.15	47.00	46.42	45.81	45.70	45.83	47.50
25	45.97	46.06	45.80	46.02	46.43	47.34	46.89	46.29	45.90	45.82	45.81	47.74
EOM	45.81	46.17	45.66	46.13	46.54	47.27	46.77	46.23	46.04	45.74	45.90	47.84
MAX	46.45	46.19	46.10	46.13	46.58	47.34	47.34	46.82	46.27	46.04	45.93	47.84

CAL YR 1987 MAX 48.01 WTR YR 1988 MAX 47.84

WELL NUMBER. -- 291849081411401. Lake George Well near Salt Springs, FL.

LOCATION.--Lat 29°18'49", long 81°41'14", in SE% sec.42, Joseph M. Hernandez Grant, T.13 S., R.26 E., Hydrologic Unit 03080101, on a sand trail, on the east side of State Highway 19, 3.8 mi southeast of Salt Springs. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation well, artesian well, diameter 4 in, depth 298 ft, cased to 267.50 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 18.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 2.00 ft above land-surface datum.

COOPERATION. -- Since Oct. 1, 1986 records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- January 1983 to September 1985 (bimonthly); October 1985 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 17.28 ft NGVD, Mar. 16, 1983; lowest measured, 14.63 ft NGVD, June 4, 1986.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
28	1025	16.43	25	1035	16.27
DEC			31	1310	16.29
02	1230	16.22	JUN		
JAN			27	1440	16.09
04	1010	15.94	JUL		
FEB			26	0950	15.71
03	1230	16.05	AUG		
29	1515	16.14	30	0900	15.75
MAR			SEP		
29	1007	16.61	21	1216	16.36
APR			27	1325	16.19
25	1020	16.43			

MARION COUNTY

WELL NUMBER. -- 292019082064201. USGS Well CE-66 replacement at Sparr, FL.

LOCATION.--Lat 29°20'19", long 82°06'42", in SW\sW\sE\sec.21, T.13 S., R.22 E., Hydrologic Unit 03080102, in lumber yard at northeast corner of intersection of Alternate U.S. Highway 301 and Main Street at Sparr. Owner: St. Johns River Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 120 ft, cased to 61 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 95.11 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.65 ft above land-surface datum.

REMARKS. -- Record is equivalent to that for CE-66 (292015082065001), available March 1961 to August 1985.

PERIOD OF RECORD. -- May 1986 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 50.39 ft NGVD, Sept. 20, 1988; lowest measured, 44.78 ft NGVD, May 14, 1986.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1240	46.35	03	1245	47.72
DEC			20	1420	47.29
01	1245	45.63	JUN		
JAN			21	1430	46.48
06	1225	45.25	AUG		
MAR			17	1100	45.86
10	0855	46.39	SEP		
			20	1755	50,39

MARTON COUNTY

WELL NUMBER. -- 292200081510001. USGS Well CE-84 near Salt Springs, FL.

LOCATION.--Lat 29°22'00", long 81°51'00", in NW\h\\L\ sec.13, T.13 S., R.24 E., Hydrologic Unit 03080101, on north side of State Highway 316, 2.5 mi east of Oklawaha River at Eureka, 7.5 mi west of Salt Springs, and 8.0 mi east of Fort McCoy. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 90 ft, cased to 53 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 91.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

COOPERATION.--Since Oct. 1, 1985 records provided by St. Johns River Water Managment District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--July 1970 to September 1977, October 1977 to September 1985 (bimonthly); October 1985 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.92 ft NGVD, Nov. 28, 1979; lowest measured, 22.50 ft NGVD, Aug. 11, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
27	1105	26.04	25	1210	25.54
NOV			31	0910	25.50
30	1000	25.57	JUN		
JAN			27	1030	25.51
04	0935	25.09	JUL		
25	1105	24.86	25	0920	25.36
FEB			AUG		
29	0950	24.62	29	1020	25.14
MAR			SEP		
29	0935	24.88	21	1030	25.71
APR			26	0940	26.02
25	0940	25.30			

MARION COUNTY

WELL NUMBER. -- 292546081513301. USGS Well CE-67 near Salt Springs, FL.

LOCATION.--Lat 29°25'46", long 81°51'33", in NE½SE½SE½ sec.23, T.12 S., R.24 E., Hydrologic Unit 03080102, on northwest corner of Forest Roads 75 and 97 in the Ocala National Forest, 7.8 mi northeast of Fort McCoy, and 9.2 mi northwest of Salt Springs. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 6 in., depth 340 ft, cased to 307 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 137.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Hole in cap, 2.20 ft above land-surface datum.

COOPERATION. -- Since Oct. 1, 1985 records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--September 1964 to November 1967 (monthly); January 1968 to September 1985 (bimonthly); October 1985 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.60 ft NGVD, Oct. 29, 1965; lowest measured, 17.34 ft NGVD, July 1, 1968.

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		MAY		
1040	20.80		1235	20.43
		31	0845	20.20
0945	20.48	JUN		
		27	1010	20.19
0915	20.16	JUL		
1045	20.04	25	0900	20.12
		AUG		
0935	19.89	29	1000	20.11
		SEP		
0915	20.27	21	1102	20.99
		26	0915	21.01
0920	20.26			
	1040 0945 0915 1045 0935	ATION ABOVE NGVD (FEET) 1040 20.80 0945 20.48 0915 20.16 1045 20.04 0935 19.89 0915 20.27	ATION ABOVE TIME NGVD (FEET) MAY 1040 20.80 25 31 0945 20.48 JUN 27 0915 20.16 JUL 1045 20.04 25 AUG 0935 19.89 29 SEP 0915 20.27 21 26	ATION ABOVE TIME NGVD (FEET) MAY 1040 20.80 25 1235 31 0845 0945 20.48 JUN 27 1010 0915 20.16 JUL 1045 20.04 25 0900 AUG 0935 19.89 29 1000 SEP 0915 20.27 21 1102 26 0915

MARION COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME		STA	TION NAME	ELEVA- TION ABOVE NGVD (FEET)
285930081430901	05-25-88 09-21-88	1522 1415	85914301	KOA WELL	ON SR-42 WEST OF ALTOONA	53.93 54.61
285933082192501	05-18-88 09-19-88	1125 1335	85921901	17S20E20	CE 24 U S GEOL SURVEY	38.65 42.85
290103082104501	05-19-88 09-19-88	0910 1110	90121001	17S21E14	MARION OAKS NO 2	46.03 47.99
290227082250801	05-18-88 09-19-88	0900 1151	90222501	16S19E31	CE 75 U S GEOL SURVEY	55.46 58.25
290238082120901	05-19-88 09-19-88	1015 1225	90221201	17S21E03	SCE 168 CORPS OF ENGINEERS	45.91 48.87
290325082283701	05-18-88 09-19-88	0830 1614	90322802	16S18E27	AK:54 WELL NEAR VOGT SPRINGS	39.62 43.05
290421082190801	09-19-88	1430	90421901	16S20E28	CE 21 U S GEOL SURVEY	47.84
290614082274801	05-19-88 09-20-88	1225 0920	90622701	16S18E11	SCE 170 RAINBOWS END GOLF CRS	33.88 38.64
290628081425301	05-25-88 09-21-88	0920 1612	90614201	LOOKOUT	TOWER WELL, BOMB RNGE, ASTOR PARK	48.86 48.68
290739082245701	05-19-88 09-20-88	1250 1307	90722401	15S19E32	CE 12 U S GEOL SURVEY	35.72 39.96
290752082271101	05-19-88 09-20-88	1330 0940	90722701	15S18E35	SCE 116 RAINBOW ACRES	35.76 40.43
290822082310101	05-19-88 09-20-88	1345 0956	90823101	15S18E32	LAKE BONABLE	45.61 53.54
290910082315001	05-19-88 09-20-88	1435 1014	90923101	15S18E30	SCE 138 LITTLE LAKE BONABLE	46.18 54.17
290913082245601	05-19-88 09-20-88	1305 1046	90922401	15S19E29	SCE 118 LAKE TROPICANA	38.53 44.73
290951082211201	05-19-88 09-20-88	1705 1252	90922101	15S19E25	SCE 173 RAINBOW PARK ESTATES	45.18 47.33
291015081385001	05-25-88 09-21-88	1000 1335	91013801	15S26E	DOT 49	38.27 38.60
291056082263201	05-19-88 09-20-88	1510 1103	91022601	15S18E13	HERSHEL KYPER ROMEO	40.57 46.93
291240082034001	05-20-88 09-22-88	1100 0947	91220301	15S22E01	SCE124	41.41 43.08
291241082300101	05-19-88	1600	91223001	15S18E04	PETTYJOHN-BOOM IRR.	44.74
291303082220401	09-20-88	1227	91322201	14S19E36	IMA WORM WELL AT EARLY BIRD	49.89
291728081390501	05-23-88 09-21-88	1232 1241	91713901	14S26E12	UNKNOWN	13.90 14.16
291738082115301	09-20-88	1736	91721102	14S21E10	CE 30A	46.94
291750081494001	05-25-88 09-22-88	1425 1130	917149	14S25E06	C E 56	32.74 32.60
292100081435001	05-25-88 09-21-88	1150 1143	921143	13S26E19	SCE 34	5.60 6.39

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

MARION COUNTY--Continued

STATION NUMBER	DATE OF SAMPLE	TIME		STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
292101082233601	05-20-88 09-20-88	1255 1510	92122301	13S19E15 HOMESTEADER NURSERY	49.93 53.57
292146082182501	05-17-88 09-20-88	1630 1545	92121801.	13S20E09 SR 316 WELL SRWMD	48.25 50.48
292205082022901	05-25-88 09-21-88	1315 0930	922202	13S23E18 FT MCCOY FIRE TOWER	50.25 51.06
292256082164001	05-17-88 09-20-88	1605 1600	92221601	13S20E12 922216121 L K EDWARDS	50.88 52.31
292349082191501	05-17-88 09-20-88	1540 1620	92321901	12S20E33 E H UPDIKE	50.07 50.57
292718082202601	05-17-88 09-20-88	1430 1656	92722001	12S20E18 MAHAFFEY WELL	54.50 55.42
292816082234501	05-17-88 09-20-88	1505 1640	92822301	12S19E03 SMITH BROTHERS WACAHOOTA	57.72 58.47

MARION COUNTY

290118082364101 - 90123601 17S17E05 CE 70 USGS AT INGLIS LOCK

DATE	AT AE	EV- CON COVE DIGVD A	PE- IFIC ON- UCT- NCE S/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY								
11	0930 2	0.75	495	7.5	21.5	K1	K1	10
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GE	RO- GEN, N, MONI NIA ORGA AL TOI /L (MO	A + PH NIC PHO AL TO	ROUS ORT	RUS, CARBO THO, ORGAL TAL TOT.	NIĆ AL /L
MAY 11	<0.010	<0.020	0.	210 <0	.20 0	.130 0.	.110 4	. 4

290119081400101 - 90111401 WT SAMPLING SITE, BABTIST LAKE ALTOONA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)
SEP			1.65	157
01	1010	34	4.60	25.0

290130082082001 - 90120801 USGS OBSERVATION WELL CE35 NEAR PEDRO

DATE	TIME A	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 10	1320	48.41	240	8.3	24.0	К1	К1	3.0
DATE	NITROGEN, NITRITE TOTAL (MG/L AS N)	GEN	I, GE IO3 AMMO L TOT L (MG	RO- GEN, N, MONI NIA ORGA AL TOT /L (MG	A + PHO NIC PHOI AL TO:	TAL TOT	CARBO CHO, ORGAN CAL TOTA C/L (MG)	NIĆ AL /L
MAY 10	<0.010	0.9	930 0.	010 <0	.20 0	.230 0.	040 0	. 1

MARION COUNTY--Continued

290132082133001 - 90121301 17S21E08 USGS OBSERVATION WELL CE78 NEAR PEDRO

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 11	1140	45.89	191	7.9	23.0	К1	K1	2.6
22,57	27.17		737	***	7.773	975	1,77	2.17
DAT	NIT GE NITR TOT. TE (MG AS	N, GE ITE NO2+ AL TOT /L (MG	N, GE NO3 AMMO AL TOT /L (MG	RO- GEN, NONIA ORGA CAL TOT C/L (MG	A + PHO NIC PHOR AL TOT /L (MG	OUS ORT AL TOT /L (MG	US, CARBO HO, ORGAN AL TOTA /L (MG)	NIĆ AL 'L
MAY 11	<0.	010 0.	100 0.	010 <0	.20 0.	030 0.	020 0.	9
	29	021608229 ELEV-	2001 - 90 SPE- CIFIC	222901 1	.6S18E33 C	COLI- FORM, TOTAL.	COLI- FORM, FECAL.	CHLO- RIDE,
DATE	TIME	ATION ABOVE NGVD (FEET)	CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	IMMED. (COLS. PER 100 ML)	0.7 UM-MF (COLS./ 100 ML)	DIS- SOLVED (MG/L AS CL)
DATE	TIME	ATION ABOVE NGVD	CON- DUCT- ANCE	(STAND- ARD	ATURE WATER	IMMED. (COLS. PER	UM-MF (COLS./	DIS- SOLVED (MG/L

DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
MAY 11	0.010	0.380	0.010	<0.20	0.050	0.020	0.2

MARION COUNTY--Continued

290300081420901 - SHALLOW WELL ON ROAD 573 NEAR ROAD 566 NEAR ALTOONA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)
JUN 08	1145	32	6.50	23.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)
JUN 08	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
JUN 08	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DAT	1,4- CHLC BENZ TOT (UG/	RO- VINY ENE ETH	RO- CHLC L- DI- L- FLUC ER METH	RO- TRA 1,3- RO- CHLO ANE PROP L TOT	RO- CHLC ENE PROF AL TOT	DI- VINDRO- CHL PENE RID CAL TOT	O- ETHY E EN AL TOT	RO- L- E STYR	AL TOT	AL ER LE REC
JUN 08	<0	.20 <0	0.20 <0	.20 <0	.20 <0	0.20 <0	.20 <	0.2 <	0.2 <	0.2

MARION COUNTY--Continued

290300081471701 - SHALLOW WELL ON ROAD 573 W OF BIG SCRUB NEAR ALTOONA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)
JUN 09	0900	19	5.80	22.0	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)
JUN 09	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
JUN 09	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DA	1,4- CHLC BENZ IE TOT (UG,	DRO- VINY ZENE ETH TAL TO	ORO- CHLO VL- DI- VL- FLUC HER METH	RO- TRA 1,3- RO- CHLC IANE PROF L TOT	RO- CHLO ENE PROF	DI- VINDRO- CHI PENE RII	O- ETHY DE EN	DRO- YL- ME STYR	AL TOT	AL ER OLE REC
JUN 09	. <(0.20 <0	0.20 <0	.20 <0	.20 <0	0.20 <0	0.20 <	0.2 <	0.2 <	0.2

MARION COUNTY--Continued

290301081391801 - SHALLOW WELL ON ROAD 573 1.1 MI W OF HWY 19 NEAR ALTOONA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)
JUN 08	1000	19	5.10	23.0	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)
JUN 08	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
JUN 08	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DA	1,4- CHLC BENZ TE TOT	DRO- VINY ZENE ETH TAL TO:	ORO- CHLO YL- DI- YL- FLUC HER METH	DRO- TRA 1,3- DRO- CHLO HANE PROF L TOT	ORO- CHLO PENE PROP TAL TOT	DRO- CHI PENE RII TAL TO	O- ETHY DE EN	DRO- YL- WE STYF	AL TOT	TAL TER DLE REC
JUN 08	. <(0.20 <	0.20 <0	0.20 <0	0.20 <0	0.20 <0).20 <	0.2	0.2	0.2

MARION COUNTY--Continued

290312082190601 - 90321901 16S20E33 CE 22 USGS

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	CI CC DU AN	PE- FIC ON- ICT- ICE S/CM)	(SI	PH CAND- LRD CTS)	AT WA	PER- TURE TER G C)	FO TO IM (CO P	LI- RM, TAL, MED. LS. ER ML)	FO FE O. UM (CO	LI- RM, CAL, 7 -MF LS./ ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 11	1110	49.99		186		7.1		24.0		K1		K1	1.8
DATE	NIT GE NITR TOT (MG AS	N, G ITE NO2 AL TC /L (M	TRO- EN, +NO3 TAL IG/L N)	GE AMMO TOT (MG	AL	GEN, MONI	A + NIC AL	PHO PHOR TOT (MG AS	AL /L	PHO PHOR ORT TOT (MG AS	US, HO, AL /L	CARBO ORGAL TOT. (MG AS	NIĆ AL /L
MAY 11	<0.	010 0	.160	0.	010	<0	. 20	0.	060	0.	040	0	. 5
2904	0008209	1001 - S ELEV- ATION ABOVE	SF	OO1 US	F	OBSERV OH O'AND-	TEM	N WEL	CO FO TO	LI- RM, TAL, MED. LS.	CO FO FE 0.	CALA LI- RM, CAL, 7	CHLO- RIDE, DIS- SOLVED

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY								
10	1345	46.78	382	7.8	23.5	K1	20	5.5
	NITR GEN	, GE	N, GI	TRO- GEN, EN, MONI	A + PH	OS- PHO	OS- RUS, CARB	
DATE	NITRI TOTA (MG/ AS N	L TOT L (MG	AL TO		TAL TO	TAL TO:	THO, ORGA TAL TOT G/L (MG P) AS	AL /L

0.40 0.040 0.030 0.2

MAY 10... <0.010 0.950 0.010

MARION COUNTY--Continued

290439081423501 - SHALLOW WELL ON ROAD 566 NEAR ALTOONA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)
JUN 09	0950	22	5.70	23.0	<0.20	<0.20	<0.20	<0.20	<0.20	0.20
DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)
JUN 09	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
JUN 09	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATI	1,4- CHLC BENZ TOT (UG/	RO- VINY CENE ETH CAL TOT	DRO- CHLC L- DI- L- FLUC ER METH	RO- TRA 1,3- RO- CHLO IANE PROF L TOT	RO- CHLO ENE PROF AL TOI	PENE RII	O- ETHY E EN	DRO- YL- NE STYF	AL TOT	AL ER DLE REC
JUN 09	<0	.20 <0	.20 <0	.20 <0	.20 <0	.20 <0	0.20 <	0.2	0.2	0.2

290447082250901 - 90422501 16S19E20 CE 13 USGS

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	(COLS. PER	0.7 UM-MF (COLS./	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY	10/5	22 21	24.0	0.6	20	0 1/1	7/1	
11	1045	33.21	242	8.6	23.	0 K1	K1	4.0
DATE	NITROGEN, NITRITI TOTAL (MG/L AS N)	GE	N, GE NO3 AMMO AL TOT /L (MG	RO- GEN, N, MONI NIA ORGA AL TOT E/L (MG	A + PANIC PHOTAL TO	HOS- PHO OROUS OI OTAL TO MG/L (1	HOS- DRUS, CARBO RTHO, ORGA DTAL TOT. MG/L (MG S P) AS	NIĊ AL /L
MAY 11	<0.010	0 1.	00 0.	010 <0	.20	0.060	0.050 0	. 8

MARION COUNTY--Continued

290547081411701 - 90514101 DRIVE PT SAMPLER, TWIN PONDS, ASTOR PARK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)
SEP				
01	1400	23	4.50	24.0

290552082044701 - 90520401 USGS WELL CE81 WOLF SINK NEAR SANTOS

DATE	DU AN	FIC N- CT-	PH (STA AR UNIT	ND- D	TEMP ATU WAT (DEG	RE ER	COL FOR TOT IMM (COL PE 100	M, AL, ED. S. R	0.7	MF S./	(MG	E, - VED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
MAY 10		491	7	. 6	2	5.0	К	4		30	7	.9	<0.010
	DATE	NO2 TO (M	TRO- EN, +NO3 TAL G/L N)	AMM TO (M	TRO- EN, ONIA TAL G/L N)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	PHO TO (M	OS- ROUS TAL G/L P)	PHON OR' TO' (MC	OS- RUS, THO, TAL G/L P)	ORG TC	RBON, GANIC DTAL MG/L S C)
MAY 1	0	0	.910	0	.010	<	0.20	0	.040	0	.030		0.3

290820082032001 - 90820301 USGS OBSERVATION WELL CE39 NEAR OCALA

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C	(COLS. PER	0.7 UM-MF (COLS./	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY								
10	1215	44.99	338	7.2	24.0	0 K1	K1	5.2
				NIT	RO-			
	NITRO			TRO- GEN			os-	
	GEN, NITRIT			EN, MONI			RUS, CARB	
	TOTAL			TAL TO			THO, ORGA	
DATE	(MG/L						G/L (MG	
	AS N)						P) AS	
MAY								
10	<0.01	.0 1.	20 0.	.010 <0	.20 (0.070 0	.060 0	. 3

MARION COUNTY--Continued

29095308	2031301	- 90920	301 USGS (DBSERVAT1	ON WE	IL CE79	NEAR S	ILVER SPR	INGS
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	AT WA	IPER-	COLI- FORM, FOTAL, IMMED. COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
		(1221)	(02) 011)	J., 122,	,,,,,	,	,	200,	
MAY 10	1135	43.94	218	8.6		24.5	K1	К1	4.2
DATE	NITI GEI NITR TOTA (MG AS I	N, GI ITE NO2- AL TO: /L (MC	EN, GE HNO3 AMMO FAL TOT E/L (MO	TRO- GEN EN, MON ONIA ORG TAL TO G/L (M	TRO- I, AM- IA + ANIC TAL IG/L N)	PHOS- PHOROUS TOTAL (MG/L AS P)	TOT (MG	US, CARBO HO, ORGAN AL TOTA //L (MG)	NIĆ AL /L
MAY									
10	<0.0	010 0	750 0.	.010 <	0.20	0.040	0.	030 0	. 3
291	1400820	52701 - 9	91120501 T	ISGS OBSE	RVATI	ON WELL	CE80 A	T OCALA	
							707 T	COLT	
DATE	TIME	ELEV- ATION ABOVE NGVD	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD	AT WA	IPER-	FORM, FORM, FOTAL, IMMED. COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	CHLO- RIDE, DIS- SOLVED (MG/L
		(FEET)	(US/CM)	UNITS)	(DE	(G C) 10	00 ML)	100 ML)	AS CL)
MAY									
10	1000	41.97	332	7.6		24.5	K1	140	2.6
DATE	NITE GE NITE TOT (MG AS	N, GI ITE NO2- AL TO: /L (M	EN, GE FNO3 AMMO TAL TO3 G/L (MC	TRO- GEN EN, MON ONIA ORG TAL TO G/L (N	TRO- I, AM- IIA + GANIC TAL IG/L IG/L	PHOS- PHOROUS TOTAL (MG/L AS P)	S ORT	US, CARBO HO, ORGAL AL TOTA J/L (MG	NIC AL /L
MAY 10	<0.	010 0	.150 0	.030 -	0.20	0.56	0 0.	110 0	. 6
2913100	8204500	1 - 9132	0401 USGS	OBSERVAT	ION V	ELL CE4	5 AT SI	LVER SPRI	NGS
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	- AT	MPER- TURE (COLI- FORM, TOTAL, IMMED. COLS. PER 00 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 10	1035	43.39				23.0	К1	К1	3.0
DATE	NIT GE NITR TOT (MG AS	N, GI ITE NO2- AL TO /L (M	EN, GI +NO3 AMM TAL TO: G/L (MO	TRO- GEN EN, MON ONIA ORO TAL TO G/L (N	TRO- I, AM- IIA + GANIC OTAL MG/L IN)	PHOS- PHOROU TOTAL (MG/L AS P)		RUS, CARBO CHO, ORGAL CAL TOT. G/L (MG	NIC AL /L

0.960 0.8

3,10

MAY 10...

0.010

0.500

0.030 <0.20

MARION COUNTY--Continued

291600081550001 - 91615501 USGS OBSERVATION WELL CE55 NEAR SALT SPRINGS

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAN ARD UNITS	TA -C	IPER- I URE (C	COLI- CORM, COTAL, IMMED. COLS. PER	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 10	1116	45.57	371	8.	3	22.5	K1	K1	16
DATE	NITRO GEN NITRI TOTAL (MG/) AS N	, GE TE NO2+ L TOT L (MG	EN, G NO3 AMM TAL TO	TRO- GEN, MONIA OTAL	NITRO- EN,AM- ONIA + RGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHO PHOR ORT TOT (MG AS	US, CARB HO, ORGA AL TOT /L (MG	NIĆ AL /L
MAY 10	<0.0	10 <0.	020 0	.060	<0.20	0.050	0.	030 0	. 8

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 31 NASSAU COUNTY

Index	Site	Page
number	number	number
1	303340081500001	218
2	303435081271401	219
3	303457081271501	220
4	303518081275001	221
5	303808081261401	222
6	304002081381201	222
7	304213081270801	223
8	304410081592101	223
9	304640081583801	224
	number 1 2 3 4 5 6 7 8	number number 1 303340081500001 2 303435081271401 3 303457081271501 4 303518081275001 5 303808081261401 6 304002081381201 7 304213081270801 8 304410081592101

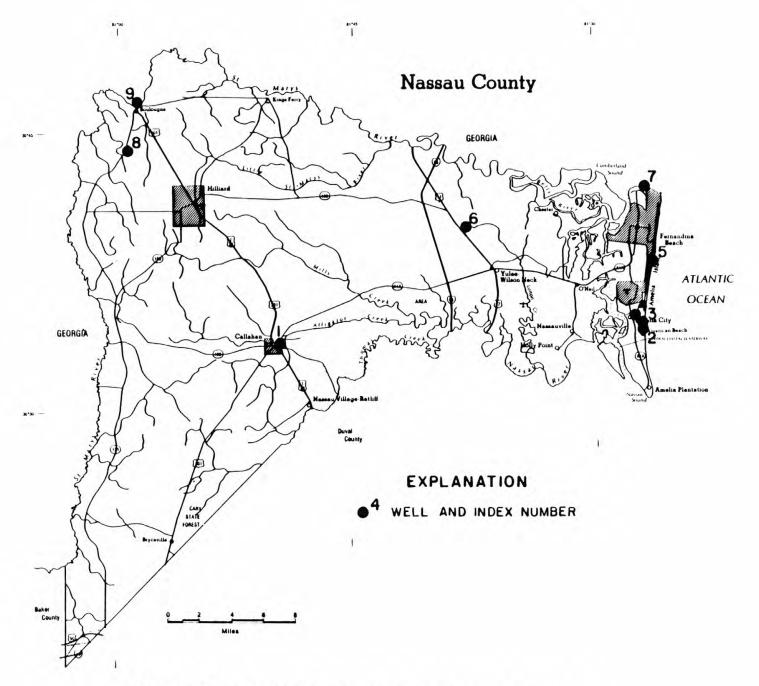


Figure 31.--Location of wells in Nassau County.

NASSAU COUNTY

WELL NUMBER. -- 303340081500001. Local Number N-51. Ellis Howard Well at Callahan, FL.

LOCATION.--Lat 30°33'40", long 81°50'00", in SW\nW\sec.29, T.2 N., R.25 E., Hydrologic Unit 03070205, 200 ft from northeast corner of intersection of Green Avenue and Mickler Street in Callahan. Owner: Ellis Howard.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, domestic, artesian well, diameter 2 in., depth 580 ft, casing length unknown.

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 18.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. cross, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--January 1940 to April 1942, January 1944 to September 1978 (semiannually); February 1979 to current year (bimonthly). Records of water levels prior to 1974 are available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 61.28 ft NGVD, July 15, 1947; lowest measured, 35.28 ft NGVD, Oct. 8, 1980.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
07	1020	37.58	03	1100	39.18
DEC			25	1325	38.48
02	1030	38.18	JUN		
JAN			20	0950	37.38
13	0945	38.38	AUG	200	
MAR			18	1220	36.58
07	0950	39.18	SEP		
			21	0840	36.48

NASSAU COUNTY

WELL NUMBER. -- 303435081271401. Local Number N-46. Amelia Island Corporation Well at Amelia City, FL.

LOCATION.--Lat 30°34'35", long 81°27'14", in land grant 14, T.2 N., R.28 E., Hydrologic Unit 03070205 at Amelia Island waterworks, 1.1 mi south of intersection of State Highways A1A and 105A, 200 ft east of water storage tanks at Amelia City. Owner: Amelia Island Corporation.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, commercial, artesian well, diameter 12 in., depth 1,016 ft, cased to 492 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of lowest 14 in. flange, 1.10 ft above land-surface datum.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD.--April to December 1975, May 1977, May 1978, April 1979 to September 1983 (bimonthly); October 1983 to current year (monthly). Records prior to 1979 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.10 ft above land-surface datum, Dec. 31, 1985; lowest measured, 7.50 ft above land-surface datum, July 28, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1984 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
29 NOV	1100 -	-9.60	575	23.0	26 MAY	1210	-13.10		
23 DEC	1345	-13.30		44	23 JUN	1420	-10.70	615	23.0
28 JAN	1005	-15.20	600	22.0	29 JUL	1250	-8.10		
27 FEB	1055	-13.00	600	18.0	28 AUG	1350	-7.50		44
25 MAR	1215	-14.80			30 SEP	1045	-11.30		
31	1425	-13.60	610	23.0	20	0835	-12.60	595	24.0

Note. -- Negative figures indicate water level above land surface.

NASSAU COUNTY

WELL NUMBER. -- 303457081271501. Local Number N-9. George Morse Well at Amelia City, FL.

LOCATION.--Lat 30°34'57", long 81°27'01", in land grant 15, T.2 N., R.28 E., Hydrologic Unit 03070205, 100 ft east of State Highway A1A, and 0.8 mi south of Amelia City. Owner: George Morse.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 3 in., depth 586 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 18.37 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 3 in. tee, 1.50 ft above land-surface datum.

REMARKS .-- Water level affected by pumping of nearby well.

PERIOD OF RECORD.--March 1939, September 1955, May 1977, April 1979 to June 1981 (bimonthly); May 1981 to current year (monthly). Records prior to 1977 are unpublished and available in files of the Jacksonville Field Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.57 ft NGVD, Mar. 24, 1939; lowest measured, 21.77 ft NGVD, June 29, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29 NOV	1050	23.32	26 MAY	1205	26.07
23	1355	25.87	23	1455	24.05
DEC	1322	22.42	JUN	25.5	12/22
28 JAN	1010	28.97	29 JUL	1230	22.20
27	1050	26.17	28	1240	22.39
FEB		32.00	AUG		24.32
25 MAR	1220	27.57	30 SEP	1040	24.10
31	1415	25.97	20	0845	25.37

NASSAU COUNTY

WELL NUMBER. --303518081275001. Local Number N-3. Pierce Johnson Well at Amelia City, FL.

LOCATION.--Lat 30°35'18", long 81°27'50", in land grant 12, T.2 N., R.28 E., Hydrologic Unit 03070205, at Sandbar Cafe on Forest Boulevard, 0.4 mi west of State Highway AlA. Owner: Pierce Johnson.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 3 in., depth 540 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 11 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 4 in. cross, 1.0 ft above land-surface datum.

REMARKS.--Water level affected by pumping of nearby well. Record is equivalent to that for N-2 (303519081275301), available March 1939 to October 1985.

PERIOD OF RECORD.--March 1939, September 1955, October, November 1959, June 1985 to current year (monthly). Records prior to October 1985 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.00 ft above land-surface datum, Mar. 22, 1939; lowest measured, 6.00 ft above land-surface datum, June 29, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			APR		
29	1045	-7.10	26	1200	-9.60
NOV			MAY		
23	1400	-8.60	23	1505	-7.70
DEC			JUN		
28	1020	-13.00	29	1225	-6.00
JAN			JUL		
27	1045	-9.70	28	1330	-6.20
FEB			AUG		
25	1225	-10.80	30	1035	-7.80
MAR			SEP		
31	1405	-9.40	20	0855	-8.40

Note. -- Negative figures indicate water level above land surface.

NASSAU COUNTY

WELL NUMBER. -- 303808081261401. Local Number N-112. Domestic Well at Fernandina Beach, FL.

LOCATION.--Lat 30°38'08", long 81°26'14", in land grant 12, T.3 N., R.29 E., Hydrologic Unit 03070205, at Hammond Apartments, 0.2 mi south of intersection of Atlantic Boulevard and State Highway AlA in Fernandina Beach.

AQUIFER. -- Floridan aquifer system of Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, artesian, observation well, diameter 3 in., depth and casing length unknown.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land-surface datum.

REMARKS .-- Water level affected by pumping of nearby well.

PERIOD OF RECORD.--May 1969, December 1974 to December 1975 (monthly); May 1976 to September 1978 (annually); April 1979 to current year (bimonthly). Records prior to 1979 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.16 ft below land-surface datum, Dec. 28, 1975; lowest measured, 33.79 ft below land-surface datum, Dec. 23, 1974.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			MAY		
07 DEC	1420	27.64	04 JUN	1000	22.45
02 JAN	1410	23.70	20 AUG	1400	26.33
13 MAR	1450	22.68	19	1100	28.12
10	1020	23.50			

WELL NUMBER. --304002081381201. Local Number N-53. Rayonier Inc. Well near Yulee, FL.

LOCATION.--Lat 30°40'18", long 81°38'28", in land grant 50, T.3 N., R.27 E., Hydrologic Unit 03070205, 50 ft north of intersection of U.S. Highway 17 and Crandall Road, 0.3 mi northwest of Yulee Fire Tower, and 3.0 mi northwest of Yulee. Owner: ITT Rayonier Incorporated.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter unknown, depth 500 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 20.22 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. valve, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--February to November 1940, April to July 1944, September 1955, January 1960, May 1962, May 1964 to September 1978 (annually); April 1979 to current year (monthly). Records prior to 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 56.72 ft NGVD, May 30, 1940; lowest measured, 25.52 ft NGVD, July 30, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29	0950	27.62	26	1120	29.62
NOA			MAY		
23	1445	27.72	24	1440	28.62
DEC			JUN		
28	1100	28.22	29	1050	27.32
JAN			JUL.		
27	0955	28.22	28	1210	26.82
FEB			AUG		
25	1315	28.62	30	0935	26.62
MAR			SEP		
31	1310	29.22	20	1310	26.82

NASSAU COUNTY

WELL NUMBER. --304213081270801. Local Number N-19. Fort Clinch State Park Well at Fernandina Beach, FL.

LOCATION.--Lat 30°42'13", long 81°27'08", in NE\SE\NW\s sec.12, T.3 N., R. 28 E., Hydrologic Unit 03070204, at picnic area in Fort Clinch State Park at Fernandina Beach. Owner: Florida Department of Parks.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FlRD.

WELL CHARACTERISTICS .-- Drilled. observation, artesian well. diameter 5 in., depth 700 ft. casing length unknown.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 8.41 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 5 in. casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD. -- May 1974, December 1974 to December 1975 (monthly); May 1977, May 1978, April 1979 to September 1981 (bimonthly); May 1982 to September 1985 (semiannually); October 1985 to September 1986 (bimonthly); October 1986 to current year. Records prior to 1977 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 7.43 ft NGVD, Apr. 16, 1988; lowest measured, 30.30 ft below NGVD, May 25, 1977.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	-12.39	-12.90	-11.70	-7.64	-10.30	-10.23	-12.20	-6.45	-16.42	-14.99	-14.33	-17.58
10	-13.91	-12.59	-12.93	-9.93	-14.16	-9.31	-13.35	-13.07	-17.14	-15.15	-13.94	-15.06
15	-13.44	-12.97	-13.30	-10.64	-10.31	-13.63	5.47	-13.11	-16.92	-14.26	-14.39	-14.28
20	-13.97	-11.54	-12.39	-11.24	-8.29	-15.33	-2.79	-12.03	-17.51	-15.49	-15.52	-13.95
25	-12.78	-11.20	-6.75	-9.44	-9.52	-13.48	-8.25	-14.23	-17.71	-14.02	-14.91	-11.31
EOM	-12.68	-12.57	-4.06	-10.37	-10.46	-15.18	-8.93	-13.31	-16.44	-13.51	-13.86	-12.05
MAX	-11.95	-11.05	-3.94	-4.89	-8.29	-9.09	7.43	-6.31	-12.70	-13.42	-13.44	-10.31

WTR YR 1988 MAX 7.43

WELL NUMBER. -- 304410081592101. Local Number N-120. Humphreys Mining No. 2 Well near Boulogne, FL.

LOCATION.--Lat 30°44'22", long 81°59'23", in NE\nW\nW\sec.26, T.4 N., R. 23 E., Hydrologic Unit 03070204, 100 ft west of State Highway 121, and 2.5 mi southwest of intersection of U.S. Highway 1 and State Highway 121 in Boulogne. Owner: Mrs. Greenwood.

AQUIFER .-- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 18 to 12 in., depth 923 ft, cased to 525 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 96.12 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of metal base at land-surface datum.

PERIOD OF RECORD. -- March 1985 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.00 ft NGVD, Mar. 26, 1986; lowest measured, 38.94 ft NGVD, Aug. 30, 1988.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29 NOV	0915	40.17	26 MAY	1035	42.44
23 DEC	1525	40.35	25 JUN	0735	41.61
28 JAN	1140	40.74	29 JUL	1015	39.99
27 FEB	0900	40.68	28 AUG	1140	39.10
25 MAR	1415	41.21	30 SEP	0850	38.94
31	1225	42.40	21	1300	39.33

NASSAU COUNTY

WELL NUMBER. -- 304640081583801. Local Number WN-18. Domestic Well at Boulogne, FL.

LOCATION.--Lat 30°46'42", long 81°58'20", in land grant 41, T.4 N., R.23 N., Hydrologic Unit 03070204, 500 ft north of State Highway 121, and 0.5 mi northeast of intersection of U.S. Highway 1 and State Highway 121 in Boulogne. Owner: Mr. Siprelle.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, private, artesian well, diameter 4 in., depth 700 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 20.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. tee, 2.90 ft above land-surface datum.

PERIOD OF RECORD.--May 1966, May 1977 to June 1983 (semiannually); July 1983 to current year (monthly). Records prior to 1985 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.50 ft NGVD, May 9, 1966; lowest measured, 38.20 ft NGVD, Aug. 30, 1988.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
29	0900	39.60	26	1020	41.90
NOV			MAY		
23	1515	39.90	25	0710	40.90
DEC			JUN		
28	1130	40.20	29	1000	39.60
JAN			JUL		
27	0850	40.00	28	1130	38.50
FEB			AUG		
25	1350	40.60	30	0835	38.20
MAR			SEP		
31	1215	41.40	21	1240	38.50

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

NASSAU COUNTY

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
302952081531701	05-25-88 09-21-88	1250 0920	44.33 41.90	Ξ	==	- 22	
303357081295601	05-24-88 09-20-88	1240 1515	26.75 27.55	21.5 22.0	590 585	22 22	110 120
303417081342201	05-24-88 09-20-88	1535 1620	28.90 28.50	22.0 22.0	590 585	24 22	120 120
303658081422601	05-24-88 09-21-88	1410 1030	35.49 33.59	22.5 22.0	600 605	24 23	120 130
303722081295401	05-24-88 09-20-88	1115 1125	5.88 5.15		-	4	
303754081362701	05-25-88 09-20-88	0920 1330	27.35 26.19			22	
303805081273901	05-24-88 09-19-88	0740 1420	-27.77 -25.42	=			
303819081455701	05-25-88 09-21-88	1015 1120	36.85 35.10		610 620	26 25	130 120
303836081274201	05-24-88 09-19-88	0800 1510	-32.30 -24.90			100	==
303939081312601	05-24-88 09-20-88	1345 1415	1.61 1.43		=	==	=
304001081280301	05-24-88 09-20-88	0820 0925	27.95 34.45		=	==	
304022081275001	05-24-88 09-19-88	0840 1445	-21.70 -23.69		 		
304055081272002	05-24-88 09-20-88	1025 1050	-78.67 -77.60	12:	==	12	i i
304150081470301	05-25-88 09-21-88	1130 1430	40.30 37.60	22.0 23.0	650 650	28 27	140 140
304213081270801	05-24-88 09-20-88	0915 0950	-14.82 -16.17	Ξ	22 55		Ξ,
304317081372301	05-24-88 09-20-88	1150 1200	25.70 24.00	22.0 22.0	720 720	30 29	170 170

NASSAU COUNTY

303340081500001 - N-51

DATE	TIME	DUCT- (ST ANCE A	H TEMPI AND- ATUI RD WATI	RE INUI	AT- TOI M- (MG ALT AS	S CALCIUM CAL DIS- G/L SOLVEI	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)
AUG 29	1430	607	7.43 2:	3.0	<5	280 63	29	17
DATE	POTA SIU DIS SOLV (MG/ AS K	M, LINITY - LAB ED (MG/L L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, RI DIS- A' SOLVED I (MG/L AS S	T 180 C DEG. C I DIS- SC SOLVED (TRON- TIUM, DIS- DLVED JG/L S SR)
AUG 29	1.	8 153	120	26	0.60	34	391	420
			30340308	1311301 -	N 100			
DATE	TIME	DUCT- (ST ANCE A	H TEMPI AND- ATUI RD WATI TS) (DEG	RE INUI	AT- TOT M- (MC ALT AS	SS CALCIUM CAL DIS- E/L SOLVEI	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)
AUG 31	1105	571	7.62 2:	3.0	<5	260 58	29	16
31	1103	3/1	7.02 2.	5.0	~5	200 30	29	10
DATE	POTA SIUI DIS SOLV (MG/ AS K	M, LINITY - LAB ED (MG/L L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, RI DIS- AT SOLVED I (MG/L AS S	T 180 C DEG. C I DIS- SC SOLVED (U	TRON- TIUM, DIS- DLVED JG/L S SR)
AUG 31	1.	8 147	120	22	0.70	32	361	520
			30363408	1303201 -	N-124			
DATE	TIME	DUCT- (ST ANCE A	H TEMPI AND- ATUI RD WATI TS) (DEG	RE INUI	AT- TOT M- (MC ALT AS	S CALCIUM CAL DIS- G/L SOLVEI	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)
AUG 31	0925	584	7.55 2:	1.5	<5	270 57	31	17
DATE AUG	POTA SIU DIS SOLV (MG/ AS K	S- ALKA- M, LINITY - LAB ED (MG/L L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, RI DIS- A' SOLVED I (MG/L AS S	DLIDS, ESIDUE ST I 180 T DEG. C I DIS- SO SOLVED (U	TRON- TIUM, DIS- DLVED JG/L S SR)
31	1.	9 150	120	22	0.60	33	384	560

NASSAU COUNTY--Continued

303658081422601 - N-50

DATE	TIME	DUCT- (ST	AND- AT	URE INU	OR NE AT- TO IM- (N	AS (MG		M, SODIUM, DIS- ED SOLVED (MG/L
SEP 26	0915	571	7.65	22.0	<5	260 56	3 29	17
DATE	POTA SIU DIS SOLV (MG/ AS K	M, LINITY - LAB ED (MG/L L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
SEP 26	1.	7 146	120	23	0.70	33	379	500
		CDE-	3037390	81272701 -		NDD.	MAGN	
DATE	TIME	DUCT- (ST	AND- AT	MPER- (PI CURE INC ATER COM	LOR NI LAT- TO JM- (I	OTAL DIS MG/L SOI AS (MC	MAGNI S- DIS- LVED SOLVI G/L (MG/I CA) AS MO	M, SODIUM, - DIS- ED SOLVED L (MG/L
AUG 31	1335	643	7.52	22.0	<5	290 63	3 33	19
DATE	POTA SIU DIS SOLV (MG/ AS K	M, LINITY - LAB ED (MG/L L AS) CACO3		DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
31	2.	1 158	140	26	0.60	33	418	600
			3037540	81361301 -	W-125			
DATE	TIME	DUCT- (SI ANCE A	AND- AT	TER COE	OR NI AT- TO IM- (N	AS (MG		M, SODIUM, - DIS- ED SOLVED L (MG/L
AUG 30	1145	638	8.02	24.5	<5	290 63	33	18
DATE AUG 30	POTAL SIUI DIS SOLV (MG/) AS K	S- ALKA- M, LINITY - LAB ED (MG/L L AS) CACO3)	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
	۵.	130	140	23	0.60	33	415	570

NASSAU COUNTY--Continued

303819081455701 - N 98

				20201300	T422\0T	и эо				
DATE	TIM	SPE CIF CON DUC E ANC (US/	IC - PH T- (STA E AR	ND- ATU D WAT	RE INU ER COB	OR NES AT- TO: M- (MC ALT AS	TAL DIS-	VED SOLV	UM, SODI S- DIS- VED SOLVI /L (MG)	- ÉD /L
SEP 26	105	5	602 7	.56 2	3.0	<5	270 58	31	18	
20	103.	,	002 /	.50 2	3.0	-3	270 38	31	10	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
SEP 20	6	1.8	152	120	24	0.60	33	400	570	
				30400208	1381201 -	₩-53				
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
AUG		(1111)	(1222)	(00) 011,		(220 0)		,		,
30	0935	26.62	-6.40	684	7.59	24.0	<5	310	68	35
DATE AUG 30	SODIU DIS- SOLVE (MG/ AS N	M, SI DI D SOL L (MG A) AS		TY SULF B DIS 5/L SOL	- DIS VED SOL V/L (MG O4) AS	E, RI I- D VED SO: I/L (M CL) AS	UO- SILI DE, DIS IS- SOL LVED (MG G/L AS F) SIO	- AT 1 VED DEG /L DI SOL 2) (MG	DUÉ STR 80 TI . C DI S- SOL VED (UG /L) AS	UM, S- VED /L
				22.5002		2.2				
	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	
AUG 2	9	1205	(US/CM) 613	UNITS) 7.50	<5	CACO3)	AS CA)	AS MG)	AS NA)	
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
AUG 2:	9	1.8	157	120	27	0.60	35	397	480	

NASSAU COUNTY--Continued

304150081470301 - N 99

DATE		TIME	SPE CIF CON DUC ANC	IC I- IT- E	PH (STAND ARD UNITS)	WAT	RE ER	COLOR (PLAT- INUM- COBALT UNITS)	(MG	SAL F/L	CALC: DIS: SOL' (MG	IUM S - I VED SO /L (1	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
SEP 26		1150		637	7.5	6 2	3.0	<:	5	280	62		31	19
	DATE	S	OTAS- SIUM, DIS- OLVED MG/L S K)	LIN: LA (MC	AB G/L S	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	ED S	CLUO- RIDE, DIS- SOLVED MG/L AS F)	DI SO (M A	LVED G/L	SOLIDS RESIDU AT 180 DEG. (DIS- SOLVEI (MG/L		TRON- TIUM, DIS- DLVED JG/L S SR)
SEP 2	6		1.9	157		130	27		0.60	3	4	421	5	530

304640081583801 - WN 18

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
AUG 29	0905	668	7.51	23.0	<5	300	67	33	20

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 32 OKEECHOBEE COUNTY

Index number	Site number	Page number
1	272315081010901	232
2	272932080482201	233
3	273127080481401	234

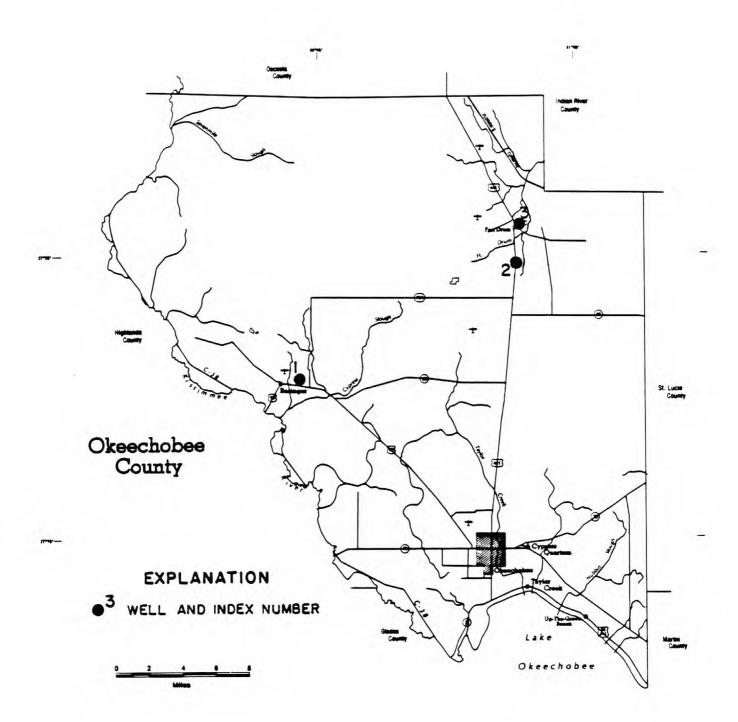


Figure 32.--Location of wells in Okeechobee County.

OKEECHOBEE COUNTY

WELL NUMBER. -- 272315081010901. OK-2 Well at Basinger, FL.

LOCATION.--Lat 27°23'15", long 81°01'09", in SE\nE\nW\sec.34, T.35 S., R.33 E., Hydrologic Unit 03090101, on south side of U.S. Highway 98, 15.3 mi west of Okeechobee, and 0.9 mi east of Basinger. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 21 ft, cased to 18.3 ft, gravel packed from 16 to 21 ft.

INSTRUMENTATION. -- Continuous strip-chart recorder.

DATUM. -- Land-surface datum is 47.44 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of wooden shelter base, 2.50 ft above land-surface datum.

COOPERATION. -- Since Oct. 1, 1968, records provided by South Florida Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--March 1949 to current year. Records prior to January 1974 are unpublished and are available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 48.20 ft NGVD, Oct. 9, 1953; lowest, 37.74 ft NGVD, July 17, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
42.94	45.25		43.02	42.92	42.73	43.17	42.32	41.13	41.39	43.28	444
42.60	44.42		42.97	43.34	43.20	42.86	41.91	42.09	41.77	43.53	42.66
44.63			43.37	43.12	43.08	42.65	41.75	41.87	42.51	43.28	42.33
44.03		43.47	43.07	43.11	43.91	42.43	41.86	41.51	43.06		42.15
43.62		43.33	43.24	42.94	43.59	42.21	41.60	41.42	43.49		41.94
43.34		43.11	43.14	42.80	43.51	42.03	41,35	41.40	43.30		41.72
43.60			43.18	43.06	43.29	42.65	41.86	41.56	42.45		
45.12			43.52	43.34	43.91	43.42	42.43	42.10	43.49		
42.60			42.95	42.80	42.70	42.02	41.35	41.13	41.34		
	42.94 42.60 44.63 44.03 43.62 43.34 43.60 45.12	42.94 45.25 42.60 44.42 44.63 44.03 43.62 43.34 43.60 45.12	42.94 45.25 42.60 44.42 44.63 43.47 43.62 43.33 43.34 43.11 43.60 45.12	42.94 45.25 43.02 42.60 44.42 42.97 44.63 43.37 44.03 43.47 43.07 43.62 43.33 43.24 43.34 43.11 43.14 43.60 43.18 45.12 43.52	42.94 45.25 43.02 42.92 42.60 44.42 42.97 43.34 44.63 43.37 43.12 44.03 43.47 43.07 43.11 43.62 43.33 43.24 42.94 43.34 43.11 43.14 42.80 43.60 43.18 43.06 45.12 43.52 43.34	42.94 45.25 43.02 42.92 42.73 42.60 44.42 42.97 43.34 43.20 44.63 43.37 43.12 43.08 44.03 43.47 43.07 43.11 43.91 43.62 43.33 43.24 42.94 43.59 43.34 43.11 43.14 42.80 43.51 43.60 43.18 43.06 43.29 45.12 43.52 43.34 43.91	42.94 45.25 43.02 42.92 42.73 43.17 42.60 44.42 42.97 43.34 43.20 42.86 44.63 43.37 43.12 43.08 42.65 44.03 43.47 43.07 43.11 43.91 42.43 43.62 43.33 43.24 42.94 43.59 42.21 43.34 43.11 43.14 42.80 43.51 42.03 43.60 43.18 43.06 43.29 42.65 45.12 43.52 43.34 43.91 43.42	42.94 45.25 43.02 42.92 42.73 43.17 42.32 42.60 44.42 42.97 43.34 43.20 42.86 41.91 44.63 43.37 43.12 43.08 42.65 41.75 44.03 43.47 43.07 43.11 43.91 42.43 41.86 43.62 43.33 43.24 42.94 43.59 42.21 41.60 43.34 43.11 43.14 42.80 43.51 42.03 41.35 43.60 43.18 43.06 43.29 42.65 41.86 45.12 43.52 43.34 43.91 43.42 42.43	42.94 45.25 43.02 42.92 42.73 43.17 42.32 41.13 42.60 44.42 42.97 43.34 43.20 42.86 41.91 42.09 44.63 43.37 43.12 43.08 42.65 41.75 41.87 44.03 43.47 43.07 43.11 43.91 42.43 41.86 41.51 43.62 43.33 43.24 42.94 43.59 42.21 41.60 41.42 43.34 43.11 43.14 42.80 43.51 42.03 41.35 41.40 43.60 43.52 43.34 43.91 43.42 42.43 42.10	42.94 45.25 43.02 42.92 42.73 43.17 42.32 41.13 41.39 42.60 44.42 42.97 43.34 43.20 42.86 41.91 42.09 41.77 44.63 43.37 43.12 43.08 42.65 41.75 41.87 42.51 44.03 43.47 43.07 43.11 43.91 42.43 41.86 41.51 43.06 43.62 43.33 43.24 42.94 43.59 42.21 41.60 41.42 43.49 43.34 43.11 43.14 42.80 43.51 42.03 41.35 41.40 43.30 43.60 43.18 43.06 43.29 42.65 41.86 41.56 42.45 45.12 43.52 43.34 43.91 43.42 42.43 42.10 43.49	42.94 45.25 43.02 42.92 42.73 43.17 42.32 41.13 41.39 43.28 42.60 44.42 42.97 43.34 43.20 42.86 41.91 42.09 41.77 43.53 44.63 43.37 43.12 43.08 42.65 41.75 41.87 42.51 43.28 44.03 43.47 43.07 43.11 43.91 42.43 41.86 41.51 43.06 43.62 43.33 43.24 42.94 43.59 42.21 41.60 41.42 43.49 43.34 43.11 43.14 42.80 43.51 42.03 41.35 41.40 43.30 43.60 43.18 43.06 43.29 42.65 41.86 41.56 42.45 45.12 43.52 43.34 43.91 43.42 42.43 42.43 41.60 41.56 42.45 43.60

OKEECHOBEE COUNTY

WELL NUMBER. -- 272932080482201. OK-3 Well near Fort Drum, FL.

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 22 ft, cased to 19 ft, gravel packed from 14 to 22 ft.

INSTRUMENTATION . -- Continuous strip-chart recorder.

DATUM.--Land-surface datum is 61.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.50 ft above land-surface datum.

COOPERATION. -- Since Oct. 1, 1968, records provided by South Florida Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- September 1948 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office. September 1948 to September 1983 (daily maximum), October 1983 to current year (daily mean).

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 61.93 ft NGVD, Oct. 15, 1956; lowest, 56.15 ft NGVD, July 27,28, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	59.24	60.99	59.56	59.13	59.26	59.51	59.19	58.95	57.59	57.27	58.45	58.52
10	59.00	60.29	59.66	59.39	59.79	59.90	58.88	58.52	58.34	57.41	58.88	59.05
15	60.43	60.17	59.41	59.40	59.49	59.46	58.74	58.32	57.93	57.31	58.68	58.54
20	59.83	61.02	59.28	59.23	59.45	60.34	58.51	58.00	57.65	57.70	58.72	58.23
25	59.46	60.31	59.22	59.92	59.52	59.70	58.34	57.91	57.51	58.96	58.98	57.93
EOM	59.23	59.86	59.07	59.45	59.23	59.43	58.22	57.65	57.46	58.53	58.76	57.70
MEAN	59.64	60.44	59.39	59.44	59.51	59.67	58.72	58.29	57.78	57.85	58.81	58.40
MAX	60.84	61.10	59.77	60.06	59.94	60.56	59.38	59.30	58.36	59.04	59.29	59.13
MIN	58.96	59.86	59.07	59.06	59.23	59.08	58.16	57.65	57.40	57.23	58.45	57.70

CAL YR 1987 MEAN 59.21 MAX 61.10 MIN 57.32 WTR YR 1988 MEAN 58.99 MAX 61.10 MIN 57.23

OKEECHOBEE COUNTY

WELL NUMBER. -- 273127080481401. OK-1 Well at Fort Drum, FL.

LOCATION.--27°31'27", long 80°48'14", in SE\SW\SW\sec.11, T.34 S., R.35 E., Hydrologic Unit 03080101, 200 ft south of dirt road, 0.2 mi east of U.S. Highway 441 at Fort Drum, and 13.4 mi south of State Road 60. Owner: Mr. Nine.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 8 in., depth 960 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 56.0 ft (corrected) above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.5 ft above land-surface datum. Prior to Oct. 1, 1986 miscellaneous readings published at datum 2.0 ft lower.

PERIOD OF RECORD.--May 1976, May 1977 to September 1985 (semiannually); October 1985 to current year (monthly).

Records (corrected) prior to October 1986 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 50.66 ft NGVD, Sept. 18, 1985; lowest measured, 38.91 ft NGVD, May 8, 1976.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
01 NOV	1645	44.05	29 MAY	1020	42.25
02	1230	44.48	18	1010	40.73
27	1120	45.58	JUN		
DEC			01	1315	40.78
31	1425	44.20	30	1141	40.73
JAN			AUG		
28	1340	43.84	01	1248	42.15
MAR			31	1054	42.97
02	1045	45.16	SEP		
31,	0940	45.37	17	0940	42.90

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

OKEECHOBEE COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME		STA	TION NAME	ELEVA- TION ABOVE NGVD (FEET)
271110080414501	05-12-88 09-16-88	0740 0732	711041	38S36E02	ENRICO DAIRY ON BERMAN ROAD	42.58 44.89
271340080504001	05-12-88 09-16-88	0820 0821	713050			46.84 44.76
271438080571901	05-12-88 09-21-88	0845 1000	714057			46.94 49.69
271514080511601	05-12-88 09-21-88	0930 1030	715051	37S35E17	OK 23 J ABNEY	44.91 45.34
271640080571501	05-25-88 09-30-88	0930 1513	716057	37S34E05	PELAEZ AND SONS	44.57 47.22
272010080550801	05-12-88 09-16-88	0945 0930	72005501	36S34E15	DIXIE RANCH	44.47 45.08
272158080470901	05-25-88 09-30-88	0915 1450	721047	36S35E01	JONES WELL S DARK HAMMOCK RD	43.68 44.42
272704081053501	05-25-88 09-30-88	1035 1606	727105			42.90 44.01
272726081003901	05-25-88 09-30-88	0952 1527	727100	35S33E02	BASS WELL N OF BASSINGER	44.13 45.11
272833080560301	05-25-88	1002	72805601	34S34E33	GRIFFITH RANCH	43.55
273007081114601	05-12-88 09-16-88	1030 1030	OKF-40 EX	KP WELL S65	С	44.94 46.82
273043080440001	05-11-88 09-15-88	1410 1410	730044	34S36E21	WILLIAMSON, S OF 15C	39.26 42.07
273114080533601	05-18-88 09-17-88	0930 0915	73105301	34S34E14	TIGER CATTLE CO	43.71 45.91
273217081012601	05-11-88 09-15-88	1520 1300	34S33E09	PEAVINE TR	AIL W	44.24 46.58
273502080535501	05-11-88 09-15-88	1315 1315	735053	33S34E23	FITE WELL 3 MI S OF OSCEOLA	36.37 38.97
273509080504201	05-18-88 09-17-88	1100 1000	73505001	33S35E20	соок	39.49 41.71
273726080471701	05-18-88 09-17-88	1340 1055	73704701	LATT MAXCY	J-1 NE OF FORT DRUM	35.56 39.54
273740080551201	05-25-88 09-30-88	1013 1550	737055	33S34E03	FORT DRUM NW	36.27 37.24

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 33 ORANGE COUNTY

Index	Site	Page
number	number	number
1	282202081384601	238
1	282202081384602	238
2	282210081352601	239
3	282341081040101	239
4	282434081283101	240
5	282510081054501	240
5	282510081054502	241
5	282510081054503	241
6	282528081340901	242
7	282531081054301	242
8	282531081095701	243
9	282532081075601	243
9	282533081082202	244
9	282533081082204	245
9	282533081082205	246
9	282533081082206	247
10	282556081302404	248
11	282623081153801	248
12	282738081341401	249
13	282739081054501	249
14	282835081305201	250
15	282847081013701	250
15	282847081013702	251
16	283249081053201	251
16	283249081053202	252
16	283249081053203	252
17	283253081283401	253
17	283253081283404	253
18	283333081233501	254
18	283333081233502	254

Orange County

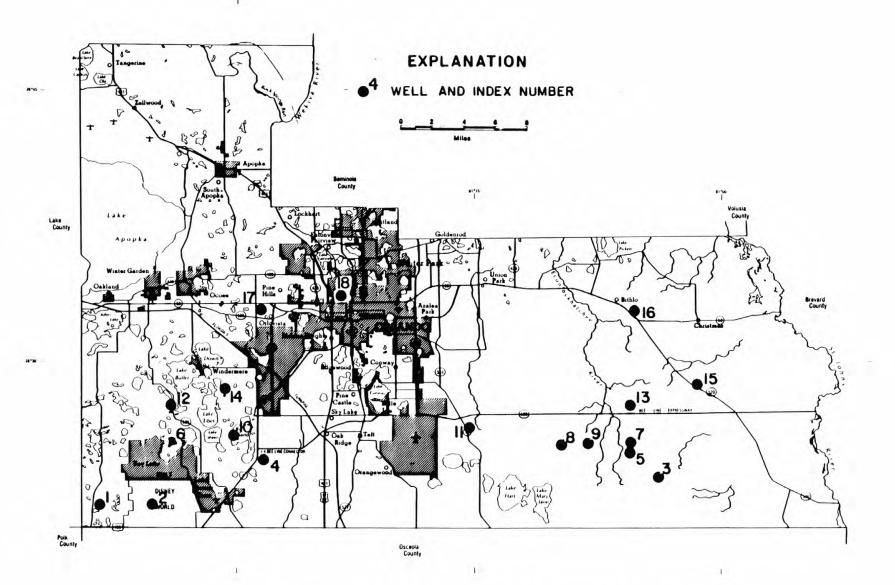


Figure 33.--Location of wells in Orange County.

ORANGE COUNTY

WELL NUMBER. -- 282202081384601. Lake Oliver Deep Well near Vineland, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 318 ft, cased to 103 ft.

INSTRUMENTATION . -- Digital recorder -- 30-minute interval.

DATUM.--Land-surface datum is 117.12 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. nipple, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--February 1959 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 112.73 ft NGVD, Sept. 13, 1960; lowest, 104.00 ft NGVD, May 26,28, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	108.55	109.60	109.71	109.28	109.36	109.16	109.59	109.07	108.61	108.39	109.33	109.55
10	108.33	109.66	109.68	109.30	109.33	109.47	109.38	108.39	108.85	108.31	109.31	110.07
15	108.61	109.48	109.63	109.29	109.33	109.91	108.97	108.76	108.70	108.61	109.29	109.81
20	108.47	109.73	109.57	109.20	109.28	110.05	109.30	108.08	108.32	108.89	109.27	109.62
25	108.41	109.61	109.49	109.45	109.20	109.93	109.18	108.94	108.42	109.10	109.02	109.68
EOM	108.28	109.84	109.35	109.46	109.13	109.72	109.07	108.74	108.50	109.34	109.37	109.47
MAX	108,66	109.85	109.78	109.46	109.44	110.09	109.71	109.19	108.87	109.35	109.42	110.07

CAL YR 1987 MAX 109.96 WTR YR 1988 MAX 110.09

WELL NUMBER. -- 282202081384602. Lake Oliver Shallow Well near Vineland, FL.

LOCATION.--Lat 28°22'02", long 81°38'46", in NE\hw\sek sec.30, T.24 S., R.27 E., Hydrologic Unit 03090101, on west side of State Highway 545, 1.4 mi north of U.S. Highway 192, and 15.0 mi west of Vineland. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Tertiary Quaternary Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 4 in., depth 38 ft, revised, well deepened June 1982.

INSTRUMENTATION. -- Digital recorder--60-minute interval.

DATUM.--Land-surface datum is 117.06 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. coupling, 2.48 ft, revised, above land-surface datum.

PERIOD OF RECORD. --April 1959 to December 1969; January 1974 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 115.54 ft NGVD, Sept. 10, 1960; lowest unknown, below 108.00 ft NGVD, during period May to July 1981, (casing collapsed).

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	110.84	112.09	111.97	111.67		111.64	112.15	111.67	111.35		112.15	112.40
10	110.75	111.89		111.65		111.97	112.04	111.57			111.96	112.88
15	110.99	111.72	111.88	111.62		112.57	111.97	111,47			111.96	112.62
20	110.89	111.95	111.83	111.58		112.59	111.88	111.36			111.90	112.48
25	110.76	111.86	111.78	111.95		112.38		111.65			111.81	112.43
EOM	110.70	112.06	111.71			112.24	111.73	111.43		112.01	112.09	112.33
MAX	110.99	112.30						111.77	177	***	112.16	112.93

ORANGE COUNTY

WELL NUMBER. -- 282210081352601. Disney Shallow Well at Tree Farm near Vineland, FL.

LOCATION.--Lat 28°22'10" long 81°35'26", in SW\xSW\xNW\x sec.26, T.24 S., R.27 E., Hydrologic Unit 03090101, at Walt Disney World tree farm, 2.5 mi south of State Highway 405, and 5.6 mi southwest of Vineland. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS .-- Drilled, observation, nonartesian well, diameter 6 in., depth 18 ft, cased to 18 ft.

INSTRUMENTATION . -- Digital recorder -- 30-minute interval.

DATUM.--Land-surface datum is 99.44 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977, land-surface datum was considered to be 99 ft, from topographic map. Measuring point: Top of casing, 2.90 ft above land-surface datum.

PERIOD OF RECORD. --March 1969 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 99.91 ft NGVD, Nov. 3, 1987; lowest, 93.35 ft NGVD, present datum, May 14, 1971.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	97.83	98.77	97.91	96.92	97.60	97.77	97.57	97.13	96.90	97.65	98.15	99.32
10	97.50	98.11	97.65	96.94	97.60	98.14	97.75	97.10	97.33	97.55	97.81	98.49
15	97.97	97.93	97.69	96.50	97.80	98.35	97.49		97.10	98.06	97.80	97.97
20	97.71	98.95	97.54	96.18	97.57	98.42	97.41		96.19	97.94	97.93	98.08
25	97.55	97.98	97.46	97.80	97.71	98.03	97.13		95.98	98.44	98.15	97.95
EOM	97.35	98.23	97.16	97.42	97.37	97.91	97.29	97.21	97.33	98.21	98.14	97.91
MAX	98,67	99.91	98.10	97.80	97.80	98.92	97.95		97.33	99.61	99.31	99.56

CAL YR 1987 MAX 99.91

WELL NUMBER. -- 282341081040101. Cocoa-A Well near Bithlo, FL.

LOCATION.--Lat 28°23'41", long 81°04'01", in SE\SW\sE\sec.13, T.24 S., R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 100 ft west of Cocoa Water Plant Road, 7 mi west of State Highway 520, and 11.3 mi south of Bithlo. Owner: City of Cocoa.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 10 in., depth 516 ft, cased to 301 ft.

INSTRUMENTATION .-- Digital recorder -- 60-minute interval.

DATUM. -- Land-surface datum is 75.06 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.71 ft above land-surface datum.

PERIOD OF RECORD. -- March 1960 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 43.59 ft NGVD, Sept. 30, Oct. 17, 1960; lowest, 30.55 ft NGVD, May 19,24, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	35.03	36.14	37.04	36.21	36.40	36.65	36.67	34.13	33.58	34.01	35.16	35.98
10	34.77	36.38	37.12	36.36	36.62	37.03	36.03	33.85	33.85	34.08	35.42	36.23
15	35.39	36.25	36.99	36.39	36.77	37.11	35.74	34.07	33.93	34.35	35.54	36.16
20	35.70	36.70	36.69	36.66	36.93	37.07	35.21	33.67	34.04	34.43	35.56	36.14
25	35.77	36.78	36.54	36.90	36.78	36.99	34.70	33.74	34.03	34.76	35.81	35.61
EOM	35.48	37.10	36.22	36.28	36.85	36.74	34.24	33.71	34.10	34.91	35.81	35.28
MAX	35.85	37.13	37.18	36.90	36.94	37.31	36.81	34.35	34.14	34.95	35.87	36.43

CAL YR 1987 MAX 37.18 WTR YR 1988 MAX 37.31

ORANGE COUNTY

WELL NUMBER. -- 282434081283101. Sea World Drive Well near Vineland, FL.

LOCATION.--Lat 28°24'34", long 81°28'31", in NE%SE%SE% sec.11, T.24 S., R.28 E., Hydrologic Unit 03090101, on west side of Interstate 4, 2.0 mi northeast of Vineland. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 4 in., depth 235 ft, cased to 158 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 105.02 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter floor, 3.26 ft above land-surface datum.

PERIOD OF RECORD. -- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 67.71 ft NGVD, Oct. 9,10, 1982; lowest, 56.93 ft NGVD, May 31, 1986.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR.	OCTOBER	1987	TO	SEPTEMBER	1988
				MAYTMI	TM T/AT	IIFC				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	61.80	63.71	65.23	63,77		63.26	62,46	60.36	59.63	59,90	61.33	63.24
10	61.07	64.34	64.87	64.03	64.56	64.06	61.58	59.73	60.32	60.00	61.83	64.96
15	62.56	64.49	64.44	63.99	64.34	64.88	61.90	60.03	60.76	60.74	62.36	64.75
20	62.30	64.84	64.51	63.92	64.45	65.28	61.57	59.46	60.11	61.02	62.84	63.68
25	61.82	65.00	64.14	64.66	64.27	64.67	60.75	59.95	60.04	61.67	62.63	62.32
EOM	61.41	65.75	63.62	64.83	64.03	63.52	59.81	60.60	60.03	61.88	63.08	61.38
MAX	62.57	65.75	65.75	64.83		65.29	63.05	60.89	60.88	61.88	63.08	65.02

WELL NUMBER. -- 282510081054501. Cocoa-1 Well near Bithlo, FL.

LOCATION.--Lat 28°25'10", long 81°05'45", in SE\nE\nE\sec.10, T.24 S., R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 300 ft southwest of intersection of private road (abandoned FEC Railroad grade owned by Magnolia Ranch) and Wewahootee Road, and 9.1 mi south of Bithlo. Owner: City of Cocoa.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, abandoned public supply, artesian well, diameter 20 in., depth 710 ft, cased to 316 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 70.33 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.30 ft above land-surface datum. Prior to Aug. 31, 1988 at same site at datum 0.30 ft lower.

PERIOD OF RECORD. -- 1966, 1967, 1969 (annually); January 1971 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.87 ft NGVD, Oct. 26, 1966; lowest measured, 30.36 ft NGVD, May 27, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1230	34.34	02	1130	32.53
NOV			12	0945	31.35
30	1250	37.01	31	1132	32.85
JAN			JUL		
04	0910	36.19	06	1254	33,22
28	0920	36.24	AUG		
MAR			03	1110	34.21
01	0915	37.00	SEP		
31	1230	36.67	02	0942	35.65

ORANGE COUNTY

WELL NUMBER. -- 282510081054502. Cocoa-M Well near Bithlo, FL.

LOCATION.--Lat 28°25'10", long 81°05'45", in SE\NE\nE\s sec.10, T.24 S., R. 32 E., Hydrologic Unit 03080101, in Cocoa well field, 300 ft southwest of intersection of private road (abandoned FEC Railroad grade owned by Magnolia Ranch) and Wewahootee Road, and 9.1 mi south of Bithlo. Owner: U.S. Geological Survey.

AQUIFER .-- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS .-- Drilled, observation, nonartesian well, diameter 6 in., depth 10 ft, cased to 10 ft.

INSTRUMENTATION . -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 70.81 ft, above National Geodetic Vertical Datum of 1929. Measuring point: Bolt hole in cap, 3.15 ft above land-surface datum.

PERIOD OF RECORD.--February 1969 to January 1977; February 1977 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 69.94 ft NGVD, Nov. 4, 1969; well observed dry August 1981, July 1982, August and October 1984.

ELEVATION. IN FEET NGVD. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1230	65.56	02	1135	65.77
NOV			31	1126	65.20
12	1340	67.48	JUL		
30	1250	68.02	06	1258	64.10
JAN			AUG		
04	0910	66.64	03	1100	64.57
28	0930	67.37	SEP		
MAR			02	0940	67.95
01	0915	66.68			
31	1230	67.32			

WELL NUMBER. -- 282510081054503. Cocoa 1-T Well near Bithlo, FL.

AQUIFER .-- Hawthorn sand and gravel of the intermediate aquifer system, Geologic Unit 122 HTRNS.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 12 in., depth 200 ft, cased to 85 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 71.19 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD.--September 1969 to March 1970; January 1971 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 65.54 ft NGVD, Oct. 1, 1982; lowest measured, 44.55 ft NGVD, June 7, 1971.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1230	48.56	02	1130	49.70
NOV			31	1128	47.87
12	1340	48.72	JUL		
30	1250	49.89	06	1256	47.55
JAN			AUG		
04	0910	49.62	03	1115	47.70
28	0925	50.01	SEP		
MAR			01	0950	60.13
01	0915	63.16			
31	1230	51.51			

ORANGE COUNTY

WELL NUMBER. -- 282528081340901. Bay Lake Deep Well near Windermere, FL.

LOCATION.--Lat 28°25'28", long 81°34'09", in SWkNEkSWk sec.1, T.24 S., R.27 E., Hydrologic Unit 03090101, on north shore of Bay Lake, 0.8 mi northeast of Walt Disney World Theme Park, and 5.3 mi southwest of Windermere. Owner: Gee & Jenson.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 8 in., depth 223 ft, cased to 104 ft.

INSTRUMENTATION. -- Digital recorder -- 15-minute interval.

DATUM.--Land-surface datum is 97.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 4.00 ft above land-surface datum.

PERIOD OF RECORD.--March 1966 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 96.91 ft NGVD, Oct. 31, 1966; lowest, 83.30 ft NGVD, Dec. 23, 1970.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	89.35	89.59	91.19	90.57	90.73	89.68	89.52	88.83	87.33	86.97	87.55	89.29
10	88.59	90.89	91.00	90.59	90.99	90.79	88.13	87.58	88.14	87.18	87.43	90.37
15	89.55	90.50	90.78	90.78	90.85	91.00	87.74	87.57	88.32	87.33	87.81	90.00
20	89.40	91.00	91.02	90.69	90.71	91.38	87.43	87.35	87.15	87.58	88.21	89.44
25	89.23	90.65	90.66	91.38	90.71	91.10	88.06	88.36	86.94	87.93	88.10	89.01
EOM	88.77	91.26	89.85	91.18	90.43	89.79	87.64	88.55	87.31	88.58	89.09	88.73
MAX	89.58	91.26	91.42	91.38	91.20	91.51	89.71	88.97	88.47	88.58	89.28	90.46
CAT VI	1087 N	MAY Q1 42										

WTR YR 1988 MAX 91.42

WELL NUMBER. -- 282531081054301. Cocoa-O Well near Bithlo. FL.

LOCATION.--Lat 28°25'31", long 81°05'43", in NW\sW\sW\s sec.2, T.24 S., R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 225 ft east of private road (abandoned FEC Railroad grade owned by Magnolia Ranch), 0.3 mi north of Wewahootee Road, 1.6 mi south of Beeline Expressway (State Highway 528), and 8.6 mi south of Bithlo. Owner: U.S. Geological Survey.

AQUIFER.--Hawthorn sand and gravel of the intermediate aquifer system, Geologic Unit 122 HTRNS.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 90 ft, cased to 70 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 68.60 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. casing, 3.00 ft above land-surface datum.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD.--February 1970 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 67.77 ft NGVD, Oct. 1, 1982; lowest measured, 14.87 ft NGVD, Sept. 3, 1987.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		MAY		
1300	15.80	02	1140	17.98
		31	1215	18.45
1350	16.70	JUL		
1435	17.20	06	1310	15.84
		AUG		
1335	17.92	03	1125	15.72
1015	48.94	SEP		
		02	0910	60.16
0940	63.46			
1300	18.61			
	1300 1350 1435 1335 1015	ATION ABOVE NGVD (FEET) 1300 15.80 1350 16.70 1435 17.20 1335 17.92 1015 48.94 0940 63.46	ATION ABOVE TIME NGVD (FEET) DATE MAY 1300 15.80 02 31 1350 16.70 JUL 1435 17.20 06 AUG 1335 17.92 03 1015 48.94 SEP 0940 63.46	ATION ABOVE TIME NGVD (FEET) DATE MAY 1300 15.80 02 1140 31 1215 1350 16.70 JUL 1435 17.20 06 1310 AUG 1335 17.92 03 1125 1015 48.94 SEP 0940 63.46

ORANGE COUNTY

WELL NUMBER. -- 282531081095701. Cocoa-D Well near Narcoossee, FL.

LOCATION.--Lat 28°25'31", long 81°09'57", in NE½SW½SE½ sec.1, T.24 S., R.31 E., Hydrologic Unit 03080101, in Cocoa well field, on south side of Wewahootee Road, 5.1 mi west of State Highway 15, 2.5 mi west of Magnolia Ranch headquarters, and 9.7 mi northeast of Narcoossee. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 300 ft, cased to 226 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 75.91 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.50 ft above land-surface datum.

PERIOD OF RECORD.--July 1961 to October 1965 (bimonthly); November 1965 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 45.04 ft NGVD, Dec. 12, 1963; lowest daily maximum water level, 30.07 ft NGVD, May 19, 1981.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				MAXTI	VI MUN	ALUES				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		35,90	37.60	35.32	34.63	35.37	33.39	32.57	31.47	32.13	32.89	34.77
10	34.54	35.64	37.17	35.91	35.74	35.96	32.66	32.81	32.69	32.00	34.80	35.48
15	35.10	36.04	37.00	34.92	35.47	37.29	33.73	32.48	31.72	33.92	34.29	35.56
20	35.16	35.66	36.70	35.04	36.46	37.07	31.91	31.85	32.56	32.67	33.53	35.38
25	34.44	35.97	37.30	35.49	35.45	37.29	31.31	33.17	31.85	34.27	35.23	35.10
EOM	35.11	37.21	36.47	34.84	34.53	34.30	31.35	31.59	32.66	34.86	35.54	34.77
MAX		37.35	38.16	36.66	37.07	37.29	34.42	33.92	34.25	35.53	36.01	36.75

WELL NUMBER. -- 282532081075601. Cocoa-B Well near Bithlo, FL.

LOCATION.--Lat 28°25'32", long 81°07'56", in SW\s\E\s\E\s\ sec.5, T.24 S., R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 6 ft south of Wewahootee Road, 7.1 mi east of State Highway 15, and 10.1 mi south of Bithlo. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 515 ft, cased to 235 ft.

INSTRUMENTATION . -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 62.15 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.70 ft above land-surface datum.

REMARKS. -- Water level affected by pumping of nearby wells.

PERIOD OF RECORD.--January 1965 (annually); October 1965 to July 1968; August 1968 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 42.37 ft NGVD, June 23, 1966; lowest measured, 21.42 ft NGVD, Aug. 5, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
06	1130	26.66	03	1240	25.25
NOV			31	1230	26.15
12	1135	28.84	JUL		
DEC			06	1325	27.18
01	1020	31.03	AUG		
JAN			03	1145	32.34
05	1215	28.53	SEP		
28	0950	34.03	01	1536	34.35
MAR					
01	1010	34.07			
30	1415	34.01			

ORANGE COUNTY

WELL NUMBER. -- 282533081082202. Cocoa-C (Zone 1) Well near Bithlo, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 1.25 in., depth 1,357 ft, cased to 1,351 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.71 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 1.25 in. coupling, 4.38 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 (annually); February 1966 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43.81 ft NGVD, Dec. 6, 1965; lowest measured, 28.73 ft NGVD, May 27, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	0950	32.06	02	0855	31.25
NOV	7.777	7777	31	1032	30.71
12	1025	33,22	JUL		
30	0940	34.05	06	1149	30.88
JAN			AUG		
04	0840	33.28	02	1121	31.94
28	0800	33.12	SEP		
FEB			01	1235	32.88
29	0745	33.69			
MAR					
30	0830	33.87			

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DI SOL (M	S- VED G/L NA)	
	JUN 06	3	1105	9000	8.00	24.0	<5	340	200	140	0	
		DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	D SO (U	RON- IUM, IS- LVED G/L SR)	
	JUN 06	S	5.1	113	1200	2400	0.30	8,3	6130		9200	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	TEMPER ATURE WATER (DEG C	SOLVE (MG/I	D.		DAT	E TI	CIR	ON- CT- CE AB	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 05 NOV	1200	9090	23.	0 2500			MAY 02 JUN	13	100 9	9220	23.5	2600
12 30 JAN	1230 1200	9180 9000				H	06 JUL 06			9120	24.0	2400
04 28	1050 1010	9090 9150		- 100			AUG 02			300	24.0	2500
29 MAR	1045	9190					01	15	550 9	080	23.0	2400
	1045 1040	9190 9150					SEP 01	15	550 §	9080		

ORANGE COUNTY

WELL NUMBER, -- 282533081082204. Cocoa-C (Zone 3) Well near Bithlo, FL.

LOCATION.--Lat 28°25'33", long 81°08'22", in SW\nE\sW\s sec.5, T.24 S., R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 10 ft north of Wewahootee Road, 6.6 mi east of State Highway 15, and 10.0 mi south of Bithlo. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 1.25 in., depth 1,224 ft, cased to 1,218 ft. INSTRUMENTAION.--Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.77 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 1.25 in. coupling 4.30 ft above land-surface datum..

PERIOD OF RECORD.--February 1966 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.27 ft NGVD, Feb. 2, 1970; lowest measured, 33.11 ft NGVD, July 4, 1986.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	0950	37.21	02	0858	36.42
NOV			31	1050	35.96
12	1028	38.34	JUL		
30	1410	39.26	06	1155	36.16
JAN			AUG		
04	0840	38.39	02	1130	37.14
28	0800	38.30	SEP		
FEB			01	1241	38.11
29	0745	38.85			
MAR					
30	0830	39.05			

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 06	1315	885	8.1	24.5	<5	110	17	45
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 06	2.4	200	140	80	0.20	21	583	9800

TIME	CIFIC CON- DUCT- ANCE LAB (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CIFIC CON- DUCT- ANCE LAB (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
				MAY				
1415	887	24.0	80	02 JUN	1020	873	24.0	80
1425	893		92	06	1315	858	24.5	80
1410	952		80	JUL				
				06	1705	883	24.0	76
1315	875	24.0	86	AUG				
1220	885	24.0	83	03	1210	885	24.0	76
				SEP				
1310	898	24.0	80	02	1100	865	24.0	77
1300	876	24.0	84					
	1415 1425 1410 1315 1220 1310	TIME CON- DUCT- ANCE LAB (US/CM) 1415 887 1425 893 1410 952 1315 875 1220 885 1310 898	TIME LAB WATER (US/CM) (DEG C) 1415 887 24.0 1425 893 1410 952 1315 875 24.0 1220 885 24.0 1310 898 24.0	CIFIC CON- CON- DUCT- ANCE ATURE SOLVED LAB WATER (MG/L (US/CM) (DEG C) AS CL) 1415 887 24.0 80 1425 893 92 1410 952 80 1315 875 24.0 86 1220 885 24.0 83 1310 898 24.0 80	CIFIC CON- CON- RIDE, DUCT- DUCT- ANCE ATURE SOLVED TIME LAB WATER (MG/L) 1415 887 24.0 80 02 1425 893 92 06 1410 952 80 JUL 1315 875 24.0 86 AUG 1220 885 24.0 83 03 SEP 1310 898 24.0 80 02	CIFIC CON- RIDE, DUCT- TEMPER- DIS- ANCE ATURE SOLVED LAB WATER (MG/L DATE TIME (US/CM) (DEG C) AS CL) 1415 887 24.0 80 02 1020 JUN 06 1315 1410 952 80 JUL 06 1705 1315 875 24.0 86 AUG 1220 885 24.0 83 03 1210 SEP 1310 898 24.0 80 02 1100	CIFIC CON- RIDE, CON- CON- CON- CON- CON- CON- ANCE ATURE SOLVED DUCT- ANCE LAB WATER (MG/L DATE TIME LAB (US/CM) 1415 887 24.0 80 02 1020 873 1425 893 92 06 1315 858 1410 952 80 JUL 06 1705 883 1315 875 24.0 86 AUG 1220 885 24.0 83 03 1210 885 1310 898 24.0 80 02 1100 865	CIFIC CON- RIDE, CON- RIDE, CON- DUCT- TEMPER- DIS- DUCT- TEMPER- ANCE ATURE SOLVED DATE TIME LAB WATER (MG/L DATE TIME LAB WATER (US/CM) (DEG C) AS CL) 1415 887 24.0 80 02 1020 873 24.0 MAY 1425 893 92 06 1315 858 24.5 1410 952 80 JUL 06 1705 883 24.0 1315 875 24.0 86 AUG 1220 885 24.0 83 03 1210 885 24.0 SEP 1310 898 24.0 80 02 1100 865 24.0

ORANGE COUNTY

WELL NUMBER. -- 282533081082205. Cocoa-C (Zone 4) Well near Bithlo, FL.

CDF-

LOCATION.--Lat 28°25'33", long 81°08'22", in SW\nE\s\SW\s sec.5, T.24 S., R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 10 ft north of Wewahootee Road, 6.6 mi east of State Highway 15, and 10.0 mi south of Bithlo. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 1.25 in., depth 1,050 ft, cased to 1,044 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.74 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 1.25 in. coupling, 4.29 ft above land-surface datum.

PERIOD OF RECORD.--February 1966 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.27 ft NGVD, Oct. 31, 1969; lowest measured, 33.09 ft NGVD, May 27, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

ATION ABOVE TIME NGVD (FEET)
0905 36.30
1052 35.81
1208 36.17
1135 37.05
1245 38.04

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
JUN									
06	1510	605	8.1	24.0	<5	77	7.1	19	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
JUN		000	20	20					
06	1.3	232	39	38	0.30	23	410	49000	

CDF-

DATE	TIME	CIFIC CON- DUCT- ANCE LAB (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CIFIC CON- DUCT- ANCE LAB (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT					MAY				
06 NOV	1100	615	2.5	40	03 JUN	1200	613	23.5	35
12 DEC	1620	615	***	42	06 JUL	1510	605	24.0	38
01 JAN	1000	616		38	06 AUG	1535	635	24.0	36
05	1145	613	23.5	39	03	1420	615	24.5	35
29	1310	612	23.5	39	SEP				
MAR					02	1315	600	24.0	35
01	1300	618	23.5	37					
31	1050	615	24.0	39					
01					02	1315	600	24.0	35

ORANGE COUNTY

WELL NUMBER. -- 282533081082206. Cocoa-C (Zone 5) Well near Bithlo, FL.

LOCATION.--Lat 28°25'33", long 81°08'22", in SW\nE\sW\sec.5, T.24 S.,R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 10 ft north of Wewahootee Road, 6.6 mi east of State Highway 15, and 10.0 mi south of Bithlo. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 8 in., depth 1,004 ft, cased to 248 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 1.25 in. sampling tube, 4.29 ft above land-surface datum.

REMARKS. -- Water level affected by pumping of nearby wells.

PERIOD OF RECORD.--February 1966 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.18 ft NGVD, Dec. 4, 1969; lowest measured, 26.83 ft NGVD, May 27, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	0950	31.02	02	0908	30.63
NOV			31	1100	29.34
12	1034	32.38	JUL		
30	0940	34.05	06	1615	32.67
JAN			AUG		
04	0840	32.98	02	1143	30.75
28	0800	32.72	SEP		
FEB			01	1248	33.07
29	0745	32.82			
MAR					
30	0830	32.69			

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		SPE- CIFIC CON- DUCT-	PH (STAND-	TEMPER- ATURE	COLOR (PLAT- INUM-	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED
DATE	TIME	ANCE (US/CM)	ARD UNITS)	WATER (DEG C)	COBALT UNITS)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)
JUN								
07	1415	965	8.20	24.0	10	110	14	55
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN								
07	2.6	242	87	94	0.30	21	572	3100

ORANGE COUNTY

WELL NUMBER. -- 282556081302404. Doctor Phillips Deep Well at Doctor Phillips, FL.

LOCATION.--Lat 28°25'56", long 81°30'24", in SW\nW\nW\sec.3, T.24 S., R.28 E., Hydrologic Unit 03090101, 800 ft west of the Apopka-Vineland Road, 1,100 ft south of Kilgore Road, and 0.8 mi south of Doctor Phillips. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 8 in., depth 230 ft, cased to 130 ft.

INSTRUMENTATION. - Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 127.47 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.90 ft above land-surface datum.

PERIOD OF RECORD.--February 1971 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 85.95 ft NGVD, Sept. 14, 1971; lowest, 71.20 ft NGVD, May 16, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	76.24	78.02		77.70	77.92	77.33	76.75	75.36	73.85	74.89	76.10	77.48
10	75.41	79.09		78.03	78.94	78.69	75.60	74.54	75.34	74.66	76.10	79.27
15	76.92	78.70		78.12	78.26	79.30	76.34	74.76	75.76	75.29	76.68	78.82
20	76.71	79.14	78.80	78.24	78.40	79.35	75.73	73.66	75.07	75.87	77.19	77.47
25	75.98	79.62	78.01	79.07	78.50	78.99	74.35	74.74	74.73	76.32	76.82	76.30
EOM	75.75		77.61	78.56	78.07	77.18	73.99	75.44	74.78	76.55	77.32	75.24
MAX	77.05			79.11	78.94	79.45	77.00	75.74	75.86	76.56	77.32	79.27

WELL NUMBER. -- 282623081153801. Cocoa-P Well near Taft, FL.

LOCATION.--Lat 28°26'23", long 81°15'38", in NW\N\SW\sec.31, T.23 S., R.31 E., Hydrologic Unit 03080101, on east side of State Highway 15, 0.7 mi south of State Highway 528, and 7.2 mi east of Taft. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 439 ft, cased to 245 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 91.48 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977, land-surface datum was considered to be 91 ft, from topographic map. Measuring point: Top of casing, 3.80 ft above land-surface datum.

PERIOD OF RECORD. --April 1961 to January 1971 (bimonthly); March 1971 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 54.02 ft NGVD, present datum, Apr. 14, 1961; lowest daily maximum water level, 39.65 ft NGVD, May 19, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	45.21	48.07	47.97	46.42	47.00	46.24		44.42	42.90	44.00	45.84	47.78
10	44.59	47.81	47.55	46.59	47.27	47.64	45.29	43.46	44.09	44.22	45.89	49.87
15	46.23	47.32	47.28	46.67	47.15	48.19	45.70	44.57	44.36	44.50	46.37	48.70
20	45.89	48.55	47.08	46.55	47.24	48.41	45.00	43.83	43.97	44.64	47.03	47.43
25	45.36	48.04	46.74	47.45	46.97	47.83	44.19	43.64	43.84	45.78	46.58	46.24
EOM	45.00	48.82	46.48	47.48	46.59		43.68	43.87	43.74	45.57	47.95	46.07
MAX	46.24	48.88	48.63	47.69	47.38			44.62	44.52	45.84	48.01	49.87

ORANGE COUNTY

WELL NUMBER. -- 282738081341401. Lake Sawyer Well near Windermere, FL.

LOCATION.--Lat 28°27'38", long 81°34'14", in SWkNEkNWk sec.25, T.23 S., R.27 E., Hydrologic Unit 03090101, on Overstreet Road, 0.6 mi west of State Highway 535, and 3.2 mi southwest of Windermere. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 4 in., depth 178 ft, cased to 103 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 116.04 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter floor, 2.88 ft above land-surface datum.

PERIOD OF RECORD. -- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 86.27 ft NGVD, Mar. 17, 1983; lowest, 72.39 ft NGVD, Oct. 22, 1981.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				MAXTI	VIIM V	ALUES				

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
82.99	84.22	85.18	84.02	84.08	83.41	83.30	82.47	81.39	82.11	83.21	83.92
81.76	84.86	84.65	84.15	84.70	84.74	81.36	79.97	82.57	81.76	82.57	85.17
83.19	84.45	84.43	84.41	84.60	85.22	82.37	81.94	82.68	81.98	83.11	84.72
82.99	85.11	84.52	84.27	84.64	85.35	81.28	78.13	82.17	82.55	83.60	83.60
82.65	85.14	84.24	84.92	84.32	84.70	81.31	82.01	81.08	83.10	82.31	83.06
81.49	85.76	83.65	84.53	84.20	82.98	80.82	82.58	81.76	83.24	83.70	
83.36	85.76	85.64	84.92	84.77	85.41	83.48	82.87	82.94	83.24	83.71	
	82.99 81.76 83.19 82.99 82.65 81.49	82.99 84.22 81.76 84.86 83.19 84.45 82.99 85.11 82.65 85.14 81.49 85.76	82.99 84.22 85.18 81.76 84.86 84.65 83.19 84.45 84.43 82.99 85.11 84.52 82.65 85.14 84.24 81.49 85.76 83.65	82.99 84.22 85.18 84.02 81.76 84.86 84.65 84.15 83.19 84.45 84.43 84.41 82.99 85.11 84.52 84.27 82.65 85.14 84.24 84.92 81.49 85.76 83.65 84.53	82.99 84.22 85.18 84.02 84.08 81.76 84.86 84.65 84.15 84.70 83.19 84.45 84.43 84.41 84.60 82.99 85.11 84.52 84.27 84.64 82.65 85.14 84.24 84.92 84.32 81.49 85.76 83.65 84.53 84.20	82.99 84.22 85.18 84.02 84.08 83.41 81.76 84.86 84.65 84.15 84.70 84.74 83.19 84.45 84.43 84.41 84.60 85.22 82.99 85.11 84.52 84.27 84.64 85.35 82.65 85.14 84.24 84.92 84.32 84.70 81.49 85.76 83.65 84.53 84.20 82.98	82.99 84.22 85.18 84.02 84.08 83.41 83.30 81.76 84.86 84.65 84.15 84.70 84.74 81.36 83.19 84.45 84.43 84.41 84.60 85.22 82.37 82.99 85.11 84.52 84.27 84.64 85.35 81.28 82.65 85.14 84.24 84.92 84.32 84.70 81.31 81.49 85.76 83.65 84.53 84.20 82.98 80.82	82.99 84.22 85.18 84.02 84.08 83.41 83.30 82.47 81.76 84.86 84.65 84.15 84.70 84.74 81.36 79.97 83.19 84.45 84.43 84.41 84.60 85.22 82.37 81.94 82.99 85.11 84.52 84.27 84.64 85.35 81.28 78.13 82.65 85.14 84.24 84.92 84.32 84.70 81.31 82.01 81.49 85.76 83.65 84.53 84.20 82.98 80.82 82.58	82.99 84.22 85.18 84.02 84.08 83.41 83.30 82.47 81.39 81.76 84.86 84.65 84.15 84.70 84.74 81.36 79.97 82.57 83.19 84.45 84.43 84.41 84.60 85.22 82.37 81.94 82.68 82.99 85.11 84.52 84.27 84.64 85.35 81.28 78.13 82.17 82.65 85.14 84.24 84.92 84.32 84.70 81.31 82.01 81.08 81.49 85.76 83.65 84.53 84.20 82.98 80.82 82.58 81.76	82.99 84.22 85.18 84.02 84.08 83.41 83.30 82.47 81.39 82.11 81.76 84.86 84.65 84.15 84.70 84.74 81.36 79.97 82.57 81.76 83.19 84.45 84.43 84.41 84.60 85.22 82.37 81.94 82.68 81.98 82.99 85.11 84.52 84.27 84.64 85.35 81.28 78.13 82.17 82.55 82.65 85.14 84.24 84.92 84.32 84.70 81.31 82.01 81.08 83.10 81.49 85.76 83.65 84.53 84.20 82.98 80.82 82.58 81.76 83.24	82.99 84.22 85.18 84.02 84.08 83.41 83.30 82.47 81.39 82.11 83.21 81.76 84.86 84.65 84.15 84.70 84.74 81.36 79.97 82.57 81.76 82.57 83.19 84.45 84.43 84.41 84.60 85.22 82.37 81.94 82.68 81.98 83.11 82.99 85.11 84.52 84.27 84.64 85.35 81.28 78.13 82.17 82.55 83.60 82.65 85.14 84.24 84.92 84.32 84.70 81.31 82.01 81.08 83.10 82.31 81.49 85.76 83.65 84.53 84.20 82.98 80.82 82.58 81.76 83.24 83.70

WELL NUMBER. -- 282739081054501. Cocoa-F Well near Bithlo, FL.

LOCATION.--Lat 28°27'39", long 81°05'45", in SE\SE\NE\sec.27, T.23 S., R.32 E., Hydrologic Unit 03080101, in Cocoa well field, 150 ft west of Dallas Boulevard, 0.7 mi north of Beeline Expressway (State Highway 528), and 6.3 mi south of Bithlo. Owner: Magnolia Ranch.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, diameter 6 in., depth 375 ft, cased to 200 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 67.29 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling, 0.80 ft above land-surface datum.

PERIOD OF RECORD.--1960-70 (annually); October 1970 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.92 ft NGVD, June 24, 1960; lowest measured, 30.15 ft NGVD, May 27, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	1150	34.36	02	1055	33.71
NOV			23	1310	33.03
10	1440	35.69	31	1350	33.23
30	1130	36.45	JUL		
JAN			05	1210	33.31
05	0930	35.52	SEP		
29	0935	35.50	01	1145	35.34
FEB			23	1200	35.35
29		36.11			
MAR					
30	1025	36.29			

ORANGE COUNTY

WELL NUMBER. -- 282835081305201. Palm Lake Drive Well near Windermere, FL.

LOCATION.--Lat 28°28'39", long 81°30'26", in SE\nW\n\w\n\ sec.22, T.23 S., R.28 E., Hydrologic Unit 03090101, 2.0 mi southwest of Windermere, and 2.3 mi north of Doctor Phillips. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 4 in., depth 235 ft, cased to 161 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 157.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 2.56 ft above land-surface datum.

PERIOD OF RECORD .-- October 1980 to June 1981 (bimonthly); July 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 73.58 ft NGVD, Apr. 1, 1987; lowest, 59.99 ft NGVD, July 8, 1981.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				MAYTMI	TM 1741	IIFC				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	66.23	71.44	70.59	68.48	68.60	68.77	66.22	64.98	62.80	64.50	67.36	68.78
10	65.07	71.19	70.03	69.36	69.77	70.27	65.81	63.43	66.17	64.95	67.43	72.46
15	68.75	69.62	69.68	69.36	69.56	71.41	66.58	65.45	66.82	66.47	68.29	69.19
20	67.00	71.68	68.99	69.08	69.52	71.77	66.08	62.54	64.29	66.48	68.26	66.82
25	66.29	71.26	69.01	70.84	69.09	69.51	63.88	66.06	64.42	68.19	67.51	65.05
EOM	66.41	72.28	68.54	69.43	68.21	66.99	64.38	64.80	64.23	67.34	68.20	64.42
MAX	68.75	72.28	71.70	70.89	70.41	71.77	67.24	66.90	66.82	68.19	69.23	72.48

WTR YR 1988 MAX 72.48

WELL NUMBER. -- 282847081013701. Cocoa-H Well near Bithlo, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 495 ft, cased to 252 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 60.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--August 1968 to June 1977; July 1977 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 39.01 ft NGVD, Feb. 25, 1970; lowest measured, 29.48 ft NGVD, May 13, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

A	TIME	ELEV- ATION ABOVE NGVD		TIME	ELEV- ATION ABOVE NGVD
DATE	111111	(FEET)	DATE	TIME	(FEET)
OCT			MAY		
05	1135	33.76	02	1041	33.04
NOV			11	1200	32.75
12	1450	34.90	31	1415	32.62
30	1105	35.78	JUL		
JAN			05	1252	32.73
05	0850	34.82	AUG		
29	0820	34.77	02	1020	33.82
FEB			SEP		
29	0915	35.42	01	1120	34.73
MAR			22	1640	34.92
30	1010	35.57			

ORANGE COUNTY

WELL NUMBER. -- 282847081013702. Cocoa-K Well near Bithlo, FL.

LOCATION.--Lat 28°28'47", long 81°01'37", in SWkNWkNWk sec.21, T.23 S., R.33 E., Hydrologic Unit 03080101, on west side of State Highway 520, 5.4 mi south of intersection with State Highway 50, and 7.3 mi southeast of Bithlo. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 8 ft, cased to 8 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 60.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD. -- August 1968 to February 1977; March 1977 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 59.81 ft NGVD, Oct. 3,4, 1969; lowest, 54.82 ft NGVD, May 14, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	1135	58.00	02	1040	57.45
NOV			11	1225	56.73
12	1455	58.73	31	1416	56.94
30	1105	59.22	JUL		
JAN			05	1250	56.59
05	0850	58.10	AUG		
29	0820	58.85	02	1027	57.38
FEB			SEP		
29	0915	58.28	01	1123	58.67
MAR			22	1640	58.37
30	1010	58.52			

WELL NUMBER. -- 283249081053201. Bithlo-1 Well at Bithlo, FL.

LOCATION.--Lat 28°32'49", long 81°05'32", in NE\NW\SW\ sec.26, T.22 S., R.32 E., Hydrologic Unit 03080101, on north side of State Highway 50, 0.8 mi west of intersection of State Highway 520, and 1.0 mi east of Bithlo. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 6 in., depth 492 ft, cased to 151 ft.

INSTRUMENTATION. - Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 63.58 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD. --October 1960 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 42.98 ft NGVD, Oct. 31, 1960; lowest, 30.48 ft NGVD, May 23, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	34.92	35.95	36.78	35.96	36.18	36.41	36.45	34.18	33.59	33.85	34.98	36.01
10	34.71	36.15	36.85	36.08	36.34		35.92	33.96	33.83	34.00	35.15	36.41
15	35.20	36.06	36.73	36.17	36.57		35.61	33.98	33.97	34.12	35.24	36.37
20	35.48	36.49	36.46	36.39	36.65		35.23	33.80	33.93	34.25	35.56	36.18
25	35.42	36.58	36.28	36.65	36.45		34.71	33.70	33.92	34.62	35.74	35.80
EOM	35.17	37.01	35.99	36.11	36.53	36.66	34.12	33.83	33.97	34.91	35.90	35.36
MAX		37.01	37.01	36.65	36.65		36.60	34.21	34.07	34.91	35.94	36.47

ORANGE COUNTY

WELL NUMBER .-- 283249081053202. Bithlo-2 Well at Bithlo, FL.

LOCATION.--Lat 28°32'49", long 81°05'32", in NE\NW\SW\ sec.26, T.22 S., R.32 E., Hydrologic Unit 03080101, on north side of State Highway 50, 0.8 mi west of intersection with State Highway 520, and 1.0 mi east of Bithlo. Owner: U.S. Geological Survey.

AOUIFER .-- Hawthorn limestone of the intermediate aquifer system, Geologic Unit 122 HTRNN.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 75 ft, cased to 65 ft.

INSTRUMENTATION . -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.49 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--October 1960 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.60 ft NGVD, Jan. 26, 1971; lowest measured, 47.44 ft NGVD, June 23, 1987.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	1115	49.51	02	1020	49.26
NOV			11	0830	48.78
10	1510	50.68	31	1430	48.45
30	1020	51.22	JUL		
JAN			05	1234	48.23
05	0820	50.79	AUG		
29	0745	50.58	01	1711	49.18
FEB			SEP		
29	0845	50.04	01	1056	50.06
MAR			22	1240	50.12
30	0950	50.71			

WELL NUMBER. -- 283249081053203. Bithlo-3 Well at Bithlo, FL.

LOCATION.--Lat 28°32'49", long 81°05'32", in NE\N\SW\sec.26, T.22 S., R.32 E., Hydrologic Unit 03080101, on north side of State Highway 50, 0.8 mi west of intersection with State Highway 520, and 1.0 mi east of Bithlo. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS .-- Drilled, observation, nonartesian well, diameter 6 in., depth 15 ft, cased to 12 ft.

INSTRUMENTATION . -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.14 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--September 1960 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 64.21 ft NGVD, Aug. 28, 1964; lowest measured, 59.09 ft NGVD, May 8, 1975.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		MAY		
1115	62.16	02	1020	61.22
		11	0835	60.28
1510	63.19	31	1427	60.71
1047	62.87	JUL		
		05	1236	60.23
0820	61.27	AUG		
0745	62.20	01	1717	61.64
		SEP		
0845	61.16	01	1058	62.75
		22	1245	61.82
0950	61.70			
	1115 1510 1047 0820 0745	ATION ABOVE NGVD (FEET) 1115 62.16 1510 63.19 1047 62.87 0820 61.27 0745 62.20 0845 61.16	ATION ABOVE TIME NGVD (FEET) DATE MAY 1115 62.16 02 11 1510 63.19 31 1047 62.87 JUL 0820 61.27 AUG 0745 62.20 01 SEP 0845 61.16 01	ATION ABOVE TIME NGVD (FEET) DATE MAY 1115 62.16 02 1020 11 0835 1510 63.19 31 1427 1047 62.87 JUL 0820 61.27 AUG 0745 62.20 01 1717 SEP 0845 61.16 01 1058 22 1245

ORANGE COUNTY

WELL NUMBER .-- 283253081283401. OR-47 Well at Orlo Vista, FL.

LOCATION.--Lat 28°32′53", long 81°28′34", in SE\NE\NE\sec.26, T.22 S., R.28 E., Hydrologic Unit 03080101, on west side of Hiawassee Road, 0.6 mi north of Old Winter Garden Road, and 0.15 mi south of State Highway 50 in Orlo Vista. Owner: Orange County.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 350 ft, cased to 328 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 81.71 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.13 ft above land-surface datum.

PERIOD OF RECORD.--July 1930 to May 1933; August 1943 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 80.78 ft NGVD, Mar. 20, 1960; lowest, 49.80 ft NGVD, June 19, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	58.38	60.40	60.61	59.53	59.71	59.19	59.35	58.19	56.78	57.50	58.53	60.69
10	57.85	60.26	60.36	59.67	59.94	60.06	58.95	57.59	57.64	57.57	58.67	62.19
15	58.99	59.88	60.19	59.60	59.83	60.65	59.09	58.32	57.77	57.77	59.48	61.37
20	58.58	61.02	60.07	59.40	59.78	60.84	58.79	57.64	57.30	58.00	59.71	60.77
25	58.18	60.62	59.87	60.27	59.55	60.45	58.21	57.81	57.17	58.44	59.45	
EOM	57.86	61.09	59.63	60.10	59.32	59.80	58.00	57.62	57.48	58.37	60.17	
MAX	58.99	61.18	61.00	60.35	60.03	60.84	59.73	58.48	57.77	58.50	60.26	

WELL NUMBER. -- 283253081283404. OR-47B replacement well at Orlo Vista, FL.

LOCATION.--28°32′53", 81°28′34", in SE\NE\NE\x sec.26, T.22 S., R.28 E., Hydrologic Unit 03080101, on west side of Hiawassee Road, 0.6 mi north of Old Winter Garden Road, and 0.15 mi south of State Highway 50 in Orlo Vista. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS. -- Drilled, observation, nonartesian well, diameter 1.25 in., depth 35 ft, cased to 33 ft.

INSTRUMENTATION . -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 81.77 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.94 ft above land-surface datum.

REMARKS. -- Record is equivalent to that for OR47B (283253081283402), available September 1948 to September 1981.

PERIOD OF RECORD. -- February 1982 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 63.46 ft NGVD, Aug. 28, 1984; lowest measured, observed dry May 9, 1985; July 30, 1986.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
01	0709	60.41	29	1015	60.76
29	0925	58.74	JUN		55.75
NOV			01	0920	60.09
30	1010	62.02	29	0946	59.54
DEC			JUL		50.51
30	0835	61.42	28	0947	59.90
JAN			AUG		50.50
29	0920	61.75	30	0918	61.84
MAR			2.132		-2.0
02	1025	61.07			
31	1030	61.90			

ORANGE COUNTY

WELL NUMBER. -- 283333081233501. Lake Adair 9 Deep Well at Orlando, FL.

LOCATION.--Lat 28°33'33", long 81°23'35", in NWkNWkSWk sec.23, T.22 S., R.29 E., Hydrologic Unit 03080101, 25 ft northeast of intersection of Westmoreland Drive and Lake Adair Boulevard in Orlando. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 20 in., depth 1,281 ft, cased to 601 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 80.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Recorder shelf, 4.05 ft above land-surface datum.

PERIOD OF RECORD.--January 1961 (annually); November 1962 to August 1973; September 1973 to September 1983 (bimonthly); October 1983 to January 1984 (monthly); January 1984 to June 1988; July 1988 to September 1988 (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 60.23 ft NGVD, Aug. 9, 1966; lowest measured, 42.70 ft NGVD, May 11, 1981.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				MAXIN	NUM V	ALUES				

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
48.13	52.48	50.96	49.29	49.53	49.33	48.53	47.07	45.48			522
47.23	51.35	50.42	49.68	50.08	50.96	47.74	45.90	47.04		242	
49.54	50.23	50.22	49.53	49.83	51.41	48.07	47.75	47.43			
48.60	52.88	49.98	49.22	49.84	51.89	47.65	46.36	46.51			
47.78	51.13	49.56	51.81	49.45	50.35	46.65	46.74	46.26			
47.57	52.04	49.32	50.35	49.04	49.11	47.32	46.47				
50.05	52.88	51.77	51.81	50.10	52.27	48.95	47.79				
	48.13 47.23 49.54 48.60 47.78 47.57	48.13 52.48 47.23 51.35 49.54 50.23 48.60 52.88 47.78 51.13 47.57 52.04	48.13 52.48 50.96 47.23 51.35 50.42 49.54 50.23 50.22 48.60 52.88 49.98 47.78 51.13 49.56 47.57 52.04 49.32	48.13 52.48 50.96 49.29 47.23 51.35 50.42 49.68 49.54 50.23 50.22 49.53 48.60 52.88 49.98 49.22 47.78 51.13 49.56 51.81 47.57 52.04 49.32 50.35	48.13 52.48 50.96 49.29 49.53 47.23 51.35 50.42 49.68 50.08 49.54 50.23 50.22 49.53 49.83 48.60 52.88 49.98 49.22 49.84 47.78 51.13 49.56 51.81 49.45 47.57 52.04 49.32 50.35 49.04	48.13 52.48 50.96 49.29 49.53 49.33 47.23 51.35 50.42 49.68 50.08 50.96 49.54 50.23 50.22 49.53 49.83 51.41 48.60 52.88 49.98 49.22 49.84 51.89 47.78 51.13 49.56 51.81 49.45 50.35 47.57 52.04 49.32 50.35 49.04 49.11	48.13 52.48 50.96 49.29 49.53 49.33 48.53 47.23 51.35 50.42 49.68 50.08 50.96 47.74 49.54 50.23 50.22 49.53 49.83 51.41 48.07 48.60 52.88 49.98 49.22 49.84 51.89 47.65 47.78 51.13 49.56 51.81 49.45 50.35 46.65 47.57 52.04 49.32 50.35 49.04 49.11 47.32	48.13 52.48 50.96 49.29 49.53 49.33 48.53 47.07 47.23 51.35 50.42 49.68 50.08 50.96 47.74 45.90 49.54 50.23 50.22 49.53 49.83 51.41 48.07 47.75 48.60 52.88 49.98 49.22 49.84 51.89 47.65 46.36 47.78 51.13 49.56 51.81 49.45 50.35 46.65 46.74 47.57 52.04 49.32 50.35 49.04 49.11 47.32 46.47	48.13 52.48 50.96 49.29 49.53 49.33 48.53 47.07 45.48 47.23 51.35 50.42 49.68 50.08 50.96 47.74 45.90 47.04 49.54 50.23 50.22 49.53 49.83 51.41 48.07 47.75 47.43 48.60 52.88 49.98 49.22 49.84 51.89 47.65 46.36 46.51 47.78 51.13 49.56 51.81 49.45 50.35 46.65 46.74 46.26 47.57 52.04 49.32 50.35 49.04 49.11 47.32 46.47	48.13 52.48 50.96 49.29 49.53 49.33 48.53 47.07 45.48 47.23 51.35 50.42 49.68 50.08 50.96 47.74 45.90 47.04 49.54 50.23 50.22 49.53 49.83 51.41 48.07 47.75 47.43 48.60 52.88 49.98 49.22 49.84 51.89 47.65 46.36 46.51 47.78 51.13 49.56 51.81 49.45 50.35 46.65 46.74 46.26 47.57 52.04 49.32 50.35 49.04 49.11 47.32 46.47	48.13 52.48 50.96 49.29 49.53 49.33 48.53 47.07 45.48 47.23 51.35 50.42 49.68 50.08 50.96 47.74 45.90 47.04 49.54 50.23 50.22 49.53 49.83 51.41 48.07 47.75 47.43 48.60 52.88 49.98 49.22 49.84 51.89 47.65 46.36 46.51 47.78 51.13 49.56 51.81 49.45 50.35 46.65 46.74 46.26 47.57 52.04 49.32 50.35 49.04 49.11 47.32 46.47

WELL NUMBER. -- 283333081233502. Lake Adair 10 Shallow Well at Orlando, FL.

LOCATION.--Lat 28°33'33", long 81°23'35", in NW\s\N\s\S\\s\sec.23, T.22 S., R.29 E., Hydrologic Unit 03080101, 25 ft northeast of intersection of Westmoreland Drive and Lake Adair Boulevard in Orlando. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, artesian, observation well, diameter 4 in., depth 400 ft, cased to 105 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 80.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Recorder shelf, 3.63 ft above land-surface datum.

PERIOD OF RECORD.--November 1962 to November 1972; May 1973 to September 1983 (bimonthly); October 1983 to January 1984 (monthly); January 1984 to June 1988; July 1988 to September 1988 (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 68.92 ft NGVD, June 28, 1974; lowest measured, 42.94 ft NGVD, May 11, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	47.38	55.14	51.41	49.66	49.91	50.58	48.86	47.32	46.24			
10	47.54	51.74	50.82	50.15	50.41	52.34	48.43	46.06	47.41			
15	50.03	48.12	50.97	49.77	50.63	52.48	48.28	48.16	47.80			
20	48.89	56.22	50.32	49.47	50.18	52.94	47.91	46.53	46.74			
25	48.11	50.34	49.89	54.01	49.73	50.83	46.90	47.11	46.46			
EOM	47.81		49.69	50.76	49.29	49.41	48.98	46.69				
MAX	51.30		52.46	54.01	50.63	54.07	49.28	48.98				

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

ORANGE COUNTY

	DATE OF			ELEVA- TION ABOVE
STATION NUMBER	SAMPLE	TIME	STATION NAME	NGVD (FEET)
282051081183401	05-10-88 09-21-88	1450 1510	82011801 24S30E34 BOGGY CRK	46.39 49.43
282141081241701	05-12-88 09-21-88	1045 1450	82112401 24S29E34 TELY	50.09 54.79
282145081365601	05-13-88 09-19-88	0845 1535	82113601 24S27E28 HARTZOG RD 4-IN BRITT GRO	102.66 103.86
282241081112801	05-12-88 09-23-88	0805 1105	82211103 24S31E23 MOSS PARK	41.13 43.59
282241081112802	05-12-88 09-23-88	0805 1110	82211104 24S31E23 MOSS PARK SHALLOW	60.24 60.95
282331081370801	05-13-88 09-19-88	0900 1550	82313702 27416 E USGS WELL HARTZOG RD	94.68 96.50
282348080564701	05-11-88 09-22-88	1255 1620	82305601 24S34E18	33.42 35.53
282354081313001	05-13-88 09-19-88	1040 1454	82313104 24S28E17 RCID OBSER WELL NO 1	82.42 84.81
282434081260301	05-12-88 09-21-88	1120 1413	ORF-41	51.06 54.90
282534081220601	05-10-88	1420	82512203 24S29E01	45.38
282543081385801	05-13-88 09-19-88	0920 1603	82513801	100.11 100.20
282545081240901	05-12-88 09-21-88	1155 1345	82512401 24S29E03	46.83 48.21
282611081320501	05-13-88 09-19-88	1013 1420	82613201 28332 E USGS WELL SUNSET DRIVE	77.53 80.19
282709081283001	05-13-88 09-21-88	1235 1317	82712804 23S28E25 USGS WELL NR I-4 & 528A	57.66 60.82
282749081315801	05-16-88 09-19-88	1500 1400	82713101 23S28E29	76.50 79.52
282838080572401	05-11-88 09-22-88	1030 1425	82805701 23S34E18	33.50 33.25
282848080544501	05-11-88 09-22-88	1110 1309	82805402 23S34E15	29.20 32.25
282900081112901	05-11-88	1450	82911101 23S31E14	37.53
282911081243601	05-17-88 09-23-88	1045 1435	100 FT S OF AMERICAN BLVD, 100 FT W OF TEXAS AVE	46.17 49.00
282923081282801	05-17-88 09-21-88	0920 1120	82912802	60.21 62.68
282936081340201	05-16-88 09-19-88	1422 1309	82913405 23S27E12 ROSS WELL ON LK BUTLER	81.27 82.67
282945081255001	05-13-88 09-19-88	1300 1700	82912501 23S29E08 ORANGE 39	48.52 52.21
283011081360002	05-16-88 09-19-88	1335 1150	WEST ORANGE COUNTRY CLUB WELL NR ORLANDO	78.07 78.98
283017081195201	05-10-88 09-23-88	1325 0905	83011901 23S30E08	44.74 48.71
283017081391301	05-16-88 09-19-88	1400 1210	DAVENPORT RD 4-IN WELL, S OF OAKLAND	79.23 80.46
283105081222201	05-10-88 09-23-88	1345 0830	83112203 23S29E36	45.71 50.08

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

STATION NUMBER	DATE OF SAMPLE	TIME		STA	TION NAME	ELEVA- TION ABOVE NGVD (FEET)
283121081311601	05-16-88 09-19-88	1300 1136	0-197 LK	OLIVIA DR	AIN WELL	66.27 9.04
283135081234301	05-10-88 09-20-88	1540 1400	83112319	22S29E34		46.15 51.11
283144081254201	05-17-88 09-19-88	0845 1033	83112504	LK MANN	DRAIN WELL 0-174, ORLANDO	51.07 54.50
283157081180401	05-10-88	1250	83111802	22S30E34	ENGLEWOOD S/D DRAIN WELL	44.72
283214080583501	05-11-88 09-22-88	0940 1307	83205801	22S33E36		24.56 27.70
283307081300801	05-16-88 09-19-88	1245 1059	83313001	22S28E22	W-5110 LK SHERWOOD D WELL	61.66 64.19
283325081374001	05-13-88 09-21-88	1305 0850	83313703	22S27E20		76.49 77.44
283326081262101	05-10-88 09-19-88	1230 1007	83312601	22S29E20	LK LAWNE SOUTH SIDE DRAIN WELL	49.88 53.09
283417081331401	05-13-88	1245	83413302	22S28E18		70.42
283436081194501	05-10-88 09-22-88	1110 0840	83411901	22S30E17	LK SPEIR SO. DRAIN WELL	45.04 49.83
283441081203301	05-10-88 09-22-88	1110 0825	83412002	22S30E17		44.51 48.39
283524081344701	05-13-88 09-21-88	1325 0912	83513401	22S28E11		67.97 69.79
283528081235201	05-16-88 09-19-88	1200 0926	83512302	22S29E10		51.04 52.05
283530081214301	05-10-88 09-22-88	1200 0747	83512107	LK MIDGET	DRAINAGE WELL IN WINTER PARK	45.29 47.82
283548081181401	05-10-88 09-22-88	1035 0955	83511802	22S30E10		41.98 45.70
283605081103601	05-11-88 09-22-88	0745 1155	83611001	22S31E01	LEO FARON	35.33 37.86
283623081230501	05-10-88 09-22-88	0955 1037	83612301	22S29E02		45.81 49.33
283654081260801	05-16-88 09-19-88	1100 0903	83612604	21S29E32		54.65 57.30
283655081283401	05-16-88 09-19-88	1135 0847	83612801	21S28E36	LONG LK DRAIN WELL	60.76 62.98
283813081325701	05-13-88 09-21-88	1400 1001	83813204	21S28E30	APOPKA AGRI R.C.	55.54 57.08
283816081225501	05-10-88 09-19-88	0840 0815	83812201	21S29E26	LK CHARITY WELL NR MAITLAND	45.84 50.11
284025081301701	05-13-88 09-20-88	1150 1535	84013002	21S28E10		47.99 50.13
284059081365401	05-23-88	1655	84013601	21S27E09		58.08
284234081273901	05-13-88 09-20-88	0940 1230	84212702	20S28E36		20.66 21.35

MISCELLANEOUS WATER LEVEL MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

STATION NUMBER	DATE OF SAMPLE	TIME		STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
284326081283601	05-13-88 09-20-88	1010 1300	84312802	20S28E26	43.23 44.43
284330081360501	05-13-88 09-20-88	1445 1512	84313603	20S27E27 JEWEL FOULAGE	52.69 55.61
284429081272001	09-20-88	1030	84412701	20S29E19	28.94
284453081284401	05-13-88 09-20-88	1100 1327	84412801	20S28E14	34.33 38.36
284453081365101	05-13-88 09-20-88	1500 1452	84413601	20S27E16 SADLER RD NR LK OLA	48.61 51.95
284523081330601	05-13-88 09-20-88	1520 1429	845133	20S28E18 MINY FARMS NURSEY	51.66 53.33
284528081301101	05-13-88 09-20-88	0900 1125	84513005	20S28E10	28.73 28.86
284529081301001	05-13-88 09-20-88	0900 1127	84513001	20S28E10	34.32 35.03
284541081265201	09-20-88	1005	84512601	20S29E07	33.21
284635081280601	09-20-88	0935	84612801		36.00

ORANGE COUNTY

282344081054201 - 82310501 COCOA 11 NEAR BITHLO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN								
07	1035	1260	7.5	25.5	10	110	21	100
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN	1.4	444	120		20.24	22	212	12002
07	4.2	211	120	200	0.20	22	787	3100
	28240	0408105050	1 - 82410	504 COCOA	12B NEAR	BITHLO		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN								
07	1010	1390	7.4	25.0	5	120	22	110
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN								
07	1.9	235	120	210	0.30	23	816	3800
	28240	508105300	2 - 82410	506 COCOA	4A1 NEAR	BITHLO		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN								
07	1020	900	7.4	25.0	10	110	15	57
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN								
07	2.5	220	100	100	0.30	22	587	2200

ORANGE COUNTY--Continued

282416081054101 - 82410502 COCOA 4 NEAR BITHLO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 07	1125	1220	7.5	25.5	10	120	21	95
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 07	3.4	211	140	190	0.30	22	769	4900
			81054201	- 8251050	3 COCOA 7		300	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 06	1400	870	7.4	24.0	<5	120	6.1	53
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 06	1.4	304	33	86	0.30	27	533	720
	28253		04 - 82510	1521 COCOA	7T1 NEAR	BITHLO		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE -WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 06	1350	600	7.3	23.0	<5	110	3.8	15
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 06	1.0	310	0.10	17	0.20	21	372	680

ORANGE COUNTY--Continued

282530081085401 - 82510802 COCOA 15 NEAR BITHLO

	2823	300810824	01 - 8231	0802 000	y 10 MEVR	ышы		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN								
06	1205	765	7.5	25.0	10	97	14	37
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN		010	0.5		0.00	20		1000
06	2.0	213	85	60	0.20	22	483	1200
	2825	5300810940	001 - 8251	10903 COCO	A 17 NEAR	BITHLO		
		SPE-					MAGNE-	
DATE	TIME	CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER- ATURE WATER	COLOR (PLAT- INUM- COBALT	CALCIUM DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L
		(US/CM)	UNITS)	(DEG C)	UNITS)	AS CA)	AS MG)	AS NA)
JUN								
06	1042	640	7.6	24.5	5	86	13	25
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN	1.6	191	84	4.1	0.20	21	410	1100
06	1.6	191	84	41	0.20	21	418	1100
	2825	5310810822	201 - 8251	.0801 0000	A 14 NEAR	BITHLO		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN								
06	1000	955	7.5	24.0	10	120	14	60
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN								
06	2.4	225	110	110	0.10	23	601	1900

ORANGE COUNTY--Continued

282548081054201 - 82510504 COCOA 3 NEAR BITHLO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN	1345	2000	7.4	25.0	5	160	25	180
07	1343	2000	7.4	25.0	3	100	23	100
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN 07	4.8	223	220	360	0.40	22	1210	6600
	2826	120810542	201 - 8261	0502 0000	A 2 NEAR	BITHLO		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 07	1308	2080	7.5	25.0	5	170	29	200
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
07	5.6	208	250	400	0.30	22	1320	11000
	2826	532081054	501 - 8261	10503 0000	A 8 NEAR	BITHLO		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN 07	1255	2200	7.5	25.0	<5	160	32	210
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN								1
07	6.6	224	250	410	0.30	22	1330	8000

ORANGE COUNTY--Continued

282643081335601 - 82613304 GLADDEN'S SHALLOW WELL, SW OF WINDERNERE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
JUL									
08	0930	352	5.80	24.5	<5	21	16	5.0	18
08	1000				<5	22	16	5.0	19
AUG	3323		2.22	1.00					
30	1030	346	5.60	25.0	1.44	57	7.7		
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)
JUL									
08	14	62	24	0.020	14.0	0.030	0.80	0.010	0.010
08	14	62	24	0.020	14.0	0.050	0.60	0.010	0.010
AUG	1	0.0	12	0 000	15.0	0.070	0.00	0 000	0.010
30		7.7		0.020	15.0	0.070	0.20	0.020	0.010

282650081054201 - 82610504 COCOA 9 NEAR BITHLO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JUN								
07	1300	975	7.5	24.0	10	120	10	67
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
JUN								
07	2.0	273	53	100	0.40	25	578	1400

282654081370901	- CHATTON LICTT	NO	A ON	CONTT	DOAD	MEAD	WINDEDMEDE	

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN 17 29	1200 1005	325 331	4.90 5.00	23.5 24.0	 <5	13	10	19	16	<0.1 2.0	24
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JUN 17 29	48	<0.010 <0.010	13.0 12.0	0.020 0.010	<0.20 0.74	0.030 0.010	<0.010 <0.010	 <1	 <100	 <1	 <10
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
JUN 17			-22			- 44	22		.22		1
29	3	280	<5	70	0.10	<1	<1	20	0.90	<0.20	<0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUN 17		22			- 22	- 22		- 22	- 22	32	- 20
29	<0.20	<0.20	1.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
JUN 17				22.					2		44.
29	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
JUN	CHL BEN DATE TO	ORO- CHL ZENE BEN TAL TO	CHL -DI- ETH ORO- VIN IZENE ET OTAL TO	YL- DI- YL- FLU HER MET TAL TOT	ORO- TR 1,3 ORO- CHL HANE PRO	ORO- CHL PENE PRO	ORO- CHOPENE RI	NYL CHL ILO- ETH DE E DTAL TO	TAL TO	TO WA TRENE WE TAL TO	ENE STAL STER SOLE STREC S(L)
17	<		<0.20 <	0.20	0.20		0.20	0.20	<0.2	<0.2	<0.2

282654081370902	- SHATTOW	WETT I	NO 4	SON	SCOTT	POAD	WEAR	WINDERMERE	

		2826540	813/0902	- SHALLOW	WELL NO.	5 ON SCC	III KOAD N	EAR WINDE	RMERE		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)
JUN											
17	1230	144	4.70	24.0	<0.1	<0.010	8.00	0.020	<0.20	0.080	0.020
		2826540	81370903	- SHALLOW	WELL NO.	6 ON SCC	OTT ROAD E	EAR WINDE	RMERE		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)
JUN 17	1330	217	4.60	24.0	<0.1	0.010	17.0	0.030	<0.20	0.170	0.020
		2826540	81372301	- SHALLOW	WELL NO.	1 ON SCO	OTT ROAD E	EAR WIND	ERMERE		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)
JUN 24	1220	86	4.80	24.5	<0.1	0.010	7.40	0.070	0.20	0.020	0.020
24	1220	86	4.60	24.5	-0.1	0.010	7.40	0.070	0.20	0.020	0,020
		2826540	81372302	- SHALLOW	WELL NO.	2 ON SCO	OTT ROAD I	EAR WIND	ERMERE		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)
JUN 24	1100	105	4.90	24.5	<0.1	0.010	8.40	0.030	<0.20	0.070	0.060
		2826540	81372303	- SHALLOW	WELL NO.	3 ON SCO	OTT ROAD I	EAR WIND	ERMERE		
			E- FIC					TRO- GEN	TRO- N,AM- NTA + PE		IOS-

JUN 24	1000	116	7.30	<0.1	0.010	6,00	0.010	<0.20	0.900	0.330	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	ALKA- LINITY LAB (MG/L AS CACO3)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	

			EGLL Z				A 700				
282701081364701	- 5	MOLIAH	WELL.	NO	7	ON	SCOTT	ROAD	NEAR	WINDERMERE	

		ann	0200 02				MACNE-		POTAS-	ALKA-	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN 17	1005	398	5.10	24.0	<5	18	6.3	40	11	2.1	50
AUG 31	1220	330	5.10	25.5					44		
15101	2000										
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JUN 17	58	<0.010	12.0	0,020	<0.20	0.040	<0.010	<1	<100	<1	<10
AUG 31							59	77			
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
JUN 17	3	380	<5	10	0.10	<1	<1	<10	0.20	<0.20	<0.20
AUG 31						نين					
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUN 17	<0.20	<0.20	0.70	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
AUG 31				12							
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	ETHYL- ENE TOTAL	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
JUN 17	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
AUG 31		-0.20		-0.20				-0.20	-0.20	-0.20	
74							-				- 77
JUN	DATE TO	ORO- CHI ZENE BEN DTAL TO	CHL -DI- ETH ORO- VIN ZENE ET OTAL TO		ORO- TR 1,3 ORO- CHL HANE PRO AL TO	ORO- CHI OPENE PRO	ORO- CE PENE RI TAL TO	INYL CHL HLO- ETH IDE E DTAL TO		TO WA TRENE WE DTAL TO	LENE DTAL MTER HOLE REC G/L)
17	<	0.20	0.20	0.20 <	0.20 <	0.20	0.20	0.20	<0.2	<0.2	<0.2
AUG 31					22		44				

ORANGE COUNTY--Continued

282701081364702 - SHALLOW WELL NO. 8 ON SCOTT ROAD NEAR WINDERMERE

		2827010	81364702	- SHALLO	M MEIT NO	. 8 ON SC	OTT ROAD	NEAR WIND	ERMERE		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	(MG/L AS	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS-	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)
JUN											
17	1040	241	4.70	24.0	<0.1	<0.010	13.0	0.050	<0.20	0.090	0.010
		2827010	81364703	- SHALLO	W WELL NO	. 9 ON SC	OTT ROAD	NEAR WIND	ERMERE		
	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	INUM- COBALT	SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	
	AUG										
	30	1230	265	4.60	25.0	<5	6.5	16	6.5	1.0	
	DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L	GEN,	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONIA +	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	
	AUG 30	<0.1	3.3	23	<0.010	20.0	0.010	<0.20	0.020	0.010	
			282710	508105450	1 - 82710	501 COCOA	10 NEAR	BITHLO			
		DATE	TIME	ANCE	(STAND- ARD	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
	JUN 0	6	0920	710	7.5	24.0	10	110	12	38	

CHLO-RIDE, DIS-SOLVED

(MG/L AS CL)

42

SULFATE DIS-SOLVED

6.1

AS (MG/L CACO3) AS SO4) FLUO-

RIDE, DIS-SOLVED

(MG/L AS F)

0.30

POTAS-SIUM, DIS-SOLVED

(MG/L

AS K)

1.0 315

DATE

JUN 06... ALKA-LINITY LAB (MG/L SOLIDS,

SILICA,

DIS-SOLVED (MG/L AS

SIO2)

31

RESIDUE AT 180 DEG. C DIS-

SOLVED

(MG/L)

435

STRON-TIUM, DIS-SOLVED

(UG/L AS SR)

580

ORANGE COUNTY--Continued

282738081342201 - SHALLOW WELL ON OVERSTREET ROAD NR WINDERMERE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN									4.5	1.1	0.5
15	1230	265	5.10	23.5	<5	14	10	2,6	9.3	2.1	2.3
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JUN	19	0.040	10 0	1.80	2.5	0.060	0.010	<1	200	<1	100
15	19	0.040	18.0	1.80	2.5	0.060	0.010		200	-1	100
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
JUN			24		40.79	22				0.4	
15	4	650	<5	100	<0.10	<1	1	<10	<0.20	<0.20	<0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUN 15	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
13	V0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
JUN											
15	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
JUN	CHI BEN DATE TO (UC	LORO- CHI NZENE BEN DTAL TO G/L) (UC	CHI 4-DI- ETF LORO- VIN NZENE ET OTAL TO G/L) (UC	YYL- DI- YYL- FLU THER MET DTAL TOT G/L) (UG	LORO- TR 1,3 JORO- CHL THANE PRO TAL TO 5/L) (UG	ORO- 1,3 ORO- CHL OPENE PRO OTAL TO O(L) (UG	ORO- CE DPENE RI DTAL TO G/L) (U	INYL CHL HLO- ETH IDE E DTAL TO JG/L) (U	TAL TO	TC WA TRENE WE DTAL TOT G/L) (UG	LENE DTAL TTER IOLE REC G/L)
1.	5111		0.20		.0.20	0.20	0.20	.0.20	-0.2	-0.2	-0.2

ORANGE COUNTY--Continued

282752081332301 - BUTLEK SHALLOW WELL NO. 5 NEAR WINDERMERE

DATE		TIME	SPE CIF CON DUC ANC (US/	IC T- E	PH (STA) ARI UNIT	ND-	EMPER- ATURE WATER DEG C)	COB	AT-	CALC DIS SOL (MG AS	VED	MAG SI DI SOL (MG AS	UM, SC S- I VED SC /L	DDIUM, DIS- DLVED (MG/L AS NA)	DI	UM, S- VED	ALK LINI LA (MG AS CAC	TY B /L	SULFATE DIS- SOLVED (MG/L AS SO4)
JUL 01		1045		254	4	. 40	24.0		<5	22		6	.3	2.2	12		1.	8	49
DATE	R D S	CHLO- RIDE, DIS- COLVED MG/L LS CL)	NIT GE NITR TOT (MG AS	N, ITE AL /L	NITI GEI NO2+I TOTA (MG AS I	N, NO3 AI AL /L	NITRO- GEN, MMONIA FOTAL (MG/L AS N)	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL	PHO PHOR TOT (MG AS	OUS AL /L	PHOR PHOR ORT TOT (MG AS	US, CHHO, I AL MI /L	DI- HLORO- BROMO- ETHANE TOTAL (UG/L)	CARB TET CHL RID TOT (UG	RA- O- E	1,2- CHLO ETH TOT (UG	RO- ANE AL	BROMO- FORM TOTAL (UG/L)
JUL 01		13	<0.	010	10.	0	0.090	1	. 4	0.	010	<0.	010	<0.20	<0	.20	<0	.20	<0.20
DATE	B ME T	ILORO- DI- ROMO- THANE OTAL UG/L)	CHLO FOR TOT (UG/	M AL	TOLU:	AL	ENZENE FOTAL UG/L)	CHLO BENZ TOTA (UG/	ENE	CHLO ETHA TOT (UG/	NE AL	ETHY BENZ TOT (UG/	ENE BI	ETHYL- ROMIDE ROTAL JG/L)	METH CHL RID TOT (UG/	O- E AL	METH EN CHL RID TOTA (UG/	E O- E L	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
JUL 01		<0.20	<0	. 20	<0	. 20	<0.20	<0	.20	<0	.20	<0	.20	<0.20	<0	.20	<0	.30	<0.20
	DATE	CHI FLU MET TO	RI- LORO- JORO- THANE DTAL G/L)	CHL	TAL	1,1-D CHLOR ETHYL ENE TOTA (UG/L	O- TI - CHI ETI L TO	l,1- RI- LORO- HANE DTAL G/L)	ETH	I- ORO- ANE TAL	TET CHL ETH TO	ORO-	1,2-DCCHLORG BENZEI TOTAL (UG/L	O- CH NE PR	2-DI- LORO- OPANE OTAL G/L)	TRA CHL ETH TO	,2- NSDI ORO- ENE TAL	PRO	-DI- ORO- PENE TAL /L)
JUL 01			0.20	<	0.20	<0.	20	<0.20	<	0.20	<	0.20	<0.:	20	<0.20	<	0.20	<	0.20
	DATE	CHI BEN TO	B-DI- LORO- NZENE DTAL G/L)	CHL BEN TO	-DI- ORO- ZENE TAL /L)	2- CHLOR ETHYL VINYL ETHE TOTA (UG/L	O- CHI - DI- - FLI R ME' L TO	I- LORO- JORO- IHANE IAL G/L)	1,3 CHL PRO TO	ANS- -DI- ORO- PENE TAL	1,3 CHL PRO TO	IS -DI- ORO- PENE TAL /L)	VINYI CHLO- RIDE TOTAI (UG/I	L CH ET	RI- LORO- HYL- ENE OTAL UG/L)	TO	RENE TAL 5/L)	WA WH	TAL TER OLE REC
JUL 01			<0.20	<	0.20	<0.	20	<0.20	<	0.20	<	0.20	<0.:	20	<0.2		<0.2		<0.2

ORANGE COUNTY--Continued

282811081332101 - BUTLER SHALLOW WELL NO. 4 NEAR WINDERMERE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JUL 01	1130	402	4.30	23.0	<5	16	22	4.0	19	<0.1	73
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)
JUL 01	20	<0.010	15.0	0.020	0.92	0.010	<0.010	<0.20	<0.20	<0.20	<0.20
DATE	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
JUL 01	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
JUL 01.	CHL FLU MET TO (UG	ORO- CHL HANE ETH TAL TO (/L) (UG 0.20 < -DI- 1,4 ORO- CHL ZENE BEN	-DI- CHL ORO- ETH ANE E TAL TO /L) (UG 0.20 < CHL -DI- ETH ORO- VIN ZENE ET TAL TO	YL- CHL NE ETH TAL TO (/L) (UG 0.20 < - DI ORO- CHL YL- DI- YL- FLU HHER MET TAL TOT	I- TR ORO- CHL ANE ETH TAL TO (/L) (UG 0.20 <	Í- TÉT ORO- CHL ANE ETH TAL TO /L) (UG 0.20 < ANS- C -DI- 1,3 ORO- CHL PRO TAL TO	ORO- CHI ANE BEN TAL TO O.20 < IS -DI- VI ORO- CE PPENE RI TAL TO	LORO-CHL ZENE PRO DITAL TO CO 20 < INTEL TRIPLE CHL LIO-ETH LIDE E TTAL TO	-DI- TRACORO- CHI PANE ETH TAL TC /L) (UC 0.20 < I- ORO- YL- NE STY TAL TC	CRENE WE	S-DI- ORO- OPENE OTAL S/L) SO . 20 SENE OTAL STER SOLE STER SOLE
JUL 01.	<	0.20 <	0.20 <	0.20 <	0.20 <	0.20 <	0.20	<0.20	<0.2	<0.2	<0.2
	DATE	282819081 TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	
Ş	07	1300	180	4.70	5	10	8.3	1.9	6.2	2.1	
	DA JUL	DI SO ATE (M	FATE RI S- DI LVED SO G/L (M	DE, G S- NII LVED TO G/L (M	EN, GRITE NO2 TAL TO MG/L (N	EN, C E+NO3 AME TAL TO IG/L (N	TTRO- GEN GEN, MON MONIA ORO DTAL TO MG/L (!	GANIC PHO OTAL TO MG/L (M	OS- PHO ROUS OF TAL TO G/L (N	HOS- DRUS, RTHO, DTAL MG/L S P)	
	07.,	. 1	9	8.3 <0	0.010 12	2.0	0.050	1.5 0	.020	0.010	

ORANGE COUNTY--Continued

282849081345901 - SHALLOW WELL ROAD 535 NEAR LK SAWYER NEAR WINDERMERE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JUN								44	2.12	122	100
15	1100	535	5.60	<5	35	22	3.0	36	2.3	68	27
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN			7.00	5 54	793.000	7.000		100			
15	0.030	36.0	0.140	0.45	0.110	0.020	<1	<100	2	30	7
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)		MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)
JUN								250.00			
15	3800	7	150	<0.10	<1	<1	20	<0.20	<0.20	<0.20	<0.20
DATE	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
JUN		1.22		1.0		4.4	10.04		0.1.11	- A V	11.22
15	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	CHI FLI ME: DATE TO	JORO- CH THANE ET OTAL T	1-DI- CHI LORO- ETI HANE I OTAL TO	LORO- THE HYL- CHI ENE ETH DTAL TO	RI- TF LORO- CHI HANE ETF DTAL TO	RI- TE LORO- CH HANE ET DTAL TO	LORO- CHI HANE BEI OTAL TO	LORO- CHI NZENE PRO DTAL TO	2-DI- TRA LORO- CHI DPANE ETI DTAL TO	LORO- CH HENE PR DTAL T	3-DI- LORO- OPENE OTAL G/L)
JUN 15		<0.20	<0.20	<0.20	0.20	0.20	<0.20	<0.20	<0.20	0.20	<0.20
	1,3 CHI BER DATE TO	B-DI- 1, LORO- CH NZENE BE	CHI 4-DI- ETH LORO- VIN NZENE ETH	2- DI LORO- CHI HYL- DI- HYL- FLU THER MET	ORO- TF 1,3 ORO- CHI CHANE PRO	CANS- (CANS-) CORO- CHI C	CIS 3-DI- VI LORO- CH DPENE RI	TFINYL CHI HLO- ETE DE E	RI- LORO- HYL- ENE STY	XY. THE W. W	LENE DTAL ATER HOLE I REC G/L)
JUN		-0.00	-0.00				-0.00				
15	•	0.20	<0.20	0.20	0.20	0.20	<0.20	0.20	<0.2	<0.2	<0.2

283024081372701 -	SHATTON WETT	ON	DAVENDORT	ROAD	NEAR	WINTER GA	RDEN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN	3241	250	1.1.1						10		16
16,	1205	244	4.80	24.0	<5	16	9.4	2.9	10	1.8	46
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JUN	2.2	-0 010	11 0	0 000	<0.20	0.090	0.010	<1	<100	<1	20
16	11	<0.010	11.0	0.020	<0.20	0,090	0.010	<1	<100	~1	20
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
JUN											
16	4	740	<5	50	0.10	<1	<1	10	<0.20	<0.20	<0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE . TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUN 16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
10	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	40.20
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
JUN	-0.00	-0.00					12.22			MI - 244	22.25
16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	DATE TO	LORO- CHI NZENE BEN OTAL TO	CHI A-DI- ETH LORO- VIN NZENE ETH DTAL TO	HYL- DI- HYL- FLU HER MET DTAL TOT	ORO- TR 1,3 ORO- CHL CHANE PRO	ORO- CHL OPENE PRO OTAL TO	ORO- CHOPENE RI	INYL CHI HLO- ETH IDE F DTAL TO	TAL TO	TO WA TRENE WE DTAL TO	LENE DTAL STER HOLE C REC G/L)
JUN 16	S	<0.20	0.20	0.20	0.20	0.20	0.20	0.20	<0.2	<0.2	<0.2
-										-,-	

MISCELLANEOUS WATER-QUALITY MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

ORANGE COUNTY--Continued

283112081371601 - SHALLOW WELL ON MARSH ROAD NEAR WINTER GARDEN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN											
16	1015	236	5.30	25.0	<5	12	9.4	5.0	13	3.8	41
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JUN	22									-52.	
16	21	0.020	5.10	0.050	0.66	0.060	0.020	<1	100	<1	20
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
JUN											
16	6	1300	<5	30	0.10	<1	<1	10	<0.20	<0.20	<0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
JUN 16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
JUN	1/2 - 221		200 200	20.62	08.55						
16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DAT JUN 16	(UG/	PRO- CHLO CENE BENZ CAL TOT (L) (UG/	RO- VINY ENE ETH AL TOT L) (UG/	PRO- CHLO L- DI- L- FLUO ER METH AL TOTA L) (UG/	1,3-1 RO- CHLOI ANE PROPI L TOTA L) (UG/I	DI- 1,3-1 RO- CHLOI ENE PROPI AL TOTAL (UG/I	DI- VIN RO- CHL ENE RID AL TOT L) (UG	O- ETHY E EN AL TOT. /L) (UG	RO- L- E STYR AL TOT /L) (UG/	AL TOT L	AL ER LE REC

ORANGE COUNTY--Continued

283116081364401 - 83113605 TILDEN SHALLOW WELL, WINTER GARDEN

DATE		TIME	SPE CIF CON DUC ANC	IC - T- E	PH (STA AR UNIT	ND-	TEMPI ATUI WATI (DEG	RE ER	(PI INU COE		DIS SOL (MG	- VED	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	POTA SIU DIS SOLV (MG/ AS I	JM, S- VED /L	ALKA LINIT LAN (MG, AS CACO	ry 3 /L	SULFATE DIS- SOLVED (MG/L AS SO4)
JUN 30		1340		192	7	.80	2	4.0		<5	30		7	.6	5	. 4	0.	.60	110		1.3
JUL 08		1230		371		.10				<5	2.5					.1	22		3.1	2	64
00										RO-	15						2		5.,		04
DATE	R D S	HLO- IDE, IS- OLVED MG/L S CL)	NIT GE NITR TOT (MG AS	N, ITE AL /L	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	AMMO TOTA (MG AS	N, NIA AL /L	MONI ORGA TOI (MC		PHOR TOT (MG	OUS AL /L		HO, AL	BRO METH TOT	MO- ANE	RIDI	RA- O- E AL	1,2-I CHLOI ETH TOTA (UG	RO- ANE AL	BROMO- FORM TOTAL (UG/L)
JUN 30		6.8	<0.	010	<0.	020	0.	080	(0.30	0.	040	0.	030	<0	.20	<0	. 20	<0	. 20	<0.20
JUL 08			0.		18.		0.			0.80		020		010							
74.11				4.5																	
DATE	B ME T	LORO- DI- ROMO- THANE OTAL UG/L)	CHLO FOR TOT (UG/	M AL	TOLU TOT (UG/	AL	BENZ TOT (UG/	AL	CHLO BENZ TOTA (UG)	ZENE	CHLC ETHA TOT (UG/	NE	ETHY BENZ TOT (UG/	ENE	METH BROM TOT (UG/	IDE	METH CHLO RIDI TOTA (UG/I	O- E AL	METH ENI CHLO RID TOTAL (UG/)	E O- E L	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
JUN 30		<0.20	<0	.20	<0	.20	<0	. 20	<(0.20	<0	.20	<0	.20	<0	.20	<0	. 20	<0	.20	<0.20
JUL 08												==								22	
	DATE	CHL FLU MET	ORO- ORO- HANE TAL	CHL	ORO- ANE TAL	CHL ETH E TO	YL- NE	TR	I- ORO- ANE TAL	CHL ETH TO	ORO-	CHL ETH TO	,2,2 RA- ORO- ANE TAL	CHL BEN TO	ORO-	PRO TO	PANE TAL	TRA CHL ETH TO	ORO-	CHL PRO TO	-DI- ORO- PENE TAL /L)
JUN			0.20		0 00		0.00														
JUL		,	0.20	•	0.20		0.20	<	0.20	•	0.20		0.20	<	0.20	<	0.20	<	0.20	<	0.20
00			-		-																
	DATE	CHL BEN TO	-DI- ORO- ZENE TAL /L)	CHL BEN TO	ORO-	CHL ETH VIN ET TO		DI- FLU MET	ORO- ORO- HANE AL	1,3 CHL PRO TO	ANS- -DI- ORO- PENE TAL	CHL PRO TO	-DI- ORO-	CH RI TO	NYL LO- DE TAL G/L)	ETH	I- ORO- YL- NE TAL G/L)	STY			TAL TER
JUN 30		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		<0.2		<0.2		<0.2
JUL 08	.,.		بد		4-				77		- 77										

ORANGE COUNTY--Continued

283125081390601 - 83113901 DRIVE PT SAMPLER NEAR JOHNS LK, WINTER GARDEN

DATE	TIM	CC DI E Al	PE- IFIC DN- ICT- ICE S/CM)	PH (STA AR UNIT	ND- ATI	JRE	COL (PL INU COB UNI	AT- M- ALT	CALC DIS SOL (MG AS	- VED /L	DI	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	POT. SII DI: SOL' (MG AS I	UM, S- VED /L	ALK LINI LA (MG AS CAC	TY B /L	SULFATE DIS- SOLVED (MG/L AS SO4)
JUL 13	130	5	250	4	.70	24.0		<5	16		9	.3	5	.7	10		2.	3	41
DATE	CHLO RIDE DIS- SOLV (MG/ AS C	, O NIT ED TO L (N	TRO- GEN, TRITE DTAL MG/L GN)	NIT GE NO2+ TOT (MG AS	N, GI NO3 AMMO AL TO: /L (MO	CAL S/L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	PHOR PHOR TOT (MG AS	OUS AL /L	PHOR PHOR ORT TOT (MG	US, HO, AL /L	DI CHLO BRO METH TOT (UG	RO- MO- ANE AL	CARBO TETI CHLO RIDI TOTA (UG	RA- O- E AL	1,2-1 CHLO ETH. TOT. (UG	RO- ANE AL	BROMO- FORM TOTAL (UG/L)
JUL 13	16	<(0.010	12.	0 0	060	0	. 50	0.	020	0.	010	<0	.20	<0	.20	<0	.20	<0.20
DATE	CHLOR DI- BROM METHA TOTA (UG/	O- CHI NE FO L TO	LORO- ORM OTAL G/L)	TOLU TOT (UG/	AL TO	TAL	CHLO BENZ TOTA (UG/	ENE L	CHLO ETHA TOT (UG/	NE AL	ETHY BENZ TOT (UG/	ENE AL	METH BROM TOT (UG/	IDE AL	METH CHLO RID TOT	O- E AL	METH EN CHL RID TOTA (UG/	E O- E L	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
JUL 13	<0.	20	<0.20	<0	.20 <	0.20	<0	.20	<0	. 20	<0	. 20	<0	.20	<0	.20	<0	.30	<0.20
ם	ATE	TRI- CHLORO- FLUORO- METHANI TOTAL (UG/L)	CHI E ETH	L-DI- LORO- HANE DTAL G/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	CHI ETH TO	I,1- RI- LORO- HANE DTAL	CHL ETH TO	,2- I- ORO- ANE TAL	TET CHL ETH TO	ORO-	CHI BEN TO	P-DI- LORO- IZENE OTAL E/L)	PRO	C-DI- LORO- DPANE DTAL G/L)	TRA CHL ETH	TAL	PRO	-DI- ORO- PENE TAL
JUL 13.		<0.2) <	<0.20	<0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20
D	ATE	1,3-DI CHLORO BENZEN TOTAL (UG/L)	E BEN	4-DI- LORO- NZENE DTAL G/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- FLU MET TOT	JORO- THANE	1,3 CHL PRO TO	ANS- -DI- ORO- PENE TAL	1,3 CHL PRO TO	IS -DI- ORO- PENE TAL (/L)	RI	INYL ILO- IDE ITAL IG/L)	CHI ETH E	RI- LORO- IYL- ENE DTAL IG/L)		RENE TAL	WA WH TOT	ENE TAL TER OLE REC
JUL 13.		<0.2) <	<0.20	<0.20	<	0.20	<	0.20	<	0.20	<	0.20		<0.2		<0.2		<0.2

ORANGE COUNTY--Continued

283127081352901 - 83113507 DRIVE PT SAMPLER, E OF BLACK LK, WINTER GARDEN

		SPE-			MAGNE-		POTAS-	ALKA-	NITRO-	NITRO-	
DATE	TIME	CIFIC CON- DUCT- ANCE (US/CM)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	
JUL											
06	1245	920	45	62	36	9,5	63	11	0.180	30.0	
DATE	NITRO- GEN, MONIA + AMMONIA ORGANIC TOTAL TOTAL (MG/L (MG/L AS N) AS N)		PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	
JUL	2.612		2 252	2 212					1.44		
06	0.300	2.0	0.020	0.010	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	
****	/-/	/-/	,/-/	/-/	11-2	,,-,	,,-,	/-/	,,-,	,,-,	
JUL 06	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	
JUL											
06	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
DA	1,4- CHLC BENZ TE TOI (UG/	ORO- VINY CENE ETH CAL TOT	RO- CHLC L- DI- L- FLUC ER METE AL TOTA	DRO- TRA 1,3- DRO- CHLO IANE PROF IL TOT	DI- 1,3- ORO- CHLO PENE PROF	PENE RIC	O- ETHY E EN	DRO- YL- VE STYF	TOT LA	CAL CER DLE REC	
JUL											

MISCELLANEOUS WATER-QUALITY MEASUREMENTS OCTOBER 1987 TO SEPTEMBER 1988

ORANGE COUNTY--Continued

283218081224801 - 83212216 CITY HALL TRRIGATION AT ORLANDO

				283218	0812	24801 - 8	3212216	CITY	HALL.	IRRIGATI	ON AT	ORLA	(DO					
DATE	TIME	DUC ANG	FIC N- CT- (CE	PH STAND- ARD NITS)	(MC	SS CAL TAL DI G/L SC S (M	CIUM S- DLVED S G/L	MAGNE- SIUM DIS- SOLVEI (MG/L AS MG	, SOD: DISOL' O SOL' (M	IUM, S S- I VED SG G/L (I	OTAS- SIUM, DIS- OLVED MG/L S K)		S- LVED G/L	CHLC RIDE DIS- SOLV (MG/ AS C	E, F ZED S	LUO- LIDE, DIS- SOLVE MG/L LS F)	RES AT DEC D D	IDS, IDUE 180 G. C IS- LVED G/L)
MAY	1220		207			160 4	8	10	1	,	1.7		3.3	15		0.2	0	210
03 SEP	1330		387	77		160 4		10	1		1./			15		0.2	U	
13	1000		350	7.80				-			0-6					-		
DATE	NIT GE NITR TOT (MG AS	N, ITE AL /L	NITRO GEN, NO2+NO TOTAL (MG/I AS N)	GE 3 AMMO TOT (MG	N, NIA AL /L	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N)	PHO TO	HOS- OROUS OTAL MG/L S P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ERA (UC	JM,	CHRO- MIUM, DIS- SOLVE (UG/I AS CF	ED.	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	S	RON, DIS- OLVED UG/L S FE)	
MAY 03	<0.	010	<0.02	0 0.	970	0.23	1.2		0.220	0.140		<10	<1	LO	580		100	
SEP 13	323					7.75	-											
10																		
DATE	TO RE ER (U	LEAD, TOTAL LEA RECOV- DI ERABLE SOL (UG/L (UG AS PB) AS		NE , TO S- RE ED ER L (U	NGA- SE, TAL COV- ABLE G/L MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/I	L : V- LE :	ZINC, DIS- SOLVED (UG/L AS ZN)	ORGANIC TOTAL M (MG/L		HLORO- T BROMO- C ETHANE R TOTAL T		CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)		E	BROMO- FORM TOTAL (UG/L)	
MAY 03		5 <5		<5	10 1		10 30		10	2.8		<3.0 <3		3.0 <3.		<3.0		
SEP 13					-							<0.20	<0		<0.2		<0.20	
DATE	BR MET TO	ORO- OI- COMO- CHANE OTAL IG/L)	CHLOF FORM TOTA (UG/I	TOL	UENE TAL 5/L)	BENZENE TOTAL (UG/L)	CHLORGE BENZES TOTAL (UG/L	NE E	HLORO- THANE TOTAL UG/L)	ETHYL- BENZEN TOTAL (UG/L)	E BRO	THYL- OMIDE OTAL G/L)	METHY CHLC RIDI TOTA (UG/I	O- E AL	METHYI ENE CHLO- RIDE TOTAL (UG/L)	- E	ETRA- HLORO- THYL- ENE TOTAL UG/L)	
MAY 03	<	3.0	<3.	.0 <	3.0	<3.0	<3.	0	<3.0	<3.0		<3.0	<3	. 0	<3.0		<3.0	
SEP 13	<	0.20	<0.	20 <	0.20	<0.20	<0.	20	<0.20	<0.2	0 -	<0.20	<0	. 20	<0.2	20	<0.20	
DATE	CHL FLU MET	ORO- IORO- IHANE OTAL		OI- CHI RO- ETH NE H	DI- LORO- IYL- ENE DTAL		1,1,2 TRI- CHLOR ETHAN TOTA (UG/L	O- C E E L	,1,2,2 ETRA- HLORO- THANE TOTAL UG/L)	1,2-DI CHLORO BENZEN TOTAL (UG/L)	- CHI E PRO TO	2-DI- LORO- DPANE DTAL G/L)	TRANS CHLOI ETHE TOTA (UG/)	SDI RO- NE AL	1,3-DI CHLORO PROPEN TOTAL (UG/L)	NE B	,3-DI- HLORO- ENZENE TOTAL UG/L)	
MAY																		
03 SEP	<	3,0	<3	.0 <	3.0	<3.0	<3.	0	<3.0	<3.0		<3.0	<3	. 0	<3.0)	<3.0	
13	<	0.20	<0.	.20 <	0.20	<0.20	<0.	20	<0.20	<0.2	0	<0.20	<0	.20	<0.2	20	<0.20	
DATE	CHL BEN TO	-DI- ORO- IZENE OTAL G/L)	VINYI	DI- FLU ER MET	ORO- IORO- THANE	1,3-DI- CHLORO-	- 1,3-D - CHLOR	I- D O- : NE L	1,2- IBROMO ETHYL- ENE TOTAL UG/L)	VINYL CHLO- RIDE TOTAL (UG/L	CHI ETI TO	RI- LORO- HYL- ENE DTAL JG/L)	STYRI TOTA (UG/I	AL	1,2- DIBRON ETHANI WATER WHOLE TOTAL (UG/L)	E E E	YLENE TOTAL WATER WHOLE OT REC UG/L)	
MAY 03	<	3.0	<3.	0 <	3.0	<3.0	<3.	0	<3.0	<3.0		<3.0	<:	3.0		-	<3.0	
SEP 13		0.20			0.20					<0.2		<0.2		0.2	<0.		<0.2	
					1	-				1737		0.75				-		

ORANGE COUNTY--Continued

283219081195501 - LAKE UNDERHILL MONITOR WELL NO. 2 AT ORLANDO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY										
SEP 24	1100	435	7.80	200	72	5.6	5.4	2.4	62	9.2
08	1100	330	8.00	170	57	6.6	6.0	1.9	45	9.4
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
MAY										
SEP	0.20	260	<0.010	0.030	0.100	0.22	0.32	0.200	0.100	<10
08	0.10	207	0.010	0.100	0.170	0.33	0.50	0.070	0.040	<1
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)
MAY										
24 SEP	<10	1100	10	<5	<5	30	10	40	20	
08	1	3300	18	<5	<5	100	48	10	9	3.7

ORANGE COUNTY--Continued

283219081195601 - LAKE UNDERHILL MONITOR WELL NO. 1 AT ORLANDO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 24 SEP	1300	190	8.00	76	26	2.7	5.8	1.9	17	10
08	1145	150	7.60	63	21	2.6	5.7	1.8	16	9.1
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
MAY 24 SEP	0.20	106	<0.010	0.180	0.070	0,93	1.0	0.210	0.020	<10
08	0.10	97	0.010	<0.100	0.110	0.69	0.80	0.040	<0.010	<1
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)
MAY 24 SEP	<10	11000	70	<5	<5	90	30	30	10	5.2
08	1	510	34	<5	<5	30	17	50	35	8.2

MISCELLANEOUS WATER-QUALITY RECORDS OCTOBER 1987 TO SEPTEMBER 1988

ORANGE COUNTY--Continued

								ORAN	GE C	OUNTY	Co	ntinu	ied									
			28	32260	8139	0501	- DR	IVE P	T SA	MPLE (ON D	EER I	SLAN	D NEA	R WII	TER	GARD	EN				
DATE	T	IME	SPE CIF CON DUC ANC (US/	IC - T- E	PH (STA AR UNIT	D D	COL (PL INU COB UNI	AT- M- ALT	CALC DIS SOL (MG AS	- VED /L	SOL (MG	UM, S- VED	SODI DIS SOLV (MG AS	ED /L	POTA SIU DIS SOLV (MG/ AS I	IM, S- VED L	ALKA LINI LA (MG AS CAC	TY B /L	SULF. DIS SOL' (MG AS S	VED /L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L
L 13	1	045		100	4	. 20		<5	4	.9	0	. 50	<1	.0	1.	1	<0.	1	28		4.	9
DATE	NIT: TO (M	TRO- EN, RITE TAL G/L N)	NIT GE NO2+ TOT (MG AS	N, NO3 AL	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NIT GEN, MONI ORGA TOT (MG	A + NIC AL S/L	PHOR PHOR TOT (MG AS	OUS AL 5/L	PHO PHOR ORT TOT (MG AS	HO, AL	DI CHLO BRO METH TOT (UG	RO- MO- ANE AL	CARBO TETH CHLO RIDI TOTA (UG)	RA- D- E AL	1,2- CHLO ETH TOT (UG	RO- ANE AL	BROM FOR TOT (UG	M AL	CHLOR DI- BROM METHA TOTA (UG/	NE L
L 13	<0	.010	1.	80	0.	120	0	.40	<0.	020	0.	010	<0	.20	<0	. 20	<0	.20	<0	.20	<0.	20
D	ATE	CHLC FOI TO:	RM FAL		JENE FAL /L)		ZENE TAL /L)	CHLC BENZ TOTA (UG/	ZENE	CHLO ETHA TOT (UG/	NE AL		ZENE	METH BRON TOT (UG)	IDE AL	METH CHI RII TO	LO- DE TAL	El	AL	ETH	ORO- YL- E IAL	
JUL 13.		<(0.20	<(0.20	<(0.20	<0	.20	<0	.20	<	0.20	<(20	<(0.20	<	0.30	<	0.20	
D	ATE		ORO- DRO- HANE TAL	CHLO	TAL	CHLC ETH:	NE TAL	1,1, TRI CHLO ETHA TOI (UG)	PRO- ANE TAL	1,1, TRI CHLO ETHA TOT (UG/	RO- NE AL	CHL	ORO- ANE TAL	1,2- CHLO BENZ TOO (UG)	ZENE	1,2- CHLO PROI TOT (UG)	PANE PAL	TRAI CHLO	TAL	PRO	-DI- ORO- PENE TAL /L)	
JUL 13.	11.	<(0.20	<(0.20	<(0.20	<0	.20	<0	.20	<	0.20	<(.20	<(0.20	<	0.20	<	0.20	
D	ATE	CHL		1,4- CHLO BENZ TO:	DRO- ZENE TAL	VIN'	ORO- YL- YL- HER TAL	DI- CHLO DI- FLUO METH TOTA (UG)	ORO- HANE	TRA 1,3- CHLO PROP TOT (UG/	RO- ENE AL	1,3 CHLC PRO	IS -DI- ORO- PENE TAL /L)	VIII CHI RIII TO:	.O-	TRI CHLO ETHY EN TOO (UC	ORO- YL- NE		RENE TAL /L)	WH	TAL TER OLE REC	
JUL 13.		<(0.20	<(0.20	<(0.20	<(20	<0	.20	<	0.20	<(.20		<0.2		<0.2		<0.2	
			2	28322	90813	6310	1 - I	RIVE	PT S	SAMPLE	сн	CON	GROVE	NEAL	R WIN	TER (GARDE	IN				
	D	ATE	T	'IME	CI CC DU AN	E- FIC N- CT- CE /CM)	(SI	PH TAND- ARD ITS)	AT WA	MPER- TURE ATER EG C)	(I	OLOR PLAT- NUM- OBALT NITS)	DI SO (M	CIUM S- LVED G/L CA)	D SO (M	GNE- IUM, IS- LVED G/L MG)	SOL (M	IUM, S- VED G/L NA)	D SO (M	TAS- SIUM, DIS- DLVED MG/L K)		
	AUG 31.		C	930		670		5.60		27.0		140	6	57	2	0		7.1	4	6		
	D	OATE	LIN I (N	LKA- NITY LAB MG/L AS ACO3)	DI SC	FATE S- LVED IG/L SO4)	DI SC (N	HLO- IDE, IS- DLVED MG/L S CL)	CIN CIN (1)	TRO- SEN, TRITE DTAL MG/L S N)	NO2	TRO- SEN, 2+NO3 DTAL MG/L S N)	AMM TO (M	TRO- EN, IONIA TAL IG/L	GEN MON ORG. TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	PHO TO (M	OS- ROUS TAL IG/L P)	PHO OR TO (M	IOS- DRUS, THO, DTAL IG/L S P)		

AUG 31...

150

63

0.010

8.90

0.200

2.6

0.940

0.900

29

MISCELLANEOUS WATER-QUALITY RECORDS OCTOBER 1987 TO SEPTEMBER 1988

ORANGE COUNTY--Continued

283235081223801 - AT&T GENERATOR WELL AT ORLANDO

		1000	200200								
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
AUG											
18	1045	262	8.00	100	30	7.1	8.6	0.80	1.5	12	0.20
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)		PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
AUG 18	139	<0.010	<0.020	0.880	0.22	1.1	0.090	0.080	<10	<10	80
10	139	~0.010	-0.020	0.880	0.22	1.1	0.090	0.000	~10	~10	00
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		CARBON, ORGANIC TOTAL (MG/L AS C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
AUG											
18	50	<5	<5	<10	<10	20	<10	2.5	<0.20	<0.20	<0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)		ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
18	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
AUG											
18	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,2- DIBROMO ETHYL- ENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG											
18	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.20	<0.2	<0.2	<0.2

ORANGE COUNTY--Continued

283240081225001 - USGS WELL-JEFFERSON STREET, ORLANDO

DATE '	rime .	SPE- CIFIC CON- DUCT- ANCE US/CM	PH (STAN) ARD	AS	CALCI L DIS- L SOLV (MG/	DIS ED SOLV L (MG/	M, SODIU - DIS- ED SOLVE L (MG/	DIS D SOLV L (MG/	M, SULFA - DIS- ED SOLV L (MG/	DIS- ED SOLV L (MG/	, RIDE DIS ED SOLV L (MG/	, AT 180 - DEG. C ED DIS- L SOLVED
	1400	39	1 7.	60 1	60 47	9.	8 13	2.	3 7.	2 14	0.	30 206
EP 13	1300	36	0 7.	60								
DATE	NIT GE NITR TOT (MG AS	N, ITE AL /L	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
APR 28	<0.	010	<0.020	1.30	0.20	1.5	0.210	0.140	<10	<10	70	40
SEP 13	<0.	010	<0.100	0.970	0.03	1.0	0.150	0.120				
DATE	LEA TOT REC ERA (UG AS	AL OV- BLE /L	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)
APR 28		<5	<5	10	<10	<10	<10	2.3	<0.20	<0.20	<0.20	<0.20
SEP 13								3.7	<0.20	<0.20	<0.20	<0.20
DATE		MO- IANE	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
APR 28	<0	.20	<0.20	<0.20	87	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
SEP 13	<0	.20	<0.20	<0.20	34	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TRI CHLC FLUC METE TOI (UG/	RO- RO- IANE AL	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
APR 28	<0	.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
SEP 13	<0	.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	8.9	<0.20	<0.20
DATE	1,4- CHLC BENZ TOI (UG/	DI- ORO- ENE AL	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,2- DIBROMO ETHYL- ENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
APR 28	<0	.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.20	2.3	<0.2		<0.2
SEP 13		.20	<0.20	<0.20	<0.20	<0.20		<0,20	1.1	<0.2	<0.2	<0.2

ORANGE COUNTY--Continued

283240081225002 - JEFFERSON STREET SHALLOW WELL NO. 1 AT ORLANDO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)
SEP 13	0930	372	6.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	BENZENE TOTAL (UG/L)	CHLORO-BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)
SEP 13	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,1-DI CHLORO ETHYL- ENE TOTAL (UG/L)	- ÍRÍ- CHLORO ETHANE TOTAL	TRÍ- - CHLORO- ETHANE TOTAL	1,1,2, TETRA- CHLORO ETHANE TOTAL (UG/L)	1,2-DI	- CHLORO	- CHLORO		- CHLORO-	- CHLORO-
SEP 13	<0.2	0 <0.2	0 <0.20	0 <0.2	0 <0.20	0 <0.20	0 <0.20	0 <0.20	0 <0.20	<0.20
D	CH ET VI E ATE T	LORO- CH HYL- DI NYL- FL THER ME OTAL TO	UORO- CHI THANE PRO TAL TO	B-DI- 1, LORO- CHI DPENE PRO DTAL TO	LORO- CHOPENE RI	INYL CHI HLO- ETI IDE I DTAL TO	OTAL TO	DIE ETH WA YRENE WE DTAL TO	HANE TO ATER WA HOLE WE OTAL TO	LENE DTAL ATER HOLE T REC G/L)
SEP 13.		<0.20	<0.20	0.20	<0.20	<0.20	0.2	<0.2	<0.2	<0.2

ORANGE COUNTY--Continued

283240081225003 - JEFFERSON STREET SHALLOW WELL NO. 2 AT ORLANDO

DATE	T	IME	SPE- CIFIC CON- DUCT- ANCE (US/CM	PH (STAI ARI UNITS	CHI BI ID- ME:	OI- LORO- ROMO- THANE OTAL JG/L)	CARBO TETH CHLO RIDE TOTA (UG)	RA- O- E AL	1,2-I CHLOR ETHA TOTA (UG)	NE NE	BROMO- FORM TOTAL (UG/I	м	HLORO DI- BROMO ETHAN TOTAL (UG/I)- (CHLOR FORM TOTA (UG/L	L	TOLUENE TOTAL (UG/L)
APR 28	1	415	20	7 6	10	<3.0	<3	0	<3.	0	<3.	1	<3.0	1	<3.	0	<3.0
SEP	-	715	20			-0.0									100		
13	1	030	18	5	.90	<0.20	0	. 40	1.	. 1	<0.	20	<0.2	20	2.	2	<0.20
DATE	TO	ZENE TAL /L)	CHLORO BENZEN TOTAL (UG/L)		NE BE	HYL- NZENE OTAL G/L)	METHY BROM: TOTA (UG/I	IDE	METHY CHLO RIDE TOTA (UG/I	D- E AL	METHY: ENE CHLO RIDE TOTAL (UG/L	- E	ETRA- HLORG THYL- ENE TOTAL UG/L	D- L	TRI- CHLOR FLUOR METHA TOTA (UG/L	.O- .NE .L	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)
APR																	
28		7.5	<3.0	<3	0	<3.0	<3	0	<3	0	<3.	0	5.	4	<3.	0	<3.0
SEP		,			. •			. •		. •					٠.		
13		7.5	<0.2	0 <0	. 20	<0.20	<0	.20	<0	.20	<0.	20	2.	3	<0.	20	<0.20
DATE	CHL ETH E TO	-DI- ORO- IYL- INE OTAL	1,1,1- TRI- CHLORO ETHANE TOTAL (UG/L)	TRI - CHLO ETHA TOT	TÉ RO- CH NE ET AL T	1,2,2 TRA- LORO- HANE OTAL G/L)	1,2-1 CHLO BENZ TOT	RO- ENE AL	1,2-I CHLOI PROPA TOTA (UG/I	RO- ANE AL	1,2 TRANS CHLOR ETHEN TOTA (UG/L	DI 1 O- C E F L	,3-D HLOR ROPE TOTA UG/L	O- NE L	1,3-D CHLOR BENZE TOTA (UG/L	NE L	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)
APR		3.0	<3.0	-22	•	-0 0	<3	•	-0	•	-0	•	<3.	0	<3.	•	-2.0
28 SEP	•	3.0	<3.0	<3	.0	<3.0	<3	. 0	<3	. 0	<3.	U	~3 .	U	~3 .	U	<3.0
13		0.80	<0.2	0 1	. 8	<0.20	<0	.20	<0	. 20	8.	3	<0.	20	<0.	20	<0.20
	DATE	ETH VIN ET TO	ORO- C YL- D YL- F HER M TAL T	I- HLORO- I- LUORO- ETHANE OTAL UG/L)	TRANS 1,3-DI CHLORO PROPEN TOTAL (UG/L)	- 1, - CH E PR	CIS 3-DI- LORO- OPENE OTAL G/L)	RI TO	NYL LO- DE TAL G/L)	CHL ETH E TC	TAL	STYRE TOTA (UG/L	NE L	1,2- DIBR ETHA WAT WHO TOT (UG/	OMO NE ER OLE	WA WH	TAL TER OLE REC
APR																	
	8	<	3.0	<3.0	<3.0		<3.0	<	3.0	8	40	<3	.0				<3.0
	3	<	0.20	<0.20	<0.2	0 .	<0.20	<	0.20	8	30	<0	.2	<	0.2		<0.2

ORANGE COUNTY--Continued

283241081231501 - JEFFERSON AND TERRY STREETS WELL AT ORLANDO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAY 23 23	1430 1500	625 625	7.20 7.20	230	76	9.1	36	2.4	2.3	70	0.50
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
MAY 23 23	361	<0.010	<0.020	1.30	0.30	1.6	0.400	0.020	<10	<10 	5200
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
MAY 23 23	3200	9	<5 	230	220	50	10	5.1	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
MAY 23 23	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	2.7 <3.0	8.2 3.5	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
MAY 23 23	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	0.30 <3.0	<0.20 <3.0
DATE	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,2- DIBROMO ETHYL- ENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
MAY 23 23	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<0.20 <3.0	<3.0	<0.20 <3.0	<0.2 <3.0	<0.2 <3.0	0.8 <3.0

ORANGE COUNTY--Continued

283242081224201 - ST JAMES CHURCH IRRIGATION WELL AT ORLANDO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
APR										100	100
28	1230	401	7.80	160	47	10	14	1.8	6.1	17	0.40
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
APR 28	216	<0.010	<0.020	2.00	0.20	2.2	0.280	0.240	<10	<10	60
20	210	~0.010	10.020	2.00	0.20	2.2	0.200	0.240			
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
APR	30			20	10	10	<10	2.7	<0.20	<0.20	<0.20
28	30	<5	<5	20	10	10	~10	2.7	-0.20	-0.20	~0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
APR	-0.00	-0.00	-0.00	0.50	100	-0.00	-0.00	0.00	-0.00	-0.00	-0.00
28	<0.20	<0.20	<0.20	0.50	160	<0.20	<0.20	0.90	<0.20	<0.20	<0.20
DATE	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
APR 28	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
20	0.20	-0.20		.0.20		-0.20	0.20		-0.20	-0.20	
DATE	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,2- DIBROMO ETHYL- ENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
APR			1.00		2.0	/2 24.0					
28	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.20	<0.2	<0.2	1.9

ORANGE COUNTY--Continued

283243081224101 - 83212215 POST OFFICE IRRIGATION WELL, DOWNTOWN ORLANDO

			28324	30812	224101 -	832	12215	POST C	OFF I	CE IRRI	GATI	ON WELL	., DOW	NTOW	N ORLA	MDO				
DATE	TIME	SPE CIF CON DUC ANC	IC - T- E	PH (STAN ARI UNITS	NE TO ND- (M	RD- SS TAL G/L S CO3)	(MG	IUM - VED 5/L	MAGI SI DI: SOL' (MG AS I	UM, SOI S- D VED SOI /L (DIUM IS- LVED MG/I S NA	A, SI DI SOL (MG	S- VED	SULF. DIS SOL (MG AS S	ATE - VED /L	CHLO RIDI DIS- SOLV (MG, AS (E, F VED S	FLUC RIDE DIS SOLV (MG/ AS F	E, AT 1 S- DEG /ED DI /L SOL	DUE
APR	5.072				14				22							• •			20	100
27 SEP	1145		363	7.	. 40	150	44		10		11	1	9	3	. 2	13		0.	.30	193
	0930		369	7.	. 60				9		-									
DATE	NIT TO (M	TRO- EN, RITE TAL G/L N)	NITT GE: NO2+: TOT: (MG AS	N, NO3 AL /L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	OR	ITRO- GEN, GANIC OTAL MG/L S N)	NITE GEN, A MONIA ORGAN TOTA (MG, AS 1	AM- A + NIC AL /L	PHOS- PHOROU TOTAL (MG/L AS P)	S	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ERA (UC	M, AL OV- BLE	CHRO MIUN DIS- SOLV (UG/ AS C	1, ZED L	IRON, TOTAL RECOV ERABI (UG/I AS FI	L V- LE L	IRON, DIS- SOLVED (UG/L AS FE)	
APR 27	<0	.010	<0.	020	1.70		0.20	1	. 9	0.33	0	0.300		<10		<10	10	00	60	
EP 16				2	-2		44				_									
DATE	TC RE ER (U	AD, DTAL CCOV- LABLE IG/L PB)	LEA DI SOL (UG AS	S- VED /L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	N N	ANGA- ESE, DIS- OLVED UG/L S MN)	ZING TOTA RECO ERAI (UG AS	AL OV- BLE /L	ZINC, DIS- SOLVE (UG/L AS ZN	D	CARBON, DRGANIC TOTAL (MG/L AS C)	METH	DRO- DMO-	CARBO TETH CHLO RIDH TOTA (UG)	RA- O- E AL	1,2-D CHLORG ETHAL TOTAL (UG/I	O- NE L	BROMO- FORM TOTAL (UG/L)	
PR 27		<5		<5	20)	20		40	1	0	2,6	<(.20	<0.	.20	<0.	20	<0.20	
EP 16										-	-		<(.20	<0.	.20	<0.	20	<0.20	
DATE	BR MET TO	ORO- OI- COMO- CHANE OTAL OG/L)	CHLO FOR TOT (UG/	M AL	TOLUENE TOTAL (UG/L)	1	NZENE OTAL G/L)	CHLOI BENZI TOTAI (UG/I	ENE L	CHLORO ETHANE TOTAL (UG/L)	I	ETHYL- BENZENE TOTAL (UG/L)	METH BRON TOT (UG)	MIDE	METHY CHLC RIDE TOTA (UG/I	AT E D-	METHYN ENE CHLO- RIDE TOTAL (UG/L		TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	
PR 27	<	0.20	<0	.20	<0.20	1	81	<0	.20	<0.2	0	<0.20	<(.20	<0.	.20	<0.	20	<0.20	
EP 16	<	0.20	<0	.20	<0.20		93	<0	.20	<0.2	0	<0.20	<(.20	<0.	20	<0.2	20	<0.20	
DATE	CHL FLU MET TO	ORO- ORO- HANE TAL		RO- NE AL	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	CH ET	1,1- RI- LORO- HANE OTAL G/L)		RO- NE AL	1,1,2, TETRA- CHLORO ETHANE TOTAL (UG/L)	- C	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)		PANE CAL	1,2 TRANS CHLOF ETHEN TOTA (UG/I	NE NE NE	1,3-DCCHLORG PROPER TOTAL (UG/L)	O- NE L	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	
PR 27	<	0.20	<0	.20	<0.20		<0.20	<0	. 20	<0.2	0	<0.20	<(.20	<0.	.20	<0.2	20	<0.20	
EP 16	<	0.20	<0	.20	<0.20		<0.20	<0	.20	<0.2	0	<0.20	<0	.20	0.	.20	<0.2	20	<0.20	
DATE	CHL BEN TO	-DI- ORO- ZENE TAL	2- CHLO ETHY VINY ETH TOT. (UG/	RO- L- L- ER AL	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	1, CH	RANS- 3-DI- LORO- OPENE OTAL G/L)	CIS 1,3-I CHLOI PROPI TOTA (UG/I	DI- RO- ENE AL	1,2- DIBROM ETHYL ENE TOTAL (UG/L)	-	VINYL CHLO- RIDE TOTAL (UG/L)	TRI CHLO ETHY EN TOI (UC	DRO- YL- VE	STYRE TOTA (UG/I	AL.	1,2- DIBROM ETHANI WATEN WHOLI TOTAL (UG/L	MO E R E L	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)	
PR 27		0.20	-0	.20	<0.20		<n 20<="" td=""><td>-0</td><td>20</td><td>-0</td><td>2</td><td><0.30</td><td></td><td>.0.3</td><td></td><td>1 2</td><td></td><td></td><td>-0.0</td><td></td></n>	-0	20	-0	2	<0.30		.0.3		1 2			-0.0	
27 EP							<0.20		.20	<0.		<0.20		0.2		0.2			<0.2	
16	<	0.20	<0	.20	<0.20		<0.20	<0	.20	-	-	<0.20		0.2	<(0.2	<0	. 2	<0.2	

ORANGE COUNTY--Continued

283243081230701 - ROBINSON & DIVISION STREETS DRAINAGE WELL AT ORLANDO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)
MAY 25 25	1340 1400	215 315	7.50 7.50	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 1.3
DATE	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)
MAY 25 25	<3.0 100	<3.0 <1.0	<3.0 <1.0	<3.0 5.9	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0
DATE	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)
MAY 25 25	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0
DAT	CHLC ETHY VINY ETE TOT (UG/	ORO- CHLO CL- DI- CL- FLUC HER METE CAL TOTA	DRO- TRADORO- CHLO	TAL TO	-DI- DIBI DRO- ETI PENE EN TAL TO:	HYL- CH NE RI TAL TO	TAL TO	DRO- YL- NE STYF	RENE WHO	TAL TER DLE REC
MAY 25 25					3.0 1.0					<3.0 L4
D.A		SI CO DU TIME AN	PE- IFIC DN- JCT- (SI	PH TEN	MPER- (1 IURE IN	DLOR CAPLAT- D NUM- SO DBALT (1	LCIUM SIS- I DLVED SC	AGNE- SIUM, SOI DIS- DI DLVED SOI AG/L (N	DIUM, SIS- I	DTAS- SIUM, DIS- DLVED MG/L S K)
AUG 31	. 1	.105	333	5.80	28.0	160	21 1	11 2	28	5.5
D.A	LIN L (M ATE A	AB DI IG/L SC AS (N	FATE RIST DIVED SO	IDE, CIS- NIT DLVED TO MG/L (N	GEN, CONTRITE NO.	GEN, C 2+NO3 AM DTAL TO MG/L (I	TTRO- GEN GEN, MON MONIA ORG DTAL TO MG/L (N	GANIC PHO DTAL TO MG/L (N	HOS- PHO DROUS OF DTAL TO MG/L (N	HOS- DRUS, RTHO, DTAL MG/L S P)
AUG 31	. 93		2.2	45 C	0.030	0.020	1.70	2.8	0.060	0.030

ORANGE COUNTY--Continued

283300081224701 - SOUTHERN BELL IRRIGATION WELL AT ORLANDO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
APR											
27 AUG	1330	306	7.40	130	39	7.3	8.5	1.9	7.8	11	0.20
18	1135	282	7.80	110	36	5.5	8.6	2.1	8.9	12	0.30
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
APR 27	161	<0.010	<0.020	0.470	0.03	0.50	0.200	0.170	<10	<10	330
AUG 18	158	<0.010	<0.020	0.390	0.04	0.43	0.130	0.120	<10	<10	380
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
APR	144			100				- 20		14/24	-200
27 AUG	260	<5	<5	20	20	60	<10	2.4	<0.20	<0.20	<0.20
18	110	<5	<5	20	20	10	<10	5.3	<0.20	<0.20	<0.20
DATE	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
APR 27	- Several										
AUG	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
18	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
DATE						<0.20 1,1,2- TRI-					
DATE APR	<0.20 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)	<0.20 TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	<0.20 1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	<0.20 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	<0.20 1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHEME TOTAL (UG/L)	<0.20 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
DATE APR 27 AUG	<0.20 TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) 0.70	<0.20 TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L) <0.20	<0.20 1,1-DI-CHLORO-ETHANE TOTAL (UG/L) <0.20	<0.20 1,1-DI-CHLORO-ETHYL-ENE TOTAL (UG/L)	<0.20 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) <0.20	<0.20 1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L) <0.20	<0.20 1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L) <0.20	<0.20 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) <0.20	<0.20 1,2-DI-CHLORO-PROPANE TOTAL (UG/L)	<0.20 1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.20	<0.20 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) <0.20
DATE APR 27	<0.20 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)	<0.20 TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	<0.20 1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	<0.20 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	<0.20 1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	<0.20 1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHEME TOTAL (UG/L)	<0.20 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
DATE APR 27 AUG 18	<0.20 TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) 0.70	<0.20 TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L) <0.20	<0.20 1,1-DI-CHLORO-ETHANE TOTAL (UG/L) <0.20	<0.20 1,1-DI-CHLORO-ETHYL-ENE TOTAL (UG/L)	<0.20 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) <0.20	<0.20 1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L) <0.20	<0.20 1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L) <0.20	<0.20 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) <0.20	<0.20 1,2-DI-CHLORO-PROPANE TOTAL (UG/L)	<0.20 1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.20	<0.20 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) <0.20
DATE APR 27 AUG 18	<0.20 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L) 0.70 <0.20 1,3-DI-CHLORO-BENZENE TOTAL	<0.20 TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L) <0.20 <0.20 1,4-DI- CHLORO- BENZENE TOTAL	<0.20 1,1-DI-CHLORO-ETHANE TOTAL (UG/L) <0.20 <0.20 2-CHLORO-ETHYL-VINYL-ETHER TOTAL	<0.20 1,1-DI-CHLORO-ETHYL-ENE TOTAL (UG/L) <0.20 Ol-CHLORO-DI-FLUORO-METHANE TOTAL	<0.20 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) <0.20 <0.20 TRANS- 1,3-DI- CHLORO- PROPENE TOTAL	<0.20 1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L) <0.20 <0.20 CIS 1,3-DI- CHLORO- PROPENE TOTAL	<0.20 1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L) <0.20 <0.20 1,2- DIBROMO ETHYL- ENE TOTAL	<0.20 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) <0.20 <0.20 VINYL CHLO- RIDE TOTAL	<0.20 1,2-DI- CHLORO- PROPANE TOTAL (UG/L) <0.20 <0.20 TRI- CHLORO- ETHYL- ENE TOTAL	<0.20 1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.20 <0.20 STYRENE TOTAL	<0.20 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) <0.20 <0.20 XYLENE TOTAL WATER WHOLE TOT REC

ORANGE COUNTY--Continued

283309081230001 - 83312314 HOWARD JOHNSONS WELL AT ORLANDO

DATE :	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM	PH (STANI ARD	AS	CALCIU DIS- SOLVE (MG/I	DIS- ED SOLVE L (MG/L	, SODIUM DIS- D SOLVED (MG/L	DIS- SOLVEI (MG/L	, SULFATI	DIS- D SOLVEI (MG/L	(MG/L	AT 180 DEG. C D DIS- SOLVED
MAY 03	1100	30	1 7.6	50 12	0 36	6.9	8.6	2.6	14	16	0.3	0 167
SEP 16	1130	26	50 7.	50 -		-			1 12		-	
DATE		NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAY 03		<0.010	<0.020	0.490	0.19	0.68	0.130	0.120	<10	<10	180	130
SEP 16						77						
DAT	E	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)
MAY 03		<5	<5	20	20	<10	<10	4.9	<3.0	<3.0	<3.0	<3.0
SEP 16				- 1				- 55	<0.20	<0.20	<0.20	<0.20
DAT	E	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
MAY 03		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
SEP 16		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DAT	E	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
MAY 03		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
SEP 16		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DAT	E	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO-	1,2- DIBROMO ETHYL- ENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
MAY 03 SEP		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0		<3.0
16		<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.2	<0.2	<0.2	<0.2

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 34 OSCEOLA COUNTY

Index	Site	Page
number	number	number
1	274646081074801	292
2	274828081010901	292
3	274947080584001	293
4	275222081030701	293
5	280619080542601	294
6	281141081094101	294
7	281714081093001	295
8	281722080543001	295
	281714081093001	295

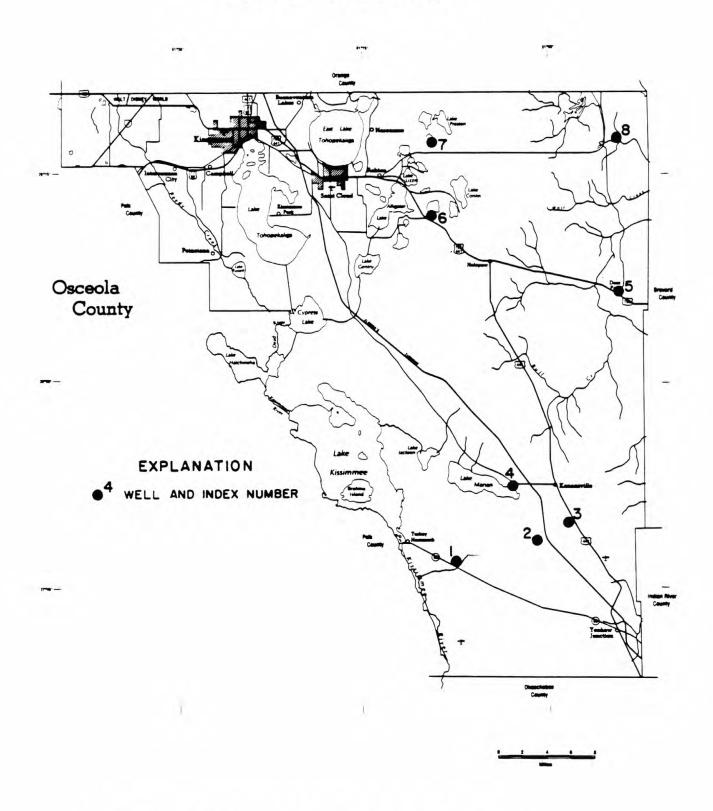


Figure 34.--Location of wells in Osceola County.

OSCEOLA COUNTY

WELL NUMBER. -- 274646081074801. OS-182 Well near Indian Lake Estates, FL.

LOCATION.--Lat 27°46'46", long 81°07'48", in SE½NW½SW½ sec.16, T.31 S., R.32 E., Hydrologic Unit 03090101, on south side of State Highway 60, 4.3 mi east of Kissimmee River Bridge, and 11.2 mi east of Indian Lake Estates. Owner: U.S. Geological Survey.

AQUIFER, -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 23 ft, cased to 16 ft, gravel packed 14 to 23 ft.

INSTRUMENTATION . -- Continuous strip-chart recorder.

DATUM.--Land-surface datum is 61.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.35 ft above land-surface datum.

COOPERATION.--Since Oct. 1, 1968, records provided by South Florida Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--August 1948 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 62.11 ft NGVD, Oct. 18, 1952; lowest, 55.94 ft NGVD, Aug. 13, 1950.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	60.49	60.77	60.24	59.01	59.57	59.90	58.72	58.20	57.41	58.71	58.73	59.90
10	59.89	60.54	59.93	58.93	60.25	60.50	58.47	58.08	57.66	58.68	58.61	60.60
15	60.72	60.10	59.67	59.12	59.97	60.46	58.25	57.95	57.65	59.88	59.27	59.94
20	60.31	60.74	59.46	58.94	60.28	60.33	58.09	57.88	57.58	59.44	59.88	59.71
25	59.81	60.53	59.30	59.99	60.35	59.56	57.98	57.78	58.36	59.23	59.98	59.20
EOM	59.39	60.61	59.10	59.77	59.99	59.02	57.92	57.59	59.06	58.96	59.82	58.81
MEAN	60.22	60.50	59.70	59.33	60.08	59.98	58.31	57.95	57.89	59.18	59.38	59.77
MAX	60.80	60.77	60.57	60.02	60.42	60.54	58.94	58.24	59.07	59.88	60.17	60.62
MIN	59.39	59.92	59.10	58.93	59.51	59.02	57.92	57.59	57.34	58.67	58.54	58.81

CAL YR 1987 MEAN 59.09 MAX 60.80 MIN 56.95 WTR YR 1988 MEAN 59.36 MAX 60.80 MIN 57.34

WELL NUMBER. -- 274828081010901. OS-183 Well near Kenansville, FL.

LOCATION.--Lat 27°48'28", long 81°01'09", in SE\SW\SW\sec.3, T.31 S., R.33 E., Hydrologic Unit 03080101, on west side of Peavine Trail (State Highway 523A), 5.3 mi north of State Highway 60, and 5.4 mi south of Kenansville. Owner: U.S. Geological Survey.

AQUIFER.--Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 27 ft, cased to 22 ft, gravel packed from 19 to 27 ft.

INSTRUMENTATION. -- Continuous strip-chart recorder.

DATUM.--Land-surface datum is 73.33 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.50 ft above land-surface datum.

COOPERATION.--Since Oct. 1, 1968, records provided by South Florida Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--August 1948 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office. August 1948 to September 1983 (daily maximum), October 1983 to September 1984 (daily mean).

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 75.11 ft NGVD, Nov. 23, 1977; lowest, 67.74 ft NGVD, June 12, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	71.55	72.95	71.80	71.25	71.30	72.12	71.27	70.35	69.13	69.30	71.04	
10	71.11	72.08	71.66	71.13	72.26	72.87	70.93	69.99	69.49	69.61	72.05	
15	72.52	72.20	71.45	71.21	71.96	72.84	70.73	69.89	69.35	70.61	72.19	71.56
20	71.75	73.09	71.25	70.90	72.14	72.91	70.52	69.74	69.08	70.47	71.52	71.19
25	71.34	72.34	71.16	72.37	72.10	71.78	70.26	69.52	68.94	70.72	72.42	70.87
EOM	71.12	72.66	70.95	71.59	71.48	71.82	70.27	69.30	69.31	71.03		70.69
MEAN	71.77	72.53	71.46	71.42	71.97	72.35	70.75	69.88	69.18	70.24		
MAX	73.08	73.09	72.45	72.37	72.87	73.08	71.61	70.78	69.58	71.37		
MIN	71.04	71.64	70.95	70.90	71.30	71.25	70.20	69.30	68.88	69.30		1444

OSCEOLA COUNTY

WELL NUMBER. -- 274947080584001. Hayman Well near Kenansville, FL.

LOCATION.--Lat 27°49'47", long 80°58'40", in SE\SE\NW\x sec.36, T.30 S., R.33 E., Hydrologic Unit 03080101, in pasture of Seven Eleven Ranch, 0.4 mi west of U.S. Highway 441, and 3.1 mi south of Kenansville. Owner: W. Paul Hayman.

AQUIFER.--Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, windmill powered, nonartesian well, diameter 3 in., depth 90 ft, casing length unknown.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 74.25 ft above National Geodetic Vertical Datum of 1929. Measuring point: Drilled hole in sanitary seal, 0.50 ft above land-surface datum.

PERIOD OF RECORD. -- January 1974 to current year (bimonthly, incomplete).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 71.78 ft NGVD, Sept. 22, 1981; lowest measured, 64.74 ft NGVD, June 13, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
DEC			MAY		
16 FEB	1315	67.99	20 JUL	1100	68.77
16 APR	1040	69.16	21 SEP	1229	68.51
01	1033	69.11	30	1237	67.72

WELL NUMBER. --275222081030701. OS-243 Well at Lake Marian near Kenansville, FL.

LOCATION.--Lat 27°52'22", long 81°03'07", in SE\NE\NE\sec.18, T.30 S., R.33 E., Hydrologic Unit 03090101, at boat ramp in Osceola County Park, on east side of Lake Marian, and 3.0 mi west of Kenansville. Owner: U.S. Geological Survey.

AQUIFER. -- Hawthorn limestone aquifer of the Miocene Series, Geologic Unit 122 HTRNN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 4 in., depth 320 ft, cased to 243 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 62.61 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977, datum was considered to be 63.95 ft, and Oct. 1, 1977, to Sept. 30, 1978, to be 65.05 ft NGVD. Measuring point: Top of casing, 0.69 ft above land-surface datum.

PERIOD OF RECORD. -- April 1974 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 56.52 ft NGVD, Sept. 30, 1985; lowest measured, 48.43 ft NGVD, present datum, May 8, 1976.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
DEC			MAY		
16	1400	56.03	13	1420	54.45
FEB			20	1125	54.19
16	1003	55.30	JUL		
APR			21	1248	53.89
01	1100	55.95	SEP		
			16	1120	55.20
			30	1310	55.01

OSCEOLA COUNTY

WELL NUMBER. -- 280619080542601. OS-179 Well at Deer Park, FL.

LOCATION.--Lat 28°06'19", long 80°54'26", in NWkNckSWk sec.27, T.27 S., R.34 E., Hydrologic Unit 03080101, on south side of U.S. Highway 192, 0.8 mi northwest of Deer Park, and 11 mi east of Holopaw. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 SDGV.

WELL CHARACTERISTICS. -- Drilled, observation, nonartesian well, diameter 6 in., depth 17.6 ft, cased to 17.6 ft, gravel packed 12.6 to 17.6 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 48.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.20 ft above land-surface datum.

PERIOD OF RECORD. --April 1949 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 49.11 ft NGVD, July 15, 1978; lowest, 42.67 ft NGVD, June 6, 1967.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	45.22	47.72	46.82	46.03	45.84	46.45	46.58	45.14	43.94	43.20	45.44	47.25
10	45.01	47.41	46.70	45.91	46.31	47.50	46.33	44.92	43.85	43.13	45.53	47.52
15	47.40	46.72	46.86	45.79	46.32	47.63	46.02	44.73	43.71	44.66	45.35	46.70
20	46.91	48.22	46.36	45.68	46.14	47.69	45.75	44.53	43.55	44.66	45.69	46.26
25	46.38	47.39	46.23	46.44	46.78	46.96	45.49	44.33	43.45	44.69	46.40	45.96
EOM	46.09	47.42	46.01	46.10	46.35	46.77	45.33	44.13	43.33	45.09	47.07	46.05
MAX	47.80	48.44	47.34	46.44	46.83	48.24	46.67	45.35	44.10	45.20	47.07	47.70

WTR YR 1988 MAX 48.44

WELL NUMBER. -- 281141081094101. OS-181 Well near Holopaw, FL.

LOCATION.--Lat 28°11'41", long 81°09'41", in NE\NE\SE\ sec.25, T.26 S., R.31 E., Hydrologic Unit 03090101, on south side of U.S. Highway 192, 9.3 mi southeast of St. Cloud, and 6.7 mi northwest of Holopaw. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 16 ft, cased to 14 ft, gravel packed from 11 to 16 ft.

INSTRUMENTATION . -- Continuous strip-chart recorder.

DATUM.--Land-surface datum is 79.13 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

COOPERATION.--Since Oct. 1, 1968, records provided by South Florida Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--August 1948 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 79.60 ft NGVD, Sept. 10, 1960; lowest, 70.23 ft NGVD, June 11, July 22,23, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	75.78	77.21		75.49	75.59	75.12	75.87	74.79	73.73	73.55	74.78	76.18
10	75.53		76.33	75.45	75.58	75.49	75.63	74.56	74.41	73.51	75.56	76.69
15	76.71	755	76.10	75.48	75.42	76.82	75.56	74.41	74.17	74.27	75.55	76.15
20	76.24		75.93	75.36	75.32	76.82	75.34	74.23	73.85	74.42	75.77	75.80
25	75.94		75.77	76.05	75.27	76.31	75.13	74.14	73.64	74.95	75.99	75.58
EOM	75.68		75.57	75.84	75.20	76.10	74.93	73.93	73.77	75.02	76.11	75.34
MEAN	76.04			75.63	75.44	76.04	75.49	74.40	73.93	74.21	75.58	76.02
MAX	77.04			76.10	75.77	76.92	76.04	74.95	74.41	75.03	76.11	76.73
MIN	75.53			75.36	75.20	75.12	74.93	73.93	73.57	73.49	74.78	75.34

OSCEOLA COUNTY

WELL NUMBER. -- 281714081093001. Lake Joel Well near Ashton, FL.

LOCATION.--Lat 28°17'14", long 81°09'30", in SW\n\n\n\w\s sec.30, T.25 S., R.32 E., Hydrologic Unit 03090101, on southwest shore of Lake Joel, 0.8 mi north of State Highway 532, and 5.0 mi northeast of Ashton. Owner: Deseret Ranch.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, diameter 8 in., depth 750 ft, cased to 394 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 64.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD. -- November 1969, May 1973 to November 1975 (bimonthly); December 1975 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 47.68 ft NGVD, present datum Nov. 20, 1969; lowest daily maximum water level, 38.50 ft NGVD, May 22, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	43.40	44.32	45.31	44.43	44.58	44.68	44.93	42.39	41.61	42.09	43.39	44.47
10	43.21	44.58	45.38	44.50	44.70	45.12	44.33	42.12	41.97	42.21	43.58	44.67
15	43.60	44.57	45.28	44.63	44.91	45.19	44.05	42.01	42.11	42.37	43.66	44.77
20	43.95	44.87	44.98	44.82	45.03	45.21	43.59	41.76	42.09	42.54	43.92	44.63
25	43.95	45.04	44.80	45.04	44.85	45.30	43.05	41.62	42.25	42.89	44.10	44.19
EOM	43.71	45.46	44.51	44.39	44.94	45.10	42.29	41.92	42.21	43.26	44.31	43.70
MAX	44.03	45.46	45.47	45.04	45.03	45.41	45.05	42.39	42.27	43.26		44.82

CAL YR 1987 MAX 45.47

WELL NUMBER. -- 281722080543001. OS-171 Well near Deer Park, FL.

LOCATION.--Lat 28°17'22", long 80°54'30", in SE\SW\SW\sec.22, T.25 S., R.34 E., Hydrologic Unit 03080101, on ranch road, 0.9 mi east of State Highway 532, 3.6 mi south of K-6 Ranch Headquarters, and 13.5 mi north of Deer Park. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 19 ft, cased to 12.7 ft, gravel packed, 11 to 19 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 31.60 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--October 1950 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 33.56 ft NGVD, Sept. 23, 1960; lowest, 26.32 ft NGVD, July 28, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM_VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	30.86	32.18	31.30	30.94	31.10	31.26	31.04	29.34	28.35	28.30	28.66	31.05
10	30.44	31.38	31.20	31.07	31.34	31,48	30.76	28.93	29.82	28.14	30.80	31.34
15	31.53	31.16	31.10	30.88	31.23	31.63	30.66	28.81	29.73	30.10	30.48	31.45
20	31.22	32.16	31.09	30.76	31.11	31.66	30.20	28.51	29.36	29.18	31.41	31.34
25	31.02	31.47	31.06	31.41	31.23	31.26	29.62	29.77	28.78	29.85	31.21	30.97
EOM	31.11	31.63	30.91	31.18	31.07	31.24	29.89	28.79	28.63	29.07	30,95	30.85
MAX	31.93	32.30	31.52	31.41	31.38	31.73	31.19	30.08	30.04	30.10	31.83	31.46

WTR YR 1988 MAX 32.30

OSCEOLA COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
274307080582401	05-13-88 09-21-88	1215 0940	743058	42.36 44.71
274428081035201	05-13-88 09-21-88	1235 1015	SR-60 WELL LATT-MAXEY	46.38 49.02
274807081115501	05-13-88 09-21-88	1335 1215	OSF-52 S-65 WELL NR KENANSVILLE	42.93 45.15
274856080594401	05-16-88 09-21-88	0745 0845	74805902 31S33E20 HAYMAN WELL NR KENAN	SVILLE 39.22 41.47
275609081132001	05-16-88 09-16-88	0835 1235	75611301 29S31E28 OS-319 JOE OVERSTREE	T 46.92 49.39
275826080554701	05-13-88 09-16-88	0920 0935	75805501 29S34E09 PITCH	40.28 42.88
275852081030501	05-13-88 09-16-88	0810 0815	TH-10 WILLIAMS RD	41.97 44.63
280054081103901	05-16-88 09-16-88	0915 1325	80011001 28S31E25 PADGETT	43.95 46.63
280229080565501	05-12-88 09-15-88	1220 1245	80205601 28S34E17 TH-8	39.79 42.35
280526080543001	05-12-88 09-15-88	1110 1135	805054 27S34E34 K-8-IN PUMP DEER PAR	X 38.93 41.58
280823081210301	05-17-88 09-20-88	1300 1030	OSF-53 S-61 WELL NR ALCOMA	49.88 53.16
280826081031801	09-15-88	1400	HOLOPAW TEST NO 1	43.06
280829080574001	05-11-88 09-19-88	1010 0810	808057 27S34E18 TH-6 DEER PARK NW	40.30 42.61
280905081270101	05-16-88 09-15-88	1310 0940	80912701 27S29E06 REEDY CR OVERLOOK WE	LL NR SO 62.17 65.31
280928080532001	05-11-88 09-15-88	0910 1030	80905301 27S34E02 DSR18	38.00 39.80
281006081162601	05-16-88 09-16-88	0950 1400	80711601 27S30E01 CANOE CR CAMPGROUND	46.68 49.66
281105080541401	05-11-88 09-15-88	0830 0900	811054 26S34E34 RODEO FIELD DEER PAR	K NW 38.12 39.64
281116081024101	05-11-88 09-19-88	1100 0900	81110201 26S33E29 DSRW5	39.37 41.77
281146081211701	05-16-88 09-19-88	1430 1335	811121 26S30E30 WHALEY WELL NR KISSI	MMEE PAR 49.78 53,41
281354080563301	05-12-88 09-15-88	0955 0830	813056 26S34E08 TH-4 DEER PARK NW	38.00 40.53
281429081290501	05-16-88 09-20-88	1245 0920	MERCANTILE LANE WELL (OS-254)NR POINCIA	NA 64.00 66.78
281443081140501	05-11-88 09-16-88	1355 1420	ASHTON FORESTRY TOWER WELL (OS-250) AT	ASHTON 44.10 47.84
281456081171701	05-16-88 09-19-88	1020 1300	814117 26S36E02 CITY ST. CLOUD UNUSE	D WELL 41.44 47.46
281536081324801	09-20-88	0900	815132 25S28E31 FPC SRKOI	77.26
281559081260701	05-16-88 09-20-88	1335 1130	815126 25S29E32 SHINGLE CRAFT 531A	62.54 61.79

OSCEOLA COUNTY--Continued

STATION NUMBER	DATE OF SAMPLE	TIME		STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
281630080591001	05-11-88 09-15-88	1250 1515	816059 2	25S33E26 TH-3 LAKE POINSETT SW	35.92 38.31
281630081024401	05-11-88 09-15-88	1315 1450	TH-9 NOVA F	RD 532 WEST	39.15 41.52
281632080515001	05-12-88 09-19-88	0830 1130	816051 2	25S34E36 DSR38	34.20 35.40
281719081134001	05-11-88 09-16-88	1415 1440	81711301 2	25S31E28 SOUTH EAGLE RD, E NARCOOSSEE	43.38 46.83
281820080540501	05-12-88 09-19-88	0750 1055	818054 2	25S34E15 K6-TILT LAKE POINSETT SW	34.18 35.68
281931081280301	05-16-88 09-20-88	1115 0820	81912804 2	24S28E12 KOA CAMP ON US192 NR KISSIMMEE	61.07 64.18
281937081245901	05-16-88 09-20-88	1045 0750	81912401 2	25S29E09 OS U L	51.58 54.68
282051081133201	05-11-88	1440	82011301		43.18

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 35 PASCO COUNTY

Index number	Site number	Page number
1	281654082065901	300
2	282259082104101	301
3	282641082112001	302

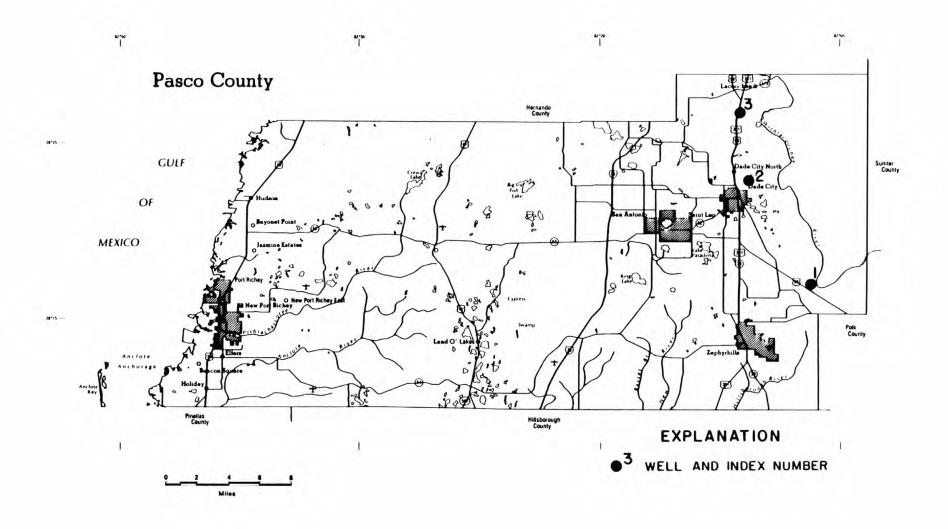


Figure 35.--Location of wells in Pasco County.

PASCO COUNTY

WELL NUMBER.--281654082065901. U.S. Highway 98 Well near Dade City, FL.

LOCATION.--Lat 28°16'54", long 82°06'59", in SW\sE\nW\sec.28, T.25 S., R.22 E., Hydrologic Unit 03100208, on north side of U.S. Highway 98, 2.9 mi north of intersection of State Highway 54, and 7.8 mi southeast of Dade City. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 3 in., depth 200 ft, cased to 41 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 85.63 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.24 ft above land-surface datum.

PERIOD OF RECORD.--May 1976, January 1977 to current year (bimonthly). Records prior to January 1977 are unpublished and available in files of the Orlando Subdistrict Office. .

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 80.37 ft NGVD, Sept. 20, 1979; lowest measured, 72.74 ft NGVD, May 30, 1985.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
02	1400	75.76	16	1424	76.37
DEC	7.7.4.5	1.2.2	JUN		
28	1410	76.62	10	1310	75.88
FEB			AUG		
17	1405	77.52	05	1320	75.89
APR			SEP		
15	1340	77.48	19	1358	79.96

PASCO COUNTY

WELL NUMBER. -- 282259082104101. Lykes Pasco Well near Dade City, FL.

LOCATION.--Lat 28°22'59", long 82°10'41", in NW\SE\sec.23, T.24 S., R.21 E., Hydrologic Unit 03100208, 0.5 mi east of confluence of Pasco Packing Company and Evans Packing Company canals, and 2 mi northeast of Dade City. Owner: Lykes Pasco Packing Co.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 4 in., depth 36 ft, casing length unknown.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 73.81 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top edge of flange on casing, 4.33 ft above land-surface datum.

PERIOD OF RECORD.--April 1973 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 73.74 ft NGVD, Oct. 11, 1979; lowest, 60.19 ft NGVD, May 30, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	67.54	66.95	67.44	66.21	65.69	65.49	68.26	66.66	65.56	65.91	65.98	67.47
10	67.37	67.00	67.39	66.12	66.00	65.70	68.21	66.57	65.39	65.81	65.95	69.33
15	67.36	66.90	67.18	65.83	66.00	66.24	67.71	66.35	65.30	65.78	66.05	70.74
20	67.24	67.06	66.84	65.77	65.77	66.94	67.65	65.97	65.24	65.78	66.62	71.53
25	67.07	67.28	66.66	65.92	65.70	67.58	67.32	65.78	65.75	65.84	67.01	71.83
EOM	66.86	67.49	66.28	65.66	65.81	68.07	66.80	65.83	65.92	65.98	67.20	71.77
MAX	67.63	67.49	67.48	66.33	66.03	68.07	68.26	67.00	65.92	65.98	67.20	71.84

CAL YR 1987 MAX 71.99 WTR YR 1988 MAX 71.84

PASCO COUNTY

WELL NUMBER. -- 282641082112001. Overpass Well near Trilacoochee, FL.

LOCATION.--Lat 28°26'41", long 82°11'20", in NE\SE\NE\S sec.34, T.23 S., R.21 E., Hydrologic Unit 03100208, between lanes of divided U.S. Highway 301 at Seaboard Coast Line Railroad crossing, 1.4 mi south of Trilacoochee, and 4.3 mi north of Dade City. Owner: Florida Department of Transportation.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, diameter 6 in., depth 227 ft, cased to 49 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 80.17 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelf, 14.19 ft above land-surface datum.

PERIOD OF RECORD.--October 1959, February 1960 to June 1965, July 1965 to April 1966 (bimonthly), May to July 1966, July 1967 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 74.30 ft NGVD, Aug. 10, 1960; lowest, 55.86 ft NGVD, June 23, 1974.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	62.05	61.49	62.13	61.03	61.21	61.06	64.56	62.54	61.17	60.94	61.16	62.99
10	61.93	61.49	62.08	60.96	61.42	61.25	64.30	62.31	61.14	60.81	61.12	64.81
15	61.85	61.41	61.88	60.86	61.43	62.09	63.83	62.05	61.00	60.83	61.28	66.56
20	61.75	61.66	61.60	60.81	61.41	63.13	63.53	61.81	60.83	60.81	61.87	67.51
25	61.61	61.95	61.36	60.85	61.32	63.96	63.15	61.59	61.11	60.97	62.41	67.90
EOM	61.42	62.11	61.17	61.00	61.26	64.47	62.76	61.42	61.07	61.20	62.81	67.75
MAX	62.13	62.11	62.16	61.15	61.46	64.47	64.58	62.74	61.36	61.20	62.81	67.92

CAL YR 1987 MAX 68.48 WTR YR 1988 MAX 67.92

PASCO COUNTY

						ELEVA-
	DATE					TION ABOVE
STATION NUMBER	SAMPLE	TIME		STAT	CION NAME	NGVD (FEET)
281704082085201	05-16-88 09-19-88	1410 1342	81720801	25S22E30	RICHLAND BAPTIST CHURCH	68.39 73.18
281930082093702	05-16-88 09-19-88	1400 1330	81920902	25S21E12	LYKES PASCO FERT 4-IN	67.30 72.11
282005082112801	05-16-88 09-19-88	1308 1338	82021104	25S21E03	STEARNS WELL	67.94 71.83
282005082153501	05-16-88	1240	82021501	25S20E01	GOLF COURSE WELL	76.73
282121082071101	05-16-88 09-19-88	1340 1310	82120702	24S22E32	CUMMER OFFICE WELL	73.22 76.62
282154082142401	05-16-88 09-19-88	1121 1057	82121401	24S21E30	HAYCRAFT WELL	67.71 72.10
282221082103001	05-16-88 09-19-88	1325 1255	82221001	24S21E26	COLLURA WELL NO 1	66.71 71.70
282428082134501	05-16-88 09-19-88	1100 1033	82421301	24S21E08	LEE WELL	64.85 69.71
282430082112101	05-16-88 09-19-88	1037 1009	82421102	24S21E10	SELF WELL	64.05 69.15
282717082142001	05-16-88 09-19-88	1000 0920	82721401	23S21E30	ROSSINI WELL WEST OF TRILBY	54.45 61.36
282816082123701	05-16-88 09-19-88	0933 0857	82821201	23S21E21	TOMKOW HAY BARN WELL	52.05 58.62

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 36 POLK COUNTY

1

Index	Site	Page
number	number	number
1	274812081190301	306
2	274815081130301	306
3	274846081262001	307
4	280503081552801	308
5	280531081431601	309
6	280556081532601	309
7	280715081543501	310
8	280719081543301	310
9	281008081441801	311
9	281008081441802	311
10	281057081495002	312
11	281202081391701	312
11	281202081391702	313
12	281312082011601	313

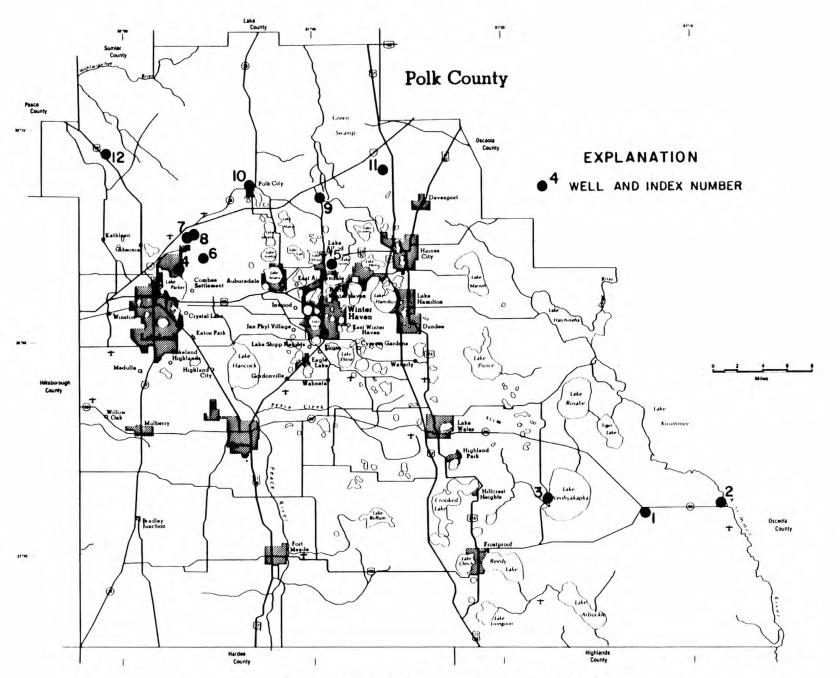


Figure 36--Location of wells in Polk County.

POLK COUNTY

WELL NUMBER .-- 274812081190301. P-49 Well near Frostproof, FL.

AQUIFER .-- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 6 in., depth 17 ft, cased to 14 ft, gravel-packed from 14 to 17 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 104.93 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.38 ft above land-surface datum.

PERIOD OF RECORD.--April 1949 to current year. Records prior to January 1974 are unpublished and are available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 105.38 ft NGVD, June 18, 1982; lowest, 98.76 ft NGVD, June 8, 1962.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	103.30	104.40	103.81	103.08	103.06	103.99	103.28	102.16	101.49	101.65	104.25	104.60
10	105.01	104.26	103.90	102.97	103.76	104.70	103.11	101.86	103.17	103.57	104.84	104.55
15	104.27	103.79	103.52	102.97	103.88	104.44	102.84	102.85	102.69	104.65	104.80	103.98
20	103.97	104.64	103.33	102.81	103.40	104.59	102.63	102.66	102.58	104.19	104.35	103.53
25	103.62	104.29	103.22	103.88	103.80	103.93	102.36	102.21	102.21	104.25	104.23	103.24
EOM	104.67	104.25	103.08	103.27	103.24	103.55	102.45	101.77	101.96	104.00	104.53	103.03
MAX	105.01	105.00	104.19	103.88	104.00	104.80	103.48	103.05	103.39	104.82	104.86	104.87
CAL Y	1987	MAX 105.0	1									

WTR YR 1988 MAX 105.01

WELL NUMBER. -- 274815081130301. River Ranch Well near Indian Lake Estates, FL.

LOCATION.--Lat 27°48'15", long 81°13'03", in NW\hW\hW\h sec.10, T.31 S., R.31 E., Hydrologic Unit 03090101, 92 ft south of State Highway 60, 1.0 mi west of Kissimmee River Bridge, and 6.5 mi east of Indian Lake Estates. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 300 ft, cased to 185 ft.

INSTRUMENTATION . -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 55.17 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977, datum was considered to be 55.64 ft, and Oct. 1, 1977, to Sept. 30, 1978, at 55.34 ft NGVD. Measuring point: Top of casing, 0.30 ft above land-surface datum.

PERIOD OF RECORD. -- May 1974 to September 1984 (bimonthly); October 1984 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.79 ft NGVD, present datum, Nov. 13, 1975; lowest measured, 41.33 ft NGVD, June 1, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
DEC			MAY		
07	1255	47.00	16	1130	44.22
FEB			20	1148	44.19
10	1150	46.54	JUL		
MAR			19	1120	44.73
28	1130	47.14	SEP		
			19	1152	46.50

POLK COUNTY

WELL NUMBER. -- 274846081262001. Lake Weehyakapka Well near Frostproof, FL.

LOCATION.--Lat 27°48'46", long 81°26'20", in NE\nW\sE\s sec.5, T.31 S., R.29 E., Hydrologic Unit 03090101, on southwest shore of Lake Weohyakapka, at county boat ramp, and 8.0 mi east of Frostproof. Owner: Polk County.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, public-supply, artesian well, diameter 3 in., depth 199 ft, cased to 153 ft.

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 65.15 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977, datum was considered to be 65 ft, from topographic map, and Oct. 1, 1977, to Sept. 30, 1978, at 65.30 ft NGVD. Measuring point: Spigot on discharge line, 2.50 ft above land-surface datum.

PERIOD OF RECORD.--February 1958, December 1959, June 1969 to September 1984 (bimonthly); October 1984 to September 1986 (monthly); October 1986 to September 1987 (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 88.35 ft NGVD, present datum, Dec. 15, 1959; lowest measured, 72.27 ft NGVD, May 20, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
DEC			MAY		
07	1215	82.75	16	1017	76.65
FEB			17	1115	76.05
10	0940	81.95	JUL		
MAR			19	1007	80.75
28	1030	82.85	SEP		
			20	1025	81.35

POLK COUNTY

WELL NUMBER. -- 280503081552801. Fish Lake Deep Well near Lakeland, FL.

LOCATION.--Lat 28°05'03", long 81°55'28", in SE\SE\SE\SE\SE\SE\Sec.32, T.27 S., R.24 E., Hydrologic Unit 03100101, 50 ft east of Lake Park Drive, 1.4 mi south of Old Combee Road, and 3.5 mi northeast of Lakeland. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 4 in., depth 311 ft, cased to 265 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 134.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.65 ft above land-surface datum.

PERIOD OF RECORD.--December 1955 to current year (bimonthly), incomplete. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 120.97 ft NGVD, Aug. 8, 1960; lowest measured, 103.60 ft NGVD, May 10, 1976.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
02	1025	112.28	18	0928	110.18
DEC			JUN		
28	1145	113.83	10	1025	109.56
FEB			AUG		
17	1030	113.52	05	1020	113.01
APR			SEP		
15	1030	112.48	21	1000	115.47

POLK COUNTY

WELL NUMBER. -- 280531081431601. Lake Alfred Deep Well at Lake Alfred, FL.

LOCATION.--Lat 28°05'31", long 81°43'16", in SE\sW\tanks NW\tau\tau sec.33, T.27 S., R.26 E., Hydrologic Unit 03100101, on northeast corner at intersection of Glencruiten Avenue and Haines Boulevard at Lake Alfred. Owner: City of Lakeland.

AQUIFER .-- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, public supply, artesian well, diameter 12 in., depth 555 ft, cased to 282 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 171.04 ft, above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelter floor, 0.34 ft above land-surface datum.

PERIOD OF RECORD.--May 1973 to February 1976 (quarterly), incomplete; March 1976 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 126.51 ft NGVD, July 10, 1974; lowest, 109.13 ft NGVD, May 15, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	121.41		242						115.25	118.38	120.77	120.75
10									116.54	117.88	120.12	121.28
15						122.20			115.64	118.00	120.40	121.75
20							116.89		115.14	119.44	120.35	121.98
25								117.17	116.84	120.57	120.62	119.04
EOM								118.55	118.32	120.91	120.65	118.06
MAX									118.36	120.91	120.93	122.94

WELL NUMBER. -- 280556081532601. Temnorock Road Well near Lakeland, FL.

LOCATION.--Lat 28°05'56", long 81°53'26", in SE\SE\SE\SE\SE\Sec.27, T.27 S., R.24 E., Hydrologic Unit 03100101, on south side of Tennorock Road, 0.9 mi east of Alternate State Highway 33, and 5.4 mi northeast of Lakeland. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 3 in., depth 72 ft, cased to 45 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 131.46 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.85 ft above land-surface datum.

PERIOD OF RECORD.--February 1956 to February 1960 (monthly), incomplete; June 1960 to May 1961 and January 1963 to September 1977 (about thrice yearly); October 1977 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 124.41 ft NGVD, Sept. 18, 1979; lowest measured, 96.15 ft NGVD, May 7, 1968.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
02	1015	119.68	18	0900	118.02
DEC			JUN		755
28	1045	120.78	10	1015	117.48
FEB			AUG		
17	1015	120.72	05	1005	120.17
APR			SEP		
15	1020	119.45	21	0945	122,67

POLK COUNTY

WELL NUMBER. -- 280715081543501. Combee Road Deep Well near Lakeland, FL.

LOCATION.--Lat 28°07'07", long 81°54'30", in SW\NE\SE\x sec.21, T.27 S., R.24 E., Hydrologic Unit 03100101, at the intersection of State Highway 33 and Combee Road, 1.5 mi southwest of Interstate Highway 4, and 7.3 mi northeast of Lakeland. Owner: U.S. Geological Survey.

AQUIFER .-- Hawthorn Formation of Miocene Age, Geologic Unit 122 HTRN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, diameter 3 in., depth 55 ft, cased to 31 ft.

INSTRUMENTATION . -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 136.20 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.80 ft above land-surface datum.

PERIOD OF RECORD.--January 1956 to September 1977 (thrice yearly); October 1977 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 136.92 ft NGVD, July 7, 1959; lowest measured, 118.56 ft NGVD, Nov. 6, 1964.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
02	1015	133.40	18	0820	133.28
DEC			JUN		
28	1035	133.47	10	1010	133,43
FEB			AUG		
17	1005	133.00	05	1000	134.23
APR			SEP		
15	1010	133.48	21	0930	134.58

WELL NUMBER. -- 280719081543301. Combee Road Shallow Well near Lakeland, FL.

LOCATION.--Lat 28°07'06", long 81°54'31", in SW\nE\sE\s sec.21, T.27 S., R.24 E., Hydrologic Unit 03100101, at the intersection of State Highway 33 and Combee Road, 1.5 mi southwest of Interstate Highway 4, and 7.3 mi northeast of Lakeland. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS .-- Drilled, observation, nonartesian well, diameter 1.25 in., depth 9 ft, cased to 8 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 136.45 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

PERIOD OF RECORD.--August 1955 to September 1977 (thrice yearly); October 1977 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 136.76 ft NGVD, Sept. 18, 1979; well observed dry Nov. 16, 1964.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
02 DEC	1010	134.44	18 JUN	0814	134.17
28	1030	134.57	10	1005	134.31
FEB 17	1000	134.55	AUG 05	0955	134.96
APR	1000	104.55	SEP	0933	134.90
15	1005	134.87	21	0935	136.40

POLK COUNTY

WELL NUMBER .-- 281008081441801. Lake Alfred Deep Well near Lake Alfred, FL.

LOCATION.--Lat 28°10'08", long 81°44'18", in SW\nW\nW\nk sec.5, T.27 S., R.26 E., Hydrologic Unit 03100208, on west side of Pit Road, 100 ft north of intersection with State Highway 557, 1.2 mi south of Interstate Highway 4, and 5.0 mi north of Lake Alfred. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 425 ft, cased to 102 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 137.38 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.25 ft above land-surface datum.

PERIOD OF RECORD. -- July 1959 to November 1960 (monthly); December 1960 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 131.07 ft NGVD Nov. 3, 1960; lowest, 119.85 ft NGVD, May 3, 1974.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	127.25	127.62	128.25	127.42	127.79	126.93	127.50	126.72	125.28	125.61	126.75	128.12
10	126.09		128.18	127.62	128.01	127.97	126.74	125.70	125.97	125.01	127.00	128.91
15	127.40		128.05	127.96	127.98	128.54	126.44	126.22	125.33	124.84	127.22	128.86
20	127.35		128.10	127.70	128.11	128.62	125.96	124.91	124.74	125.94	127.48	128.29
25	126.95		127.90	128.17	128.01	128.60	126.29	125.65	125.21	126.53	127.32	127.43
EOM	125.72		127.69	127.52	127.69	128.45	125.53	126.73	125.85	126.76	127,91	126.72
MAX	127.52		128.61	128.17	128.12	128.71	128.15	126.90	126.26	126.76	127.93	128.98

WELL NUMBER. -- 281008081441802. Lake Alfred Shallow Well near Lake Alfred, FL.

LOCATION.--Lat 28°10'08", long 81°44'18", in SW\(\frac{1}{2}\)NW\(\frac{1}{2}\)NW\(\frac{1}{2}\)Sec.5, T.27 S., R.26 E., Hydrologic Unit 03100208, on west side of Pit Road, 100 ft north of intersection with State Highway 557, 1.2 mi south of Interstate Highway 4, and 5.0 mi north of Lake Alfred. Owner: U.S. Geological Survey.

AQUIFER .-- Nonartesian sand aquifer of the Tertiary Quaternary Age, Geologic Unit 111 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, nonartesian well, diameter 2 in., depth and casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 137.25 ft above National Geodetic Vertical Datum of 1929. Measuring point: Hole in top of cap, 0.13 ft above land-surface datum.

PERIOD OF RECORD.--October 1960 to September 1977 (monthly); October 1977 to September 1983 (bimonthly); October 1983 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 135.14 ft NGVD, Sept. 6, 1985; well observed dry on numerous visits.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		MAY		
1220	129.95		1610	130.68
1230	130.42		1535	130.73
		JUN		4223002
1730	132.65	30	1320	129.99
		JUL		
1120	130.94	29	1135	130.08
		AUG		
1115	131.01	30	1607	131.92
		SEP		
1215	130.54	21	0811	132.27
1210	132.55			
1200	131.14			
	1220 1230 1730 1120 1115 1215 1210	ATION ABOVE NGVD (FEET) 1220 129.95 1230 130.42 1730 132.65 1120 130.94 1115 131.01 1215 130.54 1210 132.55	ATION ABOVE TIME NGVD (FEET) DATE MAY 1220 129.95 16 1230 130.42 31 1730 132.65 30 1120 130.94 29 AUG 1115 131.01 30 SEP 1215 130.54 21	ATION ABOVE TIME NGVD (FEET) DATE **MAY** 1220 129.95 16 1610 1535 JUN 1535 JUN 132.65 30 1320 JUL 1120 130.94 29 1135 AUG 1115 131.01 30 1607 SEP 1215 130.54 21 0811 1210 132.55

POLK COUNTY

WELL NUMBER. -- 281057081495002. ROMP 76A Well near Polk City, FL.

LOCATION.--Lat 28°10'57", long 81°49'50", in NW\sW\nE\sec.32, T.26 S., R.25 E., Hydrologic Unit 03100208, in pasture at end of Pine Avenue, 0.3 mi north of State Highway 33 in Polk City. Owner: Southwest Florida Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, observation well, diameter 6 in., depth 315 ft, cased to 264 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 136.79 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.40 ft above land-surface datum.

PERIOD OF RECORD . -- November 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 132.29 ft NGVD, Oct. 3, 1979; lowest, 119.37 ft NGVD, May 16, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	128.76	128.92	129.63	128.68	129.16	128.27	128.77	127.57	125.69	126.30	128.42	129.96
10	127.92	129.35	129.59	128.86	129.37	129.37	127.53	126.15	126.73	126.05	128.58	130.98
15	128.87	129.08	129.34	129.18	129.23	129.90	127.24	126.90	126.07	125.86	128.68	131.01
20	129.03	129.61	129.33	129.06	129.46	129.99	127.43	126.54	125.18	126.90	129.18	130.16
25	128.38	129.70	129.15	129.42	129.38	130.05	127.05	126.30	126.31	127.62	129.35	129.20
EOM	127.13	130.11	128.79	128.84	128.94	129.89	126.29	127.34	126.70	128.34	129.63	128.54
MAX	129.09	130.12	130.03	129.42	129.48	130.14	129.61	127.57	126.98	128.34	129.65	131.11

WTR YR 1988 MAX 131.11

WELL NUMBER, --281202081391701. PO-1 Thornhill Deep Well near Davenport, FL.

LOCATION.--Lat 28°12'02", long 81°39'17", in SE\SW\SW\Sw\Sw. sec.19, T.26 S., R.19 E., Hydrologic Unit 03080102, on dirt road 0.8 mi east of State Highway 27, and 2.0 mi south of the intersection State Highway 27 and Interstate Highway 4 near Davenport. Owner: St. Johns River Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, unused, diameter 4 in., depth 151 ft, casing length unknown.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 133.21 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.20 ft above land-surface datum.

PERIOD OF RECORD.--May 1983 to October 1985 (semiannually); November 1985 to current year. Records prior to October 1986 are unpublished and available in the files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 129.06 ft NGVD, Sept. 12, 1983; lowest daily maximum water level, 122.85 ft NGVD, June 22, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	125,43	125.73	126.13	125.17	125.28	124.61	125.55	125.15	124.05	123.86	123.98	124.68
10	124.79	126.04	126.57	125,26	125.37	125.37	125.24	123.93	124.40	123.49	124.20	125.53
15	125.54	125.95	126.57	125.42	125.28	125.75	124.65	124.74	123.91	123.34	124.26	125.61
20	125.53	126.31	125.61	125.32	125.40	126.00	124.88	123.90	123.69	123.80	124.30	125.18
25	125.25	126.39	125.43	125.51	125.30	126.06	124.63	124.41	123.69	123.90	123.75	125.13
EOM	124.46	126.70	125.36	125.20	125.15	125.44	124.53	124.78	123.61	124.05	124.54	124.26
MAX	125.61	126.71	126.69	125.51	125.40	126.07	125.74	125.15	124.66	124.05	124.54	125.63

WTR YR 1988 MAX 126.71

POLK COUNTY

WELL NUMBER. -- 281202081391702. PO-2 Thornbill shallow well near Davemport, FL.

LOCATION.--Lat 28°12'02", long 81°39'17", in SE\s\\s\\s\\s\\s\\s\\s\\s\\s\\s\\s\. R.19 E., Hydrologic Unit 03080102, on undeveloped road 0.8 mi east of U.S. Highway 27, and 2.0 mi south of the intersection of U.S. Highway 27 and Interstate Highway 4 near Davenport. Owner: St. Johns River Water Management District.

AOUIFER .-- Nonartesian sand of the surficial aquifer system, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS. -- Drilled, observation, unused, diameter 2 in., depth 15 ft, cased to 5 ft, screened interval to 10 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 132.19 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.60 ft above land-surface datum.

PERIOD OF RECORD. -- May 1986, November 1986 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 128.80 ft, Apr. 5, 1988; lowest measured, 126.29 ft, Oct. 1, 1987.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		MAY		
1235	126.29	17	0759	127.64
0840	126.72	JUN		
		10	0734	127.25
1055	127.97	JUL		
		27	0940	126.39
0840	127.61	SEP		
		21	1400	128.52
1035	128.80			
	1235 0840 1055 0840	ATION ABOVE NGVD (FEET) 1235 126.29 0840 126.72 1055 127.97 0840 127.61	ATION ABOVE TIME NGVD (FEET) DATE MAY 1235 126.29 17 0840 126.72 JUN 10 1055 127.97 JUL 27 0840 127.61 SEP 21	ATION ABOVE TIME NGVD (FEET) DATE MAY 1235 126.29 17 0759 0840 126.72 JUN 10 0734 1055 127.97 JUL 0840 127.61 SEP 21 1400

WELL NUMBER. -- 281312082011601. ROMP 87 Well near Lakeland, FL.

LOCATION.--Lat 28°13'12", long 82°01'25", in SE\NE\SE\times sec.17, T.26 S., R.23 E., Hydrologic Unit 03100208, 2.35 mi northwest of intersection of U.S. Highway 98 and Rock Ridge Road, and 14.5 mi northwest of Lakeland. Owner: Southwest Florida Water Management District.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 6 in., depth 380 ft, cased to 300 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 107.52 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.86 ft above land-surface datum.

PERIOD OF RECORD . -- January 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 105.40 ft NGVD, Mar. 31, 1983; lowest, 96.20 ft NGVD, June 5, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	102.18	102.03	103.09	102.12	103.73	103.31	103.42		100.76		101.61	104.58
10	101.97	102.43	102.88	102.41	103.91	104.51	103.19		100.55		101.61	105.36
15	102.20	102.25	102.66	102.51	103.78	104.54	102.91		100.26		101.95	104.98
20	102.11	103.02	102.72	102.40	103.84	104.65	102.61	100.61			103.42	104.52
25		103.30	102.52	103.19	103.61	104.34	102.21	100.44	100.03	101.05	103.85	104.07
EOM	101.33	103.46	102.26	103.87	103.39	103.76	101.99	101.22		101.60	104.03	104.00
MAX		103.49	103.39	103.87	103.91	104.69						105.37

POLK COUNTY

	DATE			ELEVA- TION ABOVE
STATION NUMBER	SAMPLE	TIME	STATION NAME	NGVD (FEET)
273903081185201	05-17-88 09-20-88	1021 0938	73911801 33S30E06 USAF AVON PARK NO 1	80.99 80.19
273929081080601	05-13-88 09-21-88	1305 1130	POF-20 S-65A WELL NR S CO LINE	43.18 45.50
274553081115601	05-17-88 09-20-88	1340 1137	745111 31S31E23 RIVER RANCH PUBLIC SUPPLY	42.71 45.13
274746081202201	05-17-88 09-20-88	1201 1102	747120 31S30E08 INDIAN LK ESTATES GOLF COURSE	60.84 64.24
275137081252501	05-17-88 09-20-88	1426 1215	751125 30S29E21 E LAKE WALES UTILITY	74.28 79.78
275622081252301	05-20-88 09-20-88	1016 1237	756125 29S29E28 LAKE ROSALIE NW	57.02 59.42
275634081211801	05-17-88 09-20-88	1618 1305	756121 29S30E19 KISS STPK NR LK KISSIMMEE	54.60 57.11
280153081274101	05-19-88 09-20-88	0920 1410	801127 28S29E19 LK HATCHI NR HAINES CITY	66.29 68.79
280420081570101	05-18-88 09-21-88	1012 1035	LAKELAND STADIUM WELL AT LAKELAND	90.01 98.87
280558081314801	05-19-88 09-20-88	0817 1502	805131 27S28E29 KIMBELL WELL NR LK MARION	70.51 72.18
281058081495002	05-18-88 09-21-88	1108 1118	USGS 1.75-IN DRILL PIPE INNER MONITOR AT POLK CITY	126.51 129.59
281058081495003	05-18-88 09-21-88	1115 1121	USGS 4-IN ANNULAR MONITOR AT POLK CITY	125.57 128.49
281058081495004	05-18-88 09-21-88	1120 1115	USGS CORE HOLE 2 AT POLK CITY	123.50 126.10
281317081491301	05-18-88 09-21-88	1304 1136	813149423 26S25E16	125.14 127.65
281440081431701	05-18-88 09-21-88	1356 1214	814143232 26S26E04	125.48 127.21
281511081393101	05-20-88 09-21-88	0819 1305	815139342 26S26E01	120.76 120.48
281532081345001	05-19-88 09-21-88	1142 1325	815134134 26S27E02 LOUGHMAN DP WELL NR LOUGHMAN	90.72 92.40
281532081493001	05-19-88 09-21-88	1240 1150	815149233 25S25E32	123.52 125.93
281631081564501	05-16-88 09-19-88	1312 1445	SPEARS WELL NR ROCK RIDGE	103.86 106.82

POLK COUNTY

274732081593701 - SHALLOW WELL RECLAIMED SAND TAILS MEAR BRADLEY JUNCTION

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/C	PH STAN ARD	WATE	E INUN	AT- DIS- M- SOLV ALT (MG/	DIS ED SOLV L (MG/	M, SODIU - DIS- ED SOLVE L (MG/	DIS D SOLV L (MG/	M, LINIT - LAE ED (MG/ L AS	Y SULFA DIS- L SOLV (MG/	DIS- ED SOLVED L (MG/L
AUG 17	1255	2	86 7.	00 24	.5	80 22	18	2.	6 1.	1 133	0.	10 2.9
DATE	S (ROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
AUG 17		0.041	0,010	<0.020	2.20	2.6	0.370	0.180	<1	<100	<1	<10
DATE	F F	OPPER, COTAL RECOV- CRABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
AUG 17		1	9100	<5	110	0.70	<1	<1	10	<0.20	<0.20	<0.20
DATE	F	ROMO- FORM FOTAL FUG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
17		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.30
DATE	CH ET E	TRA- ILORO- THYL- TOTAL IG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
AUG 17		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	CH BE	3-DI- ILORO- INZENE TOTAL IG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG 17		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2	<0.2

POLK COUNTY--Continued

274751081591801 - SHALLOW WELL NATURAL NEAR BRADLEY JUNCTION

DATE	TIME	SPE- CIFI CON- DUCT ANCE (US/C	C PH - (STA	ND- ATUR D WATE	RE INUMER COBA	AT- DIS- M- SOLV ALT (MG)	FED SOL	UM, S- VED /L	SODIU DIS- SOLVE (MG/ AS N	DIS D SOLV	M, LINIT S- LAE VED (MG/ 'L AS	Y SULFA B DIS- L SOLV (MG/	DIS- ED SOLVED L (MG/L
AUG													
18	1245	1	.36 5	.40 25	5.0	<5 2.	.2 2	. 5	13	5.	3 5.9	1.	1 20
DAT	TE.	BROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PH	PHOS- HORUS, DRTHO, FOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
AUG			4 4 5 5 5		200		- S.		Contract of		0.00		7.7
18		0.040	0.010	0.190	0.030	<0.20	0.540		0.050	<1	<100	1	10
DAT		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	F	ILVER, FOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
AUG													
18		2	1500	<5	40	0.70	<1		<1	<10	<0.20	<0.20	<0.20
DAT		BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	EI	HLORO- THANE TOTAL JG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG 18		<0.20	<0.20	<0.20	0.50	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20
10		-0.20	-0.20	-0.20	0.50	-0.20	-0.20		-0.20	-0.20	-0.20	-0.20	-0.20
DAT	re	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	CH ET	1,2,2 ETRA- HLORO- THANE TOTAL JG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
AUG		<0.20	<0.20	-0 20	-0.00	-0.00	-0.00		-0 20	-0.00	-0.00	-0.00	-0.00
10		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20
DAT	re i	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	VINYL-	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	F	VINYL CHLO- RIDE FOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG													
18		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.2	<0.2	<0.2	<0.2

POLK COUNTY--Continued

274751081592301 - SHALLOW WELL RECLAIM PASTURE NEAR BRADLEY JUNCTION

DATE	TIME	SPE- CIFI CON- DUCT ANCE (US/C	PH - (STAN ARI	WATE	E INUM	T- DIS- I- SOLV LT (MG/	DIS- ED SOLVI L (MG/I	M, SODIU - DIS- ED SOLVE L (MG/	DIS D SOLV L (MG/	M, LINIT - LAB ED (MG/ L AS	Y SULFA DIS- L SOLV (MG/	DIS- ED SOLVED L (MG/L	
AUG 18	1105	3	40 7.	10 26	5.0	<5 19	32	2.	4 0.	40 149	21	8.4	
DATE		ROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	
AUG 18		0.020	<0.010	<0.020	0.110	0.23	0.220	0.100	1	<100	<1	<10	
DATE		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	
AUG 18		<1	2000	<5	40	0.60	<1	<1	<10	<0.20	<0.20	<0.20	
DATI		BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	
AUG 18		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
DATI	E (TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	
AUG 18		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
DATE	E E	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)	
AUG 18		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2	<0.2	

POLK COUNTY--Continued

274801081585201 - SHALLOW WELL MATURAL PASTUKE MEAR BRADLEY JUNCTION

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CI	PH (STAN ARI	WATE	RE INUN	AT- DIS- M- SOLV ALT (MG/	PED SOLVEL (MG)	JM, SODI S- DIS VED SOLV 'L (MG	- DIS ED SOLV /L (MG)	IM, LINIT S- LAB VED (MG/ 'L AS	Y SULFA DIS- L SOLV (MG/	DIS- ED SOLVE L (MG/L	
AUG 18	1000	2	90 5.	10 26	5.0	20 31	2.	.1 12	0.	20 1.2	48	23	
DATE	50 (M	OMIDE OIS- OLVED OG/L (S BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	
AUG		.40	<0.010	0.190	0.070	0.27	0.080	0.010	<1	<100	<1	10	
18		.40	~0.010	0.190	0.070	0.27	0.000	0.010	~1	~100	-1	10	
DATE	TC RE ER (U	PPER, DTAL CCOV- LABLE IG/L	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	
AUG			ALC: SALE										
18		1	3400	<5	20	<0.10	<1	<1	10	<0.20	<0.20	<0.20	
DATE	TO	MO- ORM OTAL IG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	
AUG 18	<	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
DATE	CHL ETH EN TO	RA- ORO- IYL- IE OTAL	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	
AUG 18	<	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
10		0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	~0,20	-0.20	
DATE	CHL BEN TO	ORO- IZENE OTAL	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)	
AUG 18	<	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2	<0.2	

POLK COUNTY--Continued

274916081472601 - SHALLOW WELL RECLAIMED LOWLAND DIG NEAR HOMELAND

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 12	0900	1230	6.80	E50	94	85	30	1.3	639	<1.0
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	BROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
AUG 12	38	0.30	<0.010	0.020	0.250	1.1	5.60	0.100	16	200
DATE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
AUG 12	<1	40	3	21000	10	180	0.50	<1	<1	30

POLK COUNTY--Continued

274951081521601 - IMC SHALLOW WELL ON HWY 640 NEAR BARTOW

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	BROMIDE DIS- SOLVED (MG/L AS BR)
SEP 06 06	1100 1130	522	15 10	35 35	22 22	34 34	0.30 0.30	237 235	0.60	14 14	0.10 0.12
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP 06 06	0.010 0.010	0.020 0.020	1.30 1.30	1.6 1.6	1.80 1.70	0.080 0.480	<1 <1	<100 <100	<1 <1	10 10	<1 <1
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)
SEP 06 06	13000 13000	<5 30	90 100	0.20 <0.10	<1 <1	<1 <1	20 20	<0.20 <0.20	<0.20 <0.20	0.20 <0.20	<0.20 <0.20
DATE	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)
SEP 06 06	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	1.8 1.7	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.40 <0.60	<0.20 <0.20	<0.20 <0.20
DATE	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
SEP 06 06	<0.20 <0.20	0.50 0.40	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
	DATE TO	CHI 4-DI- ETH LORO- VIN NZENE ETH DTAL TO	HYL- DI- HYL- FLU THER MET DTAL TOT	ORO- TE 1,3 ORO- CHI HANE PRO	B-DI- 1,3 LORO- CHL DPENE PRO DTAL TO	ORO- CE PENE RI TAL TO	INYL CHI	TAL TO	DIE ETH WA PRENE WH DTAL TO	IANE TO TER WA IOLE WE TAL TOT	ENE TAL TER OLE REC
	6					0.20	1.4	<0.2 0.3			<0.2 <0.2

POLK COUNTY--Continued

				POLK COU	NTYCont	inued				
	27	503008150	1001 - SB	ALLOW WEL	L RECLAIM	ED SLIME	PIT NEAR	HOMELAND		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JG										
12	1205	836	6.70	E5	70	37	35	2.5	334	0.40
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	BROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
UG 12	17	0.12	<0.010	<0.020	12.2	13	1.80	0.010	1	<100
DATE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
UG 12	1	10	3	21000	<5	180	<0.10	<1	2	20
DATE	Z7	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
		(05/01)	UNITS	UNIIS)	AD CA)	AS INC)	AD IA)	AD A)	CACOS	AD DO4)
UG 12	1030	467	6.20	E5	38	14	30	1.2	176	24
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	BROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	TOTAL (MG/L	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
UG 12	6.7	0.20	0.010	0.020	1.50	2.5	7.70	0.470	5	<100
DATE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
UG										
12	<1	20	4	26000	<5	190	0.30	<1	<1	20
								-	0.7	-

POLK COUNTY--Continued

275352081543801 - SHALLOW WELL RECLAIMED PINE FIELD NEAR MULBERRY

		2,0002									
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 10	1240	1380	4.30	25.0	E10	160	27	75	2.4	<0.1	750
10	1240	1300	4,50	25.0	110	100	27	,,	2.4	-0.1	750
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	BROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
AUG		0.10	0.000	0.000	0.00	2.0	7 00	0 250	E5	100	<1
10	11	0.16	0.020	0.060	2.20	3.0	7.00	0.350	23	100	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)
AUG											
10	30	3	56000	<5	1000	<0.10	<1	<1	60	<0.20	<0.20
DATE	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)
AUG	40.00	-0.00	-10.00	-0.00	-0.00	-0.00	-0.00	40.00	-0.00	-0.00	-0.00
10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)
AUG											
10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG											
10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2

POLK COUNTY--Continued

275405081555801 - SHALLOW WELL RECLAIMED OPEN & PINES NEAR MULBERRY

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
AUG 10	0930	405	4.60	24.0	<5	1.3	4.1	68	0.40	1.5	150
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	BROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
AUG	10	0.080	<0.010	1.20	0.850	1.0	0.100	0.060	<1	<100	<1
10	10	0.080	<0.010	1.20	0.630	1.0	0.100	0.000	~1	~100	~1
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)
AUG	3.21	- 1	121						1.2	1 22	2000
10	<10	2	370	<5	10	<0.10	9	<1	<10	<0.20	<0.20
DATE	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)
AUG 10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
				0.20	0.20	0.20		0.20	0.20	0.20	0.20
DATE	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)
AUG	86.40	1 44									
10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,3-DI- CHLORO- FROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG											
10	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2

POLK COUNTY--Continued

275509081555601 - SHALLOW WELL RECLAIMED SAND TAILS NEAR MULBERRY

DATE	TIME	SPE- CIFI CON- DUCT ANCE (US/C	C PH - (STAN	WATE	RE INUN	AT- DIS- M- SOLV ALT (MG/	DIS ED SOLV	M, SODIU S- DIS- VED SOLVE L (MG/	DIS D SOLV	JM, LINIT S- LAE VED (MG/ /L AS	Y SULFA B DIS- L SOLV (MG/	DIS- ED SOLVED L (MG/L
AUG 17	1120	1	40 5.	.40 25	5.0 E2	200 14	3.	4 18	0.	.60 39	20	6.0
DATE		BROMIDE DIS- SOLVED (MG/L AS BR)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
AUG												
17		0.080	0.010	0.020	0.630	1.4	0.740	0.630	2	400	1	110
DATE		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)
AUG												
17		70	7200	60	70	3.9	E10	1	30	<0.20	<0.20	<0.20
DATI		BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)
AUG 17		<0.20	<0.20	<0.20	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.30
DATI	E	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
AUG 17		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1/		-0.20	-0.20	-0.20	~0.20	-0.20	~0.20	~0.20	-0.20	~0.20	<0.20	<0.20
DATI	E	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG		2120		0.02	,,211 211	12.22						
17		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2	<0.2

POLK COUNTY--Continued

275524081554201 - SHALLOW WELL RECLAIMED PINE FIELD NEAR MULBERRY

DATE	C: C: D: TIME A	JCT- NCE	PH (STAND- ARD UNITS)	TEMPE ATUR WATE (DEG	COL ER- (PL EE INU ER COB C) UNI	OR CA AT- I M- S ALT (TS) A	LCIUM DIS- SOLVED MG/L AS CA)	MAG SI DI SOL (MG AS	NE- UM, SOD: S- DIS VED SOL' G/L (MG MG) AS	POT IUM, SI S- DI /ED SOL S/L (MG NA) AS	AS- ALK UM, LINI S- LA VED (MG //L AS K) CAC	A- TY SULFATE B DIS- /L SOLVED (MG/L O3) AS SO4)
AUG 17	0930	160	5.20	25					9 1		.0 63	1.6
	3777	75.5	5457			723	33					
DATE	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	BROM D: D SOI (MX	MIDE IS- ARS LVED TO G/L (U	SENIC DTAL JG/L S AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIU TOTAL RECOV ERABI (UG/I AS CI	M M	HRO- IUM, OTAL ECOV- RABLE UG/L S CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	(UG/L
AUG 17	7.5	0	.32	<1	1100		-1	160	50	15000	70	200
17	7.5	U	.32	-1	1100		.1	160	50	13000	70	200
DATE	MERCUR TOTAL RECOV ERABL (UG/L AS HG	SE: NI E TO (U) AS	LE- TO UM, RI TAL EF G/L (U SE) AS	LVER, DTAL ECOV- RABLE JG/L S AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	DI- CHLORG BROMG METHAL TOTAL (UG/I	CATO- TO- CONE R	RBON- ETRA- HLO- IDE OTAL UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)
AUG 17	3.5		E9	2	50	<0.2	20	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	TOLUEN TOTAL (UG/L)	E BEN. TO' (UG	CHI ZENE BEN TAL TOT /L) (UC	LORO- NZENE TAL G/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZEI TOTAL (UG/L)	- ME NE BR T	THYL- OMIDE OTAL G/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)
AUG												
17	1.0	<	0.20	0.20	<0.20	<0.2	20	<0.20	<0.20	<0.30	<0.20	<0.20
DATE	1,1-DI CHLORO ETHANE TOTAL (UG/L)	1,1- CHLO ETH TO (UG	-DI- 1,1 ORO- TF YL- CHI NE ETF TAL TO /L) (UC	L,1- RI- LORO- HANE DTAL G/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2 TETRA- CHLORG ETHANH TOTAL (UG/L)	2 1, CH CH E BE (U	2-DI- LORO- NZENE OTAL G/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO-	
AUG	12.2				20.22						1000	
17	<0.2	0 <	0.20 <	0.20	<0.20	<0.2	. 02	<0.20	<0.20	<0.20	<0.20	<0.20
DATE	1,4-DI CHLORO BENZEN TOTAL (UG/L)	- ETHY - VINY E ETI	ORO- CHI YL- DI- YL- FLU HER MET	ORO- IORO- CHANE	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI CHLORO PROPEN	E R	IDE OTAL	TOTAL	STYRENE TOTAL (UG/L)	WHOLE	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
AUG	442				100-67							
17	<0.2	0 <(0.20 <	0.20	<0.20	<0.2	20	<0.20	<0.2	<0.2	<0.2	<0.2

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 37 PUTNAM COUNTY

Index	Site	Page
number	number	number
1	292948081503001	328

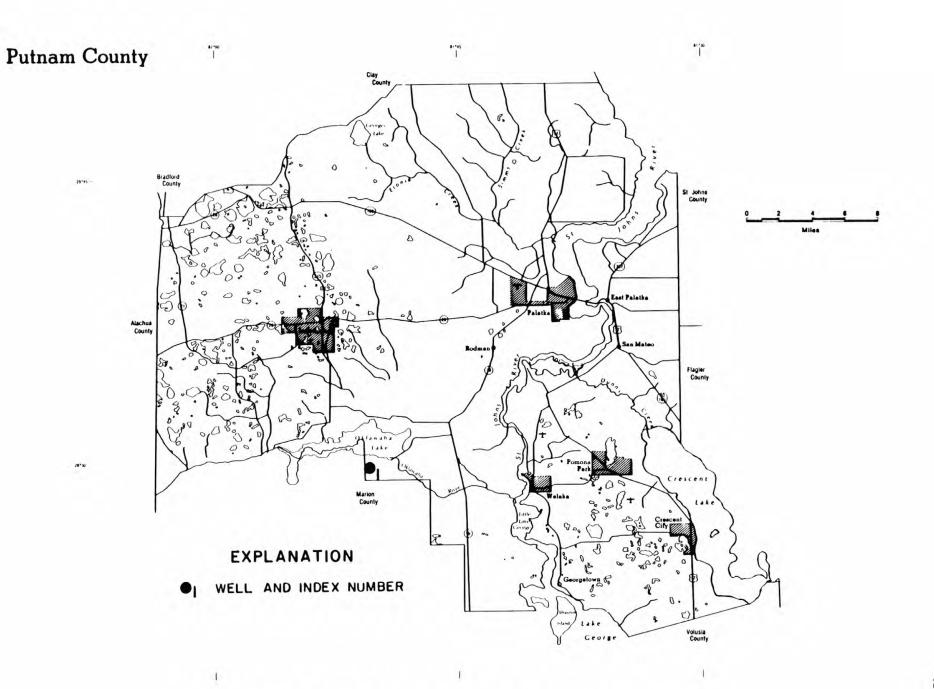


Figure 37. -- Location of wells in Putnam County.

PUTNAM COUNTY

WELL NUMBER. -- 292948081503001. Well RD-77-G near Orange Springs, FL.

LOCATION.--Lat 29°29'48", long 81°50'30", in NW\SW\NW\sec. 31, T.11 S., R.25 E., Hydrologic Unit 03080102, in northeast corner of intersection of roads 77 and 77-G in Ocala National Forest, 7.3 mi west of State Highway 19, and about 6.0 mi east of Orange Springs. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary system, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, diameter 4 in., depth 241 ft, cased to 215 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 100.81 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. casing, 2.5 ft above land-surface datum.

COOPERATION.--Since October 1, 1985 records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- September 1982 to September 1985 (bimonthly), October 1985 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.68 ft NGVD, Jan. 13, 1983; lowest measured, 17.30 ft NGVD, Mar. 25, 1986.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
27	1005	19.90	18	1245	19.64
NOV			31	0810	19.48
30	0915	19.63	JUN		
JAN			27	0945	19.45
04	0830	19.22	JUL		
25	1020	19.38	25	0835	19.31
FEB			AUG		
29	0855	19.23	29	0910	19.44
MAR			SEP		
29	0845	19.55	12	1015	20.03
APR			26	0810	20.47
25	0855	19.57			

PUTNAM COUNTY

			777	
STATION NUMBER	DATE	TIME	STATION NAME	ELEV- ATION ABOVE NGVD (FEET)
292143081374601	05-19-88 09-15-88	0825 0715	*SJ* P423 13S27E39 DRAYTON ISLAND, E SHORE GRAMD	9.22 9.60
292218081333101	05-17-88 09-14-88	0925 1310	*SJ* P410 13S27E11 UNION CAMP SJRWMD OBS WELL GEORTOW	24.80 25.86
292238081380301	05-19-88 09-14-88	0800 0720	*SJ* P422 13S27E39 DRAYTON ISLAND, E SHORE FC JONES	14.50 15.00
292246081284301	05-19-88 09-14-88	0940 1247	92212801	13.60 15.27
292254081382101	05-19-88 09-15-88	0750 0727	*SJ* P421 13S27E39 DRAYTON ISLAND, E SHORE LANDIN	10.50 11.50
292307081305201	05-19-88 09-14-88	0900 1212	*SJ* P341 13S28E06 OLD HWY17 OLD FERNERY, 0.5 MI WOF17	25.97 27.79
292435081441301	05-16-88 09-12-88	0730 0650	NEAR FRONTIER D H NEARR SALT SPRINGS	10.64 10.84
292528081383501	05-17-88 09-15-88	0840 0755	92513801 26S12E26 PUTNAM 28	17.70 19.02
292606081311101	05-19-88 09-15-88	0955 0925	*SJ* P242 12S28E25 D GAUTIER LAKES TELLBACRESBCENTCIT	29.09 30.44
292621081375101	05-17-88 09-15-88	0824 0804	*SJ* P373 MANSFIELD FERNERY BEULAH CH ROAD	21.64 23.23
292628081385501	05-19-88 09-15-88	0645 0820	*SJ* P396 12S26E23 WELAKA FISH HATCHERY, FRUITLAND	11.10 11.18
292815081341501	05-19-88 09-15-88	1015 0900	THUNDERBIRD AIRPORT	32.05 32.82
292824081443301	05-16-88 09-13-88	0750 0720	JOHNSONS FIELD NEAR WELAKA	7.36 8.10
292859081375701	05-17-88 09-15-88	0733 0838	P-408 HWAY 308B	17.61 18.52
292859081375702	05-17-88 09-15-88	0740 0845	P-409 SH OBS WELL HWY 308B	68.95 69.84
293107081352001	05-19-88 09-14-88	1155 1015	*SJ* P267 11S27E28 LAKE BROWARD PARKERRESON LAKE	27.18 28.12
293113081370301	05-19-88 09-14-88	1200 0904	*SJ* P382 11S27E19 MAINROAD OFF SISCORD POMONA PK	28.20 29.17
293214081352201	05-19-88 09-14-88	1135 0925	*SJ* P413 11S27E21 SJRWMD OBS WELL NEAR LAKE BROWARD	39.15 39.19
293234081424101	05-16-88 09-12-88	0810 0935	93214201SE RODEHEAVER BOYS RANCH	14.78 16.84

PUTNAM COUNTY--Continued

				ELEV-
STATION NUMBER	DATE	TIME	STATION NAME	ATION ABOVE NGVD (FEET)
293300081523901	05-18-88 09-13-88	0653 0752	933152 11S24E11 CE 60 U S A CORPS ENG.	60.62 61.39
293304081342301	05-19-88 09-14-88	1055 0952	*SJ* P411 11S27E09 PINEY BLUFF LANDING DUNNS CREEK	21.26 26.76
293420081415601	05-18-88 09-14-88	1300 0730	93414101 11S26E04 AM THOMAS	25.00 26.00
293439081524301	05-18-88 09-13-88	0705 0813	*SJ* P17 10S24E35 DEEP CRK OFF HWY 315, KEUKA	66.95 66.95
293441081373401	05-19-88 09-14-88	1235 1445	93413701 11S26E37 DUNNS CR BRIDGE	24.15 25.65
293543081315301	05-19-88 09-12-88	1245 0845	93513101 11S26E B.T. TILTON	13.83 15.99
293554081342601	05-16-88 09-12-88	1010 0815	SAN MATEO TOWERSITE DEEP	15.41 17.06
293631082005201	05-18-88 09-13-88	0800 0925	*SJ* P5 10S23E20 N TWIN LK HWY 20, HWTHRN	82.10 84.36
293632081595601	05-18-88 09-13-88	0920 1103	*SJ* P7 10S23E21 COWPNS LK WELL HWY 20, KEUKA *SJ* P7	81.11 79.98
293633081594601	05-18-88 09-13-88	0830 1103	DRAINAGE WELL COWPEN LAKE, PUTNAM CO	79.63 79.98
293720081595301	05-18-88 09-13-88	0908 1400	*SJ* P8 10S23E10 CHESSER WELL, PTMHLL	80.41 81.59
293733081474801	05-16-88 09-13-88	1215 1345	HOLLISTER WORKCTR CF (P-510)	48.58 47.50
293744081541601	05-18-88 09-13-88	0954 0900	*SJ* P15 10S24E16 GRASSY LAKE WELL, PTMHLL	73.34 74.16
293806081544901	05-18-88 09-13-88	0940 0835	*SJ* P16 10S24E08 KELLER WELL NO 11, PTNMHLL	71.25 74.30
293913081384001	05-19-88 09-15-88	1410 1400	93913801 10S26E01	23.38 24.90
293933081342801	05-17-88 09-12-88	0640 0800	93913411 10S27E04 P-172 CRACKER SWAMP	16.18 18.85
294034081431001	05-19-88 09-15-88	1510 1520	94014301 09S26E32 DAVIS SPRINGSIDE	28.90 30.90
294055081354501	05-19-88 09-15-88	1346 1240	*SJ* P77 09S27E EAST PALATKA, MECHECK FARMS	21.77 24.34

PUTNAM COUNTY--Continued

STATION NUMBER	DATE	TIME	STATION NAME	ELEV- ATION ABOVE NGVD (FEET)
294144081341801	05-19-88 09-15-88	1330 1257	94113401 09S27E 41-34-4 HAZEL MURPHEY	14.60 17.60
294308082002201	05-17-88 09-12-88	1335 1350	DRAINAGE WELL SWAN LK NEAR MELROSE	84.09 84.94
294441081442903	05-17-88 09-12-88	1423 1240	94414403 09S26E06	53.67 53.65
294449081573301	05-17-88 09-12-88	1318 1325	94415701 09S23E01 PROGRESS LEAGUE WELL	80.52 81.42
294515081314001	05-19-88 09-15-88	1310 1320	*SJ* P10 08S27E36 FEDERAL POINT, RIVERDALE	20.50 23.00
294814081345201	05-18-88 09-15-88	1420 1435	94813401 08S27E15 ART RIEGEL	27.50 29.50

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 38 ST. JOHNS COUNTY

Index number	Site number	Page number
1	293729081221201	334
	294120081292001	334
2		(7.7.4)
3	295134081245201	335
4	295221081252801	335
4	295223081251301	336
4	295233081252501	336
4	295248081250501	337
4	295305081250601	337
5	295341081263705	338
6	295357081294301	338
7	295502081175401	339
8	295713081203401	340
9	300019081363301	341
10	300354081301201	342
11	300717081381001	343
12	300758081230501	344

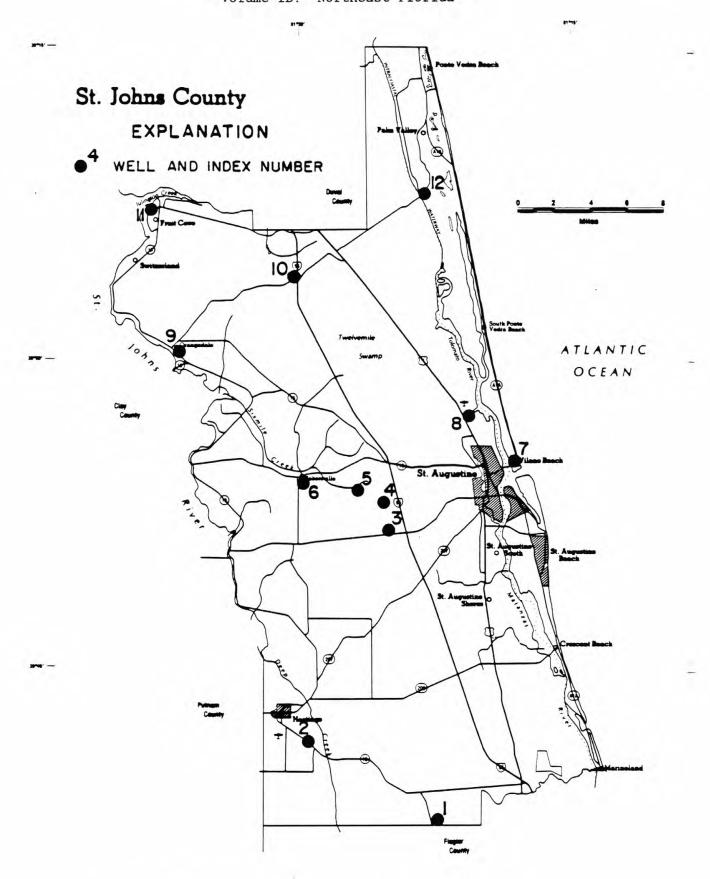


Figure 38.--Location of wells in St. Johns County.

ST. JOHNS COUNTY

WELL NUMBER.--293729081221201. Local Number St. Johns 937-122-1. Florida Department of Transportation Well near Hastings, FL.

LOCATION.--Lat 29°37'29", long 81°22'12", in SW\sW\sec.15, T.10 S., R.29 E., Hydrologic Unit 03080103, on Old Dixie Highway, at Flagler-St. Johns County line, and 12 mi southeast of Hastings. Owner: Florida Department of Transportation.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 6 in., depth 622 ft, cased to 142 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 37.93 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 4.17 ft above land-surface datum.

PERIOD OF RECORD. -- November 1958 to current year. Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 22.34 ft NGVD, Sept. 11, 1960; lowest, 11.46 ft NGVD, May 18, 1981.

			ELEVAT	ON, IN FE	ET NGVD,	MAXIMUM V		1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	15.45	16.12	16.62	16.64	16.93	17.12	16.04	14.02	14.54	14.59	15.19	15.83
10	15.31	16.11	16.82	16.78	17.10	17.48	14.96	13.28	14.67	14.53	15,23	16.01
15	15.71	16.08	16.86		17.13	17.37	14.54	13.95	14.55	14.61	15.29	16.20
20	15.84	16.42	16.70		17.13	16.90	14.10	14.32	14.48		15.39	16.28
25	15.73	16.47	16.79		17.10	16.99	13.46	14.15	14.62		15.57	16.32
EOM	15.64	16.91	16.59	16.73	17.13	16.82	13.09	14.51	14.72		15.61	16.24
MAX	15.93	16.91	16.87		17.20	17.48	16.72	14.51	14.77			16.39
CAL Y	R 1987 M	AX 17.46										

WELL NUMBER.--294120081292001. Local Number St. Johns 941-129-7. D.A. Reid Well near Hastings, FL.

LOCATION.--Lat 29°41'27", long 81°29'12", in NW\sEx\NW\s sec. 28, T.9 S., R.28 E., Hydrologic Unit 03080103, in a field on south side of State Highway 13, 2.4 mi southeast of intersection of State Highways 207 and 13 at Hastings. Owner: D.A. Reid.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 6 in., depth 541 ft, cased to 118 ft.

INSTRUMENTATION . -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 12.93 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter floor, 5.30 ft above land-surface datum.

REMARKS.--Water level seasonally affected by pumping of nearby wells.

PERIOD OF RECORD.--1955-56 (annually); 1957-63 (bimonthly); 1964-69 (annually); 1970 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.33 ft NGVD, Sept. 15, 1960; lowest measured, 1.42 ft NGVD, May 1, 1968.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
05	1345	14.42	17	0820	12.73
DEC			JUN		
01	0800	17.45	21	1005	13.64
JAN			AUG		
12	1225	17.42	18	1050	15.56
MAR			SEP		
08	1245	17.78	13	0805	16.48

ST. JOHNS COUNTY

WELL NUMBER. -- 295134081245201. Local Number SJS-111 (A-11) Well near Elkton, FL.

LOCATION.--Lat 29°51'34", long 81°24'52", in NWkNEkNEk sec. 31, T.7 S., R.29 E., Hydrologic Unit 03080201, 75 ft north of State Highway 214, 4.8 mi east of Molasses Junction, and 5.3 mi north of Elkton. Owner: St. Johns County.

AQUIFER. -- Nonartesian sand aquifer of the Tertiary System, Geologic Unit 120 NRSD.

WELL CHARACTERISTICS. -- Drilled, observation, nonartesian well, diameter 2 in., depth 83 ft, cased to 62 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 43 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder shelf, 1.0 ft above land-surface datum.

REMARKS. -- Water level seasonally affected by pumping of nearby wells.

PERIOD OF RECORD . -- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 8.59 ft below land-surface datum, Mar. 18,19, 1983; lowest, 16.48 ft below land-surface datum, Nov. 2,3, 1987.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MINIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	15.09	15.86	15.02	15.24	14.16	12.57	12.05	12.73	14.25	15.08	14.82	
10	15.28	15.31	15.18	15.38	13.38	11.09	12.60	13.33	14.10	15.55	15.23	
15	14.48	15.54	14.71	15.26	13.59	11.44	12.32	12.26	14.74	14.42	14.82	
20	15.18	15.17	14.93	15.35	12.86	11.17	12.81	12.71	15.01	14.43		
25	15.70	14.78	14.83	14.31	12.64	11.40	13,68	13.18	15.17	13.80		
EOM	16.11	15.00	15.24	14.16	13.06	11.87	13.54	14.19	14.78	14.56		
MIN	14.09	14.78	14.61	13.94	12.46	10.90	12.01	12.26	13.63	13.80	1	

CAL YR 1987 MAX 9.53 MAR 31

WELL NUMBER.--295221081252801. Local Number SJS-44. Tillman Ridge Well near Bakersville, FL.

LOCATION.--Lat 29°52'21", long 81°25'28", in SW\sW\sec. 19, T.7 S., R.29 E., Hydrologic Unit 03080201, in pumphouse in well field, 1.0 mi north of State Road 214, and 2.0 mi northwest of Interstate Highway 95. Owner: St. Johns County.

AQUIFER. -- Nonartesian sand aquifer of the Tertiary System, Geologic Unit 120 NRSD.

WELL CHARACTERISTICS.--Drilled, public supply, nonartesian well, diameter 14 in., depth 87 ft, cased to 68 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- December 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
MAR					
31	1030	585	21.0	13	<0.10
SEP 21	0945	570	21.0		.00
21	0943	3/0	21.0		

ST. JOHNS COUNTY

WELL NUMBER. -- 295223081251301. Local Number SJS-45. Tillman Ridge Well near Bakersville, FL.

LOCATION.--Lat 29°52'23", long 81°25'13", in SE\SE\ sec. 19, T.7 S., R.29 E., Hydrologic Unit 03080201, in pumphouse in well field, 1.0 mi north of State Road 214, and 1.75 mi northwest of Interstate Highway 95. Owner: St. Johns County.

AQUIFER.--Nonartesian sand aquifer of the Tertiary System, Geologic Unit 120 NRSD.

WELL CHARACTERISTICS. -- Drilled, public supply, nonartesian well, diameter 14 in., depth 87 ft, cased to 68 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- December 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
DEC					
01	1045	558	21.5	13	0.10
MAR					
31	1020	582	21.5	13	<0.10
SEP					
21	0900	560	22.0	13	<0.10

WELL NUMBER. -- 295233081252501. Local Number SJS-42. Tillman Ridge Well near Bakersville, FL.

LOCATION.--Lat 29°52'33", long 81°25'25", in SW\s\SW\s sec. 19, T.7 S., R.29 E., Hydrologic Unit 03080201, in pumphouse in well field, 1.0 mi north of State Road 214, and 2.1 mi northwest of Interstate Highway 95. Owner: St. Johns County.

AQUIFER. -- Nonartesian sand aquifer of the Tertiary System, Geologic Unit 120 NRSD.

WELL CHARACTERISTICS.--Drilled, public supply, nonartesian well, diameter 14 in., depth 79 ft, cased to 64 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- December 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
DEC					
01 MAR	1050	560	21.0	12	0.10
31 SEP	1045	585	21.0	12	0.40
21	1010	570	21.0	12	<0.10

ST. JOHNS COUNTY

WELL NUMBER. -- 295248081250501. Local Number SJS-41. Tillman Ridge Well near Bakersville, FL.

LOCATION.--Lat 29°52'48", long 81°25'05", in SW\xNE\x sec. 19, T.7 S., R.29 E., Hydrologic Unit 03080201, in pumphouse in well field, 1.0 mi north of State Road 214, and 1.95 mi northwest of Interstate Highway 95. Owner: St. Johns County.

AQUIFER. -- Nonartesian sand aquifer of the Tertiary System, Geologic Unit 120 NRSD.

WELL CHARACTERISTICS. -- Drilled, public supply, nonartesian well, diameter 14 in., depth 94 ft, cased to 68 ft.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- December 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
DEC 01	1100	560	21.0	12	0.10
31 SEP	1100	580	21.0	13	0.20
21	1040	575	21.0	13	<0.10

WELL NUMBER. -- 295305081250601. Local Number SJS-43. Tillman Ridge Well near Bakersville, FL.

LOCATION.--Lat 29°53'05", long 81°25'06", in SW\ne\ sec. 19, T.7 S., R.29 E., Hydrologic Unit 03080201, in pumphouse in well field, 1.0 mi north of State Road 214, and 2.1 mi northwest of Interstate Highway 95. Owner: St. Johns County.

AQUIFER.--Nonartesian sand aquifer of the Tertiary System, Geologic Unit 120 NRSD.

WELL CHARACTERISTICS. -- Drilled, public supply, nonartesian well, diameter 14 in., depth 82 ft, cased to 62 ft.

WATER-OUALITY RECORDS

PERIOD OF RECORD . -- December 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
DEC 01	1110	525	21.0	12	0.20
MAR 31 SEP	1050	555	21.0	12	0.20
21	1100	530	21.0	13	<0.10

ST. JOHNS COUNTY

WELL NUMBER. -- 295341081263705. Local Number SJ-112E. Tillman Ridge Deep Test Well near Tillman Ridge, FL.

LOCATION.--Lat 29°53'41", long 81°26'37", in SW\sW\sW\sw.W\s sec.13, T.7 S., R.28 E., Hydrologic Unit 03080201, 50 ft east of Cabbage Hammock Road, 1.5 mi south of State Highway 208, and 3.0 mi southeast of Bakersville. Owner: St. Johns County.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 517 ft, cased to 204 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 33 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top edge of shelter floor, 1.10 ft above land-surface datum.

PERIOD OF RECORD.--May 1981 to September 1982 (semiannually); January 1983 to current year. Records prior to May 1982 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 0.62 ft above land-surface datum, Mar. 18, 1983; lowest, 9.65 ft below land-surface datum, May 7, 1986.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MINIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	3.90	3.19	2.60	2.55	2.26	2.21	6.61		5.40	4.96	4.36	3.50
10	4.00	3.13	2.38	2.45	2.09	1.58	8.06		5.07	5.02	4.32	3.28
15	3.60	3.18	2.33	2.38	1.99	2.01	8.43		5.15	4.90	4.19	3.23
20	3.53	2.83	2.46	2.18	1.84	2.54	8.83	5.93	5.24	4.89	4.03	3.12
25	3.60	2.78	2.39	2.02	2.06	3.52		5.88	5.08	4.69	3.86	3.12
EOM	3.73	2.29	2.59	2.46	1.96	5.41		5.64	4.92	4.56	3.76	3.14
MIN	3.39	2.29	2.33	2.02	1.84	1.58			4.92	4.56	3.76	3.07

CAL YR 1987 MAX 1.30 MAR 19

WELL NUMBER. -- 295357081294301. Local Number SJ-77. Engel Well near Molasses Junction, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, diameter 4 in., depth and casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 18 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 4 in. tee at land-surface datum.

PERIOD OF RECORD. -- May 1977 to May 1986 (semiannually); July 1986 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.50 ft above land-surface datum, May 12, 1980; lowest measured, 1.52 ft above land-surface datum, May 4, 1987.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1983 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY				
05 NOV	1050	-10.40	1300	22.5	18 JUN	1230	-7.70	1350	23.0
30 JAN	1220	-12.60	1270	23.5	20 AUG	1125	-8.90	1310	22.5
11 MAR	1220	-12.40	1300	23.5	18 SEP	1435	-10.00	1350	23.5
07	1305	-12.80	1280	23.0	13	1300	-11.00	142	

ST. JOHNS COUNTY

WELL NUMBER.--295502081175401. Local Number SJ-91. P.J. Manucy Well near St. Augustine, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 6 in., depth 198 ft, cased to 195 ft.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 5.09 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. tee, 2.70 ft above land-surface datum.

PERIOD OF RECORD. -- May 1977 to September 1980 (semiannually); May 1981 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 29.20 ft NGVD, May 13, 1980; lowest measured, 17.50 ft NGVD, May 6, 1981.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1983 to current year.

ELEVATION AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY				
28	1040	22.49	1090	23.0	17	1136	22.29		44
NOV					23	1035	19.09	1110	23.5
23	1045	24.49			JUN				
DEC					28	1315	18.29		
29	1115	22.89	1060	22.5	JUL				
JAN					27	0930	20.49	1010	23.5
26	1200	24.59	1080	23.0	AUG				
FEB					03	1350	21.29	00	
26	1205	24.59			23	1350	21.29		
MAR					SEP				
31	0905	24.29	1030	23.0	13	1155	24.29		
APR					22	1120	21.49	1050	23.0
26	0855	19.99							

ST. JOHNS COUNTY

WELL NUMBER. -- 295713081203401. Local Number SJ-89. Airport Well near St. Augustine, FL.

LOCATION.--Lat 29°57'13", long 81°20'34", in land grant 50, T.6 S., R.29 E., Hydrologic Unit 03080201, at pump-house at St. Augustine Airport on U.S. Highway 1, 2.5 mi north of St. Augustine. Owner: St. Augustine Airport Authority.

AQUIFER .-- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, domestic, artesian well, diameter 4 in., depth 350 ft, cased to 190 ft.

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Land-surface datum.

PERIOD OF RECORD. -- May 1978 to September 1980 (semiannually); May 1981 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.00 ft above land-surface datum, Nov. 28, 1983, Jan. 30, 1984; lowest measured, 16.00 ft above land-surface datum, May 6, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
OCT			APR		
28 NOV	1135	-20.40	26 MAY	0920	-17.10
23 DEC	1130	-21.70	18 JUN	0845	-18.30
29 JAN	1215	-21.60	28 JUL	1340	-18.10
26 FEB	1100	-21.60	27 AUG	0955	-18.70
26 MAR	1445	-22.40	30 SEP	1400	-19.90
31	0950	-21.00	22	1220	-20.80

ST. JOHNS COUNTY

WELL NUMBER .-- 300019081363301. Local Number SJ-3. Peacock Well near Orangedale, FL.

LOCATION.--Lat 30°00'19", long 81°36'33", in land grant 37, T.6 S., R.27 E., Hydrologic Unit 03080103, 300 ft west of State Highway 13, and 0.3 mi southeast of intersection of State Highways 16 and 13 in Orangedale. Owner: W.B. Copeland.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, domestic, artesian well, diameter 4 in., depth 500 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 21 ft above National Geodetic Vertical Datum of 1929, from topograhic map. Measuring point: Top of 3 in. tee, 1.5 ft above land-surface datum.

PERIOD OF RECORD.--March 1968, June 1970 to May 1972 (monthly); May 1974 and May 1976 (annually); May 1977 to June 1986 (semiannually); July 1986 to current year (bimonthly). Records prior to 1976 are unpublished and available in the files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.50 ft above land-surface datum, May 12, 1980; lowest measured, 6.20 ft above land-surface datum, May 13, 1986.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)		DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					MAY			
05 NOV	1025	-10.20	1270	29.0	19 1230 JUN	-9.30	144	29.5
30 JAN	1145	-12.30	1240	29.0	20 1050 AUG	-8.40	1300	29.0
11 MAR	1150	-12.00	1320	29.0		-10.15	1410	28.5
07	1240	-12.70	1290	29.0	21 1300	-11.00	1300	29.5

ST. JOHNS COUNTY

WELL NUMBER. -- 300354081301201. Local Number SJ-26. Wilson Well near Sampson, FL.

LOCATION.--Lat 30°03'54", long 81°30'12", in SWkNEkSEk sec. 17, T. 5 S., k.28 E., Hydrologic Unit 03080103, 250 ft north of State Road 210 and 0.5 mi west of Interstate 95 in Sampson. Owner: M.J. Wilson.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, domestic, artesian well, diameter 3 in., depth 362 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 25 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 3 in. cross, 1.3 ft above land-surface datum.

PERIOD OF RECORD.--June 1969 to May 1976, May 1977 to September 1978 (semiannually); May 1980 to September 1985 (semiannually); May 1986 to current year (bimonthly). Records prior to 1976 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.60 ft above land-surface datum, May 12, 1980; lowest measured, 7.50 ft above land-surface datum, May 12, 1986.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- Water years 1986 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)		DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					1.2	MAY				
05 NOV	1000	-11.30	875	21.5		19 JUN	0830	-9.90	860	23.5
30 JAN	1130	-13.20	840	22.5		20 AUG	1020	-10.10	860	22.5
11 MAR	1130	-13.10	850	21.5		19 SEP	0735	-10.90	875	23.5
07	1215	-13.80	900	20.0		21	1415	-11,70	847	22.0

ST. JOHNS COUNTY

WELL NUMBER. -- 300717081381001. Local Number SJ-15. S.L. Chavez Well near Mandarin, FL.

LOCATION.--Lat 30°07'17", long 81°38'10", in NE\sW\sW\ssw\ssc. 30, T.4 S., R.27 E., Hydrologic Unit 03080103, on the north side of Fruit Cove Road, 0.6 mi west of the intersection of State Road 13 and Fruit Cove Road, 3.7 mi south of old Mandarin Post Office. Owner: S.L. Chavez.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, domestic, artesian well, diameter 3 in., depth 580 ft, casing length unknown.

WATER LEVEL RECORDS

INSTRUMENTATION. -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 8.0 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 3 in. tee, 1.20 ft above land-surface datum.

PERIOD OF RECORD .-- 1974, 1977 to 1980 (semiannually); May 1981 to current year (monthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.90 ft above land-surface datum, May 12, 1980; lowest measured, 19.70 ft above land-surface datum, June 28, 1988.

WATER-QUALITY RECORDS

PERIOD OF RECORD . -- Water years 1983 to current year.

WATER LEVEL AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
28 NOV	1300	-21.70	390	23.0	26 MAY	0955	-21.00		77
23 DEC	1200	-24.20	-		19 JUN	1530	-21.00		
29 JAN	1255	-24.80	380	23.0	28 JUL	1410	-19.70	7-	
26 FEB	1030	-24.20	375	23.0	27 AUG	1030	-20.80		11-4-1
26 MAR	1515	-25.30	33		30 SEP	1440	-21.50		
31	1025	-25.10	380	23.0	21	1445	-21,90	382	23.0

ST. JOHNS COUNTY

WELL NUMBER, -- 300758081230501. Local Number SJ-5. G. Oesterreicher Well near Palm Valley, FL.

LOCATION.--Lat 30°07'58", long 81°23'05", in land grant 54, T.4 S., R.29 E., Hydrologic Unit 03080201, 100 ft east of the Intracoastal Waterway, 250 ft northwest of State Highways 210 and 210A, and 2.8 mi south of Palm Valley. Owner: G. Oesterreicher.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, domestic, artesian well, diameter 6 in., depth 350 ft, cased to 180 ft.

WATER LEVEL RECORDS

INSTRUMENTATION . -- Monthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 4.53 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. gate valve, 2.18 ft above land-surface datum.

PERIOD OF RECORD.--1934, 1940, 1944 to 1946 (annually); 1947 to 1963 (bimonthly); 1964 to 1980 (annually); May 1981 to current year (monthly). Records prior to 1974 are unpublished and available in files of the Jacksonville Field Headquarters.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 50.73 ft NGVD, Nov. 9, 1948; lowest measured, 30.13 ft NGVD, June 29, 1981.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1983 to current year.

ELEVATION AND WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT					APR				
28 NOV	0955	32.51	605	22.5	26 MAY	0825	33.01		
23 DEC	1015	34.21			23 JUN	1300	31.61	601	23.0
29 JAN	1035	34.61	605	22.5	28 JUL	1210	30.91		
26 FEB	1245	34.71	615	22.5	27 AUG	0830	30.91	570	23.0
26 MAR	1135	35.21		**	30 SEP	1305	31.81		
31	0820	35.11	610	22.0	22	0750	32.61	591	22.5

ST. JOHNS COUNTY

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)		
293729081221201	05-17-88 09-13-88	0845 0858	14.23 16.08	Ξ	==	7.	==		
294008081125201	05-16-88	1500		23.0	7980	2200	520		
294334081270801	05-17-88 09-13-88	0915 1515	16.65 21.07						
294518081181401	05-17-88 09-13-88	0942 1018	14.62 15.70	=======================================	Ξ				
294602081151901	05-18-88 09-13-88	1000 1030	11.60 13.10	22.0	12200	3600	820		
294702081263201	05-18-88 09-13-88	0820 1445	18.94 22.91	===	==				
294927081192501	05-18-88 05-18-88	0645 1300	22.70 22.70	24.0	3850	920	370		
295040081333201	05-18-88 09-13-88	1400 1335	30.50	24.0	2220	130	940		
295105081300401	05-18-88 09-13-88	1100 1355	26.10 29.60	25.0	1690	160	660		
295132081164801	05-16-88 09-13-88	1200 1135	16.98 19.48	22.0	1990	300	390		
295134081245201	05-17-88	1340	30,40						
295221081252801	09-21-88	0945		21.0	570				
295223081251301	09-21-88	0900	-	22.0	560	13	<0.10		
295233081252501	09-21-88	1010		21.0	570	12	<0.10		
295248081250501	09-21-88	1040		21.0	575	13	<0.10		
295305081250601	09-21-88	1100		21.0	530	13	<0.10		
295333081191401	05-18-88 09-13-88 09-22-88	0900 1110 1130	15.35 18.35 	25.5 26.5	1250 1230	140 130	300 310		
295341081263705	05-17-88 05-18-88 09-13-88	1210 0810 1235	27.20 27.29 29.80	=	=======================================	 	=======================================		
295427081293101	05-18-88	1300		29.5	2100	130	730		
295556081342101	05-18-88 09-13-88 09-21-88	1500 1315 1215	30.60 35.10 32.90	22.0 23.0	855 857	19 18	320 330		

ST. JOHNS COUNTY--Continued

STATION NUMBER	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)
295903081334301	05-19-88 09-21-88	1130 1245	27.90 31.60	23.5 22.0	843	17 17	380 370
300036081213501	05-23-88 09-22-88	1400 1245	30.10 32.70	24.0 23.0	965 831	120 120	170 160
300307081234201	05-24-88 09-21-88	1145 1230	37.00 38.40	25.0 25.5	915 916	110 110	150 170
300322081342801	05-18-88 09-21-88	0930 1355	31.35 33.15	24.5 24.5	740 722	15	270
300341081395401	05-19-88 09-21-88	1400 1330	29.70	23.5 23.5	184	4.8 6.1	15 17
300555081290601	05-24-88	1215	35.70	23.0	668	19	200
300632081334301	05-24-88 09-21-88	1250 1115	34.70 36.50	23.0	765	18	290
301005081225901	05-23-88 09-22-88	1200 0955	15.00 13.90	23.5 23.0	620 626	20 20	160 170
301037081243901	05-24-88 09-22-88	1000 0950	25.60 27.40	23.0 23.0	576 585	17 17	160 170
301132081225801	05-23-88 09-22-88	0945 1040	-4.69 -3.17	22	=======================================	==	=======================================
301212081252401	05-24-88 09-22-88	0945 0930	37.50 37.90	23.0 24.0	682 708	21 23	170 190
301249081225801	05-23-88 09-22-88	1100 1020	22.55 25.55	23.5 24.0	610 611	24 24	140 140
301259081222901	05-23-88 09-22-88	0830 0900	==	24.5 24.5	630 631	28 26	140 140
301304081222701	05-23-88 09-22-88	0830 0910	21.00 22.50		=		
301408081253101	05-24-88 09-22-88	0920 0910	25.70 28.50	22.0 23.0	592 601	13 13	160 180
301411081224201	05-23-88 09-22-88	0930 0820	29.60 31.80		1010 1010	140 140	160 160

ST JOHNS COUNTY

294008081112501 - SJ-106 MARINELAND

DATE	TIME	SPE- CIFI CON- DUCT ANCE (US/C	C PH C (STA	D MD-	TEMPER- ATURE WATER (DEG C)	COLOI (PLA' INUM COBA' UNIT	R N r- 1 - (ARD- IESS OTAL MG/L AS ACO3)	CALCI DIS- SOLV (MG/ AS C.	DIS ED SOLV L (MG/	M, SODIUM, S- DIS- ZED SOLVED L (MG/L
MAY 16	1500	79	80 7	. 53	23.0		5	1300	220	180	1100
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULF DIS SOI (MG AS S	FATE RII S- DIS LVED SOI S/L (MC		FLUO- RIDE, DIS- SOLVE (MG/I AS F)	DIS SOI CD (MC	ICA, I S- LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY 16		30	127	520	2200	0	0.9	90 2	4	4650	6500
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)		FATE RII S- DIS LVED SOI S/L (MG	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVE (MG/I AS F)	DIS SOI ED (MC	ICA, : S- LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
AUG 29		2.1	166	140	2	9	0.6	50 3	8	445	540
			29404	0081	294301 - 1	ST-158	WPTIE	APKA R			
DATE	TIME	SPE- CIFI CON- DUC: ANCI	IC - PI I- (STA E AI	AND-	TEMPER- ATURE . WATER (DEG C)	COLO (PLA INUM COBA UNIT	R I T- :	HARD- NESS TOTAL (MG/L AS CACO3)	CALCI DIS- SOLV (MG/ AS C	ED SOLV	JM, SODIUM, S- DIS- VED SOLVED /L (MG/L
MAY 09	1030	26	370 7	7.50	23.5		5	980	190	120	240
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	DIS SOI (MC	FATE RI S- DI LVED SO G/L (M	LO- DE, S- LVED G/L CL)	FLUORIDE DIS- SOLVI (MG/I AS F	, DI - SO ED (M L A	ICA, S- LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY 09		6.3	96	630	0 56	0	0.3	30 1	5	2040	7700
			20	04225	081294101	_ 01_	150 T	PAC			
DATE	TIME	SPE- CIF: CON- DUC: ANCI	IC - PF I- (STA	AND-	TEMPER- ATURE WATER (DEG C)	COLO (PLA INUM COBA UNIT	R I T- :	HARD- NESS TOTAL (MG/L AS CACO3)	CALCI DIS- SOLV (MG/ AS C	ED SOLVED (MG)	JM, SODIUM, S- DIS- VED SOLVED /L (MG/L
MAY 09	1130	10	580 7	7.47	21.5		5	940	190	110	160
DATE		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)		FATE RI S- DI LVED SO G/L (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE DIS- SOLVI (MG/I AS F)	DI SO ED (M	ICA, S- LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY 09		5.9	88	730	35	0	0.5	50 1	6	1790	8000

ST JOHNS COUNTY--Continued

	294	602081151	901 -	SJ-94	HOWARI	AT CRES	CENT BEAC	H	
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- C1FIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 18	1000	11.60	12200	7.39	22.0	<5	1800	300	250
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY 18	2000	60	132	820	3600	0.90	20	7620	9500
			294701081	261201 -	SJ-156 MII	DDLETON			
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 09	1300	2180	7.45	22.5	<5	900	190	100	120
D. MAY 09.	S E SC ATE (M AS	SIUM, LIN DIS- L DLVED (M MG/L A	AB DI G/L SO S (M .CO3) AS	FATE RI S- DI LVED SO IG/L (M SO4) AS	LVED SOI IG/L (MC CL) AS	DE, DI IS- SO LVED (M G/L A F) SI	ICA, RES S- AT LVED DE IG/L D S SO	180 I G. C I IS- SC LVED (U	CRON- CIUM, IIS- DILVED IG/L S SR)
	2949	9270811925	601 -	SJ-97	CORBET	T NEAR MO	ULTRIE CE	EEK	
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 18	1300	22.70	3850	7.48	24.0	<5	690	140	80
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)

ST JOHNS COUNTY--Continued

295028081311401 - SJ-155

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 09	1400	6720	7.46	27.0	<5	1700	380	180	700
1000101									
DA	SO STE (1	SIUM, LIN DIS- L DLVED (M MG/L A	AB DI G/L SO S (M	FATE RIS S- DIS LVED SOS G/L (M	DE, RI S- D LVED SO G/L (M	DE, DI IS- SC LVED (M G/L A	ICA, RES S- AT LVED DE IG/L D S SO	180 T G. C D IS- SC LVED (U	RON- IUM, IS- DLVED IG/L ISR)
MAY 09		20 93	130	0 130	0	0.80 1	6	4380 1	.5000
									7.77
	29504	0081333201	- s	J-80 .	CANNON N		POINT QU		
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 18	1400	2220	7.65	24.0	<5	1100	220	120	72
10	1400	2220	7.05	24.0	-3	1100	220	120	12
	S ATE (SIUM, LIN DIS- L OLVED (M MG/L A	AB DI G/L SC S (M	FATE RI S- DI DLVED SO IG/L (M	DE, RI S- D LVED SO G/L (M	DE, DI DIS- SC DLVED (N IG/L A	ICA, RES S- AT DLVED DE MG/L I AS SC	180 T GG. C I DIS- SC DLVED (U	TRON- TIUM, DIS- DLVED JG/L S SR)
MAY 18		4.9 82	94	0 13	0	0.40	.5	1730	9600
		2951320811	64801 -	SJ-92	ANA	STASIA W	TER PLANT		
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 16	1200	16.98	1990	8.05	22.0	<5	570	110	70
				12.23	28,0				
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY	140	6.6	02	200	200		10	400-	200
16	140	6.6	92	390	300	1.0	18	1220	5200

ST JOHNS COUNTY--Continued

295223081251301 - SJS-0045

DATE	TIME	ANCE	(STAND- ARD	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
SEP 21	0900	560	7.14	22.0	5	290	110	2.6	11
DATE	SI		TY SULF. B DIS /L SOL (MG	- DIS VED SOI /L (MG	DE, RII S- D: LVED SOI S/L (MC	DE, DI IS- SC LVED (N G/L A	LICA, RESIS- AT DLVED DE MG/L DAS SO	180 T GG. C D DIS- SC DLVED (U	RON- IUM, IS- LVED G/L SR)
SEP 21	1	1.0 292	<0	.10 13	3 (0.20 2	28	337	590
		CDE-	295233	081252501	L - SJS-0	042 HARD-		MACNE-	
DATE	TIME	ANCE	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
SEP 21	1010	570	7.11	21.0	10	280	110	1.5	8.7
DATE SEP	SOI (MC AS		TY SULF B DIS /L SOL (MG 03) AS S	- DIS VED SOI V/L (MC O4) AS	DE, RI S- D LVED SO G/L (M CL) AS	DE, D: IS- SC LVED (N G/L A F) S:	IS- AT DLVED DE MG/L I AS SO IO2) (N	180 T EG. C I DIS- SC DLVED (U 4G/L) AS	TRON- TIUM, DIS- DLVED IG/L S SR)
21	C	0.60 294	<0	.10 12	2	0.30	20	344	550
			295248	08125050	ı - SJS-0	041			
DATE	TIME	ANCE	(STAND- ARD	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
SEP 21	1040	575	7.11	21.0	5	290	110	2.6	11
DATE	SI	CAS- ALKA CUM, LINI: CS- LAI LVED (MG, CACC	TY SULF. B DIS /L SOL (MG	- DIS VED SOI /L (MG	DE, RII S- DI VED SOI S/L (MC	DE, DI IS- SC LVED (N G/L A	LICA, RESIS- AT DLVED DE MG/L DAS SC	180 T GG. C D DIS- SO DLVED (U	RON- IUM, IS- LVED G/L SR)
SEP 21		0 294	<0	.10 13			28		

ST JOHNS COUNTY--Continued

295305081250601 - SJS-0043

				2	9530	508125	060	1 - S	JS-00	143						
DATE	TIME	SPE CIF CON DUC ANC (US/	IC - T- E	PH (STAL ARI UNIT	D	TEMPE ATUR WATE (DEG	E	COL (PL INU COB UNI	AT- M- ALT	HARI NESS TOTA (MG, AS CACO	AL /L	CALCI DIS- SOLV (MG, AS (VED	MAGN SIU DIS SOLV (MG/ AS M	M, ED L	SODIUM, DIS- SOLVED (MG/L AS NA)
SEP 21	1100		530	7	16	21	0		10		260	100		2.	1	11
21	1100		230	,	. 10	21			10		200	100		۷.	-	
DATI	E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINI LA (MC	AB G/L	DI SO (M		RII DII SO: (M	LO- DE, S- LVED G/L CL)	RII DI SOI (MC	JO- DE, IS- LVED G/L F)	DI SO (M	ICA, S- LVED G/L S O2)	AT 1 DEC	S. C IS- LVED	D: SOI (U	RON- IUM, IS- LVED G/L SR)
SEP 21		0.90	271		<	0.10	1	3	(0.20	3	2		325		560
					2954	270812	2931	01 -	SJ-16	61						
DATE	TIME	CON DUC	T- E	PH (STA AR UNIT	ND- D	TEMPE ATUR WATE (DEG	ER.	COB	AT- M-	HARI NESS TOTA (MG AS CACO	S AL /L	CALC: DIS- SOL' (MG, AS (VED /L	MAGN SIU DIS SOLV (MG/ AS M	M, S- ED L	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY																
18	1300	2	100	7	. 29	29	9.5		5		890	210		85		55
DATI	E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINI LA (MC	AB G/L	DI SO (M	FATE S- LVED G/L SO4)	RII DII SOI (M	LO- DE, S- LVED G/L CL)	RII DI SOI (MC	JO- DE, IS- LVED G/L F)	SO: (M	ICA, S- LVED G/L S	DI	DUÉ 180 5. C IS- VED	D: SOI (UC	RON- IUM, IS- LVED G/L SR)
18		3.7	116		73	0	13	0	1	1.0	2	1	1	1450	1	1000
					2055	020811	754	01 -	S 1-00	001						
DATE	TIME	ELE ATI ABO NG (FE	ON	SPE CIF CON DUC ANC	IC T-	PH (STAN ARD UNITS	ID-	TEMP ATU WAT (DEG	ER- RE ER	COLO (PL	AT- M- ALT	HARI NESS TOTA (MG AS	S AL /L	CALCI DIS- SOLV (MG/ AS C	ED L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY		107		,,	,			,,,,,,	,		/		,		/	
16	0915	22	. 29	1	030	7.	54	2	2.5		<5	,	460	90		55
	SODIUM DIS- SOLVED (MG/L AS NA	, SI DI SOL (MG		ALK LINI LA (MG AS CAC	TY B /L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHL RID DIS SOL (MG AS	E, - VED /L	FLUC RIDI DIS SOL' (MG AS	E, S- VED /L	SILIC DIS- SOL' (MG AS- SIO	VED /L	SOLID RESID AT 18 DEG. DIS SOLV (MG/	OUÉ 30 C 3- 7ED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
MAY												1				1144
16	45	4	.2	132		300		91		1	. 0	24		7	64	4400

MAY 19...

3.1 103

380

17

0.60 18

715 5400

MISCELLANEOUS WATER-QUALITY RECORDS OCTOBER 1987 TO SEPTEMBER 1988

ST JOHNS COUNTY--Continued

295556081342101 - SJ-19

	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	
	MAY 18	1500	30.60	855	7.85	22.0	<5	410	87	46	
	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
	MAY 18	17	3.2	113	320	19	0.50	18	642	4700	
				2957	7130812034	01 - SJ-0	089				
	DATE	AI AI TIME N	LEV- LA FION SUR BOVE (W	IND CI FACE CO VATER DU EVEL) AN	JCT- (ST NCE A	AND- AT	PER- (F URE IN TER CO	DLOR NEPLAT- TO NUM- (M DBALT A	OTAL DI MG/L SO AS (M	CIUM S- LVED S G/L (AGNE- SIUM, DIS- OLVED MG/L S MG)
P	16	1030 2	28,30 -1	.8.30	1040 .	7.53	22.5	<5	420 8	5	50
	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
	16	50	9.4	135	270	88	0.90	24	717	4200	
			29:	590308133	4301 - SJ-	-119 (SUB	FOR SJ-11	1)			
	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	
	MAY 19	1130	27.90	7.53	23.5	<5	470	100	52	14	
		DATE (N	SIUM, LIN DIS- I DLVED (N MG/L A	AB DI MG/L SO AS (N	LFATE RI IS- DI DLVED SC MG/L (M	DE, RI S- D DLVED SO MG/L (M	DE, DI IS- SC LVED (N G/L A	LICA, RESIS- AT DLVED DE MG/L IAS SC	180 T EG. C D DIS- SO DLVED (U	RON- IUM, IS- LVED G/L SR)	

ST JOHNS COUNTY--Continued

300019081363301 - SJ3

				200012001	303301	303					
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFAC! (WATE! LEVEL (FEET	E PH R (STAND) ARD	TEMPER - ATURE WATER (DEG C	INUM COBA	AT- TOTA M- (MG/ ALT AS	L DIS- L SOLV (MG)	IUM - VED S /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	
19	1230	30.30	-9.3	7.3	9 29.	5	<5 7	40 180		68	
DATE	SODIUM DIS- SOLVED (MG/L AS NA	DIS- SOLVEI (MG/L	LINITY LAB	SULFATI DIS- SOLVEI (MG/L	DIS- D SOLVE (MG/L	RIDE DIS D SOLV	E, DIS- S- SOLV VED (MG/ VL AS	AT 18 ZED DEG L DIS SOLV	DUÉ S 80 . C S- S VED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
MAY 19	12	3.1	93	640	16	0.	60 18	10	090	7800	
		300036081	213501 -	SJ-8	8 CI	IARD NEAR	R STOKEE (REEK			
DATE	TIME	ELEV- ATION ABOVE NGVD (FEET	SPE- CIFIC CON- DUCT- ANCE (US/CM	PH (STAND ARD	WATER	INUN COBA	AT- TOTA 4- (MG/ ALT AS	CALC: L DIS- L SOL' (MG	IUM - VED : /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	
MAY	57.74	100					2			2.5	
23	1400	30.1	96	5 7.5	1 24.	. 0	<5	340 74		36	
DATE	SODIUM DIS- SOLVED (MG/L AS NA	DIS- SOLVE (MG/L	, LINITY LAB	SULFAT DIS- SOLVE (MG/L	DIS- D SOLVI (MG/I	RIDE DIS ED SOLV	E, DIS- S- SOLV VED (MG, /L AS	ZED DEG ZED DEG ZED DI ZED SOL	DUE 80 . C S- VED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
MAY 23	64	3.4	146	170	120	1.	.0 27		691	2900	
			3	003410813	95401 - 8	SJ-12					
ם	ATE	TIME	STAND- ARD	EMPER- ATURE WATER	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVE (MG/ AS N.	D L	
MAY 19.		1400	8.09	23.5	<5	87	18	10	5,	5	
D	ATE	SIUM, L DIS- SOLVED (MG/L	LAB (MG/L AS	ULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STROI TIUI DIS SOLVI (UG/I AS SI	M, ED L	
MAY 19.		1.6	31	15	4.8	0.50	12	114	8	00	
	9.0	4000		43	2.5		.55			10	

ST JOHNS COUNTY--Continued

300354081301201 - SJ-26

DATE	TIME A	LEV- LA FION SUR BOVE (V	ND CI RFACE CO NATER DU EVEL) AN	CT- (ST	AND- A	MPER- TURE ATER EG C)	COLOR I (PLAT- I INUM- COBALT	TOTAL I (MG/L S AS	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 19	0830	34.90	-9.90	860	7.56	23.5	<5	430	95	46
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/1	DIS- SOLVE ED (MG/L L AS	AT 180 D DEG. (DIS- SOLVEI	STRO TIU DIS SOLV O (UG/	IM, S- VED 'L
MAY 19	14	2.9	117	310	18	0.	70 20	65	1 52	. 00
			Same							
		וח	3007 EPTH	580812305	01 - SJ-	-0005				
DATE	A' A' A' TIME	LEV- LA FION SUR BOVE (V	ELOW SEAND CONTRACE CONTER DUCEVEL) AND	ICT- (ST	AND- A	MPER- TURE VATER VEG C)	COLOR (PLAT- INUM- COBALT	TOTAL I (MG/L S AS	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 23	1300	31.61 -2	27.08	601	7.71	23.0	<5	240	49	28
DATE MAY 23	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/1	DIS- SOLVEI MG/L AS SIO2)	AT 180 D DEG. (DIS- SOLVEI	E STRC TIU DIS SOLV O (UG/ AS S	IM, 5- VED 'L
DATE	30	ELEV- ATION ABOVE NGVD (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLATINUM- COBAL	T- TOTAL - (MG/L LT AS	CALCIUN DIS- SOLVEI (MG/L	DIS SOLV (MG/	IM, S- VED 'L
MAY 23	1200	15.00	620	7.62	23.5		< 5 28	0 58	32	
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/1	DIS- SOLVE ED (MG/L L AS	AT 180 D DEG. 0	STRO TIU DIS SOLV O (UG/	IM, S- VED 'L
MAY 23	17	2.8	131	160	20	0.8	80 23	429	9 24	00

ST JOHNS COUNTY--Continued

301132081225801 - PONTE VEDRA TEST WELL NEAR PONTE VEDRA

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEME ATU WAT (DEG	JRE	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG
R 21	0805	-2.72	7.72	47000	7.32	3	30.5	<5	2400	800	100
DATE	SODIUM DIS- SOLVEI (MG/I AS NA	DIS SOLV (MG/	M, LINI - LA ED (MG L AS	TY SULF B DIS /L SOL	VED SOI	DE,	FLUO RIDE DIS SOLV (MG/ AS F	, DIS- - SOLV ED (MG/ L AS	ED DEG L DI SOL	DUÉ STR 80 TI . C DI S- SOL VED (UG	.VED
APR 21	9400	32	113	2500	15000)	1.	2 17	13	600 1	300
				301259081	222901 -	SJ-16	62				
DATE	TIM	SPE- CIFI CON- DUCT E ANCE (US/C	C PH - (STA AR	ND- ATU D WAT	PER- (PI TRE INU TER COI	LOR LAT- JM- BALT ITS)	HARD NESS TOTA (MG/ AS CACO	CALCI L DIS- L SOLV	TUM SI TED SOL 'L (MG	VED SOLV	5-
MAY 23	0830	0 6	30 7	.64 2	24.5	5	2	80 62	30	18	3
MAY	DATE	DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)		RII DI SOI (MC AS	UO- DE, IS- LVED G/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
				301411081	L224201 -	SJ-0	047				
DATE	TIM	ELEV ATIO ABOV E NGV (FEE	N CON E DUC D ANC	IC - PH T- (STA	I (PI AND- INI ED COI	LOR LAT- UM- BALT ITS)	HARD NESS TOTA (MG/ AS CACO	L DIS- L SOLV (MG)	TUM SI TED SOL L (MG	VED SOLV	3-
MAY 23	0930	0 29.	60 1	010 7	. 43	<5	3	60 80	38	55	5
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RII DI SOI	DE, IS- LVED G/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	
MAY 23		2.7	142	160	140	C	0.70	28	630	2800	

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 39 SEMINOLE COUNTY

Site number	Page number
284147081220201	358
284247081070801	358
284247081070802	359
284750081132301	359
	number 284147081220201 284247081070801 284247081070802

Figure 39.--Location of wells in Seminole County.

SEMINOLE COUNTY

WELL NUMBER. -- 284147081220201. Seminole 125 Well at Longwood, FL.

LOCATION.--Lat 28°41'47", long 81°22'02", in NW\[\] sec.1, T.21 S., R.29 E., Hydrologic Unit 03080101, 500 ft south of State Highway 434, at a point 1.3 mi west of State Highway 427 in Longwood. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 146 ft, cased to 63 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 85.69 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 1.26 ft above land-surface datum.

PERIOD OF RECORD. --October 1951 to September 1952 (monthly); November 1952 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 55.80 ft NGVD, Sept. 30, 1960; lowest, 35.63 ft NGVD, May 11, 1986.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
40.15	42.52	42.51	41.93	42.26	41.87	38.81	37.52	36.35	36.80	38.04	39.65
39.87	42.51	42.30	42.22	42.55	42.77	37.85	36.78	37.75	37.06	40.33	40.86
41.80	41.99	42.31	42.06	42.27	43.12	41.15	38.46	37.97	37.53	38.38	40.11
40.53	42.90	42.10	41.90	42.34	43.23	38.70	37.27	37.04	37.65	38.65	39.42
40.22	42.52	39.47	42.61	42.15	42.61	37.27	37.63	36.39	38.29	38.00	38.22
40.13	43.19	41.70	42.36	41.63	41.21	37.43	36.94	37.06	37.35	39.16	38.55
41.83	43.33	43.18	42.71	42.65	43.23	41.87	38.48	38.15	38.29	40.59	40.86
	40.15 39.87 41.80 40.53 40.22 40.13	40.15 42.52 39.87 42.51 41.80 41.99 40.53 42.90 40.22 42.52 40.13 43.19	40.15 42.52 42.51 39.87 42.51 42.30 41.80 41.99 42.31 40.53 42.90 42.10 40.22 42.52 39.47 40.13 43.19 41.70	40.15 42.52 42.51 41.93 39.87 42.51 42.30 42.22 41.80 41.99 42.31 42.06 40.53 42.90 42.10 41.90 40.22 42.52 39.47 42.61 40.13 43.19 41.70 42.36	40.15 42.52 42.51 41.93 42.26 39.87 42.51 42.30 42.22 42.55 41.80 41.99 42.31 42.06 42.27 40.53 42.90 42.10 41.90 42.34 40.22 42.52 39.47 42.61 42.15 40.13 43.19 41.70 42.36 41.63	40.15 42.52 42.51 41.93 42.26 41.87 39.87 42.51 42.30 42.22 42.55 42.77 41.80 41.99 42.31 42.06 42.27 43.12 40.53 42.90 42.10 41.90 42.34 43.23 40.22 42.52 39.47 42.61 42.15 42.61 40.13 43.19 41.70 42.36 41.63 41.21	40.15 42.52 42.51 41.93 42.26 41.87 38.81 39.87 42.51 42.30 42.22 42.55 42.77 37.85 41.80 41.99 42.31 42.06 42.27 43.12 41.15 40.53 42.90 42.10 41.90 42.34 43.23 38.70 40.22 42.52 39.47 42.61 42.15 42.61 37.27 40.13 43.19 41.70 42.36 41.63 41.21 37.43	40.15 42.52 42.51 41.93 42.26 41.87 38.81 37.52 39.87 42.51 42.30 42.22 42.55 42.77 37.85 36.78 41.80 41.99 42.31 42.06 42.27 43.12 41.15 38.46 40.53 42.90 42.10 41.90 42.34 43.23 38.70 37.27 40.22 42.52 39.47 42.61 42.15 42.61 37.27 37.63 40.13 43.19 41.70 42.36 41.63 41.21 37.43 36.94	40.15 42.52 42.51 41.93 42.26 41.87 38.81 37.52 36.35 39.87 42.51 42.30 42.22 42.55 42.77 37.85 36.78 37.75 41.80 41.99 42.31 42.06 42.27 43.12 41.15 38.46 37.97 40.53 42.90 42.10 41.90 42.34 43.23 38.70 37.27 37.04 40.22 42.52 39.47 42.61 42.15 42.61 37.27 37.63 36.39 40.13 43.19 41.70 42.36 41.63 41.21 37.43 36.94 37.06	40.15 42.52 42.51 41.93 42.26 41.87 38.81 37.52 36.35 36.80 39.87 42.51 42.30 42.22 42.55 42.77 37.85 36.78 37.75 37.06 41.80 41.99 42.31 42.06 42.27 43.12 41.15 38.46 37.97 37.53 40.53 42.90 42.10 41.90 42.34 43.23 38.70 37.27 37.04 37.65 40.22 42.52 39.47 42.61 42.15 42.61 37.27 37.63 36.39 38.29 40.13 43.19 41.70 42.36 41.63 41.21 37.43 36.94 37.06 37.35	40.15 42.52 42.51 41.93 42.26 41.87 38.81 37.52 36.35 36.80 38.04 39.87 42.51 42.30 42.22 42.55 42.77 37.85 36.78 37.75 37.06 40.33 41.80 41.99 42.31 42.06 42.27 43.12 41.15 38.46 37.97 37.53 38.38 40.53 42.90 42.10 41.90 42.34 43.23 38.70 37.27 37.04 37.65 38.65 40.22 42.52 39.47 42.61 42.15 42.61 37.27 37.63 36.39 38.29 38.00 40.13 43.19 41.70 42.36 41.63 41.21 37.43 36.94 37.06 37.35 39.16

CAL YR 1987 MAX 44.75 WTR YR 1988 MAX 43.33

WELL NUMBER. -- 284247081070801. Geneva Well S-0001 near Geneva, FL.

LOCATION.--Lat 28°42'47", long 81°07'08", in SWkNWkNWk sec.33, T.20 S., R.32 E., Hydrologic Unit 03080101, 50 ft southeast of County Road 426, 150 ft south of the intersection of County Road 426 and Old Mims Road, and 1.1 mi south of Geneva. Owner: St. Johns River Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, test, unused, diameter 4 in., depth 204 ft, cased to 95 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 49.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Shelter floor, 1.23 ft above land-surface datum.

PERIOD OF RECORD. -- November 1985 to current year. Records prior to October 1986 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 22.56 ft NGVD, Jan. 19, 1986; lowest, 18.26 ft NGVD, June 24, 1987.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	19.97	20.74	21.25	20.75	21.08	20.98	21.11	19.78	19.21	19.20	19.79	20.73
10	19.78	20.76	21.28	20.84	21.15	21.42	20.80	19.48	19.40	19.24	19.86	21.08
15	20.31	20.72	21.23	20.79	21.18	21.44	20.55	19.69	19.48	19.37	19.92	20.97
20	20.27	21.15	21.05	20.90	21.26	21.49	20.49	19.33	19.32	19.44	20.06	21.01
25	20.18	21.21	20.98	21.26	21.04	21.46	19.98	19.49	19.21	19.78	20.25	20.73
EOM	20.07	21.59	20.80	21.05	21.02	21.27	19.80	19.39	19.34	19.74	20.61	20.63
MAX	20.44	21.59	21.46	21.26	21.26	21.65	21.25	19.99	19.53	19.88	20.61	21.09

CAL YR 1987 MAX 21.59 WTR YR 1988 MAX 21.65

SEMINOLE COUNTY

WELL NUMBER .-- 284247081070802. Geneva Well S-0002 near Geneva. FL.

LOCATION.--Lat 28°42'47", long 81°07'08", in SWkNWkNWk sec.33, T.20 S., R.32 E., Hydrologic Unit 03080101, 50 ft southeast of County Road 426, 150 ft south of the intersection of County Road 426 and Old Mims Road, and 1.1 mi south of Geneva. Owner: St. Johns River Water Management District.

AQUIFER. -- Nonartesian sand of the surficial aquifer system, Geological Unit 112 NRSD.

WELL CHARACTERISTICS. -- Drilled, observation, unused, diameter 2 in., depth 50 ft, cased to 45 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 49.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.77 ft above land-surface datum.

PERIOD OF RECORD. -- November 1985 to current year (bimonthly). Records prior to October 1986 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.82 ft NGVD, Nov. 5, 1985; lowest measured, 37.91 ft NGVD, Mar. 2, 1987.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		APR		
1245	40.16	29	1405	40.23
		MAY		
1201	39.69	10	1330	40.06
1410	40.41	JUN		
		01	1725	39.79
1035	40.05	30	1505	39.42
		AUG		
0900	40.09	01	1550	39.74
		31	1446	39.94
1445	39.90	SEP		
1255	39.98	12	1307	40.06
	1245 1201 1410 1035 0900 1445	ATION ABOVE NGVD (FEET) 1245	ATION ABOVE TIME NGVD (FEET) DATE 1245 40.16 29 MAY 1201 39.69 10 1410 40.41 JUN 1035 40.05 30 AUG 0900 40.09 01 1445 39.90 SEP	ATION ABOVE TIME NGVD (FEET) DATE 1245 40.16 29 1405 MAY 1201 39.69 10 1330 1410 40.41 JUN 1035 40.05 30 1725 1036 40.09 01 1550 1445 39.90 SEP

WELL NUMBER. -- 284750081132301. Seminole 257 Well near Sanford, FL.

LOCATION.--Lat 28°47'50", long 81°13'23", in NE\SE\NW\ sec.33, T.19 S., R.31 E., Hydrologic Unit 03080101, on west side of Beardall Avenue, 0.3 mi north of State Highway 46, and 3 mi east of Sanford. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, diameter 6 in., depth 206 ft, casing length unknown.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 18.61 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 7.00 ft above land-surface datum.

PERIOD OF RECORD.--December 1951 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.45 ft NGVD, Oct. 10, 1953; lowest measured, 16.66 ft NGVD, May 18, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)		DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV				JUN		
13	1245	21.95		28	1315	20.34
JAN				AUG		
08	1345	22.06		26	1150	21.49
MAR				SEP		
14	1055	22.68		14	0920	22.67
MAY						
11	1040	19.96				
19	0900	20.52	*			

SEMINOLE COUNTY

	DATE			ELEVA- TION ABOVE
STATION NUMBER	SAMPLE	TIME	STATION NAME	NGVD (FEET)
283717081194202	05-12-88 09-16-88	1115 0820	83711904 LAKEMONT AVE DRAIN WELL, WINTER PARK	45.25 50.74
283740081031401	05-10-88 09-12-88	1020 1050	83710302 21S33E30	25.46 27.47
283754081154301	05-12-88 09-16-88	1050 0915	83711502 21S31E30	42.18 46.75
283843081075501	05-10-88 09-12-88	0955 1010	83810706 21S32E20	29.42 31.62
283849081273401	05-11-88 09-19-88	1515 1235	83812702	48.37 51.60
283920081232501	05-11-88 09-15-88	1545 1502	83912302 21S29E14 SPANISH TRACE APTS	44.63 48.26
283945081071901	05-10-88 09-12-88	1120 1225	83910702 21S32E16	23.79 25.80
283956081040201	05-10-88 09-12-88	1055 1145	83910402 21S32E13	14.63 16.16
283958081203401	05-12-88 09-16-88	1135 0745	84012002 21S30E17	47.35 51.51
284012081264601	05-11-88 09-15-88	1530 1230	84012603 21S29E07	45.64 49.84
284023081241001	05-12-88 09-15-88	1155 1435	84012403 21S29E10	35.54 36.85
284025081123001	05-12-88 09-12-88	0955 0925	84011201 21S31E10	33.11 36.29
284120081152201	05-12-88 09-12-88	0910 0831	84111501 21S31E06	36.55 39.68
284125081131701	05-12-88 09-12-88	0920 0850	84111301 21S31E04	29.00 32.20
284207081174401	05-12-88 09-13-88	0855 0745	84211703 20S30E35	35.83 34.43
284217081023001	05-10-88 09-15-88	1230 1000	KILBEE NO 3 TEST NR ST JOHNS RIVER NR GENEVA	7.63 9.48
284244081234901	05-11-88 09-15-88	1440 1158	84212302 20S29E34	34.00 36.00
284310081101901	05-12-88 09-19-88	0940 1130	84311001 20S31E25	12.29 13.22
284317081213401	05-11-88 09-15-88	1415 1115	MARTIN MARIETTA	36.53 39.63
284331081031001	05-10-88 09-13-88	1310 0958	84310302 20S33E30	10.26 11.81
284428081072602	05-10-88 09-19-88	1545 0915	USGS AVENUE C 1.25-IN INNER MONITOR AT GENEVA	14.57 13.64
284428081072603	05-10-88 09-19-88	1550 0920	USGS AVENUE C 6-IN ANNULAR MONITOR AT GENEVA	13.11 14.52
284428081155201	05-11-88 09-16-88	0930 1125	LARGENT WELL SANFORD AVE	26.51 27.15
284434081050101	05-10-83 09-19-83	1355 1045	84410503 POT MAP WELL NR LK HARNEY, GENEVA	11.42 13.75

SEMINOLE COUNTY--Continued

			San Arran Grand Company	
STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
284440081175901	05-11-88 09-15-88	0905 0955	84411722 20S30E15	34.04 36.97
284533081204801	05-11-88 09-15-88	1345 0855	84512005 20S30E08	33.43 35.02
284550081071501	05-10-88 09-12-88	1530 1330	84510703 CAMERON WELL NR GENEVA	11.00 12.56
284618081095401	05-11-88 09-13-88	1015 1254	84610902 20S31E12	12.77 14.64
284626081051801	05-10-88 09-13-88	1415 1350	K RD TEST WELL OSCEOLA RD NR GENEVA	11.96 13.70
284645081152401	05-11-88 09-14-88	0950 1020	84611515 20S31E06	29.53 31.20
284651081193301	05-11-88 09-16-88	1320 1025	84611902 20S30E04	32.77 35.60
284706081070801	05-10-88 09-14-88	1510 0838	84710703 THRASHER PASTURE WELL NR GENEVA	8.71 10.03
284712081044301	05-10-88 09-13-88	1450 1424	84710401 CO. LANDFILL OSCEOLA RD NR GENEVA	9.55 11.25
284802081192701	05-11-88 09-14-88	1250 1257	LL JORDAN BAPTIST UPSALA RD WE	26.61 29.45
284802081211101	05-11-88 09-14-88	1235 1509	84812106 19S30E31	30.85 33.79
284802081242101	05-11-88 09-15-88	1220 0813	VIA HERMOSA WELL	24.78 27.61
284909081052101	05-10-88	1435	84910501 19S32E23	7.97
284945081244201	05-11-88 09-14-88	1200 1425	84912407 19S29E39	13.35 14.03
284954081201101	05-11-88 09-15-88	1115 0745	ANDERSON WELL MISSOURI ST	25.90 27.10
285002081215101	05-11-88 09-14-88	1130 1355	85012101 19S29E38 STEVE CAIN	21.96 21.76

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 40 SUMTER COUNTY

Index number	Site number	Page number		
1	281951082012001	364		
1	281951082012002	365		
1	281951082012003	366		
2	282127082022501	367		
3	282152082011201	367		
3	282152082011202	368		
4	282740082012101	369		
4	282740082012102	370		
5	282741081585701	371		
6	283638082025701	372		
6	283638082025702	373		
7	284619082035101	373		
8	285121082112201	374		
9	285207082014501	374		

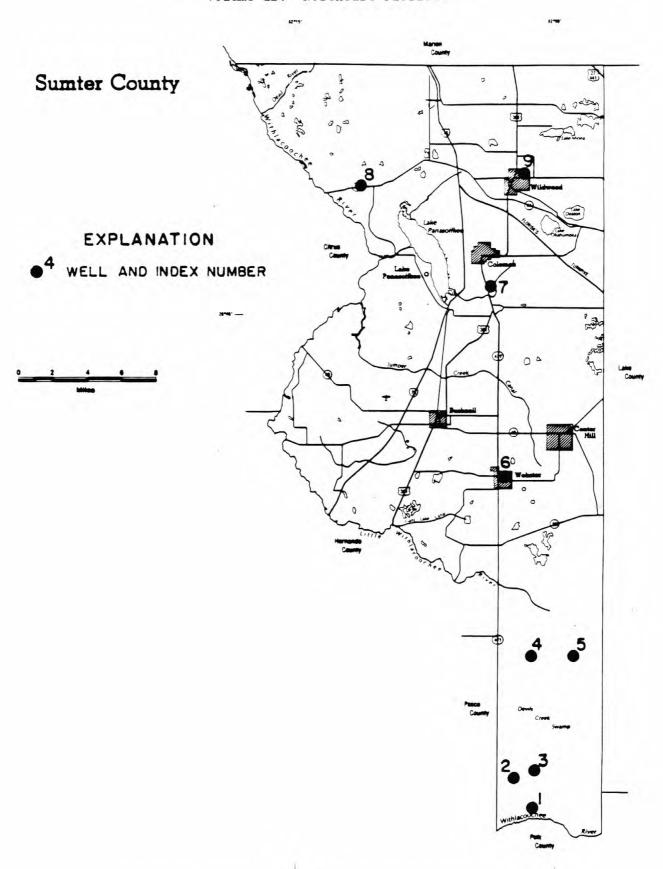


Figure 40.--Location of wells in Sumter County.

SUMTER COUNTY

WELL NUMBER. -- 281951082012001. Green Swamp Well L11MD near Dade City, FL.

LOCATION.--Lat 28°19'51", long 82°01'20", in SE\nE\nE\nE\nexts sec.9, T.25 S., R.23 E., Hydrologic Unit 03100208, on south side of Main Line Road, 300 ft west of Cross Creek Bridge, 2.2 mi southeast of Cumpressco, and 12 mi east of Dade City. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 1.25 in., depth 49 ft, casing length unknown.

INSTRUMENTATION. --Monthly measurement with chalked tape by Southwest Florida Water Management District.

DATUM.--Land-surface datum is 92.80 ft above National Geodetic Vertical Datum of 1929. Prior to February 1981 at same site at datum 0.04 ft higher. Measuring point: Hole in casing at land-surface datum.

COOPERATION. -- Records provided by Southwest Florida Water Management District since October 1983.

PERIOD OF RECORD.--September 1973 to September 1977 (monthly); October 1977 to September 1984 (bimonthly); October 1984 to September 1985 (monthly); October 1985 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 91.84 ft NGVD, Sept. 13, 1985; lowest measured, 84.50 ft NGVD, June 3, 1985.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
21		86.18	20		89.79
NOV			MAY		
17		88.45	19		88.04
DEC			23	0905	87.61
16		89.54	JUN		
JAN			21	-	90.54
19		88.74	JUL		
FEB			21	1,00	89.02
17		90.79	SEP		
MAR			19	1030	91.49
23		91.38			

SUMTER COUNTY

WELL NUMBER. -- 281951082012002. Green Swamp Well L11MM near Dade City, FL.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 1.25 in., depth 18 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by Southwest Florida Water Management District.

DATUM.--Land-surface datum is 92.76 ft above National Geodetic Vertical Datum of 1929. Prior to February 1981 at same site at datum 0.21 ft higher. Measuring point: Hole in casing at land-surface datum.

COOPERATION. -- Records provided by Southwest Florida Water Management District since October 1983.

PERIOD OF RECORD.--September 1973 to September 1977 (monthly); October 1977 to September 1984 (bimonthly); October 1984 to September 1985 (monthly); October 1985 to September 1986 (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.06 ft NGVD, Mar. 30, 1983; lowest measured, 84.43 ft NGVD, June 9, 1977.

TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
		MAY		
	86.27			88.02
			0900	87.26
	88.54			07.20
				91.36
	89.55			
	17 4 4 4 4 4 4		0.00	89.06
	88.76			
				90.88
	90.86	SEP		0.745.5
		19	1025	91.11
	91.42			90.73
		22,000		2000
	89.90			
	 	ATION ABOVE NGVD (FEET) 86.27 88.54 89.55 88.76 90.86 91.42	ATION ABOVE TIME NGVD (FEET) DATE 86.27 19 23 19 23 21 22 29	ATION ABOVE TIME NGVD (FEET) DATE 86.27 19 23 0900 88.54 JUN 21 JUL 21 JUL 21 JUL 21 AUG 25 See SEP 19 1025 29 See SEP 19 1025 29 See See SEP 19 1025 29 See See See See See See See See See

SUMTER COUNTY

WELL NUMBER. -- 281951082012003. Green Swamp Well L11MS near Dade City, FL.

LOCATION.--Lat 28°19'51", long 82°01'20", in SE\nE\nE\nE\sec.9, T.25 S., R.23 E., Hydrologic Unit 03100208, on south side of Main Line Road, 300 ft west of Cross Creek Bridge, 2.2 mi southeast of Cumpressco, and 12 mi east of Dade City. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, diameter 1.50 in., depth 9 ft, casing length unknown.

INSTRUMENTATION. --Monthly measurement with chalked tape by Southwest Florida Water Management District.

DATUM.--Land-surface datum is 92.67 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.50 ft above land-surface datum.

COOPERATION .-- Records provided by Southwest Florida Water Management District since October 1983.

PERIOD OF RECORD.--September 1973 to September 1977 (monthly); October 1977 to September 1984 (bimonthly); October 1984 to September 1985 (monthly); October 1985 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.67 ft NGVD, Aug. 23, 1977; lowest measured, 85.07 ft NGVD, June 9, 1977.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
ост			MAY		
21		86.02	19	24	87.31
NOV			23	0855	87.05
17		88.17	JUN		
DEC		22450	21		92.61
16		89.73	JUL		1000
JAN			21		88.27
19		88.09	AUG		
FEB			25		91.41
17		91.37	SEP		
MAR			19	1020	90.84
23		91.69	29		89.83
APR					
20		88.69			

SUMTER COUNTY

WELL NUMBER. -- 282127082022501. Cumpressco Ranch Well near Tarrytown, FL.

LOCATION.--Lat 28°21'27", long 82°02'25", in SE\nE\nE\nE\nE\nE\s sec.31, T.24 S., R.23 E., Hydrologic Unit 03100208, in pasture, 600 ft south of Main Line Road, 1.6 mi east of State Highway 471, and 13.6 mi south of Tarrytown. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 143 ft, cased to 20 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 97.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.01 ft above land-surface datum.

PERIOD OF RECORD.--March 1959 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 94.95 ft NGVD, Mar. 30, 1987; lowest, 84.37 ft NGVD, June 12, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	88.03	90.95	91.63	90.43	92.26	92.05	91.94	90.48	89.16	90.47	90.46	94.22
10	87.68	91.00	91.42	90.62	92.81	93.39	91.56	89.99	90.68	90.35	90.30	94.63
15	88.17	90.52	91.24	90.53	92.50	93.80	91.30	90.01	90.10	90.40	90.30	93.12
20	88.19	93.20	91.04	90.37	92.35	93.97	91.03	89.60	89.48	90.22	93.27	93.71
25	87.93	92.26	90.90	93.37	92.15	92.98	90.67	89.47	91.71	91.55	92.33	92.66
EOM	87.60	92.39	90.60	92.67	91.83	92.34	90.47	89.72	91.38	90.93	92.13	92.12
MAX	88.28	93.20	92.19	93.37	92.95	94.28	92.24	90.69	91.87	91.64	93.57	94.76

WTR YR 1988 MAX 94.76

WELL NUMBER. -- 282152082011201. Green Swamp Well L11KD near Dade City, FL.

LOCATION.--Lat 28°21'52", long 82°01'12", in SW\n\n\next{NW\nE\x} sec.33, T.24 S., R.23 E., Hydrologic Unit 03100208, 1,800 ft north of East Grade Road, 1.3 mi northeast of Cumpressco, and 11 mi east of Dade City. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 2 in., depth 36 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by Southwest Florida Water Management District.

DATUM.--Land-surface datum is 93.13 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land-surface datum.

COOPERATION .-- Records provided by Southwest Florida Water Management District since October 1983.

PERIOD OF RECORD. -- September 1973 to September 1977 (monthly); October 1977 to September 1984 (bimonthly); October 1984 to September 1985 (monthly); October 1985 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.72 ft NGVD, Sept. 20, 1979; lowest measured, 85.30 ft NGVD, June 3, 1985.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
21		88.31	20		91.23
NOV			MAY		
17		90.04	19		90.17
DEC			JUN		
16		90.92	21		90.46
JAN			JUL		
19		90.32	21		90.51
FEB			AUG		
17		91.93	25		91.31
MAR			SEP		
23		92.46	29		91,87

SUMTER COUNTY

WELL NUMBER. -- 282152082011202. Green Swamp Well L11KS near Dade City, FL.

LOCATION.--Lat 28°21'52", long 82°01'12", in SW\nW\nE\nexts sec.33, T.24 S., R.23 E., Hydrologic Unit 03100208, 1,800 ft north of East Grade Road, 1.3 mi northeast of Cumpressco, and 11 mi east of Dade City. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, diameter 2 in., depth 17 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by Southwest Florida Water Management District.

DATUM.--Land-surface datum is 93.08 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.15 ft above land-surface datum.

COOPERATION .-- Records provided by Southwest Florida Water Management District since October 1983.

PERIOD OF RECORD. --September 1973 to September 1977 (monthly); October 1977 to September 1984 (bimonthly); October 1984 to September 1985 (monthly); October 1985 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 93.23 ft NGVD, May 20, 1987; lowest measured, 85.29 ft NGVD, June 3, 1985.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
0.00			4.77		
OCT		24122	APR		11.50
21		88.28	20		91.20
NOV			MAY		
17		90.01	19		90.15
DEC			JUN		
16		91.00	21		90.37
JAN			JUL		
19		90.30	21		90.51
FEB		30.30	AUG		30.31
		01 00			01 00
17		91.88	25		91.29
MAR			SEP		
23		92.47	29		91.87

SUMTER COUNTY

WELL NUMBER. -- 282740082012101. Green Swamp Well L12BD near Bay Lake, FL.

LOCATION.--Lat 28°27'40", long 82°01'21", in SE\nw\nE\n sec.28, T.23 S., R.23 E., Hydrologic Unit 03100208, on south side of Center Grade Road, 2.1 mi east of State Highway 471, 2.8 mi east of Clay Sink, and 7 mi west of Bay Lake. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 2 in., depth 30 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by Southwest Florida Water Management District.

DATUM.--Land-surface datum is 93.12 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.48 ft above land-surface datum.

COOPERATION. -- Records provided by Southwest Florida Water Management District since October 1983.

PERIOD OF RECORD. -- September 1973 to September 1977 (monthly); October 1977 to September 1984 (bimonthly); October 1984 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.83 ft NGVD, Feb. 16, 1983; lowest measured, 84.90 ft NGVD, June 3, 1985.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
26		90.80	16	0900	90.23
NOV		45551	23		89.47
23		91.71	JUN		A
DEC		1010 4	30		91.07
28		91.11	JUL		
JAN			25		91.90
25		92.43	AUG		
FEB			29		92.07
23		91.60	SEP		
MAR			19	0910	92.13
28		92.02	26		91.66
APR					
25		90.86			

SUMTER COUNTY

WELL NUMBER. -- 282740082012102. Green Swamp Well L12BS near Bay Lake, FL.

LOCATION.--Lat 28°27'40", long 82°01'21", in SE½NW½NE½ sec.28, T.23 S., R.23 E., Hydrologic Unit 03100208, on south side of Center Grade Road, 2.1 mi east of State Highway 471, 2.8 mi east of Clay Sink, and 7 mi west of Bay Lake. Owner: U.S. Geological Survey.

AQUIFER. -- Nonartesian sand aquifer of the Pleistocene Age, Geologic Unit 112 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, diameter 2 in., depth 10 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with chalked tape by Southwest Florida Water Management District.

DATUM.--Land-surface datum is 93.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.45 ft above land-surface datum.

COOPERATION. -- Records provided by Southwest Florida Water Management District since October 1983.

PERIOD OF RECORD.--September 1973 to September 1977 (monthly); October 1977 to September 1984 (bimonthly); October 1984 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 93.07 ft NGVD, Sept. 13, 1985; lowest measured, 84.86 ft NGVD, June 3, 1985.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
26		90.77	16	0905	90.20
NOV		2.2.2.4.1	23		89.44
23		91.68	JUN		
DEC			30		91.05
28		91.10	JUL		
JAN			25		91.91
25		92.42	AUG		
FEB			29		92.05
23		91.58	SEP		
MAR			19	0910	92.13
28		92.01	26		91.61
APR					
25	1,	90.80			

SUMTER COUNTY

WELL NUMBER. -- 282741081585701. Withlacoochee State Forest Green Swamp Well near Bay Lake, FL.

LOCATION.--Lat 28°27'41", long 81°58'57", in NE%:NE%:NW% sec.26, T.23 S., R.23 E., Hydrologic Unit 03100208, in Withlacoochee State Forest, at southwest corner of Center and South Loop Roads, 4.8 mi east of State Highway 471, and 4.8 mi west of Bay Lake. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 3 in., depth 175 ft, cased to 99 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 96.94 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

COOPERATION. -- Records provided by Southwest Florida Water Management District from October 1983 to September 1985.

PERIOD OF RECORD.--July 1959, September 1964 to September 1984 (bimonthly); October 1984 to September 1985 (monthly); October 1986 to current year (bimonthly). Records prior to January 1974 are unpublished and are available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 96.50 ft NGVD, July 8, 1974; lowest measured, 90.17 ft NGVD, June 3, 1985.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
03	1325	94.74	16	0915	94.38
DEC			JUN		
31	1320	95.21	09	1045	95.20
FEB			AUG		
19	1316	95.79	04	1045	95.10
APR			SEP		
14	1105	95.30	19	0925	96.15

SUMTER COUNTY

WELL NUMBER. -- 283638082025701. Webster City Well at Webster, FL.

LOCATION.--Lat 28°36'38", long 82°02'57", in SW\sE\sW\s sec.31, T.21 S., R.23 E., Hydrologic Unit 03100208, near town water tank at east end of Main Street in Webster. Owner: City of Webster.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 12 in., depth 423 ft, cased to 200 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 92.38 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. riser pipe, 1.00 ft above land-surface datum.

PERIOD OF RECORD, --October 1953 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 87.94 ft NGVD, Jan. 8, 1970; lowest measured, 74.48 ft NGVD, July 20, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			APR		
05 DEC	0800	81.15	13 JUN	1315	83.04
31 FEB	0745	80.69	08 AUG	0830	81.02
19	0815	81.45	03	1150	79.91

SUMTER COUNTY

WELL NUMBER. -- 283638082025702. Webster City Recorder Well at Webster, FL.

LOCATION.--Lat 28°36'38", long 82°02'57", in SW\sE\sW\s sec.31, T.21 S., R.23 E., Hydrologic Unit 03100208, 100 ft west of town water tank at east end of Main Street in Webster. Owner: City of Webster.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, artesian well, diameter 8 in., depth 341 ft, cased to 174 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 91.85 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 0.94 ft above land-surface datum.

PERIOD OF RECORD. --April to September 1978; October 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 88.30 ft NGVD, Apr. 25, 1983; lowest, 74.45 ft NGVD, July 20, 1981.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				MAXIN	JUM V	ALUES				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	81.79	81.50	81.30	80.62	81.47	81.62	1444	82.30	81.01	80.27	80.02	82.90
10	81.57	81.42	81.20	80.57	81.46	82.66		82.05	80.92	80.12	80.02	85.37
15	81.54	81.33	81.08	80.48	81.44	83.63	82.97	81.88	80.77	80.03	79.96	84.99
20	81.39	81.45	80.95	80.38	81.47	84.07	82.89	81.59	80.60	79.91	81.72	85.74
25	81.28	81.45	80.85	80.67	81.59	84.03	82.70	81.41	80.57	79.93	81.82	85.35
EOM	81.22	81.46	80.72	81.43	81.61	252	82.52	81.26	80.46	79.94	82.04	84.98
MAX	81.89	81.50	81.43	81.43	81.64			82.52	81.22	80.43	82.04	85.74

WELL NUMBER. -- 284619082035101. ROMP 111 Well at Tompkins Park near Coleman, FL.

LOCATION.--Lat 28°46'19", long 82°03'51", in NWkSEkSWk sec.1, T.20 S., R.22 E., Hydrologic Unit 03100208, in G.B. Tompkins Park on U.S. Highway 301, 500 ft north of Shady Brook, and 2.0 mi south of Coleman. Owner: Southwest Florida Water Management District.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, observation well, diameter 8 in., depth 192 ft, cased to 62 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 63.61 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 1.62 ft above land-surface datum.

PERIOD OF RECORD . -- October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 57.36 ft NGVD, Mar. 31, 1987; lowest, 50.52 ft NGVD, May 19, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988
MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	54.05	53.89	54.51	53.74	54.70	54.87	54.95	53.84	53.14	53.10	52.98	1222
10	53.79	54.67	54.37	53.69	54.66	55.61	54.72	53.64	53.78	52.99	53.19	
15	53.73	54.99	54.23	53.60	54.58	55.90	54.52	53.56	53.80	53.06	53,22	
20	53.57	55.11	54.09	53.53	54.72	55.75	54.34	53.35	53.59	53.03		
25	53.42	54.90	54.00	54.24	54.98	55.54	54.16	53.34	53.48	53.16		
EOM	53.22	54.74	53.86	54.78	54.90	55.22	54.02	53.23	53.31	52.94		
MAX	54.12	55.13	54.70	54.78	55.00	55.99	55.15	54.02	53.80	53.25		

CAL YR 1987 MAX 57.36

SUMTER COUNTY

WELL NUMBER. -- 285121082112201. Sumter 13 Well near Wildwood, FL.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 31 ft, cased to 26 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 50.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling, 2.50 ft above land-surface datum.

PERIOD OF RECORD.--December 1964 to July 1973 (bimonthly); August 1973 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 47.16 ft NGVD, Oct. 6, 1982; lowest, 38.41 ft NGVD, Oct. 24, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMIM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	41.04	40.89	41.11	40.86	43.53	44.21	44.01	42.87	41.69	41.14	41.28	43.27
10	40.92	40.98	41.04	41.00	43.66	45.93	43.73	42.60	41.96	40.90	42.41	46.19
15	41.03	41.03	41.06	40.92	43.57	45.35	43.52	42.56	41.78	41.06	42.47	45.15
20	40.87	41.31	41.10	40.83	43.93	45.12	43.66	42.26	41.42	40.95	42.69	45.33
25	40.74	41.29	41.04	44.48	44.08	44.70	43.35	42.16	41.27	41.51	42.36	44.96
EOM	40.55	41.26	40.93	43.91	43.70	44.32	43.15	41.90	41.41	41.58	42.48	44.65
MAX	41.05	41.31	41.24	44.48	44.35	45.93	44.23	43.18	42.10	41.65	42.73	46.51

WTR YR 1988 MAX 46.51

WELL NUMBER. -- 285207082014501. Masters Avenue City Well at Wildwood, FL.

LOCATION.--Lat 28°52'07", long 82°01'45", in SE\sE\s\W\ sec.5, T.19 S., R.23 E., Hydrologic Unit 03100208, 100 ft east of Masters Avenue, and 600 ft north of Cleveland Avenue in Wildwood. Owner: City of Wildwood.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geological Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, diameter 12 in., depth 125 ft, cased to 45 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 82.58 ft above National Geodetic Vertical Datum of 1929. Measuring point: Bottom edge of 2 in. vent pipe, 1.48 ft above land-surface datum.

PERIOD OF RECORD. -- March 1961 to January 1978 (bimonthly); February 1978 to October 1979; November 1979 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 57.86 ft NGVD, Sept. 15, 1964; lowest measured, 45.18 ft NGVD, Dec. 14, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
13	0810	50.91	20	0905	50.28
JAN 07	1630	48.91	JUN 22	1220	49.18
MAR	1030	40.31	AUG	1220	49.10
04	0810	51.15	18	1358	47.75
APR			SEP		
28	1020	51.63	23	0850	51.46

SUMTER COUNTY

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
283324082050601	05-16-88 09-20-88	1045 1040	83320501 22S22E23 WILSON IRR WELL AT WILSON CR	73.32 17.53
283432081592401	05-16-88 09-19-88	0835 0835	83415901 22S23E15 JC 51 HUGH ILEY	89.47 90.10
283519081591601	05-16-88 09-19-88	0820 0815	83515901 22S23E11 JC 68 FLA ROCK IND NO 3	88.34 88.37
283539082000301	05-16-88 09-19-88	1125 1140	83520001 25S23E10 JC 67 FLA ROCK IND NO 2	86.95 87.84
283637082081501	05-17-88 09-20-88	1140 1015	83620801 21S22E32 SCL RR USED 155	63.57 65.53
283718081580201	05-16-88 09-19-88	1245 1255	THELMA ILEY WELL NR CENTER HILL	87.80 88.74
283829082123701	05-17-88 09-20-88	1025 1115	83821202 21S21E21 JC 47 N R DOKE	44.70 47.39
283904082001601	05-16-88 09-19-88	1140 1155	83920001 21S23E22 JC 65 U S GEOL SURVEY	72.44 76.13
283904082005301	05-16-88 09-19-88	1155 1215	83920002 21S23E21 JC 69 FLA CRUSHED STONE NO 4	64.89 63.58
283952082022001	05-17-88 09-20-88	0955 0935	83920201 21S23E18 JC 42 PARROT RANCH	77.25 81.82
283953082051401	05-17-88 09-20-88	1025 0945	83920501 21S22E14 JC 36	75.54 77.66
284002082064201	05-17-88 09-20-88	1010 0955	84020602 21S22E16 JC 53 BUSHNELL	70.05 71.95
284017082033701	05-17-88 09-20-88	0945 0925	84020303 21S22E12 JC 38	74.75 76.37
284104082055801	05-18-88 09-21-88	1200 1020	84120505 21S22E03 JC 30	65.74 68.54
284114082080701	05-10-88 09-22-88	1020 0815	BEVILLES 50 FT N OF WINDMILL	56.95 59.35
284115082062601	05-18-88 09-21-88	1140 1015	84120601 21S22E04 JC 27A	60.00 63.44
284119082034501	05-17-88 09-20-88	0915 0855	84120304 21S22E01 JC 44 PARROT RANCH	78.03 80.52
284126082034501	05-17-88 09-20-88	0920 0900	84120305 21S22E01 JC 45 PARROT RANCH	77.97 80.14
284131082002101	05-16-88 09-19-88	1210 1235	STUART RANCH WELL NR CENTER HILL	82.24 84.49
284132082092801	05-19-88 09-22-88	0905 0905	84120901 21S21E01 JC 05 C H BEVILLE	47.80 50.20
284139082082501	05-10-88 09-22-88	1030 0825	84120801 21S22E06 JC 06 C H BEVILLE	55.65 57.54
284143082032901	05-17-88 09-20-88	0930 0910	84120301 21S22E01 JC 39 PARROT RANCH	75.78 76.83
284143082050801	05-18-88 09-21-88	1220 1050	84120503 21S22E02 JC 23 C H BEVILLE	69.68 71.57
284146082045901	05-18-88 09-21-88	1225 1055	84120401 21S22E02 JC 24 C H BEVILLE	71.50 73.32
284146082061401	05-18-88 09-21-88	1115 1005	84120604 21S22E03 JC 32	59.65 61.88

SUMTER COUNTY--Continued

	DATE OF	2002			ELEVA- TION ABOVE
STATION NUMBER	SAMPLE	TIME		STATION NAME	NGVD (FEET)
284147082051301	05-18-88 09-21-88	1215 1045	84120507	21S22E02 JC 21 C H BEVILLE	68.22 69.84
284147082052801	05-18-88 09-21-88	1245 1030	84120506	21S22E03 JC 34	65.85 67.41
284148082064301	05-17-88 09-20-88	1125 1215	84120603	21S22E04 JC 33 C H BEVILLE	58.16 59.86
284155082043901	05-18-88 09-21-88	1230 1100	84120402	20S22E35 JC 25 C H BEVILLE	74.01 75.91
284158082045101	05-18-88 09-21-88	1020 0915	84120404	20S22E35 JC 64	70.41 71.59
284159082081601	05-19-88 09-22-88	0850 0845	84120803	20S22E31 JC 62 U S GEOL SURVEY	52.86 54.32
284208082051701	05-18-88 09-21-88	1030 0930	84220501	20S22E34 JC 18 C H BEVILLE	72.41 73.94
284208082054601	05-18-88 09-21-88	1040 0940	84220502	20S22E34 JC 19 C H BEVILLE	69.88 71.06
284209082060101	05-18-88 09-21-88	1120 1000	84220601	20S22E34 JC 20 C H BEVILLE	62.16 63.81
284212082044301	05-18-88 09-21-88	1010 0905	84220403	20S22E35 JC 16 C H BEVILLE	73.51 75.08
284212082071701	05-19-88 09-22-88	0820 0805	84220702	20S22E32 JC 63 U S GEOL SURVEY	55.60 56.79
284215082092301	05-10-88 09-22-88	1300 0920	84220901	20S21E36 JC 61 U S GEOL SURVEY	46.01 47.85
284237082044401	05-18-88 09-21-88	0945 0840	84220402	20S22E35 JC 13 C H BEVILLE	71.39 72.70
284241082034201	05-18-88 09-21-88	1000 0852	84220301	20S22E36 JC 14 C H BEVILLE	77.71 78.57
284242082054401	05-18-88 09-21-88	0855 0755	84220505	20S22E34 JC 09 C H BEVILLE	62.46 64.03
284249082053101	05-18-88 09-21-88	0920 0815	84220504	20S22E27 JC 10 C H BEVILLE	67.21 68.43
284252082045201	05-18-88 09-21-88	0935 0835	84220401	20S22E26 JC 12 C H BEVILLE	70.19 71.14
284258082072101	05-18-88 09-22-88	0935 0945	84220701	20S22E29 JC 08 C H BEVILLE	54.30 56.25
284259082052101	05-18-88 09-21-88	0920 0820	84220503	20S22E27 JC 11 C H BEVILLE	72.50 73.17
284311082081801	05-18-88 09-22-88	0950 1000	84320801	20S22E30 JC 01 C H BEVILLE	50.67 53.24
284317082142601	05-17-88	1045	84321401	20S21E30 TRAILER PARK NW OF WAHOO	41.30
284323082083601	05-18-88 09-22-88	0955 1010	84320802	20S22E30 JC 02 C H BEVILLE	48.68 51.52
284340082042701	05-18-88 09-21-88	0810 0140	84320401	20S22E23 JC 66 SANDPIT WELL	53.15 52.97
284430082063001	05-17-88 09-20-88	1155 1230	84420601	20S22E21 JC 72 GEO ALTMAN IRR	45.30 47.61
284435082011701	05-17-88 09-20-88	0855 0835	BRENTWOOD	WELL NR SUMTERVILLE	64.98 64.48
284449082055201	05-17-88 09-20-88	1210 1240	84420502	20S22E15 WOODWARD RESIDENCE	42.78 45.23

SUMTER COUNTY--Continued

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
284520082081301	05-19-88 09-22-88	1055 1055	84520802 20S22E17 JC 54	41.96 44.88
284521082014901	05-17-88 09-20-88	0810 0735	84520101 20S23E08 JC 55 DIXIE LIME	50.86 57.75
284528082030001	05-17-88 09-20-88	0825 0740	DIXIE LIME NO 1	50.03 50.88
284531082034301	05-17-88 09-20-88	0830 0750	DINOSAUR JUNGLE WELL NR SUMTERVILLE	45.14 45.95
284703082001701	05-20-88 09-23-88	1020 0940	LOWES BURNED HOUSE WELL NR ADAMSVILLE	55.30 56.49
284756082020301	05-20-88 09-23-88	1010 0930	84720201 BOLLING WELL AT ADAMSVILLE	55.49 57.61
284809082080701	05-19-88	1110	84820801 19S22E30 HOWARD KENT	40.53
284810082004001	05-20-88 09-23-88	1015 0915	HOGEYE SINK WELL NR WILDWOOD	54.14 55.40
284921082105701	05-14-88 09-22-88	1120 1115	WYSONG DAM WELL NR CARLTON	38.96 40.93
284955081595801	05-20-88 09-23-88	1000 0900	BYRD TRAILER WELL NR ORANGE HOME	64.47 66.21
285112082124001	05-19-88 09-22-88	1135 1140	85121201 19S21E09 JC 60 U S GEOL SURVEY	37.46 40.13
285150082044001	05-20-88 09-22-88	0920 1225	85120401 19S22E02 JC 58 U S GEOL SURVEY	48.51 49.18
285224082054201	05-19-88 09-02-88	1155 1205	85220501 18S22E34 HORNES WELL W OF WILDWOOD	47.43 48.23
285232082080001	05-19-88 09-22-88	1130 1200	BENCHMARK WELL STATE RD 44 NR WILDWOOD	55.62 52.30
285420081571901	05-20-88 09-23-88	0815 0800	SMITH WELL NO 2 NR CHERRY LAKE	54.01 54.54
285422082001901	05-20-88 09-22-88	0830 0815	HATCHER WELL AT LAKE MIONA NR OXFORD	48.47 48.92
285536082044001	05-20-88 09-22-88	0850 0830	85520401 18S22E14 G N SMITH	49.01 49.99

WATER RESOURCES DATA - FLORIDA, 1988 Volume 1B: Northeast Florida

KEY TO SITE LOCATIONS ON FIGURE 41 VOLUSIA COUNTY

Index	Site	Page
number	number	number
1	285512081202801	380
2	285745081054001	380
3	290541081132902	381
3	290541081132903	382
3	290541081132904	383
4	290651080582802	383
5	290920081063001	384
5	290920081063002	385
6	291006081101004	385
6	291007081101613	386
7	291025081050201	386
8	291343081254601	387
9	291344081155701	387
9	291353081160401	388
10	291715081281801	388
11	291905081251001	389

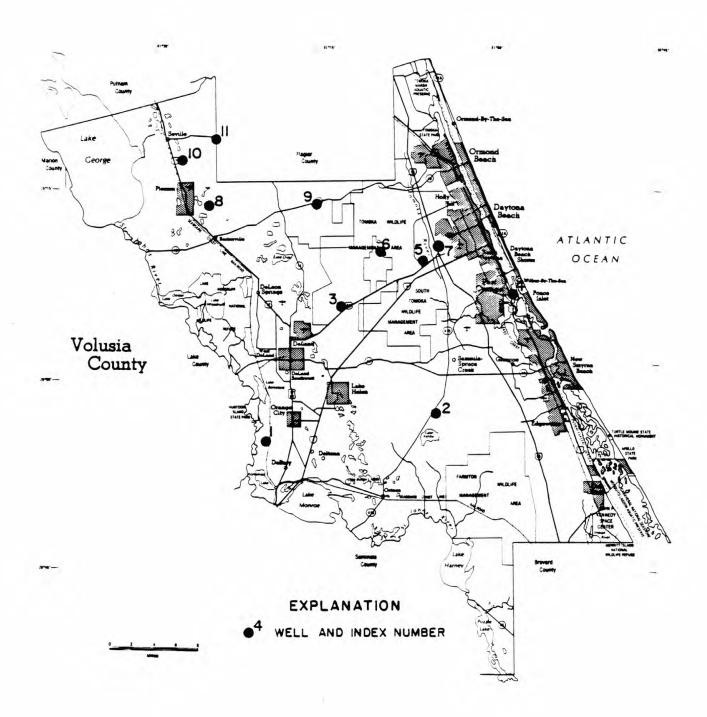


Figure 41.--Location of wells in Volusia County.

VOLUSTA COUNTY

WELL NUMBER. -- 285512081202801. South Blue Spring Well near Orange City, FL.

LOCATION.--Lat 28°55'12", long 81°20'28", in SE\SE\SW\x sec.17, T.18 S., R.30 E., Hydrologic Unit 03080101, on dirt trail 210 ft north of Detroit Terrace Road, 0.45 mi west of railroad tracks, 1.75 mi south of Blue Springs Road, and 2.0 mi west of Orange City. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 200 ft, cased to 106 ft.

INSTRUMENTATION. -- Bimonthly measurement with pressure gage by USGS personnel.

DATUM.--Land-surface datum is 9.52 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 3/4 in. Y coupling, 4.2 ft above land-surface datum.

PERIOD OF RECORD. -- September 1981 to September 1983 (semiannually), February 1984 to current year (bimonthly).

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.90 ft NGVD, Mar. 22, 1988; lowest measured, 15.72 ft NGVD, June 10, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			JUL		
25	0840	19.40	05	1715	18.40
JAN			SEP		
15	1640	19.40	01	0910	18.90
MAR			19	1830	18.12
22	1730	19.90			
MAY					
20	1640	16.52			

WELL NUMBER. -- 285745081054001. USGS Well at Alamana, FL.

LOCATION.--Lat 28°57'05", long 81°05'40", in SW\sSW\sSE\s sec.2, T.18 S., R.32 E., Hydrologic Unit 03080101, on west side of Lake Ashby Road, 0.2 mi southeast of intersection of State Highway 415, and 0.8 mi north of Alamana. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 6 in., depth 121 ft, cased to 113 ft.

INSTRUMENTATION. -- Digital recorder--60-minute interval.

DATUM.--Land-surface datum is 35.90 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.10 ft above land-surface datum.

PERIOD OF RECORD. -- May 1936 to September 1950 (monthly); October 1950 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 32.10 ft NGVD, September 1945; lowest daily maximum water level, 25.11 ft NGVD, July 19, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	28.83	29.44	29.92	29.23	30.04	29.67	29.55	28.47	27.47	26.91	26.99	29.13
10	28.52	29.70	29.77	29.27	30.05	30.24	29.10	28.21	27.80	27.16		
15	29.08	29.53	29.65	29.31	30.00	30.30	28.73	28.50	27.84	27.13		
20	29.21	29.83	29.56	29.24	30.02	30.16	28.56	28.30	27.40	27.11		
25	29.01	29.86	29.46	29.80	29.89	30.11	28.20	27.96	27.17	27.10		29.20
EOM	28.70	30.17	29.22	30.07	29.79	29.80	28.13	27.82	26.98	27.06	28.82	29.36
MAX	29.25	30.17	30.13	30.07	30.08	30.37	29.74	28.52	27.90	27.20		

CAL YR 1987 MAX 30.72

VOLUSIA COUNTY

WELL NUMBER. -- 290541081132902. USGS 04 Deep Well near De Land, FL.

LOCATION.--Lat 29°05'41", long 81°13'29", in NWkNWkSWk sec.20, T.16 S., R.31 E., Hydrologic Unit 03080103, on north side of U.S. Highway 92, and 6.0 mi east of U.S. Highway 17 in De Land. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 6 in., depth 639 ft, cased to 85 ft. Original depth of well, 351 ft.

INSTRUMENTATION. -- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 38.35 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling, 3.25 ft above land-surface datum.

PERIOD OF RECORD. --May 1955 to May 1965; June 1965 to December 1981 (bimonthly); February 1982 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 39.65 ft NGVD, Sept. 30, 1960; lowest measured, 31.99 ft NGVD, June 28, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			APR		
02	1019	36.82	22	1053	36.41
28	1433	36.81	MAY		
NOV			18	1745	35.98
19	1525	37.54	26	1135	35.51
20	1517	37.62	JUN		
DEC			22	1143	35.02
29	1426	36.95	30	1320	34.63
JAN			JUL		
13	1610	36.90	20	1220	34.50
26	1250	37.16	AUG		
FEB			23	1319	35.78
22	1110	37.22	29	1110	35.93
MAR			SEP		
17	1120	37.08	15	1400	36.87
29	1149	37.37	28	1316	36.57

VOLUSIA COUNTY

WELL NUMBER. -- 290541081132903. USGS 05 Deep Well near De Land, FL.

LOCATION.--Lat 29°05'41", long 81°13'29", in NWkNWkSWk sec.20, T.16 S., R.31 E., Hydrologic Unit 03080103, on north side of U.S. Highway 92, and 6.0 mi east of U.S. Highway 17 in De Land. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 4 in., depth 1,200 ft, cased to 639 ft.

INSTRUMENTATION, -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 38.35 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. coupling, 3.25 ft above land-surface datum.

PERIOD OF RECORD.--September 1969 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.34 ft NGVD, Mar. 9, 1970; lowest measured, 26.93 ft NGVD, June 29, 1981.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
02	1025	29.62	18	1745	29.24
28	1437	30.16	26	1140	28.98
NOV			JUN		
19	1525	30.51	22	1145	28.92
20	1524	30.59	30	1320	28.95
DEC			JUL		
29	1424	30.63	20	1224	28.63
JAN			AUG		
13	1610	30.67	23	1316	29.34
FEB			29	1115	29.51
22	1115	30.75	SEP		
MAR	100		15	1400	30.03
17	1125	30.87	28	1410	30.21
29	1155	30.93			
APR	8754	1000000			
22	1055	30.05			

VOLUSIA COUNTY

WELL NUMBER. -- 290541081132904. USGS 06 Deep Well near De Land, FL.

LOCATION.--Lat 29°05'41", long 81°13'29", in NW\N\SW\sec.20, T.16 S., R.31 E., Hydrologic Unit 03080103, on north side of U.S. Highway 92, and 6.0 mi east of U.S. Highway 17 in De Land. Owner: U.S. Geological Survey.

AQUIFER. -- Oldsmar Limestone of the Eocene Age, Geologic Unit 124 OLDM.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 1.25 in., depth 1,290 ft, cased to 1,275 ft. INSTRUMENTATION.--Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 38.35 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.25 ft above land-surface datum.

PERIOD OF RECORD.--September 1969 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.33 ft NGVD, Mar. 9, 1970; lowest measured, 23.04 ft NGVD, May 13, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
02	1022	24.93	18	1750	24.27
28	1022	25.33	26	1144	24.21
NOV		25.00	JUN	1111	24.21
19	1530	25.63	24	1147	24.35
	1527		30	1325	24.40
20	1527	26.01		1323	24.40
DEC	2722		JUL	1000	21 25
29	1421	26.09	20	1226	24.25
JAN			AUG	3244	22.20
13	1610	26.04	23	1313	25.01
FEB			29	1115	25.23
22	1119	26.43	SEP		
MAR			15	1405	25.67
17	1125	26.52	26	1325	25.77
29	1157	26.44			
APR					
22	1100	25.38			

WELL NUMBER. -- 290651080582802. Harbour Oaks Supply Well near Allandale.

LOCATION.--Lat 29°06′51", long 80°58′28", in sec.14, T.16 S., R.33 E., Hydrologic Unit 03080201, 140 ft north of Farmbrook Road, 200 ft west of intersection of U.S. Highway 1 and Farmbrook Road, and 0.7 mi north of Rose Bay in Harbour Oaks. Owner: Harbour Oaks Assn.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, unused, public supply well, diameter 4 in., depth 146 ft, cased to 104 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 3.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 6.08 ft above land-surface datum.

PERIOD OF RECORD. -- August 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 6.94 ft NGVD, Mar. 18, 1983; lowest, 0.89 ft below NGVD, June 5, 1985.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	2.62	4.36	4.90	4.78	5.15	5.15	4.02	2.33	1.07	.74	1.07	2.57
10	2.41	4.18	4.93	4.97	5.48	5.80	3.49	1.65	1.51	.66	1.09	3.39
15	3.95	3.93	5.02	5.02	5.31	5.58	3.10	2.32	1.15	1.02	1.89	3.00
20	3.97	4.84	4.88	5.22	5.75	5.22	2.90	1.16	. 99	. 46	1.27	3.01
25	3.51	5.01	4.97	5.43	5.39	4.71	1.65	1.09	.39	1.91	1.80	2.07
EOM	3.08	5.70	4.65	5.02	5.01	4.24	2.27	1.39	.10	1.35	2.23	3.18
MAX	4.21	5.72	5.49	5.43	5.75	5.86	4.22	2.91	1.83	2.05	2.34	3.56

CAL YR 1987 MAX 5.72 WTR YR 1988 MAX 5.86

VOLUSIA COUNTY

WELL NUMBER. -- 290920081063001. USGS 6-Inch Well near Daytona Beach, FL.

LOCATION.--Lat 29°09'23", long 81°06'12", in SW\nE\sec.33, T.15 S., R.32 E., Hydrologic Unit 03080201, on north side of U.S. Highway 92, 14.9 mi northeast of U.S. Highway 17 in De Land, and 6.0 mi west of Daytona Beach. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 6 in., depth 235 ft, cased to 102 ft.

INSTRUMENTATION. -- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 27.04 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.08 ft above land-surface datum.

PERIOD OF RECORD, --February 1955 to November 1957; January 1958 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 24.46 ft NGVD, Oct. 18, 1955; lowest measured, 9.36 ft NGVD, Aug. 23, 1988.

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
OCT			MAY		
01	1415	13.19	20	1140	11.67
28	1550	13.24	26	1042	11.94
NOV			JUN		
19	1610	14.90	22	1221	11.22
20	1422	15.06	30	1335	10.02
DEC			JUL		
29	1400	13.92	20	1045	9.70
JAN			AUG		
13	1635	15.20	23	1055	9.36
FEB			29	1010	10.48
25	1135	16.21	29	1610	10.48
MAR	300 A 40		SEP		
17	1150	15.79	15	1540	11.92
29	1309	14.98	28	1410	11.21
APR	100000	July July			
22	1020	12.67			

VOLUSIA COUNTY

WELL NUMBER. -- 290920081063002. USGS 2-Inch Well near Daytona Beach, FL.

LOCATION.--Lat 29°09'23", long 81°06'12", in SW\nE\sec.33, T.15 S., R.32 E., Hydrologic Unit 03080201, on north side of U.S. Highway 92, 14.9 mi northeast of U.S. Highway 17 in De Land, and 6.0 mi west of Daytona Beach. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 2 in., depth 496 ft, cased to 480 ft.

INSTRUMENTATION .-- Bimonthly measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 27.04 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.08 ft, above land-surface datum.

PERIOD OF RECORD.--October 1955 (annually); January 1974 to current year (bimonthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.23 ft NGVD, Oct. 18, 1955; lowest measured, 10.71 ft NGVD, June 30, 1988.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
DALE		(FEEI)	DATE		(FEEI)
OCT			MAY		
01	1415	13.46	20	1140	12.12
NOV			JUN		
19	1615	15.05	30	1340	10.71
JAN			AUG		
13	1635	15.38	29	1610	11.17
MAR			SEP		
17	1150	15.94	15	1545	12.49

WELL NUMBER. -- 291006081101004. Tiger Bay Test Site 4A near Daytona, FL. (Formerly published as Indian Lake Test Site 4A.)

LOCATION.--Lat 29°10'06", long 81°10'10", in SE%NE%SW% sec.26, T.15 S., R.31 E., Hydrologic Unit 03080103, 2.8 mi northwest of intersection of U.S. Highway 92 and Indian Lake Road, and 9 mi west of Daytona Beach. Owner: U.S. Geological Survey.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 4 in., depth 222 ft, cased to 122 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 40.42 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.10 ft above land-surface datum.

PERIOD OF RECORD .-- October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest daily maximum water level, 31.45 ft NGVD, Oct. 30,31, Nov. 1, 1975; lowest, 24.28 ft NGVD, July 6, 1978.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	27.06	27.56	28.05	27.47	28.61	28.30	28.29	26.96	25.63	24.76	24.47	24.67
10	26.72	27.87	28.03	27.82	28.81	28.97	27.64	26.65	25.92	24.87	24.51	25.65
15	27.40	27.83	27.91	27.79	28.73	29.39	27.18	26.49	25.68	24.66	24.50	25.85
20	27.44	28.00	27.85	27.67	28.69	29.07	27.09	26.15	25.41	24.66	24.35	25.97
25	27.12	27.86	27.77	28.19	28.68	28.93	26.68	25.93	. 25.19	24.75	24.54	25.90
EOM	26.76	28.21	27.44	28.49	28.53	28.51	26.67	26.04	25.05	24.68	24.57	25.65
MAX	27.56	28.21	28.17	28.49	28.82	29.46	28.46	26.98	25.98	25.02	24.61	26.03

WTR YR 1988 MAX 29.46

VOLUSIA COUNTY

WELL NUMBER. -- 291007081101613. Tiger Bay Shallow Test Well near Daytona Beach, FL.

LOCATION.--Lat 29°10'07", long 81°10'16", in NW\xNE\xSW\x sec.26, T.15 S., R.31 E., Hydrologic Unit 03080103, 2.9 mi northwest of intersection of U.S. Highway 92 and Indian Lake Road, and 9 mi west of Daytona Beach. Owner: U.S. Geological Survey.

AQUIFER.--Nonartesian sand of the surficial aquifer system, Geologic Unit 110 NRSD.

WELL CHARACTERISTICS .-- Drilled, observation well, diameter 4 in., depth 20 ft, cased to 18 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 41.17 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.40 ft above land-surface datum.

PERIOD OF RECORD. -- March 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 38.41 ft NGVD, Sept. 28,29, 1984; lowest, 32.99 ft NGVD, July 16, 1981.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				MAXIN	MUM V	ALUES				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	36.04	36.95	36.96	36.22	37.28	37.05	37.10	36.29	35.06	34.21	34.09	
10	35.66	36.97	36.87	36.58	37.34	37.51	36.79	35.87	35.59	34.16	34.00	
15	36.48	36,80	36.71	36.60	37.24	37.52	36.57	35.68	35.15	34.09	33.94	
20	36.43	37.07	36.68	36.42	37.21	37.50	36.42	35.33	34.78	34.14		
25	36.12	36.97	36.52	37.19	37.28	37.41	36.11	35.11	34.59	34.18		
EOM	35.84	37.13	36.30	37.32	37.14	37.21	36.01	35.55	34.40	34.24		
MAX	36.54	37.13	37.13	37.32	37.34	37.52	37.18	36.42	35.67	34.36		

WEIL NUMBER. -- 291025081050201. Interstate Highway 95 Well at Daytona Beach, FL.

LOCATION.--Lat 29°10'25", long 81°05'02", in SW\nE\s sec.27, T.15 S., R.32 E., Hydrologic Unit 03080201, 23 ft north and 75 ft east of intersection of Interstate Highway 95 and U.S. Highway 92 in Daytona Beach. Owner: U.S. Geological Survey.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 220 ft, cased to 152 ft.

INSTRUMENTATION. -- Digital recorder--15-minute interval.

DATUM.--Land-surface datum is 26.05 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.50 ft above land-surface datum.

REMARKS. -- Water level affected by pumping of nearby wells.

PERIOD OF RECORD, -- May 1955 to July 1969; May 1973 to March 1974 (bimonthly); May 1974 to current year. Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 15.26 ft NGVD, Oct. 18, 1955; lowest, 8.52 ft below NGVD, July 14, 1977.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	2.32	4.54	6.77	5.70	4.99	5.39	1.48	1.50	-2.81	-4.78	-2.82	20
10	.79	4.88	6.19	5.58	6.35	6.42	1.49	49	77	-2.97	-1.74	3.08
15	4.12	3.22	6.67	5.74	5.23	4.19	. 96	1.86	-1.05	-2.14	20	2.19
20	4.61	7.04	6.35	6.03	6.38	3.28	1.43	-2.42	-1.76	-2.70	86	1.53
25	2.56	7.31	5.59	6.31	6.34	1.73	-1.13	-1.17	-4.30	-1.14	-1.31	20
EOM	2.05	8.09	6.13	6.19	5.63	2.01	1.03	97	-4.26	-1.17	32	3.61
MAX	4.68	8.09	8.09	6.31	6.42	6.42	2.82	2.46	.37	56	. 67	3.61

CAL YR 1987 MAX 8.09

WTR YR 1988 MAX 8.09

VOLUSIA COUNTY

WELL NUMBER. -- 291343081254601. Local Number V-89. Jones Well near Pierson, FL.

LOCATION.--Lat 29°13'43", long 81°25'46", in SE\nE\nE\nE\sec.6, T.15 S., R.29 E., Hydrologic Unit 03080101, 2.3 mi southeast of Pierson, and 2.9 mi north of Barberville. Owner: Ronald Jones.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, observation well, diameter 6 in., depth 412 ft, cased to 108 ft.

INSTRUMENTATION. -- Digital recorder -- 15-minute interval.

DATUM.--Land-surface datum is 51.88 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.80 ft above land-surface datum.

REMARKS. -- Water level seasonally affected by pumping of nearby wells.

COOPERATION.--Since October 1985, records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- December 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 35.64 ft NGVD, Sept. 30, Oct. 1, 1979; lowest, 5.84 ft NGVD, Dec. 26, 1983.

ELEVATION,	IN	FEET	NGVD,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
			1000	MAXI	AUM VA	ALUES				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	31.04	31.32	31.51	30.80	30.80	31.42	31.73	30.71	29.87	29.30	30.25	31.59
10	29.72	31.31	30.69	31.29	31.27	32.41		30.14	30.46	29.27	30.28	32.26
15	31.00	31.00	30.69	30.38	31.41	32.47		31.33	30.13	29.90	30.91	32.07
20	29.91	31.82	29.36	30.59	31.08			29.95	29.33	29.74	30.53	31.77
25	30.09	30.93	30.69	31.59	31.34	31.75	30.77	30.52	29.42	30.48	29.84	31.37
EOM	29.43	31.89	29.69	28.80	30.00	32.18	30.72	30.47	29.53	30.43	30.81	31.18
MAX	31.04	31.89	31.71	31.63	31.61			31.41	30.69	30.48	31.12	32.42

WELL NUMBER. -- 291344081155701. Local Number V-90. Union Camp Deep Well near Barberville, FL.

LOCATION.--Lat 29°13'44", long 81°15'57", in NE%SW%NE% sec.2, T.15 S., R.30 E., Hydrologic Unit 03080103, 0.5 mi south of State Highway 40, and 9.7 mi east of Barberville. Owner: Union Camp Corp.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, observation, artesian well, diameter 6 in., depth 151 ft, cased to 74 ft.

INSTRUMENTATION. -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 32.88 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.50 ft above land-surface datum.

COOPERATION. -- Since October 1985, records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- April 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest daily maximum water level, 29.98 ft NGVD, Sept. 29, 1979; lowest, 23.47 ft NGVD, July 8, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988
MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	27.67	27.89	28.22	27.69	28.07	28.33	28.28	27.04	26.04	25.65	25.42	26.00
10	27.37	28.19	28.04	27.99	28.34	28.87	27.96	26.76	26.38	25.69	25.41	26.68
15	27.69	28.04	27.99	27.99	28.17	28.78	27.64	26.82	26.32	25.56	25.38	27.03
20	27.81	28.29	27.62	28.10	28.36	28.32	27.43	26.61	26.07	25.55	25.50	27.12
25	27.62	28,20	27.82	28.33	28,42	28.50	27.12	26.34	25.96	25.54	25.56	26.97
EOM	27.38	28.50	27.59	27.50	28.13	28.44	26.99	26.34	25.83	25.49	25.77	27.05
MAX	27.82	28.50	28.46	28.44	28.46	28.90	28.40	27.04	26.38	25.81	25.78	27.17

CAL YR 1987 MAX 28.85

WTR YR 1988 MAX 28.90

VOLUSIA COUNTY

WELL NUMBER. -- 291353081160401. Local Number V-88. Union Camp Shallow Well near Barberville, FL.

LOCATION.--Lat 29°13'53", long 81°16'04", in SWkNWkNEk sec.2, T.15 S., R.30 E., Hydrologic Unit 03080103, 0.3 mi south of State Highway 40, and 9.7 mi east of Barberville. Owner: U.S. Geological Survey.

AQUIFER .-- Nonartesian sand of the surficial aquifer system, Geologic Unit 110 NRSD.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, diameter 4 in., depth 20 ft, cased to 20 ft.

INSTRUMENTATION . -- Digital recorder -- 60-minute interval.

DATUM.--Land-surface datum is 34.13 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.60 ft above land-surface datum.

COOPERATION.--Since October 1985, records provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD . -- April 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest daily maximum water level, 34.16 ft NGVD, Sept. 30, 1979; lowest, 23.08 ft NGVD, July 18, 1981.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		33.38	32.52	31.36	33.03	33.70	31.63	29.49	27.63	26.90	25.43	24.74
10		33.10	32.39	33.17	33.44	34.04	31.07	28.91	28.91	26.95	25.08	
15		32.47	32.46	32.80	33.58	33.33	30.64	29.34	28.74	26.77	24.77	
20		33.56	32.15	32.55	33.60	33.40	30.28	28.86	27.99	26.51	24.66	
25	31.50	33.33	31.83	33.97	33.43	32.76	29.87	28.42	27.64	26.36	24.58	
EOM	30.77	33.26	31.36	33.45	32.93	32.25	29.62	28.17	27.22	25.84	24.53	0
MAX		33.58	33.09	33.97	33.75	34.04	32.12	29.74	28.98	27.11	25.75	

WELL NUMBER. -- 291715081281801. J.C. Mew Well at Seville, FL.

LOCATION.--Lat 29°17'26", long 81°28'54" in SW\sw. sec.9, T.14 S., R.28 E., Hydrologic Unit 03080101, 300 ft west of U.S. Highway 17, and 1.8 mi south of Seville. Owner: James C. Mew.

AQUIFER. -- Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS .-- Drilled, stock, artesian well, diameter 4 in., depth 180 ft, casing length unknown.

INSTRUMENTATION. -- Monthly measurement with pressure gage by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 14.90 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.20 ft above land-surface datum.

COOPERATION.--Since Oct. 1, 1985, data provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. --March 1936 to April 1950 (monthly); August 1950 to September 1985 (bimonthly); October 1985 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.89 ft NGVD, July 14, 1961; lowest measured, 17.45 ft NGVD, Dec. 23, 1986.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
NOV			MAY		
02	0955	21.10	13	1250	21.80
DEC			JUN		
01	1000	22.60	01	0900	20.60
03	1000	22.60	28	0845	20.60
JAN			JUL		
05	1425	21.10	26	1330	20.10
26	1500	19.60	AUG		
MAR			30	1300	21.10
01	0900	22.10	SEP		
31	1015	22.60	13	1322	22.50
APR			27	0840	22.60
26	1105	21.10			

VOLUSTA COUNTY

WELL NUMBER. -- 291905081251001. R. Nolan Well near Seville, FL.

LOCATION.--Lat 29°19'05", long 81°25'10", in SE\SE\sec.36, T.13 S., R.28 E., Hydrologic Unit 03080103, 25 ft south of State Highway 305, 100 ft west of Volusia-Flagler County line, and 4.8 mi east of U.S. Highway 17 in Seville. Owner: Robert Nolan.

AQUIFER.--Floridan aquifer system of the Tertiary System, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS. -- Drilled, stock, artesian well, diameter 6 in., depth 138 ft, casing length unknown.

INSTRUMENTATION .-- Monthly measurement with chalked tape by St. Johns River Water Management District personnel.

DATUM.--Land-surface datum is 23.30 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.21 ft above land-surface datum.

COOPERATION. -- Since Oct. 1, 1985, data provided by St. Johns River Water Management District and reviewed by U.S. Geological Survey.

PERIOD OF RECORD.--December 1935 to April 1950 (monthly); July 1950 to September 1985 (bimonthly); October 1985 to current year (monthly). Records prior to January 1974 are unpublished and available in files of the Orlando Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.90 ft NGVD, Sept. 1, Oct. 1, 1947; lowest measured, 16.23 ft NGVD, May 1, 1968.

ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)	DATE	TIME	ELEV- ATION ABOVE NGVD (FEET)
war					
NOV	1000	V 4 / 4 / 2	MAY	53.43	7 - 24
02	0925	18.81	13	1150	18.70
DEC			JUN		
01	0925	20.11	01	0840	18.92
03	0930	19.93	28	0823	18.91
JAN			JUL		
05	1445	19.63	26	0905	19.10
26	1525	19.19	AUG	1111	
27	0900	19.35	30	1310	19.40
28	0830	17.77	SEP	27.25	771.15
MAR	7.7.7		13	1200	20.44
01	0825	19.92	27	0820	20.10
31	0845	20.57	2,	0020	20.10
APR	3043	20.57			
26	1035	19.11			
20	1033	10.11			

VOLUSIA COUNTY

	DAME		*	ELEVA-
STATION NUMBER	OF SAMPLE	TIME	STATION NAME	TION ABOVE NGVD (FEET)
284743080520101	05-19-88 09-19-88	1155 1100	84705101 WL CANTRELL N OF COUNTY LINE, S OF OAK HILL	8.06 9.49
284902081112001	05-19-88 09-19-88	0920 0920	84911101 FLOW WELL, N. OF RIVER, S OF OSTEEN	13.40 15.55
285016081014101	05-19-88 09-19-88	1035 1000	85010102 USGS WELL NEAR COW CREEK, W OF MAYTOWN	14.88 16.85
285040081192101	05-20-88 09-19-88	1545 1630	85011821 STEWART WELL, U S 17, S OF DEBARY	16.31 18.38
285044081094901	05-19-88 09-19-88	0940 0940	85010903 OSTEEN CONVENIENCE STORE WELL	19.26 20.77
285045081063501	05-19-88 09-19-88	1020 0950	85010603 TURNER FMS. WELL, E OF OSTEEN	15.16 16.66
285143080521401	05-19-88 09-19-88	1115 1030	85105202 LOOMIS NURSERY WELL, W OF OAK HILL	7.70 9.30
285156081190302	05-20-88 09-19-88	1600 1645	85111902 A POWER CO BENSON JUNC, S OF DEBARY	10.72 12.98
285221081095002	05-19-88 09-19-88	1000 0900	85210902 USGS TEST WELL G-2, N OF OSTEEN	20.71 22.71
285359081161701	05-20-88 09-19-88	1530 1615	85311601 DELT. P.S. WELL NO 3, DIAMOND ST, DELTONA	14.60 18.20
285437081181401	05-20-88 09-19-88	1610 1650	85411801 SJRWMD TEST ORANGE CITY FIRE TOWER	19.74 20.77
285452080551801	05-19-88 09-19-88	1250 1130	85405501 BUERGER WELL NORTH OF VOLCO ROAD, ARIEL	7.78 9.25
285655081165601	05-20-88 09-19-88	1655 1808	85611601 USGS TEST WELL A-1, ORANGE CITY EAST	13.89 10.27
285655081165602	05-20-88 09-19-88	1655 1810	85611602 USGS TEST WELL A-2, ORANGE CITY EAST	16.62 12.38
285700081021001	05-19-88 09-19-88	1705 1335	85710201 USGS TEST WELL 11, E OF LK ASHBY	16.92 18.22
285811081130901	05-20-88 09-19-88	1505 1750	85811303 J B EVANS LAKE HELEN	35.00 35.14
285833080571701	05-19-88 09-19-88	1405 1235	85805701 GLENCOE RD SAND MINE RD W OF EDGEWATER	3.90 5.97
285859081191001	05-20-88 09-19-88	1440 1715	85811901 MCGREGGOR RD 4-IN WELL SW OF DELAND	4.73 5.31
285904080554601	05-19-88 09-19-88	1355 1225	85905504 EDGEWATER P.S. WELL NO 1, W OF EDGEWATER	4.91 5.58
285906081152002	05-20-88 09-19-88	1455 1740	85911508 3-IN WELL N SIDE OF ORANGE CAMP RD	30.94 31.11
285921080541001	05-19-88 09-19-88	1335 1210	85905402 MOORE WELL RIVERSIDE DR, EDGEWATER	5.99 7.18
285923081211601	05-20-88 09-19-88	1420 1540	85912012 ST JOHNS RD & HONTOON RD WELL, SW OF DELAND	13.08 14.60
285934081041801	05-19-88 09-19-88	1745 1350	85910401 USGS TEST WELL 10, S OF SAMSULA	23.54 24.85
285950080580101	05-19-88 09-19-88	1415 1248	85905803 4-IN OBS WELL NEXT TO NSB P.S. WELL NO 7	1.85 7.32
290038081043801	05-19-88 09-19-88	1730 1415	90010403 4-IN OBS WELL 100 FT W OF NSB NO S1, SAMSULA	12.52 20.07

VOLUSIA COUNTY--Continued

	DATE OF			ELEVA- TION ABOVE
STATION NUMBER	SAMPLE	TIME	STATION NAME	NGVD (FEET)
290047080593101	05-19-88 09-19-88	1435 1320	90005901 SERVICE STA WELL SR44 & I-95, NSB	5.17 7.19
290102080564201	05-19-88 09-19-88	1450 1310	90105611 CITY TEST WELL, JUNGLE RD, NEW SMYRNA	4.04 4.36
290138081203202	05-20-88 09-19-88	1350 1525	90112002 USGS J-2 TEST WELL, W OF DELAND	9.80 10.17
290225081040301	05-19-88 09-16-88	1610 1420	90210402 17S32E11 USGS TEST WELL 9, N SAMSULA	19.98 21.11
290230081123401	05-20-88 09-12-88	1715 1530	90211203 USGS TEST HOLE 5, E OF DELAND	33.89 34.52
290251081001401	05-19-88 09-16-88	1635 1450	90210001 USGS TEST WELL 1, NE OF SAMSULA	11.60 12.69
290308081182301	05-20-88 09-19-88	1330 1510	90311801 DELAND P.S. WELL NO 7A, DELAND	15.83 17.06
290325080563401	05-19-88 09-16-88	1505 1515	90305601 NSB AIRPORT WELL, NEW SMYRNA	1.14
290447081102301	09-12-88	1520	90411004 I-4 DEEP WELL, E OF DELAND	35.23
290456081044401	05-19-88 09-16-88	1555 1405	90410404 USGS TEST WELL 7, W OF ALLANDALE	18.37 18.73
290512081213602	05-18-88 09-15-88	1615 1222	GLENWOOD 2-IN WELL	16.01 15.19
290517081193601	05-18-88 09-15-88	1635 1250	90511902 16S30E19 MCDONALDS 15A & US17 WELL DLSP	22.99 21.97
290527081215001	05-18-88 09-15-88	1605 1205	90512109 ADAMS LEMMON ST WELL, GLENWOOD	16.39 15.62
290534081175001	05-18-88 09-15-88	1700 1320	90511701 USGS TEST WELL F1, N OF DELAND, SR11	35.21 35.01
290534081175002	05-18-88 09-15-88	1655 1320	90511702 USGS TEST WELL F2, N OF DELAND, SR11	34.09 33.84
290550081162601	05-18-88 09-15-88	1710 1335	90511601 LAWRENCE WELL, LAKE DAUGHARTY	37.91 38.33
290626081013701	05-19-88 09-16-88	1545 1350	90610102 SERVICE STA WELL AT TAYLOR RD & I-95	2.14 3.78
290708081233101	05-18-88 09-15-88	1535 0925	90712301 SJRWMD 4-IN WELL 2 MI SW OF PONCE DELEON SPGS	10.42 11.08
290723081210601	05-18-88 09-15-88	1350 1130	90712103 16S29E39 4-IN WELL, ELEM SCL, DELEON SPGS	12.20 11.96
290737081220301	05-18-88 09-15-88	1505 1140	90712201 HAGSTROM IRRIG WELL, W OF DELEON SPGS	8.66 8.74
290748081184201	05-18-88 09-15-88	1410 1111	90711801 16S30E05 THOMAS WELL 2 MI E OF DELEON SPGS	35.83 33.82
290806081013901	05-19-88 09-16-88	1535 1340	90810115 CITY OBS.WELL NO 2, WELL FIELD, PORT ORANGE	2.73
290842081084601	05-18-88 09-15-88	1810 1432	90810803 USGS TEST WELL K, IND.LK.RD, SW DAYTONA	31.88 30.95
290923081174301	05-18-88 09-15-88	1400 1055	90911701 15S30E33 WELL OFF SR11, .7MI S OF L.DIA	34.78 33.92
290928080594401	05-12-88 09-16-88	1450 1205	90905904 WELL AT REED CANAL & US1, S DAYTONA	-0.49 0.38
290930081230201	05-20-88	1240	90912303 15S29E34 WELL NR SHACK 3 MI SE/BARBERVILLE	15.55

VOLUSIA COUNTY--Continued

	DATE			ELEVA- TION
STATION NUMBER	OF SAMPLE	TIME	STATION NAME	ABOVE NGVD (FEET)
291032081065201	05-20-88 09-16-88	1220 0920	91010601 DAYTONA P.S. WELL NO 49, SW OF DAYTONA	7.50 4.45
291036081175801	05-18-88 09-15-88	1345 1040	91011701 HENDRIX WELL ON SR11, E OF BARBERVILLE	30.46 30.78
291052081200901	05-18-88 09-14-88	1305 1509	91012007 15S30E19 CAMP WINONA WELL N OF DELEON SPGS	28.09 28.14
291056081252401	05-18-88 09-14-88	1100 1110	91012502 BARBERVILLE WELL NR NASSERS WELL	21.69 23.00
291107081034201	05-20-88 09-16-88	1020 1040	AIRPORT WELL AT DAYTONA BEACH (SJ V-0187)	-1.85 1.95
291139081032401	05-20-88 09-16-88	1000 1050	91110305 DAYTONA P.S. WELL NO 34, DAYTONA	-4.02 -0.72
291149081190801	05-18-88 09-14-88	1255 1406	91111901 15S30E17 L BLACKWELDERS WELL CLIFTON RD	25.21 25.61
291150081282501	05-18-88 09-13-88	1044 1625	91112806 15S28E14 HARPERS WELL E OF MURPHY RD	28.18 29.93
291155081022901	05-20-88 09-16-88	0940 1150	91210237 DAYTONA P.S. WELL NO 32, TUSC., DAYTONA	-4.33 -0.67
291216081215601	05-18-88 09-14-88	1125 1235	91212101 SJRWMD TEST WELL, SR40, E OF BARBERVILLE	25.70 26.56
291221081235101	05-18-88 09-14-88	1115 1200	91212306 15S29E09 RICHARDSONS WELL NE/BARBERVILLE	24.90 25.94
291258081313701	05-13-88 09-13-88	1540 1550	91213103 4-IN SUPPLY WELL, SE LK GEORGE, NR EMPORIA	5.96 7.07
291302081063801	05-12-88 09-15-88	1415 1600	91310601 USGS WELL, SITE 2, W OF DAYTONA	7.95 6.81
291315081270301	05-13-88 09-13-88	1520 1530	91312701 MCLAUGHLINS 2-IN WELL, S PIERSON	25.27 27.30
291332081191001	05-18-88 09-14-88	1155 1300	91311903 USED 425	29.83 30.36
291347081284701	05-13-88 09-13-88	1530 1540	91312807 CLINES WELL W PIERSON	26.30 27.88
291421081012202	05-12-88 09-12-88	1335 1430	91410107 OLD P.S. WELL, SEABREEZE NO 7, DAYTONA	-4.77 -1.67
291431081263101	05-13-88 09-14-88	1455 1140	91412611 14S28E35 SJRWMD TURNER RD WELL PIERSON	30.14 32.00
291433081284102	05-13-88 09-13-88	1415 1445	91412818 SJRWMD DEEP TEST WELL NEXT TO 91412801	21.39 23.96
291458081294201	05-18-88 09-13-88	0955 1349	91412901 SJRWMD WELL 1.0 MI W OF PIERSON	17.41 18.78
291508081302801	05-13-88 09-14-88	1340 1050	91513001 SJRWMD WELL 2 MI W OF PIERSON	12.96 11.85
291523081095001	05-12-88 09-12-88	1125 1300	91510902 USGS WELL NO 1, SR40, W OF ORMOND	15.11 14.50
291543081320601	05-13-88 09-14-88	1315 1010	91513201 DEADMANS LANDING WELL, W OF PIERSON	6.05 6.36
291607081042301	05-12-88 09-12-88	1230 1330	91610408 ORMOND P.S. WELL NO 12, ORMOND BEACH	-9.93 -5.67

VOLUSIA COUNTY--Continued

STATION NUMBER	DATE OF SAMPLE	TIME	STATION NAME	ELEVA- TION ABOVE NGVD (FEET)
291712081032102	05-12-88 09-12-88	1300 1350	91710301 ORMOND, W END OF INTRACOASTAL BRIDGE	-6.12 -3.19
291737081265501	05-13-88 09-13-88	1230 1302	91712602 14S28E11 BOCKS 4-IN WELL SE SEVILLE	18.50 20.11
291823081290901	05-13-88 09-13-88	1220 1250	91812903 14S28E04 M MCBRIDES 6-IN WELL, S SEVILLE	19.49 22.95
291835081324201	05-13-88 09-13-88	1115 1020	91813201 USED 426 PINE ISLAND, W OF SEVILLE	5.30 6.39
291903081294601	05-13-88 09-13-88	1130 1040	91912901 13S28E32 OLD SEVILLE WELL	23.05 24.48
291904081055501	05-12-88 09-12-88	1055 1235	91910504 TOMOKA ESTATES 2-IN WELL NW OF ORMOND	0.58 2.47
291949081065901	05-12-88 09-12-88	1025 1210	91910604 PINE TREE DR 6-IN WELL, NATIONAL GARDENS	5.46 6.72
292053081084701	05-12-88 09-12-88	1040 1220	92010803 13S31E26 US1 6-IN WELL, .45 MI FR FLAGLER CO	14.05 15.02
292105081281201	05-13-88 09-13-88	0950 0955	92112801 13S28E22 WELL NE/SEVILLE NEXT TO OLD BLDG	13.48 15.25
292128081295401	05-13-88 09-13-88	0930 0940	92112902 HERRENS 4-IN WELL, N OF SEVILLE	29.80 32.98
292245081074801	05-12-88 09-12-88	1010 1150	92210701 WELL, S OF ORM. TOMB, NATL. GARDENS	4.48 6.86
292421081072301	05-12-88 09-12-88	0950 1145	92410701 HALIFAX PLANT.WELL NO 17D, NR NATL.GARDENS	5.61 6.08

.

INDEX TO INTRODUCTORY TEXT

	Page		Page
Access to WATSTORE data	18	Mean concentration, definition of	21
Accuracy of the records	14	Mean discharge, definition of	20
Acknowledgment	iii	Measuring point, definition of	20
Acre-foot, definition of	19	Micrograms per gram $(\mu g/g)$, definition of	20
Algae, definition of	19	Micrograms per liter (μ g/L), definition of	20
Ash mass, definition of	19	Milligrams per liter (mg/L), definition of	20
	19	MILLIGIAMS PET LICET (ME/L), delimitation of	20
Aquifer, definition of		National Condatio Nantical Datum of 1020	
Arrangement of records	14	National Geodetic Vertical Datum of 1929,	20
Artesian, definition of	19	definition of	20
Darkania daginikian ag	10	National Stream Quality Accounting Network,	10
Bacteria, definition of	19	explanation of	
Bed load, definition of	21	Networks and programs, special	10
Bed load discharge, definition of	21	Acceptable and the second seco	
Bed material, definition of	19	Onsite measurement and	16
Biochemical oxygen demand, definition of	19	sample collection	15
Biomass, definition of	19	Organic mass, definition of	19
Bottom material, definition of	19	Organism, definition of	21
		count/area, definition of	21
Cells/volume, definition of	19	count/volume, definition of	21
Cfs-day, definition of	19	count, total, definition of	21
CFSM, definition of	19	Other records available	14
Chemical oxygen demand, definition of	19		1000
Chlorophyll, definition of	19	Parameter code, definition of	21
Classification of records	14	Partial-record station,	
Color unit, definition of	20	definition of	21
Contents, definition of	20	Partical size, definition of	21
Control, definition of	20	Partical size classification,	
Control structure, definition of	20	definition of	21
Cooperation	1	Percent composition, definition of	21
Cubic foot per second, definition of	20	Pesticides, definition of	21
		Picocurie, definition of	21
Data collection and computation		Preface	iii
Stage and water discharge	12	Publications on techniques of water-resources	
Ground-water levels	16	investigations	24
Ground-water quality	17		
Data presentation		Records, explanation of the	11
Stage and water discharge	12	stage and water discharge	12
Surface-water quality	15	surface-water quality	14
Ground-water levels	17	ground-water levels	16
Ground-water quality	17	ground-water quality	17
Definition of terms	19	other available	14
Discharge, definition of	20	References, selected	26
Dissolved, definition of	20	Recoverable from bottom material,	
Dissolved solids concentration, definition of	20	definition of	21
Downstream order system	11	Remark codes	16
Drainage area, definition of	20	Return period, definition of	21
Drainage basin, definition of	20	Runoff in inches, definition of	21
Dry mass, definition of	19		
		Sediment (surface-water quality)	15
Explanation of the records	11	Sediment, definition of	21
		Selected references	26
Fecal coliform bacteria, definition of	19	Sodium-adsorption-ratio,	
Fecal streptoccocal bacteria, definition of	19	definition of	22
		Solute, definition of	22
Gage height, definition of	20	Special networks and programs	10
Gaging station, definition of	20	Specific conductance, definition of	22
Ground-water levels, records of	16	Stage and water discharge, records of	12
Ground-water quality, records of	17	Stage discharge relation,	
		definition of	22
Hardness of water, definition of	20	Station identification numbers	11
Hydrologic Bench-Mark Network,		Streamflow, definition of	22
explanation of	10	Summary of hydrologic conditions	2
Hydrologic conditions, summary of	2	Surface area, definition of	22
Hydrologic unit, definition of	20	Surface-water quality, records of	14
	33	Surficial bed material, definition of	22
Identifying estimated daily discharge	14	Suspended, definition of	22
Instantaneous discharge, definition of	20	recoverable, definition of	22
Introduction	1	total, definition of	22
		Suspended sediment, definition of	21
Laboratory measurements	15	concentration, definition of	21
Land-surface datum, definition of	20	discharge, definition of	22
Latitude-longitude system	11	load. definition of	22

INDEX TO INTRODUCTORY TEXT--Continued

e	Page		Page
Taxonomy, definition of	22		
Temperature, water			
Terms, definition of		Water-resources investigations.	
Thermograph, definition of		publications on techniques of	24
Time-weighted average, definition of		Water temperature	
Tons per acre-foot, definition of		Water year,	
Tons per day, definition of		definition of	23
Total, definition of		WATSTORE data, access to	18
Coliform bacteria, definition of	19	Weighted average,	-
Discharge, definition of	23	definition of	23
Organism count, definition of		Well descriptions and	100
Recoverable, definition of		ground-water data	27
Sediment discharge, definition of	22	Wet mass, definition of	19
Sediment load, definition of	22	WDR, definition of	
Tritium network	10	WSP, definition of	23

CALENDAR FOR WATER YEAR 1988

										198	37									
		OC'	ТОВ	ER			•		NO	VEM	BER					DE	СЕМ	BER		
S	M	Т	W	Т	F	S	S	М	Т	W	T	F	S	S	M	Т	W	Т	F	S
				1	2	3	1	2	3	4	5	6	7			1	2	3	4	5
4	5	6	7	8	9	10	8		10	11	12	13	14	6	7	8	9	10	11	12
					16		15	16				20	21	13			16	17	18	
18		1		22		24		23	24	25	26	27	28	20					25	26
25	26	27	28	29	30	31	29	30						27	28	29	30	31		
	-	-		-						198	8							-		
		J	ANU	ARY					FI	E BRI	JAR	Y				1	MAR	СН		
S	М	T	W	T	F	S	S	M	Т	W	T	F	S	S	М	T	W	Т	F	S
					1	2		1	2	3	4	5	6			1	2	3	4	5
3	4	5	6	7	8	9	7	8	9	10	11	12	13	6	7	8	9	10	11	12
0	11		13		15	16		15			18		20	13	-	15	16	17		19
17				21		23		22	23	24	25	26	27	20					25	26
1	25	26	27	28	29	30	28	29						27	28	29	30	31		
			APR	IL						MA	ľ					- 5.	JUN	E		
S	M	Т	W	Т	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
					1	2	1	2	3	4	5	6	7				1	2	3	4
3	4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	11
10	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18
1/	18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25
24	23	20	21	20	29	30	29	30	31					26	21	28	29	30		
			JULY	Z					Al	JGUS	ST				5	SEPT	rem)	BER		
S	M	Т	W	T	F	S	S													
					1	2		1	2	3	4	5	6	4				1	2	3
3	4	5	6	7	8	9	7	8	9	10	11	12	13	4	5	6	7	8	9	10
0	11	12	13	14	15	16	14	15	16	17	18	19	20	11	12	13	14	15	16	17
1/	18	19	20	21	22	23	21	22	23	24	25	26	27	18	19	20	21	22	23	24
31		20	21	28	29	30	28	29	30	31				25	26	21	28	29	30	

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 227 N. Bronough Street, Suite 3015 Tallahassee, FL 32301

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE