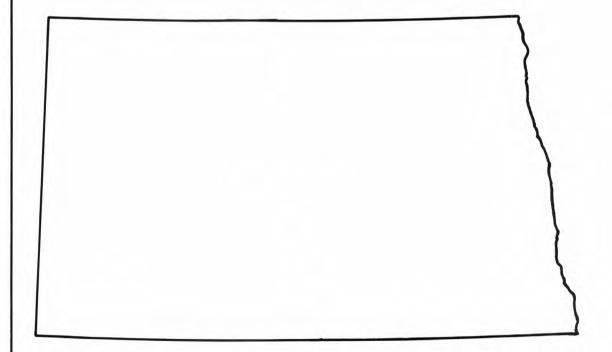


Water Resources Data North Dakota Water Year 1988

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT ND-88-1
Prepared in cooperation with the State of North Dakota
and with other agencies


CALENDAR FOR WATER YEAR 1988

										198	7									
		OC1	TO BI	ER					NOV	VEM	BER					DE	CEM!	BER		
S	M	T	W	Т	F	S	S	M	Т	W	T	F	S	S	M	Т	W	Т	F	S
				1		3	1	2	3	4	5	6	7		_	1	2			5
4	5 12	6	7	8 15		10 17	8 15			11 18	-	13 20	14	6	7 14	8 15	9	10 17	11 18	
_	19			22					24	25	26	27	28	20		22 29			25	26
.5	20	21	20	29	30	31	29	30						21	20	29	30	31		
										198	8									
		JA	NUA	ARY					FI	EBRU	JARY	Z				1	MAR	СН		
S	M	T	W	Т	F	S	S	M	T	W	T	F	S	S	М	T	W	T	F	S
					1	2		1	2	3	4	5	6			1	2	3	4	5
3	4	5	6	7	8 15	9	7	8 15	9	10 17		12		6	7	8 15	9	10	11 18	
7	18	19	20	21	22	23				24				20	21	22	23	24	25	
4	25	26	27	28	29	30	28	29						27	28	29	30	31		
		A	APR:	IL						MA	Y						JUN	Е		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	Т	W	Т	F	S
						2	1												3	
.7	18	19	20	21	22	23	22	23	24	25										
24	25	26	27	28	29	30	29	30	31					26	27	28	29	30		
		J	ULY	Z					Al	JGUS	ST				5	SEP?	rem:	BER		
S	M	T	W	Т	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
^	. ,	_	J.	_		2	-	1	2	3	4	5	6					1		3
3	4	12	6	14	15	16	14	15	9	10	11	12	13	11	5	6	14	15	16	10
7	18	19	20	21	22	23	21	22	23	24	25	26	27	18	19	20	21	22	23	24
14		20	21	28	29	30	28	29	30	31				25	26	21	28	29	30	

Water Resources Data North Dakota Water Year 1988

by R.E. Harkness, N.D. Haffield, G.L. Ryan and E.A. Wesolowski

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT ND-88-1 Prepared in cooperation with the State of North Dakota and with other agencies

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., SECRETARY

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in North Dakota write to District Chief, Water Resources Division
U.S. Geological Survey
821 East Interstate Avenue
Bismarck, North Dakota 58501-1199

PREFACE

This volume of the annual hydrologic data report of North Dakota is one of a series of annual reports that documents hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

Bismarck District Office

Dickinson Field Headquarters

L.A. Cottengaim	J.D.	Heidt	S.W.	Norbeck	M.J.	Voigt
B.T. Dowhanik	C.S.	Helgesen	K.M.	Rowland	J.E.	Wagner
V.M. Dressler	C.R.	Martin	B.A.	Sether	G.B.	Wald
T.A. Gleich						

Grand Forks Field Headquarters

K . T	Boespflug	S.L.	Binstock
	McGregor		Ellenbecker
	Nordby	G.J.	
R.A.	Pewe	R.W.	Riehl
W.R.	Westensee		

This report was prepared in cooperation with the State of North Dakota and with other agencies under the general supervision of Kenneth L. Lindskov, Acting District Chief, North Dakota.

50272 -101

REPORT DOCUMENTATION PAGE	USGS/WRD/HD-89/238	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources Data, N	Water Year 19	88	5. Report Date Published May 1989 6.
7. Author(s) R. E. Harkness, N. D.) 9. Performing Organization Name a	Maffield, G. L. Ryan, and E	. A. Wesolowski	8. Performing Organization Rept. No. USGS-WDR-ND-88-1
U.S. Geological Survey 821 East Interstate Ave Bismarck, North Dakota	vision 10. Project/Task/Work 11. Contract(C) or Gra (C) (G)		
U.S. Geological Survey, Water Resources Div 821 East Interstate Avenue Bismarck, North Dakota 58501-1199			13. Type of Report & Period Covered Annual - Oct. 1, 1987, to Sept. 30, 1988

15. Supplementary Notes

Prepared in cooperation with the State of North Dakota and with other agencies.

16. Abstract (Limit: 200 words)

Water-resources data for the 1988 water year for North Dakota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This report contains discharge records for 105 gaging stations; stage only records for 22 gaging stations; contents and/or stage for 14 lakes and reservoirs; peak flow data for 15 crest-stage gages; water-quality data for 96 gaging stations, 8 lakes, 13 crest-stage gages, 30 wells; and water levels for 31 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, Federal, and local agencies in North Dakota.

17. Document Analysis a. Descriptors

*North Dakota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Drought.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

This report may be purchased from: National Technical	19. Security Class (This Report) Unclassified	21. No. of Pages 391
Information Service, Springfield, VA 22161.	20. Security Class (This Page) Unclassified	22. Price

CONTENTS

	Page
Preface List of gaging stations, in downstream order, for which records are published	iii vii
List of ground-water wells, by county, for which records are published	x
Introduction	. 1
Cooperation	1
Summary of hydrologic conditions	5
Climate	5
Streamflow	7
Chemical quality of streamflow	10
Ground-water levels	12 14
Special networks and programs	14
Explanation of the records	14
Station identification numbers Downstream order system	14
Latitude-longitude system	15
Local well numbers.	15
Records of stage and water discharge	15
Data collection and computation	15
Data presentation	17
Identifying estimated daily discharge	18
Accuracy of the records	18
Other records available.	19
Records of surface-water quality	19
Classification of records	19
Arrangement of records	19
On-site measurements and sample collection	25
Water temperature	25
Sediment	25
Laboratory measurements	25
Data presentation	26
Remark codes	26
Records of ground-water levels	27
Data collection and computation	27
Data presentation	27
Availability of data	28
Records of ground-water quality	33 33
Data collection and computation	33
Access to WATSTORE data	33
Definition of terms	33
Publications on techniques of water-resources investigations	38
Station records, surface water	40
Discharge measurements at partial record and miscellaneous sites	345
Crest-stage partial-record stations	345
Miscellaneous discharge measurement sites	347
Analysis of samples collected at water-quality partial-record and	
miscellaneous sites	351
Station records, ground water	355
Ground-water levels	355
Quality of ground water	366
Chemical quality of precipitation	370
Index	376

ILLUSTRATIONS

			Page
Figure	1.	Map showing location of active surface-water gaging stations	2
100	2.	Map showing location of active surface-water-quality stations	3
	3.	Map showing location of selected ground-water observation wells	4
	4.	Comparison, by climatological division, of total monthly precipitation, water year 1988, to average monthly precipitation, 1951-80	6
	5.	Comparison of monthly mean discharge during water year 1988 to mean monthly discharge for the period of record	8
	6.	Water levels in well 134-052-06CCD2 completed in Sheyenne Delta aquifer, Richland County, compared with highest monthly water level, mean of monthly water levels, and lowest monthly water level for the period of record.	13
	7.	Water levels in well 140-095-08AAA completed in Sentinel Butte aquifer, Stark County, compared with highest monthly water level, mean of monthly	
	8.	water levels, and lowest monthly water level for the period of record	13
	9.	longitude)	16 16
	10.	Example of computer printout of annual peak discharges for the period of record on the Knife River at Hazen	20
	11.	Example of computer printout for annual peak flow frequency analysis	20
	12.	on the Knife River at Hazen	21
		on the Knife River at Hazen	22
	13.	Example of computer printout for statistics computed on monthly mean discharges for the period of record on the Knife River at	
		Hazen	23
	14.	Example of computer printout for quartile percentages of monthly mean	
	15.	discharges for the period of record on the Knife River at Hazen	23
	15.	Example of "primary computation" computer printout for the Knife River at Hazen	24
	16a.	Hydrograph of water levels in well 139-078-27CBB completed in McKenzie	
	16b.	aquifer, Burleigh County, 1963-75	29
	4.77	aquifer, Burleigh County, 1976-88	30
	17.	Hydrograph of water levels in recorder well 134-052-06CCD2 completed in Sheyenne Delta aquifer, Richland County, water year 1988	31
	10.	Hydrograph of water levels in well 153-063-30CBC completed in Spiritwood aquifer, Benson County, and monthly maximum	
		water levels of Devils Lake, 1970-88	32
		TABLES	
m 1		Polymer describe dealers are all the day of the state of	
Table	1.	Palmer drought index on selected dates for the nine National Weather Service climatological divisions in North Dakota	7
	2.	Period-of-record mean and median discharges and water year 1988 mean and peak discharges with ranking of water year 1988 data versus lowest annual mean and lowest annual peak discharges for period of record at	
	3.	selected streamflow stations	9
		to mean annual specific conductance for the period of record	11
	4.	Reported water use, by year, for irrigation from the McKenzie aquifer,	

[Letter after station name designates type of data: (d) discharge, (e) elevation, gage height, or contents, (c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment, (r) radiochemical, (p) pesticides]

	Page
HUDSON BAY BASIN	
Lake Winnipeg (head of Nelson River)	
RED RIVER OF THE NORTH BASIN Red River of the North at Wahpeton (dc)	40
Red River of the North at Hickson (dc)	42
Wild Rice River near Rutland (dc)	44
Wild Rice River near Abercrombie (dc)	45
Red River of the North at Fargo (dc)	47
Sheyenne River above Harvey (dc)	49
Sheyenne River near Warwick (dc)	51
Mauvais Coulee (head of Big Coulee)	
Mauvais Coulee near Cando (dc)	53
Edmore Coulee near Edmore (dc)	55
Edmore Coulee Tributary near Webster (dc)	57
Morrison Lake near Webster (e)	59
Starkweather Coulee near Webster (dc)	60 62
Calio Coulee near Starkweather (dc)	63
Little Coulee near Brinsmade (d)	65
Big Coulee near Churchs Ferry (dc)	66
Comstock Coulee near Minnewaukan (dc)	68
Channel A near Penn (dc)	69
Devils Lake near Devils Lake (e)	71 72
Lake Ashtabula:	12
Baldhill Creek near Dazey (dc)	74
Lake Ashtabula at Baldhill Dam (e)	76
Sheyenne River below Baldhill Dam (dc)	77
Sheyenne River at Valley City (ec)	79
Sheyenne River at Lisbon (dc)	81 83
Sheyenne River near Horace (ec)	86
Sheyenne River at West Fargo (dc)	88
Maple River near Hope (dc)	90
Maple River near Enderlin (dc)	92
Rush River at Amenia (dc)	94 96
Red River of the North at Halstad, MN (dcmsr)	90
Beaver Creek near Finley (dcmsr)	99
Goose River at Hillsboro (dc)	102
Red River of the North at Grand Forks (dc)	104
Forest River:	100
Middle Branch Forest River near Whitman (dc)	106 108
Forest River at Minto (dc)	110
South Branch Park River (head of Park River):	
Homme Reservoir near Park River (e)	112
South Branch Park River below Homme Dam (dc)	113
Park River at Grafton (dc)	115
Red River of the North at Drayton (dc)Pembina River:	117
Hidden Island Coulee near Hansboro (dc)	119
Cypress Creek near Sarles (dc)	121
Snowflake Creek near Snowflake, Manitoba (d)	123
Mowbray Creek near Mowbray, Manitoba (d)	124
Pembina River near Windygates, Manitoba (d)	125
Pembina River at Walhalla (dc)Pembina River at Neche (dc)	126 128
Tongue River at Akra (dc)	130
Red River of the North at Emerson, Manitoba (dcmst)	132
Assiniboine River:	
Souris (Mouse) River:	476
Long Creek at Western Crossing of International Boundary, Saskatchewan (d)	136 137
East Branch Short Creek Reservoir near Columbus (e)	139
Short Creek below International Boundary, near Roche Percee, Saskatchewan (d)	140
Souris (Mouse) River near Sherwood (dct)	141
Lake Darling near Grano (c)	147
Lake Darling near Foxholm (e)	149
Souris (Mouse) River near Foxholm (dc)	150
Des Lacs River near Kenmare (d) Des Lacs River at Foxholm (dc)	153 154
	1 / 4

HUDSON BAY BASINContinued	
Souris (Mouse) River above Minot (dc)	156
Souris (Mouse) River near Verendrye (dc)	158
Wintering River near Karlsruhe (dc)	161
Souris (Mouse) River near Bantry (dcs)	164
Willow Creek near Willow City (dc)	166 168
Stone Creek near Kramer (d)	169
Deep River near Upham (dc)	171
Cut Bank Creek at Upham (dc) Deep River below Cut Bank Creek near Upham (c)	173
Boundary Creek near Landa (d)	174
Souris (Mouse) River near Westhope (dcmsr)	175
MISSOURI RIVER BASIN	
Missouri River near Culbertson, MT (d)	178
Missouri River Stage Gage No. 4 near Nohly, MT (e)	179
Missouri River Stage Gage No. 5 at Nohly, MT (e)	180
Vallowstone River:	
Yellowstone River near Sidney, MT (d)	181
Yellowstone River Stage Gage No. 1 near Fairview, MT (e)	182
Yellowstone River Stage Gage No. 2 near Cartwright (e)	183
Yellowstone River Stage Gage No. 3 near Buford (e)	184 185
Missouri River Stage Gage No. 5A at Buford (e)	186
Missouri River Stage Gage No. 7 near Trenton (e)	187
Missouri River near Williston (e)	188
Missouri River Stage Gage No. 9 at Williston (e)	189
LITTIE MUDDY RIVER BASIN	13.75
Little Muddy River below Cow Creek near Williston (dc)	190
DEAD DEN GREEK DAGIN	
Bear Den Creek mas Mandaree (dcmsr)	192
1 1 THILE MISSOURI RIVER BASIN	100
Little Missouri River at Marmarth (dc)	196
Beaver Creek near Trotters (dc)	198
Little Missouri River near Watford City (dcms)Lake Sakakawea near Riverdale (e)	204
Missouri River at Garrison Dam (dcmt)	205
Missouri River above Stanton (e)	209
KNIFE RIVER BASIN	
Knife River at Manning (dc)	210
Knife River near Golden Valley (dc)	212
Brush Creek near Beulah (dcsr)	214
Spring Creek at Zap (dc)	217
Knife River at Hazen (dcms)	219
Missouri River near Stanton (e)	222
Missouri River near Hensler (e)	223
COAL LAKE COULEE BASIN Coal Lake Coulee near Hensler (dc)	224
Missouri River at Washburn (e)	226
THRTLE CREEK BASIN	
Turtle Creek above Washburn (dc)	227
PAINTED WOODS CREEK BASIN	
Painted Woods Creek near Wilton (dc)	229
Missouri River at Price (e)	231
SQUARE BUTTE CREEK BASIN	
Square Butte Creek below Center (dc)	232
BURNT CREEK BASIN Burnt Creek near Bismarck (dc)	234
Missouri River at Bismarck (d)	236
HEART RIVER BASIN	200
E. A. Patterson Lake near Dickinson (ec)	238
Heart River at Dickinson (dc)	241
Green River near New Hradec (dc)	243
Heart River near Richardton (dc)	245
Lake Tschida near Glen Ullin (ec)	247
Heart River near Lark (dc)	250
Heart River near Mandan (dcms)	252
Missouri River below Mandan (e)	256
APPLE CREEK BASIN Long Lake Creek above Long Lake (c)	257
Long Lake Pool 3 near Moffit (cb)	258
Long Lake Pool 2 near Moffit (c)	260
Long Lake Pool 1 near Moffit (cb)	262
Apple Creek near Menoken (dc)	264
Missouri River near Schmidt (e)	266
CANNONBALL RIVER BASIN	
Cannonball River at Regent (dc)	267
Cedar Creek:	000
White Butte Fork Cedar Creek near Scranton (dc)	269
Cedar Creek near Haynes (dc)	271

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED	ix
MISSOURI RIVER BASINContinued	
Cannonball River at Breien (dcms)BEAVER CREEK BASIN	275
Beaver Creek at Linton (dc)	278
GRAND RIVER BASIN	000
Bowman-Haley Lake near Haley (e)	280
North Fork Grand River at Haley (dc)	281
Lake Oahe near Pierre, SD (e)	283
JAMES RIVER BASIN	
James River near Manfred (dbcs)	284
James River near Grace City (dbcs)	287
Juanita Lake Tributary near Grace City (dbcs)	290
James River above Arrowwood Lake near Kensal (dbcsp)	292
Kelly Creek below Niccum Reservoir near Bordulac (dbcs)	296
Arrowwood Lake inflow site (cbt)	298
Arrowwood Lake open-water site (cbt)	300
Arrowwood Lake outflow site (cbt)	302
James River near Pingree (bcs)	304
Jamestown Reservoir near Jamestown (ec)	306
Pipestem Creek near Pingree (dc)	309
James River at Jamestown (dbcs)	311
James River at LaMoure (dbcts)	314
Bear Creek near Oakes (dc)	321
James River at Oakes (ebcts)	323
James River at Dakota Lake Dam near Ludden (dbctsp)	330
James River at ND-SD State Line (e)	340
James River near Hecla (ebcs)	341
Maple River at ND-SD State line (d)	344

			GROUND-WATER LEVELS	Page
BENSON COUNTY				
Well 480228098482501, Well 480958099154801,	Local	number	153-063-30CBC	355 355 355
BOWMAN COUNTY			132-105-16BDB	356
BURLEIGH COUNTY				12/0/11
CASS COUNTY			139-078-27CBB	356
DIVIDE COUNTY			138-049-29CCC	356
DUNN COUNTY			163-097-15BCC	357
EDDY COUNTY			143-093-09BCB	357
EMMONS COUNTY			148-065-19DAA	357
GRAND FORKS COUNTY			136-076-07CBC	358
GRIGGS COUNTY			150-054-04CCD	358
Well 471612098113101, Well 473425098232901.	Local Local	number	144-059-20CCC	358 359
			148-059-36AAB	359
Well 463153102521001, KIDDER COUNTY	Local	number	135-097-04DCA	359
Well 470638099324301, MC LEAN COUNTY	Local	number	142-070-16DDD	360
Well 473752101055301, OLIVER COUNTY	Local	number	148-082-23BBB	360
Well 470642101162701, PEMBINA COUNTY	Local	number	142-084-24BBA	360
Well 485239097501702, PIERCE COUNTY	Local	number	162-056-010002	361
Well 475323100092101,	Local	number	151-074-20AAA	361
RICHLAND COUNTY Well 462633097163402, STARK COUNTY	Local	number	134-052-06CCD2	361
Well 465755102410701, STEELE COUNTY	Local	number	140-095-08AAA	362
Well 471601097371001, STUTSMAN COUNTY	Local	number	144-055-26BBB	362
Well 463846098274101, TRAILL COUNTY	Local	number	137-062-26DDD	362
Well 473228097051501,	Local	number	147-051-22BBB	363
WALSH COUNTY Well 481657097473601,	Local	number	156-056-36ccc1	363 363
Well 482449098095801,	Local	number	157-055-21DBC	364
WARD COUNTY Well 480912101090301,	Local	number	154-082-24ABA	364
WELLS COUNTY Well 474419099371201,	Local	number	149-070-09DAA1	364
WILLIAMS COUNTY Well 483048103373101,	Local	number	158-100-17ADA	365
			QUALITY OF GROUND WATER	
BOWMAN COUNTY				
Well 460705103005301,	Local	number		366 - 369
Well 460705103025601,	Local	number	130-099-03BAA	366-369
Well 460645103033302,	Local	number	130-099-04ADD2	366-369
Well 460705103041101,	Local	number		366-369
Well 461355103055701,	Local	number	15. 055 15000 11111111111111111111111111	366-369
				366-369
				366 – 369 366 – 369
			131-099-22DCC1	366 - 369
				366-369

DUNTY, FOR WHICH RECORDS ARE PUBLISHED x	WELLS,	-WATER	GROUND	
GROUND-WATERCONTINUED Page	QUALIT			
			UNTYCONTINUED	SOWMAN CO
099-26DDC1366-369	number	Local	460804103010101.	Well
099-27BBC1	number	Local	460843103032001,	Well
999-27BBC3	number	Local	460843103032003,	Well
099-27CAB	number	Local	460823103030301,	Well
099-27CBC1	number	Local	460816103032701,	Well
099-27CBC2	number	Local	460816103032702,	Well
099-29ADD4	number	Local	460830103044504,	Well
99-29BAB	number	Local	460849103053201,	Well
999-29BCC 366-369	number	Local	460834103055501,	Well
099-29CAB	number	Local	460823103053201,	Well
99-29CDD	number	Local	460804103052301,	Well
099-29DCB	number	Local	460810103051301,	Well
099-32AAD	number	Local	460751103044501,	Well
999-32DBC1	number	Local	460725103051301,	Well
999-32DDB	number	Local	460718103045501,	Well
999-33ADA2	number	Local	460747103032902,	Well
999-33ADA3	number	Local	460747103032903,	Well
999-34AAA 366-369	number	Local	460757103021601,	Well
999-35BDB1366-369	number	Local	46074410,3014801,	Well
WHICH CHEMICAL QUALITY DATA ARE PUBLISHED	SITES,	TATION	PRECIPI'	
			OUNTY	EMBINA C
ark 370			484714097442301,	Site
373	orth	Woodwa	470732099140204,	Site
	orth	Woodwo	470732099140204,	Site

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of North Dakota each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled "Water Resources Data - North Dakota."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in and quality of water from ground-water wells. This volume contains records for water discharge at 105 gaging stations; stage only at 22 gaging stations; contents and/or stage at 14 lakes and reservoirs; water quality at 96 gaging stations, 8 lakes, 13 crest-stage gages, and 30 wells; and water levels in 31 observation wells. Locations of these sites are shown on figures 1, 2, and 3. Also included are data for 15 crest-stage partial-record stations and discharge measurements at miscellaneous sites (25 measurements made at 10 sites by the U.S. Geological Survey and 123 measurements made at 28 sites by the North Dakota State Water Commission). Data are included for 2 precipitation-chemistry stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in North Dakota.

This series of annual reports for North Dakota began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for North Dakota were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 5 and 6." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Books and Open-File Reports, Federal Center, Building 810, Box 25425, Denver, CO 80225.

Publications similar to this report are published annually by the U.S. Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example this volume is identified as "U.S. Geological Survey Water-Data Report ND-87-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephoning (701) 250-4604.

COOPERATION

The U.S. Geological Survey and agencies of the State of North Dakota have had cooperative agreements for the collection of streamflow records since 1903, ground-water levels since 1937, and water-quality records since 1946. Organizations that assisted in collecting the data in this report through cooperative agreement with the Survey are: North Dakota State Water Commission, Vernon Fahy, Chief Engineer; North Dakota Public Service Commission, Dale V. Sandstrom, President; Lower Heart River Water Resources District, R.E. Sylvester, succeeded by W.S. Russell, Chairman; Oliver County Board of Commissioners, Emil Hintz, Chairman; City of Dickinson, A.E. Baumgartner, succeeded by R.B. Baird, Mayor.

Assistance with funds or services was given by the U.S. Army Corps of Engineers for 31 streamflow-gaging stations, 19 river-stage stations, 4 reservoir stations, 3 crest-stage stations, and 35 wells; the U.S. Bureau of Reclamation for 3 streamflow-gaging stations, 2 reservoir stations, water-quality at 11 streamflow stations, and 5 stations on reservoirs; the U.S. Fish and Wildlife Service for 5 streamflow-gaging stations, water-quality at 11 stations, and 1 continuous water-quality monitoring station; the International Joint Commission of the U.S. State Department for 11 streamflow-gaging stations and 1 reservoir; the U.S. Soil Conservation Service for 1 streamflow-gaging station and 1 crest-stage gage; and other U.S. Department of Interior agencies concerned with the Missouri River basin for 6 streamflow-gaging stations, 1 reservoir station, 3 river stage stations, 3 continuous water-quality monitoring stations, and 8 water-quality sampling stations.

Certain stations are maintained under agreement with Canada and the records are obtained and compiled in a manner equally acceptable to both countries. Most of these are designated as "international gaging stations".

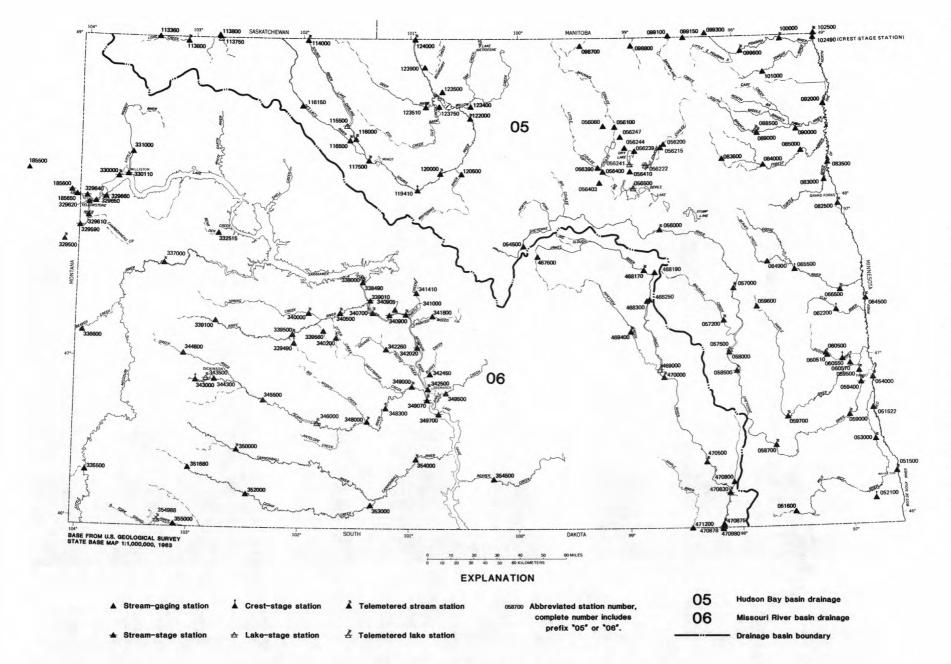


Figure 1.--Location of active surface-water gaging stations.

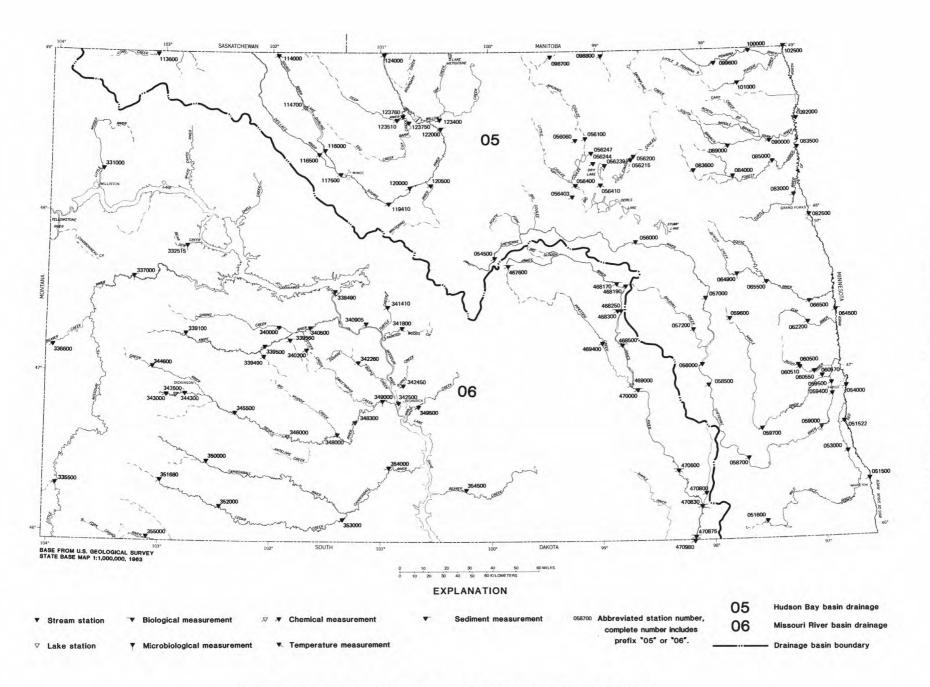


Figure 2.--Location of active surface-water-quality stations.

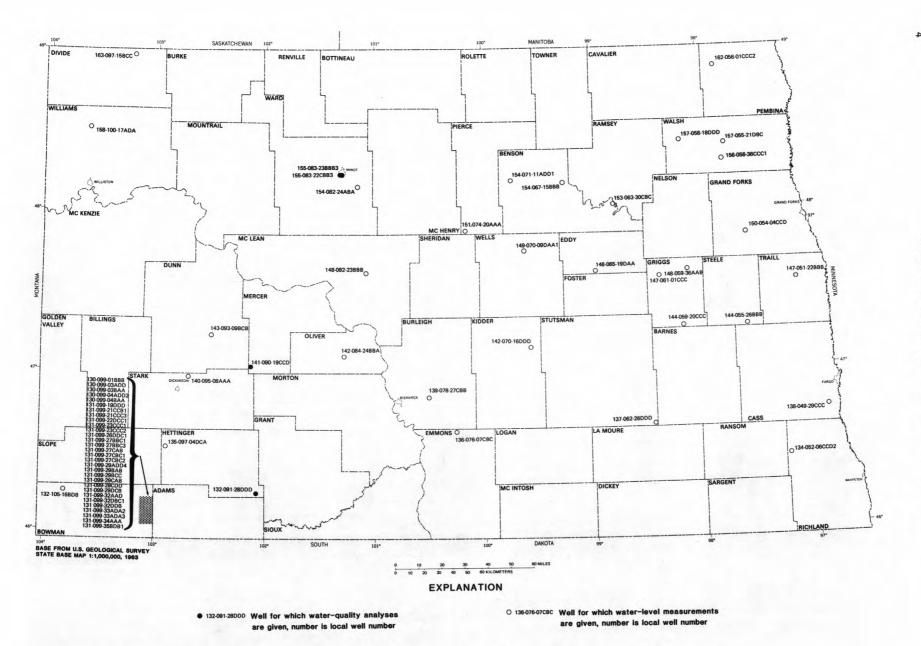


Figure 3.--Location of selected ground-water observation wells.

SUMMARY OF HYDROLOGIC CONDITIONS

Climate

In North Dakota, average annual precipitation ranges from about 15 inches in the western part of the State to about 20 inches in the eastern part of the State. Three-fourths of this precipitation generally occurs during April through September. Greatest normal monthly precipitation for the entire State occurs during June. Normal, as related to meteorological data in this report, is an average value of meteorological data for the reference period 1951 through 1980. Precipitation during water year 1988 was about 5 inches less than normal in the northwestern part of the State, about 6 inches less than normal in the eastern one-third of the State, and varied from about 6.5 to 8.5 inches less than normal over the remainder of the State. Meteorological data were obtained from publications of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 1987, 1988, Climatological data, North Dakota: Asheville, North Carolina, v. 96, no. 10-12, v. 97, no. 1-9).

National Weather Service data also indicate that average temperatures across the State were near normal, within about 3 °C (about 5 °F), except for 4 months during the water year. November, December, and April temperatures were about 3 to 6 °C (about 5 to 10 °F) greater than normal. Temperatures during June were about 6 to 8 °C (about 10 to 15 °F) greater than normal. Record high temperatures were recorded at many locations throughout the State on several days during June. According to the National Weather Service (D. E. Stoltz, written commun., July 13, 1988), June 1988 was "the hottest June on record" and "the frequency of 100 °F days set new records at the western stations."

Temperatures during the months of normal spring breakup, March and April, were characterized by above freezing daytime temperatures and below freezing nighttime temperatures. However, during mid-March, there were several days when daytime temperatures did not get above freezing and, during April, there were several days when nighttime temperatures did not get below freezing. March temperatures averaged slightly below freezing statewide. April temperatures averaged about 7 °C (about 12 °F) above freezing and were as high as about 27 °C (about 80 °F) at almost all reporting stations by monthend.

A comparison of total monthly precipitation for water year 1988 to average monthly precipitation for 1951-80 is shown in figure 4 for the nine National Weather Service climatological divisions in North Dakota. Precipitation in all nine National Weather Service divisions in North Dakota during the usually dry fall and winter months of October through February generally was less than normal except for January, which had near-normal to greater-than-normal precipitation.

October, which was very dry, had about 20 percent of normal precipitation. Precipitation during November and December also was deficient; it was about 50 percent of normal except in the northeast and east-central divisions where precipitation was near normal during December. Precipitation was near normal during January except in the east-central division where it averaged more than 100 percent of normal. Most of the January precipitation occurred during a mid-month snowstorm when some areas received accumulations of more than a foot of snow. During February, precipitation was well below normal except in the southwest and south-central divisions where precipitation was near normal. March precipitation generally was near normal statewide.

The most extreme shortage of precipitation occurred during April when precipitation averaged less than 10 percent of normal statewide. Numerous National Weather Service stations reported either zero precipitation or only a trace for the entire month. May precipitation continued the below-normal trend. June, which usually has the greatest normal monthly precipitation statewide, averaged only about 50 percent of normal. The precipitation deficiency continued during the remaining 3 months of the water year except when thunderstorms produced adequate rainfall to bring monthly totals to near-normal levels in isolated areas of the State. September precipitation in the southeast division was well above normal and exceeded total precipitation in that division for any other month during the year.

"The Palmer drought index is widely used as a measure of the severity of drought. Positive values indicate a moisture excess, values near zero indicate normal conditions, and values less than zero indicate drier than normal. An index less than -3 is termed a severe drought, and an index of less than -4 is the worst condition, termed extreme drought." (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Climate Office, July 11, 1988, U.S. drought 1988: A climate assessment, p. 2).

The Palmer drought index on selected dates for the nine National Weather Service divisions in North Dakota is shown in table 1 (M. T. Roletto, written commun., 1989). At the beginning of water year 1988 (see table 1, column 10/3/87), index values indicate that the southeast division was the only area that had drought conditions. However, below-normal precipitation during October through December, as described above, caused all but the east-central division to register drought conditions by the end of the calendar year (see table 1, column 1/1/88). The northwest and southeast divisions had moderate drought conditions, while the remaining divisions had mild drought conditions.

Drought conditions did not change significantly during the first 3 months of 1988 but, following the extreme deficiency of precipitation in April, conditions began to change rapidly. By mid-May (see table 1, column 5/14/88), conditions had changed to where most of the State had moderate to severe drought conditions and the southeast division had an extreme drought condition. The southwest division was the only area that had moist conditions. This was because the southwest division received an almost near-normal monthly precipitation total for May during the first 2 weeks of the month. The moist conditions were very short-lived.

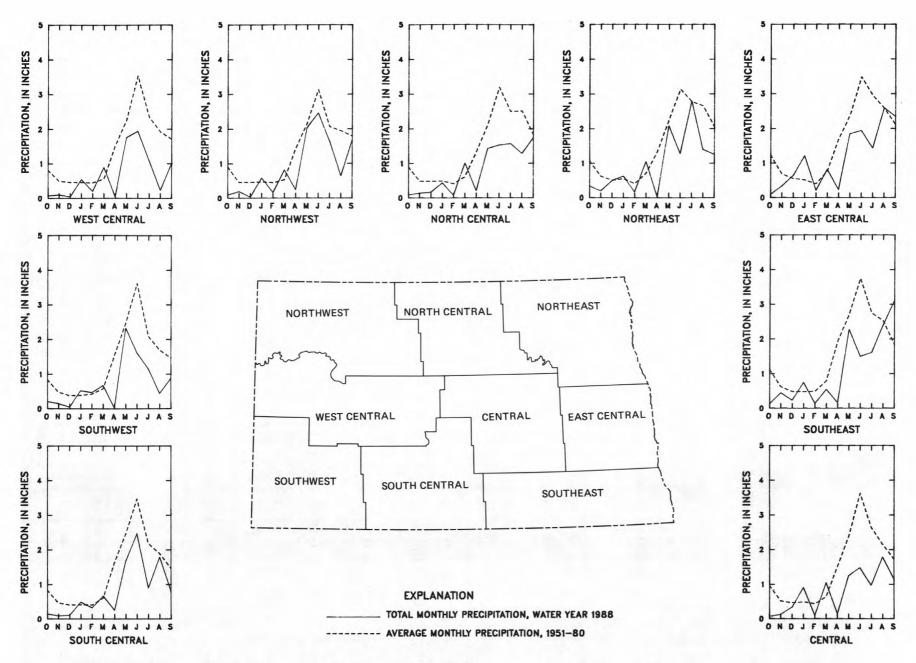


Figure 4.--Comparison, by climatological division, of total monthly precipitation, water year 1988, to average monthly precipitation, 1951-80.

Table 1.--Palmer drought index on selected dates for the nine National Weather Service climatological divisions in North Dakota (M. T. Rolletto, National Weather Weather Service, written commun., 1989)

[Below -4.0, extreme drought; -3.9 to -3.0, severe drought; -2.9 to -2.0, moderate drought; -1.9 to -1.0, mild drought; -0.9 to -0.5, incipient drought; -0.4 to +0.4, near normal; +0.5 to +0.9, incipient moist spell; +1.0 to +1.9, moist spell; +2.0 to +2.9, unusual moist spell; +3.0 to +3.9, very moist spell; +4.0 and above, extreme moist spell]

	Palmer drought index by date of computation								
National Weather Service climatological division	10/3/87	1/1/88	4/2/88	5/14/88	7/2/88	9/10/88	10/1/88		
Northwest	+1.5	-2.7	-2.5	-3.0	-5.6	-7.0	-5.9		
North-central	+2.4	-1.6	-1.1	-1.8	-4.2	-6.5	-5.3		
Northeast	+2.4	-1.2	+0.3	-2.0	-4.2	-5.4	-5.4		
West-central	+1.3	-1.8	-1.7	-2.3	-5.3	-7.5	-6.8		
Central	+2.1	-1.4	-1.5	-2.2	-4.5	-6.0	-5.6		
East-central	+3.5	+1.9	+1.7	-1.6	-3.8	-5.2	-3.9		
Southwest	+2.4	-1.2	-1.1	+0.8	-4.1	-6.5	-6.0		
South-central	+3.8	-1.4	-1.4	-2.1	-4.3	-5.8	-5.4		
Southeast	-2.3	-2.4	-2.8	-4.1	-6.3	-7.2	-5.5		

The extreme heat and below-normal precipitation of June caused extreme drought conditions in most of the State by early July (see table 1, column 7/2/88). The only exception was the east-central division, which had severe drought conditions. Drought conditions continued to worsen until early September (see table 1, column 9/10/88), when the lowest Palmer drought index values for the water year were recorded in seven of the nine divisions. September rains provided some relief from the drought, but the entire State, with the exception of the east-central division, continued to have extreme drought conditions until the end of the water year (see table 1, column 10/1/88). The east-central division had severe drought conditions at the end of the water year.

A joint statement released by J. K. Larson, Research Specialist, and J. W. Enz, State Climatologist, North Dakota State University, Fargo, and D. E. Stoltz, National Weather Service, Bismarck (written commun., August 15, 1988), makes a comparison between the drought of 1988 and the drought of 1936. The following quotation is taken directly from that statement:

Many questions have been asked about how the 1988 drought compares to the droughts of the 30's. Through June of this year comparisons with 1936 and 1934 showed that temperatures and precipitation in 1988 were more droughty than in the thirties. However temperature records set in July, 1936 may stand forever. For example, the average maximum temperature at Bismarck was 98.1 degrees, nearly 8 degrees warmer than the next warmest July. Hettinger's average maximum temperature was near 100 degrees with 17 days during July equalling or exceeding 100 degrees. Dickinson reached 100 degrees or more on 16 days. The next greatest total was 6 days. North Dakota's record high temperature of 121 degrees was set on July 6, 1936 at Steele.

The number of 90 degree days during April through July, 1988 either broke or tied the record established in 1936 at Crosby, Williston, Pembina, Grand Forks, and Fargo. In southwestern North Dakota the totals in 1919 and 1936 exceeded the number of 90 degree days recorded this year. Most other stations showed 1988 totals ranking just behind 1936.

Precipitation totals for April through July at these same stations indicate slightly drier conditions in 1936 than in 1988. Precipitation totaled 2.86 and 3.53 inches in 1936 and 1988, respectively, at Fargo, and 1.06 and 4.01 inches at Bismarck. These totals ranked as driest and second driest at both stations. Williston fared better in 1988 with 5.52 inches of rain since April 1. This total ranked as the 25th driest period with precipitation totals in 1980, 1983, 1984, and 1985 less than in 1988. Total rainfall in 1980 was 2.89 inches and was the only year that was drier than the 3.08 inches in 1936. The 1980's have been exceedingly dry in northwestern North Dakota.

Streamflow

The greatest mean monthly discharge of North Dakota rivers generally is coincident with snowmelt runoff. Because springtime temperatures usually are higher in the southwestern part of the State than in the northeastern part, snowmelt usually begins on the Missouri River tributaries in western North Dakota and proceeds from west to east across the State. Hydrographs of mean monthly discharge (see fig. 5) for the period of record verify this trend. For example, the largest mean monthly discharge for Bear Den Creek near Mandaree (in the National Weather Service west-central division) occurs in March, whereas the largest mean monthly discharge for the remaining stations occurs in April. Mean monthly discharge for March is almost as large as mean monthly discharge for April at the Cedar Creek near Haynes and the Beaver Creek at Linton Stations, further substantiating the general trend of snowmelt occurring from west to east in North Dakota.

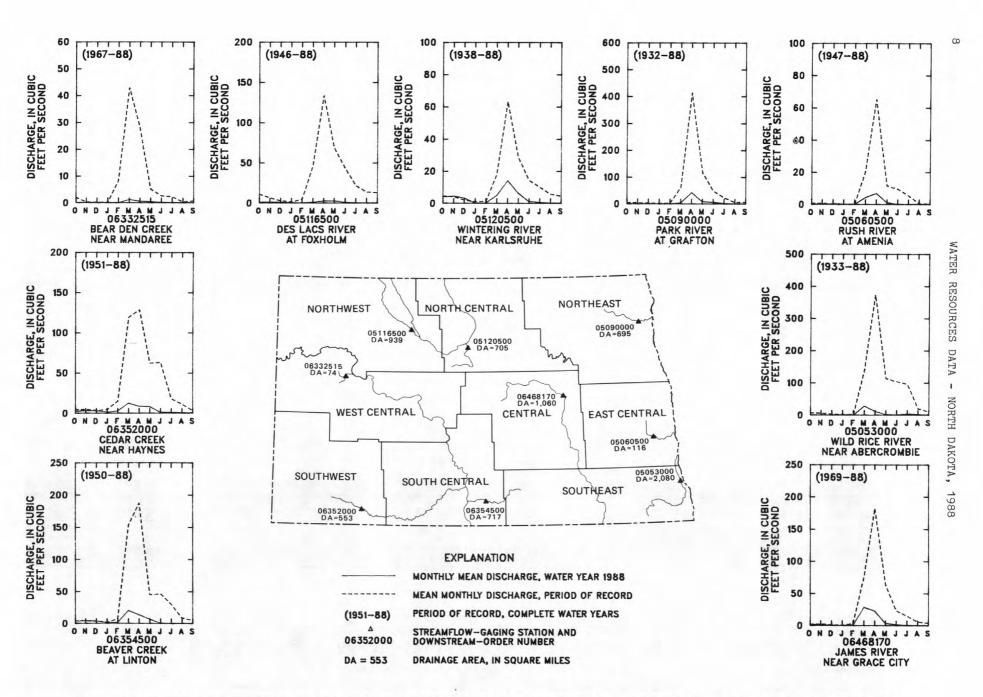


Figure 5.--Comparison of monthly mean discharge during water year 1988 to mean monthly discharge for the period of record.

Although it is possible to make many conclusions about hydrologic conditions of the State by using precipitation data shown in figure 4 and streamflow data shown in figure 5, sound hydrologic judgment should be used. Variability of rainfall intensity and distribution should be considered when making conclusions about hydrologic response to rainfall on small basins. Discrepancies also may be caused by the different reporting periods for the period-of-record average and mean values of data used in the two figures. Precipitation data are computed using a 30-year reference period from 1951 to 1980, but mean monthly discharges are computed using data for the period of record at each streamflow-gaging station--22 years, 1967-88, in the case of Bear Den Creek near Mandaree.

Because of the drought conditions described on page 5 and 7, virtually all streams in the State had annual mean discharges well below those expected in normal years. The magnitude of monthly mean discharges for water year 1988 is so much less than the magnitude of mean monthly discharges for the period of record that very little can be inferred from figure 5 other than that the drought resulted in reducing streamflow to a very small percentage of normal.

Streams in the northwest and west-central divisions were especially deficient in streamflow because of below-normal precipitation and above-normal temperatures during water year 1987 as well as during water year 1988. The relative magnitude of monthly mean discharge for Bear Den Creek near Mandaree and for the Des Lacs River at Foxholm (see fig. 5) compared to mean monthly discharges for the period of record shows the effects of the prolonged drought; the monthly mean discharge for both stations is barely evident above the base line of their respective plots.

Selected streamflow statistics for the nine stations shown in figure 5 are summarized in table 2 in order to further substantiate the extreme deficiency in streamflow caused by the drought. Water year 1988 mean and peak discharges are ranked against similar data for each year for the number of years shown. The ranking gives the lowest annual mean discharge for each station and the lowest annual peak discharge for each station a rating of 1. Annual mean discharge for water year 1988 for Bear Den Creek near Mandaree was a new record low for annual mean discharge at that station. Annual mean discharge for water year 1988 for Beaver Creek at Linton was the second lowest on record, as was that for the Des Lacs River at Foxholm. Ranking of water year 1988 peak discharge values yielded three new record low peaks for the nine stations.

Table 2.--Period-of-record mean and median discharges and water year 1988 mean and peak discharges with ranking of water year 1988 data versus lowest annual mean and lowest annual peak discharges for period of record at selected streamflow-gaging stations

	I	Period of rec	ord	Water year 1988					
Station name	Number of years	Mean annual discharge (ft3/s)	Median annual discharge (ft3/s)	Mean discharge (ft3/s)	Ranking of mean from lowest annual mean discharge for period of record	Peak discharge (ft3/s)	Ranking of peak from lowest annual peak discharge for period of record		
Beaver Creek									
at Linton	39	41.3	27.4	4.54	2	44	1		
Cedar Creek			20.2	2.22			4		
near Haynes	38	36.6	29.8	3.98	3	28	1		
Bear Den Creek near Mandaree	22	7 77	7 00	0.27	1	12	2		
Des Lacs River	22	7.73	7.92	0.27	-1	12	4		
at Foxholm	43	30.4	16.9	0.93	2	4	.2 1		
Wintering River	45	50.4	10.5	0.77	-	7			
near Karlsruhe	51	13.1	11.8	3.31	10	64	15		
Park River									
at Grafton	57	57.1	42.8	5.13	7	143	5		
Rush River	4.0	0.45	6 07	4.47	1	70	7		
at Amenia Wild Rice River	42	9.47	6.23	1.13	4	30	3		
near Abercrombie	56	72.4	35.9	3.99	3	105	6		
James River	00	12.4	22.9	2.33	,	10)	Ü		
near Grace City	20	31.4	25.9	5.01	3	150	4		

Mean discharges for Bear Den Creek near Mandaree and the Des Lacs River at Foxholm were less than 5 percent of their respective mean annual discharges (see table 2). Mean discharge for the Wild Rice River near Abercrombie in the southeast division, the first area of the State to experience extreme drought conditions, was slightly over 5 percent of the mean annual discharge. Discharges for the remaining stations were about 10 to 15 percent of their respective mean annual discharges except for the Wintering River near Karlsruhe station in the central division. Mean discharge for that station was about 25 percent of mean annual discharge, perhaps due to a larger base flow. The Wintering River near Karlsruhe drainage basin received above-normal precipitation during water year 1987.

Chemical Quality of Streamflow

The quality of water at any particular site is dependent upon many factors, including the source of streamflow and the composition of rocks over which it flows; therefore, the quality of water varies considerably across the State. The quality of water also is dependent cnt.1 on the amount of streamflow. During periods of low flow, when the major part of flow is derived from ground-water inflow, dissolved-solids concentrations are relatively large, reflecting the mineralized character of the ground-water inflow. Specific conductance commonly is used as a measure of the relative degree of mineralization or salinity of water and, consequently, often is used as an indicator of the suitability of water for irrigation and other uses. The U.S. Salinity Laboratory (U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department of Agriculture Handbook 60, 160 p.) has developed an index using specific conductance as an indicator of salinity hazard in water used for irrigation. The specific conductance and corresponding salinity hazard are as follows: low hazard, less than 250 microsiemens per centimeter at 25 °C; medium hazard, 250 to 750 microsiemens per centimeter at 25 °C; high hazard, 750 to 2,250 microsiemens per centimeter at 25 °C; very high hazard, 2,250 to 5,000 microsiemens at 25 °C.

Annual maximum values of specific conductance in North Dakota usually are measured during the fall and winter months when streamflow primarily is derived from ground-water inflow. As streamflow increases from increased runoff, the concentration of constituents in solution decreases, while other materials that tend to be carried in suspension, such as sediment, increase. The variability quality of water constituents is greatest during the spring when there is considerable overland runoff from snowmelt. Annual minimum values of specific conductance are measured during the spring runoff period (March and April). The minimum value is dependent on the quantity of runoff available for dilution.

In water year 1988, specific-conductance values during winter and spring generally were larger than long-term mean values (see table 3). The larger-than-normal specific-conductance values during the spring runoff period are directly related to the relatively low flows and drought condition during the year. Specific-conductance values measured for water year 1988 at five selected sites on major rivers and tributaries in the State are shown in table 3. Mean, maximum, and minimum values of specific-conductance are shown by month and for the period of record. At all five sites the mean specific-conductance values for water year 1988 are larger than the mean annual values for the period of record and are larger than annual mean values for water year 1987 (R.E. Harkness, N.D. Haffield, and G.L. Ryan, 1988, Water resources data North Dakota, Water year 1987: U.S. Geological Survey Water-Data Report ND-87-1, 392 p.)

Specific-conductance values measured during October and November 1988 in the Red River of the North at Grand Forks exceeded maximum monthly specific-conductance values for October and November for the period of record and equalled July and August maximum monthly specific-conductance values for the period of record. The Red River of the North is the least mineralized major river in North Dakota. Annual minimum specific-conductance values generally are measured during the spring snowmelt period. Annual minimum specific-conductance values measured during other periods of the year reflect contributions from tributaries that receive inflow from more mineralized ground water and from tributaries that flow through glacial drift containing more soluble minerals than the lacustrine sediments through which the Red River of the North flows. Specific-conductance values measured during water year 1988 indicate that a medium salinity hazard for irrigation use existed throughout the year.

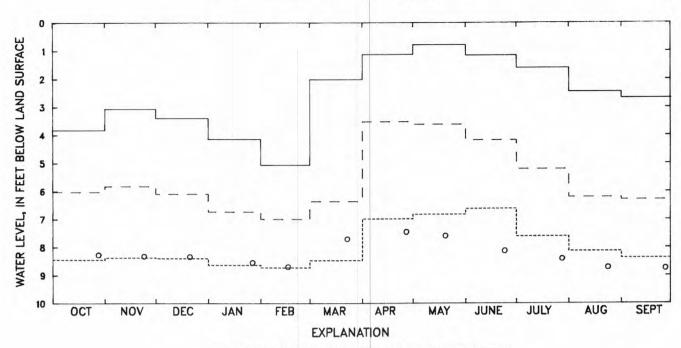
The dissolved-mineral content of Souris River water is derived mostly from leaching of morainal deposits in Saskatchewan, Canada. Specific-conductance values measured during water year 1988 at the Souris River near Sherwood station were well within the range of measured values for the period of record for each month. Levels of salinity hazard for irrigation use were high during water year 1988, even during the snowmelt runoff period, because of the extreme low-flow condition. The Souris River near Sherwood did not flow from December through February and from July through September.

Specific-conductance values generally are lower during snowmelt runoff periods because the snow contains only small amounts of dissolved constituents and has a relatively short contact time with surficial sediments prior to reaching the river channel. Because ground-water contributions to streamflow of the Little Missouri River near Watford City are limited, no-flow conditions exist at times in most years. During water year 1988, no flow was recorded for January and August and for parts of February and September. Specific-conductance values measured in the river during March and June exceeded specific-conductance values for the period of record for those 2 months. The large specific-conductance values during low flow generally reflect the effects of evaporation. Salinity hazard for irrigation use was high during March and July 1988 and high to very high during the remainder of the water year.

Ground-water contributions to the Cannonball River at Breien also are limited. The large specific-conductance values generally reflect the effects of evaporation. Salinity hazard for irrigation use was high during water year 1988 except during December through February and during June when it was very high.

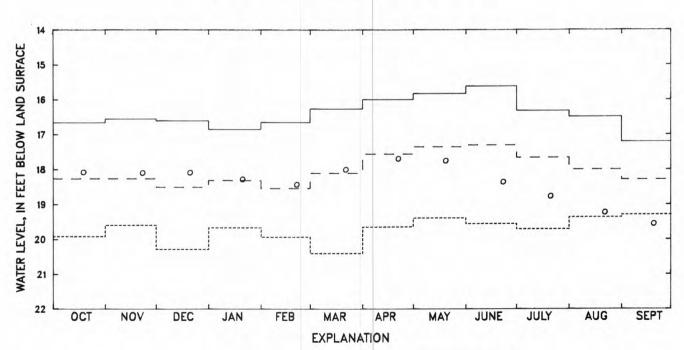
Table 3.--Comparison of specific-conductance measurements during water year 1988 to mean annual specific conductance for period of record

[Specific-conductance values are in microsiemens per centimeter at 25 °Celsius]


	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	later year 1988	Period of record
05082500 Red R	liver	of the	North	at Gr	and Fo	orks (p	eriod	of re	cord,	water	years	1949,	1956-8	38)
Mean Maximum Minimum Number of values	513 700 399 63	587 790 440 36	604 976 468 44	575 870 275 43	554 830 400 39	483 746 305 71	459 747 200 148	557 702 325 81	545 699 348 70	495 640 280 69	502 625 360 51	485 674 340 43	654 810 475 11	518 976 200 758
Measured values f water year 1988		790		810	770		475 590	665		640 580	550 625			
05114000	Sour	ris Riv	er nea	r Sher	wood (period	of re	cord,	water	years	1970,	1972-	-88)	
	1070 1470 710 26	1270 1880 925 23	1630 2230 1250 14	1740 2770 1280 21	1630 2200 540 21	1280 2180 200 28	620 1280 277 38		1020 1340 520 24	1030 1420 540 20	974 1300 128 26	1060 1240 755 16	1240 1530 1020 5	1130 2770 128 277
Measured values f water year 1988		1310				1530		1020	1220					
06337000 Lit	tle M	Missour	i Rive	r near	· Watfo	ord Cit	y (per	riod o	f reco	rd, wa	ter ye	ears 19	72-88	<u>)</u>
Mean Maximum Minimum Number of values	1980 3100 720 16	2020 2610 740 15	2890 5000 1730 9	2400 3350 1500 8	1220 2030 640 5	977 1760 400 21	1440 2700 515 18		1660 2780 800 17	1820 3000 1080 14	1770 2520 1000 17	1750 2390 900 12	2220 2780 1760 6	1750 5000 400 167
Measured values f water year 1988		2400	122			1760	2260		2780	1840				
06354000	Cann	nonball	River	at Br	eien (period	of re	cord,	water	years	1950,	1971-	-88)	
	1630 2130 903 19	2170 3070 1600 18	2570 3290 284 18	2410 3800 680 22	1910 4860 190 23	876 3100 190 34	1130 2260 300 33		1670 3020 610 20	1580 3000 570 19	1510 2800 575 19	1660 2300 730 19	2180 4860 1030 11	1660 4860 190 264
Measured values f water year 1988		1760	2400	2410	4860 1960		1310 1810	2200	2360	1930			42	
06470	500	James	River	at La	Moure	(perio	d of r	ecord	, wate	r year	s 1957	- 88)		
Mean	834 1130 480 29	881 1220 540 17	1150 1550 890 11	1380 1700 340 26	1300 1720 700 13	643 1350 185 29	522 919 160 38	783	807 1180 170 26	762 1280 170 18	747 1140 485 20	870 1210 480 27	896 1530 580 9	846 1720 160 277
Measured values f water year 1988		670		1530	1120	640	670	900	1080		870			

Ground-Water Levels

Water levels measured during water year 1988 for well 134-052-06CCD2 in Richland County are shown in figure 6, and water levels for well 140-095-08AAA in Stark County are shown in figure 7. The highest monthly water level, the mean of monthly water levels, and the lowest monthly water level for all measurements made on these two wells prior to water year 1988 also are shown.


Water-level fluctuations in both wells during water year 1988 (see figs. 6 and 7) appear to follow the typical pattern of rises during the wet spring months and general declines during the rest of the year. However, the lack of precipitation in April apparently resulted in less water-level rise than normally might be expected. The less-than-normal precipitation in conjunction with above-normal temperatures in June apparently resulted in a larger water-level decline in well 140-095-08AAA than normally might be expected. Well 134-052-06CCD2, which was already at a record low monthly water level, continued to decline.

Water-level measurements for well 134-052-06CCD2 were slightly higher during the first 5 months of water year 1988 than the lowest monthly water level for the previous period of record (see fig. 6). Lack of precipitation in April reduced recovery of the water level. Beginning in April and for each subsequent month of the water year, a new record low monthly water level was recorded. The April recovery in well 140-095-08AAA (see fig. 7) also was less than usual although the well had begun the year at a near-normal water level. The less-than-normal recovery in April resulted in a lower measured water level for the month than the mean monthly water level. As the drought continued, the monthly water level began decreasing sooner and at a more rapid rate than the mean monthly water levels, and in September, a new record low water level for September was reached for well 140-095-08AAA.

- HIGHEST MONTHLY WATER LEVEL FOR WATER YEARS 1963-87
 MEAN OF MONTHLY WATER LEVELS FOR WATER YEARS 1963-87
 LOWEST MONTHLY WATER LEVEL FOR WATER YEARS 1963-87
- MONTHLY WATER LEVELS FOR WATER YEAR 1988

Figure 6.--Water levels in well 134-052-06CCD2 completed in Sheyenne Delta aquifer, Richland County, compared with highest monthly water level, mean of monthly water levels, and lowest monthly water level for the period of record. Location of well is shown in figure 3.

- HIGHEST MONTHLY WATER LEVEL FOR WATER YEARS 1968-87

 MEAN OF MONTHLY WATER LEVELS FOR WATER YEARS 1968-87

 LOWEST MONTHLY WATER LEVEL FOR WATER YEARS 1968-87
 - MONTHLY WATER LEVELS FOR WATER YEAR 1988

Figure 7.--Water levels in well 140-095-08AAA completed in Sentinel Butte aquifer, Stark County, compared with highest monthly water level, mean of monthly water levels, and lowest monthly water level for the period of record. Location of well is shown in figure 3.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National stream quality accounting network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in national or regional water-quality planning and management. The 500 or so sites in NASQAN generally are located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting, (2) to aid in the description of the areal variability of water quality in the Nation's rivers, (3) to detect changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) to provide a nationally consistent data base useful for water-quality assessment and hydrologic research.

The national trends network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1988 water year that began October 1, 1987, and ended September 30, 1988. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface- and ground-water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 1, 2, and 3. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether stream site or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in North Dakota, for water-quality stations where streamflow or water level are not collected on a regular basis.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in U.S. Geological Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 06342500, which appears just to the left of the station name, includes the two-digit part number "06" plus the six-digit downstream-order number "342500." The part number designates the major river basin; for example, Part "06" is the Missouri River basin.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description (see fig. 8).

Local Well Numbers

In order to compare data for wells in other publications in North Dakota, such as the county ground-water studies, the wells in this report also are numbered according to a system based on the location in the public-land classification of the U.S. Bureau of Land Management. The system is illustrated in figure 9. The first number denotes the township north of a base line, the second number denotes the range west of the fifth principal meridian, and the third numeral denotes the section in which the well is located. The letters A, B, C, and D designate, respectively, the northeast, northwest, southwest, and southeast quarter section, quarter-quarter section, and quarter-quarter section (10-acre tract). For example, well 139-049-15ADC is in the SW1/4SE1/4NE1/4 sec. 15, T. 159 N., R. 049 W. Consecutive terminal numbers are added if more than one well is recorded within a 10-acre tract.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records. Locations of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figure 1.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the U.S. Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slopearea or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

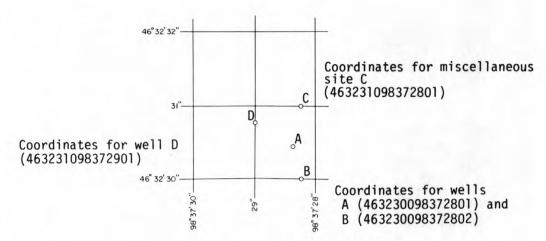


Figure 8.--System for numbering wells and miscellaneous sites (latitude and longitude).

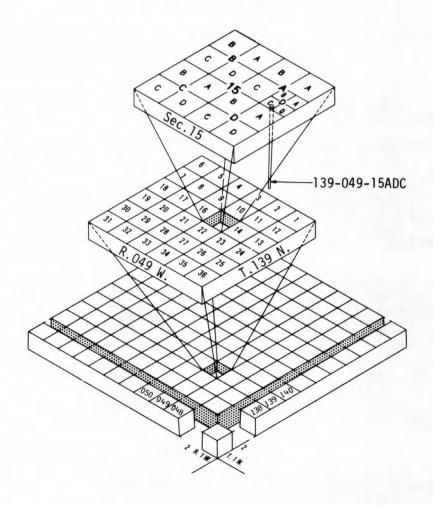


Figure 9.--System for numbering wells and miscellaneous sites (township and range).

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used, if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD. -- This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in acre-feet (line headed "AC-FT"). In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years.

Data for crest-stage stations and measurements at miscellaneous sites are presented in two tables following the information for continuous-record sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e-Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 cubic foot per second; to the nearest tenth between 1.0 and 10 cubic feet per second; to whole numbers between 10 and 1,000 cubic feet per second; and to three significant figures for more than 1,000 cubic feet per second. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the North Dakota District Office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. An example of a computer listing of annual peak discharges for the Knife River at Hazen, N. Dak., gaging station (06340500) is shown in figure 10. An example of the computer generated Log-Pearson Type III annual peak-flow frequency analysis for these data, following the U.S. Water Resources Council guidelines in Bulletin 17B, is shown in tabular form by figure 11 and shown graphically by figure 12.

Usually data users are interested in comparing current streamflow to long-term averages. Examples of statistics computed for monthly mean discharges for the Knife River at Hazen are shown in figures 13 and 14.

Current flow data at U.S. Geological Survey gaging stations are available upon request, usually within less than one month following retrieval of the recorded data from the field site. After primary analysis the data are available in a computer format that shows hourly water level fluctuations, adjustments required for accurate computation of daily flows, and other details of the record analysis (see fig. 15). In this "primary computation" form, the data are considered provisional and subject to revision until published.

Many other statistics and data formats are available upon request. The information generally is available on a timely basis at no charge to the user; however, large requests or those specifically tailored to individual data-user's needs may be provided at a nominal fee. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the office whose address is given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers as a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 2.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence.

STATION 06340500

KNIFE RIVER AT HAZEN, ND

AGENCY: STATE: COUNTY: DISTRICT	USGS 38 057 : 38	LAT.	N LOCATOR LONG. 6 1013726			DRAINAGE A CONTRIBUTI DRAINAGE GAGE DATUM: BASE DISCHA	NG AREA: 2240. 1712.3	OO SQ MI 5 (NGVD)
WATER YEAR	DATE	PEAK DISCHARGE (CFS)	DISC	GAGE HEIGHT (FT)	GH CODES	MAX GAGE HEIGHT (FT)	DATE	GH CODES
1930 1931 1932 1933 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947	02/21/30 09/22/31 06/14/32 03/17/33 07/05/38 03/24/39 07/29/40 06/09/41 06/07/42 03/26/43 04/03/44 03/15/45 03/03/46 06/25/47	3070.00 1450.00 1300.00 2200.00 7540.00 9300.00 1150.00 4110.00 3120.00 26500.00 8010.00 8690.00 3500.00		23.20 11.60 11.10 14.50 23.00 24.47 10.92 20.23 17.10 26.30 23.39 23.99 19.30 21.70	1	21.95	03/25/47	1
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	03/24/48 04/06/49 04/17/50 03/30/51 04/07/52 06/14/53 04/08/54 03/13/55 03/21/56 03/01/57	7070.00 7760.00 22700.00 9000.00 20200.00 3440.00 3880.00 1400.00 6630.00	2	23.62 23.30 25.93 25.36 25.83 17.31 18.06 11.35 23.76 12.49	1 1 1	24.10	04/03/49	1
1958 1959 1960 1961 1962 1963 1964 1965 1966 1966 1968	03/28/58 03/24/59 03/27/60 03/03/61 05/31/62 06/10/63 06/18/64 04/15/65 06/24/66 03/25/67 03/06/68 04/07/69	3500.00 4930.00 7230.00 488.00 3860.00 1050.00 5170.00 3330.00 35300.00 7980.00 1800.00	2	19.82 20.14 23.13 9.62 17.48 9.63 20.17 15.99 27.01 23.88 18.37 24.75	1 1 12	9.72	03/02/61	1
1970 1971 1972 1973 1974 1975 1976 1977 1980 1981 1982 1983 1984 1985 1986 1987	05/11/70 03/17/71 03/15/72 03/02/73 03/02/73 03/03/74 05/01/75 03/19/76 06/19/77 03/27/78 04/18/79 06/15/80 02/18/81 03/31/82 03/13/83 03/21/84 05/13/85 03/04/86	8180.00 4320.00 19000.00 3900.00 1350.00 6600.00 3000.00 1200.00 11000.00 5440.00 900.00 10500.00 5300.00 2500.00 1540.00 8800.00 8550.00 450.00		23.83 18.79 26.17 21.44 14.28 22.60 18.00 9.75 25.10 20.26 10.58 9.92 25.14 23.00 14.50 10.10 24.00 23.80 7.47	1 1 1 2 1 2 1 1 1 1 1	23.37 11.69	04/24/75 03/11/77	1

Figure 10.--Example of computer printout of annual peak discharges for the period of record on the Knife River at Hazen.

U. S. GEOLOGICAL SURVEY ANNUAL PEAK FLOW FREQUENCY ANALYSIS FOLLOWING WRC GUIDELINES BULL. 17-B.

RUN-DATE 3/24/89 AT 1835 SEQ 1.0001

OPTIONS IN EFFECT -- PLOT BCPU LGPT NODB PPOS NORS EXPR CLIM

STATION - 06340500 /USGS KNIFE RIVER AT HAZEN, ND 1930-1988 06340500 /USGS

INPUT DATA SUMMARY

YEARS OF SYSTEMATIC		HISTORIC PEAKS	GENERALIZED SKEW	STD. ERROR GENERAL. SE		GAGE BASE DISCHARGE	USER-SET OUTLI HIGH OUTLIER	
55	0	0	-0.400		WRC WEIGHTED	0.0		

******* NOTICE -- PRELIMINARY MACHINE COMPUTATIONS. *******

********** USER RESPONSIBLE FOR ASSESSMENT AND INTERPRETATION. *******

WCF134I-NO SYSTEMATIC PEAKS WERE BELOW GAGE BASE.

WCF195I-NO LOW OUTLIERS WERE DETECTED BELOW CRITERION.

WCF163I-NO HIGH OUTLIERS OR HISTORIC PEAKS EXCEEDED HHBASE.

65223.6

ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

	FLOOD BASE DISCHARGE	FLOOD BASE EXCEEDANCE PROBABILITY	LOGARITHMIC MEAN	LOGARITHMIC STANDARD DEVIATION	LOGARITHMIC SKEW
SYSTEMATIC RECORD W R C ESTIMATE	0.0	1.0000	3.6270 3.6270	0.4235 0.4235	-0.161 -0.222

ANNUAL FREQUENCY CURVE ORDINATES -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

ANNUAL EXCEEDANCE PROBABILITY	W R C ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFID FOR W R C LOWER	ESTIMATES UPPER
0.9950	280.7	296.8	235.6	160.0	428.2
0.9900	374.5	391.0	329.3	224.2	552.2
0.9500	803.2	816.1	763.2	543.6	1089.6
0.9000	1189.3	1195.7	1145.4	852.0	1555.3
0.8000	1887.9	1880.9	1853.7	1432.4	2387.1
0.5000	4392.2	4348.7	4392.2	3531.1	5473.4
0.2000	9710.2	9690.2	9863.0	7670.2	12828.1
0.1000	14409.9	14518.2	14852.8	11062.7	19989.0
0.0400	21629.4	22102.2	22706.3	15996.3	31803.1
0.0200	27893.6	28825.9	29939.5	20095.5	42656.6
0.0100	34877.7	36461.3	38135.6	24523.7	55281.2
0.0050	42605.6	45063.3	47875.7	29288.5	69786.7
0.0020	53999.5	58011.4	61458.2	36112.8	92033.1

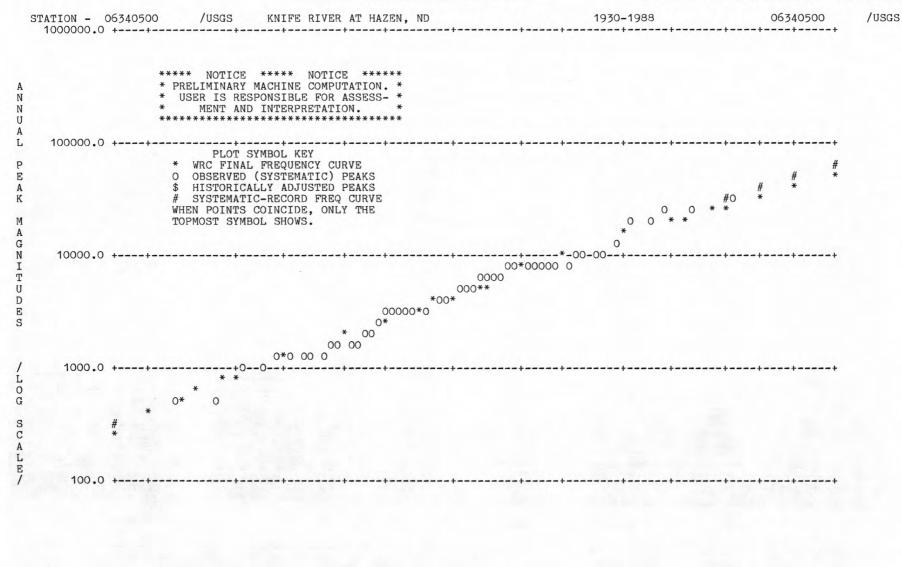


Figure 12.--Example of computer printout for peak flow frequency curve for the Knife River at Hazen.

ANNUAL EXCEEDANCE PROBABILITY, PERCENT (NORMAL SCALE)

50.0

30.0 20.0

10.0

80.0 70.0

95.0 90.0

DISCHARGE-(CFS)

STATISTICS ON NORMAL MONTHLY MEANS (ALL DAYS)

OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
	BY ROWS	(MEAN, VARIANC	E,STANDARD	DEVIATION,	SKEWNESS,C	OEFF. OF VA	RIATION, PER	CENTAGE OF	AVERAGE VALU	E)	
37.49 2403.18	31.56 851.04	21.48 160.82	20.32 624.48	91.40 24710.98 5	723.59 70496.63	579.33 744663.25	175.86 61729.27	252.80 63811.26	114.61 22585.73	48.44 1823.48	35.95 918.41
49.02	29.17 5.41	12.68 2.32	24.99 3.38	157.20 3.30	755.31	862.94 2.51	248.45 3.63	252.61 1.46	150.29 3.99	42.70 1.88	30.31 2.03
1.31 1.76	0.92 1.48	0.59 1.01	1.23	1.72 4.29	1.04 33.93	1.49 27.16	1.41 8.25	1.00 11.85	1.31 5.37	0.88	0.84 1.69

Figure 13.--Example of computer printout for statistics computed on monthly mean discharges for the period of record on the Knife River at Hazen.

ISCHARGE-(CFS)					
IORMAL MONTHLY	MEANS(ALL DAYS)				
OCT	NOV	DEC	JAN	FEB	MARCH
		TWENTY FIFTH P	ERCENTILE		
17.8	19.2	12.6	7.61	9.57	170.0
		FIFTIETH PER	CENTILE		
27.9	25.7	19.5	12.8	22.1	418.5
		anunumu ni mu	DED GENERAL E		
40.6	35.7	SEVENTY FIFTH 28.5	19.5	112.3	1123
		20.0			7.1-5
APRIL	MAY	JUNE	JULY	AUG	SEPT
		MILITARY DE DAIL D	ADD GOVETT O		
97.2	56.7	TWENTY FIFTH P 66.7	29.3	17.2	18.5
21	25.1		Andrew Andrew	12.1-	17.75
180.7	91.0	FIFTIETH PER	CENTILE 74.1	36.4	27.3
100.7	91.0	180.5	74.1	30.4	21.5
6.20		SEVENTY FIFTH		2.02	
763.8	180.6	341.7	145.1	69.6	45.2

Figure 14.--Example of computer printout for quartile percentages of monthly mean discharges for the period of record on the Knife River at Hazen.

PRIMARY COMPUTATIONS OF GAGE HEIGHT AND DISCHARGE DATE PROCESSED: 03-25-1989 @ 14:38 BY REHARKNESS

RATINGS USED --INPUT 13.0 09/01/79 (0015)

KNIFE RIVER AT HAZEN, ND

06340500

STNRD 16.0 10/01/87 (0015)

TEST DIFF: 10.00

PUNCH INTERVAL: 15 MIN

OUTPUT PAR	AMETER	0000	50	STORE	STATIST	ric(s)	0000	03
PROVISIONA	L DATA	FOR	WATER	YEAR	ENDING	SEPT.	30,	1988

DATE	MAX GH /DISCH <time></time>	MIN GH /DISCH <time></time>	MEAN GH	MEAN DISCH	SHIFT ADJ	DATUM CORR	0100 1300	0200	0300	0400	0500	0600	FEET 0700 1900	0800	0900	1000	1100	1200 2400
05/01/88	1.94 51 <2300>	1.88 45 <0015>	1.89	47	-0.10W	0.01	188 189	188 189	188 189	188 189	188 190	188 190	188 190	188 191	188 192	189 193	189 194	189 194
05/02/88	2.33 89 <2400>	1.94 51 <0015>	2.15	71	-0.10W	0.01	195 221	196 224	198 225	199 225	202 225	205 225	206 225	208 225	209 227	211 228	214 231	218 233
05/03/88	2.65 125 <2015>	2.34 90 <0015>	2.51	109	-0.10W	0.01	235 250	238 252	240 255	241 258	242 261	243 262	244 264	245 264	246 265	247 265	248 265	249 265
05/04/88	2.65 125	2.44	2.53	112	-0.09W	0.01	264 251	264 251	262 249	261 249	260 247	260 247	258 246	257 245	256 244	255 244	254 244	253 244
05/05/88	<0015> 2.46 104 <2345>	<2045> 2.44 102 <0015>	2.44	102	-0.09W	0.01	244 244	244 244	244 244	244 244	244 244	244 244	244 244	244 244	244 245	244 245	244 245	244 246
05/06/88	2.52 111 <1330>	2.46 104 <0015>	2.49	107	-0.09W	0.01	246 251	247 252	247 252	246 252	246 252	246 252	246 252	246 251	246 251	246 250	246 249	249 249
05/07/88	2.48 108 <0045>	2.33 91 <2400>	2.41	100	-0.08W	0.01	248 240	248 240	247 238	246 238	245 237	245 237	244 236	243 236	243 235	243 234	242 234	241 233
05/08/88	2.33 91 <0015>	2.28 86 <2030>	2.30	88	-0.08W	0.01	233 229	232 229	232 229	232 229	231 229	230 229	230 229	230 229	230 228	230 228	229 228	229 228
05/09/88	2.35 95 (2315)	2.27 85 <0045>	2.29	87	-0.08W	0.01	227 228	227 228	227 228	227 229	227 229	227 230	227 230	227 231	227 232	227 233	227 234	227 235
05/10/88	2.45 105 <0715>	2.36 96 <0015>	2.43	103	-0.07W	0.01	238 245	239 245	240 245	241 245	244 244	244 244	244 243	245 242	245 241	245 240	245 239	245 238
05/11/88	2.38 98 <0015>	2.32 91 <2230>	2.34	94	-0.07W	0.01	238 234	237 233	236 233			235 233	235 233	235 233	234 233	234 233	234 232	234 232
RIOD	2.65 125	1.88 45				TIM	E CORR	ECTIO	N O	.0								

NOTE. SYMBOLS USED ABOVE HAVE THE FOLLOWING MEANINGS --

W - SHIFT VARIES BY TIME AND VALUE - V SHIFT

Figure 15.--Example of "primary computation" computer printout for the Knife River at Hazen.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made on-site when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the U.S. Geological Survey North Dakota District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey North Dakota District office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum, minimum, and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are published with the water-quality records for each surface-water station in this report.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical-oxygen demand (BOD) and samples for indicator bacteria are analyzed locally. Sediment samples are analyzed in the U.S. Geological Survey laboratory in Iowa City, Iowa. All other samples are analyzed in either the U.S. Geological Survey laboratory in Arvada, Colo., or the North Dakota State Water Commission laboratory in Bismarck, N. Dak. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, and dissolved oxygen then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION. -- Information on instrumentation is given only if a water-quality monitor temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS. -- Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

When the water-quality data for this report was prepared for publication, not all of the parameter values requested from the analyzing laboratories were available. As these data values are received the computer files will be updated, but no attempt to publish these data will be made.

As part of the quality assurance procedures for the samples analyzed at the North Dakota State Water Commission laboratory, about 5 percent of the samples include a "split" sample which is sent to the U.S. Geological Survey laboratory in Arvada. The "split" samples analyzed in Arvada are included in this report and identified with footnotes. The sampling times indicated on the "splits" are one minute later than the regular samples.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

RINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
К	Results based on colony count outside the acceptance range (non-ideal colony count)
ND	Not detected. No colonies were present on the least dilute sample prepared.

Records of Ground-Water Levels

Only water-level data from a network of selected observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the most important aquifers. Locations of the observation wells in this selected network in North Dakota are shown in figure 3.

The complete statewide network included more than 800 wells during 1987. About one-half of these wells were measured annually and the others at a variety of frequencies. Forty wells were equipped with continuous water-level recorders.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (LSD). Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

Data Presentation

Each well record consists of two parts, the station description and the data table of water levels measured during the water year. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS. -- This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION. -- This paragraph provides information on both the frequency of measurement and the measurement method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 feet above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD. -- This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the U.S. Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water levels are listed. For wells equipped with recorders, only abbreviated tables, every fifth day and at the end of the month (EOM) are published; taped measurements are not published for wells equipped with continuous recorders. The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Availability of Data

All water-level measurements and recorder data are stored in computer as well as office files and are available in a tabular listing similar to those published in this report. However, ground-water data usually are more easily analyzed when displayed graphically. Examples of computer-generated hydrographs for water levels in four wells published in this report are presented in figures 16a-18.

The hydrograph for well 139-078-27CBB in the McKenzie aquifer in Burleigh County is shown in figures 16a and 16b, and the reported water use for irrigation from the McKenzie aquifer (C.D. Bader, North Dakota State Water Commission, oral commun., 1988) is shown in table 4. Very little fluctuation in water level occurred from 1963 until about 1972 (fig. 16a), and wateruse data for the McKenzie aquifer (table 4) indicate that irrigation was insignificant until about 1972. Only annual water-level measurements at the end of the year were made during 1972-74 and the effect of irrigation withdrawals on the aquifer during the irrigation season cannot be detected on the hydrograph. Beginning in 1975, the frequency of water-level measurements was increased, and the annual declines in water level during the irrigation season and the recovery during the winter and spring can be seen in figure 16b. The largest annual decline in the water level, more than 7 feet, during the period of record for this well occurred during 1977. This decline corresponds to the largest reported water use for irrigation from the McKenzie aquifer (table 4).

Due to above normal precipitation during the 1986 irrigation season, reported water use for irrigation from the McKenzie aquifer (table 4) was the lowest since 1969. Reported water use also was less in 1987 than any year since 1970. The section of hydrograph for the 1986 through 1987 period for well 139-078-27CBB (see fig. 16b) does not show the decline in water level, during the irrigation season, that has become typical in recent years of larger withdrawals. Due to drought of 1988, irrigation withdrawals increased to about 600 acre-feet in the McKenzie aquifer. With this increase in ground-water withdrawal from the aquifer, well 139-078-27CBB again experienced a significant decline during the irrigation season and a subsequent water-level recovery.

Table 4.--Reported water use, by year, for irrigation from the McKenzie aquifer, in acre-feet

Year	Water use						
1969	0	1974	400	1979	314	1984	624
1970	75	1975	182	1980	475	1985	477
1971	150	1976	338	1981	230	1986	20
1972	436	1977	781	1982	348	1987	118
1973	416	1978	183	1983	486	1988	600

The 1988 hydrograph of water levels in well 134-052-06CCD2 completed in the Sheyenne Delta aquifer in Richland County and equipped with a continuous recorder is shown in figure 17. The maximum and minimum recorded daily water levels and the periodic water-level measurements are shown. The periodic measurements were made with a steel tape. A dotted line was drawn between the periodic measurements to illustrate the definition of changes indicated by periodic taped measurements as compared to definition of changes in water level that is provided when continuous recorder data are available. Although the general trend in water-level changes is provided by the periodic measurements (fig. 17), the water level in this well may fluctuate more than 2 feet between measurements. Straight-line interpolation between measurements would have been in error by almost half a foot at this site at times during the water year.

Ground-water data are recorded and stored as water levels in feet below land surface. Because the elevation of land surface is determined for all well sites, it is possible to relate water level below land surface to elevation above National Geodetic Vertical Datum of 1929. Both vertical scales are used on the hydrographs, water level below land surface on the right margin and water-level elevation above National Geodetic Vertical Datum of 1929 on the left margin (figs. 16a-18). Gage datum at lake and reservoir sites also can be directly related to National Geodetic Vertical Datum; therefore, both ground-water and surface-water elevation data can be plotted on one hydrograph to show the relationship that exists between the ground-water level, and the level of water in nearby lakes and reservoirs. The hydrographs for well 153-063-30CBC in in Benson County and Devils Lake are shown in figure 18. Such comparison hydrographs are useful tools for analysis of ground-water/surface-water relationships.

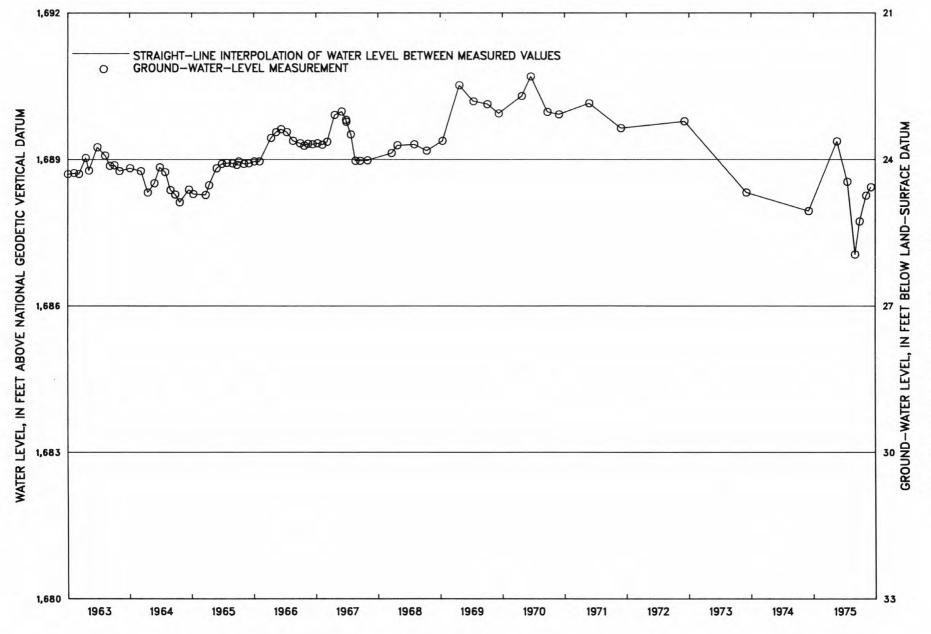


Figure 16a.--Water levels in well 139-078-27CBB completed in McKenzie aquifer, Burleigh County, 1963-75.

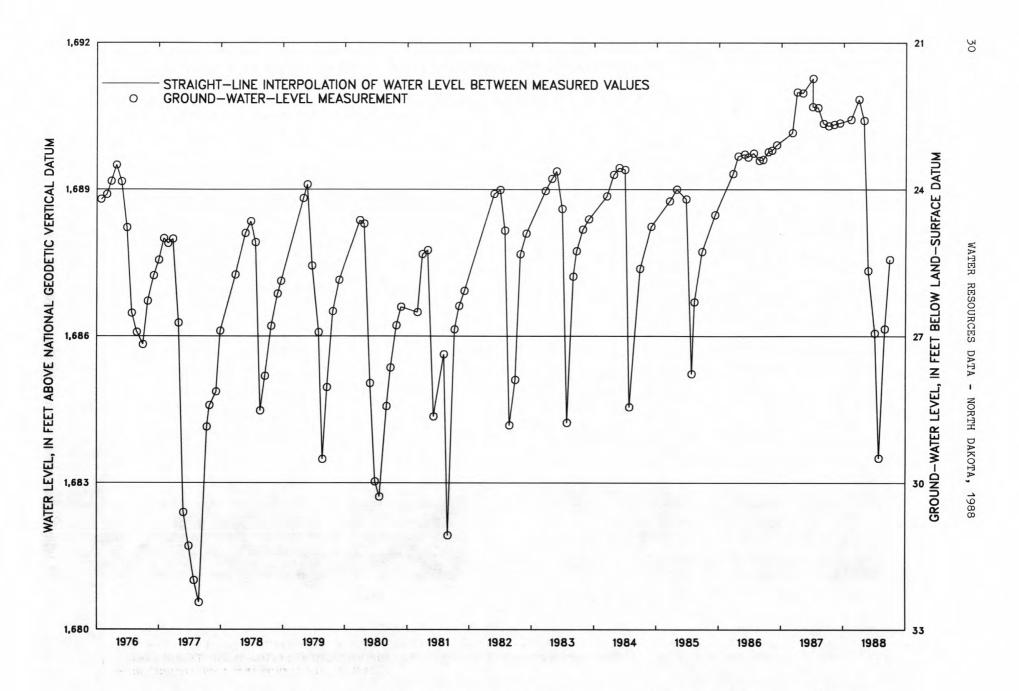


Figure 16b.--Water levels in well 139-078-27CBB completed in McKenzie aquifer, Burleigh County, 1976-88.

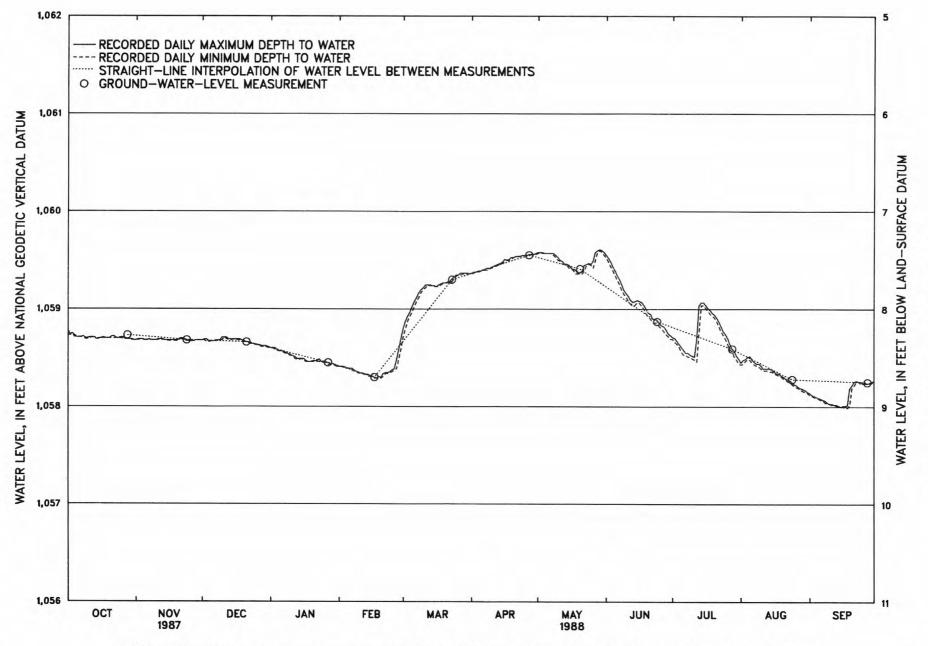


Figure 17.--Water levels in recorder well 134-052-06CCD2 completed in Sheyenne Delta aquifer, Richland County, water year 1988.

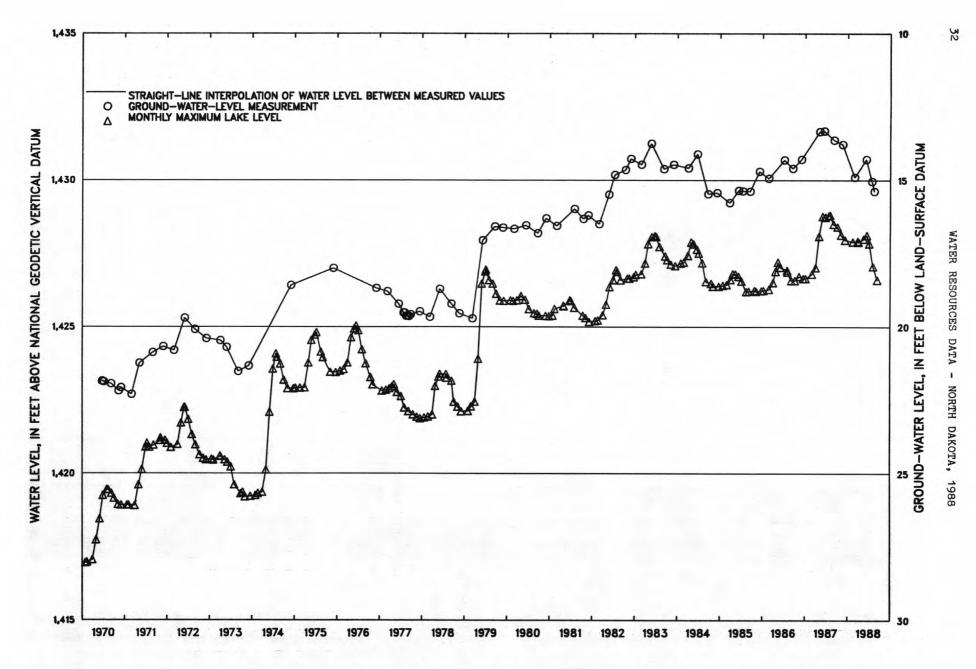


Figure 18.--Water levels in well 153-063-30CBC completed in Spiritwood aquifer, Benson County, and monthly maximum water levels in Devils Lake, 1970-88.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that, for most sampling sites, they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for general purposes, one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of concerned with a particular problem, the special cases where the quality measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed at the end of the introductory text. The values in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casing.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the office whose address is given on the back of the title page.

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.50C plus or minus 0.20C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 350C plus or minus 1.0oC on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material (or bottom material) is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

 $\underline{\text{Contents}}$ is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Crest-stage gage is a device for obtaining the elevation of the flood crest of a stream.

<u>Cubic foot per second or cfs</u> (ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Cubic foot per second-day (ft^3/s) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acrefeet, about 646,000 gallons, or 2,445 cubic meters.

Cubic foot per second per square mile $[(ft^3/s)/mi^2]$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

 $\underline{\text{Mean discharge}}$ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

 $\underline{\text{Dissolved}}$ refers to that material in a representative water sample which passes through a 0.45 $\underline{\text{um}}$ membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO3).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Micrograms per gram (ug/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum OF 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, mean sea level at any particular place.

Normal as related to meteorological data published by the National Weather Service are computed as the average value of a meteorological element over a time period. Effective January 1, 1983, the averaging period is 1951 to 1980.

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay Silt Sand	0.00024 - 0.004 .004062 .062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH indicates the degree of acidity or alkalinity of water and is expressed in terms of pH units. The pH value of a solution is the negative logarithm of the concentration of hydrogen ions, in moles per liter. A pH of 7.0 indicates that the water is neither acid nor alkaline. pH readings progressively less than 7.0 denote increasing acidity and those progressively greater than 7.0 denote increasing alkalinity. The pH of most natural surface waters ranges between 6 and 8.

Picocurie (PC, pCi) is one trillionth (1 x 10-12) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7×1010 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

 $\underline{\text{Bed load}}$ is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft 3 /s) x 0.0027.

Suspended-sediment load is a general term that refers to material in suspension. is not synonymous with either discharge or concentration.

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25oC. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage is the height of a water surface above an established datum plane; also gage height.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Surface area of a lake is that area outlined on the latest U.S. Geological Survey topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of

the material collected on the filter or, more commonly, by difference, based on determinations of

(1) dissolved and (2) total concentrations of the constituent.

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (t/day) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical

Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviaton for "Water-Supply Paper" in reference to previously published reports.

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.
- 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. J. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book
 3. Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-AlO. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter AlO. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-Al2. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS-TWRI Book 3, Chapter Al2. 1986. 41 pages.
- 3-Al3. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983. 53 pages.
- 3-Al4. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter Al4. 1983. 46 pages.
- 3-Al5. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter Al5. 1984. 48 pages.
- 3-Al6. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter Al6. 1985. 52 pages.
- 3-Al7. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter Al7. 1985. 38 pages.
- 3-Bl. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages.

- 3-B2. Introduction to ground-water hydraulics, a programed test for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-Cl. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter Cl. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-Bl. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter Bl. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-Dl. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter Dl. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages.
- 6-Al. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS-TWRI Book 6, Chapter Al. 1988. 586 pages.
- 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: US\$S-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter Al. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

05051500 RED RIVER OF THE NORTH AT WAHPETON. ND

LOCATION.--Lat 46°15'55", long 96°35'40", in NE1/4 sec.8, T.132 N., R.47 W., Richland County, Hydrologic Unit 09020104, on left bank in Wahpeton, 800 ft downstream from confluence of Bois de Sioux and Otter Tail Rivers, and at mile 548.6.

DRAINAGE AREA .-- 4,010 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1942 to October 1942, March 1943 to current year. Gage-height records collected in this vicinity since 1917 are contained in reports of the U.S. Weather Bureau.

GAGE.--Water-stage recorder and concrete and wooden dam. Datum of gage is 942.97 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1943, U.S. Weather Bureau nonrecording gage 800 ft upstream, converted to present datum. Aug. 6, 1943, to Oct. 27, 1950, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Nov. 22 to Mar 28. Records good except those for period of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control; numerous other controlled lakes and ponds, and several powerplants.

AVERAGE DISCHARGE.--45 years (1944-88), 549 $\rm ft^3/s$, 397,800 acre-ft/yr; median of yearly mean discharges, 480 $\rm ft^3/s$, 348,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,200 ft 3 /s, Apr. 10, 1969, gage height, 16.34 ft; minimum daily, 1.7 ft 3 /s, Aug. 28 to Sept. 5, 9, 10, 1976.

EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of 17.0 ft, discharge, 10,500 ft³/s, occurred in the spring of 1897 and has not been exceeded since.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 911 ft³/s, Mar. 27, gage height, 5.58 ft, backwater from ice; minimum daily, 57 ft³/s, Sept. 23-27.

		DISCHARGE,	IN CUBIC	FEET PER		WATER Y	EAR OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	167 164 172 169 167	186 187 187 183 183	111 114 113 114 102	161 190 190 190 180	220 247 282 233 139	366 357 341 338 372	461 462 471 461 478	432 401 416 414 407	368 301 291 288 284	143 125 92 82 80	93 148 141 123 101	83 74 71 73 73
6 7 8 9	173 174 170 165 161	183 179 175 173 179	116 114 114 113 113	190 190 190 190 190	143 200 260 250 245	443 538 627 650 701	500 504 471 410 410	401 390 393 410 411	280 279 281 276 277	75 76 79 83 86	96 90 89 88 81	72 72 70 69 71
11 12 13 14 15	143 141 141 137 129	157 133 128 124 123	113 115 134 163 200	180 132 100 105 110	240 240 244 248 252	758 657 483 425 465	409 406 406 429 464	403 377 330 266 265	247 195 201 219 207	81 89 185 142 91	79 83 88 92 86	72 70 72 73 74
16 17 18 19 20	129 129 124 123 123	131 132 122 133 104	168 170 185 190	115 110 110 110 120	256 260 259 257 254	508 527 464 427 447	458 443 449 435 367	276 298 327 336 344	199 196 193 190 190	70 63 60 58 58	81 77 78 78 78	88 84 64 96 79
21 22 23 24 25	126 130 144 131 128	119 131 130 128 124	190 190 188 160 120	143 161 146 132 123	223 270 280 290 300	448 480 518 633 753	304 313 369 411 400	358 385 368 374 405	191 191 202 188 160	59 61 59 78 85	78 79 78 76 76	65 59 57 57 57
26 27 28 29 30 31	119 122 138 147 152 166	128 127 126 122 120	105 119 123 130 160 180	108 138 157 162 182 200	323 345 358 360	662 855 693 517 474 467	390 412 410 392 408	406 421 421 412 407 406	155 151 147 147 147	82 81 79 83 83 86	75 77 77 78 79 78	57 57 64 72 69
TOTAL MEAN MAX MIN AC-FT	4504 145 174 119 8930	145 187 104	142 200 102	152 200 100	258 360 139	16394 529 855 338 32520	423 504 304	1660 376 432 265 3130	221 368 147	2654 85.6 185 58 5260	2721 87.8 148 75 5400	2114 70.5 96 57 4190

CAL YR 1987 TOTAL 158667 MEAN 435 MAX 1700 MIN 54 AC-FT 314700 WTR YR 1988 TOTAL 80348 MEAN 220 MAX 855 MIN 57 AC-FT 159400

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF	W, AN- OUS S)	SPE- CIF: CON- DUC: ANC! (US/0	IC F- CM)	PH (STAN ARD UNITS (0040	D-)	TEMPE ATUE AIE (DEG (OOO2	C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAF NES TOT (MG AS CAC	SAL I/L I/C	(MG	VED /L CA)	SI DI SOL (MG	MG)	SODIU DIS- SOLVI (MG, AS 1	ED /L NA)	SODI PERCE (0093	TVS
OCT		03/264	0.15				97															
27 DEC		1010	120						2	2.5		4.0										
16 FEB		1430	169			555			-7	7.0		0.0										
04		1125	242			562			-2	1.0		0.0										
APR 06 MAY		1045	510			522	8.	10	14	1.0		5.5		250	47		32		13			10
11		1105	407			590			2	1.5	1	7.0										
JUN 15		1300	212			460			2	1.5	2	2.5										
JUL 07		1305	84			195			22	2.5	2	7.5										
27 AUG		1020	79			460	8.	60		3.0		7.0		220	35		32		12			10
30		1140	79			472	3		22	2.0	1	8.0										
DATE	S	SODIUM AD- SORP- TION ATIO 00931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALKALINIS LAN (MG, AS CACO	TY 3 /L 03)	SULFA DIS- SOLV (MG/ AS SO (0094	ED L 4)	CHLC RIDE DIS- SOLV (MG) AS (E, /ED /L CL)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILI DIS SOL (MG AS SIC	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOL	OF TI- TS, S- VED	SOLITON (TON DAY (7030)	S- VED NS R	SOLID DIS SOLV (TON PER AC-F (7030	ED IS
APR																						
06		0.4	5	. 4	240		51		13		0	.10	12			324		315	446		0.	44
27		0.4	5	.8	220		32		14		0	.20	3	.9		248		277	53	.2	0.	34
	DATE	SO (U AS	ENIC IS- LVED G/L AS)	SOI (UC AS	RON, IS- LVED G/L B) 020)	SOI (UC	IS- VED (/L FE)	LEAL DIS SOLV (UG, AS 1	S- VED /L PB)	SOI (UC AS	HIUM IS- LVED G/L LI) 130)	D SO: (UC	NGA- SE, IS- LVED G/L MN) 056)	SO (U) AS	CURY IS- LVED G/L HG) B90)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (II	LE- UM, IS- LVED G/L SE) 145)	D SOI (UC AS	RON- IUM, IS- LVED G/L SR) D8O)	
	5		3		160		10		<1		18		<10		<0.1		1		1		200	
JUL 27	· · · ·		4		90		10		<1		20		<10		0.1		1		<1		270	

05051522 RED RIVER OF THE NORTH AT HICKSON, ND

LOCATION.--Lat 46°39'35", long 96°47'44", in SW1/4 sec.19, T.137 N., R.48 W., Clay County, MN, Hydrologic Unit 09020104, on right bank 60 ft downstream from bridge on township road, and 1 mi southeast of Hickson, ND.

DRAINAGE AREA. -- 4,300 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1975 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 877.06 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Nov. 18 to Mar. 1. Records good except those for period of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation, 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control, numerous other controlled lakes and ponds, and several powerplants.

AVERAGE DISCHARGE.--13 years, 616 ft^3/s , 446,300 acre-ft/yr; median of yearly mean discharges, 530 ft^3/s , 384,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,600 ft³/s, Apr. 18, 1979, gage height, 33.03 ft; no flow Oct. 26, 1976, to Jan. 9, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 826 ft³/s, Mar. 30, gage height, 10.97 ft; minimum daily, 53 ft³/s, July 20, 21, 22 and Sept. 28.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND, MEA	WATER N VALUE	YEAR OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	148 157 164 167 175	149 162 184 190 195	127 114 96 89	168 183 158 159 197	125 178 205 229 262	356 370 368 362 356	684 689 699 671 587	405 430 425 394 401	419 420 377 328 311	126 128 129 114 93	75 96 101 137 141	78 85 87 79 75
6 7 8 9	176 173 178 175 173	194 186 179 179 171	102 108 118 130 124	203 165 176 190 179	230 192 165 175 204	368 397 438 524 613	517 527 543 535 480	399 394 408 398 401	305 300 292 283 290	76 72 75 76 74	118 104 94 89 83	74 74 70 71 68
11 12 13 14 15	163 157 144 138 137	175 183 171 141 131	122 120 113 115 134	190 190 179 166 117	235 258 248 245 224	673 685 688 621 500	442 444 421 416 411	412 411 395 369 315	291 285 261 225 215	78 80 89 141 187	79 93 82 88 89	68 66 70 71 70
16 17 18 19 20	136 131 125 126 123	136 141 144 144 102	163 173 176 167 184	102 98 95 100 103	229 248 258 264 258	425 419 452 476 458	441 459 459 449 453	265 259 271 305 341	213 205 207 203 205	139 90 67 57 53	92 86 81 77 77	75 81 86 93 90
21 22 23 24 25	121 126 132 156 183	82 101 132 135 135	200 206 210 210 200	110 118 142 162 148	245 274 240 257 263	428 430 434 459 509	435 362 308 310 370	362 388 401 422 404	212 197 201 204 183	53 53 55 56 57	76 75 75 76 75	88 85 74 63 57
26 27 28 29 30 31	159 128 117 113 126 142	148 131 139 148 142	192 145 115 120 125 139	132 144 112 130 144 140	270 276 296 321	597 672 680 773 818 752	399 382 400 412 409	404 431 436 441 436 423	171 148 139 130 127	63 72 73 73 75 72	75 69 71 74 77	56 54 53 56 60
TOTAL MEAN MAX MIN AC-FT	4569 147 183 113 9060	152 195 82	143 210 89	148 203 95	237 321 125	16101 519 818 356 31940	470 699 308	1946 385 441 259 3690	245 420 127	2646 85•4 187 53 5250	2702 87.2 141 69 5360	2177 72.6 93 53 4320

CAL YR 1987 TOTAL 178772 MEAN 490 MAX 2430 MIN 61 AC-FT 354600 WTR YR 1988 TOTAL 82052 MEAN 224 MAX 818 MIN 53 AC-FT 162800

05051522 RED RIVER OF THE NORTH AT HICKSON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

DATE	S.	TIME	STREATINSTANES	W, AN- OUS S)	SPE- CON- DUC' ANC' (US/	IC T- E CM)	PH (STANI ARD UNITS (00400) (EMPER ATURI AIR DEG (E C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC (009	S AL /L 03)	CALC DIS SOL (MG AS	VED /L CA)		UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS M	ED L	SODIUM PERCENT (00932)	
OCT 27		1445	133			550		22	5	.0		4.5										
FEB						550																
04 APR		1535	242			570			-20	.0		0.0									100	
06		1535	505			555	8.2	20	22	.0		4.0		260	50		33		14		10	
11 JUN		1725	422		1)	675			23	.0	1	6.5										
16 JUL		1600	218			520			30	.0	2	3.0										
13 26 SEP		1335 1530	89 65			480 480	8.6	50	26 34			4.0 8.0		210	39		28		15		13	
01		1110	77						23	.0	1	9.5										
DATE	S (SODIUM AD- SORP- TION RATIO (00931)	POT SI DI: SOL' (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC	TY B /L 03)	SULFA DIS- SOLVI (MG/) AS SO (0094)	FE ED L 4)	CHLO- RIDE DIS- SOLVI (MG/I AS CI	ED L L)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIT SOLV (TON PER DAY	S- VED VS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	
APR		0.4	-	,	070		70		4.7			00	12			740		770	476		0.47	
06		0.4	5	.6	230		76		13		O	.20	12			349		339				
26		0.5	6	.1	170		82		12		0	.20	9	.1		286		296	50	.2	0.39	
	DATI	50 (U AS	SENIC DIS- DLVED JG/L S AS)	SOI (UC AS	RON, IS- LVED G/L B) 020)	SO (U AS	ON, IS- LVED G/L FE) O46)	LEAD DIS SOLV (UG/ AS P	ED L	SOL (UC	HIUM IS- LVED G/L LI)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U	UM, OIS- OLVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)	
APF (JUI	06		2		160		20		<1		21		<10		0.2		2		1		210	
	26		3		130		10		<1		20		<10		0.5		2		<1		280	

05051600 WILD RICE RIVER NEAR RUTLAND, ND

LOCATION.--Lat 46°01'20", long 97°30'40", in SE1/4SE1/4 sec.36, T.130 N., R.55 W., Sargent County, Hydrologic Unit 09020105, on right bank 1,000 ft upstream from bridge on county highway, 2 mi south of Rutland, and 10 mi upstream from Lake Tewaukon.

DRAINAGE AREA. -- 546 mi2, of which about 250 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1959 to current year (seasonal records only since 1982).

REVISED RECORDS.--WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,197.73 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 11, 1960, nonrecording gage at same site and datum.

REMARKS. -- Estimated daily discharges: Feb. 25 to Mar. 8. Records fair.

AVERAGE DISCHARGE.--23 years (water years 1960-82), 8.08 $\rm ft^3/s$, 5,850 acre-ft/yr; median of yearly mean discharges, 4.7 $\rm ft^3/s$; 3,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,270 ft³/s, Apr. 8, 1969, gage height, 8.77 ft, backwater from ice; maximum gage height, 8.78 ft, Apr. 8, 1969, backwater from ice; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 1.0 ft3/s, Feb. 27, gage height, unknown; no flow most of the time.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1987	OT	SEPTEMBER	1988
					MEAT	M WATIII	25					

					[4]	CAN VALUE	5					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	.37	.00	.00	.00	.00	.00	.00
					.00	.30	.00	.00	.00	.00	.00	.00
3					.00	.25	.00	.00	.00	.00	.00	.00
1					.00	.20	.00	.00	.00	.00	.00	.00
2 3 4 5					.00	.15		.00	.00	.00	.00	.00
					•00	•15	.00	.00	•00	.00	•00	.00
6 7 8 9					.00	.10	.00	.00	.00	.00	.00	.00
7					.00	.05	.00	.00	.00	.00	.00	.00
8					.00	.02	.00	.00	.00	.00	.00	.00
9					.00	.00	.00	.00	.00	.00	.00	.00
10					.00	.00	.00	.00	.00	.00	.00	.00
						•00						
11					.00	.00	.00	.00	.00	.00	.00	.00
12 13					.00	.00	.00	.00	.00	.00	.00	.00
13					.00	.00	.00	.00	.00	.00	.00	.00
14					.00	.00	.00	.00	.00	.00	.00	.00
15					.00	.00	.00	.00	.00	.00	.00	.00
					•00	.00	.00	.00	.00	.00	.00	•00
16					.00	.00	.00	.00	.00	.00	.00	.00
17					.00	.00	.00	.00	.00	.00	.00	.00
18					.00	.00	.00	.00	.00	.00	.00	.00
19					.00	.00	.00	.00	.00	.00	.00	.00
20					.00	.00	.00	.00	.00	.00	.00	.00
					.00	.00	.00	.00	.00	•00	•00	.00
21 22					.00	.00	.00	.00	.00	.00	.00	.00
22					.00	.00	.00	.00	.00	.00	.00	.00
23					.00	.00	.00	.00	.00	.00	.00	.00
24					.00	.00	.00	.00	.00	.00	.00	.00
25					.10	.00	.00	.00	.00	.00	.00	.00
26					.50	.00	.00	.00	.00	.00	.00	.00
26 27					.90	.00	.00	.00	.00	.00	.00	.00
28					.70	.00	.00	.00	.00	.00	.00	.00
29					.50	.00	.00	.00	.00	.00	.00	.00
30												
						.00	.00	.00	.00	.00	.00	.00
31						.00		.00		.00	.00	
TOTAL					2.70	1.44	0.00	0.00	0.00	0.00	0.00	0.00
MEAN					.093	.046	.00	.00	.00	.00	.00	.00
MAX					.90	.37	.00	.00	.00	.00	.00	.00
MIN					.00	.00	.00	.00	.00	.00	.00	.00
AC-FT					5.4	2.9	.0	.0	.0	.0	.0	.0
					2.4	2.7	.0	• 0	•0	.0	•0	.0

05053000 WILD RICE RIVER NEAR ABERCROMBIE, ND

LOCATION.--Lat 46°28'05", long 96°47'00", in NE1/4NE1/4 sec.36, T.135 N., R.49 W., Richland County, Hydrologic Unit 09020105, on right bank 420 ft upstream from bridge on county highway, 0.75 mi upstream from rubble masonry dam which serves as control, 3.2 mi northwest of Abercrombie, and 7 mi downstream from Antelope Creek.

DRAINAGE AREA .-- 2,080 mi2, of which about 590 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1932 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1388: 1939. 1941(M). WSP 1728: Drainage area.

GAGE.--Water-stage recorder and masonry control. Datum of gage is 907.94 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 7, 1939, nonrecording gage at site 420 ft downstream at datum 5.0 ft lower. Dec. 7, 1939, to Nov. 24, 1952, nonrecording gage at site 0.75 mi downstream at present datum.

REMARKS.--Estimated daily discharges: Mar. 1-20, May 21 to June 16. Records good, except those for period of ice effect, Feb. 28 to Mar. 28, which are fair. Some regulation by Fish and Wildlife Service reservoirs, of which Lake Tewaukon is the largest. Some small diversions for irrigation.

AVERAGE DISCHARGE.--56 years, 72.4 ft3/s, 52,450 acre-ft/yr; median of yearly mean discharges, 36 ft3/s, 26,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,540 ft³/s, Apr. 11, 1969, gage height, 24.58 ft; no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in spring of 1897 reached a stage of 27.5 ft, present site and datum, from floodmarks pointed out by local residents.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 10	2045	*105	a*2.33				

No flow much of the time. a - Backwater from ice.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	33	.23	.35	.00	.0	.00
2	.00	.00	.00	.00	.00	.00	33	.21	.40	.00	.07	.00
3	.00	.00	.00	.00	.00	.00	33	.21	.40	.00	.07	.00
4	.00	.00	.00	.00	.00	.00	30	6.0	.35	.00	.07	.00
5	.00	.00	.00	.00	.00	.80	29	7.9	.30	.00	.05	.00
6	.00	.00	.00	.00	.00	3.5	27	4.7	.20	.00	.03	.00
7	.00	.00	.00	.00	.00	6.5	23	2.9	.15	.00	.19	.00
8	.00	.00	.00	.00	.00	15	20	3.1	.10	.00	5.6	.00
9	.00	.00	.00	.00	.00	35	20	4.2	.07	.00	8.9	.00
10	.00	.00	.00	.00	.00	90	17	3.1	.05	.00	6.8	.00
11	.00	.00	.00	.00	.00	85	15	1.9	.03	.00	3.9	.00
12	.00	.00	.00	.00	.00	50	14	1.6	.02	.00	2.0	.00
13	.00	.00	.00	.00	.00	40	12	1.3	.01	.00	1.6	.00
14	.00	.00	.00	.00	.00	25	11	1.0	.04	.08	1.4	.00
15	.00	.00	.00	.00	.00	20	9.8	.84	.06	27	1.0	.00
16	.00	.00	.00	.00	.00	19	8.5	.74	.01	44	.82	.00
17	.00	.00	.00	.00	.00	18	5.7	.65	.00	29	.66	.00
18	.00	.00	.00	.00	.00	17	5.1	.53	.00	14	.53	.00
19	.00	.00	.00	.00	.00	19	4.1	.47	.00	6.5	.41	.00
20	.00	.00	.00	.00	.00	23	2.6	.46	.00	2.7	.32	.00
21	.00	.00	.00	.00	.00	27	1.5	•45	.00	1.2	.24	.00
22	.00	.00	.00	.00	.00	30	.87	.35	.00	.74	.18	.00
23	.00	.00	.00	.00	.00	32	.55	.30	.00	.54	.13	.00
24	.00	.00	.00	.00	.00	42	.45	.27	.00	.43	.10	.00
25	.00	.00	.00	.00	.00	50	.37	.25	.00	.28	.08	.00
26	.00	.00	.00	.00	.00	38	.31	.22	.00	.20	.06	.00
27	.00	.00	.00	.00	.00	41	.28	.18	.00	.14	.05	.00
28	.00	.00	.00	.00	.00	48	.25	.14	.00	.08	.04	.00
	.00	.00	.00	.00	.00			.10	.00	.06	.03	.00
29					7.7.7	41	.23					.00
30	.00	.00	.00	.00		41	.23	.08	.00	.03	.01	
31	.00		.00	.00		38		.07		.01	.00	
TOTAL	0.00	0.00	0.00	0.00	0.00	894.80	357.84	44.45	2.54	126.99	35.34	0.00
MEAN	.00	.00	.00	.00	.00	28.9	11.9	1.43	.085	4.10	1.14	.00
MAX	.00	.00	.00	.00	.00	90	33	7.9	.40	44	8.9	.00
MIN	.00	.00	.00	.00	.00	.00	.23	.07	.00	.00	.00	.00
AC-FT	.0	.0	.0	.0	.0	1770	710	88	5.0	252	70	.0

CAL YR 1987 TOTAL 10837.39 MEAN 29.7 MAX 676 MIN .00 AC-FT 21500 WTR YR 1988 TOTAL 1461.96 MEAN 3.99 MAX 90 MIN .00 AC-FT 2900

05053000 WILD RICE RIVER NEAR ABERCROMBIE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	CON- DUCT- ANCE (US/CM)		AIF (DEG	RE ATURE WATER	JRE CER	HARD NESS TOTA (MG/ AS CACO	CAL L DI L SO (Mo (Mo (Mo	CIUM S- LVED G/L CA) 915)	SI DI SOL (MG	MG)	SODIU DIS- SOLVE (MG/ AS N	D L A)	SODIUM PERCENT (00932)
MAR 23 MAY	1400	30	810	7.6	0 3	3.0	0.5	3	520 7	0	34		43		22
11	1440	1.8	1170	_	- 25	5.0	21.0								
JUN 15	1630	0.0	1	_	- 3	1.0	26.0								
JUL 27 AUG	1425	0.13	745	8.4	35	5.5	28.0	2	250 5	3	28	3	64		35
30	1330	0.0	2000	-	- 23	3.0	17.0								
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVET (MG/L AS K) (00935)	LINITY LAB (MG/L AS CACO3)		DIS- D SOLV (MG,	E, RIU - DO VED SOI /L (MCCL) AS	JO- DE, IS- LVED G/L F)	SILIC DIS- SOLV (MG/ AS SIO2 (0095	CA, RES LAT LED DE L D SO (M	IDS, IDUE 180 G. C IS- LVED G/L) 300)	SOL	OF STI- ITS, S- VED	SOLID DIS SOLV (TON PER DAY (7030	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 23	1	12	200	210	24		0.20	15		555		529	45.	7	0.75
JUL 27	2	12	210	150	35	- (0.30	19		494		491	0.	17	0.67
D	S(1)	DIS- DLVED S JG/L (S AS)	DIS- SOLVED S (UG/L (AS B) A	DIS- SOLVED UG/L S FE)	LEAD, DIS- SOLVED (UG/L AS PB) 01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NE SO (U	NGA- SE, IS- LVED G/L MN) 056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	DE SO (U	OLYB- NUM, OIS- OLVED IG/L MO) 060)	NI SO (U	CLE- CUM, DIS- DLVED UG/L S SE) 145)	D SO (Ud	RON- IUM, IS- LVED G/L SR) 080)
MAR 23. JUL 27.		3 14	180 170	40	<1 <1	49 50		220	0.6		2		2 <1		340 370

05054000 RED RIVER OF THE NORTH AT FARGO, ND

LOCATION.--Lat 46°51'40", long 96°47'00", in NW1/4NE1/4 sec.18, T.139 N., R.48 W., Cass County, Hydrologic Unit 09020104, at city waterplant on 4th St. S. in Fargo, 25 mi upstream from mouth of Sheyenne River, and at mile

DRAINAGE AREA. -- 6,800 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1901 to current year. Published as "at Moorhead, Minn." 1901. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1924. WSP 1388: 1905-6, 1917-20(M), 1935(M), 1938-39(M), 1943.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 861.8 ft above National Geodetic Vertical Datum of 1929. Oct. 1, 1960, to Sept. 30, 1962, water-stage recorder at present site at datum 5.6 ft higher. See WSP 1728 or 1913 for history of changes prior to Oct. 1, 1960.

REMARKS.--Estimated daily discharges: Nov. 13 to Mar. 3. Records good except those for period of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity 137,000 acre-ft, available for flood control, other controlled lakes and ponds, and several powerplants. Some small diversions for municipal supply. Figures of daily discharge do not include diversions to cities of Fargo and Moorhead and from Sheyenne River.

AVERAGE DISCHARGE (UNADJUSTED).--87 years, 576 $\rm ft^3/s$, 417,300 acre-ft/yr; median of yearly mean discharges, 450 $\rm ft^3/s$, 326,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,300 ft³/s, Apr. 15, 1969, gage height, 37.34 ft; no flow for many days in each year for period 1932-41, Sept. 30, Oct. 1-2, 1970, Oct. 10-19, 1976.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 7, 1897, reached a stage of 39.1 ft present datum, discharge, 25,000 ft³/s at site 1.5 mi downstream.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 981 ft3/s, Mar. 11, gage height, 15.10 ft; minimum daily, 15 ft3/s, July 22, 25, and 26.

		DISCHARG	E, IN CUE	IC FEET	PER SEC	OND, WATER Y		OBER 1987	TO SEPTEM	BER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	142	135	125	121	125	317	832	412	395	105	45	45
2	146	140	113	154	142	339	768	415	387	112	87	39
3	154	155	101	161	182	364	799	421	369	121	86	52
4	153	174	85	151	219	367	802	405	319	116	106	57
5	162	183	78	166	256	386	804	412	278	101	145	51
6 7 8 9	161 157 164 166 161	182 179 175 177 170	84 96 104 115 132	182 203 182 181 202	276 280 239 211 235	380 396 451 495 662	696 605 601 595 564	414 441 426 410 413	258 249 240 238 234	73 66 51 55 56	152 136 112 93 88	41 43 39 33 34
11	163	165	136	194	245	924	491	412	233	49	67	41
12	158	174	131	202	259	909	455	440	235	49	55	38
13	151	174	118	195	275	831	434	431	259	66	92	42
14	136	149	107	204	278	828	428	392	272	58	78	41
15	137	132	105	177	271	739	426	352	206	123	67	63
16	139	129	121	135	249	603	428	304	199	166	65	100
17	141	127	157	93	251	519	454	267	191	130	61	85
18	136	128	173	92	240	497	472	263	181	76	59	145
19	138	130	161	83	235	514	463	273	175	46	48	191
20	135	115	160	78	230	517	455	328	157	28	51	99
21	134	90	166	82	233	488	448	379	164	21	53	98
22	128	76	180	79	244	469	405	386	156	15	48	93
23	129	94	194	99	234	499	339	394	172	16	41	86
24	136	108	203	137	225	575	307	409	166	20	39	78
25	161	126	211	161	244	684	324	415	161	15	38	65
26 27 28 29 30 31	162 130 121 110 108 123	125 136 124 133 139	207 175 133 98 97 107	120 131 128 107 113 141	296 311 314 284	721 792 867 833 901 900	382 399 383 391 414	397 429 427 440 441 417	154 142 120 112 110	15 21 40 46 45 51	35 39 40 39 37 40	53 45 57 59 52
TOTAL	4442	4244	4173	4454	7083	18767	15364	12165	6542	1952	2142	1965
MEAN	143	141	135	144	244	605	512	392	218	63.0	69.1	65.5
MAX	166	183	211	204	314	924	832	441	395	166	152	191
MIN	108	76	78	78	125	317	307	263	110	15	35	33
AC-FT	8810	8420	8280	8830	14050	37220	30470	24130	12980	3870	4250	3900
(+)	1302	1167	1181	1249	1107	1233	1323	1675	2064	2073	1689	1596
MEAN*	164	161	154	164	263	625	534	419	253	96.7	96.6	92.3
AC-FT*	10110	9590	9460	10080	15160	38450	31790	25800	15040	5940	5940	5500
CAL YR WTR YR		TOTAL 184 TOTAL 83	803 MEA 293 MEA		MAX MAX	2980 MIN 924 MIN			56600 55200	MEAN 530 MEAN 252	ADJUSTED AC-FT AC-FT	383090 182870

^{+ -} Diversions in acre-feet to cities of Fargo and Moorhead.

C

^{* -} Adjusted for diversions to cities of Fargo and Moorhead.

05054000 RED RIVER OF THE NORTH AT FARGO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956 to current year.

DATE	TIME	STREAM FLOW INSTAN TANEOU (CFS) (0006	CON N- DUC JS ANC) (US/	T- (S CM) UN	PH TAND- ARD ITS) 0400)	TEMPE ATUF AIF (DEG (0002	RE RC)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NESS TOTA (MG, AS CACO	S AL /L	(MC	VED /L CA)	SI	MG)	SODIUM DIS- SOLVEM (MG/M AS NA	D L A)	SODIUM PERCENT (00932)
OCT	4545	405																
27 DEC	1715	125		535			5.0		5.0									
21 FEB	1605	166		600		-2	2.0		0.0									
18	1130	238		730		(0.0		0.0									44
APR 07	1640	592		570	8.20	26	5.0		3.5		230	46		28	3	15		12
MAY	4055															35.		
13 JUN	1055	428		530		11	1.0	1	7.5									
17	0955	195		510		20	0.0	2	3.0									
JUL 12	1230	48		490	955		3.0		4.0									77
26	1305	15		455	8.80		1.0		6.5	-	210	26		36)	14		12
28 AUG	0810	34		480		2	4.0	2	6.0									
30	1610	37		510		26	5.0	2	2.0									
DATE	SODIUM AD- SORP- TION RATIO (00931)	DIS- SOLVI (MG/I	M, LINI - LA ED (MG L AS	TY SU B D 5/L S 5 (LFATE IS- OLVED MG/L SO4) 0945)	CHLO RIDI DIS- SOLV (MG, AS (E, /ED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIO DIS- SOLV (MG, AS SIO2 (009)	/ED /L	SOL	DUE 180 1. C 1S- VED 1/L)	SOL	OF STI- ITS, IS- VED	SOLID: DIS- SOLVI (TON: PER DAY (7030:	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR	0		7 040						40	40			705		74.1	540		0.44
07 JUL	0.4	5.	3 210		74	11		0	.10	10			325		314	519		0.44
26	0.4	5.	3 210		44	14		0	.30	9	.0		264		274	10.	9	0.36
	S (RSENIC DIS- SOLVED UG/L US AS)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVE (UG/L AS FE (01046	D S (EAD, DIS- OLVED UG/L S PB) 1049)	SO (U AS	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY IS- LVED G/L HG) B90)	DE SO (U	LYB- NUM, DIS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED IG/L SE) 145)	DI SOI (UC AS	RON- IUM, IS- LVED G/L SR) D8O)
		4	170	1	0	<1		20		<10		0.3		1		1		210
JUL 26	·	4	130	1	0	<1		20		<10		0.1		2		<1		220

05054500 SHEYENNE RIVER ABOVE HARVEY. ND

LOCATION.--Lat 47°42'10", long 99°56'55", in SW1/4SE1/4 sec.24, T.149 N., R.73 W., Wells County, Hydrologic Unit 09020202, on right bank just downstream from county road, and 4.5 mi south of Harvey.

DRAINAGE AREA. -- 424 mi². of which about 270 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1955 to current year.

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 1,547.30 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Nov. 23 to Apr. 7 and Aug. 18 to Sept. 30. Records fair except those for periods of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--33 years, 8.40 ft3/s, 6,090 acre-ft/yr; median of yearly mean discharges, 7.5 ft3/s, 5,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,000 ft³/s, Apr. 20, 1979, gage height, 9.45 ft; maximum gage height, 10.30 ft, Apr. 1, 1971, backwater from ice; no flow at times most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 25 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 26		ab*80	Unknown				

No flow for many days. a - Backwater from ice. b - Estimate

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC TAN. FEB MAR APR MAY JUN JUL AUG SEP .68 1.7 1.2 .00 .65 .00 5.0 1.3 1.3 1.3 1.1 .65 6.0 1.5 4.4 2 .64 .84 .05 .00 4.5 2.3 1.1 2.2 7.2 5.3 3 .82 .02 .00 4.0 7.0 2.3 1.4 .64 6.5 2.1 5 .80 -00 -00 3.0 1.3 1.6 2.2 .60 2.0 1.6 .78 .00 .00 3.5 4.5 3.7 3.3 2.6 6 1.2 .66 .84 .00 .00 3.0 5.0 2.5 1.3 1.3 .60 .60 3.8 3.0 3.1 3.0 .85 1.2 78 .93 .80 .00 .00 2.7 6.0 1.2 .95 .65 1.0 -80 -00 -00 2.5 5.2 .86 .40 .60 9 1.3 .80 -00 .00 4.3 1.4 3.0 10 2.5 4.2 .60 2.4 .90 .00 .00 .31 .85 .74 1.7 2.1 2.2 4.1 .62 11 2.2 1.2 .80 .00 .00 1.0 .27 .93 12 13 14 .70 1.1 .60 .64 11 .00 .00 .50 4.3 3.9 .28 2.3 .19 3.3 .60 .50 .00 4.1 .00 .40 .48 .65 .00 .00 .30 .11 1.3 4.1 15 .48 1.1 .64 .00 .00 .25 3.9 2.8 2.8 .13 .75 .70 .19 .46 3.4 2.9 2.9 1.5 16 1.0 .60 .00 .00 .25 2.6 2.1 .65 17 .45 1.1 .70 .00 .00 .27 2.4 1.8 .19 .99 1.4 1.5 18 1.3 .00 .00 .45 1.8 .50 .70 .80 2.6 2.2 9.7 1.8 .00 .00 2.0 1.2 19 1.9 20 .86 2.4 1.0 1.3 .68 .00 .00 .90 2.4 1.8 1.0 .95 1.0 .95 21 1.1 .67 -00 .00 2.0 2.3 1.7 2.5 .52 .90 .70 22 .66 1.5 2.3 1.1 1.0 .00 .00 3.0 2.6 2.5 .98 .60 23 .66 .00 .16 .85 1.1 .00 10 2.4 2.3 24 1.1 .94 .64 .00 .01 20 .08 1.4 25 2.0 .90 .60 .00 .20 50 2.4 1.5 1.8 .06 .80 .52 .25 26 3.6 .56 1.0 80 2.4 1.8 1.3 .84 .50 .90 .00 .50 .07 .82 .60 2.2 .90 .00 35 20 2.4 27 7.0 2.1 28 .90 .45 .00 1.5 .03 .75 .80 1.3 29 .86 .40 1.6 .01 .60 .00 6.0 10 1.9 30 .82 .35 .00 8.0 1.9 1.5 .65 .00 .70 .50 .70 31 1.1 ---.15 .00 ---5.0 1.6 ---.00 ---TOTAL 56.69 20.69 48.98 28.69 40.82 21.93 43.89 0.17 22.21 281.82 113.6 72.7 3.79 7.0 .93 1.83 .73 MEAN .67 .005 2.35 1.63 1.32 1.46 .77 9.09 MAX .90 .10 8.0 80 4.1 2.8 6.6 .00 1.4 .00 .50 MIN .45 .66 .15 .00 .00 .25 1.9 .65 97 81 43 57 AC-FT 112 87 41 .3 44 559 225 144

CAL YR 1987 TOTAL 5238.38 MEAN 14.4 MAX 386 MIN .15 AC-FT 10390 WTR YR 1988 TOTAL 752.19 MEAN 2.06 MAX 80 MIN .00 AC-FT 1490

05054500 SHEYENNE RIVER ABOVE HARVEY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

		STREAM- FLOW,	SPE- CIFIC CON-	РН	TEMPER-	TEMPER		- OXY	GEN,	OXYGEN, DIS- SOLVED (PER-	HARD- NESS TOTAL (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED
DATE	TIME	INSTAN- TANEOUS (CFS) (00061)	DUCT- ANCE (US/CM) (00095)	(STAND- ARD UNITS) (00400)	ATURE AIR (DEG C) (00020)	WATER (DEG C (00010		T SC	DIS- DLVED MG/L) D300)	CENT SATUR- ATION) (00301)	AS CACO3) (00900)	(MG/L AS CA) (00915)	(MG/L AS MG) (00925)
NOV 19	1000	1.7	1300	8.38	0.0	0.	5	14	12.6	87	230	46	27
28	1210	17	760		1.0	1.0							
APR 14	1100	4.1	1140	8.33	2.0	3.0) (17	11.0	81	170	33	22
MAY 16	1300	2.8	1320	8.50	18.0	11.	5	53	12.4	113	170	35	20
JUL 07	1615	1.2	1420	8.50	27.5	27.	5	75	10.6	133	110	24	11
AUG 09	1139	0.90	1480	8.95	25.5	18.0)	57	6.5	69	63	14	6.7
DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATI DIS- SOLVE (MG/L AS SO4 (00945	DIS- D SOLVI (MG/I	ED S(LUO- IDE, DIS- DLVED MG/L S F)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
NOV 19	220	67	7	7.0	461	180	16		0.30	32	828	806	1.13
APR 14	200	70	7	9.5	431	190	14		0.30	26	779	754	1.06
MAY 16	270	77	9	6.4	531	200	15		0.40	31	909	897	1.24
JUL 07	310	86	14	5.6	572	200	17		0.30	37	968	949	1.32
AUG	7	91	19		574	190	17		0.30	26	972	934	1.32
09	330		19	4.9	274	190	17		0.50	20	912	9,74	1.72
DATE	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM DIS- SOLVED (UG/L AS BA (01005	DIS- SOLVI (UG/I	ED SC L (1	DMIUM DIS- OLVED UG/L S CD) 1025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV	7 74	0.070	0.000				-	=0		12.00			
19 APR	3.71	0.230	0.090			-		50		4	1		60
14 MAY	8.58	<0.100	0.200	<10	2	5		30	<1	1		1	
16 JUL	6.87	<0.100	0.210			-		00			-		
07 AUG	3.21	<0.100	0.320			-		70					
09	2.36	<0.100	0.140	20	3	3	4 8	30	<1	<1	1	3	210
DAT	SOI (UC AS	IS- DO LVED SOI LVED (UC PB) AS	HIUM NE IS- D LVED SO G/L (U LI) AS	IS- DO LVED SOI G/L (UC MN) AS	CURY DEI IS- DI LVED SOI I/L (UG HG) AS	IS- D LVED S G/L (MO) A	CKEL, IS- OLVED UG/L S NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) O1145)	DI SOL (UG	VED SOL /L (UC SR) AS	JM, ZIM IS- DI LVED SOL I/L (UC V) AS	IS- CYAN LVED TOO S/L (MC ZN) AS	NIDE FAL G/L CN) 720)
APR 14		<5	92	140	<0.1	1	2	<1		190	5	<3 <0.	.010
AUG 09		<5	130		<0.1	<1	2	<1		130	3	<3 <0	.010

05056000 SHEYENNE RIVER NEAR WARWICK, ND

LOCATION.--Lat 47°48'20", long 98°42'57", on south quarter of line between secs.15 and 16, T.150 N., R.63 W., Eddy County, Hydrologic Unit 09020203, on left bank on downstream side of county highway bridge, and 3.3 mi south of Warwick.

DRAINAGE AREA.--2,070 $\rm mi^2$, approximately, of which about 1,310 $\rm mi^2$ is probably noncontributing, including 227 $\rm mi^2$ in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1949 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1438: 1952(M). WSP 1728: Drainage area.

GAGE .-- Water-stage recorder and rubble masonry control. Elevation of gage is 1,370 ft, by barometer.

REMARKS.--Estimated daily discharges: Nov. 21 to Apr. 10 and Aug. 7-11. Records good except those for periods of estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--39 years, 56.9 ft^3/s , 41,220 acre-ft/yr; median of yearly mean discharges, 51 ft^3/s , 36,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,660 ft³/s, Apr. 14, 1969, gage height, 7.51 ft; maximum gage height, 7.83 ft, Apr. 18, 1956; no flow Aug. 7 to Sept. 1, Sept. 3-9, 1961.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Da te	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 25		*151	a*2.88				

Minimum daily discharge, 0.01 ft^3/s , Aug. 8-11. a - Backwater from ice

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV JUL AUG SEP DEC FEB APR JUN JAN MAR MAY .88 20 1.3 2 15 19 16 8.6 5.2 103 64 19 10 1.4 .30 .89 3 15 19 15 8.5 5.0 90 72 19 .87 68 12 1.5 .29 .19 .84 5.0 90 14 1.1 5 15 19 15 7.0 4.8 64 88 24 25 1.6 .14 .99 6 17 27 .96 20 15 5.5 4.5 69 78 23 1.0 .05 1.3 25 21 15 5.4 4.3 75 73 24 21 .38 .02 8 19 .01 .19 5.3 4.1 16 68 12 .21 .01 .96 19 20 4.9 4.0 86 30 10 18 15 20 32 9.4 .30 .01 .82 4.7 4.0 72 94 7.6 .45 -01 18 15 22 4.6 72 77 1.4 11 3.9 34 12 18 16 22 35 36 7.8 1.3 .12 2.4 4.6 4.0 44 58 20 8.1 .25 3.3 13 16 51 56 18 4.5 4.0 16 17 19 4.2 34 .57 3.7 15 16 19 19 4.8 4.4 45 49 31 7.2 .86 2.6 3.9 16 16 19 19 5.0 29 42 32 5.6 .41 4.6 5.1 4.8 17 15 21 19 5.0 5.2 22 37 38 5.0 .52 4.7 5.3 18 14 21 18 5.0 5.5 19 36 33 7.7 .54 19 15 21 17 5.0 6.0 19 29 33 .43 1.6 7.7 22 20 18 15 5.0 5.8 20 26 26 15 .48 .30 7.7 7.6 21 20 18 15 5.0 24 26 25 18 .45 .22 6.3 22 17 14 5.0 6.9 26 .29 7.6 18 32 23 20 .42 23 15 17 13 5.5 6.6 47 22 22 25 .46 .36 3.0 24 25 13 14 16 6.0 6.6 90 22 19 27 .52 .33 1.3 .66 14 16 12 5.8 6.7 143 21 19 7.6 .35 -80 26 15 16 5.6 8.4 25 17 .50 .84 124 27 28 16 16 11 5.6 94 23 17 2.0 .47 .48 .64 28 16 11 5.6 25 85 20 17 1.4 .46 .53 .74 29 33 25 10 1.3 16 78 13 .39 5.6 58 20 16 10 5.6 69 20 9.7 .32 .63 1.1 ---31 22 10 5.5 65 8.1 .19 .75 79.53 2.65 7.7 .64 566 344.6 23.98 TOTAL. 535 484 176.9 231.6 2022 1469 764.8 21.41 24.7 18.3 33 13 MEAN 17.8 21 65.2 11.5 .69 15.6 5.71 7.99 49.0 4.7 22 10 58 94 27 1.6 MAX 10 3.9 20 8.1 .19 .01 158 AC-FT 1120 1060 960 351 459 4010 2910 1520 684 42 48

CAL YR 1987 TOTAL 34450.6 MEAN 94.4 MAX 1680 MIN 5.9 AC-FT 68330 WTR YR 1988 TOTAL 6718.82 MEAN 18.4 MAX 143 MIN .01 AC-FT 13330

05056000 SHEYENNE RIVER NEAR WARWICK, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1951, 1953, 1958 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER ATURE WATER (DEG C	(MG AS) CAC	S CAL AL DI /L SO (M 03) AS	LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
OCT												
05 NOV	1400	15	915		12.0	11.	5					77
19	1210	17	695		-4.0	2.	0					
JAN 06	1250	5.5	965		-14.5	1.	0					
FEB 29	1449	54	1180		4.0	1.	5					
APR 01	1010	56	665	0.00				070		0.5		-
14	1010	54	655		7.5 6.0	1.		230 4	9	25	54	33
JUL 11	1525	0.51	655	8.40	25.0	26.	5	230 4	7	28	51	32
AUG 15	1455	3.0	522		37.5	30.	0					
		7	7.77		21.02	,,,,						
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVE (MG/L AS F) (00950	DIS SOL D (MG AS SIO	CA, RES - AT VED DE /L D SO 2) (M	IDUÉ S 180 C G. C T IS- LVED G/L)	SOLIDS, SUM OF CONSTI- FUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR												
01 JUL	2	9.3	237	100	14	0.2	0 15		401	409	60.2	0.55
11	1	5.9	280	60	11	0.2	0 20		403	394	0.55	0.55
D	50 (U AS	DIS- DLVED S JG/L (B AS) A	DIS- OLVED SO UG/L (1 S B) A	DIS- D DLVED SC UG/L (U S FE) AS	DIS- I DLVED SO JG/L (I S PB) AS	THIUM DIS- DLVED JG/L S LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) 01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLY DENU DIS SOLV (UG/ AS M	JM, NI S- D /ED SO /L (U /O) AS	UM, IS- LVED SC G/L (1 SE) AS	TRON- TIUM, DIS- DLVED JG/L S SR)
APR 01.		2	210	60	1	37	50	0.2		2	2	240
JUL 11.		8	120	30	1	40	340	0.2		1	<1	310

05056100 MAUVAIS COULEE NEAR CANDO, ND

LOCATION.--Lat 48°26'53", long 99°06'08", in SE1/4NE1/4SE1/4 sec.1, T.157 N., R.66 W., Towner County, Hydrologic Unit 09020201, on left bank 0.3 mi upstream from highway bridge, about 4 mi upstream from West Fork, 5.5 mi southeast of Cando, and 7 mi northeast of Maza.

DRAINAGE AREA. -- 387 mi², of which about 10 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1956 to current year (seasonal records only since 1982).

GAGE.--Water-stage recorder. Elevation of gage is 1,445 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 2, 1957, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Mar. 1-25. Records good except those for period of estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--26 years (water years 1957-82), 19.2 ${\rm ft}^3/{\rm s}$, 13,910 acre-ft/yr; median of yearly mean discharges, 13 ${\rm ft}^3/{\rm s}$, 9,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,660 ft³/s, Apr. 25, 1979, gage height, 11.18 ft; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1954, reached a stage of 9.83 ft, and flood of Apr. 20, 1956, reached a stage of 10.71 ft, from floodmarks set by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period March to September, 1.3 ft³/s, Mar. 27, gage height, 2.57 ft; no flow June 19 to Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

						37111						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						.03	.68	.22	.07	.00	.00	.00
2								.25	.07	.00	.00	.00
2 3 4						.01	.62				.00	.00
2						.03	.56	.23	.07	.00		
4						.08	.63	.21	.06	.00	.00	.00
5						17	.57	.20	.05	.00	.00	.00
6						.18	.55	.19	.04	.00	.00	.00
7						.15	.56	.26	.04	.00	.00	.00
8						.11	.63	.29	.03	.00	.00	.00
9						.18	.58	.27	.03	.00	.00	.00
10						.45	.66	.24	.03	.00	.00	.00
11						.20	.75	.24	.03	.00	.00	.00
12								.21	.03	.00	.00	.00
						.10	.79			.00	.00	.00
13						.08	.79	.18	.03			
14						.08	.71	.18	.02	.00	.00	.00
15						.09	.63	.17	.02	•00	.00	.00
16						.10	.56	.15	.02	.00	.00	.00
17						.11	.43	.14	.01	.00	.00	.00
18						.14	.42	.14	.01	.00	.00	.00
19						.12	.40	.12	.00	.00	.00	.00
20						.10	.36	.11	.00	.00	.00	.00
20						. 10	. , 0					
21						.15	.33	.11	.00	.00	.00	.00
22						.15 .45	.32	.11	.00	.00	.00	.00
23						.60	.31	.10	.00	.00	.00	.00
24						.90	.29	.09	.00	.00	.00	.00
25						.74	.23	.10	.00	.00	.00	.00
26						.58	.22	.08	.00	.00	.00	.00
						. 50	.22	.09	.00	.00	.00	.00
27						.97 1.2	.22					.00
28						1.2	.21	.09	.00	.00	.00	
29						.82	.20	.07	.00	.00	.00	.00
30						.78	.20	.07	.00	.00	.00	.00
31						.63		.07		.00	.00	
TOTAL						10.33	14.41	4.98	0.66	0.00	0.00	0.00
MEAN						.33	.48	.16	.022	.00	.00	.00
MAX						1.2	.79	.29	.07	.00	.00	.00
							.20	.07	.00	.00	.00	.00
MIN						.01			1.3	.00	.0	.00
AC-FT						20	29	9.9	1.5	.0	.0	.0

05056100 MAUVAIS COULEE NEAR CANDO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (OOO10)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 06	1140	0.14	690		6.5	12.0				
MAR 02 23	1310 1110	0.01	1320 1330	7.50	1.5	1.0	9.0	65	570	120
APR 07 21	1100 1515	0.56 0.35	790 1220	7.90 8.40	9.0 9.5	5.5 11.0	12.7 12.1	104 113	310 480	69 100
JUN 02	1205	0.07	1790	8.00	26.0	27.5	9.1	118	760	150
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
MAR										
23 APR	65	76	22	1	16	230	440	53	0.10	13
07 21 JUN	34 57	38 70	20 23	1	9.6	149 210	230 400	24 38	0.10	7.8 5.5
02	93	100	22	2	15	280	650	60	0.20	14
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
MAR										
23 APR	952	925	1.29	1.05	13	0.030	0.030	0.280	0.260	2
07 21 JUN	505 852	503 812	0.69	0.76 0.81	5	0.050		0.010	0.130	2
02	1320	1250	1.80	0.25	2	0.100	0.030	0.00	0.330	4
DAT	DI SOL (UC AS	VED SOL S/L (UC B) AS	S- DI VED SOL I/L (UC FE) AS	IS- DI LVED SOI L/L (UC PB) AS	HIUM NE IS- D LVED SO G/L (U LI) AS	IS- D LVED SO G/L (U MN) AS	CURY DEN IS- DI LVED SOI G/L (UC	VED SOL I/L (UG MO) AS	M, TI S- DI VED SOL /L (UG SE) AS	SR)
	(010	20) (010	40) (010	49) (01	150) (01)	0,00, (11	0,507 (010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	42) (010	,
MAR 23 APR		70	90	<1		1400	0.1	1	3	510
07 21 JUN		150 150	40 30	<1 <1	45 71	460 20	<0.1 0.4	1	2 3	310 430
02		140	10	<1	120	220	0.1	1	1	790

05056200 EDMORE COULEE NEAR EDMORE, ND

LOCATION.--Lat 48°20'14", long 98°39'33", in NW1/4 sec.17, T.156 N., R.62 W., Ramsey County, Hydrologic Unit 09020201, on right bank 50 ft upstream from bridge on county highway, 11 mi southwest of Edmore, and about 13 mi upstream from Sweetwater Lake.

DRAINAGE AREA. -- 382 mi², of which about 100 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April to June 1956, June 1957 to current year (seasonal records only since 1982).

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,400.00 ft above National Geodetic Vertical Datum of 1929.

June 26, 1957, to Sept. 30, 1985, water-stage recorder at same site at a datum of 1,479.79 ft above National Geodetic Vertical Datum of 1929. Prior to June 26, 1957, nonrecording gage at same site and datum.

REMARKS .-- Estimated daily discharges: Mar. 1 to Apr. 3. Records fair.

AVERAGE DISCHARGE.--25 years (1957-82), 13.3 ft^3/s , 9,640 acre-ft/yr; median of yearly mean discharges, 9.2 ft^3/s , 6,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,110 ft3/s, Apr. 25, 1979, gage height, 87.10 ft; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Maximum observed discharge, 49 ft³/s, Apr. 4, gage height 82.63 ft; maximum observed gage height, 83.22 ft, Mar. 17, backwater from ice; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

						MEMIN VALUE	10					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	25	.40	5.6	.00	.00	.00	
2									.00	.00	.00	
2					.00	30	.20	13				
3					.00	43	.11	15	•00	.00	.00	
2 3 4 5					.00	48	.09	11	.00	.00	.00	
5					.00	45	.06	7.5	.00	.00	.00	
6 7 8 9					.00	41	.05	4.6	.00	.00	.00	
7					.00	38	.04	2.7	.00	.00	.00	
8					.00	37	.06	1.5	.00	.00	.00	
9					.00	33	.05	.63	.00	.00	.00	
10					.00	33 26	.04	.16	.00	.00	.00	
11					.00	23	.03	.06	.00	.00	.00	
12					.00	19	.03	.03	.00	.00	.00	
13					.00	17	.03	.03	.00	.00	.00	
14					.00	14	.02	.02	.00	.00	.00	
15					.00	12	.02	.02	.00	.00	.00	
					.00	12	.02	.02				
16					.00	11	.02	.01	.00	.00	.00	
17					.05	8.7	.02	.01	.00	.00	.00	
18					.10	7.3	.01	.01	.00	.00	.00	
19					.20	6.1	.01	.00	.00	.00	.00	
20							.01	.00	.00	.00	.00	
20					.30	5.1	.01	.00	.00	•00	•00	
21					.40	4.4	.01	.00	.00	.00	.00	
22					.50	3.6	_01	.00	.00	.00	.00	
23					5.0	3.1	.01	.00	.00	.00	.00	
22 23 24					5.0	2.6	.01	.00	.00	.00	.00	
25					10		.00	.00	.00	.00	.00	
25					10	2.3	.00	.00	.00	.00	.00	
26					8.0	2.0	.00	.00	.00	.00	.00	
27					5.0	1.8	.00	.00	.00	.00	.00	
28					3.5	1.4	.77	.00	.00	.00	.00	
29					4.0	1.1	4.0	.00	.00	.00	.00	
30					7.0	.80	3.6	.00	.00	.00	00	
30 31					20		2.1		.00	.00		
TOTAL					70.05	512.30	11.81	61.88	0.00	0.00	0.00	
					70.05	212.50		01.00			.00	
MEAN					2.26	17.1	.38	2.06	.00	.00		
MAX					20	48	4.0	15	.00	.00	.00	
MIN					.00	.80	.00	.00	.00	.00	.00	
AC-FT					139	1020	23	123	.0	.0	.0	

05056200 EDMORE COULEE NEAR EDMORE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND ARD UNITS) (00400	- AT	IPER- CURE LIR GG C)	TEMPE ATUR WATE (DEG (OOO1	E R C)	OXYGEN, DIS- SOLVED (MG/L) (00300)	SOL (PE CE SAT	S- VED R- NT UR- ON)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
MAR 22	1135	0.47	588	-	_	1.5	0	.5					
APR 06	1230	42	695	8.1	0	11.5	-	.0	13.1		108	240	59
20	1330	5.2	950			1.0		.0	11.8		97	330	79
JUN 01	1220	0.34	1180	8.1	0	29.0	25	.0	9.4		117	400	85
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIU AD- SORP- TION RATIO	M S	OTAS- SIUM, DIS- DLVED MG/L S K)	ALKA LINIT LAE (MG/ AS CACO	Y L (1)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	(MG	E, VED (/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
APR													
06 20	23 32	43 69	26 30			18 17	168 220		170 250	22		0.10	24
JUN	26						220						
01	45	90	32	2	1	18	220		360	34		0.20	7.6
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS DIS- SOLVE (TONS PER DAY) (70302	AT DEC	SIDUE 105 3. C, JS- NDED MG/L) 0530)	NITR GEN AMMON DIS SOLV (MG/ AS N	I, IIA ZED ZED ZL	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GE NITE DI SOL	S- VED I/L N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
APR 06 20	463 653	461 627	0.63 0.89			3 5	0.0		0.040		.010 .160	0.980 0.520	4 3
JUN 01	798	771	1.09	0.7	3	0	0.0	080	0.010	0.	040	0.630	5
DAT	DI SOL (UC AS	S- D VED SO I/L (U B) AS	IS- D LVED SO G/L (U FE) AS	LVED S G/L (PB)	THIUM DIS- SOLVED UG/L US LI)	NES DI SOL (UC	S- LVED S/L MN)	MERCU DIS SOLV (UG/ AS H	RY DEN - DI ED SOL L (UG G) AS	S- VED /L MO)	SELE NIUM DIS SOLV (UG) AS S	M, T: S- D: /ED SOI /L (UC SE) AS	RON- LUM, IS- LVED H/L SR)
APR 06 20		130 140	40 40	<1 <1	25 35		20 10		.1	4 4		2 2	250 300
JUN 01		140	20	<1	50		340		.4	3		1	430

05056215 EDMORE COULEE TRIBUTARY NEAR WEBSTER, ND

LOCATION.--Lat 48°15'59", long 98°40'50", in NW1/4 NW1/4 sec.7, T.155 N., R.62 W., Ramsey County, Hydrologic Unit 09020201, on upstream side of bridge on county road, 9 mi east and 1.1 mi south of Webster.

DRAINAGE AREA. -- 148 mi2, approximately, of which about 44 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1986 to current year (seasonal). Discharge record available for 1986 water year in Bismarck.

GAGE.--Water-stage recorder. Datum of gage is 1400.00 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to October 1986 nonrecording gage at present site and datum.

REMARKS .-- Estimated daily discharges: Mar. 1 to Apr. 2 and May 29 to June 1. Records fair.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 739 ft3/s, Apr. 9, 1987, gage height, 72.48 ft; no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in spring of 1959 reached a stage of about 75.00 ft, from conversation with local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge observed, 57 ft³/s, Apr. 3, gage height, 70.10 ft; maximum gage height observed, 70.12 ft, Mar. 26, backwater from ice; no flow for several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY						ME	SAN VALUE	25					
2	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2	1						.00	15	-07	.00	.00	.00	.00
3	2							30					
5	3							57					
5	4												
10 10 10 10 10 11 10 10 12 10 12 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 12 10 10	5							30					.00
10 10 10 10 10 11 10 10 12 10 12 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 12 10 10	6						.00	21	.00	.00	.00	.00	
10 10 10 10 10 11 10 10 12 10 12 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 12 10 10	7							20	.00				
10 10 10 10 10 11 10 10 12 10 12 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 12 10 10	8							21	.00	.00	.00		.00
11	9						.00	23	.00	.00	.00	.00	
12 13 10 11 10 10 11 10 10 11 10 10 11 10 10	10							16			.00	.00	.00
13 14 10 10 11 11 10 10 11 11 10 10 11 11 10 10							.00		.00	.00			.00
14 15 10 10 17 10 10 10 11 10 10 11 11 10 10 10 11 11													
15													.00
16 17 18 100 4.8 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	14												
17	15						.00	7.8	.00	.00	.00	.00	.00
18													.00
19 20 20 20 20 20 20 20 20 20 20 20 20 20													
20 21 20 21 20 300 1.8 000 1.8 000 000 22 30 30 1.0 1.1 1.0 1.1 1.00 0.00 0.00 0.													
20	19							3.0					.00
23 24 25 26 26 27 28 29 29 20 21 22 24 20 20 20 21 20 22 21 22 22 23 23 24 25 25 26 27 27 28 29 29 20 20 21 20 22 20 20	20						.00	2.3	.00	.00	.00	•00	.00
23 24 25 26 26 27 28 29 29 20 21 22 24 20 20 20 21 20 22 21 22 22 23 23 24 25 25 26 27 27 28 29 29 20 20 21 20 22 20 20	21												.00
25	22						.00	1.4			.00		.00
25	23						.10	1.1					
26	24							.83					
27 28 1.2 1.5 39 00 00 00 00 00 00 00 00 00 00 00 00 00	25						.80	.66	.00	.00	.00	.00	.00
28	26						1.0	.53					
29 2.0 .28 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	27							.46					
30 31 2.5 .19 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	28						1.5	•39					
TOTAL 14.60 347.94 0.10 0.00 0.00 0.00 0.00 0.00 MEAN 11.6 .003 .00 .00 .00 .00 .00 MAX 5.0 57 .07 .00 .00 .00 .00 .00 MIN .00 .19 .00 .00 .00 .00 .00 .00	29						2.0						
TOTAL 14.60 347.94 0.10 0.00 0.00 0.00 0.00 0.00 MEAN 11.6 .003 .00 .00 .00 .00 .00 MAX 5.0 57 .07 .00 .00 .00 .00 .00 MIN .00 .19 .00 .00 .00 .00 .00 .00	30						2.5	.19		.00			
MEAN .47 11.6 .003 .00 .00 .00 .00 MAX 5.0 57 .07 .00 .00 .00 .00 MIN .00 .19 .00 .00 .00 .00 .00	31						5.0		.00		.00	.00	
MEAN							14.60						
MIN .00 .00 .00 .00 .00 .00 .00							. 47						
AC-FT 29 690 .2 .0 .0 .0 .0													.00
	AC-FT						29	690	.2	.0	.0	.0	.0

05056215 EDMORE COULEE TRIBUTARY NEAR WEBSTER, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	(MG/L AS CACO3	CALCIU DIS- SOLVE (MG/L) AS CA	DIS- D SOLVET (MG/L) AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT (00932)
APR 06 a06 20	1025 1026 1205	21 21 2.1	775 775 1140	7.80		6.0 6.0 5.0	28		25 25	34 33	19 19
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K) (00935)	LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	AS SIO2)	AT 180 DEG. DIS- SOLVE (MG/L	E SUM OF CONSTICUTION CONSTICUTION CONSTICUTION CONSTICUTION CONSTITUTION CONSTITUT	SOLIDS, DIS- SOLVED (TONS PER DAY)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 06 a06	0.9	16 14	150 140	190 210	19 14	0.10		48 49			0.65 0.67
C	SO (U AS	OIS- OLVED S IG/L (S AS)	DIS- SOLVED S (UG/L (AS B) A	DIS- OLVED S UG/L (S FE) A	DIS- I OLVED SO UG/L (U S PB) AS	CHIUM NOIS- DLVED S JG/L (S LI) A	DIS- SOLVED UG/L S MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED S (UG/L AS MO)	DIS- ISOLVED SOLVED (UG/L (US SE) AS	TRON- TIUM, DIS- DLVED JG/L S SR) 1080)
APR 06. a ₀₆ .		4 4	170 30	30 23	1 <5	22 22	20 15	0.1	5 4	2	250 220

a - Split sample analysis for quality assurance.

05056222 MORRISON LAKE NEAR WEBSTER, ND

LOCATION.--Lat 48°15'35", long 98°50'48", in NW1/4 sec.11, T.155 N., R.64 W., Ramsey County, Hydrologic Unit 09020201, on northwest shoreline of Morrison Lake.

DRAINAGE AREA. -- 501 mi², approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- March 1985 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,400.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. Stage frequently affected by wind.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height recorded, 62.02 ft, Apr. 13, 1987; minimum recorded, 57.31 ft, Sept. 18, 1988.

EXTREMES FOR CURRENT YEAR.--Maximum gage height recorded, 58.25 ft, Apr. 8, 12; minimum recorded, 56.17 ft, Sept. 18.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	TAN	PPP			*****	71111	****	4110	ann
1 2 3 4	58.11 58.13 58.20 58.12	58.06 58.05 58.02 57.94	57.92 57.92 57.92 57.92	JAN 57.93 57.93 57.93 57.93	57.96 57.96 57.96 57.96	57.95 57.95 57.95 57.95	58.05 58.08 58.10 58.13	57.99 57.91 57.79 57.74	JUN 57.57 57.60 57.65 57.67	JUL 57.28 57.29 57.30 57.29	56.73 56.71 56.68 56.66	56.55 56.52 56.52 56.49
5 6 7 8 9	58.01 58.08 58.14 58.11 58.04 58.12	57.96 57.99 57.98 57.95 57.96 58.00	57.92 57.92 57.92 57.94 57.94 57.94	57.92 57.92 57.93 57.95 57.96 57.96	57.96 57.96 57.96 57.96 57.96 57.96	57.95 57.95 57.95 57.95 57.96 57.96	58.14 58.17 58.19 58.17 58.12 58.18	57.75 57.84 57.79 57.66 57.64 57.66	57.71 57.70 57.66 57.63 57.63 57.59	===	56.66 56.67 56.60 56.58 56.58 56.57	56.50 56.47 56.40 56.35 56.35 56.31
11 12 13 14 15	58.11 58.13 58.11 58.07 58.10	58.01 57.99 57.99 58.02 58.00	57.94 57.94 57.94 57.94 57.94	57.96 57.96 57.96 57.96 57.96	57.96 57.96 57.96 57.96 57.96	57.96 57.96 57.96 57.96 57.96	58.22 58.22 58.17 58.14 58.16	57.67 57.64 57.67 57.65 57.53	57.56 57.50 57.48 57.42 57.41	57.07 57.10 57.06	56.54 56.55 56.55 56.56 56.62	56.29 56.32 56.33 56.33 56.30
16 17 18 19 20	58.09 58.07 58.03 58.02 57.99	57.95 57.94 57.93 57.87 57.89	57.94 57.94 57.94 57.94 57.94	57.96 57.96 57.96 57.96 57.96	57.96 57.96 57.96 57.96 57.96	57.96 57.96 57.96 57.96 57.96	58.17 58.04 58.08 58.08 58.05	57.60 57.70 57.66 57.60 57.57	57.44 57.46 57.45 57.40 57.41	57.05 57.04 57.01 56.99 56.97	56.68 56.85 56.84 56.83	56.32 56.32 56.26 56.22 56.29
21 22 23 24 25	58.04 58.07 58.04 58.04 58.07	57.92 57.93 57.93 57.93 57.93	57.94 57.94 57.94 57.94 57.94	57.96 57.96 57.96 57.96 57.96	57.96 57.96 57.96 57.96 57.96	57.96 57.95 57.96 57.97 57.97	58.05 58.04 58.04 57.96 57.88	57.55 57.56 57.56 57.58 57.58	57.42 57.38 57.42 57.36 57.33	56.96 56.96 56.91 56.88 56.88	56.80 56.79 56.73 56.72 56.68	56.30 56.28 56.32 56.29 56.29
26 27 28 29 30 31	57.98 57.97 58.00 58.02 58.02 58.03	57 • 93 57 • 93 57 • 93 57 • 93 57 • 93	57.94 57.93 57.93 57.93 57.93 57.92	57.96 57.96 57.96 57.96 57.96 57.96	57.95 57.95 57.95 57.95	57.97 57.97 57.97 57.97 57.97 58.00	57.92 57.94 57.95 57.95 57.96	57.52 57.51 57.51 57.59 57.61 57.61	57.35 57.36 57.33 57.32 57.29	56.85 56.84 56.83 56.77 56.77	56.67 56.63 56.63 56.62 56.56 56.56	56.28 56.27 56.25 56.28 56.26
MEAN MAX MIN	58.07 58.20 57.97	57.96 58.06 57.87	57.93 57.94 57.92	57.95 57.96 57.92	57.96 57.96 57.95	57.96 58.00 57.95	58.08 58.22 57.88	57.65 57.99 57.51	57.48 57.71 57.29		56.67 56.86 56.54	56.34 56.55 56.22

05056239 STARKWEATHER COULEE NEAR WEBSTER, ND

LOCATION.--Lat 48°19'13", long 98°56'23", in NW1/4SW1/4NW1/4 sec.19, T.156 N., R.64 W., Ramsey County, Hydrologic Unit 09020201, on right bank 3.8 mi northwest of Webster.

DRAINAGE AREA. -- About 310 mi², of which about 100 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1979 to current year (seasonal records only since 1988).

GAGE.--Water-stage recorder. Elevation of gage is 1,448.00 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 23, 1986, nonrecording gage 100 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Mar. 23 to Apr. 2. Records good except those for period of estimated daily discharges, which are fair.

AVERAGE DISCHARGE. -- 8 years (water years 1980-87), 11.1 ft3/s, 8,040 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 570 ft³/s, Apr. 11, 1987, gage height, 8.50 ft; no flow for many months each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period March to September, 118 ft³/s, Apr. 3, gage height, 5.17 ft; maximum gage height, 6.22 ft, Mar. 28, backwater from ice; no flow for several months.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						.00 .00 .00	65 80 110 62 26	.02 .02 .01 .01	1.8 5.0 4.4 16 26	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9						.00 .00 .00	20 15 14 13	.01 .01 .01 .01	23 14 7.7 4.4 2.5	.13 .14 .02 .01	.00 .00 .00	.00 .00 .00
11 12 13 14 15						.00 .00 .00	12 10 8.1 6.5 5.3	.00 .00 .00	1.5 1.2 2.2 4.1 5.7	.01 1.3 2.8 1.1	.00 .00 .00	.00 .00 .00
16 17 18 19 20						.00 .00 .00	4.5 3.4 2.8 2.4 1.3	.00 .00 .00	6.3 6.1 5.4 4.7 3.5	4.3 5.1 4.4 2.7	.00 4.7 .02 .00	.00 .00 .00
21 22 23 24 25						.00 .00 .25 5.0 3.0	.92 .57 .37 .24	.00 .00 .00	3.0 2.1 1.3 .91	.44 .13 .02 .01	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31						2.5 10 20 35 50 60	.08 .05 .04 .04	.00 .00 .00 .00	.26 .08 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT						185.75 5.99 60 .00 368	476.80 15.9 110 .02 946	0.11 .004 .02 .00	153.65 5.12 26 .00 305	25.89 .84 5.1 .00 51	4.72 .15 4.7 .00 9.4	0.00 .00 .00

05056239 STARKWEATHER COULEE NEAR WEBSTER, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1980 to current year.

		marian dos	DILL DAL	A, WALDI	ramit oor	OBBIT.	, , ,				
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		AIR (DEG C	WA'	PER- URE TER G C) O1O)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
APR 06 20	1455 1540	20 0.83	595 868				6.0	12.2 13.7	101 128	250 390	63 96
JUN 02 22	0950 1015	5.3 1.9	528 505				21.5	7.4	86	210 300	53 72
JUL 13	1445	2.4	250	7.90	29.	0	24.5	3.2	39	98	25
AUG 17	1310	3.2	890		19.	0	24.0				
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	RATIO	DIS- SOLVE (MG/L AS K)	LIN L D (Me CA	AB G/L	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
APR 06 20	22 37	17 31	12 14			176 260		120 200	15 22	0.10	32 17
JUN 02 22 JUL	18 28	18 18	15 11			150 270		100 64	15 15	0.20 0.20	20 26
13	8.5	8.5	15	0.4	6.8	100		33	5.6	0.20	14
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY)	AT 105 DEG. 0 SUS- PENDED (MG/L	G AMM	TRO- EN, ONIA IS- LVED G/L N) 608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
APR 06	387	404	0.53	21.4	41	0	.260	0.110	2.26	0.780	6
20 JUN	618	576	0.84	1.38			.050	0.010	0.010	0.260	
02 22 JUL	327 424	346 403	0.44				.110	0.540	4.36 0.060	0.750 1.40	7 8
13	171	170	0.23	1.13	472	0	.180	0.200	0.900	0.870	5
DAT	SOL (UC	S- DI VED SOI	IS- D LVED SO	OIS- D LVED SO	CHIUM NOIS- DLVED S	ANGA- HESE, DIS- SOLVED UG/L S MN) 01056)	MERCI DIS SOL' (UG AS 1	URY DEN S- DI VED SOL /L (UG	S- DI VED SOL /L (UC	IM, TI IS- DI VED SOL	CON- CUM, CS- VVED S/L SR)
APR 06 20 JUN		130 120	40 30	<1 <1	21 31	20 10		0.1	4 5	2 2	260 340
02 22 JUL		100 30	30 20	<1 1	20 20	10 30		0.6 0.2	3 3	1 <1	270 340
13		50	270	<1	10	30	9	0.3	3	<1	180

05056241 DRY LAKE NEAR PENN, ND

LOCATION.--Lat $48^{\circ}13^{\circ}52^{\circ}$, long $98^{\circ}58^{\circ}59^{\circ}$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ NW $\frac{1}{4}$ Sw $\frac{1}{4}$ sec.23, T.155 N., R.65 W., Ramsey County, Hydrologic Unit 09020201, on west shoreline of Dry Lake, 6 mi east of Penn.

DRAINAGE AREA .-- 920 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- October 1983 to present (gage heights only).

GAGE .-- Water-stage recorder. Datum of gage is 1,400.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Records poor. Stage affected by wind.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height recorded, 50.32 ft, Apr. 20, 1987, affected by wind; minimum recorded, 44.11 ft, July 3, 1986, affected by wind.

EXTREMES FOR CURRENT YEAR.--Maximum gage height recorded, 46.53 ft, Oct. 1, affected by wind; minimum recorded, 44.11 ft, July 31; minimum gage height for year probably occurred in late September during period of missing record.

GAGE HEI	GHT (FEET	ABOVE	DATUM),	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
				ME ANT TI	TIPO					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45.94	45.29	45.23					45.18		44.59	44.39	
2	45.69	45.38	45.24					45.22	45.12	44.59	44.33	
3	45.59	45.34	45.26					45.42	45.14	44.51	44.31	
4	45.68	45.39	45.25					45.43	45.06	44.65		
5	45.84	45.32	45.25					45.38	44.97	44.67		
6	AF 60	4F 70	45 05					45.00				
7	45.68 45.64	45.32	45.25					45.29	44.96	44.69		
		45.37	45.26					45.43	45.02	44.68		
8	45.67	45.35	45.28					45.61	45.07	44.60		
9	45.70	45.30	45.28					45.43	44.92	44.69		
10	45.56	45.28	45.28					45.42	44.87	44.65		
11	45.54	45.28	45.29					45.37	44.88	44.57		
12	45.54	45.29	45.28						44.98	44.52		
13	45.56	45.28	45.28						45.00	44.68		
14	45.53	45.17	45.28						45.02	44.67		
15	45.52	45.31	45.27						44.94	44.72		
16	45.54	45 74										
17	45.46	45.34		577					44.87	44.63		
18	45.48	45.31 45.27							44.78	44.62	44.37	
19	45.49							45.33	44.86	44.61		
		45.27						45.34	44.90	44.59		
20	45.50	45.25						45.34	44.75	44.60		
21	45.39	45.25							44.89	44.56		
22	45.45	45.25					45.44	45.20	44.86	44.48		
23	45.45	45.25					45.39	45.20	44.68	44.54		
24	45.37	45.24					45.32	45.20	44.85	44.54		
25	45.38	45.24					45.46	45.06	44.84	44.43		
26	45.46	45.24					45.39	45.05	44.74	44.47		
27	45.42	45.24					45.37	45.06	44.61	44.46		
28	45.38	45.24					45.33	45.03	44.83	44.38		
29	45.38	45.23					45.30	44.98	44.67	44.58		
30	45.38	45.23					45.25	44.90	44.64	44.35		
31	45.32	47.27							44.04	44.42		
,	47.76									44 • 42		
MEAN	45.53	45.28								44.57		
MAX	45.94	45.39								44.72		
MIN	45.32	45.17								44.35		

05056247 CALIO COULEE NEAR STARKWEATHER, ND

LOCATION.--Lat 48°23'58", long 99°02'46", in NW1/4 sec.28, T.157 N., R.65 W., Towner County, Hydrologic Unit 09020201, on left bank on downstream side of bridge 6 mi southwest of Starkweather.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1986 to September 1988 (discontinued).

DRAINAGE AREA. -- 130 mi2.

GAGE.--Water-stage recorder. Datum of gage is 1,400.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Mar. 8-31 and Apr. 11-19. Records poor.

EXTREMES FOR CURRENT YEAR.--Maximum observed discharge, 19 ft3/s, Mar. 10, gage height, 52.32 ft, backwater from ice; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						.00 .00 .00	9.6 11 11 11 9.2	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9						.00 .00 .30 2.0	5.2 2.7 1.7 .95	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15						10 2.5 2.0 1.9	.50 .40 .32 .25	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20						4.0 7.2 6.5 7.2 5.0	.06 .04 .02 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25						7.0 9.4 12 10 8.8	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31						8.0 11 13 12 10 8.6	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT				Ŧ		179.30 5.78 19 .00 356	64.74 2.16 11 .00 128	0.00 .00 .00	0.00 .00 .00	0.00 .00 .00	0.00 .00 .00	0.00 .00 .00

64

RED RIVER OF THE NORTH BASIN

05056247 CALIO COULEE NEAR STARKWEATHER, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1987 to current year.

APR	•••	,,,,	5	1000	150	30		1	,-,	21	151	10	,	0.3	•	3		2	100	220	
	DATE	SO (U	SENIC DIS- DLVED G/L S AS)	BOR DI SOL (UG AS	S- VED S /L (B)	RON, DIS- OLVED UG/L S FE)	SOI (UC AS	AD, IS- LVED G/L PB) 049)	SO (U AS	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY IS- LVED G/L HG) 890)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	SO (U AS	RON- IUM, IS- LVED G/L SR) 080)	
APR 06		0.6	11		190	120		11		0	.10	32			410		398	5	.72	0.5	56
DATE	S R.	ODIUM AD- ORP- TION ATIO 0931)	POTA SIU DIS SOLV (MG, AS I	JM, S- VED /L K)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULF DIS SOL (MG AS S	VED /L (04)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILIO DIS- SOL' (MG AS- SIO (009)	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUE 80 . C S- VED /L)		OF TI- TS, S- VED /L)	SOLII SOLI (TOI PE) DAI	S- VED NS R Y)	SOLIDS DIS- SOLVE (TONS PER AC-FT	ED S
MAR 10 APR 06		1715 1045	19 5	.2	930 558		.97		3.0 9.0		o.o 5.0		 270	63		27		21		1	14
DATE		TIME	STREA FLOW INSTA TANEO (CFS	AN- OUS S)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STA AR UNIT (004	ND- D S)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NES: TOT: (MG, AS CAC(S AL /L 03)	CALC DIS SOL (MG AS (009	VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIU DIS- SOLVI (MG, AS 1	ED /L NA)	SODIU PERCEN (00932	T

05056390 LITTLE COULEE NEAR BRINSMADE, ND

LOCATION.--Lat 48°11'15", long 99°14'34", in SW1/4 sec.2, T.154 N., R.67 W., Benson County, Hydrologic Unit 09020201, on right bank 100 ft downstream from bridge on township road, 0.5 mi downstream from Silver Lake, and 4 mi east of Brinsmade.

DRAINAGE AREA.--350 mi^2 , of which about 160 mi^2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to current year (seasonal records only since 1983).

GAGE.--Water-stage recorder. Elevation of gage is 1,435 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- Records good .

AVERAGE DISCHARGE. -- 7 years (water years 1976-82), 7.02 ft3/s, 5.090 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 425 ft³/s, May 1, 1979, gage height, 10.43 ft; no flow for several months each year.

EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 6.93 ft, Mar. 23; no flow March 1 to Sept. 30.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

					112111	111000						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						.00	.00	.00	.00	.00	.00	.00
						.00	.00	.00	.00	.00	.00	.00
2 3 4 5						.00	.00	.00	.00	.00	.00	.00
1						.00		.00	.00	.00	.00	.00
4							.00		.00	.00	.00	.00
)						.00	.00	.00	.00	.00	.00	.00
6 7 8						.00	.00	.00	.00	.00	.00	.00
7						.00	.00	.00	.00	.00	.00	.00
8						.00	.00	.00	.00	.00	.00	.00
9						.00	.00	.00	.00	.00	.00	.00
10						.00	.00	.00	.00	.00	.00	.00
11						.00	.00	.00	.00	.00	.00	.00
12						.00	.00	.00	.00	.00	.00	.00
13						.00	.00	.00	.00	.00	.00	.00
14						.00	.00	.00	.00	.00	.00	.00
15						.00	.00	.00	.00	.00	.00	.00
						•00	•00	.00	.00	•00	•00	.00
16						.00	.00	.00	.00	.00	.00	.00
17						.00	.00	.00	.00	.00	.00	.00
18						.00	.00	.00	.00	.00	.00	.00
19						.00	.00	.00	.00	.00	.00	.00
20						.00	.00	.00	.00	.00	.00	.00
20						.00	.00	.00	.00	.00	.00	
21						.00	.00	.00	.00	.00	.00	.00
22						.00	.00	.00	.00	.00	.00	.00
23						.00	.00	.00	.00	.00	.00	.00
24						.00	.00	.00	.00	.00	.00	.00
25						.00	.00	.00	.00	.00	.00	.00
00										00	00	00
26						.00	.00	.00	.00	.00	.00	.00
27						.00	.00	.00	.00	.00	.00	.00
28						.00	.00	.00	.00	.00	.00	.00
29						.00	.00	.00	.00	.00	.00	.00
30						.00	.00	.00	.00	.00	.00	.00
30 31						.00		.00		.00	.00	
TOTAL						0.00	0.00	0.00	0.00	0.00	0.00	0.00
MEAN						.00	.00	.00	.00	.00	.00	.00
MAX								.00	.00	.00	.00	.00
						.00	.00				.00	.00
MIN						.00	.00	.00	.00	.00	.00	.00
AC-FT						.0	.0	.0	.0	.0	.0	.0

05056400 BIG COULEE NEAR CHURCHS FERRY, ND

LOCATION.--Lat 48°10'40", long 99°13'15", in NW1/4NW1/4 sec.12, T.154 N., R.67 W., Benson County, Hydrologic Unit 09020201, on right bank on downstream side of bridge on U.S. Highway 281, 1 mi downstream from Little Coulee, and 6 mi south of Churchs Ferry.

DRAINAGE AREA.--1,620 mi², approximately, of which about 158 mi² is probably noncontributing (revised).

Drainage area reduced from approximately 2,510 mi² with the completion of Channel A in March 1979.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1950 to current year. Prior to October 1960, published as Mauvais Coulee near Churchs Ferry.

GAGE.--Water-stage recorder. Datum of gage is 1,432.65 ft above National Geodetic Vertical Datum of 1929. Prior to June 21, 1950, reference marks, and June 21, 1950, to July 17, 1956, nonrecording gage at former bridge on U.S. Highway 281, 0.1 mi upstream at datum 0.70 ft higher.

REMARKS.--Estimated daily discharges: Nov. 18 to Apr. 4 and May 6-31. Records fair except those for periods of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--10 years (water years 1979-88), 44.4 ft³/s, 32,170 acre-ft/yr; median of yearly mean discharges, 17 ft³/s, 12,300 acre-ft/yr. Twenty-eight years prior to construction of Channel A (water years 1951-78), 37.5 ft³/s, 27,020 acre-ft/yr; median of yearly mean discharges (1951-78), 7.8 ft³/s, 5,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,420 ft³/s, May 6, 1979, gage height, 7.59 ft; no flow at times each year.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 25 ft3/s, Apr. 17, gage height, 1.63 ft; no flow for many days.

		DISCHARGE	, IN CUBIC	FEET PE		WATER N VALUE	YEAR OCTOBER	1987 Т	O SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	.18 .09 .32	.09 .09	3.6 2.5 2.0	.07 .06 .05	.00	1.8 1.2 1.0	4.0 4.5 5.0	3.4 2.7 3.0	.04 .04 .04	.00	.00 .00	.00
4 5	.15	.19	1.8	.04	.00	1.7	6.5	6.6 6.4	.04	.00	.00	.00
6 7 8 9	.06 .09 .09 .07	.10 .09 .08 .07	1.4 1.2 1.1 1.1	.02 .02 .02 .01	.00 .00 .00	5.0 4.0 3.0 3.0 3.0	12 10 16	5.1 2.8 4.4 9.6 3.7	.04 .02 .00 .00	.02 .00 .01 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.06 .06 .09 .11	.09 .11 .11 5.1 8.8	1.0 .90 .80 .70	.00 .00 .00 .00	.00 .00 .00	2.0 .70 .20 .00	7.3	2.3 1.8 4.0 .94 .44	.00 .00 .00 .00	.00 .00 .04 .03	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.13 .14 .18 .19	12 9.0 6.5 6.0 5.5	•55 •50 •45 •37 •33	.00 .00 .00	.00 .00 .00	.00 .00 .00	10 15 18 11 13	.50 .45 .40 .45	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	8.7 .73 .28 .23 .15	4.0 4.0 4.0 3.9 3.9	.28 .26 .24 .22	.00 .00 .00	.00 .00 .00	.00 .00 .00	11 11 10 7•2 11	.40 .35 .30 .25	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.11 .09 .09 .09 .09	3.8 3.8 3.8 3.7	.18 .16 .14 .12 .10	.00 .00 .00 .00	.00 .00 .02 1.0	.10 .20 .50 1.0 2.5 3.0	7.9 6.7 5.6 4.1	.15 .20 .20 .40 .20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	24.90 .80 12 .06 49	92.93 3.10 12 .07 184		0.33 .011 .07 .00	1.02 .035 1.0 .00	36.90 1.19 5.0 .00 73	307.8 6 10.3 18 4.0 611	2.18 2.01 9.6 .10 123		0.10 .003 .04 .00	0.00 .00 .00	0.00 .00 .00

CAL YR 1987 TOTAL 23932.78 MEAN 65.6 MAX 472 MIN .00 AC-FT 47470 WTR YR 1988 TOTAL 551.92 MEAN 1.51 MAX 18 MIN .00 AC-FT 1090

05056400 BIG COULEE NEAR CHURCHS FERRY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1958, 1961 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (OOO10)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 06	1305	0.06	1370	7.20	10.5	7.5	8.2	69		
NOV 17	0940	6.6	1290	7.60	-4.0	1.0	11.1	79		
JAN 07	1155	0.02	970		-9.5	0.0				
MAR 01	1108	1.8	955		1.0	0.5				
APR 07 21	0900 1010	13 11	960 1060	8.40	8.5	7.5 4.5	9.9	85 93	330 370	62 66
JUN 01	1500	0.04	1380	8.40	22.5	24.5	3.4	42	520	89
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
APR 07 21 JUN	43 50	70 74	30 29	2 2	21 22	239 260	220 260	34 34	0.10	14 12
01	71	160	39	3	30	350	470	63	0.20	22
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
APR 07 21	621 683	608 673	0.84	21.1	17 44	0.080	0.030	0.050	0.660	4 4
JUN 01	1170	1120	1.59	0.13	66	0.040	0.020	0.030	1.31	12
DAT	DI SOL (UG AS	VED SOL /L (UG B) AS	S- DI VED SOL /L (UG FE) AS	S- DI VED SOL /L (UG PB) AS	IUM NES S- DI VED SOL /L (UG LI) AS	S- DI VED SOL /L (UG MN) AS	S- DI VED SOL /L (UG HG) AS	UM, NIU S- DI VED SOL /L (UG MO) AS	M, TI S- DI VED SOL /L (UG SE) AS	UM, S- VED /L SR)
APR 07		190	30	<1			0.4	2		300
21 JUN		180 290	120	<1	65		0.4	2		320 560
01		290	50	<1	120	850	0.1	2	1	900

AC-FT

05056403 COMSTOCK COULEE NEAR MINNEWAUKAN, ND

LOCATION.--Lat 48°06'33", long 99°13'35", in SE1/4SE1/4 sec.29, T.154 N., R.67 W., Benson County, Hydrologic Unit 09020201, at bridge on U.S. Highway 281, 2.8 mi north of Minnewauken.

DRAINAGE AREA. -- 58 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1986 to September 30, 1988 (Discontinued).

GAGE.--Wire-weight gage. Daily wire-weight readings are obtained by observer during periods of flow. Datum of gage is 1,410.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- Estimated daily discharges: Mar. 1 to Apr. 20. Records poor.

EXTREMES FOR CURRENT PERIOD. -- Maximum observed discharge, 0.24 ft³/s, Mar. 24, gage height, 23.54 ft; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG APR .00 .00 .00 2 .00 .02 .00 .00 .00 .00 .00 -00 345 .00 .02 .00 .00 .00 -00 .00 .00 -00 -00 .00 .02 -00 .00 .01 .00 .00 .00 .00 .00 6 .00 .01 .00 .00 .00 .00 .00 78 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 -00 .00 .01 .00 .00 .00 .00 .00 10 .01 .00 .01 .00 .00 -00 -00 11 .00 .01 .00 -00 .00 .00 .00 -00 .00 12 .00 .01 .00 .01 .00 .00 .00 .00 .00 13 .00 14 .00 .01 .00 .00 15 .00 .01 .00 .00 .00 .00 .00 16 .00 .00 .00 .00 .00 .00 .01 17 .00 .00 .00 .00 .00 .01 .00 18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 20 .00 .00 .00 .00 .00 .00 .00 21 .00 .00 -00 -00 .00 .00 .00 22 .00 .00 .00 .00 .00 .00 .00 23 .00 .00 .00 .00 .00 .00 .00 24 .00 .00 .00 .00 .00 25 .09 .00 .00 .00 .00 .00 .00 26 .02 .00 .00 .00 .00 .00 .00 27 .02 .00 .00 .00 .00 .00 .00 28 .03 .00 .00 .00 .00 .00 .00 29 .02 .00 .00 -00 .00 .00 .00 30 .00 .00 .00 .00 -01 .00 .00 .01 .00 .00 .00 ------TOTAL 0.00 0.00 0.00 0.00 0.45 0.20 0.00 .00 MEAN .015 .007 .00 .00 .00 .00 .00 .00 MAX .24 .02 .00 .00 .00 MIN .00 .00 .00 .00 .00 .00

.4

.0

.0

.0

05056410 CHANNEL A NEAR PENN, ND

LOCATION.--Lat 48°10'00", long 98°58'47", in SE1/4SW1/4SW1/4 sec.11, T.154 N., R.65 W., Ramsey County, Hydrologic Unit 09020201, on west bank of Channel A between Highway 2 and the Railroad bridge and 6.8 mi southeast of Penn on Highway 2, or 8.9 mi northwest of Devils Lake on Highway 2.

DRAINAGE AREA. -- 930 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1983 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,400.00 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1985, water-stage recorder at same site at datum of 1,437.31 ft.

REMARKS.--Estimated daily discharges: Oct. 8-28, Nov. 16 to Apr. 4, July 2-11, and Aug. 27 to Sept. 30. Records poor. Flow variable due to wind effect on Dry Lake (station 05056241). Flow regulated by gate control on Dry Lake 3.0 mi upstream.

AVERAGE DISCHARGE.--5 years (water years 1984-1988), 27.1 ft3/s, 19,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,090 ft³/s, Apr. 20, 1987, gage height, 42.87 ft; no flow at times each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 93 ft3/s, Apr. 17, gage height, 39.08 ft; no flow for several days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES SEP DAY OCT NOV DEC FEB APR MAY JUN JUL AUG JAN MAR 2.8 .00 .01 -01 .23 .00 -24 -00 1.0 8.0 -11 .57 .20 .00 .00 .01 6.4 -01 -00 .10 .41 -28 8.5 .57 9.5 .18 .01 .00 .02 10 .64 .49 .00 .00 .01 .80 23 .01 .00 .20 15 .46 -00 .00 .01 5 .81 9.3 .14 .01 .00 .25 27 1.2 .29 .00 .00 .01 6 .12 .00 -01 .81 6.8 .01 .00 .50 23 .83 .20 .00 15 .01 1.0 9.4 .10 .01 .00 .42 .05 .00 .00 .20 18 .00 .00 .01 15 16 .09 .01 .00 .56 .04 30 7.6 .08 .01 .00 .01 .00 -00 01 -00 .01 10 33 6.6 .07 .01 .00 .10 21 .89 .01 -00 .01 11 36 6.8 .06 .01 .00 .00 .57 .01 .00 .00 13 12 38 18 .66 .00 .00 .01 7.4 .05 .01 .00 .00 .01 13 40 7.9 .04 .01 .00 .79 .01 .00 .00 .01 .00 34 14 37 3.1 .03 .01 .00 .00 30 .41 01 -00 -00 -01 .01 34 21 .00 .00 15 5.8 -02 .01 .00 .00 .92 .01 .00 .00 .01 16 31 4.0 .01 .01 .00 .00 15 .97 .01 17 27 2.7 .01 65 .33 .01 .00 . 45 .01 .01 .00 .00 18 23 2.2 .01 .01 .00 22 .22 .01 .00 -01 -01 .39 19 20 1.7 .01 .01 .00 .00 22 -01 .00 .01 .01 20 18 30 -01 .00 .01 .01 1.3 -01 .01 .00 .00 16 1.1 .01 .01 .00 2.0 20 .47 .01 .00 .01 .01 .01 22 15 .90 .01 .01 .00 4.5 21 .01 .00 .01 23 14 .78 .01 .01 .00 6.0 19 .34 .01 .00 .01 -01 .01 .01 24 25 13 -66 -01 .00 .00 4.0 17 .39 .00 .00 .30 .01 .01 .00 .55 .01 .00 -00 2.5 44 .00 .01 26 12 .00 .00 .00 .01 .01 .01 27 12 .41 .01 .00 .00 4.0 12 .39 .00 .00 -01 .36 .39 -01 28 11 .01 .00 .10 4.0 1.3 .00 -00 .01 .01 .80 .00 29 11 -01 -00 .50 4.5 .00 .27 .24 30 .01 .00 .00 .00 .01 .01 11 .46 ---4.6 .01 .01 .00 8.5 .13 .00 TOTAL 0.23 0.60 53.87 614.06 17.27 2.07 0.00 0.59 0.30 518.73 146.12 1.74 1.2 .069 .00 .019 .010 MEAN 16.7 4.87 .056 .007 .021 1.74 20.5 .24 MAX 40 23 .01 .50 65 .49 .00 .45 .01 8.5 MIN .27 .01 .00 .00 .00 . 46 .00 .00 .00 .01 AC-FT 1030 290 3.5 .5 1.2 107 1220 34 4.1 .0 1.2 .6

CAL YR 1987 TOTAL 31735.61 MEAN 86.9 MAX 1050 MIN .00 AC-FT 62950 WTR YR 1988 TOTAL 1355.58 MEAN 3.70 MAX 65 MIN .00 AC-FT 2690

05056410 CHANNEL A NEAR PENN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1984 to current year.

a - Split sample analysis for quality assurance.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 07	1055	0.74	1190	7.80	7.0	7.5	6.2	52		
NOV 17	1240	2.7	925	7.70	1.0	1.0	12.1	86		
JAN 07	1600	0.01	1200		-12.5	0.0				
MAR 01 23	1635 1620	1.5	890 795	7.30	-3.0 5.5	0.5	13.0	94	230	52
APR 07 a07 22	1415 1416 1140	15 15 19	772 772 950	8.60 8.60 8.90	21.0 21.0 4.5	11.5 11.5 5.0	8.8 8.8 8.0	83 83 64	240 240 310	45 46 61
JUN 03 a03 AUG	0820 0821	0.42	1480 1480	8.00	21.0 21.0	23.0 23.0	3.4 3.4	40 40	440 430	75 72
17	0855	1.2	1990		19.0	20.0				
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
MAR 23 APR	25	69	37	2	15	150	230	20	0.10	14
07 a07 22	31 31 38	64 64 79	35 35 34	2 2 2	19 15 21	220 208 290	150 160 180	26 22 28	0.10 0.20 0.20	8.0 5.7 19
JUN 03 a03	61 60	160 150	43 42	3 3	25 25	340 343	400 400	41 39	0.20	8.1 7.4
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
MAR 23	523	522	0.71	7.89	28	0 500	0.040	0 500	0.800	5
APR	470	476				0.500		0.590		
07 a07 22 JUN	485 626	469 599	0.64 0.66 0.85	19.7 20.3 32.6	20 191	0.060 0.050 0.100	0.010 <0.010 <0.010	0.110	0.300 0.080 0.430	4 3 5
03 a ₀₃	996 986	978 962	1.35 1.34	1.13 1.12	14	0.100	0.020	0.040	0.460	11 11
I	D SO (U AS	IS- I LVED SC G/L (U B) AS	DIS- D DLVED SO JG/L (U S FE) AS	DIS- D LVED SO G/L (U PB) AS	HIUM NE IS- D LVED SO G/L (U LI) AS	DIS- E DLVED SC UG/L (U B MN) AS	CCURY DE DIS- D DLVED SO IG/L (U B HG) AS	NUM, NI IS- D LVED SO G/L (U MO) AS	UM, TIS- D LVED SO G/L (U SE) AS	RON- IUM, IS- LVED G/L SR) 080)
MAR										
APR		120	150	<1	50	640	<0.1	3	1	310
97. a07. 22.		160 70 170	30 37 50	<1 <5 <1	43 44 51	90 100 10	0.2 <0.1 0.2	2 2 4	2 <1 3	260 200 310
JUN 03.		260	20	<1	100	330	0.2		1	570
a03.		250	14	< 5	100	310	<0.1	3 5	<1	430

05056500 DEVILS LAKE NEAR DEVILS LAKE, ND

LOCATION.--Lat 48°04'00", long 98°56'07", in SW1/4 sec.18, T.153 N., R.64 W., Ramsey County, Hydrologic Unit 09020201, at Lakewood, on east bank of Creel Bay, 4.5 mi southwest of city of Devils Lake. Creel Bay, which is 0.5 mi wide, is an arm of Devils Lake and extends 2 mi to the north of the lake.

DRAINAGE AREA. -- 3,130 mi2, approximately, of which about 1,000 mi2 is probably noncontributing.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD.--1867, 1879, 1883, 1887, 1890, 1896 (one gage height for each year), 1901-63 (fragmentary), 1964 to current year.

REVISED RECORDS .-- WSP 1913: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,400.00 ft above National Geodetic Vertical Datum of 1929; gage readings have been reduced to elevations NGVD. June 23, 1950, to June 6, 1963, nonrecording gage at present site and datum. See WSP 1913 for history of changes prior to June 23, 1950. Prior to October 1979 only monthend elevations were published.

REMARKS. -- Elevation at gage frequently affected by wind.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation observed, 1,438.40 ft in 1867, present datum; minimum observed, 1,400.87 ft, Oct. 24, 1940.

EXTREMES OUTSIDE PERIOD OF RECORD. -- The lake level was at an elevation of about 1,441 ft around 1830 and lower thereafter. Reference is Geological Survey monograph, volume XXV, the Glacial History of Lake Agassiz by Warren Unbam.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,428.37 ft, Oct. 1; minimum, 1,426.11 ft, Sept. 10.

MONTHEND ELEVATION, IN FEET, AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

Oct. 31	1,427.97	Jan. 31		Apr. 30	1,427.84	July 31 1,427.01
Nov. 30	1,427.87	Feb. 29	. 1427.88	May 31	1,427.70	Aug. 31 1,426.53
Dec. 31		Mar. 31	1/27 89	June 30	1.127.29	Sent. 30 1.426.21

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

							-					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.30	27.97	27.88			27.89	27.89	27.81	27.73	27.28	26.97	26.55
2	28.23	27.99	27.87		27.88	27.89	27.89	27.81	27.78	27.25	26.99	26.52
3	28.21	27.99	27.90		27.88	27.89	27.89	27.85	27.78	27.24	27.01	26.50
3	28.30	28.03	27.89		27.88	27.89	27.89	27.84	27.77	27.22	26.97	26.47
5	28.23	27.97	27.88		27.89	27.89	27.89	27.84	27.74	27.33	26.97	26.46
6	28.17	27.97	27.88		27.89	27.89	27.89	27.78	27.71	27.54	26.94	26.45
7	28.17	27.96	27.90		27.89	27.89	27.89	27.80	27.68	27.61	26.95	26.46
8	28.19	27.94	27.94		27.89	27.89	27.89	27.82	27.63	27.52	26.89	26.49
9	28.12	27.94	27.93		27.89	27.89	27.89	27.85	27.61	27.51	26.88	26.37
10	28.12	27.94	27.92		27.89	27.89	27.89	27.82	27.58	27.46	26.87	26.25
11	28.10	27.95	27.92		27.89	27.89	27.89	27.83	27.57	27.43	26.85	26.27
12	28.11	27.95	27.92		27.90	27.89	27.89	27.82	27.54	27.38	26.84	26.33
13	28.11	27.94	27.92		27.89	27.89	27.89	27.83	27.54 27.53	27.40	26.85 26.85	26.31 26.30
14 15	28.05	27.91	27.91		27.88	27.89	27.89	27.84	27.52	27.31	26.87	26.29
	20.05	27.95	27.91		27.88	27.89	27.88	27.85	21.52	21.51	20.07	
16	28.07	27.93	27.91		27.88	27.89	27.88	27.77	27.50	27.30	26.86	26.29
17	28.08	27.92	27.90		27.88	27.89	27.88	27.75	27.49	27.28	26.85	26.32
18	28.07	27.94	27.90		27.88	27.89	27.88	27.77	27.47	27.27	26.85	26.26
19	28.03	27.91	27.91		27.88	27.89	27.88	27.77	27.48	27.26	26.83	26.30
20	28.02	27.87	27.91		27.88	27.89	27.88	27.77	27.45	27.22	26.81	26.27
21	27.98	27.90	27.90		27.88	27.89	27.88	27.76	27.46	27.22	26.80	26.25
22	27.99	27.89	27.89		27.88	27.89	27.88	27.75	27.47	27.22	26.81	26.30
23	28.01	27.88	27.91		27.88	27.89	27.88	27.75	27.44	27.19	26.77	26.25
24	27.98	27.87	27.91		27.88	27.89	27.88	27.72	27.46	27.14	26.70	26.26
25	28.00	27.89	27.89		27.88	27.91	27.88	27.74	27.41	27.14	26.66	26.20
26	28.06	27.88	27.91		27.88	27.90	27.88	27.69	27.38	27.12	26.65	26.25
27	28.00	27.89	27.91		27.88	27.90	27.88	27.71	27.37	27.10	26.63	26.18
28	28.00	27.88	27.91		27.88	27.90	27.87	27.71	27.33	27.10	26.57	26.15
29	28.00	27.88	27.91		27.88	27.90	27.85	27.70	27.28	27.08	26.56	26.18
30	27.97	27.87	27.91			27.89	27.84	27.71	27.29	27.05	26.55	26.21
31	27.99					27.89		27.71		27.04	26.56	
MEAN	28.09	27.93				27.89	27.88	27.78	27.53	27.27	26.81	26.32
MAX	28.30	28.03				27.91	27.89	27.85	27.78	27.61	27.01	26.55
MIN	27.97	27.87				27.89	27.84	27.69	27.28	27.04	26.55	26.15

Date

Time

05057000 SHEYENNE RIVER NEAR COOPERSTOWN. ND

LOCATION.--Lat 47°25'58", long 98°01'38", in NW1/4NW1/4SW1/4 sec.26, T.146 N., R.58 W., Griggs County, Hydrologic Unit 09020203, on right bank 150 ft upstream from county bridge, and 5 mi east of Cooperstown.

DRAINAGE AREA.--6,470 \min^2 , approximately, of which about 5,200 \min^2 is probably noncontributing, includes 3,800 \min^2 in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1944 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS .-- WSP 1728: Drainage area. WRD ND-80-1: Gage datum.

GAGE.--Water-stage recorder. Datum of gage is 1,271.76 ft above National Geodetic Vertical Datum of 1929, Coast and Geodetic Survey benchmark. Prior to Oct. 22, 1985, gage located on right bank 300 ft downstream of present site. Datum of gage was 1,271.76 ft. Prior to Aug. 3, 1950, nonrecording gage at site 150 ft downstream of present site at same datum.

REMARKS .-- Estimated daily discharges: Dec. 5 to Mar. 7. Records fair.

Discharge (ft3/s)

AVERAGE DISCHARGE.--44 years, 109 ft^3/s , 78,970 acre-ft/yr; median of yearly mean discharges, 86 ft^3/s , 62,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,830 ft³/s, Apr. 17, 1950, gage height, 18.69 ft; no flow at times.

Date

Time

Discharge (ft3/s)

Gage height (ft)

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Gage height

(ft)

Mar	. 10	21	59	251		10.59	A	pr. 5	1230)	*389	*	10.96
ı	Minimum	daily	dischar	rge, 0.21	ft ³ /s, Se	ept. 3.							
		DIS	CHARGE,	IN CUBIC	FEET PER	SECOND, MEAN	WATER YEAR VALUES	OCTOBER	1987 TO	SEPTEMBER	1988		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		53 52 52 53 53	53 53 53 57 60	50 48 46 45 45	23 20 18 17 15	16 16 16 16 16	25 25 35 45 55	278 312 332 365 382	69 70 70 68 67	47 43 39 36 34	17 16 14 14 13	15 15 15 13	.65 .34 .21 .40
6 7 8 9		50 50 50 49 50	59 58 56 53 45	45 46 48 50 50	14 14 14 14 14	16 16 16 15	85 105 150 188 222	329 292 261 238 220	65 66 72 75 82	32 30 28 25 24	15 15 13 13	12 10 9.1 8.4 8.4	.48 .97 1.6 .68
11 12 13 14 15		52 53 52 55 56	50 55 56 56 56	51 51 50 49 47	14 14 14 15 16	14 14 14 14 15	243 202 186 168 143	204 194 186 175 168	84 86 84 79 75	24 27 32 34 33	26 38 43 42 57	8.6 9.1 9.3 9.6 18	1.0 1.4 1.3 .89 1.3
16 17 18 19 20		56 54 53 53	56 56 51 42 40	46 45 45 44 44	18 18 17 17	16 18 19 20 19	136 141 138 138 126	160 148 135 124 116	75 75 74 85 92	31 29 28 29 29	73 58 42 32 30	23 12 8.6 8.4 8.2	1.5 2.1 3.2 2.5 2.2
21 22 23 24 25		52 51 50 50 50	48 53 52 52 53	44 44 40 38 36	17 17 17 17 16	21 21 20 19 19	122 126 147 206 241	109 101 96 91 87	87 82 82 79 70	29 26 27 30 28	24 20 17 15 14	5.5 4.1 2.4 1.9 1.3	4.7 4.7 2.5 3.1 2.4
26 27 28 29 30 31		51 54 54 54 53 53	53 52 52 52 51	36 34 32 30 28 26	16 16 17 19 19	20 21 23 25	235 232 228 221 231 248	82 80 77 75 73	63 57 53 51 53 51	25 23 21 19 17	13 14 15 14 12 11	.52 .29 1.9 5.7 2.2 1.3	5.0 2.0 1.4 1.5 3.0
TOT: MEAN MAX MIN AC-	N 5	621 2.3 56 49 220	1583 52.8 60 40 3140	1333 43.0 51 26 2640	511 16.5 23 14 1010	509 17.6 25 14 1010	4793 155 248 25 9510	5490 183 382 73 10890	2241 72.3 92 51 4450	879 29.3 47 17 1740	753 24.3 73 11 1490	260.81 8.41 23 .29 517	54.54 1.82 5.0 .21 108

MAX 4660 MIN 20 TOTAL 84343 MEAN 231 54.7 MAX 382 MIN TOTAL 20028.35 MEAN

05057000 SHEYENNE RIVER NEAR COOPERSTOWN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960 to current year.

DATE	TI	ME	STREA FLOW INSTA TANEO (CFS	N- OUS	SPE- CIF CON DUC ANC (US/	IC T- E CM)	PH (STAN ARD UNITS (OO40	3)	TEMPI ATUI AII (DEG (OOO)	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NESS TOT (MG AS CAC	S AL /L	CALC DIS SOL (MG AS	VED /L CA)	DI	UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS M	ED L	SODIUM PERCENT (00932)
OCT 01	10	30	54			620			16	5.5	1	3.0									
NOV																					
16 JAN	13	20	54							1.0		2.0								-	
12 FEB	10	15	20		1	340			-19	9.5		0.5									
17	13	50	18			880			(0.0		0.0									
APR 08	11	40	260		16	628	8.	50	1:	2.0		8.5		220	50		24		44		29
MAY 24	11	40	77		1	000			2	3.5	1	9.5									
JUN 29	12	30	19			895	8.	10	20	0.5	2	3.0		310	69		33		75		34
AUG 18	10	15	7.	7		845				2.0		2.0						-			
SEP																					
15	09	40	0.	94		805			1.	4.0	1	6.0									
DATE		ON	POTA SIU DIS SOLV (MG/ AS K	IM, S- YED 'L	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULFA DIS- SOLV (MG/ AS SO (0094	ED L	CHLO RIDI DIS- SOL' (MG, AS (E, VED /L CL)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L	DI	DUE 80 . C S- VED /L)		OF TI- TS, S- VED /L)	SOLII SOLI (TON PER DAY	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 08		1	8.	0	211		110		12		0	.20	24			380		399	267		0.52
JUN																67773		0,000			
29		2	9.	.6	330		130		39		0	.30	31			586		595	29	. 4	0.80
	DATE	SOI (UC AS	ENIC IS- LVED G/L AS)	SOI (UC AS	RON, IS- LVED G/L B) 020)	SO (U	ON, IS- LVED G/L FE) 046)	SO (U AS	AD, IS- LVED G/L PB) 049)	SO (U AS	HIUM DIS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U AS	CLYB- CNUM, DIS- DLVED G/L MO) 060)	NI SO (U	UM, DIS- DLVED G/L SE) 145)	SO (U	RON- IUM, IS- LVED G/L SR) 080)
JUN			3		170		30		1		37		100		0.1		1		2		270
29			8		140		20		<1		60		1200		0.4		2		1		450

05057200 BALDHILL CREEK NEAR DAZEY, ND

LOCATION.--Lat 47°13'45", long 98°07'28", in NW1/4SE1/4SW1/4 sec.2, T.143 N., R.59 W., Barnes County, Hydrologic Unit 09020203, on left bank 500 ft upstream from bridge on county highway, 4.5 mi northeast of Dazey, and 14 mi upstream from mouth.

DRAINAGE AREA. -- 691 mi², of which about 340 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1956 to current year.

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE .-- Water-stage recorder. Prior to Nov. 9, 1956, nonrecording gage 500 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Oct. 1 to Apr. 3. Records fair except those for period of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--32 years, 16.1 ft3/s, 11,660 acre-ft/yr; median of yearly mean discharges, 12 ft3/s, 8,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 9,000 ft³/s, Apr. 19, 1979, on basis of contracted opening measurement of peak flow at site 4.5 mi downstream, gage height, 17.78 ft, from floodmark; no flow at times.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 60 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft3/s)	Gage height (ft)
Mar. 28		*115	a*5.80				

Minimum daily discharge, 0.02 $\mathrm{ft^3/s}$, July 30 and 31. a - Backwater from ice

		DISCHARGE,	IN C	CUBIC FEET	PER SECON	ID, WATER	YEAR OCTOE	BER 1987	TO SEPTEM	BER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.0 3.1 2.9 4.0 5.6	6.5 6.5 6.5 6.5	4.2 4.2 4.2 4.2 4.2	1.9 1.8 1.7 1.3	1.3 1.2 1.2 1.1	10 6.0 8.0 8.5 9.0	66 60 55 43 39	11 11 12 11 11	5.0 4.9 3.8 3.1 2.5	.45 .36 .36 .36	.04 .22 .33 1.0 1.2	.13 .10 .08 .07
6 7 8 9 10	6.2 6.3 6.5 6.5	6.4 6.4 6.4 6.4	4.1 4.1 4.1 4.1 4.2	.85 .80 .75 .70	1.1 1.1 1.0 .95	14 13 15 18 20	36 33 31 29 27	9.1 10 13 12 11	2.2 2.1 1.9 1.6 1.4	.50 .37 .34 .54	1.1 .86 .70 .63	.06 .06 .05
11 12 13 14 15	6.7 6.7 6.8 6.8	6.4 6.4 6.4 6.4	4.2 4.0 3.8 3.8 3.8	.60 .60 .65	.80 1.0 1.0 1.1	45 40 40 40 43	25 25 23 21 20	11 12 11 10	1.3 1.5 2.0 2.5 2.6	.17 .09 .22 .90	.58 1.1 1.2 1.5 1.6	.04 .04 .04 .04
16 17 18 19 20	6.8 6.8 6.7 6.7	6.4 6.2 6.2 5.8 4.3	3.7 3.4 3.4 3.2 3.1	1.0 1.0 1.0 1.0	1.1 1.1 1.2 1.3	44 46 47 46 44	19 19 18 20 18	9.6 8.5 9.0 17	2.4 2.1 1.8 1.8	.91 .75 .62 .54	1.5 1.3 1.0 .93	.19 .20 .50 4.6 3.2
21 22 23 24 25	6.7 6.7 6.7 6.7 6.6	4 · 4 4 · 4 4 · 4 4 · 4	3.0 3.0 3.0 2.9 2.6	1.1 1.2 1.1 1.1	1.3 1.5 1.4 1.4	43 44 45 50 65	17 16 15 14	11 10 9.7 8.3 6.7	1.3 1.2 1.1 1.1	.32 .17 .09 .07	.65 .56 .53 .27	2.3 1.2 .67 .40
26 27 28 29 30 31	6.6 6.6 6.6 6.5 6.5	4.3 4.3 4.3 4.2	2.3 2.2 2.2 2.1 2.1 2.0	1.0 1.0 1.2 1.5 1.4	1.6 2.3 5.0 11	75 90 100 75 74 65	14 12 12 11 12	6.4 6.7 5.7 4.8 4.1 3.9	1.2 1.1 .85 .60	.05 .04 .03 .03 .02	.08 .07 .08 .09 .12	.11 .18 .98 .64
TOTAL MEAN MAX MIN AC-FT	191.9 6.19 6.8 2.9 381		05.4 3.40 4.2 2.0 209	32.60 1.05 1.9 .60 65	48.85 1.68 11 .80 97	1282.5 41.4 100 6.0 2540	764 25.5 66 11 1520	301.5 9.73 17 3.9 598	58.19 1.94 5.0 .54 115	10.93 .35 1.2 .02 .22	20.85 .67 1.6 .04 41	16.47 •55 4.6 •04 33

CAL YR 1987 TOTAL 18458.9 MEAN 50.6 MAX 905 MIN 1.4 AC-FT 36610 WTR YR 1988 TOTAL 3001.89 MEAN 8.20 MAX 100 MIN .02 AC-FT 5950

05057200 BALDHILL CREEK NEAR DAZEY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	1	CIME	STREA FLOW INSTA TANEO (CFS	M- C: N- DI US AI	PE- IFIC DN- ICT- ICE S/CM)	PH (STAND- ARD UNITS) (00400)	AI (DEG	RE R C)	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC	SS AL A/L SO3)	CALC DIS SOL (MG AS	VED /L CA)	MAG SI DI SOL (MG AS	UM, S- VED /L MG)	SODIUM DIS- SOLVED (MG/L AS NA	SODIUM PERCENT	C
OCT																			
01 NOV		1200	3.	2	555		. 1	5.0	1	4.0							-		•
16	*	1440	6.	3	930			2.5		4.0									
JAN 11 FEB	4	1325	0.	60	1510		-1	3.5		1.0							-		
18	1	1240	1.	2	905			2.0		1.0							-	1 37	-
MAR 30 APR		1045	71		675	7.70)	2.0		1.0		250	55		28		36	22	2
13 MAY	-	1110	23		840		. 1	0.0	1	0.0									
26	9	1405	6.	5	1140		. 2	5.5	2	0.0							-		-
JUL 06 15		1025 1025	0.		1200 1120	8.40		3.0		7.0		330	38		57		130	45	
AUG 03		0940	0.	27	1190			3.0	2	3.0									_
18		0940	ŏ.		975			5.0		4.5							-		
DATE	SC T RA	DDIUM AD- DRP- TION ATIO 0931)	POTA SIU DIS SOLV (MG/ AS K	M, LIN ED (N L	LKA- HITY LAB IG/L LS LCO3)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS SOL (MG AS	E, VED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIC (OO9	VED LVED LVED S	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIDS DIS- SOLVEI (TONS PER DAY) (70302	DIS- SOLVED (TONS PER AC-FT))
MAR			16	40		450	47			10	22			424		429	80.8	0.58	2
JUL 30		1		18		150	13			.10									
06		3	15	280)	300	37		0	.30	4	1.3		769		751	1.1	1.05	5
	DATE	SO (U AS	ENIC IS- LVED G/L AS)	BORON DIS- SOLVET (UG/L AS B) (01020)) SC (U	DIS- DLVED S JG/L (S FE) A	JEAD, DIS- SOLVED UG/L US PB) D1049)	SO (U AS	CHIUM DIS- DLVED IG/L S LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	UM, IS- LVED : G/L SE)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) D1080)	
MAR 30 JUL)		2	170)	90	<1		36		90		0.1		2		2	310	
	5		5	230)	40	<1		110		220		0.1		1		<1	480	

05057500 LAKE ASHTABULA AT BALDHILL DAM, ND

LOCATION.--Lat 47°02'00", long 98°05'00", in NW1/4 sec.18, T.141 N., R.58 W., Barnes County, Hydrologic Unit 09020203 at Baldhill Dam on Sheyenne River, and 8 mi northwest of Valley City.

DRAINAGE AREA.--7,470 mi², approximately, of which about 5,560 mi² is probably noncontributing, including $3,800 \text{ mi}^2$ in closed basins.

MONTHEND-ELEVATION AND CONTENTS RECORDS

PERIOD OF RECORD .-- July 1949 to current year.

REVISED RECORDS. -- WSP 1238: 1950(M). WSP 1728: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by an earth-filled dam, 1,650 ft long; storage began on July 30, 1949; dam completed September 1949. Usable capacity, 69,100 acre-ft between invert of outlet conduit, elevation, 1,238.0 ft, and normal pool level, elevation, 1,266.0 ft. Dead storage below elevation 1,238.0 ft, 1,500 acre-ft. Maximum pool elevation, 1,273.2 ft, capacity, 116,500 acre-ft. Low flows are controlled by 2 sluice gates 3 ft in diameter. The spillway crest is 120 ft long at elevation 1,252.0 ft, surmounted by 3 taintor gates, each 15 ft high and 40 ft long. The reservoir is operated for flood control and to increase low-water flow.

COOPERATION .-- Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 91,400 acre-ft, May 14, 1950, elevation, 1,269.46 ft; minimum since reservoir first reached spillway level, 6,660 acre-ft, Aug. 11-14, 1950, elevation, 1,245.13 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 72,139 acre-ft, May 22, elevation, 1,266.27 ft; minimum, 50,090 acre-ft, Feb. 27, elevation, 1,262.02 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

I	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	1,265,94	70,260	<u></u>
Oct.	31	1,265.28	66,570	-3,690
.voV	30	1,264.88	64,340	-2,230
Dec.	31	1,264.27	60,980	-3,360
CAL	YR 1987	-		+5,480
Jan.	31	1,263.13	55,150	-5,830
Peb.	29	1,262.09	50,400	-4,750
lar.	31	1,264.09	60,000	+9,600
pr.	30	1,265.95	70,320	+10,320
lay	31	1,266.12	71,280	+960
une	30	1,265.67	68,750	-2,530
July	31	1,265.27	66,510	-2,240
lug.	31	1,264.81	63,960	-2,550
Sept.	30	1,264.53	62,420	-1,540
WTR	YR 1988		_	-7.840

05058000 SHEYENNE RIVER BELOW BALDHILL DAM, ND

LOCATION.--Lat 47°01'50", long 98°05'50", in NW1/4 sec.18, T.141 N., R.58 W., Barnes County, Hydrologic Unit 09020204, on right bank 600 ft downstream from Baldhill Dam, 8 mi northwest of Valley City, and at mile 270.5.

DRAINAGE AREA.--7,470 \min^2 , approximately, of which about 5,560 \min^2 is probably noncontributing, including 3,800 \min^2 in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1949 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1728: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,200.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow completely regulated by Lake Ashtabula (station 05057500). Records 1955 to 1972 include releases at Baldhill Dam to the fish-rearing ponds of the Fish and Wildlife Service. Small diversions are still made but not published.

AVERAGE DISCHARGE (UNADJUSTED).--39 years, 129 ft³/s, 93,460 acre-ft/yr; median of yearly mean discharges, 96 ft³/s, 69,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,740 ft³/s, Apr. 24, 1979, gage height, 36.26 ft; no flow at times in 1950, 1952-53, 1970.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 146 ft³/s, Jan. 19, gage height, 26.84 ft; minimum daily, 6.7 ft³/s, July 15.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988
MEAN VALUES

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	66 64 63 63 64	98 96 96 97 98	96 96 96 106 113	112 113 117 113 115	132 131 132 130 131	70 70 70 70 70	13 13 12 12 12	30 30 30 42 52	72 73 74 75 77	16 16 17 16 17	29 29 32 32 29	16 17 17 16 16
6 7 8 9	64 79 97 97 96	98 98 99 99	116 111 106 108 109	113 115 110 109 114	129 123 125 123 132	70 70 70 70 70	12 15 15 15 13	52 50 50 50 50	55 39 40 39 29	17 17 17 17 17	26 24 28 34 31	11 13 14 15
11 12 13 14 15	96 96 97 96 96	96 96 96 96 96	106 106 112 112 105	111 105 111 113 110	126 131 128 129 128	67 69 70 70 70	13 13 12 12 12	50 51 47 48 48	20 19 19 19	17 16 13 9.2 6.7	31 30 31 29 28	12 11 11 10 11
16 17 18 19 20	94 95 96 96	95 96 97 95 100	114 113 109 109 109	104 113 114 119 125	124 124 121 110 94	70 70 70 70 70	12 11 12 12 12	49 51 52 52 52	18 17 17 17 17	7.3 7.5 7.5 7.2 7.2	16 13 34 31 33	12 12 12 11 11
21 22 23 24 25	96 96 96 96 97	98 95 94 94	112 112 115 112 119	122 127 133 125 125	91 92 94 96 95	71 70 71 71 45	12 22 31 30 31	52 54 55 54 55	17 18 18 16 16	19 28 28 28 28	35 31 28 28 20	9.9 8.6 8.9 9.0
26 27 28 29 30 31	98 98 98 98 98	94 93 95 96 99	114 115 114 118 117 110	130 130 127 120 130 129	78 70 71 70	14 13 13 13 13	30 30 30 30 31	55 64 74 72 70 71	16 15 15 16 16	28 29 29 29 29	14 12 9.1 12 14 15	10 12 10 9.8 9.6
TOTAL MEAN MAX MIN AC-FT	2780 89.7 98 63 5510	2891 96.4 100 93 5730	3410 110 119 96 6760	3654 118 133 104 7250	3260 112 132 70 6470	1803 58.2 71 13 3580	530 17.7 31 11 1050	1612 52.0 74 30 3200	918 30.6 77 15 1820	569.6 18.4 29 6.7 1130	788.1 25.4 35 9.1 1560	360.0 12.0 17 8.6 714

CAL YR 1987 TOTAL 106709.6 MEAN 292 MAX 2170 MIN 4.4 AC-FT 211700 WTR YR 1988 TOTAL 22575.7 MEAN 61.7 MAX 133 MIN 6.7 AC-FT 44780

05058000 SHEYENNE RIVER NEAR BALDHILL DAM, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959 to current year.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS) (00061	CON- DUCT- S ANCE (US/CI	PH - (STAN ARD M) UNITS	AI) (DEG	RE A R V C) (I	EMPER- ATURE WATER DEG C)	HARD- NESS TOTAL (MG/L AS CACO3)		UM SI DI ED SOL L (MG	S- I VED SO /L MG)	DDIUM, DIS- DLVED (MG/L AS NA) DO930)	SODIUM PERCENT (00932)
OCT							25.0						
29 DEC	1000	97	7.	55 8.	20 1	0.0	6.5	-		T			
18 JAN	1220	106	79	90		3.0	1.0						
29	1400	120	70	00		1.0	0.5		-				
MAR 24	1025	71	80	00		3.0	0.5						
APR 26	1335	31	8	55 8.	40	5.5	8.5	300	61	35 37		74	34
a26 JUN	1336	31	8			5.5	8.5	320	66	37		75	33
14	1340	20	86	00	1	8.5	20.5						
JUL 29	0935	28	7	75 8.	80 2	6.0	23.0	250	47	33	5	70	36
SEP 01	1600	16	10	00	3	0.0	19.5						
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS SIUM DIS- SOLVE (MG/L AS K)	LAB CD (MG/ AS CACO	Y SULFA DIS- L SOLV (MG/ 3) AS SO	ED SOL L (MG	VED S	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 00950)	SILICA, DIS- SOLVEI (MG/L AS SIO2) (00955)	AT 18 DEG. DIS SOLV	OUÉ SUM O CONS C TUEN S- DI (ED SOL (L) (MO	OF SO STI- ITS, IS- LVED	DLIDS, DIS- SOLVED (TONS PER DAY) 70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
26 a26	2 2	11 11	310 303	150 150	15 15		0.30	9.5 10		571 546	540 547	47.2 45.1	0.78 0.74
JUL 29	2	10	270	150	17		0.20	6.2	4	183	503	36.4	0.66
E	I SO () AS	SENIC DIS- DLVED JG/L S AS) 1000) (BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIU DIS- SOLVI (UG/I AS LI	UM NE - D ED SO L (U I) AS	IS- LVED G/L MN)	ERCURY DIS- SOLVED (UG/L AS HG) 71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SELE NIUM DIS SOLV (UG/ AS S	, I ED SC L (U	PRON- FIUM, DIS- DLVED JG/L 3 SR) 1080)
APR 26. a26.		4 3	210 150	10 4	<1 <5		60 9	190 220	0.6	1 2		2<1	330 320
JUL 29.		5	160	10	<1	3	60	540	0.2	1		<1	380

a - Split sample analysis for quality assurance.

05058500 SHEYENNE RIVER AT VALLEY CITY, ND

LOCATION.--Lat 46°54'50", long 98°00'30", in SE1/4NW1/4 sec.28, T.140 N., R.58 W., Barnes County, Hydrologic Unit 09020204, on left bank 100 ft downstream from College Dam in Valley City, and at mile 253.0.

DRAINAGE AREA.--7,810 $\rm mi^2$, approximately, of which about 5,700 $\rm mi^2$ is probably noncontributing, includes 3,800 $\rm mi^2$ in closed basins.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- March to August 1919, March to June 1938, August 1938 to September 1975; October 1979 to current year (gage heights and annual maximum discharge since 1979). Records for July 1938, published in WSP 855, have been found to be unreliable and should not be used.

REVISED RECORDS.---WSP 1388: 1939 (M). WSP 1728: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,199.27 ft above National Geodetic Vertical Datum of 1929. March to August 1919, nonrecording gage at site 0.5 mi upstream at different datum. March to Oct. 13, 1938, nonrecording gage at present site and datum.

REMARKS.--Flow regulated by Lake Ashtabula 13 mi upstream (see station 05057500). Small diversions above station for municipal supply.

AVERAGE DISCHARGE (UNADJUSTED).--37 years (1938-75), 124 $\rm ft^3/s$, 89,840 acre-ft/yr; median of yearly mean discharges, 97 $\rm ft^3/s$, 70,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,580 ft³/s, Apr. 28, 1948, gage height, 17.51 ft; maximum gage height, 17.62 ft, Apr. 19, 1969; no flow during several periods in 1938-41.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 150 $\rm ft^3/s$, Feb. 28, gage height, 4.80 ft, minimum not determined; maximum gage height, 5.03 ft, Feb. 8.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.24 3.22 3.21 3.23 3.22	3.42 3.43 3.43 3.43 3.42	3.45 3.47 3.45 3.58	3.59 3.68 3.67 3.69 3.78	4.54 4.47 4.49 4.55 4.46	4.04 3.68 3.51 3.39 3.39	2.86 2.88 2.89 2.91 2.91	2.99 3.01 3.01 3.00 3.08	3.20 3.18 3.18 3.18 3.20	2.77 2.75 2.73 2.74 2.75	2.96 2.98 2.97 2.99 3.00	2.79 2.81 2.81 2.82 2.83
6 7 8 9	3.19 3.28 3.41 3.40 3.40	3.43 3.42 3.43 3.43	3.60 3.60 3.57 3.56 3.57	3.83 3.90 3.95 3.95 4.00	4.55 4.64 4.68 4.62	3.50 3.50 3.53 3.41 3.43	2.88 2.87 2.91 2.90 2.88	3.12 3.22 3.19 3.16 3.14	3.29 3.17 2.86 2.96 2.98	2.76 2.79 2.76 2.76 2.80	2.96 2.93 2.90 2.91 2.95	2.83 2.82 2.81 2.79 2.79
11 12 13 14 15	3.42 3.42 3.42 3.42 3.42	3.43 3.42 3.42 3.42	3.56 3.55 3.60 3.56	4.14 4.01 4.26 4.21 4.19	4.56 4.66 4.65 4.70 4.55	3.46 3.36 3.29 3.28 3.27	2.86 2.85 2.84 2.81 2.79	3.16 3.16 3.14 3.14 3.14	2.95 3.02 2.98 2.97 2.94	2.82 2.84 2.91 2.85 2.83	2.95 2.97 3.10 2.99 2.96	2.84 2.85 2.82 2.79 2.81
16 17 18 19 20	3.43 3.41 3.41 3.42 3.43	3.44 3.43 3.44 3.45 3.43	3.56 3.61 3.59 3.57 3.57	4.09 4.09 4.12 4.09 4.24	4.57 4.55 4.48 4.41 4.08	3.26 3.28 3.28 3.28 3.27	2.79 2.80 2.77 2.79 2.81	3.14 3.16 3.19 3.24 3.21	2.91 2.89 2.87 2.86 2.84	2.77 2.74 2.71 2.68 2.76	2.95 2.91 2.83 2.89 2.95	2.86 2.85 2.91 3.01 2.88
21 22 23 24 25	3.42 3.43 3.43 3.42 3.42	3.45 3.43 3.42 3.42 3.43	3.58 3.60 3.60 3.61 3.61	4.22 4.23 4.34 4.32 4.12	4.02 4.04 3.96 3.97 4.04	3.27 3.15 3.21 3.30 3.30	2.81 2.83 2.90 2.97 3.00	3.21 3.19 3.17 3.13 3.10	2.87 2.88 2.89 2.87 2.83	2.72 2.70 2.79 2.86 2.89	2.97 2.98 2.97 2.93 2.93	2.83 2.83 2.81 2.81 2.81
26 27 28 29 30 31	3.43 3.42 3.43 3.42 3.42	3.43 3.42 3.44 3.45	3.60 3.60 3.60 3.61 3.50	4.38 4.46 4.37 4.30 4.36 4.31	3.95 3.92 4.35 4.20	3.11 2.97 2.96 2.92 2.85 2.84	3.00 3.01 2.99 2.98 3.00	3.12 3.14 3.16 3.18 3.17 3.18	2.79 2.77 2.79 2.76 2.76	2.91 2.90 2.91 2.89 2.90	2.90 2.87 2.82 2.79 2.77 2.79	2.83 2.82 2.87 2.87 2.83
MEAN MAX MIN	3.38 3.43 3.19	3.43 3.45 3.42	3.57 3.61 3.45	4.09 4.46 3.59	4.39 4.70 3.92	3.30 4.04 2.84	2.88 3.01 2.77	3.14 3.24 2.99	2.95 3.29 2.76	2.80 2.91 2.68	2.93 3.10 2.77	2.83 3.01 2.79

05058500 SHEYENNE RIVER AT VALLEY CITY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STREA FLOW INSTA TANEO (CFS	N- DUC US ANG	FIC N- CT- (S CE 'CM) UN	PH TAND- ARD ITS) 0400)	TEMP ATU AI (DEG	RE R C)	TEMPH ATUR WATH (DEG (OOO	RE ER C)	HARD NESS TOTA (MG/ AS CACO (0090	L L 3)	CALCI DIS- SOLV (MG/ AS C	ED L	MAGI SII SOL' (MG AS (009)	JM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS N	ED /L NA)	SODIUM PERCENT (00932)
APR																			
26		1520	32		870	8.40		9.5	10	0.0	3	70	72		45		90		34
DATE	S	ODIUM AD- ORP- TION ATIO	POTA SIU DIS SOLV (MG/ AS K	M, LINI ED (MC L AS	TY SUAB DE SILL SE (CO3) AS	LFATE IS- OLVED MG/L SO4) 0945)	DIS	E, VED /L CL)	FLUC RIDI DIS SOL' (MG, AS (009)	E, VED /L F)	SILIC DIS- SOLV (MG/ AS SIO2 (0095	ED L	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UE C ED L)	SOLI SUM CONS' TUEN' DI SOL' (MG	OF TI- TS, S- VED /L)	SOLII SOLI (TON PER DAY	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR																			
26		2	12	320	2	20	24		0	.30	4.	1	6	90		659	59	.6	0.94
	DATE	SC (U	SENIC DIS- DLVED UG/L S AS)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVE (UG/L AS FE	D S (EAD, DIS- OLVED UG/L S PB) 1049)	SC (U AS	CHIUM DIS- DLVED UG/L S LI)	NE SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SOI (UC	S- LVED G/L HG)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, DIS- DLVED IG/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
APR 26	5		3	230	1	0	<1		75		70		0.7		1		2		430

05058700 SHEYENNE RIVER AT LISBON, ND

LOCATION.--Lat 46°26'49", long 97°40'44", on line between secs.1 and 2, T.134 N., R.56 W., Ransom County, Hydrologic Unit 09020204, on left bank 150 ft downstream from dam at State Fish Hatchery at north edge of city of Lisbon, 3 mi upstream from Timber Coulee, and at mile 162.1.

DRAINAGE AREA.--8,190 \min^2 , approximately, of which about 5,700 \min^2 is probably noncontributing, including 3,800 \min^2 in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1956 to current year.

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,066.46 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Dec. 31 to Mar. 14. Records good except those for period of estimated daily discharges, which are fair. Flow regulated by Lake Ashtabula (station 05057500) 108.5 mi upstream.

AVERAGE DISCHARGE.--32 years, 161 ft^3/s , 116,600 acre-ft/yr; median of yearly mean discharges, 160 ft^3/s , 116,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,270 ft³/s, July 1, 1975, gage height, 19.04 ft; no flow Sept. 19-21, Oct. 23, 24, 1956, Aug. 16, 1961.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 284 ft³/s, Mar. 26, gage height, 3.63 ft; maximum gage height, 4.34 ft, Mar. 3, backwater from ice; minimum daily, 1.1 ft³/s, Aug. 3.

		DISCHARGE,	IN CUBI	C FEET		O, WATER YE EAN VALUES	AR OCTOBE	R 1987	TO SEPTEM	BER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	73	102	100	118	130	170	73	41	60	9.1	20	13
2	70	103	98	116	130	225	69	39	61	8.3	1.2	10
3	67	104	94	114	130	250	69	38	60	6.4	1.1	8.7
4	65	104	86	114	130	240	64	37	60	6.0	5.4	7.4
5	65	103	95	114	130	190	61	37	59	5.2	15	6.3
6 7 8 9	66 66 68 65 69	103 103 102 102 101	106 115 126 127 121	114 114 114 114 114	130 128 128 130 130	140 140 160 175 170	55 51 51 43 40	36 41 42 56 72	56 52 50 56 60	3.8 3.7 3.4 3.7 3.6	20 26 23 23 26	5.2 4.6 5.3 3.3 2.9
11	92	102	119	114	130	160	36	68	44	2.9	24	4.9
12	96	103	113	110	130	155	34	61	32	5.8	23	5.7
13	98	103	120	110	130	140	34	56	27	32	19	6.9
14	99	103	111	108	130	135	31	56	33	18	16	6.5
15	100	104	112	108	132	128	29	55	33	7.8	21	7.9
16	101	108	110	107	135	119	27	54	30	4.9	23	9.2
17	102	109	107	107	138	118	25	51	33	4.6	34	9.1
18	101	101	105	105	140	108	25	52	30	5.0	36	13
19	101	109	114	119	142	117	24	56	27	7.5	28	42
20	100	77	122	121	144	114	22	60	21	7.1	20	31
21	102	88	119	123	146	113	21	66	20	6.0	18	29
22	101	106	117	126	148	115	21	72	15	5.1	16	28
23	101	112	117	128	150	118	21	71	19	4.0	13	25
24	102	106	118	130	152	131	22	65	21	4.1	9.6	33
25	104	105	116	130	154	161	22	62	19	3.1	8.1	26
26 27 28 29 30 31	104 101 101 101 101 102	98 115 95 101 101	114 114 119 120 121 119	130 130 125 130 130 130	156 160 165 165	204 127 127 104 86 74	22 26 37 42 42	58 57 55 52 55 57	15 13 . 12 10 9•9	2.3 1.9 1.5 1.2 1.2	10 18 20 19 15	19 11 10 10 9.7
TOTAL	2784	3073	3495	3667	4043	4514	1139	1678	1037.9	202.2	565.4	403.6
MEAN	89.8	102	113	118	139	146	38.0	54.1	34.6	6.52	18.2	13.5
MAX	104	115	127	130	165	250	73	72	61	32	36	42
MIN	65	77	86	105	128	74	21	36	9.9	1.2	1.1	2.9
AC-FT	5520	6100	6930	7270	8020	8950	2260	3330	2060	401	1120	801

CAL YR 1987 TOTAL 130095 MEAN 356 MAX 2810 MIN 20 AC-FT 258000 WTR YR 1988 TOTAL 26602.1 MEAN 72.7 MAX 250 MIN 1.1 AC-FT 52770

05058700 SHEYENNE RIVER AT LISBON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956 to current year.

DATE		TIME	STREA FLOV INSTANCE (CFS	AM- W, AN- DUS S) (1	SPE- CIFIC CON- DUCT- ANCE US/CM) DOO95)	PH (STAN ARI UNITS	3)	TEMPE ATUR AIR (DEG (0002	E C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NESS TOTA (MG, AS CACO	S AL /L	CALC DIS SOL (MG AS (009	VED /L CA)	SI	MG)	SODIU DIS- SOLVE (MG/ AS N	D L	SODIUM PERCENT (00932)
OCT 28		1045	96		850			7	.0		4.0									
DEC 17		1100	106		865			-9	.0		0.0									-
FEB 17		1435	138		960			2	2.5		0.0									
MAR 24		1400	125		950	7	.80	9	.5		0.5		320	72		34		74		33
MAY 12		1125	62		1160			21	.0	1	8.0									
JUN 16		1045	29		980			19	0.0	2	1.0									
JUL 12		1635		.0	1060				3.0		4.0									
AUG 02 31		1625 1140	1 15	.0	1060 1110	8	.20		0.0		6.5		310	61		37		110		43
DATE	S	SODIUM AD- SORP- TION MATIO 00931)	POT SI DI: SOL' (MG AS	UM, L S- VED /L K)	ALKA- INITY LAB (MG/L AS CACO3)	SULFA DIS- SOL' (MG, AS SO (0094	VED /L	CHLC RIDE DIS- SOLV (MG/ AS C	ED L	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILIO DIS- SOL' (MG, AS SIO:	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 80 . C S- VED /L)	SOL	OF TI- TS, S- VED /L)	SOLID DIS SOLV (TON PER DAY (7030	ED IS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 24		2	11	2	60	190		27		0	.20	12			599		577	202		0.81
AUG																	677		00	0.91
02	DATE	SC (U	ENIC DIS- DLVED JG/L S AS)	BORO DIS SOLV (UG/ AS B	ED SC L (U	RON, DIS- DLVED JG/L S FE) 1046)	SO: (U	AD, IS- LVED G/L PB) 049)	SO (U	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	MER D SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U	DLYB- CNUM, DIS- DLVED UG/L S MO) 060)	SE NI SC (U	CLE- CUM, DIS- DLVED IG/L S SE) 145)	SO (U	RON- IUM, IS- LVED G/L SR) 080)
MAR 24 AUG			2	2	30	30		<1		59		100		0.6		1		2		370
02			10	2	70	10		<1		80		470		0.1		4		<1		510

05059000 SHEYENNE RIVER NEAR KINDRED, ND (National stream-quality accounting network station)

LOCATION.--Lat 46°37'35", long 97°00'05", in NE1/4NW1/4 sec.5, T.136 N., R.50 W., Richland County, Hydrologic Unit 09020204, on right bank 25 ft downstream from Burlington Northern Railway bridge, 1.5 mi southeast of Kindred, and at mile 68.1.

DRAINAGE AREA.--8,800 $\rm mi^2$, approximately, of which about 5,780 $\rm mi^2$ is probably noncontributing, including 3,800 $\rm mi^2$ in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1949 to current year.

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 925.55 ft above National Geodetic Vertical Datum of 1929. July 1949 to Sept. 30, 1962, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 10 to Mar. 18, June 26 to July 6, July 9-12, and July 27 to Sept. 14.
Records fair except those for periods of estimated daily discharges, which are poor. Flow regulated to a large degree by Lake Ashtabula (station 05057500) 202 mi upstream and several small reservoirs.

AVERAGE DISCHARGE. -- 39 years, 202 ft3/s, 146,300 acre-ft/yr; median of yearly mean discharges, 170 ft3/s, 123.000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,690 ft³/s, Apr. 15, 1969, gage height, 21.03 ft; maximum gage height, 21.66 ft, July 6, 1975; minimum daily discharge, 13 ft³/s, Nov. 13, 1955, Aug. 22-24, 1959.

EXTREMES OUTSIDE PERIOD OF RECORD.--Spring flood in 1947 or 1948 reached a stage of 22.1 ft from floodmarks, discharge about 3,600 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 460 ft³/s, Mar. 7, gage height, 5.46 ft, backwater from ice; minimum daily, 11 ft³/s, Sept. 14.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES JUN JUL AIIG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY 72 133 74 72 ---------TOTAL 52.8 26.7 17.5 29.4 MEAN 68.8 MIN AC-FT

CAL YR 1987 TOTAL 143750 MEAN 394 MAX 2930 MIN 31 AC-FT 285100 WTR YR 1988 TOTAL 36927 MEAN 101 MAX 442 MIN 11 AC-FT 73240

05059000 SHEYENNE RIVER NEAR KINDRED, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1972 to current year.

	DATE	TIME	STREA FLOV INSTA TANEO (CFS	V, CON AN- DUC DUS ANG B) (US)	FIC N- CT- CE 'CM)	PH (STAN ARI UNITS	ND- A O S) (D	EMPER- ATURE AIR DEG C)	WA'	PER- URE TER G C)	TUF BII ITY (FTU))- (DXYG DI: SOL' (MG)	S- VED /L)	SOI (PI CI SAT	GEN, IS- JVED ER- ENT TUR- ION)	COL: FORI FEC: 0.7 UM-1 (COL: 100 (316)	MF, ME, ML)	STRE TOCOO FECA KF AC (COLS PER 100 M	CCI AL, GAR S. R ML)
NOV	3	1305	122		852	8	.40	10.0		8.0	1	.3	1	1.5		98		22		86
JAN	7	1510	125		920		.00	-4.0		0.0		.3		2.2		84		10		38
MAR		1630	195		820		.90	2.0		0.0		.5		2.4		85		32		
APR	7	1005	151		770			16.0		7.5										
	7	1140	61		875	8	.40	10.5		8.0	2	.1	1	3.8		117		2		10
	4	1400	39		842	8	.50	32.0)	26.5	22			6.2		78		56		25
0	7 9	1520 1515	20 42		725 730	8	.60	23.0		26.0 24.0	17			6.2		74		73		71
AUG 3	1	1610	20					30.0)	19.0				7.5						
	DATE	NI TO ()	ARD- ESS OTAL MG/L AS ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	SI SOI (MC AS	GNE- IUM, IS- LVED G/L MG)	SODIUM DIS- SOLVED (MG/I AS NA	C S A) PE	SODIUM ERCENT 00932)	SC	DDIUM AD- DRP- PION ATIO 0931)	POTA SIL SOL (MG AS	UM, S- VED /L K)	LIN WAT TOT FI MG/	KA- ITY WH IT ELD L AS CO3 419)	WH FI MG/ HC	ATE TER IT ELD L AS	BONA WAT WH FIE MG/I	EER IT ELD AS	
	NOV 03		310	72	3.	1	68		32		2	9	.2		268		298		14	
	JAN 27		330	72	36	5	77		33		2	10			294		359		0	
	MAR 01		290	65	3	1	62		31		2	10			264		322		0	
	APR 27		340	81	3	3	57		26		1	7	.0		272		327		2	
	JUN 24		310	73	32	2	62		29		2	8	.1		286		342		4	
	JUL 19		260	63	26	5	58		31		2	8	.8		201		229		8	
	DATE	D: SC (I	LFATE IS- OLVED MG/L SO4) 0945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RII DI SOI (MC AS	JO- DE, IS- LVED G/L F)	SILICA DIS- SOLVE (MG/I AS SIO2)	A, RE AT ED I L	DLIDS, ESIDUE 180 DEG. C DIS- SOLVED (MG/L) 70300)	SUI COI TUI	LIDS, M OF NSTI- ENTS, DIS- DLVED MG/L) 0301)	SOLI SOL (TO: PE AC- (703	S- VED NS R FT)	SO (T	IDS, DIS- DLVED CONS PER DAY)	ONIT D SO (M AS	TRO- EN, RITE IS- LVED G/L N) 613)	NO2- DI SOI (MC	PRO- EN, NO3 IS- LVED G/L N)	
	NOV	4		0.7		2.70			F70		507	0	77	47		/0	010	/0	.100	
	03 JAN		50	23		0.30	8.4	4	539		523		.73	17			.010		.400	
	27 MAR		60	18		0.30	12		565		563 501		.77	27			.020		.610	
	01 APR		40	18		0.30	13		522										.100	
	27		70	24		0.30	11		547		546		.74		39.5		.010			
	24 JUL		30	22		0.50	24		546		525		.74		57.1		.010		.100	
	19	1	60	19		0.20	18		472		475	0	.64	5	3.1	<0	.010	<0	.100	

RED RIVER OF THE NORTH BASIN

05059000 SHEYENNE RIVER NEAR KINDRED, ND--CONTINUED

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)
NOV										
03 JAN	0.020	0.030	0.04	0.80	0.200	0.070	0.040	<10	4	76
27	0.250	0.250	0.32	1.1	0.160	0.120	0.110			
MAR 01	0.180	0.180	0.23	1.4	0.170	0.160	0.090	10	4	71
APR	0.100		0.25							
27 JUN	<0.010	0.020	0.03	0.40	0.020	0.020	<0.010	<10	3	98
24	0.030	0.050	0.06	0.60	0.240	0.080	0.060			
JUL 19	0.050	0.030	0.04	<0.20	0.210	0.040	0.020	<10	10	91
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
NOV										
03	<0.5	<1	<1	<3	3	6	<5	51	29	<0.1
MAR 01	<0.5	<1	1	<3	3	33	<5	57	58	<0.1
APR 27	<0.5	<1	<1	<3	1	10	<5	46	190	<0.1
JUL										
19	1	<1	1	<3	1	6	<5	48	5	<0.1
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
NOV										
03	<10	3	<1	<1.0	330	<6	5	62	20	53
MAR 01	<10	5	<1	<1.0	290	<6	8	31	16	93
APR						<6	6	50	8.2	44
27 JUL	<10	5	<1	<1.0	360			100		
19	<10	4	<1	<1.0	310	<6	<3	61	6.9	99

05059400 SHEYENNE RIVER NEAR HORACE, ND

LOCATION.--Lat $46^{\circ}48^{\circ}13^{\circ}$, long $96^{\circ}54^{\circ}13^{\circ}$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ NW $\frac{1}{4}$ NW sec.5, T.138 N., R.49 W., Cass County, Hydrologic Unit 09020204, at bridge on county road 3 mi north and 0.1 mi east of Horace.

DRAINAGE AREA.--8,850 \min^2 , approximately, of which about 5,780 \min^2 is probably noncontributing, including 3,800 \min^2 in closed basins.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- October 1979 to current year (gage heights and annual maximum discharge).

GAGE .-- Water-stage recorder. Datum of gage is 888.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Mean-daily gage heights for Dec. 29 to Feb. 5 and July 26-27 are missing.

Flow regulated to a large degree by Lake Ashtabula (station 05057500) 241 mi upstream. Above 3,000 ft³/s overflow occurs upstream between Kindred and Horace. This overflow bypasses the station by flowing into the Maple River to the west and into the Wild Rice River to the east.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,960 ft³/s, Mar. 28, 1987, determined from a hydrographic comparison with stations 05059000, Sheyenne River near Kindred, ND and 05059500, Sheyenne River at West Fargo, ND; maximum recorded gage height, 22.06 ft, Mar. 28, 1987, ice jam; minimum not determined.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 420 ft3/s, Mar. 9, gage height, 10.23 ft; minimum not determined.

		GAGE	HEIGHT (FE	CET ABOVE		WATER YEAR MEAN VALUES	OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	5.46 5.53 5.61	5.96 5.94 5.94	6.19 6.23 6.13			8.10 8.34 8.57	8.41 8.38 8.36	5.03 5.03 5.06	5.34 5.28 5.22	4.29 4.26 4.24	3.69 3.74 3.97	4.10 4.09 4.10
4 5	5.58 5.51	5.95 5.95	6.09 6.00			8.83 9.19	8.33 8.19	5.13 5.14	5.17 5.18	4.22	4.18 4.18	4.17
6 7 8 9	5.52 5.50 5.46 5.42 5.41	5.95 5.95 5.95 5.95 5.91	5.92 6.00 6.12 6.24 6.29	===	7.76 7.75 7.68 7.63 7.66	9.44 9.56 9.91 10.18 10.01	7.82 7.04 6.61 6.16 6.00	5.08 5.06 5.08 5.11 5.11	5.14 5.09 5.04 5.01 5.02	4.18 4.20 4.19 4.19 4.18	4.10 4.15 4.28 4.19 4.10	4.20 4.19 4.17 4.15 4.12
11 12 13 14 15	5.41 5.40 5.43 5.44 5.46	5.76 5.86 6.00 5.99 5.92	6.34 6.42 6.54 6.60 6.57	===	7.70 7.77 7.85 7.92 7.89	9.52 9.25 8.99 8.91 8.93	5.86 5.74 5.67 5.58 5.50	5.08 5.10 5.12 5.15 5.31	4.99 4.90 4.87 4.94 5.17	4.15 4.13 4.16 4.14 4.19	4.04 4.00 3.97 4.06 4.17	4.10 4.09 4.10 4.07 4.15
16 17 18 19 20	5.69 5.87 5.91 5.93 5.94	5.94 5.98 5.98 5.96 6.05	6.52 6.46 6.39 6.29 6.35	===	7.92 7.97 8.00 8.03 8.05	8.92 8.80 8.67 8.55 8.40	5.42 5.36 5.33 5.29 5.24	5.39 5.31 5.21 5.19 5.22	5.24 5.04 4.95 4.88 4.82	4.25 5.15 5.26 4.86 4.66	4.29 4.27 4.28 4.24 4.14	4.15 4.14 4.17 4.32 4.29
21 22 23 24 25	5.94 5.94 5.95 5.94 5.93	6.00 5.82 5.83 6.27 6.38	6.43 6.43 6.42 6.50 6.57	===	8.08 8.13 8.17 8.21 8.24	8.26 8.19 8.19 8.21 8.27	5.20 5.18 5.15 5.13 5.11	5.25 5.30 5.37 5.45 5.47	4.78 4.72 4.67 4.62 4.57	4.48 4.32 4.22 4.15 4.11	4.05 4.02 4.08 4.30 4.39	4.42 4.51 4.66 4.72 4.82
26 27 28 29 30 31	5.94 5.94 5.94 5.95 5.97	6.22 6.18 6.24 6.24 6.19	6.57 6.51 6.48 	===	8.31 8.38 8.30 8.06	8.37 8.41 8.41 8.46 8.47 8.41	5.09 5.07 5.06 5.04 5.05	5.49 5.52 5.53 5.52 5.50 5.41	4.52 4.49 4.47 4.40 4.32	4.07 3.95 3.73 3.68	4.31 4.23 4.18 4.16 4.14 4.11	4.71 4.60 4.57 4.58 4.57
MEAN MAX MIN	5.71 5.97 5.40	6.01 6.38 5.76				8.80 10.18 8.10	6.05 8.41 5.04	5.25 5.53 5.03	4.89 5.34 4.32		4.13 4.39 3.69	4.31 4.82 4.07

05059400 SHEYENNE RIVER NEAR HORACE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

DATE	ר	TIME	STREATION INST.	W, AN- OUS S)	SPE CIF CON DUC ANC (US/	IC - I- (E CM) U	PH STAND ARD NITS)	AI (DEC	RE R C)	TEMP ATU WAT (DEG (000	RE ER C)	HARD NESS TOTA (MG/ AS CACO	S AL /L (3)	CALC DIS- SOL' (MG AS (009	VED /L CA)	MAG SI DI SOL (MG AS (009)	UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS 1	ED /L NA)	SODIUM PERCENT (00932)	1
APR 11	1	1415	134			700	8.0	0 2	20.5	1	0.0	3	300	70		30		59		29	E
DATE	SC T RA	DDIUM AD- DRP- TION ATIO 0931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC	TY S B /L O3) A	ULFAT DIS- SOLVE (MG/L S SO4	DIS D SOL (MC	E, VED CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIC DIS- SOLV (MG/ AS SIO2	/ED /L	SOLII RESII AT 18 DEG DIS SOLI (MG)	DUÉ BO C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703)	OF TI- TS, S- VED /L)	SOLI SOLY (TON PER DAY	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303))
APR 11		2	7	.6	260		150	24		0	.20	6.	.8	- 3	519		505	188		0.71	
	DATE	SC (U	SENIC DIS- DLVED IG/L S AS) 000)	SO (U AS	PRON, DIS- DLVED G/L B) O2O)	IRON DIS SOLV (UG/ AS F	ED L E)	LEAD, DIS- SOLVED (UG/L AS PB) 01049)	SC (U	CHIUM DIS- DLVED JG/L 3 LI)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) O80)	
APR 1	1		5		230		10	<1		47		20		<0.1		1		2		360	

05059500 SHEYENNE RIVER AT WEST FARGO. ND

LOCATION.--Lat 46°53'28", long 96°54'24", in SE1/4SE1/4 sec.31, T.140 N., R.49 W., Cass County, Hydrologic Unit 09020204, on right bank at downstream side of county highway bridge, 1 mi north of West Fargo, 3 mi upstream from Maple River, and at mile 24.5.

DRAINAGE AREA.--8,870 $\rm mi^2$, approximately, of which about 5,780 $\rm mi^2$ is probably noncontributing, including 3,800 $\rm mi^2$ in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to November 1902 (gage heights only), April 1903 to October 1905, March to August 1919, September 1929 to current year. Published as "at or near Haggart" 1902-7, 1919. Records for March to November 1902 and November 1905 to June 1907, published in WSP 100, 171, 207, and 245, have been found to be unreliable and should not be used. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WSP 1388: 1904(M). WSP 1728: Drainage area. See also "PERIOD OF RECORD."

GAGE.--Water-stage recorder. Datum of gage is 877.19 ft above National Geodetic Vertical Datum of 1929. June 27, 1933, to September 1969 on left bank about 600 ft downstream on unimproved channel at same datum. See WSP 1728 or 1913 for history of changes prior to June 27, 1933.

REMARKS.--Estimated daily discharges: Oct. 1-9, 27-28, Nov. 20 to Mar. 31, and May 26 to June 6. Records good except those for periods of estimated daily discharges, which are poor. Flow regulated to a large degree by Lake Ashtabula (station 05057500) 246 mi upstream. Above 3,000 ft3/s overflow that occurs upstream from the gaging station Sheyenne River near Horace (station 05059400) bypasses this station by flowing into the Maple River drainage to the west or into the Wild Rice River drainage to the east. This overflow is not included in the flow for this station. During some years, flow is diverted from just above the station into the Red River of the North in order to maintain adequate supply for municipal uses. Figures of daily discharge do not include this diversion.

AVERAGE DISCHARGE (ADJUSTED).--61 years (water years 1904-5, 1930-88), 181 ft^3/s , 131,100 acre-ft/yr; median of yearly mean discharges, 150 ft^3/s , 109,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,480 ft³/s, Apr. 21, 1979, gage height, 22.12 ft, backwater from Red and/or Maple Rivers; maximum gage height, 22.25 ft, July 5, 1975, backwater from Red and/or Maple Rivers; minimum daily, 1.0 ft³/s, Sept. 23, 1976, caused by diversion to Red River of the North.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 450 ft³/s, Mar. 10, gage height, 9.28 ft, backwater from ice; minimum daily, 4.9 ft³/s, Aug. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES JUL AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN 4.9 7.2 7.5 75. 5.9 8.3 5.0 ---832.2 652.6 TOTAL. 27.4 26.8 21.1 MEAN 15 MAX 5.0 4.9 AC-FT

CAL YR 1987 TOTAL 143105 MEAN 392 MAX 2800 MIN 55 AC-FT 283800 WTR YR 1988 TOTAL 40118.8 MEAN 110 MAX 440 MIN 4.9 AC-FT 79580

05059500 SHEYENNE RIVER AT WEST FARGO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969 to current year.

DATE		TIME	STREAFLOV	W, AN- OUS S)	SPE CIF CON DUC ANC (US/	IC - T- E CM)	PH (STAN ARE UNITS (OO40	3)	TEMPI ATUR AIR (DEG (0002	C)	TEMP ATU WAT (DEG (000	RE ER C)	HARI NESS TOTA (MG) AS CACO	S AL /L	CALC DIS SOL (MG AS (009	VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS N	D L	SODIUM PERCENT (00932)
OCT																					
28 FEB		1615	128			860			13	3.5		4.0									
03		1325	128			780			-19	9.0											
APR 07		1315	232			705	8.	40	20	0.5		2.5	:	250	60		25		46		28
MAY																		3.5		32	
13 JUN		1420	77			935				3.5		7.5									
17 JUL		1240	77			930			2	1.5	2	2.5									
13 28 SEP		0915 1050	20 5	.3		790 795	8.	30		3.0		2.0		290	68		30		62		31
07		1710	23			700			22	2.0	1	8.0									
DATE	S	SODIUM AD- SORP- TION AATIO	POT SI DI SOL (MG AS (009)	UM, S- VED /L K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULFA DIS- SOLV (MG/ AS SO (OO94	ED L	CHLC RIDI DIS- SOL' (MG, AS (E, VED /L CL)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILIO DIS- SOLV (MG, AS SIOO (0099	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLID SOLV (TOM PER DAY (7030	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 07		1	6	.8	220		130		21		0	.20	10			458		432	287		0.62
JUL																					
28		2	9	•9	240		170		31		0	.30	17			525		531		.50	0.71
	DATE	SC (U AS	SENIC DIS- DLVED IG/L S AS)	SO (U AS	RON, IS- LVED G/L B) 020)	SO (U AS	ON, DIS- DLVED IG/L FE) O46)	SO (U AS	AD, IS- LVED G/L PB) 049)	SO (U AS	HIUM DIS- DLVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U AS	CLYB- CNUM, OIS- DLVED G/L MO) 060)	NI SO (U	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
	7		2		210		20		<1		41		70		0.4		1		2		290
JUL 28	3		8		200		10		<1		60		<10		0.1		3		<1		470

05059600 MAPLE RIVER NEAR HOPE, ND

LOCATION.--Lat 47°19'30", long 97°47'25", in NW1/4NW1/4 sec.4, T.144 N., R.56 W., Steele County, Hydrologic Unit 09020205, 100 ft downstream from box culvert on State Highway 38, 500 ft east of the intersection of State Highway 32 and 38, and 3 mi west of Hope.

DRAINAGE AREA. -- 20.2 mi2, of which about 2.8 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1964 to current year (seasonal records only since 1983).

GAGE .-- Water-stage recorder. Datum of gage is 1,296.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Mar. 1-27 and Apr. 5-12. Records good except those for periods of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--18 years (water years 1965-82), 2.82 ft3/s, 2,040 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 900 ft³/s, Apr. 18, 1979, gage height, 5.86 ft, backwater from ice; maximum gage height, 6.49 ft, Mar. 21, 1987; no flow for many months each year.

EXTREMES FOR CURRENT YEAR.--Maximum observed discharge, 75 ft³/s, Mar. 24, gage height, 3.78 ft, backwater from ice; maximum gage height, 4.70 ft, Mar. 12, backwater from ice; no flow for several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						.50	1.0	.30	.00	.00	.00	.00
							.84	20	.00	.00	.00	.00
2						1.0		.29 .25 .23		.00	.00	.00
3						2.0 5.0	.68	.25	.00			
2 3 4 5						5.0	.65	.25	.00	.00	.00	.00
5						4.7	.62	.20	.00	.00	.00	.00
6 7 8						4.4	.60	.19	.00	.00	.00	.00
7						4.0	.58	.16	.00	.00	.00	.00
8						7.0	.58 .56	.15	.00	.00	.00	.00
9						10	.54	.11	.00	.00	.00	.00
10						2.0	·54	.05	.00	.00	.00	.00
11						1.0	-50	.04	.00	.00	.00	.00
12						.90	.50 .65	.04	.00	.00	.00	.00
13						.80	.87	.04	.00	.00	.00	.00
						.00	74	.02	.00	.00	.00	.00
14						.70 .60	.74 .73	.02	.00	.00	.00	.00
15						.60	•15	.02	.00	.00	.00	.00
16						50	.71	.02	.00	.00	.00	.00
17						2.0	.69	.01	.00	.00	.00	.00
18						4.0	.59	.01	.00	.00	.00	.00
						4.0	.58	.02	.00	.00	.00	.00
19 20						5.0	• 20				.00	.00
20						4.0	•51	.01	.00	.00	.00	.00
21						5.0	.48	.00	.00	.00	.00	.00
22						12	.47	.00	.00	.00	.00	.00
22						25	.40	.00	.00	.00	.00	.00
22 23 24						50	.40	.00	.00	.00	.00	.00
25						20	.36	.00	.00	.00	.00	.00
26						15	.35	.00	.00	.00	.00	.00
20						10	• 27	.00	.00	.00	.00	.00
27							.33					.00
28 29						7.2	.31	.00	.00	.00	.00	.00
29						4.3	.30	.00	.00	.00	.00	.00
30						2.1	.30	.00	.00	.00	.00	.00
31						1.5		.00		.00	.00	
TOTAL						212.20	16.86	2.16	0.00	0.00	0.00	0.00
MEAN						6.85	.56	.070	.00	.00	.00	.00
MAX						50	1.0	.30	.00	.00	.00	.00
MIN						.50	.30	.00		.00	.00	.00
AC-FT						421	33	4.3	.00	.0	.0	.00
AC-FT						441	"	4.7		••	••	

05059600 MAPLE RIVER NEAR HOPE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
MAR 04 07 APR	1015 1645	31 10	680 750	7.80	2.0	0.5	220	48	24	29	20
13	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR O4	0.9	22	108	160	23	0.10	16 ANGA-	425 MC	387 DLYB- SE	35.1 SLE- ST	0.58
	S (DIS- OLVED S UG/L (S AS) A	DIS- SOLVED SO UG/L (1	DIS- I DLVED SO UG/L (US FE) AS	DIS- I DLVED SO JG/L (U S PB) AS	THIUM NEDIS- I DLVED SO UG/L (US LI) AS	ESE, MER DIS- I DLVED SO JG/L (I S MN) AS	RCURY DE DIS- D DLVED SO JG/L (U S HG) AS	CNUM, NI DIS- D DLVED SO UG/L (U S MO) AS	UM, DIS- II DLVED SC IG/L (USSE) AS	TIUM, DIS- DLVED UG/L S SR)
MAR O4	1	3	40	100	<1	28	170	0.1	1	1	220

05059700 MAPLE RIVER NEAR ENDERLIN, ND

LOCATION.--Lat 46°37'18", long 97°34'25", on west line sec.2, T.136 N., R.55 W., Ransom County, Hydrologic Unit 09020205, on left bank 25 ft downstream from county highway bridge, 1 mi downstream from South Branch, and 1.2 mi east of Enderlin.

DRAINAGE AREA. -- 843 mi2, of which about 47 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1956 to current year.

REVISED RECORDS. -- WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,056.72 ft above National Geodetic Vertical Datum of 1929. Sept. 21, 1956 to June 9, 1969, recording gage on right bank at same datum. Prior to Sept. 20, 1956, nonrecording gage at site 25 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Dec. 31 to Mar. 22, Apr. 27 to May 12, June 24 to July 19, and Aug. 1-30. Records fair except those for periods of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--32 years, 41.0 ft3/s, 29,700 acre-ft/yr; median of yearly mean discharges, 26 ft3/s, 18,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,610 ft³/s, June 30, 1975, gage height, 15.41 ft; minimum daily, 0.1 ft³/s, Dec. 7-9, 1963.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 9	0815	*302	a*7.84	Mar. 26	1700	199	5.34

Minimum discharge, 0.62 ft3/s, Sept. 6. a - Backwater from ice

		DISCHARGE,	IN CUBIC	FEET PER	SECOND, MEAN	WATER VALUE	YEAR OCTOBER S	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.7 1.7 1.9 1.8 1.7	2.1 2.2 2.7 2.7 2.7	2.4 2.2 2.2 2.2 2.2	2.0 1.9 1.9 1.8 1.7	1.7 1.7 1.7 1.7	34 39 36 20 17	115 99 92 87 79	7.2 6.5 5.7 5.6 5.5	3.6 3.1 2.9 2.6 2.7	1.7 1.8 1.8 1.9 2.0	2.4 3.8 3.8 3.8 3.7	.95 .86 1.0 1.0
6 7 8 9	1.7 1.7 1.8 2.0 2.0	2.9 2.9 3.0 3.6 3.4	2.2 2.3 2.2 2.3 2.3	1.8 1.8 1.9	1.6 1.6 1.6 1.6	18 23 35 92 111	69 61 56 50 42	5.3 5.2 5.1 5.0 4.9	2.5 2.5 2.4 2.3 2.3	1.9 1.8 1.9 1.9	3.7 3.6 3.6 3.6 3.4	.62 1.7 2.0 2.1 1.7
11 12 13 14 15	2.3 2.1 2.1 2.1 2.3	3.3 3.2 2.9 2.9	2.3 2.5 2.2 2.2	1.9 2.0 2.1 2.1 2.2	1.7 1.8 1.9 2.0 2.1	142 140 135 132 128	36 33 30 26 24	4.7 4.6 3.9 3.6 3.2	2.3 2.3 2.8 3.1 2.9	1.6 1.4 1.6 2.3 1.8	3.1 2.9 2.6 2.4 2.2	2.6 2.7 1.2 1.9 3.0
16 17 18 19 20	2.5 2.4 2.4 2.1 1.9	3.1 2.5 2.2 2.2 2.2	2.2 2.2 2.1 2.0 2.0	3.0 2.9 2.7 1.4 1.3	2.3 2.5 2.1 2.2 2.2	121 115 108 102 95	22 21 18 17 15	3.2 3.1 3.0 3.2 3.0	2.9 2.5 2.3 2.5 2.3	1.5 1.5 1.5 1.8 1.8	1.9 1.7 1.4 1.4	3.5 3.7 3.6 4.3 2.6
21 22 23 24 25	1.9 2.0 1.9 2.0 2.0	2.2 2.4 2.2 2.3 2.3	2.0 2.0 2.1 2.1 2.1	1.3 1.4 1.6 1.8	2.2 2.1 2.0 1.9 2.0	89 82 94 127 128	14 15 14 13	3.4 3.3 3.2 3.0 2.8	1.7 1.4 1.2 1.4	2.2 2.1 1.9 2.4 1.8	1.4 1.4 1.4 1.4	2.3 2.1 2.0 2.0 1.9
26 27 28 29 30 31	2.0 2.1 2.1 2.2 2.1 2.0	2.2 2.3 2.3 2.3 2.4	2.3 2.3 2.2 2.1 2.1		2.5 3.3 15 47	114 150 171 160 137 131	11 11 9.5 8.7 8.0	3.4 4.2 3.4 3.5 4.1 3.3	1.5 1.5 1.6 1.6	1.7 2.6 2.3 2.3 2.3 2.6	1.4 1.4 1.3 1.3	2.0 1.7 2.1 2.3 1.9
TOTAL MEAN MAX MIN AC-FT	62.5 2.02 2.5 1.7 124		67.8 2.19 2.5 2.0 134		15.3 3.98 47 1.6 229	3026 97.6 171 17 6000	1107.2 1 36.9 115 8.0 2200	29.1 4.16 7.2 2.8 256	67.7 2.26 3.6 1.2 134	59.5 1.92 2.6 1.4 118	71.5 2.31 3.8 1.3 142	62.04 2.07 4.3 .62 123

CAL YR 1987 TOTAL 23245.3 MEAN 63.7 MAX 1940 MIN 1.3 AC-FT 46110 WTR YR 1988 TOTAL 4905.44 MEAN 13.4 MAX 171 MIN .62 AC-FT 9730

05059700 MAPLE RIVER NEAR ENDERLIN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREA FLOV INSTA TANEO (CFS	N, CO AN- DU DUS AN B) (US	FIC N- CT-	PH (STAND- ARD UNITS) (00400)	AI (DEG	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NESS TOTA (MG, AS CACO	S AL /L	CALC: DIS- SOL' (MG, AS (VED /L CA)	MAG SI DI SOL' (MG AS	UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS M	ED L NA)	SODIUM PERCENT (00932)
OCT																		
28 DEC	1320	2.	.1	1650		1	3.5		6.5									
17 JAN	1340	2.	.2	1700		-	3.0		2.0									
15	1345	2	.2	1900		-	1.0		1.0									
FEB 17	1740	2	•5	1680			0.0		0.5									
MAR 31	1515	182		850	8.10	5	6.0		0.5		310	73		30		53		26
MAY 12	1310	4	.6	1540		. 2	3.0	1	8.5									
JUN 16	1235	2	.8	2000		2	1.0	1	9.5									
JUL 19	1305	1	.8	1760	7.80	2	2.0	2	2.0		710	180		62		120		27
AUG 31	1330	1	.3	1710		. 2	4.0	1	8.5									
DATE	SODIUM AD- SORP- TION RATIO (00931)	SOLV (MG,	JM, LIN S- L VED (M /L A K) CA	AB G/L	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS SOL (MG AS	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIO DIS- SOLV (MG, AS SIO2 (0099	VED /L	SOLI RESI AT 18 DEG DI SOL' (MG,	DUÉ 30 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703)	OF TI- TS, S- VED /L)	SOLID SOLV (TOM PER DAY	S- MED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR			450		070				-	40					cc7	289		0.80
31 JUL	1	14	170		230	33			.20	19			589		553			
19	2	12	380		540	68		0	.30	19		10	080	1	410	5.	.31	1.47
D	S (SENIC DIS- SOLVED UG/L US AS)	BORON, DIS- SOLVED (UG/L AS B) (01020)	SOI (UC AS	IS- LVED S G/L (FE) A	JEAD, DIS- SOLVED UG/L US PB) D1049)	SO (U AS	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SOI (UC AS	CURY IS- LVED G/L HG) B90)	DE SO (U AS	LYB- NUM, DIS- DLVED G/L MO) 060)	NI SO (U AS	UM, DIS- DLVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
MAR 31. JUL		4	210		40	<1		43		100		0.2		2		2		320
19.	••	5	260		20	<1		130		750		0.2		1		<1		970

05060500 RUSH RIVER AT AMENIA, ND

LOCATION.--Lat 47°01'00", long 97°12'50", in SE¼ANW¼ sec.24, T.141 N., R.52 W., Cass County, Hydrologic Unit 09020204, on left bank on downstream side of bridge on State Highway 18, 0.6 mi north of Amenia.

DRAINAGE AREA .-- 116 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1946 to current year.

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 943 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1913 for history of changes prior to June 10, 1961.

REMARKS .-- Estimated daily discharges: Nov. 17 to Feb. 9 and Feb. 26 to Apr. 1. Records fair except those for periods of estimated discharges, which are poor.

AVERAGE DISCHARGE.--42 years, 9.47 ft3/s, 6,860 acre-ft/yr; median of yearly mean discharges, 6.2 ft3/s, 4,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,490 ft³/s, Apr. 19, 1979, gage height, 10.37 ft; maximum gage height, 12.15 ft, Mar. 23, 1966, backwater from ice; no flow at times each year.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 27 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 12	1930	ice jam	*a10.02	Apr. 1		*b30	Backwater from ice

No flow for several months. a - Backwater from ice b - About

		DISCHARGE,	IN CUBI	C FEET		D, WATER EAN VALUE		BER 1987 T	O SEPTEMBI	ER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.50	.28	.00	2.0	15	2.4	.03	.00	.00	.00
2	.00	.00	.50	.26	.00	3.0	21	2.2	.00	.00	.00	.00
7	.00	.00	.50	.24	.00	4.0	17	2.4	.0	.00	.00	.00
3 4	.00	.00	.50	.22	.00	5.0	16	2.4	.0	.00	.00	.00
5	.00	.00	•50	.20	.00	7.0	15	2.1	.00	.00	.00	.00
6	.00	.00	.55	.18	.00	4.0	14	1.9	.00	.00	.00	.00
7	.00	.18	.60	.16	.00	3.0	14	1.7	.00	.00	.00	.00
8	.00	.48	.60	.12	.00	2.0	12	1.8	.00	.00	.00	.00
9	.00	.51	.60	.08	.00	1.0	11	1.6	.00	.00	.00	.00
10	.00	.43	.60	.06	.00	.60	9.8	1.3	.00	.00	.00	.00
11	.00	.40	.60	.04	.00	.50	8.7	1.0	.00	.00	.00	.00
12	.00	1.8	•55	.02	.00	.40	7.0	.93	.00	.00	.00	.00
			• 22						.00	.00	.00	.00
13	.00	2.1	.50	.00	.00	.60	5.4	.91				
14	.00	1.1	.70	.00	.00	1.0	5.9	.96	.00	.00	.00	.00
15	.00	.81	1.0	.00	.00	1.5	4.9	•95	.00	.00	.00	.00
16	.00	•72	1.2	.00	.00	2.0	4.2	.83	.00	.00	.00	.00
17	.00	.70	1.0	.00	.00	2.3	3.3	.75	.00	.00	.00	.00
18	.00	.65	.75	.00	.00	2.6	2.9	.69	.00	.00	.00	.00
19	.00	.65	.65	.00	.00	3.0	2.3	.64	.00	.00	.00	.00
20	.00	.60	.60	.00	.00	4.0	2.4	•55	.00	.00	.00	.00
									00	00	00	00
21	.00	•55	•55	.00	.00	4.0	2.3	.40	.00	.00	.00	.00
22	.00	•55	.50	.00	.00	5.0	1.8	.50	.00	.00	.00	.00
23	.00	•55	.50	.00	.00	6.0	1.6	.53	.00	.00	.00	.00
24	.00	•55	• 45	.00	.00	7.0	1.6	.52	.00	.00	.00	.00
25	.00	•55	.40	.00	.00	7.5	1.6	.42	.09	.00	.00	.00
26	.00	.50	.35	.00	.20	8.0	1.8	.32	.13	.00	.00	.00
27	.00	.50	.35	.00	.40	8.5	1.4	.25	.01	.00	.00	.00
28	.00	.50	.35	.00	.50	9.0	1.2	.21	.00	.00	.00	.00
	.00	.50		.00	.60	9.5	1.0	.16	.00	.00	.00	.00
29			• 35							.00	.00	.00
30	.00	.50	.30	.00		10	1.3	.11	.00			
31	.00		.30	.00		12		.09		.00	.00	
TOTAL	0.00		17.40	1.86	1.70	136.00	207.4	31.52	0.26	0.00	0.00	0.00
MEAN	.00	.55	.56	.060	.059	4.39	6.91	1.02	.009	.00	.00	.00
MAX	.00	2.1	1.2	.28	.60	12	21	2.4	.13	.00	.00	.00
MIN	.00	.00	.30	.00	.00	.40	1.0	.09	.00	.00	.00	.00
AC-FT	.0	32	35	3.7	3.4	270	411	63	.5	.0	.0	.0
AC-FI	.0	12))	2.1	2.4	210	411	0)	•)	••	•	

TOTAL 5009.04 MEAN 13.7 MAX 350 MIN .00 AC-FT 9940 TOTAL 412.52 MEAN 1.13 MAX 21 MIN .00 AC-FT 818 CAL YR 1987 WTR YR 1988

05060500 RUSH RIVER AT AMENIA, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF	W, AN- OUS	SPE CIF CON DUC ANC (US/ (OOO	IC T- E CM)	PH (STAN ARI UNITS	ND- 0 5)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC (009	S AL /L 03)	CALC DIS SOL (MG AS	VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIO DIS- SOLVO (MG AS (009)	ED /L NA)	SODIUM PERCENT (00932)
DEC 17		1505	0	.94	2	200			-	3.0		0.0									
05		1330	14			852	8	.10	1	1.5		2.5		350	84		34		44		21
MAY 10 25		1355 1035		.2	1	370				1.5		5.5 7.5		==				==			
DATE		SODIUM AD- SORP- TION RATIO 00931)		VED (K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULFA DIS- SOLV (MG, AS SO	VED /L	CHL RID DIS SOL (MG AS (009	E, VED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703)	OF TI- TS, S- VED /L)	SOLI SOLI (TOI PE) DAI	VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 05		1	0	.4	220		210		23		0	.20	15			583		555	22	2	0.79
05	DATE	ARS	SENIC DIS- DLVED JG/L S AS)	BO D SO (U AS	RON, OIS- LVED G/L B) O2O)	SO (U AS	ON, OIS- OLVED G/L FE) O46)	SO (U AS	AD, IS- LVED G/L PB) 049)	LIT D SO (U	HIUM IS- LVED G/L LI) 130)	MA NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	MER D SO (U	CURY IS- LVED G/L HG) 890)	MO DE SO (U	CLYB- CNUM, DIS- DLVED G/L G MO) 060)	SE NI D SO (U	LE- UM, IS- LVED G/L SE) 145)	ST D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
APR O	5		3		200		30		<1		64		190		0.4		2		2		400

O5064500 RED RIVER OF THE NORTH AT HALSTAD, MN (National stream quality accounting network station and radiochemical program station)

LOCATION.--Lat 47°21'10", long 96°50'50", on line between secs.24 and 25, T.145 N., R.49 W., Traill County, Hydrologic Unit 09020107, on left bank on upstream side of highway bridge, 0.5 mi west of Halstad, 2.5 mi downstream from Wild Rice River, and at mile 375.2.

DRAINAGE AREA. -- 21,800 mi2, approximately, including 3,800 mi2 in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1936 to June 1937 (no winter records), April 1942 to September 1960 (spring and summer months only), May 1961 to current year.

REVISED RECORDS.--WSP 1388: 1936, 1950. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 826.65 ft above National Geodetic Vertical Datum of 1929. Prior to July 17, 1961, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 21 to Apr. 2. Records good except those for period of estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--27 years (1961-88), 1,799 ft^3/s , 1,303,000 acre-ft/yr; median of yearly mean discharges, 1,760 ft^3/s , 1,280,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 42,000 ft³/s, Apr. 22, 1979, gage height, 39.00 ft; minimum observed, 5.4 ft³/s, Oct. 8, 9, 12-14, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood in 1897 reached a stage of about 38.5 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,010 ft3/s, Mar. 28, gage height, 12.42 ft; maximum gage height, 12.57 ft, Mar. 12, backwater from ice; minimum daily, 64 ft3/s, July 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN FEB MAR APR MAY 683 540 1280 778 311 135 141 333 ---TOTAL 233 64 MEAN MAX MTN AC-FT

CAL YR 1987 TOTAL 579423 MEAN 1587 MAX 9740 MIN 378 AC-FT 1149000 WTR YR 1988 TOTAL 263877 MEAN 721 MAX 4940 MIN 64 AC-FT 523400

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1961-67, 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
NOV 04	1430	449	710	8.50	9.0	8.0	9.2	11.5	98	25	47	310
JAN 26	1435	292	830	8.00	-3.0	0.0	2.6	12.1		30	30	360
MAR O2	1330	667	775	7.90	-3.0	0.0	7.6	11.5	79			310
APR 11	1715	580	580		21.0	4.5						
28 JUN	1205	954	658	8.60	17.5	10.5	24	13.0	117	0	20	300
21 JUL	1250	319	765	8.30	27.0	26.5	64	6.5	81			290
13 21 SEP	1725 1200	161 204	685 670	8.90	26.5 27.0	27.5 24.0	82	6.1	73	140	39	270
02	1430	102			23.0	19.0						
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (00419)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	CAR- BONATE WATER WH IT FIELD MG/L AS CO3 (00447)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
NOV												
04 JAN	66	34	38	21	1	6.8	270	316	7	100	19	0.30
26 MAR	77	40	47	22	1	9.0	310	378	0	120	18	0.30
02 APR	63	37	44	23	1	8.5	282	344	0	89	31	0.30
28 JUN	65	34	24	14	0.6	6.0	227	270	4	110	13	0.20
21 JUL	58	35	54	28	1	8.3	242	290	2	110	36	0.50
21	50	35	44	25	1	8.8	224	235	19	96	27	0.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (OO625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)
NOV												
04 JAN	7.3	453	435	0.62	549	0.010	0.210	0.170	0.240	0.31	1.3	0.230
26 MAR	16	503	517	0.68	397	0.010	0.580	0.410	0.420	0.54	1.4	0.160
02 APR	16	465	462	0.63	837	0.020	0.940	0.330	0.300	0.39	1.4	0.170
28 JUN	8.0	407	398	0.55	1050	0.020	0.160	0.030	0.040	0.05	0.80	0.120
21 JUL	12	467	463	0.64	402	0.020	0.930	0.050	0.080	0.10	0.70	0.490
21	5.0	439	403	0.60	242	0.010	0.300	0.040	0.030	0.04	1.3	0.930

O5064500 RED RIVER OF THE NORTH AT HALSTAD, MN--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (O1025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV											
04 JAN	0.180	0.130	<10	3	140	<0.5	<1	<1	<3	4	9
26 MAR	0.140	0.110									77
02 APR	0.140	0.090	<10	3	78	<0.5	<1	<1	<3	3	11
28 JUN	0.080	0.040	<10	3	93	<0.5	<1	<1	<3	2	11
21 JUL	0.340	0.260									
21	0.600	0.550	<10	11	61	1	45	<1	<3	5	7
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV	<5	35	5	<0.1	<10	5	<1	1.0	250	<6	8
O4 MAR											
02 APR	<5	37	45	<0.1	<10	3	<1	<1.0	230	<6	8
28 JUL	<5	26	3	<0.1	<10	5	<1	1.0	230	<6	7
21	<5	14	2	<0.1	<10	5	1	<1.0	230	10	<3
DATE	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
NOV	4.3										-
04 JAN	2.8	<0.4	8.3	<0.4	6.1	<0.4	0.08	1.5	68	82	97
26 MAR									47	37	56
02 APR									23	41	100
28 JUN	1.5	<0.4	12	<0.4	8.5	<0.4	0.08	2.2	117	301	99
21									130	112	99
JUL 21									145	80	100

O5064900 BEAVER CREEK NEAR FINLEY, ND (Hydrologic bench-mark station)

LOCATION.--Lat 47°35'40", long 97°42'18", in NE1/4 sec.31, T.148 N., R.55 W., Steele County, Hydrologic Unit 09020109, on right bank 500 ft upstream from bridge on county highway, and 7 mi northeast of Finley.

DRAINAGE AREA .-- 160 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1964 to current year.

GAGE.--Water-stage recorder and concrete broad-crested weir. Datum of gage is 1,170.08 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Nov. 22 to Apr. 3 and Aug. 1-18. Records fair except those for periods of estimated daily discharges, which are poor. Flow affected since June, 1987 by flood-control dam 2.0 mi

AVERAGE DISCHARGE.--24 years, 9.04 ft³/s, 6,550 acre-ft/yr; median of yearly mean discharges, 9.0 ft³/s, 6,520 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,900 ft³/s, Apr. 19, 1979, gage height, 8.35 ft, backwater from ice; maximum gage height, 9.70 ft, Mar. 14, 1966, backwater from ice; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 130 ft³/s, Mar. 24, gage height, 4.07 ft, backwater from ice; no flow for several months.

		DISCHARGE,	IN CUBIC	FEET PE		WATER N VALU	YEAR OCTOBE	R 1987	TO SEPTEMBE	R 1988		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.65	.28	.15	.00	.00	.70	30	.78	.02	.00	1.5	.00
2	.63	.28	.13	.00	.00	.60	50	.66	.00	.00	.70	.00
3	.52	.28	.11	.00	.00	.50	86	.55	.00	.00	1.0	.00
4	.48	.32	.08	.00	.00	7.5	73	.49	.00	.00	.70	.00
5	.40	.28	.04	.00	.00	15	56	.46	.00	.00	•50	.00
6	.36	.26	.02	.00	.00	15	43	.46	.00	.00	.30	.00
7	-34	.27	.00	.00	.00	45	35	•43	.00	.00	.25	.00
8	-35	.31	.00	.00	.00	50	32	.52	.00	.00	.20	.00
9	.36	.27	.00	.00	.00	60	30	.49		.00	.14	.00
10	.32	.27	.00	.00	.00	50	23	.40	.00	.00	• 14	.00
11	.28	.26	.00	.00	.00	35	18	.37	.00	.00	.12	.00
12	.28	.27	.00	.00	.00	22	15	.45	.00	.00	1.5	.00
13	.27	.28	.00	.00	.00	15	15	.46	.00	9.8	5.0	.00
14	.26	.28	.00	.00	.00	10	18	.31	.00	29	1.5	.00
15	.25	.29	.00	.00	.00	8.0	15	.38	.00	9.7	.40	.00
16	.26	•34	.00	.00	.00	7.0	12	.40	.00	4.8	.15	.00
17	.26	.33	.00	.00	.00	6.0	9.6	.38	.00	7.1	.04	.00
18	.25	.31	.00	.00	.00	5.5	7.7	.32	.00	35	.01	.00
19	.25	.31	.00	.00	.00	5.0	5.9	.33	.00	25	.01	.00
20	•25	.31	.00	.00	.00	4.5	4.3	.34	.00	17	.01	.00
21	.25	.30	.00	.00	.00	10	3.2	.34	.00	13	.00	.00
22	.25	.26	.00	.00	.00	30	2.7	•34	.00	10	.00	.00
23	.26	.24	.00	.00	.00	75	2.2	.31	.00	6.8	.00	.00
24	.26	.22	.00	.00		130	1.8	.29	.00	4.2	.00	.00
25	.26	.20	.00	.00	.00	100	1.5	.25	.00	2.8	.00	.00
26	.28	.20	.00	.00	.10	80	1.3	.22	.00	1.8	.00	.00
27	.28	.19	.00	.00	.50	60	1.3	.23	.00	1.1	.00	.00
28	.28	.18	.00	.00	1.0	40	1.1	.23	.00	.75	.00	.00
29	.27	.17	.00	.00	.80	35	1.0	.18	.00	.57	.00	.00
30	.26	.16	.00	.00		30	.92	.07	.00	.40	.00	.00
31	.27		•00	.00		40		.05		.31	.00	
TOTAL	9.94			0.00		992.30	595.52	11.49		179.13	14.20	0.00
MEAN	.32		.017	.00	.083	32.0	19.9	.37	.001	5.78	.46	.00
MAX	.65	.34	.15	.00	1.0	130	86	.78	.02	35	5.0	.00
MIN	.25	.16	.00	.00	.00	.50	.92	.05	.00	.00	.00	.00
AC-FT	20	16	1.1	.0	4.8	1970	1180	23	.04	355	28	.0

CAL YR 1987 TOTAL 8667.31 MEAN 23.7 MAX 450 MIN .00 AC-FT 17190 WTR YR 1988 TOTAL 1813.45 MEAN 4.95 MAX 130 MIN .00 AC-FT 3600

05064900 BEAVER CREEK NEAR FINLEY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

					222		ne rishte o	01000	. ,,,,	, 10 00		YGEN,		LI-	STREP-	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM (00095	(ST A UNI	H AND- RD TS) 400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	B: I' (FT)	UR- ID- TY U) 076)	OXYGEN DIS- SOLVE (MG/L (00300	, (i	DIS- DLVED PER- CENT ATUR- FION)	FE 0. UM (CO 100	RM, CAL, 7 -MF LS./ ML) 625)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
OCT						6.1										
NOV NOV	1005	0.24	169		8.20	0.0	3.5	1	7	12.		96		24	88	610
25 MAR	1255	0.20	68		7.10	-3.5	1.5			10.	4	74				
04	1252 1410	1.0	121 142			3.0 1.0	0.5			=						==
24 31	1350 1010	130 39	89	-	8.20	3.0	1.0		3.3	11.	-	82		28	250	320
APR 13	1510	12	109			10.0	11.0									
MAY 17	1240	0.38	164		7.90	16.5	16.0		7	12.	2	126		360	44	600
AUG 19	1100	0.01				19.0	21.0				_					
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SO) PER	DIUM CENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALI LIN: WAT TOT FI: MG/I	KA- ITY WH IT ELD L AS CO3	BICAR- BONATE WATER WH IT FIELD MG/L A HCO3 (00450	BOI WI WI F S MG	CAR- NATE ATER H IT IELD /L AS CO3	SO (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 20	140	(00925)	130	, (00	932)	(00931)	(00935) 15	(00)	419) 386	47		0	46		36	0.30
NOV	140	0)	100				1)						40		50	0.70
25 MAR			-	-					165	20	1	0				
31 MAY	72	34	67		31	2	7.8		166	- 5			27		12	0.20
17	130	66	130		32	2	7.0		155	18		0	53		30	0.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L (70301	SOL SO SO TO P	IDS, IS- LVED ONS ER -FT) 303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NO2- D SOI (MC	TRO- EN, +NO3 IS- LVED G/L N) 631)	NITRO GEN, AMMONI TOTAL (MG/L AS N) (00610	A AMI	ITRO- GEN, MONIA DIS- OLVED MG/L S N) 0608)	AMM D SO (M	TRO- EN, ONIA IS- LVED G/L NH4) 846)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)
OCT 20	14	1060	109)	1.44	0.69	<0.010	<0	.100	0.05)	0.030		0.04	1.5	0.040
MAR 31	16	593	58		0.81	62.6	0.080		.90	0.15		0.130		0.17	1.4	0.190
MAY 17	6.7	1160	99		1.58	1.19	<0.010		.100	0.04		0.050		0.06	1.2	0.070
DAT	PHOR PHOR DI SOL (MG AS	PHO OS- PHO OUS OR S- DI VED SOL /L (MG P) AS	OS- ROUS A IHO, I S- VED S /L (P) A	LUM- NUM, DIS- DLVED UG/L S AL) 1106)	ARSE	NIC BARI S- DIS VED SOLV /L (UC AS) AS	BE UM, LI 3- DI ED SO 4/L (U BA) AS	RYL- UM,	CADM	CIUM M S- D VED S /L (CD) A	HRO- IUM, IS- OLVED UG/L S CR)	COBA DIS SOLV	ED (L (CO)	COPP DIS SOL (UG AS (010	VED SOI /L (UCCU) AS	ON, IS- LVED G/L FE) O46)
OCT																
20 MAR			.010	<10		3		<0.5		<1	1		<3		<1	12
31 MAY			.110	<10		2		<0.5		6	1		<3		2	40
17	0.	070 0	.020	<10		3	61	<0.5		<1	2		<3		<1	12

05064900 BEAVER CREEK NEAR FINLEY, ND--CONTINUED

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (O1130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT 20	<5	96	160	0.1	<10	4	<1	<1.0	640	<6	6
MAR 31	<5	42	160			4	1	<1.0	260	<6	5
MAY	()	42	100	0.4	<10	4		VI.0	200		
17	<5	88	2	<0.1	<10	3	<1	1.0	630	<6	<3
DATE	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAR 31 MAY	12	<0.4	17	1.2	12	1.1	0.05	7.4	17	1.8	98
17									36	0.04	68

Date

Mar. 11

CAL YR 1987 WTR YR 1988 Time

1545

05066500 GOOSE RIVER AT HILLSBORO, ND

LOCATION.--Lat 47°24'34", long 97°03'39", in NW1/4 sec.5, T.145 N., R.50 W., Traill County, Hydrologic Unit 09020109, on right bank 600 ft upstream from Foogman Dam in Hillsboro, and 27.5 mi upstream from mouth.

DRAINAGE AREA. -- 1,203 mi2, of which about 110 mi2 is probably noncontributing.

Discharge (ft3/s)

587

TOTAL 93046.1 MEAN 255 MAX 3500 MIN 5.8 TOTAL 22738.12 MEAN 62.1 MAX 1010 MIN .00

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1931 to current year (no winter records 1932-34). Monthly discharge only for some periods, published in WSP 1308.

GAGE.--Water-stage recorder and masonry dam. Datum of gage is 879.52 ft above National Geodetic Vertical Datum of 1929. Sept. 26, 1941, to Oct. 27, 1965, at site 600 ft downstream at same datum. See WSP 1728 or 1913 for history of changes prior to Sept. 26, 1941.

REMARKS.--Estimated daily discharges: Nov. 19 to Mar. 10, May 25 to June 6, and Aug. 8 to Sept. 1. Records good except those for periods of estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--55 years (1931-32, 1934-88), 71.9 ft^3/s , 52,090 acre-ft/yr; median of yearly mean discharges, 43 ft^3/s , 31,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 14,800 ft³/s, Apr. 21, 1979, gage height, 16.76 ft; no flow at times.

Mar. 28

Gage height (ft)

*3.86

Discharge

(ft3/s)

*1060

Time

2315

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Gage height

(ft)

3.22

Mini	mum disc	harge, 0.0	00 ft ³ /s,	Sept. 5,	6, 9-15.							
		DISCHARG	GE, IN CUI	BIC FEET F	PER SECON	D, WATER EAN VALUE	YEAR OCTO	BER 1987	TO SEPTE	MBER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26 11 13 16 13	18 18 19 23 23	28 27 27 26 26	14 14 14 13	12 12 12 12 12	35 47 74 89 104	688 661 599 526 523	59 55 53 53 53	24 21 19 17 14	11 8.9 7.9 4.6 2.8	4.2 4.7 3.0 1.9	.30 .26 .15 .10
6 7 8 9	11 13 12 11 11	30 26 21 21 19	26 26 26 26 26	13 13 12 12 12	12 12 12 12 12	138 172 224 246 308	527 473 399 328 283	48 39 38 38 36	12 11 9.6 7.9 7.2	1.7 1.5 3.2 5.4 6.6	.57 .30 .30 .25 .30	.00 .01 .07 .00
11 12 13 14 15	13 14 15 15 17	18 18 18 19 23	26 25 24 24 23	12 12 12 12 12	12 11 11 14 12	519 485 319 240 209	248 221 195 174 155	32 30 34 40 38	6.7 7.8 5.8 3.7 3.1	2.0 2.3 3.1 .84	.30 .40 .50 .50	.00 .00 .00
16 17 18 19 20	18 17 17 17 17	30 32 32 31 30	23 23 22 22 22	13 13 12 12 12	12 12 13 14 15	205 173 161 171 164	137 130 127 126 115	38 35 35 37 37	2.4 2.7 3.6 6.7	.29 1.6 1.9 4.1	.40 .35 .35 .30	.36 .92 1.3 4.4 2.3
21 22 23 24 25	18 17 16 16 15	28 28 28 28 28	21 21 21 21 21	12 12 12 12 11	14 15 14 15 14	161 167 184 328 568	106 90 87 86 85	25 26 28 32 35	23 21 22 27 28	14 9.3 5.5 3.4 2.5	.30 .35 .40 .35	1.9 1.4 .42 .33 .17
26 27 28 29 30 31	15 14 16 18 17 17	28 28 28 28 28	19 17 16 15 15	11 12 12 13 13	16 17 23 29	765 881 996 1010 927 751	83 82 76 70 61	35 34 33 31 28 26	27 25 11 9.5 11	2.7 3.5 3.1 3.7 3.5 2.9	.35 .35 .30 .30 .25	.32 .12 .21 .49 .59
TOTAL MEAN MAX MIN AC-FT	476 15.4 26 11 944	749 25.0 32 18 1490	699 22.5 28 14 1390	384 12.4 14 11 762	403 13.9 29 11 799	10821 349 1010 35 21460	7461 249 688 61 14800	1161 37.5 59 25 2300	403.7 13.5 28 2.4 801	140.13 4.52 16 .29 278	24.17 .78 4.7 .25 48	16.12 .54 4.4 .00 32

AC-FT 184600

05066500 GOOSE RIVER AT HILLSBORO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969 to current year.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS) (00061	CON- DUCT- S ANCE (US/CN	PH (STAND ARD UNITS)	(DEC	JRE [R] C)	TEMPE ATUR WATE (DEG (0001	E R C)	HARI NESS TOTA (MG/ AS CACO	S AL /L	CALCI DIS- SOLV (MG/ AS C	ED L A)	MAGN SIU DIS SOLV (MG/ AS M	M, ED L G)	SODIU DIS- SOLVE (MG/ AS N	D L A)	SODIUM PERCENT (00932)
OCT																	
29 DEC	1525	18	158	-	- 1	19.0	6	.0									
22 FEB	1355	21	98	- 0		-2.0	0	.0									(22
18	1600	12	204	.0 -	= 1	2.5	0	.0					10				
MAR 31	1635	717	81	5 8.1	0	4.0	0	.5	3	310	73		32		41		21
MAY 16	1345	39	148	10 -		17.0	15	.5									
JUN 20	1300	16	151			29.0	25										
AUG	1000000														224		
03 a ₀₃ SEP	1650 1651	2.7				19.5		.0		510 500	120 120		74 73		130 120		31 30
02	1115	0.2	3 170	00 -	- 2	22.0	19	.0					-				
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS SIUM DIS- SOLVE (MG/L AS K) (00935	, LINITY LAB D (MG/I AS CACO3	SULFAT DIS- SOLVE (MG/L) AS SO4	DIS D SOL (MC	DE,	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILIC DIS- SOLV (MG/ AS SIO2	/ED /L	SOLID RESID AT 18 DEG. DIS SOLV (MG/ (7030)	UÉ C ED L)	SOLID SUM O CONST TUENT DIS SOLV (MG/	F I- S, ED L)	SOLID DIS SOLV (TON PER DAY (7030	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 31 AUG	1	9.5	160	240	20)	0.	20	17		5	67	5	26	1100		0.77
03 a ₀₃	2 2	14 10	300 295	480 490	88			40 40	8. 11	.3	11 11		110		8.		1.52 1.56
D	50 (U AS	DIS- DLVED JG/L S AS)	BORON, DIS- SOLVED (UG/L AS B) 01020) (DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB) O1049)	SOL (UG	S- VED LI)	NES DI SOI (UC AS	NGA- SE, IS- LVED G/L MN) 056)	SOI (UC	CURY IS- LVED HG) 390)	DEN DO SOI (UC AS	LYB- NUM, IS- LVED G/L MO)	NIII SOI (UC AS	LE- UM, IS- LVED G/L SE) 145)	DI SOI (UC AS	RON- IUM, IS- LVED S/L SR) D8O)
MAR 31.		3	150	40	<1		36		120		0.4		2		2		300
AUG 03. a03.		9	250 260	20 7	<1 <5		120 120		520 580		(1.0		4 4		<1 <1		830 680

a - Split sample analysis for quality assurance.

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

LOCATION.--Lat 47°55'38", long 97°01'34", in sec.2, T.151 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on the right bank, 200 ft upstream from the DeMers Avenue bridge, .4 mi downstream from Red Lake River, and at mile 293.8.

DRAINAGE AREA. -- 30,100 mi2, approximately, including 3,800 mi2 in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1882 to current year. Prior to May 1901 monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 855: 1936(M). WSP 1115: 1942. WSP 1175: 1897(M). WSP 1388: 1904, 1914-15, 1917-19, 1921-22, 1927, 1950. WSP 1728: Drainage area. WRD-ND-81-1: 1882, 1897 (M).

GAGE.--Water-stage recorder. Datum of gage is 779.00 ft above National Geodetic Vertical Datum of 1929. Oct. 1, 1983, to Sept. 30, 1986, datum of gage was 780.00 ft at same site. Apr. 14, 1965, to Sept. 30 1983, water-stage recorder 1.9 mi downstream at a datum of 778.35 ft. Nov. 3, 1933, to Apr. 13, 1965, water-stage recorder 0.3 mi upstream at 778.35 ft datum. See WSP 1728 or 1913 for history of changes prior to Nov. 3, 1933.

REMARKS.--Estimated daily discharges: Dec. 30 to Apr. 4. Records good except those for period of estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--106 years, 2,614 ft^3/s , 1,894,000 acre-ft/yr; median of yearly mean discharge, 2,370 ft^3/s , 1,720,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 85,000 ft³/s, Apr. 10, 1897, gage height, 50.2 ft, site and datum then in use, from rating curve extended above 54,000 ft³/s; minimum, 1.8 ft³/s, Sept. 2, 1977, caused by unusual regulation during repair of dam at Grand Forks.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,500 ft^3/s , Apr. 5, gage height, 21.16 ft; minimum daily, 168 ft^3/s , July 31.

MEAN VALUES DAY OCT SEP NOV DEC JAN FEB MAR APR MAY JUN. JUI. AUG 564 732 2570 735 TOTAL MEAN MAX MIN AC-FT

CAL YR 1987 TOTAL 1012949 MEAN 2775 MAX 17200 MIN 404 AC-FT 2009000 WTR YR 1988 TOTAL 392096 MEAN 1071 MAX 8400 MIN 168 AC-FT 777700

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1949, 1956 to current year.

DATE	T	IME	STREA FLOV INSTA TANEO (CFS	N, AN- OUS S)	SPE CIF CON DUC ANC (US/	IC T- E CM)	PH (STAND ARD UNITS) (00400)- A	EMPER- ATURE AIR DEG C	A W) (D	MPER- TURE ATER EG C)	HARD NESS TOTA (MG/ AS CACO	AL /L	(MG	VED /L CA)	SI DI SOL (MG	NE- UM, S- VED J/L MG)	SO!	DIUM IS- LVE MG/I S NA	()	SODIUM PERCENT (00932)
OCT																						
26 NOV	15	510	571			700	-	+	6.0	0	5.	5								•	-	
23	16	500	656		13	790	-	+	-3.0	C	1.0	О									-	
JAN 20	16	500	436			810		1	-10.0	0	0.	5									_	
FEB																						20
29 APR	16	500	621			770			0.0	J	0.	כ										77
05		305	8360			475	7.6		5.0		5.0		2	220	51		22	2		14		12
11 25		335 530	5990 1730			590			20.0		8.											
MAY			7,100																			
25 JUN	13	310	1100			665	-	1	27.0	0	18.	0									-	
24	09	935	500				-	-	25.0	0	26.	0									-	
JUL 11	1.	100	288			640			20.0	0	25.	0									-	
25		000	296			580	7.5	50	21.0		24.			240	49		29)		35		23
AUG 01	09	900	217			550		1	18.0	0	23.	0									21	
26		030	262			625		+	18.0		22.										-	
SEP 26	12	200	627						10.0	0	12.	0									-	
DATE	SOI T: RA	DIUM AD- RP- ION FIO 931)	POTA SIL SOL (MG, AS I	UM, S- VED /L K)	ALK LINI LA (MG AS CAC	TY B /L 03)	SULFAT DIS- SOLVE (MG/I AS SO4	ED S	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL	D S (LUO- IDE, DIS- SOLVE MG/L S F)		SILIO DIS- SOLY (MG, AS SIOO (009)	VED /L	SOL	DUE 180 1. C 1S- VED 1/L)	SOI	OF STI- NTS, IS- LVED G/L)	S (LIDS DIS- OLV! TONS PER DAY	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR		-					2.2		12		2.0	2				007		000				0.70
05 JUL		0.4	6	.7	170		75		13		0.1	0	16			283		299	63	90		0.38
25		1	5	.8	230		77		30		0.3	0	11			372		375	2	97		0.51
	DATE	SC (U	SENIC DIS- DLVED JG/L S AS)	SC (U	PRON, DIS- DLVED GG/L B) O2O)	SO (U AS	ON, IS- LVED G/L FE) O46)	LEAD, DIS- SOLVE (UG/I AS PE	ED :	ITHIU DIS- SOLVE (UG/L AS LI	IM CD	NES SOI (UC AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SC (U	DLYB- CNUM, DIS- DLVED IG/L MO) 060)	NI SC (I	ELE- IUM, DIS- DLVE JG/L S SE 1145	D)	DI SOI (UC AS	RON- IUM, IS- LVED G/L SR) D80)
			3		140		110		1	1	18		20		0.5		2			3		190
JUL 25			8		110		10		<1	3	50		10		0.2		3		<	1		290

05083600 MIDDLE BRANCH FOREST RIVER NEAR WHITMAN, ND

LOCATION.--Lat 48°14'50", long 98°07'00", in SE1/4NW1/4 sec.16, T.155 N., R.58 W., Walsh County, Hydrologic Unit 09020308, 150 ft downstream from bridge on State Highway 35, and 6 mi north of Whitman.

DRAINAGE AREA. -- 47.7 mi2, of which about 9 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1960 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,510 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Feb. 28 to Apr. 4. Records good except those for period of estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--28 years, 2.90 ft³/s, 2,100 acre-ft/yr; median of yearly mean discharges, 2.2 ft³/s, 1,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 984 ft³/s, May 19, 1974, gage height, 7.11 ft; maximum gage height, 7.96 ft Apr. 4, 1987; no flow for many months each year.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 70 ft3/s and maximum (*):

Date	Time	Discharge (ft3/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 4		*22	a*4.62				

No flow for several months. a - Backwater from ice.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG .00 .00 .00 .00 .00 .00 .09 .00 .00 .00 .00 14 2 .00 .00 .00 .00 .00 .00 11 .06 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 12 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 19 .01 .00 .00 .00 .00 5 -00 .00 .00 .00 .00 .26 13 .00 .00 .00 .00 .00 .00 6 .00 .00 .00 .00 .00 .58 9.9 .00 .00 .00 .00 .70 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00 8.4 8 .00 .00 .00 .00 .00 .59 .08 .00 .00 .00 .00 a .00 .00 .00 .00 .00 .41 5.3 .06 .00 -00 -00 -00 10 -00 -00 .00 .00 -00 -00 .00 .00 -00 .47 3.7 -02 2.5 11 .00 .00 .00 .00 .00 .44 .01 .00 .00 .00 .00 12 .00 .00 .00 .00 .00 .49 .01 .00 .00 .00 .00 1.9 .33 13 .00 .00 .00 .00 .00 1.6 -00 .00 .00 .00 .00 .00 .00 .00 .00 14 -00 .00 .00 .00 -00 1.3 .00 15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .40 .00 16 .00 .00 .00 .00 .00 .50 1.0 .00 .00 .00 .00 .00 17 .00 .00 .00 .00 .00 .70 .88 .00 .00 .00 .00 .00 18 -00 .00 .00 .00 .00 1.0 .75 -00 -00 -00 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 1.5 .66 .01 .00 .00 20 .00 .00 .00 .00 .00 .54 .02 .00 .00 .00 .00 .00 21 .00 .00 .00 .00 .00 1.5 .45 .01 .00 .00 22 .00 .00 .00 .00 .00 2.0 .40 .00 .00 .00 .00 .34 .00 .00 .00 23 .00 .00 .00 .00 .00 .00 .00 .28 .00 .00 .00 .00 .00 .00 5.0 .00 .00 .00 .00 24 25 7.2 .23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 26 .00 .00 -00 .00 .00 .00 4.0 - 20 .17 .00 .00 .00 -00 .00 .00 5.7 .00 .00 27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 28 .14 .00 29 .00 .00 .00 .00 .00 4.3 .17 .00 .00 .00 30 .00 .00 .00 .00 3.6 .11 .06 .00 .00 .00 .00 31 .00 .00 .00 ---11 ---.02 -00 -00 ------TOTAL 0.00 0.00 0.00 0.00 0.00 63.36 118.27 0.68 0.00 0.00 0.00 0.00 .00 .00 MEAN .00 .00 .00 .00 .00 2.04 3.94 .022 .00 .00 .00 .00 .00 .00 .00 11 19 .17 .00 -00 .00 -00 MIN .00 .00 .00 .00 .00 00 .11 .00 .00 .00 .00 .00 .0 .0 AC-FT .0 .0 -0 .0 .0 126 235 1.3 .0 .0

CAL YR 1987 TOTAL 1518.30 MEAN 4.16 MAX 458 MIN .00 AC-FT 3010 WTR YR 1988 TOTAL 182.31 MEAN .50 MAX 19 MIN .00 AC-FT 362

05083600 MIDDLE BRANCH FOREST RIVER NEAR WHITMAN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF)	AM- (MAN-) AN-) OUS (MAN-)	SPE- CIFIC CON- DUCT- ANCE JS/CM)	PH (STAN ARI UNITS (OO40	ND-) 3)	TEMPE ATUR AIR (DEG (0002	C)	TEMP ATU WAT (DEG (000	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L O3)	CALC DIS SOL (MG AS	- VED /L CA)	MAG SI DI SOL (MG AS	UM, S- VED /L MG)	SODIU DIS- SOLVE (MG, AS 1	ED L	SODIUM PERCENT (00932)
MAR 08 31 APR		1510 1255	0	.64	665 780	7.	 10		1.0		1.5		 260	62		26		57		 31
19 MAY		1145	0	.66	1600			6	5.0		6.0									22
12 31		1030 1415		.01	2330 2190	7	.00		5.0		5.0		840	170		100		270		41
DATE	S	SODIUM AD- SORP- TION ATIO 00931)	POT SI DI SOL (MG AS (009)	UM, L'S- VED /L K)	ALKA- INITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG, AS SO	ED L (L	CHLC RIDE DIS- SOLV (MG/ AS C	E, /ED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLI SUM CONS' TUEN' DI SOL' (MG (703)	OF TI- TS, S- VED /L)	SOLIO SOLV (TON PER DAY	ED IS (E)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 31 MAY		2	7	.3 1	10	220		25		0	.10	13			495		496	14	.0	0.67
12		4	14	30	00	990		100		0	.20	8	.1	1	900	1	830	0	.05	2.58
	DATE	SC (U	SENIC DIS- DLVED JG/L S AS) OOO)	BORON DIS- SOLVI (UG/1 AS B	ED SC . (1	RON, DIS- DLVED JG/L S FE)		S- VED /L PB)	SOI (UCAS	HIUM IS- LVED G/L LI) 130)	NE D SO (U	NGA- SE, IS- LVED G/L MN) 056)	SO: (UCAS	CURY IS- LVED G/L HG) 890)	DE D SO (U	LYB- NUM, IS- LVED G/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
MAY	1		1 2		50 20	50 30		1 <1		21		320 290		0.4		2		3		230 880
12			2	2.	0.5	50		< 1		90		290		0.2		~				000

05084000 FOREST RIVER NEAR FORDVILLE, ND

LOCATION.--Lat 48°11'50", long 97°43'49", on line between secs.32 and 33, T.155 N., R.55 W., Walsh County, Hydrologic Unit 09020308, on right bank 50 ft upstream from highway bridge, 0.5 mi downstream from South Branch, and 3 mi southeast of Fordville.

DRAINAGE AREA .-- 456 mi², of which about 120 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1940 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,035 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 21, 1951, nonrecording gage at site 50 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Dec. 15 to Mar. 2 and Mar. 16-20. Records good except those for periods of estimated discharge, which are fair. Some regulation of high flows by temporary retention in several retarding basins above station. Retarding basins have a combined capacity of about 14,000 acre-ft.

AVERAGE DISCHARGE.--48 years, 38.1 ft3/s, 27,600 acre-ft/yr; median of yearly mean discharges, 36 ft3/s, 26,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,400 ft³/s, Apr. 18, 1950, gage height, 14.48 ft, from flood-mark, from rating curve extended above 5,600 ft³/s on basis of contracted opening and slope-area measurements of peak flow; no flow Apr. 1-13, Sept. 3, 1940.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft3/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 24	1545	*229	*3.23	No other p	eak above b	ase	

Minimum daily, 0.32 ft3/s, Aug. 24.

		DISCHARGE,	IN CUBIC	C FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCTOBER	1987	TO SEPTEMBER	1988		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 10 9.7 11 13	8.6 9.1 9.7 9.6 9.5	9.6 9.6 9.4 10	6.6 6.2 5.8 5.4 5.0	9.0 8.9 8.9 8.8	60 20 13 10 8.9	76 88 100 103 89	15 14 14 14 14	51 44 37 32 28	5.3 4.7 4.3 4.2 4.6	1.7 2.5 2.8 3.0 2.7	3.2 3.5 3.8 2.9 3.2
6 7 8 9	12 11 11 11 10	9.3 9.8 9.8 9.8 9.2	11 11 11 11 10	4.8 4.8 4.8 5.0	8.8 8.8 8.7 8.6	9.8 11 12 13 16	79 81 77 65 53	14 14 15 15	24 21 19 16 14	8.6 6.8 5.7 5.1 4.8	1.8 1.3 1.1 1.2	3.9 3.2 3.9 3.0 4.5
11 12 13 14 15	10 10 9.4 9.5 8.8	9.3 9.3 9.7 9.8 10	10 10 10 9.2 8.9	6.0 6.8 7.4 7.8 8.0	8.6 8.6 8.6 8.6	18 21 17 16 15	47 41 36 33 30	14 15 15 15 14	12 12 11 11 12	4.5 4.3 4.6 4.1 4.8	3.1 2.2 2.4 4.4 3.7	5.8 7.1 6.5 6.9 6.5
16 17 18 19 20	9.3 8.8 8.6 8.5 8.7	11 10 9.8 9.0 8.6	8.6 8.4 8.4 8.4	8.4 8.6 8.8 8.9	8.6 8.6 8.5 8.5	14 12 11 11 12	28 26 24 23 21	14 13 13 18 22	11 10 9.7 9.5 8.3	4.3 3.8 3.0 2.5 2.1	4.1 3.2 2.6 1.8 1.6	7.6 9.1 11 15 15
21 22 23 24 25	9.1 9.3 9.6 9.5 9.4	9.2 9.5 9.4 8.6 9.3	8.4 8.4 8.0 6.8	8.9 9.0 9.0 9.1 9.1	8.5 8.5 8.3 8.2 8.0	14 16 25 165 195	20 19 18 18 17	20 17 15 14 13	8.2 7.7 7.6 7.1 6.8	2.4 2.0 2.0 2.2 1.8	1.3 1.1 .68 .32 .46	15 19 19 20 21
26 27 28 29 30 31	9.7 9.1 8.5 9.2 9.4 8.9	9.3 9.5 9.8 9.8	6.8 7.2 7.2 7.2 7.0 6.8	9.0 9.0 9.0 9.0 9.0	9.0 9.5 10 100	108 97 90 84 86 80	17 16 15 15 14	12 12 14 97 96 65	6.3 6.0 5.6 5.1 5.3	1.5 1.7 1.4 1.1 1.5	.37 .60 1.2 2.1 2.4 2.8	20 21 20 21 21
TOTAL MEAN MAX MIN AC-FT	302.0 9.74 13 8.5 599		276.1 2 8.91 11 6.8 548	231.9 7.48 9.1 4.8 460	343.9 11.9 100 8.0 682	1280.7 41.3 195 8.9 2540	103 14	671 21.6 97 12 1330	458.2 15.3 51 5.1 909	3.58 8.6 1.1 220	61.73 1.99 4.4 .32 122	322.6 10.8 21 2.9 640

CAL YR 1987 TOTAL 23618.2 MEAN 64.7 MAX 1200 MIN 6.7 AC-FT 46850 WTR YR 1988 TOTAL 5633.13 MEAN 15.4 MAX 195 MIN .32 AC-FT 11170

05084000 FOREST RIVER NEAR FORDVILLE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIM	FL INS TAN (C	EAM- OW, STAN- HEOUS FS)	SPE- CIFIC CON- DUCT- ANCE (US/CM (OOO95	PH (STATAR AR) UNIT	ND- D S)	TEMPE ATUR AIR (DEG (OOO2	E C)	TEMP ATU WAT (DEG (000	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L 03)	CALC DIS SOL (MG AS	VED /L CA)	SI DI SOL (MG	MG)	SODIU DIS- SOLVU (MG, AS 1	ED /L NA)	SODIUM PERCENT (00932)
OCT																			
19	123	0	9.0	78	0		7	.0		6.0									
08	144	0 1	1	82	0		0	0.0		2.5									
FEB 03	161	0	8.9	86	0		-22	0.9		1.0									
MAR 21	141	0 1	5	79	0		7	5.0		3.5									
30	150		19	68		.20		.0		3.0		250	58		25		43		26
MAY 12	133	5 1	4	76	0		18	.0	1	5.0									122
JUN 22	142	0	7.5	91	0		27	.0	2	5.0									
AUG 05	104	0	2.9	73	0 7	.40	23	0.0	2	0.0		330	78		33		- 41		21
SEP																			
09	144	0	2.7	75	0		20	0.0	1	7.5									
DATE	SODI AD SORP TIO RATI (0093	UM S - D - SO N (M O AS	OTAS- SIUM, DIS- DLVED IG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3 (90410	SULF DIS SOL (MG) AS S	VED /L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)		OF TI- TS, S- VED	SOLII DIS SOLY (TON PER DAY	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR																			
30 AUG	1		9.7	160	180		15		0	.20	13			474		440	127		0.64
05	1		6.2	240	180		15		0	.20	22			510		523	3	.98	0.69
	DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	SO (U AS	IS- LVED G/L B)	IRON, DIS- SOLVED (UG/L AS FE) 01046)	SO (U	AD, IS- LVED G/L PB) 049)	SOI (UC	IS- LVED G/L LI)	D SO (UC AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY IS- LVED G/L HG) 890)	DE SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	UM, US- LVED G/L SE)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
		2		200	40		<1		27		200		0.3		2		2		240
AUG 05	• • •	6	5	80	10		<1		30		120		0.3		2		<1		370

05085000 FOREST RIVER AT MINTO, ND

LOCATION.--Lat 48°16'10", long 97°22'10", in SE1/4 sec.31, T.156 N., R.52 W., Walsh County, Hydrologic Unit 09020308, on right bank 30 ft upstream from dam in Minto, 150 ft upstream from Burlington Northern Railway bridge, and 900 ft east of U.S. Highway 81.

DRAINAGE AREA .-- 740 mi2, of which about 120 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1944 to current year.

REVISED RECORDS.--WSP 1438: 1948-50. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 806.95 ft above National Geodetic Vertical Datum of 1929. Prior to July 15, 1954, nonrecording gage at site 400 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Dec. 8 to Mar. 22. Records good except those for period of estimated daily discharges, which are fair. Occasionally during high stages, particularly when the channel is filled with snow, overflow occurs 0.5 mi below the municipality of Forest River and bypasses the gage 3 mi south of Minto and flows into Lake Ardoch. Bypass flow is not included in computation of discharge record for station at Minto.

AVERAGE DISCHARGE.--44 years, 50.0 ft^3/s , 36,220 acre-ft/yr; median of yearly mean discharges, 45 ft^3/s , 32,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,600 ft³/s, Apr. 18, 1950, gage height, 11.80 ft from flood-marks, from rating curve extended above 7,200 ft³/s, on basis of contracted opening measurement of peak flow; no flow at times each year 1945-47, 1953-55, 1959-64, 1977, 1985, 1988.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft3/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 27 Apr. 7	1330 1515	274 245	2.16 2.11	May 29	1145	*945	*3.71

DIGCUARGE IN CURIC FREE DED GECOND HAMED VEAD COMORED 4007 MO GERMENDED 4000

No flow Sept. 13-23.

		DISCHARGE	, IN CUBIC	FEET		ND, WATER MEAN VALUE	YEAR OCTOBER	1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.6 7.6 7.6 7.9 7.4	11 11 11 11 10	14 14 13 13	9.0 9.0 9.0 9.0	3.0 2.5 2.0 1.4 .70	1.0 .89 2.2 15	164 172 173 193 220	31 30 29 29 27	148 101 78 67 59	5.0 5.0 4.7 4.6 5.0	1.1 1.2 1.1 .91 .85	1.5 1.3 .76 .48 .34
6 7 8 9 10	7.7 7.7 9.2 8.9 9.7	10 10 9•5 7•5 8•1	12 13 13 13 13	8.5 8.5 8.0 8.0 7.5	.60 .50 .44 .41	20 15 12 10 8.0	200 207 185 164 132	27 27 30 30 26	51 40 37 32 29	8.0 11 11 9.1 7.0	.83 .95 1.1 .99	.26 .18 .13 .05
11 12 13 14 15	9.6 11 12 13 13	8.9 12 15 13	13 13 13 12 12	7.0 6.5 6.0 5.5 5.5	.31 .27 .25 .22	6.0 5.0 4.5 4.0 3.5	123 98 87 77 69	26 26 22 22 21	24 25 22 20 16	5.8 5.5 5.5 5.1 4.7	2.1 2.5 2.0 1.8 1.5	.02 .01 .00 .00
16 17 18 19 20	13 14 15 18 17	12 12 10 10 8.6	12 11 11 10 10	5.5 5.5 5.5 5.5	.20 .20 .21 .22 .23	3.0 5.0 10 12 14	65 62 60 57 53	20 18 16 18 18	14 13 13 12 11	4.6 5.0 4.7 4.6 4.1	1.8 2.0 2.6 3.8 4.5	.00 .00 .00
21 22 23 24 25	18 17 18 19 20	9.8 10 13 13	10 10 10 9.5 9.5	5.5 5.5 5.5 5.0	.23 .23 .23 .24	12 10 17 29 31	49 46 44 42 42	18 21 24 22 20	12 11 10 9.8 9.5	3.2 2.9 3.1 3.3 2.6	4.6 4.3 3.4 3.2 2.7	.00 .00 .00 .05
26 27 28 29 30 31	17 9.6 9.1 9.2 9.1	12 12 13 13 13	9.5 9.5 9.5 9.5 9.5 9.5	5.0 4.5 4.5 4.0 4.0 3.5	.32 .80 1.7 1.3	84 242 184 171 134 145	39 37 36 33 32	19 20 28 771 482 274	8.6 7.9 7.1 6.5 5.6	2.5 2.3 2.0 1.8 1.6 1.3	2.3 2.3 2.2 2.3 2.0	.24 .56 .51 .46
TOTAL MEAN MAX MIN AC-FT	374.9 12.1 20 7.4 744	333.4 11.1 15 7.5 661		96.0 6.32 9.0 3.5 389	19.54 .67 3.0 .20	1240.09 40.0 242 .89 2460	98.7 220 32	2192 70.7 771 16 4350	900.0 30.0 148 5.6 1790	4.73 11 1.3 291	65.31 2.11 4.6 .83 130	7.58 .25 1.5 .00

CAL YR 1987 TOTAL 35755.0 MEAN 98.0 MAX 2270 MIN 5.9 AC-FT 70920 WTR YR 1988 TOTAL 8789.42 MEAN 24.0 MAX 771 MIN .00 AC-FT 17430

05085000 FOREST RIVER AT MINTO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS) (00061	CON- DUCT- S ANCE (US/CI	PH (STAN ARI M) UNITS	ND- AT D A S) (DE	IPER- TURE LIR LIR LIR LIR LIR LIR LIR LIR LIR LIR	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC (009	S AL /L O3)	CALC: DIS- SOL' (MG, AS (VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIUM DIS- SOLVEM (MG/MAS NA (00930	D L A)	SODIUM PERCENT (00932)
OCT 05	1600	7.2	6	30		9.0	- 1	0.0									
DEC																	
07 FEB	1505	13	9	25		-2.0		1.0									
05 APR	1340	0.6	9 15	40		22.0		1.0									
04 MAY	1535	192	6	10 7	. 40	6.0		4.0		220	53		21		37		26
13	1125	21	8:	20		6.0	1	2.0									
31	1215	288	4	50		29.0	2	4.0									
JUN 23 AUG	1025	10	8.	45		23.0	2	3.0									
05	1300	0.7	3 90	00 8	.00	25.0	2	5.0		380	83		41		61		25
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS SIUM DIS- SOLVE (MG/L AS K)	LAB D (MG/I AS CACO	Y SULFA DIS- L SOLY (MG,	ATE RI - DI VED SO /L (M	ILO- IDE, IS- DLVED IG/L IS CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESIDAT 18 DEG DIS SOLI (MG,	OUÉ 30 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIDS DIS- SOLVI (TONS PER DAY (70302	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR									2.0					50.0	0.00		
O4	1	8.6	150	140	1	8	0	.10	16			388		385	201		0.53
05	1	10	270	180	5	57	0	.20	18		(517		614	1.:	22	0.84
D	50 (U AS	OIS- OLVED IG/L S AS)	BORON, DIS- SOLVED (UG/L AS B) O1020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)) SC (t	THIUM DIS- DLVED JG/L 3 LI)	NE D SO (U	NGA- SE, IS- LVED G/L MN) 056)	SOI (UC AS	CURY IS- LVED G/L HG) B90)	DE D SO: (U	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, DIS- DLVED G/L SE) 145)	DI SOI (UC AS	RON- LUM, IS- LVED G/L SR) 080)
APR 04.		2	150	40	<1		23		100		0.2		1		3		210
AUG																	
05.	••	7	130	20	<1		50		50		0.5		2		1		450

05088500 HOMME RESERVOIR NEAR PARK RIVER, ND

LOCATION.--Lat 48°24'20", long 97°47'10", in SE1/4NW1/4 sec.19, T.157 N., R.55 W., Walsh County, Hydrologic Unit 09020310, at Homme Dam on South Branch Park River, and 2 mi west of town of Park River.

DRAINAGE AREA .-- 226 mi2.

MONTHEND-ELEVATION AND CONTENTS RECORDS

PERIOD OF RECORD .-- September 1949 to current year.

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by an earth-filled dam, 865 ft long; storage began in September 1949, dam completed in October 1950. Usable capacity between invert of outlet, elevation, 1,048.0 ft, and crest of spillway, elevation, 1,080.0 ft, is 3,550 acre-ft. Dead storage is 100 acre-ft. Low flows are controlled by two sluice gates 3 x 5 ft. The spillway, which is 150 ft long, is uncontrolled. The records herein represent total contents. The reservoir is operated for flood control, water supply, and pollution abatement during low-flow periods.

COOPERATION .-- Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 4,710 acre-ft, Apr. 20, 1979, elevation, 1,084.58 ft; minimum since first reaching spillway level, 184 acre-ft, Feb. 8, 1952, elevation, 1,051.22 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 2,920 acre-ft, Apr. 3, elevation, 1,080.40 ft; minimum, 1,602 acre-ft, Feb. 29, elevation, 1,072.19 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

1	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	1.076.40	2,218	
ct.	31	1.076.45	2,226	+08
ov.	30	1.077.08	2,333	+107
ec.	31	1,076.90	2,303	-30
CAL	YR 1987	-	7	-212
an.	31	1.074.40	1.894	-409
eb.	29		1,602	-292
ar.	31	1.078.00	2,490	+888
pr.	30	1.080.10	2,860	+370
ay	31	1,080.05	2,850	-10
une	30	1.078.68	2,605	-245
uly	31		2,360	-245
ug.	31	1,076.33	2,206	-154
ept.	30	1,076.13	2,172	-34
	YR 1988			-46

05089000 SOUTH BRANCH PARK RIVER BELOW HOMME DAM. ND

LOCATION.--Lat 48°24'07", long 97°46'55", in SE¼ sec.19, T.157 N., R.55 W., Walsh County, Hydrologic Unit 09020310, on right bank 0.5 mi downstream from Homme Dam, and 2 mi west of town of Park River.

DRAINAGE AREA .-- 226 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1949 to current year. Monthly discharge only for October and November 1949, published in WSP 1308.

REVISED RECORDS. -- WSP 1728: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is 1,000.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 3-11, 15, 16, and Apr. 11-21. Records poor. Flow regulated by Homme Reservoir (station 05088500).

AVERAGE DISCHARGE.--39 years, 25.6 ft³/s, 18,550 acre-ft/yr; median of yearly mean discharges, 20 ft³/s, 14,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 13,000 ft³/s, Apr. 24, 1950, gage height, 37.52 ft, from rating curve extended above 5,500 ft³/s, result of failure of emergency embankment at site of Homme Dam; no flow Oct. 1 to Dec. 3, 1949, Oct. 1-4, 1969, Sept. 21, 1970, July 1, 1974, and Sept. 10, 1988.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 29 ft³/s, Apr. 3, gage height, 23.39 ft; maximum gage height, 23.67 ft, Jan. 15, backwater from ice; no flow, Sept. 10.

MEAN VALUES DAY OCT NOV DEC AUG SEP APR MAY JUN JUL JAN FEB MAR .07 6.6 1.8 3.7 2 .32 .16 4.8 .07 1.1 2.8 .13 3 .28 .18 4.6 6.6 .61 20 2.7 3.5 1.9 .07 4 .25 .12 25 2.5 2.2 .07 .15 4.0 6.6 -82 3.5 5 .35 .12 6.6 25 3.5 3.9 2.3 .07 .13 4.0 1.1 6 .36 .12 20 1.6 4.1 2.5 .04 6.3 .32 .16 .12 4.0 18 2.8 3.7 4.0 2.7 .02 8 .34 .15 .13 4.0 1.1 18 6.5 4.0 -02 .37 4.0 .01 .15 .14 2.8 4.0 6.3 .99 15 4.9 10 .54 .13 2.5 .00 .13 3.5 6.3 .99 14 11 26 .13 -01 .12 3.0 6.3 1.0 10 3.5 3.8 3.4 3.0 2.7 .21 2.4 6.3 6.3 8.0 3.4 12 5.7 .05 .29 .12 .99 3.8 2.4 .27 .16 .12 3.8 1.1 .06 13 .99 2.2 6.0 .12 1.0 4.4 15 .20 7.0 6.3 3.8 3.5 2.3 .06 .14 .11 1.0 5.5 16 -20 .16 3.5 2.3 .03 8.0 5.0 2.5 3.8 .11 6.3 1.1 3.8 2.4 .04 17 .18 .09 .14 8.4 6.6 1.1 4.8 2.5 18 .17 .16 .09 8.1 2.8 3.8 2.8 2.3 4.6 1.1 .15 .07 19 .10 7.8 4.3 1.1 4.5 20 .20 .10 7.3 4.5 4.0 3.8 2.8 .07 3.0 7.1 7.1 7.3 7.3 21 .19 .07 .22 .14 4.0 3.4 3.8 2.7 2.1 1.1 22 .20 .20 3.3 4.0 1.9 .13 .07 2.1 1.2 4.4 23 .20 7.3 2.0 .20 1.3 4.4 4.0 24 .18 .17 7.0 4.0 .08 2.0 1.8 25 .16 .16 8.6 7.0 1.9 5.5 2.9 4.0 1.9 .08 .01 26 .18 7.5 2.8 1.9 .07 .01 7.0 2.0 1.2 4.0 1.3 27 .20 .17 6.6 1.0 2.8 3.7 2.0 .07 .01 7.0 2.0 1.4 28 .22 .14 7.0 2.0 1.5 3.7 2.0 .07 .01 5.9 1.1 3.0 29 .21 .13 6.8 1.4 3.0 2.1 .07 01 1.9 .18 .13 6.8 30 5.3 1.4 1.8 3.1 3.7 2.4 .07 .03 31 3.1 2.1 .07 .17 4.9 6.8 1.5 TOTAL 7.71 4.67 176.5 36.09 102.9 112.1 44.23 1.26 139.8 MEAN .25 .16 2.31 5.69 3.74 3.02 1.43 .042 4.82 8.37 25 3.0 .07 MAX .54 .21 8.6 8.4 6.6 1.8 6.5 4.0 4.1 .07 MTN -16 .12 .09 2.2 1.9 .61 1.0 1.6 3.1 1.8 .00 9.3 2.5 AC-FT 142 350 498 204 15 72

CAL YR 1987 TOTAL 11513.55 MEAN 31.5 MAX 1900 MIN .09 AC-FT 22840 WTR YR 1988 TOTAL 1041.31 MEAN 2.85 MAX 25 MIN .00 AC-FT 2070

114

RED RIVER OF THE NORTH BASIN

05089000 SOUTH BRANCH PARK RIVER BELOW HOMME DAM, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TI	ME	STRE FLO INST TANE (CF	W, AN- OUS S)	SPE CIF CON DUC ANC (US/	IC - T- E CM)	PH (STAN) ARD UNITS (0040	D-)	TEMPER- ATURE AIR (DEG C) (00020)	A W (D	MPER- TURE ATER EG C) 0010)	HAR NES TOT (MG AS CAC	SAL /L	CALC DIS SOL (MG AS	VED /L CA)	MAGNI SIU! DIS- SOLV! (MG/I AS MG	M, ED L	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
OCT																			
09	12	10	0	.38		860			4.0		5.0								
08	11	10	0	.13	1	050	-		0.0	1	2.0					-			
JAN 29	09	45	7	.0		635			-7.0		2.0								
MAR 29	11	35	1	. 4	1	060			1.0		0.5								
APR											100								
22 MAY	15	45	4	• 4		720			7.0)	8.0								
12 JUN	15	20	7	.2		740			15.0)	15.0					9			
22	09	45	4	.0		770	7.	10	22.0)	18.0		320	80		30		44	22
AUG 04	15	50	2	.0		755			23.0		23.0								
SEP 09	10	000	0	.01		790			17.0		17.5								-22
09	10	,00	U	.01		190			17.0		17.5							-	-
DATE	SOR	ON	POT SI DI SOL (MG AS (009)	UM, S- VED /L K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULFA' DIS- SOLV (MG/ AS SO (0094	ED L 4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	R S (LUO- IDE, DIS- OLVED MG/L S F) 0950)	SILI DIS SOL (MG AS SIC	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLID: SUM OF CONST TUENTS DIS- SOLVE (MG/1	ED L)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
JUN																			
22		1	8	.9	230		190		17		0.30	14			537	5	26	5.74	0.73
	DATE	SO (U AS	ENIC IS- LVED G/L AS)	SO (U AS	RON, IS- LVED G/L B) 020)	SO (U	ON, IS- LVED G/L FE) O46)		S- VED S /L (PB) A	THIU DIS- SOLVE UG/L S LI	M NE	ANGA- ESE, DIS- DLVED JG/L B MN)	SO (U AS	CURY DIS- DLVED IG/L HG) 890)	DE SO (U AS	LYB- NUM, DIS- DLVED G/L MO) 060)	NI D SO (U AS	UM, SIS- II LVED SG G/L (II SE) AS	CRON- CIUM, DIS- DLVED JG/L S SR)
JUN			-		-						_								160
22	• • •		7		70		20		<1	4	0	2800		0.2		2		<1	460

05090000 PARK RIVER AT GRAFTON, ND

LOCATION.--Lat 48°25'29", long 97°24'42", in NE1/4 sec.13, T.157 N., R.53 W., Walsh County, Hydrologic Unit 09020310, on right bank at the upstream corner of Highway 81 bridge in Grafton, and 3.5 mi downstream from South Branch.

DRAINAGE AREA .-- 695 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1931 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 955: 1941. WSP 1438: 1932, 1933(M), 1936-37(M), 1939(M), 1944. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 811.00 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1984, gage located on right bank 30 ft upstream of Wakeman Avenue bridge. Datum of gage was 807.39 ft. Prior to Sept. 30, 1940, nonrecording gage at site 30 ft downstream at same datum. Oct. 1, 1940, to Sept. 17, 1946, nonrecording gage at site 2 mi downstream above masonry dam at same datum. Sept. 18, 1946, to July 25, 1952, nonrecording gage at site 30 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Jan. 6-14, 20-24, and Feb. 3-11. Records good except those below 1 ft³/s, which are poor. Flow regulated by Homme Reservoir (station 05088500) and several small reservoirs.

AVERAGE DISCHARGE.--57 years, 57.1 ft³/s, 41,370 acre-ft/yr; median of yearly mean discharges, 43 ft³/s, 31,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,600 ft³/s, Apr. 19, 1950, gage height, 20.13 ft, from rating curve extended above 9,000 ft³/s; no flow at times in most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 143 ft³/s, Apr. 6, gage height, 7.79 ft; no flow, July 31, Aug. 1, 9-12, and 27 to Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.01 .04 .03 .02	.10 .10 .07 .08	.17 .20 .21 .17	.04 .03 .02 .01	.50 .20 .15 .10	1.1 1.0 .80 .80	33 42 38 51 114	4.4 4.6 5.3 5.5 6.2	16 27 22 16 11	1.2 1.4 1.6 2.0 2.3	.00 .02 .09 .07	.00 .00 .00
6 7 8 9	.01 .01 .00 .00	.07 .09 .01 .02	.17 .19 .28 .25	.00 .00 .00	.07 .07 .07 .06	1.7 1.1 .81 .80	119 129 120 102 80	4.7 4.7 4.8 6.2 8.8	7.0 5.0 3.2 2.7 2.7	4.0 3.6 2.1 .96 .63	.08 .05 .01 .00	.00 .00 .00
11 12 13 14 15	.00 .02 .08 .07	.04 .08 .09 .19	.29 .26 .25 .22	.00 .00 .00	.06 .06 .06 .06	.79 .36 .52 .48	69 61 46 36 33	7.6 5.6 3.8 5.1 4.2	2.5 2.5 2.8 3.0 3.4	.74 .79 1.0 .71	.00 .00 .04 .16	.00 .00 .00
16 17 18 19 20	.20 .12 .14 .15	.21 .15 .10 .10	.24 .18 .19 .22	.00 .00 .00	.06 .06 .10 .50	.53 .60 .60 .63	29 24 22 18· 13	4.5 7.0 4.1 4.4 7.3	3.8 4.0 3.7 4.4 3.3	.61 .63 .67 .60	1.1 .59 .46 .55	.00 .00 .00
21 22 23 24 25	.11 .19 .23 .10	.05 .05 .07 .06	.17 .17 .20 .17	.00 .00 .00	3.2 3.0 2.4 1.6	.47 .61 2.2 4.8 3.9	14 11 11 12 8.2	12 14 8.8 5.2 3.9	3.3 2.7 2.5 2.3 1.9	•53 •48 •44 •49	•53 •25 •15 •12 •05	.00 .00 .00
26 27 28 29 30 31	.09 .02 .04 .08 .05	.10 .10 .10 .10	.08 .11 .20 .21 .20	.10 .20 .50 1.0 .90	.80 1.7 3.2 1.5	1.6 4.9 22 14 25 24	16 11 6.0 4.5 4.3	3.1 2.9 29 36 13 8.0	1.5 1.6 1.4 1.3	.43 .40 .21 .13 .03	.01 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	2.22 .072 .23 .00 4.4	2.71 .090 .27 .01 5.4	5.92 .19 .29 .05	3.60 .12 1.0 .00	21.37 .74 3.2 .06 42	119.39 3.85 25 .36 237	1277.0 42.6 129 4.3 2530	244.7 7.89 36 2.9 485	165.7 5.52 27 1.2 329	30.38 .98 4.0 .00 60	5.63 .18 1.1 .00	0.00 .00 .00

CAL YR 1987 TOTAL 35080.12 MEAN 96.1 MAX 3160 MIN .00 AC-FT 69580 WTR YR 1988 TOTAL 1878.62 MEAN 5.13 MAX 129 MIN .00 AC-FT 3730

05090000 PARK RIVER AT GRAFTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969 to current year.

DATE		TIME	STRE FLO INST TANE (CF (OOO	W, AN- OUS S)	SPE- CIF: CON- DUC! ANC! (US/0	IC F- EM)	PH (STAI ARI UNITS	D- C S)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L	CALC DIS SOL (MG AS (009	VED /L CA)	SI	MG)	SODI DIS SOLV (MG AS (009	ED /L NA)	SODIUM PERCENT (00932)	•
JAN 29		1305	1	.0						8.0												
FEB 05		1050		.07																	-	
APR										2.0												
06 a06 MAY		1445 1446	133 133			560 560		.40 .40		0.0		5.0 5.0		180 180	44		16 16		44 44		34 33	
13 JUN		0930	3	.4	14	120				0.0	1	2.0										
23 AUG		1255	2	.3	1	180	7	.50	2	4.0	2	4.0										
a ₀₄		1230 1231		.02		330 330		.60 .60		4.0		4.0		360 360	74 74		42 42		280 270		62 61	
DATE	S	ODIUM AD- ORP- TION ATIO 0931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALKALINIS LAN (MG, AS CACC	TY 3 /L 03)	SULF/ DIS- SOLV (MG, AS SO	/ED /L 04)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIO DIS- SOL' (MG AS SIO: (009)	VED /L	DI	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLI DI SOL (TO PE DA (703	VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303))
APR 06 a06		1		.9	130 115		100 110		41 36			.10	13 13			324 351		348 343	116 126		0.44	
04 a ₀₄		7	14 16		300 293		300 300		270 280			.80	16 18			180 200		180 180		.06	1.60	
	DATE	SO (U	ENIC IS- LVED G/L AS) 000)	SOI (UC AS	RON, IS- LVED G/L B) D2O)	SOL (UC	S- LVED S/L FE)	SOI (UC AS	AD, IS- LVED G/L PB) D49)	SO (U	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SOI (UC AS	CURY IS- LVED G/L HG) B90)	DEI D SO! (UC AS	LYB- NUM, IS- LVED G/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)	
a 06	5		2 2		200 90		80 54		1 <5		26 23		280 300		0.4		1 2		2 <1		200 180	
AUG Oz aOz	1		8 8		620 660		10 4		<1 <5		100 90		<10 7		0.2		4		<1 <1		640 520	

a - Split sample analysis for quality assurance.

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND

LOCATION.--Lat 48°34'20", long 97°08'50", in SE1/4SE1/4SE1/4 sec.24, T.159 N., R.51 W., Pembina County, Hydrologic Unit 09020311, on downstream end of east pier of interstate highway bridge, 1.5 mi northeast of Drayton, and at mile 206.7.

DRAINAGE AREA. -- 34,800 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1936 to June 1937, April 1941 to current year (fragmentary prior to April 1949).

REVISED RECORDS.--WSP 1388: 1949-50. WSP 1728: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 755.00 ft above National Geodetic Vertical Datum of 1929 (Minnesota highway benchmark). Prior to Nov. 30, 1954, nonrecording gage at site 1.5 mi upstream at datum 1.59 ft higher.

REMARKS.--Estimated daily discharges: Dec. 21 to Apr. 22. Records good except those for period of estimated daily discharges, which are fair. Some regulation by reservoirs on tributaries.

AVERAGE DISCHARGE.--39 years (water years 1950-88), 3,840 ft^3/s , 2,782,000 acre-ft/yr; median of yearly mean discharges, 3,800 ft^3/s , 2,750,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 92,900 ft³/s, Apr. 28, 1979, gage height, 43.66 ft; minimum observed, 7.7 ft³/s, Oct. 16, 1936, gage height, 1.75 ft, former site and datum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1897 reached a stage of about 41 ft, at site and datum in use prior to Nov. 30, 1954.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,900 $\rm ft^3/s$, Apr. 7, gage height, 22.12 ft; minimum daily, 144 $\rm ft^3/s$, Sept. 11.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV JUN JUL AUG SEP DEC JAN FEB MAR APR MAY 739 676 723 TOTAL MEAN MAX MIN AC-FT

CAL YR 1987 TOTAL 1263541 MEAN 3462 MAX 27500 MIN 595 AC-FT 2506000 WTR YR 1988 TOTAL 461725 MEAN 1262 MAX 13800 MIN 144 AC-FT 915800

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TI	ME	STRE FLO INST TANE (CF:	W, AN- OUS S)	SPE CIF CON DUC ANC (US/ (OOO	IC - T- E CM)	PH (STAN ARI UNITS	3)	TEMPI ATUI AII (DEG (OOO)	RE R C)	TEMP ATU WAT (DEG	RE ER C)	HARI NESS TOTA (MG, AS CACO	S AL /L	(MG	VED /L CA)	SI DI SOL (MO	MG)	SODIU DIS- SOLVE (MG/ AS M	ED L NA)	SODIUM PERCENT (00932)
OCT																					
06 NOV	17	30	849			875				9.0	1	1.0									
09 JAN	15	45	805		1	200				2.0		3.0									
15	13	500	420		1	090			-1	1.0		0.5									
FEB 26	14	10	587			870				3.0		0.5									
APR 08	16	30	13100			505	7.	40	1	5.0		5.5		220	50		22		24		19
MAY 09	15	10	1240			790			1'	7.0	1	7.0									
JUN 20	15	15	800			780			2	8.0	2	4.0									
JUL 12		40	360			870				6.0		6.0									
AUG																					
O4 SEP	10	20	170		1	020	8.	.00	2	2.0	2	4.0		320	67		37		99		39
08	16	35	156			910			1	8.0	1	8.0									
DATE	SOR	ON	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC	TY B /L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLC RIDI DIS- SOL' (MG, AS (009)	E, VED /L CL)		E, S- VED /L F)	SILIO DIS- SOL' (MG, AS SIO	VED /L	DI	DUE 80 . C S- VED /L)	SOL	OF STI- ITS, S- VED	SOLID SOLV (TON PER DAY	S- VED IS	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 08		0.7	6	.8	170		87		27		0	.20	12			351		330	12400		0.48
AUG																		-			
04		2	8	.9	250		130		130		C	.30	13			627		641	288		0.85
	DATE	SC (U	SENIC DIS- DLVED JG/L S AS)	SO (U AS	RON, IS- LVED G/L B) 020)	SO (U AS	ON, IS- LVED G/L FE) 046)	SO (U AS	AD, IS- LVED G/L PB) 049)	SO (U AS	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SC (U	CLE- CUM, DIS- DLVED UG/L S SE)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
AUG			3		190		110		1		22		20		0.6		2		3		230
04	•••		6		200		10		<1		50		<10		0.3		4		<1		490

05098700 HIDDEN ISLAND COULEE NEAR HANSBORO, ND (International gaging station)

LOCATION.--Lat 48° 7'10", long 99°25'35", in SE1/4SW1/4 sec.11, T.163 N., R.68 W., Towner County, Hydrologic Unit 09020313, on right bank 400 ft downstream from bridge on county highway, and 2.5 mi west of Hansboro.

DRAINAGE AREA .-- 38 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1961 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,615 ft above National Geodetic Vertical Datum of 1929 from topographic map. Prior to May 20, 1962, nonrecording gage 400 ft upstream at same datum.

REMARKS .-- Estimated daily discharges: Apr. 1-2. Records good.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--27 years, 3.30 ft³/s, 2,390 acre-ft/yr; median of yearly mean discharges, 2.2 ft³/s, 1,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 1,200 ft³/s Apr. 23, 1979, gage height, 10.50 ft, from floodmark, backwater from ice; no flow for several months each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 25 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 4		*4.6	*6.12				

No flow for several months.

		DISCHARGE,	IN CUBIC	C FEET PER		WATER N VALUE	YEAR OCTOBER	1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.40	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	1.7	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	1.9	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	1.6	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	1.2	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.90	.01	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.71	.01	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.44	.01	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.27	.01	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.19	.01	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.13	.01	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.09	.01	.00	.00	.00	.00
14	.00	.00	.00	.00		.00	.06	.01	.00	.00	.00	.00
	.00		.00		.00		.03	.01	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.05	.01	.00	.00		
16	.00	.00	.00	.00	.00	.00	.03	.01	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.02	.01	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.01	.01	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
								.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	•00				.00	
30	.00	.00	.00	.00		.00	.00	.00	.00	.00		.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	0.00	0.00	0.00	0.00	0.00	0.00	9.72	0.12	0.00	0.00	0.00	0.00
MEAN	.00	.00	.00	.00	.00	.00		.004	.00	.00	.00	.00
MAX	.00	.00	.00	.00	.00	.00	1.9	.01	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.0	.0	.00	.0	19	.2	.0	.0	.0	.0
AC-FI	.0	.0	.0	.0	.0	.0	13	• 1-	••	• •	••	

CAL YR 1987 TOTAL 1112.79 MEAN 3.05 MAX 165 MIN .00 AC-FT 2210 WTR YR 1988 TOTAL 9.84 MEAN .027 MAX 1.9 MIN .00 AC-FT 20

05098700 HIDDEN ISLAND COULEE NEAR HANSBORO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STREA FLOV INSTA TANEO (CFS	V, CO AN- DU DUS AN B) (US	FIC N- CT-	PH (STAN ARE UNITS (OO40	ND- A	MPER- TURE AIR DEG C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NESS TOT (MG AS CACC	S AL /L 03)	CALC DIS SOL' (MG AS (009	VED /L CA)		UM, S- VED /L MG)	SODI DIS SOLV (MG AS (009	ED /L NA)	SODIU PERCEN (00932	T
APR 05 19 MAY		1155 1600	0	7.01	462 760		.60	9.5 14.0		2.0 8.0		180	42		18		14		-	4
11		1145	0	.01	1140	6.	.30	17.0	1	2.0		550	130		55		50		1	6
DATE	S	ODIUM AD- ORP- TION ATIO O931)	POTA SIU DIS SOLV (MG, AS I	JM, LIN S- L /ED (M /L A K) CA	AB G/L	SULFA DIS- SOLV (MG/ AS SO	ATE R - D /ED S /L (O4) A	CHLO- CIDE, DIS- COLVED MG/L SCL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIO DIS- SOL' (MG AS- SIO: (009)	VED /L 2)	SOLI RESI AT 1 DEG DI SOL (MG (703)	DUÉ BO C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLI DI SOL (TO PE DA (703	S- VED NS R Y)	SOLIDS DIS- SOLVE (TONS PER AC-FT (70303	D ()
APR 05 MAY		0.5	12	120		91		11	0	.10	12			272		273	1	.24	0.3	7
11		1	12	350		290		22	0	.20	16			824		787	0	.02	1.1	2
	DATE	SC (U	SENIC DIS- DLVED JG/L 3 AS)	BORON, DIS- SOLVED (UG/L AS B) (01020)	SO (U	ON, DIS- DLVED UG/L FE) O46)	LEAD, DIS- SOLVE (UG/L AS PE	D S0	THIUM DIS- DLVED UG/L S LI) 1130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SOI (UC AS	CURY IS- LVED G/L HG) 390)	DE D SO (U	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)	
MAY	5		3	120 130		110		(1	21		220 510		0.1		2		2		200 550	

05098800 CYPRESS CREEK NEAR SARLES, ND (International gaging station)

LOCATION.--Lat 48°56'35", long 98°57'05", in SWV4SEV4 sec.9, T.163 N., R.64 W., Cavalier County, Hydrologic Unit 09020313, on right bank 150 ft downstream from twin multiplate culverts on county highway, and 2.5 mi east of Sarles.

DRAINAGE AREA.--71 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1961 to current year. Prior to October 1973, published as Long River near Sarles.

GAGE.--Water-stage recorder. Elevation of gage is 1,545 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Feb. 26 to Mar. 28. Records good except those for period of estimated daily discharges, which are fair.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--27 years, 5.69 ft^3/s , 4,120 acre-ft/yr; median of yearly mean discharges, 4.9 ft^3/s , 3,550 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 2,000 ft³/s, Apr. 21, 1979, gage height, 10.35 ft, backwater from ice and snow; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50 $\mathrm{ft^3/s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 29		*6.3	*3.00				

No flow for several months.

		DISCHARGE,	IN CUBIC	FEET PER		WATER N VALUE	YEAR OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.07	.00	.00	.00	.00	.00	4.6	.00	.00	.00	.00	.00
2	.06	.00	.00	.00	.00	.00	4.2	.00	.00	.00	.00	.00
3	.05	.00	.00	.00	.00	.00	4.8	.00	.00	.00	.00	.00
4	.04	.00	.00	.00	.00	.00	4.6	.00	.00	.00	.00	.00
5	.03	.00	.00	.00	.00	.00	3.8	.00	.00	.00	.00	.00
6	.03	.00	.00	.00	.00	.10	3.1	.00	.00	.00	.00	.00
7	.03	.00	.00	.00	.00	.25	2.2	.01	.00	.00	.00	.00
8	.01	.00	.00	.00	.00	.50	1.7	.01	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.70	1.3	.01	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	1.0	1.3	.01	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	3.5	.98	.01	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	2.0	•53	.01	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	1.7	.25	.01	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	1.2	.16	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	1.0	.14	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.90	.12	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	1.1	.10	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	1.2	.10	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	1.1	.08	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.90	.08	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.75	.07	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	1.1	.06	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	1.6	.05	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	2.9	.04	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	3.1	.04	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	2.3	.03	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	2.2	.02	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	2.9	.01	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	5.0	.01	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		6.0	.01	.00	.00	.00	.00	.00
31	.00		.00	.00		5.0		.00		.00	.00	
TOTAL	0.32					50.00		0.07		0.00	0.00	0.00
MEAN	.010	.00	.00	.00	.00	1.61		.002	.00	.00	.00	.00
MAX	.07	.00	.00	.00	.00	6.0	4.8	.01	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00
AC-FT	.6	.0	.0	.0	.0	99	68	.1	.0	.0	.0	.0

CAL YR 1987 TOTAL 2126.92 MEAN 5.83 MAX 490 MIN .00 AC-FT 4220 WTR YR 1988 TOTAL 84.87 MEAN .23 MAX 6.0 MIN .00 AC-FT 168

05098800 CYPRESS CREEK NEAR SARLES, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STREA FLOW INSTA TANEO (CFS	AM- V, AN- OUS S) (SPE- CIFIC CON- DUCT- ANCE US/CM) 00095)	PH (STAN) ARD UNITS (0040	O- ATU AI) (DEC	PER- JRE IR IR J C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NESS TOTA (MG, AS CACO	S AL /L 03)	CALC DIS- SOL (MG, AS (VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS M	ED L NA)	SODIUM PERCENT (00932)
OCT 08		0845	0.	.01	845			5.0		5.5									
MAR 10		1215	0.	.95	345			10.0		2.0									
APR 05 19		1350 1420		·7	482 700	7.	50	14.0		6.0		180	47		16		24		21
MAY 11		1000	0	.01	930	6.	70	10.0	1	2.0		370	89		35		69		28
DATE	S	ODIUM AD- ORP- TION ATIO 0931)	POTA SIG DIS SOLV (MG, AS I	JM, L S- VED /L K)	ALKA- INITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO (0094	TE RIC DIS ED SOI L (MG 4) AS	LO- DE, S- LVED G/L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIC DIS- SOL' (MG AS- SIO: (009)	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703)	DUÉ BO C S- VED /L)		OF TI- TS, S- VED /L)	SOLIC SOLIC (TON PER DAY	ED IS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 05		0.8	11	1	165	87	1:	2	0	.10	23			300		319	2	.98	0.41
MAY 11		2	11	3	500	190	3	1	0	.20	18			641		626	0	.02	0.87
	DATE	SC (U AS	SENIC DIS- DLVED JG/L S AS)	BORG DIS SOLV (UG/ AS E	S- I VED SO 'L (I S) AS	RON, DIS- DLVED UG/L S FE) 1046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	SC (I	THIUM DIS- DLVED JG/L S LI)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SOI (UC AS	CURY IS- LVED G/L HG) B90)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	SO (U	RON- TIUM, IIS- LVED G/L SR) 080)
	5		3		130	70	<1		20		80		0.1		1		2		230
MAY 11	1		4		150	40	<1		50		230		0.2		1		1		460

05099100 SNOWFLAKE CREEK NEAR SNOWFLAKE, MAN (International gaging station)

LOCATION.--Lat $49^{\circ}01'17"$, long $98^{\circ}36'13"$, in SW1/4 sec.10, T.1, R.9 W., 1st meridian, at traffic bridge, 2.5 mi east, and 1.5 mi south of Snowflake.

DRAINAGE AREA. -- 348 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1961 to current year.

GAGE.--Water-stage recorder since March 1968 and nonrecording gage prior thereto. Datum of gage is Geodetic Survey of Canada Datum of 1929. Prior to Jan. 1, 1987, recording gage at same site at datum of 1221.66 ft above Geodetic Survey of Canada Datum of 1929. Prior to Apr. 2, 1964, nonrecording gage at present site and datum. Apr. 2, 1964, to May 10, 1965, nonrecording gage at site 0.5 mi downstream at present datum.

COOPERATION.--This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by the Water Survey of Canada.

AVERAGE DISCHARGE.--27 years, 15.1 ft³/s, 10,900 acre-ft/yr; median of yearly mean discharges, 7.4 ft³/s, 5,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 1,130 ft³/s, Apr. 21, 1979, gage height, 1229.94 ft; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 29 ft³/s, Apr. 3, gage height, 1225.34 ft; no flow for several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		, D. 100	111 00010	radi rak		EAN VALUE	S	1,501 1	0 001 10.100.1	1,500		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.08	.01	.00	.00	.00	.84	3.6	.11	.00	.00	.00	.00
2	.06	.01	.00	.00	.00	.99	9.4	.13	.00	.00	.00	.00
3	.05	.02	.00	.00	.00	.36	18	.13	.00	.00	.00	.00
4	.04	.01	.00	.00	.00	.82	18	.12	.00	.00	.00	.00
5	.04	.00	.00	.00	.00	4.2	7.9	.11	.00	.00	.00	.00
6	.04	.00	.00	.00	.00	3.0	3.8	.08	.00	.00	.00	.00
7	.02	.00	.00	.00	.00	1.6	2.2	.10	.00	.00	.00	.00
7 8	.02	.00	.00	.00	.00	1.7	2.1	.14	.00	.00	.00	.00
9	.01	.00	.00	.00	.00	2.0	3.9	.12	.00	.00	.00	.00
10	.01	.00	.00	.00	.00	4.3	3.4	.08	.00	.00	.00	.00
11	.01	.00	.00	.00	.00	1.8	2.7	.07	.00	.00	.00	.00
12	.00	.01	.00	.00	.00	1.2	2.7	.10	.00	.00	.00	.00
13	.00	.02	.00	.00	.00	.39	2.3	.09	.00	.00	.00	.00
14	.00	.03	.00	.00	.00	.25	1.6	.07	.00	.00	.00	.00
15	.00	.04	.00	.00	.00	.18	1.1	.08	.00	.00	.00	.00
16	.00	.04	.00	.00	.00	.14	.89	.07	.00	.00	.00	.00
17	.00	.02	.00	.00	.00	.11	.75	.05	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.07	.64	.04	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.04	•55	.05	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.04	.48	.04	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.10	.44	.04	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.64	.39	.04	.00	.00	.00	.00
23	.01	.00	.00	.00	.00	1.9	.32	.02	.00	.00	.00	.00
24	.01	.00	.00	.00	.00	4.7	.25	.00	.00	.00	.00	.00
25	.02	.00	.00	.00	.00	3.5	.22	.00	.00	.00	.00	.00
26	.04	.00	.00	.00	.00	1.2	.18	.00	.00	.00	.00	.00
27	.04	.00	.00	.00	.57	1.9	.17	.00	.00	.00	.00	.00
28	.04	.00	.00	.00	1.2	1.4	.16	.00	.00	.00	.00	.00
29	.03	.00	.00	.00	.60	1.2	.13	.00	.00	.00	.00	.00
30	.03	.00	.00	.00		2.0	.11	.00	.00	.00	.00	.00
31	.02		.00	.00		2.3		.00		.00	.00	
TOTAL	0.62	0.21	0.00	0.00	2.37	44.87	88.38	1.88	0.00	0.00	0.00	0.00
MEAN	.020	.007	.00	.00	.082	1.45		.061	.00	.00	.00	.00
MAX	.08	.04	.00	.00	1.2	4.7	18	.14	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.04	.11	.00	.00	.00	.00	.00
AC-FT	1.2	• 4	.0	.0	4.7	89	175	3.7	.0	.0	.0	.0
		• •	• •		4.1	0)	112	2.1	• •			

CAL YR 1987 TOTAL 9360.42 MEAN 25.6 MAX 394 MIN .00 AC-FT 18570 WTR YR 1988 TOTAL 138.33 MEAN .38 MAX 18 MIN .00 AC-FT 274

05099150 MOWBRAY CREEK NEAR MOWBRAY, MAN (International gaging station)

LOCATION.--Lat 49°00'00", long 98°27'15", in SE1/4 sec.3, T.1, R.8 W., 1st meridian, on downstream side of bridge on Municipal Road on international boundary, and 1.5 mi east of Mowbray.

DRAINAGE AREA .-- 93.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1962 to current year (seasonal records only most years).

GAGE.--Water-stage recorder operated March 1 to October 31 each year. Datum of gage is Geodetic Survey of Canada datum of 1929. Nonrecording gage prior to 1971.

COOPERATION .-- Records furnished by the Water Survey of Canada.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 943 ft³/s, Apr. 6, 1987, gage height, 1,534.57 ft; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 55 ft3/s, Apr. 3, gage height, 1,530.80 ft; no flow for several months.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 2.6 .58 .111 .00 .00 .00 10 .555 .00 .00 .00 .00 .00 5 2.7 .45 .111 .00 .00 .00 .39 .25 .00 .00 .00 .00 .00 5 2.7 .45 .111 .00 .00 .00 .39 .25 .00 .00 .00 .00 .00 5 1.7 .17 .11 .00 .00 .00 .39 .25 .00 .00 .00 .00 .00 6 1.8 .20 .11 .00 .00 .00 .19 .24 .00 .00 .00 .00 .00 .00 6 1.8 .20 .11 .00 .00 .00 .14 .17 .14 .00 .00 .00 .00 8 4.0 .11 .11 .00 .00 .00 .04 .17 .14 .00 .00 .00 .00 9 4.4 .09 .07 .00 .00 .04 .17 .10 .00 .00 .00 .00 10 4.4 .05 .04 .00 .00 .00 .11 .5.1 .00 .00 .00 .00 .00 11 3.7 .04 .04 .00 .00 .00 .11 .5.1 .00 .00 .00 .00 .00 12 3.1 .09 .04 .00 .00 .00 .01 .15 .10 .00 .00 .00 .00 .00 .00 13 2.4 3.1 .04 .00 .00 .00 .01 .12 .3 .00 .00 .00 .00 .00 .00 15 1.6 2.4 .00 .00 .00 .00 .04 .25 .00 .00 .00 .00 .00 .00 16 1.4 2.0 .00 .00 .00 .00 .04 .25 .00 .00 .00 .00 .00 .00 17 1.1 1.5 .00 .00 .00 .00 .04 .25 .00 .00 .00 .00 .00 .00 18 .93 .1 .00 .00 .00 .00 .00 .00 .00 .00 .00			DISCHARGE,	IN COBIC	PEGI PER		EAN VALUE	S CLOBER	1907	O SEFIEMBER	1900		
2 5.4 5.0 1.11 1.00 1.00 1.00 20 1.40 1.00 1.00 1.00 1.00 1.00 1.00 1.0	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3													
4 2.2 39 .11 .00 .00 .00 .35 .10 .00 .00 .00 .00 .00 .00 .00 .00 .00	2												
5 1.7 1.17 1.11 1.00 1.00 1.19 24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	3												
5 1.7 1.17 1.11 0.00 0.00 1.9 24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	4		.39	.11	.00	.00	.00	35					
7 2.8 20 .11 .00 .00 .04 17 .14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	5	1.7	.17	.11	.00	.00	.19	24	.00	.00	.00	.00	.00
8 4.0 1.1 1.1 1.00 1.00 1.04 13 1.09 1.00 <td></td>													
9 414 0.99 0.07 0.00 0.00 1.04 7.4 0.2 0.00 0.00 0.00 0.00 1.00 1.00 1.01 1.1 5.1 0.00 0.00	7												
10 4.4 .05 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00		4.0					.04						
11 3.7 .04 .04 .00 .00 .00 .62 4.3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	9	4.4	.09	.07	.00	.00	.04	7.4	.02	.00	.00		
12	10	4.4	.05	.04	.00	.00	1.1	5.1	.00	.00	.00	.00	.00
13		3.7		.04	.00	.00							
14 1.9 3.0 .00 .00 .00 .00 .04 2.5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	12	3.1	.09	.04	.00	.00	.99						
15	13	2.4	3.1	.04	.00	.00	1.1	2.6	.00	.00			
16	14	1.9	3.0	.00	.00	.00	.04	2.3	.00	.00	.00	.00	
17 1.1 1.5 .00 .00 .00 1.9 2.5 .00 .00 .00 .00 .00 .00 18 .93 1.1 .00 .00 .00 .00 .00 .00 .00 .00 .00	15	1.6	2.4	.00	.00	.00	.04	2.5	.00	.00	.00	.00	.00
18	16	1.4	2.0	.00	.00	.00	.04						
19	17	1.1	1.5	.00	.00	.00	1.9	2.5	.00				
20	18	.93	1.1	.00	.00	.00	3.3	2.4	.00	.00			
20	19	.70	.96	.00	.00	.00	3.0	2.2	.00	.00	.00		
22		.65	.47	.00	.00	.00	•79	1.9	.00	.00	.00	.00	.00
22	21	.45	.33	.00	.00	.00	.69	2.5					
24 1.2 1.14 .00 .00 .00 8.1 3.2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	22	.36	.29	.00	.00	.00	1.1						
25 1.2 .14 .00 .00 .00 3.3 2.2 .00 .00 .00 .00 .00 .00 .00 .00 .00	23	.49	.14	.00	.00	.00	4.6						
25 1.2 .14 .00 .00 .00 3.3 2.2 .00 .00 .00 .00 .00 .00 .00 .00 .00	24	1.2	.14	.00	.00	.00	8.1	3.2	.00	.00			
27	25	1.2	.14	.00	.00	.00	3.3	2.2	.00	.00	.00	.00	.00
28	26	1.1	.14	.00	.00	.00	2.0	1.8					
28	27	.81	.11	.00	.00	.00	2.6	1.4	.00				
29				.00	.00	1.5	3.0	1.1	.00	.00			
30 81 .11 .00 .00 4.6 .69 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0				.00			4.4	.90	.00	.00	.00	.00	
TOTAL 58.12 19.02 1.11 0.00 2.90 53.48 241.89 1.55 0.00 0.00 0.00 0.00 MEAN 1.87 .63 .036 .00 .10 1.73 8.06 .050 .00 .00 .00 .00 MIN .36 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00									.00	.00	.00	.00	.00
MEAN 1.87 .63 .036 .00 .10 1.73 8.06 .050 .00 .00 .00 .00 .00 .00 .00 .00 .0	31								.00		.00	.00	
MEAN 1.87 .63 .036 .00 .10 1.73 8.06 .050 .00 .00 .00 .00 .00 .00 .00 .00 .0	TOTAL	58.12	19.02	1.11	0.00	2.90	53.48	241.89	1.55	0.00			
MAX 5.4 3.1 .11 .00 1.5 8.1 39 .55 .00 .00 .00 .00 .00 MIN .36 .04 .00 .00 .00 .00 .69 .00 .00 .00 .00									.050	.00	.00	.00	
MIN .36 .04 .00 .00 .00 .00 .69 .00 .00 .00 .00 .00										.00	.00	.00	
								.69		.00	.00	.00	.00
						5.8		480	3.1	.0	.0	.0	.0

CAL YR 1987 TOTAL 4834.10 MEAN 13.2 MAX 787 MIN .OO AC-FT 9590 WTR YR 1988 TOTAL 378.07 MEAN 1.03 MAX 39 MIN .OO AC-FT 750

05099300 PEMBINA RIVER NEAR WINDYGATES, MAN (International gaging station)

LOCATION.--Lat $49^{\circ}01'53"$, long $98^{\circ}16'40"$, in SE1/4 sec.13, T.1, R.7 W., 1st meridian, on left bank 0.2 mi downstream from bridge, and 3 mi northeast of Windygates.

DRAINAGE AREA .-- 3,020 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is Geodetic Survey of Canada datum of 1929. Prior to Jan. 1, 1985, datum of gage at 1102.02 ft above Geodetic Survey of Canada datum of 1929.

REMARKS .-- Records fair.

COOPERATION.--This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by Water Survey of Canada.

AVERAGE DISCHARGE.--26 years, 198 ft³/s, 143,500 acre-ft/yr; median of yearly mean discharges, 140 ft³/s, 101,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,500 ft3/s, Apr. 26, 1974, gage height, 1,121.52 ft; no flow in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 178 ft³/s, Apr. 4, gage height, 1,106.75 ft; no flow for many days.

		DISCHARGE	E, IN CU	BIC FEET F		D, WATER S		R 1987	TO SEPTEME	ER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	35	14	1.6	.00	3.9	30	33	11	.11	.00	.00
2	65	33	15	1.4	.00	4.8	45	30	12	.09	.00	.00
7								29	11	.08	.00	.00
3 4	63	32	18	1.2	.00	3.3	77					.00
4	61	29	21	.99	.00	7.5	142	28	9.0	.12	.00	
5	62	27	24	.78	.00	10	137	26	7.9	.13	.00	.00
6	58	27	27	•57	.00	13	134	25	6.9	.26	.00	.00
7	56	26	23	.42	.00	11	135	27	6.0	.69	.00	.00
8	63	24	24	.32	.00	13	123	30	5.0	.29	.00	.00
9	64	27	20	.21	.00	12	104	30	3.7	.07	.00	.00
10							89	28	4.5	.06	.00	.00
10	60	27	14	.11	.00	12	09	20	4.5	.00	.00	•00
11	58	27	18	.07	.00	32	80	26	3.8	.04	.00	.00
12	58	27	16	.00	.00	29	76	31	4.4	.05	.00	.00
									4.0	.13	.00	.00
13	56	25	19	.00	.00	14	69	34				
14	52	24	21	.00	.00	11	63	35	3.5	.05	.00	.00
15	51	24	20	.00	.00	9.7	55	34	3.6	.01	.00	.00
16	49	22	17	.00	.00	8.8	52	34	2.7	.00	.00	.00
17	49	21	18	.00	.00	8.7	49	32	3.0	.00	.00	.00
18	48	26	18	.00	.00	8.0	47	32	3.1	.00	.00	.00
19		22	18	.00	.00	9.0	49	32	2.5	.00	.00	.00
	45											.00
20	43	23	16	.00	.00	9.9	42	32	2.8	.00	.00	.00
21	41	23	13	.00	.00	12	41	29	2.6	.00	.00	.00
22	42	20	11	.00	.00	14	41	27	2.5	.00	.00	.00
23	42	18	8.8	.00	.00	22	40	25	2.3	.00	.00	.00
24	41	21	10	.00	.00	34	40	23	.85	.00	.00	.00
25	40	24	5.8	.00	.00	36	39	22	.67	.00	.00	.00
					139.51		22		4.4		20	00
26	38	23	8.4	.00	.04	31	38	20	.44	.00	.00	.00
27	36	19	7.9	.00	.18	35	36	20	.31	.00	.00	.00
28	36	17	7.2	.00	1.3	36	33	18	.38	.00	.00	.00
29	35	16	8.3	.00	3.3	35	36	18	.20	.00	.00	.00
30	35	15	8.2	.00		31	35	15	.12	.00	.00	.00
30	20					28		13		.00	.00	
31	36		3.9	.00		28		15		.00	.00	
TOTAL	1542	724	473.5	7.67	4.82	544.6	1977	838	120.77	2.18	0.00	0.00
MEAN	49.7	24.1	15.3	.25	.17	17.6	65.9	27.0	4.03	.070	.00	.00
MAX	65	35	27	1.6	3.3	36	142	35	12	.69	.00	.00
MIN	35	15	3.9	.00	.00	3.3	30	13	.12	.00	.00	.00
				15	9.6		3920	1660	240	4.3	.0	.0
AC-FT	3060	1440	939	15	9.0	1080	2920	1000	240	4.5	•0	•0

CAL YR 1987 TOTAL 80524.3 MEAN 221 MAX 2440 MIN 1.2 AC-FT 159700 WTR YR 1988 TOTAL 6234.54 MEAN 17.0 MAX 142 MIN .00 AC-FT 12370

05099600 PEMBINA RIVER AT WALHALLA, ND

LOCATION.--Lat 48°54'50", long 97°55'00", in NE1/4NE1/4 sec.29, T.163 N., R.56 W., Pembina County, Hydrologic Unit 09020313, on left bank at downstream side of bridge on State Highway 32, at south edge of Walhalla, and 7 mi downstream from Little South Pembina River.

DRAINAGE AREA.--3,350 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1939 to current year. Prior to October 1963, published as "near Walhalla."

REVISED RECORDS. -- WSP 1388: 1943, 1950(P). WSP 1558: 1957. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 934 ft above National Geodetic Vertical Datum of 1929 from topographic map. Prior to Nov. 10, 1943, nonrecording gage and Nov. 10, 1943, to Sept. 30, 1963, water-stage recorder at site 5.5 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 18 to Apr. 2 and July 10 to Sept. 30. Records fair except those for periods of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--49 years, 226 $\rm ft^3/s$, 163,700 acre-ft/yr; median of yearly mean discharges, 160 $\rm ft^3/s$, 116,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,400 ft³/s, Apr. 18, 1950, gage height, 19.2 ft former site and datum, 16.2 ft present site and datum, from rating curve extended above 7,000 ft³/s on basis of contracted-opening measurement of peak flow; no flow at times in some years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 400 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft3/s)	Gage height (ft)
Mar. 26			a*3.67	Apr. 4	1630	*321	2.98

Minimum discharge, 0.0 ft^3/s , Jan. 25 to Feb. 25. a - Backwater from ice

		DISCHARGE,	IN	CUBIC FEET	PER SEC	COND, WATER MEAN VALUE	YEAR OCTOBER	1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FE	B MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	66 64 69 67 64	38 38 37 36 35	24 24 24 24 23	8.0 7.0 5.0	.00 .00 .00	4.0 4.0 5.0	109 131 190 258 241	34 33 32 32 35	19 20 20 18 18	2.6 3.0 3.5 3.3 5.1	1.2 1.2 1.2 1.2 1.1	1.0 1.2 1.3 1.3
6 7 8 9	65 62 59 63 66	30 30 36 42 36	23 23 24 24 25	2.0 1.0 .80	.00 .00 .00	9.0 7.0	208 171 160 132 108	37 40 49 48 45	17 16 14 13	4.6 4.6 4.3 3.9 3.9	1.1 1.1 1.1 1.0 1.0	1.4 1.4 1.5 1.7 2.0
11 12 13 14 15	63 60 58 56 54	33 36 36 31 34	25 24 22 19 17	.35 .25 .22	.00	0 45 0 42 0 40	91 81 69 61 55	44 45 48 53 54	10 8.9 8.9 8.5	3.9 3.9 3.8 3.8 3.8	1.0 1.0 1.0 1.0	2.8 2.9 3.1 3.0 3.1
16 17 18 19 20	52 51 49 49 46	34 29 29 29 28	16 15 15 15	.10 .08 .06	.00	0 40 0 50 0 45	53 50 46 44 43	52 48 43 48 45	9.0 7.3 6.7 5.6 4.7	3.8 3.7 3.6 3.2 3.0	1.0 1.0 1.0 1.1	3.1 3.2 3.2 3.2 3.2
21 22 23 24 25	44 45 46 45 45	27 27 27 27 27 26	15 15 15 14 14	.03 .02 .01	.00	0 44 0 50 0 100	40 40 38 37 37	45 42 40 38 36	4.6 4.2 4.0 4.2 4.1	2.8 2.5 2.2 2.0 1.8	1.4 1.3 1.3 1.3	3.1 3.0 3.0 3.0 2.9
26 27 28 29 30 31	45 42 40 38 37 38	26 26 26 25 25	14 14 13 13 12	.00 .00 .00	1.0 2.0 3.0 4.0	75 50 103 - 117	36 34 32 32 33	36 35 34 34 32 27	3.6 3.4 3.2 3.2 2.6	1.6 1.4 1.4 1.3 1.3	1.3 1.2 1.2 1.2 1.2	2.8 2.7 3.0 3.1 3.1
TOTAL MEAN MAX MIN AC-FT	1648 53.2 69 37 3270	42 25	571 18.4 25 11 1130	1.37 9.0 .00	10.00 .3 4. .00	4 44.4 0 117 0 4.0	2660 88.7 258 32 5280	1264 40.8 54 27 2510		94.9 3.06 5.1 1.3 188	35.5 1.15 1.4 1.0 70	74.7 2.49 3.2 1.0 148

CAL YR 1987 TOTAL 104076.6 MEAN 285 MAX 4420 MIN 4.0 AC-FT 206400 WTR YR 1988 TOTAL 8998.15 MEAN 24.6 MAX 258 MIN .00 AC-FT 17850

05099600 PEMBINA RIVER AT WALHALLA, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

DATE		TIME	STRE FLO' INST TANE (CF)	W, AN- OUS S)	SPE CON- DUC' ANC! (US/	IC - I- E CM)	PH (STAI ARI UNITS (OO40	ND- O S)	TEMPI ATU AII (DEG (0002	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NES: TOT (MG, AS CAC(S AL /L	CALC DIS SOL (MG AS	VED /L CA)	SI	MG)	SODIU DIS- SOLVI (MG, AS 1	ED /L NA)	SODIUM PERCENT (00932)	
OCT 07		1710	61		9	780			1	8.0		9.0										
O4		1055	24			950				7.0		0.5										
MAR 11		0950	66			560			-	3.0		1.0									- 12	
APR 01		1120	107			660	7	.10		4.0		5.0		250	63		23		46		27	
MAY 10		1555	45			830			1'	7.0	1	8.0										
JUN 21		1240	4	.6		330	7	.50	26	6.0	2	4.0		370	94		33		46		21	
AUG 02		0825		.2		710				9.0		0.0										
SEP 07		0900	1	. 4		710			1.	4.0	1	5.0										
DATE	S	SODIUM AD- SORP- TION RATIO 00931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC	TY B /L	SULF DIS- SOL' (MG, AS SO (009)	VED /L	CHLORIDIS SOL' (MG, AS (009)	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	DI	DUÉ 80 . C S- VED	SOL	OF TI- TS, S- VED	SOLII SOLI (TOI PEI DAI (7030	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	
APR 01		1	0	.8	200		150		15		0	.20	18			436		444	126		0.59	
JUN		1		.8	300		170		18			.40	28			586		580		.33	0.80	
21	DATE	ARS D SO (U AS	SENIC DIS- DLVED IG/L S AS)	BO D SO (U AS	RON, IS- LVED G/L B) 020)	SO (U AS	ON, DIS- DLVED G/L FE) O46)	LE D SO (U	AD, DIS- DLVED IG/L S PB) O49)	LIT SO (U	HIUM DIS- LVED G/L LI) 130)	MA NE D SO (U	NGA- SE, DIS- DLVED G/L MN) 056)	MER D SO (U	CURY IS- LVED G/L HG) 890)	MO DE D SO (U	LYB- NUM, IS- LVED G/L MO) 060)	SE NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	ST T SO (U	RON- IUM, IS- LVED G/L SR) 080)	
APR			2		200		30		71		17		150		0.3		2		4		310	
JUN	1		5		120		10		<1		. 70		270		0.6		7		<1		570	
JUN O	1		2		200 120		30 10		<1 <1		47		150 270		0.3		2		4 <1		310 570	

05100000 PEMBINA RIVER AT NECHE, ND (International gaging station)

LOCATION.--Lat 48°59'20", long 97°33'05", in SE1/4NW1/4 sec.31, T.164 N., R.53 W., Pembina County, Hydrologic Unit 09020313, on right bank 0.3 mi east of State Highway 18, and at north edge of Neche.

DRAINAGE AREA. -- 3,410 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1903 to September 1908, June 1909 to September 1915, April 1919 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1904-8, 1910-15, 1920, 1921, 1923, 1924. WSP 1388: 1904(M), 1914, 1915(M), 1931(M), 1933, 1938(M). WSP 1728: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 809.69 ft above National Geodetic Vertical Datum of 1929. Prior to May 24, 1932, nonrecording gage at Burlington Northern Railway bridge 1 mi upstream, at same datum. May 25, 1932, to Apr. 17, 1939, nonrecording gage on bridge on State Highway 18, 500 ft downstream from railway bridge, at same datum.

REMARKS.--Estimated daily discharges: Oct. 1-6, Dec. 15 to Feb. 26, July 5-7, and July 25 to Sept. 30. Records fair except those for period of estimated daily discharges, July 25 to Sept. 30, which are poor.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--80 years (1904-8, 1910-15, 1920-88), 191 ft^3/s , 138,400 acre-ft/yr; median of yearly mean discharges, 150 ft^3/s , 109,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,700 ft³/s, Apr. 20, 1950, gage height, 21.58 ft, backwater from ice; from rating curve extended above 5,300 ft³/s; maximum gage height, 23.64 ft, Apr. 20, 1979, backwater from ice; no flow at times each year 1932-41, 1953, 1960-62.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 400 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 6		*420	*8.74				

Minimum discharge, .03 ft3/s, Sept. 21-30.

		DISCHARGE,	IN CUBIC	FEET PER		D, WATER Y	EAR OCTOBER	1987	TO SEPTEM	BER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	71 72 71 70 68	52 52 52 52 50	26 26 26 25 25	6.5 6.4 6.3 6.2 6.1	3.0 2.9 2.8 2.6 2.4	3.3 3.7 3.9 3.8 4.7	123 138 167 257 364	59 59 58 55 53	38 35 32 29 27	7.1 7.7 7.5 6.8 3.5	.36 .41 .44 .44	.34 .31 .30 .26
6 7 8 9	71 71 72 67 68	46 44 30 25 27	26 26 25 24 24	6.0 5.9 4.5 4.5	2.3 2.2 2.1 2.0 2.0	6.6 9.2 8.1 12 18	396 313 248 222 207	54 55 53 54 62	25 23 21 19	.33 3.0 5.8 4.7 3.9	.44 .44 .40 .38 .36	.19 .15 .13 .10
11 12 13 14 15	71 74 75 74 71	33 49 56 52 52	24 23 23 19 18	4.5 4.5 3.9 3.4 3.4	1.9 1.9 1.9 1.9	24 39 63 60 55	182 161 143 131 124	60 55 52 53 53	17 16 16 14 15	3.9 4.3 5.9 4.7 4.7	.34 .32 .35 .52 .53	.10 .08 .07 .06
16 17 18 19 20	71 69 66 64 62	50 42 16 25 22	18 18 17 17	4.4 4.2 3.6 3.4 3.4	1.8 1.9 1.9	53 54 48 46 43	112 101 97 92 86	57 59 57 59 57	14 14 14 13 11	3.6 3.6 3.1 3.1 2.6	.52 .52 .50 .50	.06 .06 .05 .05
21 22 23 24 25	61 60 60 60	23 23 25 27 27	16 15 14 13	3.4 3.3 3.3 3.3	1.3 1.5 1.5 1.4 1.3	43 44 42 42 42	83 82 78 75 69	57 59 56 53 51	10 8.7 8.5 9.5 8.7	3.1 2.9 1.9 1.3	.48 .48 .46 .46	.03 .03 .03 .03
26 27 28 29 30 31	60 60 58 57 55 52	26 26 26 26 26	9.1 8.8 8.8 7.6 6.8	3.3 3.2 3.1 3.1 3.1	1.5 3.8 4.2 3.5	45 117 132 106 102 104	67 69 66 64 61	48 52 45 43 43	9.1 8.8 8.2 7.7 6.9	.37 .33 .28 .26 .30	.46 .45 .45 .44 .40	.03 .03 .03 .03
TOTAL MEAN MAX MIN AC-FT	2041 65.8 75 52 4050	1082 36.1 56 16 2150	567.1 18.3 26 6.8 1120		63.0 2.17 4.2 1.3 125	1377.3 44.4 132 3.3 2730	146 396 61	1672 53.9 62 41 3320	496.1 16.5 38 6.9 984	101.34 3.27 7.7 .26 201	13.61 .44 .53 .32 27	3.02 .10 .34 .03 6.0

CAL YR 1987 TOTAL 108548.6 MEAN 297 MAX 4580 MIN 5.6 AC-FT 215300 WTR YR 1988 TOTAL 11925.57 MEAN 32.6 MAX 396 MIN .03 AC-FT 23650

O5100000 PEMBINA RIVER AT NECHE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	Т	IME	STRE FLO INST TANE (CF	W, AN- OUS S)	SPE CIF CON DUC ANC (US/	IC - T- E CM)	PH (STAI ARI UNITS (OO40	5)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC (009	S AL /L 03)	(MG	VED /L CA)	SI	MG)	SODIU DIS- SOLVE (MG, AS I	ED /L NA)	SODIUM PERCENT (00932)
OCT 07	1	400	70			800				7.0		9.0									
DEC																					
09 JAN	1	305	25			990				0.0		2.0									
07	1	450	5	.8	1	150			-1	4.0		0.5									
APR O8 MAY	0	925	259			550	7	.40		9.0		6.0		220	53		20		35		25
10	1	230	64			820			1	2.0	1	4.0									
JUN 21 JUL	0	905	10			860	7	.60	2	3.0	2	4.0		410	96		40		48		20
12		420		.7						6.0		3.0									
12 AUG	1	505	4	.0		850			3	0.0	2	4.0		77							1.55
03 SEP	1	115	0	.44		910			2	6.0	2	5.0									
08	1	250	0	.13		905			1	7.0	1	6.5									
DATE	SO: T RA	DIUM AD- RP- ION TIO 931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULFA DIS- SOLV (MG, AS SO	VED /L 04)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOL	DUÉ 80 . C S- VED /L)		OF TI- TS, S- VED /L)	SOLITON (TON DAY (7030)	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 08		1	7	.8	180		120		13		0	.20	23			364		378	255		0.50
JUN 21		1	12		300		190		28		0	.30	26			626		622	17.	6	0.85
	DATE	ARS D SO (U AS	ENIC IS- LVED G/L AS)	BO D SO (U AS	RON, IS- LVED G/L B) 020)	SO (U AS	ON, IS- LVED G/L FE) O46)	SO (U AS	AD, IS- LVED G/L PB) 049)	LIT D SO (U AS	HIUM DIS- LVED G/L LI) 130)	MA NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	MER D SO (U	CURY IS- LVED G/L HG) 890)	MO DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	SE NI SC (U	LE- UM, DIS- DLVED G/L SE) 145)	ST D SO (U AS	RON- IUM, IS- LVED G/L SR) O80)
APR 08 JUN			2		180		30		1		39		30		0.3		4		3		280
	• • •		6		130		20		<1		80		330		0.8		7		<1		620

05101000 TONGUE RIVER AT AKRA, ND

LOCATION.--Lat 48°46'42", long 97°44'43", in SW1/4 sec.10, T.161 N., R.55 W., Pembina County, Hydrologic Unit 09020313, on left bank 300 ft downstream from Renwick Dam, 0.9 mi northwest of Akra, and 6 mi west of Cavalier.

DRAINAGE AREA .-- 160 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April to June 1950 (WSP 1137-B), October 1951 to current year (seasonal record since 1983). REVISED RECORDS.--WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 930.00 ft above National Geodetic Vertical Datum of 1929. Prior to July 10, 1954, nonrecording gage 1.2 mi downstream at datum 30.00 ft lower. July 23, 1954, to Dec. 19, 1973, water stage recorder 2.7 mi downstream at datum 9.10 ft lower.

REMARKS.--Estimated daily discharges: June 1 to Sept. 30. Records fair except those for period of estimated discharges, which are poor. Flow regulated by temporary retention in ten retarding basins beginning 300 ft above station, four of which have slow release outlet structures to regulate the flow. Retarding basins were completed during the period 1955 to 1961 and have a combined capacity of 19,245 acre-ft.

AVERAGE DISCHARGE.--31 years (water years 1952-82), 21.4 ft³/s, 15,500 acre-ft/yr; median of yearly mean discharges, 19 ft³/s, 13,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,800 ft³/s, Apr. 18, 1950, gage height, 48.7 ft, from flood-marks, site and datum then in use, from rating curve extended above 1,500 ft³/s on basis of contracted-opening measurement of peak flow; no flow at times. This flood is the highest known since settlement of the region in about 1860.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 38 ft3/s, Apr. 6, gage height, 8.71 ft; minimum recorded daily discharge, 0.01 ft3/s, June 24, may have been less during winter period when gage was not being operated.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

						Dille Theolog						
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						1.2 1.1 1.0 .99 1.0	14 15 21 24 30	4.1 4.8 4.9 4.5 4.2	2.5 2.2 2.0 1.5 1.0	.04 .04 .03 .02 .20	.04 .04 .04 .04	.15 .15 .14 .14
6 7 8 9 10						.96 .92 1.3 1.6 2.5	37 37 33 28 23	4.1 8.0 15 13	.80 .60 .45 .30	2.0 2.2 1.9 1.5	.03 .03 .03 .02	.13 .13 .13 .12
11 12 13 14 15						4.2 4.0 3.8 3.5 3.3	19 17 13 10	10 11 8.9 7.8 6.7	.15 .12 .10 .15	.80 .60 .80 .60	.02 .02 .02 .70 .60	.40 .50 .40 .25
16 17 18 19 20						3.0 4.0 3.8 3.7 3.5	9.9 8.3 7.6 6.5	5.3 4.6 5.4 9.6 9.7	.45 .35 .20 .10	.40 .30 .20 .15	.50 .45 .40 .30	.18 .17 .15 .40
21 22 23 24 25						3.5 3.7 3.9 4.8	6.0 5.2 4.4 5.1 4.3	9.2 8.5 8.0 6.5 5.5	.02 .02 .02 .01 .10	.09 .08 .07 .06	.40 .35 .25 .25	.35 .34 .32 .30
26 27 28 29 30 31						13 14 15 16 15	4.0 4.2 4.3 4.0 3.8	4.3 4.0 3.6 3.2 2.9 2.7	.09 .07 .06 .05	.05 .05 .04 .05 .04	.20 .20 .20 .20 .18 .15	.30 .28 .26 .25
TOTAL MEAN MAX MIN AC-FT						163.27 5.27 16 .92 324	421.6 14.1 37 3.8 836	211.0 6.81 15 2.7 419	14.19 .47 2.5 .01 28	14.03 .45 2.2 .02 28	6.46 .21 .70 .02 13	7.32 .24 .50 .10

05101000 TONGUE RIVER AT AKRA, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	т	IME	STRE FLO INST TANE (CF:	W, AN- OUS S)	SPE- CON- DUCT ANCI (US/0	IC - - E CM)	PH (STAM ARI UNITS	3)	TEMP ATU AI (DEG (000	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L O3)	CALC DIS SOL (MG AS	VED /L CA)		UM, S- VED /L MG)	SODIO DIS- SOLVI (MG, AS 1	ED /L NA)	SODIUM PERCENT (00932)
OCT 07	09	930	7	.5		560			-	4.0	1	0.0									
MAR 01	13	350	1	.2		320				2.0		3.0									
APR 01	Q.	320	14			550	7.	.50		1.0		5.0		250	68		19		24		17
MAY 10	09	910	11			520			1	0.0	1	3.0									
JUN 21	16	500	0	.02		550	7.	40	2	6.0	1	8.0		260	69		22		23		16
AUG 03	14	130	0	.04		195			2	7.0	2	4.0									44
SEP 08	10	000	0	.13		500			1	7.0	1	6.0									044
DATE	SOF	OIO	POTA SIL SOL (MG, AS (UM, S- VED /L K)	ALKA LINIT LAN (MG/ AS CACC	TY 3 /L 03)	SULFA DIS- SOLV (MG/ AS SO	ED L	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUE 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLII SOLI (TOI PER DAY	S- MED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 01		0.7	7	.0	200		87		10		0	.20	15			381		353	14	.6	0.52
JUN 21		0.6	5	.8	250		75		12		0	.30	13			367		368	0.	.02	0.50
	DATE	ARSI Di SOI (UC	ENIC IS- LVED G/L AS)	BOI DI SOI (UC	RON, IS- LVED G/L B)	SO (U AS	ON, IS- LVED G/L FE) 046)	SO! (UCAS	AD, IS- LVED G/L PB) 049)	LIT D SO (U	HIUM IS- LVED G/L LI) 130)	MAI NE D SO (U	NGA- SE, IS- LVED G/L MN) 056)	MER D SO (U	CURY IS- LVED G/L HG) B90)	MO DE D SO (U	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	UM, DIS- DLVED G/L SE) 145)	ST D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
APR O1 JUN			2		190		20		1		29		450		<0.1		1		2		280
			4		80		10		1		30		550		0.8		4		<1		350

O5102500 RED RIVER OF THE NORTH AT EMERSON, MAN (National stream-quality accounting network station) (International gaging station)

LOCATION.--Lat 49°00'30", long 97°12'40", in sec.2, T.1, R.2 E., on right bank 1,500 ft downstream from Canadian National Railway bridge in Emerson, 0.8 mi downstream from international boundary, 3.6 mi downstream from Pembina River, and at mile 154.3.

DRAINAGE AREA. -- 40,200 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March to November 1902 (gage heights only), May 1912 to September 1929 (monthly discharge only, published in WSP 1308), October 1929 to current year.

GAGE.--Water-stage recorder. Datum of gage is 700.00 ft above National Geodetic Vertical Datum of 1929, by Survey of Canada. See WSP 1728 or 1913 for history of changes prior to Apr. 10, 1953.

REMARKS.--Estimated daily discharges: Nov. 26 to Apr. 3. Records good. Discharge partially regulated by reservoirs on tributaries.

COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by Water Survey of Canada.

AVERAGE DISCHARGE.--76 years (water years 1913-88), 3,390 ft^3/s , 2,456,000 acre-ft/yr; median of yearly mean discharges, 2,870 ft^3/s , 2,080,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 95,500 ft³/s, May 13, 1950, gage height, 90.89 ft; maximum gage height, 91.19 ft, May 1, 1979; minimum observed discharge, 0.9 ft³/s, Feb. 6-8, 1937.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 15,700 ft³/s, Apr. 8; minimum daily, 195 ft³/s, Sept. 14.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		DISCHARGE,	IN CODIC	root ton		MEAN VALUE		DBR 1901	10 001 10110	Lit. 1,500		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1080	840	809	600	463	576	6110	1770	2630	742	273	248
2	1070	862	809	590	463	590	6600	1700	2350	735	253	241
3	1100	872	810	572	456	600	7060	1620	2180	696	239	235
4	1080	883	806	569	463	611	7770	1560	1960	639	229	231
5	1010	872	794	569	470	622	8900	1530	1730	593	220	225
6	982	869	788	551	477	639	11600	1510	1550	600	215	220
7	964	862	790	519	480	660	15000	1490	1410	625	218	214
8	929	844	788	487	484	699	15700	1480	1340	643	219	213
9	872	819	786	466	494	706	14500	1440	1190	646	222	208
10	855	844	771	448	501	717	13300	1420	1090	604	228	197
11	844	848	763	441	509	756	12100	1420	1020	551	238	198
12	809	855	755	438	512	837	10800	1410	985	509	246	199
13	777	858	737	438	516	1000	9320	1390	936	477	259	196
14	742	848	725	431	516	1380	7770	1390	862	427	278	195
15	720	833	702	420	523	2180	6430	1370	798	396	286	201
16	724	816	683	417	530	3100	5470	1350	745	371	294	208
17	735	809	682	420	533	3640	4770	1350	720	351	302	214
18	742	805	676	424	530	3740	4240	1340	713	344	315	221
19	749	833	669	431	530	3710	3780	1360	685	328	326	227
20	752	968	658	431	526	3500	3410	1340	660	320	337	223
21	745	883	650	431	526	3260	3120	1320	664	313	350	220
22	727	819	637	438	526	3060	2880	1290	678	309	360	228
23	713	883	626	445	523	2920	2690	1250	682	317	371	257
24	717	837	619	456	519	2850	2550	1190	692	331	378	321
25	720	784	617	456	530	2850	2410	1140	703	346	367	498
26	735	762	618	456	537	2850	2310	1110	710	364	334	717
27	749	750	615	456	544	3100	2200	1110	731	406	310	858
28	770	774	607	452	554	3670	2080	1150	745	413	285	897
29	777	800	596	448	562	4380	1970	1260	742	364	268	869
30	773	815	600	452		5090	1860	1930	738	320	259	791
31	802		603	459		5690		2780		289	253	
TOTAL	25764				14797	69983	198700	44770	32639	14369	8732	9970
MEAN	831	838	703	471	510	2258	6623	1444	1088	464	282	332
MAX	1100	968	810	600	562	5690	15700	2780	2630	742	378	897
MIN	713	750	596	417	456	576	1860	1110	660	289	215	195
AC-FT	51100				29350	138800	394100	88800	64740	28500	17320	19780

CAL YR 1987 TOTAL 1515099 MEAN 4151 MAX 37400 MIN 596 AC-FT 3005000 WTR YR 1988 TOTAL 481271 MEAN 1315 MAX 15700 MIN 195 AC-FT 954600

05102500 RED RIVER AT EMERSON, MANITOBA -- CONTINUED (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1977 to current year. WATER TEMPERATURE: October 1977 to current year.

REMARKS .-- Records of daily mean values of water temperature and specific conductance are furnished by Water Survey of Canada.

EXTREMES FOR PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: Maximum daily mean, 1,480 microsiemens, Nov. 12, 1987; minimum daily mean, 330 microsiemens, Apr. 10, 16 and 17, 1978.

WATER TEMPERATURES: Maximum daily mean, 26.7°C, Aug. 16, 1988; minimum daily mean, 0.0°C, on many days during

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily mean, 1,480 microsiemens, Nov. 12; minimum daily mean, 532 microsiemens,

WATER TEMPERATURES: Maximum daily mean, 26.7°C, Aug. 16; minimum daily mean, 0.0°C, on several days during winter months.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 21	1200	745		832	8.10	-1.5	4.5	19	12.8	99	8
NOV 24	1030	837	- 22	1080	8.40	-4.5	0.0	8.2	15.6	107	6
FEB 24	1310		532	870	7.80	-4.0	0.0	3.5	9.2	62	4
APR 19	1050		3600	688	8.40	7.0	7.5	88	11.7	98	4
JUN 07	1215	1410		912	8.40	34.0	29.0	120	5.4	71	70
AUG 09	1115		230	1190	8.70	25.0	23.5	62	8.0	95	36
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (00419)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	CAR- BONATE WATER WH IT FIELD MG/L AS CO3 (00447)
OCT 21	2100	310	69	33	53	27	1	7.6	254	310	0
NOV 24	10	360	78	39	83	33	2	7.9	370	416	17
FEB 24	420	370	83	40	50	22	1	8.0	176	215	0
APR 19	40	290	67	29	33	20	0.9	5.9	208	220	17
JUN 07	70	280	60	31	72	35	2	9.6	237	269	10
AUG 09	22	340	71	39	110	41	3	9.0	248	298	2

a - Joint sample collected with Environment Canada at 0955 hours to compare sampling methods. Analysis is available from ND District computer files.

05102500 RED RIVER AT EMERSON, MANITOBA--CONTINUED (National stream-quality accounting network station)

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 21	110	61	0.30	10	491	502	0.67	988	<0.010	<0.100
NOV 24	130	100	0.30	2.6	630	662	0.86	1420	<0.010	<0.100
FEB 24	100	41	0.30	18	541	450	0.74	777	0.010	0.730
APR										
19 JUN	110	36	0.20	17	509	431	0.69	4950	0.040	0.690
07 AUG	110	92	0.20	10	517	529	0.70	1970	0.060	0.420
09	140	150	0.20	16	697	685	0.95	433	<0.010	<0.100
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)
OCT 21	0.020	0.030	0.04	0.80	0.100	<0.010	0.070	<10	3	56
NOV 24	0.010	0.020	0.03	1.1	0.120	0.060	0.040			
FEB 24	0.230	0.340	0.44	1.1	0.140	0.120	0.120	<10	2	77
APR 19	0.060	0.100	0.13	0.70	0.110	0.090	0.090	740	3	60
JUN 07	0.110	0.200	0.26	1.0	0.130	0.090	0.050			-22
AUG	0.050	0.020	0.03					40	5	85
O9	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (O1040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
OCT	10.515					,,,,,,,,,				
21 FEB	<0.5	<1	2	<3	1	11	7	40	6	0.3
24	<0.5	3	1	<3	3	13	<5	47	40	0.5
APR 19	<0.5	<1	1	<3	13		<5	26		
AUG 09	<0.5	<1	<1	<3	7	44	<5	57	9	<0.1
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT	/10		14	/1 0	200	16	7		1	
21 NOV	<10	2	<1	<1.0	290	<6	3			06
FEB 24								40	90	86
24 APR	<10	6	<1	<1.0	310	<6	20	25	36	93
19	<10	10	<1	<1.0	240	<6	12	270	2620	99
07 AUG								245	932	100
09	<10	5	1	<1.0	380	8	<3	101	63	95

135

05102500 RED RIVER AT EMERSON, MANITOBA--CONTINUED (National stream-quality accounting network station)

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES SEP OCT NOV JUN JUL AIIG DAY DEC JAN FEB MAR APR MAY 21.0 11.6 4.6 .2 .7 10.1 24.3 21.8 23.8 .3 11.0 5.8 .4 .2 .6 10.6 25.8 21.8 22.8 21.3 5.9 10.4 .4 .2 .0 .2 .7 11.0 25.7 22.3 22.8 20.9 23.5 20.9 10.0 .2 .2 .6 11.0 25.4 23.0 20.9 5 9.5 4.3 . 4 .2 .0 .2 1.3 10.8 24.7 24.5 6 8.4 .3 20.0 3.1 .2 .1 2.1 11.9 23.8 24.5 24.0 .4 25.3 7.7 2.5 13.5 2.4 .2 24.6 24.5 19.6 .4 .0 8 1.9 .4 .2 .0 .3 25.5 24.9 19.0 25.5 25.1 9 7.4 1.9 .2 .1 .3 4.4 15.0 25.1 18.6 10 18.0 6.0 2.5 .4 .2 .0 4.6 16.2 23.5 22.3 5.6 17.0 11 2.6 .4 .1 .0 .3 5.0 16.6 24.6 5.7 15.1 26.0 12 6.0 2.9 .0 .2 24.0 22.6 16.5 .4 22.2 19.7 25.7 13 6.9 2.8 .4 .1 .2 22.3 16.8 22.4 14 7.0 3.1 6.4 17.4 .4 .1 .1 .3 12.8 18.8 18.0 .4 .2 13.1 -1 -1 3.0 7.0 7.2 7.1 7.2 22.7 22.7 22.7 16 6.6 11.6 18.6 26.7 18.3 20.8 22.7 22.3 17 6.2 .4 .1 .1 .2 14.3 18.4 18.0 5.8 5.4 5.1 16.9 25.9 18 2.4 .4 .1 .1 .2 25.5 23.3 16.4 19 .4 -1 .1 .2 22.3 25.2 13.8 20 1.6 .4 .1 .1 7.2 18.4 22.4 23.5 12.7 21 4.0 1.3 .4 .0 .1 .2 7.2 18.1 24.0 25.0 24.4 13.4 22 3.3 7.2 17.9 24.4 1.0 .2 .0 .3 .2 24.0 1.0 .2 .1 .3 .2 7.8 22.3 24 1.0 20.0 22.5 25.4 2.4 . 1 .3 25 2.4 .1 .3 .3 22.1 21.0 14.3 .9 .2 7.8 19.8 7.5 20.5 25.3 21.0 14.6 26 2.6 .2 21.1 1.0 .1 .3 .3 20.9 22.6 25.0 20.0 14.5 27 3.1 .2 .33.3 1.1 .1 .3 28 1.0 8.2 22.5 23.0 25.3 21.9 13.9 .1 29 3.2 .2 .0 .3 8.9 22.8 23.0 25.1 21.7 13.5 .9 30 3.2 1.0 .2 9.7 23.9 22.5 24.6 20.3 14.0 .1 31 3.2 .2 .3 24.2 24.5 20.5 MEAN 5.9 2.5 .3 .1 .3 5.5 16.2 23.2 23.7 23.9 17.0 .1 SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES JUN JUL AUG SEP DAY OCT NOV MAY DEC JAN FEB MAR APR 613 749 781 1250 1200 1100 818 762 690 879 1200 715 755 755 757 617 2 790 1190 1200 1090 675 763 782 866 1200 813 3 765 1200 827 1200 1200 1090 809 598 1140 842 840 1200 618 45 1200 1200 584 771 1010 894 1080 801 763 848 1200 618 935 1190 1200 1070 812 578 762 943 6 610 770 911 1190 1260 1110 810 611 866 745 1200 612 774 900 1200 1200 1060 805 604 699 873 612 1200 731 738 794 790 879 758 810 1200 8 953 1200 1100 1060 790 570 918 1170 1080 823 881 1200 1060 785 532 1200 10 840 1370 1200 1200 1070 786 532 830 906 829 1050 758 886 767 11 853 1200 1200 1070 1060 857 545 820 924 834 885 12 854 1480 1200 1090 1060 997 548 567 831 924 841 853 772 906 782 13 803 1200 1100 1040 829 896 867 886 801 802 588 887 14 1200 1200 1090 1010 990 889 875 831 15 817 1200 1070 996 995 616 875 873 871 867 937 16 810 1170 1200 1000 856 871 1200 637 862 1020 874 17 780 1180 1200 1200 1010 806 654 863 883 872 18 898 873 1010 856 773 778 1200 1200 1200 1010 683 854 19 1170 1200 1200 1020 619 670 853 961 1080 20 773 1150 1040 688 830 960 1050 833 819 1200 1020 774 767 760 845 902 1080 811 776 21 1140 1200 1050 960 693 630 22 1150 1140 1440 1200 1090 890 632 700 713 834 789 914 1080 751 728 23 1200 895 623 903 1080 708 714 763 1200 1200 890 628 782 895 1090 686 703 25 760 1120 1200 1150 853 634 717 831 884 1090 720 685 26 758 1160 1170 856 895 1090 725 671 1200 837 645 714 730 718 27 761 1160 1150 710 877 912 1030 694 1200 847 654 28 780 1130 1070 680 915 1020 785 1200 852 721 915 29 791 1110 1200 1200 833 704 737 909 931 1070 638 822 621 30 782 1110 1200 1200 736 757 879 911 1170 932 623 31 1200 775 1200 1200 ---721 830 MEAN 783 1210 1160 767 645 827 905 949 912 743 1100 996

O5113360 LONG CREEK AT WESTERN CROSSING OF INTERNATIONAL BOUNDARY, SASK (International gaging station)

LOCATION.--Lat 49°00'01", long 103°21'08", in SE1/4 sec.1, T.1, R.11 W., 2d meridian, Hydrologic Unit 09010001, and on right bank 10 mi south of Outram.

DRAINAGE AREA .-- 1,320 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1959 to current year.

GAGE.--Water-stage recorder and artificial control. Datum of gage is 1,894.00 ft above National Geodetic Vertical Datum of 1929, international boundary survey.

REMARKS .-- Records good .

COOPERATION.--This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by the Water Survey of Canada.

AVERAGE DISCHARGE.--29 years, 35.4 ft³/s, 25,650 acre-ft/yr; median of yearly mean discharges, 17 ft³/s, 12,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,690 ft³/s, Apr. 1, 1976, gage height, 12.05 ft; maximum gage height, 12.70 ft, Mar. 31, 1976 backwater from ice; no flow for several months each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR .-- No flow for the entire year.

		DIBOHARUB,	IN CODIC	reel re	C DEC	MEAN VALUES	OCTOBBL	1907	TO OUR TEMPER	1,00		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
,	•00	•00	.00	.00	.00	.00	.00	.00	.00	.00	•00	•00
6 7 8 9	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	•00	.00	.00	.00
								.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00		.00					.00
13	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	
14	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
20	•00	•00	.00	•00	.00	.00	•00	.00	.00	.00	•00	.00
21	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
27								.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00		.00			.00	.00	.00
29	.00	.00	.00	.00	.00		.00	.00	.00			
30	.00	.00	.00	.00			.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	0.00	0.00	0.00	0.00	0.00	0.00	.00	0.00	0.00	0.00	0.00	0.00
MEAN	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
MAX	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00
				.00	.00		.00	.00	.00	.00	.0	.0
AC-FT	.0	.0	.0	.0		.0	.0	.0	.0	•0	.0	.0

CAL YR 1987 TOTAL 3421.42 MEAN 9.37 MAX 260 MIN .00 AC-FT 6790 WTR YR 1988 TOTAL 0.00 MEAN .00 MAX .00 MIN .00 AC-FT .0

Gage height (ft)

*3.71

Discharge (ft3/s)

.00

.00

.02

.00

.00

.0

05113600 LONG CREEK NEAR NOONAN, ND (International gaging station)

LOCATION.--Lat 49°58'52", long 103°04'34", near north line of NE½ sec.1, T.163 N., R.96 W., Divide County, Hydrologic Unit 09010001, on right bank 150 ft upstream from county highway bridge, 1.5 mi upstream from international boundary, and 7 mi northwest of Noonan.

DRAINAGE AREA.--1,790 mi², approximately, of which about 1,160 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1959 to current year.

Discharge (ft3/s)

*0.30

REVISED RECORDS .-- WSP 2113: Drainage area.

Time

Date

May 2

MIN

GAGE.--Water-stage recorder. Elevation of gage is 1,840 ft, from topographic map. Prior to Aug. 18, 1960, non-recording gage at same site and datum.

REMARKS.--Estimated daily discharges: Jan. 16 to Mar. 28, Apr. 9-11, 29, and May 2 to June 2. Records fair except those for estimated daily discharges, which are poor.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--29 years, 46.0 ft³/s, 33,300 acre-ft/yr; median of yearly mean discharges, 22 ft³/s, 15,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,310 ft³/s, Mar. 31, 1976, gage height, 17.61 ft; no flow at times most years.

Date

May 21

Time

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Gage height (ft)

3.41

No f	flow much	of the time										
		DISCHARGE	, CUBIC	FEET PER		WATER YEAR EAN VALUES	OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	•00	.06	.04	.01	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.05	.14	.01	.00	.00	.00
3	.00	.00	.00	.00				.17	.00	.00	.00	.00
					.00	.00	.04				.00	.00
4	.00	.00	.00	.00	.00	.01	.05	.15	.00	.00	2.2(2)	
5	.00	.00	.00	.00	.00	.03	.04	.12	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.06	.04	.10	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.08	.03	.12	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.10	.04	.14	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.12	.03	.12	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.15	.02	.10	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.14	.02	.09	.00	.00	.00	.00
12	.00	.00	.00	.00		.12	.01	.08	.00	.00	.00	.00
					.00						.00	.00
13	.00	.00	.00	.00	.00	.10	.01	.07	.00	.00		
14	.00	.00	.00	.00	.00	.09	.01	.10	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.08	.01	.10	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.07	.01	.08	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.08	.01	.07	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.10	.00	.06	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.12	.00	.06	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.13	.00	.07	.00	.00	.00	.00
21	.00	•00	.00	.00	.00	.16	.00	.08	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.18	.00	.07	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.20	.00	.05	.00	.00	.00	.00
										.00	.00	.00
24	.00	.00	.00	.00	.00	.20	.00	.05	.00			
25	.00	.00	.00	.00	.00	.18	.00	.05	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.17	.00	.04	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.16	.00	.04	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.14	.00	.04	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.12	.00	.03	.00	.00	.00	.00
30	.00	.00	.00	.00		.10	.02	.03	.00	.00	.00	.00
31	.00		.00	.00		.07		.02		.00	.00	
TOTAL	0.00	0.00	0.00	0.00	0.00	3.26	0.50	2.49	0.02	0.00	0.00	0.00
									.001	.00	.00	.00
MEAN	.00	.00	.00	.00	.00	.11	.017	.080			.00	.00
MAX	.00	.00	.00	.00	.00	.20	.06	.17	.01	.00	.00	.00
MIN	00	00	00	00	00	00	00	02				

.00

6.5

1.0

CAL YR 1987 TOTAL 5313.34 MEAN 14.6 MAX 316 MIN .OO AC-FT 10540 WTR YR 1988 TOTAL 6.27 MEAN .O17 MAX .20 MIN .OO AC-FT 12

.00

.00

.0

.00

.00

.0

05113600 LONG CREEK NEAR NOONAN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	1	TIME	STRE FLO INST TANE (CF	W, AN- OUS S)	SPE CIF CON DUC ANC (US/ (OOO	IC T- E CM)	PH (STAI ARI UNITS	3)	TEMP ATU AI (DEG (000	RE R C)	TEMP ATU WAT (DEG (000	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L	CALC DIS SOL (MG AS	VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIU DIS- SOLVI (MG, AS 1	ED /L NA)	SODIUM PERCENT (00932)
MAR 15 30 APR		1335 1145		.07		040 675				3.5 0.0		0.5		==		==		==			==
14 MAY		1025	0	.01	1	070	8	.57		4.5		6.5		310	52		43		120		44
03		1100	0	.16	1	110				6.0	1	0.0									
DATE	S	ODIUM AD- ORP- TION ATIO O931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC (904	TY B /L	SULF DIS- SOL' (MG, AS SO	VED /L	CHL RID DIS SOL (MG AS	VED		E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLII SOLI (TOI PEI DA' (7030	ED VED VS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 14		3	15		320		240		21		0	.20	12			739		693	0	.02	1.01
	DATE	ARS	SENIC DIS- DLVED JG/L S AS)	BO D SO (U AS	RON, IS- LVED G/L B) 020)	SO (U AS	ON, IS- LVED G/L FE) 046)	SO (U AS	AD, DIS- DLVED G/L PB) 049)	LIT D SO (U AS	HIUM IS- LVED G/L LI) 130)	MA NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	MER D SO (U	CURY IS- LVED G/L HG) 890)	MO DE SO (U	CLYB- NUM, DIS- DLVED G/L MO) 060)	SE NI D SO (U	LE- UM, IS- LVED G/L SE) 145)	ST D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
APR 14	1		3		100		50		<1		56		50		0.2		1		<1		290

05113750 EAST BRANCH SHORT CREEK RESERVOIR NEAR COLUMBUS, ND

LOCATION.--Lat 48059'26", long 102047'07", in SW1/4NW1/4 sec.32, T.164 N., R.93 W., Burke County, Hydrologic Unit 09010001, on left bank of reservoir on East Branch Short Creek, 0.5 mi south of international boundary, and 6.0 mi north of Columbus.

DRAINAGE AREA. -- 280 mi², of which 175 mi² is probably noncontributing.

RESERVOIR-GAGE HEIGHT AND CONTENTS RECORDS

PERIOD OF RECORD .-- April 1963 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,860.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Reservoir is formed by earth-fill dam; storage began April 1963. Outlet of lake is a fixed-crest concrete dam; average crest elevation, 1,886.90 ft National Geodetic Vertical Datum of 1929. Reservoir capacity at crest elevation, 1,200 acre-ft. The reservoir is operated for water supply and recreation. Records of daily reservoir stage and contents are available from files at the Bismarck District office.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,850 acre-ft, Mar. 28, 1976, gage height, 32.13 ft; minimum, 800 acre-ft, Sept. 27, 29, 1988, gage height, 22.93 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,060 acre-ft, Oct. 3, gage height, 25.74 ft; minimum contents, 800 acre-ft, Sept. 27, 29, gage height, 22.93 ft.

MONTHEND GAGE HEIGHT AND CONTENTS AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

1	Date	Gage height (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	25.71	1,060	
Oct.	31	25.44	1.030	-30
.voV	30	25.29	1,020	-10
Dec.	31	25.17	1,010	-10
CAL	YR 1987		4	-180
Jan.	31		*1,000	-10
reb.	29	25.21	1,010	+10
Mar.	31	25.28	1,020	+10
Apr.	30	25.04	990	-30
May	31	24.92	980	-10
June	30	24.27	920	-60
July	31	23.84	890	-30
Aug.	31	23.26	830	-60
Sept.	30	22.96	810	-20
WTR	YR 1988			-250

^{* -} Estimated

O5113800 SHORT CREEK BELOW INTERNATIONAL BOUNDARY NEAR ROCHE PERCEE, SASK (International gaging station)

LOCATION.--Lat 49°01'42", long 102°51'00", in SW1/4 sec.14, T.1, R.7 W., 2d meridian, Hydrologic Unit 09010001, 4 mi southwest of Roche Percee, Saskatchewan, and 5 mi upstream from mouth.

DRAINAGE AREA . -- 480 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1960 to current year.

GAGE .-- Water-stage recorder.

REMARKS.--Estimated daily discharges: Nov. 18 to Apr. 5. Records good except those for winter period, which are fair.

COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States.

AVERAGE DISCHARGE.--28 years, 12.0 ft³/s, 8,690 acre-ft/yr; median of yearly mean discharges, 4.8 ft³/s, 3,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,700 ft3/s, Apr. 7, 1969, gage height, 14.33 ft; maximum gage height, 14.39 ft, Mar. 28, 1960; no flow on many days each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 0.32 ft3/s, May 2, gage height, 2.97 ft; no flow for many days.

MEÁN VALUES DAY OCT NOV DEC JAN JUN JUL AUG SEP FEB MAR APR MAY .00 .00 .00 .00 .07 .18 .00 .00 2 .00 .04 .04 .00 .00 .00 .07 .21 .00 .00 .00 .00 3 .00 .07 .04 .00 .00 .00 .07 .11 .00 .00 .00 .00 45 -00 .07 .04 .00 .00 .00 .07 -04 .00 .00 -00 .00 .00 -07 -04 -00 -00 .04 .07 -04 -00 -00 -00 -00 6 .00 .07 .04 .00 .00 .00 .00 .04 .07 .00 .00 .04 .00 .07 .00 .00 .04 .00 .07 .00 .04 .00 .00 8 .00 .07 .04 .00 .00 .07 .00 .00 .00 .00 .00 .00 .07 -04 -00 .00 .07 .04 .07 -00 -00 -00 .00 10 .00 .07 -04 .00 .00 .00 -00 .04 .07 -07 .00 -00 11 .00 .07 .00 .00 .00 12 .00 .07 .04 .00 .00 .00 .07 .07 .00 .00 .00 .00 .00 -00 -00 13 .07 .04 .00 .00 .11 .07 .00 -00 -00 14 .00 .07 .00 .00 .04 .00 .00 .00 .00 .00 -14 .11 15 .00 .07 .04 .00 .00 .00 .07 .00 .00 .00 .00 .18 16 .00 .07 .04 .00 .00 .04 .07 .00 .00 .00 .00 .11 17 .00 .04 .00 .00 .04 .21 .04 .00 -00 -00 .00 18 .00 .04 .00 .00 .07 .00 .00 .00 .00 .07 .21 19 .00 .07 .04 .00 .00 -07 -21 .07 .00 .00 .00 .00 20 .00 .07 .00 .00 .07 .21 .07 .00 21 .07 -00 .00 .04 .00 .00 .11 .21 .07 -00 -00 -00 22 .00 -07 -00 .00 .00 .00 .04 .00 .00 .14 .18 .04 23 .00 .00 .04 .04 .00 .04 .00 .00 .00 .00 .14 .18 .00 .07 .04 .00 .00 .11 .00 .00 .00 .00 .00 .18 25 .00 .07 .00 .00 .00 .11 .00 .00 .00 .00 .00 .18 26 .07 .00 .00 .00 .00 .00 .00 .00 .04 .11 .18 .00 .00 .00 .04 .00 .00 .00 .00 .00 .11 .11 -18 -00 .00 .04 .00 .00 .07 .07 .00 .00 .00 .00 .00 .18 .00 .04 .00 .00 .00 .04 .07 .00 .00 .00 .00 .18 30 .00 .04 .00 .00 .00 .00 .00 .00 31 .00 ---.00 .00 .07 .00 .00 .00 TOTAL 0.00 1.97 1.73 1.73 0.00 0.99 0.00 0.26 4.02 0.00 0.04 0.00 MEAN .00 .066 .032 .00 .009 .056 .13 .056 .00 .001 .00 .00 MAX .00 .11 .07 .00 .11 .14 .21 .21 .00 .04 .00 .00 MIN .00 .04 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 AC-FT 3.9 2.0 .0 .0 .5 3.4 8.0 3.4 .0 .08 .0 .0

CAL YR 1987 TOTAL 2599.92 MEAN 7.12 MAX 199 MIN .00 AC-FT 5160 WTR YR 1988 TOTAL 10.74 MEAN .029 MAX .21 MIN .00 AC-FT 21

05114000 SOURIS (MOUSE) RIVER NEAR SHERWOOD, ND (International gaging station)

LOCATION.--Lat 48°59'24", long 101°57'28", in NW1/4SE1/4NE1/4 sec.33, T.164 N., R.87 W., Renville County, Hydrologic Unit 09010001, on right bank 0.8 mi downstream from international boundary, 16 mi northwest of Sherwood, and at mile 511.4.

DRAINAGE AREA.--8,940 mi², approximately, of which about 5,900 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WSP 1308: 1934, 1945. WSP 2113: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,603.73 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 8, 1935, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 20 to Feb. 27, Mar. 7-22, ice backwater; May 30 to June 16, backwater from beaver dams. Records good except those for periods Feb. 27 to Mar. 22 and May 30 to June 16 which are poor. Some regulation by reservoirs in Canada. Some small diversions for irrigation and municipal supply.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--58 years, 133 ft³/s, 96,360 acre-ft/yr; median of yearly mean discharges, 71 ft³/s, 51,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,800 ft³/s, Apr. 10, 1976, gage height, 25.15 ft; no flow at times in some years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1927 reached a stage of about 22 ft and flood in 1904 reached a stage of about 25.8 ft from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5.4 ${\rm ft^3/s}$, May 21, gage height, 1.71 ft; no flow, Dec. 13 to Feb. 26, Mar. 13-21, June 23-29, and July 20 to Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.18 .21 .35 .34 .15	.39 .51 .74 2.1 1.1	.18 .16 .14 .12	.00 .00 .00	.00 .00 .00	1.3 .96 .73 .55	2.8 2.8 2.8 2.8 3.1	1.6 2.9 3.4 2.8 2.2	.80 .70 .68 .53	.06 .06 .05 .03	.00 .00 .00	.00 .00 .00
6 7 8 9	.14 .16 .33 .31	.45 .35 .48 .49	.09 .08 .15 .25	.00 .00 .00	.00 .00 .00	1.2 .60 .40 .20	3.1 2.8 2.6 2.4 2.2	2.0 2.2 2.5 2.8 2.5	.40 .37 .21 .09	.04 .04 .03 .02 .01	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.46 .67 .69 .68	.67 .73 .71 .75	.10 .05 .00 .00	.00 .00 .00	.00 .00 .00	.10 .05 .00 .00	2.0 1.7 1.4 1.2 1.1	2.2 2.2 2.1 2.1 2.1	.05 .03 .02 .03	.00 .02 .07 .07	.00 .00 .00	.00 .00 .00
16 17 18 19 20	1.2 1.4 1.5 1.5	.93 1.0 1.0 1.0	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	1.1 .99 .91 .99	2.0 1.9 1.9 2.0 2.6	.17 .18 .07 .04	.04 .03 .02 .01	.00 .00 .00	.00 .00 .00
21 22 23 24 25	2.2 1.0 .78 .91	.80 .70 .60 .50	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 1.5 3.0 3.8 3.8	1.4 1.5 1.4 1.4	4.6 4.5 4.9 4.5 4.0	.02 .01 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	.90 .70 .61 .60 .58	.35 .30 .26 .24	.00 .00 .00 .00	.00 .00 .00 .00	.00 .30 3.1 1.3	3.2 3.0 2.9 2.9 2.8 2.8	1.9 1.5 1.2 1.0	3.3 2.9 2.4 2.0 1.4	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	22.66 .73 2.2 .14 45	20.17 .67 2.1 .20 40	1.57 .051 .25 .00 3.1	0.00 .00 .00	4.70 .16 3.1 .00 9.3	36.92 1.19 3.8 .00 73	54.49 1.82 3.1 .91 108	81.40 2.63 4.9 .90 161	5.03 .17 .80 .00	0.70 .023 .07 .00	0.00 .00 .00 .00	0.00 .00 .00

CAL YR 1987 TOTAL 19168.60 MEAN 52.5 MAX 1250 MIN .OO AC-FT 38020 WTR YR 1988 TOTAL 227.64 MEAN .62 MAX 4.9 MIN .OO AC-FT 452

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1970, 1972 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: August 1983 to current year.
SPECIFIC CONDUCTANCE: August 1983 to current year.

INSTRUMENTATION. -- Water quality monitor since August 1983.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 28.6°C, June 7, 11, 1988; minimum, 0.0°C several days during winter months

SPECIFIC CONDUCTANCE: Maximum daily, 2,190 microsiemens, Dec. 15, 1983; minimum, 320 micromsiemens, Apr. 5, 1987.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum recorded, 28.6°C, June 7, 11; minimum, 0.0°C on many days during winter months.

SPECIFIC CONDUCTANCE: Maximum recorded, 1,590 microsiemens, Dec. 12; minimum, 714 microsiemens, Apr. 11.

DAT	E	TIME	STRE. FLO INST. TANE (CF:	AM- C AN- D DUS A S) (U	PE- IFIC ON- JCT- VCE 5/CM)	PH (STAI ARI UNIT: (OO40	ND- D S)	TEMPI ATUI AII (DEG (OOO)	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	COLO (PLA INUM COBA UNIT	AT- M- ALT (S)	OXYGE DIS SOLV (MG/	ED L)	SOL (PE CE SAT	S- VED R- NT UR- ON)	HAR NES TOT (MG AS CAC	S AL /L	CALC: DIS- SOLV (MG, AS (VED /L CA)
OCT 06		1730	0	.15	1140			1:	2.0	1	0.0										
NOV 18		1045	0	.99	1310	7	.99		1.0		1.0		14	10	.9		77		360	70	
MAR 31		1620	2	.8	1530	8	.29		6.0		0.5		18	17	.2		119		430	82	
MAY 04		1810	2	.7	1020	8	.41	1	0.0	1	2.0		24	11	.5		105		250	45	
JUN 16		1830	0	.07	1220	8	.17	2	6.0	2	3.5		45	6	5.7		79		270	47	
DAT	Е	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODI DIS SOLV (MG AS	- ED /L S NA) PE	ODIUM RCENT 0932)	SOD: AI SORI TI(RAT:	D- P- ON IO	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULF DIS- SOLV (MG, AS SO	VED /L 04)	CHLC RIDE DIS- SOLV (MG/ AS (ED L		E, VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLIS RESIDED AT 18 DEG DIS SOLIS (MG,	DUÉ 80 . C S- VED /L)
NOV					- 22							212							_		05.4
18		46	160		48		4	15		344		200		82		C	.20		.7		854
31		55	190		48		4	11		464		240		120		C	.20	3	• 4	10	020
04 JUN		34	130		52	- 5	4	9	.5	292		160		81		C	.20	1	. 4		637
16		38	160		55		4	11		395		120		96		C	.20	12			763
	DATI	SU CO TU S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L) 0301)	SOLIDS DIS- SOLVE (TONS PER AC-FT (70303) S(1)	LIDS, DIS- DLVED CONS PER DAY) D302)	MO2 D SO (M AS	TRO- EN, +NO3 IS- LVED G/L N) 631)	AMM TO (M	TRO- GEN, MONIA DTAL MG/L G N)	PHO TO (M	OS- ROUS TAL G/L P)	PHO OR DI SOL (MG AS	/L VED	DI SOI (UC AS	JM- JM, IS- LVED 3/L AL)	SO (U AS	ENIC IS- LVED G/L AS)	SOL (U AS	IUM, S- VED G/L BA)	
NO																					
MA	18 R		782	1.1)	2.28	<0	.100	C	.040	0	.190	0	.030							
MA	31		980	1.3	9	7.63	<0	.100	C	.020	0	.210	0	.020							
	04		637	0.8	7	4.63	<0	.100	C	.010	0	.190	0	.190		<10		3		27	
	16		725	1.0	4	0.14	<0	.100	C	.160	1	.10	0	.900		<10		12		39	

05114000 SOURIS RIVER NEAR SHERWOOD, ND--CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (O1025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (O1046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
MAY										
04 JUN	170	<1	<1	2	2	26	<5	<4	40	0.1
16	230	<1	<1	2	<1	25	<5	54	360	0.2
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CYANIDE TOTAL (MG/L AS CN) (00720)
MAY O4 JUN	2	9	3	<1	<1	280	2	<10	<3	<0.010
16	2	8	3	<1	<1	310	3	<10	13	<0.010

143

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBE	R		DECEMBER			JANUARY	
1 2	12.8	11.0 8.6	12.0	6.0 5.8	3.3 5.2	4.6	•5	:1	.3	===		
3	11.9	8.3	9.8	6.4	4.9	5.6	. 4	.1	.2			
4 5	12.5 10.9	10.1 9.2	11.1	5.6 3.9	3.6 3.2	4.6 3.5	•5 •5	:1	.3			
6	9.8	8.7	9.3	3.6	2.7	3.2	.4	.1	.2			
7	9.5 8.3	7.4 6.6	8.6 7.5	3.8 3.8	2.9	3.2 3.1	.4	.0	.2			
9	6.4	4.8	5.6	3.4	2.7	3.0	. 4	.0	.2			
10	4.9	3.5	4.2	3.1	2.3	2.7	• 4	.0	.2			
11 12	6.2 7.0	3.0 4.1	4.4 5.4	2.5	1.5	2.0	.4	.1	.2			
13	7.8	5.7	6.6	2.7	2.1	2.4						
14 15	6.8 5.4	4.7	5.8 4.9	3.2 3.0	2.1	2.6						
16	5.8	5.0				2.7						
17	5.4	4.0	5.4 4.6	3.1 2.3	2.3 1.2	1.8						
18 19	4.4 3.2	2.9	3.7 2.7	1.3	.7	1.0						
20	2.8	2.0	2.4	.9	.6	.8						
21	3.4	2.3	2.8	.7	•4	.6						
22 23	2.7	1.9	2.6	1.0	•5	•7 •7						
24	3.5	2.2	2.7	.6	.5 .3	.5						
25	3.4	2.3	2.9	•5	•2	• 4						
26	3.4	2.3	2.9	.6	•3	•5						
27 28	3.4 3.8	2.1	2.8 3.1	.6 .4	.2	.4						
29	4.8	2.4	3.7	.6	.1	.4						
30 31	4.6 5.2	2.5	4.0	.5	.2	.3						
MONTH	12.8	1.9	5.4	6.4	.1	2.1						
		TEMP	ERATURE,	WATER (D	EG. C), W	ATER YEAR	OCTOBER	1987 TO SE	PTEMBER	1988		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1				.0	.0	.0	1.1	.0	.2	15.2	13.1	14.4
2 3				.0	.0	.0	1.3	.0	.2	12.9 9.5	9.3 8.5	11.1
4				.0	.0	.0	1.5	.0	.2	13.1	8.1	10.3
5				.0	.0	.0	2.0	.0	.3	11.4	9.4	10.3
6 7				.2	.0	.0	2.4	.0	•5	13.0 18.3	10.0	11.1
8				.0	.0	.0	.6	.0	.2	16.6	13.3	15.0
9 10				.0	.0	.0	1.5 4.6	.0	1.6	16.5 15.5	12.7 13.4	14.6
												16.1
11 12				.0	.0	.0	6.2 7.6	1.5	3.2 4.8	18.9 18.6	13.6 15.8	16.9
13				.0	.0	.0	8.0	2.8	5.3	18.0	13.1 13.6	15.2 14.2
14 15				.0	.0	.0	9.1 8.8	3.7 3.9	6.2	14.8 13.5	12.0	12.7
16				.0	.0	.0	12.4	5.1	8.0	16.0	10.3	13.1
17				.0	.0	.0	10.8	5.1 6.5	8.6	17.9 17.7	13.7 16.3	15.6 16.9
18 19				.0	.0	.0	11.6 11.4	5.5 5.0	8.0	19.6	14.1	16.7
20				.0	.0	.0	10.8	5.4	7.6	19.3	15.4	17.1
21				.0	.0	.0	10.4	5.6	7.6	20.4	14.9	17.4
22 23				.2	.0	.0	8.7 8.3	5.9 4.4	7.1	21.7	15.9 16.8	18.7 19.0
24 25				.0	.0	.0	9.8	5.8 5.6	7.5 7.2	20.4	17.9 18.9	19.4
		12000		- 1		- ()	0.0	7.0	1.6	C) .)	10.7	CU . (
				.1								
26				.6	.0	.1	10.6	6.6	8.1 8.6	21.2	19.1 17.4	19.9 19.8
26 27 28	.0	.0	.0	.6 .0	.0	.1 .0 .1	10.6 12.1 14.0	6.6 5.6 7.3	8.1 8.6 10.3	21.2 22.4 25.9	19.1 17.4 19.8	19.9 19.8 22.5
26 27		.0	.0	.6 .0 .4	.0	.1	10.6 12.1	6.6 5.6	8.1 8.6	21.2 22.4 25.9 25.9 25.4	19.1 17.4 19.8 20.7 21.4	19.9 19.8 22.5 22.9 23.3
26 27 28 29	.0	.0	.0	.6 .0	.0 .0 .0	.1 .0 .1	10.6 12.1 14.0 14.2	6.6 5.6 7.3 8.8	8.1 8.6 10.3 11.5	21.2 22.4 25.9 25.9	19.1 17.4 19.8 20.7	19.9 19.8 22.5 22.9

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		TEM	PERAIUR	E, WAIER (DEG. C),	WAIER IEAR	ROCTOBER	1907 10 1.	DET LEMBER	1900		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBER	1
-												
1 2	24.1 26.7	21.8 21.6	23.0	===								
3	27.2	20.5	23.5									
4	25.8	20.7	23.0									
5	26.0	21.9	23.8									
6	27.3	22.5	24.6									
7	28.6	23.5	25.7									
8	26.7 27.7	22.8	24.6									
10	28.3	22.4	24.9									
11	28.6	23.2	25.5					222				
12	24.2	20.7	22.2									
13	21.7	18.8	20.1									
14 15	19.1	17.3 16.4	18.1 18.7									
15	44.1	10.4	10.7									
16	23.7	17.2	20.0		·							
17 18	26.2	19.2	22.4									
19												
20												
21			222									
22												
23												
24 25												
26 27												
28	222											
29												
30 31												
)	22.0	2.22	777									
MONTH												
	SPEC	TEIC CONDU	CTANCE	MICROSTEME	NS/CM AT	25 DEG C.	WATER YEA	AR OCTOBER	1987 TO	SEPTEMBER	1988	
Land		IFIC CONDU										
DAY	SPEC MAX	IFIC CONDU	CTANCE	MICROSIEME MAX	CNS/CM AT :	25 DEG C, MEAN	WATER YEA	AR OCTOBER	1987 TO MEAN	SEPTEMBER MAX	1988 MIN	MEAN
DAY						MEAN			MEAN			MEAN
	MAX	MIN OCTOBER	MEAN	MAX	MIN	MEAN R	MAX	MIN DECEMBER	MEAN	MAX	MIN JANUARY	
1		MIN OCTOBER 1030		MAX 1150	MIN	MEAN R 1140	MAX 1400	MIN DECEMBER 1270	MEAN		MIN	MEAN
1 2 3	MAX 1160 1140 1140	MIN OCTOBER 1030 1050 1030	MEAN 1110 1110 1110	MAX 1150 1160 1160	MIN NOVEMBER 1090 1060 1070	MEAN R 1140 1130 1130	MAX 1400 1400 1410	MIN DECEMBER 1270 1270 1370	MEAN 1360 1380 1390	MAX	MIN JANUARY	===
1 2 3 4	MAX 1160 1140 1140 1160	MIN OCTOBER 1030 1050 1030 1020	MEAN 1110 1110 1110 1120	MAX 1150 1160 1160 1160	MIN NOVEMBE 1090 1060 1070 1120	MEAN R 1140 1130 1130 1130	MAX 1400 1400 1410 1450	MIN DECEMBER 1270 1270 1370 1370	MEAN 1360 1380 1390 1420	MAX	MIN JANUARY	===
1 2 3 4 5	MAX 1160 1140 1140	MIN OCTOBER 1030 1050 1030	MEAN 1110 1110 1110	MAX 1150 1160 1160	MIN NOVEMBER 1090 1060 1070	MEAN R 1140 1130 1130	MAX 1400 1400 1410	MIN DECEMBER 1270 1270 1370	1360 1380 1390 1420 1440	MAX	MIN JANUARY	===
1 2 3 4 5	1160 1140 1140 1160 1160	MIN OCTOBER 1030 1050 1030 1020 1040	MEAN 1110 1110 1110 1110 1120 1110	1150 1160 1160 1160 1180	MIN NOVEMBER 1090 1060 1070 1120 1150	MEAN 1140 1130 1130 1130 1160	1400 1400 1410 1450 1480	MIN DECEMBER 1270 1270 1370 1370 1370 1370	1360 1380 1390 1420 1440	MAX	MIN JANUARY	=======================================
1 2 3 4 5	1160 1140 1140 1160 1160	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1030	MEAN 1110 1110 1110 1120 1110 1090 1120	1150 1160 1160 1160 1180 1190	MIN NOVEMBER 1090 1060 1070 1120 1150	MEAN 1140 1130 1130 1130 1160 1170 1150	1400 1400 1410 1450 1480 1500 1530	MIN DECEMBER 1270 1270 1370 1370 1370 1370 1470	MEAN 1360 1380 1390 1420 1440 1490 1520	MAX	MIN JANUARY	=======================================
1 2 3 4 5 6 7 8 9	1160 1140 1140 1160 1160 1150 1150 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1030 1020 1040	MEAN 1110 1110 1110 1110 1120 1110 1090 1120 1130 1110	1150 1160 1160 1160 1180 1190 1190 1190 1200	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150	MEAN 1140 1130 1130 1130 1160 1170 1150 1180 1160	1400 1400 1410 1450 1480 1530 1530 1550	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440	MEAN 1360 1380 1390 1420 1440 1490 1520	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8	1160 1140 1140 1160 1160 1150 1150 1160	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1030 1020	MEAN 1110 1110 1110 1120 1110 1090 1120 1130	MAX 1150 1160 1160 1160 1180 1190 1190	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150	MEAN 1140 1130 1130 1130 1160 1170 1150 1180	MAX 1400 1400 1410 1450 1480 1500 1530 1530	MIN DECEMBER 1270 1270 1370 1370 1370 1370 1470 1470 1380	MEAN 1360 1380 1390 1420 1440 1490 1520 1460	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9	1160 1140 1140 1160 1160 1150 1150 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1030 1020 1040	MEAN 1110 1110 1110 1110 1120 1110 1090 1120 1130 1110	1150 1160 1160 1160 1180 1190 1190 1190 1200	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150	MEAN 1140 1130 1130 1130 1160 1170 1150 1180 1160	1400 1400 1410 1450 1480 1530 1530 1550	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440	MEAN 1360 1380 1390 1420 1440 1490 1520	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10	MAX 1160 1140 1140 1160 1160 1150 1160 1170 1160	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1030 1020 1040 1070	MEAN 1110 1110 1110 1120 1110 1090 1120 1110 1140 1140 1140	1150 1160 1160 1160 1180 1190 1190 1190 1200 1210	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1070 1150 1160 1180	MEAN R 1140 1130 1130 1130 1150 1160 1170 1180 1180 1190 1200	1400 1400 1410 1450 1480 1530 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13	MAX 1160 1140 1140 1160 1150 1150 1160 1170 1160 1170 1180 1190	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1090	1110 1110 1110 1110 1120 1110 1090 1120 1130 1110 1140 1140 1120 1160	1150 1160 1160 1160 1180 1190 1190 1200 1210	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1070 1150 1160 1180 1100	MEAN 1140 1130 1130 1130 1160 1170 1180 1180 1190 1200 1180	1400 1400 1410 1450 1480 1530 1530 1550 1570 1560 1590	MIN DECEMBER 1270 1270 1370 1370 1330 1470 1380 1440 1320	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1470 1560	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10	MAX 1160 1140 1140 1160 1160 1150 1160 1170 1160	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1030 1020 1040 1070	MEAN 1110 1110 1110 1120 1110 1090 1120 1110 1140 1140 1140	1150 1160 1160 1160 1180 1190 1190 1190 1200 1210	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1070 1150 1160 1180	MEAN R 1140 1130 1130 1130 1150 1160 1170 1180 1180 1190 1200	1400 1400 1410 1450 1480 1530 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX 1160 1140 1140 1160 1150 1150 1160 1170 1160 1170 1180 1190 1190	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1090 1080 1100	1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1140 1150 1150 1160	1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1190 1220	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1070 1150 1160 1180 1100 1100 1060	MEAN 1140 1130 1130 1130 1160 1170 1180 1180 1180 1180 1180 1180 118	1400 1400 1410 1450 1480 1530 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1330 1550	1360 1380 1390 1420 1440 1520 1520 1510 1470 1560	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX 1160 1140 1140 1160 1150 1150 1160 1170 1160 1170 1160 1170 1180 1190 1190 1190	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1090 1080 1100	MEAN 1110 1110 1110 1110 1110 1120 1110 1140 114	1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1160 1180 1100 1100	MEAN 1140 1130 1130 1130 1160 1170 1150 1180 1160 1180 1190 1200 1180 1180 1180 1180	1400 1400 1410 1450 1480 1530 1530 1550 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1330 1550	1360 1380 1390 1420 1440 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MAX 1160 1140 1140 1160 1160 1150 1160 1170 1160 1170 1180 1190 1180 1180 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1090 1080 1100 1080 1070 1080 1070 1120	MEAN 1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1140 1150 1160 1150 1160	MAX 1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 1210 1230 1210	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1160 1180 1100 1100 1100 1100 1110	MEAN 1140 1130 1130 1130 1160 1170 1180 1180 1180 1180 1180 1180 118	1400 1400 1410 1450 1480 1530 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1330 1550	1360 1380 1390 1420 1440 1520 1520 1510 1470 1560	MAX	MIN JANUARY	
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	MAX 1160 1140 1140 1160 1150 1160 1170 1160 1170 1180 1190 1190 1180 1170 1180 1170 1180	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1080 1170 1120 1060	MEAN 1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1140 1150 1160 1150 1160 1160 1160	MAX 1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1190 1220 1230 1230 1280 1320 1330	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1160 1180 1100 1100 11100 11100 11100 1120	MEAN 1140 1130 1130 1130 1150 1150 1180 1180 1180 1180 1180 118	1400 1400 1410 1410 1450 1480 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1330 1550	1360 1380 1390 1420 1440 1520 1460 1520 1510 1470 1560 	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MAX 1160 1140 1140 1160 1160 1150 1160 1170 1160 1170 1180 1190 1180 1180 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1090 1080 1100 1080 1070 1080 1070 1120	MEAN 1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1140 1150 1160 1150 1160	MAX 1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 1210 1230 1210	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1160 1180 1100 1100 1100 1100 1110	MEAN 1140 1130 1130 1130 1150 1150 1180 1160 1180 1180 1180 1180 1180 118	1400 1400 1410 1450 1480 1500 1530 1530 1550 1570	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1330 1550	1360 1380 1390 1420 1440 1490 1520 1510 1470 1560	MAX	MIN JANUARY	
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MAX 1160 1140 1140 1160 1150 1160 1170 1160 1170 1180 1190 1190 1180 1170 1160 1170 1160 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1080 1110	MEAN 1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1150 1160 1160 1150 1160 1150 1150	1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 123	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1070 1150 1160 1180 1100 1100 1100 1220 1220 1260	MEAN 1140 1130 1130 1130 1150 1160 1170 1180 1180 1180 1180 1180 1180 118	1400 1400 1410 1410 1450 1480 1530 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1470 1560	MAX	MIN JANUARY	
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	MAX 1160 1140 1140 1160 1150 1150 1160 1170 1160 1190 1190 1180 1190 1180 1170 1160 1170 1160	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1080 1110 1110	MEAN 1110 1110 1110 1110 1110 1120 1130 1110 1140 1140 1150 1160 1150 1160 1150 1150 1150	1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 1240 1320 1320 1320 1320 1320 1320 1320 132	MIN NOVEMBER 1090 1060 1070 1120 1150 1050 1150 1160 1180 1100 1100 1100 1100 1120 1220 122	MEAN 1140 1130 1130 1130 1150 1150 1180 1180 1180 1180 1180 118	MAX 1400 1400 1410 1450 1480 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MAX 1160 1140 1140 1160 1150 1160 1170 1160 1170 1180 1190 1190 1180 1170 1160 1170 1160 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1080 1110	MEAN 1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1150 1160 1160 1150 1160 1150 1150	1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 123	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1070 1150 1160 1180 1100 1100 1100 1220 1220 1260	MEAN 1140 1130 1130 1130 1150 1160 1170 1180 1180 1180 1180 1180 1180 118	1400 1400 1410 1410 1450 1480 1530 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1470 1560	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	MAX 1160 1140 1140 1160 1150 1150 1170 1160 1170 1180 1190 1190 1180 1170 1160 1170 1160 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1080 1110 1110 1110	MEAN 1110 1110 1110 1110 1120 1110 1090 1120 1140 1140 1150 1160 1150 1150 1150 1150 1150 115	1150 1160 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 1240 1350 1350 1370	MIN NOVEMBER 1090 1060 1070 1120 1150 1050 1150 1070 1150 1160 1180 1100 1100 1100 1220 1220 1260 1280 1220	MEAN R 1140 1130 1130 1130 1130 1160 1170 1150 1180 1160 1180 1180 1180 1180 1180 118	MAX 1400 1400 1410 1450 1480 1530 1530 1550 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1350	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	MAX 1160 1140 1140 1160 1150 1150 1170 1160 1170 1180 1190 1190 1180 1170 1160 1170 1160 1170 1160 1170 1160 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1080 1110 1120 1110 1120 1130	1110 1110 1110 1110 1120 1120 1130 1110 1140 1150 1160 1150 1160 1150 1150 1150 115	1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 1210 1350 1350 1370 1380 1380	MIN NOVEMBER 1090 1060 1070 1120 1150 1050 1150 1070 1150 1160 1180 1100 1100 1100 1220 1220 1260 1290 1280 1220 1310 1220	MEAN 1140 1130 1130 1130 1150 1160 1170 1150 1180 1160 1180 1190 1200 1380 1180 1180 1180 1160 1180 1320 1340 1350 1360 1320	1400 1400 1410 1450 1480 1500 1530 1550 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1330 1550	1360 1380 1390 1420 1440 1520 1510 1470 1560 	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	MAX 1160 1140 1140 1160 1150 1150 1160 1170 1160 1170 1180 1190 1190 1180 1170 1160 1170 1160 1170 1160 1170 1160 1170 1160 1170 1160 1170 1150 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1080 1110 1110 1110 11	1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1140 1150 1160 1150 1150 1150 1150 1150 115	1150 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 123	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1160 1180 1100 1100 1100 1220 1220 1260 1290 1280 1220 1310 1220 1310 1220	MEAN 1140 1130 1130 1130 1150 1180 1180 1180 1180 1180 1180 118	MAX 1400 1400 1410 1450 1480 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1370 1380 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	MAX 1160 1140 1140 1160 1150 1150 1160 1170 1160 1190 1190 1180 1190 1190 1180 1170 1160 1170 1160 1170 1160 1170 1160 1170 1160 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1090 1080 1100 1120 1060 1110 1120 11060 1130 1100 1120 1100 1130	1110 1110 1110 1110 1110 1110 1120 1130 1110 1140 1150 1160 1150 1160 1150 1150 1150 115	1150 1160 1160 1160 1180 1190 1190 1290 1210 1220 1230 1210 1220 1230 1210 1320 132	MIN NOVEMBER 1090 1060 1070 1120 1150 1050 1150 1070 1150 1160 1180 1100 1100 1100 1100 1220 1220 1260 1290 1280 1220 1210 1310 1220	MEAN 1140 1130 1130 1130 1150 1160 1170 1150 1180 1160 1180 1190 1200 1380 1300 1300 1320 1340 1350 1360 1350 1350 1350 1350 1350	1400 1400 1410 1450 1480 1530 1530 1550 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28 29	MAX 1160 1140 1140 1160 1150 1150 1170 1160 1170 1180 1190 1190 1180 1170 1160 1170 1160 1170 1160 1170 1160 1170 1160 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1120 1080 1110 1110 1120 1100 1130	MEAN 1110 1110 1110 1110 1120 1110 1090 1120 1140 1140 1150 1160 1150 1160 1150 1150 1150 115	1150 1160 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 1220 1230 1210 1350 1340 1350 1370 1380 1380 1380 1380 1380	MIN NOVEMBER 1090 1060 1070 1120 1150 1050 1150 1070 1150 1160 1180 1100 1100 1100 1220 1220 1220 1210 1220 1220 1210 1320 1340 1320	MEAN R 1140 1130 1130 1130 1150 1160 1170 1150 1180 1160 1180 1180 1180 1180 1180 118	1400 1400 1410 1450 1480 1530 1530 1530 1550 1570	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1350	1360 1380 1390 1420 1440 1520 1510 1470 1560 	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	MAX 1160 1140 1140 1160 1150 1150 1160 1170 1160 1190 1190 1180 1190 1190 1180 1170 1160 1170 1160 1170 1160 1170 1160 1170 1160 1170	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1090 1080 1100 1120 1060 1110 1120 11060 1130 1100 1120 1100 1130	1110 1110 1110 1110 1110 1110 1120 1130 1110 1140 1150 1160 1150 1160 1150 1150 1150 115	1150 1160 1160 1160 1180 1190 1190 1290 1210 1220 1230 1210 1220 1230 1210 1320 132	MIN NOVEMBER 1090 1060 1070 1120 1150 1050 1150 1070 1150 1160 1180 1100 1100 1100 1100 1220 1220 1260 1290 1280 1220 1210 1310 1220	MEAN 1140 1130 1130 1130 1150 1160 1170 1150 1180 1160 1180 1190 1200 1380 1300 1300 1320 1340 1350 1360 1350 1350 1350 1350 1350	1400 1400 1410 1450 1480 1530 1530 1550 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1470 1380 1440 1320 1330 1550	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1510	MAX	MIN JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	MAX 1160 1140 1140 1160 1150 1160 1170 1160 1170 1180 1190 1190 1180 1170 1160 1170 1160 1170 1160 1170 1160 1170 1160	MIN OCTOBER 1030 1050 1030 1020 1040 1020 1040 1070 1060 1070 1080 1100 1120 1080 1110 1120 1130 1120 1130 1120 1120 1130	MEAN 1110 1110 1110 1110 1120 1110 1120 1130 1110 1140 1150 1160 1150 1150 1150 1150 1150 115	1150 1160 1160 1160 1160 1180 1190 1190 1200 1210 1220 1230 1210 11220 1230 123	MIN NOVEMBER 1090 1060 1070 1120 1150 1090 1050 1150 1070 1150 1160 1180 1100 1100 1220 1260 1220 1260 1290 1280 1220 1210 1320 1340 1320 1330	MEAN 1140 1130 1130 1130 1150 1180 1180 1180 1180 1180 1180 118	MAX 1400 1400 1410 1450 1480 1530 1530 1530 1570 1560 1590	MIN DECEMBER 1270 1370 1370 1370 1330 1470 1380 1440 1320 1350	MEAN 1360 1380 1390 1420 1440 1490 1520 1460 1520 1470 1560	MAX	MIN JANUARY	

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	SPECIF	IC CONDOC	TANCE MI	CUOSTEMENT	5/ CM A1 25	DEG C,	WAICH ICAN	OCTOBER	1907 10	SELIENDEK	1900	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
44												
1 2										1080 1080	1050 1030	1070 1050
3										1050	1010	1030
4										1030	1000	1020
5										1010	990	1000
6										1020	989	1000
7										1030	1010	1020
8										1040	998	1010
9 10										1040 1060	1010 1040	1030 1040
11							925	714	830	1080	1050	1060
12 13							905	755	866 885	1080 1070	1050 1050	1060 1060
14							925 905	835 865	890	1080	1030	1050
15							886	855	878	1040	1020	1030
16							946	886	913	1060	1030	1050
17							976	946	954	1070	1050	1060
18							996	966	977	1070	1060	1070
19							996	976	988	1080	1050	1070
20							1010	977	990	1090	1070	1080
21							997	967	990	1120	1070	1100
22							997	987	995	1150	1100	1120
23							1010	987	1000	1140	1120	1130
24							1050	1010	1030	1140	1130	1140
25							1070	1020	1040	1160	1140	1150
26							1030	968	1020	1160	1140	1150
27							1030	998	1020	1160	1140	1150
28 29							1040 1040	1010 1030	1020 1030	1180 1180	1150 1160	1160 1170
30							1060	1040	1050	1180	1160	1170
31										1190	1170	1180
MONTH										1190	989	1080
MONTH										1190	909	1000
	SPECIF	IC CONDUC	TANCE MI	CROSIEMENS	S/CM AT 25	DEG C,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988	
DAY	SPECIF MAX	MIN MIN	CTANCE MI	CROSIEMENS MAX	S/CM AT 25 MIN	DEG C,	WATER YEAR	OCTOBER MIN	1987 TO MEAN	SEPTEMBER MAX	1988 MIN	MEAN
DAY		MIN			MIN			MIN			MIN	MEAN
DAY												MEAN
1	MAX 1200	MIN JUNE 1180	MEAN 1190	MAX 1150	MIN JULY 1130	MEAN 1140		MIN			MIN	MEAN
1 2	MAX 1200 1210	MIN JUNE 1180 1180	MEAN 1190 1190	MAX 1150 1170	MIN JULY 1130 1140	MEAN 1140 1150	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	===
1 2 3	MAX 1200 1210 1230	MIN JUNE 1180 1180 1190	MEAN 1190 1190 1200	MAX 1150 1170 1170	MIN JULY 1130 1140 1140	MEAN 1140 1150 1160	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	===
1 2 3 4	1200 1210 1230 1210	MIN JUNE 1180 1180 1190 1180	MEAN 1190 1190 1200 1190	1150 1170 1170 1170	MIN JULY 1130 1140 1140 1140	MEAN 1140 1150 1160 1160	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	===
1 2 3 4 5	1200 1210 1230 1210 1210	MIN JUNE 1180 1180 1190 1180	1190 1190 1200 1190 1200	1150 1170 1170 1170 1170	MIN JULY 1130 1140 1140 1140 1120	MEAN 1140 1150 1160 1160 1140	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	===
1 2 3 4 5	1200 1210 1230 1210 1210 1210	MIN JUNE 1180 1180 1190 1180 1190	1190 1190 1200 1190 1200	1150 1170 1170 1170 1160	MIN JULY 1130 1140 1140 1140 1120	MEAN 1140 1150 1160 1160 1140	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	=
1 2 3 4 5	1200 1210 1230 1210 1210 1210	MIN JUNE 1180 1190 1190 1190 1200 1210	1190 1190 1200 1190 1200 1200	1150 1170 1170 1170 1160	MIN JULY 1130 1140 1140 1140 1120	MEAN 1140 1150 1160 1160 1140 1140	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8	1200 1210 1230 1210 1210 1210 1210 1240 1240	MIN JUNE 1180 1180 1190 1190 1200 1210 1210	1190 1190 1200 1190 1200 1210 1230 1230	MAX 1150 1170 1170 1170 1160 1150 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1110 1120	MEAN 1140 1150 1160 1140 1140 1130 1130	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5	1200 1210 1230 1210 1210 1210	MIN JUNE 1180 1190 1190 1190 1200 1210	1190 1190 1200 1190 1200 1200	1150 1170 1170 1170 1160	MIN JULY 1130 1140 1140 1140 1120	MEAN 1140 1150 1160 1160 1140 1140	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260	MIN JUNE 1180 1190 1190 1190 1200 1210 1210 1220 1230	1190 1190 1200 1190 1200 1210 1230 1230 1240 1250	1150 1170 1170 1170 1160 1150 1140 1140 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1130	MEAN 1140 1150 1160 1160 1140 1130 1130 1130	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1260	MIN JUNE 1180 1190 1190 1190 1210 1210 1210 1220 1230	1190 1190 1200 1190 1200 1210 1230 1230 1240 1250	1150 1170 1170 1170 1160 1150 1140 1140 1140 1160	MIN JULY 1130 1140 1140 1140 1120 1130 1110 1120 1130 1130 1130	1140 1150 1160 1160 1140 1130 1130 1130 1130	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1290	MIN JUNE 1180 1190 1180 1190 1200 1210 1210 1220 1230 1240 1260	1190 1190 1200 1190 1200 1210 1230 1230 1240 1250	1150 1170 1170 1170 1160 1150 1140 1140 1160	MIN JULY 1130 1140 1140 1140 1140 1120 1130 1130 1130 1120 1060	MEAN 1140 1150 1160 1160 1140 1130 1130 1140 1150 1120	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1260	MIN JUNE 1180 1190 1190 1190 1210 1210 1210 1220 1230	1190 1190 1200 1190 1200 1210 1230 1230 1240 1250	1150 1170 1170 1170 1160 1150 1140 1140 1140 1160	MIN JULY 1130 1140 1140 1140 1120 1130 1110 1120 1130 1130 1130	1140 1150 1160 1160 1140 1130 1130 1130 1130	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1290 1290 1330	MIN JUNE 1180 1180 1190 1180 1190 1200 1210 1210 1220 1230 1240 1260 1270	MEAN 1190 1190 1200 1190 1200 1210 1230 1230 1240 1250 1260 1280 1300	MAX 1150 1170 1170 1170 1160 1140 1140 1140 1160 1160 1150 1110	MIN JULY 1130 1140 1140 1120 1130 1130 1130 1130 1120 1060 1070	MEAN 1140 1150 1160 1140 1140 1130 1130 1130 1140 1150 1120 1090	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1290 1330 1440 1240	MIN JUNE 1180 1180 1190 1180 1190 1210 1210 1210 1220 1230 1240 1260 1270 1210 1190	1190 1190 1200 1190 1200 1210 1230 1230 1240 1250 1260 1280 1300 1290 1210	MAX 1150 1170 1170 1170 1160 1150 1140 1140 1160 1150 1150 1110 1100 1120	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1130 1120 1060 1070 1080 1050	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1130 1130 11090 1090	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1260 1290 1290 1330 1440	MIN JUNE 1180 1190 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210	MEAN 1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1300 1290	1150 1170 1170 1170 1160 1150 1140 1140 1160 1160 1150 1110	MIN JULY 1130 1140 1140 1140 1120 1130 1110 1120 1130 1130 1120 1060 1070 1080	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1140	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1290 1290 1290 1440 1240	MIN JUNE 1180 1190 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190	MEAN 1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1300 1290 1210	1150 1170 1170 1170 1160 1140 1140 1140 1160 1150 1110 1120	MIN JULY 1130 1140 1140 1140 1120 1130 1110 1120 1130 1130 1150 1060 1070 1080 1050	1140 1150 1160 1160 1140 1130 1130 1130 1140 1150 1090 1090 1090	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1290 1290 1330 1440 1240	MIN JUNE 1180 1180 1190 1180 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190	1190 1190 1200 1200 1210 1230 1230 1240 1250 1260 1280 1290 1210	1150 1170 1170 1170 1160 1150 1140 1140 1140 1160 1150 1110 1120 1120 1120	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1130 1120 1060 1070 1080 1050 1080 1060 1080	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1140 1150 1190 1090 1090 1100 1110 1110	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1290 1290 1330 1440 1240	MIN JUNE 1180 1190 1190 1200 1210 1220 1230 1240 1260 1270 1210 1190	1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1300 1210	1150 1170 1170 1170 1160 1140 1140 1140 1160 1150 1110 1120	MIN JULY 1130 1140 1140 1140 1120 1130 1110 1120 1130 1130 1150 1060 1070 1080 1050	1140 1150 1160 1160 1140 1130 1130 1130 1140 1150 1090 1090 1090	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1290 1330 1440 1240	MIN JUNE 1180 1180 1190 1180 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190	1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1300 1290 1210	MAX 1150 1170 1170 1170 1170 1160 1150 1140 1140 1160 1150 1110 1100 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1120 1060 1070 1080 1050 1080 1080 1090	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1130 1140 1150 1120 1090 1090 1090 1110 1110 1110	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1260 1290 1330 1440 1240	MIN JUNE 1180 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210	1190 1190 1200 1190 1200 1200 1210 1230 1240 1250 1260 1280 1290 1210	MAX 1150 1170 1170 1170 1160 1150 1140 1140 1160 1160 1150 1110 1100 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1130 1120 1060 1070 1080 1050 1080 1080 1090	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1140 1150 1090 1090 1090 1110 1110 1110 1120	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1290 1290 1330 1440 1260	MIN JUNE 1180 1190 1180 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210 1230	1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1300 1290 1210	MAX 1150 1170 1170 1170 1170 1160 1150 1140 1140 1160 1150 1110 1100 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1120 1060 1070 1080 1050 1080 1080 1090	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1130 1140 1150 1120 1090 1090 1090 1110 1110 1110	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1260 1290 1330 1440 1240	MIN JUNE 1180 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210	1190 1190 1200 1190 1200 1200 1210 1230 1240 1250 1260 1280 1290 1210	MAX 1150 1170 1170 1170 1170 1160 1150 1140 1140 1140 1160 1150 1110 1120 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1130 1130 1130 113	MEAN 1140 1150 1160 1160 1140 1140 1130 1130 1130 1140 1150 1120 1090 1090 1100 1110 1110 1110	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1290 1330 1440 1260 1270 1270 1270	MIN JUNE 1180 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210 1230 1240 1230	1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1300 1290 1210	MAX 1150 1170 1170 1170 1170 1160 1150 1140 1140 1140 1160 1150 1110 1120 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1130 1130 1130 1060 1070 1080 1050 1080 1060 1080 1090	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1140 1150 1120 1090 1090 1100 1110 1110 1110 111	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 3 24 25 26	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1290 1290 1330 1440 1240	MIN JUNE 1180 1180 1190 1180 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210 1230 1240	1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1300 1290 1210	MAX 1150 1170 1170 1170 1170 1160 1150 1140 1140 1160 1150 11100 1120 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1120 1130 1130 1130 1130 1120 1060 1070 1080 1050 1080 1080 1090	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1130 1140 1150 1120 1090 1090 1100 1110 1110 1110 111	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 18 19 20 21 22 23 4 25 26 27 28	1200 1210 1230 1210 1210 1210 1210 1240 1240 1260 1260 1290 1330 1440 1240 1260 1270 1250 1270 1250 1260	MIN JUNE 1180 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210 1210 1290 1210 1290 1210 1290 1230	1190 1190 1200 1190 1200 1200 1210 1230 1240 1250 1260 1280 1290 1210 1250 1250 1250 1250 1240	MAX 1150 1170 1170 1170 1170 1160 1150 1140 1140 1160 1150 11100 1120 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1140 1120 1130 1110 11120 1130 1130 1120 1060 1070 1080 1050 1080 1060 1080 1090	1140 1150 1160 1160 1140 1140 1130 1130 1130 1140 1150 1190 1090 1090 1110 1110 1110 111	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 2 2 1 2 2 3 2 4 2 5 2 6 2 7 8 2 9	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1260 1290 1330 1440 1240 1250 1270 1270 1250 1270	MIN JUNE 1180 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210 1210 1230 1240 1250 1270 1210 1190	1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1290 1210 1230 1240 1250 1250 1250 1250 1250	1150 1170 1170 1170 1170 1160 1150 1140 1140 1140 1160 1150 1110 1120 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1140 1120 1130 1130 1130 1130 1130 1130 113	MEAN 1140 1150 1160 1160 1140 1140 1130 1130 1130 1140 1150 1120 1090 1090 1100 1110 1110 1110 111	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 26 27 28 29 30	1200 1210 1230 1210 1210 1210 1210 1220 1240 1240 1260 1290 1290 1290 1290 1290 1290 1290 1270 1260 1270 1260 1270 1250 1270 1250 1260 1260 1260 1260	MIN JUNE 1180 1180 1190 1180 1190 1210 1210 1220 1230 1240 1190 1210 1230 1240 1230 1240 1230 1240 1230 1240 1230	1190 1190 1200 1200 1210 1230 1240 1250 1260 1280 1300 1290 1210 1250 1250 1250 1250 1240	MAX 1150 1170 1170 1170 1170 1160 1150 1140 1140 1140 1150 1120 1120 1120 1120 1120 1120 112	MIN JULY 1130 1140 1140 1140 1140 1120 1130 1130 1130 1120 1060 1070 1080 1050 1080 1060 1080 1090	MEAN 1140 1150 1160 1160 1140 1130 1130 1130 1130 1140 1150 1120 1090 1090 1090 1100 1110 1110 111	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 2 2 1 2 2 3 2 4 2 5 2 6 2 7 8 2 9	1200 1210 1230 1210 1210 1210 1240 1240 1260 1260 1260 1290 1330 1440 1240 1250 1270 1270 1250 1270	MIN JUNE 1180 1190 1190 1210 1210 1220 1230 1240 1260 1270 1210 1190 1210 1210 1230 1240 1250 1270 1210 1190	1190 1190 1200 1190 1200 1210 1230 1240 1250 1260 1280 1290 1210 1230 1210 1250 1250 1250 1250 1250	1150 1170 1170 1170 1170 1160 1150 1140 1140 1140 1160 1150 1110 1120 1120 1120 1120 1140	MIN JULY 1130 1140 1140 1140 1140 1120 1130 1130 1130 1130 1130 1130 113	MEAN 1140 1150 1160 1160 1140 1140 1130 1130 1130 1140 1150 1120 1090 1090 1100 1110 1110 1110 111	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	

05114700 LAKE DARLING NEAR GRANO, ND

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1986 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	INUM- COBALT UNITS)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIU DIS- SOLVE (MG/I AS CA	DIS- ED SOLVED (MG/L A) AS MG)
ov 17	1330	850	8.44	0.5	3.5	18	12.0	90	240	51	28
EB 26	1345	1090	8.30	8.0	4.5	5	13.8	106	320	67	38
PR 13	1220	850	8.44	7.0	6.5	19	11.5	92	240	49	28
03	1536	885	8.52	7.5	9.5	10	10.2	88	240	50	29
JN 14	1030	925	8.48	13.0	20.0	16	6.7	73	260	54	31
27	0900	968	8.29	23.0	22.5	8	8.2	95	260	52	32
IG 24	1615	1010	8.19	26.0	18.5	34	9.4	100	240	45	32
DAT	D SOI (1	S NA) PER	DDIUM T	DIUM S AD- D RP- SO ION (M TIO AS	G/L AS	TTY SULF AB DIS G/L SOL G (MG CO3) AS S	- DIS VED SOL /L (MG 604) AS	E, RID - DI VED SOL /L (MG CL) AS	DE, DI IS- SO VED (M I/L A F) SI	ICA, I S- LVED G/L S O2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
NOV 17	. 1	00	46	3 1	3 250	170	26	C	.20	0.34	564
FEB 26	. 1	30	45	3 1	6 336	240	33	C	.30	3.4	745
APR 13		97	46	3 1	0 255	170	24	C	.20	3.0	564
MAY 03		97	45	3 1	3 261	180	25	C	.30	0.55	577
JUN 14	. 1	00	44	3 1	3 284	180	26	C	20	4.6	613
JUL 27	. 1	10	47	3	9.0 292	190	31	C	0.20 1	1	641
AUG 24	. 1	30	52	4 1	3 294	180	32		.30	4.7	667
	DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLV (UG AS	ED /L BA)
	17	540	0.77	0.130	0.030	0.220	0.120		-		
FEI	26	730	1.01	<0.100	0.010	0.160	0.130	<10	5		100
	13	534	0.77	<0.100	0.020	0.140	0.050				
	03	552	0.78	<0.100	0.010	0.110	0.050	<10	3	5	62
	14	581	0.83	<0.100	0.050	0.400	0.330	<10	11		25
	27	611	0.87	<0.100	<0.010	0.380	0.270				
AUG	3 24	615	0.91	<0.100	0.030	0.490	0.360				

O5114700 LAKE DARLING NEAR GRANO, ND--CONTINUED

DATE	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
NOV	125									
17 FEB	250									
26 APR	300	1	1	1	1	20	<5	50	40	<0.1
13 MAY	220									
03 JUN	240	<1	<1	<1	1	47	<5	38	13	0.1
14 JUL	270	<1	<1	3	1	<3	<5	44	17	0.2
27 AUG	270									
24	290									
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (O1092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CYANIDE TOTAL (MG/L AS CN) (00720)
FEB										
26	5	12	2	<1	<1	420		<10	<10	<0.010
MAY 03	4	6	6	<1	<1	300	2	<10	<3	<0.010
JUN 14	4	7	3	<1	<1	320	3	10	<3	<0.010

05115500 LAKE DARLING NEAR FOXHOLM, ND

LOCATION.--Lat 48°27'27", long 101°35'14", in NE'/4NE'/4 sec.1, T.157 N., R.85 W., Ward County, Hydrologic Unit 09010001, on control structure of Lake Darling Dam, reservoir of Fish and Wildlife Service, on Souris River about 6 mi north of Foxholm, and at mile 430.0.

DRAINAGE AREA.--9,450 mi², approximately, of which about 6,200 mi² is probably noncontributing.

PERIOD OF RECORD. -- April 1936 to current year (no winter records 1936-39).

REVISED RECORDS. -- WSP 1338: 1942. WSP 2113: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 1,577.00 ft National Geodetic Vertical Datum of 1929. April 1936 to Aug. 8, 1963, nonrecording gages at same site and datum.

REMARKS.--Gage heights frequently affected by wind. Reservoir is formed by earth dam; storage began in April 1936; dam completed in July 1936. Usable capacity, 108,500 acre-ft between gage heights of 0.0 ft, sill of control gages, and 21.0 ft, crest of spillway. Dead storage, 3,500 acre-ft. Figures given herein represent total contents based on capacity table dated June 7, 1943. Water is used during periods of low flow at wildlife refuge downstream.

COOPERATION .-- Gage readings furnished by Fish and Wildlife Service.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 145,400 acre-ft Apr. 17, 1976, gage height, 24.24 ft; minimum observed since April 1943 when reservoir was first filled to spillway level, 31,200 acre-ft, Feb. 18 and 25, 1963, gage height, 10.04 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 86,000 acre-ft, Oct. 13, gage height, 18.22 ft; minimum observed, 55,000 acre-ft, Sept. 30, gage height, 14.43 ft.

MONTHEND GAGE HEIGHT AND CONTENTS AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

1	Date	Gage height (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	18.05	84,400	
oct.	31	17.78	82,100	-2,300
.voV	30	17.52	79,900	-2,200
Dec.	31	17.42	79,100	-800
CA	YR 1987	-	-	-3,700
an.	31	17.42	79,100	0
eb.	29	17.49	79,700	+600
Mar.	31	17.49	79,700	0
Apr.	30	17.25	77,600	-2,100
lay	31	16.85	74,200	-3,400
June	30	16.35	70,000	-4,200
July	31	16.08	67,700	-2,300
Aug.	31	14.91	58,400	-9,300
Sept.	30	14.43	55,000	-3,400
wmi	R YR 1988		-	-29.400

05116000 SOURIS (MOUSE) RIVER NEAR FOXHOLM, ND

LOCATION.--Lat 48°22'20", long 101°30'18", in SW1/4SE1/4 sec.34, T.157 N., R.84 W., Ward County, Hydrologic Unit 09010001, on left bank 30 ft upstream from county highway bridge, 3 mi east of Foxholm, 19 mi upstream from Des Lacs River, and at mile 414.5.

DRAINAGE AREA. -- 9,470 mi², approximately, of which about 6,200 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1904 to November 1905, March to July 1906 (gage heights only), October 1936 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as Mouse River near Foxholm. 1904-6.

REVISED RECORDS. -- WSP 1308: 1905. WSP 2113: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,560.73 ft above National Geodetic Vertical Datum of 1929. June 23, 1904, to July 31, 1906, nonrecording gage at site 3.2 mi upstream at different datum. Apr. 1, 1937, to Mar. 25, 1938, nonrecording gage at site 600 ft downstream at datum about 0.5 ft higher.

REMARKS.--Estimated daily discharges: No estimated daily discharges. Records good. Flow almost completely regulated since 1936 by Lake Darling (station 05115500) 15 mi upstream and several small reservoirs, combined capacity, about 184,000 acre-ft. Some small diversions for irrigation and municipal supply.

AVERAGE DISCHARGE.--52 years, 139 ft³/s, 100,700 acre-ft/yr; median of yearly mean discharges, 60 ft³/s, 43,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,600 ft³/s, Apr. 17, 1976, gage height, 17.17 ft; maximum reverse flow, 25 ft³/s, Apr. 4, 1949 caused by backwater from the Des Lacs River; no flow at times in many years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 141 ft³/s, Aug. 9, gage height, 5.84 ft; no flow June 26,27,29, and July 16 to Aug. 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG .00 11 2.0 1.1 .81 .96 1.4 .82 .34 .48 60 .00 2 26 11 2.0 1.1 .81 .93 1.4 1.0 .93 1.0 .00 60 1.4 .44 .49 26 .81 11 1.9 1.1 .39 .49 .00 60 26 12 1.1 .81 .94 60 -66 5 12 1.0 .73 -00 26 1.6 .81 61 .66 .15 .50 .00 6 25 .91 1.2 1.5 .98 .81 11 57 .34 .91 .72 .20 .00 -96 .81 1.1 25 11 1.4 8 .27 .00 25 1.4 .92 .79 .96 1.1 11 73 92 25 1.0 22 22 40 1.4 46 .22 10 11 .68 .81 .91 .78 .90 .21 33 30 25 .87 24 .66 .96 11 .81 .66 .76 .85 .66 .84 .16 .25 85 12 11 1.4 .48 13 20 1.3 .66 .78 .68 .81 .11 85 85 25 20 .67 .85 .78 .74 .74 .31 .35 .27 25 85 .43 15 20 11 1.2 .79 .79 .71 .26 78 23 16 17 11 1.2 .74 .81 .79 4.9 .73 ·59 67 4.1 1.2 .81 .78 .21 .07 17 11 .81 8.2 1.2 .76 .91 .78 .15 .00 87 .00 3.4 2.9 1.1 .74 .96 .81 .66 -66 .15 87 1.3 .15 .00 .61 20 3.3 2.5 1.1 .76 .93 .79 .59 87 1.3 2.5 .81 .59 .00 21 3.3 2.5 .14 87 22 3.3 .76 .94 .85 .66 -00 1.1 .00 87 1.0 23 3.0 1.1 .74 .92 .81 .62 .59 .00 .20 2.8 2.2 .65 24 1.1 .78 .90 .89 1.0 .71 .46 .00 87 .88 .78 .90 25 1.1 2.2 .71 .96 .67 .44 .04 -00 87 .86 26 3.9 .00 87 .58 .71 .42 .06 10 2.2 1.1 1.0 1.2 .76 .81 .11 .00 71 .97 28 11 2.2 1.1 1.4 .27 .07 .00 58 .44 2.2 .71 .92 .81 29 11 1.1 1.4 .74 .22 .42 .00 58 .34 1.1 .81 30 11 ---58 1.1 .24 .00 1836.00 720.83 20.63 6.50 24.93 26.10 TOTAL 467.3 225.1 40.7 25.01 29.68 .22 59.2 24.0 .87 .67 .19 .96 MEAN 15.1 7.50 1.31 .81 .86 61 1.1 1.0 1.0 .66 92 27 MAX .00 2.1 .22 .04 .00 2.8 MIN 1430 12 3640 AC-FT 49 59 52 13

CAL YR 1987 TOTAL 14374.6 MEAN 39.4 MAX 864 MIN 1.1 AC-FT 28510 WTR YR 1988 TOTAL 3428.76 MEAN 9.37 MAX 92 MIN .00 AC-FT 6800

05116000 SOURIS RIVER NEAR FOXHOLM, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

				SPE		,						20.50			02	YGE DIS		HARD)_		
DATE	1	TIME	STREA FLOW INSTA TANEO (CFS (OOOO	AM- CIF V, CON AN- DUC DUS ANC S) (US/	FIC I- CT- CE (CM)	PH (STA AR UNIT (OO4	ND- D S)	TEMPE ATUR AIR (DEG (OOO2	E C)	TEMP ATU WAT (DEG (OOO	RE ER C)	COLO (PL/ INUM COB/ UNIT	AT- M- ALT TS)	OXYGE DIS SOLV (MG/	EN, 65- VED 5'L)	SOLV (PER CEN SATU ATIO	ED T R- N)	NESS TOTA (MG/ AS CACC	S L 'L (3)	CALC DIS SOL (MG AS (009	VED /L CA)
OCT 06		1140	24		975			10	0.5	1	0.0										
NOV 19		1700	2.	.9 1	1010	8	.18		2.0		2.5		17	13	5.0		94	2	290	58	1
JAN 06		0930	1.	.0 1	1360			-27	.5		1.5										
FEB 26		1100	0.	.90 1	1400	8	.20	7	.5		3.0		9	21	0.1	1	56	4	120	82	1
APR 01		0930	2.	.2 1	1080	8	.39	ç	0.0		4.5		13	16	5.0	1	22	3	310	60)
MAY 03		0845	1.	.0	815	8	.12	4	.5	1	0.5		22		5.6		50	2	250	48	į.
JUN 17		0745	0.	.25	985	8	.58	19	.5	2	0.0		18	9	5.2		57	2	250	40)
AUG 26		0930	87	1	1060	8	.26	16	.0	1	7.0		20		5.4		56	2	260	50)
DATE	S (AGNE- SIUM, DIS- OLVED MG/L S MG) 0925)	SODIU DIS- SOLVE (MG/ AS 1	ED /L SOE NA) PERC		SOD A SOR TI RAT (009	D- P- ON IO	POTA SIU DIS SOLV (MG/ AS F	M, ED'L	ALK LINI LA (MG AS CAC	TY B /L 03)	SULFA DIS- SOLV (MG, AS SO	VED /L 04)	CHLC RIDE DIS- SOLV (MG/ AS (VED S	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILIC DIS- SOLV (MG/ AS SIO2 (0095	ED L	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 180 1. C S- VED 1/L)
NOV 19		36	120		46		3	14		281		210		33		0.	30	0.	.90		683
FEB 26		53	170		45		4	20		412		330		49			30	3.			984
APR 01		38	130		47		3	10		300		250		34			20	3.			726
MAY 03		32	100		45		3	12		257		190		28			20	3.			586
JUN 17		36	120		50		3	12		280		200		34			30	1.			654
AUG 26		33	110		46		3	20		296		190		33			30	19			688
2011	DATE	SOL SUM CON TUE SO (M	IDS, f OF ISTI- ENTS, DIS- DLVED MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOL SO (T	IDS, DIS- DEVED ONS PER DAY)	NI G NO2 D SO (M AS	TRO- EN, +NO3 IS- LVED G/L N) 631)	AMM TO (M	TRO- EN, ONIA TAL G/L N)	TO (M AS	OS- ROUS TAL G/L P) 665)	PHO	OS- ROUS PHO, S- VED (L	ALUM- INUM DIS- SOLVI (UG/I AS AI	ED L	ARSE DI SOL (UC	NIC S- VED (/L AS)	BARI DIS SOLV (UG AS	UM, S- VED S/L BA)	
NOV 1	9		641	0.93		5.33	<0	.100	0	.020	0	.150	0.	.010							
	6		956	1.34		2.39	<0	.100	0	.060	0	.110	0.	.030	<	10		2		100	
APR	1		706	0.99		4.41	<0	.100	0	.020	0	.160	0.	.030							
	3		569	0.80		1.58	<0	.100	0	.050	0	.110	0.	.060	<	10		4		75	
	7		613	0.89		0.44	<0	.100	0	.040	0	.340	0.	260	:	20		10		73	
AUG 2	6		634	0.94	16	1	<0	.100	0	.030	0	.510	0.	410							

05116000 SOURIS RIVER NEAR FOXHOLM, ND--CONTINUED

DATE	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (O1035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
NOV										
19	280									
FEB 26	370	1.	1	3	3	40	<5	70	260	<0.1
APR O1 MAY	290									
03 JUN	230	<1	<1	<1	<1	6	<5	38	100	<0.1
17 AUG	290	<1	<1	2	1	6	<5	51	43	<0.1
26	300									
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CYANIDE TOTAL (MG/L AS CN) (00720)
FEB 26	6	7	3	1	<1	510		<10	<10	<0.010
MAY			-					440	44	
03 JUN	4	27	5	<1	<1	290	<1	<10	11	<0.010
17	5	10	4	<1	<1	280	4	<10	13	<0.010

05116150 DES LACS RIVER NEAR KENMARE, ND

LOCATION.--Lat 48°35'23", long 101°59'49", in NE1/4NE1/4 sec.23, T.159 N., R.88 W., Ward County, Hydrologic Unit 09010001, on right bank 500 ft upstream from crossing on U.S. Highway 52, 150 ft downstream from U.S. Fish & Wildlife Service Dam No. 8, 6.5 mi southeast of Kenmare.

DRAINAGE AREA.--687 mi², approximately, of which 354 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

PERIOD OF RECORD. -- October 1987 to September 1988.

GAGE .-- Water-stage recorder. Datum of gage is 1,377 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 1 to Dec. 14 and Feb. 27 to July 13. Records poor. Flow slightly regulated by small upstream reservoirs.

EXTREMES FOR CURRENT PERIOD. -- Maximum discharge, 0.15 ft³/s, May 15, gage height, 1.03 ft; no flow for several months.

		DIDONAROB,	IN CODIC	roor ron		VALUES	i oolobdii	1501 10	00. 10.100.	.,,,,,		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.03	.03	.01	.00	.00	.02	.00	.08	.09	.02	.00	.00
2	.03	.03	.01	.00	.00	.02	.00	.08	.09	.01	.00	.00
3	.03	.03	.01	.00	.00	.01	.00	.08	.08	.01	.00	.00
3 4	.03	.03	.01	.00	.00	.01	.01	.08	.07	.01	.00	.00
5	.03	.03	.01	.00	.00	.02	.01	.09	.06	.01	.00	.00
	•0)	•0)	•01	.00	•00	•02	.01	.0)	.00		.00	
6	.03	.03	.01	.00	.00	.03	.01	.09	.05	.01	.00	.00
7	.03	.03	.01	.00	.00	.03	.01	.10	.04	.01	.00	.00
8	.03	.03	.01	.00	.00	.03	.01	.11	.01	.00	.00	.00
9	.03	.03	.01	.00	.00	.03	.01	.12	.01	.00	.00	.00
10	.03	.03	.01	.00	.00	.03	.01	.11	.00	.00	.00	.00
11	.03	.03	.02	.00	.00	.02	.00	.10	•00	.00	.00	.00
12	.03	.03	.02	.00	.00	.01	.00	.10	.00	.01	.00	.00
13		.03	.01	.00	.00	.00	.00	.10	.00	.01	.00	.00
	.03								.06	.00	.00	.00
14	.03	.03	.01	.00	.00	.00	.00	.12				
15	.03	.03	.00	.00	.00	.00	.00	.14	.08	.00	.00	.00
16	.03	.02	.00	.00	.00	.00	.00	.12	.07	.00	.00	.00
17	.03	.02	.00	.00	.00	.00	.00	.12	.03	.00	.00	.00
18	.03	.02	.00	.00	.00	.00	.00	.12	.01	.00	.00	.00
19	.03	.02	.00	.00	.00	.00	.00	.12	.01	.00	.00	.00
20	.03	.02	.00	.00	.00	.00	.00	.13	.01	.00	.00	.00
20	•05	•02	.00	.00	.00	.00	.00	• • •				
21	.03	.02	.00	.00	.00	.00	.00	.13	.02	.00	.00	.00
22	.03	.02	.00	.00	.00	.01	.00	.13	.02	.00	.00	.00
23	.03	.02	.00	.00	.00	.02	.00	.13	.02	.00	.00	.00
24	.03	.02	.00	.00	.00	.03	.00	.13	.01	.00	.00	.00
25	.03	.02	.00	.00	.00	.03	.00	.12	.00	.00	.00	.00
	•05	.02	.00	.00	•00	•0)	.00					
26	.03 .	.02	.00	.00	.00	.02	.00	.12	.00	.00	.00	.00
27	.03	.02	.00	.00	.01	.01	.00	.12	.00	.00	.00	.00
28	.03	.02	.00	.00	.02	.01	.00	.12	.00	.00	.00	.00
29	.03	.02	.00	.00	.02	.00	.03	.12	.00	.00	.00	.00
30	.03	.02	.00	.00		.00	.08	.11	.03	.00	.00	.00
31	.03		.00	.00		.00		.10		.00	.00	
momat	0.07	0.75	0.40	0.00	0.05	0.70	0.40	7 11	0.07	0.40	0.00	0.00
TOTAL	0.93			0.00	0.05			3.44		0.10		
MEAN	.030	.025	.005	.00	.002		.006	.11	.029	.003	.00	.00
MAX	.03	.03	.02	.00	.02	.03	.08	.14	.09	.02	.00	.00
MIN	.03	.02	.00	.00	.00	.00	.00	.08	.00	.00	.00	.00
AC-FT	1.8	1.5	.3	.0	.1	.8	. 4	6.8	1.7	.2	.0	.0

WTR YR 1988 TOTAL 6.87 MEAN .019 MAX .14 MIN .00 AC-FT 14

05116500 DES LACS RIVER AT FOXHOLM, ND

LOCATION.--Lat 48°22'14", long 101°34'11", in NW1/4NE1/4NW1/4 sec 2, T.156 N., R.85 W., Ward County, Hydrologic Unit 09010002, on left bank 200 ft upstream from county highway bridge in Foxholm, and at mile 23.0.

DRAINAGE AREA .-- 939 mi2, of which about 400 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1904 to July 1906, October 1945 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS .-- WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,632.98 ft above National Geodetic Vertical Datum of 1929.

June 14 to Oct. 23, 1955, nonrecording gage at site 200 ft downstream from present gage at same datum.

See WSP 1728 or 1913 for history of changes prior to June 14, 1955.

REMARKS.--Estimated daily discharges: Dec. 13 to Feb. 28, May 1-3, and May 30 to June 4. Records good except those for periods of estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--45 years (water years 1905-06, 1946-88), 29.4 $\rm ft^3/s$, 21,300 acre-ft/yr; median of yearly mean discharges, 16 $\rm ft^3/s$, 11,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,260 ft3/s, Apr. 19, 1979, gage height, 21.23 ft, from high-water mark; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 4.2 ft³/s, May 4, gage height, 5.24 ft; no flow for many days.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND, MEA	WATER YEA N VALUES	R OCTOBER	1987 TO	SEPTEMBER	R 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.2 1.0 .91 .83	1.5	1.3 1.3 1.3 1.3	.05 .00 .00 .00	.00 .00 .00	.47 .47 .42 .34 .29	3.4 3.4 3.9 4.1 4.0	2.5 3.0 3.9 4.1 3.9	2.4 2.3 2.2 2.1 1.9	.20 .25 .27 .32 .89	.00 .00 .00 .00	.00 .00 .00
6 7 8 9	.81 .82 .81 .76	1.4	1.3 1.3 1.3 1.3	.00 .00 .00	.00 .00 .00	.28 .28 .27 .50	3.8 3.7 3.5 3.5 3.4	3.9 3.4 3.5 3.4 3.0	1.6 1.4 1.3 1.1	1.1 1.1 .99 .89	.00 .00 .00 .00	.00 .00 .00
11 12 13 14 15	•72 •72 •72 •73 •82	1.5	1.3 1.3 1.2 1.2	.00 .00 .00	.00 .00 .00	1.3 1.2 1.1 .96	3.3 3.1 3.0 2.9 2.8	2.8 2.6 2.4 2.3 2.4	.89 .48 .21 .23	.38 .31 .24 .18	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.85 .88 .95 1.1	1.6 1.6 1.6 1.6	1.1 1.0 .90 .80	.00 .00 .00 .00	.00 .00 .00	.82 .78 .76 .79	2.6 2.5 2.4 2.4 2.3	2.2 2.0 2.0 2.0 2.0	•54 •57 •50 •41 •31	.15 .11 .09 .08 .06	.00 .00 .00	.00 .00 .00
21 22 23 24 25	1.1 1.1 1.1 1.2 1.2	1.4 1.4 1.4 1.3	.65 .55 .50 .45	.00 .00 .00	.00 .00 .00	.85 .94 1.1 1.4 1.9	2.3 2.2 2.2 2.1 2.0	2.1 1.9 2.0 2.2 2.5	.25 .22 .17 .15	.03 .01 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	1.3 1.4 1.4 1.5	1.3 1.3 1.3 1.3 1.3	.35 .30 .25 .20 .15	.00 .00 .00 .00	.00 .05 1.0 .63	2.1 2.3 2.9 3.3 3.3 3.4	2.0 1.9 1.9 1.8 1.8	2.5 2.6 2.7 2.7 2.6 2.5	.13 .11 .09 .06 .09	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	32.07 1.03 1.5 .72 64	43.0 1.43 1.6 1.3 85						83.6 2.70 4.1 1.9 166	23.36 .78 2.4 .06 46	8.38 .27 1.1 .00	0.00 .00 .00	0.00 .00 .00

CAL YR 1987 TOTAL 5860.37 MEAN 16.1 MAX 700 MIN .15 AC-FT 11620 WTR YR 1988 TOTAL 341.47 MEAN .93 MAX 4.1 MIN .00 AC-FT 677

O5116500 DES LACS RIVER AT FOXHOLM, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1950-51, 1969-70, 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF (OOO	W, AN- OUS S)	SPE- CON- DUC' ANCI (US/0	IC - T- E CM)	PH (STA AR UNIT (004	ND- D S)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	COLO (PL) INUI COB UNII (OOO)	AT- M- ALT IS)	OXYGH DIS SOLV (MG,	S- /ED /L)	SOL (PE CE SAT	S- VED R- NT UR- ON)	HAR NES TOT (MG AS CAC (009	S AL /L 03)	CALCI DIS- SOLV (MG/ AS C	ED L A)
OCT 06		1245	0	.79	1:	640			1	3.0	1	0.0										
NOA														18	10			106		580	110	
19 APR		1820		• 4		820		.30		5.0		1.5				5.0						
01 MAY		1105	3	• 4	1	580	8	.21	1	2.0		0.5		26	12	2.4		87		330	65	
03 JUN		1115	3	•9	1	560	8	.35		5.5		8.0		32	8	3.3		70		390	70	
17		0930	1	.0	19	950	8	.71	2	2.0	2	0.5		65	10	0.0		112		490	91	
DATE	5	MAGNE- SIUM DIS- SOLVET (MG/L AS MG) DO925	SODI DIS SOLV (MG	ED /L NA)	SOD: PERCI	ENT	SOR	ON	SI	VED /L K)	ALK LINI LA (MG AS CAC	TY .B /L	SULF DIS- SOL' (MG, AS SO	VED /L 04)	CHLC RID DIS- SOLV (MG, AS (E, VED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLID RESID AT 18 DEG. DIS SOLV (MG/ (7030	UÉ O C ED L)
NOV																		70	47			00
19 APR		74	240			47		4		.0	381		550		33			.30	13		14	
01 MAY		41	250			62		6	6	•5	364		490		20		0	.20	9	.8	11	10
03 JUN		53	220			54		5	7	.1	385		470		25		0	.30	1	.7	10	50
17		63	280			55		6	9	.8	547		550		33		0	.40	25		14	00
	DATE	SI	DLIDS, JM OF DNSTI- JENTS, DIS- SOLVED (MG/L) 70301)	SOLI SOLI (TOI PEI AC- (7030	S- VED NS R FT)	SOI (TO	IDS, IS- LVED ONS ER AY)	NO2 SO (M	TRO- EN, +NO3 DIS- DLVED G/L N)	AMM TO (M AS	TRO- EN, ONIA TAL G/L N)	PHOTO (MAS	OS- ROUS TAL G/L P) 665)	PHONOR DIS	/ED	SOL (UC	JM, IS- LVED I/L AL)	SO (U AS	ENIC IS- LVED G/L AS)	SOL (U		
			1260	1	.90		5.37	<0	.100	0	.020	0	.150	0	.050							
			1100	1	.51	1	0.2	<0	.100	0	.020	0	.210	0	.020							
	· · ·		1080	1	.43	1	1.1	<0	.100	0	.030	0	.340	0	.120		<10		3		44	
JUN 17			1380	1	.90		3.78	<0	.100	0	.040	1	.60	0	.910		10		24		61	
	DATE		BORON, DIS- BOLVED (UG/L AS B) D1020)	CADM DI: SOL' (UG AS	S- VED /L CD)	MI DI SO (U	RO- UM, S- LVED G/L CR) O3O)	SOL (U AS	ALT, S- VED G/L CO) 035)	DI SO (U AS	PER, S- LVED G/L CU) 040)	SO: (U	ON, IS- LVED G/L FE) O46)	SOI (UC AS	AD, IS- LVED G/L PB) D49)	SOL (UC	S- VED I/L LI)	NE SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY IS- LVED G/L HG) B90)	
NOV			150																			
APR			90										1									
MAY																						
JUN			120		<1		<1		4		3		35		<5		70		110		<0.1	
17	• • • •		170		<1		<1		2		<1		<3		<5		100		5		<0.1	
	DATE	2	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) D1060)	NICK TOT REC ERA (UG AS (AL OV- BLE /L NI)	SO (U	KEL, S- LVED G/L NI) 065)	NI SO (U AS	LE- UM, DIS- DLVED G/L SE) 145)	TO RE ER (U AS	VER, TAL COV- ABLE G/L AG) O77)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)	DII SOI (UC AS	NA- JM, IS- LVED G/L V) D85)	ERA (UC	COV- ABLE S/L ZN)	SO (U AS	NC, IS- LVED G/L ZN) 090)	TO (M	NIDE TAL G/L CN) 720)	
MAY	5		2		13		5		<1		3		410		2		<10		<3	<0	.010	
JUN																						
17	• • • •		3		12		3		<1		<1		520		7		10		12	(0	.010	

05117500 SOURIS (MOUSE) RIVER ABOVE MINOT, ND

- LOCATION.--Lat 48°14'45", long 101°22'15", in NW1/4NW1/4SE1/4 sec.17, T.155 N., R.83 W., Ward County, Hydrologic Unit 09010001, on right bank 180 ft downstream from county highway bridge, 3.5 mi west of Minot, 7 mi downstream from Des Lacs River, and at mile 388.5.
- DRAINAGE AREA.--10,600 mi², approximately, of which about 6,700 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD.--May 1903 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as Mouse River at Minot, 1903-24, Souris River at Minot, 1927-28, 1929-34, and Souris River near Minot, 1928-29.
- REVISED RECORDS.--WSP 1308: 1905, 1909-14, 1918, 1924-25, 1927. WSP 1338: 1903-4, 1906, 1917, 1928, 1929(M). WSP 2113: Drainage area.
- GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,545.75 ft above National Geodetic Vertical Datum of 1929. May 5, 1903, to Sept. 30, 1928; Oct. 1, 1929, to Sept. 30, 1934; nonrecording gages at mile 377.6 in Minot, at datum 12.5 ft lower, Oct. 1, 1928, to Sept. 30, 1929, nonrecording gages at Saugstad bridge at mile 366.8, 5 mi southeast of Minot and at datum 19.2 ft lower than present datum. Records equivalent except those for periods of extreme low flow, as some industrial and sanitary waste enters river between the sites.
- REMARKS.--Estimated daily discharges: Dec. 19 to Apr. 10. Records good except those for period of estimated daily discharges, which are poor. Flow almost completely regulated by Lake Darling (station 05115500), 41 mi upstream and several smaller reservoirs; combined capacity, about 248,000 acre-ft. Some small diversions for irrigation and municipal supply.
- AVERAGE DISCHARGE.--85 years, 163 ft³/s, 118,100 acre-ft/yr; median of yearly mean discharges, 85 ft³/s, 61,600 acre-ft/yr.
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,000 ft³/s, Apr. 20, 1904, gage height, 21.9 ft at site in Minot, from rating curve extended above 8,100 ft³/s; no flow at times in some years. Maximum stage at present site, about 23 ft in April 1904.
- EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage in Minot at least 3 ft higher than 1904 peak, in 1881, according to Apr. 20, 1904 issue of Minot Daily Optic. This peak probably occurred in 1882.
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 82 ft³/s, Aug. 14, gage height, 4.74 ft; no flow, May 29 to Aug. 11.

		DISCHARGE,	IN CU	BIC FEET	PER SECON	D, WATER Y	EAR OCTO	BER 1987	TO SEPTEMBE	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 25 25 25 25 25	13 14 14 14 15	3.4 3.4 3.4 3.4	1.0 .95 .90 .85	.60 .60 .60	4.0 2.5 2.0 1.8 1.6	5.2 5.7 5.7 6.4 6.7	2.2 4.0 5.4 4.9 4.9	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	49 50 50 50 50
6 7 8 9	25 24 24 24 24	15 15 16 15 15	3.4 3.4 3.3 3.3 3.2	.80 .80 .75 .70	.60 .60 .60 .60	1.5 1.4 1.8 2.5 3.0	6.0 5.5 5.0 4.5 4.0	5.5 5.7 6.7 8.9 9.0	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	51 50 49 37 28
11 12 13 14 15	24 23 23 23 21	15 16 16 16 17	3.3 3.2 3.0 2.9 2.8	.70 .65 .60 .60	.65 .70 .70 .70	2.5 2.2 1.9 1.8 1.7	3.4 3.2 3.2 3.0	7.3 5.7 5.1 4.6 4.2	.00 .00 .00 .00	.00 .00 .00	.00 4.6 71 81 82	35 33 23 17 15
16 17 18 19 20	20 21 18 11 6.2	19 16 14 14	2.7 2.6 2.5 2.4 2.2	.60 .60 .60	.70 .70 .80 .90	1.6 1.6 1.7 1.8	2.9 2.7 2.6 2.5 2.3	4.4 3.7 3.4 3.7 3.6	.00 .00 .00	.00 .00 .00	82 77 64 60 68	16 16 12 5.8 3.6
21 22 23 24 25	4.9 4.6 3.9 3.7 3.9	7.7 5.7 4.3 3.7 3.5	2.1 2.0 1.9 1.8 1.7	.60 .60 .60	1.1 1.2 1.4 1.6 2.0	1.9 2.0 2.5 3.0 3.5	2.3 2.2 2.5 2.9 2.7	3.2 2.7 2.1 1.7	.00 .00 .00 .00	.00 .00 .00	74 76 76 75 76	3.1 2.8 2.2 1.9 1.6
26 27 28 29 30 31	4.0 3.9 4.1 9.2 13	3.4 3.3 3.2 3.3 3.4	1.6 1.5 1.4 1.3 1.2	.65 .60 .60 .60	3.4 4.0 4.5 5.0	4.0 4.2 4.4 4.6 4.8 5.0	2.7 2.6 2.2 1.7	.76 .52 .17 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	76 80 78 74 59 51	1.1 .72 .83 .85 .78
TOTAL MEAN MAX MIN AC-FT	504.4 16.3 25 3.7 1000		78.8 2.54 3.4 1.1 156	21.10 .68 1.0 .60 42	37.80 1.30 5.0 .60 75	80.4 2.59 5.0 1.4 159	107.4 3.58 6.7 1.7 213	115.35 3.72 9.0 .00 229	0.00 .00 .00 .00	0.00 .00 .00 .00	1384.60 44.7 82 .00 2750	656.28 21.9 51 .72 1300

CAL YR 1987 TOTAL 22421.47 MEAN 61.4 MAX 860 MIN .55 AC-FT 44470 WTR YR 1988 TOTAL 3326.63 MEAN 9.09 MAX 82 MIN .00 AC-FT 6600

RED RIVER OF THE NORTH BASIN O5117500 SOURIS RIVER ABOVE MINOT, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969 to current year.

DATE	TIME	STREAM FLOW INSTAM TANEOU (CFS)	CON- DUCT JS ANCE (US/C	C PH - (STAI ARI M) UNIT	ND- ATI	PER- URE IR G C)	TEMPE ATUE WATE (DEG (0001	RE ER C)	HARI NESS TOTA (MG, AS CACO	AL /L	CALCI DIS- SOLV (MG/ AS C	ED L	MAGN SIU DIS SOLV (MG/ AS M	JM, S- VED 'L MG)	SODIU DIS- SOLVE (MG/ AS N	D L A)	SODIUM PERCENT (00932)	r
OCT																		
06 NOV	0910	24	7	45		9.0	10	0.0									3.5	-
17 JAN	1035	15	11	00		-1.5	2	2.0										
07	1545	0.8	30 17	00		13.5		1.0										-
FEB 26	0920	3.:	3 24	.00		1.0	(0.0										
APR 01	0840	5.0) 11	00		6.5	2	2.0										
MAY 02	1730	4.	, ,	80 8	.64	6.0	11	2.5		280	55		35		100		43	3
a _{O2}	1731	4.			.64	6.0		2.5		290	57		36		110		44	
25	1745	76	10	80 7	.90	24.0	20	0.5	2	280	52		36		120		47	7
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS SIUI DIS- SOLVI (MG/I AS K	M, LINIT LAE ED (MG/ L AS) CACO	Y SULF. DIS. L SOL. (MG) AS S	ATE RI - DI: VED SO! /L (MO 04) AS	LO- DE, S- LVED G/L CL) 940)	FLUC RIDE DIS SOLV (MG, AS I	E, /ED /L	SILIO DIS- SOLV (MG, AS SIO2 (0095	VED /L	SOLID RESID AT 18 DEG. DIS SOLV (MG/	C C C	SOLIT SUM CONST TUENT DIS SOLV (MG/ (7030	OF CI- CS, CS- VED (L)	SOLID DIS SOLV (TON PER DAY (7030	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303))
MAY																	1.0	
02 a ₀₂	3	8. 7.		210 220	30	3.2 0		20		.5		37 23		584 528	8.	05 87	0.87	
AUG 25	3	16	310	220	3	6	0.	.30	7	.6	7	20	7	704	148		0.98	3
D.	1 S0 (1	SENIC DIS- DLVED UG/L S AS)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	SOI (UC AS	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SOI (U	IS- LVED G/L HG)	DET DO SOI (UC AS	LYB- NUM, IS- LVED G/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SOI (UC AS	RON- IUM, IS- LVED G/L SR) O80)	
MAY 02. a _{02.} AUG	::	4 3	200 130	10 12	<1 <5		41 43		30 29		1.0		1 2		3		350 320	
25.	•	14	290	10	<1		50		40		0.1		3		<1		470	

a - Split sample analysis for quality assurance.

05120000 SOURIS (MOUSE) RIVER NEAR VERENDRYE, ND

LOCATION.--Lat 48°09'35", long 100°43'45", in NW1/4SW1/4 sec.17, T.154 N., R.78 W., McHenry County, Hydrologic Unit 09010003, on left bank 2.7 mi north of Verendrye, 19 mi upstream from mouth of Wintering River and at mile 302.0.

DRAINAGE AREA. -- 11.300 mi², approximately, of which about 6.900 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February to June 1933 (gage heights only), April 1937 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS .-- WSP 2113: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,464.87 ft above National Geodetic Vertical Datum of 1929. February to June 1933, at site 4 mi upstream at datum 1.65 ft higher. April 1, 1937, to Mar. 3, 1938, non-recording gage at present site, at datum 1.97 ft higher.

REMARKS.--Estimated daily discharges: Nov. 20 to Mar. 6 and July 16 to Aug. 27. Records good except those for periods of estimated daily discharge, which are fair. Flow regulated by reservoirs on Souris and Des Lacs Rivers, the largest of which is Lake Darling (station 05115500), 128 mi upstream, combined capacity about 248,000 acre-ft. Some small diversions for irrigation and municipal supply.

AVERAGE DISCHARGE.--51 years, 207 ft³/s, 152,100 acre-ft/yr; median of yearly mean discharges, 110 ft³/s, 79,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,900 ft³/s, Apr. 19, 1976, gage height, 17.84 ft; minimum daily flows of 0.3 ft³/s or less occurred in Aug., Sept. 1937, Oct. 1939 and Feb. 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 83 $\rm ft^3/s$, Mar. 28, gage height, 4.09 ft; minimum daily discharge, 2.0 $\rm ft^3/s$, July 23-25 and Aug. 22.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	63 58 54 52 51	21 23 24 22 20	18 18 18 17	6.0 5.5 5.0 4.5 4.0	2.5 2.5 2.5 2.5 2.5	11 10 9.5 9.0 9.5	49 48 48 57 55	31 35 34 30 27	5.1 5.0 4.4 3.7	3.8 3.9 6.8 8.3 7.6	18 18 18 18	55 54 52 46 40
6 7 8 9	49 48 45 39 44	19 18 18 18 18	17 16 16 16 16	3.8 3.6 3.5 3.5 3.4	2.4 2.4 2.4 2.4	12 13 14 16 20	54 57 54 45 48	26 24 24 25 31	3.4 3.2 3.3 3.3 3.2	7.7 7.3 6.7 6.1 5.6	18 18 18 17 16	35 34 34 35 37
11 12 13 14 15	48 48 48 48	19 21 21 21 21	15 14 13 12 11	3.4 3.3 3.2 3.2 3.1	2.3 2.3 2.3 2.3 2.2	19 15 14 14	47 47 47 44 40	32 33 32 31 28	3.2 3.3 2.9 3.9 4.4	5.4 5.0 4.5 4.0 3.6	15 14 12 10 9.0	37 34 36 47 48
16 17 18 19 20	48 48 49 50 49	21 21 20 20 19	10 9.0 9.0 9.0	3.0 3.0 2.9 2.9 2.8	2.1 2.1 2.0 4.0 8.0	12 11 9.5 9.9 9.2	38 42 48 41 39	27 26 28 31 31	4.7 4.8 5.0 4.8 4.1	3.4 3.2 3.0 2.8 2.6	5.0 4.0 3.5 3.8 2.5	46 45 44 42 38
21 22 23 24 25	47 44 36 31 30	18 19 19 19	9.0 9.0 9.0 9.0	2.8 2.7 2.7 2.6 2.6	10 9.0 8.0 7.2 5.0	9.8 14 16 23 32	38 37 35 32 29	27 22 19 16 13	3.9 3.6 3.4 2.7 2.4	2.4 2.2 2.0 2.0 2.0	2.3 2.0 3.1 38 43	34 29 26 28 26
26 27 28 29 30 31	29 28 26 25 25 24	20 20 20 19 19	8.0 8.0 8.0 8.0 7.0	2.5 2.5 2.5 2.5 2.5 2.5	6.5 10 12 13	32 53 81 73 61	28 30 29 29 31	12 11 10 8.0 6.6 5.7	2.3 2.3 2.3 2.3	10 13 15 16 17	47 52 53 53 52 54	23 19 16 14 10
TOTAL MEAN MAX MIN AC-FT	1332 43.0 63 24 2640	597 19•9 24 18 1180	371.0 12.0 18 7.0 736	102.0 3.29 6.0 2.5 202	134.8 4.65 13 2.0 267	700.4 22.6 81 9.0 1390	1266 42.2 57 28 2510	736.3 23.8 35 5.7 1460	109.1 3.64 5.1 2.3 216	199.9 6.45 17 2.0 397	655.2 21.1 54 2.0 1300	1064 35.5 55 10 2110

CAL YR 1987 TOTAL 43138.2 MEAN 118 MAX 1230 MIN 7.0 AC-FT 85560 WTR YR 1988 TOTAL 7267.7 MEAN 19.9 MAX 81 MIN 2.0 AC-FT 14420

05120000 SOURIS RIVER NEAR VERENDRYE, ND--CONTINUED

WATER-QUALITY RECORD

PERIOD OF RECORD. -- Water years 1950-51, 1957 to current year.

DATE		TIME	STREA FLOW INSTA TANEO (CFS	V, CO AN- DU DUS AN S) (US	FIC N- CT-	PH (STA AR UNIT (OO4	ND- D S)	TEMPE ATUR AIR (DEG (OOO2	C)	TEMPI ATU WATI (DEG (OOO	RE ER C)	COLO (PLA INUM COBA UNIT	AT- ALT TS)	OXYGE DIS SOLV (MG/	N, ED	DXYGE DIS SOLV (PER CEN SATU ATIO	ED ED IT IR- ON)	HARD NESS TOTA (MG/ AS CACO	L L 3)	CALCI DIS- SOLV (MG/ AS C	ED L
OCT 09		0835	39		1400		-		0.5		7.0										
NOV							01						11	12	2		90	1	50	95	
16 JAN		1730			1400	0	.01		0.0		3.0									,,,	
O5 FEB		1500			1900				7.0		0.5						77				
23 MAR		1700	7.	.2	1170	7	.25	-8	3.0	(0.0		8	3	.3		22	4	60	110	
10 29		0850 1330			1250 1610	8	.13		2.5		0.5		57	11	.9		82		50	92	
06		1145	26		1430	8	.17	17	7.5	1	1.5		23	8	.1		75	4	00	75	
JUN 20		1630	3.	.6	1620	8	.30	37	7.5	2	4.5		35	11	.0	1	132	4	50	96	
JUL 26		1000	1.	.2	1560	7	.54	25	5.5	2	1.5		19	5	. 4		61	4	30	90	
AUG 25		1015	42		2240	8	.24	19	9.0	1	7.0		25	5	.0		51	4	50	77	
DATE		MAGNE SIUM DIS- SOLVE (MG/L AS MG	DIS- DIS- DIS- DIS- MG/ AS 1	ED /L SO NA) PER	DIUM CENT 932)	SOR	ON	POTA SIU DIS SOLV (MG/ AS F	JM, S- /ED /L ()	ALK LINI' LA' (MG, AS CAC	TY B /L 03)	SULFA DIS- SOLV (MG, AS SO (0094	/ED /L 04)	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUC RIDE DIS SOLV (MG/ AS E	E, S- /ED /L ?)	SILIC DIS- SOLV (MG/ AS SIO2 (0095	ED L	RESID AT 18 DEG. DIS SOLV (MG/	30 . C 3- /ED /L)
NOV 16		51	160		43		3	10		290		330		43		0.	.40	8.	9	q	973
FEB		44	100		32		2	6.	0	465		210		15			.20	32			313
23 MAR									.0			560		20			.20	12			150
29 MAY		54	210		49		4	14	_	325				64			.50	6.	7		30
06		51	190		51		4	6.	.0	366		380							1		
20 JUL		52	200		48		4	10		478		360		62			.40	15			130
26 AUG		51	190		48		4	6.	.0	500		340		54			.30	19			100
25		63	360		62		8	17		496		450		160		0.	.90	10		14	160
	DATE	S C T	OLIDS, SUM OF CONSTI- CUENTS, DIS- SOLVED (MG/L) 70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SC (1)	JIDS, DIS- DLVED CONS PER DAY) D302)	NO2	TRO- SEN, 2+NO3 DIS- DLVED MG/L S N)	AMM TO (M	TRO- EN, IONIA DTAL IG/L S N)	PHO TO (M AS	ROUS TAL G/L P)	PHO OR DI SOL (MG AS	P)	ALU INU DI SOL (UG AS (O11	M, S- VED /L AL)	SO (U AS	ENIC IS- LVED G/L AS) 000)	SOL (U AS		
NOV			977	4 70		55 7	10	.100	-	0.080	0	.190	0	.160						(22)	
FEE			873	1.32		55.7								.010		<10		1		200	
MAR			799	1.11		15.8		0.120		.570		.080									
MAY			1160	1.56		10		.150		.040		.250		.090						477	
JUN			995	1.40		72.6		0.100		.040		.120		.330		<10		6		47	
JUL	20		1090	1.54		10.9		.100		.050		.40		.70		<10		18		35	
AUG			1050	1.50		3.53		.100		.020		.70		.50							
	25		1440	1.99	16	56	<0	.100	C	.060	1	.20	1	.20							

05120000 SOURIS RIVER NEAR VERENDRYE, ND--CONTINUED

DATE	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (O1025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (O1035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (O1049)	DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
NOV										
16 FEB	260									
23	190	1	<1	2	1	40	<5	60	990	<0.1
MAR 29	230									
MAY 06	270	<1	<1	-1	1	22	<5	78	210	<0.1
JUN 20	330	<1	<1	1	<1	7	<5	92	660	<0.1
JUL 26	300									
AUG 25	460									
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CYANIDE TOTAL (MG/L AS CN) (00720)
FEB										
23	3	9	1	<1	<1	530		20	<10	<0.010
MAY 06	3	12	5	<1	<1	440	3	<10	<3	<0.010
JUN 20	4	8	5	<1	<1	570	2	<10	7	<0.010

05120500 WINTERING RIVER NEAR KARLSRUHE, ND

LOCATION.--Lat 49°10'14", long 100°32'20", on line between secs.10 and 11, T.154 N., R.77 W., McHenry County, Hydrologic Unit 09010003, on left bank 30 ft upstream from county highway bridge, 4 mi upstream from mouth, and 7 mi northeast of Karlsruhe.

DRAINAGE AREA .-- 705 mi2, of which about 420 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1937 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1728: Drainage area.

GAGE .-- Water-stage recorder. Altitude of gage is 1,480 ft, from river-profile map.

REMARKS.--Estimated daily discharges: Dec. 5 to Apr. 1. Records good except those for periods of estimated daily discharge, which are poor. Some regulation by Fish and Wildlife Service dams on Cottonwood and Wintering Lakes; controlled capacity, about 850 acre-ft.

AVERAGE DISCHARGE.--51 years, 13.1 ft3/s, 9,490 acre-ft/yr; median of yearly mean discharges, 12 ft3/s, 8,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,000 ft3/s, Apr. 7, 1949, by velocity-area studies; maximum gage height, 12.0 ft, Apr. 7, 1949, channel choked by packed snow; no flow at times in many years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 64 ft3/s, Apr. 2, gage height, 4.92 ft; no flow, July 28 to Aug. 1, Aug. 7 and 8.

MEAN VALUES DAY OCT NOV DEC APR JUN JUL AUG SEP FEB MAY JAN MAR .00 .09 4.2 2.7 61 .02 2 4.2 4.8 .35 .08 1.9 7.8 2.4 1.0 .08 .08 4.2 4.7 .30 .94 3 4.1 .08 1.8 55 7.8 2.2 .10 .09 . 25 42 26 2.1 4.1 -08 1.7 9.5 5 3.5 3.9 4.5 .20 .08 3.0 7.9 1.9 1.0 .09 .08 6 3.3 .18 .08 5.0 1.1 .05 .09 4.7 7.4 7.2 7.3 6.6 .06 78 3.4 4.0 .16 .08 6.0 12 1.3 .99 .00 .07 4.3 4.0 .15 .08 6.5 9.6 1.3 1.1 .01 4.0 .84 .06 4.4 .08 8.6 10 .08 5.0 8.5 .70 .02 .09 4.5 6.9 .73 .02 -26 11 4.2 4.2 .12 .08 8.2 .83 4.2 .03 .35 4.2 9.0 7.3 7.1 6.9 .71 12 4.1 4.0 .12 .08 3.8 .12 4.0 .82 .11 .26 13 4.0 -08 4.4 14 3.9 3.8 .12 .08 3.5 6.5 .99 .35 15 5.0 .12 3.0 6.9 6.5 .61 .20 .08 16 3.6 3.4 3.2 .27 .29 .17 3.8 6.1 .10 .08 2.8 5.9 4.8 1.0 .14 .28 .14 7.3 17 .10 .08 2.6 4.5 18 4.1 .10 2.4 1.2 .32 .10 3.5 7.2 .22 .34 1.0 19 .10 .12 .66 20 2.8 .10 2.0 7.2 6.4 .75 .20 .28 7.3 .25 .46 21 2.6 6.5 .85 .34 3.8 4.5 .10 .16 2.5 4.9 .28 .16 22 4.0 2.2 .10 .18 3.0 6.1 .81 5.1 2.0 .10 3.5 7.0 .96 .17 .10 .27 4.2 .20 5.0 4.8 1.8 .10 .25 4.0 6.7 .65 .09 .05 .23 .24 .61 25 5.2 5.0 1.4 .10 .50 4.5 6.4 5.0 .07 .03 .02 .25 26 4.9 4.8 .09 1.0 5.0 6.5 .30 4.5 4.8 1.7 .08 1.5 5.0 6.4 4.8 .01 .04 .27 28 4.1 4.9 1.3 .08 2.0 7.5 6.2 4.6 .00 .06 .49 .35 .00 .08 29 3.9 4.9 1.0 .08 2.5 9.0 6.1 4.9 .51 .09 .43 .80 3.6 30 3.8 4.7 -08 15 7.0 .00 .05 .50 .08 31 4.0 25 TOTAL 126.1 98.30 10.01 154.6 195.0 33.68 17.24 3.70 7.82 134.4 4.99 25 1.7 14.2 .56 .12 MEAN 4.07 4.48 3.17 .14 2.5 6.29 1.12 -26 1.0 5.1 4.8 2.7 MAX 5.2 .40 61 9.5 7.3 .00 MTN 3.3 -08 .08 6.1 3.1 267 67 16 AC-FT 250 195 8.6 20 307 848

CAL YR 1987 TOTAL 6034.85 MEAN 16.5 MAX 220 MIN .20 AC-FT 11970 WTR YR 1988 TOTAL 1212.69 MEAN 3.31 MAX 61 MIN .00 AC-FT 2410

05120500 WINTERING RIVER NEAR KARLSRUHE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1954-56, 1972 to current year.

1	DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS) (00061	CON- DUCT- S ANCE (US/CM)	PH (STAND ARD UNITS) (00400	(DEG	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	COLO (PLA INUN COBA UNIT	AT- O A- ALT TS)	XYGEN, DIS- SOLVED (MG/L)	SOL (PE CE SAT	S- VED R- NT UR- ON)	HARD NESS TOTA (MG/ AS CACO	L /L (3)	CALC: DIS- SOL' (MG, AS- (009	VED /L CA)
OCT O5		1720	3.5	650	_	- 1	5.0	1	1.0									
NOV		1415	5.0	700	7.9		5.0		3.5		14	11.4		85	2	280	68	
JAN 05		1130	0.2	980		2	0.5		0.5									
FEB 23		1215	0.2	0 820	7.3	52 -	8.5		0.5		14	4.3		29	3	560	88	
MAR 29		1030	8.7	506	7.6	54	1.0		0.0			10.2		69				
MAY 09		1330	7.5	830	8.1	0 1	9.5	1	2.0		35	10.2		95	2	280	65	
JUN 13		1620	0.6	7 720	8.3	6 2	7.5	2	5.5		40	8.6		104	2	280	60	
JUL 25		1615	0.0	5 570	8.2		7.0		7.5		23	11.0		138	2	240	43	
AUG 25		0815	0.0				2.0		3.0		22	5.8		54	2	210	33	
	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA	SODIUM) PERCENT	RATIO	IM SI DI SOL (MO	K)	ALK LINI LA (MG AS CAC	TY B /L 03)	SULFA DIS- SOLV (MG/ AS SO	ATE - /ED /L 04)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		E, S- VED /L F)	SILIC DIS- SOLV (MG/ AS SIO2 (0095	/ED /L	SOLI RESI AT 1: DEG DI: SOL' (MG,	DUÉ 80 . C S- VED /L)
NOV																		
FEB	•••	27	52	28	1	4	.3	269		55		13		.20	15			435
MAY	•••	35	54	24		6	8.6	393		85		11		.20	30			551
JUN	• • •	28	82	38	2	6	.7	347		100		15	0	.20	9.	. 4		523
JUL	•••	31	66	34	2	4	.6	368		40		11	0	.20	20			475
AUG 25	• • •	31	40	27	1	3	5.7	295		33		7.8	0	.20	15			364
25	• • •	32	33	25	1	2	8.2	268		27		6.0	O	.20	6.	.9		322
	Di	SUI COI TUI SO	NSTI- ENTS, DIS- DLVED MG/L)	DIS- SOLVED S (TONS (PER AC-FT)	OLVED TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMM TO (M AS	TRO- EN, IONIA TAL IG/L N)	PHOTO (MC	OS- ROUS TAL G/L P) 665)	PHOS PHORO ORTH DIS- SOLVE (MG/L AS P) (0067	US A1 O, I! D SO	LUM- NUM, DIS- DLVED UG/L S AL) 1106)	SO (U AS	ENIC DIS- DLVED G/L AS)		ED (L BA)	
	NOV		706	0.50	- 07	10 100				000		40						
	16.		396	0.59	5.93	<0.100		.020		.080	0.0						200	
	MAY		548	0.75	0.30	<0.100		,200		.070	0.0		<10		1		200	
	JUN_		515	0.71	10.6	<0.100		.030		.260	0.0		<10		2		150	
	JUL_		455	0.65	0.86	<0.100		.040		.400	0.3		<10		7		140	
	AUG 25.		351	0.50	0.05	<0.100		.010		.150	0.0							
	25.	• •	302	0.44	0.03	<0.100	0	.030	0	.060	0.0	20						

05120500 WINTERING RIVER NEAR KARLSRUHE, ND--CONTINUED

DATE	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (O1025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (O1030)	COBALT, DIS- SOLVED (UG/L AS CO) (O1035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (O1049)	LITHIUM DIS- SOLVED (UG/L AS LI) (O1130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
NOV	470									
16 FEB	130									
23 MAY	140	1	<1	2	<1	40	<5	30	1300	<0.1
09 JUN	140	<1	<1	2	<1	40	<5	21	140	<0.1
13 JUL	150	<1	<1	2	<1	13	<5	32	70	<0.1
25 AUG	100									
25	90									
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CYANIDE TOTAL (MG/L AS CN) (00720)
FEB					24	270		10	<10	<0.010
23 MAY	1	4	1	<1	<1	230		10	(10	10.010
09 JUN	1	7	<1	<1	1	180	2	<10	9	<0.010
13	1	7	4	<1	<1	170	3	<10	5	<0.010

05122000 SOURIS (MOUSE) RIVER NEAR BANTRY, ND

LOCATION.--Lat 48°30'20", long 100°26'04", in SE1/4NW1/4SE1/4 sec.14, T.158 N., R.76 W., McHenry County, Hydrologic Unit 09010003, on left bank 200 ft upstream from Nelson bridge, 8 mi east of Bantry, 18 mi upstream from Willow Creek, and at mile 228.0.

DRAINAGE AREA.--12,300 mi² approximately, of which about 7,600 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1937 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS. -- WSP 2113: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,427.56 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 16, 1938, nonrecording gage at same site at datum 0.17 ft lower.

REMARKS.--Estimated daily discharges: Oct. 15-21, 26-30, and Nov. 8 to Apr. 5. Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by reservoirs on Souris, Des Lacs, and Wintering Rivers, total capacity, about 249,000 acre-ft. Diversions for irrigation of about 7,600 acres at Eaton Dam about 42 mi above station and other small diversions for irrigation and municipal supply.

AVERAGE DISCHARGE.--51 years, 226 ft³/s, 163,700 acre-ft/yr; median of yearly mean discharges, 130 ft³/s, 94,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,330 ft3/s, Apr. 23, 1976, gage height, 14.59 ft; no flow at times each year 1937-40, 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 180 ft³/s, Apr. 5, gage height, 4.38 ft, backwater from ice; minimum daily discharge, 3.0 ft³/s, Feb. 18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 88 33 31 20 5.8 4.0 17 100 54 33 6.6 3.6 11 2 5.6 5.4 5.2 80 19 14 4.0 120 53 30 6.4 3.7 20 29 28 79 18 5.9 3.9 50 3.5 27 140 27 160 49 27 3.4 18 31 5 71 24 16 5.0 3.7 20 155 48 25 5.5 3.3 35 6 66 24 15 1.9 3.7 22 124 48 23 6.1 3.3 38 23 64 14 4.8 3.7 24 25 106 18 22 6.4 3.5 12 8 63 23 4.7 3.6 20 13 98 48 44 57 4.6 3.5 30 91 48 18 4.9 4.8 45 10 55 25 11 4.5 3.3 36 48 17 45 88 5.2 11 51 25 10 3.2 3.2 3.2 5.6 6.5 6.1 4.3 16 4.0 36 88 49 48 32 31 12 52 25 9.5 4.5 86 14 44 48 13 52 26 9.0 4.0 82 46 14 18 27 8.8 3.9 46 40 28 15 50 8.6 3.8 3.2 32 78 47 13 5.9 16 39 16 52 8.4 3.8 3.2 30 78 47 12 5.6 37 14 17 54 30 30 8.2 3.9 3.2 28 .76 47 12 5.2 15 36 18 54 8.0 4.0 3.0 26 72 4.9 15 35 37 31 31 19 54 7.9 3.9 4.0 25 72 49 9.9 4.5 15 54 20 3.9 5.0 25 70 49 8.6 4.2 15 36 30 29 28 27 7.7 7.6 54 54 21 15 3.9 5.5 26 68 8.0 4.2 37 7.5 22 6.5 13 4.0 27 68 47 4.2 40 7.5 7.4 7.2 54 4.0 7.5 28 66 45 4.2 41 24 54 4.0 8.5 30 65 44 7.2 4.0 9.7 41 25 54 26 38 4.0 62 8.4 10 6.6 4.0 42 26 52 25 7.0 4.0 12 40 61 45 6.2 3.9 7.0 41 24 23 22 27 50 6.8 4.0 14 45 60 47 5.9 3.9 6.7 39 28 48 6.6 16 58 56 5.8 5.6 4.1 50 12 3.9 38 45 6.4 4.2 60 18 40 5.2 3.8 37 21 6.2 4.2 56 37 5.7 3.8 5.4 65 35 31 39 6.0 4.1 5.4 TOTAL 1766 800 317.6 430.7 134.6 169.6 1007 2583 1443 152.4 245.8 1123 4.34 MEAN 57.0 26.7 10.2 86.1 46.5 14.4 4.92 7.93 5.85 32.5 37.4 88 20 18 80 160 48 MIN 39 21 6.0 3.8 3.0 34 14 56 AC-FT 3500 1590 630 267 336 2000 5120 2860 854 302 488 2230

CAL YR 1987 TOTAL 52202.9 MEAN 143 MAX 1200 MIN 6.0 AC-FT 103500 WTR YR 1988 TOTAL 10172.7 MEAN 27.8 MAX 160 MIN 3.0 AC-FT 20180

05122000 SOURIS (MOUSE) RIVER NEAR BANTRY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971 to current year.

		23172		1 /2/12/14		7777777	YAME TENET	OXYGEN,	765	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT	1200	3						- 22		
08 NOV	1530	64	1250	8.25	10.5	10.0	9.8	86		
19 JAN	1330	32	1180		-0.5	0.5				
07 FEB	1245	4.8	1550		-15.5	0.0				
24	1200	8.5	2050		-9.0	0.0				
MAR 08	1730	25	1280		1.5	0.0				
APR 01	0840	5.0	1100		6.5	2.0				
11 MAY	1845	88	1030							
09 JUN	1715	49	1090	8.45	25.0	17.5			330	68
15 JUL	1530	13	1310	8.40	20.0	23.0				
28	1315	3.9	1260	8.13	34.5	27.5				
AUG 23	1600	12	1300	8.50	24.0	22.5		===	300	50
DATE	MAGN SIU DIS SOLV (MG/ AS M	M, SODI S- DIS YED SOLV 'L (MO	S- VED S/L SOI NA) PERO	SOF DIUM TI	DIUM SI AD- DI	UM, LINI IS- L LVED (MO I/L AS K) CAO	AB DIS	S- DIS- LVED SOL' S/L (MG) SO4) AS	E, RID - DI VED SOL /L (MG CL) AS	DE, SS- LVED E/L F)
MAY 09	70	120			7	9.6 320	240) 29		10
AUG	38			44			240			.40
23	43	190)	57	5 11	400	240	61	C	.40
DATE	STLIC DIS- SOLV (MG/ AS SIO2 (0095	YED DEC	DUE SUM BO CONS C TUEN S- DI VED SOL (MC	OF SOLI STI- DI ITS, SOI IS- (TO VED PE	LVED SOL ONS (TO ER PE	IS- ARSI LVED DONS SOIL ER (UCAY) AS	IS- DI	B) AS	S- DI VED SOL /L (UG FE) AS	S- VED /L PB)
MAY 09	2.	4	734	715	1.0 97	7.1	4	250	10	<1
AUG	1.		882				20	300	40	<1
23	,,	. 9	002	895	1.20 21	.9	20			
DATE	LITHI DIS SOLV (UG/ AS L	UM NES 3- DI ZED SOL L (UC	S- DI VED SOL I/L (UG MN) AS	CURY DEN SS- DI VED SOI L/L (UC HG) AS	LVED SOL	UM, T IS- D LVED SO! I/L (UC SE) AS		T, CHARGE SUSTINEED PENI	T, SUS-SIEGE, DIS- % FIDED THAY) .062	AM. INER IAN P. MM
OCT								07	7	07
MAY									.7	97
09 JUL		50	80	0.7	2	2	360		.3	82
28 AUG			1.44					22 0	.24	99
23		70	30	0.2	1	<1	380	3 0	.09	100

05123400 WILLOW CREEK NEAR WILLOW CITY, ND

LOCATION.--Lat 48°35'20", long 100°26'30", in NE1/4NW1/4 sec.23, T.159 N., R.76 W., McHenry County, Hydrologic Unit 09010004, on left bank 50 ft downstream from bridge on county road, 1.5 mi upstream from Snake Creek, and 7 mi west of Willow City.

DRAINAGE AREA.--1,160 mi², approximately, of which about 430 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1956 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 1,430 ft, from topographic map. Prior to Oct. 5, 1956, non-recording gage at site 50 ft upstream at same datum.

REMARKS .-- Estimated daily discharges: Nov. 18-21 and Apr. 13 to June 8. Records poor.

AVERAGE DISCHARGE.--32 years, 41.7 ft³/s, 30,210 acre-ft/yr; median of yearly mean discharges, 21 ft³/s, 15,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,900 ft3/s, Apr. 12, 1969, gage height, 16.76 ft; no flow at times each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 50 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 6	0130	*20	*7.60				

DISCULARGE IN CUIDIC ERROR DED CECOND WAMED VEAD OCTORED 1097 TO CEPTEMBED 1088

No flow for several months.

		DISCHARGE,	IN CUBIC	FEET PER	R SECOND, MEA	WATER VALU	YEAR OCTOBER ES	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	•29	1.3	.00	.00	.00	.00	1.9	.12	.00	.00	.00	.00
2	•55	1.2	.00	.00	.00	.00	1.9	.16	.00	.00	•00	.00
3	.78	.85	.00	.00	.00	.00	1.9	.17	.00	.00	•00	.00
2 3 4 5	-93	.42	.00	.00	.00	.00	1.9	.17	.00	.00	.00	.00
5	1.5	.00	.00	.00	.00	.00	7.6	.14	.00	.00	.00	.00
6	1.5	.00	.00	.00	.00	.00	8.0	.18	.00	.00	.00	.00
7	1.5	.00	.00	.00	.00	.00	1.8	.20	.00	.00	•00	.00
8	1.8	.00	.00	.00	.00	.00	1.4	.22	.00	.00	.00	.00
9	1.9	.00	.00	.00	.00	.00	.15	.24	.00	.00	.00	.00
10	1.5	.00	.00	.00	.00	.00	•43	.24	.00	.00	.00	.00
11	1.1	.00	.00	.00	.00	.00	.42	.22	.00	.00	.00	.00
12	.77	.00	.00	.00	.00	.00	1.5	.20	.00	.00	.00	.00
13	.60	.00	.00	.00	.00	.00	1.9	.18	.00	.00	.00	.00
14	.08	.00	.00	.00	.00	.00	1.9	.16	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	1.8	.14	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	1.8	.14	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	1.7	.12	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	1.6	.14	.00	.00	.00	.00
19	.00	.20	.00	.00	.00	.00	1.5	.12	.00	.00	.00	•00
20	.07	.30	.00	.00	.00	.00	1.4	.10	.00	.00	.00	.00
21	.07	.10	.00	.00	.00	.00	1.3	.08	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	1.2	.07	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	1.1	.06	.00	.00	.00	.00
24	.18	.00	.00	.00	.00	.00	1.0	.05	.00	.00	.00	.00
25	1.8	.00	.00	.00	.00	.00	.80	.04	.00	.00	.00	.00
26	3.9	.00	.00	.00	.00	.00	.60	.03	.00	.00	.00	.00
27	4.1	.00	.00	.00	.00	.00	.40	.02	.00	.00	.00	.00
28	4.0	.00	.00	.00	.00	.0	.20	.01	.00	.00	.00	.00
29	3.5	.00	.00	.00	.00	.59	.12	.00	.00	.00	.00	.00
30	2.3	.00	.00	.00		.95	.11	.00	.00	.00	.00	.00
31	1.6		.00	.00		1.4		.00		.00	.00	
TOTAL	36.32	4.37	0.00	0.00	0.00	2.94	49.33	3.72	0.00	0.00	0.00	0.00
MEAN	1.17	.15	.00	.00	.00	.095	1.64	.12	.00	.00	.00	.00
MAX	4.1	1.3	.00	.00	.00	1.4	8.0	.24	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.11	.00	.00	.00	.00	.00
AC-FT	72	8.7	.0	.0	.0	5.8	98	7.4	.0	.0	.0	.0

CAL YR 1987 TOTAL 12974.48 MEAN 35.5 MAX 700 MIN .00 AC-FT 25730 WTR YR 1988 TOTAL 96.68 MEAN .26 MAX 8.0 MIN .00 AC-FT 192

RED RIVER OF THE NORTH BASIN

05123400 WILLOW CREEK NEAR WILLOW CITY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1960-62, 1964-65, 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (OOO10)	COLOR (PLAT- INUM- COBALT UNITS) (OOO80)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 08	1215	1.7	920		9.0	9.5					- 2
NOV 19	1100										
APR		0.30	1100		-1.0	2.5		-			
12 MAY	1110	1.9	1550	8.18	11.5	7.5	51	11.1	92	390	61
05	1740	0.18	1590	8.13	19.5	11.5	58	9.9	89	390	66
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
APR		400									
12 MAY	58	190	51	4	10	235	370	150	0.20	6.3	1020
05	55	200	51	4	16	312	420	110	0.20	7.2	1080
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BORON, DIS- SOLVED (UG/L AS B) (01020)
APR											
12 MAY	987	1.39	5.21	<0.100	0.030	0.240	0.100				170
05	1060	1.47	0.52	<0.100	0.050	0.110	0.240	<10	4	61	270
DATE	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)
APR											
12 MAY											7
05	<1	<1	5	1	27	<5	110	28	<0.1	1	10
DATE	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (O1145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (O1090)	CYANIDE TOTAL (MG/L AS CN) (00720)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
APR 12	22								6	0.03	100
MAY 05	6	<1	24	750	4	/10	5	<0.010	94	0.05	53
07	0	11	<1	350	4	<10)	10.010	74	0.05))

05123500 STONE CREEK NEAR KRAMER, ND

LOCATION.--Lat 48°40'42", long 100°42'40", in NW1/4NW1/4NW1/4 sec.23, T.160 N., R.78 W., Bottineau County, Hydrologic Unit 09010003, on left bank 60 ft upstream from bridge on State Highway 14, 1.0 mi south of Kramer.

DRAINAGE AREA .-- 168 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1986 to current year (seasonal record only).

GAGE.--Water-stage recorder. Datum of gage is 1,425 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to September 16, 1986, nonrecording gage at same site and datum.

REMARKS. -- No flow during entire period. Records good.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 620 ft³/s, Mar. 24, 1986, gage height, 6.2 ft, from flood mark; no flow most of the time.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP			DISCHARGE,	IN C	JBIC F	EET PEF		WATER N VALU		OCTOBER	1987	TO	SEPTEMBER	1988		
10	DAY	OCT	NOV	DEC	J	AN	FEB	MAR		APR	MAY		JUN	JUL	AUG	SEP
2	1						.00	.00		.00	.00		.00	.00	.00	
3											.00		.00	.00	.00	.00
4	3												.00	.00	.00	.00
100	4												.00	.00	.00	.00
7	5												.00	.00	.00	.00
7 8 9 9 1.00 9 9 1.00 1.00 1.00 1.00 1.00 1	6						.00	.00		.00						
9	7						.00	.00		.00	.00		.00			
9	8						.00	.00		.00	.00					
10 11 10 00 00 00 00 00 00 00 00 00 00 0							.00	.00		.00	.00		.00	.00		.00
12							.00	.00		.00	.00		.00	.00	.00	.00
13	11						.00	.00		.00	.00		.00			
14	12						.00	.00		.00	.00		.00			
15	13						.00	.00		.00	.00					
15	14						.00	.00		.00	.00		.00	.00	.00	
17 18 100 100 100 100 100 100 100 100 100							.00	.00		.00	.00		.00	.00	.00	.00
17 18 00 00 00 00 00 00 00 00 00 00 00 00 00	16						.00	.00		.00	.00		.00	.00		
18 19 20 20 20 20 20 20 20 20 20 20 20 20 20								.00		.00	.00		.00	.00		.00
20								.00		.00	.00		.00	.00		
20											.00		.00	.00	.00	.00
100 100								.00		.00	.00		.00	.00	.00	.00
100	21						.00	.00		.00	.00		.00	.00	.00	.00
100														.00	.00	.00
24	23												.00	.00		
25 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	24												.00	.00	.00	.00
27 28 30 30 30 30 30 31 TOTAL TOTAL MEAN MAX MIN 30 30 30 30 30 30 30 30 30 30 30 30 30	25										.00		.00	.00	.00	.00
100 100	26						.00	.00		.00	.00		.00	.00	.00	.00
28														.00	.00	.00
29 30 3000 .00 .00 .00 .00 .00 .00 .00 .00														.00	.00	.00
TOTAL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.															.00	.00
TOTAL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	30													.00	.00	.00
MEAN .00 </td <td>31</td> <td></td> <td>.00</td> <td></td>	31														.00	
MEAN .00 </td <td>TOTAL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td>0</td> <td>.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td>	TOTAL						0.00	0.00	0	.00	0.00		0.00	0.00	0.00	
MAX .00 .00 .00 .00 .00 .00 .00 .00 .00 .0																
00. 00. 00. 00. 00. 00. 00. 00. 00. 00.																
	AC-FT						.0	.0		.0	.0		.0			

05123510 DEEP RIVER NEAR UPHAM. ND

LOCATION.--Lat 48°35'03", long 100°51'44", in SW1/4NW1/4 sec.22, T.159 N., R.79 W., McHenry County, Hydrologic Unit 09010005, 60 ft downstream from county highway bridge, 0.8 mi downstream from Little Deep River, and 6.3 mi west of Upham.

DRAINAGE AREA .-- 975 mi2, of which about 605 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1957 to September 1980, March 1985 to September 1985 (seasonal records only since 1985).

GAGE .-- Water-stage recorder. Elevation of gage is 1,430 ft, from topographic map.

REMARKS .-- Estimated daily discharges: May 1-25. Records fair.

AVERAGE DISCHARGE.--23 years (water years 1958-80), 20.4 ft³/s, 14,780 acre-ft/yr; median of yearly mean discharges, 0.90 ft³/s, 650 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,760 ft3/s, Apr. 12, 1969, gage height, 18.18 ft; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in April 1951 reached a stage of about 16 ft, discharge, 2,700 ft3/s, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 0.41 ft³/s, Apr. 1, gage height, 6.73 ft; no flow for several months.

		DISCHARGE,	IN CUBIC	FEET		, WATER AN VALUE		1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	.00	.41	.03	.00	.00	.00	.00
					.00	.00	•39	.02	.00	.00	.00	.00
2 3 4 5					.00	.00	.33	.02	.00	.00	.00	.00
4					.00	.00	.31	.01	.00	.00	.00	.00
5					.00	.00	.37	.00	.00	.00	.00	.00
6					.00	.00	.36	.01	.00	.00	.00	.00
7 8					.00	.00	.27	.02	.00	.00	.00	.00
8					.00	.00	.26	.04	.00	.00	.00	.00
9 10					.00	.00	.25	.04	.00	.00	.00	.00
10					.00	.00	.21	.05	.00	.00	.00	.00
					.00	.00	.15	.06	.00	.00	.00	.00
12					.00	.00	.13	.06	.00	.00	.00	.00
13					.00	.00	.12	.06	•00	.00	.00	.00
14					.00	.00	.11	.06	.00	.00	.00	.00
15					•00	.00	.10	.06	.00	.00	.00	.00
16					.00	.00	.09	.05	.00	.00	.00	.00
17					.00	.00	.09	.04	.00	.00	.00	.00
18					.00	.00	.08	.04	.00	.00	.00	.00
19					.00	.00	.08	.04	.00	.00	.00	.00
20					.00	.00	.06	.03	•00	.00	.00	.00
21					.00	.00	.06	.03	.00	.00	.00	.00
22					.00	.00	.06	.02	.00	.00	.00	.00
23					.00	.00	.05	.01	.00	.00	.00	.00
24					.00	.00	.05	.00	.00	.00	.00	.00
25					.00	.00	.04	.00	.00	.00	.00	.00
26					.00	.00	.04	.00	.00	.00	.00	.00
27					.00	.00	.03	.00	.00	.00	.00	.00
28					.00	.00	.03	.00	.00	.00	.00	.00
29					.00	.01	.02	.00	.00	.00	.00	.00
30						.16	.03	.00	.00	.00	.00	.00
31						.27		.00		.00	.00	
TOTAL					0.00	0.44	4.58	0.80	0.00	0.00	0.00	0.00
MEAN					.00	.014	.15	.026	.00	.00	.00	.00
MAX					.00	.27	.41	.06	.00	.00	.00	.00
MIN					.00	.00	.02	.00	.00	.00	.00	.00
AC-FT					.0	.9	9.1	1.6	.0	.0	.0	.0

170

RED RIVER OF THE NORTH BASIN

O5123510 DEEP RIVER NEAR UPHAM, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972-80, 1985 to current year.

DATE	TI	ME	STREATION INSTANCE (CF:	W, AN- OUS S)	SPE- CIFIC CON- DUCT- ANCE (US/CI	PI - (ST. AI M) UNI	AND-	TEMP ATU AI (DEG	RE R C)	TEMPI ATUI WATI (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L	CALC DIS SOL (MG AS (009	VED /L CA)	MAG SI DI SOL (MG AS (009)	UM, S- VED /L MG)	SODI DIS SOLV (MG AS (009	ED /L NA)	SODI PERCE (0093	NT
MAR 30	11	30	0	.17	6	95	7.88		1.0		1.5		280	44		42		36			21
DATE	SOR	OI	POTA SII SOLI (MG, AS I	UM, S- VED /L K)	ALKALINIT LAB (MG/1AS CACO)	Y SULI DIS L SOI (MC	LVED	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLUC RIDI SOL' (MG AS (009)	E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUE 80 . C S- VED /L)	SOLI SUM CONS' TUEN' DI SOL (MG (703)	OF TI- TS, S- VED /L)	SOLI DI SOL (TO PE DA (703	S- VED NS R Y)	SOLID DIS SOLV (TON PER AC-F (7030	ED IS
MAR 30		1	16		160	180	0	34		0	.10	3	.7		471		455	0	.22	0.	64
	DATE	SO (U	ENIC IS- LVED G/L AS)	SOI (UC AS	RON, IS- LVED G/L B) 020)	IRON, DIS- SQLVED (UG/L AS FE) (01046)	SC (U	EAD, DIS- DLVED JG/L B PB)	SO (U AS	HIUM DIS- LVED G/L LI) 130)	NE SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U	RON- IUM, IS- LVED G/L SR) O80)	
MAR 30			2		40	40		<1		41		270		0		0		1		190	

05123750 CUT BANK CREEK AT UPHAM, ND

LOCATION.--Lat 48° 4'29", long 100°44'39", in SE1/4SE1/4SW1/4 sec.21, T.159 N., R.78 W., McHenry County, Hydrologic Unit 09010005, on left bank 50 ft downstream from county highway bridge, and 0.5 mi southwest of Upham.

DRAINAGE AREA. -- 722 mi2, of which about 450 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1974 to September 1980. March 1986 to current year (seasonal records only since 1986).

GAGE.--Water-stage recorder. Datum of gage is 1,422.77 ft above National Geodetic Vertical Datum of 1929. From March to September 1986 nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Mar. 26 to Apr. 4. Records fair except those for period of estimated daily discharges, which are poor.

AVERAGE DISCHARGE. -- 6 years (1975-80), 13.7 ft3/s, 9,930 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 820 ft³/s, Apr. 1, 1976, gage height, 7.24 ft from high water mark; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge observed, 3.7 ft3/s, Apr. 12, gage height, 2.49 ft; no flow for several months.

		DISCHARGE,	IN CUBIC	FEET P	ER SECOND, MEA	WATER N VALUE	YEAR OCTOBER	1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5					.00 .00 .00	.00 .00 .00	.90 1.0 1.1 1.2 1.4	1.4 1.6 1.8 2.0 2.1	1.4 1.3 1.2 1.1	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9					.00 .00 .00	.00 .00 .00	1.6 1.9 2.2 2.5 3.1	2.1 2.2 2.4 2.5 2.6	.82 .71 .60 .48	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15					.00 .00 .00	.00 .00 .00	3.4 3.7 3.6 3.6 3.3	2.7 2.8 2.7 2.8 2.7	.24 .09 .00 .03	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20					.00 .00 .00 .00	.00 .00 .00	2.9 2.5 2.4 2.2 2.0	2.7 2.8 2.7 2.6 2.6	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25					.00 .00 .00 .00	.00 .00 .00	1.8 1.7 1.6 1.5	2.6 2.5 2.4 2.3 2.2	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31					.00 .00 .00	.00 .00 .10 .30 .65	1.3 1.2 1.2 1.2 1.2	2.0 1.8 1.7 1.6 1.5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT					0.00 .00 .00	1.85 .060 .80 .00		69.8 2.25 2.8 1.4 138	9.40 .31 1.4 .00	0.00 .00 .00 .00	0.00 .00 .00	0.00 .00 .00

172

RED RIVER OF THE NORTH BASIN

05123750 CUT BANK CREEK AT UPHAM, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1974-80, 1986 to current year.

DATE		TIME	STRE FLO INST TANE (CF (OOC	AN- COUS	SPE CIF CON DUC ANC (US/	IC T- E CM)	PH (STAN ARD UNITS	ID- 3)	TEMPE ATUF AIF (DEG (0002	RE RC)	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC	SAL /L	(MG	VED /L CA)		UM, S- VED /L MG)	SODIC DIS- SOLVE (MG/ AS 1	ED L NA)	SODIUM PERCENT (00932)
OCT 08		1015	1	.2	1	170			7	7.0		7.0									
MAR 30		1415	C	.64	1	160	7.	42	-	1.0		0.0		350	41		61		100		35
APR 12		1830	3	.6		780			14	1.5		7.5									
MAY 05		1215	2	2.1	1	030				1.0		7.5									
JUN 15		1015	C	.09	1	330			16	5.0		4.5									
DATE	S	ODIUM AD- ORP- TION ATIO 0931)	SI	K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULFA DIS- SOLV (MG/ AS SO (0094	ED L	CHLO RIDE DIS- SOLV (MG/ AS (E, /ED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L	SOL	DUÉ 80 . C S- VED		OF TI- TS, S- VED /L)	SOLID DIS SOLI (TOM PER DAY	ED IS	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 30		2	33		150		400		55		0	.10	5	.3		824		786	1.	42	1.12
	DATE	SO (U	SENIC DIS- DLVED JG/L S AS)	SO (U	RON, IS- LVED G/L B) 020)	SO (U AS	ON, IS- LVED G/L FE) O46)	LEA DI SOL (UG AS (O10	S- VED /L PB)	SO (U	HIUM IS- LVED G/L LI) 130)	NE D SO (U	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U	CLE- UM, DIS- DLVED G/L S SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
MAR 30			2		120		60		<1		76		410		0.1		2		1		220

05123760 DEEP RIVER BELOW CUT BANK CREEK NEAR UPHAM, ND

LOCATION.--Lat 48°36'14", long 100°47'41", in SW1/4SW1/4SW1/4Sw1/4 sec.7, T.159 N., R.78 W., McHenry County, Hydrologic Unit 09010005, at bridge 0.5 mi below Cut Bank Creek, and about 3.5 mi northwest of Upham at bridge on county highway.

DRAINAGE AREA.--1,722 mi^2 , of which about 1,070 mi^2 is probably noncontributing.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to September 1980, March 1986 to current year.

REMARKS.--Discharge computed from records at stations 05123510 Deep River near Upham and 05123750 Cut Bank Creek at Upham.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (OO4OO)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (OOO80)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
MAY 05	1400	2.1	960	8.38	12.5	10.5	51	10.8	95	330	50
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAY 05	50	73	31	2	22	287	180	39	0.20	2.7	623
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BORON, DIS- SOLVED (UG/L AS B) (01020)
MAY					2 212	1 221			-	0.4	60
05	590	0.85	3.53	<0.100	0.010	0.230	0.110	<10	3	84	60
DATE	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (O1130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)
MAY 05	<1	<1	2	<1	17	<5	46	5	<0.1	1	14
DATE	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CYANIDE TOTAL (MG/L AS CN) (00720)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAY											
05	4	<1	<1	210	3	<10	9	<0.010	12	0.07	85

05123900 BOUNDARY CREEK NEAR LANDA, ND

LOCATION.--Lat 48°48'46", long 100°51'46" at east line sec.35, T.162 N., R.79 W., Bottineau County, Hydrologic Unit 09010002, on right bank 80 ft downstream from bridge on county road, 5 mi upstream from mouth, and 6 mi southeast of Landa.

DRAINAGE AREA .-- 230 mi2, of which about 60 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1957 to September 1981, March 1985 to September 1985 (seasonal records only since 1985).

REVISED RECORDS. -- WSP 1728: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 1,420.03 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Estimated daily discharges: Apr. 4 to May 10. Records poor.

AVERAGE DISCHARGE.--24 years (1958-1981, 1985), 12.3 ft^3/s , 8,910 acre-ft/yr; median of yearly mean discharges, 5.5 ft^3/s , 4,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,580 ft³/s, Apr. 9, 1969, gage height, 12.70 ft; maximum gage height, 12.90 ft, Apr. 1, 1976, backwater from ice and snow; no flow for several months each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3.6 ft³/s, Apr. 9, gage height, 6.83 ft; no flow for several months.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988
					MEAT	ILIAV V	ES					

						JAN TABOB	•					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	.00	.00	.00	.00	.00	.00	.00
					.00	.00	.00	.00	.00	.00	.00	.00
2 3 4 5					.00	.00	.00	.07	.00	.00	.00	.00
1					.00	.00	1.5	.07	.00	.00	.00	.00
4											.00	.00
2					.00	.00	2.1	.03	.00	.00	•00	.00
6 7 8 9					.00	.00	1.1	.01	.00	.00	.00	.00
7					.00	.00	2.2	.04	.00	.00	.00	.00
8					.00	.00	3.2	.07	.00	.00	.00	.00
9					.00	.00	3.3	.03	.00	.00	.00	.00
10					.00	.00	2.5	.00	.00	.00	.00	.00
11					.00	.00	2.5	.00	.00	.00	.00	.00
12					.00	.00	1.5	.00	.00	.00	.00	.00
13					.00	.00	.85	.00	.00	.00	.00	.00
11							.60	.00	.00	.00	.00	.00
14 15					.00	.00						.00
					.00	.00	.64	.00	.00	.00	.00	.00
16					.00	.00	.57	.00	.00	.00	.00	.00
17					.00	.00	.61	.00	.00	.00	.00	.00
18					.00	.00	.68	.00	.00	.00	.00	.00
19					.00	.00	.68	.00	.00	.00	.00	.00
20					.00	.00	•57	.00	.00	.00	.00	.00
21					.00	.00	.46	.00	.00	.00	.00	.00
22					.00	.00	.33	.00	.00	.00	.00	.00
22 23					.00	.00	.21	.00	.00	.00	.00	.00
24							.06	.00	.00	.00	.00	.00
24					.00	.00						.00
25					.00	.00	.00	.00	.00	.00	.00	.00
26					.00	.00	.00	.00	.00	.00	.00	.00
27 28					.00	.00	.00	.00	.00	.00	.00	.00
28					.00	.00	.00	.00	.00	.00	.00	.00
29					.00	.00	.00	.00	.00	.00	.00	.00
29 30						.00	.00	.00	.00	.00	.00	.00
31						.00		.00		.00	.00	
TOTAL					0.00	0.00	26.16	0.32	0.00	0.00	0.00	0.00
MEAN					.00	.00	.87	.010	.00	.00	.00	.00
										.00	.00	.00
MAX					.00	.00	3.3	.07	.00			
MIN					.00	.00	.00	.00	.00	.00	.00	.00
AC-FT					.0	.0	52	.6	.0	.0	.0	.0

O5124000 SOURIS (MOUSE) RIVER NEAR WESTHOPE, ND (International gaging station) (National stream quality accounting network station and radiochemical program station)

LOCATION.--Lat 48°59'47", long 100°57'29", in SW1/4SE1/4 sec.30, T.164 N., R.79 W., Bottineau County, Hydrologic Unit 09010003, on left bank 1,200 ft upstream from second crossing of international boundary, 1 mi downstream from Fish and Wildlife Service Dam 357, 7 mi northeast of Westhope, 11 mi downstream from Boundary Creek, and at mile 154.5.

DRAINAGE AREA.--16,900 mi², approximately, of which about 10,300 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July to October 1929, April 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WSP 1338: 1932. WSP 2113: Drainage area.

GAGE.--Water-stage recorder and control. Datum of gage is 1,402.45 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 28, 1938, nonrecording gage at site 6.3 mi upstream at datum 2.52 ft higher.

REMARKS.--Estimated daily discharges: Mar. 12 and June 3-16. Records good. Flow regulated by dams on Souris River and tributaries, combined capacity, about 321,000 acre-ft. Diversion at Eaton Dam for irrigation of about 7,600 acres and other small diversions for irrigation and municipal supply upstream from station.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--57 years (water years 1931-88), 257 $\rm ft^3/s$, 186,200 acre-ft/yr; median of yearly mean discharges, 140 $\rm ft^3/s$, 101,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,600 ft³/s, Apr. 26, 1976, gage height, 19.16 ft; maximum daily reverse flow, 35 ft³/s, Apr. 8, 1943, caused by backwater from downstream tributary inflow; no flow at times in some years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 160 ft3/s, Nov. 30, gage height, 6.74 ft; no flow Apr. 17-29.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	73 75 74 73 66	56 55 55 54 63	9.3 4.2 3.1 2.8 1.5	27 27 30 30 30	28 28 28 28 27	17 4.2 3.6 3.6 3.5	4.5 5.2 6.3 6.2 5.3	.17 .58 .70 .65	39 35 33 32 31	25 25 25 24 25	24 24 23 23 22	22 21 21 22 23
6 7 8 9	72 73 73 71 73	98 97 98 98 82	.46 2.3 7.0 4.1 2.7	30 30 30 30 30	27 27 27 27 27 27	3.3 3.1 2.9 2.8 2.7	4.7 3.9 4.3 5.1 2.9	.44 .83 .49 .54	30 29 29 29 29	23 24 23 23 22	20 19 20 21 21	22 22 23 26 27
11 12 13 14 15	74 74 72 72 73	42 41 40 41 40	2.6 2.9 3.1 7.5 22	31 31 31 31 31	27 26 26 25 26	2.2 2.5 2.9 2.8 2.8	2.8 1.8 .92 .54	.99 1.8 2.6 2.8 2.9	29 29 29 29 28	23 24 22 18 21	21 23 23 23 23	24 25 25 25 25 25
16 17 18 19 20	73 72 72 65 38	40 40 77 149 151	24 24 24 23 23	33 33 32 31 31	25 25 25 25 25 25	2.9 2.9 3.0 3.1 3.9	.08 .00 .00 .00	3.1 6.7 8.4 8.4 8.6	27 21 22 30 32	21 21 21 21 21	23 23 23 23 23 23	25 24 23 23 27
21 22 23 24 25	38 37 36 37 37	151 152 152 152 152	24 25 25 25 25	30 30 30 30 30	25 24 24 24 24	4.4 4.7 5.5 7.0 5.8	.00 .00 .00	8.4 8.6 9.0 9.6 9.4	29 28 30 36 41	20 21 20 20 20	23 22 21 21 22	27 24 23 23 23
26 27 28 29 30 31	36 36 36 36 41 54	152 152 152 154 101	26 26 26 26 26 27	30 30 29 29 29 29	24 24 24 24	5.1 4.7 4.8 4.4 4.5 4.5	.00 .00 .00 .00	9.6 9.7 9.1 8.6 8.0 9.4	27 25 25 25 26	20 20 20 23 24 23	23 22 22 23 23 23	23 22 23 23 23
TOTAL MEAN MAX MIN AC-FT	1832 59.1 75 36 3630	2887 96.2 154 40 5730	474.56 15.3 27 .46 941	934 30.1 33 27 1850	746 25.7 28 24 1480	131.1 4.23 17 2.2 260	54.84 1.83 6.3 .00 109	150.96 4.87 9.7 .17 299	884 29.5 41 21 1750	683 22.0 25 18 1350	690 22.3 24 19 1370	709 23.6 27 21 1410

CAL YR 1987 TOTAL 92197.56 MEAN 253 MAX 2260 MIN .46 AC-FT 182900 WTR YR 1988 TOTAL 10176.46 MEAN 27.8 MAX 154 MIN .00 AC-FT 20190

RED RIVER OF THE NORTH BASIN

O5124000 SOURIS RIVER NEAR WESTHOPE, ND--CONTINUED (International gaging station) (National stream quality accounting network station and radiochemical program station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1954-64, 1966 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (OOO10)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
OCT 07	1030	73	950	8.21	5.5	9.5		8.0	69			
NOV 18	1700	113	910	8.72	4.5	4.0	6.3	15.4	117	<5	50	300
JAN 06	1735	32	1410		-14.0	0.5						
FEB 25	1115	23	2600	7.61	-1.0	2.0	1.7	13.6	98	25	K420	830
MAR 31	1130	4.6	1920	7.97	3.5	3.0		13.5	98			
MAY 04	1100	0.80	1460	8.34	4.5	8.0	6.1	10.5	87	K100	460	450
JUN 16	1245	27	1140	8.72	22.5	18.5		8.0	84			
JUL 28	1630	20	1070	8.56	34.5	26.5	34	4.4	54	<10	440	250
AUG 24	1000	20	1210	8.13	20.5	17.0		3.2	33			
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (00419)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	CAR- BONATE WATER WH IT FIELD MG/L AS CO3 (00447)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE; DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 07							706	774	0			
NOV 18	58	38	98	40	,	40	306	374		170	23	0.20
FEB 25	170	97	310	40	3 5	12 28	322 902	315 1100	38	520	120	0.50
MAR 31	170	91	310	44		20	984	1200	0	920	120	0.50
MAY 04	79	62	170	44	4	10	5007		19	350	54	0.30
JUN 16	19	02	170	44	4	10	424 362	478	34	550	54	0.90
JUL 28	28	43	140	54		0.0		373 264	72	180	43	0.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	9.0 NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	336 NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)
NOV	2.724	2.0	220						The second		10.00	
18	0.11	613	589	0.83	187	<0.010	<0.100	0.030	0.030	0.04	2.1	0.090
25 MAY	6.1	1880	1780	2.56	119	<0.010	<0.100	0.070	0.060	0.08	2.3	0.170
O4	6.3	1050	984	1.43	2.27	<0.010	<0.100	0.050	0.050	0.06	2.1	0.180
28	22	733	665	1.0	38.8	0.010	0.140	0.970	0.890	1.1	3.6	0.260

RED RIVER OF THE NORTH BASIN

O5124000 SOURIS RIVER NEAR WESTHOPE, ND--CONTINUED

DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV			2.2		- 24			7.			40
18 FEB	0.020	<0.010	<10	2	74	<0.5	<1	<1	<3	3	10
25 MAY	0.150	0.100	<10	2	200	<10	1	<1	1	1	40
04 JUL	0.120	0.070	<10	3	100	<0.5	<1	<1	<3	<1	7
28	0.510	0.230	<10	9	57	<0.5	<1	<1	<3	1	10
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV											
18 FEB	<5	49	28	<0.1	<10	4	<1	<1.0	280	<6	7
25 MAY	<5	140	190	<0.1	3	6	<1	<1.0	880	3	<10
O4 JUL	<5	78	4	0.2	<10	3	<1	<1.0	420	<6	<3
28	<5	61	22	0.2	<10	6	<1	<1.0	210	<6	10
DATE	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT									3.5	1.2	100
07 NOV								-	99	19	99
18 FEB									58	18	48
25 MAY	4-	44							134	8.5	52
04 JUL	0.8	0.9	24	1.5	16	1.5	0.09	1.0	61	0.13	99
28 AUG									10	0.54	98
24									9	0.50	90

06185500 MISSOURI RIVER NEAR CULBERTSON, MT

LOCATION.--Lat 48°07'30", long 104°28'20", in SE1/4NW1/4 sec.3, T.27 N., R.56 E., Richland County, Hydrologic Unit 10060005, on right bank at downstream side of bridge on State Highway 16, 2.5 mi southeast of Culbertson, 10 mi downstream from Big Muddy Creek, and at mile 1,620.76.

DRAINAGE AREA .-- 91,557 mi2.

PERIOD OF RECORD. -- July 1941 to December 1951, April 1958 to current year.

REVISED RECORDS .-- WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,883.4 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). July 1 to Nov. 6, 1941, water-stage recorder at site 400 ft upstream at datum 0.11 ft. Nov. 7, 1941, to Aug. 17, 1950, water-stage recorder at site 580 ft downstream at present datum. Aug. 18, 1950, to Dec. 31, 1951, nonrecording gage on bridge at present datum. Apr. 1, 1958, to Nov. 1, 1967, water-stage recorder at site 580 ft downstream at present datum.

REMARKS.--Estimated daily discharges: Dec. 17 to Apr. 4 and Aug. 17 to Sept. 30. Records good except those for estimated daily discharges, which are poor. Flow partly regulated by Fort Peck Lake (station number 06131500) and many other reservoirs upstream from station. Diversions for irrigation of about 1,030,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at stations. Water-quality records for the current year are also available. These records, which have been published in U.S. Geological Survey Report MT-88-1, can also be accessed through the U.S. Geological Survey's WATSTORE data system.

AVERAGE DISCHARGE.--39 years (1943-51, 1959-88, after operational level at Fort Peck Lake was reached), 10,700 ft³/s, 7,752,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 78,200 ft³/s, Mar. 26, 1943, gage height, 14.80 ft, from rating curve extended above 30,000 ft³/s; maximum gage height observed, 19.66 ft, Apr. 14, 1979 (backwater from ice jam); minimum daily discharge, 575 ft³/s, Nov. 22, 1941.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 17,300 ft³/s, Mar. 1; minimum daily, 4,100 ft³/s, Sept. 27.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		5100	initial, oo	DIO IDDI	T BIT OBCOM	MEAN VALU	JES	1701	10 031 13/13/3/	1,550		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6660	5380	8500	11200	12300	12800	7000	6160	6730	7070	7480	6500
2	6670	5390	8670	11200	12200	12000	6900	6140	6830	7100	7630	6800
3	6640	5380	9870	11000	12200	11800	6900	6190	6800	6820	7610	6500
	6600	5360	10700	10800	12300	11800	7200	6290	6700	6920	7530	6000
4	6670	5250	10600	10800	11100	11700	6900	6260	6580	6960	7520	5700
5	0070	5250	10600	10800	11100	11700	6900	6260	0580	0950	1320	5700
6	6650	5240	10600	10800	11000	11400	6850	5830	6570	7030	7500	5850
7	6580	5360	10500	10800	11200	10100	6740	5840	6630	7260	7320	5650
8	6570	5270	10400	10800	11700	9100	6660	6110	6730	7700	7320	6000
9	6270	5230	10400	10700	11700	8600	6730	6390	6900	7910	7440	5600
10	6120	5280	10300	10600	11500	8800	6720	6880	6920	8180	7480	5400
10	0120	7.2	10,00	10000	11,000							
11	6150	5420	10300	10400	10900	9000	6660	7150	6570	8380	7350	5450
12	6150	5470	10300	10400	11000	8800	6480	7020	6490	8310	7560	5450
13	5980	5200	10300	10600	11700	8600	6370	6990	6370	8260	7700	5600
14	6030	5070	10100	10500	11800	8700	6330	7230	6450	8440	7860	5600
15	6080	5000	10300	10500	11800	8600	6550	7460	6740	8250	7840	5600
1,5	0000	0000	10,00	10,00	11000	3000	33.50	1400				
16	6220	5420	10200	10600	12100	8200	6660	7510	7030	7980	7950	5800
17	6600	5420	10000	10800	12300	8500	6520	7380	6850	8080	7900	5800
18	6540	5160	9500	10800	12200	8400	6550	7280	6780	8230	7900	5600
19	6050	5180	9000	10800	12700	8400	6710	7340	6950	8150	8000	4900
20	5700	5310	9500	11100	12600	8300	6980	7480	7110	7980	7750	4500
20	2100	3310	9,00	11100	12.500	0,00						
21	5720	5310	10000	11200	12700	8300	7010	7200	7200	7770	7950	4400
22	5970	5150	11000	11300	12500	8300	6820	7390	7390	7600	7950	4450
23	5890	5140	11000	11600	12600	7600	6490	7970	6810	7620	7950	4200
24	5660	5220	11400	12000	12600	7500	6360	7930	6770	7750	7400	4200
25	5640	5380	11300	11800	12500	7300	6450	7030	6630	7710	6800	4250
						1.5						
26	5750	5380	11500	11800	12300	7500	6260	6890	6750	7690	7000	4200
27	5680	5330	11800	12300	12500	8000	6250	7080	6760	7660	7200	4100
28	5330	6050	11500	12700	12400	7300	6300	6850	6900	7610	7000	4200
29	5390	7460	11400	12700	12600	7300	6420	6880	6930	7610	6800	4200
30	5370	8210	11300	12500		6800	6370	6830	6900	7640	6400	4200
31	5250		11300	12500		7200		6670		7490	6300	
TOTAL	188580	164420	323540	347600	349000	276700		213650		39160	231390	156700
MEAN	6083	5481	10440	11210	12030	8926	6638	6892	6792	7715	7464	5223
MAX	6670	8210	11800	12700	12700	12800	7200	7970	7390	8440	8000	6800
MIN	5250	5000	8500	10400	10900	6800	6250	5830	6370	6820	6300	4100
AC-FT	374000	326100	641700	689500	692200	548800		423800		74400	459000	310800
AU-LI	214000	220.00	341,00	30,,00	0,2200	745550	,,,,,,,,,	,,				

CAL YR 1987 TOTAL 2886350 MEAN 7908 MAX 15900 MIN 5000 AC-FT 5725000 WTR YR 1988 TOTAL 2893650 MEAN 7906 MAX 12800 MIN 4100 AC-FT 5740000

MISSOURI RIVER MAIN STEM

06185600 MISSOURI RIVER STAGE GAGE NO. 4 NEAR NOHLY, MT

LOCATION.--Lat 48°02'10", long 104°09'40", in NE1/4 sec.1, T.26 N., R.58 E., Richland County, Hydrologic Unit 10060005, on right bank 4.5 mi northwest of Nohly, and at mile 1,595.7.

DRAINAGE AREA. -- 93,000 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- March 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,860.00 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 18, 1962 at datum 60.00 ft lower.

REMARKS .-- Stage regulated by Fort Peck Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 21.20 ft, Mar. 23, 1960, present datum; minimum daily recorded, 6.87 ft, Apr. 18, 1963.

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10.45	9.62						9.97	10.41	10.66	11.05	10.56
2	10.39	9.67						9.90	10.47	10.74	11.07	10.52
3	10.41	9.68						9.95	10.47	10.71	11.17	10.60
4	10.39							9.95	10.42	10.62	11.10	10.70
5	10.40							9.99	10.35	10.69	11.09	10.58
6	10.44							9.81	10.33	10.71	11.10	10.30
7	10.37							9.75	10.39	10.83	11.02	10.22
8	10.40							9.80	10.42	11.00	10.99	10.31
9	10.26							10.02	10.47	11.22	11.01	10.33
10	10.07							10.18	10.63	11.29	11.07	10.27
11	10.05							10.47	10.46	11.36	11.00	10.19
12	10.06						10.05	10.50	10.42	11.44	11.05	10.15
13	10.00						9.99	10.43	10.37	11.36	11.15	10.12
14	9.94						9.95	10.54	10.32	11.42	11.21	10.16
15	10.00						9.99	10.68	10.45	11.45	11.25	10.20
15	10.00						9.33	10.00	10.45	11.45	11.625	.0.20
16	10.06						10.17	10.71	10.62	11.31	11.27	10.24
17	10.23						10.11	10.67	10.65	11.28	11.22	10.23
18	10.37						10.11	10.65	10.60	11.39	11.19	10.43
19	10.21						10.16	10.63	10.60	11.37	11.25	10.52
20	9.90						10.31	10.75	10.76	11.31	11.17	10.37
21	9.80						10.41	10.61	10.76	11.20	11.21	9.98
22	9.86						10.35	10.68	10.98	11.10	11.22	9.74
23	10.00						10.22	10.89	10.67	11.08	11.21	9.63
24	9.81						10.05	11.01	10.61	11.15	11.16	9.60
25	9.78						10.09	10.63	10.49	11.15	11.14	9.51
26	9.82						10.03	10.45	10.48	11.15	11.00	9.54
27	9.84						9.96	10.51	10.53	11.14	10.71	9.54
28	9.71						9.97	10.49	10.62	11.12	10.76	9.56
29	9.61						10.03	10.42	10.61	11.13	10.93	9.52
30	9.70						10.10	10.44	10.70	11.14	10.96	9.57
31	9.53							10.40		11.09	10.72	
MEAN	10.06							10.38	10.54	11.12	11.08	10.11
MAX	10.45							11.01	10.98	11.45	11.27	10.70
MIN	9.53							9.75	10.32	10.62	10.71	9.51
	2.77							2		NEG-3-5		10000

06185650 MISSOURI RIVER STAGE GAGE NO. 5 AT NOHLY, MT

LOCATION.--Lat 48°00'10", long 104°05'30", in SE1/4 sec.16, T.26 N., R.59 E., Richland County, Hydrologic Unit 10060005, at downstream side of bridge, O.2 mi northwest of Nohly, and at mile 1,587.7.

DRAINAGE AREA. -- 93,000 mi², approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD .-- April 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,800.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Stage regulated by Fort Peck Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 77.22 ft, Mar. 15, 1972; minimum daily recorded, 59.12 ft, Nov. 22, 1964.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	63.14	62.46							64.54	63.43	63.84	63.38
2	63.08	62.52							64.52	63.50	63.83	63.31
3	63.10	62.52							64.50	63.50	63.94	63.37
4	63.10								64.40	63.40	63.87	63.46
5	63.09								63.85	63.46	63.85	63.41
,	(7.41								63.54	63.48	63.87	63.16
6	63.14								63.45	63.57	63.82	63.06
7	63.08								63.80	63.71	63.77	63.13
8	63.11									63.92	63.80	63.14
9	63.05								64.50		63.84	63.13
10	62.99								64.89	64.00	03.04	05.15
11	62.94							63.37	64.47	64.10	63.81	63.03
12	62.95							63.67	64.16	64.14	63.82	63.01
13	62.93							63.44	63.89	64.10	63.92	62.98
14	62.84							63.32	63.66	64.13	63.98	63.01
15	62.90							63.45	63.66	64.18	64.01	63.02
16	62.96							63.52	63.72	64.07	64.02	63.05
	63.09							63.59	63.71	64.01	64.00	63.04
17								63.82	63.58	64.14	63.96	63.18
18	63.24							63.87	63.48	64.13	64.03	63.34
19	63.15							63.83	63.54	64.08	63.96	63.23
20	62.84							09.09	07.74	04.00	0).90	0).2)
21	62.73							64.22	63.53	64.00	63.98	62.90
22	62.75							64.29	63.69	63.91	64.00	62.67
23	62.88							64.26	63.51	63.87	63.98	62.55
24	62.72							64.19	63.38	63.93	63.92	62.52
25	62.67							63.80	63.30	63.94	63.89	62.44
26	62.72							63.46	63.28	63.92	63.80	62.44
27	62.75							63.50	63.30	63.92	63.53	62.43
28	62.63							63.72	63.39	63.89	63.52	62.43
29	62.48							63.96	63.38	63.90	63.68	62.42
30	62.57							64.38	63.49	63.92	63.73	62.43
31	62.42							64.47		63.88	63.55	
21	02.42					1923		04.41	777	07.00	05.55	
MEAN	62.90								63.80	63.88	63.86	62.96
MAX	63.24								64.89	64.18	64.03	63.46
MIN	62.42								63.28	63.40	63.52	62.42

06329500 YELLOWSTONE RIVER NEAR SIDNEY. MT

LOCATION.--Lat 47°40'42", long 104°09'22", in SW1/4NE1/4SW1/4 sec.9, T.22 N., R.59 E., Richland County, Hydrologic Unit 10100004, on left bank at Montana-Dakota Utilities Company powerplant, 0.2 mi downstream from bridge on State Highway 23, 2.5 mi south of Sidney, 3.0 mi downstream from Fox Creek, and at mile 29.2.

DRAINAGE AREA. -- 69,103 mi². Area at site 4.5 mi upstream, 68,812 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1910 to September 1931 (published as "at Intake"), October 1933 to current year. If monthly figures of diversions to Lower Yellowstone Canal at Intake are added to records at this site, records equivalent to those published as Yellowstone River at Glendive (1898-1910, 1931-34) can be obtained. Monthly discharge only for some periods, published in WSP 1309. Monthly figures of diversions into Lower Yellowstone Canal prior to 1951 published in WSP 1309, 1951-60 published in WSP 1729, 1961-65 published in WSP 1916, 1966-70 published in WSP 2116, and 1971 to current year are published in annual reports.

GAGE.--Water-stage recorder. Datum of gage is 1,881.3 ft National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Jan. 1, 1911, to Sept. 30, 1931, nonrecording gage at site 32 miles upstream at different datum. Apr. 9, 1934, water-stage recorder at two sites within 500 ft of highway bridge 0.2 mi upstream and May 17, 1945, to Apr. 3, 1952, nonrecording gage on same bridge at datum 1.36 ft higher. Apr. 4, 1952, to Nov. 19, 1967, water-stage recorder at site 4.5 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Dec. 15 to Mar. 24. Water-discharge records good except those for estimated daily discharges, which are poor. Some regulation on tributary streams. Diversion for irrigation of about 1,250,000 acres upstream from station. Lower Yellowstone Project Main Canal diverts from left bank in NW1/4 sec.36, T.18 N., R.56 E., at Lower Yellowstone diversion dam at Intake about 36.6 mi upstream for irrigation of about 52,000 acres of which about one-third lies upstream from station. U. S. Army Corps of Engineers satellite telemeter at station. Water-quality records for the current year are also available. These records, which have been published in U.S. Geological Survey Report MT-88-1, can also be accessed through the U.S. Geological Survey's WATSTORE data system.

AVERAGE DISCHARGE. -- 76 years, 12,890 ft3/s, 9,340,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 159,000 ft³/s, June 2, 1921, gage height, 12.6 ft, sit and datum then in use; maximum gage height observed, 21.85 ft, Mar. 22, 1947, site and datum then in use (backwater from ice); minimum discharge, 470 ft³/s, May 17, 1961, gage height, 2.73 ft, site and datum then in use.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 33,000 ft³/s, June 9, gage height, 11.07 ft; minimum, 1,340 ft³/s, Aug. 17, gage height, 3.11 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5780	6680	6830	4000	6000	8000	6150	6000	28800	9800	1740	1890
2	5850	6650	7010	4500	5500	8000	6180	5730	28100	9200	1700	1990
3	5950	6620	6570	4500	5000	8000	6080	5620	28200	8890	1670	2010
4	5910	6650	6770	4000	5000	8000	5910	5820	24900	8150	1700	2000
5	5750	6680	6550	3500	5500	8000	5840	6560	20600	7760	1760	2020
6 7 8 9	5620 5530 5420 5400 5440	6700 6770 6770 6770 6770	6450 6520 6500 6440 6480	4000 4500 4500 4000 4500	6000 5500 5500 6000 5000	7500 7000 7000 7000 7000	5710 5680 5560 5600 5640	6850 6500 6170 6110 10200	18300 19600 27500 32200 30800	7090 6660 6370 5970 5480	1680 1530 1530 1560 1620	2030 2050 2110 2140 2170
11	5440	6840	6410	5000	4500	6500	5520	22000	27800	5210	1580	2150
12	5370	6850	6390	5500	5000	6500	5590	17800	25100	4950	1450	2260
13	5520	6830	6360	6000	5500	6500	5790	14100	22100	4730	1480	2320
14	5710	6830	6430	6500	5500	6500	5920	12700	20600	4510	1650	2590
15	5820	6790	4000	7500	5500	6500	5680	12300	19500	4310	1700	3110
16	5840	6740	3000	8000	6000	6000	5440	14500	18600	4050	1540	3550
17	5920	6740	2500	7500	6000	6000	5330	18500	17600	3830	1460	3810
18	6010	6740	3000	7000	6500	6500	5400	20800	15600	3770	1710	4290
19	6010	6740	3500	6500	7000	7000	5530	18900	14200	3690	1800	5050
20	6010	6750	3500	6500	8000	7500	5430	20100	13600	3760	1680	4710
21	5980	6760	4000	6500	9000	7500	5990	24800	13200	3690	1420	4590
22	6000	6650	4000	7000	8500	7500	6170	24100	13300	3490	1390	4690
23	6030	6680	3500	7500	7500	7000	6770	21200	13300	3360	1410	4940
24	5640	6740	3500	8000	8000	7000	7320	18300	12600	3270	1430	4710
25	6510	6740	4000	7500	8500	7020	7240	16400	12600	3090	1550	4660
26 27 28 29 30 31	6680 6690 6710 6710 6710	6770 6770 6740 6670 6860	4000 4500 4500 4500 4000 4000	7000 7500 8000 9000 8000 7000	9000 9000 9000 8000	6920 6820 6610 6500 6260 6160	6840 6400 6160 6440 6300	16400 18500 21900 26000 28300 29200	12500 12000 11400 10800 11000	2860 2670 2420 2210 2020 1770	1630 1650 1640 1640 1650 1790	4420 4570 4630 4630 4600
TOTAL	184670	202290	155710	191000	191000	216290	179610	482360	576400	149030	49740	100690
MEAN	5957	6743	5023	6161	6586	6977	5987	15560	19210	4807	1605	3356
MAX	6710	6860	7010	9000	9000	8000	7320	29200	32200	9800	1800	5050
MIN	5370	6620	2500	3500	4500	6000	5330	5620	10800	1770	1390	1890
AC-FT	366300	401200	308900	378800	378800	429000	356300	956800	1143000	295600	98660	199700

CAL YR 1987 TOTAL 2937690 MEAN 8048 MAX 22100 MIN 2500 AC-FT 5827000 WTR YR 1988 TOTAL 2678790 MEAN 7319 MAX 32200 MIN 1390 AC-FT 5313000

06329590 YELLOWSTONE RIVER STAGE GAGE NO. 1 NEAR FAIRVIEW, MT

LOCATION.--Lat 47°48'34", long 104°02'36", sec. 18, T.150 N., R.104 W., McKenzie County, Hydrologic Unit 10100004, on left bank 3 mi south of Fairview, and at mile 15.2.

DRAINAGE AREA. -- 70,000 mi2, approximately.

PERIOD OF RECORD. -- March 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,860.00 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 19, 1962, at datum 60.00 ft lower.

REVISED RECORDS .-- WDR ND-82: 1980-81.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 23.78 ft, Mar. 21, 1960, present datum; minimum daily recorded, 7.92 ft, Aug. 17, 1988, present datum.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		10.70						10.27	16.52		8.18	
2		10.67						10.15	16.38		8.15	
3								10.12	16.36		8.14	
1								10.14	15.87		8.11	
5								10.44	14.89		8.15	
6								10.66	14.23		8.13	
7								10.51	14.25		8.04	
8	10.04							10.35	15.85		8.01	8.36
9	10.07							10.26	17.00		8.01	8.44
10	10.10							10.86	16.88		8.05	8.51
11	10.09							14.71	16.25		8.08	8.48
12	10.07							14.69	15.75		7.96	8.57
13	10.09							13.62	15.17		7.98	
14	10.20						10.21		14.75	9.74	8.01	
15	10.25						10.15		14.52	9.66	8.16	
16	10.27						10.02		14.26	9.53	7.99	
17	10.29						9.96		14.08	9.45	7.92	
18	10.34						9.97		13.60	9.41	8.08	
19	10.32						10.06		13.17	9.35	8.14	
20	10.36						9.98	14.55	12.96	9.37	8.15	
21	10.34						10.20	15.71	12.81	9.35	7.96	
22	10.35						10.35	15.75	12.79	9.23	7.94	
23	10.37						10.45	15.11	12.79	9.14	7.94	
24	10.28						10.85	14.34	12.62	9.10	7.96	
25	10.44						10.82	13.74	12.56	8.99	8.03	
25	10.44						10.02	13.14	12.70	0.,,	3.07	
26	10.64						10.69	13.65	12.57	8.86	8.06	
27	10.68						10.53	14.10	12.41	8.74	8.10	
28	10.69						10.35	14.89		8.60	8.10	
29	10.70						10.43	15.84		8.49	8.09	
30	10.71						10:40	16.37		8.36	8.04	
31	10.70							16.56		8.25	8.14	
MEAN											8.06	
MAX											8.18	
MIN											7.92	
LITIA									4.44		1 . /-	

YELLOWSTONE RIVER BASIN

06329610 YELLOWSTONE RIVER STAGE GAGE NO. 2 NEAR CARTWRIGHT, ND

LOCATION.--Lat 47°51'50", long 103°58'06", on south line sec.26, T.151 N., R.104 W., McKenzie County, Hydrologic Unit 10100004, on bridge on State Highway 23, 2 mi west of Cartwright, and at mile 8.6.

DRAINAGE AREA. -- 70,000 mi2, approximately.

PERIOD OF RECORD. -- April 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,800.00 ft above National Geodetic Vertical Datum of 1929.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 87.08 ft, Mar. 23, 1978; minimum daily recorded, 58.58 ft, July 26, 1974.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	64.87	65.09							71.05	66.56	63.62	63.60
2	64.87	65.08							70.94	66.35	63.59	63.61
3	64.93								70.88	66.31	63.59	63.64
4	64.90								70.54	66.08	63.57	63.66
5	64.89								69.62	65.94	63.63	63.67
	04.09		PC-ST.			775			.,			
6	64.82								68.98	65.73	63.65	63.67
7	64.73								68.90	65.56	63.54	63.65
8	64.66								70.29	65.46	63.50	63.63
9	64.74								71.50	65.32	63.54	63.68
10	64.79								71.47	65.14	63.58	63.67
									70 80		63.59	63.64
11	64.74								70.89			63.74
12	64.77								70.34		63.53	
13	64.70								69.77		63.51	63.78
14	64.72								69.30	64.68	63.55	63.84
15	64.76								69.08	64.61	63.64	63.98
16	64.80								58.82	64.52	63.57	64.20
17	64.82								68.69	64.39	63.47	64.31
18	64.82								68.26	64.37	63.55	64.45
	64.80								67.82	64.32	63.60	64.72
19									67.61	64.34	63.60	64.76
20	64.82								57.01	04.74	0).00	04.70
21	64.82								67.47	64.38	63.51	64.68
22	64.82								67.42	64.35	63.47	64.65
23	64.84								67.48	64.22	63.47	64.78
24	64.76								67.32	64.22	63.50	64.73
25	64.86							68.49	67.20	64.18	63.50	64.66
										100		
26								68.33	67.23	64.12	63.49	64.59
27								68.71	67.13	64.07	63.50	64.55
28								69.44	67.00	63.98	63.51	64.58
29								70.31	66.78	63.86	63.53	64.56
30	64.94							70.91	66.80	63.79	63.53	64.55
31	65.03							71.06		63.71	63.56	
									60.00		63.55	64.14
MEAN									68.89			
MAX									71.50		63.65	64.78
MIN									66.78		63.47	63.60

06329620 YELLOWSTONE RIVER STAGE GAGE NO. 3 NEAR BUFORD, ND

LOCATION.--Lat $47^{\circ}55^{\circ}14^{\circ}$, long $103^{\circ}57^{\circ}56^{\circ}$, in SW $\frac{1}{4}$ sec.2, T.151 N., R.104 W., McKenzie County, Hydrologic Unit 10100004, on left bank 4 mi south of Buford, and 6.5 mi southeast of Nohly.

DRAINAGE AREA. -- 70,000 mi², approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- April 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,850.00 ft above National Geodetic Vertical Datum of 1929.
Prior to Apr. 19, 1962, at datum 50.00 ft lower. Prior to Apr. 23, 1987, gage was located 1 mi downstream.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily gage height recorded, 29.55 ft, Mar. 15, 1972; minimum daily recorded, 6.18 ft, Aug. 24, 1961, present datum.

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										12.36	8.27	8.43
2										12.10		8.47
3										12.03		8.54
4										11.81		8.57
5										11.64		8.59
6										11.45		8.59
7										11.24		8.56
8										11.10		8.60
9										10.92		8.65
10										10.70		8.68
11										10.50	8.25	8.67
12										10.31	8.18	8.78
13										10.17	8.16	8.82
										10.01	8.20	8.87
14										9.91	8.38	9.07
15										2.31	0.,0	3.01
40									14.80	9.77	8.25	9.41
16									14.65	9.65	8.14	9.63
17									14.20	9.60	8.22	9.90
18									13.73	9.53	8.35	10.22
19								15.28			8.37	10.40
20								14.97	13.46	9.51	0.57	10.40
21								16.07	13.29	9.54	8.29	10.24
22								16.47	13.23	9.43	8.24	10.16
23								15.90	13.24	9.30	8.23	10.28
24								15.11	13.09	9.29	8.24	10.24
25								14.43	12.94	9.19	8.27	10.13
								14.19	12.97	9.07	8.30	10.01
26								14.19	12.84	8.94	8.32	9.93
27								15.23	12.72	8.82	8.33	9.97
28											8.35	9.90
29								16.18	12.53	8.66		9.90
30								16.89	12.56	8.54	8.31	
31										8.41	8.35	
MEAN										10.11		9.34
MAX										12.36		10.40
MIN										8.41		8.43
LITIA												

06329640 MISSOURI RIVER STAGE GAGE NO. 5A AT BUFORD, ND

LOCATION.--Lat 47°59'06", long 103°59'05", in SE1/4 sec.15, T.152 N., R.104 W., Williams County, Hydrologic Unit 10110101, on left bank 1.5 mi southwest of Buford, and at mile 1,580.7.

DRAINAGE AREA. -- 164,000 mi², approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- April 1960 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,850.00 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 8, 1962, at datum 50.00 ft lower.

REMARKS .-- Stage regulated by upstream reservoirs.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 19.37 ft, Mar. 23, 1978; minimum daily recorded, 2.63 ft, Aug. 15, 16, 1966.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.61	6.34						5.79	13.31	8.85	5.81	5.65
2	6.58	6.34						5.58	13.23	8.58	5.78	5.62
3	6.58							6.55	13.16	8.49	5.88	
4	6.52							6.53	12.95	8.22	5.86	
5	6.49							6.73	12.02	8.05	5.86	
6	6.47							6.95	11.15	7.83	5.89	
7	6.44							6.86	10.82	7.67	5.82	
8	6.32							6.69	11.86	7.62	5.78	5.49
9	6.35							6.72	13.35	7.61	5.76	5.57
10	6.23							6.96	13.74	7.51	5.79	5.59
11	6.18		111					10.05	13.23	7.42	5.80	5.48
12	6.17							11.26	12.68	7.31	5.76	5.54
13	6.13						5.64	10.38	12.14	7.14	5.81	5.54
14	6.19						6.69	9.65	11.59	7.04	5.89	5.61
15	6.27						6.68	9.33	11.39	7.01	6.02	5.78
16	6.33			222			6.64	9.59	11.17	6.84	5.96	6.07
17	6.40						6.56	10.42	11.06	6.72	5.91	6.25
18	6.56						5.53	11.49	10.62	6.73	5.91	6.59
19	6.52						5.60	11.65	10.11	6.69	6.02	7.04
20	6.36						5.64	11.33	9.92	6.66	6.02	7.19
21	6.21						6.82	12.17	9.75	6.63	5.96	6.76
22	6.21						7.02	12.69	9.76	6.48	5.97	6.44
23	6.32						7.04	12.34	9.72	6.33	5.98	6.41
24	6.25						7.32	11.76	9.48	6.37	5.97	6.35
25	6.09						7.40	11.02	9.27	6.34	5.96	6.15
26	6.36						7.33	10.57	9.29	6.26	5.93	6.02
27	6.50						7.10	10.77	9.16	6.19	5.71	5.96
28	6.47						5.89	11.49	9.09	6.11	5.70	6.00
29	6.37						6.87	12.32	8.90	6.03	5.84	5.93
30	6.43						6.93	13.02	9.00	5.99	5.89	5.88
31	6.34							13.28		5.91	5.79	
MEAN	6.36							9.80	11.10	7.05	5.87	
MAX	6.61							13.28	13.74	8.85	6.02	
MIN	6.09							6.53	8.90	5.91	5.70	

06329650 MISSOURI RIVER STAGE GAGE NO. 6 NEAR BUFORD, ND

LOCATION.--Lat 47°57'18", long 103°54'36", in SE1/4 sec.30, T.152 N., R.103 W., Williams County, Hydrologic Unit 10110101, on right bank 5 mi southeast of Buford, and at mile 1,576.0.

DRAINAGE AREA. -- 164,000 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- December 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,840.00 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 17, 1962, at datum 40.00 ft lower.

REMARKS .-- Stage regulated by upstream reservoirs.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 24.18 ft, June 10, 1986; minimum daily recorded, 8.23 ft, Aug. 15, 22, 1963.

					ME	SAN VALUE	5					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13.95	13.58						13.89	20.49	16.08	13.01	12.58
2	13.90	13.61						13.71	20.44	15.82	12.97	12.54
3	13.88	13.62						13.64	20.34	15.73	13.02	12.61
4	13.87							13.59	20.17	15.50	12.98	12.71
5	13.83							13.75	19.28	15.35	12.96	12.74
6	13.81							13.99	18.38	15.17	12.97	12.52
7	13.77							13.95	17.97	15.01	12.90	12.36
8	13.69							13.81	18.86	14.94	12.83	12.41
9	13.68							13.78	20.45	14.93	12.81	12.49
10	13.56							13.94	20.94	14.84	12.85	12.55
11	13.50							16.79	20.53	14.75	12.88	12.47
12	13.48						13.73	18.33	19.95	14.63	12.83	12.48
13	13.46						13.70	17.45	19.40	14.47	12.87	12.48
14	13.46						13.73	16.66	18.85	14.35	12.94	12.52
15	13.54						13.72	16.29	18.61	14.32	13.06	12.66
							47.60		40 76	44 47	47 04	12.91
16	13.61						13.68	16.41	18.36	14.17	13.01	13.10
17	13.67						13.63	17.18	18.23	14.04		13.39
18	13.84						13.59	18.28	17.84	14.05	12.92	13.79
19	13.85						13.64	18.59	17.32	14.01	13.03	13.97
20	13.71						13.70	18.28	17.06	13.95	15.05	15.97
21	13.54						13.83	18.99	16.89	13.91	12.97	13.61
22	13.52						14.02	19.65	16.84	13.77	12.95	13.29
23	13.60						14.04	19.39	16.83	13.64	12.94	13.24
24	13.56						14.29	18.81	16.61	13.62	12.93	13.23
25	13.40						14.39	18.09	16.41	13.61	12.91	13.05
26	13.68						14.34	17.59	16.40	13.52	12.89	12.95
27	13.78						14.13	17.70	16.32	13.43	12.68	12.89
28	13.78						13.92	18.41	16.25	13.34	12.63	12.93
29	13.66						13.88	19.28	16.09	13.26	12.72	12.86
30	13.67						13.99	20.02	16.18	13.19	12.77	12.82
31	13.62							20.38		13.12	12.71	
MEAN	13.67							16.79	18.28	14.34	12.90	12.87
MAX	13.95							20.38	20.94	16.08	13.06	13.97
MIN	13.40							13.59	16.09	13.12	12.63	12.36
LITIN	17.40	100										

06329660 MISSOURI RIVER STAGE GAGE NO. 7 NEAR TRENTON, ND

LOCATION.--Lat 47°59'21", long 103°47'57", in NE1/4 sec.13, T.152 N., R.103 W., McKenzie County, Hydrologic Unit 10110101, on right bank 5 mi south of Trenton, and at mile 1,566.7.

DRAINAGE AREA. -- 164,000 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- March 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,840.00 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 7, 1962, at site 0.8 mi upstream. Prior to May 29, 1963, at datum 40.00 ft lower.

REMARKS .-- Stage regulated by upstream reservoirs.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 21.56 ft, July 10, 1975; minimum daily recorded, 4.34 ft, Aug. 19, 22, 1963.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10.25							10.25	16.65	12.35		9.13
2	10.17							10.09	16.64	12.08		9.08
3	10.18							10.00	16.50	11.99		9.16
4	10.18							9.94	16.32	11.79		9.24
5	10.13							10.06	15.49	11.62		9.29
6	10.12							10.30	14.63	11.47		9.10
7	10.10							10.28	14.18	11.29		8.94
8	10.11							10.18	14.91	11.22		8.99
9	10.12							10.11	16.34	11.21		9.03
10								10.34	16.96	11.13		9.07
11								12.88	16.73	11.02	9.36	9.03
12								14.51	16.17	10.96	9.32	9.04
13							10.11	13.76	15.64	10.90	9.35	9.04
							10.08				9.43	9.04
14							10.10	13.06	15.10	10.71		
15							10.08	12.63	14.83	10.68	9.52	9.17
16							10.07	12.62	14.57	10.55	9.52	9.41
17							10.02	13.28	14.45	10.40	9.46	9.59
18	10.17						9.96	14.37	14.12	10.41	9.40	9.85
19	10.18						10.02	14.77	13.62	10.39	9.51	10.20
20							10.07	14.52	13.34	10.32	9.51	10.37
21							10.17	15.10	13.19	10.29	9.50	10.09
22							10.36	15.88	13.11	10.17	9.47	9.79
23							10.40	15.55	13.13	10.05	9.45	9.69
24							10.62	14.45	12.94	10.03	9.43	9.70
25							10.72	14.47	12.71	10.02	9.41	9.50
26	10.15						10.69	13.78	12.66	9.94	9.40	9.41
27	10.16						10.49	13.90	12.61	9.85	9.22	9.31
28	10.14						10.28	14.59	12.54	9.78	9.15	9.36
29							10.21	15.38	12.36	9.70	9.24	9.31
30							10.34	16.11	12.45	9.63	9.31	9.26
31								16.50	12.47		9.25	
) (7.77					10.90		22,2	7.27	
MEAN								13.02	14.50			9.37
MAX								16.50	16.96			10.37
MIN								9.94	12.36			8.94

06330000 MISSOURI RIVER NEAR WILLISTON, ND

LOCATION.--Lat 48°06'45", long 103°43'04", in SE1/4 sec.31, T.154 N., R.101 W., Williams County, Hydrologic Unit 10110101, at city waterplant on left bank, 5 mi southwest of Williston, 29.3 mi downstream from Yellowstone River, and at mile 1,552.7.

DRAINAGE AREA. -- 164,500 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- April 1966 to current year. Operated as a stage-discharge station October 1897 to July 1965.

GAGE.--Water-stage recorder. Datum of gage is 1,830.20 ft above National Geodetic Vertical Datum of 1929. See WSP 1917 for history of changes prior to April 1966.

REMARKS .-- Stage regulated by upstream reservoirs and backwater from Lake Sakakawea.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 26.46 ft, Mar. 26, 1978; minimum daily recorded, 7.80 ft, Nov. 2, 1966.

						Diti.	-					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14.35	14.23	14.97	17.29	18.44	19.28	14.37	14.18	18.69	15.73	13.45	13.08
2	14.38	14.21	15.14	17.03	18.40	19.31	14.35	14.05	18.76	15.57	13.38	13.01
3	14.35	14.19	15.17	16.64	18.18	19.20	14.34	13.99	18.75	15.41	13.36	13.01
4	14.24	14.15	15.25	16.16	17.93	19.11	14.25	14.00	18.72	15.33	13.40	13.09
5	14.23	14.21	15.43	15.81	17.75	19.12	14.18	14.12	18.36	15.17	13.36	13.15
6	14.29	14.22	15.40	15.92		19.18	14.15	14.35		15.02	13.34	13.09
7	14.31	14.19	15.39	16.23		19.27	14.10	14.29		14.90	13.30	12.89
8	14.20	14.24	15.34	16.17		19.30	14.00	14.15		14.84	13.29	12.82
9	14.17	14.28	15.33	16.24		19.24	13.98	14.09		14.81	13.24	12.91
10	14.14	14.25	15.27	16.47		19.07	14.02	14.14		14.78	13.25	13.04
11	14.09	14.25	15.23	16.73		18.90	14.04	15.31		14.77	13.28	12.99
12	14.08	14.30	15.27	16.94		18.73	14.00	17.03		14.67	13.27	12.91
13	14.01	14.32	15.30	17.03		18.64	14.00	16.89	18.34	14.51	13.24	12.93
14	14.06	14.29		17.14		18.51	14.01	16.37	17.98	14.45	13.33	12.94
15	14.16	14.18		17.25		18.27	14.06	15.99	17.66	14.36	13.41	13.04
16	14.16	14.16		17.24		18.06	13.99	15.94	17.47	14.31	13.44	13.19
17	14.17	14.22		17.47	18.44	17.95	13.98	16.27	17.30	14.18	13.36	13.34
18	14.26	14.23		17.82	18.55	17.86	13.92	16.80	17.09	14.15	13.36	13.53
19	14.31	14.18		18.08	18.66	17.85	13.95	17.33	16.68	14.15	13.43	13.83
20	14.24	14.20	17.12	18.26	18.77	17.89	14.06	17.32	16.45	14.12	13.47	14.03
21	14.15	14.21	17.20	18.31	18.84	17.92	14.08	17.46	16.29	14.09	13.36	13.91
22	14.10	14.19	17.31	18.29	18.84	18.12	14.26	18.00	16.20	14.03	13.32	13.62
23	14.16	14.15	17.54	18.24	18.88	18.22	14.32	18.14	16.17	13.89	13.34	13.49
24	14.22	14.13	17.36	18.21	18.95	17.55	14.36	17.88	16.03	13.86	13.34	13.50
25	14.06	14.16	17.21	18.23	18.90	16.14	14.50	17.42	15.90	13.87	13.33	13.44
26	14.10	14.20	17.13	18.25	18.70	15.12	14.52	16.92	15.90	13.80	13.29	13.31
27	14.28	14.23	17.12	18.24	18.70	14.93	14.43	16.75	15.89	13.71	13.21	13.30
28	14.32	14.21	17.16	18.20	18.95	14.66	14.28	16.95	15.80	13.64	13.07	13.31
29	14.26	14.34	17.33	18.21	19.15	14.58	14.20	17.48	15.76	13.57	13.14	13.27
30	14.28	14.59	17.43	18.29		14.47	14.20	18.04	15.74	13.52	13.24	13.20
31	14.26		17.45	18.36		14.36		18.47		13.48	13.18	
MEAN	14.21	14.23		17.38		17.77	14.16	16.13		14.41	13.32	13.24
MAX	14.38	14.59		18.36		19.31	14.52	18.47		15.73	13.47	14.03
MIN	14.01	14.13		15.81		14.36	13.92	13.99		13.48	13.07	12.82

06330110 MISSOURI RIVER STAGE GAGE NO. 9 AT WILLISTON, ND

LOCATION.--Lat 48°08'13", long 103°36'16", in NE1/4NE1/4 sec.25, T.154 N., R.101 W., Williams County, Hydrologic Unit 10110101, on left bank levee at southeast edge of Williston 0.5 mi upstream from Little Muddy Creek, and at mile 1,546.2.

DRAINAGE AREA. -- 164,500 mi2, approximately.

PERIOD OF RECORD .-- April 1959 to current year (seasonal).

GAGE.--Water-stage recorder. Datum of gage is 1,820.00 ft above National Geodetic Vertical Datum of 1929. Prior to May 13, 1969, at site 900 ft downstream. At datum 20.00 ft lower prior to Apr. 7, 1962.

REMARKS .-- Stage regulated by upstream reservoirs and backwater from Lake Sakakawea.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 34.22 ft, July 25, 28, 1975; minimum daily recorded, 5.44 ft, Aug. 20, 1961, present datum.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22.45	22.43	22.80	25.17			22.44	21.89	25.25	23.15	21.49	
2	22.52	22.27	23.01	25.08			22.40	21.80	25.33	23.08	21.38	
3	22.48	22.24	23.17				22.37	21.85	25.35	22.89	21.36	
4	22.30	22.17	23.26				22.31	21.91	25.44	22.83	21.40	
5	22.23	22.24	23.42				22.37	22.26	25.41	22.74	21.39	
6	22.30	22.30	23.46				22.24	22.44	24.93	22.54	21.37	
7	22.43	22.21	23.42				22.17	22.20	24.37	22.45		
8	22.21	22.20	23.27				21.96	21.88	24.40	22.39		
9	22.11	22.40	23.25				21.96	21.94	24.81	22.36		
10	22.23	22.39	23.18				22.05	21.99	25.30	22.36		
11	22.20	22.28	22.99				22.14	22.64	25.43	22.55		
12	22.18	22.29	23.04				22.09	23.94	25.26	22.38		
13	22.05	22.35	23.37				21.99	24.16	25.06	22.20		
14	22.19	22.45	23.36				22.01	23.78	24.81	22.13		
15	22.40	22.21	23.13				22.13	23.33	24.58	22.06		
16	22.20	22.18	23.55				22.01	23.45	24.52	22.01	21.35	
17	22.21	22.24	24.02				21.90	23.87	24.32	21.89	21.39	
18	22.24	22.39	24.05				21.91	23.91	24.12	21.90	21.38	
19	22.25	22.32	24.14				21.92	24.30	23.86	21.87	21.39	21.52
20	22.24	22.44	24.30				22.04	24.36	23.77	21.87	21.40	21.77
21	22.37	22.45	24.41				22.02	24.40	23.51	21.83		21.80
22	22.15	22.34	24.50				22.18	24.73	23.53	21.85		21.56
23	22.21	22.27	24.61				22.24	24.94	23.47	21.59		21.49
24	22.41	22.25	24.64				22.08	24.91	23.25	21.70		21.49
25	22.23	22.28	24.52				22.23	24.56	23.19	21.71		21.49
26	22.05	22.28	24.47				22.30	24.15	23.66	21.66		21.44
27	22.24	22.31	24.45				22.27	24.00	23.32	21.60		21.47
28	22.35	22.32	24.46				22.23	24.06	23.15	21.56		21.49
29	22.32	22.42	24.56				22.17	24.50	23.46	21.48		21.45
30	22.40	22.77	24.68			22.42	21.98	24.96	23.26	21.50		21.44
31	22.40		24.77			22.39		25.13		21.46		
MEAN	22.28	22.32	23.81				22.14	23.49	24.34	22.12		
MAX	22.52	22.77	24.77				22.44	25.13	25.44	23.15		
MIN	22.05	22.17	22.80				21.90	21.80	23.15	21.46		
S 8,777		2.5.0.0	100000									

06331000 LITTLE MUDDY RIVER BELOW COW CREEK NEAR WILLISTON, ND

LOCATION.--Lat 48°17'04", long 103°34'21", in NE 1/4NW 1/4 sec.5, T.155 N., R.100 W., Williams County, Hydrologic Unit 10110102, on left bank 37 ft downstream from centerline of highway, 1 mi downstream from Cow Creek, 4 mi upstream from Camp Creek, 10 mi northeast of Williston, and 13 mi upstream from mouth.

DRAINAGE AREA. -- 875 mi2, approximately, of which about 100 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1954 to current year (seasonal records only since 1984).

GAGE .-- Water-stage recorder. Datum of gage is 1,863.18 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Feb. 1-18, 22-24, Mar. 11-15, and May 16-18. Records good except those for periods of estimated daily discharges, which are poor. Some small diversions for irrigation. Some regulation by Lake Zahl, Fish and Wildlife Service reservoir 22 mi upstream and Blacktail Dam about 15 mi upstream.

AVERAGE DISCHARGE.--29 years (water years 1955-1983), 38.8 ft³/s, 28,110 acre-ft/yr; median of yearly mean discharges, 31 ft³/s, 22,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,180 ft³/s, Apr. 18, 1979, gage height, 12.77 ft; maximum gage height, 13.57 ft, Mar. 27, 1960; minimum discharge, 0.20 ft³/s, Nov. 27, 1960, Feb. 5, 1963, and June 4, 1968.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 30 ft3/s, Mar.28, gage height, 5.35 ft; maximum gage height, 5.65 ft, Mar. 12, backwater from ice; minimum daily discharge, 1.7 ft2/s, July 26, but may have been less during period of nonoperation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5					4.0 3.7 3.5 3.4 3.2	11 13 12 12 13	15 15 15 15	9.2 12 12 12 12	5.4 5.2 5.0 4.6 4.1	4.9 4.8 4.4 4.1 4.1	2.1 2.2 2.2 2.4 2.4	2.4 2.4 2.4 2.4 2.6
6 7 8 9					3.1 3.0 2.8 2.7 2.6	14 15 16 18 20	14 15 15 12 12	11 12 12 11 10	3.6 3.5 3.2 2.7 2.7	4.0 3.6 3.2 2.9 2.7	2.4 2.3 2.2 2.2 2.4	2.7 2.4 2.5 2.5 2.6
11 12 13 14 15					2.6 2.7 2.8 3.0 3.2	18 14 11 10 9•5	13 12 11 10 10	11 11 10 11 11	2.6 2.4 2.3 5.8 6.8	2.7 3.0 3.0 2.5 2.2	2.4 2.5 2.7 3.3 3.4	2.5 2.7 2.9 2.9
16 17 18 19 20					3.6 4.2 4.8 5.3 4.8	10 10 11 12 13	9.1 8.5 8.8 8.8	8.5 7.5 8.0 8.1 8.2	5.8 5.0 4.2 4.1 4.1	1.9 1.8 2.3 2.8 2.8	2.9 2.7 2.7 2.9 2.9	2.9 3.2 4.5 5.7 5.7
21 22 23 24 25					5.0 4.8 4.5 4.2 4.7	15 17 19 21 20	8.6 8.4 8.6 8.9	8.2 8.0 7.7 7.1 6.5	4.5 4.0 3.3 2.9 2.6	2.5 2.4 2.2 2.0 1.8	2.8 2.7 2.4 2.3 2.2	5.6 5.0 4.5 4.5
26 27 28 29 30 31					5.4 6.6 7.8 8.2	18 20 19 17 15	8.3 8.2 8.4 8.2 8.5	6.1 6.6 6.7 6.0 5.7	2.5 2.3 2.2 2.3 3.5	1.7 2.0 2.1 2.2 2.2 2.0	2.2 2.4 2.4 2.4 2.4	4.5 4.3 4.1 4.1 4.3
TOTAL MEAN MAX MIN AC-FT					120.2 4.14 8.2 2.6 238	456.5 14.7 21 9.5 905	327.6 10.9 15 8.2 650	282.2 9.10 12 5.7 560	113.2 3.77 6.8 2.2 225	86.8 2.80 4.9 1.7 172	77.8 2.51 3.4 2.1 154	106.2 3.54 5.7 2.4 211

191

LITTLE MUDDY RIVER BASIN

06331000 LITTLE MUDDY RIVER BELOW COW CREEK NEAR WILLISTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF	W, AN- OUS S)	SPE CIF CON DUC ANC (US/	IC T- E CM)	PH (STA) ARI UNIT	ND- D S)	TEMP ATU AI (DEG	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L 03)	CALC DIS SOL (MG AS (009	VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIO DIS- SOLVO (MG, AS)	ED /L NA)	SODIUM PERCENT (00932)
FEB 18		1240	4	.6	2	420				6.0		1.0									
MAR 01		1330	11			000	7	.85		3.5		1.0		440	82		57		310		60
17		1125	11			890	- 1			2.0		1.5		440	02		31		510		
APR 15		0820	10		1	900				5.0		8.5									-
MAY 17		1210	7	.3	2	240			2	7.5	1	6.0									
JUN 14		1215	7	.1	2	300	8	.32	1	6.0	1	6.0		430	51		73		420		67
JUL 13		1250	3	.1	2	420			2	7.5	2	0.5									
AUG 11		1350	2	.4	2	250			2	9.0	1	8.5									
DATE	:	SODIUM AD- SORP- TION RATIO DO931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALK LINI LA (MG AS CAC	TY B /L 03)	SULF. DIS- SOL' (MG. AS SO	VED /L	CHL RID DIS SOL (MG AS	E, VED /L CL)		E, S- VED /L F)	SILION SOLION (MG AS SIO) (009)	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLI SUM CONS' TUEN' DI SOL (MG (703)	OF TI- TS, S- VED /L)	SOLII SOLI (TOI PEI DA' (7030	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 01		7	9	.4	590		540		9	.6	0	.30	16		1	830	1	380	55	.8	2.49
JUN 14		9	11		630		690		12		0	.40	11		1	640	1	670	31	.3	2.23
	DATE	ARS	SENIC DIS- DLVED G/L S AS)	BO D SO (U AS	RON, IS- LVED G/L B) O2O)	SO (U AS	ON, IS- LVED G/L FE) O46)	SO (U AS	AD, IS- LVED G/L PB) O49)	LIT D SO (U AS	HIUM IS- LVED G/L LI) 130)	MA NE D SO (U	NGA- SE, IS- LVED G/L MN) 056)	SO: (U	CURY IS- LVED G/L HG) B90)	MO DE D SO (U	LYB- NUM, IS- LVED G/L MO) 060)	SE NI D SO (U	LE- UM, IS- LVED G/L SE) 145)	ST D SO (U AS	RON- IUM, IIS- LVED G/L SR) 080)
MAR O1 JUN			2		120		10		<1		69		10		0.1		2		1		780
			6		240		30		<1		90		20		0.2		4		<1		830

Date

O6332515 BEAR DEN CREEK NEAR MANDAREE, ND (Hydrologic bench-mark station) (National stream quality accounting network station and radiochemical program station)

LOCATION.--Lat 47°47'14", long 102°46'05", in NW1/4 sec.30, T.150 N., R.94 W., McKenzie County, Hydrologic Unit 10110101, on right bank 0.5 mi upstream from county highway culvert, and 5.5 mi northwest of Mandaree.

DRAINAGE AREA .-- 74 mi2.

Time

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1966 to current year.

Discharge (ft3/s)

GAGE .-- Water-stage recorder. Datum of gage is 1,947.58 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Estimated daily discharges: Dec. 3 to Mar. 20, May 18 to June 2, and Sept. 13-30. Records poor.

AVERAGE DISCHARGE.--22 years, 7.73 ft3/s, 5,600 acre-ft/yr; median of yearly mean discharges, 7.9 ft3/s, 5,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,840 ft3/s, Mar. 13, 1972, gage height, 9.02 ft; maximum gage height, 10.03 ft, Apr. 6, 1969; no flow at times most years.

Date

Discharge (ft³/s)

Time

Gage height (ft)

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Gage height (ft)

Feb. 13	113 low for m		ice jam		*4.45	Ma	r. 22	0045		*12		3.86
NO 11				FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.22	.15	.15	.00	.00	.05	1.3	.25	.22	.43	.13	.09
2	.22	.14	.15	.00	.00	.07	1.4	.98	.20	.18	.15	.09
3	.22	.14	.14	.00	.00	.12	1.3	.48	.13	.21	.14	.09
4	.21	.15	.14	.00	.00	.18	1.4	.92	.08	.27	.12	.07
5	.20	.15	.13	.00	.00	.25	1.4	.61	.05	.22	.12	.09
6	.19	.15	.13	.00	.00	.20	1.4	.51	.05	.15	.08	.10
7	.18	.15	.13	.00	.00	.15	1.2	.47	.04	.16	.06	.09
8	.18	.15	.12	.00	.00	.12	.95	1.1	.04	.12	.04	.09
9	.17	.15	.12	.00	.00	.10	.78	.88	.04	.09	.05	.10
10	.17	.18	.12	.00	.00	.12	.66	.81	.04	.08	.05	.09
11	.17	.19	.12	.00	.00	.10	.61	.81	.04	.07	.05	.07
12	.18	.19	.11	.00	.00	.08	.48	.68	.07	.08	.05	.10
13	.19	.20	.10	.00	.00	.06	.39	.50	.08	.08	.06	.10
14	.18	.21	.09	.00	.00	.05	.28	.41	.80	.06	.09	.09
15	.18	.24	.08	.00	.00	.04	.27	.34	.31	.05	.08	.09
16	.18	.22	.07	.00	.00	.05	.25	.29	.28	.06	.08	.08
17	.19	.21	.06	.00	.00	.08	.22	.25	.24	.06	.07	.08
18	.19	.21	.05	.00	.00	.15	.20	.22	.21	.09	.07	.25
19	.19	.21	.05	.00	.00	.40	.24	.20		.10	.07	.15
20	.18	.20	.05	.00	.00	1.0	.23	.22	.19	.09	.07	.12
21	.17	.19	.04	.00	.00	4.0	.27	.20	.22	.09	.06	.10
22	.16	.19	.03	.00	.00	5.9	.25	.18	.17	.07	.06	.09
23	.13	.19	.03	.00	.00	6.1	.24	.15		.07	.06	.08
24	.14	.19	.02	.00	.00	5.7	.17	.12		.08	.05	.07
25	.13	.19	.02	.00	.00	3.2	.17	.15		.07	.05	.08
26	.16	.18	.02	.00	.00	2.7	.18	.50	.21	.08	.05	.08
27	.15	.18	.01	.00	.01	2.7	.21	.60		.08	.07	.09
28	.15	.17	.01	.00	.02	1.6	.31	.45	.17	.10	.07	.12
29	.16	.15	.01	.00	.03	1.4	.29	.35		.13	.07	.14
	.16	.15	.00	.00	.05	1.2	.23	.28		.09	.07	.12
30 31	.16		.00	.00		1.2		.24		.09	.07	
TOTAL	5.46	5.37	2.30	0.00	0.06	39.07	17.28	14.15	6.08	3.60	2.31	3.00
MEAN	.18	.18	.074	.00	.002	1.26	.58	.46		.12	.075	.10
			.15	.00	.002		1.4	1.1	1.2	.43	.15	.25
MAX	.22	.24		.00	.00	.04	.17	.12		.05	.04	.07
MIN	.13	.14	.00				34	28		7.1	4.6	6.0
AC-FT	11	11	4.6	.0	.1	77	24	20	12		4.0	0.0

CAL YR 1987 TOTAL 1474.96 MEAN 4.04 MAX 275 MIN .00 AC-FT 2930 WTR YR 1988 TOTAL 98.68 MEAN .27 MAX 6.1 MIN .00 AC-FT 196

BEAR DEN CREEK BASIN

O6332515 BEAR DEN CREEK NEAR MANDAREE, ND--CONTINUED (Hydrologic bench-mark station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
OCT 20	1040	0.17	2880	8.50	1.0	2.5	22	12.5	99	кво	к60	170
NOV 24	1230	0.20	2930	8.43	5.0	1.5	21	12.5	95			190
MAR 09	1010	0.07	2650	8.31	7.5	0.5	36	12.3	94	К50	к60	200
22 APR	1120	4.8	2120	8.42	5.5	1.0		12.5	96			
20 JUN	0930	0.23	2600	8.39	2.0	6.5	16	11.2	99	K140	K55	200
02 JUL	0940	0.21	3100	8.52	24.5	20.5	28	8.4	102			150
11 SEP	1045	0.07	3180	9.07	21.5	22.0		8.0	100			
06	1015	0.11	3320	8.99	21.5	15.5	43	9.0	99	60	50	160
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (OO419)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	CAR- BONATE WATER WH IT FIELD MG/L AS CO3 (00447)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT	26	25	670	89	23	5.6	820	903	49	690	2.8	0.40
20 NOV								7.0				
24 MAR	35	26	570	86	18	5.1				740	3.3	0.40
09 APR	37	25	530	85	17	11	558	608	36	830	6.6	0.40
20 JUN	37	25	610	87	19	5.2	710	793	36	700	6.3	0.40
02 JUL	18	26	710	91	25	6.6	400	415		850	180	0.50
11 SEP			-7				1000	805	204			
06	13	30	830	92	29	6.9	1030		144	920	2.9	0.40
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)
OCT												
20 NOV	8.1	1940	1910	2.64	0.89	<0.010	<0.100	0.010	<0.010		0.60	0.030
24 MAR	13	2030	1890	2.76	1.10	<0.010	<0.100	0.020	0.010	0.01		0.020
09 APR	13	1870	1780	2.54	0.35	0.040	0.140	0.080	0.090	0.12	1.4	0.110
20 JUN	8.9	1780	1810	2.42	1.11	<0.010	<0.100	0.040	0.030	0.04	0.80	0.060
02 SEP	5.4	2160	2030	2.94	1.22	<0.010	<0.100	0.070	0.050	0.06	1.0	0.060
06	2.8	2340	2410	3.18	0.69	<0.010	<0.100	<0.010	0.030	0.04	0.80	0.030

BEAR DEN CREEK BASIN

06332515 BEAR DEN CREEK NEAR MANDAREE, ND--CONTINUED (Hydrologic bench-mark station)

DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (O1106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT											
20 NOV	<0.010	<0.010	10	1	<100	<10	<1	3	<1	2	50
24	<0.010	0.010									
MAR 09	0.050	0.030	20	1	<100	<10	<1	<1	1	3	100
APR 20	0.010	<0.010	<10	1	<100	<10	<1	<1	<1	3	40
JUN 02	0.020	<0.010									
SEP 06	0.020	0.010	80	3	<100	<10	1	<1	<1	2	20
	0.020	0.010	MANGA-	,		110	SELE-		STRON-	VANA-	
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (O1060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT											
20 MAR	<5	80	30	0.1	1	2	<1	<1.0	370	3	30
09 APR	<5	60	200	<0.1	2	7	<1	<1.0	500	4	<10
20	<5	<10	30	<0.1	<1	2	<1	<1.0	400	4	· <10
SEP 06	<5	90	<10	<0.1	3	4	<1	<1.0	200	5	<10
DATE	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT											
20 NOV									60	0.03	98
24 MAR									104	0.06	89
09	1.4	5 3	13	7.6		6.0	0.07	1.7	76	0.01	94
APR	1.4	5.3	1,5	7.6	8.0	6.9	0.07	1.7			
20 JUN									97	0.06	94
O2 SEP									61	0.03	98
06									62	0.02	97

BEAR DEN CREEK BASIN

195

O6332515 BEAR DEN CREEK NEAR MANDAREE, ND--CONTINUED (Hydrologic bench-mark station)

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT) (72015)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT								
20	1040			2.5	2880	8.50	12.5	99
20	1042		0.0					
20	1044		0.35	2.5	2880	8.50	12.5	98
20	1045			2.5	2880	8.50	12.5	99
20	1046		0.32	2.5	2880	8.50	12.5	98
20	1048		0.30	2.5	2880	8.50	12.5	98
20	1050		0.0					
MAR								
09	1010			0.5	2650	8.31	12.3	94
09	1011		0.0					
09	1013		0.19	0.5	2650	8.31	12.3	93
09	1015		0.34	0.5	2650	8.31	12.3	93
09	1017		0.16	0.5	2650	8.31	12.3	93
09	1018		0.0					
APR								
20	0930	0.60	0.0	6.5	2600	8.39	11.2	99
20	0932	0.90	0.37	6.5	2600	8.39	11.2	98
20	0934	1.20	0.39	6.5	2600	8.39	11.2	98
20	0936	1.50	0.38	6.5		8.39	11.2	98
20	0938	1.80	0.32	6.5	2600	8.39	11.2	98
20	0940	2.00	0.0					
SEP								
06	1015			15.5	3320	8.99	9.0	99
06	1020	0.30	0.0					
06	1022	0.50	0.31	15.5	3320	8.99	9.0	98
06	1024	0.70	0.39	15.5	3320	8.99	9.0	98
06	1026	0.90	0.42	15.5	3320	8.99	9.0	98
06	1028	1.10	0.40	15.5	3320	8.99	9.0	98
06	1030	1.30	0.0					

06335500 LITTLE MISSOURI RIVER AT MARMARTH, ND

LOCATION.--Lat 46°17'44", long 103°55'06", in SW1/4 sec.30, T.133 N., R.105 W., Slope County, Hydrologic Unit 10110203, on left bank 90 ft downstream from bridge on U.S. Highway 12 in Marmarth, and 1.5 mi downstream from Little Beaver Creek.

DRAINAGE AREA .-- 4,640 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1938 to current year.

REVISED RECORDS (WATER YEARS).--WSP 896: 1938-39. WSP 1086: 1943-44. WSP 1279: 1943(M), 1945-46, 1948. WSP 1439: 1950 (calendar year figures).

GAGE.--Water-stage recorder. Datum of gage is 2,686.32 ft above National Geodetic Vertical Datum of 1929. Prior to June 23, 1950, various nonrecording gages on former highway bridge at present site and datum. June 23, 1950, to Sept. 2, 1957, nonrecording gage at site 90 ft upstream at present datum.

REMARKS.--Estimated daily discharges: Oct. 1 to Mar. 30. Records poor. Small diversions for irrigation upstream from station.

AVERAGE DISCHARGE.--50 years, 323 ft³/s, 234,000 acre-ft/yr; median of yearly mean discharges, 260 ft³/s, 188,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 45,000 ft³/s, Mar. 23, 1947, gage height, 21.7 ft; maximum gage height, 23.4 ft, Mar. 31, 1952, backwater from ice; no flow for part of most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--According to local residents, the greatest known flood prior to 1953 occurred in June 1907 (stage unknown). Other major floods occurred in March 1913, May 1929, and March 1920 and reached stages of about 21.5 ft, 20.2 ft, and 19.7 ft, respectively. These stages are not comparable to stages during period of record, owing to construction of levees.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 1		ice jam	*a3.99	July 6		*b500	unknown

No flow Jan. 3 to Feb. 20, July 30 to Aug. 7, 18 to Sept. 10.

a - Observed
b - About

		DISCHARGE,	, IN C	UBIC FEET		AN VALUES		BER 1987	TO SEPTEM	MBER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 22 21 20 19	20 20 21 22 21	22 12 13 14 11	1.0 .50 .00 .00	.00 .00 .00	175 130 100 70 50	107 104 91 83 76	25 25 27 36 36	32 35 22 14 8.0	.04 .02 .02 .05	.00 .00 .00	.00 .00 .00
6 7 8 9	18 19 20 21 21	21 21 20 20 21	15 9.5 22 31 33	.00 .00 .00	.00 .00 .00	60 50 35 50 70	73 68 62 59 56	32 30 46 78 82	4.1 1.9 1.1 .63 .47	115 318 89 53 64	.00 .00 .62 2.0 .87	.00 .00 .00
11 12 13 14 15	22 23 24 24 23	20 20 20 20 19	23 16 12 10 9.5	.00 .00 .00	.00 .00 .00	50 40 30 28 28	53 51 46 43 40	57 45 36 25 19	.31 .22 1.4 53 22	38 16 9.5 5.5 2.6	.27 .19 .60 .26	.02 .33 .83 .28 3.5
16 17 18 19 20	24 24 24 24 22	20 20 19 16 19	8.5 8.0 7.5 7.5 7.0	.00 .00 .00	.00 .00 .00 .00	32 32 34 36 40	39 38 37 36 35	19 15 13 14 13	9.6 8.4 5.7 3.1 1.8	1.5 .90 .78 .52 .32	.04 .02 .01 .00	.94 .17 .24 .39 .27
21 22 23 24 25	22 23 22 23 23	16 18 19 18 13	6.5 6.0 6.0 5.0	.00 .00 .00	20 35 75 40 60	55 50 45 55 75	33 31 32 36 31	9.7 7.9 7.6 6.7 8.2	.81 .30 .21 .10	.24 .13 .07 .04	.00 .00 .00	.29 .24 .18 .13
26 27 28 29 30 31	23 23 20 20 21 20	12 14 12 14 20	3.5 3.0 2.5 2.5 2.0 1.5	.00 .00 .00 .00	70 75 125 150	85 90 80 75 125 126	30 30 29 28 29	6.3 5.5 5.9 5.1 8.5 28	.03 .03 .03 .04 .10	.01 .02 .02 .01 .00	.00 .00 .00 .00	.09 .08 .23 .19 .13
TOTAL MEAN MAX MIN AC-FT	678 21.9 24 18 1340	556 18.5 22 12 1100	336.5 10.9 33 1.5 667	1.50 .048 1.0 .00	650.00 22.4 150 .00 1290	2001 64.5 175 28 3970	1506 50.2 107 28 2990	772.4 24.9 82 5.1 1530	226.42 7.55 53 .03 449	768.32 24.8 318 .00 1520	4.99 .16 2.0 .00 9.9	8.63 .29 3.5 .00 17

CAL YR 1987 TOTAL 47994.5 MEAN 131 MAX 3610 MIN 1.5 AC-FT 95200 WTR YR 1988 TOTAL 7509.76 MEAN 20.5 MAX 318 MIN .00 AC-FT 14900

LITTLE MISSOURI RIVER BASIN

06335500 LITTLE MISSOURI RIVER AT MARMARTH, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1950-51, 1970 to current year.

DATE	TIME	STREA FLOW INSTA TANEO (CFS (0006	N- DUS AND	FIC N- P CT- (ST CE A /CM) UNI	H AND- RD TS)	TEMPER ATURE AIR (DEG 0	WAT WAT	RE ER C)	HARD NESS TOTA (MG/ AS CACO (0090	CAL L DI L SO (M 3) AS	CIUM S- LVED G/L CA) 915)	MAGN SIU DIS SOLV (MG/ AS M	JM, S- ZED ZED ZL MG)	SODIU DIS- SOLVE (MG/ AS N	D L A)	SODIUM PERCENT (00932)
OCT																
07 NOV	1135	19		1810		15.	.0	7.0								
17 DEC	1220	19		1980		6.	.0	0.5								
10	1330	36		1880		13.	0	0.5								
MAR 02	1135	131		940		0.	5	0.5								
30	1125	81			8.40	2.		3.0		60 5	8	28		220		64
APR 13	1315	45	19	1660		12.	0 1	4.5								1122
MAY 11	1505	56		1480		24.	5 2	22.0								
JUN 03	1345	21		2010	122	30.	5	6.5								
22	1040	0.			8.90	32.		6.5		90 3	1	27		670	7.7	88
AUG 10	1200	1.	5	1030		33.	0 2	25.0								
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTA SIU DIS SOLV (MG/ AS K	M, LIN: ED (MC L A:	AB DI G/L SO S (M CO3) AS	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RIC DI SD SOL (MC	E, S- VED (/L F)	SILIC DIS- SOLV (MG/ AS SIO2 (0095	A, RES AT ED DE L D SO) (M	IDS, IDUE 180 G. C IS- LVED G/L) 300)	SOLID SUM CONST TUENT DIS SOLV (MG/	OF CI- CS, CED (ED)	SOLID DIS SOLV (TON PER DAY (7030	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR			4 600								1					
30 JUN	6	7.	9 280	47	0	9.5	C	.30	5.	8	974	9	968	214		1.32
22	22	15	520	120	0	27	C	.60	1.	2	2230	23	510	2.	23	3.03
D	S (SENIC DIS- OLVED UG/L S AS) 1000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	SOL (UC	IS- LVED G/L PB)	DIS- SOLVED (UG/L AS LI) 01130)	D SO (UC AS	IS- LVED G/L MN)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	DE SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NIU SOI (UC AS	LE- JM, IS- LVED G/L SE) 145)	DI SOI (UC AS	RON- IUM, IS- LVED G/L SR) D80)
MAR 30. JUN		1	210	60		<1	64		10	0.1		4		1		540
22.		2	420	50		<1	150		10	1.1		7		<1		590

06336600 BEAVER CREEK NEAR TROTTERS, ND

LOCATION.--Lat 47°09'47", long 103°59'32", in SW1/4SW1/4NE1/4 sec.33, T.143 N., R.105 W., Golden Valley County, Hydrologic Unit 10110204, on left bank 100 ft upstream from bridge on county road, 2.4 mi east of Montana-North Dakota State line, 13 mi southwest of Trotters, 17 mi north of Beach, 20 mi upstream from Elk Creek, and 27 mi above mouth.

DRAINAGE AREA.--616 mi², revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD . -- October 1977 to current year (seasonal records only since 1984).

REVISED RECORDS .-- 1977: Drainage area.

GAGE .-- Water-stage recorder. Elevation of gage is 2,370 ft, from topographic map.

REMARKS .-- Estimated daily discharges: Feb. 1 to Mar. 31 and Apr. 17 to June 12. Records poor.

AVERAGE DISCHARGE. -- 6 years (water years 1978-83), 33.3 ft3/s, 24,130 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,720 ft³/s, Mar. 29, 1978, gage height, 18.61 ft; maximum gage height, 19.27 ft, Mar. 22, 1978, ice jam; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 85.0 ft³/s, Feb. 28, gage height, 5.87 ft, backwater from ice; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

					17	DAN VALOE						
DAY	OCT	NOA	DEC	JAN	FEB .	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	26	8.2	2.0	1.2	.00	.00	.00
					.00	22	8.2	1.9	1.2	.00	.00	.00
2 3 4										.00	.00	.00
2					.00	19	8.3	1.8	1.1			
4					.00	17	8.2	1.8	1.0	.00	.00	.00
5					.00	18	7.5	1.7	•95	.00	.00	.00
6 7 8					.00	26	6.8	1.6	.82	.00	.00	.00
7					.00	24	6.9	1.6	.70	.00	.00	.00
8					.00	21	7.2	1.7	.60	.00	.00	.00
9					.00	22	6.7	1.7	.45	.00	.00	.00
10					.00	26	6.4	2.0	.32	.00	.00	.00
11					.00	32	5.9	2.4	.22	.00	.00	.00
12					.00	25	5.5	2.3	.12	.00	.00	.00
13					.00	20	5.5	2.1	.05	.00	.00	.00
									.10	.00	.00	.00
14					.00	16	5.1	2.0				.00
15					.00	12	4.7	1.9	.10	.00	.00	.00
16					.00	9.5	4.4	1.8	.05	.00	.00	.00
17					.00	9.0	4.2	1.7	.02	.00	.00	.00
18					.05	9.5	3.8	1.8	.00	.00	.00	.00
19					.50	10	4.0	1.9	.00	.00	.00	.00
20					1.0	11	3.8	1.8	.00	.00	.00	.00
0.4					6.0	40	7.5	4.7	00	.00	.00	.00
21					6.0	12	3.5	1.7	.00			.00
22					14	13	3.2	1.7	.00	.00	.00	.00
23					20	15	3.0	1.6	.00	.00	.00	.00
24					28	18	2.8	1.5	.00	.00	.00	.00
24 25					28 25	16	2.6	1.5	.00	.00	.00	.00
26					22	20	2.4	1.3	.00	.00	.00	.00
27					40	18	2.5	1.3	.00	.00	.00	.00
28					55	16	2.6	1.4	.00	.00	.00	.00
20					30	13	2.4	1.5	.00	.00	.00	.00
29 30 31						11	2.2	1.4	.00	.00	.00	.00
50								1.3		.00	.00	
31						9.0		1.5		.00	•00	
TOTAL					241.55	536.0	148.5	53.6	9.00	0.00	0.00	0.00
MEAN					8.33	17.3	4.95	1.73	.30	.00	.00	.00
MAX					55	32	8.3	2.4	1.2	.00	.00	.00
MIN					.00	9.0	2.2	1.3	.00	.00	.00	.00
AC-FT					479	1060	295	106	18	.0	.0	.0
MO-LT					712	1000	-,,					

LITTLE MISSOURI RIVER BASIN

06336600 BEAVER CREEK NEAR TROTTERS, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

DATE		TIME	STRE FLO INST TANE (CF (OOO	W, AN- OUS S)	SPE- CIFICON- DUCT- ANCE (US/CI	P (ST.	AND-	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC (OO9	SAL /L (03)	CALC DIS SOL (MG AS (009	VED /L CA)	MAG SI DI SOL (MG AS	UM, S- VED /L MG)	SODIO DIS- SOLVO (MG, AS 1	ED /L NA)	SODIUM PERCENT (00932)
FEB 29		1310	32		9	50	7.93	1	0.0		0.5		250	46		32		110		48
MAR																-				
14		1425	17		19				4.0		0.5									
29 APR		1000	14		18	20		-	0.5		0.5									
11 MAY		1225	6	.2	22	50		2	2.0		9.5									
16 JUN		1310	1	.9	25	40		2	7.5	1	1.5									
13		1130	0	.04	28	00	8.72	2	9.0	2	4.5		560	44		110		500		65
DATE	:	SODIUM AD- SORP- TION RATIO DO931)	POT SI DI SOL (MG AS (009	UM, S- VED /L K)	ALKALINITE LAB (MG/IAS CACO) (9041)	Y SUL DI: L SO! (M: 3) AS	FATE S- LVED G/L SO4) 945)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIO SOLIO (TO) PEI DAY (7030	S= /ED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
FEB 29		3	13		160	33	0	7	.7	0	.10	6	.6		662		643	57	.6	0.90
JUN 13		9	12		350	120	0	13		0	.30	1	.2	2	140	2	110	0	.23	2.91
	DATE	SC (U	SENIC DIS- DLVED JG/L S AS)	DI	B)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	SC (t	EAD, DIS- DLVED JG/L S PB) 1049)	SO (U AS	HIUM DIS- LVED G/L LI) 130)	NE SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
FEB 20	9		1		200	80		<1		17		70		<0.1		1		<1		460
JUN																				
1:	3		2		640	40		<1		80		60		<1.0		20		<1		820

06337000 LITTLE MISSOURI RIVER NEAR WATFORD CITY, ND

LOCATION.--Lat 47°35'25", long 103°15'05", in NW1/4SE1/4SE1/4 sec.35, T.148 N., R.99 W., McKenzie County, Hydrologic Unit 10110205, at bridge on U.S. Highway 85, 17 mi upstream from Cherry Creek, and 17.5 mi south of Watford City.

DRAINAGE AREA .-- 8,310 mi2 approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1934 to current year.

REVISED RECORDS (WATER YEARS) .-- WSP 926: 1935. WSP 1270: 1943.

GAGE.--Water-stage recorder and supplemental nonrecording gage. Datum of gage is 1,929.03 ft above National Geodetic Vertical Datum of 1929. Oct. 2, 1959, to June 17, 1963, water-stage recorder at present site and datum. June 18, 1963, to Nov. 28, 1964, at site 700 ft upstream at present datum. See WSP 1729 or 1917 for history of changes prior to Oct. 2, 1959.

REMARKS.--Estimated daily discharges: Oct. 5, 6, Nov. 17-19, 29 to Mar. 19. Records fair except for periods Nov. 15 to Jan. 14 and Feb. 19 to Mar. 19, which are poor.

AVERAGE DISCHARGE.--54 years, 573 ft^3/s , 415,100 acre-ft/yr; median of yearly mean discharges, 460 ft^3/s , 333,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 110,000 ft3/s, Mar. 25, 1947, gage height, 24.0 ft from flood-mark, site then in use; no flow at times in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 8,000 ft3/s and maximum (*):

Date		Time		Discharge (ft ³ /s)	G	age Height (ft)	Date	Ti	me	Disc!	narge 5/s)	Gage Hei	ght
Feb.	29			ice jam		*3.63	Mar. 2	4 15	15	*40	00	2.18	
			DISCHAF	RGE, IN CUB	IC FEET	PER SECOND	, WATER YEA AN VALUES	R OCTOBE	R 1987 TO	SEPTEN	MBER 1988		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		45	21	15	.05	.00	220	156	34	13	122	.16	.00
2		44	24	12	.00	.00	170	143	49	12	67	.32	.00
		43	23	13	.00	.00	160	142	51	11	38	.24	.00
4		40	24	14	.00	.00	150	150	42	7.9	42	.00	.00
3 4 5		37	24	14	.00	.00	140	145	38	5.7	30	.00	.00
6		36	20	14	.00	.00	140	157	38	5.1	28	.00	.00
7		33	22	14	.00	.00	130	143	40	8.3	35	.00	.00
8		32	24	14	.00	.00	140	135	84	9.4	24	.00	.00
9		32	23	14	.00	.00	160	129	105	7.8	24	.00	.00
10		30	24	14	.00	.00	180	119	96	6.0	53	.00	.00
11		28	24	13	.00	.00	170	111	88	4.5	21	.00	.00
12		27	24	13	.00	.00	150	103	86	2.9	15	.00	.00
13		25	25	12	.00	.00	130	97	88	3.1	32	.00	.00
14		25	25	12	.00	.00	90	92	75	11	50	.00	.00
15		24	25	10	.00	.00	70	88	58	23	31	.00	.00
16		25	28	8.0	.00	.00	80	84	56	16	22	.00	.00
17		24	28	6.0	.00	.00	90	80	69	12	18	.00	.00
18		25	23	5.0	.00	.00	200	75	62	7.5	18	.00	2.1
19		23	25	5.0	.00	.00	260	71	57	3.4	15	.00	40
20		19	27	4.5	.00	.00	276	69	53	2.0	8.7	.00	16
21		30	24	4.0	.00	.00	292	63	47	2.0	5.5	.00	9.8
22		22	33	3.5	.00	.50	330	60	41	5.5	3.9	.00	5.1
23		19	21	3.0	.00	2.0	317	57	37	11	3.3	.00	2.9
24		14	31	2.0	.00	1.0	367	54	34	18	2.9	.00	2.4
25		16	27	1.5	.00	.05	314	51	31	14	2.5	.00	2.6
26		20	30	1.2	.00	.00	295	47	28	8.9	1.9	.00	2.6
27		22	23	1.0	.00	.20	274	43	23	5.3	1.5	.00	2.2
28		23	25	.70	.00	15	239	40	20	3.2	1.2	.00	2.0
29		23	22	.50	.00	300	219	36	24	2.6	.91	.00	2.0
30		22	17	.25	.00		191	34	17	202	.70	.00	2.2
31		22		.10	.00		185		14		.55	.00	
TOTAL		850	741	244.25	0.05	318.75	6129	2774	1585	444.1	718.56	0.72	91.90
MEAN		27.4	24.7	7.88	.002	11.0		92.5	51.1	14.8	23.2	.023	3.06
MAX		45	33	15	.05	300	367	157	105	202	122	.32	40
MIN		14	17	.10	.00	.00	70	34	14	2.0	.55	.00	.00
AC-FT		1690	1470	484	.1	632	12160	5500	3140	881	1430	1.4	182
GAT N			mar 446			W. 5500		, m 074			,,,,,		1.5

CAL YR 1987 TOTAL 116637.25 MEAN 320 MAX 5520 MIN .10 AC-FT 231300 WTR YR 1988 TOTAL 13897.33 MEAN 38.0 MAX 367 MIN .00 AC-FT 27570

LITTLE MISSOURI RIVER BASIN

06337000 LITTLE MISSOURI RIVER NEAR WATFORD CITY, ND--CONTINUED (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1972 to current year.

DATE		STREA FLOW INSTA TANEO (CFS (OOO6	N- DUC US ANC) (US/	IC - PH T- (STA E AF CM) UNIT	AND- AT RD A RS) (DE	PER- PURE IR G C)	TEMP ATU WAT (DEG (OOO	RE ER C)	TUF BIT ITY (FTU))- (OXYG DI: SOL' (MG	S- VED /L)	SOL (PE CE SAT	VED R- NT UR-	COL FOR FEC O.7 UM- (COL 100 (316	M, T AL, MF (S./ ML) 1	STRE OCOC FECA F AG COLS PER 00 M 3167	CI L, AR
OCT 21	1030	20	2	280 8	3.48	2.0		0.5	38		1	3.2		100		60		50
NOV 25	1125	32				-2.5		0.5				3.0						
MAR		307							530			2.5		97				
23 APR	1230				3.29	8.0		1.0										
21 JUN	1010	65			3.58	5.0		9.0	21			8.0		102				
JUL O2	1300	12	2	780 8	3.50	24.5	2	3.5			,	8.0		102				
11	1330	22	1	840 8	3.63	23.5	2	3.0				7.8		99				
DATE	HAR NES TOT (MG AS CAC (009	S AL /L 03)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SOI PERO	DIUM CENT 932)	SOI TI RAT	DIUM AD- RP- ION FIO 931)	POT SI DI SOL (MG AS (009	UM, S- VED /L K)	MG/I	YTY WH	WH FIE MG/I HCC	TER IT SLD L AS	CAR BONAT WATE WH I FIEL MG/L CO3 (OO44	E R T D AS	
OCT		760	74	4.7	700		60		0	•	•		761		105		10	
21 MAR		360	71	43	370		69		9		.0		364		405		19	
23 APR		280	56	33	300		70		8		.6		249		304		0	
21 JUN	l i	370	76	44	400		69		9	8	.8		336		371		19	
02 JUL						91							830		915		48	
11													330		354		24	
DATE	SULF DIS SOL (MG AS S	VED /L 04)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RES: AT DEC D: SOI	IDS, IDUE 180 G. C IS- LVED G/L) 300)	TUEN SOI (MC		SOLI SOL (TO PE AC- (703	S- VED NS R FT)	SOI (TO	IDS, IS- LVED ONS ER AY) 302)	NITE DI SOI (MC	TRO- EN, RITE IS- LVED G/L N)	NITE GEN NO2+N DIS SOLV (MG/ AS N	1, 103 5- VED 'L	
OCT 21	750		11	0.40	13		1550		1480	2	.11	8	3.3	<0.	.010	<0.1	100	
MAR 23	660		12	0.20	6.8		1230		1240		.67	1020			.010	0.3		
APR 21	840		36	0.40	7.8		1570		1610		.14	27			.010	<0.1		
DATE	NIT GE AMMO TOT (MG AS	N, NIA AL /L N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN, AM- MONIA + ORGANIO TOTAL (MG/L AS N) (00625)	PHO PHOI TO	OS- ROUS TAL G/L P) 665)	PHOI PHOI SOI (MC	OS- ROUS IS- LVED G/L P)	PHOR PHOR ORT DIS SOLV (MG/ AS P	S- OUS HO, ED L	ALI INI DI SOI (UC	UM- UM, IS- LVED G/L AL)	ARSI D: SOI (UC	ENIC IS- LVED G/L AS)	BARIU DIS- SOLVE (UG/ AS E	IM, ED (L BA)	
OCT		000	0.000				0.00		045		040		00				100	
21 MAR		020	0.020	0.03	0.70		.020		.010		010		20		1		100	
23 APR		060	0.130	0.17	<0.20		.040		.020		050		50		<1		41	
21	0.	030	0.020	0.03	0.40	0	.030	<0	.010	<0.	010		<10		1		100	

LITTLE MISSOURI RIVER BASIN

06337000 LITTLE MISSOURI RIVER NEAR WATFORD CITY, ND--CONTINUED (National stream-quality accounting network station)

DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (O1025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
OCT 21 MAR	<10	<1	2	3	3	20	<5	80	20	0.1
23	<0.5	<1	<1	<3	4	36	<5	60	9	<0.1
APR 21	<10	<1	<1	2	3	20	<5	80	<10	<0.1
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (O1060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (O1145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 (70331)
OCT 21	4	5	<1	<1.0	870	2	10	220	12	98
MAR 23	144									
APR	<10	1	1	<1.0	520	<6	27	1350	1120	98

06337000 LITTLE MISSOURI RIVER NEAR WATFORD CITY, ND--CONTINUED (National stream-quality accounting network station)

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT) (72015)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT								
21	1030		0.0	0.5	2280	8.48	13.2	100
21	1032		0.47	0.5	2280	8.50	13.2	98
21	1034		0.78	0.5	2280	0.50	13.2	98
21	1036		0.70	0.5	2280	8.50	13.2	98
21	1038		0.69	0.5	2280	8.50	13.2	98
21	1040	320	0.69	0.5	2280	8.50	13.2	
21	1042		0.71	0.5	2280	8.50	13.2	98
21	1044		0.71	0.5	2280	8.50	13.2	98
21	1044		0.90	0.5	2280	8.50	13.2	98
21	1048		0.86	0.5	2280	8.50	13.2	98
	1050		0.74	0.5	2280	8.50	13.2	98
21		5.5		0.5	2280	8.50	13.2	98
MAR	1052		0.39	0.5	2200	0.50	17.2	90
23	1230	- 22	1,42	1.0	1760	8.29	12.5	97
23	1231	8.00	1.7	1.0	1760	8.28	12.5	
23	1232	16.0	1.2	1.0	1760	8.29	12.5	
23	1234	24.0	0.30	1.0	1750	8.27	12.4	
23	1238	14.0	0.88	1.0	1750	8.27	12.4	
23	1239	22.0	1.5	1.0	1760	8.29	12.5	1000
23	1240	30.0	1.8	1.0	1760	8.29	12.5	32
23	1241	38.0	2.2	1.0	1760	8.28	12.6	22
23	1242	46.0	2.3	1.0	1760	8.28	12.6	75
23	1243	54.0	2.0	1.0	1760	8.29	12.6	
23	1244	62.0	1.6	1.0	1760	8.29	12.5	
23	1244	70.0	1.2	1.0	1760	8.29	12.5	
23	1247	78.0	1 7	1.0	1760	8.29	12.5	
23	1248	86.0	1.3	1.0	1750	8.28	12.5	22
23	1250	94.0	0.50	1.0	1750	8.27	12.4	22
23	1253	8.00	1.0	1.0	1750	8.28	12.5	
23	1254	16.0	1.3	1.0	1750	8.28	12.5	
23	1256	24.0	1.4	1.0	1750	8.29	12.5	
23	1258	32.0	1.7	1.0	1760	8.29	12.5	25
APR	PCSI	22.0	1.1	1.0	1700	0.29	12.0	
21	0930	0.0	0.0					
21	0932	6.00	1.5	9.0	2260	8.58	10.8	101
21	0934	12.0	1.3	9.0	2260	8.58	10.8	101
21	0936	18.0	1.0	9.0	2260	8.58	10.8	101
21	0938	24.0	0.87	9.0	2260	8.58	10.8	101
21	0940	30.0	0.70	9.0	2260	8.58	10.8	101
21	0942	36.0	0.78	9.0	2260	8.58	10.8	101
21	0944	42.0	0.82	9.0	2260	8.58	10.8	101
21	0946		0.85	9.0	2260	8.58	10.8	101
21	0948	48.0 54.0	0.75	9.0	2260	8.58	10.8	101
21	0940		0.68	9.0	2260	8.58	10.8	101
21	0952	60.0 66.0	0.70	9.0	2260	8.58	10.8	101
21	0954		0.70	9.0	2260	8.58	10.8	101
21		72.0	0.60	9.0	2260	8.58	10.8	101
21	0956 0958	78.0	0.50	9.0	2250	8.57	10.8	101
21		84.0			2250	8.56	10.8	101
21	1000	90.0	0.18	9.0	2260	8.58	10.8	102
21	1010	92.0	0.0	9.0	2200	0.70	10.0	102

06338000 LAKE SAKAKAWEA NEAR RIVERDALE. ND

LOCATION.--Lat 47°30'10", long 101°25'50", in S1/2 sec.31, T.147 N., R.84 W., Mercer County, Hydrologic Unit 10110101, in control structure of Garrison Dam, 2.5 mi west of Riverdale, 14 mi upstream from Knife River, and at mile 1,389.9.

DRAINAGE AREA .-- 181,400 mi2, approximately.

MONTHEND-ELEVATION AND CONTENTS RECORDS

PERIOD OF RECORD. -- October 1953 to current year. Prior to October 1966, published as Garrison Reservoir near Riverdale.

REVISED RECORDS .-- WSP 1559: 1957(M).

GAGE .-- Water-stage recorder. Datum of gage is at National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earth-fill dam; storage began in November 1953. Maximum capacity, 24,200,000 acre-ft below elevation 1,854.0 ft, top of 29-ft gates. Normal maximum, 22,700,000 acre-ft below elevation 1,850.0 ft, of which about 4,300,000 acre-ft is designated for flood control. Elevation of crest of spillway, 1,825.0 ft, surmounted by radial gates. Inactive storage, 5,000,000 acre-ft below elevation 1,775.0 ft. Dead storage, zero at elevation 1,672.0 ft. Snake Creek arm of the reservoir has connecting gate to main reservoir, with sill at elevation, 1,810 ft. Figures herein represent total contents.

COOPERATION. -- Elevations and contents are furnished by the U.S. Army Corps of Engineers. Elevations are observed elevations at midnight on the last day of each month. Contents are computed based on reservoir inflow, reservoir outflow, evaporation, and rainfall; and are adjusted for wind effect.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 24,368,000 acre-ft, July 25, 1975, elevation, 1,854.6 ft; minimum since first reaching normal maximum level in July of 1969, 14,742,000 acre-ft Mar. 13, 1978, elevation, 1,825.2 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 19,346,000 acre-ft, Oct. 4, elevation, 1,841.1 ft; minimum, 14,832,000 acre-ft, Sept. 27, elevation, 1,825.7 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

Ī	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	- 1840.5	19,152,000	
Oct.	31		18,896,000	-256,000
Nov.	30		18,705,000	-191,000
Dec.	31	1837.3	18,148,000	-557,000
CAL	YR 1987		-	-1,996,000
Jan.	31	1835.2	17,514,000	-634,000
Feb.	29	1833.0	16,868,000	-646,000
Mar.	31	1832.7	16,782,000	-86,000
Apr.	30	- 1831.0	16,296,000	-486,000
May	31	1831.2	16,353,000	+57,000
June	30	1832.2	16,638,000	+285,000
July	31		16,071,000	-567,000
Aug.	31	- 1827.4	15,293,000	-778,000
Sept.	30	1825.9	14,885,000	-408,000
WTR	YR 1988		-	-4,267,000

06338490 MISSOURI RIVER AT GARRISON DAM, ND (National stream-quality accounting network station)

LOCATION.--Lat 47°30'08", long 101°25'50", in S sec.31, T.147 N., R.84 W., Mercer County, Hydrologic Unit 10130101, downstream from dam at National Fish Hatchery's supply line from penstocks 4 and 5, in control structure of Garrison Dam, 2.5 mi west of Riverdale, 14 mi upstream from Knife River, and at mile 1,389.9.

DRAINAGE AREA. -- 181,400 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1969 to current year.

GAGE .-- Flow meter and gate readings.

REMARKS.--Records good. Many diversions above station. Flow regulated by Lake Sakakawea (station 06338000).

Prior to October 1969 records were obtained at a site 9.1 mi downstream. Discharges at the downstream site were generally about 7 percent greater than those furnished by the U.S. Army Corps of Engineers for the present site.

COOPERATION .-- Records furnished by the U.S. Army Corps of Engineers.

AVERAGE DISCHARGE. -- 19 years, 23,880 ft3/s, 17,300,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 65,200 ft³/s, July 25, 1975; minimum daily, 6,000 ft³/s, Sept. 29, 1974.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 27,500 ft3/s, Feb. 12; minimum daily, 10,200 ft3/s, Sept. 30.

		DISCHARGE	E, IN CU	BIC FEET	PER SECON	D, WATER EAN VALUE		BER 1987	TO SEPTEM	BER 1988		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16000	11800	20300	20300	24900	21400	19000	17400	18800	19100	17800	18300
2	15700	12700	20300	17600	25200	21000	19100	17200	18700	19200	17500	18100
3	16100	12400	19800	17900	25700	21000	19900	17300	18800	19000	17900	18000
4	16000	12300	19900	19500	26500	21500	19100	17300	19300	19100	18000	18000
5	16200	12300	20300	20600	26900	19300	19000	17400	19300	19100	18000	17800
6	14200	12300	19800	21200	26300	19100	19300	17300	19200	19300	17900	16800
7	12200	11900	20200	21300	26900	19200	19300	17600	19100	19200	17700	16100
8	12800	11900	19600	21400	26700	19300	19000	17600	19100	19400	18100	14900
9	12400	12200	20500	21000	27300	19400	17500	17700	18900	19300	18300	14800
10	12800	11800	20200	19500	27100	19400	17600	18500	19100	19200	18200	14800
11	12500	12400	19700	20100	27200	18600	18000	18400	19200	19400	18200	14400
12	12500	12300	19900	20400	27500	18800	18200	20000	19000	19200	17600	14700
13	12500	12700	20000	20600	27000	19000	18400	20100	19000	19400	18000	14600
14	12500	11500	20200	20500	26300	19200	18400	18800	19200	19400	18100	14800
15	12600	10900	21000	20800	26900	19400	18400	18900	18900	19300	18300	15100
16	12600	11800	20100	20800	27000	18800	18000	19400	19200	19000	18000	15200
17	12500	12000	20200	19800	26300	18600	17700	19100	19300	19200	18000	13500
18	12000	11700	19700	20500	26400	19000	17800	19400	19000	18900	18000	12200
19	12700	12000	20300	21100	26300	18600	18000	17500	19000	19300	18100	12200
20	12500	12000	20200	21100	27100	18700	18100	19200	19200	19300	17900	12100
21	12700	12000	20200	21500	26700	18900	18000	19200	19500	19300	17600	11200
22	12600	11800	20200	22400	26900	19300	18100	19300	19200	19400	18100	10500
23	12300	12000	19300	23000	26300	19100	17700	19400	19400	19300	18100	10700
24	12200	12300	20200	23300	26500	18900	17900	19100	19000	19200	18300	10300
25	11600	14900	19700	23400	26700	19100	18300	19600	19100	19400	18500	10600
26 27 28 29 30 31	11700 12100 12100 12400 12500 12800	16300 16100 16000 15800 17900	20300 20100 19700 20600 19500 20100	23800 23100 23000 24200 24000 24100	26600 24400 21000 20800	19400 19500 19100 19000 18800 19700	17700 17800 17900 18100 17700	19200 19000 19100 19300 19200 19300	19200 18800 19100 19100 19100	19500 19600 19000 18900 17800 17700	18300 18000 17600 18300 18300 18500	10400 10400 10400 10500 10200
TOTAL	404300	386000	622100	661800	757400	600100	549000	577800	572800	593400	559200	411600
MEAN	13040	12870	20070	21350	26120	19360	18300	18640	19090	19140	18040	13720
MAX	16200	17900	21000	24200	27500	21500	19900	20100	19500	19600	18500	18300
MIN	11600	10900	19300	17600	20800	18600	17500	17200	18700	17700	17500	10200

CAL YR 1987 TOTAL 6368400 MEAN 17450 MAX 28300 MIN 9600 WTR YR 1988 TOTAL 6695500 MEAN 18290 MAX 27500 MIN 10200

06338490 MISSOURI RIVER AT GARRISON DAM, ND--CONTINUED (National stream-quality accounting network station)

LOCATION .-- Samples collected at National Fish Hatchery's supply line from penstocks 4 and 5, in control structure of Garrison Dam.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1972 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1971 to current year. WATER TEMPERATURES: October 1971 to current year.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum observed, 870 microsiemens, May 4, 18, 19, July 4, 1980; minimum observed, 500 microsiemens, Mar. 20, 1986.
WATER TEMPERATURES: Maximum observed, 24.4°C, Aug. 13, 1988; minimum observed, 0.0°C on many days during winter months in most years.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum observed, 790 microsiemens, Mar. 22; minimum observed, 595 microsiemens, Dec. 4.

WATER TEMPERATURES: Maximum observed, 24.4°C, Aug. 13; minimum observed, 3.4°C, Dec. 31.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 07	0850	620	8.64	8.0	15.5		8.2	82				
NOV 25	1130	695	8.48	0.0	8.5	0.40	10.3	88	1	7	220	53
JAN 12	0950	700	8.48	-7.0	3.0	0.70	12.4	92	<1	<1	220	52
FEB 24	0925	700	8.37	-2.0	13.5	0.70	10.6	101	20	6	230	55
APR 13	0905	690	8.44	10.0	4.0	0.60	11.8	90	<1	<1	230	54
JUN 01	0845	710	8.47	20.0	10.0	0.50	10.1	90	<1	<1	230	54
JUL 06 AUG	0900	730	8.32	22.0	11.5		9.0	83				
17	0915	680	8.18	20.5	11.5	0.70	6.8	62	4	8	250	60
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (00419)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	CAR- BONATE WATER WH IT FIELD MG/L AS CO3 (00447)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 07						145	171	3				-
NOV 25	21	63	38	2	4.1	88	76	16	180	13	0.60	6.7
JAN 12	21	62	38	2	4.4	260	214	51	180	10	0.50	6.6
FEB 24	22	66	38	2	4.5	191	199	17	190	11	0.50	7.0
APR 13	22	67	39	2	4.1	178	209	4	190	10	0.50	6.9
JUN 01	23	68	39	2	3.8	224	270	1	190	12	0.60	6.7
O6						175	194	10		-		
17	24	68	37	2	4.4	180	220	0	190	11	0.50	7.0

MISSOURI RIVER MAIN STEM

06338490 MISSOURI RIVER AT GARRISON DAM, ND--CONTINUED (National stream-quality accounting network station)

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)
NOV											
25 JAN	443	395	0.60	0.0	<0.010	<0.100	0.020	0.090	0.12	<0.20	0.010
12 FEB	446	498	0.61	0.0	<0.010	<0.100	0.010	0.070	0.09	0.20	0.010
24 APR	461	472	0.63	0.0	<0.010	<0.100	0.030	0.020	0.03	0.30	0.010
13	458	462	0.62	0.0	<0.010	<0.100	0.030	0.030	0.04	0.70	0.070
JUN O1 AUG	463	492	0.63	0.0	<0.010	0.170	0.010	0.090	0.12	0.60	<0.010
17	485	472	0.66	0.0	<0.010	0.120	<0.010	<0.010		0.30	0.060
DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV											
25 JAN	<0.010	<0.010	<10	2	46	<0.5	<1	<1	<3	12	3
12 FEB	0.010	<0.010									
24 APR	<0.010	<0.010	<10	2	80	<0.5	<1	<1	<3	9	10
13	0.020	0.010	<10	2	48	<0.5	<1	<1	<3	6	4
JUN O1 AUG	0.020	0.020									
17	0.060	0.060	<10	2	53	<0.5	<1	<1	<3	6	4
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (O1145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV											
25 FEB	<5	45	1	<0.1	<10	3	<1	<1.0	510	<6	13
24 APR	<5	50	4	<0.1	<10	1	1	1.0	530	<6	17
13 AUG	<5	46	<1	0.2	<10	<1	1	<1.0	540	<6	5
17	<5	50	2	<0.1	<10	3	1	1.0	580	<6	15

O6338490 MISSOURI RIVER AT GARRISON DAM, ND--CONTINUED (National stream-quality accounting network station)

TEMPERATURE, WATER (DEG. C). WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988. ONCE DAILY DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 15.9 11.9 8.3 3.5 15.5 17.1 13.0 18.2 20.1 19.6 22.0 20.0 19.0 2 16.6 11.1 19.2 19.4 21.2 19.9 3 12.8 11.3 8.0 3.3 15.0 16.8 17.6 19.2 19.6 15.0 22.4 12.7 11.2 8.4 1.8 17.4 14.5 18.2 19.1 20.6 20.6 20.1 5 13.0 11.1 8.1 1.8 13.8 17.2 17.9 17.3 19.5 20.7 20.8 19.1 6 16.2 8.0 17.2 17.0 17.0 11.3 1.2 16.9 13.2 19.1 18.4 20.8 13.6 21.2 21.5 19.0 16.2 10.8 7.9 1.2 13.2 20.8 21.0 19.6 18.1 21.0 8 16.0 10.7 7.7 1.5 14.8 18.5 21.2 21.0 20.9 9 15.2 10.7 6.8 1.5 15.3 16.5 14.3 16.5 20.0 20.3 19.4 10 15.2 10.9 7.4 1.4 13.0 15.5 15.7 17.4 20.6 20.3 20.9 7.3 7.1 7.2 16.9 15.3 15.4 15.4 11 15.3 10.9 1.6 12.7 16.6 15.0 20.6 20.0 21.7 19.0 12 15.2 10.4 16.2 15.5 20.2 21.3 2.0 20.8 18.4 13 14.8 10.3 1.6 13.4 19.5 16.0 19.1 19.9 24.4 21.2 14.7 14 10.1 6.2 1.7 19.1 20.0 21.0 15 10.1 6.1 1.8 15.6 14.8 13.0 19.0 17.6 21.0 22.2 20.1 16 10.0 6.9 1.8 16.3 15.1 11.0 19.4 17.6 20.3 22.3 18.0 5.8 17 14.6 9.7 1.6 15.6 15.3 18.2 18.5 19.0 20.2 22.1 20.0 18 14.7 9.5 1.8 15.3 15.3 15.3 19.0 19.8 20.2 22.0 20.0 19 13.9 9.4 5.6 1.8 15.0 14.0 20.3 20.1 20.0 21.9 18.6 20 5.3 1.4 15.4 17.0 17.0 20.0 19.6 19.3 21.8 18.4 5.2 21 13.0 9.2 2.6 16.5 12.8 17.2 19.0 20.5 20.3 22.3 18.4 1.6 22 12.9 9.5 16.8 16.0 15.0 19.7 19.9 19.4 21.5 18.5 8.5 23 12.6 5.2 16.2 17.1 15.7 18.8 20.2 21.7 21.0 18.0 24 12.1 5.2 17.7 15.9 15.3 19.1 21.0 20.8 21.6 18.6 5.0 25 12.4 8.4 1.5 15.9 20.7 21.5 15.1 19.4 20.8 18.6 26 12.1 8.3 4.2 16.6 19.9 20.9 20.5 18.6 8.3 17.6 27 12.1 4.3 1.9 16.9 16.3 19.9 21.0 21.8 20.1 18.6 12.1 28 8.5 17.7 16.7 4.0 1.7 17.0 15.3 19.8 21.5 22.3 19.2 17.9 29 11.9 8.4 4.1 18.6 21.4 17.1 20.0 19.5 19.1 17.9 12.0 8.0 4.0 17.9 ---20.2 20.0 21.1 17.4 19.5 17.5 31 12.0 3.4 17.6 20.1 22.0 20.5 MEAN 13.9 9.9 6.2 ___ 15.2 16.2 15.7 18.6 20.0 20.6 21.3 19.1 MAX 8.4 17.1 17.9 18.6 20.3 21.5 22.3 24.4 ---21.2 8.0 17.5 MIN 11.9 3.4 11.0 SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988, ONCE DAILY DAY OCT NOV DEC JAN FEB APR TIIN JUI. AUG SEP MAR MAY 695 720 730 720 730 670 2 655 645 700 720 735 650 740 715 725 760 735 650 650 715 3 600 695 720 750 710 700 730 750 735 740 750 595 685 730 720 720 700 660 730 5 630 650 640 690 710 630 730 735 720 725 720 6 650 650 640 690 710 730 710 700 740 740 720 630 645 690 675 640 695 710 735 735 700 690 740 720 755 8 690 675 640 710 725 740 715 700 740 715 760 620 670 640 710 715 715 715 710 720 750 735 10 710 725 710 710 650 630 680 740 640 700 755 630 620 11 600 670 700 705 725 730 725 640 700 730 750 650 740 730 740 725 730 740 720 700 630 710 745 12 695 705 700 760 655 630 13 710 720 755 750 700 720 720 730 14 655 630 690 725 720 710 760 15 650 650 660 710 755 695 765 720 710 720 745 655 650 630 16 660 690 720 750 750 720 730 730 770 755 655 660 765 770 765 730 17 710 690 700 730 740 735 740 650 660 740 18 675 700 740 720 740 730 680 730 740 730 690 720 700 760 770 745 20 650 660 690 675 715 720 770 750 745 21 650 670 740 710 740 740 730 660 765 710 740 750 760 700 709 750 22 655 620 680 715 720 750 790 740 23 655 640 700 675 710 770 720 735 737 740 740 725 730 740 650 650 700 715 720 25 650 650 710 675 725 745 720 735 735 730 755 730 26 650 650 710 675 750 740 740 750 730 730 720 650 640 690 680 730 720 725 720 750 778 735 28 650 640 690 680 725 725 720 730 725 780 735 735 750 760 735 29 650 650 700 735 755 725 740 700 730 30 650 730 640 690 ---740 720 750 730 760 31 650 695 750 740 730 700 MEAN 647 656 664 714 729 740 722 729 720 620 MAX 670 740 740 790 750 770 770 780 778 765 715 MIN 600 595 700 650 700 630 630 710 690

MISSOURI RIVER BASIN

06339010 MISSOURI RIVER ABOVE STANTON, ND

LOCATION.--Lat 47°21'45", long 101°21'25", SE1/4NE1/4SE1/4 sec.22, T.145 N., R.84 W., McLean County, Hydrologic Unit 10130101, on left bank 9 mi south of Riverdale, and at mile 1,379.

DRAINAGE AREA. -- 181,400 mi2, approximately.

PERIOD OF RECORD. -- October 1976 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1600.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Stage regulated completely by releases from Garrison Dam (station 06338490) 13 mi upstream.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 72.24 ft, Jan. 29, 1977; minimum daily recorded, 64.21 ft, May 7, 1987.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	CF 75	64.04				66.78	66.29	66.09	66.33	66.24	66.11	66.12
1	65.35	64.94				66.65	66.18	66.06	66.31	66.27	66.10	65.97
2	65.35	65.26				66.83	66.31	66.00	66.05	66.26	66.09	66.11
3	65.26	65.32						65.99	66.23	66.24	66.13	66.07
4	65.43	64.92				66.69	66.26		66.34	66.29	66.14	65.98
5	65.55	65.28				66.54	66.17	65.98	00.34	00.29	00.14	0.00
6	65.43	65.12				66.23	66.27	66.00	66.34	66.27	66.17	66.03
7	65.14	65.18				66.14	66.30	66.06	66.34	66.28	66.06	65.66
8	65.07	64.99				66.32	66.21	65.95	66.22	66.32	66.14	65.42
9	65.02	65.21				66.35	65.94	66.09	66.32	66.30	65.97	65.33
10	65.19	65.17				66.31	65.94	66.19	66.29	66.29	66.37	65.36
10	05.19	05.17			1 500	00.51	0,000			4.6	2.2	
11	65.11	65.09				66.18	65.81	66.17	66.40	66.33	66.13	65.28
12	64.88	65.14				66.21	66.04	66.40	66.21	66.33	66.03	65.31
13	65.11	65.39				66.24	66.06	66.44	66.33	66.33	66.08	65.32
14	64.97	64.97				66.36	66.12	66.09	66.18	66.37	66.15	65.49
	65.11	64.88				66.05	66.18	66.19	66.23	66.35	66.05	65.29
15	05.11	04.00		100	1,500	00.05			55.00			
16	65.16	64.92				66.26	66.06	66.35	66.23	66.28	66.08	65.47
	65.05	65.13				66.29	66.10	66.42	66.29	66.32	66.08	65.09
17		65.16				66.02	65.91	66.35	66.28	66.27	66.06	64.86
18	65.07				1111	66.20	66.01	66.13	66.31	66.37	66.09	64.77
19	64.94	65.05				66.26	66.07	66.18	66.31	66.33	65.94	64.73
20	65.22					00.20	00.07	00.10	00.51			
21	65.06					66.27	66.10	66.33	66.39	66.40	65.99	64.57
22	64.98					66.03	66.10	66.30	66.24	66.35	66.04	64.35
23	65.11					66.20	66.05	66.31	66.31	66.37	65.96	64.59
24	65.01					66.17	66.06	66.35	66.36	66.37	66.10	64.35
	64.70				68.42	66.14	65.77	66.23	66.33	66.38	66.10	64.44
25	04.70			777	00.42	00.14	93.11					
26	65.00				67.93	66.25	66.20	66.39	66.32	66.43	66.06	64.48
	65.05				67.82	66.24	66.09	66.22	66.28	66.44	65.99	64.40
27					66.65	66.33	66.03	66.35	66.29	66.22	65.88	64.41
28	65.14				66.92	65.84	66.09	66.28	66.30	66.34	66.23	64.37
29	65.17						66.12	66.32	66.33	66.16	66.13	64.45
30	65.07					66.38				66.12	66.11	
31	65.22					66.19		66.35		00.12	55.11	
MEAN	65.13					66.29	66.09	66.21	66.29	66.31	66.08	65.14
	65.55					66.83	66.31	66.44	66.40	66.44	66.37	66.12
MAX						65.84	65.77	65.95	66.05	66.12	65.88	64.35
MIN	64.70					07.04	07.11	-,.,,				

06339100 KNIFE RIVER AT MANNING, ND

LOCATION.--Lat 47°14'10", long 102°46'10", in SE1/4NW1/4 sec.6, T.143 N., R.95 W., Dunn County, Hydrologic Unit 10130201, on left bank 50 ft downstream from bridge on State Highway 22, and 0.4 mi north of Manning.

DRAINAGE AREA. -- 205 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1967 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 2,156.55 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Nov. 16 to Apr. 5 and July 25 to Aug. 8. Records fair except those for periods of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--21 years, 21.7 ft³/s, 15,720 acre-ft/yr; median of yearly mean discharges, 24 ft³/s, 17,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 2,940 ft³/s, June 15, 1970, gage height, 16.20 ft; no flow at times.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft3/s)	Gage height (ft)	Date	Time	Discharge (ft3/s)	Gage height (ft)
Feb. 29		*45.0	*ab5.95				
No flow	for many day	v e					

No flow for many days. a - Backwater from ice b - From flood mark

		DISCHARGE	, IN CU	BIC FEET		D, WATER EAN VALUE		BER 1987	TO SEPTEMBE	R 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.7	1.2	1.0	.08	.00	26	7.0	1.4	.56	.08	.00	.00
2	1.8	1.3	1.0	.06	.00	19	7.4	2.7	.46	.08	.00	.00
3	1.6	1.3	1.1	.04	.00	17	8.0	3.1	-44	.07	.00	.00
4	1.4	1.3	1.2	.02	.00	14	8.4	3.3	•38	.05	.00	.00
5	1.4	1.4	1.2	.00	.00	12	8.3	5.8	.32	.10	.00	.00
6	1.4	1.4	1.3	.00	.00	11	5.7	4.9	.21	.14	.00	.00
7	1.6	1.3	1.3	.00	.00	9.0	5.4	3.6	.19	.17	.00	.00
8	1.4	1.2	1.4	.00	.00	8.0	4.3	4.4	.19	.14	.00	.00
9	1.3	1.2	1.4	.00	.00	8.5	3.8	4.7	.22	.07	.00	.01
10	1.3	1.3	1.3	.00	•00	10	3.5	4.9	.20	.04	.00	.02
11	1.2	1.2	1.4	.00	.00	8.0	3.5	4.6	.15	.03	.00	.05
12	1.2	1.2	1.4	.00	.00	6.0	3.5	3.8	.11	.03	.00	.05
13	1.2	1.4	1.3	.00	.00	4.5	2.7	3.5	.10	.03	.00	.02
14	1.4	1.4	1.1	.00	.00	3.5	2.2	3.2	.20	.02	.00	.01
15	1.6	1.5	.85	.00	.00	2.5	2.1	2.6	.22	.01	.00	.02
16	1.6	1.5	.60	•00	.00	2.0	2.0	2.3	.18	.01	.00	.01
17	1.4	1.4	.45	.00	.02	2.2	1.7	1.9	.21	.01	.00	.01
18	1.3	1.3	.35	.00	.05	2.4	1.6	1.7	.29	.01	.00	.10
19	1.2	1.2	.36	.00	.15	2.6	1.5	1.6	.38	.01	.00	.16
20	1.5	1.2	.38	.00	.30	3.0	1.4	1.6	.34	.01	.00	.05
									0.5	04	00	04
21	1.5	1.1	.40	.00	.70	4.5	1.3	1.4	•25	.01	.00	.01
22	1.5	1.1	.35	.00	1.2	6.0	1.3	1.5	.18	.01	.00	.00
23	1.5	1.2	.30	.00	2.5	7.0	1.2	1.4	.13	.00	.00	.00
24	1.3	1.4	.25	.00	2.0	8.0	1.1	1.3	.09	.00	.00	.00
25	1.3	1.5	.20	.00	5.0	7.5	1.1	1.3	.05	.00	.00	.00
26	1.5	1.4	.17	.00	12	7.0	1.2	1.4	.04	.00	.00	.00
27	1.4	1.4	.16	.00	20	7.5	1.2	1.2	.03	.00	.00	.00
28	1.3	1.3	.15	.00	30	6.8	1.1	1.1	.03	.00	.00	.00
29	1.3	1.2	.14	.00	35	6.2	.87	1.0	.02	.00	.00	.00
30	1.4	1.1	.13	.00		5.5	1.2	.81	.06	.00	.00	.00
31	1.2		.10	.00		4.7		.65		.00	.00	
TOTAL	43.7	38.9	22.74	0.20	108.92	241.9	95.57	78.66	6.23	1.13	0.00	0.52
MEAN	1.41	1.30	.73	.006	3.76	7.80	3.19	2.54	.21	.036	.00	.017
MAX	1.8	1.5	1.4	.08	35	26	8.4	5.8	.56	.17	.00	.16
MIN	1.2	1.1	.10	.00	.00	2.0	.87	.65	.02	.00	.00	.00
AC-FT	87	77	45	.4	216	480	190	156	12	2.2	.0	1.0
						100	.,,		- 27	217	1.77	

CAL YR 1987 TOTAL 8564.56 MEAN 23.5 MAX 1500 MIN .10 AC-FT 16990 WTR YR 1988 TOTAL 638.47 MEAN 1.74 MAX 35 MIN .00 AC-FT 1270

06339100 KNIFE RIVER AT MANNING, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
OCT											
19 NOV	1450	1.2	2150		2.0	4.0					
24	1505	1.4	2370		9.0	1.5					
02 03 a08	1205 1220 1221	18 7.5 7.5	1120 1220 1220	7.98	0.0 2.5 2.5	0.5 0.5 0.5	130 130	27 28	15 15	200 220	75 77
31	1100	4.5	1310		6.5	0.5					
APR 15	1205	2.0	1180		11.0	8.0	-				
JUN 01	0945	0.52	2 2250		21.5	20.0					- 22
JUL 06 a06	0825 0826	0.15			25.5 25.5	22.0	210 200	29 27	33 32	520 540	84 85
DATE	SODIUM AD- SORP- TION RATIO (00931)	DIS- SOLVEI (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 08 a08	8 9	13 12	250 245	350 360	6.8 7.8	0.30	8.6 7.4	806 802	674 798	16.4 16.3	1.10
JUL 06	16		680	640	13	0.80	1.1	1710	1670	0.69	
a ₀₆	17	9.3 8.6	683	670	9.2	0.70	1.1	1700	1700	0.69	2.33
D	S (DIS- SOLVED S UG/L (S AS) A	DIS- SOLVED S UG/L (AS B) A	DIS- I OLVED SO UG/L (U S FE) AS	DIS- DIVED SO JG/L (US PB) AS	CHIUM NEDIS- II DLVED SC IG/L (US LI) AS	DIS- I DLVED SO JG/L (U S MN) AS	RCURY DE DIS- D DLVED SO JG/L (U S HG) AS	NUM, NI DIS- D DLVED SO IG/L (U MO) AS	UM, TOUS- DOLVED SOUG/L (US SE) AS	RON- FIUM, DIS- DLVED G/L SR) 080)
MAR 08. a08. JUL	::	1	230 210	250 180	<1 <5	20 16	70 85	0.2	1 2	<1 <1	270 270
06. a06.		4 3	420 570	130 110	<1 <5	60 50	30 30	0.2	3 2	<1 <1	630 580

a - Split sample analysis for quality assurance.

06339500 KNIFE RIVER NEAR GOLDEN VALLEY, ND

LOCATION.--Lat 47°09'40", long 102°03'39", in SE1/4 sec.34, T.143 N., R.90 W., Mercer County, Hydrologic Unit 10130201, on left bank 6 ft downstream from highway bridge, 4.5 mi downstream from Elm Creek, and 9 mi south of Golden Valley.

DRAINAGE AREA.--1,230 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1903 to November 1906, April 1907 to November 1915, April 1916 to October 1919, and October 1921 to September 1924 (published as "at Broncho" or "near Broncho"), and April 1943 to current year. Monthly discharge only for some periods published in WSP 1309.

REVISED RECORDS (WATER YEARS).--WSP 1006:0 Drainage area. WSP 1279: 1904, 1914-19(M), 1922-24(M), 1944.

GAGE.--Water-stage recorder. Datum of gage is 1,847.13 ft above National Geodetic Vertical Datum of 1929. See WSP 1729 or 1917 for history of changes prior to May 1, 1946.

REMARKS .-- Estimated daily discharges: Jan. 4-7, Feb. 18-26, Mar. 13-20, and Sept. 28-30. Records fair.

AVERAGE DISCHARGE.--62 years (1904-06, 1908-15, 1917-19, 1922-24, 1944-88), 96.1 ft^3/s , 69,620 acre-ft/yr; median of yearly mean discharges, 87 ft^3/s , 63,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,200 ft³/s, May 9, 1970, gage height, 25.84 ft; maximum gage height, 26.7 ft, Mar. 26, 27, 1943, from floodmark; no flow at times in some years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 26, 27, 1943 reached a stage of 26.7 ft, from floodmark, 11,500 ft3/s. The 1943 flood was the highest since 1903 according to information from local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 28	1630	*216	*6.75				

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

Minimum daily discharge, 0.15 ft3/s, Sept. 8.

					1	MEAN VALUES	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.0 7.1 7.7 6.9 6.2	10 10 11 11 10	11 11 11 10 10	2.8 3.1 2.4 2.0 1.8	2.8 3.1 3.0 2.6 2.1	104 111 153 133 104	43 40 42 40 27	15 23 29 34 42	4.8 4.8 4.5 3.9 3.6	3.0 2.1 2.0 2.1 3.2	•32 •37 •47 •56 •65	.61 .48 .33 .27
6 7 8 9	6.0 6.5 7.4 6.7	10 11 11 11 11	10 10 10 9.0	1.6 1.5 .79 .76	1.8 1.6 1.4 1.2	91 89 77 68 82	28 31 29 27 25	36 31 33 37 41	2.8 2.4 2.4 2.0 2.0	4.0 8.7 6.1 5.2 4.8	.61 .62 .43 .52	.23 .18 .15 .25 .29
11 12 13 14 15	7.3 7.4 7.2 7.4 7.5	10 10 10 11 12	8.9 9.1 9.9 9.4	.94 .97 .97 1.0	1.2 1.4 1.4 1.4	40 16 13 10 8.0	24 23 21 21 21	46 42 35 30 26	1.8 1.7 1.6 2.7 2.5	3.7 3.1 3.6 3.3 2.6	•52 •55 •59 •66 •86	.29 .35 .40 .56
16 17 18 19 20	7.6 8.4 8.4 10 8.3	11 12 11 11 9.8	7.6 7.9 7.0 7.0	1.4 1.5 1.5 1.7	1.5 1.6 1.6 1.8 2.0	7.0 9.0 13 19 30	20 19 18 18 17	23 21 19 18 16	2.3 2.6 2.5 2.3 1.9	2.2 2.0 1.9 1.9 2.0	.71 .60 .54 .60	.70 .79 1.1 1.4 1.6
21 22 23 24 25	8.8 9.5 8.9 9.5	11 11 11 11 9.9	6.9 7.1 6.5 6.5	1.6 1.8 1.9 2.0	3.0 3.5 4.0 15	40 96 125 190 153	16 15 14 14 14	15 14 13 11 10	1.7 1.4 1.2 1.1	1.9 1.7 1.4 1.1	•72 •55 •50 •43 •39	1.9 2.2 2.3 2.3
26 27 28 29 30 31	11 9.8 9.7 10 10	11 10 11 11 9.4	5.2 5.1 4.9 4.8 4.8 3.3	1.9 2.1 2.3 2.9 2.8 2.7	14 63 159 131 	120 113 77 58 54 41	14 14 14 14 14	9.1 7.8 8.4 7.2 6.0 5.4	.82 .78 .74 .58	.98 .90 .90 .70 .52	•41 •50 •55 •55 •58 •55	1.8 1.9 1.9 1.9
TOTAL MEAN MAX MIN AC-FT	254.9 8.22 11 6.0 506	320.1 10.7 12 9.4 635	248.3 8.01 11 3.3 493	54.07 1.74 3.1 .76 107	446.8 15.4 159 1.2 886	2244.0 72.4 190 7.0 4450	677 22.6 43 14 1340	703.9 22.7 46 5.4 1400	66.01 2.20 4.8 .58 131	79.18 2.55 8.7 .48 157	17.05 .55 .86 .32 34	30.80 1.03 2.3 .15 61

CAL YR 1987 TOTAL 44694.8 MEAN 122 MAX 4620 MIN 3.3 AC-FT 88650 WTR YR 1988 TOTAL 5142.11 MEAN 14.0 MAX 190 MIN .15 AC-FT 10200

06339500 KNIFE RIVER NEAR GOLDEN VALLEY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1950, 1964-65, 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF	W, AN- OUS S)	SPE- CIFI CON- DUCT ANCE (US/O	CC (CC) (CC) (CC) (CC) (CC) (CC) (CC) (PH (STAND ARD JNITS)	- ATU AI (DEC	PER- JRE IR G C) D2O)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L	CALC DIS SOL (MG AS	VED /L CA)	MAG SI DI SOL (MG AS (UM, S- VED /L MG)	SODIU DIS- SOLVE (MG, AS 1	ED /L NA)	SODIUM PERCENT (00932)
OCT 05		1045	6	.1	18	370	-		13.0	1	1.0									- 22
NOV 23		1340	11		25	590	-		4.5		1.0									
JAN 07	- 6	1310	1	.5	4	100	_	-	12.0		0.0									
FEB 24		1120	3	.9	29	900	_		-8.0		0.5									
MAR 07		1230	86		12	720	8.0	2	2.0		1.0		230	41		31		290		71
25		1020	128			770	-		4.0		0.5			4.		,		2,0		
MAY 26		1035	8	.3	31	100	-	- 2	29.5	2	1.0									
JUL 07		0950	9	.3	29	900	8.4		17.0	2	3.5		360	50		56		580		77
AUG 15	- 9	1235	0	.91	32	280	_		35.5	2	6.5									
DATE	S	ODIUM AD- ORP- TION ATIO 0931)	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALKA LINIT LAF (MG/ AS CACC	TY S 3 'L)3) /	SULFAT DIS- SOLVE (MG/L AS SO4	E RII DIS D SOI (MC	LO- DE, S- LVED G/L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703)	OF TI- TS, S- VED /L)	SOLII SOLV (TON PER DAY	S- MED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 07		9	17		330		560	(5.9	O	.40	8	.1	1	200	1	150	279		1.63
JUL 07		14	12		610	-	1000	8	3.5	0	.60	8	.0	2	110	2	100	53	.3	2.87
	DATE	SO (U AS	SENIC DIS- DLVED JG/L B AS) OOO)	DI	B)	IRON DIS SOLV (UG/ AS I	ED L EE)	LEAD, DIS- SOLVED (UG/L AS PB) D1049)	SO (U AS	HIUM DIS- DLVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY IS- LVED G/L HG) 890)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
MAR 07 JUL			1		270		130	<1		32		110		0.2		1		1		560
			3		290		30	<1		60		30		<1.0		4		<1		1100

06339560 BRUSH CREEK NEAR BEULAH, ND

LOCATION.--Lat 47°10'43", long 101°47'05", in NW1/4SW1/4NW1/4 sec.25, T.143 N., R.88 W., Mercer County, Hydrologic Unit 10130201, on right bank 60 ft upstream from bridge on State Highway 49, and 6 mi south of Beulah.

DRAINAGE AREA .-- 23.92 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1974 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,948 ft above National Geodetic Vertical Datum of 1929, from State Highway Department levels.

REMARKS.--Estimated daily discharges: Dec. 15 to Apr. 10. Records good except those for periods of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--14 years, 1.80 ft³/s, 1,300 acre-ft/yr; median of yearly mean discharges, 1.6 ft³/s, 1,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 940 ft³/s, Mar. 29, 1982, gage height, 8.40 ft, backwater from ice; maximum gage height, 9.26 ft, Mar. 21, 1978; no flow at times.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 50 ft3/s and maximum (*).

Date	Time	Discharge (ft3/s)	Gage Height (ft)	Date	Time	Discharge (ft ³ /s)	Gage Height (ft)
Mar 22	1815	*7 0	*a6 56				

No flow Jan. 9 to Feb. 24, Aug. 15-18 and 20-21. a - Backwater from ice.

		DISCHARGE,	IN CUBIC	FEET PE		, WATER AN VALUE		1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	•31 •30 •30 •30 •30	.66 .66 .67 .68 .62	.68 .66 .69 .69	.08 .07 .05 .04	.00 .00 .00	2.6 2.5 2.0 1.6 1.4	1.2 1.3 1.5 1.6	.76 3.2 2.8 1.7	.22 .29 .29 .21 .18	.21 .11 .09 .10	.03 .03 .03 .03	.03 .02 .02 .03
6 7 8 9	.30 .31 .33 .33	.62 .62 .63 .66	.70 .73 .73 .73	.03 .02 .01 .00	.00 .00 .00	1.3 1.2 1.0 .94	1.4 1.5 1.3 1.2	1.3 1.3 1.9 2.0	.15 .15 .15 .15	.21 .35 .20 .14	.02 .02 .02 .02 .01	.02 .02 .02 .02
11 12 13 14 15	.36 .38 .44 .41	.66 .66 .67 .69	.79 .75 .71 .64	.00 .00 .00 .00	.00 .00 .00	.80 .50 .30 .20	1.0 1.1 .87 .88	1.4 1.0 .92 .82 .69	.13 .16 .16 .17 .13	.07 .07 .06 .06	.01 .01 .02 .01	.03 .04 .04 .04
16 17 18 19 20	•46 •52 •55 •55	.70 .66 .63 .66	.53 .47 .42 .40	.00 .00 .00 .00	.00 .00 .00	.10 .09 .10 .12	.92 .90 .89 .90	.65 .63 .74 .62	.13 .13 .13 .10	.05 .05 .05 .04	.00 .00 .00 .01	.03 .03 .05 .05
21 22 23 24 25	.59 .64 .62 .62	.61 .71 .73 .73	•37 •35 •32 •29 •28	.00 .00 .00 .00	.00 .00 .00 .00	1.0 5.0 4.0 3.0 2.0	.92 .87 .86 .89	.53 .51 .51 .46	.07 .07 .08 .05	.04 .03 .03 .03	.00 .01 .01 .01	.05 .04 .05 .04
26 27 28 29 30 31	.72 .63 .88 .73 .71	.73 .73 .75 .77 .73	.26 .24 .22 .20 .15	.00 .00 .00 .00	.02 .10 1.0 2.0	1.5 1.4 1.3 1.2 1.2	.86 .85 .84 .84	•33 •31 •38 •35 •28 •22	.06 .05 .06 .06	.03 .03 .02 .02 .02	.01 .02 .02 .02 .02	.05 .05 .11 .07
TOTAL MEAN MAX MIN AC-FT	15.33 .49 .88 .30 30	20.34 1 .68 .77 .61 40		0.33 .011 .08 .00	3.13 .11 2.0 .00 6.2	40.65 1.31 5.0 .09 81	31.47 1.05 1.6 .81 62	.22 .60		2.62 .085 .35 .02 5.2	0.46 .015 .03 .00	1.18 .039 .11 .02 2.3

CAL YR 1987 TOTAL 898.22 MEAN 2.46 MAX 140 MIN .10 AC-FT 1780 WTR YR 1988 TOTAL 165.41 MEAN .45 MAX 5.0 MIN .00 AC-FT 328

215

KNIFE RIVER BASIN

06339560 BRUSH CREEK NEAR BEULAH, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

DATE	TIME	STREA FLOW INSTA TANEO (CFS	M- CI N- DU DUS AN	E- FIC N- CT- CE /CM)	PH (STANI ARD UNITS) (00400	AI (DEG	RE R C)	TEMPER ATURE WATER (DEG (E ? C)	XYGEN DIS- SOLVE (MG/L 00300	D SATI	S- VED R- NT UR- ON)	HARI NESS TOTA (MG, AS CACO	S AL /L	CALCI DIS- SOLV (MG/ AS (/ED /L CA)	MAGN SIU DIS SOLV (MG/ AS M	M, ED L	SODIU DIS- SOLVE (MG/ AS N	D L A)
OCT 08	1108	0.	33	1930	8.0	07 1	1.0	9	.0	10.	0	88		570	100		77		260	
NOV															100					
23 JAN	1019	0.	74	2040	8.0		5.0	3.	.0	10.	9	78								
07 MAR	1336	0.	02	2490	7.5	56 -	5.5	0.	.0	4.	8	33								
01 30 APR	1127 1215			1240 940			3.0 4.0		.0	10.		77	2	250	46		33		120	
14	1059	0.	91	1750	8.	12 1	0.0	8.	.0	9.	5	81								
JUN 02 JUL	1031	0.	30	2140	7.9	98 2	7.5	20	.5	4.	7	53	(540	110		88		310	
07	1035	0.	35	2100	8.	37 2	7.5	22.	.0	2.	7	31								
DAT		SODIUM PERCENT (00932)	SODIU AD- SORP- TION RATIO (00931	М	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	AS	ULFATE DIS- SOLVED (MG/L S SO4) DO945)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	So (1	LICA, IS- OLVED MG/L AS IO2) 0955)	RE AT D	LIDS, SIDUE 180 DEG. C DIS- SOLVED MG/L)	SUM CON TUE SO (M	IDS, I OF ISTI- ENTS, DIS- DLVED IG/L)	SC (T	JIDS, DIS- DLVED CONS PER (2-FT) 0303)	
OCT																				
08 MAR		49	5		9.4	493	6	510	9	•5	0.30		12		1440		1370		1.96	
30 JUN		50	3		10	232	2	270	6	.4	0.20		9.4		645		635		0.88	
02		51	5		8.2	546	7	710	5	.3	0.50	10	14		1550		1570		2.11	
DAT		SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO GEN, NO2+NO DIS- SOLVE (MG/L AS N) (00631	3 D	NITRO- GEN, MMONIA TOTAL (MG/L AS N) 00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PH	PHOS- HOROUS TOTAL (MG/L AS P) DO665)		OUS S- VED /L P)	ARSENIC TOTAL (UG/L AS AS) (01002)	So (SENIC DIS- DLVED UG/L S AS) 1000)	E (A	ERYL- JUM, OTAL ECOV- RABLE UG/L S BE)	DI SC (U AS	CRYL- CUM, CS- DLVED IG/L B BE)	SC (U	PRON, DIS- DLVED JG/L B) O20)	
OCT																				
08 MAR		1.28	<0.10	0	0.040	0.60		0.040	<0.	010									340	
30		2.04	0.19	0	0.140	1.3		0.170	0.	100	1		1		<10		<0.5		130	
02		1.26	<0.10	0	0.060	0.80		0.100	0.	060	144								380	
DAT		CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CADMIU DIS- SOLVE (UG/L AS CD	M D	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 01034)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	5	OPPER, DIS- SOLVED (UG/L AS CU) O1040)	IRO DI SOL (UG AS	S- VED /L FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	So (EAD, DIS- DLVED UG/L S PB) 1049)	N S (A	ANGA- IESE, DIS- SOLVED UG/L S MN)	TO RE ER (U	CCURY OTAL CCOV- ABLE IG/L 5 HG)	SC (U	CURY DIS- DLVED IG/L HG) 890)	
OCT										77					100					
08 MAR				-						73					98		 '0 10		<0.1	
JUN		<1		1	<1	1		4		210	<5		<5			,	0.10			
02			10-	-						40					340					

216

KNIFE RIVER BASIN

O6339560 BRUSH CREEK NEAR BEULAH, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CYANIDE TOTAL (MG/L AS CN) (00720)	PHENOLS TOTAL (UG/L) (32730)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 08				- 22	-		11			30	0.03
MAR											
30	1	4	<1	<1	10	10	14	<0.010	5	15	0.05
JUN											
02							13			13	0.01

06340000 SPRING CREEK AT ZAP, ND

LOCATION.--Lat 47°17'10", long 101°55'31", in SW1/4 sec.14, T.144 N., R.89 W., Mercer County, Hydrologic Unit 10130201, on right bank 250 ft downstream from Burlington Northern Railway bridge in Zap, and 9 mi upstream from mouth.

DRAINAGE AREA .-- 549 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March to September 1924, October 1945 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,819.39 ft above National Geodetic Vertical Datum of 1929.

Mar. 4 to Sept. 30, 1924, nonrecording gage at site 250 ft upstream at different datum. Oct. 1, 1945, to Sept. 30, 1947, nonrecording gage 250 ft upstream at datum 1.12 ft higher.

REMARKS.--Estimated daily discharges: Nov. 6 to Apr. 13 and June 2 to Sept. 30. Records good except those for periods of estimated daily discharges, which are fair. Flow slightly regulated by Lake Ilo, 56 mi upstream, capacity 7,130 acre-ft.

AVERAGE DISCHARGE.--43 years, 43.4 ft³/s, 31,440 acre-ft/yr; median of yearly mean discharges, 41 ft³/s, 29,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,130 ft³/s, Apr. 7, 1952, gage height, 20.03 ft; maximum gage height, 20.70 ft, Mar. 15, 1972; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known occurred in about 1902, from ice jam. Floods of February 1913 and March 1943 reached a stage of about 20 ft and 19.5 ft, respectively, from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage Height (ft)
Feb. 29		a*120	a5.63				

Minimum daily discharge, 0.80 ft^3/s , Feb. 11,12. a - Backwater from ice.

			DISCHA	RGE, IN	CUBIC FEET	PER SECON		YEAR OCT	OBER 1987	TO SEPTEM	MBER 1988	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 11 13 12 11	13 13 13 13 12	9.2 9.1 9.0 9.0 8.9	2.0 1.5 1.0 .93	.94 .90 .85 .85	85 70 55 52 47	22 24 26 25 22	16 26 28 28 34	9.0 9.0 8.6 8.4 7.6	9.8 9.0 8.0 7.2 9.0	3.1 3.1 3.1 3.1 3.2	3.3 3.3 3.3 3.3 3.3
6 7 8 9	11 11 11 11 11	12 12 12 12 12	8.8 8.7 8.6 8.6 8.4	.88 .89 .90	.85 .85 .85 .85	38 33 32 31 25	23 22 20 19	28 24 24 28 24	7.0 6.6 6.4 6.2 5.8	10 11 11 16 13	3.1 3.1 3.1 3.1 3.1	3.4 3.5 3.4 3.3 3.1
11 12 13 14 15	11 11 11 11 11	12 12 12 12 12	8.0 7.9 7.8 7.6 7.6	.93 .95 .98 1.0	.80 .80 .82 .84	17 12 11 10 10	18 19 19 19	25 24 20 18 17	5.6 5.6 5.6 6.6 7.4	10 8.4 8.0 7.4 6.4	3.0 2.9 2.9 2.9 3.0	3.1 3.8 4.1 4.1 4.5
16 17 18 19 20	12 12 12 12 12 13	11 11 11 11 10	7.4 7.4 7.2 7.0 6.7	1.1 1.0 1.0 1.0	.90 .95 1.0 1.0	11 13 15 17 20	19 18 18 17 16	17 16 14 13	7.4 7.4 7.2 6.6 5.8	6.0 5.2 5.2 5.2 5.0	3.5 3.3 3.1 3.1 3.1	5.2 5.2 6.6 6.2 5.6
21 22 23 24 25	12 12 12 13 13	10 10 10 10	6.4 6.1 5.9 5.7 5.7	1.0 .96 .96 .94	1.1 1.2 1.5 2.0 7.0	25 31 52 63 50	16 16 16 16	13 13 12 11	5.6 5.4 4.7 4.7	5.4 5.4 4.6 4.3 4.3	3.1 3.1 3.1 3.1 3.0	6.2 6.2 7.2 6.8 6.4
26 27 28 29 30 31	13 13 13 14 13	10 9.6 9.5 9.4 9.3	5.6 5.0 4.5 4.0 3.2 2.5	.90 .90 .94 1.0 1.0	19 58 60 70	43 45 32 27 25 23	15 16 15 15 15	11 11 10 10 9.5 9.3	4.0 4.0 3.7 3.7 6.1	4.3 4.0 3.8 3.6 3.4 3.1	3.0 3.0 3.0 3.2 3.3	6.0 6.0 7.0 7.4 7.4
TOTAL MEAN MAX MIN AC-FT	371 12.0 14 11 736	335.8 11.2 13 9.3 666	217.5 7.02 9.2 2.5 431	31.30 1.01 2.0 .88 62	237.51 8.19 70 .80 471	1020 32.9 85 10 2020	560 18.7 26 15 1110	557.8 18.0 34 9.3 1110	186.2 6.21 9.0 3.7 369	217.0 7.00 16 3.1 430	95.8 3.09 3.5 2.9 190	148.2 4.94 7.4 3.1 294

CAL YR 1987 TOTAL 25381.1 MEAN 69.5 MAX 2650 MIN 2.5 AC-FT 50340 WTR YR 1988 TOTAL 3978.11 MEAN 10.9 MAX 85 MIN .80 AC-FT 7890

06340000 SPRING CREEK AT ZAP, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969-70, 1974 to current year.

DATE	,	rime	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61	CON DUC ANC (US/	IC T- E CM)	PH (STANI ARD UNITS)	AI (DEG	RE R C)	TEMPI ATUI WATI (DEG (OOO	RE ER C)	HARD NESS TOTA (MG/ AS CACO	L 'L (3)	CALCI DIS- SOLV (MG/ AS C	ED L	MAGNI SIUI DIS- SOLVI (MG/ AS MI (0092	M, ED L	SODIUM DIS- SOLVED (MG/L AS NA (00930	()	SODIUM PERCENT (00932)
OCT	,	0907	11	1	800			9.5		9.0								_	
NOV VON																			
25 JAN	(0842	10	1	880		-	1.5		0.5								-	170
08 FEB		1023	0.89	9 2	750			8.0		0.0								-	
25 MAR	(0948	6.7	2	150		-	5.0		0.5								-	
01		1313	86	1	080		-	3.0		0.0								-	
31 APR	(0851	23	1	260	8.	34	3.0		0.5	3	360	68		46		150		47
14	(0919	18	1	380		-	7.0		7.5							-	-	
JUN 02		0900	8.9	2	010		2	7.5	2	0.0								-	
JUL 07		0847	10	1	750		2	6.0	2	4.5								-	
AUG		0850	3.1	4	710	8.	20 4	8.5	2	2.0	-	360	52		56		290		63
18		0850	2.1		110	0.)	0.5	2	۷.۱)	-	000	16				2,0		0,
DATE	S	ODIUM AD- ORP- TION ATIO 0931)	POTAS SIUM DIS- SOLVE (MG/L AS K) (00935	, LINI LA D (MG AS CAC	TY B /L	SULFA' DIS- SOLV (MG/ AS SO (0094)	DIS ED SOL (MC	JE, JED JED JL CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIO DIS- SOLV (MG, AS SIO2 (0095	/ED /L	RESIDAT 18 DEG. DISSOLV (MG/	OUE 30 C 3- VED /L)	SOLID SUM O CONST TUENT DIS SOLV (MG/	FI-S, ED L)	SOLIDS DIS- SOLVE (TONS PER DAY)	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR			10	268		420		3.7	0	.30	11			382	Q	77	54.		1.20
31 AUG		4										2							
18		7	9.2	430		570	12	2	0	.40	6	•7	12	280	12	70	10.7		1.74
	DATE	SC (U	DIS- DLVED JG/L S AS)	BORON, DIS- SOLVED (UG/L AS B) 01020)	SO (U AS	ON, DIS- DLVED IG/L FE) O46)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	SC (U	THIUM DIS- DLVED JG/L S LI) 1130)	NE SO (U AS	NGA- SE, VIS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U AS	CLYB- CNUM, DIS- DLVED JG/L S MO) O6O)	NI SO (U AS	LE- UM, DIS- DLVED IG/L SE) 145)	DI SOI (UC AS	RON- LUM, IS- LVED S/L SR) D8O)
	1		1	340		110	<1		44		110		0.1		1		2		1200
AUG 18	3		3	550		40	<1		80		60		0.1		2		<1		1400

06340500 KNIFE RIVER AT HAZEN, ND (National stream-quality accounting network station)

LOCATION.--Lat 47°17'07", long 101°37'18", in SW1/4SE1/4SE1/4 sec.18, T.144 N., R.86 W., Mercer County, Hydrologic Unit 10130201, on left bank at downstream side of highway bridge, 0.5 mi south of Hazen, and 3 mi upstream from Antelope Creek.

DRAINAGE AREA. -- 2,240 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October to November 1928, March 1929 to September 1933, August 1937 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1146: 1943. WSP 1279: 1930-31, 1932-33(M). WSP 1917: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,712.35 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 25, 1947, nonrecording gages at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 17 to Apr. 7. Records good except those for period of estimated discharges, which are poor. Slight regulation by Lake Ilo 81 mi upstream, capacity 7,130 acre-ft.

AVERAGE DISCHARGE.--55 years (1930-33, 1938-88), 179 ft³/s, 129,700 acre-ft/yr; median of yearly mean discharges, 160 ft³/s, 116,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 35,300 ft³/s, June 24, 1966, gage height, 27.01 ft; no flow at times in 1933. 1959. 1962.

EXTREMES OUTSIDE PERIOD OF RECORD.--According to local residents, the floods of 1943 and 1950 were not exceeded during the period 1884 to 1942.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 24		*450	ab*7.47				

Minimum daily discharge, 8.4 ft³/s, Aug. 24-29.

a - From highwater mark. b - Backwater from ice.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES SEP DAY OCT NOV DEC MAY JUN JUL AUG JAN FEB MAR APR 9.5 9.5 26 9.5 9.5 9.5 9.5 9.8 9.5 9.5 9.6 9.5 9.5 9.5 21 9.8 9.5 9.5 9.5 9.5 51 9.5 9.3 9.2 9.5 8.7 9.2 8.8 9.0 9.4 9.2 8.9 8.9 9.6 8.9 9.2 55 53 51 9.5 24 23 8.9 8.9 8.9 8.9 8.8 8.4 8.4 13 12 8.4 12 13 8.4 8.4 8.4 9.2 9.5 9.6 TOTAL 984.4 682.6 282.8 426.7 14.2 20.1 22.0 9.12 MEAN 38.2 46.9 30.6 33.9 67.0 12 8.4 9.6 8.7 MIN 9.0 AC-FT

CAL YR 1987 TOTAL 82182 MEAN 225 MAX 7980 MIN 15 AC-FT 163000 WTR YR 1988 TOTAL 16643.5 MEAN 45.5 MAX 400 MIN 8.4 AC-FT 33010

06340500 KNIFE RIVER AT HAZEN--CONTINUED (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1950, 51, 1969 to current year.

DATE	TIME	STREA FLOW INSTA TANEO (CFS (OOO6	, CON N- DUC US ANC) (US/	IC - PH T- (STA E AR CM) UNIT	ND- AT D A S) (DE	PER- URE IR G C)	TEMP ATU WAT (DEG (OOO	RE ER C)	TUI BII IT' (FTU)	D- Y)	XYGEN DIS- SOLVE (MG/L 00300	SOI , (PI CI D SAI) ATI	ION)	COLI- FORM, FECAL O.7 UM-MF (COLS. 100 ML (31625	TOC KF (CC / F	CREP- COCCI CCAL, AGAR OLS. PER (ML) (673)
OCT 06	1327	31	1	580 8	3.47	15.5	1	0.0			10.	1	90			
NOV 24	1100	49			3.48	9.0		1.0	0	.30	12.		89		0	110
JAN 07	1030	10				-7.5		0.0			9.		67		_	
FEB 23	1245	24			.97	-6.0		0.0	3	.9	9.		66	12	20	950
MAR 30	0908	140			3.40	2.0		1.0			11.		79		_	
APR 12	1053	68			3.55	15.5		0.5	12		10.		96	17	70	290
MAY 31	1436	30			3.46	31.0		6.5	12		7.		100		_	
JUL 05	1423	30			3.51	30.5		0.5			8.		119			
AUG 16	1019	10			3.28	29.0		4.0	17		7.		88	50	00	810
DATE	NE TO (M A CA	TAL G/L S CO3)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SOI PERO	DIUM CENT 932)	SOI T: RAT	DIUM AD- RP- ION FIO 931)	POTA SIU DIS SOLV (MG/ AS K	S- L M, W - T ED L M	ALKA- INITY AT WH OT IT FIELD G/L AS CACO3 00419)	BICAN BONAS WATI WH : FIEI MG/L HCO: (0045	TE H ER IT LD AS M	CAR- SONATE WATER WH IT FIELD IG/L AS CO3 (OO447)	
OCT 06												397		435	24	
NOV 24		430	83	53	320		62		7	8.	3	544		580	41	
JAN 07					- 22	8						959	1	170	C)
FEB 23		490	100	57	290		56		6	12		568		693	C)
MAR 30												287		341	5	j
APR 12		300	59	38	230		61		6	7.	9	352		415	7	
MAY 31												503		608	3	;
JUL 05												454		563	1	
AUG 16		350	59	49	290		64		7	7.	0	490		598	C)
DATE	DI SO (M AS	FATE S- LVED G/L SO4) 945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RES AT DEC D: SOI	IDS, IDUE 180 G. C IS- LVED G/L) 300)	SUM CONS TUEN DI SOI (MO	STI-	SOLID DIS SOLV (TON PER AC-F (7030	ED S	OLIDS, DIS- SOLVED (TONS PER DAY) 70302)	NITR:	N, ITE M S- VED /L N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	5
NOV												200				
FEB	54		11	0.60	9.7		1380		1350	1.		182		010	<0.100	
23 APR	58		10	0.40	18		1410		1400		92	91.4		010	0.270	
12 AUG	46		5.1	0.30	6.7		1010		1010			186	<0.0		<0.100	
16	52	0	8.3	0.40	13		1250		1240	1.	70	34.1	<0.0	010	<0.100)

06340500 KNIFE RIVER AT HAZEN--CONTINUED (National stream-quality accounting network station)

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (OO625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)
NOV										-
24 FEB	0.040	0.100	0.13	0.40	0.020	0.010	<0.010	<10	1	64
23 APR	0.320	0.290	0.37	1.0	0.100	0.060	0.030	<10	1	77
12 AUG	0.020	0.010	0.01	<0.20	0.020	<0.010	<0.010	<10	1	49
16	0.030	0.050	0.06	1.3	0.100	0.030	<0.010	<10	3	82
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
NOV	1700 - 20							-4	lane.	de la
24 FEB	<0.5	<1	<1	<3	3	11	<5	60	91	<0.1
23	<0.5	<1	3	<3	5	130	<5	66	320	<0.1
APR 12 AUG	<0.5	<.1	<1	<3	3	12	<5	41	66	0.1
16	<0.5	<1	<1	<3	1	8	<5	58	81	0.1
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
NOV										
24 FEB	<10	3	<1	<1.0	1300	<6	5	42	5.5	59
23 APR	<10	<1	<1	<1.0	1500	<6	24	118	7.6	21
12	<10	3	<1	1.0	900	<6	<3	65	12	89
16	<10	3	<1	<1.0	1100	<6	7	55	1.5	96

06340700 MISSOURI RIVER NEAR STANTON, ND

LOCATION.--Lat 47°17'14", long 101°20'25", in SW1/4 sec.16, T.144 N., R.84 W., McLean County, Hydrologic Unit 10130101, on right bank 3 mi southeast of Stanton, 0.1 mi below Ft. Clark irrigation pumping station, 0.4 mi above the United Power Association power plant, and at mile 1,372.

DRAINAGE AREA. -- 182,000 mi², approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD .-- October 1959 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,650.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Sept. 30, 1964, at datum 50.00 ft lower.

REMARKS .-- Stage regulated completely by releases from Garrison Dam (station 06338490) 18 mi upstream.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 24.56 ft, Feb. 22, 1965; minimum daily recorded, 9.72 ft, Apr. 21, 1987.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

					111	AN VALUE						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11.35	10.46	12.32	13.01	16.85			12.11	12.41	12.29	11.95	12.05
2	11.68	10.87	12.87	12.40	16.49			12.06	12.30	12.29	11.94	11.84
3	11.57	10.76	12.60	12.14	16.72			11.93	11.95	12.30	11.93	12.00
4	11.62	10.25	12.72	12.89	16.95			11.95	12.23	12.29	11.96	11.96
5	11.40	10.88	12.83	15.78	17.18			11.99	12.37	12.31	11.94	11.87
6	11.26	10.58	12.66	17.60	17.37			12.00	12.40	12.31	11.97	11.93
7	10.91	10.66	12.82	17.21	17.17			12.04	12.37	12.30	11.84	11.45
8	10.45	10.44	12.62	17.29	17.58			11.97	12.24	12.28		11.18
9	10.65	10.66	12.69	17.08	17.31			12.08	12.32	12.31		11.09
10	10.74	10.62	12.50	16.73	17.23			12.21	12.28	12.30		11.23
11	10.74	10.46	12.67	16.08				12.21	12.39	12.30		11.05
12	10.47	10.61	12.57	16.35				12.41	12.23	12.33	11.98	11.07
13	10.60	10.86	12.48	16.59				12.55	12.35	12.29	11.96	11.04
14	10.54	10.43	12.67	16.32				12.08	12.22	12.36	12.08	11.30
15	10.68	10.37	12.94	16.29			12.27	12.10	12.29	12.30	11.96	11.04
16	10.78	10.28	12.78	16.35			12.14	12.29	12.29	12.23	12.03	11.26
17	10.64	10.55	12.64	16.12			12.18	12.44	12.33	12.24	12.00	10.85
18	10.71	10.59	12.58	15.99			11.93	12.37	12.32	12.23	12.00	10.57
19	10.47	10.44	12.56	16.05			12.06	12.18	12.27	12.31	12.03	10.47
20	10.90	10.65	12.54	16.15			12.16	12.07	12.32	12.25	11.87	10.36
21	10.68	10.65	12.73	16.02			12.18	12.36	12.43	12.34	11.89	10.22
22	10.58	10.57	12.79	16.13			12.16	12.34	12.22	12.27	11.94	9.87
23	10.76	10.63	12.56	16.15			12.10	12.37	12.27	12.29	11.86	10.14
24	10.67	10.41	12.55	16.25			12.06	12.41	12.36	12.28	12.02	9.90
25	10.28	11.33	12.28	16.65			11.66	12.27	12.26	12.29	12.04	10.02
26	10.61	11.65	12.99	16.46			12.35	12.44	12.28	12.32	12.00	10.01
27	10.55	11.68	12.38	16.34			12.16	12.24	12.26	12.33	11.92	9.97
28	10.58	11.75	12.78	16.55			12.01	12.41	12.29	12.30	11.80	9.98
29	10.58	11.62	12.77	16.54			12.12	12.37	12.32	12.20	12.23	9.88
30	10.43	11.91	12.66	16.53			12.15	12.41	12.37	11.97	12.03	10.01
31	10.88		12.33	16.03				12.39		11.93	11.99	
MEAN	10.80	10.79	12.64	15.94				12.23	12.30	12.27		1085
MAX	11.68	11.91	12.99	17.60				12.55	12.43	12.36		12.05
MIN	10.28	10.25	12.28	12.14				11.93	11.95	11.93		9.87

MISSOURI RIVER MAIN STEM

06340900 MISSOURI RIVER NEAR HENSLER, ND

LOCATION.--Lat 47°16'45", long 101°11'03", in SW1/4 sec.22, T.144 N., R.83 W., McLean County, Hydrologic Unit 10130101, on left bank about 7.5 mi west of Washburn, and at mile 1,362.

DRAINAGE AREA. -- 183,000 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD .-- May 1959 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,640.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Sept. 30, 1964, at datum 40 ft lower.

REMARKS.--Stage regulated by releases from Garrison Dam (station 06338490) 28 mi upstream.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily gage height recorded, 27.77 ft, Mar. 20, 1965; minimum daily recorded, 13.65 ft, June 04, 1986.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

						DAN TABOB	•					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15.63 15.88 15.76 15.82 15.69	14.75 14.95 14.80 14.51 14.98	16.52 17.04 16.86 16.99 17.07	17.58 17.15 16.41 17.42	20.40 20.52 20.94 20.58	17.64 17.40 17.57 17.38 17.44	16.75 16.62 16.72 16.71 16.59	16.35 16.37 16.13 16.15 16.18	16.67 16.52 16.19 16.43 16.55	16.57 16.57 16.59 16.59 16.61	16.35 16.37 16.34 16.37 16.36	16.54 16.34 16.41 16.38 16.36
6 7 8 9	15.62 15.25 14.72 14.85 14.97	14.86 14.91 14.72 14.88 14.88	16.92 16.96 16.96 16.89 16.84	21.53 21.84 21.75 21.60	21.10 21.08 21.51 21.30 21.19	16.74 16.54 16.76 16.83 16.82	16.59 16.68 16.53 16.41 16.37	16.16 16.14 16.19 16.22 16.33	16.61 16.57 16.54 16.52 16.49	16.62 16.62 16.58 16.62 16.60	16.38 16.30 16.36 16.32 16.52	16.37 15.96 15.83 15.67 15.76
11 12 13 14 15	14.97 14.77 14.87 14.83 14.91	14.73 14.87 15.03 14.80 14.73	16.93 16.74 16.74 16.94 17.02	21.04 21.23 21.45 21.20 21.10	21.25 21.46 21.41 21.02	16.76 16.91 16.71 16.76 16.45	16.01 16.43 16.40 16.45 16.49	16.38 16.41 16.60 16.45 16.29	16.58 16.51 16.54 16.50 16.53	16.59 16.63 16.57 16.66 16.64	16.44 16.39 16.34 16.44 16.39	15.66 15.67 15.58 15.80 15.64
16 17 18 19 20	15.01 14.92 14.88 14.74 15.09	14.50 14.80 14.90 14.69 14.90	17.06 16.87 16.78 16.81 16.78	21.21 20.88 20.68 20.65 20.71	21.31 21.41 21.45 21.32 21.26	16.67: 16.73 16.46 16.66 16.75	16.42 16.45 16.10 16.26 16.36	16.40 16.54 16.58 16.52 16.14	16.52 16.57 16.58 16.54 16.54	16.56 16.57 16.57 16.62 16.58	16.46 16.40 16.44 16.44 16.34	15.78 15.58 15.28 15.20 15.09
21 22 23 24 25	14.89 14.73 14.73 14.77 14.50	14.95 14.86 14.97 14.65 15.38	16.96 17.07 16.82 16.71 16.66	20.51 20.55 20.60 20.70 20.80	21.05 20.72 21.49 22.39 22.53	16.56 16.40 16.67 16.72 16.57	16.38 16.35 16.39 16.26 15.74	16.53 16.52 16.53 16.57 16.49	16.65 16.52 16.53 16.62 16.57	16.68 16.62 16.64 16.62 16.63	16.32 16.33 16.34 16.43 16.44	15.00 14.66 14.76 14.69 14.70
26 27 28 29 30 31	14.85 14.84 14.82 14.79 14.61 14.87	15.87 15.97 16.03 15.92 15.98	17.11 16.65 17.09 16.84 16.97 16.64	20.73 20.72 20.90 20.92 21.14 20.50	21.18 20.27 18.66 18.29	16.84 16.69 16.75 16.24 16.92 16.63	16.59 16.44 16.07 16.27 16.31	16.58 16.51 16.53 16.56 16.58 16.59	16.53 16.57 16.56 16.59 16.67	16.66 16.68 16.66 16.58 16.38	16.45 16.40 16.29 16.63 16.49 16.38	14.72 14.68 14.72 14.61 14.75
MEAN MAX MIN	15.02 15.88 14.50	15.03 16.03 14.50	16.88 17.11 16.52	==	==	16.81 17.64 16.24	16.40 16.75 15.74	16.40 16.60 16.13	16.54 16.67 16.19	16.60 16.68 16.37	16.40 16.63 16.29	15.47 16.54 14.61

06340905 COAL LAKE COULEE NEAR HENSLER, ND

LOCATION.--Lat 47°18'09", long 101°07'52", in SW1/4SE1/4SE1/4 sec.12, T.144 N., R.83 W., McLean County, Hydrologic Unit 10130101, on right bank 100 ft upstream from bridge, on county road 4.5 mi west of Washburn, 3.6 mi northwest of Hensler, and 0.3 mi upstream from mouth.

DRAINAGE AREA .-- 70.5 mi2, of which 53.3 mi2 is probably noncontributing, revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 1,690 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- Estimated daily discharges: Nov. 4 to Mar. 31. Records good except those for period of estimated discharges, which are poor.

AVERAGE DISCHARGE.--11 years, 2.61 ft³/s, 1,890 acre-ft/yr; median of yearly mean discharges, 2.2 ft³/s, 1,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 926 ft³/s, Aug. 20, 1980, gage height, 8.61 ft, from rating extended above 600 ft³/s on basis of a culvert computation of peak flow; no flow for many months each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 40 ft3/s and maximum (*).

Date	Time	Discharge (ft ³ /s)	Gage Height (ft)	Date	Time	Discharge (ft ³ /s)	Gage Height (ft)
Mar. 31	1000	a*8.0	*1.66				

No flow for several months. a - Backwater from ice.

		DISCHARGE,	IN CUBIC	FEET	PER	SECOND, MEAN	WATER VALUE	YEAR ES	OCTOBER	1987 T	O SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN		FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	.00	.02	.00	.00		.00	.18			2.8	.14	.00	.00	.00
2	.00	.03	.00	.00		.00	.13			4.4	.12	.00	.00	.00
2	.00	.03	.00	.00		.00	.10			3.1	.04	.00	.00	.00
4	.00	.02	.00	.00		.00	.08			2.9	.00	.00	.00	.00
5	.00	.01	.00	.00		.00	.07		2.4	2.8	.00	.00	.00	.00
6	.00	.01	.00	.00		.00	.05			2.8	.00	.00	.00	.00
7	.00	.01	.00	.00		.00	.03			2.7	.00	.00	.00	.00
8	.00	.01	.00	.00		.00	.02			2.5	.00	.00	.00	.00
9	.00	.01	.00	.00		.00	.03			2.1	.00	.00	.00	.00
10	.00	.01	.00	.00		.00	.02		4.5	1.9	.00	.00	.00	.00
11	.00	.01	.00	.00		.00	.01		4.6	1.9	.00	.00	.00	.00
12	.00	.01	.00	.00		.00	.00		5.1	1.7	.00	.00	.00	.00
13	.00	.00	.00	.00		.00	.00		5.1	1.5	.00	.00	.00	.00
14	.00	.00	.00	.00		.00	.00		4.6	1.5	.00	.00	.00	.00
15	.00	.00	.00	.00		.00	.00		4.6	1.5	•00	.00	.00	.00
16	.00	•00	.00	.00		.00	.00		4.8	.91	.00	.00	.00	.00
17	.00	.00	.00	.00		.00	.00		4.7	1.0	.00	.00	.00	.00
18	.00	.00	.00	.00		.00	.00		4.4	1.2	.00	.00	.00	.00
19	.00	.00	.00	.00		.00	.01		4.2	1.2	.00	.00	.00	.00
20	.00	.00	.00	.00		.00	.05		4.1	.89	.00	.00	.00	.00
21	.00	•00	.00	.00		.00	.10		3.8	.87	.00	.00	.00	.00
22	.00	.00	.00	.00		.00	.25		3.5	.77	.00	.00	.00	.00
23	.0	.00	.00	.00		.00	.35		3.2	.69	.00	.00	.00	.00
24	.0	.00	.00	.00		.01	.30		3.0	.59	.00	.00	.00	.00
23 24 25	.00	.00	.00	.00		.06	.25		2.4	.51	.00	.00	.00	.00
26	.00	•00	.00	.00		.13	.60		2.6	.45	.00	.00	.00	.00
27	.00	.00	.00	.00		.30	1.0		2.7	.37	.00	.00	.00	.00
28	.0	.00	.00	.00		.27	3.0		2.8	.35	.00	.00	.00	.00
29	.01	.00	.00	.00		.21	4.5		2.8	.29	.00	.00	.00	.00
30	.01	.00	.00	.00			4.0		2.8	.20	.00	.00	.00	.00
31	.01		.00	.00			6.0			.17		.00	.00	
TOTAL	0.03	0.18	0.00	0.00		.98	21.13	10	5.6	6.36	0.30	0.00	0.00	0.00
MEAN	.001	.006	.00	.00		.034	.68	7	.52	1.50	.010	.00	.00	.00
MAX	.001	.03	.00	.00		.30	6.0	-	5.1	4.4	.14	.00	.00	.00
MIN						.00			2.4	.17	.00	.00	.00	.00
	.00	.00	.00	.00		1.9	.00		209	92	.6	.0	.00	.0
AC-FT	.06	•4	.0	.0		1.9	42		209	74	•0	.0	•0	••

CAL YR 1987 TOTAL 2021.95 MEAN 5.54 MAX 150 MIN .00 AC-FT 4010 WTR YR 1988 TOTAL 174.58 MEAN .48 MAX 6.0 MIN .00 AC-FT 346

COAL LAKE COULEE BASIN

06340905 COAL LAKE COULEE NEAR HENSLER, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (OOQ10)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
FEB									
25	1419	0.06	1220		15.0	0.0			
29	1251	0.21	640		9.0	0.5			
MAR		1000							
28	1229	3.0	1680	8.43	2.5	1.0	11.6	83	430
31	1324	6.6	1160		9.0	1.0			
APR	4544		4770	0.51	40.0	44 -			160
13 JUN	1514	5.3	1370	8.54	12.0	11.5	9.7	89	460
01	1241	0.14	1810	8.49	20.0	19.0	8.7	95	580
01	1441	0.14	1010	0.45	20.0	1,7.0	0.1	,,,	,,,,
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)
MAR									
28 APR	59	68	200	4	282	570	1190	27	2300
13 JUN	56	77	140	3	337	440	968	5	1100
01	84	89	230	4	525	560	1360	8	560

06341000 MISSOURI RIVER AT WASHBURN, ND

LOCATION.--Lat 47°17'20", long 101°02'15", in SE1/4SW1/4 sec.14, T.144 N., R.82 W., McLean County, Hydrologic Unit 10130101, on left bank near municipal water plant in Washburn, and at mile 1,355.

DRAINAGE AREA .-- 184,000 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- August 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,640.00 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1964, at datum 40 ft lower.

REMARKS .-- Stage regulated by releases from Garrison Dam (station 06338490) 35 mi upstream.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 22.76 ft, Jan. 11, 1964; minimum daily recorded, 9.73 ft, May 7, 1978.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11.60	10.74	12.13	13.54	16.99	14.23		11.98	12.23	12.09		11.96
2	11.79	10.71	12.57	13.40	17.00	13.73		12.07	12.12	12.07	11.95	11.76
3	11.69	10.96	12.50	12.35	17.18	13.67		11.77	11.87	12.07	11.77	11.79
4	11.76	10.46	12.58	14.08	17.26	13.40		11.76	12.02	12.07	11.78	11.77
5	11.63	10.86	12.66	16.63	17.27	13.27		11.79	12.14	12.09	11.79	11.79
6	11.60	10.79	12.56	17.41	17.54	12.47		11.80	12.19	12.08	11.80	11.77
7	11.24	10.86	12.53	17.49	17.32	12.19		11.74	12.15	12.11	11.73	11.37
8	10.78	10.69	12.61	17.72	17.67	12.30		11.78	12.12	12.05	11.76	11.25
9	10.91	10.69	12.51	17.69	17.47	12.35		11.85	12.10	12.08	11.79	11.06
10	10.93	10.78	12.54	17.56	17.44	12.36		11.92	12.09	12.06	11.85	11.10
11	10.96	10.64	12.54	17.06	17.34	12.22		12.02	12.14	12.06	11.85	11.04
12	10.81	10.81	12.37	17.13	17.37		11.77		12.09	12.10	11.81	11.04
13	10.84	10.86	12.40	17.34	17.58		12.02		12.10	12.04	11.75	10.97
14	10.89	10.74	12.55	17.21	17.59		12.03		12.09	12.11	11.83	11.15
15	10.84	10.64	12.56	17.18	17.10		12.06		12.08	12.10	11.81	11.04
16	10.97	10.35	12.68	17.38	17.32				12.07	12.02	11.87	11.14
17	10.91	10.62	12.51	17.17	17.31			12.16	12.12	12.02	11.80	11.01
18	10.91	10.79	12.43	17.02	17.25			12.20	12.12	12.02	11.84	10.66
19	10.75	10.54	12.47	17.02	17.14			12.16	12.08	12.06	11.85	10.52
20	11.01	10.75	12.45	17.11	17.24			11.80	12.07	12.04	11.76	10.49
21	10.95	10.80	12.57	16.96	17.23			12.13	12.14	12.11	11.75	10.37
22	10.82	10.72	12.70	16.95	17.21			12.15	12.06	12.07	11.74	9.99
23	10.93	10.82	12.49	17.01	16.85	12.16		12.16	12.04	12.08	11.75	10.06
24	11.02	10.51	12.39	17.13	16.58	12.23		12.19	12.11	12.06	11.82	10.04
25	10.49	11.07	12.42	17.20	17.16			12.15	12.09	12.07	11.83	10.05
26	10.90	11.63	12.67	17.22	17.29		12.07	12.19	12.04	12.10	11.86	10.04
27	10.81	11.74	12.37	17.19	17.17		12.08	12.15	12.08	12.13	11.80	10.03
28	10.77	11.78	12.71	17.24	15.83		11.69	12.12	12.03	12.10	11.71	10.05
29	10.76	11.69	12.46	17.17	15.05	11.82	11.91	12.17	12.09	12.01	12.00	9.95
30	10.52	11.68	12.60	17.37		12.35	11.94	12.19	12.18	11.82	11.94	10.07
31	10.63		12.35	16.95				12.21		11.78	11.80	
MEAN	11.01	10.89	12.51	16.71	17.13				12.09	12.05		10.84
MAX	11.79	11.78	12.71	17.72	17.67				12.23	12.13		11.96
MIN	10.49	10.35	12.13	12.35	15.05				11.87	11.78		9.95
	4 7											

227

06341410 TURTLE CREEK ABOVE WASHBURN, ND

LOCATION.--Lat 47°23'06", long 100°54'43", in NW14NE1/4NE1/4 sec.18, T.145 N., R.80 W., McLean County, Hydrologic Unit 10130101, on right bank 250 ft downstream from bridge on county highway, 8.5 mi northeast of Washburn, and 8.8 mi south of Turtle Lake.

DRAINAGE AREA .-- 350 mi2, approximately, of which 195 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1986 to current year.

GAGE .- - Water-stage recorder. Elevation of gage is 1,780 ft from topographic map.

REMARKS.--Estimated daily discharges: Oct. 9-11, 28 to Apr. 8, May 23 to June 8, Aug. 24, and Sept. 2-30.
Records fair except for periods of estimated daily discharge, which are poor. Water from the McClusky Canal is sometimes diverted into the stream at a point upstream from the gage.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 845 ft3/s, Mar. 21, 1987, gage height, 6.94 ft; no flow at times each year.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 20 ft3/s, Mar. 24, gage height, 2.79 ft; no flow for many days.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND, MEA	WATER N VALUE	YEAR OCTOBER	1987 I	O SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	1.8	.47	.20	.00	1.4	4.0	1.4	1.0	.00	.00	1.3
	14	2.0	.47	.15	.00	1.3	5.0	4.0	.77	.00	.00	1.2
2	13	1.8	.45	.12	.00	1.2		12	.50	.00	.00	1.1
,	13	1.5		.05	.00	1.1		12	.35	.00	.00	.90
4			-45							.00	.00	.50
5	12	1.4	.46	.00	.00	1.0	5.6	11	.25	.00	.00	•)0
6	11	1.3	.45	.00	.00	.95	5.5	8.9	.15	.00	.00	.10
7	14	1.2	.45	.00	.00	.80	6.0	8.5	.10	.00	.00	.02
8	14	1.0	.44	.00	.00	.80	7.0	7.9	.05	.00	.00	.00
9	10	.80	.44	.00	.00	.70	9.2	8.8	.00	.00	.00	2.5
10	10	.70	.48	.00	.00	.70	12	7.9	.00	.00	.00	2.3
11	9.0	.66	.45	.00	.00	.50	11	9.4	.00	.00	.00	2.0
12	7.9	.62	.40	.00	.00	.40		10	.00	.00	.00	1.5
				.00			8.1	8.9	.00	.00	.00	1.0
13	6.1	.56	.40		.00	.30			.00	.00	1.5	.80
14	5.4	.60	•39	.00	.00	.25	7.7	9.1				1.1
15	5.3	.56	•37	.00	.00	.23	7.5	8.1	.00	.00	13	1.1
16	4.8	.54	.35	.00	.00	.20	6.5	7.8	.00	.00	2.5	1.5
17	4.1	.54	.35	.00	.00	.15	5.6	8.1	.00	.00	2.2	3.0
18	4.0	.52	.35	.00	.00	.20	7.7	6.3	.00	.00	2.0	4.5
19	3.9	.52	.35	.00	.00	.25	6.1	5.7	.00	.00	2.7	4.8
20	4.2	.50	.35	.00	.00	.35	4.7	6.4	.00	.00	1.9	5.0
21	4.0	.54	.35	.00	.00	1.0	4.1	5.6	.00	.00	.87	4.0
22	4.1	.52	.35	.00	.00	2.0	3.5	4.4	.00	.00	.33	3.0
		.52	.33	.00	.00	5.0	3.2	3.7	.00	.00	.12	2.5
23	3.6						2.8	3.5	.00	.00	.03	2.0
24	3.4	.50	.31	.00		15					.73	3.0
25	3.2	•50	.30	.00	.05	14	3.5	3.0	.00	.00	.15	5.0
26	2.8	.48	.32	.00	.10	10	3.8	3.2	.00	.00	3.0	3.5
27	2.7	.52	.30	.00	.30	8.0	3.0	3.4	.00	.00	2.2	4.0
28	2.5	.50	.29	.00	1.6	7.0	2.4	3.0	.00	.00	2.4	4.5
29	2.3	.48	.28	.00	1.5	6.5	2.1	2.5	.00	.00	2.7	4.2
30	2.1	.48	.27	.00		5.4	1.6	2.0	.00	.00	4.0	3.5
31	1.9		.25	.00		4.5		1.5		.00	2.7	
momat	247 7	24.46	4 67	0 50	7 55	04 40	160 6 4	98.0	3.17	0.00	44.88	69.32
TOTAL	213.3			0.52		91.18					1.45	2.31
MEAN	6.88	.81		.017	.12	2.94		6.39	.11	.00		
MAX	15	2.0	.48	.20	1.6	15	12	12	1.0	.00	13	5.0
MIN	1.9	.48	.25	.00	.00	.15	1.6	1.4	.00	.00	.00	.00
AC-FT	423	48	23	1.0	7.0	181	334	393	6.3	.0	89	137

TOTAL 7433.50 MEAN 20.4 MAX 767 MIN .08 AC-FT 14740 TOTAL 828.35 MEAN 2.26 MAX 15 MIN .00 AC-FT 1640 CAL YR 1987 WTR YR 1988

06341410 TURTLE CREEK ABOVE WASHBURN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water year 1987 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (FTU) (00076)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT									
09	1032	10	1980	8.70	1.5	4.0	18	430	22
19 FEB	1132	0.52	2230	8.68	2.5	1.0	33	430	30
29	1035	1.5	1290		7.0	0.0			
MAR 28	1017	6.8	1600	8.94	4.0	1.0	3.1	280	18
APR 11	1028	12	1880	8.86		5.0	11		18
JUN					12.0			330	
02 AUG	1458	0.77	2300	9.18	29.0	25.0	31	450	31
18	1310	1.9	2260	8.79	26.0	22.0	6.0	430	38
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT			200						
09	91	340	61	7	33	830	360	13	0.30
19 MAR	87	360	63	8	24	890	360	18	0.20
28	58	280	67	7	16	567	340	11	0.20
APR 11	70	340	67	8	24	710	380	12	0.20
JUN 02	91	460	68	9	21	943	410	13	0.40
AUG 18	82	440	68	9	14	669	630	22	0.30
	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	BORON, DIS- SOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE)
DATE	(00955)	(70300)	(70301)	(70303)	(70302)	(00631)	(00671)	(01020)	(01046)
OCT	7.0	4470	4760	4.04	70 (10 100	0.050	900	E 10
09	3.8	1430	1360	1.94	38.6	<0.100	0.070	890	540
19 MAR	7.5	1520	1420	2.07	2.13	0.160	0.040	910	30
28 APR	11	1130	1080	1.54	20.7	<0.100	0.240	590	84
11	5.8	1310	1280	1.78	42.4	<0.100	0.110	730	54
JUN 02	8.6	1650	1600	2.24	3.43	<0.100	0.470	1200	40
AUG 18	28	1710	1660	2.33	8.77	<0.100	0.030	950	60
10	20	1710	1000	2.33	0.77	10.100	0.000	9,00	30

06341800 PAINTED WOODS CREEK NEAR WILTON, ND

LOCATION.--Lat 47°16'30", long 100°47'30", in SW1/4SW1/4 sec.23, T.144 N., R.80 W., McLean County, Hydrologic Unit 10130101, on right bank 600 ft upstream from county highway bridge, 7 mi upstream from Yanktonai Creek, and 8 mi north of Wilton.

DRAINAGE AREA.--427 mi², approximately, of which about 310 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1957 to September 1981, August 1982 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 1,760 ft, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 17 to Mar. 23 and Aug. 29-30. Records good except those for period Nov. 17 to Mar. 23, which are fair. Since the fall of 1982 Missouri River basin water has been diverted into the stream at a point several miles upstream.

AVERAGE DISCHARGE.--6 years (1983-88), 32.8 ft³/s, 23,760 acre-ft/yr; 24 years prior to the diversion of Missouri River water into the basin, (1958-81), 8.07 ft³/s, 5,850 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,050 ft³/s, Apr. 19, 1979, gage height, 9.64 ft; no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 72 ft3/s, Mar. 28, gage height, 4.93 ft; minimum daily discharge, 0.07 ft5/s, Sept. 10.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

MEAN VALUES DAY OCT NOV APR MAY JUN JUL AUG SEP DEC FEB MAR JAN 3.5 3.7 3.6 3.5 33 31 31 8.7 1.1 .69 34 31 29 .52 32 .11 .07 .74 33 33 34 35 36 1.0 36 1.1 31 .87 34 30 .73 .76 ·75 33 35 .75 31 .69 32 35 .54 .49 .47 .47 33 31 .38 7.6 .38 31 5.5 .39 .42 4.4 27 .42 3.4 75.56 TOTAL 880.8 821.3 17.0 28.5 29.5 30.8 2.52 MEAN 28.4 27.4 28.7 28.7 30.7 29.4 29.5 MAX .07 MIN 3.4 AC-FT

CAL YR 1987 TOTAL 17255.7 MEAN 47.3 MAX 920 MIN 3.4 AC-FT 34230 WTR YR 1988 TOTAL 9506.66 MEAN 26.0 MAX 54 MIN .07 AC-FT 18860

06341800 PAINTED WOODS CREEK NEAR WILTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-64, 1970 to current year.

	WAIER	STREAM- FLOW, INSTAN-	SPE- CIFIC CON- DUCT-	PH (STAND-	TEMPER- ATURE	TEMPER- ATURE	TUR- BID-	HARD- NESS TOTAL (MG/L	CALCIUM DIS- SOLVED
DATE	TIME	(CFS) (00061)	ANCE (US/CM) (00095)	ARD UNITS) (00400)	AIR (DEG C) (00020)	WATER (DEG C) (00010)	ITY (FTU) (00076)	AS CACO3) (00900)	(MG/L AS CA) (00915)
OCT 07	1447	34	1470	8.59	14.0	10.5	2.4	440	62
NOV 19	1351	29	1420	8.60	5.0	1.5	1.9	430	61
JAN 11	1040	33	1480		-4.0	0.0			
18 29	1204 1414	35 40	1240 1260		3.0 12.5	0.5	=	=	==
MAR 31	1436	26	1160	8.16	9.0	2.0	1.2	340	52
APR 11	1239	18	1280	8.32	13.0	8.5	5.1	400	61
JUN 01	1548	32	1380	8.31	24.0	23.0	14	440	67
JUL 06	1357	28	1360	8.42	32.0	28.0	7.4	400	55
AUG 15	1230	31	1230	8.28	30.0	24.5	1.1	400	51
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT	70	460						02.4	
07 NOV	70	160	43	3	15	248	500	17	0.40
19 MAR	68	160	44	3	14	254	470	20	0.50
31 APR	50	130	45	3	10	238	380	13	0.20
11 JUN	59	160	46	4	13	297	450	15	0.30
01 JUL	67	150	42	3	10	270	500	16	0.50
O6	65	150	45	3	1.0	237	470	16	0.40
15	66	150	44	3	10	240	470	16	0.40
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 07	7.2	1030	981	1.40	94.0	<0.100	<0.010	310	21
NOV 19	5.1	1000	951	1.36	79.4	<0.100	0.010	300	12
MAR 31	12	831	791	1.13	58.8	<0.100	0.120	230	99
APR 11	9.4	960	946	1.31	45.9	<0.100	0.030	280	24
JUN 01	7.9	989	981	1.35	85.4	<0.100	0.020	320	10
JUL 06	5.3	949	905	1.29	71.5	<0.100	0.030	280	6
AUG 15	5.9	933	914	1.27	79.4	<0.100	0.030	290	8

MISSOURI RIVER MAIN STEM

06342020 MISSOURI RIVER AT PRICE, ND

LOCATION.--Lat 47°04'47", long 100°55'55", in NW1/4 sec.34, T.142 N., R.81 W., Oliver County, Hydrologic Unit 10130101, on right bank 0.5 mi south of Price, and at mile 1,338.

DRAINAGE AREA .-- 185,000 mi2, approximately.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD .-- November 1959 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,620.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Sept. 30, 1964, at datum 20 ft lower.

REMARKS .-- Stage regulated by releases from Garrison Dam (station 06338490) 52 mi upstream.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height recorded, 30.12 ft, Jan. 22, 1967; minimum daily recorded, 17.68 ft, Apr. 22, 1987.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19.36	18.51	19.74	21.07	24.27	23.92	20.28	19.87	20.12	20.11	19.79	19.98
	19.32	18.42	20.21	21.77	24.59	23.78	20.23	19.96	20.05	20.06	19.83	19.90
2 3 4	19.36	18.59	20.35	22.02	24.65	23.87	20.22	19.72	19.93	20.06	19.81	19.85
4	19.41	18.33	20.31	23.10	24.77	23.92	20.31	19.67	19.89	20.06	19.82	19.87
5	19.34	18.43	20.39	23.22	24.86	24.26	20.19	19.69	20.02	20.08	19.84	19.90
6	19.29	18.48	20.36	24.62	25.05	23.73	20.11	19.71	20.10	20.07	19.83	19.84
7	18.99	18.46	20.23	24.96	25.02	22.37	20.19	19.67	20.10	20.12	19.84	19.62
8	18.59	18.36	20.39	25.10	25.16	21.69	20.10	19.72	20.06	20.04	19.77	19.43
9	18.58	18.33	20.23	25.18	25.17	21.31	20.01	19.74	20.01	20.06	19.86	19.20
10	18.54	18.41	20.32	25.06	25.12	20.96	19.83	19.80	20.02	20.04	19.86	19.17
11	18.63	18.32	20.24	24.68		20.55	19.59	19.95	20.05	20.03	19.94	19.19
12	18.52	18.41	20.14	24.45	25.07	20.64	19.81	19.93	20.05	20.05	19.89	19.13
13	18.47	18.46	20.15	24.64	25.24	21.51	19.86	20.12	20.00	20.04	19.82	19.13
14	18.54	18.50	20.24	24.68	25.35	22.21	19.88	20.20	20.06	20.06	19.86	19.19
15	18.43	18.29	20.22	24.60	24.95	21.66	19.93	19.89	20.02	20.10	19.91	19.22
16	18.56	18.06	20.44	24.69	25.10	21.01	19.94	19.90	20.02	20.04	19.91	19.24
17	18.56	18.24	20.27	24.61	25.11	20.64	19.90	20.05	20.06	20.01	19.87	19.25
18	18.49	18.42	20.18	24.41	25.06	20.26	19.64	20.13	20.09	20.01	19.88	18.91
19	18.43	18.29	20.20	24.36	24.96	20.23	19.71	20.10	20.06	20.04	19.92	18.69
20	18.50	18.36	20.19	24.43	25.03	20.28	19.77	19.79	20.02	20.06	19.87	18.68
21	18.60	18.43	20.23	24.37	25.05	20.14	19.84	19.96	20.08	20.09	19.84	18.57
22	18.50	18.40	20.39	24.32	25.02	20.09	19.83	20.07	20.08	20.09	19.80	18.29
23	18.50	18.42	20.24	24.38	24.76	20.18	19.91	20.07	20.00	20.10	19.83	18.23
24	18.60	18.27	20.11	24.47	24.43	20.29	19.78	20.08	20.06	20.08	19.83	18.28
25	18.29	18.43	20.22	24.45	24.91	20.17	19.49	20.09	20.06	20.09	19.88	18.20
26	18.38	19.16	20.22	24.60	25.21	20.29	19.74	20.07	20.01	20.10	19.94	18.20
27	18.40	19.43	20.24	24.61	25.11	20.28	19.99	20.11	20.05	20.14	19.89	18.19
28	18.36	19.45	20.34	24.59	24.65	20.31	19.67	20.03	20.01	20.13	19.80	18.19
29	18.40	19.43	20.18	24.58	24.06	20.04	19.78	20.10	20.03	20.06	19.89	18.16
30	18.32	19.35	20.36	24.73		20.20	19.85	20.09	20.15	19.92	20.03	18.20
31	18.52		20.33	24.58		20.25		20.14		19.83	19.89	
MEAN	18.67	18.55	20.25	24.24		21.32	19.91	19.95	20.04	20.06	19.86	19.00
MAX	19.41	19.45	20.44	25.18		24.26	20.31	20.20	20.15	20.14	20.03	19.98
MIN	18.29	18.06	19.74	21.07		20.04	19.49	19.67	19.89	19.83	19.77	18.16

06342260 SQUARE BUTTE CREEK BELOW CENTER, ND

LOCATION.--Lat 47°03'25", long 101°11'35", in SE1/4 sec.4, T.141 N., R.83 W., Oliver County, Hydrologic Unit 10130101, on right bank at southeast corner of farmyard, and 6 mi southeast of Center.

DRAINAGE AREA .-- 146 m12.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1965 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 1,865 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1 to Sept. 30. Records fair. Flow regulated by Nelson Lake 1.5 miles upstream beginning Aug. 24, 1967, capacity 5,000 acre-ft. The capacity of Nelson Lake was increased to 10,000 acre-ft in Aug. 1975.

AVERAGE DISCHARGE.--23 years, 11.8 ft3/s, 8,550 acre-ft/yr; median of yearly mean discharges, 13 ft3/s, 9,400

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,700 ft3/s, June 24, 1966, gage height, 14.35 ft; no flow Feb. 14-26, 1966.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, about 2.5 ft3/s, July 1, gage height, unknown; minimum daily, 0.80 ft3/s, Feb. 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT JUN JUL AUG SEP NOV DEC JAN FEB MAR APR MAY .90 1.6 2.5 1.1 .88 1.8 1.6 1.2 1.7 1.3 .85 1.7 2.2 1.4 1.8 1.6 1.0 .86 1.1 1.4 1.0 2.0 1.0 .85 1.5 1.5 1.8 1.9 1.0 -85 5 2.1 1.4 1.3 1.2 1.8 1.9 1.7 2.1 1.0 .85 6 1.4 2.0 1.0 1.2 1.7 2.0 1.6 2.0 1.0 1.2 2.0 1.0 2.2 1.6 1.0 .85 1.5 8 2.0 1.1 1.1 1.6 1.0 .85 1.9 1.2 1.2 1.2 1.0 2.0 1.0 1.6 1.0 .85 10 1.0 .86 1.8 .80 1.6 1.9 11 1.8 1.3 .90 1.6 1.0 1.0 .88 1.4 1.8 1.3 1.3 1.3 1.5 12 1.8 1.0 1.0 1.0 .90 1.7 .90 13 1.9 1.0 1.1 1.0 1.4 1.0 14 1.3 1.2 1.5 1.4 1.0 1.2 2.0 1.1 1.0 1.6 1.4 1.3 1.0 1.0 2.0 1.3 1.4 1.3 1.3 1.3 16 1.9 1.0 1.2 1.3 1.1 1.4 17 1.9 1.2 1.6 1.1 1.4 1.0 1.1 1.2 1.1 1.1 1.3 1.0 1.0 1.5 18 2.0 1.9 1.3 1.4 1.4 19 1.9 1.0 1.4 1.3 .98 1.0 1.8 1.8 1.2 21 1.8 1.2 1.8 1.3 .96 1.0 1.3 22 1.7 1.1 1.8 1.5 1.2 1.1 1.0 1.5 1.5 23 1.0 1.4 1.4 .98 24 .96 1.6 1.1 1.4 1.2 1.4 .95 .94 26 1.2 1.3 1.5 1.6 .94 .94 2.0 1.1 .92 1.6 1.4 1.1 1.1 27 1.6 1.2 1.9 1.6 1.4 1.1 28 1.6 1.2 1.8 1.0 .90 1.3 1.4 .90 29 1.5 1.1 1.6 1.8 1.6 1.0 .90 30 ---1.2 1.8 31 1.5 1.5 .89 37.5 1.25 1.7 43.2 1.39 1.6 46.2 30.35 30.95 TOTAL 52.95 39.8 42.30 46.3 46.7 44.8 35.4 .98 1.71 1.28 1.46 1.49 1.56 1.18 1.49 1.03 MEAN 1.45 2.5 2.1 1.6 2.0 1.6 1.8 MAX 1.0 MIN .85 1.0 1.2 .80 1.0 1.2 1.2 .89 -85 92 60 AC-FT 105 79 86 84 92 93 89

CAL YR 1987 TOTAL 7781.98 MEAN 21.3 MAX 1490 MIN .70 AC-FT 15440 WTR YR 1988 TOTAL 496.45 MEAN 1.36 MAX 2.5 MIN .80 AC-FT 985

SQUARE BUTTE CREEK BASIN

06342260 SQUARE BUTTE CREEK BELOW CENTER, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF	AN- OUS S)	SPE CIF CON DUC ANC (US/ (OOO	IC - T- E CM)	PH (STA) ARI UNIT	ND- D S)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG (000	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L 03)	(MC	VED /L CA)	SI SOL (MC	MG)	SODIU DIS- SOLVU (MG, AS I	ED /L NA)	SODIUM PERCENT (00932)
OCT		4057				200															
06		1057		.0		290				3.0		0.0								•	
23 JAN		1308	1	.1	1	280				6.5		4.0									
06 FEB		1128	1	.3	1	430			-1	2.0		1.0									
22		1052	1	.8	1	250			-	6.0		2.5									
MAR 29		1021	1	.6	1	180	8	.56		1.0		2.0		280	62		29		160		55
APR 15		1127	1	.4	1	220			1	3.0	1	1.0									
MAY 31		1122	1	.4	1	260			2	6.5	2	2.5									
JUL 05		1157	2	.1	1	240			3	2.0	2	5.5									
AUG 15		0905	1	.0	1	230	8	.03	2	8.0	2	8.0		310	67		34		190		57
DATE		SODIUM AD- SORP- TION RATIO 00931)	SI	VED (K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULF DIS- SOL' (MG, AS SO	VED /L 04)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILI DIS SOL (MG AS SIO (009	VED /L	SOL	BO S- VED	SOL	OF STI- ITS, IS- VED	SOLIE SOLV (TOP PER DAY	S= /ED /S R ()	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 29				.3	373		260		10			40	20			786		775	7	.31	1.07
AUG		4										.40									
15		5	6	.6	410		320		9	.5	0	.40	20			880		903		45	1.20
	DATE	SO (U AS	ENIC IS- LVED G/L AS) OOO)	SO (U AS	RON, IS- LVED G/L B) 020)	SOI (UC AS	ON, IS- LVED G/L FE) O46)	SO (U	AD, IS- LVED G/L PB) O49)	SO (U AS	HIUM IS- LVED G/L LI) 130)	NE D SO (U	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	SC (U	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U	CLE- CUM, DIS- DLVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
MAR 29 AUG	·		2		1100		20		<1		36		110		0.1		2		1		790
	· · ·		3		1300		40		<1		40		20		0.2		1		<1		920

06342450 BURNT CREEK NEAR BISMARCK. ND

LOCATION.--Lat 46°54'54", long 100°48'48", in SW1/4NW1/4SW1/4 sec.29, T.140 N., R.80 W., Burleigh County, Hydrologic Unit 10130101, on left bank on upstream side of county highway bridge, and 7 mi northwest of Bismarck.

DRAINAGE AREA. -- 108 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1967 to current year (seasonal records only since 1982).

GAGE .-- Water-stage recorder. Altitude of gage is 1,690 ft, from topographic map.

REMARKS .-- Estimated daily discharges: Feb. 27 to June 7. Records poor.

AVERAGE DISCHARGE.--15 years (water years 1968-82), 8.03 $\rm ft^3/s$, 5,820 acre-ft/yr; median of yearly mean discharges, 4.7 $\rm ft^3/s$, 3,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,000 ft³/s, Apr. 18, 1979, gage height, 16.93 ft from rating curve extended above 2,200 ft³/s on basis of culvert and flow-over-road measurement of peak flow; no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35 ft³/s, Mar. 25, gage height, 5.46 ft, backwater from ice; no flow for months.

		DISCHARGE,	IN CUBIC	FEET	PER SECON	D, WATER EAN VALUE	YEAR OCTOBER	1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	5.0	11	1.0	.80	.00	.00	.00
2	.00	.00	.00	.00	.00	4.0	10	1.5	.60	.00	.00	.00
3 4	.00	.00	.00	.00	.00	3.8	8.0	2.5	.40	.00	.00	.00
4	.00	.00	.00	.00	.00	2.5	6.5	2.4	.20	.00	.00	.00
5	.00	.00	.00	.00	.00	2.0	5.0	2.3	.10	.00	.00	.00
6	.00	.00	.00	.00	.00	2.0	4.0	2.2	.05	.00	.00	.00
7	.00	.00	.00	.00	.00	2.5	3.0	2.2	.02	.00	.00	.00
8	.00	.00	.00	.00	.00	3.0	2.0	2.1	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	3.5	1.8	2.1	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	3.0	1.5	2.0	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	1.5	1.4	2.0	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	1.0	1.4	2.0	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.50	1.4	1.9	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.20	1.3	1.9	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.10	1.3	1.8	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.05	1.3	1.8	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.10	1.3	1.7	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.20	1.2	1.7	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.40	1.2	1.7	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.60	1.2	1.6	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.80	1.1	1.6	.00	.00	.00	.00
22	.00	•00	.00	.00	.00	1.0	1.1	1.5	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	2.0	1.1	1.5	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	10	1.1	1.4	.00	.00	.00	.00
25	.00	•00	.00	.00	.00	30	1.1	1.3	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	20	1.1	1.2	.00	.00	.00	.00
27	.00	.00	.00	.00	1.5	15	1.1	1.5	.00	.00	.00	.00
28	.00	.00	.00	.00	6.0	14	1.1	1.4	.00	.00	.00	00
29	.00	.00	.00	.00	5.5	14	1.0	1.2	.00	.00	.00	.00
30	.00	.00	.00	.00		13	1.0	1.0	.00	.00	.00	.00
31	.00		.00	.00		12		.90		.00	.00	
TOTAL	0.00			0.00	13.00	167.75		2.90		0.00	0.00	0.00
MEAN	.00	.00	.00	.00	• 45	5.41	2.55	1.71	.072	.00	.00	.00
MAX	.00	.00	.00	.00	6.0	30	11	2.5	.80	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.05	1.0	.90	.00	.00	.00	.00
AC-FT	.0	.0	.0	.0	26	333	152	105	4.3	.0	.0	.0

WTR YR 1988 TOTAL 312.42 MEAN .85 MAX 30 MIN .00 AC-FT 620

235

06342450 BURNT CREEK NEAR BISMARCK, ND--CONTINUED

BURNT CREEK BASIN

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STREA FLOV INSTA	AN- OUS	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		ND-	TEMP ATU AI (DEG	RE R C)	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC	S AL /L	CALC DIS SOL (MG AS	VED /L CA)		UM, S- VED /L MG)	SODI DIS- SOLV (MG AS (009)	ED /L NA)	SODIU PERCEN (00932	T
MAR O2 APR		1055	3	.9	1970	7	.25		2.0		0.0		440	59		70		180		4	16
12		1415	1	. 4	1130)		2	2.0	1	5.0										-
DATE	(SODIUM AD- SORP- TION RATIO OO931)	POTA SIU DIS SOLV (MG, AS II	JM, S- VED /L K)	ALKA- LINITY LAB (MG/L AS CACO3)	(MC	VED /L SO4)	CHL RID DIS SOL (MG AS	E, VED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L	SOLI RESI AT 1. DEG DI SOL (MG	DUÉ 30 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLI DI: SOL' (TOI PEI DA' (7030	S- /ED NS R	SOLIDS DIS- SOLVE (TONS PER AC-FT (70303	ED S
MAR 02		4	21		460	380)	15		0	.20	6	.8	1	050	1	030	11	.0	1.4	3
	DATE	SC (U AS	SENIC DIS- DLVED UG/L S AS) 000)	DI	S- VED S /L B)	RON, DIS- SOLVED (UG/L AS FE) 01046)	SO (U AS	AD, IS- LVED G/L PB) O49)	SO (U AS	HIUM IS- LVED G/L LI) 130)	NE SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)	
MAR O	2		2		190	100		1		120		250		0.1		1		<1		610	

06342500 MISSOURI RIVER AT BISMARCK, ND

LOCATION.--Lat 46°48'51", long 100°49'12", in SE1/4NW1/4SE1/4 sec.31, T.139 N., R.80 W., Burleigh County, Hydrologic Unit 10130101, on left bank 40 ft upstream from Bismarck City waterplant, 2,100 ft downstream from Burlington Northern Railway bridge, 1.6 mi northwest of Bismarck Post Office, 3.5 mi upstream from Heart River, and at mile 1,314.5

DRAINAGE AREA .-- 186,400 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October to November 1927, April 1928 to current year. See WSP 1729 or 1917 for history of data prior to April 1928.

GAGE.--Water-stage recorder. Datum of gage is 1,618.28 ft, revised, above National Geodetic Vertical Datum of 1929. See WSP 1729 or 1917 for history of changes prior to Sept. 30, 1937.

REMARKS.--Estimated daily discharges: Jan. 1 to Mar. 22. Records good except those for period of estimated daily discharges, which are fair. Flow regulated by Lake Sakakawea (station 06338000) 75.4 mi upstream since November 1953.

AVERAGE DISCHARGE.--60 years (water years 1929-88), 22,680 ft3/s, 16,430,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 500,000 ft³/s, Apr. 6, 1952, gage height, 27.90 ft. Since completion of Garrison Dam in 1953, maximum discharge, 68,900 ft³/s, July 13, 1975, gage height, 14.24 ft; maximum gage height, 14.58 ft, Dec, 18, 1979, backwater from ice; minimum discharge, about 1,800 ft³/s, Jan. 3, 1940; minimum gage height, 1.35 ft, Sept. 4, 1934, present site and datum.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage known, 31.6 ft, Mar. 31, 1881, present site and datum.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 34,000 ft³/s, Feb. 14, gage height, 13.33 ft, backwater from ice; minimum daily, 10,500 ft³/s, Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17800	14700	18800	23000	30500	26000	23100	20200	21500	22100	19800	19900
2	17100	13700	21000	21000	30000	24500	23300	20600	21600	21400	19700	20300
3	17900	14600	23200	19500	30500	24600	22800	20400	21000	21200	19800	19500
4	17700	14500	23100	20500	31000	24800	23200	19300	19800	21300	19700	19700
5	18000	13000	23400	21500	31200	25500	23100	19200	20500	21300	19700	19600
-	,0000	1,5000	2,400	21,000	71200	2))00	2)100	1,7200	20,00	21,000	13100	1,000
6	17500	14700	23800	21000	31400	25000	22400	19200	21200	21300	19600	19500
7	16900	14000	23300	20000	32500	24400	22400	19300	21500	21500	19800	19300
8	15200	14100	23500	19800	32300	23300	22800	19300	21300	21400	19400	17600
9	13900										19600	16600
		13400	23400	20000	32700	23800	22100	19300	20800	21100		
10	14100	13900	23200	20800	32600	24100	21300	19600	20900	21200	19400	15800
11	14500	13900	23200	21700	32000	24900	20700	20200	20900	21100	20300	15900
12	14400	13500	23300	22000	32100	23000	19800	20500	21200	21100	20000	15800
13	13600	14000	22800	22200	32300	21900	21000	20800	20800	21300	19800	15800
	14000									21100	19600	
14		14600	22700	22400	33000	23900	21000	21700	21100			15500
15	13900	13600	23200	23000	32000	24900	21100	21100	21100	21300	19900	16300
16	14200	13100	23800	23100	31000	24200	21300	20100	20900	21300	19800	15700
17	14600	12600	23900	23700	31600	25600	20900	20400	21000	21000	20000	16300
18	14300	13700	23200	23500	31800	28000	20700	21200	21200	21000	19800	15100
19	14300	13900	22900						21200	21000	19900	13500
				23900	31500	27000	19600	21500				
20	13800	13400	22900	24400	31000	25000	20100	20800	21000	21300	20000	13100
21	14900	14000	22900	25300	31000	24400	20500	19800	21000	21100	19500	12700
22	14600	14100	23500	25100	31100	24200	20600	20900	21400	21400	19500	12000
23	14200	13800	23800	25600	31000	23400	20500	21000	20800	21200	19500	10600
24	14500	13900	22900	26200	29000	24300	20600	21100	20900	21300	19500	11200
25	14400	13200	22700	27600	30000	24400	19900	21300	21200	21200	19800	10600
2)	14400	15200	22/00	27000	30000	24400	19900	21500	21200	21200	19000	10000
26	13000	15800	22600	28000	31000	23500	18400	21100	21000	21200	20000	10800
27	14100	17800	23800	28100	31500	24000	20900	21400	20800	21400	20100	10800
28	13800	18400	22700	28500	31000	23800	20600	21000	21100	21500	19700	10700
29	13800	18600	23600	29000	28500	23700	19400	21100	20900	21300	19200	10900
30	13800	18300	23400	30100	20,00	21900	20000	21200	21600	20800	20500	10500
31	13300	100										277.00
51	15500		23600	31300		23700		21400		19800	20300	
TOTAL	462100	434800	714100	741800	907100	755700	634100	636000	631200	657500	613200	451600
MEAN	14910	14490	23040	23930	31280	24380	21140	20520	21040	21210	19780	15050
MAX	18000	18600	23900	31300	33000	28000	23300	21700	21600	22100	20500	20300
MIN	13000	12600	18800	19500	28500	21900	18400	19200	19800	19800	19200	10500
AC-FT	916600	862400	1416000	1471000	1799000	1499000	1258000	1262000	1252000	1304000	1216000	895700
AC-FI	310000	002400	1410000	147 1000	1799000	1499000	1238000	1202000	12,2000	1504000	12 13000	097700

CAL YR 1987 TOTAL 7203400 MEAN 19740 MAX 30700 MIN 10300 AC-FT 14290000 WTR YR 1988 TOTAL 7639200 MEAN 20870 MAX 33000 MIN 10500 AC-FT 15150000

MISSOURI RIVER MAIN STEM

06342500 MISSOURI RIVER AT BISMARCK, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969 to current year.

DATE	TIME	STREA FLOV INSTANCE (CFS	W, CO AN- DU DUS AN B) (US	FIC N- CT- (S CE /CM) UN	PH TAND- ARD ITS) 0400)	TEMP ATU AI (DEG	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC	SAL /L (03)	(MC	VED CA)	SOI (MC	GNE- IUM, IS- LVED G/L MG) (25)	SODIU DIS- SOLVE (MG/ AS N	ED /L NA)	SODI PERCE (0093	NT
OCT 29	1130	13800		630		1	7.5		9.0										
APR 12	1515	19900		710	7.70	2	2.0		8.0		230	55	5	23	5	68			38
MAY 26	1250	20400		730		2	9.0	1	4.5								22		
02 a ₀₂	1130 1131	19500 19500		730 730	8.07		1.0		5.5 5.5		240 250	56		24		68 71			38 38
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTA SIU DIS SOLV (MG, AS I	JM, LIN S- L VED (M /L A K) CA	AB D G/L S S (CO3) AS	LFATE IS- OLVED MG/L SO4) 0945)	CHL RID DIS SOL (MG AS	E, VED /L CL)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILI DIS SOL (MG AS SIC	VED /L	SOI	DUE 180 3. C IS- VED	SOI	OF STI- NTS, IS- LVED	SOLID DIS SOLV (TON PER DAY (7030	S- /ED NS R	SOLID DIS SOLV (TON PER AC-F (7030	ED S
APR 12	2	4	.7 180	1	90	12		0	.50	5	.3		493		468	26500		0.	67
02 a02	2 2	4 4	.4 200 .3 170		10	14 11			.60 .50		.6		504 481			26500 25300		0.	
D,A	S (SENIC DIS- OLVED UG/L S AS) 1000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVE (UG/L AS FE (01046	D SC (1)	EAD, DIS- DLVED JG/L S PB) 1049)	SOI (UC	IS- LVED G/L LI)	NE D SO (U	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY IS- LVED G/L HG) 890)	DE SO (U AS	NUM, DIS- DLVED G/L MO) 060)	NI SC (I	ELE- IUM, DIS- DLVED JG/L S SE)	DI SOI (UC	SR)	
APR 12		2	230	1	0	1		47		0		0.2		1		3		520	
SEP 02 a02	:	3 2	130 130		5	<1 <5		50 53		<10 3		0.2		1		<1 1		620 580	

 $^{{\}tt a}$ - Split sample analysis for quality assurance.

06343500 E.A. PATTERSON LAKE NEAR DICKINSON, ND

LOCATION.--Lat 46°52'11", long 102°49'37", in NE1/4NW1/4SW sec.8, T.139 N., R.96 W., Stark County, Hydrologic Unit 10130202, at left edge of spillway, and 2 mi southwest of Dickinson.

DRAINAGE AREA . -- 400 mi2, approximately.

RESERVOIR-ELEVATION AND CONTENTS RECORDS

- PERIOD OF RECORD. -- May 1950 to current year. Prior to October 1958, published as Dickinson Reservoir near Dickinson.
- GAGE.--Water-stage recorder. Datum of gage is 2,400.00 ft above National Geodetic Vertical Datum of 1929 (levels by Water and Power Resources Service); gage readings have been reduced to elevations NGVD. Prior to Jan. 4, 1961; nonrecording gage at same site and datum.
- REMARKS.--Reservoir is formed by earthfill dam; storage began May 23, 1950; dam completed Aug. 9, 1950. Total capacity is 24,600 acre-ft at maximum pool, elevation, 2,428.9 ft. Dead storage is 1,000 acre-ft below lowest point of outlet, elevation, 2,404.0 ft. Conservation storage is 9,100 acre-ft between elevation 2,404.0 ft and 2,420.0 ft, crest of spillway. The crest of the spillway was raised 3.5 ft in 1981 from 2,416.5 ft. Figures given herein represent total contents based on capacity table dated Jan. 1, 1965. The reservoir is for flood control, irrigation and municipal supply.
- COOPERATION.--Record of elevation and contents furnished by U.S. Bureau of Reclamation. Monthend elevations interpolated from once-daily readings. Extremes are those observed.
- EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 11,590 acre-ft, June 9, 1982, elevation, 2,421.13 ft; minimum since initial filling of reservoir, 2,950 acre-ft, Mar. 16, 1962, elevation, 2,410.41 ft.
- EXTREMES FOR CURRENT YEAR.--Maximum contents recorded, 9,880 acre-ft, Mar. 28, elevation, 2,419.75 ft; minimum, 5,360 acre-ft, Sept. 27-30, elevation 2,414.72 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	2,419.30	9,370	
Oct.	31	2.418.90	8,930	-440
Nov.	30	2,418.84	8,870	-60
Dec.	31	2,418.76	8,790	-80
CA	YR 1987	-	-	-1,470
	31	2,418.68	8,700	20
lan.	JI	2,410.00	0,700	-90
	29	2,418.92	8,950	+250
Jan. Feb. Mar.				
Peb.	29	2,418.92	8,950	+250
Feb. Mar.	2931	2,418.92 2,419.71	8,950 9,840	+250 +890
Teb. Mar. Apr.	29 31	2,418.92 2,419.71 2,419.28	8,950 9,840 9,350	+250 +890 - 490
Teb. Mar. May May	29 31	2,418.92 2,419.71 2,419.28 2,418.92	8,950 9,840 9,350 8,950	+250 +890 -490 -400
lar. lar. lay lune luly	29	2,418.92 2,419.71 2,419.28 2,418.92 2,417.67	8,950 9,840 9,350 8,950 7,700	+250 +890 -490 -400 -1,250
Teb. Mar. Apr. May	29	2,418.92 2,419.71 2,419.28 2,418.92 2,417.67 2,416.67	8,950 9,840 9,350 8,950 7,700 6,820	+250 +890 -490 -400 -1,250 -880

06343500 E.A. PATTERSON LAKE NEAR DICKINSON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971, 1975, 1980 to current year.

DATE	TIME	SAM PLI DEP (FE	NG N TH DF ET) (F	ESER- VOIR EPTH FEET) 2025)	TEMPI ATUI AII (DEG (OOO)	RE COV R (PI C) CEI		(DE	EC- ON G. OM UE TH)	WIND SPEE (MIL PER HOUR 0003	MI D PI ED S LES	ARO- ETRIC RES- SURE (MM OF HG)	ICE THIC NESS (FEE	S ET)	SPE CIF CON DUC ANC (US/	T- (ECM) U	PH STAND ARD NITS) 00400	WAT (DEC	JRE TER G C)
OCT 22	1500	3	.30	25.0		3.5	100		315	10)	701				939	8.5	0	5.0
JAN 04	1525		.30	24.0		9.0	0		315	10)	705	1	.30	1	100	8.5	0	3.5
APR 07	1005	3	.30	28.0	11	7.0	50		225	5	0.0	691			1	180	8.4)	7.0
JUL 05	0940	3	.30	25.5			5		0	C)	693			1	490	8.5) 2	22.5
DATE	COL (PL INU COB UNI (OOO	AT- M- ALT TS)	TRANS- PAR- ENCY (SECCHI DISK) (IN) (00077)		EN, S- VED /L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD NESS TOTA (MG/ AS CACO	L L 3)	CALCIU DIS- SOLVE (MG/L AS CA	M D	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 00925)	AS	3-	SODI PERCE (0093	CNT	SODIU AD- SORP- TION RATIO (00931	M S(OTAS- SIUM, DIS- DLVED MG/L S K) D935)	
OCT 22 JAN		18	30.0	1	1.2	95	1	90	41		21	140)		61	5		7.8	
04 APR		14	134		3.6	111	2	50	54		27	170)		59	5		10	
07 JUL		18	38.0		2.6	114	2	20	47		26	180			62	5		8.4	
05		22	28.0		7.0	89	2	80	56		33	230)		63	6		10	
DATE	LI (LKA- NITY LAB MG/L AS ACO3)	SULFAT DIS- SOLVE (MG/I AS SO4	ED S	HLO- IDE, IS- OLVED MG/L S CL) 0940)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	DI SO (M	LVED G/L	AT 1	DUE 80 . C S- VED /L)	SOLIDS SUM OF CONSTITUENTS DIS- SOLVE (MG/I	F SC I- S, S ED	DLIDS, DIS- SOLVED (TONS PER AC-FT)	NO2 NO2 SO (M	TRO- JEN, 2+NO3 DIS- DLVED IG/L N) 0631)	PHO PHOR DI	OUS S- VED /L P)	BORON, DIS- SOLVED (UG/L AS B) (01020))
OCT 22	20	3	280		6.2	0.30		5.6	1000	643	62	24	0.87	. 0	.140	0.	050	180)
JAN O4 APR	25	6	360		7.4	0.40)	3.7		813	78	37	1.11	0	.110	0.	020	230)
07 JUL	24	8	400		8.5	0.30)	3.8	1	010	82	23	1.37	<0	.100	0.	030	220)
05	28	0	470		11	0.40)	4.7		990	98	33	1.35	<0	.100	0.	080	260)

HEART RIVER BASIN

06343500 E.A. PATTERSON LAKE NEAR DICKINSON, ND--CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

240

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT							
22 22 22 22 22 22	1455 1457 1500 1503 1505 1507 1510	0.0 1.60 3.30 6.60 13.1 19.7 26.4	930 930 939 940 940 940	8.40 8.50 8.50 8.50 8.50 8.50	4.5 5.0 5.0 5.0	11.4 11.2 11.2 11.2 11.5	95 93 95 93 96 95
JAN	1510	20.4	940	0.50	5.0	11.5	96
04 04 04 04 04	1520 1523 1525 1527 1530 1532 1535	0.0 1.60 3.30 6.60 13.1 19.7 26.4	1080 1100 1100 1100 1100 1200 1190	8.50 8.50 8.50 8.50 8.60 8.40 8.20	3.5 3.5 3.5 3.5 3.5 4.0	12.7 13.4 13.6 13.8 11.3 8.8	102 108 111 111 91 71
APR				0.120	4.0	0.0	
07 07 07 07 07 07	1000 1002 1005 1007 1010 1012 1015	0.0 1.60 3.30 6.60 13.1 19.7 26.4	1160 1180 1180 1180 1180 1180 1180	8.40 8.40 8.40 8.40 8.40 8.40	7.0 7.0 7.0 6.5 6.0 6.0	12.0 12.6 12.6 12.6 12.6 12.6	111 117 114 117 117 117 113
05 05 05 05 05	0935 0938 0940 0942 0945 0947 0950	0.0 1.60 3.30 6.60 13.1 19.7 26.4	1530 1530 1490 1460 1440 1440	8.50 8.50 8.50 8.50 8.50 8.50	23.0 22.5 22.5 22.0 21.5 21.0 21.0	7.1 7.0 6.6 6.3 5.7	90 90 89 84 80 72

241

06344300 HEART RIVER AT DICKINSON, ND

LOCATION.--Lat 46°51'56", long 102°44'10", in SW1/4NW1/4SE1/4 sec.12, T.139 N., R.96 W., Stark County, Hydrologic Unit 101302202, on left bank near the southeast corner of Dickinson sewage lagoon cell No. 3, 1.9 mi southeast of Dickinson and 9.5 mi downstream from Edward Arthur Patterson Lake.

DRAINAGE AREA .-- 440 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- November 1983 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 2,360 ft from topographic map.

REMARKS.--Estimated daily discharges: Dec. 31 to Feb. 22. Records good except those for period of estimated discharges, which are fair. Flow regulated by Edward Arthur Patterson Lake (station 06343500) 10 mi

EXTREME FOR PERIOD OF RECORD.--Maximum discharge, about 3,500 ft³/s, Mar. 3, 1986, gage height 10.56, backwater from ice; maximum gage height, 10.93 ft, Mar. 1, 1986, backwater from ice; minimum daily discharge, 0.10 ft³/s, Mar. 27, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 110 ft 3 /s, July 5, gage height, 4.58 ft; minimum daily discharge, 0.98 ft 3 /s, Aug. 2.

		DISCHARGE,	IN CUBI	C FEET		WATER N VALUE		1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.9	1.9	2.0	1.4	1.7	3.7	2.2	5.7	1.8	6.8	1.5	2.5
2	1.6	1.9	2.1	1.5	1.6	3.1		35	1.7	2.8	.98	2.5
7	1.6	2.0	2.1	1.3	1.5	2.8	2.2	6.7	1.8	2.4	3.2	3 5
2 3 4							2.2				2.2	3.5
	1.4	2.0	2.2	1.0	1.6	2.9	2.2	2.8	1.9	2.6		3.6
5	1.5	1.9	2.1	1.2	1.5	3.2	2.4	2.1	1.7	41	2.1	2.6
6	1.7	1.9	2.1	1.3	1.5	3.3	2.3	4.2	1.7	5.2	2.0	2.5
7	1.7	2.0	2.1	1.3	1.6	3.3	2.2	4.7	1.7	18	2.2	2.3
8	1.8	2.0	2.1	1.3	1.6	3.4		16	1.4	4.4	2.1	2.3
9	1.8	1.9	2.1	1.4	1.6	3.1	2.0	7.3	1.5	3.2	2.0	2.2
10	1.8	1.9	2.2	1.6	1.7	3.2	2.1	3.0	1.3	3.0	2.0	1.9
11	1.8	2.1	2.2	2.2	1.7	2.7	1.9	2.4	1.3	2.9	1.9	1.7
12	1.9	2.2	2.1	2.2	1.9	2.8	2.5	2.2	1.3	3.2	1.8	2.1
13	1.9	2.0	2.2	2.0	2.1	2.2	5.5	1.8	1.4	4.0	1.7	2.2
14							2.2		5.6	3.4	2.0	2.1
	1.7	3.1	2.0	1.9	2.1	2.1	5.2	1.7				
15	1.9	2.6	2.0	1.9	2.4	2.2	5.2	1.7	4.5	2.9	2.3	2.3
16	2.3	2.3	1.9	2.0	3.2	2.2	5.4	1.5	2.2	2.9	2.4	3.1
17	2.5	1.9	2.0	2.0	3.4	2.3	5.3	1.3	1.9	2.9	2.1	3.0
18	2.0	1.9	2.0	1.9	3.4	2.7	5.2	1.7	2.6	2.9	1.9	4.4
19	2.0	1.9	2.0	1.9	4.9	3.7	5.2	1.7	2.0	2.6	1.7	8.3
20	1.9	1.9	2.1	1.8	2.8	4.5	4.9	1.6	1.7	2.1	1.7	3.2
21	1.9	2.0	2.0	1.8	3.4	3.7	4.9	1.6	1.7	2.2	1.7	2.8
22	1.9	2.1	1.9	1.9	10	4.2	4.8	1.4	1.7	2.0	1.7	2.9
23	1.9	2.1	2.0	1.9	3.6	5.4	4.8	1.0	2.5	2.0	1.7	2.8
24	1.8	2.1	1.9	2.1	3.0	3.7	4.8	1.0	2.4	1.8	1.7	2.4
25	2.0	2.1	1.8	1.8		2.1	4.6	1.4	1.6	1.6	1.6	2.0
	2.0	2.1	1.0	1.0	3.9	3.1	4.0	1.4	1.0	1.0	1.0	2.0
26	2.1	2.1	1.9	1.9	11	2.4	5.0	2.3	1.7	1.7	1.7	1.8
27	2.1	2.0	1.9	2.0	16	2.3	5.2	2.1	1.8	1.6	1.5	1.6
28	2.0	2.0	1.8	2.0	11	2.2	5.3	2.0	2.1	1.7	1.8	1.6
29	2.1	2.0	1.8	2.1	5.2	2.0	5.3	1.8	1.7	1.7	2.5	1.7
30	2.0	2.0	1.8	2.1		2.3	5.5	1.7	19	1.5	2.9	1.9
31	2.0		1.3	2.0		2.0		1.7		1.4	2.7	
TOTAL	58.5	61.8	61.7	54.7	110.9	92.7	118.4 1	23.1	77.2 1	38.4	61.28	79.3
MEAN	1.89		1.99	1.76	3.82	2.99		3.97		4.46	1.98	2.64
MAX	2.5	3.1	2.2	2.2	16	5.4	5.5	35	19	41	3.2	8 3
MIN	1.4	1.9						1.0	1.3	1.4	.98	8.3
			1.3	1.0	1.5	2.0	1.9				122	157
AC-FT	116	123	122	108	220	184	235	244	153	275	122	157

CAL YR 1987 WTR YR 1988 TOTAL 15244.2 MEAN 41.8 MAX 2650 MIN 1.3 AC-FT 30240 TOTAL 1037.98 MEAN 2.84 MAX 41 MIN .98 AC-FT 2060

06344300 HEART RIVER AT DICKINSON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1984 to current year.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS) (00061	CON- DUCT- S ANCE (US/CM		AIR (DEG C)	TEMPE ATUR WATE (DEG (0001	R- TO E (M R A C) CA	ARD- ESS DTAL MG/L AS ACO3) D900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
OCT 08	1535	2.0	2086)	9.5	9	•5					
NOV 24	1325	2.1	1966)	7.5	4	.0					
JAN 11	1420	2.4	270		-14.0	0	.0					
FEB 22	1340	13	1590		-7.0	0	.5				22	
MAR 03	1145	2.6	1440)	4.0	0	.5					
APR 01	1035	2.1	149		15.5	4	•5	280	58	32	230	64
a ₀₁	1036	2.1	1490		15.5	4	.5	270	57	32	240	65
17 JUN	1055	1.4	1580		21.0	16	.0					
10	1225 1340	1.4	2150 2280		36.0 39.0			390	75	48	380	67
a ₂₃	1341	2.3	2280					390	75 77	48	390	68
11	1715	1.8	228		32.0	24	.0					
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM DIS- SOLVE (MG/L AS K) (00935	, LINITY LAB D (MG/L AS CACO3		DIS-	FLUO RIDE DIS SOLV (MG/ AS F	, DI - SC ED (M L A	JICA, IS- DLVED MG/L AS IO2) 1955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 01 a01 JUN	6 6	6.0 4.3	320 321	430 430	36 35	0.		4.3 5.3	1010 1000	991 998	5.81 5.75	1.37 1.36
23 a23	9	16 10	370 380	710 720	84 87	0.		16 5.8	1600 1580	1560 1570	10.1 9.94	2.18 2.15
DA	1 S() ()	DIS- DLVED JG/L S AS)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED S (UG/L (AS FE) A	DIS- OLVED S UG/L (S PB) A	THIUM DIS- OLVED UG/L . S LI) 1130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERC DI SOL (UC	CURY DE CS- D CVED SO C/L (U HG) AS	NUM, NI IS- E LVED SC G/L (U MO) AS	UM, TO DIS- DOLVED SO (U) (U) SE) AS	RON- IUM, IIS- LVED G/L SR) 080)
APR 01 a01 JUN		1	270 270	10 9	<1 <5	33 29	240 280		0.1	3 2	<1 <1	600 610
23. a23.		3 4	510 510	30 20	<1 <5	50 50	10 <10		0.2	4 4	<1 1	850 840

a - Split sample analysis for quality assurance.

243

06344600 GREEN RIVER NEAR NEW HRADEC, ND LOCATION.--Lat 47°01'40", long 103°03'10", on line between secs.13 and 14, T.141 N., R.98 W., Billings County, Hydrologic Unit 10130202, on left bank above county highway bridge, and 8 mi west of New Hradec.

DRAINAGE AREA .-- 152 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- February 1964 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 2,510 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- Estimated daily discharges: Oct. 1 to Sept. 30. Records poor.

AVERAGE DISCHARGE.--24 years, 17.2 ft3/s, 12,460 acre-ft/yr; median of yearly mean discharge, 17 ft3/s, 12,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,120 ft³/s May 9, 1970, gage height, 16.88 ft; maximum gage height, 17.60 ft, Mar. 22, 1978, backwater from ice; no flow for several days in some years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 28	1230	*52	a5.62	Sept. 30	1400		*a6.09

No flow June 10 to Sept. 13. a - Backwater from beaver dam.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND, MEA	WATER YEARN VALUES	AR OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.8 .70 1.4 2.1 2.1	1.3 1.4 1.5 1.5	1.0 1.1 1.2 1.2	.30 .30 .30 .30	.05 .05 .05 .05	27 16 15 10 9•4	2.5 2.4 2.3 2.3	3.5 4.1 4.0 4.0 3.5	.40 .35 .30 .25	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	2.4 1.7 2.2 2.2 1.7	1.6 1.6 1.7 1.8 1.8	1.3 1.3 1.3 1.3	.10 .10 .05 .05	.05 .05 .05 .05	8.3 7.5 9.4 8.8 7.7	2.3 2.5 2.5 2.5 2.5	3.3 3.2 3.3 3.1 3.1	.20 .15 .10 .05	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00
11 12 13 14 15	2.2 2.0 2.2 1.8 1.9	1.7 1.8 1.8 1.8	1.2 1.1 1.1 1.0 .90	.05 .05 .05 .05	.05 .10 .20 .30	3.5 3.2 3.5 3.5 3.9	2.4 2.5 3.2 3.1 3.3	2.3 1.8 1.5 1.7	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .01
16 17 18 19 20	2.0 2.1 2.0 2.0	1.7 1.6 1.7 1.6 1.6	.70 .60 .60 .70	.10 .20 .15 .15	.50 .59 .70 .90	3.2 2.8 2.8 3.7 5.6	3.7 3.7 3.5 3.5 3.2	1.1 1.2 1.3 1.2 1.3	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.04 .06 .08 .08
21 22 23 24 25	1.6 1.6 1.6 1.4	1.5 1.4 1.5 1.4	.80 .80 .80 .70	.10 .10 .15 .10	.90 .90 .90 .70	8.5 11 10 9.4 6.0	3.0 3.3 3.5 3.4 3.1	1.6 1.8 1.5 1.5	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.09 .10 .09 .11 .10
26 27 28 29 30 31	1.3 1.2 1.2 1.1 1.1	1.4 1.3 1.2 1.1 1.0	.50 .60 .60 .70 .50	.10	8.5 16 32 25	5.2 7.0 5.4 3.7 3.2 2.8	2.8 2.6 2.6 3.4 3.9	1.5 1.4 1.1 .90 .70	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.11 .11 .14 .16 .28
TOTAL MEAN MAX MIN AC-FT	52.90 1.71 2.4 .70 105	46.0 1.53 1.8 1.0 91	27.80 .90 1.3 .40	3.80 .12 .30 .05 7.5	30.54 3.12 32 .05 180	227.0 7.32 27 2.8 450	87.3 2.91 3.9 1.8 173	54.24 2.07 4.1 .44 127	2.00 .067 .40 .00 4.0	0.00 .00 .00	0.00 .00 .00 .00	1.66 .055 .28 .00 3.3

TOTAL 8819.63 MEAN 24.2 MAX 1320 MIN .40 AC-FT 17490 **CAL YR 1987** TOTAL 603.24 MEAN 1.65 MAX WTR YR 1988 32 MIN .00 AC-FT 1200 244

HEART RIVER BASIN

06344600 GREEN RIVER NEAR NEW HRADEC, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER ATURE WATER (DEG C	(MG AS) CAC	S CAL AL DI /L SO (M 03) AS	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
OCT 01	1140	1.1	1200		20.0	12.	5			-		
NOV 20	1500	1.6	1500		7.0	2.	0					
JAN 04	1205	0.29	1900		-18.5	1.						
FEB										11.3		
16 29	0950 1030	0.48	1490 1500	7.89	-1.0 5.0	0.		220 4	2	29	240	68
MAR 14	1140	3.6	1450		1.5	0.	5					
24	1450	10	1140		10.5	1.						
APR 11	0945	2.7	1120		13.0	7.	0					
MAY 31	1010	0.56	1640		25.5	22.	0					
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVE (MG/L AS F) (00950	SOL' D (MG AS SIO	CA, RES - AT VED DE /L D SO 2) (M	IDUÉ S 180 C G. C T IS- LVED G/L)	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L) 70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
FEB 29	7	16	240	510	15	0.00	0 6	_	1070	1010	E2 6	1 10
29	AR: I SC (I	SENIC BO DIS- I DLVED SO JG/L (U	DRON, IR DIS- E DLVED SO JG/L (U	RON, LE DIS- D DLVED SO UG/L (U	CAD, LIS	CHIUM DIS- DLVED JG/L S LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLY DENU DIS SOLV (UG/ AS M	M, NI - D ED SO L (U	UM, IS-	1.40 FRON- FIUM, DIS- DLVED JG/L 3 SR) 1080)
FEB 29		1	420	130	<1	20	350	<0.1		2	<1	360

06345500 HEART RIVER NEAR RICHARDTON, ND

LOCATION.--Lat 46°44'46", long 102°18'27", in NE1/4 sec.29, T.138 N., R.92 W., Stark County, Hydrologic Unit 10130202, on right bank 5 ft upstream from bridge on State Highway 8, 0.5 mi downstream from Plum Creek, and 9.5 mi south of Richardton.

DRAINAGE AREA .-- 1,240 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1903 to September 1922, April 1943 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS (WATER YEARS).--WSP 1209: Drainage area. WSP 1239: 1906, 1918(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 2,153.67 ft above National Geodetic Vertical Datum of 1929. May 18, 1903, to Sept. 30, 1922, nonrecording gage at 3 sites in 1 mi reach below present site at different datums. Apr. 14, 1943, to July 7, 1947, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Nov. 28-30 and Dec. 5 to Apr. 7. Records good except those for periods of estimated daily discharge, which are fair. Flow is regulated by Patterson Lake Reservoir (station 06343500) 85 river miles upstream from station and some diversions for irrigation and water supply at low flow.

AVERAGE DISCHARGE.--63 years (water years 1904-07, 1909-22, 1944-88), 106 ft³/s, 76,800 acre-ft/yr; median of yearly mean discharges, 99 ft³/s, 71,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 23,400 ft3/s, Apr. 16, 1950, gage height, 28.05 ft, from highwater mark in gage well; no flow at times in some years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 5, 1938, reached a stage of about 26 ft, from information by local residents, discharge, 16,000 ft³/s; flood of Mar. 25, 1943, reached a stage of 24.2 ft from floodmarks, discharge, 11,700 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 150 ft³/s, Mar. 24; maximum gage height observed, 6.31 ft, Mar. 24, backwater from ice; minimum daily discharge, 0.09 ft³/s, Aug. 12.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988
MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 3.0 2.5 2.5 9.3 14 12 1.5 40 30 21 6.0 2.2 .49 -25 .60 .27 3.4 9.0 14 14 35 30 39 36 28 5.6 2 1.5 8.3 14 1.0 5.3 7.0 3 35 .58 .24 8.6 12 2.0 1.0 25 59 61 4.8 .50 .19 14 5 8.7 13 30 36 3.9 8.4 .39 .17 11 1.9 94 6 13 13 13 7.1 .15 8.2 25 3.1 .24 11 2.0 .80 59 25 21 17 .17 .13 2.0 53 8.8 11 1.0 8 2.0 47 24 2.6 21 .13 9.6 10 1.5 15 9.0 37 2.3 .14 .67 20 41 10 7.9 13 11 2.0 1.0 25 31 53 1.9 14 .11 1.8 11 9.9 13 13 13 12 48 10 .10 2.1 1.5 -80 26 1.7 30 1.5 2.3 7.5 12 11 10 30 24 28 2.0 .09 1.0 9.3 35 23 22 1.8 .14 14 10 14 10 2.0 30 21 18 2.0 5.2 .15 2.4 15 11 15 9.0 2.0 1.0 30 23 16 2.0 4.5 .17 2.8 3.2 16 11 15 8.0 2.0 .90 27 32 14 2.0 .45 17 13 15 8.5 2.0 1.0 25 30 14 1.7 3.6 3.6 3.5 18 14 9.0 2.0 3.5 30 30 13 1.5 3.6 .41 4.0 19 15 12 8.5 2.0 2.5 25 29 12 4.6 2.9 4.6 20 17 13 7.5 2.5 2.0 25 23 11 4.5 7.0 11 3.0 2.2 .25 4.8 21 17 14 2.5 5.5 30 22 7.5 2.5 6.2 7.7 6.3 16 14 5.0 50 23 2.2 1.8 .18 11 1.6 23 16 14 4.5 70 22 10 1.5 .20 .20 14 2.0 9.8 1.7 21 16 5.5 4.0 140 22 1.4 .21 1.8 5.4 25 16 13 5.0 1.5 6.0 110 22 9.2 1.3 16 6.0 90 .25 4.3 10 9.2 4.1 16 13 5.5 22 8.3 1.1 .99 .25 15 100 5.0 .21 28 17 12 3.0 25 62 21 8.0 .83 .77 5.0 5.1 3.0 5.5 65 77 .71 29 16 12 70 21 6.9 .58 12 21 1.6 .16 4.8 30 6.3 . 45 16 3.5 2.0 42 6.5 .22 14 88.59 TOTAL 384.6 403 270.0 66.9 172.20 1388 966 637.2 78.04 167.33 8.27 32.2 94 21 2.95 MEAN 12.4 13.4 8.71 2.16 5.94 44.8 20.6 2.60 5.40 .27 21 .60 7.7 61 6.0 17 15 3.0 70 140 MAX 7.9 12 3.5 .80 6.3 .09 MIN 15 763 133 1260 155 332 16 176 AC-FT 799 342 2750 1920

CAL YR 1987 TOTAL 54366.2 MEAN 149 MAX 4550 MIN 3.5 AC-FT 107800 12.7 TOTAL 4630.13 MEAN MIN .09 WTR YR 1988 MAX 140 AC-FT

06345500 HEART RIVER NEAR RICHARDTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1950, 1972 to current year.

DATE	TI	ME	STREA FLOW INSTA TANEO (CFS	N- OUS S)	SPE- CON- DUC' ANCI (US/0	IC - I- E CM)	PH (STAN ARD UNITS (0040)	TEMPE ATUR AIR (DEG (0002	E C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC (009	S AL /L	CALC DIS SOL (MG AS (009	VED /L CA)	MAGN SIU DIS SOLV (MG/ AS M	M, S- VED 'L MG)	SODIU DIS- SOLVE (MG/ AS N	D L A)	SODIUM PERCENT (00932)
OCT	45	7.5		7	41	750			,	.5											
05 NOV	15	22	8.	.)	1	750			0	• >	1	1.5									1977
23 JAN	13	05	15		18	350			4	.0		1.0									
05	14	10	1.	9	28	300			-17	.0		0.5									
FEB 17	15	15	0.	97	39	900			5	.5		0.5									
MAR 16	14	10	27		10	540	7.	80	1	.0		0.5		360	73		43		210		55
28	11		62			140				.0		1.0			,,,		7,				
APR 11	14	20	25		1:	270			24	.0	1	1.5									
MAY 09	14	05	46		10	900			23	.0	1	5.5									
20	13		11			050				.0		7.0									
JUN 07	10	10	2.	6	20	080	8.	40	31	.5	2	4.5		470	78		66		320		59
20	11		4.	7	2	140				.0		4.5									
AUG 08	13	50	0.	13	22	230			17	.5	2	1.5									
DATE	SOD A SOR TI RAT (009	D- P- ON IO	POTA SIU DIS SOLV (MG/ AS F	IM, S- VED 'L	ALKALINITE LANGE (MG, AS CACC)	TY B /L 03)	SULFA DIS- SOLV (MG/ AS SO (0094	ED L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L L)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)	SOLID SUM (CONST TUENT DIS SOLV (MG/	OF CI- CS, CED (L)	SOLID DIS SOLV (TON PER DAY	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR																					
15 JUN		5	12		300		520		14		0	.40	8	.1	1	110	10	060	81.	8	1.51
07		7	13		360		810		18		0	.50	4	.8	1	550	15	40	10.	9	2.11
	DATE	SOI (UC AS	ENIC IS- LVED G/L AS)	SOI		SO (U AS	ON, IS- LVED G/L FE) 046)	SOI (UC	AD, IS- LVED G/L PB) 049)	SOI (UCAS	HIUM IS- LVED G/L LI) 130)	D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY IS- LVED G/L HG) 890)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	SO (U	RON- IUM, IS- LVED G/L SR) 080)
MAR 16			1		370		80		<1		34		40		0.2		2		1		930
JUN			2		510				<1		60		10				6		<1		1400
0.7			2		210		30		(1		90		10		0.5		0		11		1400

06346000 LAKE TSCHIDA NEAR GLEN ULLIN, ND

LOCATION.--Lat 46°35'43", long 101°48'34", in SW1/4NE1/4 sec.13, T.136 N., R.89 W., Grant County, Hydrologic Unit 10130202, 10 mi upstream from Heart Butte Creek, and 14 mi north of Elgin.

DRAINAGE AREA. -- 1,710 mi2, approximately.

RESERVOIR-ELEVATION AND CONTENTS RECORDS

PERIOD OF RECORD. -- August 1949 to current year. Prior to October 1957, published as Heart Butte Reservoir near Glen Ullin.

GAGE. -- Nonrecording gage. Datum of gage is at National Geodetic Vertical Datum of 1929, levels by Water and Power Resources Service.

REMARKS.--Reservoir is formed by earthfill dam; storage began Sept. 29, 1949; dam completed Dec. 9, 1949. Total capacity is 430,000 acre-ft at maximum pool, elevation 2,118.2 ft. Dead storage is 6,750 acre-ft below lowest point of outlet, elevation 2,030.0 ft. Active conservation storage is 69,030 acre-ft between elevation 2,030.0 ft and 2,064.5 ft, crest of spillway. Figures given herein represent total contents. Controlled releases are through 4 by 5 ft slide gate. The spillway is uncontrolled "glory hole" type and discharges through a conduit 14 ft in diameter. The reservoir is for flood control, irrigation, and incidental water supply.

COOPERATION. -- Record of elevations and contents furnished by U.S. Bureau of Reclamation. Monthend elevations interpolated from once-daily readings. Extremes are those observed.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 174,000 acre-ft, Apr. 9, 1952, elevation, 2,086.23 ft; minimum since first reaching spillway level, 40,840 acre-ft, Mar. 6, 1962, elevation, 2,052.5 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 67,710 acre-ft, May 12, elevation, 2,062.06 ft; minimum, 47,160 acre-ft, Sept. 27, elevation, 2,055.10 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

I		levation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	2,059.83	60,710	-22
Oct.	31		57,660	-350
Nov.	30		58,260	+600
Dec.	31		58,650	+390
CAL	YR 1987	-	-	-18,190
Jan.	31	2,059.10	58,500	-150
eb.	29	2,059.16	58,680	+180
Mar.	31	2,061.25	65,130	+6,450
Apr.	30	2.061.79	66,840	+1,710
May	31	2,061.28	65,220	-1,620
June	30	2,059.11	58,530	-6,690
July	31	2.056.83	51,900	-6,630
Aug.	31		48,070	-3,830
Sept.	30		47,260	-810
WTR	YR 1988	2	_	-13,450

06346000 LAKE TSCHIDA NEAR GLEN ULLIN, ND--CONTINUED

WATER-QUALITY DATA

PERIOD OF RECORD. -- Water years 1971, 1980 to current year.

DATE	TIME	SAM- PLIN DEPT (FEE (OOOO	G VOI H DEPT T) (FEE	R ATU CH AI CT) (DEC	RE COV R (PE C) CEN	ER FR R- TR T) NOR	EC- ON WINI G. SPEI OM (MII UE PEI TH) HOUF	ED SUF LES (MM R OF R) HG)	IC E ICE I THICK- NESS (FEET)	ANCE (US/CN	PH (STAND ARD (M) UNITS)	WATER (DEG C)
OCT												
21 FEB	1220	1.	60 43	3.0	1.5	100	180 15)	53 0.0	94	10 8.4	0 8.0
02 APR	1010	0.	0 4	1.3 -1	8.0	0	295 <	5.0	759 1.1	70 112	20 8.2	0 1.5
26 JUL	1015	0.	0 44	1.5	5.0	100	300	3.0	59 .	112	20 8.3	0 8.5
26	1330	0.	0 54	1.0 3	9.0	10	<	5.0	54 -	124	10 8.6	0 22.5
DA'	TE	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS- PAR- ENCY (SECCHI DISK) (IN) (00077)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 21		4	68.0	9.8	84	250	50	30	120	50	3	8.3
FEB O2		4	263	13.2	95	260	51	33	140	52	4	9.9
APR 26 JUL		5	156	11.1	95	280	53	35	150	53	4	9.3
26			98.0	8.3	98	290	54	38	160	53	4	10
DA		ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	AT 180	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	BORON, DIS- SOLVED (UG/L AS B) (01020)
		()04107	(00)4))	(00)40)	(009)0)	(009)))	(10)00)	(10)01)	(10)0)	(000)17	(00000)	(01020)
OCT 21 FEB		201	320	4.3	0.30	5.7	672	659	0.91	<0.100	0.020	220
02		238	370	8.0	0.30	8.3	774	764	1.05	0.120	0.010	220
APR 26 JUL		231	360	7.3	0.30	4.2	759	759	1.03	0.180	0.010	240
26		244	410	8.8	0.30	2.3	835	830	1.14	<0.100	0.030	240

HEART RIVER BASIN
06346000 LAKE TSCHIDA NEAR GLEN ULLIN, ND--CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

249

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT							
21	1215	0.0	935	8.40	8.0	9.9	84
21	1220	1.60	940	8.40	8.0	9.8	84
21	1225	3.30	941	8.40	8.0	9.8	84
21	1230	6.60	942	8.40	8.0	9.8	84
21	1235	13.2	942	8.40	8.0	9.8	84
21	1240	19.8	943	8.40	8.0	9.8	84
21	1245	26.4	943	8.40	8.0	9.8	84
21	1250	33.0	943	8.40	8.0	9.8	84
21	1255	39.6	943	8.40	8.0	9.8	84
21	1300	42.9	943	8.40	8.0	9.8	84
21	1305	3.30	944	8.40	8.0	9.8	84
FEB	1 22.2	4.4				47.0	0.5
02	1010	0.0	1120	8.20	1.5	13.2	95
02	1012	1.60	1120	8.30	2.0	13.0	94
02	1014	3.30	1110	8.40	2.0	12.9	93 93
02	1016	6.60	1120	8.40	2.0	12.9	
02	1020	13.2	1120	8.40	2.0	12.7 12.0	92 87
02	1022	19.8	1160			12.1	88
02	1024	26.4	1180	8.30	2.0	10.0	72
02	1026	33.0	1250 1280	8.30 8.10	3.0	6.3	47
02 APR	1028	38.8	1200	0.10	5.0	0.5	41
26	1015	0.0	1120	8.30	8.5	11.1	95
26	1017	1.60	1120	8.30	8.5	11.1	95
26	1017	3.30	1120	8.30	8.5	11.0	94
26	1020	6.60	1120	8.30	8.5	11.0	94
26	1020	13.2	1120	8.30	8.5	11.0	94
26	1024	19.8	1120	8.30	8.5	11.0	94
26	1026	26.4	1120	8.30	8.5	11.0	94
26	1028	33.0	1120	8.30	8.5	11.0	94
26	1030	39.6	1120	8.30	8.5	11.0	94
JUL	1,000	22.0	1,1,4,5				
26	1330	0.0	1240	8.60	22.5	8.3	98
26	1333	1.60	1230	9.20	25.0	8.0	93
26	1336	3.30	1230	8.90	23.0	8.2	95
26	1339	6.60	1240	8.80	22.5	7.9	92
26	1341	13.2	1240	8.80	22.0	7.9	92
26	1345	19.8	1240	8.70	22.0	7.7	89
26	1348	26.4	1240	8.60	22.0	7.6	88
26	1351	33.0	1240	8.60	22.0	7.6	88
26	1354	39.6	1240	8.60	22.0	7.3	85
26	1357	46.2	1240	8.50	21.5	7.0	81
26	1400	52.8	1240	8.50	21.5	6.9	79

06348000 HEART RIVER NEAR LARK, ND

LOCATION.--Lat 46°36'37", long 101°22'54", in NW1/4NW1/4SW1/4 sec.9, T.136 N., R.85 W., Grant County, Hydrologic Unit 10130203, on right bank 20 ft downstream from county highway bridge, 0.6 mi downstream from Big Muddy Creek, and 10 mi north of Lark.

DRAINAGE AREA. -- 2,750 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1946 to current year (seasonal records only since Oct. 1982).

GAGE.--Water-stage recorder. Datum of gage is 1,802.83 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Nov. 16, 1948, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Oct. 30-31, Mar. 1-5, 10-20, July 19-20. Records good except those for period Mar. 22 to Apr. 2 which are fair and those for periods Mar. 1-5, 10-20, and July 19-20 which are poor. Flow regulated by Lake Tschida (06346000) 45 mi upstream since 1949.

AVERAGE DISCHARGE.--35 years, (1947-82) 225 ft^3/s , 163,000 acre-ft/yr; median of yearly mean discharges, 172 ft^3/s , 124,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,200 ft³/s, Apr. 17, 1950, gage height, 20.70 ft, from rating curve extended above 11,000 ft³/s on basis of contracted-opening measurement of peak flow; no flow Jan. 16 to Mar. 4, 1950, Jan. 17-26, 1962.

EXTREMES FOR CURRENT YEAR.--Maximum discharge about 350 ft³/s, Mar. 26, gage height, unknown; minimum daily recorded, 0.3 ft³/s, Feb. 1-24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

							-					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5					.30 .30 .30	100 90 70 60	65 65 70 75	48 43 60 53	103 113 113 111	85 65 60 50	35 42 47 47	28 24 21 20
5					.30	64	71	43	111	35	48	19
6 7 8 9					.30 .30 .30 .30	60 56 50 55 50	58 52 50 47 45	42 42 45 46 43	109 100 71 68 63	25 15 30 50 60	48 53 61 59 47	19 17 16 13
11 12 13 14 15					.30 .30 .30 .30	45 35 33 30 30	42 38 36 36 35	39 43 46 43 41	64 61 66 79 81	70 80 85 90 95	34 32 20 16 16	6.3 6.3 5.8 6.6
16 17 18 19 20					.30 .30 .30 .30	31 32 33 34 35	33 30 28 28 26	41 42 61 72 74	74 64 58 46 30	90 75 60 54 50	18 21 28 38 38	6.7 7.0 6.9 7.0 9.5
21 22 23 24 25					.30 .30 .30 .30	35 40 45 100 250	24 22 21 21 19	72 72 71 63 39	20 15 10 15 20	48 49 50 50	37 37 37 34 24	13 11 11 11 10
26 27 28 29 30 31					4.0 10 40 70	300 220 150 90 80 70	16 14 11 13 77	30 29 33 58 65 86	22 25 30 45 60	49 48 45 42 35 31	19 19 26 27 27 27	9.9 9.3 9.0 9.7
TOTAL MEAN MAX MIN AC-FT					132.20 4.56 70 .30 262	2373 76.5 300 30 4710	1168 38.9 77 11 2320	1585 51.1 86 29 3140	1847 61.6 113 10 3660	1721 55.5 95 15 3410	1062 34.3 61 16 2110	358.7 12.0 28 5.8 711

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF	AN- OUS	SPECIFICON- DUC' ANCI (US/0	IC - I- E CM)	PH (STAM ARI UNITS	ND-) (8)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG	RE ER C)	HAR NES TOT (MG AS CAC	SS TAL S/L SO3)	(MC	VED LVED CA)	SI SOI (MC	INE- IUM, IS- LVED I/L MG)	SODIU DIS- SOLVU (MG, AS U	ED /L NA)	SODIUM PERCENT (00932)	T
OCT O6 FEB		1115	64		10	070			1	0.5		8.5										-
29 APR		1210	69		10	010				7.0		0.5										-
07		1415	52		10	080	8.	. 48	1	4.0	1	4.0		270	50		39	5	150		54	4
MAY 25		0955	39		1	330			2	1.5	1	8.5									_	_
JUL 01		1420	85		12	240			1	9.5	1	9.5										
AUG 09		1015	59		13	300	8.	.22		1.5		9.0		300	53		40)	190		57	7
DATE	S	ODIUM AD- ORP- TION ATIO O931)	POT SI DI SOL (MG AS (009	UM, S- VED /L K)	ALKA LINIT LAN (MG, AS CACC	TY 3 /L 03)	SULFA DIS- SOLV (MG/ AS SO (0094	/ED /L 04)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L	SOL	BO S- VED	SOL	OF STI- ITS, IS- VED	SOLII DIS SOLV (TON PER DAY	S- VED NS R	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	D)
APR 07 AUG		4	7	.9	270		330		6	.6	0	.20	3	5.2		759		745	107		1.03	3
09		5	9	.9	290		420		10		0	.40	0	.40		929		920	148		1.26	5
I	DATE	SO (U	SENIC DIS- DLVED IG/L AS)	SO (U AS	RON, IS- LVED G/L B) 020)	SOI (UC AS	ON, IS- LVED G/L FE) O46)	LEA DI SOL (UG AS	S- VED /L PB)	SO: (UC AS	HIUM IS- LVED G/L LI) 130)	NES SOI (UC AS	NGA- SE, IS- LVED G/L MN)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE D SO (U AS	LYB- NUM, IS- LVED G/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE)	DI SOI (UC AS	RON- IUM, IS- LVED G/L SR) O80)	
APR 07			2		280		20		<1		38		40		<0.1		2		2		530	
AUG 09			2		260		10		<1		40		10		0.2		1		<1		750	

06349000 HEART RIVER NEAR MANDAN, ND (National stream-quality accounting network station)

LOCATION.--Lat 46°50'02", long 100°58'27", in NW1/4NE1/4 sec.25, T.139 N., R.82 W., Morton County, Hydrologic Unit 10130203, on left bank near downstream wingwall of bridge on county highway, 3 mi west of Mandan, and 4 mi downstream from Sweetbriar Creek.

DRAINAGE AREA. -- 3,310 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April to September 1924, March 1928 to June 1933, August 1937 to current year. Published as "at Sunny" 1924, 1928-33.

REVISED RECORDS. -- WSP 926: 1938. WSP 1209: Drainage area. WSP 1239: 1924, 1928-29, 1948.

GAGE.--Water-stage recorder. Datum of gage is 1,638.70 ft above National Geodetic Vertical Datum of 1929, and 1,623.03 ft above Burlington Northern Railway datum. See WSP 1729 or 1917 for history of changes prior to June 30, 1958.

REMARKS.--Estimated daily discharges: Nov. 8 to Apr. 6. Records good except those for period of estimated daily discharges, which are fair. Flow regulated by Lake Tschida (station 06346000) 105 mi upstream since 1949. Some diversions above station.

AVERAGE DISCHARGE.--55 years (water years 1929-32, 1938-88), 268 ft³/s, 194,200 acre-ft/yr; median of yearly mean discharges, 210 ft³/s, 152,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 30,500 ft3/s, Apr. 19, 1950, gage height, 23.64 ft; maximum gage height, 25.75 ft, Apr. 4, 1952, ice jam; no flow for many days in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 1,370 ft³/s, Mar. 28, gage height, 5.06 ft, backwater from ice; minimum daily discharge, 0.34 ft³/s, Feb. 6-24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .88 72 .54 .87 .45 .86 .39 .86 .85 .35 .85 .34 16 .84 37 .34 .84 .83 6.2 .82 .34 .82 .34 15 11 .81 .34 .34 .80 .34 .80 9.6 .79 .78 13 6.8 ·34 ·34 ·34 .77 63 54 41 25 16 3.3 55 .75 8.6 .75 .34 5.5 .74 .74 .73 6.6 .34 .34 2.5 5.0 32 73 4.0 5.0 2.6 3.0 2.2 .71 1.5 30 35 17 1.8 .68 6.9 1.5 .66 .65 61 .96 .63 ---1461.5 1101.2 TOTAL 423.26 23.92 391.55 745.9 13.7 MEAN 82.4 36.2 .77 13.5 77.9 49.2 48.7 35.5 18.2 24.1 MAX 15 .88 .90 MIN 6.2 .60 2.5 .34 1.5

CAL YR 1987 TOTAL 173474.26 MEAN 475 MAX 13000 MIN .90 AC-FT 344100 WTR YR 1988 TOTAL 19317.33 MEAN 52.8 MAX 950 MIN .34 AC-FT 38320

O6349000 HEART RIVER NEAR MANDAN, ND--CONTINUED (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1946-50, 1971-76, 1978 to current year.

	DATE	TIME	STREA FLOV INSTA TANEO (CFS	N, COM AN- DUC DUS ANG B) (US)	FIC N- CT- (S CE 'CM) UN	PH STAND- ARD NITS)	ATU ATU (DEC	PER- JRE IR G C) D2O)	TEMP ATU WAT (DEG (OOO	RE ER C)		1)	SOL	S- VED /L)	SOL (PE CE SAT	S- VED R- INT IUR- ION)	COL FOR FEC 0.7 UM- (COL 100 (316	M, AL, MF S./ ML)	STRE TOCOO FECA KF AC (COLS PEF 100 M	CCI AL, GAR S. R ML)
OCT 22		1130	86		1140	8.10		1.5		2.5	5	.1	1	2.6		93		70		69
DEC		1250	28		1500	8.23		6.0		1.0		.7	1	2.8		91		K1		44
JAN		1500			2500			-4.0		0.0										
FEB		1150			2370	8.36		-7.0		0.5	0	.90		4.0		28		2		120
MAR		1510	168					5.0		0.5										
APR		1050	117		1240					7.0	7	3.3	1	1.3		95		K2		54
MAY		200	67			8.57		18.5			-									
24	:::	0950 1420	69		1440	==		25.5		4.5				==						
		0950	22		1860	8.44		17.5	1	9.0	1	.4		8.2		89		1	K7	780
AUG 10		1105	37		1510	8.43		28.0	2	4.0	2	2.0		8.7		104		73		120
	DATE	NE TO	ARD- ESS OTAL MG/L AS ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE SIUM DIS- SOLVE (MG/I AS MO	M, SOD DI ED SOL (M	OIUM, SS- VED IG/L S NA)	PER	DIUM CENT 932)	SO T RA	DIUM AD- RP- ION TIO 931)	SOI (MC AS	TAS- IUM, IS- LVED G/L K) 935)	LIN WAT TOT FI MG/	WH	MG/I	ATE PER IT ELD L AS	WAT WH FII MG/I	AR- ATE FER IT ELD L AS 03 447)	
	OCT																			
	DEC 22		310	62	37	17	0		54		4		2.5		319		316		36	
	O8		370	72	46	24	.0		58		6		7.3		454		554		0	
	24 APR		520	110	60	39	00		61		8	1	1		710		818		24	
	06 JUN		280	52	36	18	10		58	1	5	3	7.4		284		342		2	
	29 AUG		310	48	47	30	00		67		8	1	1		360		400		19	
	10		280	44	40	23	0		64		6	9	8.9		332		366		19	
	DATE	DI SC (1 AS	LFATE IS- DLVED MG/L SO4) 0945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVE (MG/I AS F)	DI SC ED (M	ICA, S- DLVED IG/L IS (02) (955)	RES AT DE D SO (M	IDS, IDUE 180 G. C IS- LVED G/L) 300)	SUM CON TUE D SO (M	IDS, OF STI- NTS, IS- LVED G/L) 301)	SOI (TO	IDS, IS- LVED ONS ER -FT) 303)	SO: (Te	IDS, IS- LVED ONS ER AY) 302)	NITE DE SOI (MC AS	TRO- EN, RITE IS- LVED G/L N) 613)	NO2- DI SOI (MC	TRO- EN, +NO3 IS- LVED G/L N)	
	OCT													40	_				440	
	22 DEC		50	8.6	0.3		5.9		839		837		1.14	19			.010		.110	
	O8 FEB		30	17	0.4		6.9		1060		1040		1.44		0.7		.010		.200	
	24 APR		50	60	0.5		5		1740		1730		2.37		1.60		.010		.150	
	06 JUN		00	8.0	0.3		4.8		859		857		1.17	27			.010		.100	
	29 AUG	56	60	19	0.6	50	8.8		1230		1200		1.67	7	2.7		.010	<0	.100	
	10	45	50	12	0.3	30	5.5		978		989		1.33	9	7.7	<0	.010	<0	.100	

06349000 HEART RIVER NEAR MANDAN, ND--CONTINUED (National stream-quality accounting network station)

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)
OCT 22	0.030	0.060	0.08	0.50	0.010	0.030	0.010	<10	1	63
DEC										
O8 FEB	0.030	0.050	0.06	0.40	0.010	<0.010	<0.010			
24 APR	0.590	0.680	0.88	0.90	0.010	0.010	<0.010	<10	1	200
06 JUN	0.030	0.050	0.06	1.5	0.120	0.010	<0.010	<10	1	47
29	0.040	0.020	0.03	1.0	0.030	0.010	<0.010			
AUG 10	<0.010	<0.010		0.90	0.030	0.030	<0.010	10	1	54
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
OCT 22 FEB	<0.5	2	2	<3	4	5	<5	35	10	0.1
24	<10	<1	<1	1	1	50	<5	110	650	0.3
APR 06	<0.5	<1	<1	<3	1	17	<5	43	6	0.3
AUG 10	<0.5	<1	<1	<3	<1	6	<5	53	4	0.5
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT										
22 FEB	<10	1	<1	1.0	660	<6	26	69	16	81
24	2	1	<1	<1.0	1300	<1	20	40	0.04	36
APR 06	<10	5	<1	<1.0	570	<6	5	36	11	74
MAY 05								87	16	81
AUG										

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

HEART RIVER BASIN

255

06349000 HEART RIVER NEAR MANDAN, ND--CONTINUED (National stream-quality accounting network station)

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT) (72015)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT								
22	1112	5.0	0.50	2.5	1140	8.00	12.4	
22	1114	10.0	0.50	2.5	1140	8.10	12.5	
22	1116	15.0	0.50	2.5	1140	8.10	12.5	
22	1118	20.0	0.50	2.5	1140	8.10	12.5	
22	1120	25.0	0.50	2.5	1140	8.10	12.6	
22	1122	30.0	0.50	2.0	1140	8.10	12.6	
22	1124	35.0	0.50	2.0	1140	8.10	12.6	
22	1125	40.0	0.50	2.0	1140	8.10	12.6	
22	1126	45.0	0.50	2.0	1150	8.20	12.7	
22	1128	50.0	0.50	2.0	1150	8.20	12.6	
22	1130	56.0	0.50	2.5	1140	8.10	12.6	93
APR				1 CA V20	2572		5.2	122
06	1050	30.0	0.50	7.0	1240	8.57	11.3	95
06	1052	50.0	0.50	7.0	1240	8.57	11.3	
06	1054	70.0	0.50	7.0	1240	8.46	11.5	
AUG	4405			24.0	4540	0 47	0.7	404
10	1105	40.0	0 50	24.0	1510	8.43	8.7	104 106
10	1130	10.0	0.50	24.5	1500	8.43	8.9	
10	1135	20.0	0.50	23.5	1500	8.43	8.8	105 104
10	1140		0.50	23.5	1510 1510	8.43	8.7	104
10	1145 1150	40.0 50.0	0.50	23.5	1510	8.43	8.7	104
10	1200	60.0	0.50	23.5	1510	8.43	8.7	104

06349070 MISSOURI RIVER BELOW MANDAN, ND

LOCATION.--Lat 46°44'32", long 100°49'54", at midsection of west half sec.30, T.138 N., R.80 W., Morton County, Hydrologic Unit 10130102, on right bank 1 mi south of Fort Lincoln State Park, 6 mi southeast of Mandan, and at mile 1,309.

DRAINAGE AREA .-- 189,800 mi2, approximately.

PERIOD OF RECORD .-- September 1966 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,600.00 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark).

REMARKS .-- Stage regulated by Garrison Dam (station 06338490) 80.9 mi upstream.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily gage height recorded, 29.71 ft, Mar. 17, 1972; minimum daily recorded, 17.40 ft, Apr. 1, 1968.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

					,,,	DAN TABOL						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		20.86	21.83			26.75	22.51	21.92	22.35	22.48	22.05	22.04
2		20.67	22.27			26.55	22.54	22.01	22.38	22.35	22.02	22.14
3		20.80	22.72			26.43	22.42	22.03	22.27	22.32	22.04	21.98
A		20.85	22.78			26.55	22.46	21.78	22.02	22.34	21.93	22.00
5		20.47				26.63	22.45	21.75	22.12	22.35	22.00	21.98
6		20.81				26.83	22.33	21.75	22.26	22.34	21.98	21.97
7		20.73		27.06		26.40	22.31	21.76	22.34	22.37	22.03	21.93
8		20.75		28.09		26.09	22.34	21.77	22.32	22.35	21.96	21.54
9		20.58		28.74		26.17	22.24	21.78	22.23	22.31	21.98	21.35
10		20.63				26.33	22,09	21.84	22.23	22.32	21.98	21.16
11		20.69				26.59	21.95	21.96	22.22	22.30	22.15	21.15
12		20.59				25.41	21.75	22.01	22.30	22.30	22.09	21.12
13		20.70				24.88	21.98	22.11	22.22	22.33	22.06	21.11
14		20.82				25.50	21.99	22.30	22.27	22.30	22.00	21.04
15		20.69				26.02	22.03	22.22	22.26	22.34	22.07	21.23
16		20.54				26.02	22.07	22.02	22.24	22.36	22.04	21.09
17		20.38				26.28	22.00	22.05	22.24	22.28	22.08	21.21
18		20.61				26.33	21.97	22.22	22.29	22.28	22.04	21.03
19		20.71				25.70	21.72	22.30	22.29	22.26	22.04	20.63
20		20.57				24.79	21.84	22.19	22.24	22.32	22.07	20.49
21		20.71				23.84	21.91	21.95	22.26	22.29	21.96	20.39
22		20.77				23.07	21.97	22.18	22.33	22.34	21.96	20.22
23		20.69				22.57	21.95	22.22	22.22	22.31	21.96	19.86
24		20.70				22.63	21.98	22.24	22.23	22.33	21.96	19.98
25		20.51				22.62	21.86	22.28	22.28	22.31	22.02	19.88
26		21.06			27.61	22.55	21.51	22.26	22.25	22.33	22.06	19.89
27		21.60			27.82	22.68	21.98	22.31	22.22	22.34	22.10	19.91
28		21.77			27.79	22.59	22.03	22.27	22.27	22.38	22.03	19.89
29	20.67	21.83			27.10	22.63	21.74	22.25	22.24	22.35	21.91	19.91
30	20.67	21.77				22.28	21.89	22.26	22.36	22.25	22.16	19.82
31	20.53					22.63		22.29		22.05	22.15	
MEAN		20.83				24.91	22.06	22.07	22.26	22.32	22.03	20.93
MAX		21.83				26.83	22.54	22.31	22.38	22.48	22.16	22.14
MIN		20.38				22.28	21.51	21.75	22.02	22.05	21.91	19.82

APPLE CREEK BASIN 257

06349215 LONG LAKE CREEK ABOVE LONG LAKE, ND

LOCATION.--Lat 46°37'59", long 100°14'29", in NE¼NE¼NW¼ sec.4, T.136 N., R.76 W., Emmons County, Hydrologic Unit 10130103, in farmyard and 4.0 miles southeast of Moffit.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- April to July 1988.

REMARKS.--Miscellaneous measurements made at this location are published in another section of this report.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
O6 JUL	1335	14	1728	20.5	763	648	8.23	5.0	10.8	84
21	1315	0.26	1728	28.0	772	960	8.50	22.5	8.2	94
DATE	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
APR 06	2.6	К2	240	140	30	17	81	53	3	7.6
JUL 21		150	190	230	49	26	130	54	4	9.7
DATE	ALKA- LINITY WAT WH TOT IT FIELD MG/L AS CACO3 (00419)	BICAR- BONATE WATER WH IT FIELD MG/L AS HCO3 (00450)	CAR- BONATE WATER WH IT FIELD MG/L AS CO3 (00447)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
APR										
06 JUL	208	254	0	130	4.8	0.20	15	8	410	410
21	438	520	7	72	9.4	0.40	24	35	599	581
DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)
APR 06	0.56	15.6	<0.010	<0.100	0.030	0.80	0.80	0.150	0.090	0.070
JUL 21	0.81	0.42	0.010	0.100	0.090	0.80	1.5	0.960	0.710	0.760

464245100092000 LONG LAKE POOL 3 NEAR MOFFIT, ND

LOCATION.--Lat 46°42'45", long 100°09'20", in NE1/4SW1/4 sec.4, T.137 N., R.75 W., Burleigh County, Hydrologic Unit 10130103, near center of pool, and 7 miles northeast of Moffit.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- March to July 1988.

REMARKS.--Phytoplankton samples were collected on July 21. These data are available from the U.S. Geological Survey district office in Bismarck.

DATE	TIME	ELE OF L SURF DAT (F ABO NGV (720	AND ACE UM T. VE D)	SAM PLI DEP (FE	NG V TH DE ET) (F	SER- OIR PTH EET) O25)	TEMP ATU AI (DEG (OOC	RE R C)	CLO COV (PE CEN	ER R- T)	WIN SPE (MI PE HOU (000	ED LES R	TI (DE FR TR	EC- ON G. OM UE TH)	BAR MET PRE SU (M O HG	RIC S- RE M F)	SPE- CIFT CON- DUCT ANCI (US/0	IC I- I- IM)	PH (STAND- ARD UNITS) (00400)
MAR 03	1030	171	1	3	.00	6.0		-0.5			1	4		150		767	40	000	8.43
JUL 20 21	0950 1145	171 171			.00	5.2	1	16.0		0		5.0		290		773		000	9.24
7	EMPER- ATURE WATER DEG C)	PA EN (SEC DIS	K)	SOL	D SO	GEN, IS- LVED ER- ENT TUR- ION)	OXYO DEMA BIC CHE ICA 5 I (MG	AND, D- EM- AL, DAY E/L)	COL FOR FEC 0.7 UM- (COL 100 (316	M, AL, MF S./ ML)	TOCO	GAR S. R ML)	HAR NES TOT (MG AS CAC	AL /L	CALC DIS SOL (MG AS	VED /L CA)	MAGI SIL SOL (MG, AS I	JM, S- VED /L MG)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
MAR	0.5	40		4	0.5	77						к10		330	30		61		910
03 JUL 20 21	0.5 18.0 23.2		.00		0.5 8.5	73 90		2.3		<4 K10		K80		240	16		49		800
DATE	PER	ODIUM RCENT 0932)	SOI T RA	DIUM AD- RP- ION TIO 931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	LIN WAT TOT FI MG/ CA	WH	BICA BONA WAT WH FIE MG/L HCC	TE TER IT ELD AS	BON WA' WH FI MG/	AR- ATE TER IT ELD L AS 03 447)	SO (M	FATE S- LVED G/L SO4) 945)	RI DI SO (M AS	LO- DE, S- LVED G/L CL) 940)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SOI (MC	LVED G/L
MAR 03		83		22	66		1060	1	1050		120	120	0	6	2	0	.30	34	4
JUL 20		86		23	38		988		883		158	98	0	6	0	0	.20	2	1
DATE	TOT AT DEC SU PEN	SIDUE TAL 105 G. C, JS- NDED MG/L) 0530)	RES AT DE D SOI (M	IDS, IDUE 180 G. C IS- LVED G/L) 300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	D SO (T P AC	IDS, IS- LVED ONS ER -FT) 303)	SOL (TO	LVED ONS ER	G NIT D SO (M AS	TRO- EN, RITE IS- LVED G/L N) 613)	NO2 D SO (M AS	TRO- EN, +NO3 IS- LVED G/L N) 631)	AMM D SO (M AS	TRO- EN, ONIA IS- LVED G/L N) 608)	NIT GEN, MONI ORGA DIS (MG AS (OO6	AM- A + NIC /L N)	GEN MON: ORGA TO: (MC	TRO- ,AM- IA + ANIC TAL G/L N) 625)
MAR 03		28		3130	2990		4.26	(0.0	0	.020	0	.270	0	.030	2	.5		3.0
JUL 20		180		2520	2550		3.43		0.0	<0	.010	<0	.100	0	.050	1	.5		2.7
DATE	PHO TO (1	HOS- DROUS DTAL MG/L S P) D665)	PHO D SO (M AS	OS- ROUS IS- LVED G/L P) 666)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)	ARS TO (U	ENIC TAL G/L AS)	TOT REC ERA (UC	COV- ABLE G/L BE)	TO RE ER (U AS	RON, TAL COV- ABLE G/L B) O22)	TO RE ER (U AS	MIUM TAL COV- ABLE G/L CD) 027)	MI TO RE ER (U AS	RO- UM, TAL COV- ABLE G/L CR) 034)	COBA TOT REC ERA (UG AS	AL OV- BLE /L CO)	TO:	PER, TAL COV- ABLE G/L CU) O42)
MAR 03		1.30	1	.20	1.10		47	<1	10		2600		<10		3		<50		30
JUL 20		0.750		.470	0.500														

APPLE CREEK BASIN

464245100092000 LONG LAKE POOL 3 NEAR MOFFIT, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI) (01132)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
MAR	1800	<100	520	90	0.10	5	<1	470	7	20

DATE	TIME	SAM- PLING DEPTH (FEET) (OOOO3)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (OOO95)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	
MAR								
03	1030	3.00	4000	8.43	0.5	10.5	73	
03	1032	2.20	4000	8.44	0.5	10.8	76	
03	1035	3.00	4000	8.43	0.5	10.5	73	
03	1040	4.00	4000	8.44	1.0	8.2	58	
03	1045	5.00	4000	8.43	1.0	6.7	48	
03	1050	6.00	4000	8.43	1.0	1.5	11	
JUL								
20	0950	3.00	4000	9.24	18.0	8.5	90	
20	0952	0.0	4000	9.24	18.0	8.5	90	
20	0955	1.60	4000	9.23	18.0	8.5	90	
20	1000	3.30	4000	9.24	18.0	8.5	90	
20	1005	5.20			18.0	8.2	86	

APPLE CREEK BASIN

464010100121800 LONG LAKE POOL 2 NEAR MOFFIT, ND

LOCATION.--Lat $46^{\circ}40^{\circ}10^{\circ}$, long $100^{\circ}12^{\circ}18^{\circ}$, in NW1/4SW1/4 sec.19, T.137 N., R.75 W., Burleigh County, Hydrologic Unit 10130103, near center of pool, and about 4 miles east of Moffit.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- March 1988.

3					WATI	SR-QU	ALIT	Y DA'	ra, v	VATER	YEAR	OCTO	BER	1987	TO	SEPTEM	BER	1988		
DATE	TIME	ELEY OF LA SURFA DATE (FO ABOVE (7200	AND ACE UM T. VE D)	SAM- PLIN DEPO	NG TH ET)	RESE VOI DEPI (FEE	R H T)	TEMPI ATUI AII (DEG (OOO)	RE R C)	CLOU COVE (PER CENT	ER R-	WINE SPEE (MIL PEF HOUF (OOO3	ED LES R	WIND DIRE TIC (DEC FRO TRU NORT	C- ON OM JE CH)	BARC METR PRES SUR (MM OF HG)	IC E	SPE- CIFI CON- DUCT ANCE (US/O	C - M)	PH (STAND- ARD UNITS) (00400)
MAR 02	1355	1716	6	1	.50	5	.2	_	1.0		50	5	5.0	3	30	7	70	28	300	8.48
DATE	TEMPER- ATURE WATER (DEG C) (00010)	PA EI (SEC DIS	ANS- AR- NCY CCHI SK) IN)	SOI (MC	GEN, IS- LVED G/L) 300)	SOL (PE CE SAT	VED CR- CNT CUR- CON)	BIC CHI IC. 5	AND,	UM-	CAL, CAL, MF S./ ML)	TOCO FEC KF A (COL	CAL, AGAR LS. ER ML)	HAR NES TOT (MG AS CAC	SAL L/L SO3)	(MG	VED /L CA)	SI SOI (MC	MG)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
MAR O2	2.0	1:	3.0		7.5		55		1.0		<5		K10		390	57		60)	590
DA	PE	ODIUM RCENT 0932)	SO T	DIUM AD- RP- ION TIO 931)	SI DI SOI (MC AS	TAS- IUM, IS- LVED G/L K) 935)	LIN WAT TOT FI MG/ CA	KA- IITY WH IIT ELD L AS CO3	BON WA WH FI MG/ HO	CAR- NATE ATER I IT IELD 'L AS CO3 0450)	BON WA WH FI MG/	AR- ATE TER IT ELD L AS	DI SC (M	FATE S- DLVED IG/L SO4)	RI DI SC (N	HLO- IDE, IS- DLVED MG/L B CL)	RI SO (M AS	UO- DE, IS- LVED G/L F)	DI SC (N	JICA, IS- DLVED IG/L IS IO2)
MAR 02		74		13	4	7		894		969		60	76	60	3	36		0.40	3	50
DAT	TOT AT DEG SU PEN (M	105 . C, S-	SOLI RESI AT 1 DEG DI SOL (MG (703	DUE 80 . C S- VED /L)	SOLII SUM (CONST TUENT DIS SOLI (MG,	OF TI- TS, S- VED /L)	SOL (TO	S- VED ONS CR FT)	SOI (TO	IS- LVED ONS ER LY)	GE NITR DI	ITE S- VED /L N)	NO2+	S- VED I/L N)	AMMO DI SOI (MO AS	PRO- EN, ONIA IS- LVED G/L N)	NIT GEN, MONI ORGA DIS (MG AS (OO6	A + NIC /L N)	NIT GEN, MONI ORGA TOT (MO	ANIC TAL H/L N)
MAR 02		5	2	140	2.	110	2	2.91	(0.0	0.	030	0.	340	0.	.040	2	.0	2	2.3
DAT	PHO TO (M AS	OS- ROUS TAL G/L P) 665)	PHO PHOR DI SOL (MG AS (006	OUS S- VED /L P)	PHOS PHORI ORTI TOTA (MG, AS 1	US, HO, AL /L P)	ARSE TOT (UC AS (O10	AL (L AS)	TOT REC ERA (UC	RYL- JM, PAL COV- ABLE S/L BE)	TOT	BLE /L B)	ERA (UC	AL COV- BLE (/L CD)	TOT REC ERA (UC AS	RO- JM, FAL COV- ABLE G/L CR)	ERA (UG	AL OV- BLE /L CO)	ERA (UC	COV- ABLE G/L CU)
MAR 02	1	.00	0.	900	0.0	930		33	<	10	1	500		<10		5		<50		30
	IR TO RE ER (U	ON, TAL COV- ABLE G/L FE)	LEA TOT REC ERA (UG AS	D, AL OV- BLE /L PB)	LITH TOT RECO ERAI (UG,	IUM AL OV- BLE /L	NES TOT REC ERA (UC	IGA- SE, PAL COV- ABLE S/L MN)	MERO TOT REO ERA (UC	CURY CAL COV- ABLE G/L HG)	MOL DEN TOT REC ERA (UG	YB- IUM, PAL COV- BLE F/L MO)		E- IM, TAL S/L SE)	TO REC ER (UC AS	RON- IUM, FAL COV- ABLE G/L SR)	SOL (UC AS	M, S- VED /L V)	ERA (UC	TAL COV- ABLE G/L ZN)
DAT:	E (01	045)	(010	51)	(011)	32)	(010)55)	(719	900)	(010	62)	(011	47)	(010	082)	(010	185)	(010	92)
02		2500	<	100		380		90	(0.10		7		<1		500		11		20

APPLE CREEK BASIN

261

464010100121800 LONG LAKE POOL 2 NEAR MOFFIT, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (OOO95)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	
MAR								
02	1355	1.50	2800	8.48	2.0	7.5	55	
02	1357	2.20	2800	8.44	1.0	7.1	50	
02	1400	3.00	2800	8.48	2.0	7.5	55	
02	1405	4.00	2850	8.52	2.5	6.2	45	
02	1410	5.20	2900	8.58	2.5	3.2	23	

262 APPLE CREEK BASIN

464052100160700 LONG LAKE POOL 1 NEAR MOFFIT, ND

LOCATION.--Lat 46°40'52", long 100°16'07", in SW1/4NW1/4SW1/4 sec.15, T.137 N., R.76 W., Burleigh County, Hydrologic Unit 10130103, near center of pool, and 11/2 miles east of Moffit.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- March to July 1988.

REMARKS.--Phytoplankton samples were collected on July 21. These data are available from the U.S. Geological Survey district office in Bismarck.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	T	IME	ELEV OF LA SURFA DATU (FT ABOV NGVI (7200	AND ACE JM T. VE	SAM- PLIN DEPT (FEE	NG TH ET)	RESE VOI DEPT (FEE	IR A TH ET) (D	MPEF TURE AIR DEG (00020	E C)	CLOU COVI (PER CENT	ER R-	WIN SPE (MI PE HOU (OOO	ED LES R R)	WINI DIRI (DEC FRO TRI NOR!	EC- ON G. OM JE TH)	BARC METI PRES SUI (MI OI HG (000)	RIC S- RE M F	SPE- CIFI CON- DUCT ANCE (US/O	C:- (PH (STAN ARD UNITS	D-	TEMPER- ATURE WATER (DEG C) (00010)
MAR			474		-	00			_										-				
02 APR		100	1715			.00		5.0	-3.			0		9.0		330		773		00		37	2.5
06	12	210	1715	5	2.	.00	-	5.0	11.	.5		10		5.0		225		763	14	40	8.	62	5.5
20		345 345	1715		1.	.50	3	3.2	14.	5		0		5.0		290		772		00	9.	11	17.5 22.0
DATE	EM (SEC	IN)	OXYGE DIS SOLV (MG/	ED L)	OXYGE DIS SOLV (PER CEN SATIO (0030	S- I VED R- NT JR- ON)	OXYGE DEMAN BIO- CHEN ICAL 5 DA (MG)	ND, E M- C L, U AY (C /L) 10	OCI- ORM, ECAL O.7 IM-MF OCLS. O ML	.,	STRE TOCOO FECA KF AC (COLS PER 100 I	CCI AL, GAR S. WL)	HAR NES TOT (MG AS CAC	S AL /L	CALC: DIS- SOLV (MG, AS (VED /L CA)	MAGI SIL SOL (MG, AS 1	JM, S- /ED /L MG)	SODIU DIS- SOLVE (MG/ AS N	D L	SODI PERCE (0093	NT	SODIUM AD- SORP- TION RATIO (00931)
MAR																							
02 APR	12	2.0	6	5.3		46	3	3.6	<	(5		<5		350	53		54		450			71	11
06 JUL	13	3.0	12	2.0		95			<	3	4	100		200	31		30		250			71	8
20	2	2.00	8	3.6		89	3	3.9	<2	20	F	(80		240	23		45		410			77	12
DA'	TE	SOI (M AS	TAS- IUM, IS- LVED G/L K) 935)	ALK LINI WAT TOT FIE MG/L CAC	TY WH IT ELD AS	BICAL BONAT WATE WH FIEL MG/L HCO:	TE ER IT LD AS	CAR- BONATE WATER WH IT FIELD MG/L A CO3 (00447	S	BULF DIS SOL (MG	VED /L (04)	RI DI SO (M AS	LO- DE, S- LVED G/L CL) 940)	RI SO (M AS	JUO- DE, DIS- DLVED JG/L S F)	SILI DIS SOL (MO AS SIC	VED /L	RESI TOTA AT 10 DEG. SUS PEND (MG (005	L 05 C, = ED /L)	SOLIO RESID AT 18 DEG. DIS SOLV (MG/	OUÉ 30 . C S- VED /L)	CONS TUE! D: SOI (MC	IDS, OF STI- VTS, IS- LVED G/L)
MAR																							
O2. APR	• •		40		804		883		48	59	0		25		0.40	2	28		27	1	1780		1720
O6.	••		17		430		466		29	34	0		15		0.20	1	2		1		968		948
20.		1	22		616		605		72	55	0		26		0.30	1	8	3	16		1530		1460
D	ATE	S(LIDS, DIS- OLVED TONS PER C-FT)	SC (I	JIDS, DIS- DLVED CONS PER DAY)	OI NITE DI SOI (MO AS	TRO- EN, RITE IS- LVED G/L N)	NITE GEN NO2+N DIS SOLV (MG/ AS N	103 ED L	AMM D SO (M AS	TRO- EN, ONIA OIS- LVED G/L N) 608)	GE MO OR D (ITRO- N,AM- NIA + GANIC IS. MG/L S N) 0623)	GE MO OR T	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	PHO TO (M	OS- ROUS TAL IG/L IG/L IG/S P)	PHO D SO (M	OS- ROUS IS- LVED G/L P) 666)	PHOF ORT TOT (MC	THO, TAL G/L P)	() AS	SENIC DTAL JG/L S AS)
MAR																							
O2. APR			2.42		0.0	<0	.010	0.3	10	0	.030		1.8		2.3	C	.810	0	.670	0.	.710		18
06. JUL	• •		1.32		0.0	<0	.010	<0.1	00	<0	.010		1.1		1.3	C	.440	0	.360	0.	.310		
20.	••		2.08		0.0	<0	.010	<0.1	00	0	.070		1.7		3.7	1	.20	0	.540	0.	.590		

464052100160700 LONG LAKE POOL 1 NEAR MOFFIT, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01013)	BORON, TOTAL RECOV- ERABLE (UG/L AS B) (01022)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (O1028)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (O1029)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)
MAR 02	5		<1			1		<10			20
02		<10		1200	<10		3		<50	30	
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI) (01132)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG) (71921)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G) (O1148)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)
MAR 02			<10		3.2		<0.01			<1	
02	1600	<100		350	60	0.10		5	<1		510
DATE	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN) (00721)	PHENOLS TOTAL (UG/L) (32730)	ALDRIN, TOTAL (UG/L) (39330)	CHLOR- DANE, TOTAL (UG/L) (39350)	DDD, TOTAL (UG/L) (39360)	DDE, TOTAL (UG/L) (39365)	DDT, TOTAL (UG/L) (39370)	DI- ELDRIN TOTAL (UG/L) (39380)
MAR											
02	10	10	50	<0.5	2	<0.010	<0.1	<0.010	<0.010	<0.010	<0.010
DATE	ENDO- SULFAN, TOTAL (UG/L) (39388)	ENDRIN, TOTAL (UG/L) (39390)	HEPTA- CHLOR, TOTAL (UG/L) (39410)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L) (39420)	LINDANE TOTAL (UG/L) (39340)	METH- OXY- CHLOR, TOTAL (UG/L) (39480)	MIREX, TOTAL (UG/L) (39755)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L) (39250)	PCB, TOTAL (UG/L) (39516)	PER- THANE TOTAL (UG/L) (39034)	TOX- APHENE, TOTAL (UG/L) (39400)
MAR											
02	<0.010	<0.010	<0.010	<0.010	<0.010	<0.01	<0.01	<0.10	<0.1	<0.1	<1
		DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)		
		02 02 02 02	1100 1104 1108 1112 1116	3.00 2.10 3.00 4.00 5.00	2100 2100 2100 2100 2100	8.37 8.37 8.37 8.32 8.30	2.5 2.5 2.5 3.0 3.0	6.3 7.5 6.3 7.2 7.2	46 55 46 53 53		
		06 06 06 06 06	1155 1158 1201 1204 1207 1208 1210	0.0 1.00 2.00 3.00 4.00 5.00 2.00	1430 1430 1440 1440 1440 1440	8.65 8.64 8.63 8.63 8.62 8.62 8.62	5.5 5.5 5.5 5.5 5.5 5.5	12.0 12.0 12.0 12.0 12.0 12.0	95 95 95 95 95 95 95		
		L 20 20 20	0845 0847 0850 0855	1.50 0.0 1.60 3.20	2300 2300 2300 2300	9.11 9.11 9.12 9.12	17.5 17.5 17.5 17.5	8.6 8.6 8.7	89 89 89 90		

06349500 APPLE CREEK NEAR MENOKEN, ND

LOCATION.--Lat 46°47'40", long 100°39'25", in NW1/4NE1/4 sec.9, T.138 N., R.79 W., Burleigh County, Hydrologic Unit 10130103, on left bank 75 ft downstream from bridge on county highway, 4 mi upstream from Hay Creek, 6.3 mi west of Menoken, and 6.4 mi east of Bismarck.

DRAINAGE AREA .-- 1,680 mi2, approximately, of which about 500 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March to June 1905, October 1945 to current year. Published as "near Bismarck" 1905.

REVISED RECORDS .-- WSP 1209: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,638.61 ft above National Geodetic Vertical Datum of 1929. See WSP 1729 or 1917 for history of changes prior to Sept. 30, 1953.

REMARKS.--Estimated daily discharges: Oct. 4-8, Nov. 12-18, 27 to Mar. 26, June 13-26, July 4 to Aug. 31, and Sept. 14-30. Records fair except those for periods of estimated daily discharge, which are poor.

AVERAGE DISCHARGE.--43 years, 34.4 ft3/s, 24,920 acre-ft/yr; median of yearly mean discharges, 22 ft3/s, 15,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,750 ft³/s, Apr. 18, 1950, gage height, 17.07 ft; maximum gage height, 17.46 ft, Apr. 19, 1979; no flow at times in some years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 29	1444	130	6.78				

Minimum daily discharge, 0.02 ft3/s, July 20-29.

		DISCHARGE,	IN CUBIC	FEET	PER SECONI	D, WATER EAN VALUE	YEAR OCTO	BER 1987 1	O SEPTEM	BER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.9 9.6 9.7 9.0 8.5	3.7 3.7 3.9 4.3 4.4	3.8 4.0 4.0 4.0 4.0	2.5 2.4 2.3 2.0 1.7	.90 .90 .90 .80	3.2 3.0 2.8 2.6 2.4	39 36 30 27 23	7.8 8.7 9.4 9.6 9.1	3.3 3.0 3.3 3.0 2.0	3.8 3.0 2.7 2.0 1.0	.05 .06 .07 .08	.23 .03 .04 .04
6 7 8 9 10	8.0 7.5 7.0 6.2 5.8	4.5 4.8 4.9 4.6 4.4	4.1 4.5 4.5 4.5	1.6 1.5 1.4 1.4	.80 .80 .80 .80	6.0 15 20 15 12	21 20 19 19	8.9 8.8 8.5 8.2 7.9	1.7 1.3 .83 .58 .39	.70 .50 .40 .30	.12 .15 .20 .25 .28	.05 .07 .10 .11
11 12 13 14 15	5.6 5.7 5.6 5.4 5.4	4.3 4.3 4.3 4.3	4.5 4.5 4.4 4.2 4.0	1.3 1.3 1.3 1.3	.80 .80 .80 .80	9.0 7.0 5.0 4.5 3.5	17 16 15 15	7.4 7.3 7.4 7.2 6.5	.26 .24 .20 .14 .09	.19 .16 .16 .16	.30 .32 .36 .40	.10 .09 .14 .15
16 17 18 19 20	6.0 5.6 5.1 5.0 5.0	4.2 4.2 4.1 4.1	4.0 3.8 3.8 3.8 3.8	1.2 1.2 1.2 1.2	.90 .90 .90 .90	3.2 3.0 3.4 4.0 4.5	14 13 13 13 12	5.6 5.1 6.9 14	.08 .08 .08 .08	.10 .08 .06 .03	.50 .50 .50 .50	.20 .20 .20 .20
21 22 23 24 25	5.9 6.0 6.1 6.4 5.9	4.1 4.2 4.2 4.2 4.3	3.6 3.6 3.4 3.4 3.3	1.1 1.1 1.1 1.1	1.1 1.2 1.3 1.3	5.0 5.5 6.0 8.5	11 11 11 10 9.6	7.6 7.1 6.5 6.2 5.8	.09 .09 .10 .10	.02 .02 .02 .02	.45 .40 .40 .40	.25 .25 .25 .25
26 27 28 29 30 31	5.7 5.4 5.2 5.2 5.7 4.9	4.3 4.2 4.0 3.8 3.8	3.2 3.0 2.8 2.7 2.7	1.0 1.0 1.0 1.0 1.0	1.5 2.0 3.0 3.5	15 47 84 86 64 47	9.6 9.5 8.8 7.5 7.6	5.4 5.0 5.3 5.3 5.0	.11 .15 .15 .16	.02 .02 .02 .02 .03	.35 .35 .35 .35 .35	.30 .30 .30 .30
TOTAL MEAN MAX MIN AC-FT	198.0 6.39 9.9 4.9 393		16.6 3.76 4.5 2.6 231	42.1 1.36 2.5 1.0 84	33.10 1.14 3.5 .80 66	510.1 16.5 86 2.4 1010	489.6 16.3 39 7.5 971	230.9 7.45 14 4.4 458	22.78 .76 3.3 .08 45	15.96 .51 3.8 .02 32	9.83 .32 .55 .05 19	5.14 .17 .30 .03 10

CAL YR 1987 TOTAL 39842.9 MEAN 109 MAX 2840 MIN 2.6 AC-FT 79030 WTR YR 1988 TOTAL 1800.61 MEAN 4.92 MAX 86 MIN .02 AC-FT 3570

265

APPLE CREEK BASIN

06349500 APPLE CREEK NEAR MENOKEN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

DA	ATE	TIME	STREAM FLOW, INSTAM TANEOU (CFS)	CON- U- DUC' US ANC!	IC - PH T- (STA E AR CM) UNIT	ND- AT D A S) (DE	PER- PURE AIR GG C)	TEMP ATU WAT (DEG	RE ER C)	HARD NESS TOTA (MG/ AS CACO	L L	ALCIUM DIS- SOLVED (MG/L AS CA) 00915)	MAGI SIL SOL (MG AS 1	UM, S- VED /L MG)	SODIUM DIS- SOLVEN (MG/M AS NA (00930	L A)	SODIUM PERCENT (00932)
OCT 28.		1130	5.2		430												
NOV	• •	1150	9.4	- 1	450		9.0		4.0								•••
18., JAN	• •	0945	4.2	2 19	900		4.5		0.5								
14.		1440	1.3	5 2	210		-1.0		0.0								
O1.		1310	3.3	5	970		12.0		0.0								
12.		1105	16	10	070 7	.89	20.0		8.0	1	70	32	21		93		53
20.		1450	13	1	140		13.0		9.0								
JUN 15 JUL	• •	1255	0.0	8			30.0	2	3.0								
19.		1000	0.0	3 1	530 8	.76	24.0	2	0.5	2	50	47	32		310		72
D <i>i</i>	ATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS SIUM DIS- SOLVE (MG/I AS K)	A, LINI LA ED (MG L AS CAC	TY SULF B DIS /L SOL (MG 03) AS S	ATE RI - DI VED SO /L (M	ILO- IDE, IS- IC/L IG/L IG CL)		S- VED /L F)	SILIO DIS- SOLV (MG/ AS SIO2 (0095	A, RI ED L	OLIDS, ESIDUE T 180 DEG. C DIS- SOLVED (MG/L) 70300)	SOLITIONS TUENS SOLITIONS (MG, (7030)	OF TI- TS, S- VED /L)	SOLIDS DIS- SOLVE (TONS PER DAY)	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR																	
JUL 12.	• •	3	11	220	150	1	1	0	.10	16		442		464	19.	1	0.60
19.		9	10	620	260	4	6	0	.50	12		1080	1	140	0.0	0	1.47
	DA	50 (1) AS	SENIC DIS- DLVED JG/L S AS)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	9 SC (U	CHIUM DIS- DLVED IG/L S LI)	D SO (U	IS- LVED G/L MN)	MERCUI DIS SOLVI (UG/1 AS HO	RY DE - D ED SO L (U G) AS	LYB- NUM, DIS- DLVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	SOI (UC AS	RON- IUM, IS- LVED G/L SR) 080)
	APR 12		2	330	240	1	1	52		130	0	.1	1		2		270
	JUL 19		17	840	20	<1		130		80	0	.2	4		<1		550

MISSOURI RIVER MAIN STEM

06349700 MISSOURI RIVER NEAR SCHMIDT, ND

LOCATION.--Lat 46°39'22", long 100°44'18", in SW1/4NE1/4 sec.26, T.137 N., R.80 W., Morton County, Hydrologic Unit 10130102, on right bank 2 mi southeast of abandoned townsite of Schmidt, 13 mi southeast of Mandan, and at mile 1,298.

DRAINAGE AREA.--191,700 mi², approximately.

PERIOD OF RECORD. -- September 1966 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1,600.00 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Stage regulated by releases from Garrison Dam (station 06338490) 91.1 mi upstream, and backwater from Lake Oahe.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily gage height recorded, 23.56 ft, Dec. 9, 1976; minimum daily recorded, 7.92 ft, May 30, 1967.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14.09 14.07 14.19 14.14 14.14	13.03 12.92 12.91 13.04 12.68	14.11 14.50 14.95 15.22 15.32	18.02 18.42	==	19.95 19.68 19.51 19.55 19.61	15.15 15.14 15.06 15.02 15.04	14.43 14.55 14.66 14.44 14.34	14.94 15.00 14.92 14.65 14.62	15.15 15.04 14.91 14.91 14.91	14.52 14.55 14.57 14.52 14.50	14.61 14.68 14.56 14.48
6 7 8 9	14.11 14.05 13.65 13.10 13.14	12.93 12.94 12.89 12.78 12.79	15.41 15.42 15.36 15.43 15.35	19.26	21.05	19.83 19.61 19.21 19.18 19.27	14.97 14.89 14.89 14.82 14.71	14.31 14.36 14.29 14.33 14.38	14.79 14.91 14.92 14.84 14.80	14.90 14.92 14.94 14.88 14.89	14.49 14.49 14.44 14.44	14.49 14.44 14.09 13.83 13.56
11 12 13 14 15	13.17 13.19 13.02 12.99 13.08	12.83 12.71 12.79 12.90 12.84	15.35 15.31 15.26 15.21 15.27	20.88	21.10 21.09 21.20	19.52 18.87 17.86 18.38 19.48	14.54 14.22 14.36 14.49 14.57	14.43 14.56 14.62 14.81 14.90	14.79 14.83 14.84 14.84 14.92	14.87 14.87 14.92 14.88 14.88	14.55 14.58 14.56 14.49 14.54	13.49 13.53 13.47 13.38 13.51
16 17 18 19 20	13.01 13.14 13.09 13.08 12.95	12.63 12.38 12.56 12.73 12.65	15.35 15.52 15.37 15.23 15.18	20.53 20.59 20.61 20.50 20.43	21.03 21.04 21.08 21.06 20.99	19.16 19.30 19.54 19.18 19.09	14.64 14.60 14.58 14.30 14.37	14.65 14.65 14.77 14.91 14.88	14.86 14.85 14.86 14.88 14.83	14.90 14.83 14.83 14.84 14.88	14.53 14.55 14.54 14.56 14.58	13.44 13.50 13.42 12.99 12.75
21 22 23 24 25	13.15 13.18 13.03 13.06 13.18	12.72 12.80 12.76 12.78 12.58	15.20 15.25 15.39 15.30 15.17	20.46 20.43 20.38 20.38	21.01 21.04 20.99 20.69 20.41	19.15 18.32 16.65 15.63 15.34	14.46 14.54 14.51 14.58 14.47	14.57 14.68 14.82 14.85 14.88	14.79 14.87 14.81 14.78 14.83	14.87 14.88 14.86 14.87 14.85	14.48 14.45 14.44 14.48 14.49	12.68 12.50
26 27 28 29 30 31	12.66 12.86 12.90 12.89 12.86 12.73	12.89 13.64 13.99 14.10 14.13	15.32 15.38 15.20 15.30 15.25 15.76	20.53 20.65 20.67 20.66 20.70	20.72 20.97 20.98 20.47	15.21 15.36 15.25 15.32 14.96 15.15	14.06 14.48 14.66 14.34 14.41	14.88 14.92 14.92 14.83 14.87 14.89	14.83 14.76 14.81 14.77 14.95	14.86 14.88 14.92 14.91 14.81 14.60	14.55 14.65 14.60 14.47 14.59 14.72	=======================================
MEAN MAX MIN	13.29 14.19 12.66	12.94 14.13 12.38	15.25 15.76 14.11	==	==	18.13 19.95 14.96	14.63 15.15 14.06	14.66 14.92 14.29	14.84 15.00 14.62	14.89 15.15 14.60	14.53 14.72 14.44	==

06350000 CANNONBALL RIVER AT REGENT, ND

LOCATION.--Lat 46°25'36", long 102°33'05", in NE1/4NE1/4 sec.13, T.134 N., R.95 W., Hettinger County, Hydrologic Unit 10130204, on right bank 400 ft from bridge on county highway, and 0.3 mi north of Regent.

DRAINAGE AREA .-- 580 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1950 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 2,422.90 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated discharges: Dec. 9 to Mar. 29. Records fair except those for period of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--38 years, 47.1 ft^3/s , 34,120 acre-ft/yr; median of yearly mean discharges, 33 ft^3/s , 23,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,000 ft3/s, Mar. 27, 1978, gage height, 20.55 ft; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since 1914, 26.1 ft, Apr. 16, 1950, from floodmarks, discharge, 20,300 $\mathrm{ft^3/s}$, on basis of slope-area measurement at site 4 mi downstream.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 400 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 27	1815	*45	a*3.31				

Minimum daily discharge, 1.0 ft $^3/\mathrm{s}$, Jan. 25-27 and Feb. 6-10. a - Backwater from ice.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND, MEA	WATER Y	YEAR OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.4 4.3 4.3 4.4 4.0	5.5 5.5 5.5 5.5 5.5	5.9 6.0 6.1 6.1	2.5 1.5 1.8 1.7	1.1 1.1 1.1 1.1	11 10 9.0 10		6.8 12 14 13	4.3 4.2 4.0 3.6 3.3	5.2 4.3 4.1 3.7 4.0	1.4 1.5 2.0 1.8 1.7	1.7 1.7 1.6 1.6
6 7 8 9 10	3.9 3.7 4.0 3.9 3.8	5.4 5.5 5.5 5.5	6.0 6.0 5.9 6.2	1.7 1.6 1.5 1.4	1.0 1.0 1.0 1.0	13 11 9.0 10	10 9.3 9.8	13 12 14 15	2.9 2.7 2.7 2.2 2.2	4.2 3.9 3.6 3.9 3.5	1.9 2.1 2.3 2.6 2.5	1.7 1.7 1.7 1.7
11 12 13 14 15	4.1 4.3 4.5 4.5 4.5	5.5 6.1 6.1 6.1 6.8	6.2 6.0 5.8 5.8	1.3 1.3 1.2 1.2	1.1 1.2 1.4 1.6	10 9.0 8.5 8.5 9.0	10 11 11 10 9.6	15 16 14 13	1.9 2.7 2.8 3.2 3.3	3.0 2.8 2.5 2.1 1.7	2.1 1.7 1.6 1.8	1.9 2.0 2.0 1.9 2.5
16 17 18 19 20	5.1 5.3 5.4 5.5 5.7	6.7 6.3 6.1 6.0 6.0	4.8 4.4 4.2 4.2 4.2	1.2 1.2 1.2 1.1	1.8 2.2 2.6 2.0 2.0	11 13 15 13	9.4 9.2 8.7 8.4 8.0	9.8 9.7 9.4 8.8 8.2	3.2 3.3 3.2 3.0 2.3	1.7 2.0 1.9 1.9	1.9 1.9 1.9 1.9	2.4 2.2 2.6 2.8 2.5
21 22 23 24 25	5.7 5.6 5.4 5.4	5.7 5.8 5.9 5.9	4.0 3.8 3.8 3.7 3.4	1.1 1.1 1.2 1.1	2.0 3.0 3.5 3.0 2.5	15 20 25 30 32	8.0 7.6 7.4 7.4	7.7 7.5 7.0 6.4 6.0	2.6 3.1 3.1 2.3 1.6	1.7 1.8 1.7 1.3	1.9 1.8 1.7 1.6	2.6 2.5 2.5 2.4 2.6
26 27 28 29 30 31	5.5 5.5 5.5 5.5 5.5	6.4 6.3 6.1 5.8 5.8	3.2 3.0 2.8 2.7 2.6 2.6	1.0 1.0 1.1 1.2 1.1	4.0 6.0 9.0 13	35 40 35 30 28 23	7.2 7.1 7.1 6.7 6.3	5.5 5.5 6.7 6.3 5.4 4.8	1.3 1.5 1.5 4.5	1.7 1.7 2.0 1.6 1.2	1.5 1.6 1.7 1.8 1.8	2.5 2.4 2.4 2.4 2.3
TOTAL MEAN MAX MIN AC-FT	150.1 4.84 5.7 3.7 298				74.0 2.55 13 1.0 147	528.0 17.0 40 8.5 1050		10.5 10.0 16 4.8 616		79.6 2.57 5.2 1.2 158	56.9 1.84 2.6 1.4 113	64.2 2.14 2.8 1.6 127

CAL YR 1987 TOTAL 14245.8 MEAN 39.0 MAX 1550 MIN 2.6 AC-FT 28260 WTR YR 1988 TOTAL 2006.9 MEAN 5.48 MAX 40 MIN 1.0 AC-FT 3980

CANNONBALL RIVER BASIN

06350000 CANNONBALL RIVER AT REGENT, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-66, 1971 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	CON- DUCT- ANCE (US/CM)		AIR (DEG	E AT WA C) (DE	PER- URE TER G C) O1O)	HARD- NESS TOTAL (MG/L AS CACO3 (00900	CALCI DIS- SOLV (MG,) AS (TUM S - D /ED SO /L (M CA) AS	GNE- IUM, IS- LVED G/L MG) 925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
OCT													
06 NOV	1100	4.1	1720)	- 13	.0	8.5	-	-				
20	1250	5.8	1720		- 8	.0	1.5	-	-				
JAN 06 FEB	1135	1.7	2350		-14	.0	0.5	-	-				
18	1100	2.6	2000		- 3	.0	0.5	-					
29	1515	13	1770			.0	0.5	-					
MAR 16	1725	11	1600	0.00		.0	0.5	77			•	250	50
28	1725 1635	42	1680 1360			.5	1.0	37		4	8	250	59
APR	1033	42	1300)	2		1.0	-	-				
12 MAY	1135	11	1650		- 18	.0	11.5	-					
10 JUN	1205	14	2000		- 19	.0	15.5	-	-				
20	1430	2.0	2330	8.30	0 41	.0	26.0	52	0 94	7	0	350	59
AUG 09	1115	2.6	1960)	26	.5	21.0						
09	1115	2.0	1960	,	- 26		21.0	-					
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	LINITY LAB (MG/L AS CACO3)		DIS- SOLV (MG/	RI D ED SO L (M EL) AS	UO- DE, IS- LVED G/L F)	SILICA DIS- SOLVE (MG/L AS SIO2) (00955	D DEG	OUÉ SUM SO CON C TUE S- D VED SO VL) (M	IDS, OF STI- NTS, IS- LVED G/L) 301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR			14.4										
16 JUN	6	12	280	630	9.	7	0.30	5.6	12	250	1200	37.1	1.70
20	7	9.6	390	870	15		0.50	6.9	16	550	1650	8.69	2.24
c	1 S0 (1 A5	DIS- DLVED S JG/L (S AS) A	DIS- OLVED S UG/L (S B)	DIS- SOLVED S UG/L (AS FE)	DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NE SO (U	IS- LVED G/L MN)	ERCURY DIS- SOLVED (UG/L AS HG) 71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NIII SOI (UC AS	IM, IS- IN- LVED SO G/L (IN- SE) AS	TRON- TIUM, DIS- DLVED JG/L S SR) 1080)
MAR 16. JUN		1	360	170	<1	31		110	0.4	1		1	970
20.		2	500	30	<1	50		90	0.2	4		<1	1700

CANNONBALL RIVER BASIN

06351680 WHITE BUTTE FORK CEDAR CREEK NEAR SCRANTON, ND

LOCATION.--Lat 46°19'20", long 102°59'45", in NW1/4 sec.21, T.133 N., R.98 W., Slope County, Hydrologic Unit 10130205, on left bank 1,200 ft downstream from county highway bridge, and 13 mi northeast of Scranton.

DRAINAGE AREA .-- 42.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1965 to current year (seasonal records only since 1984).

GAGE.--Water-stage recorder. Elevation of gage is 2,825 ft above National Geodetic Vertical Datum from topographic map.

REMARKS.--Estimated daily discharges: Feb. 1 to Apr. 4. Records good except those for period of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--18 years (water years 1966-83), 4.45 $\rm ft^3/s$, 3,220 acre-ft/yr; median of yearly mean discharges, 4.5 $\rm ft^3/s$, 3,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 645 ft³/s, May 8, 1970, gage height, 7.20 ft; maximum gage height, 7.76 ft, May 8, 1967; no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge observed, 6.2 ft³/s, Mar. 2, gage height, 3.02 ft, backwater from ice; no flow for many days.

	DISCHARGE,	IN CUBIC	FEET F	PER		WATER VALUE	OCTOBER	1987	TO	SEPTEMBER	1988	
OCT	NOV	DEC	JAN		FEB	MAR	APR	MAY		JUN	JUL	

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5					.00 .00 .00	5.0 6.0 5.5 5.0 4.0	.90 .80 .75 .70	.10 1.0 1.5 .88 .52	.01 .01 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9					.00 .00 .00	3.0 3.5 2.5 2.0 1.5	.45 .45 .41 .36	1.1 .85 .50 .94	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15					.00 .00 .00	1.0 .85 .70 .55	.28 .21 .16 .13	.93 1.5 1.9 1.2	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20					.00 .00 .00	.15 .00 .00 .25	.13 .11 .13 .12	.80 .38 .29 .27 .26	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25					.00 .00 .00	.75 .75 1.0 .75	.11 .11 .18 .22	.17 .11 .08 .07	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31					.00 .50 1.0 2.5	•25 •75 •50 •75 1•1	.08 .12 .11 .12 .11	.02 .02 .03 .02 .01	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT					4.00 .14 2.5 .00 7.9	50.35 1.62 6.0 .00	8.31 .28 .90 .08 16	18.31 .59 1.9 .01 36	0.02 .001 .01 .00	0.00 .00 .00	0.00 .00 .00	0.00 .00 .00 .00

270

CANNONBALL RIVER BASIN

06351680 WHITE BUTTE FORK CEDAR CREEK NEAR SCRANTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE		TIME	STRE FLO INST TANE (CF	W, AN- OUS S)	SPE- CIF: CON- DUC' ANC! (US/0	IC - F- E CM)	PH (STAI ARI UNITS (OO4)	ND- D S)	TEMP ATU AI (DEG (000	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC	AL /L	CALC DIS SOL (MG AS	VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS M	D L	SODIUM PERCENT (00932)
MAR 02 31 APR		1640 1330		.2		550 520	7	.70		1.0		0.5		810	160	_	100		340		 47
12 MAY		1655	0	.17	3	100			1	8.5	1	5.5									
12		1755	2	.3	4	120			2	1.0	2	0.0									
DATE		SODIUM AD- SORP- TION RATIO 00931)	SI	/L K)	ALK LINI LA (MG AS CAC	TY B /L 03)	SULF DIS SOL (MG AS SO	VED /L 04)	CHL RID DIS SOL (MG AS (009	E, VED /L CL)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIT DIS SOLV (TON PER DAY (7030	ED IS	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 31		5	11		280		1300		19		0	.20	8	3.0	2	080	2	110	5.	17	2.83
	DATE	SC (1)	SENIC DIS- DLVED JG/L S AS)	SO (U AS	PRON, DIS- DLVED G/L B) O2O)	SO (U AS	ON, IS- LVED G/L FE) 046)	SOI (UC AS	AD, IS- LVED G/L PB) 049)	SO (U AS	HIUM IS- LVED G/L LI) 130)	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY DIS- DLVED IG/L HG) 890)	DE SO (U AS	LYB- NUM, DIS- DLVED GG/L MO) 060)	NI D SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
MAR 3	1		2		600		50		<1		50		710		<1.0		1		<1		2300

06352000 CEDAR CREEK NEAR HAYNES, ND

LOCATION.--Lat 46°09'15", long 102°28'25", in W1/2 sec.20, T.131 N., R.94 W., Adams County, Hydrologic Unit 10130205, on left bank 30 ft downstream from bridge on State Highway 8, and 12.5 mi north of Haynes.

DRAINAGE AREA.--553 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1950 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,472.90 ft above National Geodetic Vertical Datum of 1929, North Dakota Highway Department benchmark. Prior to May 20, 1951, nonrecording gage on former bridge 400 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Dec. 9 to Apr. 3. Records good except those for periods of estimated discharges, which are poor.

AVERAGE DISCHARGE.--38 years, 36.6 ft³/s, 26,520 acre-ft/yr; median of yearly mean discharges, 30 ft³/s, 21,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,870 ft³/s, Apr. 7, 1952, gage height, 21.25 ft; maximum gage height, 22.05 ft, Mar. 28, 1978, backwater from ice and snow; no flow at times in some years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 17, 1950 reached a stage of about 23 ft, discharge, 25,900 ft³/s, by slope-area measurement at site 9 mi upstream.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 400 ft3/s and maximum (*):

Date	е	Ti		scharge ft ³ /s)		height (ft)	Date	•	Time		harge 3/s)	Gage	height (ft)
Mar.	25	14	45		a*:	5.42	Mar.	28	2030	*2	8		5.25
a	-	Backwater	from ice										
			DISCHARGE,	IN CUBIC	FEET PER		WATER YEAR N VALUES	OCTOBER	1987 TO	SEPTEMBER	1988		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
4		10000	No. 2						2012		1.12	(3/5)	71.4

					Į.	MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.2 2.1 2.2 2.0 2.0	3.0 3.1 3.3 3.1	4.0 4.0 4.1 4.2 4.2	2.0 1.0 .90 .70	1.0 1.5 1.0 1.0	14 15 14 14 13	21 20 18 17 16	3.8 8.5 9.7 8.2 8.8	3.7 3.1 2.6 2.3 1.9	4.0 3.6 3.1 2.8 2.8	.18 .18 .22 .46 .76	.41 .41 .41 .39
6 7 8 9	2.0 1.8 1.8 2.0 2.4	3.0 3.0 3.0 3.0	4.1 4.2 4.2 4.0 3.8	.80 .90 .95 .95	1.5 1.5 1.5 1.5	13 12 12 10 10	13 12 11 11 11	9.1 11 13 14 12	1.3 .93 .82 .82 .69	2.4 1.8 1.2 .86 .61	.75 .65 .65 .65	.41 .41 .39 .32 .39
11 12 13 14 15	2.4 2.3 2.2 2.3 2.4	3.4 3.6 3.6 3.9 4.5	4.0 3.8 4.0 3.8 3.4	1.5 1.0 1.0 1.0	1.0 .50 .50 1.0	9.5 8.5 7.5 7.0	9.8 8.5 7.4 7.1 7.0	13 15 14 12 9.6	.51 .77 .85 1.5	.52 .47 .39 .32	.61 .53 .65 .79 .77	.62 .76 .93 1.0
16 17 18 19 20	3.0 3.5 3.6 3.6 3.8	4.7 4.6 4.5 4.2 4.0	2.5 3.0 3.0 3.5 3.0	2.0 2.0 1.5 1.5	2.0 2.0 2.5 3.0 3.5	7.5 8.5 8.0 8.5 9.0	6.3 5.8 5.4 5.2 5.1	8.5 7.9 7.6 8.5 7.7	1.9 1.5 1.1 .77 .60	.39 .60 .82 .79 .65	.58 .41 .41 .51	1.4 1.6 1.6 1.6
21 22 23 24 25	3.8 3.6 3.8 3.9 4.2	3.8 4.0 4.2 4.2 4.3	2.5 3.0 2.5 1.5 2.0	1.5 2.0 1.5 1.0	4.0 3.5 4.5 5.5 5.0	9.5 11 12 14 15	4.9 4.8 4.7 4.6 4.5	6.5 5.5 4.8 4.1 3.3	.45 .40 .41 .42	.57 .41 .36 .25	.43 .32 .30 .24 .20	1.6 1.5 1.3 1.2
26 27 28 29 30 31	3.7 3.4 3.1 3.0 3.0	4.2 4.2 4.1 4.1	2.5 3.0 2.5 2.5 3.0 2.5	1.0 1.5 1.5 2.0 1.5	7.5 9.0 12 12	18 21 23 22 21 20	4.5 4.4 4.2 4.1 3.8	3.3 3.6 3.7 3.5 5.7 4.7	.32 .29 .30 .27 2.4	.25 .25 .25 .20 .19	.20 .23 .25 .32 .38	1.0 1.0 1.0 1.0
TOTAL MEAN MAX MIN AC-FT	88.1 2.84 4.2 1.8 175	113.0 3.77 4.7 3.0 224	102.3 3.30 4.2 1.5 203	39.70 1.28 2.0 .50 79	93.00 3.21 12 .50 184	398.5 12.9 23 7.0 790	262.1 8.74 21 3.8 520	250.6 8.08 15 3.3 497	34.84 1.16 3.7 .27 69	31.60 1.02 4.0 .18 63	14.21 .46 .79 .18 28	27.91 .93 1.8 .32 55

CAL YR 1987 TOTAL 11212.8 MEAN 30.7 MAX 1310 MIN 1.5 AC-FT 22240 WTR YR 1988 TOTAL 1455.86 MEAN 3.98 MAX 23 MIN .18 AC-FT 2890

CANNONBALL RIVER BASIN

06352000 CEDAR CREEK NEAR HAYNES, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971 to current year.

DATE		TIME	STREA FLOW INSTA TANEO (CFS	N- DUG US ANG	FIC N- CT-	PH (STAND ARD UNITS)	AI (DEG	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HAR NES TOT (MG AS CAC (009	S AL /L O3)	CALC: DIS- SOLV (MG, AS (VED /L CA)	MAGN SIU DIS SOLV (MG, AS II	JM, S- VED /L MG)	SODIU DIS- SOLVE (MG/ AS N	D L A)	SODIUM PERCENT (00932)
OCT																			
06 NOV		1430	2.	0	1720		1	5.0	1	0.0									
20 JAN		1010	4.	0	1970		-	2.5		1.0									
06 FEB		1430	0.	84	3010		1	1.0		0.5									
18		1415	2.	7	1710		-	4.5		0.5									
MAR 01		1030	14		2580		_	3.5		0.5				20					
17		1150	8.		1750	7.9		2.0		0.5		500	87		69	-	220		48
29		1050	22		1400			3.0		0.5			01		0,		220		
APR																			
12 MAY		1450	8.	4	1680		- 2	1.0	1	3.5									
10 JUN		1600	11		2130		- 2	6.0	1	8.0									
22		0950	0.	53	2400	8.3	30 3	3.0	2	4.0		560	64		97		380		59
AUG 09		1435	0	73	2330		- 3	6.0	2	4.5									
09		1433	٥.	15	2))0		-	0.0	-	4.7								75	
DATE	S	SODIUM AD- SORP- TION RATIO DO931)	POTA SIU DIS SOLV (MG/ AS H	M, LIN ED (M L A	AB G/L	SULFAT DIS- SOLVI (MG/I AS SOA (00945	DIS ED SOL (MG	E, VED /L CL)		E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L	RESI AT 1: DEG DI: SOL' (MG (703)	DUÉ 80 . C S- VED /L)	SOLITIONS TUEN (MG (7030	OF TI- TS, S- VED /L)	SOLID DIS SOLV (TON PER DAY (7030	ED IS	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR																			
17 JUN		4	13	330		660	13		0	.40	5	.3	1	320	1:	270	30.	0	1.80
22		7	12	400		980	16		0	.50	5	. 4	1	840	18	810	2.	63	2.50
	DATE	SC (U	SENIC DIS- DLVED G/L S AS) OOO)	BORON, DIS- SOLVED (UG/L AS B) (01020)	SO (U	CON, DIS- DLVED JG/L S FE)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	SC (U	CHIUM DIS- DLVED JG/L S LI)	SO (U	NGA- SE, DIS- DLVED IG/L S MN) 056)	SO (U AS	CURY IS- LVED G/L HG) 890)	DE SO (U	DLYB- CNUM, DIS- DLVED DG/L S MO) (060)	NI SC (U	CLE- CUM, DIS- DLVED JG/L S SE) 145)	SO (U	RON- FIUM, JIS- LVED G/L S SR) 080)
MAR	·		1	470		80	<1		51		80		0.1		1		1		1300
JUN	•••		1	470		60	(1		2.1		80		0.1		4				1500
	2		3	670		40	<1		80		110		0.2		4		<1		1400

CANNONBALL RIVER BASIN 273

06353000 CEDAR CREEK NEAR RALEIGH, ND

LOCATION.--Lat 46°05'30", long 101°20'00", in NE1/4SE1/4 sec.8, T.130 N., R.85 W., Grant County, Hydrologic Unit 10130205, on left bank at upstream side of bridge on N.D. Highway 31, 6 mi upstream from mouth, and 19 mi south of Raleigh.

DRAINAGE AREA. -- 1,750 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April to September 1939, March 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,881.23 ft above National Geodetic Vertical Datum of 1929. Prior to June 6, 1962, nonrecording gage at same site and datum, and June 6, 1962, to Sept. 7, 1972, at site 1 mi upstream at datum 9.58 ft higher.

REMARKS.--Estimated daily discharges: Nov. 21 to Mar. 26, June 30, and July 1. Records fair except those for periods of estimated daily discharge, which are poor.

AVERAGE DISCHARGE.--26 years (water years 1963-88), 102 ft^3/s , 73,900 acre-ft/yr; median of yearly mean discharges, 80 ft^3/s , 58,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 13,400 ft3/s, Mar. 28, 1978, gage height, 13.70 ft; no flow at times in most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since 1950, about 18 ft, Apr. 18, 1950; discharge 45,000 ft³/s, on basis of slope-area measurement 5 mi upstream.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 700 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 30	2300	*765	*4.57	No other	r peak greater	than base discha	arge.

No flow July 30 to Sept. 30.

		DISCHARGE,	IN CUBI	C FEET	PER SECOND ME	, WATER Y AN VALUES		BER 1987	TO SEPTEM	MBER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.2 4.1 4.2 4.1 3.7	9.4 9.4 9.3 9.4 9.6	9.2 9.2 9.1 9.0 9.0	4.1 4.0 3.9 3.8 3.8	4.1 4.2 4.3 4.2 4.2	35 32 28 26 24	88 81 79 73 71	16 19 20 20 23	7.7 7.7 7.4 6.5 5.6	314 62 23 13 7.7	.00 .00 .00	.00 .00 .00
6 7 8 9	3.6 3.5 3.3 3.5 3.5	9.8 9.8 9.5 9.4	9.0 8.9 8.9 8.9	3.8 3.8 3.8 3.8	4.1 4.0 3.8 4.0 3.9	24 23 22 21 20	65 60 51 39 36	25 27 39 52 42	4.9 4.4 3.9 2.9 2.7	5.4 3.5 2.4 1.9	.00 .00 .00	.00 .00 .00
11 12 13 14 15	3.6 3.8 4.3 4.2 4.6	9.5 9.8 9.6 9.4	8.4 8.0 7.6 7.4 7.2	3.8 3.8 3.9 3.9	3.9 3.8 3.80 3.9 4.0	19 18 18 20 25	35 34 32 29 27	34 33 33 30 29	2.1 1.8 1.8 10 4.9	1.2 1.1 .96 .96	.00 .00 .00	.00 .00 .00
16 17 18 19 20	4.9 5.3 5.5 5.8 5.9	9.4 9.6 9.6 9.6 9.9	7.0 6.8 6.6 6.4 6.2	3.9 3.9 3.9 3.9	4.5 4.6 4.8 5.0 5.5	30 35 40 50 60	27 25 24 22 21	28 24 22 21 20	3.1 2.5 2.1 1.9 1.6	.50 .40 .40 .24	.00 .00 .00	.00 .00 .00
21 22 23 24 25	6.1 6.4 7.0 7.2 7.1	10 10 9.8 9.8 9.7	6.0 5.8 5.5 5.2 4.9	3.9 3.9 3.8 3.8	6.5 7.0 7.3 10	80 100 130 170 180	21 21 21 20 20	20 19 18 17 15	.96 .80 .55 .40	.16 .13 .07 .05	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	6.9 7.1 7.8 8.0 9.9	9.7 9.7 9.6 9.4 9.4	4.7 4.6 4.5 4.4 4.3 4.2	3.8 3.9 3.9 4.0 4.0	15 16 20 24	200 238 187 157 117 102	18 18 18 17 17	14 13 12 11 9.0 8.7	.11 .07 .04 .03	.03 .02 .01 .01 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	170.1 5.49 11 3.3 337	287.9 9.60 10 9.3 571	215.7 6.96 9.2 4.2 428	120.3 3.88 4.1 3.8 239	203.40 7.01 24 3.8 403	2231 72.0 238 18 4430	1110 37.0 88 17 2200	713.7 23.0 52 8.7 1420	169.66 5.66 81 .03 337	441.35 14.2 314 .00 875	0.00 .00 .00	0.00 .00 .00

TOTAL 61212.7 MEAN 168 MAX 7790 MIN 3.3 AC-FT 121400 TOTAL 5663.11 MEAN 15.5 MAX 314 MIN .00 AC-FT 11230 CAL YR 1987 AC-FT 121400 WTR YR 1988

274

CANNONBALL RIVER BASIN

06353000 CEDAR CREEK NEAR RALEIGH, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	AI (DEG	RE R C)	TEMPER- ATURE WATER (DEG C) (00010)	(MG AS CAC	S AL /L	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIUM DIS- SOLVED (MG/I AS NA	SODIUM DERCENT
OCT 06	1400	3.3	1220	_	. 1	2.0	10.0)						
NOV 17	1130	9.2	2300			4.5	0.5							
JAN 21	1055	3.9	3840			2.5	0.5							
FEB 23 29	1150 1420	7.3	2950 2180			4.5	0.5							
APR						1.0	1.0							
08 MAY	1215	40	1480	8.66)	9.0	12.0)	400	68	56		190	50
25 JUN	1320	15	2410		. 2	8.5	21.0							
28	1245	0.04	2430		. 3	6.0	31.0)						
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS SOL (MG AS	E, VED /L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)		VED /L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIDS DIS- SOLVE (TONS PER DAY)	DIS- SOLVED (TONS PER AC-FT)
APR 08	4	9.2	230	590	9	.8	0.30	1	.0	1080	1	070	117	1.47
I	SO (U AS	DIS- DLVED SO IG/L (I	DIS- DLVED S UG/L (S B) A	DIS- OLVED S UG/L (S FE) A	JEAD, DIS- SOLVED (UG/L AS PB) 01049)	LITH DI SOL (UC	HIUM N IS- LVED S I/L (LI) A	ANGA- IESE, DIS- SOLVED UG/L IS MN)	MERO DI SOL (UC	CURY DI IS- I LVED SO I/L (I HG) AS	DLYB- ENUM, DIS- DLVED JG/L S MO) 1060)	SOI (UC AS	LE- UM, IS- LVED G/L SE) 145) (STRON- TIUM, DIS- SOLVED (UG/L AS SR) 01080)
APR 08		1	370	20	1		57	30	<	0.1	2		3	900

06354000 CANNONBALL RIVER AT BREIEN, ND (National stream-quality accounting network station)

LOCATION.--Lat 46°22'33", long 100°56'03", in sec.36, T.134 N., R.82 W., Morton County, Hydrologic Unit 10130206, on left bank at downstream side of bridge on State Highway 6, 1,100 ft downstream from Dogtooth Creek, and 0.6 mi southeast of Breien.

DRAINAGE AREA .-- 4,100 mi2, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1934 to current year.

REVISED RECORDS .-- WSP 786: 1934. WSP 1146: 1943. WSP 1279: 1936-37(M), 1947(M). WSP 1509: 1955(M).

GAGE.--Water-stage recorder. Datum of gage is 1,673.54 ft above National Geodetic Vertical Datum of 1929. From June 12, 1973, to July 1, 1985, at site 450 ft downstream. Prior to June 12, 1973, at site 50 ft upstream at datum 3.00 ft higher. June 13, 1973, to April 8, 1980, at datum 2.00 ft higher.

REMARKS.--Estimated daily discharges: Nov. 27 to Mar. 26. Records fair except those for period of estimated daily discharges, which are poor. Some storage in several small lakes above station.

AVERAGE DISCHARGE.--54 years, 254 ft3/s, 184,000 acre-ft/yr; median of yearly mean discharges, 200 ft3/s, 145,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 94,800 ft³/s, Apr. 19, 1950, gage height, 22.30 ft, from floodmarks, from rating curve extended above 16,000 ft³/s on basis of slope area and contracted-opening measurements of peak flow, site and datum then in use; no flow at times in some years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft3/s)	Gage height (ft)
Mar. 26	0345	a1,000	*bc5.95	No other	er peak greate	er than base disch	narge.

Minimum daily discharge, 0.21 ft3/s, Aug. 27-29.

a - About b - Backwater from ice

c - Observed

		DISCHARGE,	IN CU	BIC FEET		O, WATER EAN VALUE	YEAR OCTOB	ER 1987	TO SEPTE	MBER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	38	24	10	3.1	120	740	62	31	616	.31	.25
2	17	36	28	8.2	3.1	136	730	55	31	426	.35	.24
2 3 4	17	34	28	6.9	3.1	137	570	70	27	215	.33	.22
4	18	33	28	5.5	3.0	145	300	89	26	129	.78	.25
5	13	31	24	4.1	3.0	160	260	75	21	91	1.7	•25
6	11	31	22	4.1	3.0	147	240	79	18	65	.96	.25
7	12	33	24	4.0	2.9	152	190	85	14	42	.66	.27
8	13	31	25	4.4	2.9	172	170	86	11	52	•59	.23
9	13	29	26	3.9	2.9	197	120	97	9.1	44	.51	.24
10	12	34	26	3.9	2.8	209	130	99	8.5	33	.48	• 35
11	13	40	28	3.8	2.8	200	130	101	6.8	22	.43	.27
12	16	40	28	3.8	2.8	180	140	96	6.3	16	.33	.27
13	16	40	30	3.7	2.7	140	140	96	6.3	13	2.9	•33
14	18	44	30	3.7	2.7	130	140	87	17	9.8	.94	-44
15	17	42	30	3.7	2.7	172	130	85	19	7.3	.60	.60
16	17	40	30	3.6	2.6	178	130	88	57	6.3	.50	.75
17	19	36	32	3.6	2.6	191	120	84	30	4.9	.38	.81
18	19	42	32	3.6	2.6	191	120	74	16	3.6	.36	.77
19	22	50	32	3.5	2.5	197	110	72	11	3.3	.36	•54
20	23	38	32	3.5	2.5	200	110	70	8.2	3.0	.38	•59
21	25 26	42	32	3.5	2.5	200	100	48	6.0	2.5	.36	.69 .69
22		38	32	3.5	2.4	230	100	48	4.9	1.9	.30	.69
23	26	44	31	3.4	2.4	300	80	46	3.9	.95	.27	.69
24	26	40	30	3.4	2.4	500	80	57	3.4	.69	.25	.67
25	24	40	29	3.3	2.3	750	70	50	3.0	•59	.25	.81
26	27	38	28	3.3	10	900	60	48	2.5	.50	.23	.71
27	29	36	27	3.2	20	850	60	44	2.0	.58	.21	.78
28	59	30	23	3.2	80	830	56	54	1.4	.49	.21	.82
29	52	26	19	3.2	100	810	59	44	1.1	.41	.21	.82
30	44	20	15	3.2		780	86	34	52	.38	.23	.88
31	38		11	3.2		770		33		•32	.25	
TOTAL	699	1096	836	127.9	278.3	10274	5471	2156	454.4	1811.51	16.62	15.48
MEAN	22.5		27.0	4.13	9.60	331	182	69.5	15.1	58.4	.54	.52
MAX	59	50	32	10	100	900	740	101	57	616	2.9	.88
MIN	11	20	11	3.2	2.3	120	56	33	1.1	.32	.21	.22
AC-FT	1390	2170	1660	254	552	20380	10850	4280	901	3590	33	31
CAL YR WTR YR		OTAL 16255 OTAL 23236.2		N 445 N 63.5	MAX 22000 MAX 900	MIN 11 MIN	AC-FT					

06354000 CANNONBALL RIVER AT BREIEN, ND--CONTINUED (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1946-50, 1970-72, 1974 to current year.

DATE	1	STREAM- FLOW, INSTAN- PANEOUS (CFS) (OOO61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (OOO95)	PH (STANI ARD UNITS)	O- AT A (DE	IPER- PURE IIR IG C)	TEMP ATU WAT (DEG (OOO	RE ER C)	TUI BII IT (FTU) (OOO)- Y	DIS- SOLVEI (MG/L)	SOI (PE CE) SAT	IS- LVED ER- ENT TUR- ION)	COL FOR FEC. 0.7 UM- (COL 100 (316	M, TO AL, K MF (0 S./ ML) 10	STREP- DCOCCI FECAL, F AGAR COLS. PER DO ML) 31673)
OCT 27	1210	25	1030	8.6	54	7.5		4.5	4	.2	12.2	2	94		к6	100
NOV 24	1255	38	1760			0.5		0.5								
DEC 22	1550	32	2400		-	2.0		0.5								
JAN 27	1230	3.2	2410	7.9		-1.0		0.5	1	.9	3.4		24		ко	37
FEB 25	1040	2.3	4860			2.5		0.5								
29 APR	1730	99	1960			10.5		0.5			-					
05 27 MAY	1040 1405	257 62	1320 1810	8.8	30	10.5 13.5		8.5 3.5	23		11.		95		K33	380
27 JUN	1030	41	2200			23.0	2	0.5			-					
28 JUL	1025	1.6	2360			29.5	2	5.0			-					
28	1210	0.40	1930	8.6	52	35.0	2	9.5	29		8.6	5	114		210	220
DATE	HARD NESS TOTA (MG/ AS CACO	S CAL AL DI /L SO (M 03) AS	CIUM S S- I LVED SC G/L (N CA) AS	DIS- DLVED S MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SO PER	DIUM CENT 932)	SO T RA	DIUM AD- RP- ION TIO 931)	POTA SIU DIS SOLV (MG/ AS K	S- LI M, W/ - TO ED I L MO	ALKA- INITY AT WH DT IT FIELD G/L AS CACO3 00419)	BICA BONA WAT WH FIE MG/L HCO (004	TE ER IT LD AS	CAR- BONATE WATER WH IT FIELD MG/L A CO3 (00447)	E R F D AS
OCT 27		130 7	3 6	51	290		59		6	9.	2	364		425		10
JAN 27		750 14		98	460		56		7	15	-	701		855		0
APR 05		370 6		50	170		50		4	8.	7	207		230		11
JUL																
28	SULFA DIS- SOLV (MG/ AS SO (0094	ATE RI DI JED SO L (MO D4) AS	LO- FI DE, RI S- I LVED SC G/L (N CL) AS	DE, DIS- DLVED MG/L S F)	370 SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RES AT DE D SO (M	75 IDS, IDUE 180 G. C IS- LVED G/L) 300)	SOL SUM CON TUE D SO (M	IDS, OF STI- NTS, IS- LVED G/L) 301)	SOLID DIS SOLV (TON PER AC-F (7030	S, SO - ED S S	446 DLIDS, DIS- SOLVED (TONS PER DAY) 70302)	NIT GE NITR	N, ITE S- VED /L N)	NITRO GEN NO2+NO DIS- SOLVE (MG/I AS N) (0063) :
OCT 27	710	1	4	0.40	5.9		1390		1380	1.	89	95.3	<0.	010	<0.10	00
JAN 27	1000	4		0.60	12		2200		2190		99	19.0		010	0.2	
APR 05	540		7.6	0.30	3.6		986		968			584		010	<0.10	
JUL 28	580	2		0.60	5.3		1360		1330		85	1.47		010	<0.10	
DATE	NITE GEN AMMON TOTA (MG/ AS N	RO- G N, AMM NIA D AL SO' L (M	TRO- NI EN, CONIA AMM IS- I LVED SC G/L (N	TRO- GEN, O MONIA I DIS- DLVED MG/L NH4)	NITRO- GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N) (00625)	PHO TO (M	OS- ROUS TAL G/L P) 665)	PH PHO D SO (M AS	OS- ROUS IS- LVED G/L P)	PHOS PHORO ORTH DIS- SOLVE (MG/L AS P) (0067	US O,	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSE DI	NIC S- VED /L AS)	BARIUM DIS- SOLVEI (UG/I AS BA	M, D L A)
OCT 27	0.0	020 0	.030	0.04	0.70	0	.020	0	.010	0.0	10	<10		1		56
JAN 27	0.2	290 0	.300	0.39	1.2	0	.040	<0	.010	<0.0	10	<10		1		78
APR 05	0.0	030 0	.060	0.08	1.0	0	.070	0	.020	<0.0	10	<10		1	3	36
JUL 28	0.0	050 0	.050	0.06	0.90	0	.070	0	.070	0.0	20	340		4		58

CANNONBALL RIVER BASIN

277

O6354000 CANNONBALL RIVER AT BREIEN, ND--CONTINUED (National stream-quality accounting network station)

DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
OCT										
27 JAN	<0.5	<1	<1	<3	<1	5	10	70	19	0.2
27 APR	<0.5	<1	1	<1	5	15	<5	120	190	<0.1
05	<0.5	<1	<1	<3	5	20	<5	45	9	0.2
JUL 28	<0.5	<1	1	<3	4	7	<5	88	5	0.3
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT		2	42	44.4	1112					
27 JAN	<10	2	<1	<1.0	940	<6	17	31	2.1	93
27 APR	5	7	1	<1.0	1500	2	57	175	1.5	87
05	<10	5	1	1.0	800	<6	4	134	93	51
JUL 28	<10	6	<1	<1.0	610	<6	5			

06354500 BEAVER CREEK AT LINTON, ND

LOCATION.--Lat 46°15'27", long 100°13'58", on line between secs.17 and 18, T.132 N., R.76 W., Emmons County, Hydrologic Unit 10130104, on left bank 60 ft downstream from bridge on U.S. Highway 83, 0.7 mi south of railway station in Linton, and 1 mi upstream from Spring Creek.

DRAINAGE AREA. -- 717 mi², of which about 100 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1949 to current year.

REVISED RECORDS.--WSP 1209: Drainage area. WSP 1239: 1950(M).

GAGE.--Water-stage recorder. Datum of gage is 1,690.55 ft above National Geodetic Vertical Datum of 1929. Prior to June 18, 1958, nonrecording gage at site 60 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Nov. 5 to Mar. 21. Records fair except those for period of estimated daily discharge, which are poor.

AVERAGE DISCHARGE.--39 years, 41.3 ft³/s, 29,920 acre-ft/yr; median of yearly mean discharges, 27 ft³/s, 19,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,800 ft3/s, Apr. 8, 1952, gage height, 17.50 ft; maximum gage height, 18.22 ft, Mar. 23, 1987; no flow at times in some years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 3	1400	ice jam	*8.06	Mar. 26	0815	*39	7.77
No flow	July 12 to	Aug. 1, Aug. 4-	12, 15 to Sept. 30.				
	DISC	HARGE, IN CUBIC	FEET PER SECOND, WAT MEAN VA		R 1987 TO	SEPTEMBER 1988	

					(9	EAN VALUE	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.80	6.5	3.9	2.3	.90	20	28	7.6	•75	.49	.00	.00
2	.93	6.6	4.0	2.1	.85	18	27	8.0	.52	.14	.04	.00
2 3 4	.93	6.5	4.0	2.0	.80			8.9		.11	.01	.00
2						15	24		.46			
4	1.0	6.7	4.0	1.8	•75	17	20	9.2	.44	.10	.00	.00
5	1.1	6.0	4.0	1.3	.70	25	18	9.6	.40	•09	.00	.00
6	.97	5.5	4.0	1.0	.65	23	19	9.6	.37	.08	.00	.00
7	1.6	5.0	4.0	.80	.65	22	19	9.3	.36	.07	.00	.00
8	1.9	4.5	3.9	.60	.60	20	18	9.1	.32	.06	.00	.00
9	2.0	4.4	3.8	. 45	.60	20	17	9.2	.30	.05	.00	.00
10	2.0	4.2	3.8	.30	.60	22	16	9.4	.28	.04	.00	.00
11	2.3	4.3	3.8	•35	.60	22	15	9.2	.32	.02	.00	.00
12	2.4	4.4	3.8	.40	•55	18	14	8.8	.37	.00	.00	.00
13	2.6	4.5	3.8		•55	13	12	8.4	.31	.00	.15	.00
14				•45								
	2.5	4 - 4	3.8	•50	•50	10	11	8.0	•37	.00	.02	.00
15	2.6	4.3	3.8	•55	•50	9.5	11	7.7	.24	.00	.00	.00
16	3.2	4.2	3.8	.60	.40	9.0	11	7.0	.22	.00	.00	.00
17	3.5	4.1	3.8	•55	•35	9.0	11	6.6	.22	.00	.00	.00
18	3.8	4.0	3.8	.50	.30	9.0	10	6.0	.22	.00	.00	.00
19	4.1	3.9	3.7	.55	•35	9.0	9.7	5.5	.21	.00	.00	.00
20	4.0	3.9	3.7	.60	.40	11	9.6	5.3	.19	.00	.00	.00
21	4.6	3.8	3.6	.65	•45	13	9.1	5.4	.18	.00	.00	.00
22	5.0	3.8	3.6	.65	.50	17	8.5	5.3	.19	.00	.00	.00
23	5.3	3.8	3.4	.70	.45		8.0	4.8	.17	.00	.00	.00
24	5.3	3.8	3.2	.70		24	7.9	4.0	.16	.00	.00	.00
25				•75	• 45	29		4.5				
25	5.8	3.8	3.0	.80	.40	32	7.8	3.9	.16	.00	.00	.00
26	6.0	3.8	2.8	.80	.50	36	7.6	3.3	.14	.00	.00	.00
27	6.0	3.8	2.7	.75	1.0	32	7.4	2.8	.13	.00	.00	.00
28	6.0	3.7	2.6	.75	10	34	7.4	2.7	.13	.00	.00	.00
29	5.9	3.7	2.6	.80	25	28	7.4	2.3	.11	.00	.00	.00
30	5.9	3.8	2.5	.90		30	7.3	1.6	.29	.00	.00	.00
30 31	6.3		2.4	.95		28		1.1		.00	.00	
TOTAL	106.33	135.7	109.6	26.20	EO 35	624 5	700 7	200.1	0 57	1.25	0.22	0.00
MEAN	3.43	1 50 • 7			50.35	624.5	398.7		8.53		.007	
		4.52	3.54	.85	1.74	20.1	13.3	6.45	.28	.040		.00
MAX	6.3	6.7	4.0	2.3	25	36	28	9.6	.75	•49	.15	.00
MIN	.80	3.7	2.4	.30	.30	9.0	7.3	1.1	.11	.00	.00	.00
AC-FT	211	269	217	52	100	1240	791	397	17	2.5	• 4	.0
AC-FT	211	269	217	52	100	1240	791	397	17	2.5	• 4	.0

CAL YR 1987 TOTAL 36963.98 MEAN 101 MAX 6300 MIN .63 AC-FT 73320 WTR YR 1988 TOTAL 1661.48 MEAN 4.54 MAX 36 MIN .00 AC-FT 3300

BEAVER CREEK BASIN 279
06354500 BEAVER CREEK AT LINTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIM	INS TAI	REAM- LOW, STAN- NEOUS CFS) DOG1)	SPE- CIFIC CON- DUCT- ANCE (US/CM (00095		ID- AT A B) (DE	PER- URE IR G C)	TEMPE ATUR WATE (DEG (OOO1	ER C)	HARD- NESS TOTAL (MG/I AS CACOS	C/ S (S)	ALCIUM DIS- SOLVED (MG/L AS CA) DO915)	MAGNE- SIUM DIS- SOLVEI (MG/L AS MG (00925)	SODIU DIS- SOLVE (MG/ AS N	D L A)	SODIUM PERCENT (00932)
OCT O7	100	0	1.7	115	0		5.0	4	1.0		_					
19	110)	3.9	157	0		-1.0	C	0.0							
JAN 20	113)	0.62	150	0		10.0	C	0.5		-					
FEB 22	110	0	0.48	134	0		-2.5	C	0.5		_					
MAR 01 31	103		20	866 686			4.0		1.0		-		-			==
APR 11	101	5	15	78	5 8	44	11.5		3.5	25	50	57	27	79		39
MAY												21	-1	12		
23 JUN	104)	5.7	113			19.0	17	.5		-		7	•		
27	091	5	0.10	116)		26.5	21	.0	134	-			•		
DATE	SODI AD SORP TIO RATI (0093	JM :	OTAS- SIUM, DIS- DLVED MG/L S K) D935)	ALKA- LINITY LAB (MG/L AS CACO3 (90410		TE RI DI ED SO L (M	LO- DE, S- LVED G/L CL) 940)	FLUC RIDE DIS SOLV (MG/ AS F	E, ED L	SILICA DIS- SOLVE (MG/I AS SIO2) (00955	A, RE	DLIDS, ESIDUE F 180 DEG. C DIS- SOLVED (MG/L) 70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVER (MG/L) (70301)	SOLID DIS SOLV (TON PER DAY	ED S	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 11	2		11	260	180		7.2	0.	20	9.		547	530	22.	2	0.74
		ARSENIO DIS- SOLVEI (UG/L AS AS) SC (U	DIS- DLVED G/L B)	IRON, DIS- SOLVED (UG/L AS FE) D1046)	LEAD, DIS- SOLVED (UG/L AS PB) (O1049)	SO (U	CHIUM DIS- DLVED G/L G LI)	NES SOI (UC AS	IS- LVED G/L MN)	MERCUF DIS- SOLVE (UG/I AS HO	RY DE DED SO L (U	NUM, IS- LVED S G/L (MO)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) 01145)	DI SOI (UC AS	RON- IUM, IS- LVED G/L SR) OBO)
APR 11			2	290	20	1		100		50	0.	.1	1	2		320

GRAND RIVER BASIN

06354988 BOWMAN-HALEY LAKE NEAR HALEY, ND

LOCATION.--Lat 45°59'06", long 103°14'43", in NE1/4 sec.24, T.129 N., R.101 W., Bowman County, Hydrologic Unit 10130301, at dam on North Fork Grand River, and 6 mi west of Haley.

DRAINAGE AREA. -- 446 mi², approximately.

RESERVOIR-ELEVATION AND CONTENTS RECORDS

PERIOD OF RECORD. -- August 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is at National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by a rolled earth-fill dam; storage began Aug. 22, 1966; dam completed April 1967. Total capacity is 93,000 acre-ft at maximum pool, elevation, 2,777.0 ft. Dead storage is 4,280 acre-ft below lowest point of outlet, elevation, 2,740.0 ft. Normal operating storage is 20,100 acre-ft at elevation 2,755.0 ft, crest of spillway. Figures given herein represent total contents. Controlled releases are through a 30-inch or 8-inch gate valve. The spillway is uncontrolled "glory hole" type and discharges through a conduit 9 ft in diameter. The reservoir is for flood control, water supply, and recreation.

COOPERATION. -- Records of elevations and contents furnished by U.S. Army Corps of Engineers. Elevations affected by wind.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 37,540 acre-ft, Mar. 28, 1978, elevation, 2,762.66 ft; minimum since first reaching spillway level, 12,660 acre-ft, Sept. 16-20, 1982, elevation, 2,749.93 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 17,080 acre-ft, Apr. 4, elevation, 2,753.79 ft; minimum, 13,540 acre-ft, Sept. 30, elevation, 2,751.34 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

I	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	2.753.73	16,990	
Oct.	31	*2.753.42	16,510	-480
Nov.	30	2.753.39	16,460	-50
Dec.	31	2,753.35	16,400	-60
CAL	YR 1987	-	-	-2,880
Tan.	31	2.753.34	16,380	-20
eb.	29	2,753.40	16,480	+100
ar.	31	2.753.78	17,070	+590
pr.	30	2,753.59	16,770	-300
lav	31	2,753.55	16,710	-60
Tune	30	2,753.09	16,000	-710
July	31	2,752.32	14,880	-1,120
lug.	31	2,751.85	14,220	-660
Sept.	30	2,751.34	13,540	-680
WTR	YR 1988	-		-3,450

^{* -} Estimated

GRAND RIVER BASIN 281

06355000 NORTH FORK GRAND RIVER AT HALEY. ND

LOCATION.--Lat 45°57'39", long 103°07'09", at southwest corner of sec.30, T.129 N., R.99 W., Bowman County, Hydrologic Unit 10130301, on left bank 10 ft downstream from county highway bridge, 300 ft south of post office at Haley, and 1 mi north of South Dakota state line.

DRAINAGE AREA .-- 509 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1908 to September 1917, October 1945 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS (WATER YEARS) .-- WSP 1239: 1908-10, 1913-15(M), 1917(M).

GAGE.--Water-stage recorder. Datum of gage is 2,658.60 ft above National Geodetic Vertical Datum of 1929. Oct. 23, 1945 to June 18, 1951, nonrecording gage on downstream side of bridge near left abutment at present datum. See WSP 1729 or 1917 for history of changes prior to Oct. 23, 1945.

REMARKS .-- Estimated daily discharges: Dec. 13 to Mar. 29 and Sept. 19-30. Records fair except those for periods of estimated daily discharge, and beaver activity period of Sept. 19-30, which are poor. Flow regulated since August 1966 by Bowman-Haley Lake (station 06354988) 8 mi upstream.

AVERAGE DISCHARGE.--52 years (water years 1908-17, 1946-88), 26.8 ft^3/s , 19,400 acre-ft/yr; median of yearly mean discharges, 21 ft^2/s , 15,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,100 ft³/s, Apr. 7, 1952, gage height, 17.03 ft, from rating curve extended above 4,500 ft³/s on basis of discharge measurement at gage height, 15.09 ft, half of which was indirect measurement of flow over roadway outside of main channel; maximum gage height, 17.10 ft, Apr. 15, 1950; no flow at times.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 4.3 ft3/s, Mar. 30, gage height, 4.30 ft; maximum gage height, 4.72 ft, Jan. 27, backwater from ice; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

MEAN VALUES DAY OCT NOV DEC APR JUN JUL AUG SEP FEB MAR MAY JAN 2.6 .49 2.0 .07 .10 .00 2 1.5 1.6 1.2 .05 .00 3.0 2.4 1.2 1.0 .49 2.2 -07 2.2 2.2 .55 .09 1.4 1.6 1.1 .05 .00 2.5 1.3 1.0 .40 1.3 1.6 .00 .00 2.5 2.1 1.4 1.0 2.2 .09 1.1 5 1.3 1.6 .00 .00 2.1 1.8 1.5 .39 .09 6 .09 .00 .00 2.2 1.6 1.4 1.0 .39 1.7 .69 .38 .11 1.3 1.8 1.1 -00 .00 2.3 1.6 1.4 1.0 .94 .36 .12 8 1.2 1.7 1.1 .00 .00 2.2 1.6 1.5 2.0 1.1 .00 .00 1.6 .94 1.4 10 .00 1.6 1.5 .85 .24 .35 .12 1.3 1.6 .00 1.9 .00 .67 .13 1.6 .19 11 1.6 .00 2.2 1.6 .13 .16 .17 12 1.6 .00 .00 1.6 1.6 1.4 1.4 1.1 13 1.5 1.6 1.1 1.6 .09 .19 .00 .00 1.4 .09 1.6 .00 1.2 .09 .06 .19 .15 .00 15 1.5 1.6 1.0 .00 .00 1.0 1.3 .09 -04 .19 .15 16 1.9 1.6 1.0 .00 .00 1.3 1.1 .09 .04 .19 .19 1.3 .03 .24 17 1.9 1.6 .90 .00 .00 .50 1.1 .12 .19 .19 18 1.8 1.6 .90 .00 .00 .50 1.3 1.1 .20 .02 .24 19 1.6 1.6 .80 .00 .00 1.0 .40 .01 -22 -18 .17 .18 20 1.6 1.6 .80 .00 .00 1.5 1.3 1.1 .56 .01 21 1.6 .70 .00 .05 .01 .18 1.6 2.5 22 1.6 1.6 .00 .10 3.0 1.3 .40 .02 .11 .17 1.3 23 1.6 1.5 .60 .00 .50 2.5 1.1 .26 .05 .08 .17 .06 .19 .05 24 1.6 1.5 .60 .00 .75 2.0 1.1 .14 25 .09 .08 .06 .19 1.6 1.3 .50 .00 1.0 1.5 1.3 1.1 26 .09 .14 .07 .18 1.6 1.3 .30 .00 1.5 1.5 27 1.6 .30 .00 2.0 2.5 1.2 1.1 .07 .36 .05 .19 .05 -06 .87 .20 28 1.5 1.3 .20 .00 2.5 2.0 1.1 1.1 .05 .04 1.1 .25 29 1.6 1.3 .20 .00 3.0 2.7 1.1 1.1 .20 .00 1.1 .25 1.5 .07 30 1.1 1.6 1.3 ---3.4 31 1.6 .15 .00 3.4 1.1 1.8 .07 4.61 14.23 TOTAL 47.1 46.4 25.45 0.20 11.40 62.65 45.3 37.9 10.48 17.13 .55 .15 1.22 1.1 1.8 MEAN 1.52 1.55 .82 .006 .39 2.02 1.51 2.2 2.6 1.6 MAX 1.9 1.8 1.3 .10 3.4 .50 .04 .01 .05 .07 MIN 1.3 .00 .00 93 23 124 75 28 21 34 9.1

MEAN 16.3 MAX 598 CAL YR 1987 TOTAL 5942.75 MIN .15 AC-FT 11790 TOTAL 322.85 MEAN .88 MAX 3.4 MIN .OO AC-FT WTR YR 1988

06355000 NORTH FORK GRAND RIVER AT HALEY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1951, 1972 to current year.

282

DATE	TIM	FL INS TAN (C	EAM- OW, TAN- EOUS FS) O61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		D- D S) (EMPER- ATURE AIR DEG C) 00020)	TEMF ATU WAT (DEG	RE ER C)	HARD NESS TOTA (MG/ AS CACO	CAI L DI L SO (N	CIUM IS- DLVED MG/L G CA) 0915)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
OCT O8	105	5	1.3	2940			8.5		2.5							
18 MAR	134	5	1.6	2890			9.0		2.5							
01 17 29	142 152 150	5	3.3 0.50 2.7	2390 2120 1750		.50	5.0 2.0 6.0		0.5 0.5 3.5	2	 50 <i>u</i>	16	32	=	330	 74
12 JUN	131		1.4	2760			27.0	2	3.0							
21 AUG	134		0.56	3200		.60	36.0	2	9.0	3	20 5	52	46		670	81
21	141	0	0.48	3230			39.0	2	8.5							
DATE	SODI AD SORP TIO RATI (0093	UM S - D - SO N (M O AS	TAS- IUM, IS- LVED G/L K) 935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFA DIS- SOLV (MG, AS SO	ATE - /ED /L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		E, S- VED /L F)	SILIC DIS- SOLV (MG/ AS SIO2 (0095	A, RES	JIDS, BIDUE 180 CG. C DIS- DLVED MG/L) 0300)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
MAR 29	9		5.1	310	660		8.8	0	.50	2.	_	1260	4	280	9.05	1.71
JUN																
21	17	ARSENIC DIS- SOLVED (UG/L AS AS)	BOI D: SOI (1)0	IS- LVED S G/L (RON, DIS- OLVED UG/L S FE)	LEAD DIS- SOLVI (UG/I	ED SOL	HIUM DIS- DLVED UG/L S LI)	D SO (U	9. NGA- SE, IS- LVED G/L MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DE D SO (U	LYB- NUM, IS- LVED G/L MO)	SOI (UC	JM, TIS- II LVED SC	3.24 PRON- PIUM, DIS- DLVED UG/L S SR)
D	ATE	(01000)			1046)	(01049		130)			(71890)		060)	(011		080)
MAR 29. JUN		1		740	10		1	30		40	0.2		2		.<1	770
21.	• •	2		1400	30		<1	70		10	0.4		5		<1	1000

MISSOURI RIVER MAIN STEM

06439980 LAKE OAHE NEAR PIERRE, SD

LOCATION.--Lat 44°27'30", long 100°23'29", in NE1/4 sec.1, T.111 N., R.80 W., 5th principal meridian, Hughes County, Hydrologic Unit 10130105, in Pier A of Control Tower No. 1 of powerhouse intake structure of dam on Missouri River, 6.0 mi northwest of Pierre, 7.1 mi upstream from Bad River, and at mile 1,072.3.

DRAINAGE AREA. -- 243,500 mi2, approximately.

PERIOD OF RECORD. -- August 1958 to current year (monthend contents only). Prior to October 1967, published as Oahe Reservoir near Pierre.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Jan. 14, 1958, nonrecording gages at various locations upstream from outlet works, Jan. 14, 1959, to Sept. 30, 1962, recorder in Tower No. 1 of outlet works, all at same datum.

REMARKS.--Reservoir is formed by an earthfill dam; storage began in August 1958. Maximum capacity, 23,338,000 acre-ft below elevation 1,620.0 ft (top of spillway gates). Normal maximum, 22,240,000 acre-ft below 1,617.0 ft, of which about 2,390,000 acre-ft is designated for flood control. Inactive storage, 5,451,000 acre-ft below elevation 1,540.0 ft. Dead storage, 1,970 acre-ft below elevation 1,425.0 ft (invert of lowest outlet tunnel). Figures given herein represent elevations at powerhouse intake structure and total contents adjusted for wind effect.

The spillway consists of a gated chute with flat crest at elevation 1,596.5 ft, 8 gates, 50 by 23.5 ft each; design capacity, 300,000 ft3/s. The outlet works consist of 7 turbines with a generating capacity of 85,000 kilowatts each. Water is used for flood control, navigation, power, and incidental uses.

COOPERATION .-- Records of elevation and contents provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 22,764,000 acre-ft, May 14, 1986, affected by wind; minimum since initial filling, 14,815,000 acre-ft, Sept. 25, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 19,146,000 acre-ft, Oct. 1; minimum contents, 14,920,000 acre-ft, Sept. 30.

MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

							D	at	е													Elevation (feet)	Contents (acre-feet)	Change in content (acre-feet)
Sept.	30																					1,607,77	19,154,000	_
Oct.	31																					1,605.68	18,471,000	-683,000
vov.	30																					1,603.97	17,962,000	-509,000
Dec.	31																					1,604.50	18,104,000	+142,000
Jec.	21	•		•	•	•		•	•	•	•	• •	•	•	•	•	•	•	•	•	r .	1,604.50	10,104,000	+142,000
CA	L YR	19	87																			-	-	-381,000
Jan.	31																					1,604.03	18,008,000	-96,000
eb.	29																					1,606.15	18,630,000	+622,000
Mar.	31																					1,606,65	18,775,000	+145,000
Apr.	30																					1,605.45	18.392.000	-383.000
	31																							
lay																						1,604.70	18,173,000	-219,000
Tune	30							•														1,603.02	17,649,000	-524,000
July	31																					1,600,25	16,938,000	-711,000
Aug.	31																					1,597.04	16,016,000	-922,000
Sept.	30																					1,597.78	14,920,000	-1,096,000
WT	R YR	19	88																			_	2.5	-4,234,000

06467600 JAMES RIVER NEAR MANFRED, ND

LOCATION.--Lat 47°38'40", long 99°49'40", near midpoint of north line sec.15, T.148 N., R.72 W., Wells County, Hydrologic Unit 10160001, on right upstream wingwall of bridge on county highway, and 5 mi southwest of Manfred.

DRAINAGE AREA. -- 253 mi2, of which about 197 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1954 to August 1957 (annual maximum only), September 1957 to current year (seasonal records only from 1982 to 1985).

GAGE.--Water-stage recorder. Datum of gage is 1,605.73 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 16, 1957, crest-stage gage only on downstream side of bridge at same datum.

REMARKS.--Estimated daily discharges: Oct. 1 to Apr. 6. Records fair except those for period of estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--28 years (water years 1958-82, 1986 to current year), 4.20 ft³/s, 3,040 acre-ft/yr; median of yearly mean discharges, 3.7 ft³/s, 2,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 2,000 ft3/s, Apr. 18 or 19, 1979, gage height, 9.2 ft, from highwater mark, backwater from snow; no flow for long periods each year.

EXTREMES FOR CURRENT YEAR .-- Peaks greater than a base of 30 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 26	1700	a*80	ab*3.70				

No flow for several months.

a - observed b - ice jam

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.14	.39	•39	.00	.00	3.5	9.2	.90	.30	.00	.00	.00
2	.14	.40	•37	.00	.00	2.7	10	1.2	.27	.00	.00	.00
3	.15	.48	.36	.00	.00	2.2	8.9	1.5	.22	.00	.00	.00
4	.16	.60	-35	.00	.00	2.1	7.6	1.4	.18	.00	.00	.00
5	.16	.58	.35	.00	.00	2.4	6.5	1.3	.17	.00	.00	.00
6	.16	.56	.35	.00	.00	2.3	5.2	1.3	.12	.00	.00	.00
7	.16	.54	.34	.00	.00	1.9	3.4	1.2	.07	.00	.00	.00
8	.17	.54	.33	.00	.00	1.7	3.3	.90	.0	.00	.00	.00
9	.17	.54	.32	.00	.00	1.8	3.2	.61	.00	.00	.00	.00
10	.17	.56	.30	.00	.00	1.2	2.6	.46	.00	.00	.00	.00
11	.18	.54	.28	.00	.00	.10	2.2	1.2	.00	.00	.00	.00
12	.19	.52	.22	.00	.00	.05	1.2	1.9	.00	.00	.00	.00
13	.20	.54	.20	.00	.00	.04	1.4	1.8	.00	.00	.00	.00
14	.21	.70	.18	.00	.00	.03	1.9	1.5	.00	.00	.00	.00
15	.22	.66	.17	.00	.00	.02	1.5	1.0	.00	.00	.00	.00
16	.23	.64	.16	.00	.00	.02	1.3	.53	.00	.00	.00	.00
17	.22	.62	.15	.00	.00	.02	1.1	.46	.00	.00	.00	.00
18	.24	.60	.14	.00	.00	.03	1.1	.69	.00	.00	.00	.00
19	.26	.57	.13	.00	.00	.05	1.1	.61	.00	.00	.00	.00
20	.26	.56	.12	.00	.00	.06	1.0	.37	.00	.00	.00	.00
21	.25	.56	.11	.00	.00	.50	1.3	.32	.00	.00	.00	.00
22	.27	.54	.10	.00	.00	1.0	3.2	.30	.00	.00	.00	.00
23	.28	.52	.09	.00	.00	2.0	1.2	.32	.00	.00	.00	.00
24	.30	.50	.08	.00	.01	10	.46	.34	.00	.00	.00	.00
25	.30	•49	.07	.00	.10	20	.53	.23	.00	.00	.00	.00
26	.32	.48	.06	.00	.50	40	1.1	.29	.00	.00	.00	.00
27	.33	.44	.06	.00	2.5	60	1.1	.56	.00	.00	.00	.00
28	.33	.43	.05	.00	4.0	45	•79	.60	.00	.00	.00	.00
29	.35	.42	.04	.00	3.7	38	1.9	.46	.00	.00	.00	.00
29 30	.36	.40	.03	.00		28	.87	.34	.00	.00	.00	.00
31	.37		.02	.00		15		.32		.00	.00	
TOTAL	7.25	15.92	5.92	0.00	10.81	281.72	86.15	24.91	1.33	0.00	0.00	0.00
MEAN	.23	.53	.19	.00	.37	9.09	2.87	.80	.044	.00	.00	.00
MAX	.37	.70	.39	.00	4.0	60	10-		.30	.00	.00	.00
MIN	.14	.39	.02	.00	.00	.02	.46	.23	.00	.00	.00	.00
AC-FT	14	32	12	.0	21	559	171	49	2.6	.0	.0	.0
AU-FI	14	72	12	.0	21	223	.,,	43	2.0	••	••	

CAL YR 1987 TOTAL 5008.49 MEAN 13.7 MAX 250 MIN .00 AC-FT 9930 WTR YR 1988 TOTAL 434.01 MEAN 1.19 MAX 60 MIN .00 AC-FT 861

JAMES RIVER BASIN 285
06467600 JAMES RIVER NEAR MANFRED, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1959-60, 1962-64, 1972 to current year.

FLOW, CON- PH TEMPER- TEMPER- TUR- OXYGEN, (PER- CHE INSTAN- DUCT- (STAND- ATURE BID- DIS- CENT ICA TANEOUS ANCE ARD AIR WATER ITY SOLVED SATUR- 5 I (CFS) (US/CM) UNITS) (DEG C) (DEG C) (FTU) (MG/L) ATION) (MC DATE TIME (00061) (00095) (000400) (00020) (00010) (00076) (00300) (00301) (00301)	L, (MG/L AY AS (/L) CACO3)
NOV	4.4
19 0900 0.57 1140 8.22 0.0 0.5 3.5 13.0 89	310
28 1100 48 640 2.0 0.5	
14 0840 1.8 880 8.28 -3.0 5.0 2.7 9.6 74	4.4 270
MAY 16 1100 0.51 1110 8.35 15.0 10.5 1.1 10.0 89	2.4 310
SOLVED SOLVED SOLVED SORP- SOLVED (MG/L SOLVED SOLVED DI (MG/L (MG/L (MG/L SODIUM TION (MG/L AS (MG/L (MG/L SOU	DUE SUM OF 80 CONSTI- 1. C TUENTS, 8- DIS- VED SOLVED 1/L) (MG/L)
NOV	300
19 71 33 130 47 3 8.2 403 170 15	707 669
14 56 31 95 42 3 11 296 180 11 MAY	580 562
16 60 38 150 51 4 7.8 465 170 14	751 720
RESIDUE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
NOV 19 0.96 1.09 8 <0.010 <0.100 <0.010	- 22
APR	1 5
14 0.79 2.79 40 <0.010 <0.010 <0.100 <0.100 0.030 0.030 MAY	1.5
16 1.03 1.05 1 <0.010 <0.010 <0.100 <0.100 0.030 0.090	1.0
NITRO- GEN,AM- PHOS- PHOS- PHOROUS PHOROUS ORTHO ORGANIC PHOROUS DIS- ORTHO DIS- ARSENIC BORON TOTAL ORGANIC PHOROUS DIS- ORTHO DIS- ARSENIC DIS- DIS- DIS- ORTHO DIS- DIS- ORTHO ORGANIC ORTHO DIS- ORTHO DIS- ORTHO DIS- ORTHO DIS- ORTHO DIS- ORTHO DIS- ORTHO ORTHO	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)
NOV 19 0.50 0.050 0.039 1 310	2
APR 14 0.60 0.130 0.080 0.063 0.052 2 2 230 2	<1
MAY 16 0.70 0.260 0.230 0.226 0.204 4 4 410 <1	<1

286

JAMES RIVER BASIN

06467600 JAMES RIVER NEAR MANFRED, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					MANGA-				
		IRON.			NESE.	MANGA-			S
	COPPER.	TOTAL	IRON.	LEAD.	TOTAL	NESE.	MERCURY	SELE-	N
	DIS-	RECOV-	DIS-	DIS-	RECOV-	DIS-	DIS-	NIUM,	
	SOLVED	ERABLE	SOLVED	SOLVED	ERABLE	SOLVED	SOLVED	TOTAL	S
	(UG/L	(
	AS CU)	AS FE)	AS FE)	AS PB)	AS MN)	AS MN)	AS HG)	AS SE)	A
F.	(01040)	(01045)	(01046)	(01040)	(01055)	(01056)	(71890)	(01117)	(0

DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV 19	<1		46	<5		82	<0.1		<1	8
APR	×1		40	()		02	10.1			9
14 MAY	1	280	120	<5	90	67	0.2	<1	<1	<3
16	<1	210	44	<5	100	78	0.6	<1	<1	5
DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CYANIDE TOTAL (MG/L AS CN) (00720)	CYANIDE DIS- SOLVED (MG/L AS CN) (00723)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
NOV 19								71	0.11	73
APR 14 MAY	14	<0.010	<0.01	5.60	0.400	7.5	1100	5	0.02	100
16	15	<0.010	<0.01	1.00	<0.100	17	1200	29	0.04	79

06468170 JAMES RIVER NEAR GRACE CITY, ND

LOCATION.--Lat 47°33'29", long 98°51'45", in NW1/4NW1/4NW1/4 sec.17, T.147 N., R.64 W., Foster County, Hydrologic Unit 10160001, on left bank on downstream side of county highway bridge, and 2.5 mi northwest of Grace City.

DRAINAGE AREA.--1,060 mi², approximately, of which about 650 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1968 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1,457.60 ft, above National Geodetic Vertical Datum of 1929.

REMARKS .-- Estimated daily discharges: Oct. 1 to Nov. 4 and Nov. 26 to Apr. 13. Records good except for periods of estimated discharge, which are poor.

AVERAGE DISCHARGE.--20 years, 31.4 ft3/s, 22,750 acre-ft/yr; median of yearly mean discharges, 26 ft3/s, 18,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,100 ft³/s, Apr. 13, 1969, gage height, 12.00 ft; no flow at times most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 26	1045	*150	a*6.79				

No flow for many days. a - Backwater from ice

		DISCHARGE	, IN CUBIC	FEET PER		WATER N VALUE	YEAR OCTOBER S	R 1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.3 3.2 3.0 2.8 2.6	.73 .72 .71 .70	1.0 .95 .95 .90 .85	.00 .00 .00	.00 .00 .00 .00	20 15 13 10 12	34 33 34 33 31	8.6 6.7 5.1 4.8 5.3	1.5 2.2 2.7 3.0 2.9	.30 .18 .18 .20	.00 .00 .01 .00	.00 .00 .00
6 7 8 9	2.4 2.3 2.2 2.1 2.0	.84 .88 .90 .89	.80 .75 .70 .65	.00 .00 .00	.00 .00 .00 .00	15 20 30 40 35	30 30 29 29 28	7.3 6.3 4.5 3.7 3.7	2.8 2.0 1.9 1.5	.24 .18 .06 .04	.00 .00 .00	.00 .00 .00
11 12 13 14 15	1.9 1.8 1.7 1.6	.87 .76 .76 .80	•55 •50 •45 •40 •35	.00 .00 .00	.00 .00 .00 .00	30 20 15 12 10	28 27 27 26 27	3.4 2.7 2.8 2.7 1.5	.87 .75 .83 .69	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	1.5 1.4 1.3 1.2	.80 1.1 1.2 .96	.30 .25 .20 .16	.00 .00 .00	.00 .00 .00	9.0 10 12 13 12	27 25 24 20 19	1.8 3.2 1.8 1.4	.72 .80 .73 .57	.00 .00 .00	.00 .00 .00	.00 .00 .00 .07
21 22 23 24 25	1.0 .95 .90 .85	.90 .90 .90 1.1	.12 .10 .08 .06	.00 .00 .00	.00 .00 .00 .00	11 10 20 50 100	17 16 14 13	1.6 1.8 2.1 2.5 1.8	.78 .56 1.0 .83	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.79 .78 .77 .76 .75	1.1 1.6 1.0	.03 .02 .01 .01 .01	.00 1	.10 1.0 0 0	120 60 45 40 45 36	10 9.5 8.9 9.0 8.7	1.2 .98 1.1 1.6 1.6	.66 .66 .51 .54 .46	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	49.99 1.61 3.3 .74 99	27.72 .92 1.6 .70 55	11.93 .38 1.0 .00 24		1.10 1.42 30 .00 82	890.0 28.7 120 9.0 1770	678.1 22.6 34 8.7 1350	96.68 3.12 8.6 .98 192		1.62 .052 .30 .00	0.01 .000 .01 .00	0.10 .003 .07 .00

TOTAL 18560.21 MEAN 50.8 MAX 1250 MIN .00 AC-FT 36810 TOTAL 1832.65 MEAN 5.01 MAX 120 MIN .00 AC-FT 3640 CAL YR 1987 WTR YR 1988

06468170 JAMES RIVER NEAR GRACE CITY, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

D.	ATE	TIM	STRE FLO INST TANE (CF	AM- W, AN- COUS	SPE- CIFIC CON- DUCT- ANCE US/CM)		ND- ID	TEMP ATU AI (DEG (OOO)	RE R C)	TEMPI ATUR WATI (DEG (000	RE ER C)	TUI BII IT' (FTU (000	D- DI Y SOL) (MG	EN, S- VED /L)	OXYGE DIS SOLV (PER CEN SATIO (0030	S- D VED R- NT JR- ON)	EMAND BIO- CHEM- ICAL, 5 DAY (MG/L	, HA NE TO (M A) CA	RD- SS TAL G/L S CO3)
NOV 18.		140	0 1	.2	1380		3.62		2.0		2.5	2	.3 1	4.4		105		_	300
MAR 28.		160			500				5.0		0.5							_	
APR					670							7	.4 1	1.8		104	6.		230
MAY		160					3.40		1.0		0.5								
JUL 17.		093		2.3	960		3.65		4.0		2.5			0.6		99	2.		300
07.	••	133	0 0	.15	1550) 9	23	2	5.0	2	4.0	6	• 4	6.2		73		-	170
D	ATE	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL L (MO A) AS	S- VED S I/L MG)	ODIUM, DIS- OLVED (MG/L AS NA)	SOE PERO		SOD A SOR TI RAT (009	D- P- ON IO	POTA SIL SOL (MG, AS (009)	UM, S- VED /L K)	ALK LINI LA (MG AS CAC (904	TY SULF B DIS /L SOL (MG	VED /L 804)	CHLO RIDI DIS- SOLV (MG, AS (O- F E, A VED /L CL)	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	C TUE	OF STI- NTS, IS- LVED G/L)
NOV		9.07																	
18.		53	41		210		59		5	16		494	190		63		89	3	870
13.	••	45	29)	62		35		2	11		237	120		16		44	9	425
MAY 17.		54	39)	110		44		3	10		352	150)	28		64	.6	602
JUL 07.		20	30)	290		77	1	0	10		392	290)	110		102	20	987
	DA'		SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLID DIS SOLV (TON PER DAY (7030	ED DE	ESIDUE DTAL T 105 EG. C, EUS- ENDED (MG/L) D0530)	O NIT	TRO- EN, RITE TAL G/L N) 615)	NIT SO (M	TRO- EN, RITE OIS- OLVED IG/L N)	NO2 TO (M	TRO- EN, +NO3 TAL G/L N) 630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AMMO TOT (MO	CRO- EN, ONIA CAL G/L N)	NITE GEN AMMON DIS SOLV (MG/ AS !	I, G NIA M B- C VED VL N)	NITRO- EEN, AM- IONIA + ORGANIC TOTAL (MG/L AS N) (00625)	
	NOV																		
	18 APR		1.21		89	11				.010			<0.100				020		
	13 MAY	•	0.61	32.	2	39	<0	.010	<0	.010	<0	.100	<0.100	0.	.020		030	1.1	
	17 JUL	•	0.88	3.	.96	<1	<0	.010	<0	.010	<0	.100	<0.100	0.	.030	0.0	050	1.1	
	07	•	1.39	0.	41	23			C	.020			0.280			0.3	310		•
	DA		NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS PHORO TOTA (MG/ AS F	S- PI DUS LL : 'L	PHOS- HOROUS DIS- SOLVED (MG/L AS P) DO666)	PHO OR TO (M AS	OS- RUS, THO, TAL G/L P) 507)	PHO OR DI SOL (MG AS		TO (U AS	ENIC TAL G/L AS) 002)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	SOI (UC	RON, IS- LVED G/L B) D2O)	TOTARECO ERAI (UG, AS (O10)	AL (DV- BLE /L CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	
	NOV		0.90			0.070				0.042			3		260			1	
	18 APR											1	2		100		1	<1	
	13 MAY		1.0	0.1		0.080		.061		0.047		4	3		160		1	<1	
	17 JUL		1.0	0.1		0.120		.100		0.034			5		290			<1	
	07	•	2.8			0. 100			-	1.077			,		2,0		75.00	,	

JAMES RIVER BASIN 289
06468170 JAMES RIVER NEAR GRACE CITY, ND--CONTINUED
WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV 18	<1		18	<5		33	<0.1		<1	4
APR 13	1	150	31	<5	210	19	0.1	6	<1	11
MAY 17	1	120	20	<5	70	41	0.2	<1	<1	14
JUL 07	1		35	<5		110	0.8		<1	4
DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CYANIDE TOTAL (MG/L AS CN) (00720)	CYANIDE DIS- SOLVED (MG/L AS CN) (00723)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	PLANK- TON BIOMASS ASH WT (MG/L) (31353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
NOV 18								59	0.19	81
APR 13	17	<0.010	<0.01	4.90	0.700	14	1200	5	0.37	97
MAY 17	18	<0.010	<0.01	0.700	<0.100	6.9	1200	15	0.09	62
JUL 07			<0.01					21	0.01	96

290

JAMES RIVER BASIN

06468190 JUANITA LAKE TRIBUTARY NEAR GRACE CITY, ND

LOCATION.--Lat 47°32'54", long 98°45'31", in SW1/4NE1/4SE1/4 sec.13, T.147 N., R.64 W., Foster County, Hydrologic Unit 10160001, on left bank 1,000 ft upstream from Lake Juanita, 2 mi east of Grace City.

DRAINAGE AREA. -- 94 mi2, approximately, of which about 54 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1986 to current year. Seasonal records only.

GAGE.--Water-stage recorder. Datum of gage is 1,460.00 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS .-- Estimated daily discharges: Feb. 25 to Apr. 1 and Apr. 18 to June 5. Records poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 204 ft³/s, Apr. 2, 1987, gage height, 20.85 ft; no flow for several months each year.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, about 40 ft3/s, Mar. 23, gage height, 19.76 ft, backwater from ice; maximum gage height, 19.79 ft, Mar. 12, backwater from ice; no flow for several months.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		DISCHARG	E, IN COB	IC FEET (ER SECO	MEAN VALUE	S S	DEK 1907	TO SEPTEME	DER 1900		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	1.5	1.2	2.2	.00	.00	.00	.00
2					.00	.80	1.1	2.0	.00	.00	.00	.00
3					.00	.50	.92	1.7	.00	.00	.00	.00
4					.00	.40	.73	1.4	.00	.00	.00	.00
2 3 4 5					.00	.50	.73	1.1	.00	.00	.00	.00
6 7 8 9					.00	1.0	1.6	.90	.00	.00	.00	.00
7					.00	.80	1.5	.80	.00	.00	.00	.00
8					.00	.60	1.4	.70	.00	.00	.00	.00
9					.00	.50	.97	.60	.00	.00	.00	.00
10					.00	.40	.97	.60	.00	.00	.00	.00
11					.00	.30	.92	•55	.00	.00	.00.	.00
12					.00	.25	1.2	•55	.00	.00	.00	.00
13					.00	.20	1.1	.50	.00	.00	.00	.00
14					.00	.15	.88	.50	.00	.00	.00	.00
15					.00	.12	1.7	.50	.00	.00	.00	.00
16					.00	.10	1.8	.50	.00	.00	.00	.00
17					.00	.10	1.8	.45	.00	.00	.00	.00
18					.00	.10	1.6	.40	.00	.00	.00	.00
19					.00	.10	2.2	.35	.00	.00	.00	.00
20					.00	.30	2.5	.30	.00	.00	.00	.00
21					.00	1.0	2.0	.25	.00	.00	.00	.00
22					.00	5.0	1.8	.20	.00	.00	.00	.00
23					.00	30	1.6	.18	.00	.00	.00	.00
23 24					.00	35	1.5	.16	.00	.00	.00	.00
25					.10	33	1.4	.12	.00	.00	.00	.00
26					.20	30	1.2	.10	.00	.00	.00	.00
27					.50	20	1.1	.08	.00	.00	.00	.00
28					.80	8.5	.90	.06	.00	.00	.00	.00
29					1.0	6.0	2.0	.05	.00	.00	.00	.00
30						3.5	2.5	.04	.00	.00	.00	.00
31						1.5		.02		.00	.00	
TOTAL					2.60	182.22	42.82	17.86	0.00	0.00	0.00	0.00
MEAN					.090	5.88	1.43	.58	.00	.00	.00	.00
MAX					1.0	35	2.5	2.2	.00	.00	.00	.00
MIN					.00	.10	.73	.02	.00	.00	.00	.00
AC-FT												.0
AC-FT					5.2	361	85	35	.0	.0	.0	.0

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water year 1986 to current year.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	CON DUC JS ANC (US/	IC - PH T- (STA E AR CM) UNIT	ND- A'	MPER- TURE AIR EG C)	TEMP ATU WAT (DEG (OOO	RE ER C)	TU BI IT (FTU (OOO	D- Y S) (YGEN, DIS- OLVED MG/L) 0300)	OXYGH DIS SOLV (PEI CEI SATI (0030	S- DEM VED BI R- CH NT IC UR- 5 ON) (M	GEN AND, O- EM- AL, DAY G/L) 310)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
MAR 28	1440	8.5	,	490		5.0		1.5							
APR 06	1700	1.5			3.25	20.0		6.0	0	.70	10.0		80	2.7	180
13 MAY	1340	1.2		580		9.0		0.0							
17	1100	0.4	17	910 8	3.25	20.0	1	3.0	0	.60	10.1		95	1.6	370
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE SIUM DIS- SOLVE (MG/I AS MO	M, SODI DIS ED SOLV (MG	ED /L SOD NA) PERC	SIUM R	ODIUM AD- ORP- TION ATIO 0931)	SI	K)	ALK LINI LA (MG AS CAC (904	TY SUB DILL S (03) AS	LFATE IS- OLVED MG/L SO4) 0945)	CHLC RIDI DIS- SOL' (MG, AS (O- RES E, AT - DE VED D /L SO CL) (M	IDS, IDUE 180 G. C IS- LVED G/L) 300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
APR 06	41	19	29		25	1	7	.0	172		54	17		292	270
MAY 17	77	43	65		27	2	6	.2	361	1	10	37		589	555
DA	50 (1) F AC	DIS- DLVED CONS PER C-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO GEN, NITRIT TOTAL (MG/L AS N) (00615	- G NIT E D SO (M	TRO- GEN, CRITE DIS- DLVED MG/L G N)	MO2 TO (M AS	TRO- EN, +NO3 TAL G/L N) 630)	NITRO GEN, NO2+NO DIS- SOLVE (MG/L AS N) (00631	MI AMM D TO (N	TTRO- HEN, MONIA DTAL MG/L S N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N) 625)
APR 06.		0.40	1.19	<1	<0.01	0 (0	.010	(0	.100	<0.10	0 0	0.060	0.040		0.90
MAY 17		0.80	0.75	<1	<0.01		.010		.100	<0.10		0.030	0.060		0.80
	NI GEN MON ORC DI (N	TRO- N,AM- NIA + GANIC H IS. MG/L S N)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507	PHOPHO, OR, DI SOL (MG AS	NOS- PROUS RTHO, CS- LVED	ARS TO (U	ENIC TAL G/L AS)	ARSENI DIS- SOLVE (UG/L AS AS	C BC C C C C C C C C C C C C C C C C C	DRON, DIS- DLVED JG/L B B) 1020)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CAD D SO (U	MIUM IS- LVED G/L CD) 025)
APR 06.		0.70	0.070	0.040	0.02	3 0	.015		1		1	30	<1		<1
MAY 17.		0.70	0.080	0.070	0.05		.054		2		4	40	1		<1
	COP D: SC (1	PPER, IS- DLVED JG/L 3 CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVE (UG/L AS PB (01049	NE TC RE D ER (U	NGA- CSE, OTAL CCOV- RABLE JG/L S MN)	NE SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	MERCUR DIS- SOLVE (UG/L AS HG (71890	D TO	ELE- IUM, DTAL JG/L S SE) 1147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SO (U	NC, IS- LVED G/L ZN) 090)
APR 06.		<1	120	70	<	5	90		84	0.	3	<1	<1		<3
MAY 17.		<1	90	19	<		30		25	0.	1	<1	<1		5
	CAI ORO TO (1	OTAL MG/L S C)	CYANIDE TOTAL (MG/L AS CN) (00720)	CYANIDE DIS- SOLVED (MG/L AS CN) (00723)	CHLOR- PHYTO PLANK TON CHROMO FLUORO (UG/L (70953	- PH - PL CHF M FLU	LOR-B HYTO- LANK- CON ROMO JOROM JOROM JOP54)	BIO ASH (MG	NK- ON MASS WT /L) 353)	PLANK- TON BIOMAS DRY WI (MG/L) (81354	S SU	EDI- ENT, JS- ENDED MG/L) D154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SI % F % F	ED. USP. EVE IAM. INER HAN 2 MM 331)
APR 06.		11	<0.010	<0.01	2.50		.300	1	4	1200		4	0.01		85
MAY 17.		17	<0.010	<0.01	<0.30	0 <0	.100	1	7	1100		9	0.01		54

06468250 JAMES RIVER ABOVE ARROWWOOD LAKE NEAR KENSAL, ND

LOCATION.--Lat 47°23'59", long 98°47'50", in SW1/4SW1/4SW1/4 sec.2, T.145 N., R.64 W., Foster County, Hydrologic Unit 10160003, on right bank 30 ft upstream from bridge on county road 8 mi northwest of Kensal.

DRAINAGE AREA .-- 1,200 mi², approximately, of which about 750 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- Water year 1986 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,440.00 ft above National Geodetic Vertical Datum of 1929, from topographc map.

REMARKS .-- Estimated daily discharges: Oct. 1 to July 1. Records poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,500 ft3/s, Mar. 28, 1987, gage height 11.48 ft, backwater from ice; no flow at times most years.

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage Height (ft)	Date	Time	Discharge (ft ³ /s)	Gage Height (ft)
Mar. 28		*a180	unknown				

a - Estimated
No flow for several months.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES AUG SEP DAY OCT NOV JUIN. JUI. DEC JAN FEB MAR APR MAY 6.8 2.0 2.1 . 45 .00 15 4.0 .05 .00 .00 20 53 2 6.6 1.9 2.2 .40 .00 18 50 14 4.4 .00 .00 .00 3 6.4 1.9 2.3 .35 .00 17 47 13 4.1 .00 .00 .00 6.0 1.8 2.4 .33 00 15 47 15 4.1 -00 -00 -00 5 2.5 .30 4.2 .00 .00 .00 5.6 1.8 .00 23 38 17 6 .27 .00 .00 .00 5.5 .00 30 5.4 1.8 2.7 .24 .00 20 34 13 4.0 .00 .00 .00 1.7 .00 8 5.3 2.8 .20 .00 19 40 14 4.0 -00 .00 .00 .15 .00 .00 9 5.2 2.9 -00 40 47 15 3.5 5.0 3.0 .00 35 45 12 3.3 .00 10 .00 .00 .00 11 4.9 1.7 2.8 .10 .00 30 42 10 3.0 .00 35 31 31 9.5 -00 .00 12 4.8 1.6 2.7 .06 .00 25 3.0 -00 .00 .00 2.5 4.7 15 9.0 .00 13 1.6 .04 .00 3.3 1.6 .02 .00 8.0 3.3 .00 .00 .00 14 14 15 4.5 .00 13 30 7.0 3.5 .00 .00 .00 .00 .00 .00 16 4.3 2.1 .00 12 26 6.7 .00 1.6 .00 25 .00 .00 .00 2.0 .00 .00 12 6.0 3.3 17 4.1 1.6 27 3.0 .00 .00 18 3.9 1.6 1.8 .00 .00 20 5.5 .00 .00 5.0 .00 .00 .00 19 3.8 1.6 1.5 .00 19 20 3.7 1.6 .00 .00 17 26 4.9 2.0 -00 -00 .00 3.5 3.3 .00 .00 .00 21 1.6 1.3 -00 .00 20 26 4.8 1.8 22 25 .00 .00 1.6 .00 .00 23 4.7 .00 1.4 23 3.1 1.6 1.2 .00 .00 35 21 4.6 1.0 .00 .00 .00 3.0 .00 .00 50 21 4.5 1.0 .00 .00 .00 -00 .00 25 2.8 .80 .00 .05 65 19 4.5 .90 .00 26 2.6 .70 .00 .20 90 19 4.4 .80 .00 .00 .00 1.8 130 .60 .00 .00 .00 27 2.4 1.8 .70 .00 2.0 18 4.3 28 2.2 1.9 .65 .00 10 150 17 4.6 .40 .00 .00 .00 .00 29 2.1 1.9 .60 .00 23 60 17 4.5 .25 .00 .00 .00 .55 4.0 .00 .00 30 2.0 2.0 .00 58 16 .15 56 .00 2.0 .00 3.8 .00 ---0.00 51.8 0.00 TOTAL 130.1 56.10 3.03 1153 931 263.3 78.30 0.05 .00 .00 MEAN 4.20 1.73 1.81 .098 1.22 37.2 31.0 8.49 2.61 -002 .00 2.0 3.0 .50 111 53 16 .05 .00 MAX 6.8 .45 23 150 17 4.4 .00 12 3.8 .15 .00 .00 .00 MIN 2.0 1850 .0 .0 AC-FT 103 6.0 2290

CAL YR 1987 TOTAL 21431.31 MEAN 58.7 MAX 1400 MIN .08 AC-FT 42510 WTR YR 1988 TOTAL 2701.93 MEAN 7.38 MAX 150 MIN .00 AC-FT 5360

06468250 JAMES RIVER ABOVE ARROWWOOD LAKE NEAR KENSAL, ND WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water year 1985 to current year.

			"ATBR-90	ALIII DAI	A, WALER	TEAR OCTO	DEK 1901	TO DEL TEN	DBR 1900			
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
NOV	4070			0.00	3.2	2.2			70		760	C F
18 JAN	1230	1.6	960	8.35	2.0	2.5	5.3	10.8	78	77	360	65
07 APR	1000	0.24	1570	7.88	-15.0	0.5	4.7				600	110
13	1100	31	440	8.58	7.0	9.0	6.0	11.4	97	5.6	160	33
16 AUG	1700	6.7	860	8.48	22.0	16.0	8.4	13.0	130	6.8	300	59
24	1000	0.0	1210	8.65	20.0	17.0		7.1	73			
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
NOV	10	0.7	70		45				605	505	0.05	0.74
18 JAN	48	83	32	2	14	374	140	20	627	595	0.85	2.71
07 APR	79	150	34	3	21	570	240	35	1040	978	1.41	0.67
13 MAY	18	38	33	1	7.7	160	70	11	280	274	0.38	23.8
16	37	80	36	2	9.6	334	130	20	558	536	0.76	10.1
DATE	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)
NOV 18	14		<0.010		<0.100		0.020		1.1		0.020	
JAN 07	15		0.010		<0.100		0.360		1.8		0.080	
APR 13	38	<0.010	<0.010	<0.100	<0.100	0.020	0.020	1.8	0.60	0.120	0.020	0.018
MAY 16	16	<0.010	<0.010	<0.100	<0.100	0.020	0.040	1.1	0.90	0.120	0.030	0.037
	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS) (01002)	ARSENIC DIS- SOLVED (UG/L AS AS)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
DATE	(00671)	(01002)	(01000)	(01020)	(01027)	(01025)	(01040)	(01045)	(01040)	(01049)	(010)))	(010)0/
NOV 18 JAN	<0.001		2	150		<1	<1		55	<5		44
07 APR	0.037		2	210		<1	2		49	<5	0	220
13 MAY	0.002	2	1	70	1	<1	1	280	40	<5	120	26
16	0.009	3	3	170	<1	<1	<1	460	10	<5	480	93

06468250 JAMES RIVER ABOVE ARROWWOOD LAKE NEAR KENSAL, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	(UG/L AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	TOTA (MG/ AS C	DE DI L SO L (M N) AS	NIDE E S- LVED CH G/L FI CN)	PHYTO- PLANK- TON HROMO	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 18	0.2		<1	9									56
JAN 07	0.2		<1	14									208
APR 13	0.1	<1	<1	11	11	<0.0	10 <	0.01	11.0	0.600	22	1200	12
MAY 16	0.1	1	<1	6	20	<0.0	10 <	0.01	19.0	2.70	28	1200	27
AUG 24													
DATE	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALDRIN, DIS- SOLVED (UG/L) (39331)	ALDRIN, TOTAL (UG/L)	AME- TRYNE TOTAL (82184)	ATRA ZINE TOTA (UG/	L TO L) (UG	TAL /L)	SEVIN, TOTAL (UG/L) 39750)	CHLOR- DANE, DIS- SOLVED (UG/L) (39352)	CHLOR-DANE, TOTAL (UG/L) (39350)	CYAN- AZINE TOTAL (UG/L) (81757)	DDD, DIS- SOLVED (UG/L) (39361)
NOV		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,		,,,,,,	, ,,,,,						
18 JAN	0.24	73											
07 APR	0.13	96											
13 MAY	1.0	100											-
16 AUG	0.50	99	<0.01	<0.010	<0.10	<0.	10 <	0.10	<0.50	<0.1	<0.1	<0.10	<0.01
24			<0.01	<0.010	<0.10	<0.	10 <	0.10	<0.50	<0.1	<0.1	<0.10	<0.01
DATE	DDD, TOTAL (UG/L) (39360)	DDE, DIS- SOLVED (UG/L) (39366)	DDE, TOTAL (UG/L) (39365)	DDT, DIS- SOLVED (UG/L) (39371)	DDT, TOTAL	DI- ZINON, DIS- SOLVED (UG/L) 39572)	DI- AZINON, TOTAL (UG/L) (39570)		ELDR D TOTA) (UG/	IN NATE L TOTA 'L) (UG/		(UG/L)	ENDRIN, DIS- SOLVED (UG/L) (39391)
MAY 16	<0.010	<0.01	<0.010	<0.01	<0.010	<0.01	<0.01	<0.0	1 <0.0	10 <0.0	10 <0.0	1 <0.010	<0.01
AUG 24	<0.010	<0.01	<0.010	<0.01	<0.010	<0.01	<0.01	<0.0		10 <0.0	10 <0.0	1 <0.010	<0.01
DAT	ETHI DISS (UG/ E (823	OLV TO	TAL TO	IION, DOTAL SO	IS- CH LVED TO G/L) (U	PTA- E LOR, TAL S	HEPTA- CHLOR CPOXIDE DIS- SOLVED (UG/L) (39421)	HEPTA- CHLOR EPOXIDI TOTAL (UG/L (39420	E DIS- SOLVE) (UG/	LIND D TOT L) (UG	AL SOLY	ON, MAL S- THI VED TOT /L) (UG	ON, AL /L)
MAY 16	<0	0.01 <0	.010	(0.01	0.01 <0	.010	<0.01	<0.010	0 <0.	.01 <0.	010 <0	.01 <0	.01
AUG 24		0.01 <0				.010	<0.01	<0.01			010 <0	.01 <0	.01
DAT	MET MY TOT	MET CHO- OXY CL CHL CAL DIS	H- ME - COR CH SOLV TO /L) (1	ETH- PA DXY- TH HLOR, D DTAL SO JG/L) (U	THYL RA- ME ION, PA DIS- TH DIVED TO	THYL RA- IION, TAL IG/L)	MIREX, DIS- SOLVED (UG/L) (39756)	MIREX TOTA (UG/L (39755	METH TRI THIC L TOTA) (UG/	HYL METH I- TRI- DN, THIO AL DISS 'L) (UG/	POL' OLV TOT	A- ES, PAR Y- THI OR. DI AL SOL L) (UG	ON, S- VED (/L)
MAY 16		(0.5 <	0.01	<0.01	(0.01	0.01	<0.01	<0.0	1 <0.	.01 <0	.01 <0	.10 <0	.01
AUG 24		(0.5 <	0.01	(0.01	0.01	0.01	<0.01	<0.0	1 <0.	.01 <0	.01 <0	.10 <0	.01

a - Lab Code. WATSTORE parameter code unavailable.

06468250 JAMES RIVER ABOVE ARROWWOOD LAKE NEAR KENSAL, ND--CONTINUED

DATE	PARA- THION, TOTAL (UG/L) (39540)	PCB, DIS- SOLVEI (UG/L) (39517)	(UG/L)	(UG/L)	(UG	NE T SOLV T /L) (PHORATE TOTAL (UG/L) (39023)	PROME- TONE TOTAL (UG/L) (39056)	PROME- TRYNE TOTAL (UG/L) (39057)	PROPHAM TOTAL (UG/L) (39052)	PRO- PAZINE TOTAL (UG/L) (39024)
MAY 16	<0.01	<0.	<0.1	<0.	10 <	0.10	<0.1	<0.01	<0.1	<0.1	<0.5	<0.10
24	<0.01	<0.	(0.1	<0.	10 <	0.10	<0.1	<0.01	<0.1	<0.1	<0.5	<0.10
DATE	SIMA- ZINE TOTAL (UG/L) (39055)	SIME- TRYNE TOTAL (UG/L) (39054)	2,4-D, TOTAL (UG/L) (39730)	2,4-DP 2 TOTAL (UG/L) (82183)	2,4,5-T TOTAL (UG/L) (39740)	SILVEX, TOTAL (UG/L) (39760)	SOLVED (UG/L	APHENE, TOTAL) (UG/L)	TOTAL (UG/L)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	(UG/L)	TOTAL TRI- THION (UG/L) (39786)
MAY 16	<0.10	<0.1	0.05	<0.01	<0.01	<0.01	<1.0	<1	<0.50	<0.10	<0.01	<0.01
24	<0.10	<0.1	<0.01	<0.01	<0.01	<0.01	<1.0	<1	<0.05	<0.10	<0.01	<0.01

a - Lab Code. WATSTORE parameter code unavailable.

06468300 KELLY CREEK BELOW NICCUM RESERVOIR NEAR BORDULAC, ND

LOCATION.--Lat 47°24'01", long 98°49'43", in SW1/4SW1/4SE1/4 sec.4, T.145 N., R.64 W., Foster County, Hydrologic Unit 10160001, on right bank 300 ft upstream from culvert on county road 6.5 mi east of Bordulac.

DRAINAGE AREA .-- 188 mi2, approximately, of which about 77 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1985 to current year, seasonal records only.

GAGE.--Water-stage recorder. Elevation of gage is 1,460.00 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Feb. 25 to Mar. 28 and Mar. 31 to Apr. 6. Records fair except those for periods of estimated daily discharge, which are poor. Slight amount of regulation by Niccum Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 350 ft³/s, Apr. 1, 1987, gage height, 4.52 ft, backwater from ice; no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 40 ft3/s, Mar. 5, gage height, 2.25 ft, backwater from ice; no flow, Feb. 1-24 and June 6 to Sept. 30.

		DISCHARGE,	IN CUBIC	FEET PE		WATER N VALU	YEAR OCTOBER	R 1987 TO	SEPTEMBER	1988		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.00	12	12	.60	.04	.00	.00	.00
2					.00	10	10	.78	.06	.00	.00	.00
2 3 4					.00	12	9.5	.75	.06	.00	.00	.00
4					.00	15	9.0	.73	.04	.00	.00	.00
5					.00	25	8.0	.68	.01	.00	.00	.00
6 7 8 9					.00	10	7.0	.40	.00	.00	.00	.00
7					.00	8.0	6.1	.88	.00	.00	.00	.00
8					.00	7.0	5.6	2.0	.00	.00	.00	.00
9					.00	9.0	4.8	1.7	.00	.00	.00	.00
10					.00	10	3.9	1.4	.00	.00	.00	.00
11					.00	7.0	3.5	1.1	.00	.00	.00	.00
12					.00	6.0	3.5	1.1	.00	.00	.00	.00
13					.00	5.0	3.3	.61	.00	.00	.00	.00
14					.00	4.5	2.6	.55	.00	.00	.00	.00
15					.00	4.0	2.4	•54	.00	.00	.00	.00
16					.00	3.8	2.1	.31	.00	.00	.00	.00
17					.00	3.5	1.7	.16	.00	.00	.00	.00
18					.00	3.8	1.5	.15	.00	.00	.00	.00
19					.00	4.0	1.6	.47	.00	.00	.00	.00
20					.00	4.5	1.4	.52	.00	.00	.00	.00
21					.00	5.0	1.3	.43	.00	.00	.00	.00
22					.00	7.0	1.1	.30	.00	.00	.00	.00
23					.00	8.5	1.1	.26	.00	.00	.00	.00
24					.00	10	.99	.20	.00	.00	.00	.00
25					.10	12	.76	.09	.00	.00	.00	.00
26					1.0	15	.71	.08	.00	.00	.00	.00
27					5.0	20	.69	.08	.00	.00	.00	.00
28					20	22	.67	.08	.00	.00	.00	.00
29					14	24	.48	.07	.00	.00	.00	.00
30						19	.60	.03	.00	.00	.00	.00
30 31						15		.02		.00	.00	
TOTAL					40.10	321.6	107.90	17.07	0.21	0.00	0.00	0.00
MEAN					1.38	10.4	3.60	.55	.007	.00	.00	.00
MAX					20	25	12	2.0	.06	.00	.00	.00
MIN					.00	3.5	.48	.02	.00	.00	.00	.00
AC-FT					80	638	214	34	.4	.0	.0	.0

06468300 KELLY CREEK BELOW NICCUM RESERVOIR NEAR BORDULAC, ND--CONTINUED WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1986 to current year.

			qona		.,			01000		,						22.5			
DATE	TIME	STREA FLOW INSTA TANEO (CFS	V, CON AN- DUC DUS ANC S) (US/	T- (S' CM) UN	PH TAND- ARD ITS) 0400)	TEMP ATU AI (DEG (OOO	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER (C)	TU BI IT (FTU (000	D- Y)	SOL	S- VED /L)	OXYG DI SOL (PE CE SAT ATI (003	S- VED R- NT UR- ON)	DEMA BIO CHE ICA 5 D (MG	ND, M- L, AY	HARI NESS TOT (MG, AS CACC	S AL /L 03)
MAR 29	0900	21		530			4.0		0.5										
APR 06	1330	6.		480	8.65		0.0		5.0	1	.5	1	4.7		114		4.0		170
13 MAY	1225	3.	.7	570			7.0		9.0										
17	1200	0.	.10	670	8.77	2	2.0	1	4.0	4	.0	1	0.0		96	52.00	4.6		280
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGN SIU DIS SOLV (MG/ AS M	JM, SODI S- DIS VED SOLV /L (MG MG) AS	ED /L S NA) PE	ODIUM RCENT 0932)	SOR	P- ON IO	SI	K)	ALK LINI LA (MG AS CAC (904	TY B /L 03)	SULF DIS SOL (MG AS S	VED /L (O4)	CHL RID DIS SOL (MG AS (009	VED /L CL)	SOL	DUE 80 S- VED /L)	SOLIC SUM CONST TUENT DIS SOLIC (MG)	OF TI- TS, S- VED /L)
APR 06	37	20	32		27		1	7	.0	134		100		11			308		288
MAY 17	58	32	49		27		1		.5	273		100		12			444		422
DATE	SC (1)	OLIDS, DIS- DLVED TONS PER C-FT) D303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDU TOTAL AT 105 DEG. C SUS- PENDED (MG/L (00530	, NI	NITRO- GEN, TRITE OTAL MG/L S N) O615)	NIT D SO (M	TRO- GEN, RITE IS- LVED G/L N) 613)	NO2	NITRO- JEN, 2+NO3 OTAL MG/L S N) 0630)	NO2- DI SOI (MC	GEN, NO3 IS- LVED J/L N)	AMMO TO' (MO	ITRO- EN, ONIA TAL G/L N) 610)	AMMO DI SOI (MO	VED	MON ORG TO (M	FRO- N,AM- IA + ANIC FAL G/L N) 525)	
APR 06		0.42	5.27	1		0.010	0	.010	<0	.100	<0	100	0	.040	0.	040		1.0	
MAY 17		0.60	0.12	81		0.010		.010	<0	.100	<0	.100	0	.020	0.	080	,	0.80	
DATE	GEN MON ORC DI (N	ITRO- N, AM- NIA + BANIC IS. MG/L S N) D623)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROU: DIS- SOLVE (MG/L AS P) (00666	S PHO OI D TO (1	HOS- ORUS, RTHO, OTAL MG/L S P) O507)	PHO OR' DI SOL' (MG	VED /L	(U	SENIC OTAL JG/L S AS)	SOI (UC AS	ENIC IS- LVED G/L AS)	SOI (UC AS	RON, IS- LVED G/L B) 020)	REC ER/	OV- ABLE G/L CD)	SO (U	MIUM IS- LVED G/L CD) D25)	
APR 06		0.70	0.140	0.07	0 (0.065	0	.039		1		2		50		<1		<1	
MAY 17		0.50	0.080	0.04	0	0.037	0	.042		3		2		90		<1		<1	
DATE	D1 S0 (1 AS	PPER, IS- DLVED JG/L S CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVE (UG/L AS FE (01046	D S(EAD, DIS- OLVED UG/L S PB) 1049)	TO' REC	NGA- SE, TAL COV- ABLE G/L MN) 055)	SC (U	ANGA- ESE, DIS- DLVED JG/L S MN) 1056)	SOI (UC AS	CURY IS- LVED G/L HG)	TO' (UC AS	LE- UM, TAL G/L SE) 147)	SOI (UC	JM, IS- LVED G/L SE)	SO (U	NC, IS- LVED G/L ZN) 090)	
APR			400			45		440		400								/7	
06 MAY 17		<1	190	6		(5		140		120		0.3		<1 <1		<1 <1		<3 5	
17	CAF ORC TC (1	RBON, GANIC DTAL MG/L S C) D680)	CYANIDE TOTAL (MG/L AS CN) (00720)	CYANID DIS- SOLVE (MG/L AS CN (00723	E PI	LOR-A HYTO- LANK- TON ROMO UOROM UG/L) 0953)	PH PL T CHR FLU	OR-B YTO- ANK- ON OMO OROM G/L) 954)	BIC ASH (MC	ANK- TON DMASS H WT G/L)	DRY (MG	ON RSS WT	ME SU: PE (M	DI-	MEN DI CHAR SU PEN (T/I	OI- NT,	SI D % F T	ED. USP. EVE IAM. INER HAN 2 MM	
APR				(30/2)	, ,,,	- 3,,,,	(10	2241	,,,	,,,,,	,01.	.,41	,00	.,,,,			,,,,		
06		12	<0.010	<0.0		1.0		.30		16	110			4		0.07		100	
17		15	<0.010	<0.0	1 1	2.0	0	.600	2	23	120)		12	(00.00		84	

471924098495100 ARROWWOOD LAKE INFLOW SITE

LOCATION.--Lat 47°19'14", long 98°49'51", in NE1/4NE1/4 sec. 6, T.144 N., R.64 W., Stutsman County, Hydrologic Unit 10160001, near center of Arrowwood Lake inflow channel about 1,000 feet downstream from highway bridge on county line, and 5 miles northwest of Kensal.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- November 1987 to September 1988 (discontinued).

INSTRUMENTATION .-- Water-quality monitor since November 1987.

REMARKS.--Records of daily air and water temperature, specific conductance, dissolved oxygen, pH, relative humidity, solar radiation, and wind speed and direction are available in files at the District office. These daily records will be published in a separate report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

OVVCEN

DATE	TIME	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
DEC									
03	1030	1435	-2.0	773	920	8.30	2.0	18.7	133
17	1230	1435	-4.0	774	1200	8.00	1.5	25.0	177
28	1130	1435	-7.5	782	1290	7.90	1.0	19.2	133
JAN	1150	1433	-1.0	102	1230	1.30	1.0	17.2	.,,,
19	1530	1435	-13.0		2000	7.30	0.5	4.0	
FEB	1,550	1422	13.0		2000	1.50	0.5	4.0	
03	1100	1435	-24.0		2420	7.60	0.5	0.1	
17	1030	1435	-0.5		2740	6.80	1.0	0.0	
29	1030	1435	3.0		870	7.80	1.0	11.1	
MAY									
10	1600	1435			786	8.50	17.0	12.0	
JUN									
02	1700	1435	32.0		850	8.50	29.5		
15	1300	1435	21.5		850	8.65	19.5	7.7	
JUL									
05	1645	1435			750	8.80	29.0	10.7	
28	1130	1435	33.0	769	783	9.30	26.0	7.4	91
AUG									
09	0840	1435	16.5		780	9.30	18.5	9.0	
09	1000	1435	23.0		1030	9.40	19.0	10.7	
09	1230	1435	27.0		775	9.50	21.5	10.6	
09	1400	1435	29.0		776	9.60	23.0	12.0	
09	1520	1435	30.0		777	9.60	24.5	12.8	
09	1600	1435	30.5		769	9.30	24.5	12.0	
09	1730	1435	31.0		766	9.60	25.5	14.0	
09	1800	1435	30.5		767	9.60	25.5	14.2	
09	2025	1435	26.0		754	9.70	25.0		
09	2100	1435	24.0		763 757	9.70	24.5	12.4	
09	2200 0001	1435 1435	22.0	==	151	9.70	24.0	12.1	
10	0145	1435	16.5		772	9.70	22.5	10.0	- 11
10	0306	1435	20.0		771	9.60	22.5	9.4	
10	0404	1435	21.5		762	9.60	22.0	8.7	
10	0504	1435	18.5		776	9.60	22.0	8.2	
10	0603	1435	18.0		758	9.50	21.5	7.7	
10	0715	1435	18.0		756	9.50	21.5	7.3	
10	0806	1435	22.5		765	9.50	22.5	6.7	
10	0930	1435	26.0		760	9.30	21.5	7.9	
10	1000	1435	26.5		757	9.60	22.0	7.9	
25	1050	1435	20.5	775	860	9.50	17.5	9.4	96
SEP	.0,0	. 422				2.30			-
08	1000	1435	14.0	770	840	8.90	13.0	6.7	63
20	1000	1435	6.5		840	8.70	8.0	10.1	
					- 10				

471924098495100 ARROWWOOD LAKE INFLOW SITE--CONTINUED

DEC 03	DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
03	DAIL	(0001))	(000)0)	(00010)	(0002)/	(0000)	(10)017	(10))))	(10)547
17		451-12-6-1	25 230	- Van	500	5/005	20202		
28									
JAN 19.									
THE STATE OF THE S	28	<0.010	<0.100	0.580	2.5	0.250	0.020		
FEB 03		0.020	0 100	1 10	13	0.310	(0.010		
03		0.020	0.100	1.10	4.5	0.510	10.010		
17		<0.010	<0.100	1.80	4.1	0.140	0.030		
29									
MAY 10						21 05101			
JUN					200				
02	10	<0.010	<0.100	0.040	1.9	0.080	<0.010	43.0	3.30
15								200	4.4
JUL 05									6.60
05.		<0.010	<0.100	0.020	1.7	0.200	0.110	32.0	3.70
28		40.040	40 400			0 460	0.000	40.0	7 00
AUG 09 0.010									3.80
09 0.010 <0.100		(0.010	₹0.100	0.070	2.1	0.520	0.150	40.0	4.00
09 0.010 <0.100		0.010	10 100	(0.010	1 1	0 200	0 180	12 0	2.30
09 0.010 (0.100 0.010 4.5 0.300 0.180 52.0 3.09 3.09 0.010 (0.100 0.030 4.3 0.360 0.170 78.0 4.00 4.00 4.00 0.320 0.160 52.0 3.00 3.00 3.00 0.320 0.160 52.0 3.00 3.00 3.00 0.010 52.0 3.00 3									3.90
09 0.010 0.100 0.030 4.3 0.360 0.170 78.0 4.09 0.100 0.010 0.010 3.9 0.320 0.160 52.0 3.0 3.0 3.0 0.280 0.160 52.0 3.0 2.0 0.010 0.010 0.010 3.7 0.280 0.160 37.0 2.0 0.0 0.010 0.010 3.7 0.280 0.150 37.0 2.0 0.0									3.10
09 0.010 0.010 3.9 0.320 0.160 52.0 3. 09 0.010 0.100 0.100 0.160 52.0 3. 3. 0.280 0.160 37.0 2. 09 0.010 0.010 0.010 0.150 31.0 1. 09 0.010 0.010 3.4 0.240 0.140 36.0 2. 09 0.010 0.010 3.4 0.240 0.150 39.0 2. 09 0.010 0.040 0.150 39.0 2. 09 0.010 0.040 0.150 39.0 2. 10 0.010 0.040 0.150 39.0 2. 10 0.010 0.040									4.30
09 0.010 <0.100							0.160	52.0	3.10
09 0.010 <0.100		0.010	<0.100	<0.010		0.280			2.00
09 0.010 (0.100 0.010 3.7 0.280 0.150 51.0 2.09 0.010 (0.100 (0.010 3.4 0.240 0.140 36.0 2.00 2.00 0.010 (0.100 0.010 3.1 0.240 0.150 39.0 2.00 2.00 1.00 0.010 0.040 3.6 0.240 0.150 20.0 1.00 0.010 0.040 3.6 0.240 0.150 20.0 1.00 0.010 0.010 0.010 0.240 0.150 20.0 1.00 0.010 0.010 0.240 0.150 20.0 1.00 0.010 0.010 0.240 0.150 20.0 1.00 0.00 0.010 0.240 0.150 20.0 1.00 0.00 0.00 0.280 0.150 20.0 1.00 0.00 0.00 0.150 20.0 1.00 0.00 0.00 0.010 0.150 46.0 1.00 1.00 0.00 0.00 0.00 0.00 0.00		0.010		0.010					2.30
09 0.010	09								1.90
09 0.010 (0.100 (0.010 3.1 0.240 0.150 39.0 2.10 0.010 (0.100 0.040 3.6 0.240 0.150 20.0 1.10 0.010 (0.100 0.050 3.4 0.280 0.150 12.0 0.10 0.020 (0.100 (0.010 3.7 0.310 0.150 59.0 2.10 0.010 (0.100 (0.010 3.7 0.230 0.150 54.0 2.10 0.010 (0.100 (0.010 3.7 0.230 0.150 54.0 2.10 0.010 (0.100 (0.010 3.5 0.300 0.150 46.0 1.10 0.010 (0.100 (0.010 3.7 0.270 0.150 61.0 2.10 0.010 (0.100 (0.010 3.7 0.270 0.150 67.0 3.10 0.010 (0.100 (0.010 3.7 0.250 0.150 24.0 1.10 0.010 (0.100 (0.010 3.7 0.250 0.150 24.0 1.10 (0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.100 (0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.010 0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.010 0.010 0.010 3.7 0.270 0.150 55.0 3.10 0.010 (0.010 0.0									2.80
10 0.010	09								2.00
10 0.010	09								2.10
10 0.020									1.00
10 0.010									2.70
10 0.010 <0.100									2.50
10 0.010 <0.100 <0.010 4.1 0.310 0.150 61.0 2. 10 0.010 <0.100 <0.010 3.7 0.270 0.150 87.0 3. 10 0.010 <0.100 <0.010 3.7 0.250 0.150 24.0 1. 10 <0.010 <0.100 <0.010 3.7 0.270 0.150 55.0 3.									1.80
10 0.010 <0.100 <0.010 3.7 0.270 0.150 87.0 3.10 0.010 <0.100 <0.010 3.7 0.250 0.150 24.0 1.10 <0.010 <0.100 <0.010 3.7 0.270 0.150 55.0 3.10 <0.010 <0.010 <0.010 3.7 0.270 0.150 55.0 3.10									2.80
10 0.010 <0.100 <0.010 3.7 0.250 0.150 24.0 1. 10 <0.010 <0.100 <0.010 3.7 0.270 0.150 55.0 3.					3.7				3.60
10 <0.010 <0.100 <0.010 3.7 0.270 0.150 55.0 3.	10								1.60
									3.20
10 0.010 <0.100 0.010 4.6 0.380 0.180 53.0 2.	10	0.010	<0.100	0.010	4.6	0.380	0.180	53.0	2.50
25 <0.010 <0.100 0.070 6.0 0.450 0.110 130 4.	25						0.110	130	4.20
SEP		100,500,000	2575 4 5 52	180300313		2.02504			
31010 101100 101010 313						2.5.5.5.5.5.	2 2 3 4 7 2		4.10
20 0.010 <0.100 0.050 6.0 0.850 0.200 550 17.	20	0.010	<0.100	0.050	6.0	0.850	0.200	550	17.0

300

JAMES RIVER BASIN

471646098500500 ARROWWOOD LAKE OPEN-WATER SITE

LOCATION.--Lat 47°16'46", long 98°50'05", in SW1/4NE1/4 sec.19, T.144 N., Stutsman County, Hydrologic Unit 10160001, in open-water area near center of lake about 11/2 miles northeast of Arrowwood National Wildlife Refuge headquarters, and about 5 miles southwest of Kensal.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- November 1987 to current year.

INSTRUMENTATION .-- Water-quality monitor since November 1987.

REMARKS.--Records of daily air and water temperature, specific conductance, dissolved oxygen, pH, relative humidity, solar radiation, and wind speed and direction are available in files at the District office. These daily records will be published in a separate report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

17 1000 1435 -6.0 774 970 8.40 1.5 25.5 1 28 1030 1435 -8.0 782 1090 8.20 1.0 15.9 1 JAN 20 1530 1435 -12.0 1520 7.80 0.5 7.7 FEB 03 1200 1435 -24.0 1750 7.50 0.5 0.1 17 1100 1435 -0.5 2140 7.60 0.5 0.0 29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 19.5 700 8.77 18.0 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1150 1435 22.5 690 9.30 19.0 4.1 09 1410 1435 28.5 690 9.30 19.0 4.1 09 1410 1435 28.5 690 9.30 19.0 4.1 09 1410 1435 28.5 690 9.30 19.0 4.1 09 1410 1435 28.5 690 9.30 19.0 4.1 09 1410 1435 28.5 690 9.30 19.0 6.8 09 1500 1435 31.0 680 9.35 18.5 7.5 09 1615 1435 30.0 680 9.35 23.0 6.9 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 680 9.35 23.0 6.9 09 1615 1435 30.0 680 9.35 23.0 6.9 09 1615 1435 30.0 670 9.42 24.0 7.5 09 1915 1435 29.0 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2010 1435 19.0 715 9.34 21.0 5.1 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9	GEN, DIS- DLVED PER- CENT ATUR- FION) 0301)	SO (P C SA AT	OXYGEN, DIS- SOLVED (MG/L) (00300)	TEMPER- ATURE WATER (DEG C) (00010)	PH (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	TEMPER- ATURE AIR (DEG C) (00020)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	TIME	DATE
03 1130 1435 -2.0 773 1040 8.10 2.0 19.5 1 17 1000 1435 -6.0 774 970 8.20 1.0 15.9 1 18 1030 1435 -8.0 782 1090 8.20 1.0 15.9 1 JAN 20 1530 1435 -12.0 1520 7.80 0.5 7.7 FEB 03 1200 1435 -0.5 2140 7.50 0.5 0.1 17 1100 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 19.5 700 8.77 18.0 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 1020 1435 22.5 696 9.20 17.0 2.0 09 1155 1435 25.5 697 9.30 19.0 4.1 09 1410 1435 26.5 699 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.35 18.5 7.5 09 1500 1435 31.0 680 9.35 18.5 7.5 09 1500 1435 31.0 680 9.35 23.0 6.9 09 1615 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 29.0 671 9.41 8.5 09 2200 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 668 9.38 21.0 5.1 10 0400 1435 18.0 668 9.38 21.0 5.1 10 0400 1435 18.0 668 9.38 21.0 5.1											DEC
17 1000 1435 -6.0 774 970 8.40 1.5 25.5 1 28 1030 1435 -8.0 782 1090 8.20 1.0 15.9 1 JAN 20 1530 1435 -12.0 1520 7.80 0.5 7.7 FEB 03 1200 1435 -24.0 1750 7.50 0.5 0.1 17 1100 1435 -0.5 2140 7.60 0.5 0.0 29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 19.5 700 8.77 18.0 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1150 1435 22.5 690 9.30 19.0 4.1 09 1410 1435 22.5 690 9.30 19.0 4.1 09 1410 1435 28.5 700 9.30 19.0 4.1 09 1410 1435 28.5 690 9.30 19.0 4.1 09 1410 1435 22.5 690 9.30 19.0 4.1 09 1410 1435 22.5 690 9.30 19.0 6.8 09 1500 1435 28.5 700 9.45 22.5 5.2 09 1615 1435 30.0 680 9.35 23.0 6.9 09 1615 1435 30.0 680 9.35 23.0 6.9 09 1615 1435 31.0 680 9.35 23.0 6.9 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 670 9.42 24.0 7.5 09 1915 1435 29.0 671 9.41 8.5 09 2200 1435 22.0 674 9.31 22.5 6.6 09 2200 1435 18.0 670 9.42 24.0 7.5 09 2200 1435 18.0 671 9.41 8.5 09 2200 1435 18.0 671 9.41 8.5 09 2200 1435 18.0 671 9.41 8.5 09 2200 1435 18.0 708 9.34 22.0 7.3 10 0020 1435 18.0 708 9.34 22.0 7.3 10 0020 1435 18.0 671 9.34 21.5 6.0 10 0020 1435 18.0 685 9.40 20.5 4.9	139		19.5	2.0	8.10	1040	773	-2.0	1435		
ZO 1530 1435 -12.0 1520 7.80 0.5 7.7 FEB 03 1200 1435 -24.0 1750 7.50 0.5 0.1 17 1100 1435 -0.5 2140 7.60 0.5 0.0 29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 28.5 681 9.33 18.5 7.5 09 1410 1435 30.0 681 9.33 18.5 7.5 09 1500 1435 30.0 681 9.33 18.5 7.5 09 1615 1435 30.0 680 9.25 22.5 5.2 09 1615 1435 30.0 680 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 30.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2200 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 19.0 715 9.34 21.0 5.1 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 708 9.34 21.0 5.1	180							-6.0		1000	
20 1530 1435 -12.0 1520 7.80 0.5 7.7 FEB 03 1200 1435 -24.0 1750 7.50 0.5 0.1 17 1100 1435 -0.5 2140 7.60 0.5 0.0 29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 19.5 700 8.77 18.0 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1155 1435 28.5 690 9.30 19.0 4.1 09 1410 1435 28.5 700 9.30 19.0 4.1 09 1410 1435 30.0 681 9.33 18.5 7.5 09 1500 1435 31.0 680 9.35 22.5 5.2 09 1615 1435 31.0 690 9.45 22.5 5.2 09 1615 1435 31.0 690 9.35 23.0 6.9 09 1820 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 29.0 671 9.41 8.5 09 2010 1435 29.0 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2020 1435 18.0 674 9.31 22.5 6.6 09 2020 1435 18.0 671 9.41 8.5 09 2010 1435 19.0 715 9.34 21.5 6.0 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0040 1435 18.0 681 9.38 21.0 5.1	109		15.9	1.0	8.20	1090	782	-8.0	1435	1030	28
FEB 03 1200 1435 -24.0 1750 7.50 0.5 0.1 17 1100 1435 -0.5 2140 7.60 0.5 0.0 29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 28.5 700 9.30 19.0 4.1 09 1410 1435 28.5 691 9.30 19.0 6.8 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 681 9.33 18.5 7.5 09 1500 1435 31.0 680 9.35 23.0 6.9 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1615 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 1915 1435 30.0 670 9.42 24.0 7.5 09 1915 1435 30.0 670 9.42 24.0 7.5 09 1915 1435 30.0 670 9.42 24.0 7.5 09 1915 1435 30.0 670 9.42 24.0 7.5 09 1915 1435 30.0 670 9.42 24.0 7.5 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0220 1435 19.0 715 9.34 21.5 6.0 10 0220 1435 22.0 708 9.34 22.0 7.3 10 0220 1435 22.0 708 9.34 22.0 7.3 10 0220 1435 22.0 685 9.40 20.5 4.9											
03 1200 1435 -24.0 1750 7.50 0.5 0.1 17 1100 1435 -0.5 2140 7.60 0.5 0.0 29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1155 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 31.0 680 9.45 22.5 5.2 09 1615 1435 31.0 680 9.35 23.0 6.9 09 1615 1435 31.0 680 9.35 23.0 6.9 09 1615 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 29.0 674 9.31 22.5 6.6 09 2000 1435 19.0 715 9.34 21.5 6.0 10 00200 1435 18.0 691 9.38 21.0 5.1 10 00200 1435 18.0 691 9.38 21.0 5.1			7.7	0.5	7.80	1520		-12.0	1435	1530	
17 1100 1435 -0.5 2140 7.60 0.5 0.0 29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 1020 1435 22.5 695 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1410 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1500 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 690 9.45 22.5 5.2 09 1705 1435 31.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1915 1435 30.5 671 9.41 8.5 09 1915 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 18.0 674 9.31 22.5 6.6 09 2200 1435 18.0 674 9.31 22.5 6.0 09 2200 1435 18.0 674 9.31 22.5 6.0 09 2200 1435 18.0 674 9.31 22.5 6.0 10 00200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											
29 1200 1435 3.0 1050 7.80 0.5 MAY 10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 4.1 09 1615 1435 30.0 690 9.30 19.0 6.8 09 1615 1435 31.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 680 9.35 23.0 6.9 09 1915 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 29.0 674 9.41 8.5 09 2200 1435 29.0 708 9.34 22.0 7.3 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0200 1435 18.0 691 9.38 21.0 5.1											
MAY 10 1000 1435											
10 1000 1435 740 8.70 12.5 10.8 JUN 02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1500 1435 30.0 680 9.35 23.0 6.9 09 1705 1435 31.0 690 9.45 22.5 5.2 09 1705 1435 31.0 690 9.35 23.0 6.9 09 1820 1435 31.0 690 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2200 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 19.0 715 9.34 21.5 6.0 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0020 1435 18.0 691 9.38 21.0 5.1				0.5	7.80	1050		3.0	1435	1200	
JUN 02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1500 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 18.0 691 9.38 21.0 5.1 10 00200 1435 18.0 691 9.38 21.0 5.1											
02 1100 1435 750 8.50 24.5 6.3 15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 31.0 680 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 29.0 671 9.41 8.5 09 2000 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 19.0 715 9.34 21.5 6.0 10 00200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9			10.8	12.5	8.70	740			1435	1000	
15 1100 1435 19.5 700 8.77 18.0 6.3 JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 690 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0200 1435 18.0 691 9.38 21.0 5.1									4475	4400	
JUL 05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1455 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 690 9.45 22.5 5.2 09 1820 1435											02
05 1230 1435 850 8.80 22.0 5.0 28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1500 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 680 9.35 23.0 6.9 09 1915 1435 30.5 671 9.41 8.5 09 1915 1435 30.5 671 9.41 8.5 09 1915 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 681 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9			6.3	18.0	8.77	700		19.5	1435	1100	
28 1010 1435 28.0 769 770 9.30 22.0 2.1 AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9				00.0	0.00	050			4.175	4070	
AUG 09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											
09 0810 1435 18.0 686 9.20 17.0 2.0 09 1020 1455 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435	24		2.1	22.0	9.30	770	769	28.0	1435	1010	
09 1020 1435 22.5 695 9.20 17.5 4.7 09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 31.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1			2.0	47.0	0.20	606		40.0	4475	0010	
09 1155 1435 25.5 690 9.30 19.0 4.1 09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1455 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1455 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1455 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 18.0 691 9.38 21.0 5.1 10 0400 1435											09
09 1410 1435 27.0 681 9.33 18.5 7.5 09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435											
09 1500 1435 28.5 700 9.30 19.0 6.8 09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											
09 1615 1435 30.0 690 9.45 22.5 5.2 09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1455 22.0 685 9.40 20.5 4.9											
09 1705 1435 31.0 680 9.35 23.0 6.9 09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											
09 1820 1435 31.0 670 9.42 24.0 7.5 09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											09
09 1915 1435 30.5 671 9.41 8.5 09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											
09 2010 1435 29.0 674 9.31 22.5 6.6 09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											
09 2200 1435 22.0 708 9.34 22.0 7.3 10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											09
10 0020 1435 19.0 715 9.34 21.5 6.0 10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											09
10 0200 1435 18.0 691 9.38 21.0 5.1 10 0400 1435 22.0 685 9.40 20.5 4.9											10
10 0400 1435 22.0 685 9.40 20.5 4.9											10
10 0500 1435 21.0 687 9.38 20.5 3.7			3.7	20.5	9.38	687		21.0	1435		10
10 0600 1435 20.0 705 9.32 20.5 2.1											
10 0700 1435 22.0 709 9.26 20.5 2.2											
10 0800 1435 23.5 681 9.34 20.5 2.0											
			1.8							0900	
			3.2							1000	
25 1130 1435 775 770 9.10 17.0 8.6	88		8.6	17.0			775			1130	
SEP											
08 1150 1435 15.5 770 870 9.10 14.5 10.3 1	100		10.3	14.5	9.10	870	770	15.5	1435	1150	08
			10.0		8.70	881		5.0	1435	1200	20

471646098500500 ARROWWOOD LAKE OPEN-WATER SITE--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
Onlin	(0001)	(000)0)	(00010)	(3002)	(3000),	(1-2-1,	.,	,,,,,,,,,,
DEC								
03	<0.010	<0.100	0.170	2.1	0.260	0.010		
17	<0.010	<0.100	0.350	2.2	0.150	0.020		
28	<0.010	<0.100	0.260	2.1	0.110	0.020		
JAN	0.000	10 100	0 700		0.700	10 010		
20	0.020	<0.100	0.780	4.6	0.390	<0.010		
FEB	10 010	40 400	4 40		0.340	0.010		
03	<0.010 <0.010	<0.100	1.40	4.4	0.820	0.360		
17 29	<0.010	0.300	1.00	3.5	0.280	0.140		
MAY	10.010	0.500	1.00	5.5	0.200	0.140		
10	<0.010	<0.100	0.030	1.4	0.090	0.020	13.0	0.700
JUN	10.010	10.100	0.000	1.4	0.000	0.020	.5.9	3.,55
02	<0.010	<0.100	0.050	1.1	0.070	0.020	16.0	2.20
15	<0.010	<0.100	0.010	1.1	0.080	0.030	12.0	1.60
JUL						2,000		
05	<0.010	<0.100	0.030	3.4	0.310	0.130	23.0	1.00
28	0.010	<0.100	0.090	2.1	0.370	0.280	1.90	<0.200
AUG							3.00	
09	0.010	<0.100	0.090	2.1	0.330	0.250	6.00	0.400
09	0.010	<0.100	0.060	8.0	0.330	0.240	9.20	0.800
09	0.010	<0.100	0.040	2.3	0.330	0.230	6.20	0.400
09	0.010	<0.100	0.020	2.4	0.280	0.200	12.0	0.600
09	0.010	<0.100	0.030	2.4	0.340	0.200	13.0	0.800
09	0.010	<0.100	0.030	2.6	0.290	0.180	21.0	1.60
09	0.010	<0.100	0.060	2.5	0.320	0.180	9.40	0.500
09	0.010	<0.100	0.030	2.1	0.260	0.170	11.0 9.50	<0.400
09	0.010	<0.100	0.060	2.6 1.9	0.340	0.170	6.20	<0.400
09	0.010	<0.100	0.040	2.2	0.280	0.200	1.30	<0.400
09	0.010	<0.100	<0.010	2.0	0.300	0.200	3.00	<0.400
10	0.010	<0.100	0.060	2.3	0.300	0.210	1.60	<0.400
10	0.010	0.200	0.050	1.9	0.290	0.190	4.30	<0.400
10	0.020	<0.100	0.030	2.5	0.280	0.210	3.90	<0.400
10	0.010	<0.100	0.090	2.3	0.330	0.220	4.60	<0.400
10	0.010	<0.100	0.070	2.0	0.330	0.230	3.30	<0.400
10	0.020	<0.100	0.080	2.2	0.320	0.230	3.60	<0.400
10	0.010	<0.100	0.060	2.3	0.330	0.240	2.90	<0.400
10	0.010	<0.100	0.040	1.9	0.310	0.230	4.90	<0.400
25	<0.010	<0.100	0.070	5.0	0.470	0.150	110	6.30
SEP	1		100000					
08	0.010	<0.100	<0.010	5.6	0.740	0.190	110	4.10
20	0.010	<0.100	0.040	2.7	0.590	0.100	180	7.20

471555098505200 ARROWWOOD LAKE OUTFLOW SITE

LOCATION.--Lat 47°15'55", long 98°50'52", in SE¼NE¼ sec.25, T.144 N., R.65 W., Stutsman County, Hydrologic Unit 10160001, in downstream end of lake, about ¼ mile east of Arrowwood National Wildlife Refuge headquarters, and about 6 miles southwest of Kensal.

PERIOD OF RECORD .-- November 1987 to current year.

INSTRUMENTATION .-- Water-quality monitor since November 1987.

REMARKS.--Records of daily air and water temperature, specific conductance, dissolved oxygen, pH, relative humidity, solar radiation, and wind speed and direction are available in files at the District office. These daily records will be published in a separate report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

JAN 20 1100 1435 -12.0 1390 7.80 1.0 6	.4 .0 .0
20 1100 1435 -12.0 1390 7.80 1.0 6	.0
	.0
03 1300 1435 -24.0 1490 7.70 0.5	
	.5
10 1200 1435 730 8.60 13.0 10	.5
02 1400 1435 25.0 770 8.50 24.5	
15 1200 1435 20.0 800 8.68 19.0 6	.9
05 1430 1435 770 8.60 26.0 9	.5
28 1030 1435 29.5 769 770 8.90 22.5 5	.6 64
AUG	
	.6
	.6
	.7
	.4
	.7
	.3
	.4
	.0
	.5
	.2
	.0
	.4
	.7
	.6
	.2
	.8
	.4
10 0800 1435 23.0 756 8.95 19.5	.9
10 0900 1435 25.5 758 9.01 19.5	.4
10 1000 1435 27.0 759 9.05 19.5	.8
	.3 95
08 1215 1435 16.0 770 780 9.70 14.0	
20 1100 1435	

471555098505200 ARROWWOOD LAKE OUTFLOW SITE--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
JAN								
20	0.020	<0.100	0.980	4.9	0.280	<0.010		
FEB		40 400		4 -	0.400	10 010		
03	0.020	<0.100	1.00	3.5	0.120	<0.010		
17	<0.010	<0.100	1.40	4.8	0.270	0.140		
29 MAY	<0.010	<0.100	1.80	4.0	0.280	0.150		
10	<0.010	<0.100	0.040	1.8	0.080	0.020	42.0	1.50
JUN								
02	0.020	<0.100	0.280	1.3	0.100	0.060	3.40	0.50
15	0.010	<0.100	0.150	1.4	0.060	0.030	9.90	3.40
JUL								
05	<0.010	<0.100	<0.010	2.0	0.100	0.010	67.0	6.20
28	<0.010	<0.100	0.020	2.5	0.430	0.210	46.0	4.80
AUG	15 100 100	1000						
09	0.010	<0.100	0.060	3.0	0.400	0.260	52.0	2.30
09	0.010	<0.100	0.020	3.0	0.420	0.250	95.0	5.50
09	0.010	<0.100	0.030	3.0	0.350	0.240	52.0	2.70
09	0.010	<0.100	0.030	2.8	0.390	0.250	58.0	2.60
09	0.010	<0.100	0.020	3.0	0.350	0.250	45.0	2.30
09	0.010	<0.100	0.010	3.5	0.390	0.240	82.0 47.0	3.00
09	0.010	<0.100	0.020	3.0	0.390	0.240	55.0	2.30 3.10
09	0.010	<0.100	<0.010	3.5	0.340	0.250	64.0	1.90
09	0.010	<0.100	0.060	2.8	0.340	0.240	58.0	3.10
09	0.010	<0.100	0.030	2.7	0.330	0.260	23.0	1.30
09	0.010	<0.100	0.210	2.8	0.320	0.230	62.0	2.30
10	0.020	<0.100	0.040	2.9	0.320	0.240	78.0	4.30
10	0.010	<0.100	0.050	2.7	0.340	0.260	49.0	2.30
10	0.010	<0.100		3.0	0.300	0.220	54.0	2.60
10	0.010	<0.100	0.050	2.7	0.330	0.240	51.0	2.60
10	0.010	<0.100	0.030	2.6	0.340	0.230	71.0	3.50
10	0.010	<0.100	0.050	3.2	0.330	0.240	75.0	3.50
10	0.010	<0.100	0.040	3.3	0.420	0.240	88.0	5.50
10	0.010	<0.100	<0.010	3.2	0.330	0.230	130	7.00
25	0.010	<0.100	0.050	3.9	0.490	0.240	93.0	3.40
SEP	0.010	10.100	0.000	2.5	0.490	0.240	22.0	2.40
08	<0.010	<0.100	<0.010	3.7	0.530	0.280	62.0	0.80
20	0.010	<0.100	0.040	2.7	0.680	0.350	160	2.20
20	0.010	10.100	0.040	4.1	0.000	0.550	.00	2.20

06468500 JAMES RIVER NEAR PINGREE, ND

LOCATION.--Lat 47°08'30", long 98°47'00", in SW1/4SW1/4 sec.3, T.142 N., R.64 W., Stutsman County, Hydrologic Unit 10160001, on right bank 500 ft upstream from dam at outlet of DePuy Marsh, 6.5 mi southeast of Pingree, and 6.25 mi northeast of Buchanan.

DRAINAGE AREA.--1,670 mi2, approximately, of which about 900 mi2 is probably noncontributing.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1965, 1979 to current year.

REMARKS .-- Current sampling site is located at bridge 2 mi upstream from former stream-gaging station.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (OOO2O)	TEMPER- ATURE WATER (DEG C) (00010)	INUM- COBALT UNITS)	BID- ITY (FTU)	OXYGEN, DIS- SOLVED (MG/L)) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (OO310)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT 05	1200	670	8.55	8.0	10.0	17	100	11.4	100		250	47
NOV 18	0900	750	8.81	-10.0	1.0	10	4.3	14.4	100		290	57
APR 13	0900	700	8.30	5.0	8.0	19	13	12.5	104	7.0	270	51
MAY 17	1330	740	8.60	23.0	15.0	17	22	11.0	108	5.9	260	49
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (OO925)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT (00932)		POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	LINITY LAB (MG/L AS CACO3)		DIS- D SOLVED (MG/L) AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SOLIDS, RESIDUE AT 180 DEG. O DIS- 'SOLVED (MG/L) (70300)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
OCT 05	31	49	29	1	14	266	91	11	0.20	428	403	0.58
NOV 18	36	56	28	1	14	290	110	15	0.20	497	462	0.68
APR 13	35	56	30	2	10	263	120	14	0.20	454	444	0.62
MAY 17	34	58	32	2	8.6	271	130	15	0.30	500	458	0.68
	DATE	RESI TOTA AT 1 DEG. SUS PEND (MG	L NIT 05 GE C, NITR TOT ED (MG /L) AS	N, NITR ITE DIS AL SOL' /L (MG N) AS	N, NIT ITE GE S- NO2+ VED TOT /L (MG N) AS	RO- GE N, NO24 NO3 DI AL SOL /L (MO N) AS	NO3 GIS- AMMS VED TOS JL (MG N) AS	TRO- GET EN, AMMOI ONIA DIS TAL SOLV G/L (MG, N) AS 1 610) (0060	N, GEN, NIA MONI S- ORGA VED TOT /L (MG N) AS	AM- GEN, A + MONI NIC ORGA AL DIS /L (MG N) AS	A + PHO NIC PHOR TOT /L (MG N) AS	OUS AL /L P)
	OCT 05	33	2	<0.	010	<0.	.100	0.0	030	0	.70	
	NOV 18		5	<0.	010	<0.	100	0.0	020	1	.1	
	13	3	1 <0.	010 <0.	010 <0.	100 <0.	100 0	.020 0.0	020 2	.3 1	.0 0.	150
	17	3	7 <0.	010 <0.	010 <0.	100 <0.	.100 0	.030 0.0	040 1	.1	.70 0.	080
DA	re	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS, ORTHO,	SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS) (01002)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)
OCT						4	THE SECOND SECOND					1
NOA		0.060		0.027		4		140 149		<1 <1		<1
APR	3	0.020	0.024	0.001	2	1	100	100	2	<1	1	1
MAY		0.020	0.029	0.002	2	3		120	1	<1		<1
1	7	0.050	0.029	0.018	2	2		120	1	× 1		1

JAMES RIVER BASIN

06468500 JAMES RIVER NEAR PINGREE, ND--CONTINUED

DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON DIS- SOLV (UG/ AS F	ED SC L (U E) AS	EAD, DIS- DLVED UG/L S PB) 1049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NE TO RE ER (U AS	NGA- SE, TAL COV- ABLE IG/L MN) O55)	NES SOI (UC	NGA- SE, IS- LVED G/L MN)	SOI (UC	S- LVED G/L HG)	DEN DI SOL (UC	MO)	SEL NIU TOT (UG AS (O11	M, AL /L SE)	SEL NIU DI SOL (UG AS (O11	M, S- VED /L SE)	STRON- TIUM DIS- SOLVEI (UG/L AS SR (01080)	,
OCT 05			13	<5					18		0.3						1		
NOV 18			5	<5	22				11		0.1						1	_	-
APR 13	470		6	<5	40		300		7		0.1		1		<1		<1	240	0
MAY 17	900		6	<5			250		16		0.2				<1		<1		
DATE	(UG AS	S- O VED /L ZN)	ARBON, RGANIC FOTAL (MG/L AS C) DO680)	CYANI TOTA (MG/ AS 0	IDE DIS	NIDE S- LVED G/L CN) 723)	CHLOR PHYTO PLAN TO CHRON FLUOR (UG,	TO- NK- N MO ROM /L)	CHLOR PHYTO PLAI TOI CHROI FLUOI (UG, (709)	TO- NK- N MO ROM /L)	PLANE TOM BIOMA ASH V (MG/I	ASS WT L)	PLANI TO BIOM DRY (MG/ (813)	N ASS WT L)		T, DED /L)	\$.0	SED. SUSP. IEVE DIAM. FINER THAN 62 MM 0331)	
ОСТ 05		<3			<	0.01										461		94	
NOV 18		<3														17		92	
APR 13 MAY		<3	16	<0.0	010 <	0.01	30.0)	1.6	60	18		1200			26		96	
17		3	16	<0.0	010 <	0.01	30.0	0	1.	10	27		1200			46		98	

06469000 JAMESTOWN RESERVOIR NEAR JAMESTOWN, ND

LOCATION.--Lat 46°55'50", long 98°42'23", in SE1/4NW1/4 sec.24, T.140 N., R.64 W., Stutsman County, Hydrologic Unit 10160001, on left bank in control house below Jamestown Dam on James River, 1.7 mi north of Jamestown Post Office, and 3.3 mi upstream from Pipestem Creek.

DRAINAGE AREA.--1,760 mi2, approximately, of which about 1,010 mi2 is probably noncontributing.

RESERVOIR-ELEVATION AND CONTENTS RECORDS

PERIOD OF RECORD .-- November 1953 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,400.00 ft above National Geodetic Vertical Datum of 1929; gage readings have been reduced to elevations NGVD. June 22, 1959, to June 3, 1971 at site 0.2 mi upstream at same datum. Prior to June 22, 1959, nonrecording gages at different locations.

REMARKS.--Reservoir is formed by earth-fill dam, completed Oct. 1, 1953. Closure made May 7, 1953, and filling of dead storage started. Gates initially closed Feb. 8, 1954. Usable capacity, 229,470 acre-ft between elevations 1,400 ft, sill of outlet and 1,454 ft, crest of spillway. Dead storage below elevation 1,400 ft, 820 acre-ft. Maximum design pool, 389,000 acre-ft, elevation, 1,464.6 ft. Figures given herein represent total contents based on capacity table dated Oct. 1, 1965. Reservoir is used for flood control and municipal supply. Elevations are adjusted for wind effect.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 103,100 acre-ft, May 1, 1969, elevation, 1,443.60 ft; minimum since initial filling of reservoir, 18,220 acre-ft, Mar. 4, 5, 1965, elevation, 1,423.66 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 36,020 acre-ft, Oct. 1, elevation, 1,432.86 ft; minimum, 25,430 acre-ft, Sept. 30, elevation, 1,428.04 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

1	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	1.432.86	36,020	
Oct.	31	1,430.76	30,980	-5.040
lov.	30	1,429.95	29,220	-1,760
Dec.	31		29,410	+190
CA	L YR 1987	-	-	+110
	31	24 470 40		32.5
an.	J1	a1,430.10	29,540	+130
	29	1,430.10	29,540 29,820	+130 +280
eb.				
eb. Mar.	29	1,430.23	29,820	+280
Teb. Mar. Apr.	29 31	1,430.23 1,430.83 1,431.46	29,820 31,140	+280 +1,320
Teb. Mar. Apr. May	29 31	1,430.23 1,430.83 1,431.46	29,820 31,140 32,590	+280 +1,320 +1,450
Teb. Mar. Apr. May June	29	1,430.23 1,430.83 1,431.46 1,431.89	29,820 31,140 32,590 33,600	+280 +1,320 +1,450 +1,010
Jan. Feb. Mar. Apr. May June July Aug.	29	1,430.23 1,430.83 1,431.46 1,431.89 1,431.03	29,820 31,140 32,590 33,600 31,580	+280 +1,320 +1,450 +1,010 -2,020
Teb. Mar. Apr. May Mune Muly	29	1,430.23 1,430.83 1,431.46 1,431.89 1,431.03 1,429.60	29,820 31,140 32,590 33,600 31,580 28,500	+280 +1,320 +1,450 +1,010 -2,020 -3,080

a - End-of-month elevation not recorded. Value shown was observed at 8:00 a.m. on last day of the month.

307

06469000 JAMESTOWN RESERVOIR NEAR JAMESTOWN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960 to current year.

DATE	TIME	SAM- PLIN DEPT (FEE (OOOO	G V H DE T) (F	SER- OIR PTH EET)	TEMPEI ATURI AIR (DEG (E COVE (PER C) CENT	R-	WIND DIRE TIO (DEG FRO TRU NORT (0003	C- N M E	WIND SPEE (MIL PER HOUR (0003	D ES)	BARO METR PRES SUR (MM OF HG)	IC E	ICE THICK NESS (FEET (8213)	SPE- CIFI CON- DUCT ANCE (US/C	CC CM)	PH (STAN ARD UNITS (OO40	D -	TEMPER- ATURE WATER (DEG C) (00010)
OCT 20	1310	3.	30	30.0	3	.5 1	100	3	30	15		7	80			5	510	8.	30	7.5
O1	1415	0.	0	22.0	-22	.0	10	3	15	<5	.0	7	83	2.	00	6	555	7.	90	1.5
APR 25 JUL	1135	0.	O E	27.0	7	.0	5		0	15		7	68			6	500	8.	70	8.5
27	1030	1.	60	53.0	29	.0	0			5	.0	7	70			6	554	8.	30	22.5
DATE		COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS PAR- ENCY (SECCH DISK) (IN) (00077	0	XYGEN, DIS- SOLVED (MG/L) 00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	()	HARD- NESS FOTAL (MG/L AS CACO3)	S (A	LCIUM IS- OLVED MG/L S CA) 0915)	SC (MAS	AGNE- SIUM, DIS- DLVED MG/L S MG) D925)	SOI (N	DIUM, IS- LVED MG/L S NA) D930)	PE	ODIUM RCENT 0932)	S	SODIUM AD- SORP- TION AATIO 00931)	SO (M	TAS- SIUM, DIS- DLVED G/L K) 935)
OCT 20 FEB		9	30.0		10.2	83		190		38	2	22	3	59		29		1	1	4
01 APR		8	55.2		12.3	85		230		47	2	27	4	17		29		1	1	8
25 JUL		13	E48.0)	11.6	99		210		42	2	26	4	14		30		1		7.0
27		14	27.0)	8.3	95		220		44	2	27	4	19		32		1		8.0
DATE		ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFAT DIS- SOLVE (MG/L AS SO4 (00945	E D	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	1	ILICA, DIS- SOLVED (MG/L AS SIO2)	RE AT D	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L) 0300)	SUN CON TUE SO (N	LIDS, M OF NSTI- ENTS, DIS- DLVED MG/L) D301)	S():	JIDS, DIS- DLVED PONS PER C-FT)	NO S (A	ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N) 0631)	PH S (A	PHOS- IOROUS DIS- SOLVED MG/L AS P)	SO (U	PRON, DIS- DLVED DG/L B) O2O)
OCT 20		204	75		7.1	0.20		19		343		339		0.47		0.440		0.110		100
FEB 01		255	88		11	0.20		34		410		426		0.56		0.240		0.150		100
APR 25		233	80		10	0.20		16		378		365		0.51		0.100		0.090		100
JUL 27	2	239	87		11	0.20		18		409		389		0.56		0.280		0.110		110

308 JAMES RIVER BASIN

O6469000 JAMESTOWN RESERVOIR NEAR JAMESTOWN, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT							
20	1300	0.0	510	8.30	7.5	10.2	83
20	1304	1.60	510	8.30	7.5	10.2	83
20	1310	3.30	510	8.30	7.5	10.2	83
20	1314	6.60	510	8.30	7.5	10.2	83
20	1318	13.2	510	8.30	7.5	10.2	83
20	1322	19.8	510	8.30	7.5	10.2	83
20	1326	26.4	510	8.30	7.5	10.2	83
20	1330	29.7	510	8.30	7.5	10.2	83
FEB							
01	1415	0.0	655	7.90	1.5	12.3	85
01	1417	1.60	640	8.00	1.0	12.1	83
01	1419	3.30	632	8.10	2.0	11.6	82
01	1421	6.60	633	8.20	2.5	11.0	79
01	1423	13.2	637	8.10	3.0	9.5	69
01	1425	19.8	641	8.10	3.0	7.6	55
APR	1122	12.2		2 22			
25	1135	0.0	600	8.70	8.5	11.6	99
25	1137	1.60	600	8.70	8.5	11.6	98
25	1139	3.30	600 600	8.60	8.5	11.6	98
25	1141	6.60 13.2	600	8.60	8.5	11.5	97 97
25 25	1145	19.8	600	8.60	8.5	11.5	97
25	1147	26.4	600	8.60	8.5	11.5	97
JUL	1147	20.4	000	0.00	0.9	11.0	21
27	1030	1.60	654	8.30	22.5	8.3	95
27	1032	3.30	655	8.20	23.0	8.2	94
27	1033	6.60	655	8.20	22.5	8.0	91
27	1034	13.2	657	8.20	22.5	7.8	89
27	1035	19.8	656	8.20	22.5	7.7	88
27	1036	26.4	655	8.20	22.5	7.7	88
27	1037	33.0	655	8.20	22.5	7.5	85
27	1038	39.6	654	8.20	22.5	7.1	81
27	1039	46.2	654	8.20	22.0	7.3	83
27	1040	52.8	653	8.20	22.0	6.9	78
23.754		3					

309

06469400 PIPESTEM CREEK NEAR PINGREE, ND

LOCATION.--Lat 47°10'03", long 98°58'07", in NE1/4NE1/4NW1/4 sec.31, T.143 N., R.65 W., Stutsman County, Hydrologic Unit 10160002, on right bank on downstream side of State Highway 36 bridge, and 3 mi west of Pingree.

DRAINAGE AREA. -- 700 mi2, of which about 440 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1973 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,500.63 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Estimated daily discharges: Oct. 17 to Apr. 7, May 10-16, and May 19 to July 8. Records poor.

AVERAGE DISCHARGE.--15 years, 26.2 ft3/s, 18,900 acre-ft/yr; median of yearly mean discharges, 19 ft3/s, 13,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,520 ft3/s, Apr. 20, 1979, gage height, 11.60 ft, backwater from ice; no flow at times.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage Height (ft)	e Height (ft) Date		Discharge (ft ³ /s)	Gage Height (ft)
Apr. 1	0815	*250	*a7.58				

No flow for several days. a - Backwater from ice

		DISCHARGE,	IN CUBIC	FEET PI	ER SECOND ME	, WATER	YEAR OCTOBER	1987 TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.8	1.9	.44	.24	.13	65	190	19	1.1	.04	.00	.00
2	6.4	1.9	.43	.23	.12	50		19	.90	.03	.00	.00
3	5.2	1.7	.43	.22	.12	40		19	.80	.03	.00	.00
3	4.5	1.6	.42	.22	.12	35		18	1.0	.02	.01	.00
4								15	1.0	.02	.01	.00
5	5.2	1.5	.42	.21	.12	50	120	15	1.0	.02	.01	.00
6	5.0	1.3	.41	.20	.12	40		12	.85	.02	.00	.00
7	4.5	1.2	.40	.20	.12	35		12	.70	.02	.00	.00
8	4.1	1.1	.38	.20	.11	30	85	14	.60	.01	.00	.00
9	4.1	1.0	.36	.19	.11	25	76	13	.50	.01	.00	.00
10	4.1	.96	.34	.19	.11	20	70	9.1	•45	.01	.00	.00
11	4.0	.92	.33	.18	.11	16	64	8.5	•35	.01	.00	.00
12	3.8	.90	.32	.18	.11	14	61	6.9	.33	.01	.00	.00
						12	55	6.1	.30	.01	.00	.00
13	4.2	.86	.32	.17	.11				.35	.01	.00	.00
14	4.7	.80	.31	.17	.11	10	49	6.4				
15	4.1	.70	.31	.17	.11	9.0	48	7.9	•35	.00	.00	.00
16	4.1	.64	.30	.17	.10	8.0	45	6.1	.25	.00	.00	.00
17	6.0	.58	.30	.16	.10	6.0	43	5.2	.20	.00	.00	.00
18	5.0	.50	.30	.16	.10	7.0	38	5.7	.15	.00	.00	.00
19	4.5	.49	.30	.16	.10	8.0	38	5.0	.12	.00	.00	.00
20	4.0	.49	.30	.16	.10	10	36	4.3	.10	.00	.00	.00
20	4.0	•49	• 50	. 10	. 10	10	20					
21	3.5	.48	.29	.15	.10	12	35	3.5	.10	.00	.00	.00
22	3.3	.47	.29	.15	.10	14	34	3.0	.15	.00	.00	.00
23	2.9	.47	.28	.14	.10	20	32	2.5	.20	.00	.00	.00
24	2.7	.46	.28	.14	.10	25	30	2.0	.20	.00	.00	.00
						30	30	2.5	.15	.00	.00	.00
25	2.5	.46	.28	.14	.10	50	30	2.0	• 15	.00	.00	.00
26	2.4	.46	.28	.14	1.0	40	26	2.5	.13	.00	.00	.00
27	2.2	.46	.28	.14	10	60	26	2.3	.10	.00	.00	.00
28	2.1	.46	.27	.14	80	80	24	2.0	.08	.00	.00	.00
					100	145	22	1.8	.06	.00	.00	.00
29	2.0	• 45	.27							.00	.00	.00
30	1.9	• 45	.26	.13		180	24	1.5	.05			
31	1.9		.25	.13		220		1.3		.00	.00	
TOTAL	122.7	25.66	10.15	5.31	193.73	1316.0		237.1		0.25	0.02	0.00
MEAN	3.96	.86	.33	.17	6.68	42.5		7.65	•39	.008	.001	.00
MAX	7.8	1.9	•44	.24	100	220	190	19	1.1	.04	.01	.00
MIN	1.9	.45	.25	.13	.10	6.0	22	1.3	.05	.00	.00	.00
AC-FT	243	51	20	11	384	2610	3880	470	23	.5	.04	.0
HO-LI	-47)			204	_510	2000				2.20	

CAL YR 1987 WTR YR 1988 TOTAL 14717.45 MEAN 40.3 MAX 650 MIN .25 AC-FT 29190 TOTAL 3877.54 MEAN 10.6 MAX 220 MIN .00 AC-FT 7690 310

JAMES RIVER BASIN

06469400 PIPESTEM CREEK NEAR PINGREE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (OOO61)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (OOO10)	(MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
ОСТ 05	1145	4.5	980		8.0	9.0			-1		
MAR 29	1220	146	590		-4.0	0.5					- 2-
APR O7 MAY	1000	96	690	8.45	7.0	9.0	250	49	30	57	32
12	1500	4.3	1060		25.0	15.0					
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	AS SIO2)	AT 180	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 07	2	17	210	160	14	0.10	14	458	466	119	0.62
DATE	SO (U AS	DIS- DLVED SO IG/L (I S AS) AS	DIS- I OLVED SO UG/L (US B) AS	DIS- I DLVED SO JG/L (U S FE) AS	DIS- I DLVED SO JG/L (I S PB) AS	THIUM NOIS- DLVED S JG/L (S LI) A	DIS- SOLVED S UG/L (S MN) A	RCURY DE DIS- I OLVED SO UG/L (U S HG) AS	ENUM, NI DIS- D DLVED SO JG/L (U S MO) AS	CUM, DIS- DLVED S JG/L (S SE) A	TRON- TIUM, DIS- OLVED UG/L S SR) 1080)
APR 07		2	180	50	1	35	10	0.9	1	2	220

06470000 JAMES RIVER AT JAMESTOWN, ND

LOCATION.--Lat 46°53'22", long 98°40'58", in NW1/4NE1/4 sec.6, T.139 N., R.63 W., Stutsman County, Hydrologic Unit 10160003, on left bank 200 ft upstream from Interstate 94 bridge at southeast corner of Jamestown, and 3 mi downstream from Pipestem Creek.

DRAINAGE AREA. -- 2,820 mi², approximately, of which about 1,650 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1928 to September 1933, March to May 1935, August 1937 to September 1939, April 1943 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS .-- WSP 1239: 1938(M). WSP 1917: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,373.27 ft above National Geodetic Vertical Datum of 1929.
Oct. 1, 1949 to Sept. 30, 1965, at former bridge 0.5 mi upstream at datum 2.00 ft higher. See WSP 1729 or
1917 for history of changes prior to Oct. 1, 1949.

REMARKS.--Estimated daily discharges: Dec. 30 to Feb. 27. Records good except those for period of estimated daily discharges, which are fair. Flow regulated by Arrowwood, Jim, and Pipestem Lakes, and Jamestown Reservoir, combined capacity, 393,000 acre-ft. Regulation by Jamestown Reservoir (station 06469000) 6 mi since 1953 and by Pipestem Lake, capacity 147,000 acre-ft, since 1973.

AVERAGE DISCHARGE.--52 years (water years 1929-33, 1938-39, 1944-88), 66.1 ft³/s, 47,890 acre-ft/yr; median of yearly mean discharges, 40 ft³/s, 29,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 6,390 ft3/s, May 13, 1950, gage height, 15.82 ft, site and datum then in use; no flow at times in 1933.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 251 ft3/s, Oct. 4, gage height, 5.01 ft; minimum daily, 0.02 ft3/s. Sept. 17.

MEAN VALUES AUG SEP OCT NOV DEC APR MAY JUN. JUL. DAY TAN. FEB MAR 9.9 250 241 6.5 106 101 12 1.5 25 13 3.3 7.1 23 34 27 9.2 2 249 241 6.0 141 110 11 8.9 24 5.8 3 250 241 5.7 3.3 163 111 22 22 2.8 12 5.5 3.3 8.1 4 5 251 240 172 113 251 12 176 113 6.8 31 20 20 2.0 237 6 251 236 12 5.2 3.3 169 131 6.0 33 20 19 1.6 250 235 12 5.1 3.2 211 6.5 34 19 19 1.4 154 19 19 1.0 8 188 33 13 5.9 19 18 .70 248 233 4.7 179 213 3.1 10 19 18 .60 4.5 12 18 .42 213 19 12 4.5 5.4 11 245 194 3.0 109 4.7 24 18 .36 28 12 245 174 156 11 4.4 3.0 196 213 10 4.2 29 21 .14 142 207 19 13 3.9 20 27 19 .03 14 246 78 10 4.3 3.2 94 195 .27 15 245 10 46 180 9.4 26 18 45 3.2 3.8 154 71 66 5.1 17 .25 43 25 10 3.7 37 34 16 246 4.2 4.2 4.1 26 17 .02 17 244 9.6 4.4 243 6.4 9.6 4.1 4.6 34 3.9 4.3 25 17 4.0 18 244 17 9.5 4.1 5.0 33 65 5.1 6.9 24 15 16 19 23 16 4.8 20 234 20 4.0 5.5 32 63 4.8 62 4.8 9.3 21 1.9 21 207 19 8.9 4.0 6.2 32 8.7 3.9 34 36 17 4.8 15 24 21 20 14 1.3 22 241 18 6.8 .97 23 242 17 8.4 6.3 35 4.7 20 12 .56 15 24 242 16 8.4 3.7 6.0 34 11 17 8.0 .42 25 242 15 8.5 3.5 15 34 9.1 3.5 3.4 .56 3.5 12 21 10 26 241 15 8.5 30 31 8.1 20 .70 238 15 8.4 100 31 7.8 12 11 27 10 .81 3.4 2.2 29 28 243 14 8.1 170 32 8.0 37 23 11 .85 7.8 7.4 7.0 3.4 31 1.6 29 243 13 132 8.4 1.6 36 23 10 .84 31 15 30 242 13 3.4 1.3 22 9.9 ---241 537.6 715 512.9 70.20 2699 172.7 TOTAL 7556 3273.4 315.9 135.4 543.6 3137.4 105 5.57 17.9 23.1 244 4.37 16.5 2.34 MEAN 109 10.2 18.7 87.1 34 251 17 37 27 16 170 196 213 MAX 241 13 MIN 207 6.4 7.0 3.4 3.0 1.3 1.5 9.9 .02 1020 139 AC-FT 14990 6490 627 269 1080 5350 6220 343 1070 1420

TOTAL 73032.1 MEAN 200 MAX 537 MIN 4.0 TOTAL 19669.10 MEAN 53.7 MAX 251 MIN .02 AC-FT 144900 CAL YR 1987 AC-FT 39010 WTR YR 1988

06470000 JAMES RIVER AT JAMESTOWN, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1950-51, 1958 to current year.

DATE	TIME	STREA FLOW INSTA TANEO (CFS (0006	CON- N- DUCT US ANCE (US/C	IC - PH I- (STA E AR EM) UNIT	AND- A	MPER- TURE AIR EG C) 0020)	TEMP ATU WAT (DEG (OOO	RE ER C)	TUI BII IT' (FTU (OOO'	O- DI: Y SOL') (MG	S- CEN /ED SATU /L) ATIO	S- DEM /ED BI R- CH VT IC JR- 5 ON) (M	AND,	HARD NESS TOTA (MG/ AS CACO	S AL 'L (3)
OCT 05	1430	251		550 8	3.00	9.0	1	2.0	11	10	0.4	95		2	200
NOV 17	1500	15			3.32	0.0		3.5				100			290
JAN 07	1540	5.				-14.0		1.0			9.4	65			150
FEB 23															
MAR	1300	6.	5 11			-10.0		2.0	4		3.2	59			130
29 APR	1510	30				3.0		4.5							
07 MAY	1200	216	6	510 8	3.75	18.0		6.5	4	.3 1	3.8	112	7.8	2	260
17 JUN	1700	4.	6 9	950 8	3.31	28.0	2	0.0	11	1:	3.4	146	4.6	3	340
28	1400	33	. 6	520 8	3.20	30.0	2	6.5	17		9.0	111		2	220
AUG 22	1100	14	7	700 8	3.33	25.0	2	0.0	20		7.6	83	4.4	2	250
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGN SIU DIS SOLV (MG/ AS M	M, SODIU - DIS- ED SOLVE L (MG/ G) AS N	ED 'L SOE NA) PERC	SIUM CENT R	ODIUM AD- ORP- TION ATIO	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALKALINIS LANG (MG, AS CACC	TY SULF. B DIS- /L SOL' (MG 03) AS S	JED SOLVILL (MG)	D- RES E, AT DE VED D /L SO CL) (M	IDS, IDUE 180 G. C IS- LVED G/L) 300)	SOLID SUM CONST TUENT DIS SOLV (MG/	OF CI- CS, VED (L)
OCT 05	44	23	36		26	1	16		202	97	9	.1	346	3	350
NOV 17	68	30	50		26	1	12		248	140	16		478	4	167
JAN 07	110	42	91		30	2	12		387	230	30		771	7	750
FEB 23	110	37	90		31	2		.9	366	230	34		747	7	734
APR 07	56	28	40		25	1		.4	218	120	10		418		393
MAY															
17 JUN	78	35	82		34	2		•5	303	190	28		637		503
28 AUG	47	25	51		33	2	8	.0	228	86	12		400		366
22	53	29	56		31	2	12		257	110	13		439	4	128
	S (LIDS, DIS- OLVED TONS PER C-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	NICE I	ITRO- GEN, FRITE DIS- DLVED MG/L S N)	G NO2 TO (M	TRO- EN, +NO3 TAL G/L N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	
DATE										(00631)					
OCT 05		0.47	234	25		- (0.030			0.380	-	0.110			
NOV 17		0.65	19.5	11			0.010			0.300		0.110			
JAN										0.220		0.270			
07 FEB		1.05	10.6	2			0.020								
APR		1.02	12.7	13			0.010			0.310		0.500			
07 MAY	•	0.57	244	20	<0.01	0 <0	0.010	<0	.100	<0.100	0.040	0.040		1.8	
17 JUN	•	0.87	7.91	45	<0.01	0 <0	0.010	<0	.100	<0.100	0.050	0.060		0.50	
28 AUG	•	0.54	35.6	60	-	- <0	0.010			<0.100		0.090			
22		0.60	16.6	42	<0.01	0 <0	0.010	<0	.100	<0.100	0.040	0.040		1.3	

313 JAMES RIVER BASIN 06470000 JAMES RIVER AT JAMESTOWN, ND--CONTINUED

DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC TOTAL (UG/L AS AS) (01002)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (O1025)
OCT 05	0.50		0.080		0.429		3	80		<1
NOV 17	0.90		0.030		0.017		2	150		<1
JAN 07	0.70		0.040		0.013		2	290		<1
FEB 23	0.90		0.030		0.025	44	2	310		<1
APR		0.190		0.074		2	2		<1	<1
07 MAY	0.90		0.040	0.034	0.013			70		
17 JUN	0.50	0.110	0.030	0.044	0.053	4	2	310	1	<1
28 AUG	0.70		0.060		0.031		3	130		1
22	0.50	0.150	0.050	<0.001	0.035	4	3	150	<1	<1
DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT	4			46		740	0.0			/7
NOV NOV	1		10	<5		310	0.2		<1	<3
17 JAN	<1		17	<5		820	0.2		<1	<3
07 FEB	2		110	<5		1100	0.1		<1	6
23 APR	1		81	<5		1900	0.2		<1	6
07 MAY	<1	460	9	<5	890	590	0.2	<1	<1	5
17 JUN	<1	1400	17	<5	1100	630	0.2	<1	<2	3
28 AUG	<1		23	<5	144	240	0.8		<1	35
22	2	120	8	7	500	140	82	<1	<1	14
DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CYANIDE TOTAL (MG/L AS CN) (00720)	CYANIDE DIS- SOLVED (MG/L AS CN) (00723)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT										-
NOV NOV			<0.01					31	21	91
17 FEB								33	1.3	26
23 APR			<0.01					80	1.4	22
07 MAY	16	<0.010	<0.01	66.0	1.80	21	1200	24	14	89
17 JUN	13	<0.010	<0.01	28.0	1.00	21	1100	57	0.71	84
28 AUG			<0.01				-	59	5.3	99
22	13	<0.010	<0.01	1.60	<0.200	9.4	1200	50	1.9	99

06470500 JAMES RIVER AT LA MOURE, ND

LOCATION.--Lat 46°21'20", long 98°18'15", in NE1/4NE1/4 sec.11, T.133 N., R.61 W., LaMoure County, Hydrologic Unit 10160003, on left bank 80 ft downstream from bridge on State Highway 13, 0.5 mi west of LaMoure, and 12 mi upstream from Cottonwood Creek.

DRAINAGE AREA .-- 4,390 mi2, approximately, of which about 2,600 mi2 is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April to July 1903 (gage-height record only), April 1950 to current year. Gage-height records for 1902-11 are contained in reports of the National Oceanic and Atmospheric Administration.

REVISED RECORDS .-- WSP 1917: Drainage area.

GAGE.--Water-stage recorder and rubble-masonry control. Datum of gage is 1,290.00 ft above National Geodetic Vertical Datum of 1929. See WSP 1729 or 1917 for history of changes prior to Apr. 19, 1950.

REMARKS.-Estimated daily discharges: Feb. 2-24 and May 21-24. Records good. Flow regulated by Arrowwood, Jim, and Hipestem Nakes and Jamestown Reservoir, combined capacity, 393,000 & re-ft. Regulation by Jamestown Reservoir (station 06469000) 85 mi upstream since 1953 and by Pipestem Nake, capacity 147,000 & ore-ft, since 1973.

AVERAGE DISCHARGE.--38 years (water years 1951-88), 102 ft³/s, 73,900 &re-ft/yr; median of yearly mean discharges, 72 ft³/s, 52,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,800 ft3/s, Apr. 14, 1969, gage height, 16.17 ft; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Prior to flood of Apr. 14, 1969, a long-time resident said that the flood of May 16, 1950, was the highest since 1881, with stage in either 1942 or 1943 being almost as high owing to large ice jam.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 356 ft 3 /s, Oct. 8, gage height, 7.87 ft; minimum daily, 2.6 ft 3 /s, Sept. 20.

		01001111	,		MI	EAN VALUES		1,01 10	001 10 100	. 1,000		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	143 168 187 209 233	262 272 266 275 254	43 47 48 39 40	25 24 24 22 19	23 20 19 18 17	31 32 32 38 46	88 82 89 129 136	27 51 58 35 34	30 24 20 15	14 20 31 41 26	17 32 37 36 34	15 18 17 15
6 7 8 9 10	242 248 265 246 246	260 260 255 252 248	45 45 45 45 40	17 17 17 16 15	16 15 14 13	65 89 105 110 125	125 125 151 141 188	18 50 62 31 19	11 14 14 17 27	30 49 30 30 29	25 36 25 18 17	14 14 23 9.8 4.5
11 12 13 14 15	250 249 257 249 252	257 254 241 216 214	43 42 38 35 36	17 18 16 15 16	11 10 9.0 9.5	143 127 135 177 148	196 218 230 223 220	29 40 8.2 8.9 9.9	32 56 50 62 70	22 22 49 28 43	23 21 24 21 59	16 9.3 5.4 4.9 6.6
16 17 18 19 20	257 252 255 252 256	182 128 89 90 56	39 38 36 35 34	18 18 19 19 20	11 12 13 22 25	135 136 122 99 83	199 187 187 182 126	10 5•3 14 38 25	53 44 39 36 15	30 36 33 31 31	55 37 23 19 16	9.4 8.6 13 31 2.6
21 22 23 24 25	242 258 240 227 238	55 57 58 55 55	32 33 32 32 30	20 20 20 20 20 22	26 25 24 23 19	77 75 77 86 96	104 104 100 97 87	22 20 22 25 17	16 20 12 20 14	28 27 20 19	18 24 24 14 17	8.0 22 20 18 12
26 27 28 29 30 31	272 256 262 263 261 264	53 53 52 50 41	28 27 27 27 28 27	19 18 18 19 20 22	20 25 31 31	84 88 107 92 92	64 56 46 37 38	33 24 27 31 24 24	9.8 12 25 12 14	18 18 19 22 14	10 20 12 12 10 18	15 6.3 9.6 12 5.4
TOTAL MEAN MAX MIN AC-FT	7499 242 272 143 14870	4860 162 275 41 9640	1136 36.6 48 27 2250	590 19.0 25 15 1170	523.5 18.1 31 9.0 1040	2942 94•9 177 31 5840	3955 132 230 37 7840	842.3 27.2 62 5.3 1670	793.8 26.5 70 9.8 1570	847 27.3 49 14 1680	754 24.3 59 10 1500	379.4 12.6 31 2.6 753

CAL YR 1987 TOTAL 105818 MEAN 290 MAX 2470 MIN 17 AC-FT 209900 WTR YR 1988 TOTAL 25122.0 MEAN 68.6 MAX 275 MIN 2.6 AC-FT 49830

06470500 JAMES RIVER AT LAMOURE, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957 to current year.

PERIOD OF DAILY RECORDS.-WATER TEMPERATURE: June 1953 to September 1975, October 1976 to current year.
SPECIFIC CONDUCTANCE: October 1976 to current year.

INSTRUMENTATION. -- Temperature recorder from June 1953 to September 1978. Water-quality monitor since October 1982.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 33.0°C, July 12, 13, 1957; July 23, 1977; minimum, 0.0°C on many days during winter months.

SPECIFIC CONDUCTANCE: Maximum daily, 1,880 microsiemens, Jan. 31, 1979; minimum daily, 200 microsiemens, Mar. 24-26, 1978.

EXTREMES FOR CURRENT YEAR.--

WATER TEMPERATURE: Maximum, 29.5°C, June 3; minimum, 0.0°C on many days during winter months.

SPECIFIC CONDUCTANCE: Maximum recorded, 1,560 microsiemens, Jan. 16-18; minimum, 540 microsiemens, Oct. 5.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (OOO80)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)
OCT											
07 NOV	1000	241	580	8.35	-2.0	7.5	28		11.0	90	
17 JAN	1200	138	670	8.58	-5.0	1.0	13		15.0	104	
13 FEB	1000	16	1530	8.04	-20.0	0.5	14	2.6	20.0	135	
24 MAR	1000	23	1120	7.50	-18.0	0.5	27		15.2	103	
30	0930	89	640		-5.0	0.5					
12	1500	228	670	9.25	20.0	10.5	28		17.5	154	13
MAY 24	1300	25	900	8.55	25.0	20.0	25	21	14.4	155	7.4
JUN 30	1330	14	1080	8.78	25.0	20.0	40	22	9.6	104	744
AUG 22	1300	26	870	8.40	26.0	22.5	25	17	6.0	69	5.0
DATE	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT	-						15	212	90	9.9	0.20
07 NOV	-								110	16	0.20
17 JAN	400	440			70		12	233			
13 FEB	480	140	31	140	39	3	6.0	281	290	69	0.30
24 APR							9.0	360	190	39	0.20
12 MAY							11	194	150	17	0.20
24 JUN	320	67	37	76	34	2	3.0	288	150	35	0.30
30 AUG	380	81	42	110	38	3	10	361	180	52	0.30
22	300	66	32	75	34	2	12	295	130	28	0.20
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
JAN		0.15			46				40.400		
13 APR	758	846	1.03	33.6	16				<0.100	0.000	(45)
12 MAY						<0.010		<0.100		0.020	
24 JUN	588	542	0.80	39.7	42	0.010	<0.010	<0.100	<0.100	0.020	0.020
30	730	695	0.99	27.6	78		<0.010		<0.100		0.040
22	545	522	0.74	38.0	59	<0.010	<0.010	<0.100	<0.100	0.100	0.090

06470500 JAMES RIVER AT LAMOURE, ND--CONTINUED

DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVEI (MG/L AS P) (00666	ORI TOT (MC AS	RUS, CHO, CAL F/L P)	PHOS PHORO ORTH DIS- SOLVE (MG/I AS P)	ous Ho,	ARSEI TOTA (UG, AS	NIC AL /L AS)	ARSENI DIS- SOLVE (UG/I AS AS	ED	BORON DIS- SOLVET (UG/L AS B)	REC ERA (UG AS	AL OV- BLE /L CD)	CADM DI SOL (UG AS (O10	S- VED /L CD)
OCT 07				_								3	_				<1
NOV 17				_								2	-		44		<1
JAN 13				<0.010)							1	420)			<1
FEB 24												1	_				
APR 12	1.1		0.270		- 0.	046				2		2			1		
MAY 24	1.3	0.90	0.300	0.030	0.	.054	0.0	005		4		3	240		1		<1
JUN 30		0.90		0.580	0		0.4	410				16	370				1
AUG 22	2.1	0.40	0.310	0.100	0 <0.	.001	0.0	081		6		5	230)	<1		<1
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVE (UG/L AS FE (01046	O SOL (UC) AS	S- LVED S/L PB)	MANO NESE TOTA RECO ERAE (UG, AS 1	E, AL OV- BLE /L MN)	MANG NESI DI: SOL' (UG AS	E, S- VED /L MN)	MERCUP DIS- SOLVI (UG/1 AS HO	ED L	SELE- NIUM, TOTAL (UG/L AS SE	SOL (UC) AS	M, S- VED /L SE)	ZIN DI SOL (UG AS	S- VED /L ZN)
OCT																	
07 NOV	<0	1		-	-	0						.2	-	•			
17 JAN	<0	1		-	•	<0					0	.1	-	•			
13 FEB		1		10)	<5				690	<0	.1	-		<1		3
24 APR				-							<0	.1	-	•			
12 MAY			1100	-			(500			0	.1	<	1			
24 JUN		1	1100		3	<5	18	300		830	0	.2	<.	1	<1		<3
30 AUG		<1		3	2	<5			1.	400		• 4	-		<1		39
22		1	120		5	16	17	700		840	0	.7	<	1	<1		6
D.	ORG TO (M AS	OTAL TO	ANIDE DOTAL SOME (INC. 1997) ANIDE DOTAL SOME	ANIDE I IS- OLVED CI MG/L FI S CN)	HLOR-A PHYTO- PLANK- TON HROMO LUOROM (UG/L) 70953)	PHY PLA TO CHRO FLUO (UC	OR-B YTO- ANK- ON OMO OROM G/L)	PLAN TO BIOM ASH (MG/ (813	NIASS WT	PLAN TO BIOM DRY (MG/ (813	N IASS WT L)	SEDI MENT SUS- PEND (MG/ (8015)ED (SEDI- MENT, DIS- HARGE, SUS- PENDED T/DAY) BO155)	SI SI % F T	ED. USP. EVE IAM. INER HAN 2 MM 331)	
OCT 07.													27	17		98	
NOV 17.													10	3.9		100	
JAN 13.												2	234	10		13	
FEB 24.													77	4.7		30	
APR 12.		19 <0	0.010		52.0	1	.90	32	2	1200			84	52		98	
MAY 24.		15 <0	0.010	<0.01	59.0	8	.20	23	;	1200			53	3.6		95	
JUN 30.				<0.01									64	2.4		99	
AUG 22.		14 <0	0.010	0.01	32.0	5	.90	18	3	1300			51	3.6		99	

317 JAMES RIVER BASIN 06470500 JAMES RIVER AT LAMOURE, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT) (72015)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
APR					577			
12	1500			10.5	670	9.25	17.5	154
12	1600	0.0		10.5	670			
12	1602	20.0	2.0	10.5	670			
12	1604	40.0	2.0	10.5	670			
12	1606	60.0	2.0	10.5	670			
12	1608	80.0	2.0	10.5	670			
12	1610	100	2.0	10.5	670			
12	1612	120	2.0	10.5	670			
12	1615	140	2.0	10.5	670			

06470500 JAMES RIVER AT LAMOURE, ND--CONTINUED

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		TEMP	ERATURE,	WATER (DE	i. (),	WATER YEAR	OCTOBER	1987 10 8	PEPTEMBER	1900		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMB	ER		DECEMBE	ER		JANUARY	
1 2 3 4 5	14.0 11.0 11.5 12.5 11.4	11.0 9.5 8.5 10.0 9.5	12.9 10.3 9.9 11.2 10.4	6.3 7.6 7.8 7.4 6.0	5.3 6.4 7.2 6.1 4.8	5.5 7.0 7.5 7.0 5.5	.7 .5 .2 .2	.5 .0 .0 .2	.6 .4 .2 .2	.2 .5 .5 .5	.2 .0 .0	.2 .3 .2 .1
6 7 8 9 10	9.4 9.4 9.2 7.6 6.5	8.5 7.5 7.6 5.3 4.4	8.9 8.0 8.5 6.5 5.5	5.5 4.8 3.9 2.1 1.5	4.2 3.9 2.0 1.0	5.0 4.5 3.0 1.5 1.0	•5 •7 •7	.0 .0 .5	.2 .3 .4 .7	.2 .0 .0	.0 .0 .0	.2 .0 .0 .0
11 12 13 14 15	7.1 8.1 8.0 7.7 7.4	5.0 5.5 6.6 6.6 7.0	6.0 7.0 7.5 7.0 7.0	2.0 3.1 3.3 3.4 4.1	1.5 1.9 2.2 3.3	1.0 2.5 2.5 3.0 3.5	•7 •7 •5 •5	•7 •7 •5 •5	•7 •6 •5	.0 .0 .0	.0 .0 .0	.0 .0 .0
16 17 18 19 20	7.3 7.8 7.2 6.2 5.1	7.0 6.0 6.0 5.2 4.0	7.0 7.0 6.5 5.5 4.5	3.8 2.1 1.7 .5 1.5	2.5 1.0 .5 .0	3.0 1.5 1.0 .3	.5 .7 1.0	.0 .0 .0	•3 •5 •7	.0 .0 .0	.0 .0 .0	.0 .0 .0
21 22 23 24 25	3.8 2.8 3.3 2.7 3.8	3.0 1.9 2.2 2.0 1.5	3.5 2.5 3.0 2.5 2.5	1.7 1.5 1.5 1.2 1.0	1.0 .5 .5	1.2 1.2 1.0 1.0	1.0 1.2 1.0 1.0	•5 •7 •5 •5	•7 •9 •9 •8	.0 .0 .0	.0 .0 .0	.0 .0 .0
26 27 28 29 30 31	5.2 4.6 4.7 5.5 5.8 5.9	3.6 3.2 3.4 3.7 4.4	4.5 4.0 4.5 5.0 5.0	.7 .7 .5 .5	.0	.6 .4 .2 .3 .3	1.0 1.0 .7 .5 .2	.5 .5 .0 .0	.8 .7 .7 .3 .2	.0 .0 .0	.0 .0 .0 .0	.0
MONTH	14.0	1.5	6.4	7.8	.0	2.5	1.2	.0	•5	•5	.0	.0
		TEMP	ERATURE,	WATER (DE	G. C),	WATER YEAR	OCTOBER	1987 TO S	SEPTEMBER	1988		
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN	MEAN
1 2 3 4 5	.0	.0 .0 .0 .0	.0	.0	.0 .0 .0 .0	.0 .0 .0	1.6 2.3 3.7 8.7 9.6	.0 .3 .9 2.9 7.8	.7 1.2 2.3 5.7 8.7	17.9 17.7 17.3 16.1 17.6	16.8 16.4 14.7 12.8 14.1	17.4 17.0 15.9 14.5
6 7 8 9	.0	.0 .0 .0	.0	.2 .0 .2 .0	.0	.0 .0 .0	11.2 12.2 12.1 9.4 9.3	7.4 9.1 9.7 7.1 5.8	9.2 10.5 11.5 8.1 7.5	18.3 18.3 17.8 17.3 18.6	15.9 16.7 15.7 13.2 15.4	17.2 17.4 17.0 15.3 16.8
11 12 13 14 15	.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0	.0 .0 .0	10.9 11.5 11.6 10.6 11.2	7.4 8.3 9.6 8.0 7.3	9.1 9.9 10.5 9.3 9.2	20.6 22.0 18.9 19.6 18.3	17.0 18.7 16.3 16.0 15.8	18.7 19.8 17.4 17.8 17.2
16 17 18 19 20	.0	.0	.0 .0 .0	.0	.0	.0 .0 .0	12.4 11.6 10.5 11.6 10.8	8.5 9.0 7.0 7.6 7.7	10.3 10.1 8.7 9.5 9.5	16.8 19.1 21.5 21.2 20.6	15.3 15.2 18.0 20.3 19.4	16.1 16.9 19.6 20.6 19.9
21 22 23 24 25	.0 .0 .0	.0	.0 .0 .0	.2 .0 .2 .2	.0	.0 .0 .1 .0	10.7 10.1 11.0 11.6 11.4	8.5 7.8 7.0 8.8 8.3	9.5 9.0 8.9 10.2 9.9	20.0 19.3 22.8 22.2 22.7	18.0 16.8 17.9 19.1 19.4	19.0 17.8 20.1 20.6 21.1
26 27 28 29 30 31	.0 .0 .0	.0	.0	.5 .2 .5 1.0 1.3	.0	.1 .1 .3 .5	10.5 11.6 14.5 15.8 18.4	8.3 7.3 9.4 12.2 14.8	9.2 9.3 11.3 13.9 16.4	24.3 24.7 25.4 26.6 25.7 26.8	21.7 21.8 22.9 23.5 24.1 23.9	22.7 22.9 24.0 25.0 25.0 25.3
MONTH	.0	.0	.0	1.5	.0	.1	18.4	•0	9.0	26.8	12.8	19.1

06470500 JAMES RIVER AT LAMOURE, ND--CONTINUED

DAY MAX MIN MEAN
1 26.5 24.5 25.6 20.1 19.1 19.6 24.0 22.0 22.9 20.0 17.2 18.5 2 25.9 29.5 25.9 24.8 25.3 22.4 18.7 20.4 25.0 21.0 21.8 19.2 17.6 18.5 25.9 29.5 25.8 27.3 23.6 20.9 22.1 22.9 21.7 22.3 18.2 17.6 18.5 29.5 25.8 27.3 25.6 20.9 22.1 22.9 21.7 20.8 21.7 17.7 17.7 17.7 17.7 17.5 19.5 21.8 21.7 20.8 21.5 19.8 20.6 17.4 14.9 16.2 21.0 21.8 19.8 20.6 17.4 14.9 16.2 21.0 21.8 19.8 20.6 17.7 15.7 17.7 17.7 17.7 17.7 17.7 17.7
1
16
112
17
27.9 25.1 26.3 23.9 24.1 23.9 21.3 22.6 21.1 19.3 20.3 13.0 10.1 11.6 24 27.6 23.0 24.9 24.0 20.6 22.3 21.6 18.2 19.9 14.6 11.7 12.9 26.6 23.7 25.2 23.5 21.2 22.4 20.4 18.3 19.4 13.5 12.2 12.9 26.6 23.7 25.2 23.5 21.2 22.4 20.4 18.3 19.4 13.5 12.2 12.9 26.6 25.3 23.8 24.6 23.8 21.5 22.4 19.0 17.4 18.3 14.8 12.2 13.3 27 25.3 22.9 24.0 25.3 22.5 23.8 17.9 15.6 16.9 13.3 11.7 12.6 27 25.3 22.9 24.0 25.3 22.8 23.8 17.9 15.6 16.9 13.3 11.7 12.6 28 26.7 23.7 24.8 24.6 22.8 23.7 17.5 14.7 16.2 12.4 10.7 11.6 29 24.3 20.7 22.4 25.6 22.9 24.0 19.0 14.9 16.2 10.6 9.9 10.2 20.8 19.1 24.3 22.6 23.3 18.5 15.8 17.1 11.7 9.2 10.4 20.8 20.8 19.1 24.3 22.6 23.3 18.5 15.8 17.1 11.7 9.2 10.4 20.8 20.8 19.1 24.3 22.6 23.3 23.7 18.9 16.9 17.9 25.1 22.3 23.7 18.9 16.9 17.9 25.1 22.3 23.7 18.9 16.9 17.9 25.1 22.3 23.7 18.9 16.9 17.9 2.2 2.4 25.2 25.2 25.2 25.2 25.2 25.2 2
28
SPECIFIC CONDUCTANCE, MICROSIEMENS/CM @ 25 DEG C, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 DAY MAX MIN MEAN MIN MEAN MIN MEAN
DAY MAX MIN MEAN MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN OCTOBER DECEMBER JANUARY 1 640 600 620 630 610 620 880 840 860 1270 1240 1260 2 640 620 630 630 890 880 880 1310 1270 1290 3 630 560 610 630 620 630 890 880 880 1310 1270 1290 4 610 560 600 640 630 630 930 890 910 1310 1300 1310 4 610 560 600 640 630 630 960 930 950 1320 1310 1320 5 600 580 580 </td
OCTOBER NOVEMBER DECEMBER JANUARY 1 640 600 620 630 610 620 630 880 840 860 1270 1240 1260 1260 1260 1260 1260 1260 1260 126
1 640 600 620 630 640 620 630 880 840 860 1270 1240 1260 2 640 620 630 640 620 630 890 880 880 1310 1270 1290 3 630 560 610 630 620 630 930 890 910 1310 1300 1310 4 610 560 600 640 630 630 630 960 930 950 1320 1310 1320 5 600 540 580 640 630 630 960 950 960 1320 1310 1320 6 580 580 580 650 640 640 960 950 950 960 1400 1360 1370 8 580 580 580 650 640 640 960 950 960 1400 1360 1370 8 580 570 580 650 640 640 1020 990 1000 1430 1400 1410 9 580 570 580 650 640 640 1020 1000 1010 1470 1420 1450
2 640 620 630 640 620 630 890 880 880 1310 1270 1290 3 630 560 610 630 620 630 930 890 910 1310 1300 1310 4 610 560 600 640 630 630 960 930 950 1320 1310 1320 5 600 540 580 640 630 630 960 950 960 1320 1310 1320 6 580 580 580 650 640 640 960 950 960 1320 1310 1320 7 580 580 580 650 640 640 990 950 960 1400 1360 1370 8 580 570 580 650 640 640 1020 990 1000 1430 1400 1410 9 580 570 570 650 640 640 1020 1000 1010 1470 1420 1450
7 580 580 580 650 640 640 990 950 960 1400 1360 1370 8 580 570 580 650 640 640 1020 990 1000 1430 1400 1410 9 580 570 570 650 640 640 1020 1000 1010 1470 1420 1450
11 590 580 580 650 650 650 1020 1010 1010 1520 1480 1500 12 590 580 580 660 650 650 1020 1010 1010 1530 1520 1520 13 590 580 580 660 650 650 1020 1000 1010 1540 1520 1530 14 580 580 580 660 650 660 1040 1020 1030 1540 1520 1530 15 580 580 580 660 650 660 1060 1040 1060 1550 1520 1540
16 590 580 590 660 650 660 1080 1060 1070 1560 1550 1560 17 590 580 580 660 660 660 1120 1070 1100 1560 1550 1550 18 590 580 590 660 650 650 1130 1110 1120 1560 1540 1550 19 590 580 580 670 650 660 1130 1120 1120 1550 1500 1530 20 590 580 580 670 670 670 1130 1120 1120 1510 1500 1500
21 590 580 580 710 670 690 1140 1090 1120 1510 1480 1490 22 590 580 580 730 710 720 1130 1090 1120 1480 1460 1470 23 590 590 580 730 720 730 1140 1120 1130 1460 1430 1440 24 600 590 590 770 720 740 1140 1130 1130 1430 1420 1430 25 600 590 590 780 770 770 1150 1130 1140 1430 1410 1420
26 600 590 590 780 770 780 1200 1150 1180 1420 1410 1410 27 600 590 600 780 770 770 1200 1190 1200 1420 1400 1410 28 600 590 600 780 770 780 1210 1200 1210 1410 1400 140 29 600 590 600 830 810 820 1250 1200 1230 1410 1400 141 30 610 600 600 850 830 840 1250 1240 1250 1400 1370 1390 31 610 600 600 1250 1240 1240 1400 1370 1390
MONTH 640 540 590 850 610 680 1250 840 1070 1560 1240 1440

MONTH

JAMES RIVER BASIN
06470500 JAMES RIVER AT LAMOURE, ND--CONTINUED

SPECIFIC CONDUCTANCE, MICROSIEMENS/CM AT 25 DEG C. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	SPECIFIC	CONDUCTANC	E, MICROSI	EMENS/	CM AT 25	DEG C,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988	
DAY	MAX	MIN ME	AN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	FEBR	UARY		M	ARCH			APRIL			MAY	
1 2 3 4 5	1360 1350 1350 1340 1360	1340 1 1330 1 1330 1	340 9 340 9 330 9	990 990 950 950	980 940 940 900 890	980 970 940 930 910	710 690 680 650 710	630 600 580 580 600	660 640 630 620 660	770 780 790 790 780	700 710 730 720 710	740 750 760 770 750
6 7 8 9 10	1370 1380 1370 1360 1350	1350 1 1350 1 1350 1	370 8 360 8 350 8	900 960 960 950	850 850 850 850 790	870 860 850 850 790	720 720 720 720 720 700	650 660 650 650 640	700 690 690 690 670	800 810 820 830 880	730 750 750 750 820	770 790 800 790 850
11 12 13 14 15	1350 1360 1330 1330 1310	1300 1 1290 1 1290 1	330 7 310 7 310 7	900 190 190 160	790 790 750 750 750	790 790 760 750 750	710 710 690 680 690	640 660 630 630 620	680 680 670 650 660	910 890 890 910 900	830 870 880 880 880	880 880 880 890
16 17 18 19 20	1290 1280 1280 1260 1250	1270 1 1250 1 1250 1	270 7 270 7 260 7	760 760 760 760	750 750 750 750 750	760 750 750 750 750	690 690 690 690	630 620 640 620 630	660 660 670 660 670	900 910 910 910 910	890 890 890 890	890 900 900 900 900
21 22 23 24 25	1210 1200 1160 1140 1090	1130 1 1100 1 1040 1	150 7 120 7 090 7	770 770 770 770 710	750 760 760 760 700	750 760 760 760 710	690 680 700 710 710	620 630 620 630 650	660 660 660 670 680	910 920 910 930 930	900 900 890 900 910	910 910 900 910 920
26 27 28 29 30 31	1140 1090 1050 990	1040 1 940 940	060 7 970 7 970 7	710 710 700 710 700 710	700 660 660 660 630	700 680 670 670 670 660	730 740 740 750 760	660 670 670 670 680	700 710 710 720 740	930 940 950 960 960 970	900 900 920 940 930 940	910 920 940 950 950 960
MONTH	1380	940 1	240 9	90	630	790	760	580	670	970	700	870
MONTH		940 1 CONDUCTANCE										870
MONTH			, MICROSIE									870 MEAN
	SPECIFIC	CONDUCTANCE	, MICROSIE	MENS/C	M AT 25	DEG C,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER 1	988	MEAN
DAY 1	SPECIFIC MAX J	CONDUCTANCE MIN ME UNE 960	, MICROSIE AN 970 10	MENS/CI MAX	MIN JULY 1020	DEG C, MEAN	WATER YEAR	OCTOBER MIN	1987 TO	SEPTEMBER 1 MAX 780	988 MIN SEPTEMBE 730	MEAN R
DAY 1 2	SPECIFIC MAX J 980 990	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10	MENS/CI MAX 060	MIN JULY 1020 1030	DEG C, MEAN 1050 1040	WATER YEAR MAX	OCTOBER MIN	1987 TO :	SEPTEMBER 1 MAX 780	988 MIN SEPTEMBE 730 710	MEAN R 750 740
DAY 1 2 3	MAX J 980 990	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10	MENS/CI MAX 060 050	MIN JULY 1020 1030 990	DEG C, MEAN 1050 1040 1020	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	790 790 770	988 MIN SEPTEMBE 730 710 710	MEAN R 750 740 720
DAY 1 2	SPECIFIC MAX J 980 990	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10	MENS/CI MAX 060	MIN JULY 1020 1030	DEG C, MEAN 1050 1040	WATER YEAR MAX	OCTOBER MIN	1987 TO :	SEPTEMBER 1 MAX 780	988 MIN SEPTEMBE 730 710	MEAN R 750 740
DAY 1 2 3 4 5 6	MAX J 980 990	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 10 10	MENS/CI MAX 060 050 030 030	MIN JULY 1020 1030 990 990 950	1050 1040 1020 1010 990	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	790 790 790 770 780	988 MIN SEPTEMBE 730 710 710 710	MEAN R 750 740 720 730
DAY 1 2 3 4 5 6 7	MAX J 980 990	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 10 10 10	MENS/CI MAX 060 050 030 030 030	MIN JULY 1020 1030 990 950 980 970	1050 1040 1020 1010 990 990	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	790 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 710	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 9	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10 10 10 10	MAX	MIN JULY 1020 1030 990 990 950 980 970 980	1050 1040 1020 1010 990 990 1000	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	780 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 710 730	MEAN 750 740 720 730 740
DAY 1 2 3 4 5 6 7	MAX J 980 990	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 10 10 10 10	MENS/CI MAX 060 050 030 030 030	MIN JULY 1020 1030 990 950 980 970	1050 1040 1020 1010 990 990	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	790 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 710	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10 10 10 10 10 10	MAX 060 050 030 030 030 030 030 030 03	MIN JULY 1020 1030 990 950 980 970 980 990 990	1050 1040 1020 1010 1010 990 990 1000 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	780 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 710 730	MEAN 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10 10 10 10 10 10	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 970 980 970	1050 1040 1020 1010 990 990 1000 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	790 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10 10 10 10 10 10 10 10 10 10	MAX	MIN JULY 1020 1030 990 950 980 970 980 990 990 1000 960 950	1050 1040 1020 1010 1010 990 990 1000 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	780 790 770 780 760 	988 MIN SEPTEMBE 730 710 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10 10 10 10 10 10 10 10 10 10 10	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 970 980 990 990	1050 1050 1040 1020 1010 990 990 1000 1010 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	780 790 770 790 770 750	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10 970 10 10 10 10 10 10 10 10	MAX MAX 060 050 030 030 030 030 030 030	MIN JULY 1020 1030 990 950 980 970 980 970 980 970 980 970 980 970 980 1000 960 950 960 1010	1050 1040 1020 1020 1010 990 990 1000 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	780 790 770 780 760 	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 11 11	MAX	MIN JULY 1020 1030 990 950 980 970 980 990 990 1000 960 960 1010	1050 1040 1020 1010 1010 1010 990 1000 1010 1010	WATER YEAR MAX	MIN AUGUST	1987 TO :	790 790 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	980 990	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 11	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 970 980 970 980 970 980 1000 960 950 960 1010	1050 1040 1020 1010 990 990 1010 1010 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO :	780 790 770 780 760 	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10 970 10	MAX	MIN JULY 1020 1030 990 950 980 970 980 990 990 1000 960 960 1010	1050 1040 1020 1010 1010 1010 990 1000 1010 1010	WATER YEAR MAX	MIN AUGUST	1987 TO :	780 790 770 780 760 	988 MIN SEPTEMBE 730 710 710 710 730	MEAN 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 970 980 970 980 970 980 970 1000 960 950 960 1010	1050 1040 1020 1010 1020 1010 990 990 1000 1010 101	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO : MEAN	780 790 770 790 760 	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	980 990 	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10	MAX	MIN JULY 1020 1030 990 950 980 970 980 970 980 970 980 970 980 1000 960 1010 1000 980 910 880	1050 1040 1020 1010 990 990 1000 1010 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO : MEAN	790 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	980 990	CONDUCTANCE MIN ME UNE 960 960	970 10 970 10 970 10	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 970 980 970 960 1010 1000 980 910 880 870	MEAN 1050 1040 1020 1010 990 990 1000 1010 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO : MEAN 830 840 840 850 860 870	780 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	980 990 	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 -	MAX	MIN JULY 1020 1030 990 990 950 980 970 980	1050 1040 1020 1010 990 990 1010 1010 1010 1010	WATER YEAR MAX	MIN AUGUST	1987 TO : MEAN 830 840 840 850 860 870 880	780 790 770 780 750 750 	988 MIN SEPTEMBE 730 710 710 710 730	MEAN 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	980 990 	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 970 10 -	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 970 980 970 960 1010 1000 980 910 880 870	MEAN 1050 1040 1020 1010 990 990 1000 1010 1010 1010	WATER YEAR MAX	OCTOBER MIN AUGUST	1987 TO : MEAN 830 840 840 850 860 870	780 790 790 770 780 760	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	980 990 	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 -	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 980 970 980 970 980 970 980 970 980 970 980 970 980 970 980 970 980 970 980 970 980 970 980 980 970 980 980 970 980 980 980 980 980 980 980 980 980 98	1050 1040 1020 1010 990 990 1010 1010 1010 1010	WATER YEAR MAX 850 870 860 870 860 870 880 990 900 990	MIN AUGUST	1987 TO : MEAN 830 840 840 840 850 860 870 880 870	780 790 770 780 760 	988 MIN SEPTEMBE 730 710 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	980 990 	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 -	MAX MAX MAX MAX MAX MAX MAX MAX	MIN JULY 1020 1030 990 990 950 980 970	1050 C, MEAN 1050 1040 1020 1010 990 990 1000 1010 1010 1010	WATER YEAR MAX	MIN AUGUST	1987 TO : MEAN 830 840 840 850 860 870 890	780 790 770 790 770 780 760	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	980 990 	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 970 10 10 10 10 10 10 10 11 11 11 11 11	MAX	MIN JULY 1020 1030 990 990 950 980 970	1050 1040 1020 1010 990 990 1010 1010 1010 1010	WATER YEAR MAX 850 870 860 870 860 870 880 990 900 990	MIN AUGUST	1987 TO : MEAN 830 840 840 840 850 860 870 880 870	780 790 790 770 780 760 	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	980 990 	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 -	MAX MAX MAX MAX MAX MAX MAX MAX	MIN JULY 1020 1030 990 990 950 980 970	1050 1040 1020 1010 1020 1010 990 990 1000 1010 101	WATER YEAR MAX	MIN AUGUST	1987 TO : MEAN 830 840 840 850 860 870 880 870 880 870 880 870 880 870	790 790 790 770 780 760 	988 MIN SEPTEMBE 730 710 710 730	MEAN R 750 740 720 730 740
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	980 990 	CONDUCTANCE MIN ME UNE 960 960	, MICROSIE AN 970 10 970 10 970 10 -	MAX	MIN JULY 1020 1030 990 990 950 980 970 980 970 980 970 960 1010 1000 960 950 960 1010 1000 980 970 880 870	1050 1040 1020 1010 990 990 1000 1010 1010 1010	WATER YEAR MAX	MIN AUGUST	1987 TO : MEAN 830 840 840 850 860 870 880 880 870 880 880 870 880 880 870	780 790 770 780 760	988 MIN SEPTEMBE 730 710 710 710 730	MEAN R 750 740 720 730 740

06470800 BEAR CREEK NEAR OAKES. ND

LOCATION.--Lat 46°13'31", long 98°04'17", in NE1/4NE1/4 sec.28, T.132 N., R.59 W., Dickey County, Hydrologic Unit 10160003, on right bank 80 ft downstream from bridge on ND Highway 13, 6 mi north, and 1 mi east of Oakes.

DRAINAGE AREA .-- 357 mi2, of which about 255 mi2 is noncontributing, revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1976 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1,291.30 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Estimated daily discharges: Oct. 27 to Nov. 16 and Nov. 27 to Mar. 30. Records poor.

AVERAGE DISCHARGE.--12 years, 8.68 ft3/s, 6,290 acre-ft/yr; median of yearly mean discharges, 5.4 ft3/s, 3,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,170 ft3/s, Apr. 15, 1979, gage height, 11.47 ft; no flow for long periods each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 1, 1975, reached a stage of 15.00 ft present datum, from floodmark, discharge 4,590 ft³/s.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 50 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 1		a*20	Unknown				

No flow for several months.

a - Estimated

		DISCHARGE,	IN CUBIC	FEET	PER		WATER N VALU		OCTOBER	1987	TO	SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN		FEB	MAR		APR	MAY		JUN	JUL	AUG	SEP
1	.00	.00	.00	.00		.00	20		.51	.34		.18	.00	.02	.00
2	.00	.00	.00	.00		.00	15		.46	.41		.18	.00	.03	.00
3	.00	.00	.00	.00		.00	8.0		.41	.53		.14	.00	.02	.00
3	.00	.00	.00									.09	.00	.02	.00
4				.00		.00	5.0		.41	.51					
5	.00	•00	.00	.00		.00	7.0		.35	.48		.08	.00	.02	•00
6	.00	.00	.00	.00		.00	6.0		.24	.39		.07	.00	.02	.00
7	.00	.00	.00	.00		.00	5.0		.24	.49		.06	.00	.02	.00
8	.00	.00	.00	.00		.00	4.0		.35	.71		.06	.00	.02	.00
9	.00	.00	.00	.00		.00	10		.33	.77		.05	.00	.01	.00
10	.00	.00	.00	.00		.00	9.0		.29	.50		.04	.00	.01	.00
10	•00	.00	.00	.00		.00	9.0		•49	. , 0		.04	•00	•••	•00
11	.00	.00	.00	.00		.00	6.0		.21	.49		.03	.00	.01	.00
12	.00	.00	.00	.00		.00	4.0		.26	.53		.03	.00	.01	.00
13	.00	.00	.00	.00		.00	3.0		.28	.37			2.8	.01	.00
														.02	.00
14	.00	•00	.00	.00		.00	2.0		.21	.37			3		
15	.00	.15	.00	.00		•00	2.2		.13	.41		.06 1	0	.01	.00
16	.00	.10	.00	.00		.00	2.4		.18	.24			4.2	.02	.00
17	.00	.06	.00	.00		.00	2.5		.29	.20		.06	1.6	.02	.00
18	.00	.06	.00	.00		.00	3.0		.24	.19		.05	.99	.02	.00
19	.00	.06	.00	.00		.00	3.5		.23	.32		.04	.64	.02	.00
														.02	.00
20	.00	•05	.00	.00		.00	4.5		.28	.36		.04	.44	•02	.00
21	.00	.04	.00	.00		.00	3.5		.24	.47		.03	.26	.01	.00
22	.00	.04	.00	.00		.00	4.5		.31	.60		.02	.14	.01	.00
23	.00	.04	.00	.00		.00	5.0		.33	.62		.02	.11	.01	.00
24	.00	.04	.00	.00		.00	6.0		.37	.46		.02	.09	.01	.00
25	.00	.04	.00	.00		.02	5.0		.37	.47		.01	.06	.01	.00
	•00	.04	.00	•00		.02	5.0		• >1	•41		•01	.00	•01	•00
26	.00	.03	.00	.00		.10	4.0		.39	.42		.01	.05	.00	.00
27	.00	.02	.00	.00		.50	3.0		.41	.36		.00	.04	.00	.00
28	.00	.01	.00	.00		1.0	2.0		.39	.30		.00	.03	.00	.00
29	.00	.01	.00	.00	10					.25		.00	.03	.00	.00
					10		1.0		.41						
30	.00	.00	.00	.00			.85		.39	.21		.00	.02	.00	.00
31	.00		.00	.00			.56			.20			.02	.00	
TOTAL	0.00	0.75	0.00	0.00	1	1.62 1	57.51	Ç	.51 1	2.97		1.54 3	4.52	0.40	0.00
MEAN	.00	.025	.00	.00		.40	5.08		.32	.42		.051	1.11	.013	.00
MAX	.00	.15	.00	.00		10	20		.51	.77		.18	13	.03	.00
MIN	.00	.00	.00	.00		.00	.56		.13	.19		.00	.00	.00	.00
		1.5	.00						19	26		3.1	68	.8	.00
AC-FT	.0	1.0	.0	.0		23	312		19	20		2.1	00	•0	.0

CAL YR 1987 TOTAL 6001.22 MEAN 16.4 MAX 450 MIN .00 AC-FT 11900 WTR YR 1988 TOTAL 228.82 MEAN .63 MAX 20 MIN .00 AC-FT 454

322

JAMES RIVER BASIN

06470800 BEAR CREEK NEAR OAKES, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

DATE		TIME	STRE FLO INST TANE (CF:	W, AN- OUS S)	SPE- CIFI CON- DUCT ANCE (US/C	C (S M) UN	PH TAND- ARD ITS) 0400)	TEMP ATU AI (DEG	RE R C)	TEMP ATU WAT (DEG (OOO	RE ER C)	HARI NES TOT (MG AS CAC	S AL /L 03)	CALC DIS SOL (MG AS (009	VED /L CA)	MAG SI DI SOL (MG AS (009	UM, S- VED /L MG)	SODIU DIS- SOLVI (MG, AS 1	ED /L NA)	SODIUM PERCENT (00932)
MAR 30		1050	0	.85		550			0.0		0.5									
APR 12		1300	0	.26	7	780	8.40	1	5.0	1	1.5		300	64		34		52		26
DATE		SODIUM AD- SORP- TION RATIO	POT SI DI SOL (MG AS	UM, S- VED /L K)	ALKA LINIT LAF (MG/ AS CACC	Y SUB D'L S (LFATE IS- OLVED MG/L SO4) 0945)	DIS	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILIO DIS SOL (MG AS SIO (009)	VED /L	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ BO C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG (703	OF TI- TS, S- VED /L)	SOLIO SOLV (TOP PER DAY	S= /ED NS R ()	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
APR 12		1	13		230	1	50	33		0	.20	8	.4		531		496	0	.37	0.72
	DATE	SC (U AS	SENIC DIS- DLVED JG/L S AS)	SOI (UC AS	RON, IS- LVED G/L B) D2O)	IRON, DIS- SOLVE (UG/L AS FE (O1046	D S (EAD, DIS- OLVED UG/L S PB) 1049)	SO (U	HIUM DIS- DLVED IG/L LI) 130)	SO (U	NGA- SE, IS- LVED G/L MN) 056)	SO (U	CURY DIS- DLVED IG/L B HG) 890)	DE SO (U AS	LYB- NUM, DIS- LVED G/L MO) 060)	NI SO (U AS	LE- UM, IS- LVED G/L SE) 145)	D SO (U AS	RON- IUM, IS- LVED G/L SR) 080)
APR 1	2		2		230	2	0	1		43		100		0.4		<1		2		300

06470830 JAMES RIVER AT OAKES, ND

LOCATION.--Lat 46°08'14", long 98°08'09", in NW1/4NE1/4NE1/4 sec.30, T.131 N., R.59 W., Dickey County Hydrologic Unit 10160003, on left bank 300 ft downstream from bridge 1.0 mi west of Oakes.

DRAINAGE AREA.--5,320 mi², of which about 3,300 mi² is probably noncontributing.

GAGE-HEIGHT RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,280.00 ft above National Vertical Datum of 1929. Flow regulated by Jamestown Reservoir (station 06469000).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily gage height, 95.20 ft, Dec. 20, 1984; minimum, 88.11 ft, Sept. 4, 1988.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 91.07 ft, Oct. 26; minimum, 88.11 ft, Sept. 4.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

					1.41		-					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		90.56						90.48	89.80	89.13	88.46	88.50
2		90.62						90.25	89.67	89.19	88.49	88.48
3	90.36	90.55						89.74	89.63	89.24	88.51	88.27
4	90.38	90.52						89.62	89.72	89.07	88.54	88.18
5	90.21	90.53						89.72	89.83	89.38	88.75	88.29
6	90.19	90.51					222	90.06	89.84	89.66	88.87	88.52
7	90.30	90.50						89.99	89.69	89.38	88.97	88.81
8	90.32	90.30						89.69	89.49	89.06	88.66	88.63
9		90.46						89.32	89.50	89.05	88.69	88.51
10	90.30	90.59						89.44	89.61	88.93	88.95	88.32
11	90.49	90.60		222				89.55	89.71	88.94	88.77	88.51
12	90.46	90.59								89.04	88.64	88.35
13	90.51	90.55					90.13			89.10	88.60	88.49
14	90.43	90.61					90.15	89.57	89.43	89.04	88.57	88.43
15	90.44	90.54					90.22	89.51	89.59	88.96	88.64	88.46
	50.44	30.54				-525	30.22	0).)1	05.55	00.70	33.04	33.43
16	90.43	90.36				222	90.48	89.40	89.60	89.01	88.80	88.58
17	90.59	90.34					90.03	89.63	89.72	89.10	88.70	88.53
18	90.51	90.34					90.19	89.79	89.80	88.96	88.58	88.27
19	90.51	90.30					90.28		89.63	88.90	88.66	88.34
20	90.42	90.21					90.06		89.69	88.91	88.82	88.46
21	90.52	90.15					90.16		89.64	88.90	88.96	88.72
22	90.45	90.12					89.99		89.42	88.96	88.82	88.82
23	90.52						89.91		89.60	89.08	88.67	88.97
24	90.48						90.10		89.44	88.97	88.55	89.04
25	90.82						89.85	89.97		88.84	88.46	88.83
26	90.71						89.70	89.65	89.38	88.91	88.61	88.85
27	90.52						89.84	89.56	89.56	88.95	88.56	88.81
28	90.57						89.89	89.65		39.01	88.49	88.82
29	90.57						89.99	89.88		88.86	88.51	88.86
30	90.51						90.10	89.95	89.15	88.68	88.62	89.29
31	90.52						90.10	89.99		88.72	88.58	
,	JU . JE	1555		637			22.2	03.33	===	00.72	0.000	
MEAN										89.03	88.66	88.60
MAX										89.66	88.97	89.29
MIN										88.68	88.46	88.18

06470830 JAMES RIVER AT OAKES, ND

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1983 to current year.

PERIOD OF DAILY RECORDS.--SPECIFIC CONDUCTANCE: Water years 1982 to current year. WATER TEMPERATURE: Water years 1982 to current year.

INSTRUMENTATION .-- Water quality monitor since October 1982.

REMARKS.--Long periods of missing record are the result of the monitor probes being frozen in ice or equipment failure. Because of the large percentage of missing or faulty record only daily mean values are presented and all extremes are qualified as observed or recorded.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum observed, 2,250 microsiemens, Jan. 7, 1986; minimum recorded, 290 microsiemens, Apr. 1, 1984.
WATER TEMPERATURE: Maximum, 31.7°C, Aug. 15, 1988; minimum, 0.0°C on many days during the winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum recorded, 1,230 microsiemens, July 11; minimum recorded, 550 microsiemens, Oct. 1.
WATER TEMPERATURE: Maximum recorded, 31.7°, Aug. 15; minimum, 0.0°C, on many days during winter months.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (OOO10)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
OCT O6 NOV	1500		600	8.47	11.0	9.0	23	11.8	100		220
17 JAN	0900	146	640	8.65	-12.0	0.0	4.3	14.6	99		240
12 FEB	1330	14	1900	7.95	-18.0	0.0	66				720
25	0900	20	1700	8.10	-15.0	0.5	1.7	20.0	136		630
APR 12	1000	182	735	8.48	20.0	7 -	15	11.1	91	4.6	280
12	1003	102	735	0.40		7.5 7.5			91	4.6	
12	1006		740			7.5					
12	1009		740			7.5	===				==
12	1012		740			7.5					==
12	1015		740			7.5		- 20			
12	1018		740			7.5	22			- 22	
12	1020		740			7.5					
MAY	1020		740			1.5					
24	1600	18	930	8.70	26.0	18.0	23	11.8	122	9.6	310
-4	1000	10	9,00	0.10	20.0	10.0	2)	11.0	122	9.0	510
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
ост об	48	24	38	26	1	14	217	98	11	0.20	386
NOV 17	53	26	49	29	1	13	227	100	16	0.20	415
JAN 12	150	83	160	32	3	19	596	410	83	0.30	1230
FEB 25	150	61	160	35	3	16	537	390	65	0.30	1180
APR 12	63	31	55	29	1	11	231	160	22	0.20	478
MAY 24	58	40	84	36	2	14	269	170	39	0.40	591

06470830 JAMES RIVER AT OAKES, ND--CONTINUED

	SOLI SUM (CONS' TUEN' DI: SOL' (MG	OF SO TI- TS, S S- (VED	LIDS, DIS- OLVED TONS PER C-FT)	SOLI	DS, TOT S- AT VED DEG NS SU R PEN	IDUE AL 105	NIT	RO- N, ITE AL	NIT GE NITR DI	RO- N, ITE S- VED /L		NO3 AL /L	NIT GE NO2+ DI SOL (MG AS	RO- N, NO3 S- A VED	NIT GE MMO TOT (MG AS	N, NIA AL /L	NITI GEI AMMOI DI: SOL' (MG	N, NIA S- VED /L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
DATE	(7030		0303)	(703		530)	(006		(006		(006		(006		006	10)	(006	08)	(00625)
NOV 17	3	394	0.56	164		10			<0.	010			0.	200			0.0	010	
JAN 12	1:	260	1.67	46	.5 2	10			<0.	010			<0.	100			0.0	050	
FEB 25	1	170	1.60	63	.7	11			<0.	010			0.	270			0.	100	
APR 12		481	0.65	235		26	<0.	010	<0.	010	<0.	100	<0.	100	0.	030	0.0	020	1.6
MAY 24	3	567	0.80	28	.7	52	0.	010	<0.	010	<0.	100	<0.	100	0.	020	0.0	030	0.90
DA	ATE	NITRO GEN, AM MONIA ORGANI DIS. (MG/L AS N) (00623	+ PI C PHO TO (1	HOS- OROUS OTAL MG/L S P) 0665)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHO OR TO (M AS	OS- RUS, THO, TAL IG/L P)	PHO OR DI SOL (MG AS	VED /L		TAL G/L AS)	ARSE DI SOL (UG AS	S- VED /L AS)	BORG DIS SOLV (UG/ AS E	ED L	TOTA RECO ERAN (UG, AS (AL OV- BLE /L CD)		S- VED /L CD)
NOV 17		0.8	0		0.020			0	.016				2	1	120				<1
JAN 12		1.0			0.030			0	.104				1	4	150				<1
FEB 25		0.9	0		0.100			0	.074				1	3	590				<1
APR 12		0.8	0	0.160	0.050	0	.054	0	.026		2		2	1	140		1		<1
MAY 24		0.7	0	0.170	0.030	0	.039	0	.002		2		2	2	230		3		<1
DA	N TE	COPPER DIS- SOLVE (UG/L AS CU	, To E	RON, OTAL ECOV- RABLE UG/L S FE) 1045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	SO (U AS	AD, DIS- DLVED G/L PB) O49)	NE TO RE ER (U AS	NGA- SE, TAL COV- ABLE G/L MN)	DI SOL (UC	S- LVED J/L MN)		S- VED /L HG)	SELE NIUM TOTA (UG/ AS S	i, L L SE)	SELI NIUM DIS SOLV (UG, AS S	M, S- VED /L SE)	ZIN DI SOL (UG AS	S- VED /L ZN)
NOV 17		<	1		11		<5				24		0.1				<1		<3
JAN 12			2		11		5				180		0.1				<1		9
FEB 25			2		10		<5				53		1.4				<1		17
APR 12			1	1100	14		<5		540		410		0.1		<1		<1		<3
MAY 24			1	1200	4		<5		980		380		0.2		<1		<1		6
	ATE	CARBON ORGANI TOTAL (MG/L AS C) (00680	C CY T	ANIDE OTAL MG/L S CN) O720)	CYANIDE DIS- SOLVED (MG/L AS CN) (00723)	PH PL T CHR FLU	OR-A IYTO- ANK- ON OMO OROM IG/L)	PH PL T CHR FLU (U	OR-B YTO- ANK- ON OMO OROM G/L) 954)	PLAN TO BION ASH (MG/	ON MASS WT /L)	PLAN TO BIOM DRY (MG/	N ASS WT L)	SEDI MENT SUS- PENE (MG/	ED L)	SED: MEN: DIS CHARG SUS PENI (T/D) (8015	r, S- SE, DED AY)	SU SIE DI % FI	AM. NER AN MM
NOV															47	-	,		07
17 JAN		-	-												13	5	.1		97
12 FEB		7	-		<0.01											-			10
25 APR		44	-	0.010	<0.01			10	100	45	,	1200			121		•5		10 97
12 MAY		11		0.010	<0.01		30		.100	17		1200			46	23	0		
24	•	16	<	0.010	<0.01	57	.0	1	.10	54	+	2400			61)	.0		99

326

JAMES RIVER BASIN

06470830 JAMES RIVER AT OAKES, ND--CONTINUED

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	DEPTH TO TOP OF SAMPLE INTER- VAL (FT) (72015)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
APR								
12	1000	0.0		7.5	735	8.48	11.1	91
12	1003	20.0	2.0	7.5	735			
12	1006	40.0	2.0	7.5	740			
12	1009	60.0	2.0	7.5	740			
12	1012	80.0	2.0	7.5	740			
12	1015	100	2.0	7.5	740			
12	1018	120	2.0	7.5	740			
12	1020	130	2.0	7.5	740			

06470830 JAMES RIVER AT OAKES, ND--CONTINUED

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	14.2 10.7 10.6 12.8 11.3	9.4 6.6 7.5 9.0 9.0	12.6 8.6 9.2 10.7 9.9	7.3 8.6 8.7 8.3 6.4	6.2 7.3 8.0 6.0 4.4	6.6 8.1 8.4 7.3 5.4	.8 .7 .6 .6	.3 .3 .2 .2	.5 .5 .4	.1 .1 .1 .1	.0	.0
6 7 8 9	9.1 9.2 9.2 6.7 6.2	7.5 6.1 6.9 4.1 3.5	8.3 7.6 8.0 5.2 4.8	5.8 5.1 4.0 1.9	3.9 3.8 1.2 .6	5.0 4.5 2.4 1.3	.5 .9 .9	.2 .2 .3 .2	.3 .4 .5 .6	.0	.0	.0
11 12 13 14	6.3 7.9 8.5 8.2 7.8	3.2 4.6 6.5 6.6 7.3	4.8 6.1 7.3 7.4 7.6	2.2 3.3 3.8 3.8 4.6	.1 1.6 2.1 2.6 3.8	1.0 2.4 2.9 3.2 4.2	.6 .4 .2 .2	.2 .1 .0 .0	.4 .3 .2 .1			.0
16 17 18 19 20	7.5 7.6 7.0 5.8 4.4	6.6 5.2 5.1 4.2 3.2	7.2 6.4 6.1 5.1 3.7	4.3 1.3 1.2 .8 1.3	1.6 .0 .1 .0	3.0 .6 .6 .3	.2 .3 .3 .3	.0	.1 .1 .1 .1	===	===	=======================================
21 22 23 24 25	3.0 2.2 3.5 2.3 3.5	1.9 1.0 1.6 1.0	2.5 1.7 2.3 1.6 2.2	1.2 1.5 1.7 1.4 1.0	.2 .3 .5	.7 .8 1.0 .9	.2 .3 .3 .3	.0	.1 .1 .1	==	===	==
26 27 28 29 30 31	5.5 4.8 5.1 5.6 6.2 6.7	3.4 2.8 3.1 3.3 4.2 4.5	4.3 3.9 4.1 4.5 5.2 5.6	.9 .9 .8 .7 .7	.4 .4 .2 .3	.7 .6 .5	•5 •3 •3 •1 •1	.0	.2 .1 .1	==	=======================================	=======================================
MONTH	14.2	1.0	6.0	8.7	.0	2.5	.9	.0	.2			
DAY	MAX	TEM MIN	PERATURE, MEAN	WATER (D	EG. C), WA	MEAN	OCTOBER 1	1987 TO SER MIN	MEAN	1988 Max	MIN	MEAN
DAI	HAA	FEBRUARY		HAA	MARCH	MEAN	MAX	APRIL	HUAN	na.	MAY	
1 2 3 4 5							=	=	==	16.9 15.6 14.9 14.4 16.2	14.9 14.4 11.8 9.3 10.7	15.8 15.0 13.3 11.9 13.4
6 7 8 9 10							=======================================	===	===	16.5 15.9 16.5 14.6 16.6	14.3 13.8 13.2 9.3 13.1	15.4 14.8 14.5 12.1 14.6
11 12 13 14 15							11.8 10.6 11.3	8.9 7.0 6.4	10.4 8.8 8.7	18.4 19.1 15.4 16.7 15.1	14.5 12.5 8.4 12.0 11.7	16.3 16.9 12.1 14.3 13.6
16 17 18 19 20							11.7 10.9 10.1 10.6 10.1	7.5 7.5 5.4 6.2 6.2	9.6 9.1 7.6 8.4 8.5	17.3 18.7 18.8 17.4 18.2	9.9 13.3 14.9 16.2 15.2	13.4 15.8 16.9 16.7 16.6
21 22 23 24 25							9.3 9.4 10.5 11.8 10.8	7.4 6.1 4.5 7.0 6.1	8.4 7.8 7.4 9.3 8.6	17.2 15.1 19.3 20.7 19.6	13.4 12.0 13.6 17.4 16.1	15.0 13.3 15.7 18.9 18.3
26 27 28 29 30 31							8.9 11.4 14.2 16.5 18.2	6.0 4.4 7.3 10.3 13.5	7.1 7.6 10.5 13.3 15.8	22.1 22.7 24.1 25.1 23.8 25.0	17.5 18.9 20.4 20.2 19.4 20.6	19.2 20.4 22.0 22.6 22.0 22.7
MONTH										25.1	8.4	16.2

MONTH

640

550

620

700

590

630

06470830 JAMES RIVER AT OAKES, ND--CONTINUED

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		TEMP	ERATURE,	WATER (D	EG. C),	WATER YEAR	OCTOBER	1987 10 5	EPTEMBER	1988		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		SI	EPTEMBER	
1 2 3 4 5	24.7 27.9 28.4 29.1 27.5	21.0 21.1 23.1 24.4 23.9	22.7 23.8 25.6 26.8 25.6	21.4 25.8 25.9 28.8 29.2	18.6 17.8 19.7 22.0 22.8	20.0 21.5 23.0 25.2 26.0	29.7 29.2 25.3 21.1 26.5	20.1 19.0 18.9 17.6 15.7	22.7 23.5 22.7 19.6 20.9	24.7 21.0 20.4 20.9 21.6	16.3 14.2 12.6 11.6 9.2	19.6 17.2 16.0 15.6 15.2
6 7 8 9	25.3 27.2 28.1 23.5 23.6	21.0 20.9 22.8 18.1 17.9	23.3 23.9 25.4 20.9 20.8	28.0 25.4 27.9 26.5 26.1	24.1 20.1 20.7 22.6 20.2	26.0 23.0 23.9 24.3 22.8	28.7 24.8 25.3 27.1 27.6	19.3 20.3 17.1 17.2 19.8	23.6 22.7 20.6 21.8 23.4	22.4 18.3 18.0 19.8 17.7	10.5 11.8 12.4 9.5 11.1	16.0 15.6 14.8 14.6 14.4
11 12 13 14 15	23.5 21.8 24.0 22.5 22.2	18.3 18.7 17.7 18.9 16.4	21.0 20.7 20.4 20.7 18.9	27.0 27.5 26.2	18.4 21.3 22.6	22.2 24.0 24.5	30.1 29.1 25.6 29.6 31.7	21.7 20.1 21.7 19.8 22.2	25.4 24.6 23.3 24.2 26.5	17.5 17.0 19.7 17.2 15.4	13.3 10.4 7.8 10.7 14.0	16.2 12.9 13.5 14.5
16 17 18 19 20	23.5 26.7 26.4 28.0 27.6	17.7 20.4 22.0 23.6 22.9	20.3 23.0 24.3 25.7 25.2	27.1 25.9 27.7 25.7 24.8	19.6 20.3 19.7 20.2 16.8	23.0 23.2 23.8 22.9 21.0	30.3 29.6 26.5 27.3 25.3	24.3 23.2 21.7 19.9 20.0	27.2 25.8 23.9 23.3 22.7	20.2 22.3 20.6 12.4 14.2	13.8 13.3 13.0 8.1 6.7	16.0 17.8 16.8 9.6 10.1
21 22 23 24 25	29.3 27.2 24.5 27.9 27.3	23.4 22.8 19.9 21.1 20.9	26.0 25.1 22.7 24.2 24.2	26.9 27.0 26.4 27.6 28.4	18.9 20.9 19.5 19.2 20.2	22.2 24.1 22.8 23.3 24.1	22.9 25.4 22.2 24.7 22.1	20.8 18.6 16.3 15.2 14.7	21.8 21.3 19.1 19.4 18.3	12.6 15.1 16.5 17.7 16.1	9.4 10.5 8.4 11.2 10.7	10.9 12.2 12.2 14.0 13.6
27 28 29 30 31	26.2 26.6 22.3 22.8	20.6 22.0 17.8 15.6	23.7 24.1 19.7 19.0	29.6 25.1 28.6 29.5 28.5	21.5 21.0 21.4 20.7 21.6	25.3 23.1 24.6 25.0 25.0	20.3 20.5 23.0 22.7 22.8	12.1 10.8 11.4 14.5 16.8	15.8 15.7 17.2 18.7 19.4	13.8 11.8 10.9 14.1	8.7 9.2 8.7 8.5	11.6 10.1 9.8 10.9
MONTH	29.3	15.6	23.1				31.7	10.8	21.7	24.7	6.7	14.0
	SPECI	FIC CONDUC	TANCE, N	MICROSIEM	ENS/CM AT	r 25 DEG C,	WATER Y	EAR OCTOB	ER 1987 TO	SEPTEMBER	1988	
DAY	SPECI	FIC CONDUC	TANCE, MEAN	MAX	ENS/CM AT	r 25 DEG C, MEAN	WATER Y	EAR OCTOBE	ER 1987 TO MEAN	SEPTEMBER MAX	1988 MIN	MEAN
DAY						MEAN			MEAN			MEAN
DAY 1 2 3 4 5		MIN			MIN	MEAN BER 600		MIN	MEAN		MIN	MEAN
1 2 3 4	580 590 580 590	MIN OCTOBER 550 560 570 570	570 580 580 580	610 600 600 610	MIN NOVEMI 600 590 590 590	MEAN BER 600 600 600 600 610 610 610 620 630	710 720 730 740	MIN DECEMBI 690 700 710 720	MEAN 700 710 720 730		MIN	MEAN
1 2 3 4 5 6 7 8 9	580 590 580 590 610 620 620 630	MIN OCTOBER 550 560 570 570 580 600 600 610	570 580 580 580 600 610 610 610 620	610 600 600 610 610 620 620 630	MIN NOVEMI 600 590 590 590 600 610 610 610 620	MEAN BER 600 600 600 600 610 610 610 620 630	710 720 730 740 780 810 840 870 880	MIN DECEMBI 690 700 710 720 740 780 810 840 870	MEAN 700 710 720 730 760 790 830 850 870		MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14	580 590 580 590 610 620 620 630 630 630 630 630	MIN OCTOBER 550 560 570 570 580 600 600 610 610 620 620 610 610 610 610	570 580 580 580 600 610 610 620 620 620 620 620	610 600 600 610 610 620 630 640 640 630 630 630	MIN NOVEMI 600 590 590 600 610 610 620 620 620 620 620	MEAN 600 600 600 610 610 610 620 630 630 630 630 630 620	710 720 730 740 780 810 840 870 880 890 910 920 930	MIN DECEMBI 690 700 710 720 740 780 810 840 870 880 890 900 910 920	700 710 720 730 760 790 830 850 870 880 900 910 920		MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	580 590 580 590 610 620 620 630 630 630 630 620 620 630 620 630 630	MIN OCTOBER 550 560 570 570 580 600 610 610 610 610 610 610 610 610 61	570 580 580 580 600 610 610 620 620 620 620 620 620 620 620 620 62	610 600 610 610 620 630 630 640 630 630 630 640	MIN NOVEMI 600 590 590 600 610 610 620 620 620 620 620 620 620 630 630 630	MEAN BER 600 600 600 600 610 610 610 620 630 630 630 630 620 620 620 620 620 620 620 620 650 650 650	710 720 730 740 780 810 840 870 880 890 910 920 930 930 940 950	MIN DECEMBI 690 700 710 720 740 780 810 840 870 890 900 910 920 930 930 940 960	700 710 720 730 760 790 830 850 870 880 900 910 920 930 940 950 970		MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 8 19 20 21 22 32 4	580 590 580 590 610 620 620 630 630 630 630 620 630 630 630 630 630 640 640 640	MIN OCTOBER 550 560 570 570 580 600 610 610 610 610 610 610 610 610 61	570 580 580 580 600 610 610 620 620 620 620 620 620 620 620 620 62	610 600 610 610 620 630 630 640 630 630 640 640 640 640 640 640 660	MIN NOVEMI 600 590 590 590 600 610 610 620 620 620 620 620 630 630 630 630 640 640 650 650	MEAN BER 600 600 600 600 610 610 610 620 630 630 630 630 630 620 620 620 620 620 620 620 620 620 62	710 720 730 740 780 810 840 870 880 890 910 920 930 930 950 960 990 1020	MIN DECEMBI 690 700 710 720 720 740 780 810 840 870 890 900 910 920 920 930 930 940 960 990 1020 1040 1060 1070	700 710 720 730 760 790 830 850 870 880 900 910 920 930 940 950 970 1000		MIN	MEAN

1150 690 940

O6470830 JAMES RIVER AT OAKES, ND--CONTINUED

SPECIFIC CONDUCTANCE, MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	SPECI	FIC CONDI	JCTANCE,	MICKOSIEME	NS/CM AT	25 DEG C,	WATER YEAR	OCTOBER	1987 10	SEPTEMBER	1988	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1										680	660	670
										690	670	680
3										690	670	680
2 3 4 5										700 720	680 690	690 710
6										740	700	720
7										730	720	720
8										740	720	730
10										760 760	720 730	740 740
11										760	740	
12										770	740	750 750
13							730	700	710	770	740	760
14 15							730 720	690 680	710 700	760 750	740 730	750 740
16											730	740
17							700 690 690	670 670 660	690 680	760 750	740	750
18							690	660	680	780	750 780	760
19 20							690 700	660 660	670 680	810 840	780 810	790 820
21 22							710	680 690	690 710	980 900	840 880	860 890
23							720 730	680	700	930	900	910
24							710	680	700	950 970	920	930
25							720	690	700	970	940	950
26							720	700	710 710	980	960	970
27 28							730	700 690 670	710	1010	970	990
29							710 680	660	690 670	1030 1020	980 970	1000
30							680	660	670	990	920	950
31						1				930	910	920
MONTH										1030	660	810
	SPECI	FIC CONDU	CTANCE,	MICROSIEMEN	IS/CM AT	25 DEG C.	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
						THE REAL PROPERTY.	Tunn.		· · · · · · · · · · · · · · · · · · ·			1041
		JUNE			JULY			AUGUST			SEPTEMBER	
1 2	920	900	910	1090	1070	1070	1130	1080	1100	990	950	970
3	1000 960	920 930	970 940	1130 1160	1080 1110	1130	1080 1040	1010 1000	1050 1020	1000 1010	960 970	980 990
3	960	930	940	1180	1120	1150	1020	990	1010	1040	980	1000
5	960	930	950	1190	1160	1170	1020	980	1000	1050	1000	1020
6	970	930	950	1160	1070	1100 1040	1010	970 950	990	1070	1010	1040
7	970	940 930	960	1070	1030	1040	1010 1050 950	950	990 1010	1060	1020	1040
8	950 970	940	940 950	1110 1170	1030 1110	1050 1140	950 950	900	930 910	1040 1060	1030 1020	1030
10	990	940	960	1220	1160	1180	980	920	950	1030	1010	1020
11	980	940	960	1230	1180	1200	960	900	940	1050	1010	1040
12	950	930	940				960	890	930	1020	970	1010
13 14	950 930	920 880	940	1070	4070	4050	940	890	910	1010	970	990
15	940	890	900 920	1070 1080	1030 1020	1050 1050	930 950	900 900	910 920	970 960	950 940	960 950
16											1262	960
17	980	930	950	1080	1060	1070	960	910	940	990	930	
	980 1000	930 960	950 980	1080 1070	1060 1020	1070 1050	960 940	910 890	940 920	990 960	930 930	940
18	1000 1010	960 960	980 980	1070 1020	1020 970	1050 1010	940 910	890 870	920 890	960 930	930 860	940 910
18 19 20	1000	960	980	1070 1020 970	1020 970 930	1050 1010 950	940 910 900	890 870 860	920 890 880	960 930 860	930 860 760	940 910 790
19 20	1000 1010 1010 1000	960 960 980 960	980 980 1000 980	1070 1020 970 980	1020 970 930 920	1050 1010 950 950	940 910 900 910	890 870 860 870	920 890 880 890	960 930 860 820	930 860 760 770	940 910 790 790
19 20 21 22	1000 1010 1010	960 960 980 960	980 980 1000 980	1070 1020 970 980 1010	1020 970 930 920	1050 1010 950 950 980	940 910 900 910	890 870 860 870	920 890 880 890	960 930 860 820	930 860 760 770 820	940 910 790 790 830
19 20 21 22	1000 1010 1010 1000 990 980 970	960 960 980 960 960 950 940	980 980 1000 980 980 970 950	1070 1020 970 980 1010 990 990	970 930 920 960 950 950	1050 1010 950 950 980 970 960	940 910 900 910 930 940 910	890 870 860 870 880 900 890	920 890 880 890 900 910 900	960 930 860 820 840 840 870	930 860 760 770	940 910 790 790 830 830 850
19 20 21 22 23 24	1000 1010 1010 1000 990 980 970 970	960 960 980 960 960 950 940 950	980 980 1000 980 980 970 950 960	1070 1020 970 980 1010 990 990 1020	970 930 920 960 950 950 960	1050 1010 950 950 980 970 960 990	940 910 900 910 930 940 910 930	890 870 860 870 880 900 890 880	920 890 880 890 900 910 900 900	960 930 860 820 840 840 870	930 860 760 770 820 810 840 850	940 910 790 790 830 830 850 860
19 20 21 22 23 24 25	1000 1010 1010 1000 990 980 970 970 1020	960 960 980 960 960 950 940 950 950	980 980 1000 980 980 970 950 960 970	1070 1020 970 980 1010 990 990 1020 1010	970 930 920 960 950 960 970	1050 1010 950 950 980 970 960 990	940 910 900 910 930 940 910 930 930	890 870 860 870 880 900 890 880 890	920 890 880 890 900 910 900 910	960 930 860 820 840 840 870 870	930 860 760 770 820 810 840 850 850	940 910 790 790 830 830 850 860 860
19 20 21 22 23 24 25	1000 1010 1010 1000 990 980 970 970 1020	960 960 980 960 960 950 940 950 950	980 980 1000 980 980 970 950 960 970	1070 1020 970 980 1010 990 990 1020 1010	970 930 920 960 950 960 970	1050 1010 950 950 980 970 960 990	940 910 900 910 930 940 910 930 930	890 870 860 870 880 900 890 890 890	920 890 880 890 900 910 900 910	960 930 860 820 840 870 870 870	930 860 760 770 820 810 840 850 850	940 910 790 790 830 830 850 860 860
19 20 21 22 23 24 25 26 27 28	1000 1010 1010 1000 990 980 970 970 1020 1020 1050 1060	960 960 980 960 950 950 950 950 950 950	980 980 1000 980 980 970 950 960 970 1010 1030 1040	1070 1020 970 980 1010 990 990 1020 1010 1030 1050	970 930 920 960 950 950 960 970 980 1000 1020	1050 1010 950 950 980 970 960 990 1000 1020 1040	940 910 900 910 930 940 910 930 930 940 940 940	890 870 860 870 880 900 890 880 890	920 890 880 890 900 910 900 910 920 930 930	960 930 860 820 840 840 870 870	930 860 760 770 820 810 840 850 850	940 910 790 790 830 830 850 860 860
19 20 21 22 23 24 25 26 27 28 29	1000 1010 1010 1000 990 980 970 970 1020 1050 1060 1070	960 960 980 960 950 950 950 950 950 1000 1030 1040	980 980 1000 980 980 970 950 960 970 1010 1030 1040 1050	1070 1020 970 980 1010 990 990 1020 1010 1050 1060 1080	970 930 920 960 950 950 960 970 980 1000 1020 1030	1050 1010 950 950 980 970 960 990 990 1000 1020 1040 1060	940 910 900 910 930 940 910 930 930 930 940 940 940 950 960	890 870 860 870 880 900 890 890 900 910 910 920	920 890 880 890 900 910 900 910 920 930 930 930	960 930 860 820 840 870 870 870 870 900 910 870	930 860 760 770 820 810 840 850 850 850 850	940 910 790 790 830 850 860 860 860 860 860
19 20 21 22 23 24 25 26 27 28 29 30	1000 1010 1010 1000 990 980 970 970 1020 1050 1060 1070 1090	960 960 980 960 950 950 950 950 990 1000 1030 1040 1060	980 980 1000 980 980 970 950 960 970 1010 1030 1040 1050 1070	1070 1020 970 980 1010 990 990 1020 1010 1050 1050 1060 1080 1120	970 930 920 960 950 950 960 970 980 1000 1020 1030 1060	1050 1010 950 950 980 970 960 990 990 1000 1020 1040 1060 1080	940 910 900 910 930 940 910 930 930 940 940 950 960 980	890 870 860 870 880 900 890 880 890 910 910 920 920	920 890 890 900 910 900 910 920 930 930 930 950	960 930 860 820 840 870 870 870 900 910 870 870	930 860 760 770 820 810 840 850 850 860 850 850 870	940 910 790 790 830 850 860 860 860 860 860 860 860
19 20 21 22 23 24 25 26 27 28 29	1000 1010 1010 1000 990 980 970 970 1020 1050 1060 1070	960 960 980 960 950 950 950 950 950 1000 1030 1040	980 980 1000 980 980 970 950 960 970 1010 1030 1040 1050	1070 1020 970 980 1010 990 990 1020 1010 1050 1060 1080	970 930 920 960 950 950 960 970 980 1000 1020 1030	1050 1010 950 950 980 970 960 990 990 1000 1020 1040 1060	940 910 900 910 930 940 910 930 930 930 940 940 940 950 960	890 870 860 870 880 900 890 890 900 910 910 920	920 890 880 890 900 910 900 910 920 930 930 930	960 930 860 820 840 870 870 870 870 900 910 870	930 860 760 770 820 810 840 850 850 850 850	940 910 790 790 830 850 860 860 860 860 860

06470875 JAMES RIVER AT DAKOTA LAKE DAM NR LUDDEN, ND

LOCATION.--Lat 45°56'52", long 98°10'29", in SE1/4NE1/4NE1/4 sec.34, T.129 N., R.60 W., Dickey County, Hydrologic Unit 10160003, on left bank, 10 ft upstream from dam, 4.5 mi southwest of Ludden and .8 mi upstream from North Dakota-South Dakota state line.

DRAINAGE AREA. -- 5,480 mi2, of which about 3,300 mi2 are noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1981 to current year.

GAGE.--Water-stage recorder and concrete dam control. Datum of gage is 1,280.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 7 to Feb. 1. Records good except those below 10 ft3/s, which are fair. Flow regulated by upstream reservoirs, Jamestown Reservoir (station 06469000), Pipestem Lake, capacity 147,000 acre-ft, and Lake LaMoure.

AVERAGE DISCHARGE. -- 7 years, 161 ft3/s, 116,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 2,300 ft³/s, Mar. 28, 1987, gage height, 13.76 ft, no flow at times during some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 360 ft3/s, Oct. 5, gage height, 10.22 ft; no flow for many days.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN	WATER VALU	YEAR O	OCTOBER	1987	TO SEPTEMBER	1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	Al	PR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	196 149 89 177 266	219 211 238 250 228	70 64 64 62 60	30 30 30 28 28	14 15 15 15	32 32 32 35 35	153 163 155 177 180	80 99 44	9	.00 2.8 16 5.2 1.2	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	199 174 208 245 177	225 231 249 200 171	60 58 57 57 55	25 20 20 16 14	15 15 14 14 15	37 43 56 69 76	118 120 145 184 119	10 65 147 29	.01	.00 .00 4.2 .04	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15	159 203 208 228 230	196 217 224 197 251	63 65 57 56 54	12 11 11 11	15 15 15 13	85 91 97 110 120	81 137 196 173 153	47	.02	.00 3.3 .08 3.1 3.2	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	235 193 233 228 248	311 256 181 172 154	51 46 45 45 45	11 11 11 11	9.6 9.6 9.6 12	120 120 123 131 128	98 244 150 147 199		.00 .00	1.4 .24 .03 8.5 3.0	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	195 230 222 224 109	137 122 110 96 94	44 43 43 43 40	10 10 10 10	12 16 17 18 19	132 134 136 136 142	145 180 134 76 140			1.2 5.9 .32 1.1 2.8	.00 .00 .00	.00 .00 .00	.00 .00 .00
26 27 28 29 30 31	222 248 214 216 231 230	79 79 79 78 75	38 37 37 34 30 30	10 10 10 10 11 11	19 20 22 26	149 148 153 149 159 159			6.5 9.9 1 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN	6386 206 266 89		1553 50.1 70 30	465 15.0 30 10	439.8 15.2 26 9.6	3169 102 159 32	2		9.37 24.5 147	63.61 2.12 16	0.47 .015 .47	0.00 .00 .00	23.00 •77 23 •00

CAL YR 1987 TOTAL 118520 MEAN 325 MAX 2210 MIN 30 WTR YR 1988 TOTAL 22243.08 MEAN 60.8 MAX 311 MIN .00

331

06470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1983 to current year.

PERIOD OF DAILY RECORDS .--WATER TEMPERATURE: October 1982 to current year.
SPECIFIC CONDUCTANCE: October 1982 to current year.
DISSOLVED OXYGEN: October 1982 to current year. PH: June 1983 to current year.

INSTRUMENTATION .-- Water quality monitor since October 1982.

REMARKS.--Unpublished records for dissolved oxygen and pH are available in files at the District office for water years 1983 through 1987. No flow July 1 through Sept. 30.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 31.0°C, July 31, 1987; minimum, 0.0°C, several days during winter months each SPECIFIC CONDUCTANCE: Maximum recorded, 2,620 microsiemens, Feb. 28, 1986; minimum recorded, 217 microsiemens, July 13, 1983.
DISSOLVED OXYGEN: Maximum recorded, greater than 20 mg/L on many days; minimum recorded, 0.5 mg/L,

June 5, 1988. PH: Maximum recorded, 9.7 units, Oct. 10, 1984; minimum recorded, 6.0 units, Nov. 20, 1984.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 29.0°C, June 3,4,8,20; minimum, 0.0°C, several days during winter months. SPECIFIC CONDUCTANCE: Maximum recorded, 2,170 microsiemens, Feb. 26; minimum recorded, 500 microsiemens, Oct. 21,22. DISSOLVED OXYGEN: Maximum recorded, greater than 20 mg/L on many days; minimum recorded, 0.5 mg/L, June 5. PH: Maximum recorded, 9.2 units, Oct. 1,3,4,5; minimum recorded, 8.1 units, Mar. 1-4.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (FTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT												
06	1200	175	600	8.85	10.0	8.0	14	11.3	94		230	52
16 JAN	1400	311	640	8.88	0.0	3.0	3.0	15.0	110		240	52
11 FEB	1430	12	1200	8.55	-15.0	2.5	2.5	>20.0			430	83
24	1300	19	2300	7.88	-15.0	3.0	2.7	20.0	146		760	140
MAR 30	1250	144			0.0	2.0						
APR 11	1600	50	580	8.65	21.0	10.0	35	11.5	100	5.9	210	48
MAY 23	1500	11	810	8.80	28.0	18.0	18	13.4	139	5.1	290	61
AUG 23	0900	0.0	1140	9.10	20.0	19.0		2.2	23		9	
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
OCT												
06	25	41	26	1	13	220	94	11	0.20	379	368	0.52
16 JAN	26	49	30	1	12	222	110	16	0.20	406	399	0.55
11	53	110	35	2	18	386	240	59	0.30	805	795	1.09
FEB 24	100	260	42	4	27	680	570	150	0.30	1630	1660	2.22
APR 11	23	45	30	1	9.8	177	110	17	0.20	359	359	0.49
MAY 23	33	66	32	2	15	243	170	23	0.30	521	514	0.71

06470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED

			minant 40	MDILL ONL	n, maran	IDAN OOLO	DEK 1901	TO DEL TEN	DISIT 1,500			
DATE	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	PHOS- PHOROUS DIS- SOLVED (MG/L (MG/L (00666)
OCT 06	179	30		<0.010		<0.100		<0.010		0.40		0.030
NOV 16	341	10		<0.010		0.150	11	0.010		0.40		0.020
JAN 11	26.5	4		<0.010		<0.100		0.030		1.0		0.050
FEB 24	81.9	9		<0.010		<0.100		0.020		1.3		0.030
APR 11	48.7	40	0.010	<0.010	<0.100	<0.100	0.030	0.020	1.3	0.60	0.220	0.020
MAY 23	15.9	11	0.020	<0.010	<0.100	<0.100	0.030	0.030	1.0	0.80	0.160	0.020
DATE	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC TOTAL (UG/L AS AS) (01002)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)
OCT 06		0.016		3	100		<1	2		6	<5	
NOV 16		0.002		2	120		<1	<1		7	<5	
JAN 11		0.042		1	240		<1	2		7	<5	
FEB 24		<0.002		1	550		<10	1		30	<5	
APR 11	0.046	0.003	2	1	100	1	<1	1	2000	5	<5	490
MAY 23	0.024	0.001	2	2	160	2	<1	1	840	6	<5	380
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (O1145)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CYANIDE TOTAL (MG/L AS CN) (00720)	CYANIDE DIS- SOLVED (MG/L AS CN) (00723)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)
DATE OCT O6	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS ZN)	ORGANIC TOTAL (MG/L AS C)	TOTAL (MG/L AS CN)	DIS- SOLVED (MG/L AS CN)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	TON BIOMASS ASH WT (MG/L)	TON BIOMASS DRY WT (MG/L)
OCT	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	NIUM, TOTAL (UG/L AS SE)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS ZN) (O1090)	ORGANIC TOTAL (MG/L AS C)	TOTAL (MG/L AS CN)	DIS- SOLVED (MG/L AS CN) (00723)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	TON BIOMASS ASH WT (MG/L)	TON BIOMASS DRY WT (MG/L)
OCT O6 NOV 16 JAN 11	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	NIUM, TOTAL (UG/L AS SE)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS ZN) (01090)	ORGANIC TOTAL (MG/L AS C)	TOTAL (MG/L AS CN)	DIS- SOLVED (MG/L AS CN) (00723)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	TON BIOMASS ASH WT (MG/L)	TON BIOMASS DRY WT (MG/L)
OCT 06 NOV 16 JAN 11 FEB 24	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	NIUM, TOTAL (UG/L AS SE)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS ZN) (01090)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN)	DIS- SOLVED (MG/L AS CN) (00723)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	TON BIOMASS ASH WT (MG/L)	TON BIOMASS DRY WT (MG/L)
OCT 06 NOV 16 JAN 11 FEB 24 APR 11	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890) <0.1	NIUM, TOTAL (UG/L AS SE) (01147)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS ZN) (01090)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN)	DIS- SOLVED (MG/L AS CN) (00723) <0.01	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	TON BIOMASS ASH WT (MG/L)	TON BIOMASS DRY WT (MG/L)
OCT 06 NOV 16 JAN 11 FEB 24 APR	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70	DIS- SOLVED (UG/L AS HG) (71890) <0.1 0.1 <0.1	NIUM, TOTAL (UG/L AS SE) (01147)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS ZN) (01090)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (Mg/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	TON BIOMASS ASH WT (MG/L) (81353)	TON BIOMASS DRY WT (MG/L) (81354)
OCT O6 NOV 16 JAN 11 FEB 24 APR 11 MAY	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70 60 140	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1 <0.2	NIUM, TOTAL (UG/L AS SE) (01147)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 2 <1 <1 <1	DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3	ORGANIC TOTAL (Mg/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	TON BIOMASS ASH WT (MG/L) (81353)	TON BIOMASS DRY WT (MG/L) (81354)
OCT O6 NOV 16 JAN 11 FEB 24 APR 11 MAY 23	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70 60 140 11 SEDI- MENT, SUS- PENDED (MG/L)	DIS- SOLVED (UG/L AS HG) (71890) CO.1 CO.1 CO.1 CO.2 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	NIUM, TOTAL (UG/L AS SE) (01147) <1 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <unitary library="" library<="" td="" tensor=""><td>DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L)</td><td>ORGANIC TOTAL (MG/L AS C) (OO680) 13 15</td><td>TOTAL (Mg/L AS CN) (00720)</td><td>DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)</td><td>PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70953)</td><td>PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954)</td><td>TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR- DANE, TOTAL (UG/L)</td><td>TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN- AZINE TOTAL (UG/L)</td></unitary>	DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L)	ORGANIC TOTAL (MG/L AS C) (OO680) 13 15	TOTAL (Mg/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)	PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70953)	PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954)	TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR- DANE, TOTAL (UG/L)	TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN- AZINE TOTAL (UG/L)
OCT O6 NOV 16 JAN 11 FEB 24 APR 11 MAY 23 DATE	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70 60 140 11 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1 <0.1 <0.2 0.2 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	NIUM, TOTAL (UG/L AS SE) (01147) <1 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <unitary library="" library<="" td="" tensor=""><td>DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L)</td><td>ORGANIC TOTAL (MG/L AS C) (00680) 13 15 AME- TRYNE TOTAL (82184)</td><td>TOTAL (Mg/L AS CN) (00720)</td><td>DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)</td><td>PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)</td><td>PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954)</td><td>TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR- DANE, TOTAL (UG/L)</td><td>TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN- AZINE TOTAL (UG/L)</td></unitary>	DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L)	ORGANIC TOTAL (MG/L AS C) (00680) 13 15 AME- TRYNE TOTAL (82184)	TOTAL (Mg/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954)	TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR- DANE, TOTAL (UG/L)	TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN- AZINE TOTAL (UG/L)
OCT 06 NOV 16 JAN 11 FEB 24 APR 11 MAY 23 DATE OCT 06 NOV 16 JAN	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70 60 140 11 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS HG) (71890) (0.1 0.1 (0.1 0.2 0.2 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	NIUM, TOTAL (UG/L AS SE) (01147) <1 <1 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 98	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L)	ORGANIC TOTAL (MG/L AS C) (00680) 13 15 AME- TRYNE TOTAL (82184)	TOTAL (Mg/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954) 1.50 2.10 CHLOR-DANE, DIS-SOLVED (UG/L) (39352)	TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR- DANE, TOTAL (UG/L)	TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN- AZINE TOTAL (UG/L)
OCT 06 NOV 16 JAN 11 FEB 24 APR 11 MAY 23 DATE OCT 06 NOV 16	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70 60 140 11 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS HG) (71890) <0.1 0.1 0.1 0.2 0.2 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	NIUM, TOTAL (UG/L AS SE) (01147) <1 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L) (39330)	ORGANIC TOTAL (MG/L AS C) (00680) 13 15 AME- TRYNE TOTAL (82184)	TOTAL (Mg/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954) 1.50 2.10 CHLOR-DANE, DIS-SOLVED (UG/L) (39352)	TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR- DANE, TOTAL (UG/L)	TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN- AZINE TOTAL (UG/L)
OCT O6 NOV 16 JAN 11 FEB 24 MAY 23 DATE OCT O6 NOV 16 JAN 11 FEB 24 APR	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70 60 140 11 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS HG) (71890) (0.1 0.1 (0.1 0.2 0.2 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	NIUM, TOTAL (UG/L AS SE) (01147) <1 SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 98 97 24	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L) (39330)	ORGANIC TOTAL (MG/L AS C) (00680) 13 15 AME- TRYNE TOTAL (82184)	TOTAL (Mg/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954)	TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR- DANE, TOTAL (UG/L)	TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN- AZINE TOTAL (UG/L)
OCT 06 NOV 16 JAN 11 FEB 24 APR 11 MAY 23 DATE OCT 06 NOV 16 JAN 11 FEB 24	NESE, DIS- SOLVED (UG/L AS MN) (01056) 5 8 70 60 140 11 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS HG) (71890) <0.1 0.1 0.1 0.2 0.2 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 14 14 1.2	NIUM, TOTAL (UG/L AS SE) (01147) 	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS ZN) (01090) <3 4 <3 10 <3 6 ALDRIN, TOTAL (UG/L) (39330)	ORGANIC TOTAL (MG/L AS C) (00680) 13 15 AME- TRYNE TOTAL (82184)	TOTAL (Mg/L AS CN) (00720)	DIS- SOLVED (MG/L AS CN) (00723) <0.01 <0.01 <0.01 <0.01 GUTHION TOTAL (UG/L)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 30.0 15.0 SEVIN, TOTAL (UG/L) (39750)	PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954)	TON BIOMASS ASH WT (MG/L) (81353) 26 20 CHLOR-DANE, TOTAL (UG/L) (39350)	TON BIOMASS DRY WT (MG/L) (81354) 1200 1200 CYAN-AZINE TOTAL (UG/L) (81757)

06470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	DDD, DIS- SOLVED (UG/L) (39361)	DDD, TOTAL (UG/L) (39360)	DDE, DIS- SOLVED (UG/L) (39366)	DDE, TOTAL (UG/L) (39365)	DDT, DIS- SOLVED (UG/L) (39371)	DDT, TOTAL (UG/L) (39370)	AZING DIS SOLV	S- AZIN	I- ELDR ION, DIS PAL SOLV E/L) (UG/	- ELDRIN ED TOTAL L) (UG/L)	TOTAL (UG/L)	ENDO- SULFAN DISSOLV (UG/L) (82354)	ENDO- SULFAN, TOTAL (UG/L) (39388)
1AY 23	<0.01	<0.010	<0.01	<0.010	<0.01	<0.010) <0	.01 <0	0.01 <0.	01 <0.010	<0.010	<0.01	<0.010
UG 23	<0.01	<0.010	<0.01	<0.010	<0.01	<0.010			.01 <0.			<0.01	<0.010
DATE	ENDRIN, DIS- SOLVED (UG/L) (39391)	(UG/L)	(UG/L)	ETHION, TOTAL (UG/L) (39398)	SOLVE (UG/L	HEPT CHLC D TOTA) (UG/	CFA- EPO OR, DO AL SOI	JG/L)	TOTAL S (UG/L)	OLVED T	NDANE OTAL UG/L)	DIS- SOLVED (UG/L)	MALA- THION, TOTAL (UG/L) 39530)
MAY	<0.01	<0.0	1 <0.010	<0.01	<0.0	1 <0.0	010	<0.01	<0.010	<0.01	0.010	<0.01	<0.01
23 AUG 23	<0.01							<0.01	<0.010		0.010	<0.01	<0.01
D		METHO- (MYL TOTAL (UG/L)	OXY- CHLOR DISSOLV (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, DIS- SOLVED (UG/L) 39602)	METHYL PARA- THION, TOTAL (UG/L) (39600)	MIRE DIS- SOLV (UG/1 (3975	ED TO	MET TR REX, THI DTAL TOT 1/L) (UG	I- TRI- ON, THION AL DISSO /L) (UG/L	POL' CHLC L) (UG/1	A- ES, PAR. Y- THIO OR. DIS AL SOL' L) (UG.	ON, S- VED /L)
MAY 23.		<0.5	<0.01	<0.01	<0.01	<0.01	<0.0	01 <0	.01 <0	.01 <0.	.01 <0	.10 <0	.01
AUG 23.		<0.5	<0.01	<0.01	<0.01	<0.01	<0.0	01 (0	0.01 <0	.01 <0.	.01 <0	.10 <0	.01
DAT	TH TO (U	ION, TAL SO	UG/L) (UG	TAL DIS	SOLV DI	R- ANE SSOLV G/L) 2348) (PER- THANE TOTAL (UG/L) (39034)	PHORAT OTAL (UG/L) (39023	TOTAL (UG/L	TRYNE TOTAL) (UG/L)	PROPHAT TOTAL (UG/L	TOTAL (UG/L))
MAY 23	. <	0.01	<0.1	<0.1	0.10	<0.10	<0.1	<0.0	01 <0.	1 <0.1	<0.5	5 <0.10)
AUG 23		0.01			0.10	<0.10	<0.1	<0.0	01 <0.	1 <0.1	<0.5	5 <0.10)
DATE	SIM ZI TOT (UG	NE TR' AL TO' /L) (U	ME- YNE 2,4 FAL TOT G/L) (UG	AL TOT /L) (UG/	L) (U	TAL TG/L) (ILVEX, POTAL (UG/L) 39760)	TOX- APHENE, DIS- SOLVED (UG/L) (39401)	TOX- APHENE, TOTAL (UG/L)	TREF- LAN TOTAL (UG/L) a(LC1337)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	TRI- THION DISSOLV (UG/L) (82342)	TOTAL TRI- THION (UG/L) (39786)
MAY 23	<0	.10	<0.1 0	.07 <0	.01 <	0.01	<0.01	<1.0	<1	<0.050	<0.10	<0.01	<0.01
AUG 23	<0	.10	<0.1 <0	.01 <0	.01 <	0.01	<0.01	<1.0	<1	<0.050	<0.10	<0.01	<0.01
a - La	b Code.	WATSTOR	E paramete	r code un	availabl	e.							
		DAT	E TIM	SAMPL LOC- ATIO CROS SECTI (FT F L BAN E (0000	TO NO. ON S SAM ON INT	TOP F PLE TEM ER- AT L WA T) (DE		SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)		
		APR 11 11 11 11 11 11 11 11 11 11 11 11 11	151 151 151 151 152 152 152 152 152 152	6 10. 7 20. 8 30. 9 40. 0 50. 1 60. 2 70. 3 80. 4 90. 5 100		.50 .50 .50 .50 .50 .50 .50 .50 .50	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	585 590 585 580 580 580 580 580 580 580	 8,65	 11.5	 100		

06470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		I ISPIL I	ERATURE,							1988		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBE	R		DECEMBER	3		JANUARY	
1 2 3 4 5	14.0 11.0 11.0 12.5 11.5	8.5 8.5 10.0 9.5	9.5 9.5 11.0 10.0	7.5 8.5 9.0 8.5 7.0	6.0 7.0 8.0 7.0 5.5	6.5 8.0 8.5 8.0 6.0	2.5 2.5 2.0 2.5 3.0	1.5 2.0 1.5 2.0 2.5	2.0 2.0 1.5 2.5 3.0	3.0 3.0 3.0 3.0	2.5 2.5 2.5 2.5 2.5	2.5 2.5 3.0 2.5 2.5
6 7 8 9	9.0 9.0 9.0 7.5 6.0	8.0 7.0 7.5 5.0 4.0	8.5 7.5 8.0 5.5 5.0	6.0 6.0 5.5 3.0 3.0	5.0 4.5 2.5 2.0 2.5	5.5 5.5 3.5 2.5 3.0	3.0 3.0 3.5 3.5	2.5 3.0 2.5 2.5 2.5	3.0 3.0 3.0 3.0	2.5 2.5 3.0 3.0 2.5	2.5 2.0 2.5 2.5 2.0	2.5 2.5 2.5 2.5 2.5
11 12 13 14 15	6.0 7.0 8.0 7.5 7.5	4.0 5.0 6.5 6.5 7.0	5.0 6.0 7.0 7.0 7.5	3.0 3.5 3.5 4.0 5.0	1.0 2.0 2.5 3.0 4.0	2.0 3.0 3.0 3.5 4.5	2.5 1.5 1.0 1.5 2.0	1.5 .5 .5 1.0	2.0 1.0 1.0 1.0	2.5 3.0 3.0 2.5 3.0	2.0 2.0 2.5 2.0 2.5	2.5 2.0 2.5 2.5 2.5
16 17 18 19 20	7.5 8.0 7.5 6.5	7.0 6.0 6.0 5.0	7.5 7.0 6.5 5.5	3.0 2.0 2.5 3.0 3.5	2.0 .0 1.5 2.0 2.5	3.0 1.0 2.0 2.0 3.0	2.5 3.0 3.5 3.5 3.5	2.0 2.5 2.5 3.0 3.0	2.0 2.5 3.0 3.0	3.0 3.5 3.0 3.0	2.5 2.5 3.0 2.5 2.5	2.5 3.0 3.0 3.0 3.0
21 22 23 24 25	3.5 3.0 3.0 2.5 3.5	2.5 1.5 2.0 1.5 1.5	3.0 2.0 2.5 2.0 2.5	3.5 3.5 4.0 4.0	3.0 3.0 3.0 3.0	3.5 3.5 3.5 3.5 4.0	3.5 3.5 3.5 3.5 3.5	3.5 3.0 3.0 3.0	3.5 3.5 3.5 3.0	3.0 3.0 3.0 3.0	3.0 3.0 2.5 2.0 2.0	3.0 3.0 3.0 2.5 2.5
26 27 28 29 30 31	5.5 4.5 4.5 5.5 6.0	3.5 3.0 3.5 4.0 4.5 4.5	4.5 4.0 4.5 5.0 5.5	4.5 4.5 3.5 3.0 2.0	3.5 3.0 3.0 1.5 1.5	4.0 3.5 3.5 2.0 1.5	3.5 3.5 3.5 3.5 3.5 3.5	3.0 3.0 3.0 3.0 2.5 2.0	3.5 3.5 3.0 3.5 3.0 2.5	2.5 2.5 2.5 3.0 2.5 2.5	2.0 2.0 2.0 2.5 2.0 2.0	2.5 2.5 2.5 2.5 2.5 2.5
MONTH				9.0	.0	3.9	3.5	•5	2.6	3.5	2.0	2.6
		TEMP	ERATURE,	WATER (DE	G. C), W	ATER YEAR	OCTOBER	1987 TO S	EPTEMBER	1988		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY		100	MARCH			APRIL		46 5	MAY	16.0
1 2 3 4 5	3.0 2.5 2.0 2.0	2.5 2.0 2.0 1.5	2.5 2.5 2.0 1.5	4.0 3.5 3.5 3.0 3.0	3.5 3.0 3.0 2.5	4.0 3.5 3.5 3.0		===	===	16.5 16.0 15.0	15.0 14.5 12.5	16.0 15.0 13.5
6 7 8 9	1.5	1.5				3.0				15.5	12.0	
	1.5 1.5 1.5	1.5 1.5 1.5 1.0	1.5 1.5 1.5 1.5	3.0 3.0 2.0 2.5 2.0	2.5 2.0 1.5 2.0 1.5	2.5 2.5 1.5 2.0 2.0	10.5	10.5			12.0	15.0
11 12 13 14 15	1.5	1.5 1.5 1.5	1.5 1.5 1.5	3.0 2.0 2.5	2.0 1.5 2.0	2.5 2.5 1.5 2.0	10.5	10.5	10.5	17.0	14.0	15.0
12 13 14	1.5 1.5 1.0 1.0 1.0	1.5 1.5 1.0 1.0 1.0	1.5 1.5 1.5 1.0 1.0 1.0	3.0 2.0 2.5 2.0 1.5 1.0 1.5	2.0 1.5 2.0 1.5 .5 .5	2.5 2.5 1.5 2.0 2.0 1.0 .5	10.5 10.0 12.0 11.5 10.0	10.5 10.0 9.5 9.0 7.5	10.5 10.0 11.5 10.5 9.0	15.5 17.0 17.0 19.5	14.0 13.0	15.0 15.0
12 13 14 15 16 17 18 19	1.5 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.5	1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5	1.5 1.5 1.5 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3.0 2.0 2.5 1.5 1.5 1.0 1.5 1.5 1.5 1.5	2.0 1.5 2.5 5.5 5.5 5.5 5.5 1.0 1.0	2.5 2.5 1.5 2.0 2.0 1.0 1.0 1.0 1.5 1.5	10.5 10.0 12.0 11.5 10.0	10.5 10.0 9.5 9.0 7.5 8.0	10.5 10.5 10.5 10.5 9.0	15.5 17.0 19.5 16.0 18.5 18.0 19.0 19.5	14.0 13.0 15.0 13.5 12.0 14.0 15.5 17.0	15.0 17.0 17.0 17.0 15.0 14.5 16.0 17.5
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30	1.5 1.0 1.0 1.0 1.5 1.5 2.0 2.5 3.0 3.0 3.0 3.5	1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.55 1.55 1.00 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.00	3.0 2.5 2.5 2.5 3.0 3.0 5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	2.0 1.5 2.5 1.5 5.5 5.5 5.5 1.0 1.0 1.0 1.0	2.55 1.55 2.0 2.0 1.05 1.05 1.55 1.55 1.55 1.55	10.5 10.0 12.0 11.5 10.0 11.0 10.0 8.5	10.5 10.0 9.5 9.0 7.5 8.0	10.5 10.5 10.5 10.5 9.0 9.5 9.5 8.5	15.5 17.0 19.5 16.0 18.5 18.5 17.5 14.5 20.0 23.5	14.0 15.0 15.0 15.0 13.5 12.0 14.0 15.5 17.0 14.0 13.0 16.5	15.0 17.0 17.0 15.0 14.5 16.0 17.5 17.5 16.0 14.0 19.0 20.0
12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 29	1.5 1.0 1.0 1.0 1.5 1.5 2.0 2.5 3.0 3.0 3.0 3.5	1.55 1.55 1.00 1.00 1.00 1.05 1.05 1.05	1.55.55 1.000000 1.55.500 1.55.500 1.55.500 1.55.500 1.55.500 1.55.500 1.55.500 1.55.500 1.55.500 1.55.500 1.55.500	3.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	2.0 1.5 2.5 5.5 5.5 5.5 5.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.5 2.5 1.5 2.0 2.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.0 1.5 1.5 1.5 1.0	10.5 10.0 12.0 11.5 10.0 11.0 10.0 8.5 9.0 10.0 11.0	10.5 10.0 9.5 9.0 7.5 8.0 7.0 8.0	10.5 10.5 10.5 10.5 9.0 9.5 8.5 8.5 7.5 9.0	15.5 17.0 19.5 16.0 18.5 18.5 18.5 14.5 20.5 21.5 26.0 25.0 25.0 24.0	14.0 15.0 15.0 15.0 14.0 14.0 14.0 13.0 16.5 17.5 18.0 19.0 19.0 21.5	15.0 17.0 17.0 15.0 14.5 16.0 17.5 17.5 16.0 14.0 20.0 20.0 21.5 22.0 23.0 23.5 22.5

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBER	
1 2 3 4 5	25.5 29.0 29.0 27.5	22.5 22.5 25.0 24.0	23.5 25.5 27.0 26.0									
6 7 8 9	26.0 28.0 29.0 24.5 24.0	22.5 23.0 24.5 21.5 20.5	24.5 25.5 26.5 23.0 22.5									
11 12 13 14 15	23.5 22.5 22.0 23.0 22.5	20.0 20.5 19.5 20.5 19.0	22.0 22.0 20.5 21.5 21.0									
16 17 18 19 20	25.0 28.0 27.5 28.5 29.0	16.5 21.0 23.5 24.5 25.0	22.0 24.5 25.5 26.0 27.0									
21 22 23 24 25	28.5 28.0 27.5 27.0	25.0 24.0 22.5 23.5	26.5 26.0 24.5 25.0									
26 27 28 29 30 31	28.5 27.5 25.5 21.0 21.5	23.5 23.5 23.5 16.5 17.5	26.0 25.5 24.0 19.5 19.0									
MONTH												

SPECIFIC CONDUCTANCE, MICROSIEMENS/CM AT 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER	3		DECEMBER	?		JANUARY	
1	650	550	620	590	580	580	630	620	630	890	850	870
2	590	550	570	590	510	590	640	620	630	920	880	900
	590	550	570	590	570	590	540	630	630	930	910	920
3	580	550	570	590	580	590	650	630	640	960	920	940
5	580	550	570	590	580	590	660	640	650	990	960	970
6	590	580	580	590	580	590	670	660	660	1010	980	1000
7	590	580	580	620	530	590	670	650	660	1040	1010	1020
8	600	580	590	610	570	600	670	650	660	1070	1030	1060
9	620	590	610	620	570	610	670	650	660	1110	1070	1080
10	620	600	610	640	600	610	660	650	660	1130	1100	1110
11	610	590	600	610	600	610	660	650	650	1140	1120	1130
12	610	600	610	610	600	610	660	650	650	1170	1120	1140
13	600	590	600	620	570	610	680	660	670	1190	1150	1170
14	590	570	580	610	610	610	690	670	680	1200	1180	1190
15	570	560	560	610	610	610	690	680	690	1220	1200	1210
16	560	550	560	610	580	600	720	690	710	1220	1210	1220
17	570	560	560	610	590	600	740	710	720	1230	1210	1220
18	570	560	560	610	560	600	740	720	730	1230	1220	1230
19	570	550	560	620	590	610	760	740	750	1230	1220	1230
20				630	600	620	760	740	750	1230	1210	1220
21	570	500	560	640	600	620	770	760	770	1240	1230	1230
22	570	500	560	640	590	630	780	760	770	1240	1230	1240
23	570	540	560	640	610	630	790	770	780	1240	1230	1240
24	570	560	570	640	590	630	810	790	800	1250	1230	1240
25	580	560	570	640	570	630	820	800	810	1280	1230	1260
26	580	530	570	660	600	630	830	810	820	1290	1250	1270
27	580	570	580	650	620	640	840	820	830	1320	1290	1300
28	580	570	580	650	620	640	850	840	840	1330	1310	1320
29	580	580	580	630	620	630	850	830	840	1350	1320	1330
30	580	570	580	630	620	620	840	830	830	1340	1320	1340
31	590	570	580				850	830	840	1340	1310	1330
MONTH			444	550	510	610	850	620	720	1350	850	1160

06470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED

SPECIFIC CONDUCTANCE, MICROSIEMENS/CM AT 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					אנו ב) וויים		GRADE,	WAIDN IDAN		1907 10	SEFIERDER	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1	1370	1320	1350	2050	1960	2000				760	740	750
2 3 4	1430	1390	1410	1970 1900	1900 1750	1940 1830				760 760	750 740	750 750
4 5	1480 1510	1430 1470	1450 1500	1750 1630	1620 1480	1700 1550				760	740	750
6	1560	1510	1530	1480	1380	1420						
7	1620 1670	1560 1620	1590 1650	1380 1140	1140 1090	1310 1110				760	740	750
9 10	1700 1730	1660	1680 1710	1120 1070	1070 890	1100 980	600 610		===	800	760	780
11	1760	1720	1740	910	820	860				800	770	790
12 13	1830 1870	1760 1830	1800 1850	830 770	770 730	790 750	610 620	600 600	600 610	===		
14 15	1880 1910	1790 1870	1860 1890	740 700	700 670	720 690	650	620	630		780	
16	1930	1900	1920							830 880	740	800
17 18	1960	1930	1950	670	650	660	700	660	680	860	780	820 830
19	1980 2000	1950 1970	1960 1980	660 660	650 650	650 650	730	700	710	870 840	760 820	840 830
20	2020	1990	2000	660	650	660	730	710	720			
21 22	2020 2040	2000 2010	2010	670 670	660 650	660 660	730	710	720	840 850	820 830	830 840
23 24	2060	2010 2040	2040	660 650	650 590	650 620				830	800 790	850 810
25	2130	2070	2100	610	560	590				840	770	820
26 27	2170 2150	2130 2130	2140 2140	580 570	560 540	570 560	750 760	730 730	740 740	860 850	780 820	840 830
28 29	2130 2110	2070 2040	2110	550	510	530	760	740	740	920	840	870
30			2090	530	510	520	750			940 890	820 840	900 860
31										880	830	860
MONTH												
	ECIFIC CO	NDUCTANCE,	MICROSI	EMENS/CM	AT 25 DEGR	REES CENTI	GRADE,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE		MAX		MEAN						MEAN
DAY 1 2	MAX 880		MEAN 860	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2	880 980	JUNE 800 910	860 940	MAX	MIN	MEAN		MIN			MIN	MEAN
1	880	JUNE 800	860	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5	880 980 1020 1040	910 960 1010	860 940 1020 1030	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8	880 980 1020 1040 1050 1060 1060	910 960 1010 1020 1030 1030	860 940 1020 1030 1040 1050	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5	880 980 1020 1040 1050 1060	JUNE 800 910 960 1010 1020 1030	860 940 1020 1030 1040	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10	880 980 1020 1040 1050 1060 1040 1000 960	910 960 1010 1020 1030 1030 980 950	860 940 1020 1030 1040 1050 1010 980	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13	880 980 1020 1040 1050 1060 1060 1040 1000	JUNE 800 910 960 1010 1020 1030 1030 980 950 920	860 940 1020 1030 1040 1050 1010 980	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13	880 980 1020 1040 1050 1060 1060 1040 1000 960 1000 990 980	910 960 1010 1020 1030 1030 980 950 920 920 920 970 970	860 940 1020 1030 1040 1050 1010 980 940 940 940 980 960	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	880 980 1020 1040 1050 1060 1060 1040 1000 960 1000 990 980 960	910 960 1010 1020 1030 1030 980 950 920 970 950 940	860 940 1020 1030 1040 1050 1010 980 940 980 960 950	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 11 15 16 17	880 980 1020 1040 1050 1060 1060 1040 1000 960 1000 990 980 960 960 980	910 960 1010 1020 1030 1030 1030 980 950 920 970 920 970 950 940	860 940 1020 1030 1040 1050 1010 980 940 980 960 950 940 950	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	880 980 1020 1040 1050 1060 1060 1040 1000 960 1000 990 980 960 980 980 980 980 980	910 960 1010 1020 1030 1030 980 950 920 970 950 940 920 950 950 950 950	860 940 1020 1030 1040 1050 1010 980 940 980 950 950 940 960 960 960 960	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20	880 980 1020 1040 1050 1060 1060 1000 960 1000 980 960 980 980 980 970 960	910 960 1010 1020 1030 1030 980 950 920 970 950 940 920 950 950 950 950 950	860 940 1020 1030 1040 1050 1010 980 940 980 950 960 960 960 950	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	880 980 1020 1040 1050 1060 1060 1040 1000 960 1000 990 980 960 980 980 980 980 980	910 960 1010 1020 1030 1030 980 950 920 970 950 940 920 950 950 950 950	860 940 1020 1030 1040 1050 1010 980 940 980 950 950 940 960 960 960 960	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	880 980 1020 1040 1050 1060 1060 1040 1000 960 1000 990 980 960 980 980 970 960	910 960 1010 1020 1030 1030 980 950 920 970 950 940 920 950 950 950 950 950 950	860 940 1020 1030 1040 1050 1010 980 940 980 950 950 960 960 960 950	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	880 980 1020 1040 1050 1060 1060 1040 1000 960 980 980 980 980 980 970 960 940 940	910 950 1010 1020 1030 1030 1030 980 950 920 970 950 940 950 950 950 950 950 950 950 950	860 940 1020 1030 1040 1050 1010 980 940 980 960 960 960 960 950	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26	880 980 1020 1040 1050 1060 1060 1000 960 1000 980 980 980 980 970 960 940 910 950	910 950 950 1010 1020 1030 1030 1030 980 950 920 970 950 940 920 950 950 950 950 950 950 950 950 950 95	860 940 1050 1050 1050 1050 980 940 980 960 950 950 930 950 950	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 21 22 3 24 25 26 27 28	880 	910 950 1010 1020 1030 1030 1030 980 950 920 970 950 950 950 950 950 950 950 950 950 95	860 940 1020 1030 1040 1050 1010 980 940 980 960 950 950 930 9 890 920 940 940 950	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30	880 980 1020 1040 1050 1060 1060 1060 1000 960 1000 990 980 960 980 970 960 940 910 950 950 950 970 950 970 970 970 970 970 970 970 97	910 950 950 1010 1020 1030 1030 1030 980 950 920 970 950 940 950 950 950 950 950 950 950 950 950 95	940 940 940 950 950 950 950 950 950 950 950 950 95	MAX	MIN	MEAN		MIN			MIN	MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 2 2 3 2 4 2 5 2 6 2 7 2 8	880 980 1020 1040 1050 1060 1060 1000 960 1000 980 960 980 980 970 960 940 940 910 950 970 950 970 950 970 950 970	910 950 1010 1020 1030 1030 1030 980 950 970 950 970 950 950 950 950 950 950 950 950 950 95	940 940 940 980 940 950 950 950 950 950 950 950 950 950 95	MAX	MIN	MEAN		MIN			MIN	MEAN

06470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

PH (STANDARD UNITS), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

			III (DIAME	THE SHILL), WATER	TIMIL OCIC	Dale 1901	10 001 10	1,00			
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCT	OBER	NOV	EMBER	DEC	CEMBER	JAN	UARY	FEB	RUARY	MA	RCH
1 2 3 4 5	9.2 9.1 9.2 9.2 9.2	8.8 9.0 9.1 9.1	9.1 9.0 9.0 9.0	9.0 8.6 8.9 8.9	9.0 9.0 9.0 9.0	9.0 8.9 8.9 8.9	8.7 8.7 8.7 8.7 8.7	8.6 8.7 8.7 8.6 8.6	8.4 8.4 8.4 8.3	8.4 8.4 8.3 8.3	8.2 8.2 8.2 8.2 8.3	8.1 8.1 8.1 8.1 8.2
6 7 8 9	9.0 9.1 9.1 9.0 9.0	8.9 9.0 8.8 8.9	9.0 9.0 9.0 9.0	8.9 8.9 8.7 9.0	9.0 9.0 9.0 9.0	9.0 8.9 8.9 9.0	8.7 8.6 8.6 8.6	8.6 8.6 8.6 8.6	8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3 8.2	8.3 8.3 8.4 8.4	8.2 8.2 8.2 8.4
11 12 13 14 15	9.0 9.0 9.1 9.1 9.0	8.9 8.9 8.9 9.0	9.1 9.1 9.1 9.0	9.0 9.0 9.0 9.0	9.0 9.0 8.9 9.0 9.0	9.0 8.9 8.9 8.9	8.7 8.6 8.6 8.6	8.6 8.6 8.6 8.6	8.3 8.3 8.3 8.3	8.2 8.2 8.2 8.2 8.2	8.5 8.6 8.6 8.7	8.4 8.3 8.4 8.5 8.5
16 17 18 19 20	9.0 9.1 9.1 9.1	9.0 8.9 9.0 9.0	9.0 9.0 9.1 9.1	8.9 8.8 8.9 9.0	9.0 9.0 9.0 9.0	8.9 9.0 9.0 8.9	8.6 8.6 8.6 8.6	8.6 8.6 8.5 8.5	8.3 8.3 8.3 8.3	8.2 8.2 8.3 8.3	8.8 8.8 8.9 8.9	8.8 8.8 8.8
21 22 23 24 25	9.0 9.0 9.0 9.0	8.5 8.5 8.8 8.9 8.8	9.1 9.1 9.1 9.1	9.1 9.1 9.0 9.0	8.9 8.9 8.9 8.8	8.9 8.9 8.8 8.8	8.6 8.5 8.5 8.5 8.5	8.5 8.5 8.5 8.5 8.5	8.3 8.3 8.3 8.3	8.2 8.2 8.2 8.2	8.9 8.9 8.8 8.8	8.8 8.8 8.8 8.7
26 27 28 29 30 31	9.0 9.0 9.0 9.1 9.1	8.7 8.9 8.9 8.9 9.0	9.0 9.0 9.0 9.0	9.0 9.0 9.0 8.9 8.9	8.8 8.8 8.8 8.7 8.7	8.7 8.7 8.7 8.7 8.7 8.6	8.5 8.5 8.5 8.5 8.5	8.5 8.4 8.5 8.5 8.4 8.4	8.2 8.2	8.2 8.2	8.8 8.8 8.9	8.7 8.7 8.8 8.8
MONTH			9.1	8.6		8.6	8.7	8.4				
			PH (STAND	ARD UNITS). WATER	YEAR OCTO	BER 1987	TO SEPTEM	BER 1988			
DAY	MAX	MIN	PH (STAND	ARD UNITS), WATER	YEAR OCTO	BER 1987	TO SEPTEM	BER 1988	MIN	MAX	MIN
DAY	MAX APR	MIN		MIN	MAX			MIN	MAX	MIN UST	MAX SEPTE	
1		MIN	MAX MA	MIN Y 8.4	MAX	MIN	MAX	MIN	MAX			
1 2		MIN	MAX MA 8.8 8.7	MIN Y 8.4 8.3	MAX JU 8.8	MIN UNE 8.4	MAX JU	MIN	MAX			
1 2 3 4	APR	MIN	MAX MA 8.8 8.7 8.8	MIN Y 8.4 8.3 8.6	MAX JU 8.8 8.9 3.8	MIN 8.4 8.4 8.6	MAX JU	MIN LY	MAX AUG	UST 	SEPTE	MBER
1 2 3 4 5	APR	MIN	MAX 8.8 8.7 9.8 8.9	MIN 9 8.4 8.3 8.6 8.7	8.8 8.9 3.8 8.6	MIN 8.4 8.4 8.6 8.4	MAX JU	MIN LY	MAX	UST 	SEPTE	
1 2 3 4 5	APR	MIN	MAX 8.8 8.7 8.9 	MIN Y 8.4 8.3 8.6 8.7	MAX JU 8.8 8.9 8.8 8.6 8.7 9.9	MIN 8.4 8.4 8.6 8.4 8.6 8.4	MAX JU	MIN LY	MAX AUG	UST 	SEPTE	MBER
1 2 3 4 5	APR	MIN	MAX 8.8 8.7 9.8 8.9	MIN 9 8.4 8.3 8.6 8.7	MAX JU 8.8 8.9 3.8 8.6 8.7 9.9	MIN 8.4 8.6 8.4 8.6 8.4 8.6	MAX JU	MIN LY	MAX	UST 	SEPTE	MBER
1 2 3 4 5 6 7 8	APR	MIN	MAX MA 8.8 8.7 8.8 9.0	MIN 9.4 8.3 8.6 8.7	MAX JU 8.8 8.9 8.8 8.6 8.7 9.9	MIN 8.4 8.4 8.6 8.4 8.6 8.4	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10	APR	MIN	MAX MA 8.8 8.7 8.8 8.9 9.0 9.1	MIN 9 8.4 8.3 8.6 8.7 8.7 8.7 8.7	MAX JU 8.8 8.9 3.8 8.6 8.7 8.9 9.0 8.9 8.9 8.9	MIN 8.4 8.4 8.6 8.4 8.3 8.4 8.6 8.7	MAX JU	MIN	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13	APR 8.9 8.9 9.0	MIN	MAX 8.8 8.7 8.8 9.0 9.1	MIN 9.4 8.4 8.3 8.6 8.7 8.7	MAX JU 8.8 8.9 8.9 8.6 8.7 9.0 8.9 8.9 8.9 8.9	MIN 8.4 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.7 8.6 8.7	MAX JU	MIN	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14	APR	MIN	MAX MA 8.8 8.7 8.8 8.9 9.0 9.1	8.4 8.3 8.6 8.7 8.7 8.7	MAX JU 8.8 8.9 8.8 8.6 8.7 8.9 9.0 8.9 8.9 8.9 8.9	MIN 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7	MAX JU	MIN	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.9 8.9 9.0 9.0	MIN	MAX MA 8.8 8.7 8.9 9.0 9.1 8.9	MIN 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7	MAX JU 8.8 8.9 8.6 8.7 8.9 9.0 8.9 8.9 8.9 8.9	MIN 8.4 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.7 8.6 8.6 8.6 8.6 8.6	MAX JU	MIN	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	8.9 9.0 9.0	MIN	MAX MA 8.8 8.7 8.8 8.9 9.0 9.1 8.9 9.0 9.0	MIN 9 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	MAX JU 8.8 8.9 8.8 8.6 8.7 8.9 9.0 8.9 8.9 8.9 8.8 8.6	MIN 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.7	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16	8.9 8.9 9.0 9.0 8.9	MIN	MAX MA 8.8 8.7 8.8 9.0 9.1 8.9 9.0	MIN 9 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.8	MAX JU 8.8 8.9 8.8 8.6 8.7 9.0 8.9 8.9 8.9 8.9 8.8 9.0 8.9 8.8	MIN 8.4 8.4 8.6 8.4 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	8.9 9.0 9.0 9.0	MIN	MAX MA 8.8 8.7 8.8 8.9 9.0 9.1 8.9 9.0 9.0 8.9	MIN 9 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	MAX JU 8.8 8.9 8.8 8.6 8.7 8.9 9.0 8.9 8.9 8.9 8.8 8.6	MIN 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.7	MAX JU	MIN	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	8.9 8.9 9.0 9.0 8.9	MIN	MAX MA 8.8 8.7 8.8 9.0 9.1 8.9 9.0 9.1 8.9 8.9 8.8 8.9	MIN Y 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.5 8.8	MAX JU 8.8 8.9 8.9 8.9 8.9 8.9 8.8 8.9 8.8 8.9 8.8 8.9 8.8 8.9 8.8	MIN 8.4 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	8.9 9.0 9.0 9.0 8.9	MIN	MAX MA 8.8 8.7 8.8 8.9 9.0 9.1 8.9 9.0 9.0 8.9 8.8 8.9 9.0 9.1	MIN 9 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.5 8.8 8.8	MAX JU 8.8 -8.9 8.8 8.6 8.7 8.9 9.0 8.9 8.9 8.8 9.0 8.9 8.8 8.9 8.8 8.7 8.7 8.7	MIN 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	8.9 8.9 9.0 9.0 8.9	MIN 8.9 8.9 8.8 8.7 8.7 8.7	MAX MA 8.8 8.7 8.9 9.0 9.1 8.9 9.0 8.9 8.9 8.9 8.9	MIN 9 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.8	MAX JU 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.	MIN 8.4 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	8.9 9.0 9.0 9.0 8.9	MIN	MAX MA 8.8 8.7 8.9 9.0 9.1 8.9 9.0 8.9 8.9 8.9 9.1 9.0 8.9 8.9	MIN 9 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.5 8.8 8.8 8.8	MAX JU 8.8 -8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	MIN 8.4 8.4 8.6 8.4 8.3 8.4 8.6 8.7 8.6 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	APR 8.9 8.9 9.0 8.9 9.0 8.9 8.9 8.9	MIN	MAX MA 8.8 8.7 8.8 9.0 9.1 8.9 9.0 9.1 8.9 8.9 8.9 8.9 8.9 8.9 8.9	MIN Y 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.8 8.8 8.8 8.8	MAX JU 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.	MIN 8.4 8.4 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 22 25 26 27 28	8.9 9.0 9.0 8.9 9.0 8.9	MIN	MAX MA 8.8 8.7 8.9 9.0 9.1 8.9 9.0 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	MIN Y 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.5 8.8 8.8 8.6 8.6 8.7	8.8 8.9 9.0 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	MIN 8.4 8.4 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	8.9 8.9 9.0 9.0 8.9 9.0 8.9 8.9	MIN	MAX MA 8.8 8.7 8.8 9.0 9.1 8.9 9.0 9.1 8.9 8.9 8.9 8.9 8.9 8.9 8.9	MIN Y 8.4 8.3 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.8 8.8 8.8 8.8	MAX JU 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.	MIN 8.4 8.4 8.4 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7 8.6 8.7	MAX JU	MIN LY	MAX AUG	UST	SEPTE	MBER

MONTH

O6470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2 12.1 10.2 10.8 11.6 10.9 11.2 1.5 1.6 10.9 11.2 1.5 1.6 10.9 11.2 1.5 1.6 10.9 11.2 1.5 1.5 1.6 10.9 11.2 1.5 1.5 10.9 11.3 10.9 11.3 10.9 11.3 10.5 10.9 11.3 10.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5			OCTOBER			NOVEMBE	R		DECEMBER	?		JANUARY	
T 13.3 10.5 11.8 12.2 10.4 11.2 11.3 10.5 10.9 9 13.3 11.6 12.6 12.0 10.4 11.2 11.3 10.5 10.5 10.9 10 15.0 12.3 13.6 13.2 11.7 12.3 10.7 19.5 10.0 11 15.0 12.3 13.6 13.2 11.7 12.3 10.7 19.5 10.0 12 16.6 13.9 15.5 13.0 11.4 12.2 29.4 8.5 9.4 220.0 120.0 220.0 220.0 13 16.6 13.4 14.7 13.1 11.3 12.2 8.3 7.6 8.3 220.0 18.9 220.0 14 16.2 12.5 14.7 12.5 11.4 12.2 8.3 7.6 8.3 220.0 120.0 220.0 220.0 15 15.7 14.4 14.7 13.1 11.3 12.2 8.3 7.6 8.1 12.2 20.0 220.0 220.0 16 14.6 2 12.5 14.9 12.7 10.4 11.5 8.5 7.6 8.4 12.2 20.0 220.0 220.0 17 18 14.0 11.3 12.6 12.3 10.0 11.4 12.2 9.5 14.4 8.5 98.1 8.1 8.2 220.0 220.0 220.0 18 14.0 11.3 12.6 12.3 10.0 11.1 10.1 10.1 10.1 10.0 10.0 10	2 3 4	===	===	===	12.1 10.3 9.9	10.2 9.1 8.8	10.8 9.7 9.4	11.6 11.1 11.2	10.9 10.5 10.5	11.2 10.7 10.8	===	=======================================	
12 16.8 13.9 15.3 13.0 11.4 12.2 8.3 7.8 8.3 220.0 18.9 320.0 17.1 11.4 11.5 11.5 11.5 11.5 11.5 11.5 11	7 8 9	13.3 13.1 13.9	10.5 11.6 11.4	11.8 12.2 12.6	12.2 12.0 12.7	10.4 10.0 10.7	11.2 11.1 11.7	11.3 11.0 11.0	10.5 10.3 10.1	10.9 10.6 10.5	==	==	
17	12 13 14	16.8 16.6 16.2	13.9 13.4 12.6	15.3 14.7 14.3	13.0 13.1 12.5	11.4 11.3 10.4	12.2 12.2 11.5	8.3 8.5 8.5	7.8 7.6 7.6	8.3 8.0 8.1	>20.0 >20.0 >20.0	18.9 >20.0 >20.0	>20.0
22	17 18 19	14.5 14.0 14.7	11.9 11.3 12.3	12.9 12.6 13.4	10.8 12.3 13.3	9.0 10.0 11.5	9.9 11.1 12.3	10.1 10.4 10.3	8.9 9.5 9.4	9.5 9.8 9.9	>20.0 >20.0 >20.0	>20.0 >20.0 >20.0	>20.0 >20.0 >20.0
12.6 10.3 11.4 13.9 12.5 13.2 10.0 5.1 9.6 220.0	22 23 24	14.1 14.2 14.3	12.6 12.7 12.2	13.4 13.4 13.1	14.7 14.9 14.9	13.5 13.5 14.0	14.1 14.2 14.4	10.2 10.2 10.1	8.8 9.2 9.2	9.6 9.7 9.7	>20.0 >20.0 >20.0	>20.0 >20.0 >20.0	>20.0 >20.0 >20.0
DAY MAX MIN MEAN MAX MIN MAX MIN MEAN MAX MIN MEAN MAX MIN MAX MIN MAX MIN MAX MIN ME	27 28 29 30	12.6 13.6 14.8 14.9	10.3 11.2 12.5 13.3	11.4 12.4 13.5 14.1	13.9 13.3 12.4 11.5	12.5 12.2 11.2 10.7	13.2 12.9 11.6 11.0	10.0 9.7 9.6 8.9	9.1 8.8 8.6 7.9	9.6 9.2 9.2 8.4	>20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0
DAY MAX MIN MEAN MAX	MONTH												
Tebruary March April March													
1 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 10.9 8.5 9.6 3 >20.0 >20.0 >20.0 >20.0 10.9 8.5 9.6 3 >20.0 >20.0 >20.0 >20.0 11.1 9.5 10.3 4 >20.0 >20.0 >20.0 >20.0 >20.0 11.1 9.5 10.3 5 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	DAY	MAX			MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
7			FEBRUAR	RY		MARCH			APRIL			MAY	
12	2 3 4	>20.0	>20.0 >20.0 >20.0	>20.0	>20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0	===	==	==	10.9	7.0 8.5 9.5	9.6
17 >20.0 >20.0 >20.0 11.7 10.4 11.1 12.8 9.7 11.0 18 10.6 8.0 9.5 19 11.4 6.7 8.4 20 >20.0 19.9 20.0 13.4 11.2 12.3 11.4 6.7 8.4 20 >20.0 19.9 20.0 13.4 11.2 12.3 11.4 6.7 8.4 21 >20.0 18.4 19.3 10.9 8.8 11.3 22 19.6 18.7 19.0 15.3 6.6 13.2 24 >20.0 >20.0 >20.0 17.5 14.6 15.7 <t< td=""><td>2 3 4 5 6 7 8 9</td><td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td><td>>20.0 </td><td>>20.0 </td><td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td><td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td><td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td><td></td><td> 11.1</td><td>11.1</td><td>10.9 11.1 13.2</td><td>7.0 8.5 9.5 10.6</td><td>9.6 10.3 11.7</td></t<>	2 3 4 5 6 7 8 9	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 	>20.0 	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0		 11.1	11.1	10.9 11.1 13.2	7.0 8.5 9.5 10.6	9.6 10.3 11.7
22 20.0 18.4 19.3 10.9 8.8 11.3 23 19.6 18.7 19.0 15.3 6.6 13.2 24 >20.0 18.8 16.3 17.5 12.8 8.6 11.2 25 >20.0 >20.0 >20.0 17.5 14.6 15.7 9.4 6.3 8.2 26 16.0 14.5 15.2 12.7 11.0 11.8 9.8 3.7 6.6 27 16.1 14.9 15.4 12.8 11.4 12.2 9.5 4.3 7.1 28 >20.0 >20.0 >20.0 15.3 13.3 14.2 12.5 10.4 11.6 8.2 4.3 7.2 29 >20.0 >20.0 >20.0 14.4 12.8 13.6 7.0 1.4 5.2 <td>2 3 4 5 6 7 8 9 10 11 12 3 14</td> <td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td> <td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td> <td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td> <td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td> <td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0</td> <td>>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 19.9 >20.0 >20.0</td> <td>11.2</td> <td>11.1 10.6 10.4 10.0 9.6</td> <td>11.1 10.6 10.8 10.8</td> <td>10.9 11.1 13.2 12.7 12.7</td> <td>7.0 8.5 9.5 10.6 9.4 9.2</td> <td>9.6 10.3 11.7 10.6 11.0</td>	2 3 4 5 6 7 8 9 10 11 12 3 14	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 19.9 >20.0 >20.0	11.2	11.1 10.6 10.4 10.0 9.6	11.1 10.6 10.8 10.8	10.9 11.1 13.2 12.7 12.7	7.0 8.5 9.5 10.6 9.4 9.2	9.6 10.3 11.7 10.6 11.0
27 16.1 14.9 15.4 12.8 11.4 12.2 9.5 4.3 7.1 28 >20.0 >20.0 >20.0 15.3 13.3 14.2 12.5 10.4 11.6 8.2 4.3 7.2 29 >20.0 >20.0 >20.0 14.4 12.8 13.6 7.0 1.4 5.2 30	2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 19 19	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	11.2 10.7 11.4 11.2 12.1	11.1 10.6 10.4 10.0 9.6	11.1 10.6 10.8 10.5 10.8	10.9 11.1 13.2 12.7 12.7 12.6 11.1 14.3 12.8 10.6 11.4	7.0 8.5 9.5 10.6 9.4 9.2 10.1 8.3 9.3 9.3 9.7 8.0 6.7	9.6 10.3
	2 3 45 67 8 9 10 11 13 14 15 16 17 18 19 20 21 22 24	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 	>20.0 >20.0	>20.0 >20.0	>20.0 >20.0	11.2 10.7 11.4 11.2 12.1 11.7 13.4	11.1 10.6 10.4 10.0 9.6 11.2	10.8 10.8 10.5 10.8 11.1 12.3	10.9 11.1 13.2 12.7 12.7 12.6 11.1 14.3 12.8 10.6 11.4 11.3 10.9	7.0 8.5 9.5 10.6 9.4 9.2 10.1 8.3 9.3 9.7 8.0 6.7 9.5 8.6 6.6 8.6	9.6 10.3 11.7 10.6 11.0 11.3 10.0 11.3 11.0 9.5 8.4 10.4 11.3 13.2 11.2
	2 3 4 5 6 7 8 9 10 11 21 3 14 5 16 7 18 9 20 21 22 3 24 5 27 28 29 30	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 >20.0	>20.0 >20.0	>20.0 >20.0	>20.0 >20.0	11.2 10.7 11.4 11.2 12.1 11.7 13.4 13.4 13.4 12.7 12.7 12.8 12.5	11.1 10.6 10.4 10.0 9.6 11.2 11.9 11.0 11.4 10.4	10.8 10.5 10.8 10.5 10.8 11.1 12.3 12.5	10.9 11.1 13.2 12.7 12.7 12.6 11.1 14.3 12.8 10.6 11.4 11.3 10.9 15.3 12.8 9.4 9.8 9.5 8.2 7.0	7.0 8.5 9.5 10.6 9.4 9.2 10.1 8.3 9.3 9.6 7 9.5 86.6 86.6 86.3 74.3 1.4 1.5	9.6 10.3 11.7 10.6 11.3 11.0 11.3 11.0 9.5 8.4 11.3 13.2 11.2 8.2 6.6 7.1 7.2 4.6

> Actual value is known to be greater than the value shown

O6470875 JAMES RIVER AT DAKOTA LAKE DAM NEAR LUDDEN, ND--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

339

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBER	3
1	7.8	3.0	5.2									
2												
2 3 4	5.8	2.5	4.3									
4	4.6	.8	2.7									
5	3.4	•5	1.7									
6	7.6	1.7	4.5									
7	9.4	1.6	5.1									
8	6.7	1.1	4.2									
9	5.2	1.0	2.5									
10	8.1	2.0	5.4									
11	8.3	4.9	6.6									
12	8.0	3.3	5.7									
13	7.6	4.0	5.4									
14	9.0	4.0	6.8									
15	8.9	4.5	6.5									
16	11.4	5.7	7.0									
17	12.6	7.1	9.2									
18	8.9	4.1	6.0									
19	9.5	4.9	7.3									
20	8.2	5.1	6.8									
21	7.6	3.6	4.7									
22	9.0	5.9	7.6									
23												
24	9.0	3.7	5.9									
25	9.9	5.0	7.7									
26	11.8	4.2	7.4									
27	9.4	5.4	7.5									
28	7.1	4.4	5.7									
29	9.7	5.3	8.3									
30	11.1	5.7	8.4									
31												
MONTH												

06470878 JAMES RIVER AT ND-SD STATE LINE

LOCATION.--Lat 45°56'10", long 98°10'26", in SE1/4SE1/4 sec. 34, T.129 N., R.60 W., Dickey County, Hydrologic Unit 10160003, at bridge on North Dakota-South Dakota state line road 6.5 mi south, and 1 mi west from Ludden.

DRAINAGE AREA.--5,480 mi^2 , approximately, revised, of which about 3,300 mi^2 is probably noncontributing.

GAGE HEIGHT RECORDS

PERIOD OF RECORD. -- October 1981 to current year (gage heights only).

GAGE .-- Water-stage recorder. Datum of gage is 1,200 ft above National Geodetic Vertical Datum of 1929.

EXTREMES FOR PERIOD OF RECORD.--Maximum observed, 93.60 ft, Mar. 28, 1987; minimum observed, 87.10 ft, Aug. 23, 1988.

EXTREMES FOR CURRENT YEAR.--Maximum observed, 89.59 ft, May 1; minimum observed, 87.10 ft, Aug. 23, falling stage, was lower during period of missing record, Aug. 24 to Sept. 30.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	88.70	89.08						89.29	88.68	87.80		
2	88.72	89.09						88.94	88.54	87.83		
3	88.68	89.13						88.52	88.50	87.78		
4	88.68	89.15						88.56	88.53	87.80		
5	88.90	89.14						88.66	88.61	87.97		
6	88.82	89.10						89.00	88.60	88.12		
7	88.79	89.08						88.83	88.48	87.80		
8	88.81	89.13						88.56	88.33			
9	88.92	89.03						88.50	88.36			
10	88.81	89.10						88.55	88.42			
11	88.85	89.03						88.60	88.49			
12	88.90	89.07						88.53	88.16			
13	88.96	89.10						88.58	88.11			
14	88.98	89.08						88.64	88.18			
15	88.98	89.09						88.48	88.22			
16	89.02	89.20						38.49	88.21			
17	89.02	89.15						88.73	88.22			
18	89.03	89.07						88.88	88.27			
19	89.06	88.91					89.04	88.44	88.12			
20	89.08	88.87					89.06	88.40	88.14			
21	89.08	88.78					88.98	88.46	88.14			
22	89.06	88.63					88.96	88.48	87.97			
23	89.06						88.89	88.60	88.09			
24	89.09						88.92	88.70	87.97			
25	89.13						88.78	88.94	87.84			
2)	09.17						50.76	00.94	07.04			
26	89.12						88.75	88.70	87.89			
27	89.17						88.73	88.60	88.02			
28	89.10						88.77	88.66	87.91			
29	89.09						88.86	88.86	87.76			
30	89.10						88.98	88.91	87.83			
31	89.08							88.90				
MEAN	88.96							88.68	88.22			
MAX	89.17		722					89.29	88.68			
MIN	88.68							88.40	87.76			
LITIA	00.00							00.40	01.10			

06470980 JAMES RIVER NEAR HECLA, SD

LOCATION.--Lat 45°53'34", long 98°10'13", in SW1/4SE1/4SE1/4 sec. 16, T.128 N., R.61 W., Brown County, SD, Hydrologic Unit 10160003, on left bank 30 ft upstream from bridge on county road 1.0 mi northwest of Hecla, South Dakota and 3.0 mi downstream from the North Dakota - South Dakota border.

DRAINAGE AREA.--5,520 mi² approximately, of which about 3,300 mi² is probably noncontributing.

GAGE HEIGHT RECORDS

PERIOD OF RECORD. -- February 1982 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1200.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records of stream velocity and discharge are also collected at this location. These records which have been used to supplement the discharge record for station 06740875, James River at Dakota Lake Dam near Ludden, ND are available in the files of the District office.

EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height, 92.72 ft, Apr. 1, 1987; minimum, 86.15 ft, Sept. 18, 1988.

EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 89.16, May 1; minimum, 86.15 ft, Sept. 18.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP
1 2 3 4 5	88.62 88.55 88.48 88.51 88.75	88.79 88.81 88.85 88.90 88.86	87.92 87.88 87.85 87.82 87.78	87.67 87.67 87.66 87.66	87.64 87.65 87.66 87.64 87.62	87.60 87.62 87.63 87.65 87.66	88.54 88.58 88.62 88.65 88.68	88.91 88.73 88.47 88.49 88.55	88.51 88.42 88.39 88.39 88.42	87.66 87.68 87.68 87.64 87.66	87.01 87.09 87.13 87.13 87.22	86.62 86.62 86.45 86.30 86.28
6 7 8 9	88.60 88.54 88.60 88.69 88.58	88.84 88.83 88.88 88.78 88.81	87.74 87.72 87.69 87.66 87.66	87.64 87.63 87.62 87.61 87.61	87.62 87.60 87.59 87.58 87.57	87.68 87.69 87.71 87.73 87.75	88.71 88.72 88.74 88.75 88.76	88.66 88.68 88.53 88.53 88.48	88.41 88.32 88.22 88.21 88.23	87.74 87.69 87.50 87.48 87.43	87.22 87.26 87.04 87.08 87.20	86.40 86.60 86.63 86.47 86.35
11 12 13 14 15	88.59 88.62 88.68 88.69 88.70	88.78 88.81 88.82 88.81 88.83	87.71 87.64 87.71 87.70 87.70	87.60 87.61 87.59 87.59 87.58	87.56 87.55 87.55 87.54 87.54	87.78 87.80 87.83 87.86 87.89	88.77 88.78 88.79 88.80 88.81	88.51 88.48 88.56 88.57 88.37	88.25 88.10 88.03 88.10 88.12	87.39 87.40 87.58 87.50 87.48	87.09 87.03 87.01 86.99 87.01	86.46 86.35 86.30 86.31 86.34
16 17 18 19 20	88.75 88.76 88.78 88.80 88.84	88.94 88.89 88.81 88.71 88.64	87.71 87.71 87.71 87.71 87.71	87.59 87.59 87.59 87.59 87.58	87.54 87.53 87.53 87.52 87.53	87.92 87.97 88.01 88.05 88.10	88.81 88.83 88.84 88.84 88.85	88.44 88.63 88.46 88.35 88.40	88.08 88.08 88.09 88.02 87.98	87.40 87.40 87.37 87.37 87.33	87.10 86.94 86.80 86.88 86.97	86.42 86.41 86.28 86.47 86.43
21 22 23 24 25	88.80 88.80 88.81 88.82 88.82	88.55 88.43 88.32 88.26 88.20	87.71 87.70 87.70 87.70 87.70	87.57 87.57 87.59 87.60 87.58	87.53 87.54 87.55 87.55 87.55	88.15 88.19 88.23 88.27 88.32	88.85 88.85 88.85 88.84 88.83	88.41 88.55 88.54 88.57 88.71	87.99 87.87 87.88 87.86 87.76	87.31 87.32 87.37 87.34 87.28	87.10 86.96 86.87 86.75 86.68	86.61 86.70 86.79 86.89 86.71
26 27 28 29 30 31	88.88 88.89 88.83 88.81 88.81 88.80	88.15 88.08 88.01 87.94 87.96	87.69 87.69 87.68 87.68 87.68 87.68	87.58 87.58 87.60 87.61 87.62 87.63	87.55 87.56 87.57 87.58	88.35 88.39 88.43 88.47 88.50 88.52	88.75 88.66 88.66 88.70 88.75	88.56 88.50 88.51 88.63 88.65 88.65	87.76 87.79 87.78 87.63 87.66	87.30 87.29 87.31 87.25 87.13 87.14	86.64 86.70 86.63 86.64 86.66 86.71	86.69 86.59 86.62 86.57 86.83
MEAN MAX MIN	88.72 88.89 88.48	88.61 88.94 87.94	87.72 87.92 87.64	87.61 87.67 87.57	87.57 87.66 87.52	87.99 88.52 87.60	88.75 88.85 88.54	88.55 88.91 88.35	88.08 88.51 87.63	87.43 87.74 87.13	86.95 87.26 86.63	86.52 86.89 86.28

06470980 JAMES RIVER NEAR HECLA, SD--CONTINUED

DATE	T	IME	STREA FLOW INSTA TANEO (CFS	AM- V, AN- DUS S) (1	SPE- CIFIC CON- DUCT- ANCE US/CN	PH - (STA AR M) UNIT	ND- ID IS)	TEMP ATU AI (DEG	RE R C)	TEMPI ATUI WATI (DEG (OOO	RE ER C)	TUR BII ITY (FTU)	D- Y)	XYGE DIS SOLV (MG/	SOI SOI ED SAT L) AT	GEN, IS- LVED ER- ENT TUR- ION)	OXYG DEMA BIC CHE ICA 5 I (MG	ND, CM- CL, OAY	HARD NESS TOTA (MG/ AS CACO	S AL /L 03)
ост 06	10	000	193		60	00 8	3.72		3.0		3.0	17		10	.0	83			2	220
NOV 16	11	700	301		6	50 8	.95		1.0		3.0	3	.9	15	•5	114			2	240
FEB 24		200	19		180		3.25	_1	5.0		0.5		.1		.0	136				620
APR 11		330	50				.91		8.0		9.0	14			.7	108		5.9		210
MAY																107				290
23	1:	300	11		80	00 8	.48	2	5.0	1	7.5	19		10	•5	107		4.4		
DATE	DIS SOI (MC AS	CIUM S- LVED G/L CA)	MAGN SIU DIS SOLV (MG/ AS M	JM, SO S- VED SO VL MG)	DIUM DIS- DLVEI (MG/I AS NA	D SOD		SOR	ON	POT. SII SOL' (MG, AS (UM, S- VED /L K)	ALKA LINIT (MG, AS CACO (904	TY S B /L 03) A	SULFA DIS- SOLV (MG/ S SO 0094	TE RII	CL)	SOL	DUE 180 1. C IS- VED	SOLID SUM C CONST TUENT DIS SOLV (MG/	OF TI- TS, S- VED /L)
OCT 06	49	9	24		40		27		1	15		217		95	1:	1		379	3	364
NOV 16	5	2	26		49		30		1	13		225		100	16	5		404	3	391
FEB 24	100)	89		190		39		3	24		501		450	9	1	1	260	12	240
APR 11	4	7	23		44		30		1	9	.8	180		120	11	7		372		369
MAY 23	6	1	- 33		63		31		2	17		246		160	22	2		532		504
	DATE	SOI (TO P	IDS, IS- LVED ONS ER -FT) 303)	SOLID DIS- SOLV (TON: PER DAY (7030)	ED I	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NIT TO (Mc AS	TRO- EN, RITE TAL G/L N) 615)	G NIT D SO (M AS	TRO- EN, RITE IS- LVED G/L N) 613)	NO2 TO (M AS	TRO- EN, +NO3 TAL G/L N) 630)	NITE GEN NO2+N DIS SOLV (MG/ AS N	103 ED L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	AMI SO (1)	ITRO- GEN, MONIA DIS- DLVED MG/L S N) D608)	GEN MON ORG TO (M	TRO-,AM- IA + ANIC TAL G/L N) 625)	
OCT			0.50	407		76				040				00		,,	010			
VOV			0.52	197		36				.010			<0.1		- 7		0.010			
FEB	· · ·		0.55	328		12				.010			<0.1				0.010			
APR			1.71	64.	5	13			<0	.010			<0.1	00		(0.020		-	
11 MAY	•••		0.51	50.	2	40	<0	.010	<0	.010	<0	.100	<0.1	00	0.020	(0.020		1.1	
	5		0.72	15.	3	26	0	.010	<0	.010	<0	.100	<0.1	00	0.030	<(0.010		1.0	
	DATE	GEN MON ORG DI (M AS	TRO- ,AM- IA + ANIC S. G/L N) 623)	PHOS PHORO TOTA (MG/ AS P	js J	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)	PHO OR TO (M AS	OS- RUS, THO, TAL G/L P) 507)	PHO OR DI SOL (MG AS	/L VED	TO (U AS	ENIC TAL G/L AS) 002)	ARSEM DIS SOLV (UG/ AS A	ED L	BORON, DIS- SOLVED (UG/L AS B) (01020)	RI EI (I	DMIUM DTAL ECOV- RABLE UG/L S CD) 1027)	SO (U	MIUM IS- LVED G/L CD) 025)	
OCT			0 40			0.070			-	007				7	400				11	
NOA			0.40		-	0.030				.007				3	100				<1	
16 FEB	5		0.80			0.010				.001				2	120				<1	
APR			1.0		-	0.030			<0	.002				1	470				<1	
			0.60	0.1	10	0.030	0	.028	0	.008		1		2	100		1		<1	
	· · ·		0.70	0.1	40	0.030	0	.045	0	.008		2		2	160		1		<1	

343

06470980 JAMES RIVER NEAR HECLA, SD--CONTINUED

DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT										
06	1	44	6	<5		9	0.2		<1	<3
NOV 16	<1		5	<5		6	0.1		<1	<3
FEB 24	1		7	<5		18	<0.1		<1	14
APR										
11 MAY	1	260	10	<5	230	60	0.2	<1	<1	<3
23	1	950	6	<5	630	130	0.2	<1	<1	<3
DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CYANIDE TOTAL (MG/L AS CN) (00720)	CYANIDE DIS- SOLVED (MG/L AS CN) (00723)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT										
06			<0.01					35	18	99
NOV 16 FEB								17	14	91
24 APR			<0.01					48	2.5	33
11	10	<0.010	<0.01	10.0	0.600	18	1200	29	3.9	90
MAY 23	15	<0.010	<0.01	42.0	5.20	23	1200	37	1.1	97

06471200 MAPLE RIVER AT NORTH DAKOTA-SOUTH DAKOTA STATE LINE

LOCATION.--Lat 45°56'20", long 98°27'08", in SW74SE74 sec.33, T.129 N., R.62 W., Dickey County, ND, Hydrologic Unit 10160004, on left bank 0.4 mi upstream from State line, 7.8 mi northeast of Frederick, SD, and 15.7 mi upstream from mouth.

DRAINAGE AREA.--716 mi², of which about 332 mi² is probably noncontributing.

PERIOD OF RECORD .-- June 1956 to current year.

REVISED RECORDS. -- WDR SD-86-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 1,365 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 14, 1962, nonrecording gage at site 0.4 mi downstream at datum 0.94 ft lower.

REMARKS.--Estimated daily discharges: Mar. 1-4. Records good except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--32 years, 20.3 ft³/s, 14,710 acre-ft/yr; median of yearly mean discharges, 12 ft³/s, 8,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,930 ft³/s, Apr. 11, 1969; maximum gage height, 16.05 ft, Apr. 11, 1969, backwater from ice; no flow for long periods in each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

EXTREMES FOR CURRENT YEAR .-- No flow during year.

					M	EAN VALUES	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	•00	•00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	•00	.00	•00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MEAN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0

CAL YR 1987 TOTAL 16883.04 MEAN 46.3 MAX 1600 MIN .00 AC-FT 33490 WTR YR 1988 TOTAL 0.00 MEAN .00 MAX .00 MIN .00 AC-FT .00

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a second table.

Crest-stage partial-record stations

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain, but it is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

			D	D1-1			MAXIMUM
Station No.	Station Name	Location	Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)
		RED RIVER OF THE NO					
05052100	Richland County Drain #65 nr Great Bend, ND	Lat 46°05'41", long 96°47'01", in NE1/4 NE1/4 NE1/4 sec.11, T.130 N., R.49 W., Richland County, Hydrologic Unit 09020105, at bridge on county road 4 mi south and 1 mi east of Great Bend.	38	#1981-85, 1986-88	2-28-88	b2.89	a1. 0
05056244	St. Joe Coulee nr Webster, ND	Lat 48°19'23", long 99°00'19", in NEV4 NEV4 sec.21, T.156 N., R.65 W., Ramsey County, Hydro- logic Unit 09020201, on bridge crossing 2.75 mi north and 6 mi west of Webster.		1986-88	3-31-88	44.86	5.0
05060510	Cass County Drain #52 nr Amenia, ND	Lat 46°58'41", long 97°11'52", in SE1/4 SE1/4 SE1/4 sec.36, T.141 N., R.52 W., Cass County, Hydrologic Unit 09020204, on left bank 40 ft upstream on county road, 0.7 mi south, and 1 mi east of Amenia.	13.5	#1981-85, 1986-88	3-11-88	b5.48	a ₁₀
050605550	Rush River nr Prosper, ND	Lat 46°57'59", long 97°03'04", in NEV4 SEV4 SEV4 sec.1, T.140 N., R.51 W., Cass County, Hydrologic Unit 09020204, on right bank 30 ft upstream on county road, 1.5 mi west, and 0.2 mi north of Prosper.	170	#1981-85, 1986-88	3-28-88	⁶ 7.74	a90
05060570	Lower Branch Rush River nr Prosper, ND.	Lat 46°56'30", long 96°59'18", in NE'/4 NE'/4 SE'/4 sec.16, T.140 N., R.50 W., Cass County, Hydrologic Unit 09202004, on right bank 60 ft upstream on county road, 1.5 mi east, and 1.5 mi south of Prosper.	35.8	#1981-85, 1986-88	3-29-88 4-03-88	b6.38 3.94	ice jam 44
05062200	Elm River n Kelso, ND	Lat 47°17'30", long 97°06'50", in sec.23, T.144 N., R.51 W., Traill County, Hydrologic Unit 09020107, on left bank 50 ft upstream from county road, 4.0 mi south, and 3. mi west of Kelso.		#1955-63, d1965-73, #1980-88	3-28-88	b9.93	a ₁₀₀
05065500	Goose River nr Portland, ND	Lat 47°32'20", long 97°27'20", in SE¼ NE¼ sec.19, T.147 N., R.53 Traill County, Hydrologic Unit 09020101, on left bank 75 ft upstream from bridge on State Highway 18, 1.2 mi upstream from unnamed tributary, 4 mi downstream from Beaver Creek, and 5 mi northwest of Portland.	517 W.,	#1939-75, 1980-87	3-29-88	b11.20	a ₅₀₀

Station		ximum discharge at crest-stage part	Drainage area	Period of		ANNUAL Gage height	MAXIMUM Dis- charge
No.	Station Name	Location	(mi ²)	record	Date	(ft)	(ft^3/s)
		RED RIVER OF THE NORT	HCONTINU	ED			
	Red River at Grand Forks, ND	Lat 47°56'34", long 97°03'10", in SW1/4 NE1/4 sec.33, T.152 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on left bank 2.3 mi downstream from Red Lake River. (Previous site of Red River at Grand Forks).	30,100	#1882 – 1983 1987 – 88	4-05-88	19.68	8,500
05083000	Turtle River at Manvel, ND	Lat 48°04'43", long 97°11'03", in SE¼ sec.10, T.153 N., R.51 Grand Forks County, Hydrologic Unit 09020307, on left bank 10 f downstream from bridge on State Highway No. 33, O.3 mi west of Manvel, and 10 mi upstream from mouth.		#1945-70, 1972-73, 1980-88	4-03-88	b13.88	a600
05083500	Red River of the North at Oslo, MN	Lat 48°11'40", long 97°08'30", in SW1/4SW1/4 sec.36, T.155 N., R.51 W., Walsh County, Hydrologic Unit 09020306, on bridge crossing the Red River 0.5 mi west of Oslo, MN.	31,200	#1936-37, #1941-43, #1945-60, 1985-88	4-06-88	20.10	a11,500
05102490	Red River of the North at Pembina, ND	Lat 48°58'17", long 97°14'16", in NE1/4 sec.4, T.163 N., R.51 W. Pembina County, Hydrologic Unit 09020311, on bridge crossing the Red River 0.2 mi north of Pembina.		1985-88	4-08-88	757.35	c15,700
		SOURIS RIVER	BASIN				
05119410	Bonnes Coulee at Velva, ND	Lat 48°03'30", long 100°57'00", in NE1/4SW1/4 sec. 21, T.153 N., R.80 W., McHenry County, at culvert on U.S. Highway 52, 0.5 mi west of Velva.	53.0	1962, 1965, 1971-73, 1976-77, 1987-88	4-07-88		a3.0
		KNIFE RIVER	BASIN				
06339490	Elm Creek near Golden Valley, ND	Lat 47°06'25", long 102°03'05", in SE14 NW14 sec. 23, T.142 N., R.90 W., Mercer County, Hydrologic Unit 10130201, at bridge on county road, 13.5 mi south of Golden Valley.	82.0	#1967-81 1982-88	3-24-88	4.60	43
06340200	West Branch Otter Creek near Beulah, ND	Lat 47°08'05", long 101°39'35", in NW1/4 NW1/4 SW1/4 sec.12, T.142 N., R.87 W., Oliver County, Hydrologic Unit 10130201, on right bank 10 mi northeast of Beulah.	26.5	#1965-83, 1984-88	3-22-88	b3.96	14
		HEART RIVER	BASIN				
06343000	Heart River near South Heart, ND	Lat 46°51'56", long 102°56'53", in NE1/4 SE1/4 SW1/4 sec.8, T.139 N R.97 W., Stark County, Hydrologic Unit 10130202, on left bank 1.7 mi downstream from North Creek, 2 mi east of South Heart and 5.5 mi upstream from Edward Arthur Patterson Lake.	311	#1965-84, 1985-88	3-01-88	b4.23	50
06348300	Heart River at Starck Bridge near Judson, ND	Lat 46°42'11", long 101°12'45", in SE'14 SW'14 SW'14 sec.6, T.137 N R.83 W., Morton County, Hydrologic Unit 10130203, at Starck bridge, 9.5 mi southeast of Judson.	.,	1986-88	3-27-88	26.48	⁹ 600

^{# -} Operated as a continuous-record gaging station
a - Estimate
b - Backwater from ice
c - Discharge determined using record from station 2 mi downstream
d - Annual maximum only

Miscellaneous discharge measurement sites

Measurements of streamflow at points other than gaging stations are given in the following table.

		e measurements made at miscellaneous sit		Measured	Measu	rements
Stream	Tributary to	Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		RED RIVER OF THE NORTH BAS	SIN			
Mauvais Coulee Tributary No. 3 near Cando, ND 05056060	Mauvais Coulee	Lat 48°27'28", long 99°14'06", in NW1/4 NW1/4, sec.6, T.157 N., R.66 W., Towner County, Hydrologic Unit 09020201, at bridge 2.1 mi south of Cando.	60.2	1955 - 71 , 1986 - 87	10-28-87 03-02-88 03-10-88 03-24-88 04-06-88 04-21-88 06-08-88 09-14-88	0.00 0.00 0.01 0.34 0.18 0.02 0.00
Sheyenne River ^a	Red River of the North	Lat 46°22'02", long 97°33'47", in NW1/4 NW1/4 NE1/4 sec.2, T.133 N., R.55 W., Ransom County, Hydrologic Unit 09020204, 150 ft upstream from bridge on county road, 7.4 mi southeast of Lisbon at river mi 148.		1963 ^b , 1983-87	06-01-88 06-28-88 07-18-88 07-25-88 08-17-88 09-08-88	45.9 12.9 9.59 6.39 21.6 5.30
Sheyenne River ^a	Red River of the North	Lat 46°30'54", long 97°29'23", in SE1/4 SE1/4 SE1/4 sec.8, T.135 N., R.54 W., Ransom County, Hydrologic Unit 09020204, 30 ft upstream from county highway bridge, 5 mi south of Sheldon at river mi 114.	122	1963b, 1983-87	06-01-88 06-28-88 07-18-88 07-25-88 08-18-88 09-08-88	57.8 9.58 13.7 5.45 16.1 7.49 21.3
Sheyenne River ^a	Red River of the North	Lat 46°31'01", long 97°20'33", in NW1/4 SW1/4 SW1/4 sec.10, T.135 N., R.53 W., Ransom County, Hydrologic Unit 09020204, on bridge 7 mi east and 5 mi south of Sheldon.		1983-87	06-02-88 06-28-88 07-18-88 07-25-88 08-18-88 09-08-88	67.4 11.1 18.4 10.6 6.51 12.9 30.0
Maple River ^a	Sheyenne River	Lat 46°44'18", long 97°15'37", in SW1/4 SW1/4 NW1/4 sec.28, T.138 N., R.52 W., Cass County, Hydrologic Unit 09020205, 6 mi north and 1 mi west of Leonard.		1984-87	06-02-88	6.62
Pembina River ^a	Red River of the North	Lat 48°56'15", long 97°51'48", in NE1/4 SE1/4 SE1/4 sec.15, T.163 N., R.56 W., Pembina County, Hydrologic Unit 09020313, 1/2 mi north and 1 1/2 mi east of Walhalla.		1984 - 85, 1987	06-03-88 06-30-88	22.7 4.21
Pembina River ^a	Red River of the North	Lat 49°58'00", long 97°14'29", in lot 5, sec.4, T.163 N., R.51 W., Pembina County, Hydrologic Unit 09020313, 200 ft downstream of bridge in Pembina.			06-29-88 07-26-88	7.19 1.28
Souris River ^a	Assiniboine River	Lat 48°03'50", long 100°55'42", in SE1/4 NE1/4 NE1/4 sec.22, T.153 N., R.80 W., McHenry County, Hydrologic Unit 09010003, on bridge on Highway 41 north side of Velva.			08-26-88 08-30-88 09-02-88 09-06-88 09-09-88 09-21-88 09-26-88	57.3 73.1 57.4 36.4 30.3 24.7
Souris River ^a	Assiniboine River	Lat 48°16'54", long 100°28'54", in NE1/4 NW1/4 NE1/4 sec.6, T.155 N., R.76 W., McHenry County, Hydrologic Unit 09010003, 4 mi south and 31/2 mi west of Towner.			08-15-88 08-19-88 08-26-88 08-30-88 09-01-88 09-06-88 09-09-88 09-13-88 09-28-88	15.3 9.14 6.01 41.0 46.8 48.2 38.8 38.1 31.9 26.3

a - Current year measurements furnished by and previous measurement data available from North Dakota State Water Commission unless otherwise noted.
 b - Data collected by U.S. Geological Survey.

			Dendus	Measured	Measu	rements
Stream	Tributary to	Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		LITTLE MISSOURI RIVER BAS	SIN			
ittle Beaver Creek near Marmarth, ND 06335000 ^a	Little Missouri River	Lat 46°16'29", long 103°58'33", in NW14 SE14 NE14 sec. 7, T.132 N., R.106 W., Bowman County, Hydrologic Unit 10110201, 50 feet downstream of concrete ford, 3 mi southwest of Marmarth.	587	1938 - 79 [#] b, 1986 - 87	05-03-88 06-02-88	3.67
ittle Missouri ^a River	Missouri River	Lat $46^{\circ}35^{\circ}33^{\circ}$, long $103^{\circ}30^{\circ}53^{\circ}$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.17, T.136 N., R.102 W., Slope County, Hydrologic Unit 10110203, ten mi west and 8 mi north of Amidon.		1985-87	05-03-88 06-02-88 06-22-88 07-14-88 08-09-88	28.2 24.5 8.52 11.3 0.17
ittle Missouri River at Medora, ND 06336000a	Missouri River	Lat 46°55'10", long 103°31'40", in NE1/4 NW1/4 NE1/4 sec. 27, T.140 N., R.102 W., Billings County, Hydrologic Unit 10110203, on bridge on county highway in Medora.	6,190	1903-08#b, 1921-24#b, 1928-34#b, 1945-75#b, 1976b, 1985-87	04-12-88 05-04-88 06-01-88 06-21-88 07-14-88 08-09-88	81.1 43.7 56.4 26.8 28.2 0.34
ittle Missouri ^a	Missouri River	Lat 47°19'57", long 103°39'05", in NE1/4 SE1/4 SE1/4 sec.34, T.145 N., R.102 W., McKenzie County, Hydrologic Unit 10110205, 13 mi. east of Trotters.		1985-87	05-04-88 06-01-88 06-21-88 07-14-88 08-09-88	54.1 1.33 62.5 32.4 0.27
		MISSOURI RIVER BASIN				
issouri River	Missouri River Mainstem	Lat 47°29'42", long 101°25'49", in NE1/4SE1/4NW1/4 sec. 6, T.146 N., R.84 NMCLean County, Hydrologic Unit 10130101, at left bank of Garrison Dam tailrace, 2.5 mi west of Riverdal and at mile 1,390.			05-03-88	18,300
		KNIFE RIVER BASIN				
rooked Creek ^a	Knife River	Lat 47°09'52", long 102°41'37", in NW14 SW1/4 NW1/4 sec.35, T.143 N., R.95 W., Dunn County, Hydrologic Unit 10130201, 4 mi south and 4 mi east of Manning.			04-08-88 05-13-88 06-01-88	2.95 2.34 0.25
nife River ^a	Missouri River	Lat 47°19'50", long 101°27'06", in NE1/4 SE1/4 SW1/4 sec.36, T.145 N., R.85 W., Mercer County, Hydrologic Unit 10130201, 1 mi north and 3 mi west of Stanton.		-	09-08-88	10.3
nife River near Stanton, ND	Missouri River	Lat 47°21"29", long 101°23'49", in SW1/4SW1/4SW1/4 sec.21, T.145 N., R.84 Nercer County, Hydrologic Unit 10130201, 100 ft upstream from county bridge, and 2.5 mi north of Stanton.			05-03-88	82
		MISSOURI RIVER BASIN				
Missouri River near Stanton, ND 06340700	Missouri River Mainstem	Lat 47°17'14", long 101°20'25", in SW1/sec.16, T.144 N., R.84 W., McLean County, Hydrologic Unit 10130101, on right bank 3 mi southeast of Stanton and at mile 1,372.			05-04-89	18,300
Missouri River at Washburn, ND 06341000	Missouri River	Lat 47°17'20", long 101°02'15", in SE1/4SW1/4 sec.14, T.144 N., R82 W., McLean County, Hydrologic Unit 10130101, on alternate Highway 200 bridge at Washburn, and at mile 1,359	184,000	1987	10-01-87 10-01-87 10-21-87 10-21-87 11-10-87 11-10-87 05-02-88 05-04-88	14,300° 14,500 14,000° 12,000 12,500° 12,600 18,900 18,600
Missouri River	Missouri River Mainstem	Lat 46°58'44", long 100°56'08", in NE'/45W'/4NW'/4 sec.5, T.140 N., R.81 W. Morton County, Hydrologic Unit 10130101.	.,	-	05-05-88	

 ^{# -} Operated as a continuous-record gaging station.
 a - Current year measurements furnished by and previous measurement data available from North Dakota State Water Commission unless otherwise noted.
 b - Data collected by U.S. Geological Survey.
 c - Discharge measurement using moving-boat method.

		urements made at miscellaneous sites during		Measured	Meas	urements
Stream	Tributary to	Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		HEART RIVER BASIN				
Green River ^a	Heart River	Lat 46°58'08", long 102°44'54", in NE1/4 SE1/4 SE1/4 sec.2, T.140 N., R.96 W., Stark County, Hydrologic Unit 10130202, 4 mi north and 2 mi east of Dickinson.			09-27-88	1.44
Green River ^a	Heart River	Lat 46°56'52", long 102°40'53", in NE1/4 NW1/4 NW1/4 sec.16, T.140 N., R.95 W., Stark County, Hydrologic Unit 10130202, 3 mi north and 5 mi east of Dickinson.			08-02-88 09-14-88	
Green River near Gladstone, ND 06345000 ^a	Heart River	Lat 46°53'31", long 102°37'01", in SE1/4 SW1/4 SW1/4 sec.36, T.140 N., R.95 W., Stark County, Hydrologic Unit 10130202, 7 mi east of Dickinson.	356	1945-76	09-23-88	1.74
deart River above Lake Tschida nr Glen Ullin, ND ^a	Missouri River	Lat 46°39'28", long 102°09'46", in SW1/4 NE1/4 NE1/4 sec.30, T.137 N., R.90 W., Grant County, Hydrologic Unit 10130202, 16 mi south and 1 mi west of Hebron.		1987 ^b	04-07-88 04-25-88 05-27-88 06-08-88	37.9 13.6
Missouri River	Missouri River Mainstem	Lat 46°42'10", long 100°47'41", in SE1/4NE1/4 sec.8, T.137 N., R.80 W., Morton County, Hydrologic Unit 10130102.			05-06-88	19,000
		APPLE CREEK BASIN				
Long Creek above Long Lake near Moffit, ND 06349215	Apple Creek	Lat 46°37'59", long 100°14'29", in NE14NE14NW14 sec.4, T.136 N., R.76 W., Emmons County, Hydrologic Unit 10130103, and 4 mi southeast of Moffit			04-06-88 07-21-88	
		CANNONBALL RIVER BASIN				
annonball River ^a	Missouri River	Lat 46°21'52", long 102°21'04", in SE1/4 SE1/4 NW1/4 sec.3, T.133 N., R.93 W., Hettinger County, Hydrologic Unit 10130204, 1/2 mi south and 1 mi west of Mott.		, 	06-22-88	3.71
Cannonball River below Bentley, ND 06351000 ^a	Missouri River	Lat 46°21'30", long 102°02'30", in SW1/4 SW1/4 sec.6, T.133 N., R.90 W., Grant County, Hydrologic Unit 10130204, 2 mi northeast of Bentley.	1,140	1943-81	05-09-88 05-31-88 06-29-88 07-20-88	10.2 3.56
Cannonball River ^a	Missouri River	Lat 46°07'35", long 101°19'57", in SW1/4 SW1/4 NW1/4 sec.33, T.131 N., R.85 W., Grant County, Hydrologic Unit 10130204, 16 mi south of Raleigh.			05-09-88 05-31-88 06-29-88	13.4
Cedar River near Pretty Rock, ND 06352500 ^a	Cannonball River	Lat 46°01'55", long 101°49'55", in SW1/4 SW1/4 SW1/4 sec.33, T.130 N., R.89 W., Grant County, Hydrologic Unit 10130205, 7 mi north of Keldron, SD.	1,340	1943 - 76#b	04-07-88 05-11-88 05-31-88	33.5
		GRAND RIVER BASIN				
North Fork Grand River at Bowman-Haley tailwater	Grand River	Lat 46°59'05", long 103°14'39", in NW1/4SW1/4NW1/4 sec.19, T.129 N., R.100 W Bowman County, Hydrologic Unit 10130301, 1/8 mi below Bowman-Haley Dam.	.,		07-25-88	2.85

 ^{# -} Operated as a continuous-record gaging station.
 a - Current year measurements furnished by and previous measurement data available from North Dakota State Water Commission unless otherwise noted.
 b - Data collected by U.S. Geological Survey.

		surements made at miscellaneous sites dur		Measured	Meas	urements
Stream	Tributary to	Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		JAMES RIVER BASIN				
James River ^a	Missouri River	Lat 46°40'28", long 98°35'15", in SE14 SE14 SE14 SE14 sec.23, T.137 N., R.63 W., Stutsman County, Hydrologic Unit 10160003, on bridge 1 mi south of Montpelier.			05-31-88 06-07-88 06-09-88 06-13-88 06-15-88 06-27-88 06-27-88 07-06-88 07-06-88 07-12-88 08-17-88 09-08-88	7.74 32.3 34.9 50.6 22.9 10.1 10.7 32.7 25.7 22.0 20.2 7.14 5.96
James River ^a	Missouri River	Lat 46°32'38", long 98°28'26", in NE1/4 NE1/4 NE1/4 sec.4, T.135 N., R.62 W., LaMoure County, Hydrologic Unit 10160003, on bridge 1/2 mi northwest of Dickey.			05-24-88 05-31-88 06-07-88 06-09-88 06-15-88 06-15-88 06-23-88 06-27-88 07-06-88 07-06-88 07-12-88 08-17-88 09-08-88	15.1 12.2 15.3 39.0 73.2 30.9 10.7 16.2 15.4 27.6 23.4 25.0 9.86 7.65
James River ^a	Missouri River	Lat 46°27'13", long 98°22'06", in SW1/4 NW1/4 NW1/4 sec.4, T.134 N., R.61 W., LaMoure County, Hydrologic Unit 10160003, on bridge 1 mi north of Grand Rapids.	-		06-09-88 06-13-88 06-23-88 07-07-88 07-12-88 07-12-88 08-17-88 09-08-88 09-27-88	33.0 37.1 13.2 20.7 29.5 22.0 17.4 28.9 14.7 9.82
Maple River ^a	Elm River	Lat 46°15'24", long 98°34'25", in NW1/4 NW1/4 NE1/4 sec.16, T.132 N., R.63 W., Dickey County, Hydrologic Unit 10160004, 6 mi north and 1/2 mi east of Monango.		1984-87	04-05-88	0.83
Maple River ^a	Elm River	Lat 46°13'39", long 98°33'40", in NE1/4 NW1/4 NW1/4 sec.27, T.132 N., R.63 W., Dickey County, Hydrologic Unit 10160004, 4 mi north and 1 mi east of Monango.		1984-87	04-05-88	1.19
Maple River ^a	Elm River	Lat 46°08'22", long 98°23'41", in SE1/4 SW1/4 SW1/4 sec.24, T.131 N., R.62 W., Dickey County, Hydrologic Unit 10160004, 11/2 mi south and 11/2 mi east of Fullerton.		1984-87	04-05-88	1.30

a - Current year measurements furnished by and previous measurement data available from North Dakota State Water Commission unless otherwise noted.

Water-quality partial-record stations are particular sites where chemical-quality, biological and/or sediment data are collected systematically over a period of years for use in hydrologic analyses. These data are collected usually less than quarterly. Samples collected at sites other than gaging stations and partial-record stations to give better areal coverage in a river basin are referred to as miscellaneous sites.

DA	TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	ANCE (US/CM)	(STAND- ARD UNITS)	ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C) (00010)	TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)
					RED R	IVER OF T	HE NORTH	BASIN				
		05	056060 MA	AUVIAS COU	LEE TRIB	NO. 3 NEAD	R CANDO (I	LAT 48 27	28N LONG	G 099 14 0	06W)	
	24 06 21	1040 1310 1420	0.34 0.18 0.02	810 560 905	7.51	1.5 16.5 4.0	0.5 3.0 9.5	290	71	27	26	15
			05056244	ST. JOE C	OULEE NEA	R WEBSTER	, ND (LAT	48 19 23	N LONG O	99 00 19W)		
APR	05	1655	1.9	775	8.70	15.0	8.5	350	92	29	28	14
		0506	0510 CASS	S COUNTY D	RAIN NO.	52 NEAR A	MENIA, ND	(LAT 46	58 41N L	ONG 097 11	52W)	
MAR	30	1635	0.70	197	8.10	6.0	1.0	79	20	7.0	5.5	13
			05060550	RUSH RI	VER NEAR	PROSPER,	ND (LAT 46	6 57 59N	LONG 097	03 04W)		
APR	05	1810	44	679	8.10	17.0	3.0	280	66	27	33	20
		0506	0570 LOWE	ER BRANCH	RUSH RIVE	R NEAR PR	OSPER, ND	(LAT 46	56 30N L	ONG 096 59	18W)	
APR	05	1550	6.3	252	7.90	18.0	11.0	110	29	8.5	3.5	6
			050622	200 ELM R	IVER NEAR	KELSO, N	D (LAT 47	17 30N L	ONG 097	06 50W)		
MAR	31	1235	64	845	7.90	2.0	1.0	340	77	35	43	21
			05065500	GOOSE RI	VER NEAR	PORTLAND,	ND (LAT	47 32 20N	LONG 09	7 27 20W)		
APR	04	1335	344	875	7.90	4.5	1.5	330	75	34	55	26
			0508300	OO TURTLE	RIVER AT	MANVEL,	ND (LAT 4	8 04 43N	LONG 097	11 03W)		
APR	04	1200	398	870	7.20	6.0	3.0	420	100	42	210	51
		0	5083500 F	RED RIVER	OF THE NO	RTH AT OS	LO, MN (L	AT 48 11	35N LONG	097 08 25	SW)	
APR	07	1610	11300	470	7.30	22.0	8.0	200	48	20	17	15
						SOURIS RI	VED DAGIN					
			05110411	BONNES				48 O3 30N	LONG 10	0 57 00W)		
MAV	02	1310	2.0	2510	8.20	9.5	11.5	48 07 70N 680	140	81	340	51
MAI	02	1510	2.0	2510	0.20	9.5	11.5	080	140	01	540	71
						KNIFE RIV	ER BASIN					
			06339490	ELM CREEK	NEAR GOL	DEN VALLE	Y, ND (LA	т 47 06 2	5N LONG	102 03 05W	1)	
MAR	07	1420	3.0	1540	7.96	2.0	1.0	210	36	28	250	70
		0634	0200 WES	BRANCH O	TTER CREE	K NEAR BE	ULAH, ND	(LAT 47 C	08 05N LO	NG 101 39	35W)	
MAR	29	1351	4.3	1520	7.92	6.0	2.0	320	54	45	220	59
						UDADM DIV	ED DAGIN					
			06747000	UDADE D		HEART RIV		m 46 54 5	EN LONG	100 EC 571		
w.5	0.7		06343000									67
MAR	03		26							51		67
140			OO HEART									
	11	1500 0845	62 69	1280 1350	8.40	21.0	12.5 17.5	310	60	39 	190	56

DATE	SODIUM SIUM, AD- DIS- SORP- SOLVED TION (MG/L RATIO AS K) (00931) (00935)	ALKA- LINITY SULFATE LAB DIS- (MG/L SOLVED AS (MG/L CACO3) AS SO4) (90410) (00945)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUÉ SU AT 180 CO DEG. C TU DIS- SOLVED S (MG/L)	NSTI- ENTS, DIS- OLVED MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
		RED	RIVER OF TH	E NORTH	BASIN				
	05056060 M	AUVIAS COULEE TRI	B NO. 3 NEAR	CANDO (I	LAT 48 2	7 28N LONG C	99 14 0	6W)	
APR 06	0.7 17	160 170	25	0.10	18	424	450	0.21	0.58
	05056244	ST. JOE COULEE NE	EAR WEBSTER,	ND (LAT	48 19 2	3N LONG 099	00 19W)		
APR 05	0.7 19	190 210	15	0.10	. 34	526	539	2.76	0.72
47.1	05060510 CAS	S COUNTY DRAIN NO.	. 52 NEAR AM	ENIA, ND	(LAT 46	58 41N LONG	097 11	52W)	
MAR 30	0.3 3.7	90 24	1.7	0.10	10	139	127	0.26	0.19
	0506055	O RUSH RIVER NEAR	R PROSPER, N	D (LAT 46	5 57 59N	LONG 097 03	04W)		
APR 05	0.9 8.2	190 170	19	0.20	13	473	449	56.1	0.64
	05060570 LOW	ER BRANCH RUSH RIV	ER NEAR PRO	SPER, ND	(LAT 46	56 30N LONG	096 59	18W)	
APR 05	0.2 5.4	120 25	3.2	0.10	13	171	160	2.93	0.23
	05062	200 ELM RIVER NEA	AR KELSO, ND	(LAT 47	17 30N	LONG 097 06	50W)		
MAR 31	1 12	180 210	29	0.10	14	575	530	99.7	0.78
	05065500	GOOSE RIVER NEAR	R PORTLAND,	ND (LAT	47 32 201	N LONG 097 2	27 20W)		
APR 04	1 8.3	177 260	22	0.20	14	576	575	535	0.78
	050830	OO TURTLE RIVER	AT MANVEL, N	D (LAT 48	B 04 43N	LONG 097 11	03W)		
APR 04	5 14	170 300	320	0.30	18	1150	1110	1240	1.56
	05083500	RED RIVER OF THE	NORTH AT OSL	0, MN (L	AT 48 11	35N LONG OG	7 08 25	W)	
APR 07	0.5 7.0	160 76	19	0.10	18	293	301	8960	0.40
			SOURIS RIV	ER BASIN					
=	0511941	O BONNES COULEE I			48 03 30	N LONG 100 5	7 OOW)		
MAY 02	6 15	480 950	16	0.20	4.8	1940		10.6	2.64
			KNIFE RIVE						
	06339490	ELM CREEK NEAR GO	OLDEN VALLEY	, ND (LAT	r 47 06 :	25N LONG 102	03 05W)	
MAR 07	8 19	200 560	7.1	0.20	7.6	1080	1030	8.89	1.47
		T BRANCH OTTER CRE							
MAR 29	5 13	226 570	7.3	0.20	8.4	1080	1060	12.5	1.47
			HEART RIVE	R BASIN					
	06343000	HEART RIVER NEAR	SOUTH HEART	, ND (LAT	r 46 51	56N LONG 102	56 53W)	
MAR 03	9 18	270 950	22	0.20	7.6	1700	1670	121	2.31
	06348300 HEART	RIVER AT STARK BE	RIDGE NEAR J	UDSON, N	LAT 4	6 42 11N LON	IG 101 1	2 37W)	
APR 11	5 8,2	330 370	9.4	0.30	3.9	907	881	152	1.23

D	ATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED	DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS-	DIS-	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
				RE	D RIVER C	OF THE NOR	TH BASIN				
		05056060	O MAUVIAS	COULEE TR	IB NO. 3	NEAR CAND	O (LAT 4	8 27 28N	LONG 099 1	4 06W)	
APR	06	4	150	30	1	28	610	0.3	2	2	290
		05056	6244 ST. J	OE COULEE	NEAR WEE	STER, ND	(LAT 48	19 23N LO	NG 099 00	19W)	
APR	05	8	190	30	1	29	20	0.1	5	2	290
		05060510	CASS COUNT	Y DRAIN N	10. 52 NEA	AR AMENIA,	ND (LAT	46 58 41	N LONG 097	11 52W)	
MAR	30	4	140	190	<1	11	10	0.1	1	1	110
		050	060550 RUS	H RIVER N	EAR PROSE	PER, ND (L	AT 46 57	59N LONG	097 03 04	W)	
APR	05	3	170	30	<1	50	50	0.4	1	2	310
		05060570	LOWER BRAN	CH RUSH F	IVER NEAR	R PROSPER,	ND (LAT	46 56 30	N LONG 096	59 18W)	
APR	05	4	110	60	<1	12	10	0.4	1	1	120
		0	5062200 EL	M RIVER N	EAR KELSO	, ND (LAT	47 17 30	ON LONG O	97 06 50W)		
MAR	31	5	190	20	<1	64	110	0.1	1	2	360
		0506	65500 GOOS	E RIVER N	EAR PORTL	AND, ND (LAT 47 3	2 20N LON	G 097 27 2		
APR	04	2	170	40	<1	36	190	0.2	2	3	320
		050	083000 TUR	TLE RIVER	AT MANVE	EL, ND (LA	T 48 04	43N LONG	097 11 03W	1)	
APR	04	2	340	50	1	95	310	0.4	2	3	1100
		0508350	OO RED RIV	ER OF THE	NORTH AT	OSLO, MN	(LAT 48	11 35N L	ONG 097 08	25W)	
APR	07	2	140	40	1	18	20	0.4	2	2	190
					SOURTS	RIVER BA	SIN				
		0511	19410 BONN	ES COULEE				30N LONG	100 57 00	ow)	
MAY	02	2				190		0.1			1100
					KNIFE	E RIVER BA	SIN				
			490 ELM CR								
MAR	07	2	180	270	<1	26	110	0.1	1	1	430
		06340200	WEST BRAN					47 08 05	N LONG 101	39 35W)	
MAR	29	1	230	200	<1	36	280	<0.1	1	1	750
					HEART	RIVER BA	SIN				
		063430	DOO HEART	RIVER NEA				51 56N LOI	NG 102 56	53W)	
MAR	03	3							2		700
			HEART RIVER								
APR		1							2		630

MISCELLANEOUS TEMPERATURE AND SPECIFIC CONDUCTIVITY MEASUREMENTS WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE			SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)
	RED RIV	ER OF THE	NORTH B	ASIN	
0505640	3 COMSTO	CK COULEE	NEAR MI	NNEWAUKAN	, ND
MAR					
24	1425	0.24	720	2.5	0.5
APR 06	1520	0.01	970	20.5	7.0
05116	150 DES	LACS RIVE	R NEAR K	ENMARE, N	D
ост					
06	1515	0.03	2050	12.0	11.5
MAY 03	1900	0.08	1990	11.5	9.5
JUN					
14	1345	0.08	1720	14.5	14.5
0512	3900 BOU	NDARY CRE	EK NEAR	LANDA, ND	
APR 13 MAY	0940	1.0	1180	4.5	7.5

STATION RECORDS. GROUND WATER

GROUND-WATER LEVELS

BENSON COUNTY

480228098482501. Local number, 153-063-30CBC.
LOCATION.--Lat 48°02'28", long 098°48'25", Hydrologic Unit 09020201.
Owner: North Dakota State Water Commission.
AQUIFER.--Spiritwood.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.25 in, depth 200 ft, cased to 137 ft, plastic pipe, No. 18 slot screen set 137 to 143 ft below land-surface datum. INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM. -- Altitude of land-surface datum is 1,445 ft. Measuring point: Top of casing 2.00 ft above land-surface datum.

PERIOD OF RECORD.--June 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.32 ft below land-surface datum, June 15, 1987; lowest measured, 22.30 ft below land-surface datum, Mar. 3, 1971.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 19 FEB 29	13.78 14.90	JUN 08	14.29	JUL 26	15.04	AUG 15	15.38

BENSON COUNTY

480958099154801. Local number, 154-067-15BBB.
LOCATION.--Lat 48°09'58", long 099°15'48", Hydrologic Unit 09020201.
Owner: North Dakota State Water Commission.

AQUIFER.—Spiritwood.
WELL CHARACTERISTICS.—Drilled observation well, diameter 1.25 in, depth 180 ft, cased to 147 ft, plastic pipe,

No. 18 slot screen set 147 to 153 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 1,475 ft. Measuring point: Top of casing 2.00 ft above land-surface

datum.

PERIOD OF RECORD.--June 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.19 ft below land-surface datum, May 26, 1983; lowest measured, 33.80 ft below land-surface datum, Mar. 15, 1978.

WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 1 MAR 1	30.98 31.31	JUNE 2	31.54	JUL 15	31.84	AUG 16	32.20

BENSON COUNTY

481041099442701. Local number, 154-071-11AAD1.
LOCATION.--Lat 48°10'41", long 099°44'27", Hydrologic Unit 09020202.
Owner: North Dakota State Water Commission.
AQUIFER.--Fox Hills Sandstone.
WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 100 ft, cased to 42 ft, plastic pipe,
No. 12 slot screen set 42 to 45 ft below land-surface datum.
INSTRUMENTATION.--Measured quarterly using a steel tape.
DATUM.--Altitude of land-surface datum is 1,590 ft. Measuring point: Top of casing 2.00 ft above land-surface
datum.

datum.

PERIOD OF RECORD.--August 1968 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.41 ft below land-surface datum, July 12, 1982; lowest measured, 9.27 ft below land-surface datum, June 8, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 18	8.08	JUNE 8	9.27	JULY 14	8.66	AUG 16	8.59

BOWMAN COUNTY

461534103491701. Local number, 132-105-16BDB.
LOCATION.--Lat 46°15'34", long 103°49'17", Hydrologic Unit 10110203.
Owner: North Dakota State Water Commission.
AQUIFER.--Hell Creek-Fox Hills Sandstone.
WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 475 ft, cased to 441 ft, steel pipe, No. 12
slot screen set 441 to 459 ft below land-surface datum.

INSTRUMENTATION. -- Measured annually, during late November or early December, using a steel tape.

DATUM. -- Altitude of land-surface datum is 3,010 ft. Measuring point: Top of casing 3.40 ft above land-surface datum.

PERIOD OF RECORD.--September 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 270.15 ft below land-surface datum, Feb. 25, 1973; lowest measured, 272.15 ft below land-surface datum, Nov. 17, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

WATER DATE LEVEL NOV 17 272.15

BURLEIGH COUNTY

464943100305801. Local number, 139-078-27CBB.
LOCATION.--Lat 46°49'43", long 100°30'58", Hydrologic Unit 10130103.
Owner: North Dakota State Water Commission.
AQUIFER.--McKenzie.

AQUIFER.--McKenzie.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 255 ft, cased to 200 ft, plastic pipe, slotted 200 to 220 ft below land-surface datum, gravel packed.

INSTRUMENTATION.--Measured on a six-week schedule, except during the winter, using a steel tape.

DATUM.--Altitude of land-surface datum is 1,713. Measuring point: Top of casing 1.90 ft above land-surface

datum.

PERIOD OF RECORD.--August 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.73 ft below land-surface datum, June 5, 1987; lowest measured, 32.44 ft below land-surface datum, Aug. 26, 1977.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 5 NOV 6 DEC 9	22.70 22.67 22.64	FEB 13 MAR 30 APR 29	22.57 22.61 22.59	MAY 26 JULY 4 28	25.66 26.94 29.49	AUG 31 SEPT 29	26.85 25.43

CASS COUNTY

464359096541301. Local number, 138-049-29CCC. LOCATION.--Lat 46°43'59", long 096°54'13", Hydrologic Unit 09020105. Owner: North Dakota State Water Commission.

AQUIFER .-- West Fargo.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.25 in, depth 317 ft, cased to 278 ft, plastic pipe,

screens set at 278 to 280 ft below land-surface datum.

INSTRUMENTATION.--Measured monthly using a steel tape.

COOPERATION.--Record provided by the North Dakota State Water Commission since 1983.

DATUM.--Altitude of land-surface datum is 912 ft. Measuring point: Top of casing 1.80 ft above land-surface

datum.

PERIOD OF RECORD.--August 1964 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 33.90 ft below land-surface datum, Oct. 1, 1964; lowest measured, 61.92 ft below land-surface datum, Aug. 22, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30	61.13	NOV 29	61.11	APR 2	60.56	JUNE 25	61.47
31 NOV 28	61.13 61.11	DEC 19 21	60.95 60.22	30 MAY 28	60.78 61.09	JULY 23 AUG 22	61.73 61.92

DIVIDE COUNTY

485649103155701. Local number, 163-097-15BCC.
LOCATION.--Lat 48°56'49", long 103°15'57", Hydrologic Unit 09010001.
Owner: North Dakota State Water Commission.
AQUIFER.--Yellowstone.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 575 ft, cased to 546 ft, steel pipe, No. 12 slot screen set 546 to 558 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM .-- Altitude of land-surface datum is 1,915 ft. Measuring point: Top of casing 1.50 ft above land-surface

datum.

PERIOD OF RECORD.--January 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.31 ft below land-surface datum, June 5, 1979; lowest measured, 14.40 ft below land-surface datum, Aug. 9, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 17	14.08	FEB 17	13.99	MAY 3	14.09	AUG 9	14.40

DUNN COUNTY

471323102290101. Local number, 143-093-09BCB.
LOCATION.--Lat 47°13'23", long 102°29'01", Hydrologic Unit 10130201.
Owner: North Dakota State Water Commission.

AQUIFER . -- Sentinel Butte.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 965 ft, cased to 378 ft, steel pipe, No. 12 slot screen set 378 to 396 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 2,133 ft. Measuring point: Top of casing 2.10 ft above land-surface

PERIOD OF RECORD.--February 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.12 ft below land-surface datum, June 7, 1984; lowest measured, 93.79 ft below land-surface datum, June 22, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 23	93.19	FEB 12	93.08	MAY 20	92.86	AUG 16	93.39

EDDY COUNTY

473720098592401. Local number, 148-065-19DAA.
LOCATION.--Lat 47°37'20", long 098°59'24", Hydrologic Unit 10160001.
Owner: North Dakota State Water Commission.

AQUIFER. -- New Rockford.

WELL CHARACTERISTICS. -- Drilled observation well, diameter 1.25 in, depth 242 ft, cased to 220 ft, plastic pipe, slotted from 210 to 220 ft below land-surface datum.

INSTRUMENTATION. -- Measured on a six-week schedule, except during the winter, using a steel tape.

DATUM .-- Altitude of land-surface datum is 1,526 ft. Measuring point: Top of casing 1.90 ft above land-surface datum.

PERIOD OF RECORD. -- September 1964 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 43.40 ft below land-surface datum, Sept. 6, 1983; lowest measured, 50.49 ft below land-surface datum, Sept. 6, 1978.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 20	44.88	MAY 16	44.74	JULY 7	47.56	AUG 24	48.34

EMMONS COUNTY

463632100171901. Local number, 136-076-07CBC.
LOCATION.--Lat 46°36'32", long 100°17'19", Hydrologic Unit 10130103.
Owner: North Dakota State Water Commission.
AQUIFER.--Long Lake.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 150 ft, cased to 117 ft, plastic pipe,
No. 12 slot screen set at 117 to 123 ft below land-surface datum.
INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM. -- Altitude of land-surface datum is 1,735 ft. Measuring point: Top of casing 2.00 ft above land-surface datum.

PERIOD OF RECORD. -- November 1972 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 0.40 ft below land-surface datum, Dec. 10, 1986; lowest measured, 8.32 ft below land-surface datum, Sept. 1, 1977.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 18	2.80	APR 11	2.47	JUNE 14	3.95	SEPT 12	6.04

GRAND FORKS COUNTY

474957097343501. Local number, 150-054-04CCD.
LOCATION.--Lat 47°49'57", long 097°34'35", Hydrologic Unit 09020307.
Owner: North Dakota State Water Commission.
AQUIFER.--Elk Valley.
WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 126 ft, cased to 40 ft, plastic pipe,

No. 12 slot screen set 40 to 43 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 1,127 ft. Measuring point: Top of casing 1.80 ft above land-surface datum.

oatum.
PERIOD OF RECORD.--September 1965 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.97 ft below land-surface datum, July 23, 1987; lowest measured, 7.96 ft below land-surface datum, Mar. 7, 1977.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 30	3.63	MAR 8	4.91	JUNE 22	4.43	SEPT 6	6.65

GRIGGS COUNTY

471612098113101. Local number, 144-059-20CCC.
LOCATION.--Lat 47°16'12", long 098°11'31", Hydrologic Unit 09020203.
Owner: North Dakota State Water Commission.
AQUIFER.--Spiritwood.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.25 in, depth 240 ft, cased to 158 ft, plastic pipe, No. 25 slot screen set 158 to 161 ft below land-surface datum.

INSTRUMENTATION. -- Measured quarterly using a steel tape.
COOPERATION. -- Record provided by the North Dakota State Water Commission since 1975.
DATUM. -- Altitude of land-surface datum is 1,430 ft. Measuring point: Top of casing 2.00 ft above land-surface

PERIOD OF RECORD. -- September 1971 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 45.84 ft below land-surface datum, Apr. 5, 1977; lowest measured, 90.80 ft below land-surface datum, Aug. 11, 1988.

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 15	52.67	MAY 4	50.08	AUG 11	90.80

359

GROUND-WATER LEVELS

GRIGGS COUNTY

473425098232901. Local number, 147-061-01CCC.
LOCATION.--Lat 47°34'25", long 098°23'29", Hydrologic Unit 09020203.
Owner: North Dakota State Water Commission.

AQUIFER .-- Spiritwood.

AQUIFEK.--Spiritwood.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 340 ft, cased to 237 ft, plastic pipe,
No. 25 slot screen set 237 to 240 ft below land-surface datum.

INSTRUMENTATION.--Measured monthly except during the winter, using a steel tape.

COOPERATION.--Record provided by the North Dakota State Water Commission since 1977.

DATUM.--Altitude of land-surface datum is 1,525 ft. Measuring point: Top of casing 2.00 ft above land-surface

datum.

PERIOD OF RECORD.--September 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.17 ft below land-surface datum, Apr. 29, 1987; lowest measured, 96.10 ft below land-surface datum, Aug. 12, 1975.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 15	26.37	MAY 4	26.42	AUG 11	81.92

GRIGGS COUNTY

473600098065901. Local number, 148-059-36AAB.
LOCATION.--Lat 47°36'00", long 098°06'59", Hydrologic Unit 09020203.
Owner: North Dakota State Water Commission.

AQUIFER . -- McVille.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 180 ft, cased to 137 ft, plastic pipe,
No. 12 slot screen set 137 to 143 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

COOPERATION.--Record provided by the North Dakota State Water Commission since 1984.

DATUM.--Altitude of land-surface datum is 1,320 ft. Measuring point: Top of casing 2.00 ft above land-surface

datum.

PERIOD OF RECORD.--October 1971 to December 1982, April 1985 to present.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +0.77 ft above land-surface datum, Sept. 11, 1986; lowest measured, 12.09 ft below land-surface datum, Aug. 9, 1978.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
MAY 4	4.24	AUG 11	5.09

HETTINGER COUNTY

463153102521001. Local number, 135-097-04DCA.
LOCATION.--Lat 46°31'53", long 102°52'10", Hydrologic Unit 10130204.
Owner: North Dakota State Water Commission.

AQUIFER.--Fox Hills Sandstone.
WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in, depth 1,790 ft, cased to 1,320 ft, steel pipe, open hole.

INSTRUMENTATION. -- Measured quarterly using a steel tape. Water-level recorder prior to May 1974.

DATUM. -- Altitude of land-surface datum is 2,567 ft. Measuring point: Top of casing 0.70 ft above land-surface

datum.

PERIOD OF RECORD.--September 1968 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 142.02 ft below land-surface datum, Dec. 19, 1968; lowest measured, 145.91 ft below land-surface datum, Sept. 19, 1968 (first measurement on well may be as much

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 23	144.17	MAR 2	144.10	JUNE 2	144.19	AUG 30	144.11

KIDDER COUNTY

470638099324301. Local number, 142-070-16DDD.
LOCATION.--Lat 47°06'38", long 099°32'43", Hydrologic Unit 10130103.
Owner: North Dakota State Water Commission.

AQUIFER. -- Long Lake.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.25 in, depth 84 ft, cased to 70 ft, plastic pipe, No.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 84 It, cased to 70 It, plastic pipe, No. 18 slot screen set 70 to 73 ft below land-surface datum.

INSTRUMENTATION.--Measured monthly, except during the winter, using a steel tape.

COOPERATION.--Record provided by the North Dakota State Water Commission since 1979.

DATUM.--Altitude of land-surface datum is 1,810 ft. Measuring point: Top of casing 1.90 ft above land-surface

datum.

PERIOD OF RECORD.--November 1965 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.94 ft below land-surface datum, Dec. 4, 1976; lowest measured, 26.03 ft below land-surface datum, Aug. 27, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 16 DEC 13	19.98 19.96 19.99	APR 2 28 MAY 25	20.04 19.97 21.55	JUNE 27 JULY 30 AUG 26	22.88 24.07 21.72	SEPT 30	21.35

MC LEAN COUNTY

473752101055301. Local number, 148-082-23BBB.
LOCATION.--Lat 47°37'52", long 101°05'53", Hydrologic Unit 10130101.
Owner: North Dakota State Water Commission.

AQUIFER .-- Lake Nettie.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.25 in, depth 300 ft, cased to 198 ft, plastic pipe,

No. 24 slot screen set 198 to 204 ft below land-surface datum.

INSTRUMENTATION.--Record monthly, except during the winter, using a steel tape.

COOPERATION.--Record provided by the North Dakota State Water Commission since December 1984.

DATUM.--Altitude of land-surface datum is 1,880 ft. Measuring point: Top of casing 2.30 ft above land-surface

datum.

PERIOD OF RECORD.--December 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.21 ft below land-surface datum, July 31, 1987, and June 27, 1984; lowest measured, 42.30 ft below land-surface datum, Dec. 2, 1970.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 2	36.78	APR 14	37.75	JUNE 21	37.76	AUG 23	38.44
NOV 3	37.04	MAY 20	37.41	JULY 21	38.13	SEPT 27	38.87
DEC 8	37.27						

OLIVER COUNTY

470642101162701. Local number, 142-084-24BBA.
LOCATION.--Lat 47°06'42", long 101°16'27", Hydrologic Unit 10130101.
Owner: North Dakota State Water Commission.
AQUIFER.--Fox Hills Sandstone.
WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in, depth 1,295 ft, cased to 966 ft, steel pipe, open ended.

INSTRUMENTATION .-- Measured quarterly using a steel tape.

DATUM .-- Altitude of land-surface datum is 2,006 ft. Measuring point: Top of casing 2.00 ft above land-surface

datum.

PERIOD OF RECORD.--January 1968 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 197.04 ft below land-surface datum, Dec. 8, 1972; lowest measured, 201.85 ft below land-surface datum, Aug. 6, 1987.

WATER				WATER			
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 24	198.70	MAR 29	198.74	MAY 31	198.82	SEPT 1	198.25

PEMBINA COUNTY

485239097501702. Local number, 162-056-01CCC2.
LOCATION.--Lat 48°52'39", long 097°50'17", Hydrologic Unit 09020313.
Owner: North Dakota State Water Commission.
AQUIFER.--Icelandic.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 40 ft, cased to 37 ft, plastic pipe,
No. 12 slot screen set 37 to 40 ft below land-surface datum.

INSTRUMENTATION . -- Measured quarterly using a steel tape.

DATUM .-- Altitude of land-surface datum is 988 ft. Measuring point: Top of casing 1.80 ft above land-surface datum.

PERIOD OF RECORD .-- October 1969 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 4.65 ft below land-surface datum, May 21, 1970; lowest measured, 8.14 ft below land-surface datum, June 21, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

2.000	WATER		WATER	0.400	WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	
DEC 4	7.42	MAR 22	7.22	JUNE 21	8.14	

PIERCE COUNTY

475323100092101. Local number, 151-074-20AAA.
LOCATION.--Lat 47°55'23", long 100°09'21", Hydrologic Unit 09020202.
Owner: North Dakota State Water Commission.
AQUIFER.--New Rockford.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.25 in, depth 320 ft, cased to 256 ft, plastic pipe,

No. 18 slot screen set 256 to 259 ft below land-surface datum.

INSTRUMENTATION. -- Measured quarterly using a steel tape.

DATUM. -- Altitude of land-surface datum is 1,605 ft. Measuring point: Top of casing 2.00 ft above land-surface datum.

PERIOD OF RECORD. -- November 1968 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 28.08 ft below land-surface datum, Nov. 29, 1976; lowest measured, 32.80 ft below land-surface datum, July 8, 1988.

WATER LEVEL. IN FEET BELOW LAND SURFACE DATUM. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 20	31.85	MAY 16	31.84	JULY 8	32.80

RICHLAND COUNTY

462633097163402. Local number, 134-052-06CCD2. LOCATION.--Lat 46°26'33", long 097°16'34", Hydrologic Unit 09020204. Owner: North Dakota State Water Commission.

Owner: North Dakota State water Commission.

AQUIFER.--Sheyenne Delta.

WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in, depth 40 ft, cased to 30 ft, plastic pipe, slotted 30 to 40 ft below land-surface datum.

INSTRUMENTATION.--Water level recorder October 1965 to current year. Prior to February 1972 only 5-day low and EOM water levels are available.

DATUM.--Altitude of land-surface datum is 1,067 ft. Measuring point: Top of casing 0.65 ft above land-surface

datum.

REMARKS.--Key well reported in monthly Water Resources Review.
PERIOD OF RECORD.--September 1963 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest recorded water level, 0.78 ft below land-surface datum, May 13, 1972; lowest recorded, 9.01 ft below land-surface datum, Sept. 17, 18, 1988.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAXIMUM VALUES (DAILY-LOW WATER-LEVEL)

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	8.29	8.32	8.33	8.43	8.61	8.03	7.61	7.43	7.66	8.44	8.52	8.92
10	8.31	8.32	8.32	8.48	8.66	7.80	7.58	7.50	7.88	8.51	8.61	8.97
15	8.31	8.33	8.31	8.51	8.69	7.77	7.53	7.58	7.93	7.96	8.64	9.00
20	8.30	8.33	8.34	8.54	8.71	7.73	7.47	7.64	8.08	8.09	8.71	8.81
25	8.30	8.33	8.37	8.55	8.64	7.66	7.45	7.55	8.18	8.31	8.79	8.76
EOM	8.32	8.32	8.40	8.59	8.41	7.64	7.44	7.45	8.31	8.56	8.86	8.74
MAX	8.32	8.33	8.40	8.59	8.71	8.28	7.64	7.64	8.31	8.56	8.86	9.01
WATER	YEAR 1988		HIGHES	T WATER L	EVEL 7.39	MAY 29		LOWEST	WATER LE	VEL 9.01	SEPTEMBER	17, 18

STARK COUNTY

465755102410701. Local number, 140-095-08AAA.
LOCATION.--Lat 46°57'55", long 102°41'07", Hydrologic Unit 10130204.
Owner: North Dakota State Water Commission.

AQUIFER . -- Sentinel Butte.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 4 in, depth 160 ft, cased to 80 ft, plastic pipe, open ended.

INSTRUMENTATION. -- Measured monthly using a steel tape.

DATUM. -- Altitude of land-surface datum is 2,419 ft. Measuring point: Top of casing 1.70 ft above land-surface

REMARKS.--Key well reported in monthly Water Resources Review.

PERIOD OF RECORD.--December 1968 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.61 ft below land-surface datum, June 19, 1970; lowest measured, 20.41 ft below land-surface datum, Mar. 21, 1969. During well construction a measurement of 27.23 ft below land-surface datum was made (Dec. 10, 1968), but was not considered to be the result of natural conditions.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19	18.08	JAN 21	18.28	APR 22	17.69	JULY 21	18.77
NOV 23	18.10	FEB 22	18.43	MAY 20	17.75	AUG 22	19.23
DEC 21	18.09	MAR 22	18.00	JUNE 23	18.36	SEPT 20	19.56

STEELE COUNTY

471601097371001. Local number, 144-055-26BBB.
LOCATION.--Lat 47°16'01", long 097°37'10", Hydrologic Unit 09020109.
Owner: North Dakcta State Water Commission.

AQUIFER. --Galesburg.
WELL CHARACTERISTICS. --Drilled observation well, diameter 1.25 in, depth 300 ft, cased to 53 ft, plastic pipe, slotted 53 to 68 ft below land-surface datum.

INSTRUMENTATION. -- Measured monthly, except during the winter, using a steel tape.

COOPERATION. -- Record provided by the North Dakota State Water Commission since 1982.

DATUM. -- Altitude of land-surface datum is 1,160 ft. Measuring point: Top of casing 2.00 ft above land-surface

datum.

PERIOD OF RECORD.--June 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.20 ft below land-surface datum, Apr. 23, 1984; lowest measured, 24.33 ft below land-surface datum, Aug. 6, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 4	19.68	DEC 3 MAR 20	20.11	MAY 14 JUNE 11	20.03	AUG 8 SEPT 5	23.39 23.17
NOV 29	19.97	APR 17	19.55	JULY 10	23.57	but I y	23.17

STUTSMAN COUNTY

463846098274101. Local number, 137-062-26DDD.
LOCATION.--Lat 46°38'46", long 098°27'41", Hydrologic Unit 10160003.
Owner: North Dakota State Water Commission.

Owner: North Dakota State water commission.

AQUIFER.--Spiritwood.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 240 ft, cased to 157 ft, plastic pipe,
No. 12 slot screen set 157 to 163 ft below land-surface datum.

INSTRUMENTATION.--Measured monthly, except during the winter, using a steel tape.

COOPERATION.--Record provided by the North Dakota State Water Commission since 1982.

DATUM.--Altitude of land-surface datum is 1,455 ft. Measuring point: Top of casing 1.80 ft above land-surface

PERIOD OF RECORD. -- September 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.20 ft below land-surface datum, Sept. 6, 1979; lowest measured, 20.67 ft below land-surface datum, May 28, 1973.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 7	15.75	DEC 2	15.64	JUNE 9 .	16.34	JULY 29	16.57
NOV 3	15.64	APR 7	16.14		16.48	AUG 31	16.71

GROUND-WATER LEVELS 363

TRAILL COUNTY

473228097051501. Local number, 147-051-22BBB.
LOCATION.--Lat 47°32'28", long 097°05'15", Hydrologic Unit 09020301.
Owner: North Dakota State Water Commission.

AQUIFER . -- Hillsboro.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 103 ft, cased to 97 ft, plastic pipe, No. 18 slot screen set 97 to 100 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 925 ft. Measuring point: Top of casing 2.40 ft above land-surface

datum.
PERIOD OF RECORD.--August 1965 to current year.

REVISIONS .-- Water levels for water year 1987 have been revised superseding figures published in report ND-87-1.

WATER LEVEL, IN FEET ABOVE (+) AND BELOW (-) LAND SURFACE DATUM, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 24 1986	+0 14	JULY 10 1087	10 15	GEDT 15 1087	11 36

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, +1.90 ft above land-surface datum, July 4, 1979; lowest measured, 7.27 ft below land-surface datum, Aug. 17, 1965.

WATER LEVEL, IN FEET ABOVE (+) AND BELOW (-) LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
JUNE 20	+0-14	AUG 24	-1.70

WALSH COUNTY

481657097473601. Local number, 156-056-36CCC1.
LOCATION.--Lat 48°16'57", long 097°47'36", Hydrologic Unit 09020308.
Owner: North Dakota State Water Commission.
AQUIFER.--Fordville.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 280 ft, cased to 27 ft, plastic pipe,
No. 18 slot screen set 27 to 30 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 1,145 ft. Measuring point: Top of casing 1.85 ft above land-surface

datum.

PERIOD OF RECORD.--May 1968 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.98 ft below land-surface datum, June 3, 1987; lowest measured, 6.98 ft below land-surface datum, Mar. 11, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE WATER		DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 8	5.88	MAR 21	5.72	JUNE 22	6.00	SEPT 9	6.15

WALSH COUNTY

482408097443201. Local number, 157-055-21DBC.
LOCATION.--Lat 48°24'08", long 097°44'32", Hydrologic Unit 09020301.
Owner: North Dakota State Water Commission.
AQUIFER.--Dakota Formation.
WELL CHARCTERISTICS.--Drilled observation well, diameter 4 in, depth 496 ft, cased to 491 ft, steel pipe, screen set 491 to 496 ft below land-surface datum.

INSTRUMENTATION .-- Measured quarterly using a steel tape.

DATUM.--Maintendation.--measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 975 ft. Measuring point: Top of casing at land-surface datum.

PERIOD OF RECORD.--May 1968 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 88.84 ft below land-surface datum, Mar. 9, 1982; lowest measured, 92.75 ft below land-surface datum, Sept. 17, 1974.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 8	91.09	MAR 21	91.15	JUNE 22	91.24	SEPT 9	91.32

WALSH COUNTY

482449098095801. Local number, 157-058-18DDD.
LOCATION.--Lat 48°24'49", long 098°09'58", Hydrologic Unit 09020308.
Owner: North Dakota State Water Commission.

AQUIFER .-- Pierre Shale.

WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in, depth 140 ft, cased to 80 ft, plastic pipe, slotted screen set 80 to 100 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 1,580 ft. Measuring point: Top of casing 1.00 ft above land-surface

PERIOD OF RECORD .-- June 1968 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, +0.89 ft above land-surface datum, Dec. 5, 1972; lowest measured, 9.15 ft below land-surface datum, Mar. 14, 1977.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

WATER			WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 30	4.39	MAR 8	5.00	JUNE 15	4.86	SEPT 6	6.68

WARD COUNTY

480912101090301. Local number, 154-082-24ABA.
LOCATION.--Lat 48°09'12", long 101°09'03", Hydrologic Unit 09010001.
Owner: North Dakota State Water Commission.

QUIFER. -- Lower Souris.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.25 in, depth 115 ft, cased to 10 ft, plastic pipe,

slotted screen set 10 to 40 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 1,850 ft. Measuring point: Top of casing 1.70 ft above land-surface

PERIOD OF RECORD. -- January 1964 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.84 ft below land-surface datum (corrected), June 17, 1965; lowest measured, 16.28 ft below land-surface datum, Sept. 24, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 9	14.90 14.86	MAR 27	14.80	JUNE 26	15.56	SEPT 24	16.28

WELLS COUNTY

474419099371201. Local number, 149-070-09DAA1. LOCATION.--Lat 47°44'19", long 099°37'12", Hydrologic Unit 10160001. Owner: North Dakota State Water Commission.

AQUIFER .-- New Rockford.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 283 ft, cased to 177 ft, plastic pipe, slotted 177 to 197 ft below land-surface datum.

INSTRUMENTATION.--Measured quarterly using a steel tape.

DATUM.--Altitude of land-surface datum is 1,610 ft. Measuring point: Top of casing 1.80 ft above land-surface

PERIOD OF RECORD. -- May 1966 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 64.02 ft below land-surface datum, Dec. 10, 1986; lowest measured, 66.65 ft below land-surface datum, Mar. 15, 1967.

	WATER			WATER		WATER
DATE	LEVEL		DATE	LEVEL	DATE	LEVEL
NOV 20	64.68	9	MAY 16	64.59	JULY 8	64.52

GROUND-WATER LEVELS

365

WILLIAMS COUNTY

483048103373101. Local number, 158-100-17ADA.
LOCATION.--Lat 48°30'48", long 103°37'31", Hydrologic Unit 10110102.
Owner: North Dakota State Water Commission.
AQUIFER.--Little Muddy.
WELL CHARACTERISTICS.--Drilled observation well, diameter 1.25 in, depth 52 ft, cased to 35 ft, plastic pipe, slotted 35 to 43 ft below land-surface datum.
INSTRUMENTATION.--Measured quarterly using a steel tape.
DATUM.--Altitude of land-surface datum is 1,987 ft. Measuring point: Top of casing 2.00 ft above land-surface datum.

datum.

PERIOD OF RECORD.--August 1966 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.02 ft below land-surface datum, June 5, 1979; lowest measured, 23.99 ft below land-surface datum, Aug. 9, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 17	20.35	FEB 17	20.29	MAY 3	20.40	AUG 9	23.99

QUALITY OF GROUND WATER

STATION NUMBER	LOCAL IDENTIFIER	COUNTY	GEO- LOGIC UNIT	DEPTH OF WELL, TOTAL (FEET (72008		TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)
			BOWMAN	COUNTY					
460705103005301 460645103021801 460705103025601 460645103033302 460705103041101	130-099-01BBB 130-099-03ADD 130-099-03BAA 130-099-04ADD2 130-099-04BAA	011 011 011 011 011	125TGRV 125TGRV 125TGRV 125TGRV 125TGRV	64.00 70.00 50.00	08-25-88 08-26-88 08-25-88 08-24-88 08-30-88	1215 0950 0905 1710 1430	27.21 3.64 20.13 16.66 11.75	2480 5590 6200 6650 4000	8.60 8.20 8.60 6.80 7.00
461355103055701 460902103043601 461355103043303 460856103024401	131-099-19DDD 131-099-21CCB1 131-099-21CCC3 131-099-22DCC1	011 011 011 011 011	125TGRV 125HRMN 125TGRV 125TGRV 125TGRV	80.00 152.00 76.00	08-29-88 08-29-88 08-29-88 08-26-88 08-26-88	1300 1610 1825 1305 a1306	26.35 56.74 74.39 43.84 43.84	2430 1700 1690 4080 4080	8.40 7.20 8.90 7.30 7.30
460856103020701 460856103020702 460804103010101 460843103032001 460843103032003	131-099-23CCC1 131-099-23CCC2 131-099-26DDC1 131-099-27BBC1 131-099-27BBC3	011 011 011 011 011	125TGRV 125HRMN 125HRMN 125TRVL 125TGRV	100.00 76.00 86.00	08-25-88 08-25-88 08-03-88 08-04-88 08-04-88	1540 1635 1745 1905 1650	76.70 74.28 45.49 54.62 58.58	1420 2680 1320 4000 1490	8.80 8.40 8.60 7.70 9.00
460823103030301 460816103032701 460816103032702 460830103044504 460849103053201	131-099-27CAB 131-099-27CBC1 131-099-27CBC2 131-099-29ADD4 131-099-29BAB	011 011 011 011 011	125TGRV 125TGRV 125HRMN 125TGRV 125TGRV	80.00 60.00 80.00	08-05-88 08-17-88 08-17-88 08-16-88 08-16-88	1130 1145 1325 1720 1015	19.34 54.86 55.14 58.28 19.76	4300 2870 2800 1900 5490	7.00 7.70 7.70 8.00 7.30
460834103055501 460823103053201 460804103052301 460810103051301 460751103044501	131-099-29BCC 131-099-29CAB 131-099-29CDD 131-099-29DCB 131-099-32AAD	011 011 011 011 011	125TGRV 125TGRV 125HRMN 125TGRV 125TGRV	30.00 32.00 22.00	08-16-88 08-16-88 08-16-88 08-15-88 08-16-88	1510 1125 1300 1645 1810	12.84 8.94 14.46 15.65 12.58	1770 5880 9350 5110 7180	9.30 6.80 6.70 6.80 6.60
460725103051301 460718103045501 460747103032902 460747103032903 460757103021601	131-099-32DBC1 131-099-32DDB 131-099-33ADA2 131-099-33ADA3 131-099-34AAA	011 011 011 011 011	125TGRV 125TRVL 125TGRV 125TGRVL 125TGRVL	65.00 38.00 76.00	08-30-88 08-30-88 08-17-88 08-17-88 08-05-88	1110 1310 1620 1715 1000	11.67 11.22 6.09 5.83 21.92	3020 2810 2660 2420 5700	8.20 7.60 8.40 8.80 11.80
460744103014801	131-099-35BDB1	011	125TGRV	78.00	08-22-88	1645	35.35	1370	8.90

a - Split sample analysis for quality assurance.

STATION	NUMBER	DATE	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)
					ВО	WMAN COUN	TY					
46070510300 46064510302 46070510302 46064510303 46070510304	21801 25601 33302	08-25-88 08-26-88 08-25-88 08-24-88 08-30-88	22.0 22.0 21.0 33.0 32.0	9.5 11.0 7.5 8.0 11.5	2.3 5.2 2.3 2.5 1.5	22 54 22 24 16	100 210 140 2100 720	16 17 16 190 130	15 40 23 390 95	540 2000 1600 1400 810	92 95 96 59 71	24 61 61 14 13
46135510305 46090210304 46135510304 46085610302	3601 3303	08-29-88 08-29-88 08-29-88 08-26-88 08-26-88	26.0 26.0 23.0 27.0 27.0	8.5 9.0 9.5 8.5 8.5	2.2 4.4 4.4	21 43 43	88 980 22 1700 1700	12 210 5 • 4 300 300	14 110 1.9 220 220	540 58 400 510 530	93 11 97 40 41	26 0.8 39 6 6
46085610302 46085610302 46080410301 46084310303 46084310303	20702 10101 32001	08-25-88 08-25-88 08-03-88 08-04-88 08-04-88	25.0 25.0 18.0 28.0 28.0	9.0 9.0 9.5 10.5	5.0 2.7	48 27	26 61 17 380 21	5.5 11 3.5 44 5.7	3.0 8.0 2.0 64 1.7	280 620 320 1100 410	96 95 97 85 97	25 36 35 25 40
46082310303 46081610303 46081610303 46083010304 46084910305	52701 52702 14504	08-05-88 08-17-88 08-17-88 08-16-88 08-16-88	33.0 26.0 26.0 30.0 25.0	9.5 9.5 9.5 9.0 9.5	3.1 4.2	31 42	2100 300 330 150 2700	380 52 54 28 470	280 41 46 19 370	370 560 550 390 700	28 80 78 84 36	4 14 14 14 6
46083410305 46082310305 46080410305 46081010305 46075110304	3201 32301 31301	08-16-88 08-16-88 08-16-88 08-15-88 08-16-88	32.0 29.0 30.0 34.0 30.0	8.5 12.5 8.5 10.0 12.0	2.0 1.6 3.2 2.9	19 17 32 31	23 1400 2500 1900 3800	5.9 270 330 350 510	2.0 180 400 250 600	420 1200 2200 840 940	97 64 66 48 35	39 14 20 9 7
46072510305 46071810304 46074710303 46074710303 46075710302	5501 52902 52903	08-30-88 08-30-88 08-17-88 08-17-88 08-05-88	24.0 30.0 28.0 28.0 28.0	11.0 11.0 8.0 8.0 9.5	2.9 2.6 5.3	30 24 53	220 590 120 26 410	50 100 23 6.0 26	23 82 15 2.6 84	670 510 630 600 1400	86 65 91 98 87	20 9 26 53 30
46074410301	4801	08-22-88	25.0	9.5	2.7	26	27	6.3	2.7	350	96	30

QUALITY OF GROUND WATER

STATION NUMBER	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
				BOV	MAN COUNT	TY					
460705103005301 460645103021801 460705103025601 460645103033302	08-25-88 08-26-88 08-25-88 08-24-88	4.9 12 11 12	533 455 302 234	720 3700 3400 4500	7.7 14 13 10	1.5 1.0 0.70 0.40	8.1 11 10 9.1	1620 5720 5110 6810	1630 6070 5260 6670	2.20 7.78 6.95 9.26	Ξ
460705103041101	08-30-88	14	430	2000	8.1	0.10	10	3440	3340	4.68	1
461355103055701 460902103043601 461355103043303 460856103024401	08-29-88 08-29-88 08-29-88 08-26-88 08-26-88	5.8 9.8 2.4 14 12	457 261 634 500 494	780 780 490 2300 2300	5.6 14 24 39 36	0.70 0.30 2.5 0.40 0.40	7.8 11 10 4.5 6.6	1610 1430 1280 3810 3940	1640 1350 1320 3690 3710	2.19 1.94 1.74 5.18 5.36	 3 4
460856103020701 460856103020702 460804103010101 460843103032001 460843103032003	08-25-88 08-25-88 08-03-88 08-04-88 08-04-88	1.9 5.0 2.4 33 2.0	658 462 436 720 728	330 930 280 2100 330	34 5.4 7.4 7.9	4.0 1.8 2.1 1.0 3.4	12 7.0 9.4 18 8.9	1070 1830 893 3800 1220	718 1870 889 3370 1230	1.46 2.49 1.21 5.17 1.66	=
46082310303030301 460816103032701 460816103032702 460830103044504 460849103053201	08-05-88 08-17-88 08-17-88 08-16-88 08-16-88	10 9.6 9.8 11 12	561 454 454 467 253	2300 1000 1000 500 4000	14 6.3 6.0 5.1 28	0.30 0.60 0.60 0.40 0.20	13 7.8 8.0 11	4070 1960 1970 1260 6120	3710 1950 1950 1250 5750	5.54 2.67 2.68 1.71 8.32	=======================================
460834103055501 460823103053201 460804103052301 460810103051301 460751103044501	08-16-88 08-16-88 08-16-88 08-15-88 08-16-88	2.9 22 14 37 16	612 1050 689 650 1110	320 2700 6300 3000 4800	10 13 5.6 3.8	1.1 0.10 0.20 0.20 0.40	11 20 9.7 35 23	1140 5110 10100 5090 8420	1140 5050 9690 4920 7600	1.55 6.95 13.7 6.92 11.5	
460725103051301 460718103045501 460747103032902 460747103032903 460757103021601	08-30-88 08-30-88 08-17-88 08-17-88 08-05-88	7.9 12 6.5 2.9	604 416 579 573 360	1100 1300 860 740 3000	7.4 2.2 5.3 11	1.2 0.20 1.2 1.9 0.40	7.3 10 7.4 8.3 5.0	2150 2220 1860 1680 4580	2230 2270 1900 1720 4800	2.92 3.02 2.53 2.28 6.23	=
460744103014801	08-22-88	2.0	580	380	34	3.1	8.7	1100	1140	1.50	1,221

200		1>		LL	OL		075	1200	08-22-88	108410301447094
1600		22		OL	08		90	310	88-50-80	460757103021601
220		L>		SO	90		05	0001	88-71-80	460747103032903
		1>		30	07		SO	0001		
058									88-71-80	460747103032902
3100		1>		061	OFL		OS	3100	88-05-80	100218103045501
078		8		OSL	90		220	088	88-02-80	460725103051301
10000		1>		5300	220		530	19000	88-91-80	105440501157034
0064		L>		097	091		240	4600	88-61-80	108103051301
0006		1>		992	120		061	0098	88-91-80	160804103052301
0049		1>		025	130		240	3200	88-91-80	460823103053201
091		1>		7 L	9		071	018	88-91-80	105550501758097
0052	44	1>		06	011		90	074	88-91-80	160849103053201
086		1>		58	68		87	086	88-91-80	\$05\$\$0\$0\$0\$0\$9\$
					05		120			
2400		1>		09				1600	88-71-80	460816103032702
2200		r>		09	05		05	1600	88-71-80	460816103032701
0014		2		2400	06		230	1400	88-20-80	460823103030301
061		1>		89	6		099	1200	88-40-80	460843103032003
2400		L>		160	08		100	1200	88-40-80	460843103032001
48		L>		81	8		08	068	88-50-80	101010501108091
420		1>		90	Ot		09	820	88-25-80	460856103020702
140		1>		LS	23		005	1200	88-25-80	460856103020701
0011	L>	51	1.0>	057	100	9	SO	015	88-92-80	
4300	1>	35	0.1>	077	011	ī	Ot	420	88-92-80	460856103024401
041		1>		67	7		OLT	0011	88-62-80	202270201936097
2700				230	75		17	280	88-62-80	460902103043601
		t			OV					
320		L		09	OV		09	026	88-62-80	107220501225194
2400	L>	L>	0.1>	099	250	L>	1300	2800	88-05-80	101140501507034
0019		L>		2600	062		0087	0067	08-24-88	460645103033302
2100		1>		09	06		90	096	88-25-80	460705103025601
2700		L		091	100		OΣ	1200	08-26-88	460645103021801
087		9		OZ	07		061	1300	08-25-88	10660050120094
001		9		QL.			001	COLV	86 36 80	105300501307031
					YTNUO	BOWMAN				
(08010)	(57110)	(09010)	(06817)	(99010)	(02110)	(64010)	(94010)	(01050)	DATE	STATION NUMBER
(AB BA	(AS SA)	(OM SA	(DH SA	(NM SA	(IJ SA	(89 PA	AS FE)	(A SA		
(ng\r	(ng/r	(ng\r	(ng\r	(ng\r	(ng\r	(ng/r	(ng\r	(ng/r		
SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED		
-sid	-sia	-sid	-SIG	-SIG	-SIG	-sid	-sid	-SIG		
'MUIT	'MUIN	DENOW'	WERCURY	NESE,	LITHIUM	LEAD,	IRON,	вовои •		
-NOATS	SECE-	WOLYB-	2.25.10.000	-ADNAM	- 2-00000000000000000000000000000000000	77.7-5	120.4.5.2	100277		
	2.55			100000						

RED RIVER OF THE NORTH BASIN

484714097442301 ICELANDIC STATE PARK, ND (National Trends Network precipitation-quality station)

LOCATION.--Lat 48°47'14", long 97°44'23", in SW1/4NW1/4SW1/4 sec. 10, T.161 N., R.55 W., Pembina County, Hydrologic Unit 09020313, at Icelandic State Park 5.6 mi west of Cavalier.

PERIOD OF RECORD. -- October 1983 to current year (weekly composite).

INSTRUMENTATION.--The composite sample collector is an Aerochem Metrics 1/model 301 wet/dry precipitation collector mounted on ground surface. Precipitation quantity is determined by a Belfort 1/model 5-780 recording rain gage equipped with an event recorder and an Alter-type wind screen. The recording rain gage is installed 20 ft east of the sample collector with gage mouth and collector bucket elevations of 50.75 in above land surface. A nonrecording National Weather Service rain gage is installed 28 ft south of the composite sample collector as a quality check on weekly composite precipitation volume.

REMARKS.--Data presented are provisional analyses by the Central Analytical Laboratory of the Illinois State Water Survey and have not completed quality-assurance review by the National Atmospheric Deposition Program. Unless noted starting and ending time for composite period is 9:00 a.m.

COOPERATION .-- Onsite observers are provided by the North Dakota State Parks and Recreation Department.

PRECIPITATION-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

PERIOD OF COLLECTION	PRECIP- ITATION TOTAL INCHES/ WEEK (OOO46)	COL- LECTOR EFFI- CIENCY WET DEPOSITION PERCENT (82284)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (O0095)	PH (STAND- ARD UNITS (00400)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
10/01 to 10/06 10/06 to 10/13 10/13 to 10/20 10/20 to 10/27	0.08 0.0 0.02 0.46	88 0.0 150 61	9.4 1.4a 16.7b 5.1	5.77 5.62a 6.53b 5.35	0.786 0.017 ^a 0.365 0.147	0.179 <0.001a 0.094 0.034
10/27 to 11/03 11/03 to 11/10 11/10 to 11/17 11/17 to 11/24	0.0 0.0 0.28 0.0	0.0 0.0 96 0.0	17.1	5.04 	0.460	0.053
11/24 to 12/01 12/01 to 12/08 12/08 to 12/15 12/15 to 12/22	0.0 0.26 0.12 0.0	0.0 58 >8.0 0.0	12.7	4.78	0.223	0.043
12/22 to 12/31 12/31 to 01/05 01/05 to 01/12 01/12 to 01/19	0.05 0.02 0.15	>20 >50 107	21.6b 11.3	6.57b 4.75	 0.313	0.062
01/19 to 01/26 01/26 to 02/02 02/02 to 02/09 02/09 to 02/16	0.25 0.11 0.05 0.10	>4.0 >9.1 >20 >10	30.0b 	7.22b 6.20b 5.71b	Ξ	Ξ
02/16 to 02/23 02/23 to 03/01 03/01 to 03/08 03/08 to 03/15	0.05 0.02 0.40 0.25	20 50 45 12	17.1b 8.2b 14.9 23.0b	6.64b 6.51b 5.28 6.32b	1.404 0.546 0.263 0.852	0.236 0.081 0.054 0.184
03/15 to 03/22 03/22 to 03/29 03/29 to 04/05 04/05 to 04/12	0.03 0.15 <0.01 0.0	>33 80 100 0.0	15.2 ^b 13.5 	6.30 ^b 5.21 	<0.509b 0.393 	<0.170b 0.062
04/12 to 04/19 04/19 to 04/26 04/26 to 05/03 05/03 to 05/10	0.0 0.0 0.0c 0.65	0.0 0.0 0.0 97	3.9a 212.2 28.9	5.56 ^a 8.11 6.49	0.280 ^a 5.000	0.023ª 0.762

^{1/} The use of brand names in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

a Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. To provide for an adequate sample, 50 milliliters of dilution water was added.

b Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. Nondesignated data are field determinations.

c Trace of water collected in field sampler.

RED RIVER OF THE NORTH BASIN

484714097442501 ICELANDIC STATE PARK, ND--CONTINUED (National Trends Network precipitation-quality station)

PERIOD OF COLLECTION	PRECIP- ITATION TOTAL INCHES/ WEEK (00046)	COL- LECTOR EFFI- CIENCY WET DEPOSITION PERCENT (82284)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS (00400)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
05/10 to 05/17	0.20	100	23.7	5.95	1.345	0.369
05/17 to 05/24	0.80	98	12.6	5.90	0.773	0.130
05/24 to 05/31	0.12	92	27.0	5.72	1.899	0.358
05/31 to 06/07	0.0	0.0	7.0 ^a	4.95 ^a	0.110 ^a	0.027 ^a
06/07 to 06/14	0.17	94	6.0	5.39	0.351	0.081
06/14 to 06/21	0.49	90	6.3	5.61	0.317	0.076
06/21 to 06/28	0.05	200	29.5	5.86	1.356	0.271
06/28 to 07/05	1.50	103	10.5	5.10	0.159	0.029
07/05 to 07/12	1.30	98	13.6	5.51	0.552	0.106
07/12 to 07/19	0.24	96	13.6	5.89	0.743	0.134
07/19 to 07/26	<0.01	100				
07/26 to 08/02	0.01	500	31.9	5.81	3.460	0.828
08/02 to 08/09 08/09 to 08/16 08/16 to 08/23 08/23 to 08/30	0.0 1.00 0.14 0.0	0.0 110 100 0.0	7.0 20.5	5.45 5.61	0.172 1.270	0.034 0.200
08/30 to 09/06 09/06 to 09/13 09/13 to 09/20 09/20 to 09/27	0.0 0.75 0.31 0.0	0.0 97 77 0.0	2.9a 40.8 13.2	5.67 ^a 6.00 5.11	0.095 ^a 2.986 0.200	0.016a 0.416 0.037

a Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. To provide for an adequate sample, 50 milliliters of dilution water was added.

RED RIVER OF THE NORTH BASIN

484714097442301 ICELANDIC STATE PARK, ND--CONTINUED (National Trends Network precipitation-quality station)

PERIOD OF COLLECTION	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P) (00666)
10/01 to 10/06 10/06 to 10/13 10/13 to 10/20 10/20 to 10/27	0.090 <0.003 ^a 0.055 0.016	0.132 0.016 ^a 0.287 0.069	0.130 0.040a 0.170 0.070	1.100 <0.030 ^a 2.200 0.600	0.420 <0.020 ^a 1.15 0.190	0.100 <0.010 ^a 0.260 0.150	<0.007 <0.007 ^a <0.007 <0.007
10/27 to 11/03 11/03 to 11/10 11/10 to 11/17 11/17 to 11/24	0.026	0.042	0.080	2.300	0.920	0.500	<0.007
11/24 to 12/01 12/01 to 12/08 12/08 to 12/15 12/15 to 12/22	0.008	0.111	0.120	1.300	0.270	0.350	<0.007
12/22 to 12/31 12/31 to 01/05 01/05 to 01/12 01/12 to 01/19	 0.220	0.292	0.450	 0.830	0.060	0.230	<0.007
01/19 to 01/26 01/26 to 02/02 02/02 to 02/09 02/09 to 02/16	=	=======================================	=======================================	=======================================	=======================================	=======================================	Ξ
02/16 to 02/23 02/23 to 03/01 03/01 to 03/08 03/08 to 03/15	0.090 0.030 0.030 0.063	0.195 0.141 0.587 0.178	<0.210 0.210 0.070 0.170	1.700 0.680 2.800 3.000	<0.110 <0.070 0.630 1.30	<0.050 <0.030 0.250 0.990	<0.046 <0.028 <0.007 0.013
03/15 to 03/22 03/22 to 03/29 03/29 to 04/05 04/05 to 04/12	<0.170 0.033 	0.622 0.160	<1.700 0.190 	<1.700 0.960 	<0.880 0.670 	<0.380 0.580 	<0.377 0.013
04/12 to 04/19 04/19 to 04/26 04/26 to 05/03 05/03 to 05/10	0.022ª 0.115	0.065a 0.126	0.050a 0.220	0.210ª 3.200	<0.020a 0.320	0.010 ^a 0.420	0.037a <0.007
05/10 to 05/17 05/17 to 05/24 05/24 to 05/31 05/31 to 06/07	0.149 0.073 0.130 0.021a	1.500 0.121 0.230 0.038 ^a	0.100 0.080 0.340 <0.030a	4.300 1.400 3.400 0.130a	0.260 0.060 1.13 <0.020 ^a	0.360 0.320 1.29 <0.010 ^a	0.020 <0.007 0.030 <0.007 ^a
06/07 to 06/14 06/14 to 06/21 06/21 to 06/28 06/28 to 07/05	0.012 0.016 0.852 0.023	0.109 0.067 0.285 0.034	0.090 0.070 1.100 0.070	0.490 0.560 3.200 1.200	0.020 0.030 1.65 0.430	0.260 0.020 1.15 0.260	<0.007 0.010 <0.007 <0.007
07/05 to 07/12 07/12 to 07/19 07/19 to 07/26 07/26 to 08/02	0.063 0.028 0.395	0.083 0.466 0.281	0.130 0.200 0.350	1.500 1.200 3.500	0.460 0.050 1.22	0.440 0.480 1.27	<0.007 <0.007 <0.007
08/02 to 08/09 08/09 to 08/16 08/16 to 08/23 08/23 to 08/30	0.021 0.189	0.038 0.144	0.060 0.260	0.670 2.700	0.300 0.400	0.230 0.690	<0.007 <0.007
08/30 to 09/06 09/06 to 09/13 09/13 to 09/20 09/20 to 09/27	0.012 ^a 0.330 0.023	0.030 ^a 0.260 0.053	0.190 ^a 0.190 0.090	0.060 ^a 5.200 1.700	<0.020 ^a 1.27 0.810	0.030 ^a 0.980 0.480	<0.007 ^a <0.007 0.017

a Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. To provide for an adequate sample, 50 milliliters of dilution water was added.

JAMES RIVER BASIN

470732099140204 WOODWORTH, ND (National Trends Network precipitation-quality station)

LOCATION.--Lat 47°14'32", long 99°14'02", in SE1/4SW1/4SW1/4 sec.12, T.142 N., R.68 W., Stutsman County, Hydrologic Unit 10160002, at U.S. Fish and Wildlife Service Northern Prairie Wildlife Research Center, Woodworth Experiment Station, 2.8 mi east and 1 mi south of Woodworth.

PERIOD OF RECORD .-- November 1983 to current year (weekly composite).

INSTRUMENTATION.--The composite sample collector is an Aerochem Metrics1/ model 301 wet/dry precipitation collector mounted on ground surface. Precipitation quantity is determined by a Belfort1/ model 5-780 recording rain gage equipped with an event recorder and an Alter-type wind screen. The recording rain gage is installed 17 ft east of the sample collector with gage mouth and collector bucket elevations of 50.75 in above land surface. A Belfort1/ model 5-780 rain gage with Omnidata pod recorder is installed 30 ft east of the recording rain gage as a quality check on weekly composite precipitation volume.

REMARKS.--The station is located 300 ft west of an event sample-collection station which was operated by the North Dakota State Health Department (station discontinued 1987). Continuously recording meteorological instrumentation for air temperature, wind speed, and wind direction were installed 9.8 ft above land surface at the event station. Data presented are provisional analyses by the Central Analytical Laboratory of the Illinois State Water Survey and have not completed quality-assurance review by the National Atmospheric Deposition Program. Unless noted starting and ending time for composite periods is 9:00 a.m.

COOPERATION .-- Onsite observers are provided by the U.S. Fish and Wildlife Service.

PERIOD OF COLLECTION	PRECIP- ITATION TOTAL INCHES/ WEEK (00046)	COL- LECTOR EFFI- CIENCY WET DEPOSITION PERCENT (82284)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS (00400)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
10/01 to 10/06	0.0					
10/06 to 10/13	0.0	0.0				
10/13 to 10/20	0.02		39.3a	6.96a	1.308	0.259
10/20 to 10/27	0.0	0.0	6.09b	7.32b	2.695b	0.415b
10/27 to 11/03	0.0	0.0	3.3b	6.35b	0.231b	0.052b
11/03 to 11/10	0.00	0.0	31.2	7.02		
11/10 to 11/17	0.05	60	26.9a	6.78a	1.081	0.200
11/17 to 11/24	0.0	0.0				
11/24 to 12/01	0.15	80	11.0	5.03	0.491	0.132
12/01 to 12/08	0.20	95	14.8	5.86	0.510	0.078
12/08 to 12/15	0.04	>25				
12/15 to 12/22	0.0	0.0				
12/22 to 12/29	0.02	0.0	1.3ª	5.67ª	0.022	0.008
12/29 to 01/05	0.03	>33	TT		7 000	
01/05 to 01/12	0.42	2.4	31.1a	7.06a	3.002	0.525
01/12 to 01/19	0.02	>50	37:4ª	5.19 ^a	0.929	0.220
01/19 to 01/26	0.07	>14	120.2a	7.86a	12.500	2.003
01/26 to 02/02	0.10	20	20.8a	6.00a	1.462	0.313
02/02 to 02/09	0.28	>3.6				
02/09 to 02/16						
02/16 to 02/23	0.0	0.0	12.8b	6.75b	1.205b	0.254b
02/23 to 03/01	0.07	>14	20.7a	6.72a	0.476	0.084
03/01 to 03/08	0.05	80	32.7	5.53	1.452	0.247
03/08 to 03/15	0.52	71	11.0	6.41a	0.642	0.103
03/15 to 03/22	0.0	0.0	22	22		
03/22 to 03/29	0.02	>50	92.8a	7.03a	1.147	0.145
03/29 to 04/05			3.7a	6.37a	0.324	0.072
04/05 to 04/12	0.0	0.0	2.6b	5.85b	0.139b	0.032b
04/12 to 04/19	0.0	0.0	2.0b	5.70b	0.103b	0.026b
04/19 to 04/26	0.0	0.0				
04/26 to 05/03	0.0	0.0	42.3b	6.66b	2.129b	0.354b
05/03 to 05/10	0.03		29.6a	7.06a	2.470	0.262

^{1/} The use of brand names in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

a Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. Nondesignated data are field determinations.

b Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. To provide for an adequate sample, 50 milliliters of dilution water was added.

c Trace of water collected in field sampler.

CHEMICAL QUALITY OF PRECIPITATION

JAMES RIVER BASIN

470732099140204 WOODWORTH, ND--CONTINUED (National Trends Network precipitation-quality station)

PERIOD OF COLLECTION	PRECIP- ITATION TOTAL INCHES/ WEEK (00046)	COL- LECTOR EFFI- CIENCY WET DEPOSITION PERCENT (82284)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS (00400)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
05/10 to 05/17	0.10		18.4a	6.41a	0.926	0.177
05/17 to 05/24	0.15	100	22.5	5.49	1.156	0.208
05/24 to 05/31			11.2	5.67	0.746	0.158
05/31 to 06/07	0.0	0.0	3.0b	5.54b	0.088b	0.012b
06/07 to 06/14		22	17.0	4.92	0.489	0.093
06/14 to 06/21	0.31	94	11.7	6.31a	0.596	0.086
06/21 to 06/28	0.50	94	14.3	6.58a	0.756	0.166
06/28 to 07/05	0.05	100	18.3	5.14	0.925	0.193
07/05 to 07/12	0.30	107	8.1	5.24	0.244	0.029
07/12 to 07/19	0.41	100	10.5a	6.39a	0.455	0.090
07/19 to 07/26	0.11	91	9.9	5.11	0.562	0.142
07/26 to 08/02	1.32	106	17.3	4.86	0.502	0.072
08/02 to 08/09	0.64	102	6.9	6.21	0.164	0.038
08/09 to 08/16	0.85	92	10.3a	5.39	0.397	0.084
08/16 to 08/23	0.03	67	35.4a	6.78ª	1.730	0.302
08/23 to 08/30	0.0	0.0	2.3b	5.49b	0.036b	0.012b
08/30 to 09/06	0.07	114	79.7	6.45	5.170	0.605
09/06 to 09/13	<0.01	<400	44.7ª	7.06a	3.340	0.449
09/13 to 09/20	0.70	86	11.9	5.18	0.143	0,023
09/20 to 09/27	0.0	0.0	1.4b	5.48b	0.017b	0.005b

a Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. Nondesignated data are field determinations.

b Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. To provide for an adequate sample, 50 milliliters of dilution water was added.

CHEMICAL QUALITY OF PRECIPITATION

JAMES RIVER BASIN

470732099140204 WOODWORTH, ND--CONTINUED (National Trends Network precipitation-quality station)

	Domes		avr o		NITRO-	NITRO-	DUOG
PERIOD OF	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SODIUM, DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)
COLLECTION	(00935)	AS NA) (00930)	(00940)	AS SO4) (00945)	(00608)	(00631)	(00666)
10/01 to 10/06 10/06 to 10/13 10/13 to 10/20 10/20 to 10/27	1.015 0.760b	2.480 0.857b	3.200 1.500 ^b	4.100 4.000b	<0.110 <0.220b	0.490 <0.090b	<0.045 <0.092b
10/27 to 11/03	0.080b	0.111b	0.190b	0.070b	<0.020b	<0.010b	<0.007b
11/03 to 11/10 11/10 to 11/17 11/17 to 11/24	0.289	1.240	0.840	3.400	1.15	0.910	<0.007
11/24 to 12/01 12/01 to 12/08 12/08 to 12/15	0.086 0.074	0.297 0.217	0.230 0.280	1.200	0.670 0.860	0.540 0.720	<0.007 <0.007
12/15 to 12/22							
12/22 to 12/29 12 29 to 01/05	0.007	0.024	0.050	<0.030	<0.020	<0.010	<0.007
01/05 to 01/12 01/12 to 01/19	0.232 2.326	0.384 1.748	0.430 2.700	1.900 3.400	<0.090 <0.110	<0.040 <0.050	<0.041 0.069
01/19 to 01/26 01/26 to 02/02 02/02 to 02/09	2.702 0.176	2.880 0.388	3.400 0.370	5.600 2.400	<0.160 0.230	<0.070 1.00	<0.070 0.023
02/09 to 02/16							
02/16 to 02/23 02/23 to 03/01 03/01 to 03/08 03/08 to 03/15	0.263 ^b 0.233 0.984 0.060	0.097 ^b 0.485 1.360 0.096	0.100 ^b 0.470 1.600 0.120	1.200b 1.100 4.600 1.700	0.180 ^b <0.150 2.17 0.640	0.210 ^b <0.060 1.07 0.400	0.013 ^b <0.062 <0.007 <0.007
03/15 to 03/22 03/22 to 03/29 03/29 to 04/05 04/05 to 04/12	0.162 0.027 0.015b	1.454 0.041 0.068b	<0.480 0.040 0.050b	3.500 0.240 0.150b	<0.250 <0.020 0.020 ^b	<0.110 0.070 0.020b	<0.108 <0.007 0.027 ^b
04/12 to 04/19 04/19 to 04/26	0.032b	0.043b	<0.030b	0.100b	0.090b	0.010b	0.062b
04/26 to 05/03 05/03 to 05/10	0.385 ^b 0.206	0.304b 0.524	0.340b 0.310	6.400b 3.000	1.58b 0.160	1.83 ^b 0.820	<0.007b <0.007
05/10 to 05/17 05/17 to 05/24 05/24 to 05/31 05/31 to 06/07	0.094 0.142 0.067 0.016b	0.390 0.455 0.096 0.038b	0.120 0.150 0.080 0.230b	3.100 3.900 1.100 0.150b	0.300 0.820 <0.020 <0.020 ^b	0.520 0.730 0.340 <0.010b	<0.007 <0.007 <0.007 0.027 ^b
06/07 to 06/14 06/14 to 06/21 06/21 to 06/28 06/28 to 07/05	0.049 0.085 0.041 0.064	0.059 0.078 0.097 0.103	0.080 0.140 0.100 0.250	1.800 1.400 1.400 2.200	0.570 <0.160 0.510 0.540	0.420 0.430 0.470 0.910	<0.007 <0.007 <0.007 <0.007
07/05 to 07/12 07/12 to 07/19 07/19 to 07/26 07/26 to 08/02	<0.003 0.042 0.009 0.058	0.055 0.095 0.201 0.067	0.060 0.100 0.120 0.120	1.000 1.200 1.500 1.300	0.130 <0.020 <0.020 0.570	0.290 0.320 0.210 0.430	<0.007 <0.007 <0.007 <0.007
08/02 to 08/09 08/09 to 08/16 08/16 to 08/23 08/23 to 08/30	0.027 0.056 0.264 0.026b	0.037 0.050 2.960 0.012 ^b	0.080 0.090 0.530 0.040b	0.530 1.000 6.500 0.060b	0.470 0.590 0.360 <0.020b	0.240 0.430 0.970 0.040b	<0.007 <0.007 <0.007 <0.007 ^b
08/30 to 09/06 09/06 to 09/13 09/13 to 09/20 09/20 to 09/27	0.869 0.389 0.024 <0.003b	1.520 0.991 0.054 0.063b	0.670 0.580 0.060 0.050b	6.200 5.900 1.200 <0.030b	2.09 0.680 0.780 <0.020b	1.49 1.07 0.310 <0.010 ^b	<0.007 <0.007 <0.007 <0.007 ^b

b Data are laboratory determinations by the Central Analytical Laboratory of the Illinois State Water Survey. To provide for an adequate sample, 50 milliliters of dilution water was added.

INDEX

Page	Page
Access to WATSTORE 33	Cells/volume, definition of 34
Acre-foot (AC-FT, acre-ft), definition of 33	Cfs, definition of 34
Analyses of samples collected at miscellaneous	Channel A near Penn 69-70
ground-water quality sites366-369	Chemical oxygen demand (COD),
Analyses of samples collected at water-quality	definition of 34
partial-record stations and	Coal Lake Coulee basin, gaging station
miscellaneous sites351-354	records for224-225
Apple Creek near Menoken264-265	Coal Lake Coulee near Hensler224-225
Apple Creek basin, gaging-station records in257-265	Coliform bacteria, fecal, definition of 34
Aquifer, definition of 33	fecal streptococcal, definition of 34
Arrowwood Lake inflow site298-299	Coliform organisms, definition of 34
Arrowwood Lake open-water site300-301	Color unit. definition of 34
Arrowwood Lake outflow site302-303	Comstock Coulee near Minnewaukan 68,354
Artesian, definition of 33	Concentration, suspended-sediment,
	definition of 36
Bacteria, definition of 34	Contents, definition of 34
Fecal coliform, definition of 34	Control, definition of 34
Fecal streptococcal, definition of 34	Cooperation 1
Baldhill Creek near Dazey 74-75	Crest-stage gage, definition of 34
Bear Creek near Oakes321-322	Cubic foot per second per square mile (CFSM),
Bear Den Creek near Mandaree192-195	definition of 34
Bear Den Creek basin, gaging station	Cubic foot per second, definition of 34
records in192-195	Cubic foot per second-day, definition of 34
Beaver Creek (tributary to Goose River)	Cut Bank Creek at Upham171-172
near Finley 99-101	Cypress Creek near Sarles121-122
Beaver Creek (tributary to Little Missouri	
River) near Trotters198-199	Deep River below Cut Bank Creek near Upham 173
Beaver Creek (tributary to Missouri River)	Deep River near Upham169-170
at Linton278-279	Definition of terms 33-37
Beaver Creek basin, gaging-station records in278-279	Des Lacs River at Foxholm154-155
Bed material, definition of 34	Des Lacs River near Kenmare 153
Benson County, ground-water levels in 355	Devils Lake near Devils Lake 71
Big Coulee near Churchs Ferry 66-67	Discharge, definition of 34
Biochemical oxygen demand (BOD),	instantaneous, definition of 34
definition of 34	mean, definition of 34
Bonnes Coulee near Velva346.351-353	suspended-sediment, definition of 36
Boundary Creek near Landa 174	Dissolved, definition of 34
Bowman County, ground-water levels in 356	Dissolved-solids concentration,
Bowman County, miscellaneous ground-water	definition of 34
quality sites366-369	Divide County, ground-water levels in 357
Bowman-Haley Lake near Haley 280	Downstream order system 14
Brush Creek near Beulah214-216	Drainage area, definition of 35
Burnt Creek near Bismarck234-235	bij bane near remi
Burnt Creek basin, gaging-station records in234-235	Dunn County, ground-water levels in 357
Cannonball Pivor at Brojon 275 277	E. A. Patterson Lake near Dickinson238-240
Cannonball River, at Breien275-277 at Regent267-268	
	East Branch Short Creek Reservoir near
Cannonball River basin, gaging-station records in266-277	Columbus
	Eddy County, ground-water levels in 357
Calio Coulee near Starkweather 63-64	Edmore Coulee near Edmore 55-56
Cass County drain 52 near Amenia345,351-353	Edmore Coulee Tributary near Webster 57-58
Cass County, ground-water levels in 356	Elm Creek near Golden Valley346,351-353
Cedar Creek, near Haynes271-272	Elm River near Kelso345,351-353
near Raleigh273-274	Emmons County, ground-water levels in 358
White Butte Fork, near Scranton269-270	Explanation of records 14-33

INDEX

Fecal streptococal bacteria, definition of	Pag	e Page
Forest River, at Minto		
Forest River, at Minto————————————————————————————————————	Fecal streptococcal bacteria, definition of 3	4 records in238-259
and miscellaneous sites 351-355	Forest River, at Minto110-11	1 crest-stage partial-record stations in 346
and miscellaneous sites — 351-355 Gage height (G.H.), definition of — 35 Gaging station, definition of — 35 Gaging station, definition of — 35 Goose River, at Hillsboro — 102-105 near Portland — 345,351-355 Grand Forks County, ground-water levels in — 358 Grand River, North Fork, at Haley — 281-282 Grean River North Fork, at Haley — 281-282 Grean River North Fork, at Haley — 281-282 Grean River North Fork, at Haley — 281-282 Grean Greords An — 280-282 Green records An — 280-282 Green records An — 280-283 Grey Hydrologic conditions) — 55-1 Hydrologic bench-mark network, definition of — 14 Hydrologic bench-mark network, definition of — 35 Hydrologic conditions (see summary of Hydrologic bench-mark network, definition of — 35 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic bench-mark network, definition of — 36 Hydrologic bench-mark network, definition of — 36 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic bench-mark network, definition of — 36 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions — 55-1 Hydrologic conditions (see summary of Hydrologic conditions) — 55-1 Hydrologic conditions — 55-1 Hydrologic conditions — 55-1 Hydrologic condit	near Fordville108-10	9 water-quality partial records stations
Gage height (G.H.), definition of———————————————————————————————————		
Hidden Island Coulee near Hansboro	Gage height (G.H.). definition of 3	
Homme Reservoir near Park River 11 11 12 10 10 12 10 10		
near Portiand		
Hydrologic conditions (see summary of hydrologic conditions) Start River Pasts, gaging-station Start River, at Hazen Start River,		
A		
Hydrologic unit, definition of 35		
Tecords in		
Green River near New Hradec————————————————————————————————————		
Griggs County, ground-water records in 358-359 Ground-water level data, by counties: 355		Control of the contro
Senson County		
Benson County		Instruction discharge definition of
Bownain County		Instantaneous discharge, delinition ol
Burleigh County		
Cass County		(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
Divide County		
Dunn County		
Eddy County		프로그램 그는 그는 그는 그는 그들은 그들은 그는 그는 그는 그는 그는 그는 그를 보는 것이 되었다. 그는 그를 모르는 그는 그를 모르는 것이 되었다. 그는 그를 모르는 그를 모르
Emmons County- 358 at Oakes- 323-325 Grand Forks County- 358 at Oakes- 323-325 Griggs County- 358 near Grace City- 287-283 Hettinger County- 360 near Manfred- 284-284 Kidder County- 360 near Pingree- 304-304 Oliver County- 360 near Pingree- 304-304 Pembina County- 361 near Pingree- 304-304 Pierce County- 361 near Bingree- 304-304 Richland County- 361 miscellaneous measurement sites- 347-375 Jamestown Reservoir near Jamestown 306-308 Jamestown Reservoir near Jamestown 306-308 Stark County- 362 Steele County- 362 Kelly Creek below Nicoum Reservoir 128-247 Ward County- 363 Knife River, at Hazen- 296-297 Ward County- 364 Knife River at Hazen- 219-224 Wells County- 365 Knife River pastin, gaging-station 210-211 Ground-water chemical analyses by counties:		
Grand Forks County		
Griggs County		
Hettinger County		
Kidder County		
McLean County		
Oliver County		
Pembina County	McLean County 36	O James River basin, gaging-station
Pierce County 361 Jamestown Reservoir near Jamestown 306-308 Richland County 361 Junita Lake Tributary near Grace City 290-297 Steele County 362 Kelly Creek below Niccum Reservoir 296-297 Stutsman County 362 Kidder County, ground-water records in 296-297 Walsh County 363 Kidder County, ground-water records in 366 Ward County 364 Knife River, at Hazen 219-221 Wells County 365 Knife River basin, gaging-station 210-21 Ground-water chemical analyses by counties: 80 man County 366-369 Knife River basin, gaging-station 210-221 Ground-water level records 355-358 Water-quality partial record stations in 346 Hardness, definition of 35 4 4 4 4 at Stark Bridge near Judson 241-242 4 4 4 4 at Stark Bridge near Judson 346,351-353 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Oliver County 36	0 records in284-344
Richland County	Pembina County 36	1 miscellaneous measurement sites347-350
Stark County	Pierce County 36	Jamestown Reservoir near Jamestown306-308
Stark County	Richland County 36	Juanita Lake Tributary near Grace City290-29
Stutsman County	Stark County 36	
Stutsman County	Steele County 36	2 Kelly Creek below Niccum Reservoir
Traill County	Stutsman County 36	
Walsh County 363-364 Knife River, at Hazen 219-22 Ward County 364 at Manning 210-211 Williams County 365 Knife River basin, gaging-station 210-221 Ground-water chemical analyses by counties: records in 210-221 Bowman County 366-369 crest-stage partial record stations in 346 Ground-water level records 355-358 water-quality partial-records stations and miscellaneous sites 351-353 Hardness, definition of 35 Lake Ashtabula at Baldhill Dam 76 at Stark Bridge near Judson 241-242 Lake Darling near Foxholm 145 at Stark Bridge near Judson 250-251 Lake Darling near Grano 147-146 near Richardton 252-255 Lake Oahe near Pierre, SD 204	Traill County 36	3 Kidder County, ground-water records in 360
Ward County		
Wells County		
Williams County		
Ground-water chemical analyses by counties: records in		스테스 BEST CONTROL IN THE CONTROL OF
Bowman County		
Water-quality partial-records stations and miscellaneous sites	Bowman County366-36	
And miscellaneous sites		
Hardness, definition of	dround water level records	
Heart River, at Dickinson	Hardness definition of 3	
at Stark Bridge near Judson346,351-353 Lake Darling near Foxholm147-148 149 near Lark	Heart River at Dickinson	
near Lark		
near Mandan		
near Richardton245-246 Lake Sakakawea near Riverdale 204		
near South near t240,301-303 Lake Tschida near Gien Ullin247-245		
	near 30u on near t	bake ischida hear Gien Ullin247-249

INDEX

Page	Page
Lakes and Reservoirs:	Missouri River main stem, gaging-stations
Ashtabula, Lake, at Baldhill Dam 76	records in178-180,185-189,204-209,222-223
Bowman-Haley Lake, near Haley 280 Darling, Lake, near Foxholm 149	226,231,236-237,256,266,283
Darling, Lake, near Foxholm 149 Darling, Lake, near Grano147-148	Missouri River stage gage No. 4 near Nohly, MT
Devils Lake, near Devils Lake 71	Missouri River stage gage No. 5
Dry Lake near Penn 62	at Nohly, MT 180
E. A. Patterson Lake near Dickinson238-240	Missouri River stage gage No. 5A at Buford 185
East Branch Short Creek Reservoir near	Missouri River stage gage No. 6 near Buford 186
Columbus 139	Missouri River stage gage No. 7
Homme Reservoir near Park River 112 Jamestown Reservoir near Jamestown306-308	near Trenton
Morrison Lake near Webster 59	Missouri River stage gage No. 9 at Williston 189 Morrison Lake near Webster 59
Oahe, Lake, near Pierre, SD 283	Mouse River (see Souris River)
Sakakawea, Lake, near Riverdale 204	Mowbray Creek near Mowbray, Man 124
Tschida, Lake, near Glen Ullin247-249	
Latitude-longitude system 15	National Geodetic Vertical Datum of 1929 (NGVD),
Little Coulee near Brinsmade 65 Little Missouri River, at Marmarth196-197	definition of 35
near Watford City200-203	National stream-quality accounting network (NASQAN), definition of 14
Little Missouri River basin, gaging-station	National trends network (NTN), definition of 14
records in196-203	precipitation-quality data370-375
Little Muddy River below Cow Creek near	Normal, definition of 35
Williston190-191	North Fork Grand River at Haley281-282
Little Muddy River basin, gaging-station records in190-191	01/ 0 1 1 1 760
Local well numbers 15	Oliver County, ground-water levels in 360
Long Creek, at western crossing of	Painted Woods Creek near Wilton229-230
international boundary, Sask 136	Painted Woods Creek basin, gaging-station
near Noonan137-138	records in229-230
Long Lake Creek above Long Lake 257	Parameter code, definition of 35
Long Lake Pool 3 near Moffit258-259 Long Lake Pool 2 near Moffit260-261	Park River, at Grafton115-116
Long Lake Pool 1 near Moffit262-263	South Branch, below Homme Dam113-114 Partial-record station, definition of 35
Lower Branch Rush River near	Particle size, definition of 35
Prosper345,351-353	classification, definition of 35
	Pembina County, ground-water levels in 361
Map showing location of, gaging stations 2	Pembina County, precipitation chemical
water-quality stations 3 ground-water observation wells 4	quality370-372
Maple River (James River basin) at North	Pembina River, at Neche128-129 at Walhalla126-127
Dakota-South Dakota State line 344	near Windygates, Man 125
Maple River (tributary to Sheyenne River),	Percent composition, definition of 35
near Enderlin 92-93	Pesticides, definition of 35
near Hope 90-91	pH, definition of
Mauvais Coulee, near Cando 53-54 Tributary No. 3 near Cando347,351-353	Picocurie (PC, pCi), definition of
McLean County, ground-water	Pierce County, ground-water levels in 361 Pipestem Creek, near Pingree309-310
levels in 360	
Mean discharge, definition of 34	Radiochemical program, definition of 14
Micrograms per gram (UG/G, µg/g),	Records of ground-water levels:
definition of	Availability of data 28
Micrograms per liter (UG/L, µg/L), definition of	Data collection and computation
Middle Branch Forest River	Data presentation
near Whitman106-107	Data collection and computation 33
Milligrams per liter (MG/L, mg/L),	Data presentation 33
definition of 35	Records of stage and water discharge:
Miscellaneous sites, discharge measurements at347-350	Accuracy of the records 18-19
Missouri River, above Stanton 209	Data collection and computation 15-17 Data presentation 17-18
at Bismarck236-237	Identifying estimated daily discharge 18
at Garrison Dam205-208	Other records available 19
at Price 231	Records of surface-water quality:
at Washburn 226 below Mandan 256	Arrangement of records 19
below Mandan	Classification of records
near Hensler 223	Data presentation
near Schmidt 266	On-site measurements and sample
near Stanton 222	collection 25
near Williston 188	Remark codes 26
Missouri River basin, miscellaneous discharge measurements 348	Sediment 25
discharge measurements 348	Water temperatures 25

Page	Page
Red River of the North, at Drayton117-118	Stage, definition of 36
at Emerson, Man132-135	Stage-discharge relation, definition of 36
at Fargo 47-48	Stark County, ground-water levels in 362
at Grand Forks104-105	Starkweather Coulee near Webster 60-61
at Halstad, MN 96-98	Station identification numbers 14-15
at Hickson 42-43	Stone Creek near Kramer 168
at Oslo, MN346,351-353	Streamflow, definition of 36
at Wahpeton 40-41	Stutsman County, ground-water levels in 362
near Pembina 346	precipitation chemical quality373-375
Red River of the North basin, gaging-station	Summary of hydrologic conditions:
records for 40-177	Streamflow 5,7
Red River of the North basin, crest-stage	Chemical quality of streamflow
partial-records stations in345-346	Ground-water levels 12
miscellaneous discharge measurements 347	Surface area, definition of 36
water-quality partial-records stations	Suspended, definition of 36
and miscellaneous sites351-354	Suspended, recoverable, definition of 37
Reservoirs (see lakes and reservoirs)	Suspended sediment, definition of 36
Return period, definition of 36	Suspended-sediment concentration,
Richland County drain 65 near Great Bend 345	definition of 36
Richland County, ground-water levels in 361	Suspended-sediment discharge,
Runoff in inches (IN, in), definition of 36	definition of 36
Rush River, at Amenia 94-95	Suspended-sediment load, definition of 36
near Prosper345,351-353	Suspended, total, definition of 37
GAR (Gadina adapatina matia)	Machaianas of water-resources
SAR (Sodium-adsorption ratio),	Techniques of water-resources investigations, TWRI 38-39
definition of 36	Terms. definition of 33-37
Sediment, definition of 36	
bedload, definition of 36	Thermograph, definition of 37
suspended sediment, definition of 36	Time-weighted average, definition of 37
suspended-sediment concentration,	Tongue River at Akra130-131
definition of 36	Tons per acre-foot, definition of 37
suspended-sediment discharge, definition of 36	Tons per day, definition of 37
suspended-sediment load, definition of 36	Total, definition of 37
Sheyenne River, above Harvey 49-50	Total discharge 37
at Lisbon 81-82	Total, recoverable, definition of 37
at Valley City 79-80	Traill County, ground-water levels in 36
at West Fargo 88-89	Turtle River at Manvel346,351-353
below Baldhill Dam 77-78	
near Cooperstown 72-73	Walsh County, ground-water levels in363-364
near Horace 86-87	Ward County, ground-water levels in 364
near Kindred 83-85	Water year, definition of 37
near Warwick 51-52	WDR, definition of 37
Short Creek below international boundary	Weighted average, definition of 37
near Roche Percee, Sask 140	Wells County, ground-water levels in 36
Snowflake Creek near Snowflake, Man 123	West Branch Otter Creek near Beulah346,351-353
Sodium-adsorption ratio (SAR), definition of 36	White Butte Fork Cedar Creek near
Solute, definition of 36	Scranton269-270
Souris (Mouse) River, above Minot156-157	Wild Rice River, near Abercrombie 45-46
near Bantry164-165	near Rutland 44
near Foxholm150-152	Williams County.
near Sherwood141-146	ground-water levels in 369
near Verendrye158-160	Willow Creek near Willow City166-167
near Westhope175-177	Wintering River near Karlsruhe161-16
Souris River, crest-stage partial-record	Woodworth, NTN precipitation quality373-375
stations in 346	WRD (see WDR)
water-quality partial-records stations	WSP, definition of 37
and miscellaneous sites351-353	10. 1 10. 10. 10. 10. 10. 10. 10. 10. 10
South Branch Park River below	Yellowstone River near Sidney, MT 18
Homme Dam113-114	Yellowstone River stage gage No. 1 near
Special networks and programs 14	Fairview, MT 182
Specific conductance, definition of 36	Yellowstone River stage gage No. 2 near
	Cartwright 183
Spring Creek (Knife River basin) at Zap 217-218	Yellowstone River stage gage No. 3 near
Square Butte Creek below Center232-233	Buford 184
Square Butte Creek basin, gaging-station	Yellowstone River basin, gaging-station
records in232-233 St. Joe Coulee near Webster345,351-353	records for181-184
be doe double hear webster	1001.49 101

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047x10 ⁻³	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785x10 ³	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
	2.447×10^{-3}	cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
and the second s	2.832x101	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
The second secon	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x101	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 821 E. Interstate Avenue Bismarck, ND 58501

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE

