

Water Resources Data New Jersey Water Year 1988

AUG 31 1989 A

Volume 2. Delaware River Basin and tributaries to Delaware Bay

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-88-2 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

CALENDAR FOR WATER YEAR 1988

]	198	7										
		OCI	OBE	ER					NOV	EME	BER					DEC	CEMI	BER			
S	M	T	W	Т	F	S	S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	S	
11 18	5 12 19 26	13 20	14 21	15 22	16 23	17 24	15 22	16 23	17 24	18	19	20	21	13	14 21	15 22	16 23	1/	25	19	
										198	8										
		JA	ANUA	ARY					FE	BRU	JARY	7.				N	/AR	CH			
S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	М	Т	W	Т	F	S	
17	11 18 25	19	13 20	14 21	22	16 23	14 21	8 15 22	9	10 17 24	11 18	12	13 20		14 21	15 22	9 16 23	10 17	11 18 25	19 26	
		1	APR	IL						MAY	Y						JUN	Ε			
S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	М	Т	W	Т	F	S	
10 17	11 18	12 19	13 20	14 21	15 22	9 16 23	8 15 22	9 16 23	17 24	11 18 25	19	13 20	21	12	13 20	14 21	15 22	9 16 23	17	11 18	
			JUL	Y					Al	JGUS	ST					SEP.	rem:	BER			
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	
10 17	18 25	12 19	13 20	14 21	15 22	16 23	14 21	8 15 22	9 16 23	10 17 24	11 18	12 19	13 20	11	12 19	13 20	14 21	15 22	9 16 23	17 24	

United States Department of the Interior

GEOLOGICAL SURVEY

Water Resources Division Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

I am pleased to announce the release of our Annual Report "Water Resources Data for New Jersey, Water Year 1988". This report was prepared by the U.S. Geological Survey, in cooperation with the State of New Jersey and several local and federal government agencies.

Once again this year, the report is issued in two volumes:

Volume 1.--Atlantic Slope Basins, Hudson River to Cape May. Volume 2.--Delaware River Basin and tributaries to Delaware Bay.

The report contains records of stream discharge and water-quality measurements, elevations of lakes and reservoirs, major water-supply diversions and tidal elevations. Also included are records of sediment concentrations and records of ground-water quality and ground-water levels. Special sections are devoted to low-flow and crest-stage data as well as summaries of tidal crest elevations in the New Jersey estuaries and intracoastal waterways.

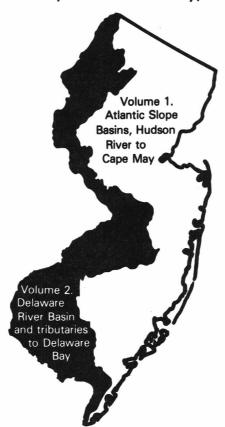
Streamflow data in this report are presented in a new format, considerably different from that in previous years. The new format includes tabular presentations of streamflow statistics rather than some of the written text. Station numbers are included in the table of contents. Tables of discontinued surface-water and water-quality stations are also included. Hydrographs have been included for ground-water stations. These changes are part of a pilot program to reformat the annual water-data reports to meet user needs and data preferences.

Copies of this report in paper or microfiche are for sale through the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-88-1 (for volume 1) and NJ-88-2 (for volume 2). For further information on this report, or to change or remove your address from our mailing list, please contact me at the above address or telephone (609) 771-3900.

Sincerely,

William R. Bauersfeld, Chief

Hydrologic Data Assessment Program


William B. Bowersfeld

Water Resources Data New Jersey Water Year 1988

Volume 2. Delaware River Basin and tributaries to Delaware Bay

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and W.D. Jones

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-88-2
Prepared in cooperation with the New Jersey
Department of Environmental Protection
and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in New Jersey write to

District Chief, Water Resources Division U.S. Geological Survey Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report.

Eugene Dorr Mark A. Hardy Robert D. Schopp

M.D. Morgan word processed the text of the report, and G.L. Simpson drafted the illustrations.

The data were collected, computed, and processed by the following personnel:

G. Carleton	M.J. DeLuca	J.D. Joyner	R.G. Reiser
W.F. Calvetti	J.F. Dudek	D.S. Kauffman	E. Rodgers
G.L. Centinaro	M.D. Eanes	N.W. Leivers	F.L. Schaefer
R.S. Cole	C.E. Gurney	T.J. Reed	A.J. Velnich

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of Janice R. Ward, Associate District Chief for Hydrologic Data Assessment and Information Management; Donald E. Vaupel, District Chief, New Jersey; and Stanley P. Sauer, Regional Hydrologist, Northeastern Region.

REPORT DOCUMENTATION	1. REPORT NO.	2.	T	3. Recipient's Accession No.
PAGE	USGS/WRD/HD-89/275			
. Title and Subtitle				5. Report Date
Water Resources Dat	a - New Jersey, Water Yea	r 1988		June 1989
	River Basin and tributar	ies to Delaw	are Bay	6.
	. W. Moshinsky, E. A. Pus	tay, W. D. J	ones	8. Performing Organization Rept. No. USGS-WDR-NJ-88-2
. Performing Organization Name a	nd Address			10. Project/Task/Work Unit No.
	vey, Water Resources Divi	sion		
Mountain View Offic				11. Contract(C) or Grant(G) No.
810 Bear Tavern Roa				(C)
West Trenton, New J	ersey 08628			(G)
2. Sponsoring Organization Name a				13. Type of Report & Period Covered
	vey, Water Resources Divi	sion		Annual - Oct. 1, 198
Mountain View Offic	-			to Sept. 30, 1988
810 Bear Tavern Roa				14.
West Trenton, New J 5. Supplementary Notes	ersey 08628			
discharge, and water and reservoirs; and the report contains stations; stage and water sites and 81 are data for 27 cres 19 low-flow partial not part of the sysmeasurements. These	a for the 1988 water year quality of streams; state water levels and water quality of streams; state water levels and water quality for 18 lakes and water levels for 18 lakes and water l	ge, contents quality of graging stated reservoirs stations, 2 to lonal water dorogram, and to of the nat	, and wa ound wat ions; ti ; water ation we idal cre ata were are publ ional wa	ter quality of lakes er. This volume of de summaries for 3 quality for 30 surface- lls. Also included st-stage gages and collected at 26 sites, ished as miscellaneous ter data system operate
Water Resources dated discharge, and water and reservoirs; and the report contains stations; stage and water sites and 81 are data for 27 cre 19 low-flow partial not part of the sysmeasurements. These	er quality of streams; start water levels and water of discharge records for 24 contents for 18 lakes and wells; and water levels fest-stage partial-record stations. Additional actions and the data collection page data represent that page	ge, contents quality of graging stated reservoirs stations, 2 to lonal water dorogram, and to of the nat	, and wa ound wat ions; ti ; water ation we idal cre ata were are publ ional wa	ter quality of lakes er. This volume of de summaries for 3 quality for 30 surface- lls. Also included st-stage gages and collected at 26 sites, ished as miscellaneous ter data system operate
Water Resources dated discharge, and water and reservoirs; and the report contains stations; stage and water sites and 81 are data for 27 cre 19 low-flow partial not part of the sysmeasurements. These	er quality of streams; start water levels and water of discharge records for 24 contents for 18 lakes and wells; and water levels fest-stage partial-record stations. Additional actions and the data collection page data represent that page	ge, contents quality of graging stated reservoirs stations, 2 to lonal water dorogram, and to of the nat	, and wa ound wat ions; ti ; water ation we idal cre ata were are publ ional wa	ter quality of lakes er. This volume of de summaries for 3 quality for 30 surface- lls. Also included st-stage gages and collected at 26 sites, ished as miscellaneous ter data system operate
Water Resources dated discharge, and water and reservoirs; and the report contains stations; stage and water sites and 81 are data for 27 cre 19 low-flow partial not part of the sysmeasurements. These	er quality of streams; start water levels and water of discharge records for 24 contents for 18 lakes and wells; and water levels fest-stage partial-record stations. Additional actions and the data collection page data represent that page	ge, contents quality of graging stated reservoirs stations, 2 to lonal water dorogram, and to of the nat	, and wa ound wat ions; ti ; water ation we idal cre ata were are publ ional wa	ter quality of lakes er. This volume of de summaries for 3 quality for 30 surface- lls. Also included st-stage gages and collected at 26 sites, ished as miscellaneous ter data system operate
Water Resources data discharge, and water and reservoirs; and the report contains stations; stage and water sites and 81 are data for 27 cre 19 low-flow partial not part of the sys measurements. These by U.S. Geological	er quality of streams; state water levels and water quality of streams; state discharge records for 24 contents for 18 lakes and wells; and water levels fest-stage partial-record stations. Additional and the stematic data collection partial represent that particularly survey and cooperating State of the	age, contents quality of graph agging state of the nate and Federal state stat	, and wa ound wat ions; ti ; water ation we idal cre ata were are publional waral agen	ter quality of lakes er. This volume of de summaries for 3 quality for 30 surface-1ls. Also included st-stage gages and collected at 26 sites, ished as miscellaneous ter data system operate cies in New Jersey.
Water Resources date discharge, and water and reservoirs; and the report contains stations; stage and water sites and 81 are data for 27 cre 19 low-flow partial not part of the sys measurements. These by U.S. Geological 7. Document Analysis a. Descript *New Jersey, *Hydrorate, Gaging stations of the system o	er quality of streams; state water levels and water of discharge records for 24 contents for 18 lakes and wells; and water levels fest-stage partial-record stations. Additionally and contents for the data represent that par Survey and cooperating States.	age, contents quality of grading state of the nattate and Federal analysements.	, and ware ound water ions; till; water water at a were are publicant warral agen	ter quality of lakes er. This volume of de summaries for 3 quality for 30 surface-11s. Also included st-stage gages and collected at 26 sites, ished as miscellaneous ter data system operate cies in New Jersey.

c. COSATI Field/Group

18. Availability Statemen: No restriction on distribution.

This report may be purchased from: National
Technical Information Service, Springfield, VA
22161

19. Security Class (This Report Unclassified Unclassifi

9. Security Class (This Report)	21. No. of Pages
Unclassified	225
O. Security Class (This Page) Unclassified	22. Price

CONTENTS

CONTENTS	Page
	rage
Parkers 1 Control of the Control of	iii
Preface	vi
List of survace water stations, in downstream order, for which records are published	vii
List of ground-water wells, by county, for which records are published	V 1
Cooperation.	4
Compens of hydrologic conditions	- i.
Summary of hydrologic conditions	1
	2
Water quality	5
Ground-water levels	12
Special networks and programs	12
Explanation of records	12
Station identification numbers	12
Downstream order system	12
Latitude-longitude system	12
Records of stage and water discharge	13
Data collection and computation	13
Data presentation	14
Identifying estimated daily discharge	12
Accuracy of the records	12
Other records available	12
Records of surface-water quality	12
Classification of records	12
Arrangement of records	12
On-site measurements and sample collection	15
Water temperature	16
Sediment	16
Laboratory measurements	16
Data presentation	1222222334555555566667777
Remark codes	17
Records of ground-water levels	17
Data collection and computation	1/
Data presentation	18
Records of ground-water quality	18
Data collection and computation	18
Data presentation	18
Current water-resources projects in New Jersey	18
Current water-resources projects in New Jersey	19
Access to WATSTORE data	20
Definition of terms	18 18 18 18 19 20 26 30 32 33 32 162 162
Selected references. Publications on Techniques of Water-Resources Investigations	26
Publications on Techniques of Water-Resources Investigations	30
List of discontinued gaging stations	32
List of discontinued continuous water-quality stations	33
Station records, surface water	42
Station records, surface water	162
Crest-stage partial-record stations	162
Low-flow partial-record stations	166 168 171
Miscellaneous sites	108
Tidal crest-stage stations	1/1
Station records, ground water	173
Ground-water levels	173
Secondary observation wells	202
Quality of ground water	202 203 215
Index	213
TILIATRATION	
ILLUSTRATIONS	
Figure 1. Combined usable storage in 13 major water-supply reservoirs	4
2. Monthly streamflow at key gening stations	3
3. Annual mean discharge at key gaging stations	6
4. MONTHLY Drecinitation at three National Weather Carvice Locations	7
5. Monthly mean specific conductance at Delaware River at Trenton	8
5. Monthly mean specific conductance at Delaware River at Trenton	8
7. Map showing locations of sites with concentrations of Chlordane DDD.	
DDE. DDT. or PCR's in bottom material greater than 20 ug/kg 1988	9
8. Monthly ground-water levels at key water table observation wells.	10
9. Twenty year hydrographs of one artesian and one water table observation well.	
IV. SYSTEM TOF NUMBERING WELLS AND MISCELLANEOUS SITES	13
11. Map showing location of gaging stations and surface-water quality stations	34
11. Map showing location of gaging stations and surface-water quality stations	11 13 34 36 38
13. Map showing location of ground-water observation wells	38
13. Map showing location of ground-water observation wells. 14. Map showing locations of ground-water quality stations	40
,	40
<u>TABLES</u>	
Table 1. Frequency of detection of organochlorine and organophosphorus compounds in bottom materials	
Table 1. Frequency of detection of organochlorine and organophosphorus compounds in bottom materials	7
of New Jersey streams for water years, 1976 to 1988	cover

Note.--Data for partial-record stations and miscellaneous sites for surface-water quantity are published in a separate section of the data report. See references at the end of this list for page numbers for this section.

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (s) sediment, (t) water temperature, (e) elevation, gage height or contents, (b) biological]

	Page
MAURICE RIVER BASIN	
Mourica Divare	
01411456 Little Ease Run near Clayton (d)	42
01411500 Maurice River at Norma (dcms)	43
COHANSEY RIVER BASIN 01412800 Cohansey River at Seeley (dcm)	46
DELAUADE DIVED PACIN	40
01434000 Delaware River at Port Jervis, NY (dct)	49
01/37500 Neversink Diver at Codeffroy NV (d)	55 577 590 661 635 668 669 770 773 757 779 811 834 846 87 91 933 105
01438500 Delaware River at Montague (d)	57
01440000 Flat Brook at Flatbrookville (d)	59
01440200 Delaware River near Delaware Water Gap, PA (d)	61
01443440 Paulins Kill at Balesville (cm)	63
01443500 Paulins Kill at Blairstown (dcm)	65
01443900 Yards Creek near Blairstown (d)	68
01445500 Pequest River at Pequest (d)	69
01446500 Delaware River at Belvidere (d)	70
01447000 Delaware River at Northampton Street, at Easton, PA (cm)	77
01453000 Lehigh River at Bethlehem (d) 01455200 Pohatcong Creek at New Village (cm) 01455500 Musconetcong River at outlet of Lake Hopatcong (cm)	75
01455500 Musconetcong River at outlet of Lake Honatcong (cm).	77
U14320UI MUSCONETCOND KIVER AT LOCKWOOD (CM)	79
01456200 Musconetcong River at Beattystown (cm)	81
01457000 Musconetcong River near Bloomsbury (d)	83
01457400 Musconetcong River at Riegelsville (cm)	84
01460500 Delaware and Raritan Canal at Kingston (d)	97
01461300 Wickecheoke Creek at Stockton (cm)	80
01462500 Delaware River at Washington Crossing (cm)	91
01463500 Delaware River at Trenton (dcmts)	93
01463620 Assunpink Creek near Clarksville (cm)	103
01464000 Assunpink Creek at Trenton (d)	105
01464500 Crosswicks Creek at Extonville (dcm)	106 109
01464515 Doctors Creek at Allentown (cm). 01464598 Delaware River at Burlington (e)	111
01465850 South Branch Rancocas Creek at Vincentown (cm)	111
01465850 South Branch Rancocas Creek at Vincentown (cm)	114
Greenwood Branch:	
01466500 McDonalds Branch in Lebanon State Forest (dcmts)	116
01467000 North Branch Rancocas Creek at Pemberton (dcm)	127
01467060 Delaware River at Palmyra (e)	130
11467069 North Brench Dennesiken Creek peer Monactour (cm)	131
01467069 North Branch Pennsauken Creek near Moorestown (cm)	131 133
01467120 Cooper River at Norcross Road, at Lindenwold (cm)	136
U140/14U COOPER KIVER AT LAWNSIGE (CM)	138 140
01467150 Cooper River at Haddonfield (d)	140
Big Timber Creek: 01467329 South Branch Big Timber Creek at Blackwood Terrace (cm).	4/4
01467329 South Branch Big Timber Creek at Blackwood Terrace (cm)	141
01477120 Raccoon Creek near Swedesboro (dcm).	143 145
01477120 Raccoon Creek near Swedesboro (dcm). 01477510 Oldmans Creek at Porches Mill (cm). 01481602 Delaware River below Christina River at Wilmington (e).	148
01481602 Delaware River below Christina River at Wilmington (e)	148 150
U148ZDUU SALAM RIVAR AT WOOGSTOWN (CM)	151 153 159
Reservoirs in Delaware River basin (e). Diversions and withdrawals in Delaware River basin	153
Diversions and withdrawats in Delaware River Dasin	159
Discharge at partial-record stations and miscellaneous sites	162
Crest-stage partial-record stations	162
LOW-TLOW DARTIAL-RECORD STATIONS	166 168 171
Miscellaneous sites Elevation at tidal crest-stage partial-record stations	168
Elevation at tidal crest-stage partial-record stations	171

GROUND WATER STATIONS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED	vii
	Page
	rage
GROUND-WATER LEVEL RECORDS	
BURLINGTON COUNTY	
Lebanon State Forest 23-D(NJ-WRD Well No. 05-0689)	173
Medford 1(NJ-WRD Well No. 05-0258)	174
Medford 4(NJ-WRD Well No. 05-0262)	175 176
Medford 5(NJ-WRD Well No. 05-0261)	177
Rhodia Corp. 1(NJ-WRD Well No. 05-0440)	178
CAMDEN COUNTY	
Elm Tree Farm 2(NJ-WRD Well No. 07-0412)	179
Elm Tree Farm 3(NJ-WRD Well No. 07-0413)	180
Hutton Hill 1(NJ-WRD Well No. 07-0117)	181
CAPE MAY COUNTY West Cape May 1(NJ-WRD Well No. 09-0150)	182
Higbee Beach 3 (NJ-WRD Well No. 09-0049)	183
Oyster Lab 4 (NJ-WRD Well No. 09-0089)	184
County Park T8(NJ-WRD Well No. 09-0099)	185
CUMBERLAND COUNTY	186
Jones Island 2(NJ-WRD Well No. 11-0096)	187
GLOUCESTER COUNTY	101
Mantua Shallow(NJ-WRD Well No. 15-0741)	188
Mantua Deep(NJ-WRD Well No. 15-0742)	189
Stefka 1(NJ-WRD Well No. 15-0712)	190
Stefka 2(NJ-WRD Well No. 15-0713)	191 192
Stefka 4	193
Deptford Deep (N.I-WR) Well No. 15-0670)	194
Deptford Deep(NJ-WRD Well No. 15-0671)	195
Gloucester Co. Water-table Network	196
HUNTERDON COUNTY	197
Bird(NJ-WRD Well No. 19-0002)	197
\$alem 1(NJ-WRD Well No. 33-0251)	198
Salem 2(NJ-WRD Well No. 33-0252)	199
Salem 3(NJ-WRD Well No. 33-0253)	200
Point Airy(NJ-WRD Well No. 33-0187)	201
Secondary observation wells	202
QUALITY OF GROUND-WATER RECORDS	
Cape May County	203
Cumberland County	204
Gloucester County	205 211
Hunterdon County	212
Salem County.	214

WATER RESOURCES DATA - NEW JERSEY, 1988

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of New Jersey each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - New Jersey."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 24 gaging stations; tide summaries at 3 gaging stations; stage and content at 18 lakes and reservoirs; water quality at 30 surface-water stations and 81 wells; and water levels at 53 observation wells. Records included for ground-water levels are only a part of those obtained during the year. Also included are data for 27 crest-stage partial-record stations and stage only at 2 tidal crest-stage gages. Locations of these sites are shown on figures 11, 12, 13, and 14. Additional water data were collected at various sites not involved in the systematic data-collection program. Discharge measurements were made at 19 low-flow partial-record stations. Miscellaneous data were collected at 24 measuring sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

This series of annual reports for New Jersey began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1977 water year, these data were published in two volumes.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for New Jersey were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Part 18." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Books and Open-file Reports Section, Federal Center, Building 4, Box 25425, Denver, CO, 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NJ-88-2." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information, Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 771-3900.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Christopher J. Daggett, Commissioner.

Division of Water Resources, Jorge H. Berkowitz, Acting Director.

New Jersey Water Supply Authority, Rocco Ricci, Executive Director.

North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.

Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.

County of Bergen, Edward R. Ranuska, director of Public Works and County Engineer.

County of Camden, Barton Harrison, Chairman of Camden County Planning Board.

County of Gloucester, H. Fred Schuster, Director of Health.

County of Gloucester, Robert V. Scolpino, Director of Planning.

County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.

Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 17 surface water stations, and by the U.S. Army Armament Research and Development Center for the collection of records at 3 surface-water stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Funding was also supplied by the following Federal Energy Regulatory Commission licensee: Jersey Central Power and Light Company and Independent Hydro Developers Inc. Assistance was provided by the National Weather Service and the National Ocean Service.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Elizabethown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; New Jersey-American Water Company (formerly Monmouth Consolidated Water Co. and Commonwealth Water Co.); and Jersey Central Power and Light Co.

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow

Streamflow for the 1988 water year was about normal throughout the State. Precipitation ranged from 41.05 inches (97 percent of the 30-year mean) at Newark to 33.09 inches (79 percent of the 30-year mean) at Atlantic City. Figure 4 shows monthly precipitation compared with 30-year means. Reservoir contents were above average for the entire year and, at most sites, water levels were above spillway elevations from February through May (see Figure 1).

Water year 1988 began with streamflow about normal, ranging from 110 percent of long-term normal (1919-88) in the northern part of the State to 96 percent of long-term normal (1926-88) in the southern part. Streamflow

continued in the normal range through January. In February, when precipitation was 132 percent of normal, streamflow began to increase significantly. A storm on February 12 resulted in from 2.3 inches of rainfall in the southern part of the State to 1.1 inches in the northern part. At some sites in the south, peak flow for the year was recorded. Streamflow decreased steadily in March and April. By the end of April, flow was 85 percent of normal. May was a wet month; precipitation fell on 21 days of the month. The average precipitation for May was about 200 percent of normal. This precipitation produced above-normal runoff for the month. From May through September, streamflow remained in the normal range. Several severe storms were recorded during the summer. At Essex Fells, in Essex County, the National Weather Service (NWS) recorded 6.40 inches of rainfall on July 20-22. At Morris Plains, in Morris County, NWS recorded 11.48 inches of precipitation during July, which is 255 percent of the July average. At the end of the water year, streamflow was 161 percent of normal in the north but 63 percent of normal in the south.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 119 ft³/s for the water year; this flow is 98 percent of the 70-year average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 68.8 ft³/s for the water water year; this flow is 80 percent of the 63-year average. The observed annual mean discharge of the Delaware River at Trenton was 9,802 ft³/s, which is 84 percent of the 76-year average. The Delaware River is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for upstream storage and diversion) was 92 percent of normal for the year. Figure 2 compares monthly mean discharge at each of these index gaging stations during the current water year with the long-term normal (1951-80) monthly discharge. Figure 3 compares annual mean discharge at each of these gaging stations with the annual mean discharge for the period of record.

Combined usable storage in 13 major water-supply reservoirs in New Jersey decreased from 70.5 billion gallons (93 percent of capacity) on October 1, 1987, to 55.4 billion gallons (72 percent of capacity) on September 30, 1988. Storage in Wanaque Reservoir decreased from 23.5 billion gallons (85 percent of capacity) on October 1, 1987, to 14.9 billion gallons (54 percent of capacity) on September 30, 1988. Pumped storage in Round Valley Reservoir, the largest capacity reservoir in the State, increased from 53.1 billion gallons (96 percent of capacity) on October 1, 1987, to 53.2 billion gallons (97 percent of capacity) on September 30, 1988.

Water Quality

Above-normal streamflow in northern parts of the State at the beginning of the water year caused increased dilution of dissolved solids in many northern and central streams in October, November, and December. Dilution of dissolved solids generally results in an improvement in water quality because concentrations of undesirable substances, such as trace elements, organic compounds, nutrients, bacteria, and nuisance aquatic organisms, usually also are diluted. The degree of dilution is apparent when monthly mean values of specific conductance, which are related directly to dissolved-solids concentrations, for 1988 are compared with specific-conductance values for 1981-87. Figure 5 compares specific-conductance values for the Delaware River at Trenton, a large drainage in central New Jersey as well as parts of New York and Pennsylvania, in 1988 with those for 1987, and with the mean for 1981-87. The lowest instantaneous specific-conductance value measured in 1988, 103 μ s/cm (microsiemens per centimeter at 25 degrees Celsius), was measured on March 29 and was caused by heavy rainfall during the last week of the month. The effects of periods of sustained precipitation and above-normal runoff during May produced the lowest mean monthly specific conductance for the year. Decreased dilution of dissolved solids resulting from below-normal streamflow in April is demonstrated by the difference between the specific-conductance value for April 1988 (170 μ s/cm) and the mean value for 1981-87 (142 μ s/cm). Periods of both higher-than-normal dilution and lower-than-normal dilution of the mean for 1981-87.

Polychlorinated biphenyls (PCBs) and a number of pesticides commonly are detected in New Jersey streams. Table 1 summarizes the frequency of detection of these compounds in bottom sediments from 1976 through 1988. Detection limits during this period were 1.0 μ g/kg (micrograms per kilogram) for PCN, chlordane, and PCB; 1.0 to 10 μ g/kg for toxaphene, and 0.1 μ g/kg for the other compounds. The number of sites at which samples were collected ranged from 13 to 35 per year, with a median of 27 per year. Sites sampled more than once in a year were counted only once. The organochlorine compounds chlordane, dieldrin, DDT (and its decomposition products DDD and DDE), and PCBs are the most commonly detected organic compounds in stream-bottom sediments in the State. Chlordane and dieldrin have been used widely to control soil pests as well as termites and ants. The production and use of DDT, a common, low-cost, broad-spectrum pesticide, have been banned in the United States since 1972. PCBs were used in many industrial and manufactured items (for example, lubricants, dyes, and hydraulic fluids), but their use has been restricted to environmentally closed systems (for example, electrical capacitors and transformers) since 1971. Common sources of PCBs include industrial and municipal effluents, landfills and other soil-disposal sites, and incineration of material containing PCBs (Natural Resources Council, 1979). All of these organochlorine compounds persist in the environment and still are found in surface and ground waters in the State despite the restriction or prohibition of their use.

Figure 6 summarizes the concentrations of chlordane, DDT, DDD, DDE, and PCBs in New Jersey stream-bottom samples for 1976-88. Only those sites for which water-quality data are presented in either volume of this report are included. Figure 6 also shows the percentage of samples collected in which at least one compound exceeded a concentration of 20 μ g/kg (micrograms per kilogram)--a level selected to include the highest 15 to 20 percent of values measured nationwide (J. S. Cragwall, Jr., U.S. Geological Survey, written commun., 1977). Although it is detected frequently, dieldrin is not included in Figure 6 because its concentration has been measured at greater than 20 μ g/kg only three times during this period. Figure 7 shows the locations of water-quality stations sampled during the 1988 water year at which at least one of these compounds exceeded a concentration of 20 μ g/kg.

The U.S. Geological Survey maintains a network of saltwater-observation wells in the Coastal Plain of New Jersey to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. During the 1988 water year, 139 samples were collected in 8 counties. The results of the sampling of these wells are presented in the quality of ground water tables in these reports.

Ground-Water Levels

Changes in ground-water levels during the 1988 water year were determined from a statewide network of observation wells. Ground-water levels in water-table observation wells declined slightly from the previous year. Water levels in most observation wells that tap the heavily stressed confined aquifers of the Coastal Plain continued to show long-term net declines. Increases in withdrawals of ground water contributed to these declines.

Monthly water levels in 1988 for two water-table observation wells--the Bird well (NJ-WRD well number 19-0002) in Hunterdon County and the Crammer well (NJ-WRD well number 29-0486) in Ocean County--are compared with monthly extremes and long-term averages in figure 8. For further comparison, 20-year hydrographs of two Coastal Plain wells, one water-table well (NJ-WRD well number 05-0689) and one artesian well (NJ-WRD well number 07-0413) are presented in

figure 9. In addition, multi-year hydrographs are provided with the 1988 water-level data for most of the wells included in this report.

Water levels in the water-table aquifers of the Coastal Plain were declining slowly at the beginning of the 1988 water year. This decline continued through January and was followed by recovery until June. Water levels fell from June through the remainder of the water year.

Observation wells that tap the heavily stressed, confined Coastal Plain aquifers continued to show long-term net declines in many areas. New lows of record were set in 44 Coastal Plain artesian observation wells. The most significant water-level declines were measured in the Potomac-Raritan-Magothy aquifer system, where previous lows of record were exceeded in 30 network observation wells. The greatest decline in water level in the Potomac-Raritan-Magothy aquifer system occurred in the Marlboro observation well (NJ-WRD well number 25-0272), where the previous record low was exceeded by 8.9 feet. Other aquifers in which previous lows of record were exceeded include the Englishtown aquifer system, Wenonah-Mount Laurel aquifer, Piney Point aquifer, and the Atlantic City 800-foot sand.

Table 1.--<u>Frequency of detection of organochlorine and organophosphorus compounds in bottom materials of New Jersey streams, water years 1976-88</u>

COMPOUND	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988
Organochlorine compounds			^										
Chlordane		Θ	Θ	•		Θ	•						
DDD	•	θ	Θ	•	•		0	•	Θ	0	. 👄		•
DDE	•		0	0	Θ	Θ		Θ	Θ	Θ	Θ		0
DDT	•	Θ	Θ	9	Θ	•	Θ	0	•	Θ	Θ		Θ
PCB	Θ	θ	0	Θ		•		Θ	Θ	Θ	θ	Θ	0
Dieldrin	•	Θ	Θ	•	Θ	0	Θ	Θ	Θ	Θ		θ	Θ
Endosul fane		0		0	0	0	0	0	0	0	0	θ	0
Heptachlor Epoxide	0	0	0	0	0	0	0	0	0	0	Θ	Θ	θ
Aldrin, Lindane, Endrin Toxaphene, Heptachlor	0	0	0	0	0	0	0	0	0	0	0	0	θ
PCN			0	0	0	0	0	0	0	0	0	0	0
Mirex					0	0	0	0	0	0	0	0	0
Organophosphorus compounds													
Methoxychlor, Malathion, Parathion, Diazanon, Methyl Parathion, Ethyl Trithion, Methyl Trithion, Ethion			0	0	0	0	0	0	0	0	0	0	Θ
methyt irrithton, Ethion													

Frequency (rounded to nearest whole number): (0 - 25%), (26 - 50%), (31 - 75%), (76 - 100%)

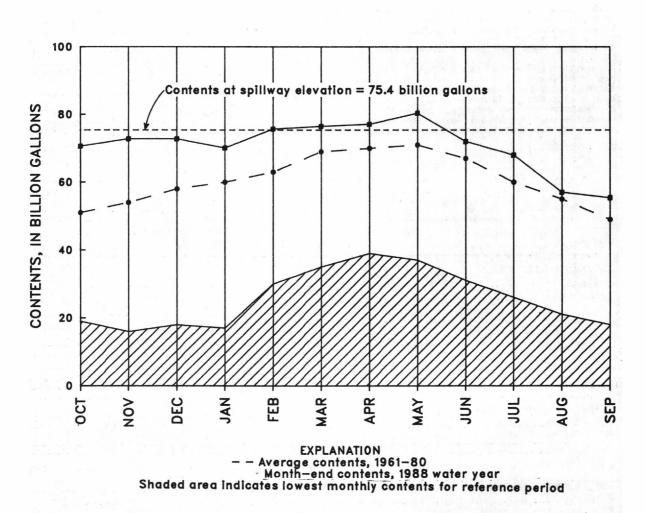
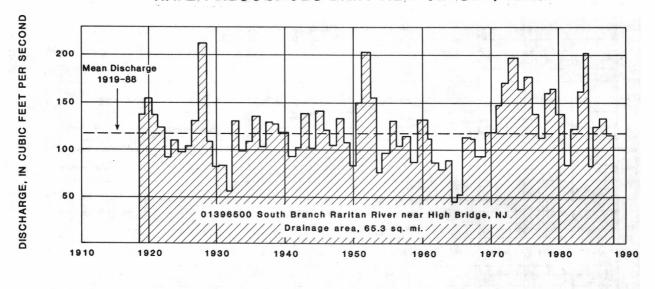


Figure 1.-- Combined usable storage in 13 major water-supply reservoirs

Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1988 water year.


Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

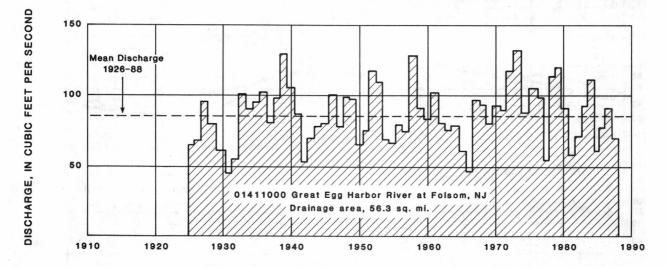

Solid line.--Indicates observed monthly mean flow for the 1988 water year.

Figure 2.--Monthly mean discharge at index gaging stations.

WATER RESOURCES DATA-NEW JERSEY, 1988

6

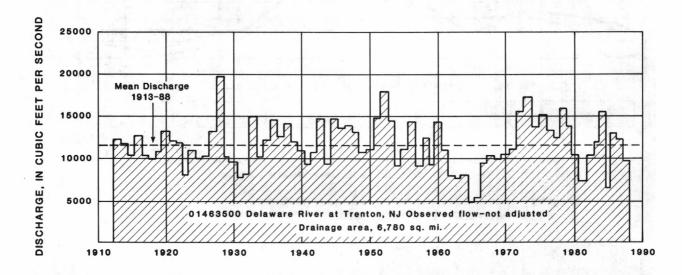


Figure 3.--Annual mean discharge at index gaging stations.

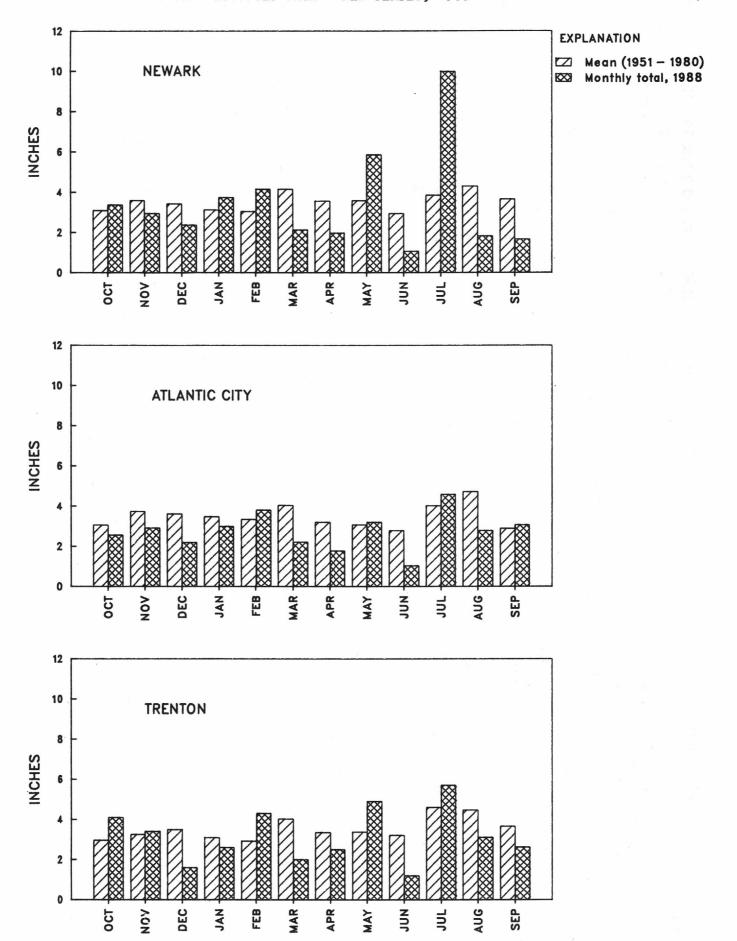


Figure 4.-- Monthly precipitation at three National Weather Service locations

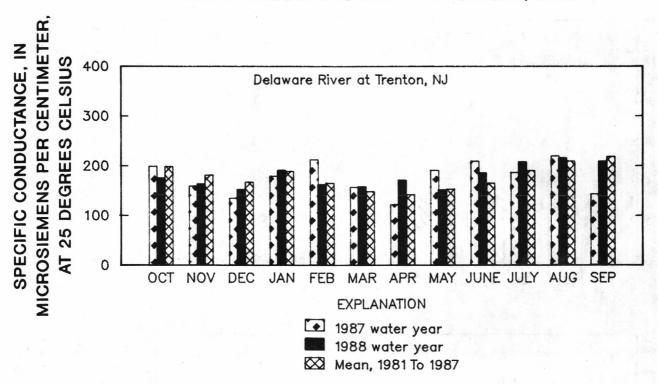


Figure 5. -- Monthly mean specific conductance at Delaware River at Trenton.

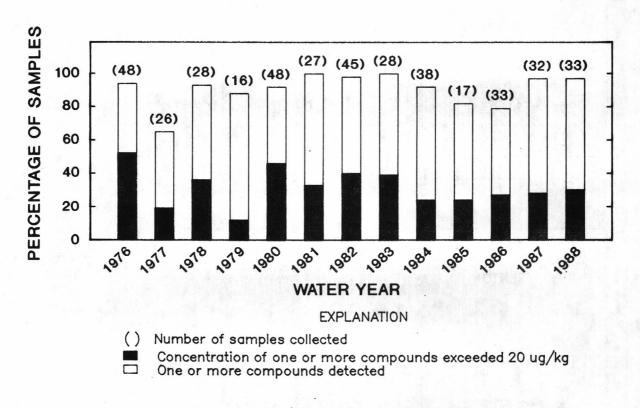


Figure 6.--Occurrence of chlordane, DDT, DDE, DDD and PCB's in stream bottom. material.

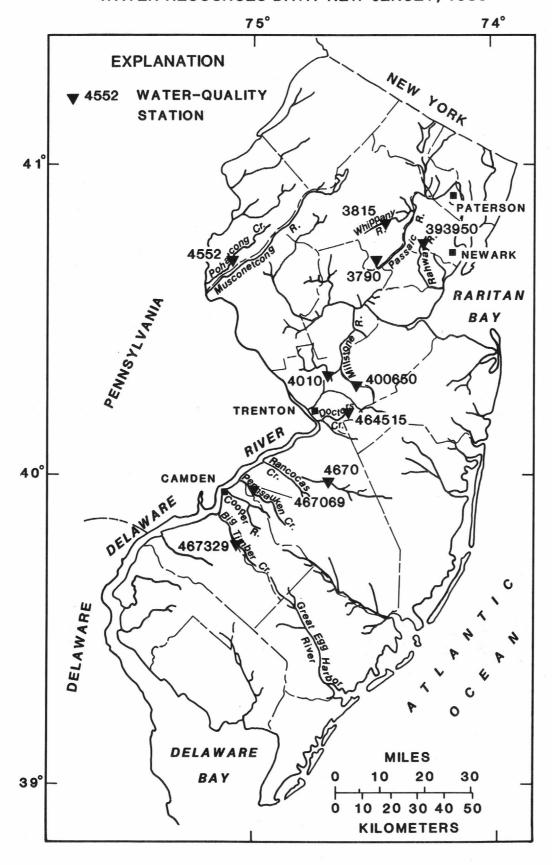
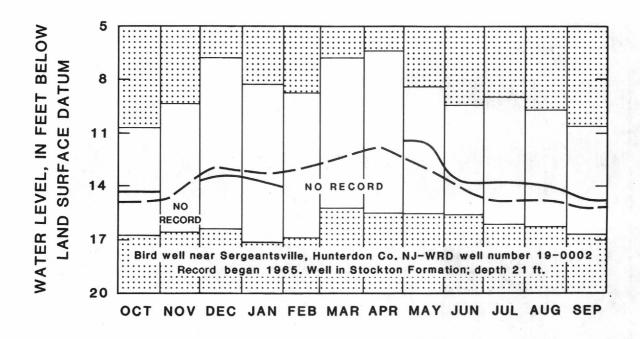
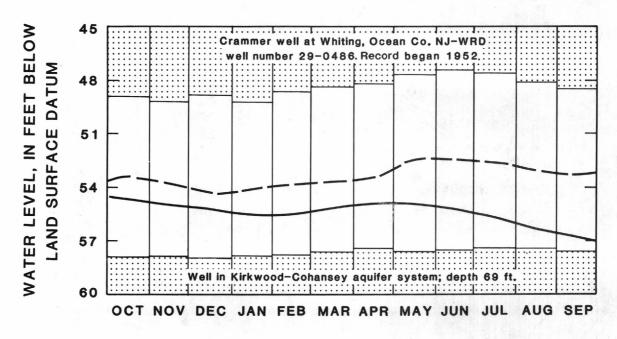
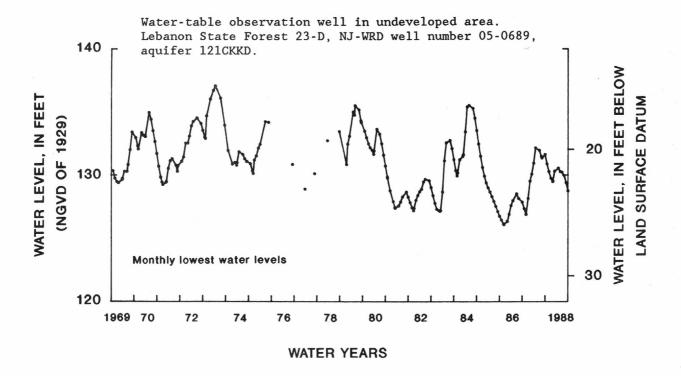




Figure 7.--Locations of water-quality stations with concentrations of chlordane, DDD, DDE, DDT, or PCB's in bottom material than 20 µg/kg, water year, 1988.



Unshaded area -- Indicates range between highest and lowest recorded monthly water levels, prior to current year.

Dashed line -- Indicates average of monthly water levels, prior to current year.

Solid line -- Indicates monthly mean water level for the current year.

Figure 8. -- Monthly ground-water levels at key water-table observation wells.

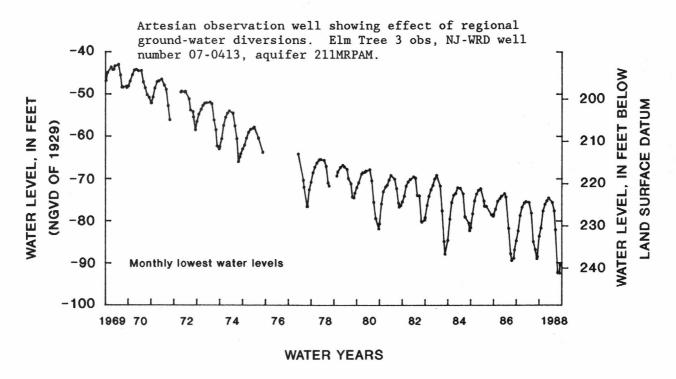


Figure 9.--Twenty-year hydrographs of one artesian and one water-table observation well.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. The Bench-mark Network station published in this report is McDonalds Branch in Lebanon State Forest, NJ (01466500).

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. NASQAN stations published in this report are: Passaic River at Little Falls, NJ (01389500), Raritan River, at Queens Bridge, at Bound Brook, NJ (01403300), Toms River near Toms River, NJ (01408500), West Branch Wading River at Maxwell, NJ (01409815), Maurice River at Norma, NJ (01411500), and Delaware River at Trenton, NJ (01463500).

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). No NTN stations are published in this report.

Radiochemical Program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. The Radiochemical Program station published in this report is Delaware River at Trenton, NJ (01463500).

Tritium Network is a network of stations which has been established to provide baseline information or the occurrence of tritium in the Nation's surface waters. In addition to the surface water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. No Tritium Network stations are published in this report.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1988 water year that began October 1, 1987, and ended September 30, 1988. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 10, 11, 12, and 13. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. Generally the "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 01396500, which appears just to the left of the station name, includes the two-digit Part number "01" plus the 6-digit downstream-order number "396500". The Part number designates the major drainage basin; for example, Part "01" covers the North Atlantic slope basins.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

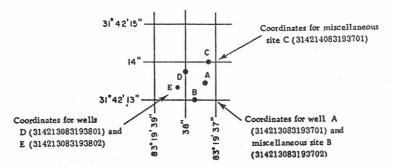


Figure 10.--System for numbering wells and miscellaneous sites (latitude and longitude).

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 10 and 11.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or

nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflowoutflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers or the Delaware River Basin Commission.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(M)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly summaries. In the monthly summary below the daily table, the line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month for some stations can also be expressed in inches (line headed "IN"). Figures for runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. Below the monthly summary, statistical figures are listed for current water year and period of record. The first heading is the average monthly flow data for the period of record. The line headed "MEAN" gives the average flow in cubic feet per second for that month for the period of record. The line headed "MAX" and "MIN" give the highest and lowest mean for that month and the water year (WY) in

which it occurred. Below the monthly flow statistics, summary statistics for the current water year and period of record are listed. The line headed "AVERAGE FLOW" is the average for the current year and period of record. The following lines list the extremes and date of each for the current year and period of record. The line headed "ANNUAL RUNOFF (INCHES)" is the annual total discharge in inches. The following lines list the discharges for the 10, 50, and 95 percentiles.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated" or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft 3 /s; to the nearest tenth between 1.0 and 10 ft 3 /s; to whole numbers between 10 and 1,000 ft 3 /s; and to 3 significant figures for more than 1,000 ft 3 /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge- measurement notes, gage-height records, temperature measurements, and rating tables is on file in the New Jersey District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 10.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites which are not at a surface-water daily record station appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

Water-quality data must represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made onsite when the samples are collected. In addition, specific procedures must be used in collecting, treating, and shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of

Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. These references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey, New Jersey District office.

In streams, concentrations of various constituents may vary within the cross section depending on variables such as flow rate, the sources of the constituents, and mixing. Generally, constituents in solid phases are more variable in the cross section than are dissolved constituents. In many cases, samples must integrate several parts of the stream cross section to be representative, especially if loads will be calculated. One sample may be representative of the cross section when the distribution of constituents is homogeneous. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from several verticals.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. In some instances, apparent inconsistencies may exist in the data. For example, the orthophosphate-phosphorus concentration may exceed total phosphorus concentration. However, the difference in the inconsistent values normally is smaller than the precision of the analytical techniques. Inconsistencies between pH and carbonate and bicarbonate concentrations are commonly caused by intake or loss of carbon dioxide by the sample before it can be analyzed.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Geological Survey, New Jersey District Office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, maximum, minimum and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the New Jersey District Office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspenced-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurments

Samples for biochemical-oxygen demand and for fecal coliform and fecal streptococcal bacteria are analyzed at the District laboratory or at the New Jersey Department of Health, Division of Laboratories and Epidemiology. Samples for nutrients are analyzed at the New Jersey Department of Health or at the Geological Survey Laboratory in Arvada, Colorado. Sediment samples are analyzed in the Geological Survey Laboratory in Harrisburg, Pennsylvania. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceeding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those

measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites which are not at a surface-water daily record station are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may	appear with the water-quality	y data in this report:
PRINTED OUTPUT	REMARK	

E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

Records of Ground-Water Levels

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in New Jersey are shown in figure 13.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the NJ-WRD well number, a hyphenated 6 digit identification number assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. The first two digits are a code for the county in which the well is located and the last four digits are a sequence number. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water quality analyses, and on the corresponding location maps in these reports.

Water-level records are obtained from direct measurments with a steel tape, from the punched tape of a water-level recorder, or from water-level extremes recorder. Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of these extremes (highest and lowest water levels) are unknown. In these reports, the water-level extremes are given together with the manually measured water levels.

Most water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

Data Presentation

Each well record consists of three parts, the station description, the data table of water levels observed during the water year, and a multi-year hydrograph. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; (a landline location designation); the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum or elevation of water level. For wells equipped with recorders, only abbreviated tables are published. Mean daily water-levels are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Records of Ground-Water Quality

Records of ground-water quality in this report consist of only one set of measurements for the water year. Because ground-water movement is normally slow compared to surface water, frequent measurements are not necessary for monitoring purposes. More frequent measurements may be necessary for studying ground-water problems, trends, or processes. Locations of wells for which water-quality data are published are shown in figure 13.

Data Collection and Computation

The records of ground-water quality in this report were obtained from water-quality monitoring studies in specific areas. Consequently, chemical analyses are presented for some counties but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

In ground-water observation wells, water in the casing may not be representative of aquifer water quality. To collect samples representative of aquifer water, samples are collected only after at least three casing volumes of water have been pumped from the well and measurements of temperature, specific conductance, and pH have stabilized during the pumping.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County and are identified by NJ-WRD well number. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

CURRENT WATER RESOURCES PROJECTS IN NEW JERSEY

The Geological Survey is currently involved in a number of hydrologic investigations in the State of New Jersey. The following is a list of these investigations. Results are published at the conclusion of short-term projects or periodically in the case of long-term projects. Hydrologic data from these projects are entered into the WATSTORE data base. Subsequent sections contain information on recent publications and on WATSTORE.

Assessing the potential impacts of climate change in the water resources of the Delaware River Basin.

Assessment of ground-water resources in the vicinity of ground-water contamination sites in Greenwich Township, New Jersey.

Evaluation of field sampling techniques and analytical methods for organic compounds in ground water. Forecasting water demand in the New Jersey Agriculture Sector.

Geochemical effects on the corrosivity of ground water in the Kirkwood-Cohansey aquifer in the New Jersey Coastal Plain.

Geochemical processes controlling aluminum and sulfate transport in acidic surface, ground and soil waters in a watershed in the New Jersey Coastal Plain.

Geohydrologic investigations and technical support at United States Environmental Protection Agency Superfund sites.

Geohydrology at Picatinny Arsenal in Morris County, New Jersey.

Geophysical characteristics of aquifers in New Jersey.

Ground-water contamination by light chlorinated hydrocarbons at Picatinny Arsenal.

Ground-water quality and its relationship to geohydrology and land use in the outcrop area of the Potomac-Raritan-Magothy aquifer system, Mercer and Middlesex Counties, New Jersey.

Ground-water data collection network.

Ground-water resources investigation of the Rockaway River buried valley.

Ground-water resources of northern Mercer County and southeastern Somerset County, New Jersey.

Ground-water resources of the buried valley and carbonate rock systems of the Lamington River and the S. Branch Raritan River drainage areas in northern New Jersey.

Hydrologic processes with special emphasis on ground-water quality near Atlantic City, New Jersey.

Hydrologic processes with special emphasis on ground-water quality near Camden, New Jersey.

Hydrologic processes with special emphasis on ground-water quality near South River, New Jersey.

Hydrology of buried valleys of Central Passaic River basin.

Hydrology of the Kirkwood-Cohansey-Aquifer system in Gloucester County and the Upper Maurice River Basin.

Hydrology of the Kirkwood-Cohansey-Aquifer system in Metedeconk and Toms River basin.

Investigation of naturally occurring radioactive substances in ground water of the Triassic formations in New Jersey.

Land subsidence related to ground-water withdrawals in the Coastal Plain of New Jersey.

New Jersey water-use data system.

Optimal withdrawals from a coastal aquifer subject to salt-water encroachment: Numerical analysis and case study.

Quality of water data collection network.

Regionalization of flood frequency for New Jersey streams.

Regionalization of low flows for New Jersey streams.

Removing volatile ground water contaminants by inducing air phase transport.

Simulation of multilayer Coastal Plain aquifer system of New Jersey.

Somerset County flood monitoring system, phase 2.

Surfactant sorption to soil and its effect on the distribution of anthropogenic compounds.

Surface-water data collection network.

Water quality trends in New Jersey streams, 1976-85.

Water-use data system for the Delaware River basin.

WATER-RELATED REPORTS FOR NEW JERSEY COMPLETED BY THE GEOLOGICAL SURVEY DURING 1987-88

- Ayers, M.A., and Pustay, E.A., 1988, New Jersey ground-water quality: National Water Summary 1986, U.S. Geological Survey Water Supply Paper 2325, p. 369-376.
- Barton, C., Vowinkel, E.F., and Nawyn, J.P., 1987, Preliminary assessment of water quality and its relation to hydrogeology and land use: Potomac-Raritan-Magothy aquifer system, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4023, 79 p.
- Campbell, J.B., 1987, Rainfall-runoff data for Somerset County, New Jersey: U.S. Geological Survey Open-File Report 87-384, 161 p.
- Kish, G.R., Macy, J., and Mueller, R.T., 1987, Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4146, 19 p.
- Lacombe, P., and Duran, P.B., 1988, Map of bedrock-surface topography in parts of the Paterson and Pompton Plains Quadrangles, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 88-4061, 1 p.
- Lacombe, P., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Lewis, J.C., and Spitz, F.J., 1987, Hydrogeology, ground-water quality, and the possible effects of a hypothetical radioactive-water spill, Plainsboro Township, New Jersey: U.S. Geological Survey Water-Resources Investigation Report 87-4092, 45 p.

- Macy, J., and Leahy, P.P., 1988, U.S. Geological Survey Ground-Water Studies in New Jersey--Water fact sheet: U.S. Geological Survey Open-File Report 88-106, 2 p.
- Schaefer, F.L., 1987, Selected literature on the water resources of New Jersey by the U.S. Geological Survey, through 1986: U.S. Geological Survey Open-File Report 87-767, 45 p.
- Szabo, Z., and Zapecza, O.S., 1987, Relation between radionuclide concentrations and other chemical constituents in ground water in the Newark Basin, New Jersey in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium, and other radioactivity in ground water-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers Inc., p. 283-308.
- U.S. Geological Survey, 1988, Water Resources data for New Jersey, 1988--part 1: U.S. Geological Survey Water-Data Report NJ-88-1, ____ p.
- U.S. Geological Survey, 1988, Water Resources data for New Jersey, 1988--part 2: U.S. Geological Survey Water-Data Report NJ-88-2, ____ p.
- Witkowski, P.J., Smith, J.A., Fusillo, T.V., and Chiou, C.T., 1987, A review of surface-water sediment fractions and their interactions with persistent anthropogenic organic compounds: U.S. Geological Survey Circular 993, 39 p.
- Zapecza, O.S., and Szabo, Z., 1987, Source and distribution of natural radioactivity in ground water in the Newark Basin, New Jersey, in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium and other radioactivity-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers., p. 31-46.
- Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p.

ACCESS TO WATSTORE DATA

The National <u>WAT</u>er Data <u>STO</u>rage and <u>REtrieval</u> System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Geological Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the offices whose addresses are given on the back of the title page.

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

 $\frac{\text{Acre-foot}}{\text{Acre-foot}}$ (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

<u>Aquifer</u> is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer unit codes and geologic names of the formations in which the sampled wells are finished. The aquifer unit codes also appear in the ground-water quality tables.

112SFDF
112TILL
112HLBC
112CHMY
112ESRNS
121CNSY
121CKKD
122KRKDL
122KRKDL
124PNPN
112FRD
112

```
125VNCN
                         Vincentown Formation
211MLRW
211EGLS
                         Wenonah-Mount Laurel aquifer
                        Wendhan-Mount Lauret aquiret
Englishtown aquifer
Potomac-Raritan-Magothy aquifer system, undifferentiated
Upper aquifer, Potomac-Raritan-Magothy aquifer system
Middle aquifer, Potomac-Raritan-Magothy aquifer system
Lower aquifer, Potomac-Raritan-Magothy aquifer system
Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex,
Monmouth Counties)
Englishton aquifer, Potomac-Paritan-Magothy aquifer system (Mercer, Middlesex,
211MRPA
211MRPAU
211MRPAM
211MRPAL
2110DBG
211FRNG
                         Farrington aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex, Monmouth Counties)
                        Triassic System
Brunswick Group, undifferentiated
Lockatong Formation
Passaic Formation of Olsen (1980)
230TRSC
231BRCK*
231LCKG
231PSSC
231SCKN
                         Stockton Formation
                         Third Watchung Flow
23103WG
400PCMB
                         Precambrian Erathem
      This designation is currently under revision.
```

<u>Artesian</u> means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bedload</u> is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

<u>Bed material</u> is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Benthic invertebrates are invertebrate animals inhabiting the bottoms of lakes, streams, and other water bodies. They are useful as indicators of water quality.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square mile (g/m²).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common green pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Cubic feet per second per square mile [(ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.</u>

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCo).

High tide is the maximum height reached by each rising tide.

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Low-tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

<u>Micrograms per gram</u> (μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

<u>Multiple-plate samplers</u> are artificial substrates of known surface area used for obtaining benthic-invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. hydrologic research.

The <u>National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Deposition Program (NADP).

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organism is any living entity.

<u>Organism count/area</u> refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

<u>Total organism count</u> is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. <u>Sedimentation methods</u> (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (PC, pCi) is one trillionth (1 x 10 12) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is ect to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. subject Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and ar commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(m²/time)] for periphyton and macrophytes and [mg C/(m²/time)] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg 0 /(m 2 /time)] for periphyton and macrophytes and [mg 0 /(m 3 / time)] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation

<u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval is the length of well screen through which water enters a well, in feet below land surface.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as

humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

 $\underline{\text{Bed load discharge}}$ (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) \times discharge (ft³/s) \times 0.0027.

 $\underline{\textbf{Suspended-sediment load}} \text{ is a general term that refers to material in suspension.} \text{ It is not synonymous with either discharge or concentration.}$

<u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

7-day 10-year low flow (MA7CD10) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

<u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

<u>Specific conductance</u> is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

<u>Substrate</u> is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artifical substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u>, is the following:

Kingdom. Animal
Phylum. Arthropoda
Class. Insecta
Order. Ephemeroptera
Family. Ephemeridae
Genus. Hexagenia
Species. Hexagenia

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term $^{\text{III}}$ temperature recorder $^{\text{III}}$ is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

<u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Iritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water table is that surface in an unconfined ground-water body at which the pressure is atmospheric.

<u>Water year</u> in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

SELECTED REFERENCES

Anderson, P.W., 1970, Occurrence and distribution of trace elements in New Jersey Streams; New Jersey Division of Water Policy and Supply, Water-Resources Circular 24, 24 p.

- Anderson, P.W., and Faust, S.D., 1973 Characteristics of water quality and stream flow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- _____ 1974, Water-quality and stream flow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water-Resources Investigations 14-74, 82 p.
- Anderson, P.W., and George, J.R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Ayers, M.A., and Pustay, E.A., 1988, New Jersey ground-water quality: National Water Summary 1986, U.S. Geological Survey Water Supply Paper 2325, p. 369-376.
- Barton, C., Vowinkel, E.F., and Nawyn, J.P., 1987, Preliminary assessment of water quality and its relation to hydrogeology and land use: Potomac-Raritan-Magothy aquifer system, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4023, 79 p.
- Campbell, J.B., 1987, Rainfall-runoff data for Somerset County, New Jersey, U.S. Geological Survey Open-File Report 87-384, 161 p.
- Eckel, J.A., and Walker, R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations 86-4028, 62 p.
- Fusillo, T.V., 1982, Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T.V., Hochreiter, J.J., Jr., and Lord, D.G., 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p, 1 plate.
- Fusillo, T.V., and Voronin, L.M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 plates.
- Fusillo, T.V., Schornick, J.C., Jr., Koester, H.E., and Harriman, D.A., 1980, Investigation of acidity and other water-quality characteristics of upper Oyster Creek, Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B.D., and Schopp, R.D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Harriman, D.A., and Velnich, A.J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report 82-434, 22 p.
- Harriman, D.A., and Voronin, L.M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Harte, P.T., Sargent, B.P., and Vowinkel, E.F., 1986, Description and results of test-drilling program at Picatinny Arsenal, new Jersey, 1982-84: U.S. Geological Survey Open-File Report 86-316, 54 p.
- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hindall, S.M., and Jungblut, D.W., 1980, Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J.J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Hochreiter, J.J., Jr., Kozinski, J., and Lewis, J.C., 1986, Characterization of organic ground-water contamination at a waste-oil disposal site, Bridgeport, N.J.: EOS, v. 67, no. 44, p. 945.
- Keith, L.H., and Telliard, W.A., 1979, Priority Pollutants I a perspective view: Environmental Science and Technology, v. 13, no. 4, p. 416-423.
- Kish, G.R., Macy, J.A., and Mueller, R.T., 1987, Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4146, 19 p.
- Lacombe, P., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Langbein, W.B., and Iseri, K.T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S.L., 1970, Statistical summaries of New Jersey stream flow records: New Jersey Division of Water Policy and Supply, Water-Resources Circular 23, 264 p.
- Leahy, P.P., Paulachok, G.N., Navoy, A.S., and Pucci, A.A., Jr., 1987, Plan of study for the New Jersey Bond Issue ground-water supply investigations: New Jersey Geological Survey Open-File Report 87-1, 53 p.
- Lewis, J.C., and Spitz, F.J., 1987, Hydrogeology, ground-water quality, and the possible effects of a hypothetical radioactive-water spill, Plainsboro Township, New Jersey: U.S. Geological Survey Water-Resources Investigation Report 87-4092, 45 p.
- Lohman, S.W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.

- Lord, D.G., Barringer, J., Johnsson, P., and Schuster, P., Effects of Acid precipitation on surface and ground waters in the New Jersey Pinelands [abs]: EOS, Transactions, American Geophysical Union, v. 67, no. 16., April 22, 1986, p. 282.
- Lord, D.G., Johnsson, P.A., Barringer, J.L., and Schuster, P.F., 1987, Results of an acidic deposition study in McDonalds Branch watershed, New Jersey Pinelands [abs]: New Jersey Academy of Science Bulletin, v. 32, no. 1, p. 45.
- Luzier, J.E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L.J., and Anderson, P.W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- National Research Council, 1979, Polychlorinated biphenyls: Washington D.C., National Academy of Sciences, 182 p.
- Olsen, P.E., 1980, The latest Triassic and Early Jurassic Formations of the Newark Basin (eastern North America, Newark Supergroup)--Stratigraphy, structure and correlation: New Jersey Academy of Science, The Bulletin, V. 25, p. 25-51.
- Paulachok, G.N., Walker, R.L., Barton, G.J., Clark, J.S., Duran, P.B., and Hochreiter, J.J., Jr., 1985, Marine well-drilling program for estimation the seaward extent of fresh ground water and evaluating the likelihood of seawater intrusion near Atlantic City, New Jersey [abs.]: EOS, Transactions, American Geophysical Union, v. 66, no. 46, Nov. 12, 1985, p. 889-890.
- Philips, M.O., and Schopp, R.D., Flood of April 5-7, 1984, in northeastern New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-423W, 112 p.
- Rantz, S.E., and others, 1982, Measurement and computation of stream flow; Volume 1. Measurement of stage and discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Sargent, B.P., Green, J.W., Harte, P.T., and Vowinkel, E.F., 1986, Ground-water-quality data for Picatinny Arsenal, new Jersey, 1958-85: U.S. Geological Survey Open-File Report 86-58, 66 p.
- Schaefer, F.L., and Walker, R.L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Schaefer, F.L., 1983, Distribution of chloride concentrations in the principal aguifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schaefer, F.L., 1987, Selected literature on the water resources of New Jersey by the U.S. Geological Survey, through 1986: U.S. Geological Survey Open-File Report 87-767, 45 p.
- Schornick, J.C., and Ram, N.M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J.C., and Fishel, D.K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R.D., and Gillespie, B.D., 1979, Selected stream flow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R.D., and Ulery, R.L., 1984, Cost-effectiveness of the stream-gaging program in New Jersey: U.S. Geological Survey Water-Resources Investigations Report 84-4108, 97 p.
- Schopp, R.D., and Velnich, A.J., 1979, Flood of November 8-10, 1977 in northeastern and central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P.R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Stankowski, S.J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S.J., and Velnich, A.J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S.J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S.J., Schopp, R.D., and Velnich, A.J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- Szabo, Z., and Zapecza, O.S., 1987, Relation between radionuclide concentrations and other chemical constituents in ground water in the Newark Basin, New Jersey in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium, and other radioactivity in ground water-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers Inc., p. 283-308.
- U.S. Environmental Protection Agency, 1976, National interim primary drinking water regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- _____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E.G., 1973, Water resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.

- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Velnich, A.J., 1982, Drainage areas in New Jersey: Delaware River basin and streams tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.
- Velnich, A.J., 1984, Drainage areas in New Jersey: Atlantic Coastal basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vickers, A.A., and McCall, J.E., 1968, Surface water supply of New Jersey, stream flow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A.A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.
- Vickers, A.A., Farsett, H.A., and Green, J.W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R.L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.
- Witkowski, P.J., Smith, J.A., Fusillo, T.V., and Chiou, C.T., 1987, A review of surface-water sediment fractions and their interactions with persistent anthropogenic organic compounds: U.S. Geological Survey Circular 993, 39 p.
- Zapecza, O.S., and Szabo, Z., 1987, Source and distribution of natural radioactivity in ground water in the Newark Basin, New Jersey, in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium and other radioactivity-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers., p. 31-46.
- Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-Dl. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter Dl. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter Dl. 1974. 116 pages.
- 2-El. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.
- 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. J. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-AlO. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter AlO. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-Al2. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter Al2. 1986. 41 pages.
- 3-Al3. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983. 53 pages.
- 3-Al4. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter Al4. 1983. 46 pages.
- 3-Al5. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter Al5. 1984. 48 pages.
- 3-Al6. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter Al6. 1985. 52 pages.
- 3-Al7. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter Al7. 1985. 38 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-B2. Introduction to ground-water hydraulics, a programed test for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-Bl. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter Bl. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181
- 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages.
- 6-Al. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter Al. 1988. 586 pages.
- 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

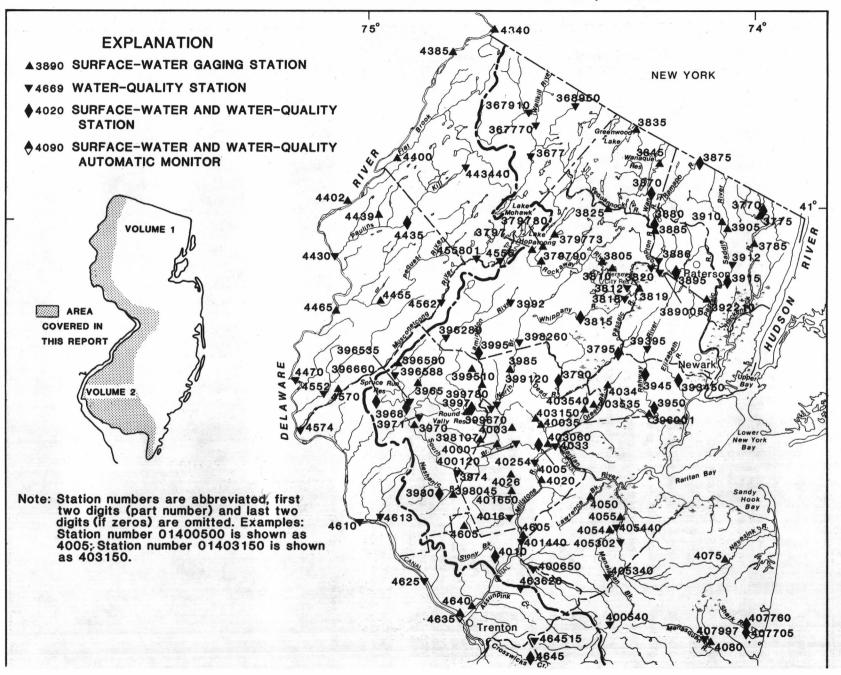
DISCONTINUED GAGING STATIONS

The following continuous-record streamflow stations in New Jersey have been discontinued or converted to partial-record stations. Daily streamflow records were collected and published for the period of record shown for each station

Station number	Station name	Drainage area (sq mi)	Period of record (water years)
01368000 01368720 01378690 01379630 01384000	Wallkill River near Unionville, NY Auxiliary outlet of Upper Greenwood Lake at Moe, NJ Passaic River near Bernardsville, NJ Russia Brook tributary at Milton, NJ Wanaque River at Monks, NJ	8.83 2.51 40.4	1938-81 1968-80a 1968-77 1969-71 1935-85
01385000	Cupsaw Brook near Wanaque, NJ	4.37	1935-58
01385500	Erskine Brook near Wanaque, NJ	1.14	1934-38
01386000	West Brook near Wanaque, NJ	11.8	1935-78
01386500	Blue Mine Brook near Wanaque, NJ	1.01	1935-58
01389800	Passaic River at Paterson, NJ	785	1897-1955
01392000	Weasel Brook at Clifton, NJ	4.45	1937-62
01392500	Second River at Belleville, NJ	11.6	1938-64
01393000	Elizabeth River at Irvington, NJ	2.90	1931-38
01393500	Elizabeth River at Elizabeth, NJ	20.2	1922-73
01393800	East Fork East Branch Rahway River at West Orange, NJ	.83	1972-74
01394000	West Branch Rahway River at Millburn, NJ	7.10	1940-50
01395500	Robinsons Branch Rahway River at Goodmans, NJ	12.7	1921-24
01397500	Walnut Brook near Flemington, NJ	2.24	1936-61
01399000	North Branch Raritan River at Pluckimen, NJ	52.0	1903-06
01399190	Lamington (Black) River at Succasunna, NJ	7.37	1976-87
01399200	Lamington (Black) River near Ironia, NJ	10.9	1975-87
01399690	South Branch Rockaway Creek at Whitehouse, NJ	13.2	1964-67
01399830	North Branch Raritan River at North Branch, NJ	174	1977-81
01400932	Baldwin Creek at Baldwin Lake, near Pennington, NJ	2.52	1963-70
01400953	Honey Branch near Pennington, NJ	.70	1967-75
01401500	Millstone River near Kingston, NJ	171	1934-49
01402590	Royce Brook tributary at Frankfort, NJ	.29	1969-74
01403000	Raritan River at Bound Brook, NJ	779	1903-09, 1945-66
01403500	Green Brook at Plainfield, NJ	9.75	1938-84
01403900	Bound Brook at Middlesex, NJ	48.4	1972-77
01404000	Bound Brook at Bound Brook, NJ	49.0	1923-30
01404500	Lawrence Brook at Patricks Corner, NJ	29.0	1922-26
01405300	Matchaponix Brook at Spotswood, NJ	43.9	1957-67
01406000	Deep Run near Browntown, NJ	8.07	1932-40
01406500	Tennent Brook near Browntown, NJ	5.25	1932-41
01407000	Matawan Creek at Matawan, NJ	6.11	1932-55
01408140	South Branch Metedeconk River at Lakewood, NJ	26.0	1973-76
01409000	Cedar Creek at Lanoka Harbor, NJ	55.3	1933-58, 1971
01409095	Oyster Creek near Brookville, NJ	7.43	1965-84
01410500	Absecon Creek at Absecon, NJ	17.9	1946-85
01410787	Great Egg Harbor River tributary at Sicklerville, NJ	1.64	1972-79
01410810	Fourmile Branch at New Brooklyn, NJ	7.74	1973-79
01410820	Great Egg Harbor River near Blue Anchor, NJ	37.3	1972-79
01412000	Menantico Creek near Millville, NJ	23.2	1931-57, 1978-85
01412500	WB Cohansey River at Seeley, NJ	2.58	1951-67
01413000	Loper Run near Bridgeton, NJ	2.34	1937-59
01444000	Paulins Kill at Columbia, NJ	179	1908-09
01445000	Pequest River at Huntsville, NJ	31.0	1940-62
01445430	Pequest River at Townsbury, NJ	92.5	1977-80
01446000	Beaver Brook near Belvidere, NJ	36.7	1923-61
01455160	Brass Castle Creek near Washington, NJ	2.34	1970-83
01455200	Pohatcong Creek at New Village, NJ	33.3	1960-70
01455355	Beaver Brook near Weldon, NJ	1.72	1969-71
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	25.3	1961-75
01456000	Musconetcong River near Hackettstown, NJ	68.9	1922-74
01457500	Delaware River at Riegelsville, NJ	6328	1906-71
01462000	Delaware River at Lambertville, NJ	6680	1898-1906
01463587	New Sharon Run at Carsons Mills, NJ	6.63	1976-77
01463620	Assunpink Creek near Clarksville, NJ	34.3	1972-82
01463657	Shipetaukin Creek tributary at Lawrenceville, NJ	.78	1976-77
01463690	Little Shabakunk Creek at Bakersville, NJ	3.98	1976-77
01464525	Thornton Creek at Bordentown, NJ	.84	1976-77
01465850	South Branch Rancocas Creek at Vincentown, NJ	64.5	1961-75
01466000	Middle Branch Mount Misery Brook in Lebanon State Forest,	NJ 2.82	1953-65, 1977
01467019	Mill Creek near Willingboro, NJ	4.12	1975-78
01467021	Mill Creek at Levitt Parkway, at Willingboro, NJ	9.12	1975-77
01476600	Still Run near Mickleton, NJ	3.98	1957-66
01477500	Oldmans Creek near Woodstown, NJ	18.5	1932-40
01482500	Salem River at Woodstown, NJ	14.6	1940, 1941-85
01483000	Alloway Creek at Alloway, NJ	20.3	1953-72

a Not published, on file at U.S. Geological Survey, West Trenton, NJ

WATER RESOURCES DATA - NEW JERSEY, 1988


DISCONTINUED CONTINUOUS WATER-QUALITY STATIONS

The following stations were discontinued as continuous water-quality stations prior to the 1987 water year. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station.

Station number	Station name	Drainage area (sq mi)	Type of record	Period of record (water years)	
01379500	Passaic River near Chatham, NJ	100	Sed.	1964-68	11
01379773	Green Pond Brook at Picatinny Arsenal, NJ	100	Temp., S.C., p		
		361	Temp., S.C., p		
01382000	Passaic River at Two Bridges, NJ		1emp., 5.0., p	1964-65	
01387500	Ramapo River near Mahwah, NJ	118	Sed.		
01389000	Pompton River near Two Bridges, NJ	372	Temp., S.C., p	oH, D.O. 1969-74	
01389500	Passaic River at Little Falls, NJ	762	Sed.	1964-65	
			Temp., S.C.	1981-86	
01396500	South Branch Raritan River near High Bridge, NJ	65.3	Temp.	1961-79	
01370300	South Branch Railtan Kiver hear might bringe, No	05.5	S.C.	1969-79	
01397000	Cough Doomah Doniton Divon at Chambon U.	147	J.U.		
01397000	South Branch Raritan River at Stanton, NJ	147	Temp., S.C.		
			Sed.	1960-63	
01399690	South Branch Rockaway Creek at Whitehouse, NJ	13.2	Temp., S.C.	1977-78	
	· · · · · · · · · · · · · · · · · · ·		Sed.	1977	
01399700	Rockaway Creek at Whitehouse, NJ	37.1	Temp., S.C.	1977-78	
01400510	Raritan River near Manville, NJ	497	Temp., S.C., p		
01400932				1963-66	
01400732	Baldwin Creek at Baldwin Lake, near Pennington, N	J 2.52	Temp.	1963-69	
04/04000			Sed.		
01401000	Stony Brook at Princeton, NJ	44.5	Sed.	1959-70	
01402900	Millstone River near Manville, NJ	287	Temp., S.C., p	oH, D.O. 1968-74	
01404100	Raritan River near South Bound Brook, NJ	862	Temp., S.C., p	oH, D.O. 1969-77	
01408000	Manasquan River at Squankum, NJ	44	Temp., S.C.,	oH. D.O. 1969-74	
01408500	Toms River near Toms River, NJ	123	Temp., S.C.	1964-66, 19	975-8
01100500	Tollo Kivel Heal Tollo Kivel, No	160	S.C.	1975-81	
01409095	Ouston Creek man Breekville NI	7.43		1975-76	
01409093	Oyster Creek near Brookville, NJ	7.43	Temp., D.O.	1975-77	
04/00040			S.C., pH		
01409810	West Branch Wading River near Jenkins, NJ	84.1	Temp., S.C.	1978-81	
01410787	Great Egg Harbor River trib. at Sicklerville, NJ	1.64	Sed.	1974-78	
01410810	Fourmile Branch at New Brooklyn, NJ	7.74	Sed.	1974-78	
01411000	Great Egg Harbor River at Folsom, NJ	57.1	Temp.	1961-80	
01411500	Maurice River at Norma, NJ	112	Temp., S.C.	1980-86	
01440200	Delevene Diven meen Delevene Heten Con De	3850	Sed.	1964-65, 19	072
	Delaware River near Delaware Water Gap, Pa.				716
01442750	Delaware River at Dunnfield, NJ	4150	Sed.	1966-76	
01463500	Delaware River at Trenton, NJ	6780	Sed.	1949-82	
01464040	Delaware River at Marine Terminal, at Trenton, N.	6870	Temp., S.C.	1973-76	
01464500	Crosswicks Creek near Extonville, NJ	81.5	Sed.	1965-70	
01467016	Rancocas Creek at Willingboro, NJ	315	Temp., S.C.,	pH 1969-74	
	or our at all till and of the	313	D.O.	1970-72	
				1970-74	
04/47450	Comman Divers of Hedden Cield HI	47.6	pH		
01467150	Cooper River at Haddonfield, NJ	17.0	Sed.	1968-69	
01477120	Raccoon Creek near Swedesboro, NJ	26.9	Temp.	1966-73	
			Sed.	1966-69	

Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment).

WATER RESOURCES DATA-NEW JERSEY, 1988

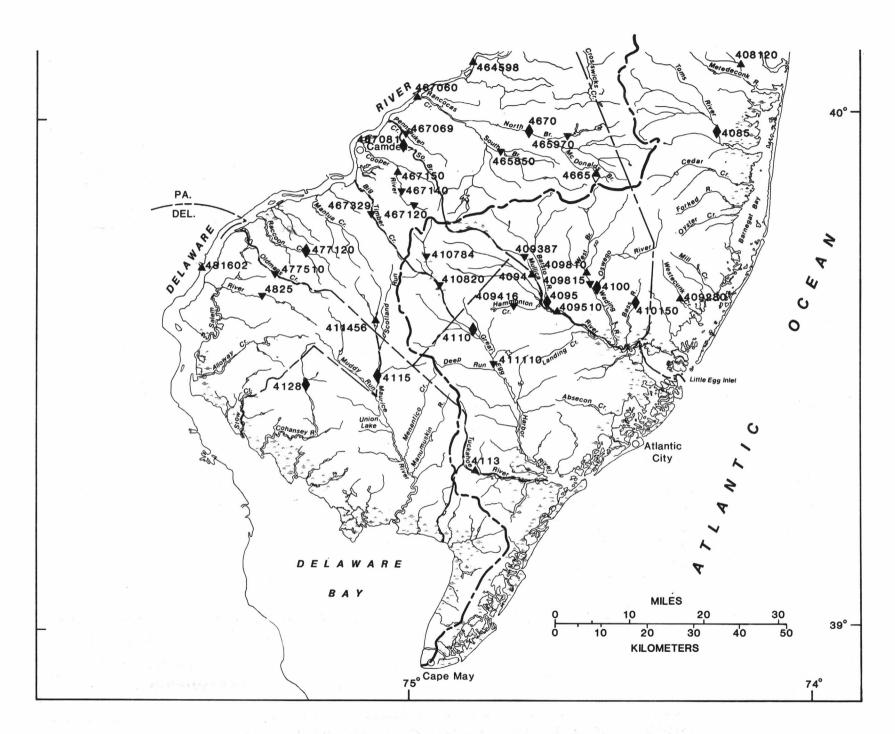
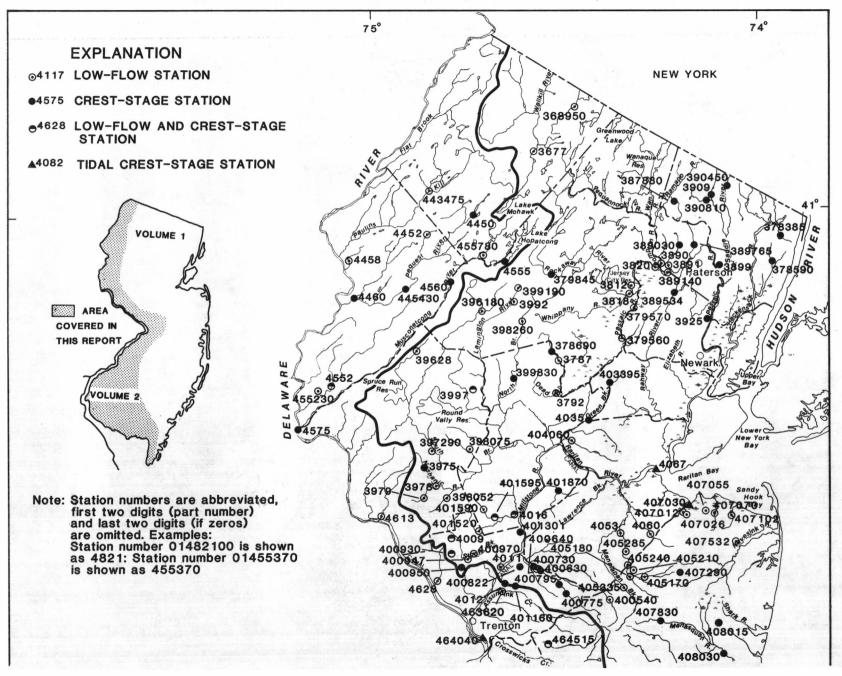



Figure 11.--Map showing location of gaging stations and surface-water quality stations.

WATER RESOURCES DATA-NEW JERSEY, 1988

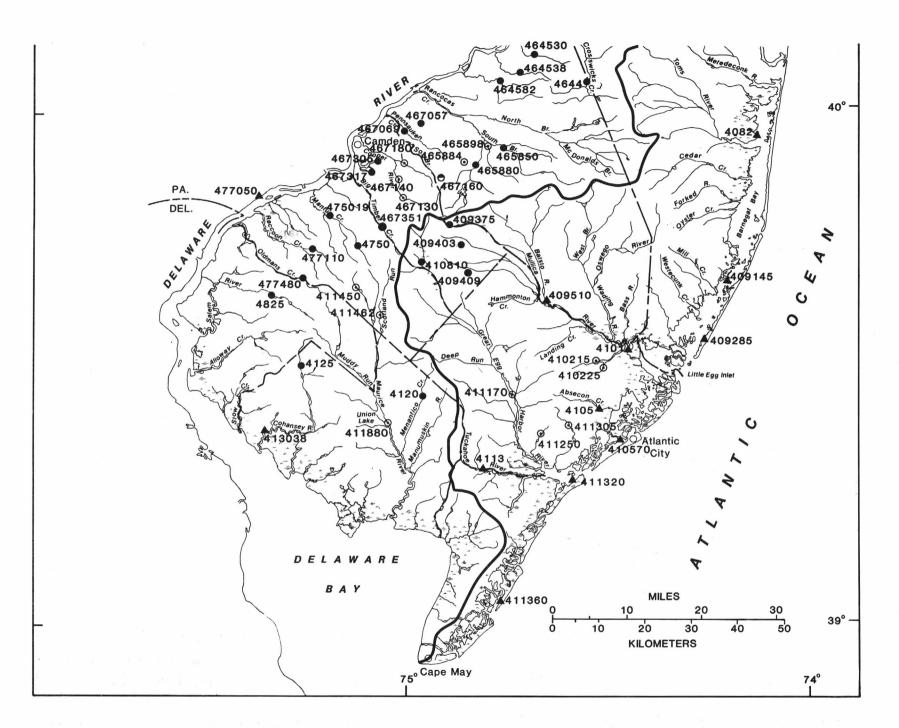
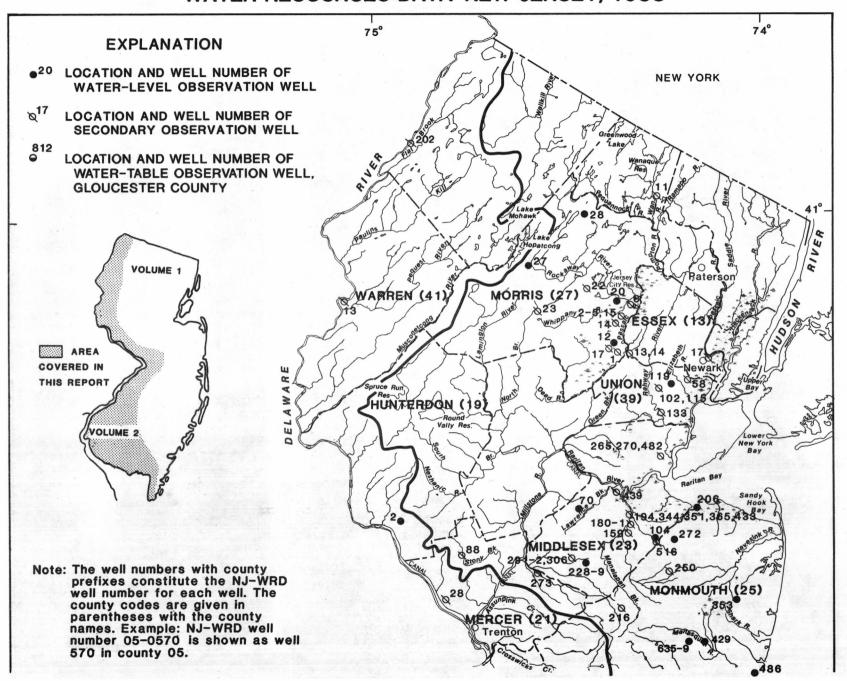



Figure 12.--Map showing location of low-flow and crest-stage partial-record stations.

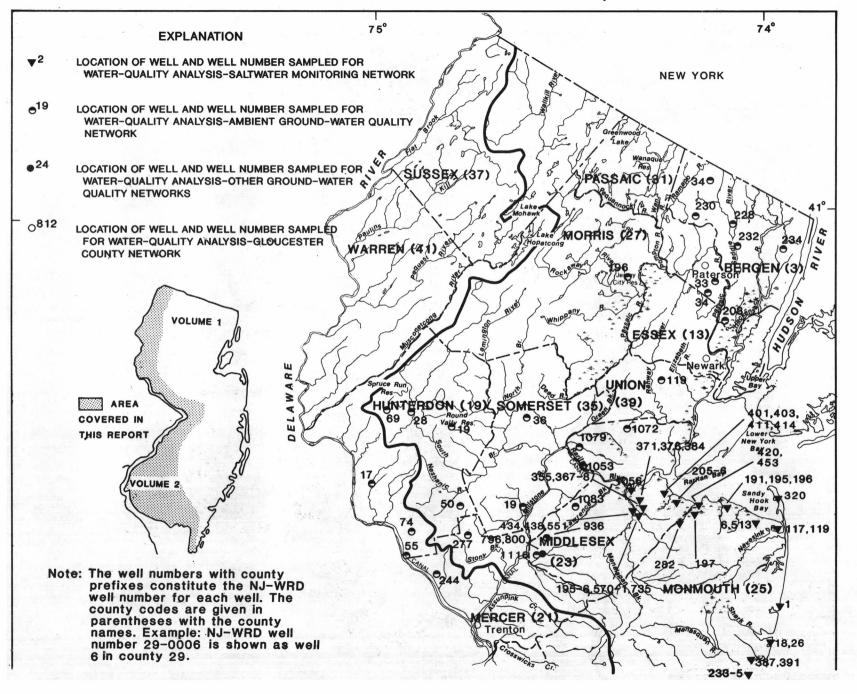



Figure 13. -- Map showing location of ground-water observation well.

WATER RESOURCES DATA-NEW JERSEY, 1988

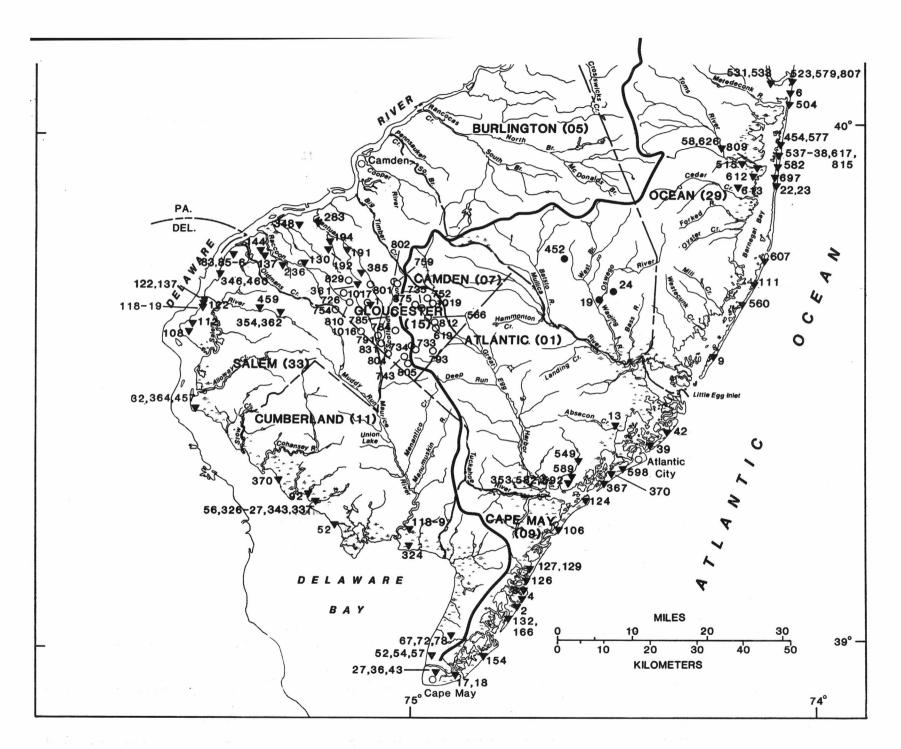


Figure 14. -- Map showing location of ground-water quality stations.

HYDROLOGIC-DATA STATION RECORDS

MAURICE RIVER BASIN

01411456 LITTLE EASE RUN NEAR CLAYTON, NJ

LOCATION.--Lat 39°39'32", long 75°04'04", Gloucester County, Hydrologic Unit 02040206, on right bank 30 ft downstream from bridge on Academy Road (County Route 610), 0.9 mi west of Fries Mill, 1.3 mi east of Clayton, and 1.4 mi downstream from Beaverdam Branch.

DRAINAGE AREA. -- 9.77 mi 2.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1966, 1976-84, 1987. February 26, 1988 to September 30, 1988.

GAGE. -- Water-stage recorder. Datum of gage is 100.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS..-No estimated daily discharge. Records good. Several measurements of water temperature were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988, MEAN DAILY VALUES

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	•••	•••	•••	•••		12	14 12	12	4.3	.78	1.9	1.7	
2		•••	•••	•••		12	12	11	4.2	.71	1.6	1.4	
3	• • • •	•••		•••	• • • •	11	11	10	3.9	.60	1.4	1.2	
4	•••	• • • •			•••	14	11	9.2	3.8 3.7	.60	1.2	6.2	
5		•••		•••		23	11	9.8	3.7	.60	1.0	6.2	
6		• • •		•••	•••	25 23	10 19	16	3.3	.60	.93 .78	4.8	
7 8 9	•••	•••	•••	•••		23	19	16 23 21	3.1	.59 .52	.78	3.8	
8		•••		• • •		20	33 34 29	21	2.8 2.8 2.8	-55	.73	3.0	
10				•••	•••	17	34	17	2.8	.55 .72	.61	2.3	
10				•••	•••	15	29	13	2.8	.12	.60	1.9	
11						17	27	12	24	.60	.60	1.6	
12	•••				•••	13 12	23 18	12 11	2.6 2.4 2.1	1.0	.54	1.4	
12	•••	•••	•••			12	10	9.7	5.4	1.0	.46	1.7	
14				•••		11	15 13	8.7	2.1	.79	.46	1.4	
15	•••	•••				11	12	7.8	2.0 1.9	.69	:43	1.6	
						11	12	7.0	1.7	.09	.43	1.5	
16		• • • •				10	12	6.9	1.8	.56	.41	1.2	
17	•••	•••				9.7	15	6.5	1.8	1.1	.93	1.1	
18		• • •				9.4	12 11	6.5 7.3	1.8	1 8	1 5	1.1	
19	• • •					9.3	12	15	1.8	1.2	90	1.1	
19	•••			†124		9.2	12 12	15 19	1.6	1.8 1.2 1.0	1.90	1.1	
				,		/							
21	• • • •					8.9	11	18	1.4	1.1	1.3	1.0 .97 .93	
22						8.5	11	14	1.4	2.5	.97	.97	
23					• • •	8.4	10	11	1.2	2.2	.84	.93	
21 22 23 24 25	•••					8.4	10	9.8	1.2	5.9	4.4	.92	
25	• • • •				•••	8.3	11	12	1.2 1.2 1.0	2.5 2.2 5.9 4.3	6.8	1.3	
26 27 28 29 30	•••				15	12	10 9.5	13 11	1.0	3.2 6.5 5.3 4.3 3.2	4.3	1.5 1.2 1.1	
27					14	24	9.5	11	1.0	6.5	20	1.2	
28	†16	•••	• • •		14	26 24	14	8.9	1.0	5.3	2.2	1.1	
29	•••	•••			13	24	14	7.4	.78	4.3	2.3	1.1	
30	• • •	†10				20	14	6.0	.78	3.2	3.2	1.1	
31	•••	•••	•••	•••	•••	16	•••	5.0	•••	2.3	2.2 2.3 3.2 2.3	•••	
MEAN	•••	•••	• • •	•••	•••	14.3	14.6	11.7	2.18	1.83	1.60	1.77	
MAX	• • •	•••				26	34	23	4.3	6.5	6.8	6.2	
MIN		•••		•••		8.3	9.5	5.0	.78	.52	.41	.92	
IN.	•••	•••	•••	•••	•••	1.69	9.5 1.67	1.38	.78	.22	.19	.20	
SIMMAD	V STATIST	221						500 DE		FC000			

SUMMARY STATISTICS

FOR PERIOD OF RECORD

HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 34 Apr 9 .41 Aug 16 .35 Apr 8 3.10 Apr 8 .35 Aug 15, 16, 17

[†] Result of discharge measurement.

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from bridge on Almond Road (State Route 540) at Norma, and 0.8 mi downstream from Blackwater Branch.

DRAINAGE AREA.--112 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302. REVISED RECORDS.--WSP 1382: 1933. WDR NJ-79-1: 1967(P). WDR NJ-82-2: Drainage area.

REVISED RECORDS. 1902. 1903. WAR NOT 1751. 1707(F). WAR NOT 02-2. Distinge area.

GAGE.--Water-stage recorder. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Occasional regulation by ponds above station. Several measurments of water temperature, other than those published, were made during the year. Satellite telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	75 73 78 113 116	157 144 132 121 111	119 121 119 119 115	114 112 108 115 111	156 155 166 171 180	171 167 164 166 193	191 178 168 164 155	161 158 153 147 145	113 114 111 108 105	64 64 63 62 61	74 70 67 64 62	87 79 74 81 105
6 7 8 9	122 126 120 112 104	103 97 93 91 98	109 103 100 97 93	104 100 101 102 100	179 169 160 153 147	201 207 208 206 197	142 164 215 267 241	164 189 196 200 194	103 101 99 102 104	60 58 57 59 65	61 58 56 55 56	103 99 89 83 81
11 12 13 14 15	97 90 86 84 85	135 142 143 142 137	109 111 114 113 117	99 98 98 98 96	142 212 259 244 299	183 168 159 158 154	223 221 210 169 165	194 194 185 172 158	100 98 96 93 86	62 64 73 74 69	52 49 48 47 45	77 72 71 72 69
16 17 18 19 20	90 84 78 74 72	130 123 120 117 112	129 130 130 159 134	94 93 103 115 156	298 285 271 255 254	152 149 146 143 139	167 164 159 160 160	147 141 124 147 178	83 86 97 94 88	63 61 68 71 73	42 37 51 51 58	66 64 65 65 64
21 22 23 24 25	71 69 69 70 71	108 101 96 95 95	135 129 124 121 121	197 206 212 210 203	248 237 228 221 211	133 127 122 125 132	157 155 152 151 148	208 189 179 170 171	82 79 76 74 72	70 74 79 89 92	68 67 64 73 87	62 61 59 57 65
26 27 28 29 30 31	69 73 146 174 171 167	93 93 91 97 114	131 129 128 129 112 117	227 199 188 178 169 161	201 190 180 173	154 197 207 210 210 203	146 144 153 155 160	170 155 154 139 133 121	71 69 67 67 65	94 117 109 101 94 84	96 97 88 88 107 99	69 67 65 63 61
MEAN MAX MIN IN.	97.7 174 69 1.01	114 157 91 1.14	120 159 93 1.23	138 227 93 1.42	208 299 142 2.01	169 210 122 1.74	173 267 142 1.73	166 208 121 1.71	90.1 114 65 .90	74.0 117 57 .76	65.7 107 37 .68	73.2 105 57 .73
STATIST	ICS OF MONT	HLY FLO		R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	113.3 1 264 1980 48.6 1966	143.3 330 1973 46.7 1966	169.2 385 1973 57.1 1966	192.1 380 1936 64.7 1966	204.6 418 1939 95.7 1981	231.8 427 1979 97.2 1981	227.7 437 1984 90.9 1966	190.2 387 1958 79.5 1977	147.1 291 1979 57.7 1966	124.4 333 1975 35.6 1966	124.8 327 1958 34.6 1966	123.9 591 1940 40.6 1965
SUMMARY	STATISTICS	8		FO	R 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST IN HIGHEST LOWEST INSTANTINSTA	ANNUAL MEA ANNUAL MEAN DAILY MEAN DAILY MEAN ANEOUS PEAN ANEOUS PEAN ANEOUS LOW RUNOFF (INC ENTILE ENTILE	FLOW STAGE			299 37 309 3.28 35 15.0 199 113 60	Feb 15 Aug 17 Feb 15 Feb 15 Aug 17			6 5 73 8.	1666 253 7.4 260 Sep 23 Sep 360a Sep 72 Sep 23 Sep 1.1 286 146 56	8 1964 2 1940 2 1940	

a From rating curve extended above 3,000 ft³/s, highest since 1867

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1953, 1960-62, 1965 to current year.

16...

0.18

75

<0.010

1.40

<0.01

<0.010

0.30

0.010

0.010

0.010

1

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1980 to November 1986 (discontinued).
WATER TEMPERATURE: October 1966 to January 1968 (once daily), January 1980 to November 1986 (discontinued).
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

INSTRUMENTATION. -- Water-quality monitor, January 1980 to November 1986.

REMARKS.--Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD...
SPECIFIC CONDUCTANCE: Maximum, 151 microsiemens, Jan. 25, 1984; 52 microsiemens, June 16, 1982.
WATER TEMPERATURE: Maximum, 28.0°C, July 21, 1980; minimum 0.0°C on many days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 OXYGEN, DIS-**OXYGEN** COLI-STREP-CHARGE, DEMAND, FORM, TOCOCCI HARD-SPE . DIS-INST. FECAL FECAL NESS CIFIC SOLVED BIO-OXYGEN, KF AGAR CON-TEMPER-(PER-CHEM-0.7 TOTAL PH TUR-(STAND-ARD UNITS) ATURE WATER UM-MF FEET DUCT-BID-DIS-CENT ICAL (COLS. (MG/L 5 DAY (COLS./ DATE TIME PER ANCE SOLVED SATUR-PER AS CACO3) SECOND (US/CM) 100 ML) 100 ML) (DEG C) (NTU) (MG/L) ATION) (MG/L) NOV 1987 12... JAN 1988 1110 144 74 K160 300 19 6.2 5.5 1.3 10.3 82 1.8 21... 201 370 20 1515 77 5.9 4.0 2.2 11.9 92 0.3 33 MAR 9.5 10... 1000 198 84 5.8 9.3 83 •• 27 19 1.4 0.5 MAY 1030 171 23 1700 19 24... 73 6.0 20.5 1.3 6.4 72 2.4 JUL 22... 19 1100 73 71 23.5 1.9 76 2.1 K160 6.4 6.4 SEP 16... 1000 67 83 9.9 101 48 310 21 6.7 17.0 0.5 1.2 ALKA-ALKA-SOLIDS SILICA, SUM OF CONSTI-MAGNE -POTAS-LINITY, CARBON-BICAR LINITY CHLO-WAT WH TOT FET RIDE, DIS-CALCIUM SIUM, RIDE, SIUM, SODIUM, BONATE SULFATE DIS-SOLVED DIS-SOLVED DIS-DIS-DIS-IT-FLD ATE DIS-DIS-TUENTS, SOLVED SOLVED SOLVED IT-FLD SOLVED SOLVED (MG/L (MG/L (MG/L FIELD SOLVED DIS-DATE (MG/L (MG/L CACO3) MG/L AS CACO3 (MG/L SOLVED (MG/L (MG/L (MG/L AS AS (MG/L (MG/L) AS CA) AS MG) AS NA) HCO3) SI02) AS K) AS SOA) AS CL) AS F) NOV 1987 12... JAN 1988 3.9 2.3 4.9 4.9 0.1 7.0 2.1 4.0 6 11 8.5 48 21... 3.9 2.4 5.8 1.8 5.5 4.5 18 9.2 0.1 7.2 60 6 MAR 10... 2.2 7 4.1 5.1 18 9.0 0.1 4.5 1.8 7.3 6.5 56 MAY 3.8 2.2 9.4 4.8 17 51 1.6 6.7 5.5 6 0.2 4.2 JUL 22... 3.9 2.3 4.8 1.8 8.5 7.0 8 9.3 0.1 4.4 51 8.6 SEP 16... 3.9 2.6 5.3 1.7 7.2 5.9 7 10 9.3 <0.1 5.2 48 NITRO-SEDI-SED NITRO-NITRO-PHOS-NITRO-NITRO-MENT, SUSP. GEN, AM-MONIA + PHOS-**PHOROUS** GEN, NITRITE GEN, AMMONÍA GEN NO2+NO3 SEDI-SIEVE GEN, AMMONIA PHOS-**PHOROUS** ORTHO, MENT, CHARGE DIAM DIS-DIS-DIS-ORGANIC **PHOROUS** DIS-DIS-SUS-SUS-% FINER SOLVED SOLVED TOTAL SOLVED TOTAL TOTAL SOLVED SOLVED DATE PENDED PENDED THAN (MG/L AS N) (MG/L (MG/L AS N) (MG/L AS N) (MG/L AS N) (MG/L AS P) (MG/L AS P) (MG/L AS P) (MG/L) (T/DAY) .062 MM AS N) NOV 1987 12.. <0.010 0.020 1.20 0.05 0.040 0.40 0.010 <0.010 JAN 1988 21... 7 3.8 69 <0.010 1.80 0.05 0.040 0.50 0.020 0.010 <0.010 MAR 10... 1 0.53 67 <0.010 1.60 0.02 0.040 0-40 0.020 0.020 <0.010 MAY 24... 3 1.4 91 <0.010 1.10 0.04 0.050 0.40 0.020 <0.010 <0.010 JUL 22... 6 1.2 41 <0.010 2.50 0.02 0.010 0.40 0.020 0.020 <0.010 SEP

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME (DIS: D DLVED SO JG/L (U	ENIC BARIU IS- DIS- LVED SOLVE G/L (UG/ AS) AS B	DIS- D SOLVED L (UG/L	CADMIUM DIS- SOLVED (UG/L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	DIS- SOLVED S	LEAD, DIS- SOLVED (UG/L AS PB)
JAN 1988 21 MAR			26 53		<1	1	<3	5	150	<5
10 JUL 22 SEP	1000		24 6566 52		<1 <1	<1 <1	<3 <3	3	150 220	<5 <5
16	1000	30	29 43	<0.5	<1	<1	<3	1	170	11
DATE	LITHIU DIS- SOLVE (UG/L AS LI	DIS: SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L	DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	CKEL, NI DIS- C SOLVED SC UG/L (U	DIS: D DLVED SO JG/L (U	VER, TI IS- DI LVED SOI G/L (U	RON- VANA IUM, DIUM IS- DIS LVED SOLV G/L (UG) SR) AS V	A, ZINC S- DIS /ED SOLVI /L (UG/	ED L
JAN 1988 21 MAR	<4	60	<0.1	<10	2	4 <1	.0	26 <6	-	
10 JUL 22 SEP	<4 <4	20 22	<0.1 <0.1	<10 <10	8 2			26 <6 25 <6		
16	<4	19	0.2	<10	<1	<1 <1	.0	23 <	5 12	1

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi south of Seeley, 2.6 mi east of Shiloh, 4.1 mi north of Bridgeton, and 22.5 mi upstream from mouth.

DRAINAGE AREA. -- 28.0 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to September 1988 (discontinued).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 26.9 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Flow diverted above gage during summer months for irrigation. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27 21 34 85 35	e24 e24 e23 e23 e21	31 27 24 26 24	24 24 22 26 24	26 28 33 31 28	24 24 24 35 51	21 21 20 22 22	26 24 23 24 26	22 23 23 23 22	7.4 6.3 6.2 6.0 5.9	15 14 13 12 12	17 16 14 28 50
6 7 8 9	23 24 21 20 19	e21 e21 e21 e21 e35	23 23 23 23 23 25	21 20 22 22 21	24 21 21 21 21	34 30 27 27 28	21 43 46 30 25	36 34 25 22 22	21 21 21 25 22	6.0 5.9 5.7 5.3 5.9	12 12 11 10 9.6	22 18 16 16 17
11 12 13 14 15	19 19 18 18	e65 e48 e33 e29 e27	39 31 26 25 30	21 21 21 21 19	21 211 108 32 34	24 27 27 25 23	24 23 23 23 23	29 24 22 22 22	18 18 16 14 12	5.9 10 13 10 7.1	9.8 8.9 8.2 8.3 8.3	16 15 16 17 15
16 17 18 19 20	18 18 18 18 18	e25 e24 e28 e25 e24	34 28 24 23 25	19 20 31 40 125	43 35 31 30 43	22 22 22 23 22	24 24 23 25 25	21 21 e29 e56 e47	12 13 13 14 14	6.3 7.0 11 9.0 9.1	7.6 8.1 14 14 18	14 14 18 18 17
21 22 23 24 25	19 18 18 18 19	e24 e23 e23 e24 e24	25 24 24 23 24	113 40 29 26 29	35 29 29 29 27	21 20 20 21 21	25 23 22 24 25	e32 e32 e34 e32 e45	12 11 10 10 8.6	9.1 14 15 30 17	16 14 13 26 37	16 15 14 14 19
26 27 28 29 30 31	18 21 73 e40 e31 e25	e24 e24 e24 e29 e50	32 28 26 28 23 22	45 31 25 22 23 24	26 27 27 25	35 61 32 23 21 21	24 23 31 28 29	e37 32 29 26 24 22	9.5 9.4 7.5 7.4 7.7	15 106 48 22 19	24 17 16 22 28 20	19 17 15 15
MEAN MAX MIN IN.	25.5 85 17 1.05	27.7 65 21 1.10	26.2 39 22 1.08	31.3 125 19 1.29	37.8 211 21 1.46	27.0 61 20 1.11	25.4 46 20 1.01	29.0 56 21 1.20	15.3 25 7.4 .61	14.9 106 5.3 .61	14.8 37 7.6 .61	17.8 50 14 .71
STATIST					OF RECORD,		R YEAR (
MEAN MAX (WY) MIN (WY)	28.1 58.4 1980 20.5 1987	31.1 48.1 1984 20.5 1982	35.6 56.1 1987 25.1 1981	40.5 84.7 1978 20.8 1981	40.9 104 1979 24.5 1983	38.4 58.4 1978 19.3 1981	43.1 76.4 1983 22.2 1985	42.0 57.3 1983 27.9 1986	42.4 121 1983 15.3 1988	29.0 50.0 1984 14.9 1988	26.9 43.0 1979 14.8 1987	26.7 43.5 1979 17.8 1988
SUMMARY	STATISTIC	CS		FC	OR 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
AVERAGE HIGHEST LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC 95 PERC	ANNUAL MEANNUAL MEADAILY MEANANEOUS PEANEOUS LOWNERUNGFF (I) ENTILE	EAN AN AN AN AK FLOW AK STAGE J FLOW NCHES)			24.4 211 5.3 340 5.20 4.7 11.8 34 23 7.8	Feb 12 Jul 9 Feb 12 Feb 12 Jul 9			10	5.3 6.3 4.4 150 Jur 5.3 Jul 000a Jur 8.5 Jur 4.7 Jul 7.1 54 28	21 1983	

a Includes discharge from dam break at Seeley Lake, 1.3 mi upstream, from rating curve extended above 600 ft³/s on basis of step-backwater computation of peak flow

e Estimated

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
NOV 1987	1130	E23	207	6.6	13.0	7.4	70	E1.4	220	240
FEB 1988 02	1130	25	210	6.4	8.0	8.5	72	-,-	20	79
MAR 17	1300	22	220	6.3	8.0	8.2/	69	E1.5	80	17
MAY 25	1245	46	200	6.7	18.5	6.5	70	E1.8	3500	>2400
JUL 19	1045	9.1	210	7.0	25.0	6.8	83	2.8	330	1600
02	1200	14	182	7.0	24.5	6.7	81	E2.0	3500	>2400
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
NOV 1987 04 FEB 1988	61	12	7.5	12	5.8	14	24	27	0.1	
02 MAR_	55	11	6.6	11	4.2	8.0	25	22	0.2	
17 MAY_	61	12	7.5	11	4.0	10	30	24	0.1	
25 JUL	55	11	6.8	8.4	4.1	16	24	17	0.2	
19 AUG	61	12	7.5	15	4.0	31	22	27	0.1	
02	55	11	6.7	12	5.1	14	29	24	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
NOV 1987 04	8.5	105	0.010	4 00	0.07	0.70	, ,	0 120	E 4	
FEB 1988	6.6	91	0.019 0.021	4.08 4.60	0.03	0.30	4.4	0.128 0.050	5.1 3.1	
MAR 17	7.5	102	0.021	4.60	0.06	0.50		0.050	2.7	
MAY 25	6.5	88	E0.047	3.09					8.9	
JUL 19	8.4	115	0.015	3.19	0.13 0.16	1.1 0.82	4.1	0.240 0.082	6.3	
AUG 02	8.0	104	0.015	3.19	0.18	2.5	4.0 5.7	0.120	6.1	
VE	0.0	104	0.010	3.10	0.09	2.6	5.1	0.120	0.1	

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
NOV 1987 04	1130	<0.5	70	1	<10	10	<1	3	6
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
NOV 1987 04	680	<5	90	0.10	1	<1	20	4	

01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, Pa., Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highway 6 and 209) between Port Jervis, N.Y. and Matamoras, Pa., 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 3,070 mi 2.

PERIOD OF RECORD. -- October 1904 to current year.

REVISED RECORDS.--WSP 1031: 1905-36. WDR NY-71-1: 1970. WDR NY-82-1: Drainage area. WDR NY-86-1: 1979-80.

GAGE.--Water-stage recorder. Datum of gage is 415.35 ft above National Geodetic Vertical Datum of 1929. October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft upstream at present datum; operated by U.S. Weather Bureau prior to June 20, 1914.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge Reservoirs (see Reservoirs in Delaware River Basin) and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi of drainage area controlled by Cannonsville Reservoir (see Reservoirs in Delaware River Basin). Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master. Telephone gageheight telemeter and satellite gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--The U.S. Weather Bureau reported a discharge of 205,000 ft³/s, Oct. 10, 1903, gage height, 23.1 ft, from rating curve extended above 70,000 ft³/s, by velocity-area studies; maximum gage height, 25.5 ft, Mar. 8, 1904 (ice jam).

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 T	O SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4490 4310 4120 4720 4640	5740 4820 4360 4320 3990	11100 8080 7050 6430 5930	e2100 e2500 e2400 e2300 e2400	e2000 e3800 e14000 12100 10300	2620 3130 3300 3590 3310	8230 7570 6960 6990 6890	4640 4170 3910 3350 3250	5210 5020 4380 3600 2930	1570 1700 1600 1710 1700	2250 2690 2830 2540 2070	2030 1550 1340 1170 2020
6 7 8 9 10	4500 3940 4170 4220 3960	3770 3560 2570 2670 3510	4860 5020 4930 4630 4170	e2500 e2400 e2400 e2600 e2000	8540 6740 e5300 e5000 e4600	2510 2900 3560 3980 6700	6240 5480 5180 4300 3590	3460 4070 3650 3310 3070	2810 2960 2710 2590 2330	1650 1390 1480 1440 1660	1850 1510 1400 1790 1870	2540 2010 1540 1260 1390
11 12 13 14 15	3930 3730 3130 2870 2980	3360 3710 3740 3300 2840	4070 3380 3170 3560 3340	e1900 e2500 e2600 e2800 e2700	e4400 e4100 e3700 3370 3530	8620 6700 6320 8810 8200	3430 3140 3160 3000 2530	2890 2670 2680 2260 2180	2050 1480 1680 2530 2510	1710 1830	1930 2180 2000 2260 1810	1350 1540 1540 1350 1410
16 17 18 19 20	2610 2070 1830 2170 1770	3140 3120 3710 4730 4290	3680 4010 3590 2630 2670	e1700 e1300 e1700 e2300 2690	3900 4230 4010 3960 3850	7020 6330 5750 5400 4870	2400 2340 2400 2380 2390	2020 2190 2380 3460 8130	2500 2320 1870 1680 1780	1690 1720 1670 2120 1890	1820 1290 1700 1560 1680	1780 1640 1660 1900 1760
21 22 23 24 25	1900 2270 2330 2020 1650	3740 3100 3040 3660 3440	3740 4060 3770 3080 2740	3390 3610 2920 e2200 e2100	4330 4240 4250 4360 3730	4680 4260 4050 4080 5310	2160 1990 1740 1700 2080	11200 11000 13200 10600 12600	2030 2350 2520 1900 1470	3140 2610 2540 2600 2620	1640 1640 1800 2000 2280	1710 1780 1770 1640 1640
26 27 28 29 30 31	1850 2330 7900 14200 9400 7620	2740 2870 2730 2270 7130	3360 3660 3900 e3800 e3600 e3000	e2400 e2100 e1900 e2100 e2100 e1900	3630 3340 2720 2460	13400 25300 18900 14200 11600 9860	2240 1980 2560 5080 4770	12800 11700 9480 7080 5910 5280	1520 1500 1590 1620 1600	2760 3390 4430 3590 3110 2190	1850 1700 1460 1770 3440 3410	1510 1510 1500 1620 1650
MEAN MAX MIN	3988 14200 1650	3666 7130 2270	4355 11100 2630	2339 3610 1300	4982 14000 2000	7073 25300 2510	3830 8230 1700	5761 13200 2020	2435 5210 1470	2175 4430 1390	2001 3440 1290	1637 2540 1170
STATIS					OF RECORD	BY WATE	R YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	3179 13140 1956 504 1911	4767 15950 1928 535 1910	5477 15240 1928 1113 1923	5417 14880 1913 1132 1931	5307 16240 1909 1331 1920	10170 28470 1936 2583 1981	11180 27400 1940 2954 1985	6323 13700 1943 1946 1965	3824 12650 1972 993 1965	10110 1928	2277 12430 1955 552 1913	2455 10270 1938 357 1908

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

SUMMARY STATISTICS	FOR 1988 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	3688 25300 Mar 27 1170 Sep 4 30200 Mar 27 9.17b Feb 3 847 Sep 4 16.3 6900 2850 1510	5255 Unadjusted 9882 1928 2028 1965 163000 Aug 19 1955 175 Sep 23 1908 233000a Aug 19 1955 26.6c Feb 12 1981 175d Sep 23 1908 23.2 11700 3140 868

a From rating curve extended above 89,000 ft³/s, on basis of slope-area measurement of peak flow b Floodmarks from ice jam c Ice Jam d Minimum observed e Estimated

'n

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1957-60, 1964 to current year.

CHEMICAL DATA: 1958-59 (e), 1964-65 (c), 1966 (a), 1967-68 (c), 1969-76 (d), 1987 (b), 1988 (c).

MINOR ELEMENTS DATA: 1970 (a), 1972-73 (a), 1974-76 (c), 1987 (b), 1988 (c).

PESTICIDE DATA: 1974 (a).

ORGANIC DATA: 0C--1974 (b), 1975 (d).

NUTRIENT DATA: 1968 (a), 1969-76 (d).

BIOLOGICAL DATA: BIOLOGICAL DATA:

Bacteria--1973-76 (d).

Phytoplankton--1974 (b), 1975-76 (c). Periphyton--1976 (a).

SEDIMENT DATA: 1959 (c), 1976 (c), 1988 (b).

PERIOD OF DAILY RECORD .-

SPECIFIC CONDUCTANCE: January 1973 to September 1973.

WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year. SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976.

INSTRUMENTATION. -- Water-temperature digital recorder since January 1973, provides one-hour-interval punches.

REMARKS.--Interruption of record was due to malfunction of recording instrument. Water-quality samples were collected by personnel of the New York State Department of Environmental Conservation, and were analyzed by USGS laboratories.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81, 1983-84, 1988), 30.0°C, July 13, 1981; minimum (water years 1958-60, 1973, 1975-88), 0.0°C, on many days during winter periods, except 1984.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURES: Maximum, 29.0°C, Aug. 15; minimum, 0.0°C, on many days during winter period.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)
OCT										
20 NOV	1030	1680		75	7.40	10.0		10.8		23
10 DEC	0930	2490			7.00	5.0		11.8		32
01 APR	1000	11000			7.20	5.0		16.5		19
05	1000	6630	71		6.50	9.5	760	11.4	100	20
20 JUN	1400	2290	76		6.60	9.5	755	11.9	105	22
07	1015	2600	77		7.00	18.5	748	9.2	100	23
23 JUL	1000	2560	85		6.70	24.0		7.2		25
19 SEP	1030	1560	87		6.60	25.0		7.5		25
01	0945	1870	90		7.00	19.0		8.4		26
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
OCT										
20 NOV	7.0	1.4							42	
10 DEC	9.8	1.9							63	
01 APR	5.8	1.2							58	
05	5.9	1.3	3.8	0.8	10	9.3	7.0	0.10		
20 JUN	6.6	1.3	4.3	0.7	12	11	7.3	0.10		<10
07	6.8	1.4	4.1	0.7	14	11	6.9	0.30		30
23 JUL	7.4	1.6	5.6	1.2	14	11	8.5	0.30		40
19 SEP	6.9	1.8	5.3	1.0	15	11	8.3	0.10		30
		2.0	0.0	2.0						

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	Sountil .	Dain, Wall	ER IEAR O	CIODER IS	or to but.	THINDIN 13		
ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
	<1		6		30		<5	
					00		-5	
		-						
	<1	1	6	4	370	-	<5	<5
10	<1 3	<1	2 2	1	110 70	20	<5 <5	<5
20	<1	-1	6	2	90	45	65	<5
	<1		6		110		<5	12
	1	:	4		110		<5	
	<1		7		120		<5	-
MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
10		<0.10	<1		20		6-14	
							-	
10		<0.10	. 9		10			
20 50	10	<0.10 <0.10	1 <1	_4	<10 <10	8	2	14
70		<0.10	2		<10		3	13
40		<0.10	2		<10		4	20
ANALYSIS O	F BOTTOM	SOLIDS, VOLA-	CADMIUM RECOV.	CHRO-	COPPER, RECOV.	IRON, RECOV.	LEAD, RECOV.	
DATE	TIME	BOTTOM MA- TERIAL (MG/KG)	TOM MA- TERIAL (UG/G AS CD)	FM BOT- TOM MA- TERIAL (UG/G)	TOM MA- TERIAL (UG/G AS CU)	TOM MA- TERIAL (UG/G AS FE)	TOM MA- TERIAL (UG/G AS PB)	
OCT 20	1030	20200	<1	<10	9	6100	30	
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	
OCT 20	300	<0.10					99	
	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 10 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 10 20 80 30 10 20 50 70 40 ANALYSIS O DATE OCT 20	ALUM- INUM, TOTAL RECOV- SOLVED ERABLE (UG/L AS AL) AS CD) <1	ALUM- INUM, DIS- RECOV- SOLVED ERABLE (UG/L AS AL) AS CD) <1 1 1 1 1 1 1 1 1 1 1 1	ALUM- INUM, DIS- SOLVED ERABLE (UG/L AS AL) AS CD) AS CD)	ALUM-	ALUM- TOTAL NOTAL SOLVED ERABLE SOLVED ERABLE SOLVED DIS- SOLVED CONTAIL (UG/L	ALUM- INUM, DIS- RECOV- DIS- SOLVED ERABLE (UG/L (UG/L (UG/L (UG/L (UG/L AS AL))	NUM, DIS- RECOV-DIS- SCOVED SCO

53

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued
TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		T	EMPERATURE	(DEG. C)	OF WATER,	WATER	YEAR OCTOBE	R 1987	TO SEPTEMB	SR 1988				
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		
	(OCTOBER NOVEMBER					DEC	EMBER		JANUARY				
1 2				7.5 8.5	7.0 7.0	7.5 8.0	6.0 5.5	5.0	5.5 5.0	.5	.0	.0		
3 4				9.5 10.5	8.5	8.5 9.5	4.5	4.0	4.0	.0 1.0	.0	.0		
5				11.0	9.5	10.0	3.5	2.5	3.0	. 5	.0	.0		
6 7				9.0 7.5	7.0 6.5	8.0 7.0	2.5	2.0 1.5	2.5	.5	.0	.0		
8	13.0	11.5	12.0	7.0 7.5	6.0	6.5 7.0	2.5	1.5	2.0	.5	.0	.0		
10	13.0	12.0	12.5	7.5	5.5	6.5	3.5	2.5	3.0	.0	.0	.0		
11 12	12.5 12.0	11.5 11.0	12.5 11.5	6.0 5.0	4.5	5.0	4.0	3.0 3.5	3.5	.0	.0	.0		
13 14	11.5	10.0	10.5	6.0	4.0	5.0	3.5	3.0 2.5	3.5	.0	.0	.0		
15	12.0	9.0	10.5	5.0	4.0	4.5	3.0	2.0	2.5	.5	.0	.0		
16 17	12.5 11.5	9.5 10.5	11.0 11.0	5.5 7.5	4.0	4.5	2.5	2.0	2.0	.0	.0	.0		
18 19	12.5	11.0	12.0 12.0	9.0	7.5 7.5	8.5	1.5	.5	1.0	.5 1.0	.0	.0		
20	12.5	11.5	12.0	7.5	6.0	7.0	1.0	.5	1.0	.5	.0	.0		
21 22	12.5 11.5	11.0	12.0 11.0	6.0	2.0	4.0	2.5	1.0	1.5	.0	.0	.0		
23	10.5	9.5	10.0	2.5	.0	1.0	1.5	1.0	1.0	. 0	.0	.0		
25	10.5	10.0	10.0	3.5 4.0	1.0	2.0 3.0	1.5 2.5	.5 1.0	1.0	.5 .5	.0	.0		
26 27	10.0	8.5	9.5	4.5	3.0	4.0	3.0	2.5	2.5	.0	.0	.0		
28	10.0	7.5 8.5	9.0 9.5	4.0	3.5 3.5	3.5 4.0	2.0 1.5	1.5	2.0 1.5	.5	.0	.0		
29 30	8.5	8.0 7.5	8.0 7.5	5.0 6.0	4.0	4.0 5.5	1.0	.0	.5	.)5 1.0	.0	.0		
31	8.0	7.0	7.5				.0	.0	.0	.5	.0	.5		
MONTH				11.0	0.0	5.5	6.0	0.0	2.0	1.0	0.0	0.0		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		
DAY		MIN FEBRUARY	MEAN	MAX	MIN ARCH	MEAN		MIN PRIL	MEAN		MIN	MEAN		
1	1.0	FEBRUARY	.5	MAX Mi 1.5	ARCH	.5	8.0	PRIL 7.0	7.5	9.5	9.0	9.0		
1 2 3	1.0 .5 .5	FEBRUARY .0 .0 .0	.5 .5 .0	MAX Mi 1.5 2.0 3.0	.0 .0 .0	.5 1.0 2.0	8.0 7.5 7.5	7.0 7.0 7.0 7.0	7.5 7.5 7.5	9.5 10.0 10.5	9.0 9.0 9.5	9.0 9.5 10.0		
1 2	1.0	FEBRUARY	.5 .5	MAX Mi 1.5 2.0	.0 .0	.5 1.0	8.0 7.5	7.0 7.0	7.5 7.5	9.5 10.0	9.0 9.0	9.0 9.5		
1 2 3 4 5	1.0 .5 .5 .5 .0	.0 .0 .0 .0 .0	.5 .5 .0 .0	MAX M2 1.5 2.0 3.0 1.5 2.0	.0 .0 1.0 .5 .0	.5 1.0 2.0 1.5 1.0	8.0 7.5 7.5 9.5 10.5	7.0 7.0 7.0 7.5 9.0	7.5 7.5 7.5 8.5 9.5	9.5 10.0 10.5 12.5 12.5	9.0 9.0 9.5 9.5 11.5	9.0 9.5 10.0 11.0 12.0		
1 2 3 4 5	1.0 .5 .5 .5 .0	.0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0	MAX M3 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.5	.0 .0 1.0 .5 .0	.5 1.0 2.0 1.5 1.0	8.0 7.5 7.5 9.5 10.5	7.0 7.0 7.0 7.5 9.0 9.5 9.5 8.5	7.5 7.5 7.5 8.5 9.5 10.5 10.0 9.0	9.5 10.0 10.5 12.5 12.5 15.5 16.5	9.0 9.0 9.5 9.5 11.5	9.0 9.5 10.0 11.0 12.0		
1 2 3 4 5	1.0 .5 .5 .5 .0	.0 .0 .0 .0 .0 .0	.5 .5 .0 .0	MAX Mi 1.5 2.0 3.0 1.5 2.0 2.5 3.5	.0 .0 1.0 .5 .0	.5 1.0 2.0 1.5 1.0	8.0 7.5 7.5 9.5 10.5	7.0 7.0 7.0 7.5 9.0 9.5 9.5	7.5 7.5 7.5 8.5 9.5	9.5 10.0 10.5 12.5 12.5	9.0 9.0 9.5 9.5 11.5	9.0 9.5 10.0 11.0 12.0		
1 2 3 4 5 6 7 8 9 10	1.0 .5 .5 .5 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0	.0 .0 1.0 .5 .0 .0 1.0 1.5 2.0 1.5	.5 1.0 2.0 1.5 1.0 1.5 2.5 2.5 2.5 2.5	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0	7.0 7.0 7.0 7.5 9.0 9.5 8.5 7.5 7.5	7.5 7.5 7.5 8.5 9.5 10.5 10.0 9.0 8.5 9.0	9.5 10.0 10.5 12.5 12.5 12.5 16.5 16.0 14.5	9.0 9.0 9.5 9.5 11.5 12.0 12.0 13.5 14.5 13.5	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0		
1 2 3 4 5 6 7 8 9 10	1.0 .5 .5 .0 .0 .5 .5 .5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX M2 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.0 4.5	.0 .0 1.0 .5 .0 1.0 1.5 2.0 1.5	.5 1.0 2.0 1.5 1.0 1.5 2.5 2.5 2.5 2.5 3.5	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0	7.0 7.0 7.5 9.0 9.5 8.5 7.5 8.5 7.5	7.5 7.5 7.5 8.5 9.5 10.5 10.0 9.0 8.5 9.0	9.5 10.0 10.5 12.5 12.5 15.5 16.5 14.5	9.0 9.0 9.5 9.5 11.5 12.0 12.0 13.5 14.5 13.5	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0		
1 2 3 4 5 6 7 8 9 10	1.0 .5 .5 .5 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX M2 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.0	.0 .0 1.0 .5 .0 .0 1.0 1.5 2.0 1.5	1.5 1.0 2.0 1.5 1.0 1.5 2.5 2.5 2.5 2.5	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0	7.0 7.0 7.0 7.5 9.0 9.5 9.5 7.5 7.5 7.5	7.5 7.5 7.5 8.5 9.5 10.5 10.0 9.0 8.5 9.0	9.5 10.0 10.5 12.5 12.5 15.5 16.5 16.0 14.5	9.0 9.0 9.5 9.5 11.5 12.0 12.0 13.5 14.5 13.5	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 4.0 3.5 2.0 3.5	.0 .0 1.0 .5 .0 1.0 1.5 2.0 1.5 1.0 1.5 2.5 3.0 2.0	.5 1.0 2.0 1.5 1.0 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.0 10.0 11.0 11.5 10.5	7.0 7.0 7.5 9.0 9.5 8.5 7.5 8.5 9.0 9.5	7.5 7.5 7.5 7.5 8.5 9.5 10.0 9.0 8.5 9.0 9.5 10.0 10.5 10.0	9.5 10.0 10.5 12.5 12.5 16.5 16.0 14.5 15.0 19.5 19.5	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 16.0 16.0	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0 14.0 14.5 16.0 17.5 18.0		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .5 .5	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.0 4.5 4.0 3.5 2.0 3.0 2.5	.0 .0 1.0 .5 .0 .0 1.5 2.0 1.5 2.5 3.0 2.0	1.5 1.0 2.0 1.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 2.5 2.5	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0 11.0 11.5 10.5	7.0 7.0 7.0 7.5 9.5 9.5 7.5 7.5 8.5 9.0 8.5 9.5 9.5	7.5 7.5 7.5 8.5 9.5 10.5 10.0 9.0 8.5 9.0 9.5 10.0 10.5 10.0	9.5 10.0 10.5 12.5 12.5 12.5 16.5 16.5 16.5 18.0 19.5 19.5 18.5 18.5 16.5	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 16.0 16.5 16.5	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0 14.5 16.0 17.5 18.0		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5.5.00.00.00.00.00.00.00.00.00.00.00.00	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.5 3.0 3.0 2.0 3.0 3.0 3.0	.0 .0 1.0 .5 .0 1.0 1.5 2.0 1.5 2.5 3.0 2.0	1.5 1.0 2.0 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0 11.0 11.5 10.5	7.0 7.0 7.0 7.5 9.5 9.5 7.5 7.5 8.5 9.0 8.5 9.5	7.5 7.5 7.5 8.5 9.5 10.0 9.0 8.5 9.0 9.5 10.0 10.5 10.0	9.5 10.0 10.5 12.5 12.5 12.5 16.5 16.5 16.5 18.0 19.5 19.5	9.0 9.0 9.5 9.5 11.5 12.0 12.0 13.5 14.5 13.5 13.6 16.0 16.5	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0 14.5 16.5 16.5 18.0		
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	MAX MX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.0 4.5 4.0 3.5 2.0 3.0 2.5 3.0 2.0 3.0 2.0	.0 .0 1.0 .5 .0 .0 1.5 2.0 1.5 2.0 1.5 2.0 2.0 2.0 1.5	1.5 2.0 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0 11.0 11.5 10.5 9.5 10.0 9.5	7.0 7.0 7.0 7.5 9.5 9.5 7.5 7.5 8.5 9.0 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	7.5 7.5 7.5 8.5 9.5 10.5 10.0 9.0 8.5 9.0 9.5 10.0 10.5 10.0	9.5 10.0 10.5 12.5 12.5 12.5 16.5 16.5 16.5 18.0 19.5 19.5 18.5 16.5 16.5 19.5	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 16.0 16.5 15.5 15.0	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0 14.5 16.0 17.5 18.0 17.5 16.5 15.0 15.0		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .0 1.0 1.5 1.0	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.5 3.0 2.0 3.5 3.0 2.0 3.5 3.0 3.0 3.5	.0 .0 .0 1.0 .5 .0 1.0 1.5 2.0 1.5 2.0 1.5 2.5 3.0 2.0 2.0 1.5	1.5 1.0 2.0 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0 11.5 10.5 9.5 10.0 11.5 10.5	7.00 7.05 7.05 9.55 7.55 8.50 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.5 7.5 7.5 7.5 8.5 9.5 10.0 9.0 8.5 9.0 9.5 10.0 9.0 9.5 10.0 9.0 9.5 8.5 9.5	9.5 10.0 10.5 12.5 12.5 16.5 16.5 16.5 18.5 19.5 18.5 16.5 16.5 19.5	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 13.5 16.0 16.5 15.5 15.0 14.5	9.0 9.5 10.0 12.0 12.5 13.5 15.0 14.0 14.5 17.5 18.0 17.5 16.5 15.0 15.0		
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .0 1.0 1.5 1.0	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 4.5 4.0 3.5 2.0 3.0 2.5 3.0 3.0 2.0 2.5 3.0 3.0 2.0 2.5 3.0 3.0	.0 .0 .0 1.0 .5 .0 1.0 1.5 2.0 1.5 2.5 3.0 2.0 1.5 2.0 2.0	1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.0 10.0 11.0 11.5 10.5 9.5 10.5	7.00 7.50 9.55 7.55 8.50 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.5 7.5 7.5 7.5 8.5 9.5 10.0 9.0 8.5 9.0 9.5 10.0 10.5 10.0 9.0 9.5 8.5 9.0	9.5 10.0 10.5 12.5 12.5 16.5 16.5 16.5 19.5 18.5 19.5 18.5 16.0 16.0	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 16.0 16.5 15.5 15.0 14.5	9.0 9.5 10.0 11.0 12.0 12.5 13.5 15.0 14.0 14.5 16.0 17.5 18.0 17.5 16.0		
1 2 3 4 4 5 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .0 1.0 1.5 1.0 1.5 1.0	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.5 3.0 2.0 3.5 3.0 2.0 3.0 2.0 3.0 2.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	.0 .0 .0 1.0 .5 .0 1.5 2.0 1.5 2.5 3.0 2.0 1.5 2.5 3.0 2.0 1.5	1.5 1.0 2.0 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.5 9.0 10.0 11.5 10.5 9.5 10.0 9.5 10.0 9.5 10.5	7.00 7.05 7.50 9.55 7.5 8.50 9.5 8.50 9.5 8.50 7.50 8.7 8.0 7.50 8.0 7.50 8.0 7.50 8.0 7.50 8.0 7.50 8.0 7.50 8.0 7.50 8.0 7.0 8.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.5 7.5 7.5 7.5 8.5 9.5 10.0 9.0 8.5 9.0 9.5 10.0 9.0 9.5 8.5 8.5 9.0 9.0 9.5 8.5 8.5 9.0	9.5 10.0 10.5 12.5 12.5 12.5 16.5 16.5 16.5 18.0 19.5 19.5 18.5 16.5 16.0 16.0 17.0 18.0 17.0	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 13.5 16.0 16.5 15.5 15.0 14.5	9.0 9.5 10.0 12.0 12.5 13.5 15.0 14.0 14.5 16.5 16.5 15.0 17.5 16.0 17.5 16.0 17.5 16.0		
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .5 .5 .1.0 1.0 1.5 1.0 1.5 1.0	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.5 3.0 2.0 3.5 3.0 2.0 3.5 6.0 8.0 8.0 8.0 8.0 8.0	.0 .0 1.0 .5 .0 1.0 1.5 2.0 1.5 2.5 3.0 2.0 1.5 2.5 3.0 2.0 1.5	1.5 1.0 2.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.0 10.0 11.0 11.5 10.5 9.5 10.0 9.5 10.0 9.5 10.5	7.00 7.50 9.55 7.55 8.50 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	7.5 7.5 7.5 7.5 8.5 9.5 10.0 9.0 8.5 9.0 9.5 10.0 9.0 9.5 10.0 9.0 9.5 8.5 9.0 9.5 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.5 10.0 10.5 12.5 12.5 16.5 16.5 16.5 19.5 18.5 18.5 16.0 17.0 16.0 17.0 15.0 17.5	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 16.0 16.5 15.5 15.0 14.5 15.0 14.5 15.5 17.0 14.5	9.0 9.5 10.0 11.0 12.0 12.5 15.0 14.0 14.5 16.0 17.5 18.0 17.5 16.0 17.5 16.0 17.5 16.0 17.5 16.0 17.5 16.0		
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .5 .5 .5 .1.0 1.5 1.0 1.5 1.0	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.0 4.5 4.0 3.5 3.0 2.0 3.0 2.0 3.0 8.0 8.0 8.0 8.0	.0 .0 .0 1.0 .5 .0 .0 1.5 2.0 1.5 2.0 1.5 2.0 2.0 1.5 2.0 2.0 1.5 2.0 2.0	1.5 1.0 2.0 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.0 10.0 11.0 11.5 10.5 9.5 10.0 9.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5	7.00 7.05 7.05 9.55 7.55 8.55 9.05 9.55 7.50 8.75 7.50 8.75 8.00 7.50 8.00 7.50 8.00 7.50	7.5 7.5 7.5 8.5 9.5 10.5 10.0 9.0 8.5 9.0 9.5 10.0 9.0 9.5 8.5 8.5 9.0 9.0 9.5 8.5 9.0	9.5 10.0 10.5 12.5 12.5 12.5 16.5 16.5 18.0 19.5 18.5 16.5 16.0 17.0 16.0 17.0	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 16.0 16.5 15.5 15.0 14.5 15.5 15.0 14.5	9.0 9.5 10.0 112.0 12.5 13.5 15.0 14.0 14.5 16.5 16.5 15.0 17.5 16.0 17.5 16.0 17.5 16.0		
1 2 3 4 4 5 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1.0 .5 .5 .5 .0 .0 .5 .5 .5 .5 .0 1.0 1.5 1.0 1.5 1.0	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	MAX 1.5 2.0 3.0 1.5 2.0 2.5 3.5 3.0 3.0 2.0 3.5 3.0 2.0 3.5 3.0 2.0 3.5 3.0 2.0 3.5 3.0 2.0 3.5 3.0 3.0 3.5 3.0 3.5 3.0 3.0 3.0 3.5 3.0 3.0 3.0 3.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	.0 .0 .0 1.0 .5 .0 1.5 2.0 1.5 2.0 2.0 2.5 3.0 2.0 2.0 1.5 2.0 2.0 2.0 2.0 2.0 4.5 4.0 4.0	1.5 1.0 2.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	8.0 7.5 7.5 9.5 10.5 11.5 10.5 9.0 10.0 11.0 11.5 10.5 9.5 10.0 11.5 10.5 10.5 10.5 10.5 10.5 10	7.00 7.50 9.55 7.55 8.50 9.5 9.5 7.50 8.05 9.5 7.50 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8	7.5 7.5 7.5 7.5 8.5 9.5 10.0 9.0 8.5 9.0 9.5 10.0 9.0 9.5 8.5 9.0 9.5 8.5 9.0 9.5 8.5 9.0	9.5 10.0 10.5 12.5 12.5 16.5 16.5 16.5 19.5 18.5 16.5 19.5 18.5 16.5 16.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0	9.0 9.0 9.5 9.5 11.5 12.0 13.5 14.5 13.5 13.5 16.0 16.5 15.5 17.0 14.5	9.0 9.5 10.0 12.0 12.5 15.0 14.0 14.0 14.5 16.0 17.5 16.0 17.5 16.0 17.5 16.0 17.5 16.0 17.5 16.0		

54

DELAWARE RIVER BASIN
01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN									
		JUNE		JU	JLY		1	AUGUST		SEP	TEMBER	
1 2	21.0	19.5 18.5	20.5	19.5	18.5 17.5	19.0 18.5	27.5 27.0	25.5 25.0	26.0 26.0	21.5	19.0 19.5	20.5
3	18.0	17.0	17.5	21.0	17.5	19.5	27.0	25.0	26.0	22.0	20.0	21.0
5	18.5	15.0	16.5 17.0	22.5	19.0 20.5	21.0 22.0	27.5 28.5	25.0 25.0	26.0 27.0	21.5	20.0 19.0	20.5 20.0
6	20.0	16.5	18.5	25.5	21.5	24.0	27.0	25.5	26.5	19.0	17.5	18.5
8	19.0 19.0	18.0	19.0 18.0	26.0	22.5	24.0	27.5 27.5	25.5 25.5	26.5	19.0	16.5 17.0	18.0 18.5
9 .	18.0	16.5	17.5	26.0	24.0	25.0	28.0	25.5	27.0	20.0	17.5	19.0
10	18.5	15.5	17.0	28.5	24.5	26.5	28.0	25.5	27.0	21.0	19.0	20.0
11	19.0	16.0	17.5	28.0	25.0	26.5	28.0	25.5	26.5	20.0	19.0	19.5
12 13	21.0	16.5 19.5	19.0	26.5 27.0	23.0	25.0 25.5	27.5 29.0	25.5 25.5	26.5 27.5	20.0	18.0 19.0	19.0 19.5
14	22.5	20.0	21.0	27.5	25.0	26.0	29.0	27.5	28.0	20.5	18.5	19.5
15	23.0	20.5	22.0	27.5	24.0	26.0	29.0	26.5	28.0	20.0	18.5	19.0
16 .	24.0	21.0	22.5	26.5	24.0	25.5	26.5	25.0	26.0	19.5	17.0	18.5
17	23.0	21.0	22.0	27.5	25.0	26.0	25.0	23.5	24.5	18.5	17.0	17.5
18 19	24.0 25.0	20.5 21.5	22.5	28.0 26.5	25.0 23.5	26.5	25.0 24.0	23.5	24.0	18.5	16.5 18.0	17.5 19.0
20	26.0	23.5	24.5	25.5	23.0	24.0	23.5	22.0	22.5	19.5	18.5	19.0
21	26.5	22.0	24.5	23.0	22.0	22.5	23.0	21.5	22.0	19.5	19.0	19.5
22	25.5	22.5	24.0	23.5	22.5	23.0	22.0	20.0	21.5	19.0	18.0	18.5
23 24	24.5 24.0	21.5 21.5	23.0 23.0	24.5 24.5	22.5	23.5	21.5	19.5	20.0	19.5	17.5	18.5
25	24.5	22.0	23.5	25.5	23.0 23.0	24.0 24.0	19.5 19.5	18.0 17.5	18.5	19.0 18.5	17.5 17.5	18.5 18.0
26	25.0	23.0	24.0	24.0	22.0	23.5	20.5	18.5	19.5	18.0	16.5	17.5
27	23.0	21.0	22.5	23.5	22.0	22.5	22.0	19.5	21.0	17.5	16.0	17.0
28	23.5	20.5	22.0	24.0	22.5	23.5	23.0	21.5	22.5	18.0	16.5	17.5
29 30	22.5	21.0	22.0	25.5 26.0	23.5	24.5	23.0 21.5	21.5	22.5	17.5 17.5	15.5	16.5 17.0
31				27.0	25.0	26.0	21.0	19.5	20.5			
MONTH	26.5	15.0	21.0	28.5	17.5	24.0	29.0	17.5	24.0	22.0	15.5	19.0

01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi downstream from Basher Kill, 0.8 mi southeast of Godeffroy, 1.7 mi south of Cuddebackville, and 8.5 mi upstream from mouth.

DRAINAGE AREA. -- 307 mi 2.

PERIOD OF RECORD.--August to October 1903, July 1937 to current year. Gage heights and discharge measurements, August 1909 to April 1914. Twice-daily figures of discharge, January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation. August to October 1903, published as "Naversink River at Godeffroy, NY."

REVISED RECORDS.--WSP 1502: 1951 (M). WDR NY-82-1: Drainage area. WDR NY-87-1: 1986.

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft higher).

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 92.5 mi of drainage area controlled by Neversink Reservoir (see Reservoirs in Delaware River Basin). Part of flow diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988, MEAN DAILY VALUES DAY SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 167 407 359 e270 e260 263 631 475 412 377 e700 1150 e250 296 340 105 103 181 e210 267 e200 171 312 588 e180 e170 e700 247 230 226 221 399 430 115 e180 351 393 e620 272 245 e190 e520 374 359 e200 e500 330 265 e190 e450 e180 e400 307 317 359 12 13 390 388 321 311 192 183 176 e170 e380 707 139 136 126 177 162 142 e170 e180 e160 e360 e370 250 242 121 118 333 e360 e140 e320 333 322 279 321 125 127 270 e140 613 176 262 248 227 533 515 142 e150 243 231 19 20 e160 e190 148 81 117 e250 e420 e400 e380 22 23 24 25 327 213 209 222 73 70 106 114 105 303 e250 e220 138 138 302 275 210 392 411 820 236 326 e350 27 28 29 214 1510 97 e330 279 278 1180 e200 e310 334 323 93 94 e170 e290 e270 e250 e240 e170 e280 514 266 e180 182 599 1150 236 1.57 MEAN 317 214 240 232 MAX .58 MIN 1.52 1.38 1.51 IN. 1.15 STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) 1404 1945 54.2 2033 1956 1327 1955 64.7 967 MEAN 1272 1504 1949 1271 1951 118 1519 1943 180 1722 1972 111 1952 86.3 MAX 1945 297 1940 248 (WY) 119 MIN 72.6 (WY)

01437500 NEVERSINK RIVER AT GODEFFROY, NY--Continued

SUMMARY STATISTICS	FOR 1988 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW Highest annual mean Lowest annual mean	334	486a Unadjusted 943 1952 215 1965
HIGHEST DAILY MEAN LOWEST DAILY MEAN	1510 Oct 28 70 Aug 23	15900 Aug 19 1955 32 Aug 17 1965
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	2350 Oct 28 6.27b Feb 2 67 Aug 2	33000b Aug 19 1955 12.49 Aug 19 1955 0 Jul 21 1911
ANNUAL RUNOFF (INCHES) 10 PERCENTILE 50 PERCENTILE	14.8 636 280	21.5a 1070 294
95 PERCENTILE	106	82.5

a Since water year 1938
b From rating curve extended above 11,000 ft³/s, on basis of slope-area measurement of peak flow c Ice jam
e Estimated

LOCATION.--Lat 41°18'33", long 74°47'44", Pike County, PA, Hydrologic Unit 02040104, on right bank 1,500 ft upstream from toll bridge (on U.S. Route 206) between Montague, NJ and Milford, PA, 0.8 mi downstream from Sawkill Creek, and at river mile 246.3.

DRAINAGE AREA .-- 3,480 mi 2.

PERIOD OF RECORD.--March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WDR-NJ-81-2: 1980.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft lower.

REMARKS.--Records excellent except for period of ice effect, Dec. 31 to Mar. 26, and from July 29 to Sept. 30, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of October 10, 1903, reached a stage of 35.5 ft, from floodmark, present datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988, MEAN DAILY VALUES SEP DAY OCT NOV DEC **FEB** APR MAY JUN JUL JAN 4830 5650 5160 e2700 e2400 8570 8000 5700 5010 e3000 3110 e4800 e16000 8300 e3500 e3200 e3400 e3800 4410 5430 e2700 e13800 e4000 e3100 e11800 e4000 e3600 e9600 e3100 4790 4810 3090 3030 5670 5380 e7700 e6400 e6100 5870 4570 1550 1710 1970 e2800 e3300 e4100 e2800 **e3000** e4600 4260 e2300 e5400 e7000 e2200 e5200 e9900 3770 e2900 e3000 2170 1990 e4800 e8100 2230 e4600 e7300 3440 e3200 e4000 e9600 e3000 e3700 e9500 2820 2720 2780 e2100 e4500 e8100 1620 4170 3350 2010 e1700 e2000 e4700 e4600 e4300 2890 2270 1810 e7300 e6600 20 e2800 e6400 e3300 e4500 e5700 22 23 24 25 e3800 e4900 e5200 2810 2210 2570 e4200 e4900 e4900 1740 e3600 e4900 e4600 3990 3300 e2800 e5000 e4600 e2500 e4400 e5800 e4300 e3800 27 28 29 30 e11700 2310 2820 e2900 3250 4320 10800 1750 1770 e2500 4240 e2100 e3200 7020 e3000 e2300 e2500 e2300 e3750 7410 11800 MEAN 3010 9430 14600 5970 4950 MAX 1700 STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) 16090 1943 2215 15200 1972 14230 1955 9167 1960 MEAN 1956 806 1942 1974 1949 1318 1945 MAX (WY) MIN 1952 995 1976 1940 3322 864 (WY)

01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued

SUMMARY STATISTICS	FOR 1988 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	4205 26900 Mar 27 1250 Sep 4 30200 Mar 27 22.08 Feb 3 997 Sep 4 7660 3400 1680	5760 Unadjusted 8621 1952 2309 1965 187000 Aug, 19 1955 412 Aug 23 1954 250000a Aug 19 1955 35.15 Aug 19 1955 382 Aug 24 1954 12400 3460

a From rating curve extended above 90,000 ${\rm ft}^3/{\rm s}$ on basis of flood-rating study e Estimated

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi upstream from Flatbrookville, and 1.5 mi upstream from mouth.

DRAINAGE AREA. -- 64.0 mi 2.

PERIOD OF RECORD. -- July 1923 to current year.

REVISED RECORDS.--WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M). WDR-NJ-80-2: 1970(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow occasionally regulated by ponds above station. Several measurements of water temperature were made during the year. Satellite telemeter at station.

	DISCHARGE	CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	128	596	e85	98	97	118	102	103	22	45	52
2	49	114	353	e80	264	90	123	87	106	22	34	38
3	52	120	268	e68	474	106	116	79	95	22	29	32
4	177	111	232	e78	312	164	113	75	90	21	25	42
5	134	93	200	e50	226	235	109	76	84	21	22	141
6	97	84	175	e47	198	174	102	115	75	20	21	80
7	87	78	156	e55	173	174	98	170	68	19	19	55
8	84	75	144	e51	157	216	107	127	65	18	19	44
9	72	74	139	e43	140	232	99	105	69	18	18	36
10	66	82	132	e38	127	298	90	97	72	26	17	32
11	67	112	125	e37	116	283	85	108	62	23	16	29
12	73	115	119	e48	118	249	81	116	57	18	15	28
13	70	122	113	e57	130	255	79	98	54	19	29	54
14	62	140	107	e48	127	247	75	116	49	18	23	73
15	57	162	119	e41	105	204	75	105	46	16	17	44
16	54	151	223	e42	110	173	75	91	43	17	15	33
17	52	154	163	e35	108	156	76	97	42	22	14	29
18	51	368	131	e36	106	145	73	145	41	23	13	29
19	49	318	117	e44	105	136	76	300	38	19	13	30
20	53	235	128	125	200	128	72	459	35	18	12	27
21	54	193	148	182	216	115	68	337	34	20	12	30
22	53	155	128	147	150	104	64	257	32	24	11	30
23	48	143	117	106	145	104	61	224	31	24	11	26
24	45	135	109	96	145	105	66	194	29	54	45	29
25	44	131	110	90	127	109	66	286	28	73	68	26
26 27 28 29 30 31	42 48 410 286 187 148	125 120 111 114 632	115 107 101 e95 e75 e75	95 100 98 97 93 87	110 115 107 100	163 228 185 151 134 123	61 58 113 115 113	309 210 170 147 127 114	27 25 25 24 23	46 100 99 101 53 47	39 26 21 40 226 87	23 21 19 18 18
MEAN		156	159	74.2	159	170	87.6	163	52.4	33.6	32.3	38.9
MAX		632	596	182	474	298	123	459	106	101	226	141
MIN		74	75	35	98	90	58	75	23	16	11	18
IN.		2.73	2.86	1.34	2.68	3.07	1.53	2.93	.91	.61	.58	.68
				R PERIOD	OF RECORD,			WY)				
MEAN	9.57	95.3	119	117	134	205	207	140	86.9	58.3	51.1	46.7
MAX		292	369	367	275	513	570	291	334	333	386	258
(WY)		1928	1974	1979	1951	1936	1983	1984	1972	1928	1955	1933
MIN		12.2	20.6	24.5	37.3	82.0	65.9	44.0	23.7	13.1	9.55	7.01
(WY)		1965	1947	1981	1940	1985	1946	1941	1965	1966	1966	1964
SUMMARY	STATISTICS			FC	R 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST D INSTANTA INSTANTA	ANNUAL MEAN NAILY MEAN NAILY MEAN NEOUS PEAK NEOUS PEAK NEOUS LOW RUNOFF (INC NTILE NTILE	FLOW STAGE			101 632 11 997 4.39 10 21.5 196 87	Nov 30 Aug 22 Nov 30 Nov 30 Aug 23			43 63 95 12	6.1 Sep 660a Aug 58b Aug	19 1955	

a From rating curve extended above 2,000 ft3/s on basis of slope area measurement of peak flow

b From high-water mark in gage house e Estimated

01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, NJ, Hydrologic Unit 02040105, on left bank 40 ft streamward from River Road, 1.0 mi downstream from Tocks Island, 3.7 mi northeast of Delaware Water Gap, PA, 4.0 mi upstream from bridge on Interstate Route 80, and at mile 216.1.

DRAINAGE AREA. -- 3,850 mi², approximately.

Ice jam Estimated

PERIOD OF RECORD .-- May 1964 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 293.64 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for periods of estimated daily discharges, which are fair. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). Several measurements of water temperature were made during the year. Gage height satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 19, 1955, reached a stage of 37.4 ft, present datum (discharge about 260,000 cfs). Information on stage supplied by Harlan Fish, retired caretaker of Worthington State Forest.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5630 5660 5130 6250 6740	8110 6900 6490 5750 5650	16200 13000 10500 9260 8400	e3730 e3600 e3870 e3460 e3120	e3050 e4680 e13200 e17700 e13900	3660 4000 4630 5500 6020	10900 9430 8980 8290 8500	6240 5580 5300 4850 4370	7170 6880 6300 5740 4380	1850 1820 1960 1920 1960	2510 3120 3220 3160 2630	3380 2290 1990 1590 e2900
6 7 8 9	6380 5600 5640 5710 5190	5160 4910 4110 3460 4040	7480 6560 6840 6500 6100	e3270 e3520 e3050 e3240 e3160	e11300 e9150 e7810 e7290 e6860	4770 4530 5340 6120 7340	8040 7260 6670 6290 5300	4690 5770 5970 4960 4740	4090 4200 3930 3610 3550	2090 1750 1560 1940 1650	2520 1820 1750 1920 2020	e3730 e3130 e2460 e1970 e1790
11 12 13 14 15	5240 5260 4550 4170 3970	5200 4690 5200 5060 4400	5610 5500 4680 4430 4950	e2640 e2900 e3480 e3570 e3410	e6400 e5780 e5450 e4850 e4670	11700 10300 9040 10500 11400	4590 4400 4160 4020 3800	4390 4370 4040 3940 3500	3180 2420 2210 2970 3170	1870 2320 2570 1900 2220	2140 2270 2390 2320 2100	e1870 e1840 e2260 e2070 e1830
16 17 18 19 20	3830 3390 2780 2640 3000	4360 4630 5560 6890 6650	5140 5600 5280 4670 3780	e2890 e2280 e2270 e2880 e3770	e5040 e5880 5820 5590 5820	9890 8790 8120 7640 7000	3520 3390 3270 3310 3250	3310 3140 3590 5030 8900	3130 3100 2760 2210 2160	2050 1860 1960 2360 2190	2280 1810 1560 1820 1720	e2020 e2120 e2030 e2180 e2320
21 22 23 24 25	2610 2740 3180 2990 2480	6140 5400 4130 4860 4990	4320 5480 5340 4920 4190	e4270 e5070 e4620 e3690 e3240	6140 6500 5900 6230 5910	6320 6130 5720 5590 6070	3260 2870 2710 2480 2560	15500 13500 17600 14500 14700	2440 2740 2810 2760 2030	2750 3710 3210 3420 3660	1730 1770 1780 2220 2500	e2220 e2150 e2170 e2140 e1980
26 27 28 29 30 31	2280 2770 6250 17900 12900 10400	4840 3830 4130 3800 7360	4110 4980 4790 5210 4890 e4060	e3340 e3340 e2810 e2640 e3080 e3090	5520 4900 4430 3940	9750 31100 25000 18300 14400 12200	2930 2980 3020 5220 6340	18400 15800 13500 10300 8660 7430	1800 1850 1850 1840 1900	3730 3880 4900 5240 4350 3310	2620 2120 1900 1900 3160 4840	e1940 e1890 e1850 e1860 e1920
MEAN MAX MIN	5266 17900 2280	5223 8110 3460	6218 16200 3780	3332 5070 2270	6887 17700 3050	9254 31100 3660	5058 10900 2480	7954 18400 3140	3306 7170 1800	2644 5240 1560	2310 4840 1560	2196 3730 1590
STATIS	TICS OF MC		DW DATA F	OR PERIOD	OF RECORD	, BY WATE	R YEAR ((WY)				
MEAN MAX (WY) MIN (WY)	3992 13030 1978 1193 1965	5093 12870 1973 992 1965	6869 16730 1974 1914 1965	6073 17960 1979 1437 1981	7309 17320 1976 1936 1980	10730 21490 1977 3873 1981	12340 24100 1983 3796 1985	8267 15670 1984 2746 1965	5395 18150 1972 1397 1965	3532 9455 1973 950 1965	2781 6242 1969 1101 1965	3150 10310 1987 1283 1965
SUMMAR	Y STATISTI	CS		F	OR 1988 WATE	ER YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHES LOWEST INSTAN INSTAN 10 PER 50 PER	E FLOW T ANNUAL ME ANNUAL ME ANIVAL ME DAILY ME TANEOUS PE TANEOUS CENTILE CENTILE CENTILE	AN AN AN AK FLOW AK STAGE			31100 1560 36000 12.48a 710 8850 4100 1840	Mar 27 Jul 8 Mar 27 Feb 3 Sep 27			960 1100 24 131	418 572 000 Mar 580 Jul 000 Mar	adjusted 1973 1965 16 1986 7 1965 16 1986 7 1965 7 1965	

01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi upstream of Paulins Kill.

DRAINAGE AREA. -- 4,165 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	D I SOL	SC EN, (P S- C VED SA	IS- DEN DLVED BI DER- CI DENT IO TUR- 5	IO- FO HEM- FE CAL, E DAY BR	C TO	STREP- DCOCCI FECAL (MPN)
OCT 1987 20	1300	E3300		7.4	14.5	9.	1	90 2	2.7 130	17	70
FEB 1988 01	1030	E3900	90	7.3	0.0	13.	4	93 E	1.8 20	1,27	46
MAR 22	1330	E6700		7.3	1.5	13.	2	94 E	1.5 <20		8
JUN 08	1100	E4900	83	7.6	21.0	8.	3	95 <	1.2 170	13	30
JUL 12	1300	E2000	102	7.2	26.5	7.			3.1 20	1:	30
AUG 11	1230	E2200	104	8.9	28.0	8.			3.8 80		23
D/	(MC	SS CALC TAL DIS G/L S OL	- DI VED SOL /L (MG	UM, SOD S- DIS VED SOLV	IUM, S- VED S G/L (OTAS- SIUM, DIS- OLVED MG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	D
OCT_19		- 45	_	-			70	22	47		
20 FEB 19	988 988	59 15				1.3	39	22	13	0.1	
01 MAR						1.0	17	17	11	0.2	
JUN 22						1.0	14	13	8.9	0.1	e e
08.						0.7	18	12	7.9	0.3	
AUG						1.2	21	13	8.2	0.1	
11		32 9	.5 2	.0	6.8	1.1	21	11	9.8	<0.1	
. D/	DIS SOI (MI	LVED TUEN G/L DI S SOL	OF NIT TI- GE TS, NITR S- TOT	N, G ITE NO2- AL TO JL (M	EN, +NO3 AM TAL T G/L (ITRO- GEN, MONIA OTAL MG/L S N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON ORGANI TOTAL (MG/L AS C)	
OCT 19 20. FEB 19	88	2.4 91	0.	066 1	.03 0	.20	0.92	1.9	0.120	3.2	
O1.	:	3.8 61	0.	008 0	.38	••	••	••	0.031	2.6	
22. JUN		3.0 49	0.	800	0	.00	<0.20			2.5	
08 JUL	••	1.5 49	0.	005 0	.15 <0	.05	0.26	0.42	0.130	2.6	
12.		1.5 55	0.	012 0	.34 <0	.05	0.77	1.1	0.372	5.3	
11.	••	1.5 54	0.	010 0	.15 <0	.05	0.95	1.1	0.489	3.5	

01443000 DELAWARE RIVER AT PORTLAND, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV-	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1988 08	1100	<0.5	20	1	<10	<10	1	9	7
DAT	T(Ri Ei	OTAL TO ECOV- RE RABLE EF UG/L (I	EAD, NE DTAL TO ECOV- RE RABLE ER JG/L (L	TAL TECOV- REABLE E	OTAL 1 ECOV- F RABLE E UG/L	RECOV- NERABLE T	ELE- TO IUM, RE OTAL EF UG/L (U	JG/L TO	NOLS OTAL G/L)
JUN 198 08	8	150	16	30	<0.10	9	<1	<10	1

01443440 PAULINS KILL AT BALESVILLE, NJ

LOCATION.--Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Balesville, 2.2 mi downstream from Dry Brook, and 3.4 mi north of Newton.

DRAINAGE AREA. -- 67.1 mi².

PERIOD OF RECORD. -- January 1979 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	CT- (SI	AND - AT	URE D TER SO	GEN, (P IS- C LVED SA	IS- DEM LVED BI ER- CH ENT IC TUR- 5	O- FO IEM- FE CAL, E DAY BR	LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)
NOV 1987 12	1045	E94 4	60 7.	.6 2.	5 13.	1	98	<1.2 1	100 920
FEB 1988 02	1100	E180 4	04 7.	.3 2.	0 14.	2 1	04	2.4	490 350
MAR 15	1100	E210	8.	.3 4.	0 14.	3 1	12	E2.3	80 49
MAY 23	1045	E250	7.	.6 16.	0 9.	8 1	01	E2.0	130 350
JUL 12	1300	E17 6	01 7	.7 25.	0 7.	7	95	<0.8	490 920
AUG 02	1245	E39	7	.9 22.	5 8.	3	97	E1.4 2	200 920
DATE NOV 1987 12	HARD- NESS TOTAL (MG/L AS CACO3	•	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 1988 02	110		9.1	28	1.9	85	22	50	0.2
MAR 15	130		11	19	13	98	22	33	0.1
MAY 23	130	= -	11	20	1.0	99	18	34	0.2
JUL 12	24		23	31	2.4	187	29	55	0.1
AUG 02	22	0 55	19	31	2.2	153	34	57	0.2
Date	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
NOV 1987 12 FEB 1988	6.5	261	0.011	0.73	0.16	0.74	1.5	0.714	7.2
02 MAR	4.3		0.016					0.103	7.7
15 MAY	4.4	195	0.013	0.71	0.11	0.60	1.3	0.055	6.2
23 JUL 12	5.6	181	E0.024	0.59	0.07	0.88	1.5	0.093	7.3
12 AUG 02	4.2		0.068	1.64	<0.05	0.08	1.7	0.379	4.7
02	8.2	298	0.064	1.35	0.06	0.78	2.1	0.330	5.3

01443440 PAULINS KILL AT BALESVILLE, NJ--Continued

DATE	TIME (M	GEN + O FIDE TOT TAL BOT IG/L (M	NH4 IN RG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (MG	. IN D MAT SO /KG (U	OLVED TO IG/L (L	S-MIC I	ARSENIC TOTAL IN BOT- FOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	RECOV- FERABLE E	CADMIUM RECOV. TOTAL FM BOT- RECOV- TOM MA- RABLE TERIAL (UG/L (UG/G AS CD) AS CD
NOV 1987		_									
12 MAY_1988	1045`	5	60	1.5	6.5	••	••	4	10	1	<
23	1045	<0.5	••			<10	1	••	<10	20	2
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON RECOV FM BOT TOM MA TERIA (UG/O	T- TOTA A- RECO AL ERAB G (UG/	V- TOM M/ LE TERI/ L (UG/	T- TOTAL A- RECOV AL ERABLI	NESE, RECOV. - FM BOT- E TOM MA- TERIAL
	7.0 0.17	(00,0,	no 00,	NO 007	NO 007	70 IL,	A	.,			
NOV 1987		<10	<50		. 8		130	00		20 -	- 500
12 MAY 1988	-	10	130		0		130	00		10.00	
23	1	•••	••	4	••	610		••	<5	9	0
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC TOTAL RECO ERAB (UG/ AS Z	L FM BO V- TOM M LE TERI L (UG/	OT- IA- AL PHENO 'G TOTA	L TERIA	- IN BOT- - TOM MA- L TERIAL
NOV 1987 12		<0.10		10		<1			80	2	<1.0
MAY 1988				10	• • •	` '			80		``
23	<0.10	••	<1	•••	<1	40		10	••	2 -	•
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRI TOTA IN BO TOM M TERI (UG/K	N, SULFA L TOTA T- IN BO A- TOM M AL TERI	N, ENDRI L TOTA T- IN BO MA- TOM M	L TOTAL T- IN BOT A- TOM MA AL TERIA	TOTAL - IN BOT TOM MA- L TERIAL
NOV 1987											
12 MAY 1988 23	<0.1	3.0	0.2	<0.4	<0.6	<0.1	0	.1 <0).1 <0 	.1 <0.	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	IN BOT- TOM MA- TERIAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	BOTTOM MATL.	MIRE TOTA IN BO TOM M TERI	TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL	ON, PER- AL THAN OT- IN BO MA- TOM M IAL TERIA	E TOTAL T- IN BOT A- TOM MA L TERIA	, THION, TOTAL - IN BOT- - TOM MA- L TERIAL
NOV 1987											
12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0	.1 <0	0.1 <1.	00 <10	<0.1
MAY 1988 23				Marie Land	100	4.00					
E			-					The state of t			

01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft upstream from bridge on State Highway 94 in Blairstown, 1,400 ft upstream from Blairs Creek, and 10 mi upstream from mouth. Water-quality samples collected at bridge 1,200 ft downstream from gage at high flows.

DRAINAGE AREA .-- 126 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. - 1921 to September 1976, October 1977 to current year.

REVISED RECORDS.--WSP 971: 1942. WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft, downstream). Datum of gage is 335.86 ft above National Geodetic Vertical Datum of 1929. Prior to May 24, 1922, nonrecording gage and May 24, 1922 to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft downstream at present datum.

REMARKS.--Records good. Diurnal fluctuation caused by powerplant above station and flow regulated slightly by Swartswood Lake. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988, I	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	134 119 127 268 250	259 245 235 226 215	803 593 471 410 364	e160 e152 e140 e146 e98	156 303 532 453 e380	225 217 247 379 536	252 249 237 224 220	188 168 150 137 136	185 189 167 163 148	41 39 38 37 36	77 68 59 53 49	66 54 46 67 171
6 7 8 9	203 181 170 146 135	200 187 169 145 123	325 299 286 276 268	e96 e104 e101 e75 e62	e310 e260 e245 230 219	450 430 460 452 496	204 195 203 196 177	176 206 172 150 143	133 117 108 119 117	35 34 33 34 33	45 43 41 39 37	117 82 67 58 51
11 12 13 14 15	132 136 125 112 105	150 162 222 235 245	259 249 240 230 242	e64 e88 e112 e93 e75	211 223 233 210 203	461 420 408 397 360	164 152 150 137 134	165 175 155 192 172	105 95 89 84 79	33 31 33 31 29	37 36 36 35 34	45 41 73 81 64
16 17 18 19 20	100 95 95 104 96	245 250 323 327 340	284 267 252 241 246	e78 61 57 66 139	217 222 217 222 394	321 296 271 260 244	148 140 134 136 126	149 174 274 458 798	72 73 71 66 62	28 46 44 37 43	31 29 28 27 26	49 43 46 46 43
21 22 23 24 25	100 96 89 84 81	314 281 270 264 258	247 239 231 225 219	218 267 225 191 186	459 354 323 355 314	225 205 194 197 202	120 112 107 112 110	597 495 427 376 393	60 48 53 50 49	43 62 47 105 90	25 25 24 59 67	59 55 48 47 44
26 27 28 29 30 31	78 80 432 394 302 278	250 241 232 234 496	216 205 196 191 e173 e153	199 e174 e168 e155 e163 154	274 261 246 234	286 446 397 330 293 267	101 99 210 238 209	384 322 281 252 233 208	52 47 44 44 41	84 197 148 102 80 83	48 42 37 43 116 92	40 36 34 33 31
MEAN MAX MIN IN.	156 432 78 1.43	245 496 123 2.17	287 803 153 2.63	131 267 57 1.20	285 532 156 2.44	335 536 194 3.06	167 252 99 1.48	268 798 136 2.45	91.0 189 41 .81	56.6 197 28 .52	45.4 116 24 .42	57.9 171 31 51
	TICS OF MONT								W Salestan			₹
MEAN MAX (WY) MIN (WY)	101 634 1956 20.5 1964	162 479 1933 22.1 1965	206 588 1974 39.5 1947	216 712 1979 50.5 1981	251 516 1951 67.4 1940	370 963 1936 139 1965	336 930 1983 106 1985	217 552 1947 54.6 1941	152 690 1972 41.0 1965	118 527 1945 19.4 1955	106 663 1955 19.6 1932	106 626 1933 18.2 1964
SUMMARY	Y STATISTICS	Š		FC	OR 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC	E FLOW T ANNUAL MEA T ANNUAL MEA T DAILY MEAN T DAILY MEAN TANEOUS PEAK TANEOUS LOW RENOOFF (INC CENTILE CENTILE	FLOW			803 24 881 3.10 23 19.1 344 158 34	Dec 1 Aug 23 Dec 1 Dec 1 Aug 22			3 67 59 5 87 11. 2 21	50 Aug .0 Aug 50 Aug 12a Aug .8 Nov	19 1955 19 1955	

a From high-water mark in gage house

e Estimated

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
NOV 1987	1300	152	322	7.7	3.5	13.6	105	E1.3	20	170	
FEB 1988	3										
02 MAR	1330	279	400	7.4	1.5	15.5	112	E2.0	20	13	
15	1245	360	337	8.6	5.5	13.4	109	2.6	20	11	
23	1245	418	294	7.6	17.0	9.8	103	E1.7	330	46	
12	1100	31	488	8.0	26.0	7.1	89	<0.9	230	350	
AUG 02	1045	69	420	8.3	25.5	9.5	117	E2.2	120	920	
	DATE	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	NOV 1987										
	12 FEB 1988	140	36	13	16	1.5	114	20	27	0.1	
	02 MAR	140	36	13	21	1.5	113	23	39	0.2	
	15	120	30	11	15	1.6	93	18	26	0.1	
	MAY 23	110	28	10	15	0.9	92	23	23	0.2	
	JUL 12	200	44	21	22	1.5	163	24	38	0.1	
	AUG 02	160	37	16	21	1.6	123	27	35	0.2	
*											
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	NOV 1987										
	12 FEB 1988	5.6	188	0.009	0.67	0.05	0.53	1.2	0.074	4.2	
	02 MAR	4.7	206	0.015	0.95	••	••	••	0.050	3.5	
	15	3.9	161	0.010	0.52	0.02	0.40	0.92	0.031	4.4	
	23	5.8	161	E0.040	0.41	0.07	0.68	1.1	0.075	6.4	
	JUL 12	4.6	253	0.015	0.31	<0.05	0.59	0.90	0.085	5.0	
	AUG 02	4.2	216	0.004	<0.05	<0.05	1.0		0.086	5.6	

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

DATE	TIME (GEN + C LFIDE TOT DTAL BOT 4G/L (N	I,NH4 IN DRG. GA IN TOT MAT BOT MG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT KG (MG	ANIC IN IN D MAT SO KG (U	LVED TO	TO IN ENIC TOM TAL TE	DTAL LI BOT- TO I MA- RE RIAL EF JG/G (U	DTAĹ TO ECOV- RE RABLE ER JG/L (U	OTAL TO ECOV- RE RABLE ER UG/L (U	CADMI MIUM RECO TAL FM BC COV- TOM M ABLE TERI G/L (UG/ CD) AS C	OV. OT- MA- IAL /G
NOV 1987 12	1300 <	0.5 28	300	0.6 1	7	10	<1	2 <	10 2	20	<1 <1	1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
NOV 1987 12	1	<10	<50	5	6	210	4600	<5	20	40	120	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
NOV 1987 12	0.20	<0.10	3	<10	<1	<1	<10	40	4	<1	<1.0	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
NOV 1987 12	<0.1	2.0	0.1	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	IN BOT- TOM MA- TERIAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
NOV 1987 12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1	

01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft upstream from bridge on Hainesburg-Mount Vernon Road, 1.4 mi downstream of Yards Creek Reservoir, 2.2 mi northeast of Hainesburg, 2.4 mi upstream from mouth, and 4.2 mi west of Blairstown.

DRAINAGE AREA. -- 5.34 mi 2.

PERIOD OF RECORD. -- October 1966 to current year.

REVISED RECORDS.--WDR NJ-77-2: 1976. WDR NJ-79-2: 1977(m). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 606.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS...Records fair except for period of ice effect, Dec. 26 to Jan. 29, which are poor. Complete regulation by the Jersey Central Power and Light Co., at Yards Creek Reservoir 1.4 mi above station. Several measurements of water temperature, other than those published, were made during the year.

	DISCHAR	GE. CUBIC	FEET PE	ER SECOND	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988.	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.1 5.1 8.9 6.4 5.1	2.3 2.2 2.1 2.0 2.0	23 22 17 24 23	e15 e14 e15 e13 e14	2.5 7.5 5.1 5.1 3.6	2.4 2.4 3.2 11	21 20 18 18	2.8 2.6 2.6 2.5 3.0	20 20 17 8.0 7.4	1.3 1.4 1.0 1.1 .84	1.5 1.5 1.5 1.5	1.7 1.7 1.7 7.4 3.6
6 7 8 9	5.1 5.6 5.0 5.0	1.8 1.7 1.6 1.5 2.2	20 20 20 21 21	e47 e145 e150 e130 e88	3.1 3.7 2.5 2.3 2.2	14 11 17 22 22	19 20 21 15 5.5	3.8 3.1 2.6 2.6 2.7	7.1 7.5 5.9 3.1 2.9	.81 1.4 1.5 1.6	1.6 1.5 1.4 1.4	2.2 2.1 1.9 1.9
11 12 13 14 15	5.1 4.7 4.9 4.9	2.3 2.3 2.8 3.6 3.3	21 21 18 19 23	e130 e53 e14 e11 e13	2.2 2.4 2.2 2.1 2.1	22 22 20 20 21	4.7 4.6 3.5 2.4 2.5	3.4 2.8 2.9 3.0 2.6	2.9 2.7 2.6 2.6 2.5	1.3 1.5 1.5 1.4	1.4 1.6 1.5 1.5	1.7 1.6 3.3 1.9 1.8
16 17 18 19 20	4.9 4.6 4.7 4.9	3.0 3.0 15 12 12	21 21 21 21 21 20	e13 e12 e9.6 e10 e13	2.6 2.4 2.4 2.7 8.6	21 21 21 20 18	2.6 2.3 2.3 2.3 2.2	2.4 4.6 4.8 11 29	2.5 2.7 2.7 2.6 2.2	1.5 2.5 1.5 1.5	1.3 1.4 1.4 1.3 1.2	1.8 2.0 2.0 1.8 1.9
21 22 23 24 25	5.1 4.8 5.0 4.7 4.3	14 12 9.2 9.2 17	19 20 20 20 20	e11 e12 e11 e10 e9.4	4.6 3.8 3.6 3.2 2.9	19 19 19 20 20	2.1 1.9 2.0 2.0 1.9	25 20 54 85 90	1.8 1.8 1.7 1.7	1.7 1.6 2.3	1.2 1.0 1.2 3.4 2.0	2.0 1.8 1.8 1.8
26 27 28 29 30 31	4.4 5.1 7.6 3.2 2.8 2.6	18 15 16 18 27	e18 e17 e17 e18 e19 e20	e10 e11 e14 e9.2 1.9	2.6 2.6 2.5 2.4	23 19 19 19 20 21	1.9 1.9 4.1 3.7 3.3	50 22 22 20 20 19	1.7 1.5 1.1 1.2 1.2	3.2 2.7 1.9 1.8 1.7 2.0	1.6 1.7 1.6 3.6 2.4 1.8	1.6 1.6 1.5 1.6
MEAN MAX MIN	4.99 8.9 2.6	7.80 27 1.5	20.2 24 17	32.6 150 1.8	3.29 8.6 2.1	17.5 23 2.4	7.69 21 1.9	16.8 90 2.4	4.68 20 1.1	1.62 3.2 .81	1.62 3.6 1.0	2.10 7.4 1.5
STATIST	ICS OF M		W DATA	FOR PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	4.37 17.3 1980 .97 1981	8.01 22.4 1976 1.20 1967	14.2 37.7 1974 .91 1981	15.3 51.0 1979 1.66 1981	16.0 36.4 1979 2.24 1985	16.8 50.1 1977 6.99 1973	19.1 55.3 1983 4.43 1981	13.8 28.9 1984 1.58 1970	8.91 35.2 1972 1.0 1980	1984	4.11 21.6 1969 .65 1980	4.11 27.0 1987 .58 1980
SUMMARY	STATIST	ICS		FC	R 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT 10 PERC	F ANNUAL M ANNUAL M DAILY ME FANEOUS PI FANEOUS PI FANEOUS L CENTILE CENTILE	EAN EAN AN EAK FLOW EAK STAGE			10.2 150 .81 .58 21 3.3 1.3	Jan 8 Jul 6			3	0.8 4.9 .17 225 Jan 583 Feb .92 Feb 0 Sep 26 4.5	24 1977	
e Es	stimated											

01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'50", long 74°58'43", Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft upstream from CONRAIL (formerly Lehigh and Hudson River Railway) bridge, and 300 ft downstream from Furnace Brook.

DRAINAGE AREA. -- 106 mi 2.

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302. REVISED RECORDS.--WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft above National Geodetic Vertical Datum of 1929. Prior to June 22, 1926, nonrecording gage at site 10 ft upstream at same datum.

REMARKS.--Records good. Several measurements of water temperature, other than those published, were made during the year.

,	DISCHARGE	E. CUBIC	FEET PER	SECOND.	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988. M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	112 103 112 214 181	141 135 129 125 120	483 395 329 292 267	139 130 107 125 94	e136 e280 e398 e369 e317	190 184 206 354 429	188 182 177 172 169	145 135 127 116 112	185 188 172 162 152	52 52 48 46 45	89 79 73 68 64	48 44 42 87 129
6 7 8 9	152 136 130 119 111	113 108 103 102 118	246 226 215 208 200	86 105 98 100 99	e264 e234 e209 e194 e186	354 324 330 328 355	160 157 160 152 141	152 162 131 115 112	139 129 129 131 129	44 45 43 43	61 57 53 51 50	81 63 53 48 45
11 12 13 14 15	110 116 109 100 96	193 189 205 221 214	192 186 179 168 189	90 93 96 89 84	e177 173 187 172 173	329 302 296 288 266	138 135 133 127 123	136 163 133 145 145	120 112 107 99 94	42 42 43 41 39	48 47 47 44 42	42 40 86 83 59
16 17 18 19 20	93 89 86 85 85	195 188 262 231 204	260 213 182 168 186	84 84 95 116 180	219 215 209 205 453	242 228 215 208 198	126 127 121 121 119	128 177 273 337 727	90 90 87 80 76	38 62 68 51 118	40 40 40 37 36	50 47 49 46 44
21 22 23 24 25	88 91 83 83 81	184 160 153 154 159	200 179 166 156 156	245 219 165 145 144	395 284 272 290 249	185 172 166 165 167	112 105 104 106 105	508 410 415 437 468	74 70 68 64 61	95 87 80 149 118	35 34 35 63 73	45 44 41 41 39
26 27 28 29 30 31	77 81 368 266 197 157	161 154 149 157 604	154 147 140 139 100 117	145 130 e131 e132 e127 e121	220 209 200 194	218 349 285 240 213 200	101 97 211 188 161	405 353 286 245 220 202	58 59 57 55 53	115 241 176 123 98 93	53 48 43 55 82 57	39 38 37 36 34
MEAN MAX MIN IN.	126 368 77 1.37	178 604 102 1.87	208 483 100 2.26	123 245 84 1.33	244 453 136 2.49	258 429 165 2.80	141 211 97 1.48	246 727 112 2.67	103 188 53 1.08	76.8 241 38 .84	53.0 89 34 .58	52.7 129 34 .55
					OF RECORD,		R YEAR (
MEAN MAX (WY) MIN (WY)	83.3 337 1956 18.0 1965	126 409 1928 21.4 1966	158 426 1974 27.0 1966	166 627 1979 33.9 1966	198 372 1939 60.8 1940	277 750 1936 93.8 1965	260 720 1983 76.9 1985	180 383 1984 55.7 1965	128 556 1972 35.0 1965	107 487 1945 19.0 1965	92.5 410 1928 15.1 1965	87.8 347 1960 16.6 1964
SUMMARY	STATISTIC	S		FC	OR 1988 WATE	R YEAR			FOR F	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST ! INSTANT/ INSTANT/ ANNUAL ! 10 PERC!	FLOW ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEA ANEOUS PEA ANEOUS PEA ANEOUS LOW RUNOFF (IN ENTILE ENTILE	N N K FLOW K STAGE			727 34 845 3.58 3.4 19.3 2.77 131 41	May 20 Aug 22 May 20 May 20 Aug 22			213 5.9 19. 32	35 .8 .0 Jan 12 Aug 30 Jan 27a Jan 12 Aug 29	1952 1965 25 1969 18 1965 25 1979 25 1979 17 1965	

a From high-water mark e Estimated

01446500 DELAWARE RIVER AT BELVIDERE, NJ

LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft downstream from Pequest River, and at mile 197.7.

DRAINAGE AREA. -- 4,535 mi 2.

PERIOD OF RECORD. -- October 1922 to current year.

REVISED RECORDS.--WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE.--Water-stage recorder. Datum of gage 226.43 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversions from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). National Weather Service gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 10, 1903, reached a stage of 28.6 ft, from floodmark, discharge, 220,000 ft³/s, from rating curve extended above 170,000 ft³/s.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6680 6630 6390 7830 8360	10000 8530 7810 6920 6820	20100 17400 14100 12400 11200	4880 4260 4500 4430 3630	4120 5690 13900 20400 16100	5120 5210 6010 7770 9330	13200 11600 11100 10200 10400	7170 6540 6120 5680 5170	8970 8620 7830 7060 5790	2220 2180 2290 2200 2280	3330 3340 3570 3600 3160	4270 2890 2330 2670 4420
6 7 8 9	7670 7000 6750 6720 6300	6250 5940 5410 4460 4920	10000 8680 8780 8380 7860	3450 4000 3570 3650 4180	13000 11000 9510 8890 8570	7760 7050 7950 8720 9960	9880 9080 8320 7880 6730	5640 6760 7060 5990 5640	5220 5060 4850 4590 4530	2260 2180 1960 1960 2040	2800 2530 2090 1930 2320	4620 4180 3330 2740 2300
11 12 13 14 15	6200 6270 5750 5160 4800	6330 5860 6510 6540 6020	7260 7080 6190 5830 6450	3270 3180 4140 4050 3790	7940 7340 6610 5990 6030	14400 13500 12000 13100 14500	5850 5620 5280 5140 4920	5430 5410 4990 5030 4470	4060 3550 2950 3190 3800	2300 2900 2310	2340 2500 2770 2540 2650	2290 2210 2780 2950 2310
16 17 18 19 20	4760 4280 3650 3410 3710	5810 6040 7660 9060 8870	7220 7270 6920 6220 5370	3720 3080 2850 3280 4670	6560 7540 7200 7010 8850	12700 11300 10400 9720 8940	4510 4380 4230 4290 4160	4190 4110 4880 6640 14500	3690 3670 3420 2930 2700	2420 2560 2490 2410 2890	2170 2350 1710 1950 1930	2250 2580 2400 2500 2680
21 22 23 24 25	3310 3470 3790 3760 3340	8160 7110 5910 6150 6530	5820 6880 6830 6360 5570	5760 6290 5930 4920 4390	9020 8240 7880 8210 7770	8080 7710 7130 6920 7210	4100 3710 3490 3310 3260	19800 18000 21800 19600 18600	2750 3030 3190 3270 2700	3930 4400	1990 1920 1920 2710 3040	2600 2490 2470 2460 2280
26 27 28 29 30 31	2980 3200 7480 18700 15600 12400	6280 5240 5450 5270 12200	5330 6130 6040 6400 5510 4520	4270 4370 3860 3330 3830 4170	6790 6570 6180 5400	11000 30600 27900 21200 17100 14700	3570 3670 3960 5560 7440	22300 19100 16600 13300 11100 9580	2270 2230 2190 2240 2250	5210 5700 6290	3080 2560 2290 2310 3780 5280	2240 2120 2110 2020 2120
MEAN MAX MIN	6334 18700 2980	6802 12200 4460	8068 20100 4520	4119 6290 2850	8562 20400 . 4120	11450 30600 5120	6295 13200 3260	10040 22300 4110	4087 8970 2190	6290	2660 5280 1710	2720 4620 2020
STATIS	TICS OF M	ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD	, BY WATE	R YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	4611 19570 1956 105 1942	7123 21140 1928 1226 1965	8386 20590 1974 148 1923	7894 20890 1949 168 1981	8378 19930 1976 245 1980	14260 42520 1936 524 1981	15970 40720 1940 451 1985	9851 19960 1947 326 1965	5944 22280 1972 1590 1965	16840 1928 1017	3678 19260 1955 881 1954	3843 13940 1938 1199 1941
SUMMAR	Y STATIST	ICS		FC	OR 1988 WATE	ER YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHES LOWEST INSTAN INSTAN 10 PER 50 PER	T ANNUAL M ANNUAL M T DAILY ME DAILY ME TANEOUS P	MEAN MEAN PEAK FLOW PEAK STAGE			30600 1710 37000 10.88 1400 11600 5250 2170	Mar 27 Aug 18 Mar 27 Mar 27 Aug 18			14 2 184 273 30	130	19 1955	

a From rating curve extended above 170,000 $\rm ft^3/s$ on basis of flood-routing study b From high-water mark in gage house

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft upstream from Lehigh River, and 0.2 mi downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA. -- 4,717 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	ANCE	PH STAND- ARD JNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1987 20	1100	E3500	166	7.1	14.0	8.6	85	3.0	80	110
FEB 1988	1215	E9200	136	7.7	3.5	10.5	79	<0.7	40	79
MAR 22	1100	E7900	••	7.8	4.5	13.5	103	E2.4	<20	4
JUN 16	1300	E3400	179	8.4	28.0	8.5	109	E2.2	230	130
JUL 12	1130	E2300	152	7.1	27.5	6.9	88	E1.5	330	540
AUG 11	1040	E2700	148	8.2	30.0	7.9	105	3.2	210	920
DATE OCT 1987	HARI NESS TOT/ (MG/ AS CAC	S CALCII AL DIS- /L SOLVI (MG/	DIS ED SOLVI L (MG/I	A, SODII DIS ED SOLV	UM, SI - DI ED SOI /L (MC	VED (MG/L AS	ITY SULFA AB DIS G/L SOLY	- DIS- VED SOLVI /L (MG/I	, RID DI ED SOL L (MG	E, S- VED /L
20 FEB 1988		70 18	6.0	9	.6	1.5	36 24	15	0	.1
10		44 12	3.	5 6	.7	1.1	24 16	9.9	9 0	.1
22 JUN		51 13	4.0	5 7	.2	1.1	35 21	12	. 0	.1
16 JUL		64 17	5.3	3 8	.5	0.50	45 23	11	0	.1
12 AUG		52 14	4.	1 8	.7	1.6	36 25	11	0	.1
11		51 14	3.	8	.6	1.3	32 15	12	0	.1
DATE	SILIO DIS SOL (MG, AS SIO	CONST VED TUENT /L DIS SOLV	F NITRO I- GEN S, NITRI - TOTAL ED (MG/	GE TE NO2+ L TOT. L (MG	N, GE NÓ3 AMMO AL TOT /L (MO	TRO- GEN EN, MONE ONÍA ORGA TAL TO G/L (MO	TRO- ,AM- IA + NITI ANIC GE TAL TOTA G/L (MG N) AS	N, PHOROL AL TOTAL /L (MG/I	JS ORGA L TOT L (MG	NIĆ AL /L
OCT 1987	2	.8 99	0.0	57 1.	13 0.2	25 0.9	94 2.1	0.040	3.6	i
FEB 1988 10	4	.2 68	0.0	04 0.	65			- <0.020	2.1	
MAR 22 Jun	3	.7 84	0.0	16	0.2	22 0.	50 -		3.9	as e
16 JUL	1	.4 94	0.0	14 0.	53 0.1	17 0.4	46 1.0	0.027	4.0	and the
12 AUG	2	.3 88	0.0	13 0.	57 0.0	06 0.	50 1.1	0.817	3.6	
11	2	.1 76	0.0	11 0.	43 0.0	0.2	20 0.6	4 0.570	4.7	!

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFII TOTA (MG/	L SOL	IM, S- A VED G/L	RSENIC TOTAL (UG/L AS AS)	BERYL LIUM, TOTAL RECOV ERABL (UG/L AS BE	BORG TOTA - RECO LE ERAL	AL TOT OV- REC BLE ERA /L (UG	IUM MI	RO- UM, TAL COV- ABLE G/L CR)	COPPER TOTAL RECOV ERABL (UG/L AS CL	/- LE
JUN 1988 16	1300	<0	.5	20	2	<10		10	<1	<1		8
DATE	T R E	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANG NESE TOTA RECO ERAB (UG/ AS M	MER L TO DV- RE BLE ER 'L (U	TAL COV- ABLE G/L	TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		NOLS TAL /L)	
JUN 1988		70	<5		40 <	0.10	6	<1	<10		4	

01453000 LEHIGH RIVER AT BETHLEHEM, PA

LOCATION.--Lat 40°36'55", long 75°22'45", Lehigh County, PA, Hydrologic Unit 02040106, on left bank 110 ft upstream from New Street Bridge at Bethlehem, and 1,800 ft upstream from Monocacy Creek. Records include flow of Monocacy Creek.

DRAINAGE AREA.--1,279 mi² includes that of Monocacy Creek. At site used prior to Oct. 1, 1928, 1,229 mi².

PERIOD OF RECORD.--September 1902 to February 1905, April 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913.

REVISED RECORDS.--WSP 261: 1903-5, WSP 321: 1910-11. WSO 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933.

GAGE.--Water-stage recorder. Datum of gage is 210.94 ft above National Geodetic Vertical Datum of 1929. Prior to October 1928, nonrecording gage at New Street Bridge 120 ft downstream at same datum. Oct. 1, 1928, to Sept. 3 1962, water-stage recorder at site 4,250 ft downstream at datum 2.49 ft lower. Oct. 1, 1963, to Dec. 14, 1975, water-stage recorder at site 40 ft downstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated by Wild Creek Reservoir (station (01449700) since January 1941, Penn Forest Reservoir (station 01449400) since October 1958, Francis E. Walter Reservoir (station 01447780) since February 1961, and Beltzville Lake (station 01449790) since February 1971. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Feb. 28, 1902, reached a stage of 24.9 ft, from floodmark, present site and datum, discharge, about 88,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988, MEAN DAILY VALUES SEP IIIL DAY OCT NOV DEC JUN AUG JAN FEB MAR APR MAY 2960 2840 3800 2000 e1500 2660 e775 2120 e1400 e785 e750 4860 1230 e715 e1200 e680 e1150 e1100 2740 2510 2570 2540 2230 683 736 773 2520 1780 2020 1920 1450 1440 1670 e1060 e1050 e1050 3200 2460 2310 2630 2550 2330 3300 1130 e1040 2300 2120 2340 2350 e1040 837 3430 2020 e1030 834 798 e1030 2070 e1020 734 e1020 1320 1610 1310 17 827 1050 e1010 1640 2320 3070 2150 2330 2740 5890 1310 1280 2700 1660 2490 2280 e1010 e1000 1680 1690 3220 22 23 2600 2260 2080 2960 999 963 698 927 2170 2060 1330 1700 1150 809 746 736 28 29 30 3470 2970 2270 4640 4120 1900 1380 5740 785 2930 2720 1290 2220 7710 1440 1.98 2930 1180 MEAN 5740 3140 13700 1520 MAX MIN 3.99 1.48 1.37 1.60 2.49 1.26 1.63 1.05 STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) MEAN 6991 1984 7272 1972 1915 MAX (WY) 1956 1927 1979 1936 1983 1942 1945 1955 1987 1911 1910 1931 1934 1981 1985 1965 1965 1964 1964 MIN (WY)

01453000 LEHIGH RIVER AT BETHLEHEM, PA--Continued

FOR 1988 WATER Y	EAR	FOR PERIOD	OF RECORD
2253		2342 3973	Unadjusted 1952 1965
		70400	Aug 19 1955
		160 92000a	Oct 15 1910 May 23 1942
7.69	lay 20	25.9b	May 23 1942 Jun 28 1965
23.92		24.87	Unadjusted
1940		1650	
771		494	
	2253 13700 680 15200 7.69 23.92 3800 1940 771	13700 May 20 680 Jul 5 15200 May 20 7.69 May 20 	2253 2342 3973 1165 13700 May 20 70400 680 Jul 5 160 15200 May 20 92000a 7.69 May 20 92000a 7.69 May 20 25.9b 23.92 3800 1940 771 494

e Estimated

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ

LOCATION.--Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek.

DRAINAGE AREA. -- 33.3 mi².

PERIOD OF RECORD. -- Water years 1959, 1962 and January 1979 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	CH I	NST. CI CUBIC CO FEET DU PER AN	CT- (ST	AND - AT	URE D TER SC	GEN, (FOR SOLUTION OF SOLUTION	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	O- FO IEM- FE CAL, E DAY BR	LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)
OCT 1987 21	1045	E21 2	59 7.	.5 11	.0 10	.9	100 3	3.1 17	00 >2400
FEB 1988 10	1045	E33 2	15 7.	.7 1	.5 15	.0	107 <1	.0	20 22
MAR 17	1100	E36 2	09 8.	.9 5	.0 15	5.2	120 E1	.3	20 49
JUN 06	1330	E27	7.	.4 18	.0 11	.0	117 E1	.1 22	00 920
JUL 19	1320	E7.8 2	258 7.	.6 25	.0 9	.3	114 4	.6 92	00 >2400
AUG 10	1015	E7.6 2	80 8.	.5 25	.0 13	3.0	159 4	.5 11	00 350
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1987 21	92	21	9.5	11	2.6	69	22	15	0.1
FEB 1988 10	72	17	7.1	9.8	1.6	47	20	15	0.2
MAR 17	65	15	6.7	8.9	1.4	45	18	14	0.1
JUN 06	73	17	7.3	9.2	1.5	48	19	14	0.3
JUL 19	91	21	9.3	12	2.9	64	20	18	0.1
AUG 10	100	23	11	14	2.7	75	18	19	0.2
DATE	SILICA, DIS- SOLVEC (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1987 21 FEB 1988	13	136	0.081	2.20	0.25	0.49	2.7	0.370	3.7
10 MAR	14	113	0.011	1.83				0.110	1.7
17 JUN	12	103	0.013	1.79	0.13	0.40	2.2	0.124	2.6
06 JUL	14	111	0.057	1.55	<0.05	0.41	2.0	0.135	2.8
19 AUG	15	137	0.067	1.96	0.24	1.7	3.6	0.808	3.3
10	8.1	141	0.047	2.31	0.21	1.0	3.3	0.650	4.1

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ--Continued

DATE	TIME (M	GEN + C FIDE TOT TAL BOT IG/L (M	I,NH4 IN PRG. GA IN TOT MAT BOT BG/KG (G	OR- INC NIC, ORG IN TOT MAT BOT KG (MG	ANIC I IN MAT S	OLVED TO	SENIC TO OTAL UG/L	RSENIC FOTAL BOT- OM MA- FERIAL (UG/G AS AS)	TOTAL RECOV- ERABLE (UG/L	TOTAL	TOTAL FI RECOV- TO ERABLE (UG/L	ADMIUM RECOV. 4 BOT- DM MA- FERIAL (UG/G AS CD)
OCT 1987 21	1045 <0	.5 5	000	0.8	6.6	<10	<1	<1	<10	<10	<1	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L	(UG/G	TOTAL RECOVERABLE (UG/I	FM BOT - TOM MA - TERIA - (UG/G	- TOTAL - RECOV L ERABL (UG/L	NESE, RECOV - FM BOT E TOM MA TERIA	
OCT 1987 21	1	<10	<50	3	<1	130	3000	<5	<10	20	99	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)		E TERI/	/. [- al Phenol G Total	TERIA	TOTAL TOTAL TOM MA TERIA	i
OCT 1987	<0.10	<0.10	<1	<10	<1	<1	<10	20	2	26	<1.0	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA-	TOM MA	TOTAL IN BO TOM MA	N, ENDRIN TOTAL T- IN BOT A- TOM MA AL TERIA	TOTAL TOM MA	TOTAL TOTAL TOM MA TOM MA TERIA	, : L
OCT 1987 21	0.1	<1.0	0.1	<1.0	<1.0	<0.1	0.	1 <0	.1 <0.	.1 <0	.1 <0.	1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTON MATL. (UG/KG)	TOT. IN BOTTOM MATL.	MIREX TOTAL IN BOT TOM MA TERIA	TOTA - IN BO - TOM M L TERI	N, PER- L THANE T- IN BOT A- TOM MA AL TERIAL	- IN BO - TOM M TERI	E, THION L TOTAL T- IN BOT A- TOM MA AL TERIA	,
OCT 1987 21	<0.1	<0.1	<0.1	<0.1	<0.1	i <0.1	<0.	1 <0	.1 <1.0	00 <10	<0.	1

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ

LOCATION.--Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, just upstream of bridge on Warren County Route 43 and 300 ft downstream from Lake Hopatcong dam in Landing.

DRAINAGE AREA. -- 25.3 mi 2.

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE		INST. CUBIC FEET FEET FEET	ANCE	STAND- ARD	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		DEMAN BIO- CHEM ICAL 5 DA	ID, COI FOI I- FEI LY BRI	RM, CAL, S C TO OTH I	STREP- DCOCCI FECAL (MPN)
NOV 1987 05	1030	E50	261	7.3	12.0	12.4	120	E2.2	2 <	20	8
FEB 1988 03	1030	E38		7.6	2.0	13.9	103	E1.3	s <	20	220
APR 28	1315	E4.5		7.5	13.5	10.4	104	3.1		10	130
JUN 02	1100	E8.3		8.8	21.5	8.6	101	E1.9		70	27
JUL 05	1030	E9.2		8.0	24.0	8.4	102	E1.8		20	17
AUG 15	1330	E4.2		7.5	29.0	7.3	99	<1.0		30	140
	1330	64.6			27.0	7.5		****		30	140
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIU DIS- SOLVE (MG/L	DIS- D SOLVE (MG/L	, SODIU DIS- D SOLVE (MG/	M, S1 D1 D SOL L (MC	UM, LIN S- L VED (M	AB DI IG/L SC IS (I	LFATE IS- DLVED 4G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	D
NOV 1987	54	. 47	, ,	27		•	20				
05 FEB 1988		14	4.6		1.			16	43	0.1	
03 APR	56	15	4.6		1.			17	43	0.2	
28 JUN	65	17	5.5		1.			20	55	0.1	
02 JUL	70	18	6.2	32	1.	.0	40	15	60	0.3	
05 AUG	71	18	6.4	34	1.	.0	39	16	64	0.2	
15	63	16	5.7	30	0.	.8	35	15	59	0.1	
DATE	SILICA DIS- SOLVE (MG/I AS SIO2)	CONSTI	NITRO GEN, NITRIT TOTAL MG/L	GEN E NO2+N TOTA (MG/	, GE 03 AMMO L TOT L (MO	RO- GEN EN, MON ONIA ORG TAL TO G/L (M	SANIC (OTAL TO IG/L (I	ITRO- GEN, I DTAL MG/L S N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON ORGANIO TOTAL (MG/L AS C)	
NOV 1987	7		2 0 00	, ,				0.45	0.000		
05 FEB_1988	3.6				_			0.65	0.020	3.8	
03 APR	3.7					••	••	••	<0.020	3.0	
28 Jun	0.2			1 <0.0	5 0.	.01 (0.50	••	0.049	4.9	
02 JUL	1.6	5 15	8 0.01	0 0.1	2 0.	.06 (0.40	0.52	0.070	5.1	
05 AUG	1.1	1 16	4 0.00	4 <0.0	5 <0.	.05	.40	••	0.024	5.1	
15	1.8	3 14	9 <0.00	3 <0.0	5 0.	.06 (.46	••	0.047	5.4	

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DATE		TIME	SULF! TOT/ (MG,	IDE D AL SO /L (U	UM- UM, IS- LVED G/L AL)	ARSE TOT (UG AS	AL /L	BER'LIUI TOTA RECO ERAI (UG, AS	M, AL OV- BLE /L	BORON TOTAL RECOVERABLI (UG/L AS B)	TOT REC E ERA (UG	IUM M AL T OV- R BLE E	HRO- IIUM, OTAL ECOV- RABLE UG/L IS CR)	COPPI TOTA RECO ERAI (UG,	AL OV- BLE /L
JL	IN 1988 02		1100	<(0.5	50		1	<1	0	2	0	<1	<1		2
		DATE		IRON, FOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NES TOT REC ERA	AL OV-	ERA (UC	AL COV-	NICK TOT, REC ERA (UG AS	AL OV- BLE /L	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV ERABI (UG/I AS ZI	/- .E PHI . T(ENOLS DTAL G/L)	
		1988		200	<5		40	<(0.10		<1	<1	<	10	1	

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi southeast of Cage Hill, 0.4 mi south of Jefferson Lake, and 0.9 mi downstream from Lubbers Run.

DRAINAGE AREA. -- 60.1 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

10

248

0.185

1.96

0.23

0.88

2.8

0.104

4.5

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 OXYGEN, DIS DEMAND, CHARGE COLI-SPE-DIS-CIFIC SOLVED BIO-FORM, FECAL, INST. OXYGEN, CHEM-STREP-CUBIC CON-PH TEMPER-(PER-ATURE WATER DUCT-ICAL, 5 DAY TOCOCCI FEET (STAND DIS-CENT EC BROTH ANCE DATE SOLVED FECAL TIME PER ARD SATUR-(MPN) SECOND (US/CM) UNITS) (DEG C) (MG/L) ATION) (MG/L) (MPN) NOV 1987 04 FEB_1988 1300 E94 <20 49 265 7.3 11.5 12.1 114 <0.8 03... 1200 E250 311 7.3 1.0 14.6 104 E2.2 20 170 MAY 12... 2.6 1045 E86 7.7 15.0 9.8 99 230 240 JUN 02... 1245 E110 351 7.7 19.5 98 230 350 8.7 2.4 JUL 05... 1200 **E23** 533 7.7 22.0 8.4 98 2.4 460 240 ĭ5... 1200 **E21** 530 7.5 26.0 87 E1.3 1300 220 6.8 HARD-ALKA-MAGNE -POTAS-CHLO-FLUO-CALCIUM SULFATE NESS TOTAL SIUM, DIS-SOD IUM, RIDE, SIUM, DIS-LINITY RIDE, DIS-DIS-DIS-LAB DIS-SOLVED (MG/L SOLVED (MG/L SOLVED (MG/L SOLVED (MG/L SOLVED (MG/L SOLVED (MG/L (MG/L SOLVED (MG/L DATE (MG/L AS CACO3) AS CA) AS MG) AS NA) AS K) CACO3) AS SO4) AS CL) AS F) **NOV 1987** 04... FEB 1988 71 17 6.9 17 1.3 49 15 32 0.1 03... 77 19 44 7.1 24 1.3 52 17 0.2 MAY 12... 79 19 20 0.9 38 7.7 53 0.3 16 JUN 02... 86 21 8.1 22 58 42 0.3 1.1 16 JUL Õ5... 150 35 14 38 82 19 84 0.2 2.3 AUG 15... 150 34 15 35 2.4 86 18 82 0.1 SOLIDS, SUM OF NITRO-SILICA, NITRO-NITRO-GEN, AM-MONIA + NITRO-DIS-CONSTI-NITRO-GEN, NITRITE GEN, AMMONÍA PHOS-CARRON GEN, NO2+NO3 SOLVED TUENTS, ORGANIC ORGANIC **PHOROUS** GEN, TOTAL (MG/L DIS-TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL DATE SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L \$102) (MG/L) AS N) AS N) AS N) AS N) AS N) AS P) AS C) NOV 1987 04... FEB_1988 6.7 125 0.025 0.12 0.15 0.61 0.73 0.033 4.7 03... 8.0 152 0.013 0.24 0.027 4.3 MAY 12... 5.1 139 0.035 0.18 0.18 0.74 0.92 0.057 5.0 JUN 02... 7.4 153 0.041 0.33 0.75 0.057 0.19 1.1 5.3 JUL Ö5... 11 253 0.240 1.70 0.43 0.82 2.5 0.068 4.5 AUG 15...

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ--Continued

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 INGRG. GAI IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (MG	ANIC II . IN II MAT SO /KG (I	DLVED TO JG/L (1	TO IN SENIC TO OTAL TOUG/L (OTAL BOT- M MA- ERIAL UG/G	TOTAL RECOV- ERABLE (UG/L	TOTAL TRECOV- FERABLE I	CADMIUM RECOV. TOTAL FM BOT- RECOV- TOM MA- RABLE TERIAL (UG/L (UG/G AS CD) AS CD)
NOV 1987 04 JUN 1988	1300	1	00 0	.2 1	.7			6	1 1 1	••	<1
JUN 1988		_									47 MS V11000000-
02	1245 <0	.5	••	••		20	2	1 14	<10	40	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	TERIAL (UG/G	TOTAL RECOV ERABL (UG/L	- TOM MA E TERIA (UG/G	- TOTAL - RECOV L ERABLI (UG/L	NESE, RECOV. - FM BOT- E TOM MA- TERIAL
NOV 1987									in the said		
04 JUN 1988	•••	<10	<50	••	6	••	4100		<10	•••	280
02	<1			2		510		<5		110	- 10a
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L	TERIA (UG/G	L PHENOL TOTAL	TERIA	- TOM MA- L TERIAL
NOV 1987										9	
04 JUN 1988 02	<0.10	<0.10	1	<10	 <1	<1	<10	40		<1 	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA-	TOTAL IN BOT- TOM MA- TERIAL	IN BOT	TOTAL TOTAL TOTAL TOM MA TERIA	TOTAL I- IN BOT L- TOM MA L TERIA	TOTAL IN BOT- TOM MA- L TERIAL
NOV 1987											
JUN 1988	<0.1	2.0	<0.1	<0.1	<0.1	<0.1	1 <0.1	<0.	.1 <0	.1 <0.	1 <0.1
02									•		* 144 * 12
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTON MATL. (UG/KG)	BOTTO	MIREX, TOTAL N IN BOT M TOM MA- TERIAL	TOTAL IN BO' TOM MA	N, PER- L THANI T- IN BO' A- TOM MA AL TERIA	TOM MA	THION, TOTAL IN BOT- TOM MA- L TERIAL
NOV 1987	<0.1	-0.4	-0.4	-0.4	-0.4	-0				00 -40	ST WILL
04 JUN 1988 02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.	1 <0.	1 <0	.1 <1.	00 <10	<0.1
JE											The second secon

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ

LOCATION.--Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge at Beattystown, 1.6 mi upstream of Hanes Brook, 2.1 mi northeast of Stephensburg, and 3.5 mi northeast of Scrappy Corner.

DRAINAGE AREA. -- 90.3 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECON	CIFI CON- DUCT ANCE	C P - (ST	AND - RD	EMPER- ATURE WATER DEG C)	OXYGE DIS SOLV (MG)	SO EN, (F S- (/ED S/	(GEN, DIS- DLVED PER- CENT ATUR- (ION)	OXYGEI DEMANI BIO- CHEM ICAL 5 DA (MG/	O, CO FO - FE Y BR	LI- RM, CAL, C OTH PN)	STREP- TOCOCCI FECAL (MPN)
NOV 1987	1045	E150	301		7.8	10.5	11.	.8	108	<0.	8 5	0	33
FEB 1988 03	1330	E310	334		7.4	1.5	14.	.9	107	E2.	1 5	0	130
MAY 12	1200	E140	333		8.0	16.0	10.	.8	111	E2.	2 13	0	79
JUN 	1100	E100			7.6	16.0	10.	.1	105	E1.	4 13	0	110
JUL 05	1330	E49	456	•	8.0	21.5	10.	.2	116	E1.	9 13	0	130
AUG 15	1030	E46			8.0	22.5	8	.0	95	E1.	3 49	0	920
DATE	HAR NES TOT (MG AS CAC	S CA AL D /L S	LCIUM IS- OLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DI SOL (MG	UM, I S- VED /L	ALKA- LINITY LAB (MG/L AS CACO3)	SULF/ DIS- SOLV (MG/ AS SO	TE ED	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	ED L
NOV 1987 04 FEB 1988	9	1	21	9.3	19	1	.4	68	17		32	0.	1
03 MAY	9	0	22	8.5	27	1	.6	62	17		49	0.	2
12 JUN	11	0	26	11	21	1	.4	80	18		40	0.	3
08 JUL	13	0	29	14	19	1	.3	98	17		34	0.	3
05 AUG	17	0	37	19	25	1	.8	115	28		47	0.	2
15	17	0	37	18	23	1	.7	129	23		44	0.	1
DATE	SILI DIS SOL (MG AS SIO	CA, SU - CO VED TU i/L - S	LIDS, M OF NSTI- ENTS, N DIS- OLVED MG/L)	NITRO- GEN, IITRITE TOTAL (MG/L AS N)	NITRO GEN, NOZ+NO TOTAL (MG/L AS N)	GE 3 AMMO TOT (MG	N, I NIA (AL /L	NITRO- GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	NITI GEI TOT/ (MG/ AS I	I, P	PHOS- HOROUS TOTAL (MG/L AS P)	CARBO ORGAN TOTA (MG/ AS C	IIČ L L
NOV 1987 04 FEB 1988	6	.8	147	0.033	0.57	0.0	9	0.61	1	.2	0.103	4.	3
03 MAY	7	.8	170	0.016	0.50	-	-	••			0.216	3.	8
12 JUN	5	.6	171	0.061	0.75	0.2	6	0.70	1	.5	0.192	4.	5
08 JUL	8	3.7	182	0.053	0.85	0.0	9	0.55	1	.4	0.160	3.	.3
05 AUG	8	3.1	235	0.069	1.27	0.4	7	0.77	2	.0	0.055	3.	6
15	8	3.4	233	0.118	1.25	0.3	7	0.87	2	.1	0.077	3.	.4

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (MG/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
NOV 1987 04	1045	<0.5	150	1.2	4.0	<10	<1	3	<10	20	<1
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RÉCOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
NOV 1987	<1	1	<10	<50	3	7	200	4900	<5	10	30
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1987 04	380	<0.10	<0.10	<1	<10	<1	<1	<10	40	3	3
DATE	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
NOV 1987 04	<1.0	<0.1	3.0	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
NOV	T IN TO DATE T	NDANE TO OTAL TO BOT- IN M MA- TO ERIAL TO	HION, O) OTAL CI BOT- TOT M MA- BO ERIAL I	Y- PARTICIPATION BOTTOM	ARA- HION, THE T. IN TOT DITTOM BO MATL.	HION, TO T. IN IN OTTOM TOP MATL. TO	IREX, TI DTAL TO BOT- IN M MA- TO ERIAL TI	DTAL TH BOT- IN M MA- TOM ERIAL TER	R- PH IANE TO BOT- IN I MA- TOM	ENE, THOMES TO THE PROPERTY OF	RI- IION, DTAL BOT- I MA- ERIAL G/KG)
	4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	1.00 <1	0	<0.1

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from bridge on Limekiln Road (Person Road), 1.5 mi upstream from Bloomsbury, and 9.5 mi upstream from mouth.

PERIOD OF RECORD. -- July 1903 to March 1907, July 1921 to current year.

REVISED RECORDS.--WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft above National Geodetic Vertical Datum of 1929. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS.--Records good. Flow regulated by Lake Hopatcong (see Delaware River basin, reservoirs in). Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	347 328 356 483 391	281 262 246 225 210	540 481 377 333 313	e178 e157 e171 e156 e180	193 361 411 473 419	298 274 286 412 513	210 209 207 202 200	195 180 176 167 162	246 252 227 213 204	103 100 98 97 94	133 124 117 113 106	111 98 95 155 213
6 7 8 9	364 375 363 341 329	193 185 182 179 216	295 280 271 266 311	e215 e195 e158 e146 e150	357 336 295 281 273	415 372 364 369 413	192 190 194 191 184	202 214 190 169 164	190 180 173 184 178	93 95 94 97 90	103 101 97 95 93	154 120 105 99 90
11 12 13 14 15	334 340 326 318 312	303 268 272 286 288	271 230 218 208 270	e163 e138 e135 e145 e140	264 291 314 273 265	404 378 367 355 342	179 174 169 163 159	193 212 195 188 183	168 161 155 150 143	88 90 91 88 88	93 91 91 90 89	86 84 130 122 111
16 17 18 19 20	283 208 209 208 199	275 261 261 257 244	280 245 222 200 216	e127 130 148 167 244	385 340 313 311 776	306 270 254 248 242	162 164 163 165 157	171 258 401 541 828	138 136 133 129 126	86 121 135 119 217	85 84 88 83 82	99 94 97 94 97
21 22 23 24 25	228 258 259 246 169	238 223 208 204 195	210 195 191 202 209	264 e193 e177 e175 e175	524 425 421 424 388	230 217 210 207 207	149 143 139 144 142	568 481 484 676 537	122 118 117 111 109	202 166 139 231 219	82 80 79 123 141	92 91 87 86 86
26 27 28 29 30 31	141 134 460 399 360 336	193 192 191 622 626	211 206 200 e193 e191 e189	e172 e153 e150 e154 e160 162	355 346 334 321	254 342 298 256 234 219	136 134 261 248 213	491 403 346 308 279 255	109 109 106 104 103	217 306 234 192 165 144	108 105 94 109 162 134	84 83 81 80 79
MEAN MAX MIN	303 483 134	260 626 179	259 540 189	167 264 127	361 776 193	308 513 207	178 261 134	317 828 162	153 252 103	139 306 86	102 162 79	103 213 79
STATIST	ICS OF MONT	HLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	171 770 1904 41.2 1964	224 701 1928 61.2 1966	259 686 1974 57.3 1966	262 924 1979 73.7 1977	279 582 1973 99.4 1923	345 935 1936 127 1965	353 1030 1983 104 1985	267 520 1984 98.1 1965	194 843 1972 56.8 1965	162 659 1975 38.1 1965	152 584 1928 38.5 1965	157 454 1960 37.3 1965
SUMMARY	STATISTICS	;		FC	OR 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
AVERAGE HIGHEST LOWEST HIGHEST INSTANT INSTANT 10 PERC 95 PERC	ANNUAL MEAN DAILY MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW ENTILE	TLOW STAGE			828 79 1180 3.89 77 376 194 88	May 20 Aug 23 May 24 May 24 Jul 11			8 5 7 8	426 2.6 850 Oct	adjusted 1928 1965 10 1903 8 1966 25 1979 25 1979 2 1955	

a From rating curve extended above 1,800 $\rm ft^3/s$ on basis of slope-area measurement at gage height 6.95 $\rm ft$ b From floodmark Estimated

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi north of Mount Joy, and 0.2 mi upstream from mouth.

DRAINAGE AREA. -- 156 mi 2.

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

REMARKS.--Water-quality samples do not include Riegelsville Paper Company bypass.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	CT- (ST	AND - ATU	URE D	GEN, (IS-	DIS- DEM OLVED BI PER- CH CENT IC ATUR- 5	O- FO IEM- FE CAL, E DAY BR	CAL, STREP- CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)
OCT 1987 21	1245	E250 3	10 7.	6 12.	0 11.	0	103	2.9 9	40 920
FEB 1988 10	1345	E300 3	52 7.				117 E	1.5	70 11
MAR 17	1245	E300 3	28 8.	9 6.	0 14.	7	118	1.7	40 9
JUN 06	1030	E210 3	10 7.	2 16.	0 9.	8	100 E	1.2 3	30 350
JUL 25	1300	E240	7.			9	100 E	1.8 35	1600
AUG 10	1230	E110 4	02 8.				113	4.2 13	350
DATE OCT 1987 21 FEB 1988 10 MAR 17 JUN 06 JUL 25 AUG	120 110 110 130 120	28 26 25 29 26	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 12 12 12 14	SODIUM, DIS- SOLVED (MG/L AS NA) 17 19 17 14	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.7 1.5 1.4	ALKA- LINITY LAB (MG/L AS CACO3) 89 81 83 98	22 21 18 29 20	CHLO-RIDE, DIS-SOLVED (MG/L AS CL) 30 36 31 23	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1
10	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO-	PHOS-PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIĆ TOTAL (MG/L AS C)
OCT 1987	7.0	171	0.009	1.43	0.05	0.59	2.0	0.060	3.6
FEB 1988 10 MAR	8.3	172	0.011	1.57	•••		10.0	0.042	2.3
17	6.3	161	0.013	1.59	0.01	0.40	2.0	0.047	2.9
JUN	9.1	179	0.020	1.61	<0.05	0.71	2.3	0.070	3.9
JUL 25 AUG	11	159	0.021	1.44	0.05	0.98	2.4	0.458	5.2
10	4.8	197	0.057	1.96	0.19	1.1	3.1	0.470	3.7

DELAWARE RIVER BASIN

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1987 21	1245	40	<1	<10	<10	<1	<10	23
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 1987 21	180	<5	20	<0.10	<1	<1	<10	2

86

DELAWARE RIVER BASIN

01460500 DELAWARE AND RARITAN CANAL AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'08", Middlesex County, Hydrologic Unit 02040105, on right bank at canal lock at Kingston, and 250 ft upstream from new bridge on State Highway 27.

PERIOD OF RECORD. -- March 1947 to current year.

GAGE.--Two water-stage recorders and concrete control. Datum of gage is 40.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. Some water may be released to the Millstone River 500 ft and 2.3 mi above station (see Diversions in Raritan River basin). Gage-height telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988, ME	AN DAILY	VALUES		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	36 36 35 81 130	130 109 92 91 89	114 118 122 120 119	92 89 97 104 107	119 120 118 118 119	118 118 118 118 118	117 117 117 117 116	119 119 118 119 119	117 119 118 117 118	144 144 144 140 141	147 147 147 147 147	151 151 151 151 151	
6 7 8 9 10	125 117 112 111 110	91 97 100 111 120	119 119 117 117 120	110 112 114 115 116	116 114 116 117 118	120 119 118 118 118	117 117 118 118 117	120 121 120 119 118	118 119 119 117 117	144 144 142 142 142	146 146 146 144 146	144 143 141 140 139	
11 12 13 14 15	108 106 96 97 104	113 102 104 108 110	122 123 124 141 158	117 117 116 117 117	118 126 126 121 120	117 116 116 116 117	117 118 119 118 118	118 118 118 118 116	116 116 116 120 135	145 146 146 146 146	146 146 146 146 146	139 139 141 139 139	
16 17 18 19 20	104 117 124 113 98	105 99 99 103 108	161 154 147 137 131	117 116 117 115 119	123 118 116 117 124	117 116 116 116 116	119 119 118 118 118	117 118 119 120 122	141 141 142 142 142	147 149 148 148 149	146 146 147 147 147	138 138 138 138 137	
21 22 23 24 25	96 98 93 89 89	124 113 114 114 115	132 133 133 133 133	122 120 118 118 118	119 120 121 120 119	116 115 111 110 112	119 118 115 116 115	119 119 120 119 118	142 142 143 144 144	150 155 152 152 150	147 146 146 150 149	136 137 138 137 136	
26 27 28 29 30 31	89 86 96 103 122 138	114 114 112 113 115	133 133 133 133 119 87	118 118 117 117 117 117	119 118 118 118	115 119 118 116 116 117	115 117 122 120 120	118 118 119 119 119 117	144 143 144 144	150 152 148 145 146 146	147 149 148 146 149 149	136 136 136 136 135	
MEAN MAX MIN	98.7 138 35	108 130 89	129 161 87	114 122 89	119 126 114	117 121 110	118 122 115	119 122 116	131 144 116	147 155 140	147 150 144	140 151 135	
	STICS OF MONT												
MEAN MAX (WY) MIN (WY)	69.2 106 1966 .00 1986	73.0 108 1988 .03 1982	75.2 128 1988 .00 1982	74.1 117 1980 1.39 1982	74.8 119 1988 7.52 1948	77.7 124 1980 4.03 1948	77.2 139 1957 10.4 1949	74.9 119 1988 18.3 1949	75.2 131 1988 6.92 1986	75.3 146 1988 2.83 1985	72.1 147 1988 7.13 1985	70.2 140 1988 1.88 1985	
SUMMA	RY STATISTICS	3		FO	R 1988 WATE	R YEAR			FOR PE	RIOD OF	RECORD		
HIGHE LOWES HIGHE LOWES 10 PE 50 PE	GE FLOW ST ANNUAL MEA T ANNUAL MEA ST DAILY MEA T DAILY MEAN RCENTILE RCENTILE RCENTILE	AN 1			161 35 148 119 97	Dec 16 Oct	•		74.6 124 21.7 174 (109 83	Apr	1988 1948 6 1957 any days		

87

01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	INST. CUBIC FEET PER	ANCE	STAND- ARD	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		BIO- FO CHEM- FI ICAL, I 5 DAY BI	EC TO	STREP- OCOCCI FECAL (MPN)
OCT 1987 08	1030	E11000	186	7.6	13.0	10.0	95	<1.1	230	350
FEB 1988 18	1045	E12000	166	8.1	2.0	15.5	112	E0.5	40	240
MAR 30	1030	E26000	••	7.4	8.0	10.8	91	2.8	20	2
JUN 07	1500	E8500	168	8.1	21.0	8.9	102	E1.0	700	79
JUL 11	1030	E3100		7.7	28.0	8.2	105	E1.4	140	1600
AUG 22	1200	E3300	246	7.6	21.5	8.0	90	<0.8	460	13
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIU L DIS- L SOLVE (MG/L	DIS- D SOLVE (MG/L	DIS- D SOLVEI (MG/	DIS D SOLV L (MG/	M, LINIT S- LAB /ED (MG/ 'L AS	Y SULFAT B DIS- 'L SOLVE (MG/L	DIS- ED SOLVED (MG/L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	
08 FEB 1988		61 16	5.1	8.	3 1.	4 38	21	11	0.1	
18 MAR		58 15	5.0	10	1.	6 36	19	16	0.2	
30 Jun		34 9.0	2.7	5.	5 0.	.8 20	15	9.8	0.1	
07 JUL	,	60 15	5.5	8.	9 1.	4 40	20	12	0.3	
11)	86 21	8.1	12	1.	.8 58	32	16	0.2	
22		92 23	8.3	13	1.	9 56	29	17	0.1	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	ED TUENTS L DIS- SOLVE	NITRO GEN, NITRIT TOTAL D (MG/L	GEN E NO2+N TOTA (MG/	GEN O3 AMMON L TOTA L (MG/	I, MONIA IIA ORGAN L TOTA 'L (MG/	AM- A + NITRO NIC GEN AL TOTAI 'L (MG/I	, PHOROUS L TOTAL L (MG/L	CARBON ORGANII TOTAL (MG/L AS C)	Ċ
OCT 1987 08 FEB 1988	4.	1 90	0.033	0.81	0.09	0.64	1.5	0.112	4.1	
18 MAR	5.	1 93	0.016	1.05			• • • • • • • • • • • • • • • • • • • •	0.049	2.6	
30 Jun_	3.		0.017	0.66	0.09			0.064	3.5	
07 JUL	3.		0.039					••	3.4	
AUG	3.		0.016				4.2	0.058	3.7	
22	3.	4 129	0.052	1.34	0.18	3 0.52	2 1.9	0.133	3.4	

01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFII TOTAI (MG/I	SOLY (UG)	4, S- ARSE VED TOT /L (UG	AL ERA	M, BORG AL TOTA OV- RECO BLE ERAI /L (UG)	AL TOTAL OV- RECO BLE ERAB /L (UG/	L TOTA DV- REC BLE ERA 'L (UG	M, COPP AL TOT OV- REC BLE ERA /L (UG	AL OV- BLE
JUN 1988 07	1500	<0	.5	40	1 <1	0 -	<10	1	1	6
DATE		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV-3 ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
JUN 1988 07	3	260	31	40	<0.10	4	<1	60	3	

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ

LOCATION.--Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Stockton, 900 ft upstream from mouth.

DRAINAGE AREA .-- 26.6 mi 2.

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAI ARI UNIT	D WA		XYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGE DEMAN BIO- CHEN ICAL 5 D/ (MG/	ID, COI FOI I- FE KY BR	RM, CAL, C T	STREP- OCOCCI FECAL (MPN)
OCT 1987 08	1230	E5.7	220	8.2	1	1.0	12.0	109	<0.	.6 6	0	240
FEB 1988 18	1215	E77	492	7.7		2.0	16.4	118	EO.	,	0	540
MAR 30	1200	E18	•••	8.7		2.0	11.5	106	<1.			8
MAY 18	1100	E23	240	7.2		7.0	6.5	68	E1.		-	540
JUL				1200								22
AUG	1230	E1.2	215	9.1		3.5	10.9	129	E2			
22	1030	E1.9	224	7.8	1:	5.0	9.5	94	E1	.2 2	U	280
DATE	HARI NES: TOTA (MG, AS CAC	S CALC AL DIS /L SOL (MG	IUM SI - DI VED SOL /L (MC	S- VED	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	D (MC	ITY SUL AB DI G/L SO S (M	FATE S- LVED IG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	ED.
OCT 1987	4	6 11		.5	20	2.5		3 7 2	7	18	0.1	v n
FEB 1988 18	3			3.6	83	2.3			8	110	0.2	
MAR					-							
30	4			6	77	1.8			51	100	0.1	
18 JUL	6		-	5.9	27	1.5				33	0.2	
AUG	5			5.3	17	1.9			26	15	0.2	
22	6	4 15		5.5	15	2.0)	39 2	25	14	0.1	ľ
DATE	SILI DIS SOL (MG AS SIO	- CONS VED TUEN /L DI SOL	OF NI	TAL G/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN AMMONI TOTAL (MG/I AS N	O- GEN MON A ORG TO	ANIC G TAL TO G/L (M	TRO- EN, OTAL IG/L IS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON ORGANI TOTAL (MG/L AS C)	iČ -
OCT_1987		_							_			
08 FEB 1988		.5		.004	0.66	0.09	0.			0.068	4.7	
18 Mar		.4		.011	1.00			••		0.059	5.0	
30		.7		.020	0.70	0.02	0.			0.052	3.6	
18 JUL	4	.8	141 0.	.063	1.06	0.23	0.	79 1.	8	0.110	3.2	
11	11		113 0.	.052	1.28	0.14	0.	55 1.	8	0.108	2.2	
22	12		113 0.	.006	4.00	<0.05	0.	60 4.	6	0.061	1.9	

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVE (UG/L AS AL	(UC	NIC R	ERYL- IUM, OTAL ECOV- RABLE UG/L S BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	RECO	V- REC LE ERA L (UG	M, COPI AL TO OV- REI BLE ER	PER, TAL COV- ABLE G/L CU)
MAY 1988 18	1100	<0.5	6	0	<1	<10	<10		1	<1	2
DATE	RI Ei	OTAL 1 ECOV- F RABLE E UG/L (EAD, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCUR TOTAL RECOV ERABL (UG/L AS HG	TO' REC	COV- NABLE T	ELE- IUM, OTAL UG/L S SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
MAY 1988		160	<5	50	<0.1	n	5	<1	10	<1	

LOCATION.--Lat 40°17'20", long 74°52'08", Mercer County, Hydrologic Unit 02040105, at bridge at Washington Crossing, 1.4 mi upstream of Jacobs Creek.

DRAINAGE AREA. -- 6,735 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	CIF CON DUC AND	IC - T- (\$	PH STAND- ARD IITS)	TEMP ATU WAT (DEG	IRE ER		EN, (S- VED S	YGEN, DIS- OLVED PER- CENT ATUR- TION)	OXYG DEMA BIO CHE ICA 5 D (MG	ND, - M- L,	COLI- FORM, FECAL, EC BROTH (MPN)	STRE TOCOC FECA (MPN	CI
30	1987	1400	E10000	, .	. ;	7.3	13	3.5	10	.8	104	<0	.7	230	33	
FEB 18	1988	1330	E13000) 17	6	7.8	2	2.0	15	.6	112	ΕO	.4	50	350	
MAR 30)	1330	E2400		- 7	7.6	8	3.5	11	.4	97	<0	.3	<20	4	
JUN 07		1140	E360	16	io 8	3.0	20	0.0	6	.0	67	E1	.9	260	130	
JUL 11		1430	E370	25	55 8	3.4	30	0.0	10	.5	140	2	.8	70	2	
AUG 22	2	1330	E310	24	9	7.5	24	.0	7	.8	92	<0	.5	130	22	
	DATE	HARI NESS TOTA (MG, AS CAC	S CAI AL D /L S(LCIUM IS- DLVED MG/L S CA)	MAGNE SIUM DIS- SOLVEI (MG/L AS MG	, SOD DI SOL (M		POTA SIU DIS SOLV (MG/ AS K	M, ED L	ALKA- LINITY LAB (MG/L AS CACO3)	(MG	VED /L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RI D D SC	UO- DE, IS- DLVED IG/L S F)	
	OCT 1987 08		58	15	4.9		8.1	1.	4	37	21		12		0.1	
	FEB 1988 18		58	15	5.1	1	1	1.	6	36	19)	18		0.2	
	MAR 30		34	9.0	2.7		5.5	0.	8	20	13	;	9.3	3	0.1	
	JUN 07		63	16	5.5		8.2	1.	2	40	20	Í.	12		0.3	
	JUL 11		91	22	8.7	1	2	1.	8	58	29)	17		0.2	
	AUG 22		86	21	8.1	1	3	1.	9	51	28	3	17		0.1	
	DATE	SILI DIS SOL (MG AS SIO	CA, SU - CO VED TU /L S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NOZ TO	TRO- EN, 2+NO3 OTAL IG/L S N)	NITE GEN AMMON TOTA (MG) AS N	I, IIA IL 'L	NITRO- GEN, AM- MONIA - ORGANIO TOTAL (MG/L AS N)	- NIT	i/L	PHOS- PHOROL TOTAL (MG/L AS P)	JS ORG	RBON, SANIC DTAL GG/L S C)	
	OCT 1987 08 FEB 1988		.0	89	0.04		.83	0.0	5	0.49	1.3	;	0.101	3.		
	18 MAR		.1	97	0.02		.07	•				•	0.054		.9	
	30		.4	56	0.01		.14	0.10				· •	0.073		.8	
	07 JUL		.6	91	0.03		.97	0.08		0.53	1.5		0.700	3.		
	AUG		.8	129	0.06		.46	<0.05		0.71	2.2		0.113		.5	
	22	3	.4	123	0.05	3 1	.42	0.20)	0.57	2.0)	0.119	3.	.3	

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFI TOTA (MG/ AS S	DE D L SOIL	UM- UM, IS- LVED G/L AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL LIUM, TOTAL RECOV ERABL (UG/L	BORG TOTA - RECO LE ERA	AL TOTA OV- RECO BLE ERAI /L (UG)	IUM MI AL TO DV- RE BLE ER /L (U	RO- UM, TAL COV- ABLE IG/L CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1988 07	1140	<0	.5	70	1	<10		10	1	<1	4
DATE	R E	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NE: TO' RE(ER/	TAL TO COV- RE ABLE ER G/L (U	CURY I	TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHE	NOLS Tal /L)
JUN 1988		160	<5		20 <0	10	,	<1	30		3

01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network and Radiochemical program station)

LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft upstream from Calhoun Street Bridge at Trenton, 0.5 mi upstream from Assunpink Creek, and at mile 134.5.

DRAINAGE AREA. -- 6,780 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1965, at datum 7.77 ft higher. Feb. 24, 1913 to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 500 ft downstream.

REMARKS.--Records excellent except for period of ice effect, Jan. 6-20, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, and Wild Creek Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs and to Delaware and Raritan Canal (see Delaware River basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River basin, diversions). Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft above National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft³/s. Maximum elevation since 1903, 30.6 ft above National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark (ice jam).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988, MEAN DAILY VALUES SEP APR DAY OCT NOV DEC **FEB** MAR MAY JUN JUL AUG 16200 14900 14100 13700 3400 3480 3510 6270 12500 7210 6480 9590 17700 14100 13400 8400 8640 23100 8910 4800 9010 e7900 8170 8370 7470 12700 12300 e5730 e5510 e5390 12100 10700 10300 7870 7350 3320 3190 4310 3730 e6040 6710 6130 5420 5470 4200 4360 6230 e5410 11300 e4840 8430 10300 7570 8320 4200 e5840 e5870 e5290 5680 5560 5220 11500 10800 4030 6250 4410 4900 e5160 9810 13200 3790 6520 6460 e4960 e4870 12400 14300 13500 7820 13700 e5170 e7380 5470 5560 5850 22 13100 10400 9880 4050 3890 5430 34400 28800 e8880 9750 10800 24 25 4620 5780 9190 9690 16900 23100 28 29 30 37700 25000 21000 3740 3440 4290 3540 3450 6260 7840 14100 3360 MEAN 5120 3180 MIN STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) 28710 1956 33460 1972 2572 1965 34950 1979 MEAN 31070 1974 1928 1933 1947 5209 MAX 1951 1936 1940 1928 1955 (WY) MIN 1965 1981

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SUMMARY STATISTICS	FOR 1988 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	9802 37700 Mar 28 3030 Aug 23 40600 Mar 28 13.37 Mar 28 2900 Aug 20 17300 8640 3420	11670 Unadjusted 19810 1928 4708 1965 279000 Aug 20 1955 1240 Oct 31 1914 329000a Aug 20 1955 28.60b Aug 20 1955 1180 Oct 31 1963 24600 7880 2310

a From rating curve extended above 230,000 ft³/s b From high-water mark in gage house estimated

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1945 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: June 1968 to September 1978, May 1979 to current year.
pH: June 1968 to September 1978, May to September 1979, February 1980 to August 1982, April 1983 to current year.
WATER TEMPERATURE: October 1944 to September 1978, May 1979 to current year.
DISSOLVED OXYGEN: October 1962 to September 1978, May 1979 to current year.
SUSPENDED-SEDIMENT DISCHARGE: Water years 1949 to 1981.

INSTRUMENTATION.--Temperature recorder since October 1944, water-quality monitor since October 1962. Monitor probes are located within raw water intake of Trenton Filtration Plant.

REMARKS.--Missing continuous water-quality records are the result of malfunctions of the instrument. Unpublished records of suspended sediment discharge for the period October 1, 1981 to March 31, 1982 are available in files of the district office.

EXTREMES FOR PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: Maximum, 400 microsiemens, Jan. 24, 1959; minimum, 50 microsiemens, Mar. 19, 1945. pH: Maximum, 10.3, August 9, 10, 1983; minimum, 5.3, June 22, 1972. WATER TEMPERATURE: Maximum, 34.0°C, June 18, 1957; minimum 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum, 19.7 mg/L, February 28, 1987; minimum, 4.0 mg/L, Nov. 9, 1972.

EXTREMES FOR CURRENT YEAR.-

SPECIFIC CONDUCTANCE: Maximum, 255 microsiemens, Aug. 21; minimum, 103 microsiemens, Mar. 29. pH: Maximum, 9.5, Mar. 25, Apr. 17, 21, 22; minimum, 6.8, July 7, 9. WATER TEMPERATURE: Maximum, 32.5°C, Aug. 14; minimum, 0.0°C on many days during the winter months. DISSOLVED OXYGEN: Maximum, 17.1 mg/L, Mar 2; minimum, 4.8 mg/L, July 10.

DATE	CH/ II CI TIME	UBIC COL FEET DUC PER AND	FIC N- PH CT- (STAND-	TEMPER- ATURE WATER (DEG C)	TUR- (BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	DIS- D SOLVED (PER- CENT SATUR-	EMAND, BIO- CHEM- ICAL, 5 DAY (FECAL, 0.7 UM-MF COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
NOV 1987 09	1100	7300 1	65 8.1	10.5	0.60	11.9	106	1.0	28	18	59
MAR 1988			71 9.0	7.5	1.2	15.5	128				58
JUN			17 8.2	27.5	1.8	8.6	110	2.4	K11	360	79
SEP			24 7.8	20.5	4.0	8.7	96	4.0	K33	К9	81
DATE (1 S S S S S S S S S S S S S S S S S S	ALCIUM DIS- SOLVED S (MG/L (DIS-DI OLVED SOL MG/L (M S MG) AS 5.2 5.0 7.6 1		BONATE IT-FLD	CARBON- ! ATE IT-FLD	TOT FET FIELD 4G/L AS	SULFATE DIS-	RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1	SILICA, DIS- SOLVED (MG/L AS SIO2) 3.1 2.7 2.1	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 88 90 114 124
DATE NOV 1987 09 MAR 1988 24 JUN_	SEDI- MENT, SUS- PENDED (MG/L)	(T/DAY)	SUSP. SIEVE NI DIAM. I VIAM. I	GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	S- AMMON TOTA (MG/N) AS N 70 0.02 85 0.08	AMMON DIS SOLV (MG/ AS N	GEN, AN IA MONIA ORGANI ED TOTAL L (MG/L) AS N 0.40	+ PHOS- IC PHOROU TOTAL (MG/L) AS P)	0.030	DUS ORT DIS VED SOLV (L (MG/P) AS P 0 0.02	OUS HO, - ED L)
22 SEP 15	9 10	104 162		0.040 1. 0.010 1.	20 0.05	<0.010	<0.20	0.090	0.050	0.03	0

DELAWARE RIVER BASIN
01463500 DELAWARE RIVER AT TRENTON, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DATE	TIME	DIS- D SOLVED SO (UG/L (U	IS- D LVED SO IG/L (RIUM, IS- LVED UG/L S BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS- SOLV (UG/	, COB DI ED SOL L (U	S- DI VED SO G/L (U	S- [LVED SO G/L (RON, DIS- DLVED UG/L S FE)
0	1987	1100	30	1	25	<0.5	<1	<1		<3	4	47
2	1988	1230	50	<1	25	<0.5	<1	<1		<3	2	22
JUN	2	1110	40	3	32	<0.5	1	<1		<3	2	21
SEP 1	5	1230	20	1	27	<0.5	<1	<1		<3	5	28
												4.1
		LEAD,	LITHIUM DIS-	MANGA- NESE, DIS-	MERCU	RY DEN	S- D	CKEL,	SELE- NIUM, DIS-	SILVER, DIS-	STRON- TIUM, DIS-	
	DATE	SOLVE (UG/L AS PB	(UG/L	SOLVED (UG/L AS MN)	SOLV (UG/ AS H	L (UC	/L (I	DLVED JG/L S NI)	SOLVED (UG/L AS SE)	SOLVED (UG/L AS AG)	SOLVED (UG/L AS SR)	
	NOV 1987	5	5	11	<0.	1 <	10	1	<1	1.0	64	
	MAR 1988							•			-	
	24 JUN	<5	<4.	30	<0.	1 <	10	1	<1	<1.0	58	
	22 SEP	<5	6	2	<0.	1 <	10	<1	<1	<1.0	82	
	15	<5	<4	11	<0.	.1 <	10	<1	<1	<1.0	87	
	DATE	VANA- DIUM, DIS- SOLVE		GROSS ALPHA, DIS- SOLVED (UG/L	(UG/	IA, BE	IA, BI IS- SI VED TO	ROSS ETA, USP. DTAL CI/L	GROSS BETA, DIS- SOLVED (PCI/L	GROSS BETA, SUSP. TOTAL (PCI/L	RADIUM 226, DIS- SOLVED, RADON	
	DATE	(UG/L AS V)		U-NAT)	U-NA	T) CS-		AS -137)	AS SR/ YT-90)	AS SR/ YT-90)	METHOD (PCI/L)	
s = 3	NOV 1987 09 MAR 1988	<6	12	<0.4	<0.4	1	.7 <	0.4	1.4	<0.4	0.05	
	24 JUN	<6	8				••	••				
	22	<6	8							1.		
	SEP 15	<6	11	<0.4	0.6	5 1	.7 <	0.4	1.3	<0.4	0.06	

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	SPECI	LIC CONDU	CIANCE	(MICKOSIEM	ENS/UM AI	25 DEG.	C), WATER	IEAR OC	OBER 1901	IO SEPTEM	DER 1700	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBE	R		DECEMBE	R		JANUARY	
1 2 3 4 5	164 168 166 174 174	157 163 161 160 160	159 166 164 165 167	122 131 139 148 151	115 116 130 138 145	119 123 135 143 147	173 118 120 124 128	119 112 114 119 124	143 114 117 122 126	177 180 179 180 204	171 173 173 177 143	173 176 176 178 173
6 7 8 9	160 161 169 171 172	155 155 160 168 163	157 158 163 170 168	156 161 163 164 178	149 154 161 162 163	151 157 162 163 169	132 136 143 144 146	128 133 135 140 141	130 135 139 142 144	193 203 207 197 196	154 189 194 192 192	177 199 202 195 195
11 12 13 14 15	167 168 171 173 174	162 162 168 165 171	165 164 170 168 172	184 196 202 200 193	166 186 187 194 186	171 190 193 196 188	151 153 156 160 166	145 151 152 151 158	148 152 154 155 161	199 192 183 189 190	192 181 178 183 182	197 187 180 186 187
16 17 18 19 20	179 182 183 204 206	173 178 178 181 183	174 179 181 193 200	185 185 181 182 169	179 181 177 169 146	182 183 179 177 158	175 168 165 158 160	161 165 155 154 154	167 167 159 156 157	197 197 197 200 210	187 189 192 194 199	190 193 193 196 205
21 22 23 24 25	198 212 212 209 204	191 199 204 203 195	194 204 207 206 201	148 150 154 162 168	145 146 145 152 162	147 148 150 156 165	180 180 174 160 158	158 175 162 154 154	167 177 168 158 156	202 200 190 182 184	197 189 182 176 175	199 196 185 179 177
26 27 28 29 30 31	200 204 187 209 143 120	196 162 151 146 104 114	197 198 169 184 118 116	165 164 167 169 173	161 160 159 166 156	163 162 162 167 166	164 167 167 159 166 174	155 163 159 154 157 165	158 165 164 157 160 167	199 205 214 224 217 209	186 193 185 182 198 199	190 200 206 202 204 204
MONTH	212	104	174	202	115	162	180	112	151	224	143	190
HOHIII										60 60 T		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	MAX	MIN FEBRUAR	MEAN		MIN MARCH	MEAN		MIN APRIL	MEAN		MIN MAY	
		MIN	MEAN	MAX	MIN			MIN	MEAN		MIN	177 163 154 158 158
DAY	MAX 214 206 199	MIN FEBRUAR	MEAN 7 209	MAX 206 206 207	MIN MARCH	MEAN	MAX 127 132 139	MIN APRIL	MEAN	193 167	MIN MAY	
1 2 3 4 5	214 206 199 168 127 127	MIN FEBRUAR 195 195 173 117 116	MEAN 209 201 186 137 123	206 206 207 204 194 187	MIN MARCH 197 198 202 194 186	200 202 204 201 190	127 132 139 140 142	MIN APRIL 121 127 132 137 139	123 129 135 138 141	193 167 157 161 160	MIN MAY 166 157 152 156 157	177 163 154 158 158
1 2 3 4 5 6 7 8 9	214 206 199 168 127 127 124 121 129 132	MIN FEBRUAR' 195 173 117 116 112 110 114 117 123	209 201 186 137 123 121 118 119 124 128	206 206 207 204 194 187 185 187 185 181 176 160 146	MIN MARCH 197 198 202 194 186 179 180 185 180 175 162 142 143	200 202 204 201 190 182 183 186 183 179	127 132 139 140 142 144 142 149 155 155	MIN APRIL 121 127 132 137 139 140 143 149 152 152 161	123 129 135 138 141 141 141 146 153 153	193 167 157 161 160 172 185 180 159 152 159 162 168 169	MIN MAY 166 157 152 156 157 158 172 160 152 148	177 163 154 158 158 163 178 172 156 150
12345 6789 10 11213 145	214 206 199 168 127 127 124 121 129 132 137 156 144 158 158 178 196	MIN FEBRUAR' 195 173 117 116 112 110 114 117 123 130 132 133 124 149	209 201 186 137 123 121 118 119 124 128 133 138 138 146 153	187 185 187 185 187 185 181 176 160 146 148 146	MIN MARCH 197 198 202 194 186 179 180 185 180 175 162 142 143 146 132	200 202 204 201 190 182 183 186 183 179 171 148 144 148	127 132 139 140 142 144 142 149 155 155 166 169 173 178 180 185 188 189	MIN APRIL 121 127 132 137 139 149 143 149 152 151 165 168 171 174	123 129 135 138 141 141 141 146 153 153 157 163 166 170	193 167 157 161 160 172 185 189 159 152 159 162 168 169 169 172 175 180 189	MIN MAY 166 157 152 156 157 158 172 160 152 148 150 158 162 165 167	177 163 158 158 158 163 178 172 156 150 153 160 165 166 168
12345 6789 10 11213 1415 1617 1819 20	127 129 132 137 156 141 158 178 178 182 188 179 169 179	MIN FEBRUAR 195 173 117 116 112 110 114 117 123 130 132 133 124 149 159 172 175 172 154 168 166 171	209 201 186 137 123 121 118 119 124 128 138 138 146 153 165 183 179 178 168	206 206 207 204 194 187 185 181 176 146 148 146 131 132 136 141 144 147 151	MIN MARCH 197 198 202 194 186 179 180 175 162 142 143 146 132 126 132 137 141	200 202 204 201 190 182 183 186 183 179 171 148 144 148 140 128 129 133 139 143	127 132 139 140 142 144 142 149 155 155 166 169 173 178 180 185 188 189 189	MIN APRIL 121 127 132 137 139 140 143 149 152 152 161 165 168 171 174 178 184 182 185	123 129 135 138 141 141 141 146 153 153 157 163 166 170 174 176 180 185 186 186	193 167 157 161 160 172 185 180 159 152 168 169 169 172 175 180 189 165	MIN MAY 166 157 152 156 157 158 172 160 152 148 150 158 162 165 167 168 171 173 152 145	177 163 154 158 158 163 178 172 156 150 165 166 166 168 170 172 176 181 157

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C). WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

11		SPECIF	IC CONDU	CTANCE	(MICROSIEME	NS/CM AT	25 DEG.	C), WATER	YEAR OCT	OBER 198	7 TO SE	PTEM	BER 1988	
2 1434 131 138 223 222 212 217 177 178 120 105 166 168 3 145 140 142 238 223 224 230 190 190 195 175 169 175 169 175 164 145 140 142 238 223 225 235 200 189 195 175 169 175 169 175 167 167 167 167 167 167 167 167 167 167	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	M	AX	MIN	MEAN
2 140 135 136 233 224 230 190 178 184 145 175 166 185 175 166 185 175 166 186 175 186 186 175 186 186 175 186 186 175 186 186 175 186 186 175 186 186 175 186 186 175 186 186 187 187 187 187 187 187 187 187 187 187			JUNE			JULY			AUGUST				SEPTEMBER	
11	1 2 3 4 5	134 140 145 145 151	131 135 140 140 143	133 138 142 143 148	223 233 238 246 235	212 224 232 233 226	217 230 235 237 232	177 190 200 201 195	171 178 189 191 189	173 184 195 197 193	1 1 2	75 89 17	166 169	168 171 173 199
16	6 7 8 9	169 173	150 159 163 165 173	154 162 166 168 175	226 221 223 226 231	220 219 219 219 219 227	222 220 221 222 230	200 214 219 221 231	189 195 210 211 222	195 204 214 215 228	2 1 1 1 1	21 79 78 77 84	180 175 173 171 177	204 177 175 173 181
21 207 200 203 202 125 192 255 242 251 217 200 212 215 216 227 218 221 223 201 205 206 209 140 193 255 235 232 233 227 218 221 25 210 205 204 183 154 166 233 146 213 227 218 221 25 212 202 207 190 173 181 231 198 217 228 222 224 226 227 215 203 205 175 160 185 184 231 198 217 228 222 224 226 227 215 203 205 175 160 184 219 206 204 206 204 206 207 180 173 181 231 198 217 228 222 224 225 227 215 203 205 175 160 160 144 219 206 206 206 207 208 221 217 228 170 150 144 219 206 206 206 237 236 233 235 234 237 217 212 215 172 165 169 214 200 206 236 233 235 235 234 237 217 212 215 172 165 169 214 200 206 236 233 233 235 31 175 163 168 237 215 227 175 163 168 237 215 227	11 12 13 14	186 184 185 188 195	182 178 181 183 188	184 181 183 185 191	238 237 235 228 219	231 227 226 220 211	235 231 232 226 216	234 234 227 225 225	228 223 224 218 216	231 229 225 221 220	2 2 2 2 2 2	01 18 21 25 26	185 201 206 217 214	193 211 216 221 222
26 207 203 205 175 160 168 241 220 234 229 227 27 27 27 27 28 233 205 1770 120 144 210 206 211 234 229 228 227 228 177 228 1770 120 144 210 206 211 234 228 233 234 237 236 23	16 17 18 19 20	199 193 199 203 206	186 188 191 194 197	194 190 195 199 202	220 226 229 251 207	210 220 218 210 192	214 223 222 234 198	222 221 224 223 248	216 208 211 213 219	219 215 219 217 235	2 2 2 2 2 2	14 18 23 28 30	211 211 218 219 219	213 214 220 222 227
NONTH 234 131 185 251 120 207 255 146 215 238 152 208 208 PH (STANDARD UNITS), MATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 NOVEMBER DECEMBER JANUARY 1	21 22 23 24 25	207 210	200 205 205 202 202	203 206 208 204 207	202 209 213 183 190	125 140 181 154 173	192 193 205 166 181	255 241 235 233 231	242 232 232 146 198	251 236 233 213 217	2 2 2 2 2 2	17 21 27 27 27 28	209 215 218 218 222	212 219 222 221 224
NONTH 234 131 185 251 120 207 255 146 215 238 152 208 208 PH (STANDARD UNITS), MATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 NOVEMBER DECEMBER JANUARY 1	26 27 28 29 30 31	207 215 234 232 217	203 203 217 217 212	205 207 228 226 215	175 170 170 177 177 172 175	160 120 159 167 165 163	168 144 165 173 169 168	241 219 210 209 214 237	220 206 204 203 200 215	234 211 206 207 206 227	2 2 2 2	29 34 37 36 38	225 228 234 233 233	227 230 236 234 235
DAY MAX MIN MEAN NOVEMBER DECEMBER JANUARY 1 7.7 7.5 7.6 7.6 7.6 7.7 7.5 7.6 7.6 7.5 7.6 7.5 7.6	MONTH	234	131	185							. 2	38	152	208
OCTOBER NOVEMBER DECEMBER JANUARY 1 7.7 7.5 7.6 7.6 7.4 7.5 7.6 7.5 7.6				PH (STANDARD UN	ITS), WAT	TER YEAR	OCTOBER 19	87 TO SEF	TEMBER 1	988			
1 7.7 7.5 7.6 7.6 7.4 7.5 7.6 7.5 7.6	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		IAX	MIN	MEAN
6 7.7 7.6 7.6 7.6 8.0 7.7 7.8 7.8 7.6 7.7 9.0 7.5 8.4 7 7.7 7.6 7.6 8.2 7.7 7.9 7.9 7.7 7.7 8.6 8.1 8.4 8.1 8.2 9 7.9 7.6 7.6 8.2 7.8 7.9 7.9 7.7 7.7 8.6 8.1 8.4 8.1 8.2 9 7.9 7.6 7.7 8.3 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.7 7.8 8.3 7.9 7.9 7.7 7.8 8.4 8.1 8.2 9 7.9 7.9 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.7 7.8 8.3 8.3 7.9 8.1 10 7.8 7.6 7.7 7.7 7.6 7.7 7.6 7.7 7.9 7.9 7.7 7.8 8.3 8.2 7.9 8.1 11 7.6 7.5 7.6 7.6 7.9 7.6 7.6 7.8 8.0 7.7 7.8 8.2 8.2 7.9 8.1 12 7.8 7.5 7.6 7.7 8.0 8.0 7.7 7.8 8.0 7.7 7.8 8.0 7.7 7.8 8.0 7.8 7.9 13 7.9 7.6 7.8 8.0 7.8 7.9 8.1 7.7 7.9 8.0 7.8 7.9 15 8.4 7.7 8.0 8.1 7.7 7.9 8.1 7.7 7.9 8.0 7.8 7.9 15 8.4 7.7 8.0 8.1 7.7 7.9 8.1 7.7 7.9 8.1 7.9 7.6 7.8 8.0 8.1 7.7 7.9 8.1 7.7 7.9 8.1 7.9 7.9 7.0 8.3 7.9 8.1 9.1 9.1 8.2 8.7 8.1 7.8 7.9 8.1 9.1 9.1 8.2 8.7 8.1 7.8 7.9 8.1 9.1 9.1 8.2 8.7 8.1 7.8 7.9 9.1 9.1 9.1 8.2 8.7 8.2 8.2 7.8 7.9 9.1 9.1 8.2 8.2 7.8 7.9 9.1 9.1 8.2 8.2 7.8 7.9 9.1 9.1 9.1 8.2 8.7 8.2 8.2 7.8 7.9 9.1 9.1 9.1 8.2 8.2 7.8 7.9 9.1 9.1 9.1 8.2 8.2 7.8 7.9 9.1 9.1 9.1 8.2 8.2 7.8 7.9 9.1 9.1 9.1 9.1 8.2 8.2 7.8 7.9 9.1 9.1 9.1 9.1 9.1 8.2 8.7 8.2 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1													JANUARY	
6 7.7 7.6 7.6 7.6 8.0 7.7 7.8 7.8 7.6 7.7 9.0 7.5 8.4 7 7.7 7.6 7.6 7.6 8.2 7.8 7.9 7.9 7.7 7.7 8.6 8.1 8.4 8.1 8.2 9 7.9 7.6 7.6 7.7 8.3 7.8 7.9 7.9 7.7 7.7 8.4 8.1 8.2 9 7.9 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.7 7.7 7.8 8.4 8.1 8.2 9 7.9 7.9 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.7 7.8 8.4 8.1 8.2 8.4 8.0 8.1 10 7.8 7.6 7.7 7.7 7.6 7.7 7.6 7.7 7.9 7.9 7.7 7.8 8.4 8.4 8.0 8.1 11 7.8 7.5 7.6 7.6 7.7 7.7 7.6 7.7 7.9 7.7 7.8 8.2 7.9 8.1 11 7.6 7.5 7.6 7.6 7.9 7.6 7.8 8.0 7.7 7.8 8.2 7.9 8.1 12 7.8 7.5 7.6 7.7 8.0 8.0 7.7 7.9 8.1 7.7 7.8 8.0 7.8 7.9 13 7.9 7.6 7.8 8.0 7.8 7.9 8.1 7.7 7.9 8.1 7.7 7.9 8.0 8.1 7.7 7.9 8.1 7.9 7.6 7.8 8.0 7.8 7.9 15 8.4 7.7 8.0 8.1 7.7 7.9 8.1 7.7 7.9 8.1 7.9 7.6 7.8 8.0 8.1 7.7 7.9 8.1 7.7 7.9 8.1 7.9 7.0 8.3 7.9 8.1 16 8.5 8.1 8.2 8.4 7.8 8.0 8.1 8.2 8.4 7.9 8.1 8.1 8.3 8.0 8.2 8.1 8.2 8.4 7.9 8.1 8.1 8.2 8.4 7.9 8.1 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.7 8.1 7.8 7.9 8.1 8.3 8.0 8.1 8.3 8.0 8.1 8.2 8.2 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.2 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.2 8.2 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.2 8.2 7.8 7.9 8.1 8.3 8.0 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.8 8.2 8.2 7.8 7.9 8.1 8.2 8.2 7.8 7.8 8.2 8.2 7.8 7.8 8.2 8.2 7.8 7.9 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	1 2 3 4 5	7.7 7.7 7.7 7.7 7.7	7.5 7.6 7.5 7.5 7.6	7.6 7.6 7.6 7.6 7.6	7.6 7.7 7.8 7.9 7.9	7.4 7.5 7.5 7.6 7.6	7.5 7.6 7.6 7.7 7.7	7.6 7.5 7.6 7.6 7.7	7.5 7.4 7.5 7.6 7.5	7.6 7.5 7.6 7.6		3.9		8.3
16 8.5 8.0 8.2 8.4 7.8 8.0 8.3 8.0 8.2 17 8.5 8.1 8.2 8.4 7.9 8.1 8.3 8.0 8.1 18 8.9 8.1 8.5 8.5 7.9 8.1 8.2 7.9 8.1 19 9.1 8.2 8.7 8.1 7.8 7.9 8.3 8.0 8.1 20 9.2 8.3 8.7 7.9 7.7 7.8 8.3 7.6 7.7 21 8.5 7.9 8.2 7.9 7.7 7.8 7.9 7.7 7.8 22 9.0 7.9 8.3 8.1 7.7 7.9 7.9 7.7 7.8 23 9.0 8.1 8.5 8.2 7.8 7.9 8.1 7.8 7.9 24 9.0 7.9 8.4 8.3 7.7 7.9 8.1 7.8 7.9	9	7.7	7.6 7.6 7.5 7.6 7.6	7.6 7.6 7.6	8.0 8.2 8.2 8.3 7.7	7.7 7.7 7.8	7.8 7.9 7.9 7.9 7.7	7.9 7.9	7.6 7.7 7.7 7.7 7.7	7.7 7.7 7.7 7.8 7.8		3.6	8.1	8.4 8.4 8.2 8.1 8.1
20 9.2 8.3 8.7 7.9 7.7 7.8 8.3 7.6 7.9 21 8.5 7.9 8.2 7.9 7.7 7.8 7.8 7.6 7.7 22 9.0 7.9 8.3 8.1 7.7 7.9 7.9 7.7 7.8 23 9.0 8.1 8.5 8.2 7.8 7.9 8.1 7.8 7.9 24 9.0 7.9 8.4 8.3 7.7 7.9 8.3 7.8 8.0 25 9.0 8.0 8.4 8.1 7.7 7.9 8.1 7.8 7.9 26 9.2 8.0 8.5 8.1 7.7 7.8 8.5 7.7 8.0 27 9.1 7.7 8.4 8.0 7.6 7.7 8.7 7.8 8.2 28 7.7 7.4 7.6 8.0 7.6 7.7 8.8	11 12 13 14 15	7.6 7.8 7.9 7.9 8.4	7.5 7.5 7.6 7.6 7.7	7.6 7.6 7.7 7.8 8.0	7.6 7.9 8.0 8.0 8.1	7.6 7.6 7.7 7.8 7.7	7.6 7.8 7.9 7.9 7.9	8.0 8.1 8.1	7.7 7.7 7.7 7.7	7.8 7.8 7.8 7.9	8 .8	3.2 3.1 3.0 3.0 3.3	7.9 7.8 7.8 7.8 7.9	8.1 7.9 7.9 7.9 8.1
26 9.2 8.0 8.5 8.1 7.7 7.8 8.5 7.7 8.0 27 9.1 7.7 8.4 8.0 7.6 7.7 8.7 7.8 8.2 28 7.7 7.4 7.6 8.0 7.6 7.7 8.8 7.7 8.4 29 7.8 7.6 7.7 7.8 7.6 7.7 8.8 8.0 8.4 30 7.6 7.4 7.5 7.6 7.5 7.5 8.9 7.9 8.3 31 7.5 7.4 7.4 8.9 7.8 8.4	16 17 18 19 20	8.5 8.5 8.9 9.1 9.2	8.1	8.2 8.5 8.7 8.7	8.4 8.4 8.5 8.1 7.9	7.8 7.9 7.9 7.8 7.7	8.0 8.1 8.1 7.9 7.8	:::	:	:::		3.3 3.3 3.2 3.3 3.3	8.0 8.0 7.9 8.0 7.6	8.2 8.1 8.1 8.1 7.9
26 9.2 8.0 8.5 8.1 7.7 7.8 8.5 7.7 8.0 27 9.1 7.7 8.4 8.0 7.6 7.7 8.7 7.8 8.2 28 7.7 7.4 7.6 8.0 7.6 7.7 8.8 7.7 8.4 29 7.8 7.6 7.7 7.8 7.6 7.7 8.8 8.0 8.4 30 7.6 7.4 7.5 7.6 7.5 7.5 8.9 7.9 8.3 31 7.5 7.4 7.4 8.9 7.8 8.4	21 22 23 24 25	9.0	7.9 8.1 7.9	8.2 8.3 8.5 8.4 8.4	7.9 8.1 8.2 8.3 8.1		7.8 7.9 7.9 7.9 7.9	:::	:::	:::		7.8 7.9 3.1 3.3 3.1	7.6 7.7 7.8 7.8 7.8	7.7 7.8 7.9 8.0 7.9
	26 27 28 29 30 31	9.2 9.1 7.7 7.8 7.6	7.4	8.5 8.4 7.6 7.7 7.5	8.0 8.0 7.8 7.6	7.7 7.6 7.6 7.6 7.5	7.8 7.7 7.7 7.7 7.5	:::	:::	:::	100	5.9	7.7 7.8 7.7 8.0 7.9	8.0 8.2 8.4 8.4 8.3 8.4
														8.1

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

PH (STANDAR	RD UNITS),	WATER	YEAR	OCTOBER	1987	TO	SEPTEMBER	1988	

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	1		MARCH			APRIL			MAY	
1 2 3 4 5	8.8 7.8 7.6 7.5 7.3	7.8 7.4 7.4 7.2 7.2	8.2 7.6 7.5 7.4 7.3	8.9 9.0 8.8 7.9 7.5	7.7 7.7 7.7 7.4 7.3	8.3 8.4 8.1 7.6 7.4	7.4 7.6 7.6 7.7 8.2	7.0 7.0 7.0 7.1 7.1	7.2 7.2 7.3 7.3 7.5	7.9 8.0 8.6 8.3 7.5	7.6 7.5 7.4 7.3 7.3	7.8 7.7 7.8 7.6 7.4
6 7 8 9	7.4 7.7 7.6 7.9 7.8	7.3 7.2 7.4 7.4 7.4	7.4 7.5 7.5 7.6 7.6	7.6 8.4 8.7 8.6 8.5	7.4 7.5 7.6 7.6 7.4	7.5 7.8 8.1 8.0 7.9	7.8 7.5 7.7 7.8 8.1	7.0 7.3 7.3 7.4	7.4 7.3 7.4 7.5 7.7	7.7 8.1 7.9 7.9 7.8	7.4 7.5 7.6 7.5 7.4	7.5 7.7 7.7 7.7 7.6
11 12 13 14 15	7.9 7.7 7.9 8.0 8.0	7.5 7.3 7.5 7.5 7.6	7.7 7.5 7.6 7.8 7.8	8.4 7.6 7.7 8.0 8.1	7.5 7.3 7.3 7.4 7.5	7.8 7.4 7.5 7.7 7.8	8.1 8.7 8.2 8.7 9.3	7.6 7.8 7.7 7.9 8.1	7.9 8.1 7.9 8.2 8.6	7.6 7.7 7.3 7.7 7.2	7.2 6.9 6.9 7.0 7.0	7.4 7.2 7.1 7.2 7.1
16 17 18 19 20	7.8 8.0 8.1 7.9 7.6	7.4 7.6 7.7 7.7 7.4	7.6 7.8 7.9 7.7 7.5	8.3 8.7 8.7 8.8 8.8	7.4 7.6 7.7 7.7 7.7	7.8 8.1 8.1 8.2 8.2	9.2 9.5 9.1 9.3 9.4	7.9 8.2 8.1 7.5 8.5	8.6 8.9 8.8 8.5 9.0	7.7 7.5 7.3 7.3 7.3	7.2 7.2 7.2 7.2 7.1	7.4 7.3 7.3 7.2 7.2
21 22 23 24 25	7.6 7.7 8.1 8.3	7.5 7.6 7.6 7.6 7.6	7.6 7.6 7.8 7.9 7.9	9.1 9.3 9.3 9.4 9.5	7.8 7.9 7.9 7.8 7.9	8.4 8.6 8.6 8.6 8.8	9.5 9.5 9.2 8.5 8.5	8.5 8.7 8.0 7.5 7.7	9.0 9.1 8.8 8.0 8.1	7.3 7.2 7.2 7.1 7.1	7.2 7.2 7.1 7.1 7.1	7.2 7.2 7.2 7.1 7.1
26 27 28 29 30 31	8.6 8.3 8.8 8.9	7.6 7.7 7.6 7.7	8.0 7.9 8.1 8.2	8.4 7.5 7.2 7.3 7.2 7.4	7.5 7.2 7.0 7.0 7.1 7.1	7.9 7.4 7.1 7.1 7.1 7.2	8.3 9.0 8.4 8.1 8.1	7.4 7.5 7.5 7.8	7.9 8.0 7.9 7.8 7.9	7.2 7.2 7.3 7.3 7.3 7.4	7.1 7.1 7.2 7.2 7.2 7.2	7.1 7.2 7.2 7.2 7.3 7.3
MONTH	8.9	7.2	7.7	9.5	7.0	7.9	9.5	7.0	8.0	8.6	6.9	7.4
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX								MEAN			MEAN
1 2 3 4 5	7.8 7.9 7.7 7.7	MIN			MIN			MIN	MEAN		MIN	MEAN
	7.8 7.9 7.7	MIN JUNE	7.4 7.6 7.6	8.4 8.4 8.3 8.1	MIN JULY 7.3	7.8 7.8 7.7	7.5 7.6 7.6	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN ER
1 2 3 4 5 6 7 8 9	7.8 7.9 7.7 7.7 7.9 7.8	MIN JUNE 7.2 7.4 7.5 7.6 7.6 7.6	7.4 7.6 7.6 7.7	8.4 8.4 8.3 8.1 7.9 7.8 7.4	MIN JULY 7.3 7.4 7.3 7.2 7.1 7.0 6.8	7.8 7.8 7.7 7.7 7.4 7.3 7.1 7.1 7.0 7.0	7.5 7.6 7.6 7.7 7.8 7.9 8.1	MIN AUGUST 7.3 7.3 7.3 7.3 7.3	7.4 7.4 7.5 7.5 7.5 7.5	 	MIN SEPTEMBE	MEAN ER
1 23 45 67 89 10 11 123 134	7.8 7.9 7.7 7.7 7.9 7.9 8.0 8.5 8.6 8.6 8.8	MIN JUNE 7.2 7.4 7.5 7.6 7.6 7.7 7.7 7.8 8.0 8.1 8.1 8.2	7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.8 7.9 8.0	8.4 8.4 8.3 8.1 7.9 7.8 7.4 7.2 7.5 7.5 8.7	MIN JULY 7.3 7.4 7.3 7.2 7.1 7.0 6.8 6.9 6.9 6.9	7.8 7.8 7.7 7.7 7.4 7.3 7.1 7.0 7.0 7.2 7.3 7.7 8.0	7.5 7.6 7.7 7.8 7.9 8.1 8.6 8.5 8.5	MIN AUGUST 7.3 7.3 7.3 7.3 7.3 7.3 7.5 7.6 7.5 7.6 7.5	7.4 7.5 7.5 7.5 7.5 7.6 7.8 7.9 7.9 7.9	MAX	MIN SEPTEMBE	MEAN ER
12345 67891 112345 16718	7.977.77 7.99 7.89.02 8.56.68 8.8 9.8.56.68 8.8 9.8.56	MIN JUNE 7.2 7.4 7.5 7.6 7.6 7.7 7.7 7.8 8.0 8.1 8.3	7.4667.677.777.8908.4458.8.5488.577.777.897.777.897.777.897.777.897.777.897.777.897.89	8.4 8.4 8.3 8.1 7.9 7.8 7.4 7.2 7.5 7.7 8.9 9.3	MIN JULY 7.3 7.4 7.3 7.2 7.1 7.0 6.9 6.9 6.9 6.9 7.1 7.4 7.4 7.4 7.1	7.8 7.8 7.7 7.7 7.4 7.3 7.1 7.0 7.0 7.2 7.3 7.7 8.0 8.4 8.6 7.8 7.4	7.5 7.6 7.7 7.8 7.9 8.1 8.6 8.6 8.5 8.5	MIN AUGUST 7.3 7.3 7.3 7.3 7.3 7.5 7.6 7.6 7.6 7.5	7.4 7.5 7.5 7.5 7.5 7.6 7.9 7.9 7.9 7.9	MAX	MIN SEPTEMBE	MEAN ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.977.777.9 7.88.2 8.566.68.8 9.5.76.66	MIN JUNE 7.2 7.4 7.5 7.6 7.6 7.7 7.7 8.0 8.1 8.3 8.1 8.3 7.2 7.2 7.2 7.2	7.46 7.66 7.7 7.7 7.7 7.8 8.0 8.45 8.5 8.5	MAX 8.4 8.3 8.1 7.9 7.8 7.4 7.2 7.5 7.7 8.9 9.3 8.4 7.2 7.4 7.2	MIN JULY 7.3 7.2 7.1 7.0 6.8 6.9 6.9 7.1 7.2 7.4 7.4 7.9	7.8 7.8 7.7 7.7 7.4 7.3 7.1 7.0 7.0 7.2 7.3 7.7 8.0	7.5 7.6 7.7 7.8 7.9 8.4 8.6 8.5 8.5 8.5	MIN AUGUST 7.3 7.3 7.3 7.3 7.3 7.5 7.6 7.6 7.6 7.6 7.6	7.4 7.5 7.5 7.5 7.5 7.6 7.9 7.9 7.9 7.9	MAX	MIN SEPTEMBE	MEAN ER

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBE	R		DECEMBER	1		JANUARY	
1 2 3 4 5	18.5 17.5 17.0 14.5 14.5	17.5 16.5 14.5 13.5 13.0	18.0 17.0 16.0 14.0 14.0	9.5 10.0 10.5 11.5 12.0	8.5 9.5 9.5 10.0 10.5	9.0 9.5 10.0 11.0	8.0 7.0 6.0 5.5 5.5	7.5 6.0 5.5 5.5 5.0	7.5 7.0 6.0 5.5 5.0	1.0 1.0 .5 1.0	.5 .0 .0	1.0 .5 .0 .5
6 7 8 9	15.5 15.5 15.0 14.5 14.0	13.0 14.0 13.0 13.0 13.0	14.0 14.5 14.0 13.5 13.5	10.5 10.0 10.0 11.0 10.0	9.0 8.5 9.0 9.5 8.0	10.0 9.5 9.5 10.0 9.0	5.0 4.5 4.0 4.5 5.0	4.5 4.0 3.5 3.5 4.5	4.5 4.0 4.5 5.0	.0 .0 .0	.0 .0 .0	.0
11 12 13 14 15	13.5 12.5 13.0 13.0	12.5 11.5 11.0 11.0	13.0 12.0 12.0 12.0 12.0	8.0 6.0 7.0 7.5	5.5 5.5 6.0 6.0	6.5 5.5 6.0 6.5 7.0	6.0 6.0 6.0 5.5	5.0 5.5 5.0 5.0	5.5 5.5 5.5 5.0	.0	.0 .0 .0	.0
16 17 18 19 20	14.0 14.0 15.5 15.5	12.0 12.5 13.5 13.0 13.5	12.5 13.0 14.0 14.5 14.5	7.5 10.0 11.5 10.0 9.5	6.5 7.5 10.0 9.5 8.5	7.0 8.5 10.5 10.0 9.5	5.0 4.5 3.5 3.5 3.5	4.5 3.5 3.0 3.0 3.0	5.0 4.0 3.5 3.0 3.5	.0	.0 .0 .0	.0
21 22 23 24 25	14.5 14.0 12.5 13.5 14.0	13.0 11.5 11.5 11.0 12.0	14.0 12.5 12.5 12.0 12.5	8.5 4.5 5.5 5.5	4.0 3.5 3.5 4.0 5.0	6.5 4.0 4.5 5.0	4.0 3.5 4.5 4.0 4.5	3.5 3.5 3.0 4.0	3.5 3.5 4.0 3.5 4.0	1.0 2.0 2.0 2.0 2.0	.0 1.0 1.0	1.0 1.5 1.5 1.5
26 27 28 29 30 31	13.5 13.0 13.0 11.5 10.0 9.5	11.0 10.5 11.5 10.0 9.0 8.5	12.0 11.5 12.0 11.0 9.5 9.0	6.0 5.5 5.5 7.5 8.5	5.5 5.5 5.5 7.5	5.5 5.5 6.0 8.5	5.0 4.5 4.0 3.0 1.5	4.5 4.0 3.0 1.5 .0	4.5 4.0 3.5 3.0 .5	1.5 .5 .5 2.0 3.0	.5 .0 .0 .0	1.0 .5 .0 .5 1.0 2.0
MONTH	18.5	8.5	13.0	12.0	3.5	7.5	8.0	.0	4.5	3.0	.0	.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	4.5 4.0 3.5 2.5 1.0	2.5 3.5 2.5 1.0	3.5 4.0 3.0 2.0 1.0	4.5 5.0 5.0 4.5	3.0 3.0 4.5 4.0 3.0	3.5 4.0 5.0 4.5 4.0	10.0 10.5 10.5 11.0 13.0	9.0 9.5 9.5 10.0 10.5	9.5 10.0 10.0 10.5 12.0	14.0 13.5 14.0 14.0 13.5	13.5 13.0 12.5 12.5 13.5	14.0 13.5 13.0 13.5
6 7 8 9	.5 .0 .5 1.0 2.5	.0 .0 .0 .0	.5 .0 .5 1.0	4.5 5.5 6.5 7.0 7.5	3.0 3.5 4.5 5.5 6.5	3.5 4.5 5.5 6.5 7.0	12.5 12.0 11.0 12.0 12.5	12.0 11.0 10.5 10.0 10.0	12.0 11.5 11.0 11.0	13.5 17.0 17.5 16.5 17.5	13.5 13.5 15.5 15.5 15.5	13.5 15.0 16.5 16.0 16.5
11 12 13 14 15	2.0 2.0 1.0 1.0 2.0	1.5 1.0 .0 .0	2.0 1.5 .5 .5	6.5 6.5 6.5 6.5	5.5 5.5 5.5 5.5	6.0 5.5 6.0 6.0 5.5	13.0 13.5 13.5 13.5 13.0	11.0 12.0 11.0 11.5 11.5	12.0 12.5 12.0 12.5 12.0	18.0 19.0 19.5 20.0 20.5	17.0 16.0 17.0 18.5 18.0	17.5 17.5 18.5 19.0 19.5
16 17 18 19 20	3.0 3.5 4.0 3.5 3.5	2.0 2.0 3.0 2.5 2.5	2.5 2.5 3.0 3.0	5.5 5.5 5.5 5.5	4.5 4.0 4.5 5.0 4.5	5.0 5.0 5.5 5.5	12.0 13.5 12.5 11.0 12.0	10.5 10.0 11.5 10.0 9.5	11.5 11.5 12.0 10.5 10.5	20.5 19.0 18.5 17.5 15.5	19.0 18.5 17.5 15.5 15.0	19.5 19.0 18.0 17.0 15.5
21 22 23 24 25	3.5 2.5 4.0 4.0 3.5	2.5 1.5 2.5 3.0 2.5	3.0 2.0 3.0 3.5 3.0	5.5 5.5 6.5 8.5 11.0	4.0 3.5 4.5 6.0 8.0	4.5 4.5 5.5 7.0 9.5	13.0 13.5 12.0 12.5 14.0	10.5 10.5 11.0 11.0	11.5 12.0 11.5 11.5 12.0	15.5 16.5 17.0 18.5 18.5	15.0 15.5 15.5 17.0 16.5	15.0 16.0 16.5 17.5
26 27 28 29 30 31	3.5 3.0 3.5 4.0	2.0 2.5 2.5 2.5	3.0 3.0 3.5	11.0 11.0 9.5 8.5 9.0 10.0	10.5 9.5 7.5 7.0 7.5 8.0	11.0 10.5 8.5 7.5 8.5 9.0	15.0 16.0 16.0 15.0	11.5 12.5 13.5 14.0 13.5	13.0 14.0 15.0 14.5 14.0	17.0 17.0 18.0 19.0 20.5 21.5	16.0 15.5 16.0 17.0 18.0 19.5	16.5 16.0 17.0 18.0 19.5 20.5
MONTH	4.5	.0	2.0	11.0	3.0	6.0	16.0	9.0	12.0	21.5	12.5	16.5

> 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	
1 2 3 4 5	22.5 22.0 20.5 19.5 19.5	20.5 20.5 19.5 18.0 17.5	21.5 21.5 20.0 19.0 18.5	23.0 23.5 26.0 27.0 27.0	20.0 19.5 20.5 22.0 23.5	21.5 21.5 23.0 24.0 25.0	29.5 30.0 30.0 31.0 30.5	26.5 27.5 27.5 27.5 28.0	28.0 28.5 28.5 29.0 29.0	24.5 25.0 24.5 22.5 22.5	22.0 22.0 21.5 21.5 21.0	23.5 23.0 23.0 22.0 21.5
6 7 8 9	20.5 21.0 20.5 19.5 20.0	18.5 19.5 19.0 18.5 17.0	19.5 20.0 20.0 19.0 18.5	28.5 29.0 30.5 28.5 30.0	23.5 25.0 25.5 26.5 25.5	26.0 27.0 28.0 27.0 28.0	31.5 31.0 31.5 32.0 31.5	28.0 28.0 27.5 27.5 28.0	29.0 29.5 29.5 29.5 29.5	21.0 21.0 21.0 22.5 23.5	19.5 19.0 19.0 20.0 20.5	20.0 20.0 20.0 21.0 22.0
11 12 13 14 15	21.0 22.0 24.0 25.5 27.0	18.0 18.5 20.0 21.5 23.0	19.5 20.5 22.0 23.5 25.0	30.5 28.5 30.5 30.5 31.5	27.0 27.0 26.0 27.0 27.5	29.0 28.0 28.0 28.5 29.5	31.0 32.0 32.0 32.5 32.0	28.5 29.0 29.5 29.5 29.0	29.5 30.5 30.5 31.0 30.5	22.5 22.5 23.0 22.5 22.0	20.5 19.0 20.0 20.0 19.5	21.5 20.5 21.0 21.5 21.0
16 17 18 19 20	27.5 26.5 28.5 28.5 28.0	24.5 25.0 24.0 25.0 24.5	26.0 25.5 26.0 26.5 26.5	31.5 31.5 30.5 29.5 28.0	27.5 28.0 27.5 28.0 27.0	29.5 29.5 29.0 28.5 27.5	30.5 29.0 29.0 26.0 24.0	28.0 26.5 26.0 24.5 23.0	29.5 27.5 27.5 25.0 23.5	21.5 19.5 20.0 22.0 22.5	18.5 18.5 18.5 19.0 20.0	20.0 19.0 19.0 20.5 21.0
21 22 23 24 25	29.5 30.0 29.0 28.5 27.5	25.5 26.0 26.5 24.0 23.5	27.5 28.0 27.5 26.0 25.5	27.0 26.0 25.5 25.0 26.0	25.0 25.0 25.0 24.0 24.5	26.5 25.5 25.5 24.5 25.0	26.0 26.5 23.5 25.5 25.0	21.5 21.5 22.0 20.5 22.5	23.5 24.0 23.0 23.0 24.0	22.0 22.0 23.0 21.5 20.0	20.5 19.5 19.5 20.0 19.0	21.0 20.5 21.0 20.5 19.5
26 27 28 29 30 31	27.0 27.0 28.0 28.0 24.5	24.0 22.5 22.5 23.5 22.0	25.0 24.5 24.5 25.0 23.5	25.5 24.5 24.0 26.0 27.5 28.0	24.5 21.5 22.5 24.0 25.5 26.5	25.0 22.5 23.5 25.0 26.5 27.0	26.0 26.5 25.5 24.5 25.0	22.5 23.5 24.0 23.5 22.5 22.5	24.0 24.5 25.5 24.5 23.5 23.5	22.0 22.0 22.5 20.0 20.0	18.0 18.5 19.0 18.5 18.0	20.0 20.0 20.5 19.5 18.5
MONTH	30.0	17.0	23.0	31.5	19.5	26.5	32.5	20.5	2.22	25.0	18.0	20.5
		C	XYGEN, [DISSOLVED (DO), MG/L	, WATER	YEAR OCTOBE	R 1987 T	O SEPTEM	BER 1988		
DAY	MAX	MIN	MEAN	DISSOLVED (DO), MG/L MIN	, WATER MEAN	YEAR OCTOBE			BER 1988	MIN	MEAN
		MIN	MEAN	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUAR	(
1 2 3 4 5	9.1 9.4 9.3 9.9	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN			
	9.1 9.4 9.3	MIN OCTOBER 8.4 8.7 8.9	MEAN 8.7 9.0 9.1	11.4 11.6 11.3 11.2	MIN NOVEMBER 10.8	MEAN	MAX 11.5	MIN DECEMBER	MEAN 11.2	MAX	JANUAR	(
1 2 3 4 5	9.1 9.4 9.3 9.9 10.2 10.0 10.1	MIN OCTOBER 8.4 8.7 8.9 9.1 9.5 9.7 9.5 9.7 9.8 9.8 9.8 10.3 10.4	MEAN 8.7 9.0 9.1 9.5 9.8 9.8 9.8	MAX 11.4	MIN NOVEMBER 10.8 10.8 10.4 10.2 9.9	MEAN 11.1 11.1 10.9 10.6 10.3 10.4 10.9 11.1	11.5 11.8 12.2 12.3 12.5 12.8 13.2	MIN DECEMBER 10.8 11.4 11.8 12.0	11.2 11.6 12.0 12.1 12.2	15.4 15.9 16.2 16.4 16.2 16.1 15.7 14.7	JANUAR' 14.0 13.7 14.2 14.2 14.2 14.2	14.5 14.7 15.0 15.1 15.1
1 2 3 4 5 6 7 8 9	9.1 9.4 9.3 9.9 10.2 10.0 10.1 10.5 10.4	MIN OCTOBER 8.4 8.7 8.9 9.1 9.5 9.7 9.5 9.7 9.8	8.7 9.0 9.1 9.5 9.8 9.9 9.8 10.1	11.4 11.6 11.3 11.2 10.9 11.1 11.7 12.1 10.7	MIN NOVEMBER 10.8 10.4 10.2 9.9 10.0 10.3 10.6 10.5 10.2	11.1 11.1 10.9 10.6 10.3 10.4 11.1 11.0	11.5 11.8 12.2 12.3 12.5 12.8 13.2 13.4 13.2	MIN DECEMBER 10.8 11.4 11.8 12.0 12.0 12.2 12.4 12.6 12.6 12.3	11.2 11.6 12.0 12.1 12.2 12.4 12.7 13.0 12.9 12.7	15.4 15.9 16.2 16.4 16.2 16.1 15.7 14.7 14.9 15.0	JANUAR 14.0 13.7 14.2 14.2 13.8 14.4 14.2 13.8 14.0	14.5 14.7 15.0 15.1 15.1 14.9 14.9 14.5 14.3
1 2 3 4 5 6 7 8 9 10 11 13 14 15	9.1 9.4 9.3 9.9 10.2 10.0 10.1 10.5 10.4 10.1 11.3 11.0 11.4 12.0 11.9 10.6 11.9	MIN OCTOBER 8.4 8.7 8.9 9.1 9.5 9.7 9.8 9.8 10.3 10.4 10.3 9.8 9.7 9.8 9.8 9.7 9.8 9.8	8.7 9.0 9.1 9.5 9.8 9.9 9.8 10.1 10.1 10.3 10.7	11.4 11.6 11.3 11.2 10.9 11.1 12.0 12.1 10.7	MIN NOVEMBER 10.8 10.4 10.2 9.9 10.0 10.3 10.6 10.5 10.2 10.4 11.6 11.6 11.6	MEAN 11.1 10.9 10.6 10.3 10.4 10.9 11.1 11.0 10.4 10.7 11.5 11.9 12.0 12.2 11.8	11.5 11.8 12.2 12.3 12.5 12.8 13.2 13.4 13.2 13.1 12.8 12.9 13.6 12.3	MIN DECEMBER 10.8 11.4 11.8 12.0 12.2 12.4 12.6 12.3 12.1 11.8 11.7 11.7 11.7 12.5 12.8 12.7	11.2 11.6 12.0 12.1 12.2 12.7 13.0 12.7 12.7 12.5 12.2 12.6 12.1	15.4 15.9 16.2 16.4 16.2 16.1 15.7 14.9 15.0 15.0 14.8 15.3	14.0 13.7 14.2 14.2 13.8 14.4 14.2 13.8 14.0 14.2 14.5 14.5	14.5 14.7 15.1 15.1 14.9 14.5 14.3 14.4 14.5 14.7 14.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	9.1 9.4 9.3 9.9 10.2 10.0 10.1 10.5 10.4 10.7 11.1 11.3 11.0 11.1 11.4 12.0 11.9	MIN OCTOBER 8.4 8.7 8.9 9.1 9.5 9.7 9.5 9.7 9.8 10.3 10.4 10.3 9.9 9.8 9.8 9.8	MEAN 8.7 9.0 9.1 9.5 9.8 10.1 10.1 9.9 10.3 10.7 10.8 10.7	11.4 11.6 11.3 11.2 10.9 11.1 11.7 12.0 12.1 10.7 11.0 12.5 12.5 12.5 12.7 11.3 11.0	MIN NOVEMBER 10.8 10.4 10.2 9.9 10.0 10.3 10.6 10.5 10.2 11.6 11.6 11.6 11.7 11.2 10.7 10.5 10.4	11.1 11.1 10.9 10.6 10.3 10.4 10.9 11.1 11.0 10.4 10.7 11.5 11.9 12.0 12.2 11.3 10.9	11.5 11.8 12.2 12.3 12.5 12.5 12.8 13.4 13.4 13.1 12.8 12.9 13.6 12.3 12.3 12.6 12.3	MIN DECEMBER 10.8 11.4 11.8 12.0 12.2 12.4 12.6 12.3 12.1 11.8 11.7 11.7 11.7 11.7 12.5 12.8 12.5	MEAN 11.2 11.6 12.0 12.1 12.2 12.4 12.7 13.0 12.7 12.2 12.6 12.1 12.2 12.5 13.1 13.3	15.4 15.9 16.2 16.4 16.2 16.1 15.7 14.9 15.0 15.0 14.8 15.2 15.2 14.1 14.0	JANUAR 14.0 13.7 14.2 14.2 13.8 14.4 14.2 13.8 14.4 14.5 14.5 14.5 14.5 14.5 14.5	14.57 14.77 15.1 15.1 14.9 14.5 14.5 14.5 14.7 14.5 14.7 14.5 14.8 14.8 12.9

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		U	ATGEN,	DISSOLAED	(DU), MG/L,	WATER	TEAR OLIOBER	1907 1		1700		
DAY	MAX	MIN FEBRUAR	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN	MEAN
1 2 3 4 5	16.3 13.7 13.1 13.6 13.8	13.6 12.5 12.6 13.1 13.6	14.7 13.0 12.8 13.4 13.7	16.5 17.1 15.6 13.4	13.3	14.7 14.9 13.9 12.7 12.6	12.1 12.4 12.4 12.3 12.9	11.3 10.9 11.0 10.9 10.7	11.7 11.5 11.6 11.4 11.7	11.7 10.9 12.1 11.8 9.7	9.2 9.3 9.2 8.9 8.6	10.3 10.1 10.4 10.2 9.3
6 7 8 9	14.3 14.6 14.7 14.7 14.8	13.8 14.2 14.2 14.2 14.0	14.1 14.4 14.4 14.4 14.3	13.4 14.7 15.4 14.7	12.6 12.8 12.7 12.3 11.6	13.0 13.6 13.8 13.3 12.8	12.0 11.1 11.7 13.5 14.1	10.2 10.0 10.1 10.3 10.5	11.1 10.5 10.8 11.7 12.1	9.5 11.1 11.0 10.9 10.9	8.4 8.5 8.3 8.3	8.9 9.6 9.5 9.4 9.3
11 12 13 14 15	14.8 13.9 14.5 15.0 15.0	13.8 13.4 13.3 13.9 13.7	14.2 13.5 13.9 14.4 14.3	14.2 13.2 13.0 13.1	11.9 12.0 12.0 11.8 11.8	13.0 12.5 12.4 12.4 12.5	14.4 15.1 15.9 16.4 15.6	10.3 10.1 10.2 10.4 10.2	12.3 12.5 12.8 13.0 12.5	8.8 10.7 10.7 10.1 10.3	7.8 7.8 7.9 7.4 7.2	8.1 9.0 9.2 8.6 8.7
16 17 18 19 20	13.7 13.8 14.0 13.5 12.6	13.1 13.0 12.7 12.7 12.1	13.3 13.2 13.3 13.0 12.4	13.4 14.0 13.8 13.9	12.0 12.2 3 12.1 9 11.9 7 11.9	12.7 13.0 12.9 12.9 12.8	14.8 17.0 13.9 15.9 16.0	10.0 10.5 10.5 9.6 11.0	12.3 13.5 12.1 12.6 13.3	9.5 8.5 7.9 8.4 8.6	7.0 6.8 7.2 7.3 8.5	8.0 7.5 7.5 7.7 8.6
21 22 23 24 25	12.6 13.6 14.1 14.4 14.5	12.1 12.6 13.0 12.6 12.9	12.4 13.1 13.3 13.4 13.6	14.8 15.8 15.8 16.3	12.2 12.4 12.5 12.2 11.8	13.4 13.9 14.0 13.9 13.7	15.8 16.6 13.9 14.0 16.3	10.6 10.6 10.4 9.3 10.0	13.1 13.4 12.1 11.5 13.0	9.1 9.0 8.9 8.6 8.5	8.7 8.8 8.6 8.1 8.0	8.9 8.9 8.8 8.4 8.2
26 27 28 29 30 31	15.1 14.4 15.7 16.4	13.1 13.1 13.0 13.2	14.0 13.7 14.2 14.6	12.1 10.1		11.3 10.6 11.2 11.8 11.9	16.5 14.7 11.7 11.4 11.8	10.5 10.2 8.6 8.5 8.6	13.4 12.2 9.9 9.8 10.0	9.0 9.3 9.2 9.0 8.9 9.1	8.5 9.0 9.0 8.7 8.5 8.2	8.8 9.1 9.1 8.9 8.7 8.6
MONTH	16.4	12.1	13.7			12.9	17.0	8.5	12.0	12.1	6.8	8.9
DAY	MAX	MIN	MEAN	MA	K MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	9.8 9.6 9.2 9.3 9.6	8.0 7.9 8.0 8.4 8.6	8.8 8.6 8.5 8.8 9.1	10. 10. 11. 10.	7.1 8 7.1 0 7.0 8 6.5 4 6.1	8.8 9.0 8.9 8.8 8.2	7.0 7.1 7.2 7.4 7.6	6.0 5.6 5.6 5.8	6.5 6.3 6.4 6.6	:::		:::
6 7 8 9	9.6 9.3 9.5 9.6 10.5	8.5 8.4 8.1 8.2 8.6	9.1 8.8 8.7 8.8 9.5	10. 10. 10. 9. 9.	5 5.8 0 5.6 2 5.4 0 5.1 8 4.8	8.0 7.5 7.6 6.6 7.1	7.9 8.4 9.0 9.4 9.7	5.7 5.5 5.8 6.0 6.2	6.6 6.9 7.3 7.5 7.6		::	
11 12 13 14 15	11.0 11.5 12.2 12.5 12.2	9.0 9.2 9.2 9.1 8.6	10.0 10.3 10.6 10.7 10.5	10. 8. 10. 11.	5 5.2 6 5.0 3 4.9 8 5.6 7 5.5	7.6 6.6 7.4 8.4 8.8	9.3 10.2 10.1 10.1 9.9	6.1 6.3 6.3 6.3	7.5 8.0 8.0 8.0 7.8		:::	
16 17 18 19 20	11.2 9.6 11.0 10.9 10.8	7.9 6.4 6.4 6.2	9.5 8.1 8.6 8.3			9.9 9.5 7.8 6.7 5.8	9.9 9.9 9.8 9.1 7.8	5.6 5.9 5.6 5.7	7.5 7.5 7.4 7.1 6.7		:::	
21 22 23 24 25	11.1 10.6 10.5 12.1 12.9	5.9 5.7 5.5 6.3 6.9	8.4 8.1 8.0 9.1 9.7		2 5.8 8 5.9 9 6.2	6.0 6.3 6.4 6.8 6.9	10.5 10.1 9.8 9.9 8.6	6.0 6.2 6.3 6.9 6.4	7.9 8.0 7.8 8.1 7.3		:::	
26 27 28 29 30 31	11.2 10.6 11.4 10.4 10.4	6.7 6.4 6.8 6.5 6.7	8.7 8.5 9.0 8.5 8.6		5 6.6 7 7.2 4 7.2 4 7.0 4 6.8	6.9 7.5 7.3 7.2 7.1 6.8	8.9 8.9	6.3	7.5 7.4 		:::	
MONTH	12.9	5.5	9.0			7.6	10.5	5.5	7.3			

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft upstream from bridge on Quaker Bridge Road, 1.9 south of Clarksville, 2.0 mi upstream from Shipetaukin Creek, and 7.6 mi upstream of mouth.

drainage area. -- 34.3 mi².

PERIOD OF RECORD. -- Water years 1963, 1965, 1967, and 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Water Resources Division. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND ARD UNITS)	- ATI	PER- (URE TER G C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEI DIS SOLVI (PER CEN' SATUI ATIO	DEM D BI CH I IC	O- EM- AL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
1/	1987 4	1115	E25	102	6.6	5 1:	2.5	9.7	9	1 E	1.8	<20	23
JAN 2	1988 5	1330	E90		6.4		3.0	12.2	9	1 E	2.0	20	240
MAY 1	2	1345	E42	148	7.3	5 1º	9.0	9.7	10	4	3.3	<20	21
	B	1330	E20	158	7.5	5 2	1.0	9.1	10	4	6.9	40	49
JUL 1	3	1400	E11	143	6.6	5 2	5.5	9.4	11	4	7.3	80	540
AUG 3	1	1130	E14	••	7.	1 2	2.0	8.3	9	5 <	0.9	50	79
	DATE OCT 1987 14 JAN 1988 25 MAY 12 JUN 08 JUL 13 AUG	HARD NESS TOTA (MG/ AS CACO	G CALC DIS (L SOLL (MG 33) AS	IUM SI - DI VED SOLL (MCCA) AS .2 3 .3 4 .1 4 .2 4	S- I VED SI I/L MG) // 3.7 3.6 4.7	DDIUM, DIS- DLVED (MG/L AS NA) 4.7 8.4 6.7 7.2	POTAL SIUL DIS SOLV (MG/AS K	M, LINI L L L L L L L L L L L L L L L L L	AB G/L SCO3) A	ULFATE DIS- SOL-VED (MG/L S SO4) 16 26 24 22	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL 11 18 14 13	RIII DD SOO (MM)	USC VED G/L F) D.2 D.2 D.3
	DATE OCT 1987 14 JAN 1988 25 MAY 12 JUN 08 JUL	4.	SOLI CA, SUM CONS TUEN (L DI L SOL CA) SOL CONS (MG) SOL CA) SOL CA	DS, OF NIT TI- GE TS, NITF S- TOO VED (MM /L) AS 1 0. 2 0. 9 0. 1 0.	N RITE N TAL S/L	7.1 NITRO- GEN, 02+NO3 TOTAL (MG/L AS N) 0.36 1.49 0.63 0.15	2. NITR GEN AMMON TOTA (MG/ AS N 0.10 0.06 0.09	O- GEN MON IA ORG L TO L (M) AS	TRO- ,AM- IA + ANIC TAL G/L	NITROGEN, TOTAL (MG/L AS N) 1.3 1.3	PHOS- PHOROU TOTAL (MG/L AS P) 0.065 0.042 0.053	CAR S ORG TO (M AS	BON, ANIC TAL G/L C) .1
	13				.012	0.39	0.11		.0	1.4	0.359		
	31	3.	.0 7	0 0.	.003	0.27	<0.05		.70	0.98	0.554	6	.8

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOLV (UG/	I, S- ARSE /ED TOT /L (UC	LI TO ENIC RE FAL ER G/L (U	RYL- UM, TAL COV- ABLE IG/L BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1988 08	1330	<0.	5 30)	1 •	:10	20	2	1	6
DATE	RI EI	OTAĽ ECOV- RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	REC ER/	TAL SE COV- NI ABLE TO G/L (U	LE- TI IUM, R DTAL E JG/L (UG/L T	ENOLS OTAL G/L)
JUN 1988 08		790	<5	120	<0.10		3.	<1 <	10	1

1

01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank 20 ft upstream from bridge on Chambers Street (Lincoln Avenue) in Trenton, and 1.5 mi upstream from mouth.

DRAINAGE AREA. -- 90.6 mi 2.

PERIOD OF RECORD. -- August 1923 to current year.

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24.76 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records good. Records include water diverted from outside the basin since February 1954 for municipal supply which returns to Assumpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi above station (records given herein). In addition there is an average inflow of about 2.0 ft /s from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months. Flow regulated by several flood-control reservoirs upstream of gage since mid-1970's. Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988, ME	AN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	67 61 135 219 129	146 121 103 95 86	215 158 126 111 97	79 78 77 84 78	230 316 341 413 370	146 138 132 252 355	119 109 102 112 112	117 105 96 90 103	95 208 102 96 86	34 32 30 26 27	72 65 57 52 48	42 39 37 326 223
6 7 8 9 10	112 124 105 94 85	76 73 68 69 187	87 81 77 74 73	72 70 70 70 68	263 193 166 154 144	264 218 186 168 161	99 102 102 93 85	212 204 151 126 113	71 64 59 65 59	32 33 30 28 27	44 41 39 38 36	110 79 61 54 50
11 12 13 14 15	81 79 74 70 67	304 232 199 161 134	115 93 84 80 222	68 66 68 65 62	132 686 507 377 340	142 132 131 127 120	83 83 84 82 86	113 106 94 127 91	53 49 48 46 44	27 42 38 36 35	59 40 35 33 33	46 45 94 54 43
16 17 18 19 20	65 62 59 59	118 107 108 97 93	237 170 139 120 156	59 58 148 133 403	501 340 276 261 570	111 103 98 97 93	102 85 95 101 89	82 88 168 349 442	42 44 45 44 44	35 52 39 39 52	31 56 105 69 70	40 42 42 42 43
21 22 23 24 25	60 57 56 54 51	83 73 75 78 81	139 121 111 102 97	389 328 258 201 186	334 278 243 222 193	89 81 78 77 77	84 78 79 124 93	287 236 207 203 176	43 43 42 39 37	191 389 176 273 97	68 62 62 300 163	44 44 43 42 43
26 27 28 29 30 31	52 96 708 382 285 196	73 69 66 e143 e434	105 96 91 94 82 79	252 220 177 145 134 158	175 168 165 155	234 361 232 166 148 132	84 85 318 171 146	167 143 121 104 92 84	37 37 37 36 35	244 493 311 154 104 83	66 65 46 57 59 45	41 37 e31 e40 34
MEAN MAX MIN (†)	123 708 51 14.1	125 434 66 14.7	117 237 73 15.3	139 403 58 15.2	294 686 132 22.0	156 361 77 17.3	106 318 78 14.9	155 442 82 17.2	58.3 208 35 13.9	104 493 26 12.9	65.0 300 31 12.5	63.7 326 31 12.5
					OF RECORD,							
MEAN MAX (WY) MIN (WY)	76.2 257 1928 19.1 1931	113 331 1973 27.6 1932	143 386 1984 42.1 1944	160 498 1979 44.2 1981	186 395 1939 52.0 1934	204 426 1936 76.7 1985	178 494 1983 65.2 1963	126 338 1984 40.0 1941	92.4 249 1946 25.9 1942	96.8 545 1975 17.2 1955	88.1 355 1971 17.3 1966	88.4 327 1938 15.8 1943
SUMMARY	STATISTIC	S		FO	R 1988 WATE	R YEAR			FOR P	ERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST D INSTANTA INSTANTA	ANNUAL MEA ANNUAL MEA DAILY MEAN ANEOUS PEA ANEOUS LOW ENTILE ENTILE	N N K FLOW K STAGE			708 26 1380 7.2 23 259 91 36	Oct 28 Jul 4 Oct 28 Oct 28 Jul 5			12: 232. 69. 405: 4. 545: 14.6 8. 26:	- 8 2 0 Jul 0 Jul 1 Jul 0 Aug 7	1984 1984 1975 21 1975 21 1929 21 1975 21 1975 21 1931	

a From high-water mark in gage house

e Estimated

[†] Inflow from outside basin, 2.4 mi upstream of station, through plant of Ewing-Lawrence Sewerage Authority, in cubic feet per second.

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge in Extonville, 0.5 mi upstream from Pleasant Run, and 0.7 mi downstream from Mercer-Monmouth County line.

DRAINAGE AREA .-- 81.5 mi 2.

Result of freezeup

Estimated

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1940 to October 1951, October 1952 to current year.

REVISED RECORDS.--WDR NJ-79-2: 1971(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 24.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow regulated occasionally by lakes above station. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	87 68 58 232 229	113 102 94 90 87	259 162 132 118 114	100 107 105 101 104	135 154 272 311 426	124 116 114 125 288	113 108 102 102 108	108 95 89 87 92	62 197 184 112 90	33 33 33 32 31	39 36 34 33 32	35 32 30 38 107
6 7 8 9	128 136 157 116 101	82 77 76 76 87	104 95 91 89 89	125 154 115 108 90	262 161 140 123 120	273 186 156 142 136	103 99 104 99 91	132 185 146 112 96	76 67 64 70 81	30 30 29 28 30	31 31 30 29 28	82 49 38 47 73
11 12 13 14 15	90 85 77 70 74	255 270 197 155 128	107 138 121 106 107	85 89 91 89 85	115 313 596 366 214	125 117 114 113 108	89 83 81 80 80	94 93 85 80 89	65 58 52 49 47	29 28 30 28 28	29 30 28 27 26	75 70 72 90 67
16 17 18 19 20	74 69 67 62 62	112 102 104 107 102	278 261 160 131 128	83 85 107 281 326	399 395 232 185 268	102 98 96 97 96	95 95 84 98 92	84 74 88 132 247	45 43 49 49	e28 e27 e35 e30 e38	24 24 33 31 30	54 45 41 39 35
21 22 23 24 25	62 60 58 62 63	97 87 85 88 91	161 142 125 113 109	593 438 238 169 153	260 176 159 154 142	92 89 88 89 89	81 77 74 120 122	228 157 130 115 123	42 40 38 39 36	e47 e95 e68 e67 e66	34 33 28 58 117	32 34 31 29 31
26 27 28 29 30 31	57 61 419 411 165 133	89 89 87 92 204	115 122 119 114 112 120	238 265 181 179 141 124	130 127 134 132	113 294 240 162 137 123	98 87 127 133 115	145 107 89 80 73 67	37 35 34 33 33	e56 e110 114 61 51 45	68 44 37 35 44 44	33 33 30 28 26
MEAN MAX MIN IN.	116 419 57 1.64	114 270 76 1.56	134 278 89 1.89	166 593 83 2.35	228 596 115 3.01	137 294 88 1.94	98.0 133 74 1.34	114 247 67 1.61	62.4 197 33 .85	44.8 114 27 .63	37.0 117 24 .52	47.5 107 26 .65
					OF RECORD,						1 mr	
MEAN MAX (WY) MIN (WY)	88.4 207 1972 32.9 1966	132 406 1973 36.7 1966	162 356 1973 46.2 1966	170 452 1978 62.1 1981	184 416 1979 86.6 1954	198 370 1958 86.1 1985	176 388 1983 68.3 1985	132 319 1984 60.8 1955	97.3 251 1968 39.8 1965	99.9 299 1945 25.8 1955	91.8 299 1971 25.4 1966	87.6 284 1971 31.7 1941
SUMMARY	STATISTIC	s		FC	OR 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC	FLOW ANNUAL MEA ANNUAL MEA ANAILY MEA DAILY MEA FANEOUS PEA FANEOUS LOW RUNOFF (IN CENTILE CENTILE CENTILE	IN IN IK FLOW IK STAGE I FLOW			596 24 652 6.26 22 18.0 202 92	Feb 13 Aug 16 Jan 21 Jan 21 Aug 16			7 3 4 14 1 2	135 225 6.9 930 Aug 16 Aug 860 Sep .18 Sep 3.1a Feb 2.4 254 94	30 1966	

DELAWARE RIVER BASIN

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DIS CHARG INST CUBI FEE PER SECO	E, SPI C COI T DUC AND	FIC N- CT- (1 CE	PH STAND- ARD NITS)	TEMP ATU WAT (DEG	RE ER	DXYGEN, DIS- SOLVEI (MG/L)	SOI (PI CI SA	IS- D LVED	XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COL I FORM FECA EC BROT (MPM	I, NL, SI TOO TH FE	REP- COCCI ECAL IPN)
OCT 1987 13	1200	78		161	7.4	10	.0	8.7		77	2.4		79	110
FEB 1988 08	1030	139		160	7.1		.5	13.2		91	1.2		50	50
APR 12	0905	85		181	7.1		.5	9.1		84	2.7		20	140
MAY 25	1130	115		145	6.9		.5	6.4		71	3.6	4	90	790
JUL 27	0900	E110		177	6.9		.5	6.1		69	8.4	>240	000 >	24000
AUG 08	0930	30		244	7.2	24	.0	6.4		76	2.7	5	500	4900
DATE	HAR NES TOT (MC AS	SS C FAL G/L S	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SOD1 DIS D SOLV)- /ED	POTA SIU DIS SOLV (MG/ AS K	M, LII	LKA- NITY LAB MG/L AS ACO3)	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL	E, VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1987 13 FEB 1988	5	52	16	2.9	7	7.8	3.	0	24	23	1	5	0.3	
08 APR	4	44	13	2.9	7	7.5	2.	9	17	23	1	4	0.2	
12 MAY	5	52	16	3.0	8	3.4	2.	8	22	27	1	5	0.3	
25 JUL	4	46	14	2.7	7	7.0	2.	6	18	24	1	2	0.3	
27 AUG		52	16	2.9	9	2.5	4.	0	18	27	1	5	0.3	
08	6	69	22	3.4	16	5	4.	0	35	29	2	5	0.2	
DATE	(MC	ICA, S S- C LVED T G/L	COLIDS, SUM OF CONSTI- CUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE NO2- TO (MC	FRO- EN, ENÓ3 FAL G/L N)	NITR GEN AMMON TOTA (MG/ AS N	O- GE MO IA OR L T L (ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	NITRO GEN, TOTAL (MG/L AS N)	, PHOR TOT (MG	OUS (AL /L	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1987	10	0	92	0.04	0 1.	.04	0.41		0.77	1.8	0.1	50	5.7	
FEB 1988 08	9	9.0	83	0.01	2 0	.88					0.1	05	5.3	
APR 12		8.7	94	0.04	0 0	.97	0.14		0.80	1.8	0.1	56	4.3	
MAY 25		9.4	83	E0.03	8 0	.94	0.21		1.0	2.0	0.2	46	9.1	
JUL 27 AUG	9	9.2	95	0.09	0 0	.92	0.20		1.4	2.3	1.2	0	12	
08	1	1	132	0.15	0 1	.65	0.10		0.91	2.6	0.1	60	5.2	

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFIDI TOTAL (MG/L AS S)	ALUM- INUM, E DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1988 25	1130	<0.5	10	2	<10	<10	2	<1	6
DAT	T(R E (OTAĽ ECOV- RABLE UG/L	LEAD, NE TOTAL TO RECOV- RE ERABLE ER (UG/L (U	DTAL TO ECOV- RE RABLE ER JG/L (U	TAL TO COV- RE ABLE ER G/L (U	COV- NI ABLE TO G/L (U	LE- TO UM, RE DTAL ER UG/L (U	G/L TO	ENOLS DTAL 3/L)
MAY 198		800	<5 1	100 0	.20	2 •	:1 2	0	4

DELAWARE RIVER BASIN 109
01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam.

DRAINAGE AREA. -- 17.4 mi 2.

PERIOD OF RECORD.--Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM	P (ST A	H AND- RD TS)	TEMP ATU WAT (DEG	RE ER	SOL		OXYGE DIS SOLV (PER CEN SATU ATIO	ED B - C T I	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COL FORI FEC EC BRO (MPI	M, AL, STR TOCO TH FEC	CC I AL
13	1987	1000	E18	151		7.3	10	.5	9	7.5	8	15	4.2	5400	270	
08	1988 3	0900	E62	174		6.8	1	.0	13	3.8	9	6	0.9	330	700	
	2	1030	E21	176		7.2	12	.0	11	1.5	10	7	3.3	790	80	
MAY 2	5	1000	E48	149		7.0	19	.5	7	7.7	8	15	5.7	9200	9200	
JUL 2	7	1115	E38	182		7.2	24	.0	7	7.1	8	14	4.5	790	16000	
AUG O	В	1115	E2.6	••		7.0	25	.0	4	.2	5	1	2.4	1100	1700	
	DATE OCT 1987 13 FEB 1988 08	5	S CAL AL DI /L SO (M 03) AS	CIUM S- LVED S G/L (IAGNE- SIUM, DIS- OLVED MG/L S MG)		ED /L	SOL' (MG AS	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACC	Y S L 3) A	SULFATE DIS- SOLVED (MG/L AS SO4) 21	DIS SOL (MC	E, ;- .VED i/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	APR 12	-		2	5.2		.4		.8	19		25	16		0.3	
	MAY 25			1	4.9		.7		.5	20		20	14		0.3	
	JUL 27	6	1 1	5	5.6	6	.7	4	.3	21		30	14		0.3	
	AUG 08	6	1 1	5	5.6		.3		.7	27	•	29	10	5	0.2	
	DATE	SILI DIS SOL (MG AS SIO	CA, SUM CON VED TUE CALL DE	ISTI- ENTS, NI DIS- TOLVED	IITRO- GEN, ITRITE IOTAL MG/L AS N)	NIT GE NO2+ TOT (MG AS	NO3 AL	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITE GEN, MONIA ORGAN TOTA (MG, AS)	M- IIC L 'L	NITRO- GEN, TOTAL (MG/L AS N)	PHOI TO (Mi	ROUS	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT 1987 13 FEB 1988	8	3.7	85	0.017	0.	99	0.2	2	0.78	3	1.8	0.1	50	5.0	
	08 APR	8	3.2	87	0.035	1.	76		•	-	•	• •	0.10	57	3.6	
	12 MAY	6	5.1	86	0.020	1.	.06	0.1	6	1.0		2.1	0.1	18	3.7	
	25	7	7.6	79 E	0.032	0.	96	0.1	2	0.89		1.9	0.1	21	5.7	
	JUL 27	9	.3	98	0.040	0.	40	0.2	4	0.94		1.3	0.1	59	6.8	
	AUG 08	10) 1	106	0.084	1.	42	0.4	9	0.8)	2.2	0.4	20	5.9	

01464515 DOCTORS CREEK AT ALLENTOWN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	I,NH4 IN DRG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT KG (MG	ANIC IN . IN D MAT SO /KG (U	LVED TO	IN ENIC TOP TAL TI G/L (1	DTAL BOT- MA- ERIAL JG/G	TOTAL T RECOV- R ERABLE E (UG/L (OTAL TO ECOV- RE RABLE ER UG/L (L	CADMIUM RECOV. OTAL FM BOT- ECOV- TOM MA- TABLE TERIAL IG/L (UG/G G CD) AS CD)
OCT 1987	1000	2	260 0	.2 7	.9			6			<1
MAY 1988 25	1000 <0	.5				:10	2	. 0	<10	<10	1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV ERABL (UG/L AS PB	E TERIAL (UG/G	RECOV- ERABLE (UG/L	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1987		140	<50		3		9100		20		200
13. MAY 1988		140	\30					No. of the last		400	200
25	<1	••	·	4	••	2200	••	9		180	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV FM BOT TOM MA TERIA (UG/G AS ZN	- L PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1987											
13 MAY 1988	••	<0.10	••	<10	••	<1	••	60	••	10	<1.0
25	<0.10		7		<1	••	10	••	<1	••	••
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN TOTAL IN BOT TOM MA TERIA (UG/KG	TOTAL - IN BOT - TOM MA L TERIA	TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1987		740									
13 MAY 1988	0.7	310	7.1	10	2.9	0.2	2.2	<5.0	<0.1	0.5	<0.1
25	••			••	••	••	••	•••	••	••	•
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	IN BOT TOM MA TERIA	PER- THANE IN BOT TOM MA TERIAL	TOM MA-	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987	<2.7	0.1	<0.1	<0.5	-0.1	-0.1	1.	<0.	1 <1.0	0 <10	<0.1
MAY 1988	-6.1	0.1	10.1	10.5	<0.1	<0.1	1.4	ν.	1 11.0	U <10	VU. 1
25	•••				• •		10,300.		•		

01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi downstream from Burlington-Bristol Bridge, 1.4 mi downstream from Assiscunk Creek, and at mile 117.54.

DRAINAGE AREA. -- 7,160 mi 2.

PERIOD OF RECORD.--July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

REVISED RECORDS. -- WDR NJ-76-1: 1973(m).

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft below National Geodetic Vertical Datum of 1929. Prior to May 20, 1971, water-stage recorder at site 0.7 mi upstream at same datum. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--No gage-height or doubtful record: Jan. 6 to Feb. 2. Summaries for months with short periods of no gage-height record have been estimated with little or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 8.74 ft, Oct. 25, 1980; minimum, -6.60 ft, Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft, Aug. 20, 1955, from high-water mark at site 1.4 mi upstream; minimum, -9.1 ft, Dec. 31, 1962, at present site.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 6.90 ft, June 3; minimum recorded, -5.05 ft, Nov. 21.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

•		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
Maximum	Elevation	6.00	6.22	6.25	e6.6	6.18	5.22	6.17	6.28	6.90	6.56	6.36	6.01	
high tide	Date	7	30	20	20	20	20	12	31	3	27	26	4	
Minimum	Elevation	-3.80	-5.05	-4.29	e-4.4	-4.94	-4.21	-3.64	-3.19	-3.41	-3.50	-3.33	-3.31	
low tide	Date	4	21	17	7	14	22	25	1	. 6	1	16	28	-
Mean high ti	de	4.86	4.63	4.71	••	4.26	4.23	4.75	5.29	5.13	5.07	5.10	4.92	
Mean water l	evel	1,38	1.26	1.36	••	0.95	0.78	1.30	1.72	1.43	1.35	1.40	1.30	
Mean low tid	le	-2.39	-2.44	-2.25		-2.56	-2.84	-2.42	-1.96	-2.56	-2.61	-2.52	-2.59	

e Estimated

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch.

DRAINAGE AREA.--64.5 mi².

PERIOD OF RECORD. -- Water years 1925, 1959-62, 1975 to current year.

10...

4.8

55

0.022

0.93

0.18

1.0

1.9

0.405

13

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 OXYGEN, DIS OXYGEN CHARGE, COLI-DIS-DEMAND, FORM, FECAL CIFIC INST. BIO-OXYGEN, CUBIC CON-PH TEMPER-(PER-CHEM-STREP-DUCT -ATURE TOCOCCI FEET (STAND DIS-CENT EC WATER 5 DAY DATE ARD SOLVED BROTH TIME PER ANCE SATUR-SECOND (US/CM) (DEG C) (MG/L) (MG/L) (MPN) (MPN) OCT 1987 13... FEB 1988 0900 E36 74 79 33 70 10.5 8.9 1.1 5.3 0900 E110 91 5.5 3.5 12.1 91 0.9 80 110 MAR 28... 1030 E94 83 10.0 9.7 85 1.9 350 170 5.8 MAY 19... 0900 73 2400 >2400 E56 5.9 16.0 7.5 76 1.9 JUL 20... nonn E10 101 130 920 6.5 25.5 3.7 45 2.2 AUG 10... 0900 E8.6 1100 170 120 25.0 4.6 56 2.5 6.4 HARD-MAGNE -POTAS-ALKA-CHLO-FLUO-SOD IUM, RIDE, DIS-NESS CALCIUM SIUM, SIUM, LINITY SULFATE RIDE, TOTAL DIS-DIS-DIS-DIS-LAB DIS-SOLVED (MG/L AS CACO3) SOLVED (MG/L SOLVED SOLVED SOLVED SOLVED (MG/L SOLVED DATE (MG/L AS CA) (MG/L (MG/L AS K) AS CACO3) (MG/L (MG/L (MG/L AS MG) AS NA) AS SO4) AS CL) AS F) **OCT 1987** 13... FEB 1988 19 5.2 1.5 4.3 1.8 4.0 15 8.5 0.2 04... 25 6.6 2.0 4.9 4.0 19 11 0.2 1.6 MAR 28... 22 6.1 1.6 4.5 1.9 4.0 22 8.1 0.1 MAY 19... 19 5.2 1.5 4.3 4.0 15 8.7 0.2 JUL 20... 26 7.7 1.7 4.4 2.3 10 9.9 0.1 16 AUG 10... 26 7.7 1.7 15 9.6 0.1 6.8 2.4 12 SOLIDS, NITRO-SILICA, SUM OF NITRO-NITRO-NITRO-GEN, AM-MONIA + ORGANIC CONSTI-GEN, NITRITE DIS-GEN, NO2+NO3 GEN, AMMONIA NITRO-PHOS-CARBON SOLVED (MG/L PHOROUS TOTAL ORGANIC TUENTS, GEN, TOTAL TOTAL DIS-TOTAL TOTAL TOTAL TOTAL DATE SOLVED (MG/L AS N) AS (MG/L AS N) (MG/L AS N) (MG/L AS P) (MG/L AS C) (MG/L (MG/L SI02) (MG/L) AS N) AS N) **OCT 1987** 13... FEB 1988 04... 6.6 45 0.006 0.37 0.07 0.82 1.2 0.138 14 5.4 53 0.008 0.64 0.079 11 MAR 28... 4.1 51 0.010 0.45 0.06 0.107 14 MAY 19... 0.021 4.5 0.30 1.0 1.3 15 0.22 0.185 JUL 20... 5.0 53 0.019 0.79 0.24 0.73 1.5 0.425 13 AUG

DELAWARE RIVER BASIN 01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE		TIME	SULFII TOTA (MG/ AS S	L SOLV	l, 5- ARSE /ED TOT 'L (UG	LI TO NIC RE AL ER	TAĽ 1 COV- R ABLE E G/L (ORON, OTAL RECOV- RABLE UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1988 19		0900	0.6	230)	1 <	10	<10	1	1	3
ξ2.	DATE	ļ	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL TOTAL RECOV ERABL (UG/L AS NI	. SEL /- NYU .E TOT . (UG	IM, REC FAL ERA S/L (UG	AĹ OV- BLE PHE J/L TO	NOLS TAL /L)
	1988	;	2200	<5	30	<0.10	4	•	c1 2	20	<1

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at outflow of Mirror Lake in Browns Mills, 1.5 mi north of Browns Mills Junction, and 2.0 mi northwest of outflow of Country Lake.

DRAINAGE AREA. -- 27.4 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	INST. COUBIC CONTROL OF COURT	PE- FIC ON- JCT-3 (JCE II)	PH STAND- ARD NITS)	TEMPE ATUR WATE (DEG	R SC	GEN,	DIS- D SOLVED (PER- CENT SATUR-	XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1987	1100	E33	4	5.2	13.	.0 1	10.1	95	1.6	<2	17
FEB 1988 10	1000	E51 !		5.0	4.		12.8	97	0.8	4	5
MAR 30	1215			5.8	13.		10.9	102	1.5	<2	2
MAY 24	1130			5.3	18.		8.1	87	0.9	33	13
JUL 20	1030	,	5	5.9	25.		5.9	72	1.5	49	5
AUG 10	1000							90	1.3	2	11
10	1000	E12 :	,,	6.1	26.	.0	7.3	90	1.3	•	"
DATE	HARD - NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE SIUM DIS- SOLVE (MG/L AS MG	D SOLV	S- '	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFAT DIS- SOLVE (MG/L	DIS- D SOLVE (MG/I	RI D D SO	UO- DE, IS- IS- IEVED IG/L
OCT 1987	10	2.2	1.0) ;	3.3	1.0	2.0	11	5.8	3	0.2
FEB 1988 10	10	2.3	1.1		3.3	0.8	1.0	10	5.0	5	0.1
MAR 30	12	2.8	1.3		3.9	1.0	2.0	13	5.8		0.1
MAY 24	10	2.1	1.1		3.3	0.8	2.0	15	5.9		0.2
JUL 20	10	2.3	1.0		2.8	1.0	4.0	14	6.3		0.1
AUG 10	11	2.5	1.2		3.5	1.0	5.0	14	6.4		0.1
10	• • • • • • • • • • • • • • • • • • • •	2.5	1.4	•	3.5	1.0	5.0	14	0.		0.1
DATE	SILICA DIS- SOLVE (MG/I AS SIO2)	CONSTI- TUENTS, DIS- SOLVED	NITRO GEN, NITRI TOTAL (MG/I AS N)	G NO2	TRO- EN, +NO3 TAL G/L N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO GEN, AN MONIA ORGAN: TOTAL (MG/I AS N	+ NITRO C GEN, TOTAL (MG/L	PHOROI TOTAL (MG/	US ORG L TO L (M	RBON, GANIC OTAL IG/L G C)
OCT 1987											
14 FEB 1988	4.5		0.00		.08	0.13	0.6	0.69			7.7
10 MAR	4.1		0.00	03 0	.10	••	•		0.04	7 5	8.8
30	3.1	32	0.0	10 0	.05	0.02	0.30	0.30	<0.02	0 5	5.9
24 JUL	2.8	3 32	0.0	10 <0	.05	0.12	0.4	4	0.03	9 9	8.0
20 AUG	2.3	32	0.0	09 <0	.05	<0.05	0.5	5	0.04	4 12	!
10	2.9	34	0.0	07 <0	.05	<0.05	0.3	7	0.04	4 11	

115

DELAWARE RIVER BASIN

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, E DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1987 14	1100	<0.5	70	<1	<10	<10	<1	<10	5
DA	T R E TE (OTAL ECOV- I RABLE I UG/L	LEAD, NI TOTAL TO RECOV- RI ERABLE EI (UG/L (1	ECOV- REG RABLE ER/ JG/L (U	TAL TO COV- REG ABLE ER/ G/L (U	COV- NI ABLE TO G/L (U	UM, REG TAL ER/ G/L (UG	TAĽ COV- ABLE PHE G/L TO	NOLS ITAL
OCT 19		2700	8	30 0	.10	<1	<1	10	1

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft upstream from Butterworth Road Bridge, 3.4 mi upstream from confluence with Cooper Branch, and 7.0 mi southeast of Browns Mills.

DRAINAGE AREA. -- 2.35 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon State Forest".

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good above 1.0 ft³/s and fair below. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is at site 785 ft downstream. Several measurements of water temperature, other than those published, were made during the year.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988, ME	AN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.5 1.6 2.2 2.0	1.5 1.5 1.5 1.5	1.6 1.5 1.4 1.4	1.4 1.4 1.4 1.4	2.0 2.4 2.8 2.8 2.7	2.0 2.0 2.0 2.4 2.9	1.8 1.8 1.8 1.7	1.5 1.5 1.5 1.5	1.5 2.0 1.9 1.7 1.6	1.0 1.0 1.0 1.0	.95 .93 .93 .93	.90 .89 .88 .98
6 7 8 9	1.7 1.8 1.7 1.6	1.4	1.4 1.3 1.3 1.3	1.4 1.3 1.3 1.4 1.3	2.4 2.1 1.9 1.9	2.7 2.6 2.4 2.3 2.2	1.7 1.7 1.7 1.7	1.9 2.1 2.2 2.1 1.9	1.5 1.4 1.4 1.4	1.0 1.0 1.0 1.0	.92 .92 .90 .90	.93 .90 .89 .89
11 12 13 14 15	1.6 1.5 1.5 1.5	1.9 1.8 1.7 1.6	1.5 1.4 1.4 1.4	1.3 1.4 1.4 1.4	1.9 3.8 4.3 3.2 2.6	2.1 2.0 2.1 2.0 1.9	1.7 1.6 1.6 1.6	1.7 1.7 1.6 1.5	1.4 1.3 1.3 1.3	1.0 1.1 1.0 1.0	.88 .87 .86 .86 .85	.87 .86 .93 .90 .86
16 17 18 19 20	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.6 1.5 1.4 1.5	1.4 1.4 1.4 1.9	3.2 3.0 2.7 2.4 2.9	1.9 1.9 1.8 1.9 1.8	1.6 1.5 1.5 1.6 1.5	1.5 1.5 1.7 2.2	1.3 1.5 1.8 1.7 1.5	1.0 1.0 .99 1.0 1.0	.84 .85 .87 .86	.85 .86 .88 .87
21 22 23 24 25	1.5 1.5 1.5 1.5	1.5 1.4 1.4 1.3	1.6 1.5 1.5 1.5	3.0 3.4 2.6 2.2 2.2	2.8 2.4 2.4 2.4 2.2	1.8 1.8 1.7 1.8 1.8	1.5 1.5 1.5 1.7 1.6	2.3 2.3 2.2 2.0 1.9	1.4 1.3 1.3 1.2	1.0 1.0 1.0 1.0	.90 .86 .85 1.1	.85 .84 .87 .94
26 27 28 29 30 31	1.5 1.5 1.9 1.7 1.6	1.3 1.3 1.4 1.7	1.6 1.5 1.5 1.4 1.4	2.4 2.2 2.2 2.2 2.2 1.9	2.1 2.1 2.1 2.1	2.2 2.9 2.6 2.4 2.1 1.9	1.5 1.5 1.6 1.6	1.9 1.8 1.7 1.7 1.6	1.2 1.2 1.1 1.1 1.0	.97 1.1 .98 .96 .95	.97 .94 .92 .94 .96	.89 .86 .85 .84
MEAN MAX MIN IN.	1.60 2.2 1.5 .78	1.49 1.9 1.3	1.46 1.6 1.3 .72	1.76 3.4 1.3 .86	2.53 4.3 1.9 1.16	2.13 2.9 1.7 1.04	1.62 1.8 1.5 .77	1.77 2.3 1.5 .87	1.41 2.0 1.0 .67	1.00 1.1 .95 .49	.91 1.1 .84 .45	.89 1.0 .84 .42
STATIST	TICS OF MC	MTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR ((Y)				
MEAN MAX (WY) MIN (WY)	1.64 4.45 1959 .93 1986	1.83 4.82 1973 .95 1986	2.16 5.75 1973 1.00 1966	2.38 4.78 1973 .98 1981	2.53 5.69 1973 1.13 1977	2.96 5.67 1979 1.25 1966	3.02 5.74 1984 1.24 1985	2.68 5.65 1958 1.24 1985	2.28 5.35 1979 1.19 1985	1.91 4.15 1958 1.00 1977	1.85 5.65 1958 .91 1985	1.69 4.31 1958 .89 1988
SUMMARY	Y STATIST	CS		FO	R 1988 WATE	R YEAR			FOR PI	ERIOD OF F	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT ANNUAL 10 PERC 50 PERC	E FLOW T ANNUAL ME ANNUAL ME T DAILY ME TANEOUS PE TANEOUS PE TANEOUS PE TANEOUS PE CENTILE CENTILE CENTILE	EAN AN EAK FLOW EAK STAGE			1.54 4.3 .84 4.5 1.58 8.90 2.2 1.5 .84	Feb 13 Aug 16 Feb 12 Feb 12			2.24 3.8 1.19 20 .7 3. 2.33 12. 3.	Feb Sep Aug Aug	1973 1966 28 1958 21 1985 25 1958 25 1958	

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1968 to current year.
PH: October 1984 to September 1986, October 1987 to current year.
WATER TEMPERATURE: October 1960 to current year.
DISSOLVED OXYGEN: October 1984 to September 1986, October 1987 to current year.

INSTRUMENTATION.--Temperature recorder since October 1960, water-quality monitor since October 1968.

REMARKS.--Water-quality samples were collected at the weir. Interruptions in the daily record were due to malfunctions of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum, 182 microsiemens, June 16, 1969; minimum, 19 microsiemens, Aug. 25, 1979, Nov. 14, 1985.

1985.
PH: Maximum 5.4, Nov. 1, 1985; minimum, 3.6, Feb. 25-27, Mar. 6-7, 1988.
WATER TEMPERATURE: Maximum, 22.0°C, Aug. 1, 1970; minimum, 0.0°C on many days during winter months.
DISSOLVED OXYGEN: Maximum, 9.5 mg/L, Jan. 29, Feb. 22, 1986; minimum, 1.1 mg/L, May 11, 20, 1985.

EXTREMES FOR CURRENT YEAR. --

TREMES FOR CORRENT TEAR.-SPECIFIC CONDUCTANCE: Maximum, 88 microsiemens, Jan. 21; minimum, 29 microsiemens, Aug. 13, 20, 23, 24.
PH: Maximum, 4.3, on many days during the year; minimum, 3.6, Feb. 25-27, Mar. 6, 7.
WATER TEMPERATURE: Maximum, 18.0°C, Aug. 15; minimum, 0.5°C, Feb. 13, 14.
DISSOLVED OXYGEN: Maximum, 9.2 mg/L, Feb. 12; minimum, 1.2 mg/L, Aug. 15.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
OCT 1987	0920	1.5	35	4.2	9.5	0.30	2.8	25	0.3	<1
NOV 24	0845	1.4	42	4.0	7.5	0.30	4.3	36	0.1	<1
DEC 29	1100	1.5	51	4.2	6.0	0.40	6.1	50	0.2	<1
JAN 1988	1100	1.5	21	4.2	6.0	0.40	0.1	50	0.2	• • • • • • • • • • • • • • • • • • • •
26 FEB	1000	2.4	66	3.7	3.0	0.60	8.7	66	0.8	<1
23	0910	2.4	61	3.9	2.5	<0.10	8.6	64	<0	<1
MAR 29	0940	2.4	70	3.8	7.0	0.40	6.0	49	0.2	<1
APR 26	1000	1.5	52	4.0	8.5	0.40	4.0	34	0.2	K1
MAY 31	1015		42	4.3	14.0	0.40	2.8	27	0.7	K3
JUN 28	0900		34	4.1	14.0	0.60	2.4	23	0.2	K2
JUL 26	1000		32	4.2	15.5	1.1	2.2	22	0.5	K1
AUG 30	1000		31	4.2	15.5	1.0	2.6	26		•••
SEP 27	1000	••	32	4.5	13.0	4.0	3.5	33	0.7	<1

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

WATER-QUALITY RECORDS

	DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	ACIDITY (MG/L AS H)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DIS SOLV (MG/	M, BC - II ED (N L	ONATE I I-FLD I MG/L AS	BICAR- BONATE T-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)
00	CT 1987 27	66	2	0.1	0.29	0.33	1.7	0.	2 <1.	0 -	0.1	<0.1
NO	0V 24	30	2	0.1	0.29		1.8	<0.			0.1	<0.1
DI	EC 29	<1	3					0.			0.1	<0.1
J	AN 1988	37	4	0.2			1.9		1.0		0.1	<0.1
F	26 EB				0.79		2.2	0.				
M	23 AR	15	3	<i>i</i>)	0.56		1.8	0.			0.1	<0.1
Al	29 PR	60	4	••	0.72		2.0		- <1.		0.1	<0.1
M	26 AY	64	3	•	0.48	0.42	1.9	0.	.3 <1	.0 <	0.1	<0.1
J	31	76	2	•••	0.39	0.31	1.7	0.	2 <1		0.1	<0.1
.II	28 UL	84	2		0.33	0.27	1.7	0.	2 <1	.0 <	0.1	<0.1
	26 UG	56	2	••	0.24	0.22	1.7	0.	.3 <1	.0 <	0.1	<0.1
	30 EP	<1	2	•••	0.27	0.33	1.8	0.	3 <1	.0 <	0.1	<0.1
-	27	K22	2	••	0.27	0.28	1.7	0.	.4 <1	.0 <	0.1	<0.1
	DA	ALK LINI WAT TOT FIE FIE MG/L CAC	TY WH SUL FET DI LD SO AS (M	FATE RI S- DI LVED SO G/L (M	DE, RI S- D LVED SO IG/L (M	DE, DI DIS- SO DLVED (M DG/L A	ICA, SU S- CO LVED TU G/L S S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	SII SII , D % F	ED. USP. EVE IAM. INER HAN 2 MM
	OCT 198	87 • <1		8.1	3.0	0.1 4	.4	18	1	0.00)	83
	NOV 24	. <1		7.6	4.3	0.1 4	.3	19	2	0.01	1.00	87
	DEC 29	. <1	1	2	4.0	0.1 4	.4	24	1	0.00)	75
	JAN 198 26		. 1	7	3.8	0.1 3	.6	29	24	0.16	,	9
	FEB 23		1	6	3.4	0.1 2	.9	28	4	0.03		25
	MAR 29	. <1	2	0	2.7		.5	29	3	0.02		73
	APR 26		400	2	3.1		.9	21	4	0.02		57
	MAY 31			449	3.9		.8	19	1	0.0		50
	JUN 28			6.9					Sec. 116			50
	JUL						.7	17	•	0.0		
	AUG 26			5.5	3.4		.0	16				
	SEP_			6.0			.3	17	1	0.0		60
	27	. <1		4.3	3.4	<0.1 4	.2	16	6	0.0		91

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	GEN, E NO2+NO3 DIS- D SOLVED (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	AMMONÍA	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON ORGANI DIS- SOLVED (MG/L AS C)	iČ) -
OCT 1987 27	<0.01	0 <0.10	<0.01	0.010	<0.20	<0.010	0.030	<0.010	3.2	
NOV 24	<0.01	0 <0.10	0.01	0.020	<0.20	<0.010	<0.010	<0.010	3.8	
DEC 29 JAN 1988	<0.01	0 <0.10	0.01	0.010	0.20	<0.010	<0.010	<0.010	4.8	
26 FEB	<0.01	0 <0.10	0.02	0.010	0.20	0.010	<0.010	<0.010	7.3	
23 MAR	<0.01	0 <0.10	0.03	0.030	0.70	0.010	0.010	<0.010	5.8	
29 APR	<0.01	0 <0.10	0.04	0.020	0.50	<0.010	<0.010	<0.010	7.7	
26 MAY	<0.01	0 <0.10	0.02	<0.010	0.20	<0.010	0.010	<0.010	5.4	
31 JUN	<0.01	0 <0.10	0.01	<0.010	0.30	<0.010	0.010	<0.010	7.4	
28 JUL	<0.01	0 <0.10	0.02	0.020	0.40	0.010	0.010	0.010	5.4	
26 AUG	<0.01	0 <0.10	<0.01	<0.010	0.20	<0.010	0.010	<0.010	3.7	
30 SEP	<0.01		0.02	0.010	0.40	<0.010	<0.010	<0.010	2.3	
27	<0.01	0 <0.10	0.03	<0.010	<0.20	0.010	0.010	<0.010	1.7	
DATE	TIME	DIS- SOLVED S (UG/L (DIS- E SOLVED SO (UG/L	ARIUM, L DIS- D DLVED S (UG/L (IS- OLVED S UG/L (DMIUM M DIS- D OLVED S UG/L (IS- DESCRIPTION DE	IS- D LVED S UG/L (PPER, IS- OLVED UG/L S CU)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 1987	0920	70	<1	6 <	0.5	<1	<1	<3	<1	86
NOV 24	0845	90						,	•••	77
DEC 29 JAN 1988	1100	130	<1	12 <	0.5	<1	<1	<3	1	88
26 FEB	1000	260	••	• • •		••	••	••	••	170
23 MAR	0910	270	••	••	••	••	••	••	••	170
29 APR	0940	250	<1	18 <	:0.5	<1	<1	<3	3	170
26 MAY	1000	150	••	••	••	••	••	••	••	110
31 JUN	1015	180	••	••	••	••	••	••	••	180
28 JUL	0900	100	<1	8 <	0.5	<1	1	<3	<1	140
26 AUG	1000	80	••	••					••	140
30 SEP	1000	70		••	••	••	••	••	••	140
27	1000	50	••	••	••	••	••	••		110

DELAWARE RIVER BASIN
01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)
OCT 1987									
27	<5	<4	7	<0.1	<10	1	<1	<1.0	4
24	••		••					••	
DEC 29 JAN 1988	<5	<4	12	<0.1	<10	2	<1	<1.0	7
26	••	••		••	••			•	
FEB 23	••				• ••		••		
MAR 29	<5	5	20	<0.1	<10	3	3	<1.0	8
APR 26	••					,	••		
MAY 31	••								••
JUN 28	<5	<4	6	<0.1	<10	3	<1	<1.0	6
JUL 26 AUG	•••	••	••	••	. · ·	••			••
30 SEP					•••	••	••		
27	••	••	•		••	••		\$	
DATE	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD
OCT 1987 27	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD
OCT 1987 27 NOV 24 DEC 29 JAN 1988	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC 29 JAN 1988 26 FEB 23	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC 29 JAN 1988 26 FEB 23 MAR	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN) 9 16	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC 29 JAN 1988 26 FEB 23 MAR 39 APR 26	DIUM, DIS- SOLVED (UG/L AS V)	SOLVED (UG/L AS ZN)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC 29 JAN 1988 26 FEB 23 MAR 29 APR 26 MAY 31	DIUM, DIS- SOLVED (UG/L AS V)	9 16 13	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC 29 JAN 1988 26 FEB 23 MAR 29 APR 26 MAY 31 JUN 28	DIUM, DIS- SOLVED (UG/L AS V)	9 16 13	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT) <0.4	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC 29 JAN 1988 26 FEB 23 MAR 26 MAP 31 JUN 28 JUN 28	DIUM, DIS- SOLVED (UG/L AS V) <6 <6 <6 <	9 16 13	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT) <0.4	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137) <0.4	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)
OCT 1987 27 NOV 24 DEC 29 JAN 1988 26 FEB 23 MAR 29 APR 26 MAY 31 JUN 28 JUL	DIUM, DIS- SOLVED (UG/L AS V) <6 <6 <6 <6	9 16 13 12	ALPHA, DIS- SOLVED (UG/L AS U-NAT) 0.5 0.6	ALPHA, SUSP. TOTAL (UG/L AS U-NAT) <0.4	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137) 	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	3FEC1	I IC CONDO	CIANCE	(MICKOSIEM	LNO/CH AI	LJ DLG.	O, WAILK	TEAR OUT	JDER 170			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBE	R		DECEMBE			JANUARY	
1 2	40 40 50 57 57	39 39 39 52 51	40 40 55 54	47 45 44 43 42	45 44 42 41 41	46 44 43 42 41	57 56 54 52 50	55 53 51 50 49	56 55 53 51 49	51 51 50 49 49	50 50	50 50 50 49 49
1 2 3 4 5	50 57	39 52	40 55	44 43	42 41	43 42	54 52	51 50	53 51	50 49	48 48 48	50 49
	57	51	54	42	41	41			49			
6 7 8 9	51 49	48 48	50 49	41 41	40 40	41 40	49 49 48 47 46	48 48 46 45 45	49 48	49 47 46 45 45	47 45 45 44 44	48 46 45 45 44
8	51 49 49 47 45	48 48 46 45 44	50 49 47 46 44	41 41 41 40 52	40 40 39 39 39	41 40 40 39 42	48 47	46 45	49 48 47 46 45	46 45	45 44	45 45
10	45	44	44	52	39	42	46		45			
11 12	44 43 43 41 40	42 42	43 42 41 40 40	54 55 54 52 50	52 53 51 49 48	53 54	49 49 49 49 54	45 49 48 47 47	48 49 49 48 49	45 44 44 44	44 43 43 43 42	44 44 43 43
11 12 13 14 15	43 41	42 42 40 40 39	41	54 52	51 49	53 54 53 50 49	49 49	48 47	49 48	44 44	43 43	43 43
15	40			50	48	49	54					
16 17	40 39	39 38 38 38 38	39 39 39 38 38	48 47	47 47	47 47	55 55	54 54 52 53 54	55 54 53 54 56	43 43 45 46 61	42 41 41 45 46	42 43 46 54
16 17 18 19 20	40 39 39 39 39	38 38	39 38	48 47 49 49 48	47 47 47 48 47	47 47 48 48 48	55 55 54 55 57	52 53	53 54	45 46	41 45	43 46
	39			48		48			56			
21 22 23 24 25	38 38 38 38 38	37 37 37 37 37	38 38 37 37 37	48 47 46 46 46	47 46 45 44 44	47 46 46 45 45	58 58 57 55 55	57 56 55 54 53	57 57 56 54 54	88 87 79 74 69	62 79 74 69 67	73 83 77 71 68
23 24	38 38	37 37	37 37	46	45 44	46 45	57 55	55 54	56 54	79 74	74 69	77 71
25		37	37	46		45	55		54	69		
26 27	38 53	36 36	37 39	45	44	44	56 56	55 55	56 56	71 70	70 68 67 62 59 58	71 69
28 29	55 54	53 51	54 53	45 44 44 52 57	43	44	56 54	54 53	55 54	69 67	67 62	68 65
26 27 28 29 30 31	38 53 55 54 52 49	36 36 53 51 49 46	37 39 54 53 50 48	57	44 44 43 43 52	44 44 45 55	56 56 56 54 54 53	55 55 54 53 52 50	56 55 55 54 53 51	71 70 69 67 62 60	59 58	71 69 68 65 61 59
MONTH	57	36	43	57	39	46	58	45	52	88	41	54
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN			MEAN	MAX		MEAN	MAX	MIN	MEAN
		MIN FEBRUAR	MEAN Y	MAX	MIN MARCH			MIN APRIL			MAY	
		MIN FEBRUAR	MEAN Y	MAX	MIN MARCH			MIN APRIL			MAY	
1 2 3 4 5	62 70 74 75 75	MIN	MEAN		MIN	61 60 61 64 73	67 65 62 64 62	MIN	65 63 61 61 60	52 52 52 51 51		51 51 51 50 50
1 2 3 4 5	62 70 74 75 75	MIN FEBRUARY 59 63 71 70 71	MEAN 7 60 65 72 72 73	62 61 62 73 74	MIN 60 60 60 61 71	61 60 61 64 73	67 65 62 64 62	MIN APRIL 63 62 60 60 58	65 63 61 61 60	52 52 52 51 51	50 50 50 50 50 49	51 51 51 50 50
1 2 3 4 5	62 70 74 75 75	MIN FEBRUARY 59 63 71 70 71	MEAN 7 60 65 72 72 73	62 61 62 73 74	MIN 60 60 60 61 71	61 60 61 64 73	67 65 62 64 62	MIN APRIL 63 62 60 60 58	65 63 61 61 60	52 52 52 51 51	50 50 50 50 50 49	51 51 51 50 50
		MIN FEBRUAR	MEAN Y	MAX	MIN MARCH			MIN APRIL			MAY	
12345 6789	62 70 74 75 75 72 68 63 61 60	MIN FEBRUARY 59 63 71 70 71 68 63 60 59	MEAN 7 60 65 72 72 73 70 66 61 60 59	62 61 62 73 74 72 71 69 67	MIN - 60 60 60 61 71 70 68 67 65 64	61 60 61 64 73 71 70 68 66	67 65 62 64 62 60 58 60 59	MIN APRIL 63 62 60 60 58 57 56 57	65 63 61 60 58 57 58 58	52 52 52 51 51 64 66 69 68 65	50 50 50 50 50 49 51 64 66 64 61	51 51 51 50 50 57 65 68 66 63
12345 6789	62 70 74 75 75 72 68 63 61 60	MIN FEBRUARY 59 63 71 70 71 68 63 60 59	MEAN 7 60 65 72 72 73 70 66 61 60 59	62 61 62 73 74 72 71 69 67	MIN - 60 60 60 61 71 70 68 67 65 64	61 60 61 64 73 71 70 68 66	67 65 62 64 62 60 58 60 59	MIN APRIL 63 62 60 60 58 57 56 57	65 63 61 60 58 57 58 58	52 52 52 51 51 64 66 69 68 65	50 50 50 50 50 49 51 64 66 64 61	51 51 51 50 50 57 65 68 66 63
1 2 3 4 5	62 70 74 75 75	MIN FEBRUARY 59 63 71 70 71	MEAN 7 60 65 72 72 73	62 61 62 73 74	MIN 60 60 60 61 71	61 60 61 64 73	67 65 62 64 62	MIN APRIL 63 62 60 60 58	65 63 61 61 60	52 52 52 51 51	50 50 50 50 50 49	51 51 51 50 50
12345 6789 10 112345 145	622 700 744 755 75 72 688 631 60 59 78 80 79 74	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 76 74	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 72	62 61 62 73 74 72 71 69 67 66 65 63 62 62	MIN MARCH 60 60 61 71 70 68 67 65 64 62 61 61	61 60 61 64 73 71 70 68 66 65 64 63 62 61	67 65 62 64 62 60 58 60 59 58 57 57 56 56	MIN APRIL 63 62 60 60 58 57 56 57 56 55 55 55 55 55 55 55 55	65 63 61 60 58 57 58 57 56 55 55 54 53	522 522 521 511 64 66 68 65 61 57 56	50 50 50 50 49 51 64 66 64 61 59 57 55 55	51 51 51 50 50 57 65 68 663 60 58 55 55 53
12345 6789 10 112345 145	622 700 744 755 75 72 688 631 60 59 78 80 79 74	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 76 74	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 72	62 61 62 73 74 72 71 69 67 66 65 63 62 62	MIN MARCH 60 60 61 71 70 68 67 65 64 62 61 61	61 60 61 64 73 71 70 68 66 65 64 63 62 61	67 65 62 64 62 60 58 60 59 58 57 57 56 56	MIN APRIL 63 62 60 60 58 57 56 57 56 55 55 55 55 55 55 55 55	65 63 61 60 58 57 58 57 56 55 55 54 53	522 522 521 511 64 66 68 65 61 57 56	50 50 50 50 49 51 64 66 64 61 59 57 55 55	51 51 51 50 50 57 65 68 663 60 58 55 55 53
12345 6789	62 70 74 75 75 72 68 63 61 60	MIN FEBRUARY 59 63 71 70 71 68 63 60 59	MEAN 7 60 65 72 72 73 70 66 61 60 59	62 61 62 73 74 72 71 69 67	MIN - 60 60 60 61 71 70 68 67 65 64	61 60 61 64 73 71 70 68 66	67 65 62 64 62 60 58 60 59	MIN APRIL 63 62 60 60 58 57 56 57	65 63 61 60 58 57 58 58	52 52 52 51 51 64 66 69 68 65	50 50 50 50 50 49 51 64 66 64 61	51 51 51 50 50 57 65 68 66 63
12345 67890 112345 167890 112345 167890	62 70 74 75 75 72 68 63 61 60 59 78 80 79 74 73 77 70 69 70	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 79 76 74 71 71 71 70 68 65 68	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 77 72 71 69 67	62 61 62 73 74 72 71 69 67 66 65 65 63 62 62 61 60 59 60	MIN MARCH 60 60 61 71 70 68 67 65 64 62 62 62 61 61 61 59 58 58	61 60 61 64 73 71 70 68 66 65 64 63 62 61 60 69 59 59	67 65 62 64 62 60 58 60 59 58 57 56 56 55 55 54 53	MIN APRIL 63 62 60 60 58 57 56 57 56 55 53 52 53 52 53	65 63 61 60 58 57 58 57 56 55 55 55 55 55 55 55 55 55 55 55 55	522 522 551 551 646 669 688 655 61 599 577 554 531 552 660 655	50 50 50 50 49 51 64 66 64 61 59 57 55 52 51 50 49	51 51 51 550 57 668 663 60 586 555 555 550 550 550 550 550 550 550 55
12345 67890 112345 167890 112345 167890	62 70 74 75 75 72 68 63 61 60 59 78 80 79 74 73 77 70 69 70	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 79 76 74 71 71 71 70 68 65 68	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 77 72 71 69 67	62 61 62 73 74 72 71 69 67 66 65 65 63 62 62 61 60 59 60	MIN MARCH 60 60 61 71 70 68 67 65 64 62 62 62 61 61 61 59 58 58	61 60 61 64 73 71 70 68 66 65 64 63 62 61 60 69 59 59	67 65 62 64 62 60 58 60 59 58 57 56 56 55 55 54 53	MIN APRIL 63 62 60 60 58 57 56 57 56 55 53 52 53 52 53	65 63 61 60 58 57 58 57 56 55 55 55 55 55 55 55 55 55 55 55 55	522 522 551 551 646 669 688 655 61 599 577 554 531 552 660 655	50 50 50 50 49 51 64 66 64 61 59 57 55 52 51 50 49	51 51 51 550 57 668 663 60 586 555 555 550 550 550 550 550 550 550 55
12345 6789 10 112345 145	622 700 744 755 75 72 688 631 60 59 78 80 79 74	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 76 74	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 72	62 61 62 73 74 72 71 69 67 66 65 63 62 62	MIN MARCH 60 60 61 71 70 68 67 65 64 62 61 61	61 60 61 64 73 71 70 68 66 65 64 63 62 61	67 65 62 64 62 60 58 60 59 58 57 57 56 56	MIN APRIL 63 62 60 60 58 57 56 57 56 55 55 55 55 55 55 55 55	65 63 61 60 58 57 58 57 56 55 55 54 53	522 522 521 511 64 66 68 65 61 57 56	50 50 50 50 49 51 64 66 64 61 59 57 55 55	51 51 51 50 50 57 65 68 663 60 58 55 55 53
12345 67890 1123145 1678920 2123345	62 70 74 75 75 72 68 63 61 60 59 78 87 79 74 73 77 70 69 66 67 66 66 65	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 79 76 74 71 71 70 68 65 65 65 65 65	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 72 71 69 67 69 68 67 66 66 66	62 61 62 73 74 72 71 69 67 66 65 63 62 62 60 60 60 59 59 59	MIN MARCH 60 60 61 71 70 68 67 65 64 63 62 62 61 61 61 59 58 58 58 57 57 57	61 60 61 64 67 77 68 665 643 665 665 660 660 660 660 660 660 660 660	67 65 62 64 62 60 58 60 59 58 57 56 56 55 54 53 52 52 52	MIN APRIL 63 62 60 60 58 57 56 55 55 55 55 55 51 51 50 49 48 51 51	65 63 61 60 58 57 58 58 57 56 55 55 55 55 55 55 55 55 55 55 55 55	522 522 522 521 511 64 669 685 61 597 577 564 53 53 511 52 667 667 667 667 667 667 667 667 667 66	MAY 500 500 500 500 49 51 666 664 61 59 57 555 54 52 51 664 662 59 59	51 51 51 550 57 658 663 608 556 555 550 551 566 665 665 666 666 666 666 666 666
12345 67890 1123145 1678920 2123345	62 70 74 75 75 72 68 63 61 60 59 78 87 79 74 73 77 70 69 66 67 66 66 65	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 79 76 74 71 71 70 68 65 65 65 65 65	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 72 71 69 67 69 68 67 66 66 66	62 61 62 73 74 72 71 69 67 66 65 63 62 62 60 60 60 59 59 59	MIN MARCH 60 60 61 71 70 68 67 65 64 63 62 62 61 61 61 59 58 58 58 57 57 57	61 60 61 64 67 77 68 665 643 665 665 660 660 660 660 660 660 660 660	67 65 62 64 62 60 58 60 59 58 57 56 56 55 54 53 52 52 52	MIN APRIL 63 62 60 60 58 57 56 55 55 55 55 55 51 51 50 49 48 51 51	65 63 61 60 58 57 58 58 57 56 55 55 55 55 55 55 55 55 55 55 55 55	522 522 522 521 511 64 669 685 61 597 577 564 53 53 511 52 667 667 667 667 667 667 667 667 667 66	MAY 500 500 500 500 49 51 666 664 61 59 57 555 54 52 51 664 662 59 59	51 51 51 550 57 658 663 608 556 555 550 551 566 665 665 666 666 666 666 666 666
12345 67890 1123145 1678920 2123345	62 70 74 75 75 72 68 63 63 60 57 80 79 74 73 77 69 69 68 66 66 66 66 66 66 66 66 66 66 66 66	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 79 76 74 71 71 71 70 68 65 68	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 77 72 71 69 67	62 61 62 73 74 72 71 69 67 66 65 63 62 62 60 60 60 59 59 59	MIN MARCH 60 60 61 71 70 68 67 65 64 63 62 62 61 61 61 59 58 58 58 57 57 57	61 60 61 64 67 77 68 665 643 665 665 660 660 660 660 660 660 660 660	67 65 62 64 62 60 58 60 59 58 57 56 56 55 54 53 52 52 52	MIN APRIL 63 62 60 60 58 57 56 55 55 55 55 55 51 51 50 49 48 51 51	65 63 61 60 58 57 58 58 57 56 55 55 55 55 55 55 55 55 55 55 55 55	522 522 522 521 511 64 669 685 61 597 577 564 53 53 511 52 667 667 667 667 667 667 667 667 667 66	MAY 500 500 500 500 49 51 666 664 61 59 57 555 54 52 51 664 662 59 59	51 51 51 550 57 658 663 608 556 555 550 551 566 665 665 666 666 666 666 666 666
12345 67890 112345 167890 112345 167890	62 70 74 75 75 72 68 63 61 60 59 78 80 79 74 73 77 70 69 70	MIN FEBRUARY 59 63 71 70 71 68 63 60 59 58 57 79 76 74 71 71 70 68 65 65 65 65 65	MEAN 7 60 65 72 72 73 70 66 61 60 59 58 72 78 76 72 71 69 67 69 68 67 66 66 66	62 61 62 73 74 72 71 69 67 66 65 65 63 62 62 61 60 59 60	MIN MARCH 60 60 61 71 70 68 67 65 64 62 62 62 61 61 61 59 58 58	61 60 61 64 73 71 70 68 66 65 64 63 62 61 60 69 59 59	67 65 62 64 62 60 58 60 59 58 57 56 56 55 55 54 53	MIN APRIL 63 62 60 60 58 57 56 57 56 55 53 52 53 52 53	65 63 61 60 58 57 58 57 56 55 55 55 55 55 55 55 55 55 55 55 55	522 522 551 551 646 669 688 655 61 599 577 554 531 552 660 655	50 50 50 50 49 51 64 66 64 61 59 57 55 52 51 50 49	51 51 51 550 57 668 663 60 586 555 555 550 550 550 550 550 550 550 55

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	SPECI	IC CONDU	CIANCE	(MICKOSTEM	ENS/CH A	25 DEG.	C), WATER	TEAR OUT	OBER 1901	TO SEPTE	HBLK 1700	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	53 59 59 55 52	47 55 55 52 48	48 57 57 53 50	36 36 35 36 35	35 35 34 34 34	35 35 35 35 35 35	34 34 34 34 34	33 33 33 32 32	33 33 34 33 33	33 33 32 36 37	31 31 30 31 34	32 32 32 33 36
6 7 8 9	49 47 46 45 44	47 46 44 44 43	48 46 45 44 43	35 35 35 36 34	34 33 33 33 33	34 34 34 34 34	33 33 33 33 33	31 31 31 31 31 32	32 32 32 32 32 32	35 34 33 33 33 33	33 31 32 31 32	34 33 32 32 32
11 12 13 14 15	44 43 43 42 40	42 42 41 40 39	43 42 42 41 40	34 37 37 36 35	33 33 35 34 34	34 36 36 35 34	34 33 32 32 32	31 31 29 31 31	32 32 31 31 31 32	33 33 34 34 33	31 31 31 31 31	32 32 33 33 33
16 17 18 19 20	40 57 55 54 51	39 39 53 51 48	39 47 54 52 49	34 34 34 34	33 33 33 33 33	34 33 33 34 33	32 34 33 32 32	31 31 31 30 29	32 32 32 31 30	33 33 32 32 32	31 30 31 31 31	32 32 32 31 31 32
21 22 23 24 25	48 45 44 42 40	45 43 41 40 39	47 44 43 41 40	33 33 33 34 34	32 32 32 33 33	33 33 33 33 33	31 31 31 45 41	30 30 29 29 38	31 31 30 40 39	32 32 36 35 35 34	31 31 31 32 33	32 32 32 34 34
26 27 28 29 30 31	40 39 39 36 36	38 38 36 35 35	39 38 37 36 36	36 39 38 36 35 35	32 37 36 34 33 33	34 38 37 36 34	37 34 33 33 34 33	33 32 31 31 30 32	36 33 32 32 32 32	34 33 33 33 33	33 32 32 32 32 31	33 33 32 32 32
MONTH	59	35	45	39	32	34	45	29	33	37	30	32
			PH (STANDARD UN	ITS), WA	TER YEAR	OCTOBER 19	87 TO SEF	TEMBER 1	988		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBE			DECEMBE			JANUARY	
1 2 3 4 5	4.2 4.2 4.1 4.0	4.2 4.1 4.0 4.0	4.2 4.2 4.0 4.0	4.0 4.1 4.1 4.1	4.0 4.0 4.0 4.1	4.0 4.0 4.1 4.1	4.1 4.1 4.1 4.2 4.2	4.0 4.0 4.1 4.1	4.1 4.0 4.1 4.2 4.1	4.1 4.1 4.0 4.0 4.0	4.1 4.0 4.0 4.0 4.0	4.1 4.0 4.0 4.0
6 7 8 9	4.0 4.0 4.0 4.0	4.0 4.0 3.9 3.9 3.9	4.0 4.0 4.0 3.9 4.0	4.2 4.1 4.2 4.2 4.2	4.0 4.1 4.1 4.2 4.1	4.1 4.1 4.2 4.2 4.2	4.1 4.1 4.2 4.2	4.1 4.1 4.1 4.1 4.2	4.1 4.1 4.2 4.2	4.0 4.0 4.0 4.0	3.9 3.9 4.0 4.0	4.0 4.0 4.0 4.0
11 12 13 14 15	4.0 4.0 4.0 4.0	3.9 3.9 3.9 4.0 4.0	4.0 3.9 4.0 4.0 4.0	4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.1	4.2 4.1 4.1 4.2	4.1 4.1 4.1 4.1	4.2 4.2 4.1 4.1 4.2	4.0 3.9 3.9 3.9 3.9	3.8 3.9 3.9 3.9 3.9	3.9 3.9 3.9 3.9 3.9
16 17 18 19 20	4.0 4.1 4.1 4.0 4.1	4.0 4.0 4.0 4.0	4.0 4.0 4.1 4.0 4.1	4.1 4.2 4.2 4.1 4.1	4.1 4.1 4.1 4.1 4.1	4.1 4.1 4.2 4.1 4.1	4.2 4.1 4.1 4.1 4.2	4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.2	3.9 3.9 3.9 3.9 3.8	3.9 3.9 3.8 3.8	3.9 3.9 3.9 3.9 3.8
21 22 23 24 25	4.1 4.0 4.0 4.0 4.1	4.0 4.0 4.0 4.0	4.1 4.0 4.0 4.0	4.1 4.1 4.1 4.2 4.1	4.1 4.1 4.1 4.1 4.0	4.1 4.1 4.1 4.1 4.1	4.2 4.2 4.2 4.2 4.3	4.2 4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2 4.2	4.0 4.0 3.9 3.9 3.9	3.9 3.9 3.9 3.8 3.9	4.0 3.9 3.9 3.9 3.9
26 27 28 29 30 31	4.0 4.1 4.1 4.0 4.0	4.0 4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0 4.0	4.1 4.1 4.2 4.2	4.1 4.0 4.1 4.1 4.1	4.1 4.1 4.1 4.1	4.3 4.2 4.2 4.2 4.1 4.1	4.2 4.2 4.1 4.1 4.1	4.2 4.2 4.2 4.1 4.1	3.9 3.9 3.9 3.9 4.0	3.9 3.8 3.9 3.9 3.9	3.9 3.9 3.9 3.9 3.9 4.0
MONTH	4.2	3.9	4.0	4.2	4.0	4.1	4.3	4.0	4.1	4.1	3.8	3.9

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	4.3 4.2 4.1 4.0	4.0 4.2 4.1 4.0 4.0	4.2 4.3 4.2 4.1 4.0	3.7 3.7 3.7 3.7 3.7	3.7 3.7 3.7 3.7 3.7	3.7 3.7 3.7 3.7 3.7	3.8 3.8 3.9 3.9	3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.9	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0
6 7 8 9	4.0 3.9 3.9 3.9 3.9	3.9 3.9 3.9 3.9	4.0 3.9 3.9 3.9 3.9	3.7 3.7 3.7 3.7 3.8	3.6 3.7 3.7 3.7	3.7 3.7 3.7 3.7 3.7	3.9 3.9 3.9 3.9 3.9	3.9 3.9 3.9 3.9	3.9 3.9 3.9 3.9 3.9	4.0 4.0 4.0 4.0	4.0 3.9 3.9 3.9 4.0	4.0 4.0 4.0 4.0
11 12 13 14 15	4.0 4.0 3.9 3.8 3.9	3.9 3.9 3.8 3.8 3.8	4.0 3.9 3.9 3.8 3.9	3.7 3.8 3.8 3.8 3.7	3.7 3.8 3.7 3.7	3.7 3.7 3.8 3.8 3.7	3.9 3.9 3.9 3.9 3.9	3.9 3.9 3.9 3.9	3.9 3.9 3.9 3.9	4.0 4.0 4.0 3.9 3.9	4.0 4.0 4.0 3.9 3.9	4.0 4.0 4.0 3.9 3.9
16 17 18 19 20	3.9 3.9 3.9 4.0 4.0	3.9 3.8 3.8 3.8 4.0	3.9 3.9 3.9 3.9 4.0	3.8 3.8 3.7 3.7	3.7 3.7 3.7 3.7 3.7	3.7 3.7 3.7 3.7 3.7	3.9 4.0 4.0 4.0	3.9 3.9 3.9 4.0	3.9 3.9 4.0 4.0	4.0 4.1 4.1 4.0	3.9 4.0 4.0 4.0	4.0 4.0 4.1 4.0 4.0
21 22 23 24 25	4.0 3.9 3.9 3.8 3.7	3.9 3.9 3.8 3.7 3.6	4.0 3.9 3.9 3.7 3.7	3.7 3.7 3.8 3.8 3.9	3.7 3.7 3.7 3.8 3.8	3.7 3.7 3.7 3.8 3.9	4.1 4.1 4.1 4.1 4.1	4.0 4.0 4.0 4.0	4.1 4.0 4.1 4.1	4.0 4.1 4.1 4.1 4.1	4.0 4.0 4.1 4.1	4.0 4.1 4.1 4.1
26 27 28 29 30 31	3.6 3.7 3.7 3.7	3.6 3.7 3.7	3.6 3.7 3.7 3.7	3.9 3.8 3.9 3.8	3.9 3.8 3.8 3.8 3.8	3.9 3.8 3.8 3.8 3.8	4.1 4.0 4.0 4.0	4.0 3.9 4.0 4.0 3.9	4.0 4.0 4.0 4.0	4.1 4.1 4.1 4.1 4.1	4.0 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.1
MONTH	4.3	3.6	3.9	3.9	3.6	3.7	4.1	3.8	3.9	4.1	3.9	4.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUS	T 4.		SEPTEMBE	R
1 2 3 4 5	4.1 4.0 4.0 4.0		4.1 4.0 4.0 4.0 4.1	4.1 4.1 4.1 4.1 4.1		4.1 4.1 4.1 4.1 4.1	4.3 4.2 4.2 4.2 4.2	4.1 4.2 4.2 4.2 4.2 4.2		4.3 4.3 4.3 4.3		
	4.1 4.0 4.0 4.0	JUNE 4.0 4.0 4.0 4.0	4.1 4.0 4.0 4.0	4.1 4.1 4.1 4.1	JULY 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1		4.1	4.2 4.2 4.2		SEPTEMBE	R
1 2 3 4 5 6 7 8 9	4.1 4.0 4.0 4.1 4.1 4.1 4.1	JUNE 4.0 4.0 4.0 4.1 4.1 4.1 4.0 4.0	4.1 4.0 4.0 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.1	JULY 4.1 4.1 4.1 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.1 4.2	4.3 4.2 4.2 4.2 4.2	4.1 4.2 4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2 4.2 4.2	4.3 4.3 4.3 4.2	4.2 4.2 4.3 4.2 4.1	4.2 4.3 4.3 4.3 4.2
1 2 3 4 5 6 7 8 9 10	4.1 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1	JUNE 4.0 4.0 4.0 4.1 4.1 4.0 4.0 4.0 4.1 4.1 4.1 4.1	4.1 4.0 4.0 4.1 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2	JULY 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.1 4.2	4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2	4.3 4.2 4.2 4.2 4.2 4.2 4.3	4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.3	4.3 4.3 4.3 4.2 4.2 4.2 4.2 4.3	4.2 4.2 4.3 4.3 4.1 4.1 4.1 4.2 4.2 4.2	4.2 4.3 4.3 4.3 4.2 4.2 4.2 4.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.1 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	JUNE 4.0 4.0 4.1 4.1 4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1	4.1 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	JULY 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.1 4.2 4.2 4.2 4.2 4.2	4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.3 4.2 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.3	4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.22 4.22 4.22 4.22 4.23 4.33 4.33 4.22	4.33.3.2 4.2.2.2.3 4.4.4.4 4.4.4 4.4.4 4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4	4.2 4.2 4.3 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.2 4.3 4.3 4.3 4.2 4.2 4.2 4.2 4.2 4.3 4.3 4.3 4.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.10004 4.11 4.11 4.11 22001 4.11 4.11 4.11 4.11 4.11 4.11 4.11 4	JUNE 4.0 4.0 4.1 4.1 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.0 4.0 4.0 4.0 4.0 4.0	4.00 4.1 4.10 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	JULY 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	4.3 4.2 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3	4.3332 4.334.33 4.2224.33 4.3334.33 4.334.33 4.34.22	\$EPTEMBI 4.2 4.3 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.2 4.3 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.3 4.3

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

			EMPERATURE	, WATER	(DEG. C),	WATER II	EAR OCTOBER	1907 10	SEF I EMBER	1700		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5	13.5 13.0 13.0 12.0 11.5	12.5 12.0 12.0 11.0 10.5	13.0 12.5 12.5 11.5 11.0	9.5 9.5 10.0 11.0	8.5 9.0 9.0 10.0 10.5	9.0 9.0 9.5 10.5 11.0	9.5 9.0 8.0 8.0	9.0 8.5 8.0 8.0 7.5	9.0 9.0 8.0 8.0 8.0	5.5 5.5 5.0 5.0	5.5 5.0 4.5 4.5 4.5	5.5 5.5 5.0 4.5
6 7 8 9	11.5 12.0 11.5 11.0 11.5	10.5 11.5 11.0 10.5 11.0	11.0 12.0 11.5 11.0	10.5 10.0 10.0 10.5 10.5	9.5 9.5 9.5 10.0 9.5	10.0 9.5 9.5 10.5 10.0	7.5 7.5 7.5 8.0 8.5	7.5 7.0 7.0 7.0 8.0	7.5 7.5 7.0 7.5 8.0	4.5 4.5 4.5 4.5	4.0 4.0 3.5 4.5 4.0	4.0 4.0 4.5 4.5
11 12 13 14 15	11.5 11.0 10.5 10.5 10.0	11.0 10.5 10.0 9.5 9.5	11.0 11.0 10.5 10.0 9.5	9.5 8.0 8.5 8.5	8.0 8.0 8.0 8.0	9.0 8.0 8.0 8.0	8.5 8.0 8.0 7.5 8.0	8.0 8.0 7.5 7.5 7.5	8.5 8.0 7.5 7.5 7.5	4.5 4.5 5.0 5.0 4.5	3.5 4.0 4.5 4.0 4.0	4.0 4.5 5.0 4.5 4.0
16 17 18 19 20	10.0 10.5 11.0 11.0	9.5 9.5 10.5 10.0	10.0 10.0 10.5 10.5 11.0	8.5 9.5 10.0 9.5 9.5	7.5 8.0 9.5 9.5 9.0	8.0 9.0 10.0 9.5 9.0	7.5 7.0 7.0 6.5 7.0	7.0 7.0 6.5 6.5 6.5	7.5 7.0 6.5 6.5 6.5	4.5 5.0 5.0 5.5 5.5	4.0 4.5 5.0 5.0 5.0	4.0 5.0 5.0 5.0 5.0
21 22 23 24 25	11.0 10.5 10.5 10.5	10.5 10.0 10.0 10.0 10.0	11.0 10.5 10.0 10.5 10.5	9.0 7.0 7.0 8.0 8.5	7.0 7.0 6.5 7.0 7.5	8.0 7.0 7.0 7.5 8.0	7.0 6.5 6.5 7.5	6.5 6.0 6.5 6.0 6.5	7.0 6.5 6.5 6.5 7.0	5.0 2.0 2.0 2.5 3.0	2.0 1.5 1.5 2.0 2.5	4.0 1.5 2.0 2.5 3.0
26 27 28 29 30 31	10.0 10.5 10.5 9.5 9.5	9.5 9.0 10.0 9.0 8.5 8.5	9.5 9.5 10.0 9.5 9.0 9.5	9.0 8.5 9.0 9.5 10.0	8.5 8.5 8.5 9.0 9.5	8.5 8.5 9.0 9.5	7.5 7.0 6.5 6.5 5.5	7.0 6.5 6.5 5.5 5.0 4.5	7.5 7.0 6.5 6.0 5.5 5.0	3.0 2.5 2.0 2.5 3.0 4.0	2.0 2.0 1.5 1.5 2.5 3.0	2.5 2.0 2.0 2.0 3.0 3.5
MONTH	13.5	8.5	10.5	11.0	6.5	9.0	9.5	4.5	7.0	5.5	1.5	4.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAI	RY		MARCH			APRIL			MAY	
1 2 3 4 5	4.5 3.5 3.0 2.0	4.0 4.0 3.0 2.0 2.0	4.0 4.5 3.0 3.0 2.0	3.5 3.5 4.0 4.5 3.5	3.5	3.0 4.0 4.0 3.0	8.5 9.0 9.5 10.0 10.5	8.0 8.5 9.0 9.5 9.5	8.5 9.0 10.0 10.0	10.0 10.0 10.0 10.0	9.5 9.5 9.5 9.5 10.0	9.5 9.5 9.5 10.0
6 7 8 9	2.0 2.0 2.5 3.0 3.0	1.5 1.5 2.0 2.5 2.5	1.5 1.5 2.5 2.5 3.0	2.5 3.0 3.5 5.0 5.0	2.5 3.0	2.5 3.0 3.0 4.0 5.0	10.0 9.5 9.0 9.5 9.5	9.5 9.0 9.0 8.5 8.5	10.0 9.5 9.0 9.0 9.0	10.5 11.5 11.0 10.5 11.0	10.5 10.5 10.0 10.0	10.5 11.0 10.5 10.5 11.0
11 12 13 14 15	3.5 3.5 1.0 1.0 2.0	3.0 1.0 .5 .5	3.0 2.0 .5 1.0 1.5	5.0 5.5 6.0 6.0 5.5	4.5 4.5 5.5 6.0 5.0	4.5 5.0 6.0 6.0 5.5	9.0 9.0 9.0 9.0	8.5 8.5 8.5 8.5	9.0 9.0 8.5 8.5 8.5	12.0 12.5 12.5 12.5 12.5	11.0 11.5 11.5 12.0 11.5	11.5 12.0 12.0 12.0 12.0
16 17 18 19 20	2.0 1.5 2.0 2.5 3.0	1.5 1.5 1.5 2.0 2.5	2.0 1.5 2.0 2.0 2.5	5.5 5.5 5.0 5.5 5.5	5.0 5.0 5.0 5.0	5.0 5.5 5.0 5.5 5.0	8.5 9.0 9.0 9.0	8.0 8.5 8.5 8.0	8.5 8.5 9.0 8.5 8.5	13.0 12.5 12.5 12.5 12.5	12.0 12.5 12.5 12.5 12.5	12.5 12.5 12.5 12.5 12.5
21 22 23 24 25	2.5 2.0 3.0 3.0 2.5	1.5 1.5 2.0 2.5 2.5	2.5 2.0 2.5 3.0 2.5	5.0 4.5 5.0 6.5 7.5		5.0 4.5 4.5 6.0 7.0	9.0 9.0 8.5 9.0 9.5	8.5 8.0 8.0 8.5 8.5	9.0 8.5 8.5 8.5 9.0	13.5 14.0 14.0 15.0 14.5	12.5 13.0 13.5 14.0 14.0	13.0 13.5 14.0 14.5 14.5
26 27 28 29 30 31	2.5 3.0 3.0 3.0	2.0 2.5 3.0 2.5	2.5 3.0 3.0 3.0	8.0 8.0 7.5 8.0 8.0	7.5 7.5 7.0 7.0 7.5	8.0 8.0 7.5 7.5 7.5 8.0	9.0 10.0 10.0 9.5 10.0	8.5 8.5 9.5 9.0 9.5	9.0 9.0 9.5 9.5 9.5	13.5 13.5 14.0 14.0 14.5	13.0 12.5 13.0 13.0 13.5 14.0	13.5 13.0 13.5 13.5 14.0 14.5
MONTH	4.5	.5	2.5	8.5		5.0	10.5	8.0	9.0	15.0	9.5	12.0

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MAX MIN MEAN DAY MAX MIN MAX MIN MAX MIN MEAN MEAN MEAN JUNE **AUGUST** SEPTEMBER JULY 13.5 13.5 13.5 13.5 16.5 16.5 16.5 15.5 15.5 15.5 15.5 14.5 14.5 14.5 14.5 15.0 14.5 14.5 13.5 14.0 14.0 15.0 14.0 16.0 12345 13.0 14.0 13.5 14.0 14.5 13.0 13.0 13.5 15.0 15.0 14.0 16.0 14.0 13.5 13.5 15.0 15.0 15.5 13.5 14.0 16.0 14.0 13.0 13.0 16.0 12.5 13.0 14.5 13.5 14.0 16.5 16.0 16.0 14.5 14.5 14.0 14.5 13.5 12.5 12.0 13.5 13.0 13.5 13.0 12.5 12.5 13.5 13.5 13.5 13.0 12.5 14.0 14.5 14.5 14.5 16.5 16.5 16.5 16.5 17.0 16.0 16.0 15.5 15.5 14.0 13.5 13.0 14.5 15.0 15.0 14.0 14.5 15.0 15.0 15.0 14.0 16.0 67 16.0 14.0 13.5 13.0 89 15.0 15.5 16.0 14.0 15.0 10 13.0 16.0 16.5 13.5 14.0 13.0 13.0 13.5 14.0 14.5 15.0 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 14.5 14.0 14.5 14.5 14.0 13.0 12.5 13.5 13.5 13.5 13.5 12.0 12.5 12.5 13.0 13.5 12.5 13.0 13.0 13.5 16.5 17.0 17.0 17.5 16.0 15.5 16.0 16.0 12 13 14 15 16.5 16.5 17.0 16.0 14.0 14.0 13.5 16.0 16.0 16.5 16.0 16.0 16.5 14.0 16.0 18.0 17.0 13.0 14.5 15.0 15.0 15.0 15.5 14.0 14.5 14.5 15.0 13.5 13.0 13.5 14.0 15.0 12.5 12.5 13.0 13.5 14.0 16 17 14.5 14.5 15.0 16.5 17.0 16.0 15.5 16.0 17.0 16.0 15.5 16.0 17.5 12.0 15.5 16.0 16.0 17.0 16.5 15.5 12.0 13.0 13.0 13.5 18 16.5 16.5 16.0 15.0 15.0 15.5 16.0 16.0 15.0 20 16.0 16.0 16.0 15.0 15.0 15.0 15.5 15.5 15.5 15.5 15.0 15.5 14.0 13.5 13.5 14.0 13.5 14.5 14.0 15.5 16.5 16.0 16.5 15.0 21 22 23 24 25 15.0 15.5 14.5 14.0 15.0 15.5 15.0 14.5 16.0 15.5 15.5 15.5 16.0 14.0 14.0 14.5 14.5 16.0 16.0 16.0 16.0 15.5 15.0 14.5 14.0 13.5 16.0 16.0 16.5 16.0 15.0 16.0 15.0 15.0 16.0 15.0 15.0 14.5 14.5 14.5 14.5 14.5 14.0 14.0 13.5 13.0 12.5 13.0 12.5 12.5 13.5 13.5 13.5 13.0 15.5 15.5 15.5 15.5 15.5 14.5 14.5 14.5 13.5 13.5 26 27 28 29 30 15.0 16.5 15.5 16.0 16.0 15.0 14.5 14.0 14.0 16.0 16.0 16.0 15.5 15.5 15.0 15.0 15.5 16.0 15.5 15.5 16.0 15.5 16.0 16.0 16.0 16.5 16.5 16.0 15.5 15.5 15.0 14.5 13.0 14.0 16.0 31 16.0 15.0 MONTH 16.0 12.0 14.0 17.0 13.0 15.5 18.0 14.0 16.0 15.5 12.0 13.5 OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 DAY MAX MIN MIN MIN MEAN MAX MIN MEAN MEAN MAX MEAN MAY **OCTOBER** NOVEMBER DECEMBER JANUARY 2.8 2.7 3.8 2.2 2.0 2.0 3.1 2.4 2.3 2.4 3.3 3.5 3.4 3.3 2.9 2.8 2.9 2.7 2.5 2.3 2.1 3.2 2.9 2.8 2.5 2.4 4.0 3.9 4.1 4.2 4.1 3.6 3.5 3.6 3.7 3.8 3.7 3.8 3.9 5.4 5.5 5.6 5.9 5.8 5.5 5.6 5.8 6.0 5.8 6.0 6.3 6.2 2345 3.8 3.4 3.0 3.2 3.6 3.8 6.0 3.3 3.4 3.1 3.2 3.2 2.6 2.6 2.7 2.7 2.6 3.0 3.0 2.8 2.8 2.9 3.1 2.9 4.3 2.1 2.4 2.3 2.2 2.1 2.4 2.6 2.6 2.4 3.1 4.2 4.3 4.7 4.5 4.2 3.8 3.9 4.1 4.0 3.9 4.0 4.1 4.4 4.3 4.0 6.1 6.3 6.4 6.3 6.2 5.8 5.8 5.9 5.8 5.8 5.9 5.9 6.1 6 89 2.8 6.0 10 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.7 2.7 2.8 4.1 4.3 4.1 3.9 4.1 4.3 4.2 4.3 4.2 6.2 6.3 6.0 5.9 5.8 5.6 5.4 5.5 11 2.9 3.9 4.6 4.4 4.2 4.1 4.1 3.9 3.7 3.7 4.4 4.3 4.4 4.8 5.9 5.6 5.7 12 13 14 15 3.0 3.0 3.1 3.1 4.6 4.6 3.8 6.0 5.8 3.0 3.0 2.8 2.7 2.9 2.5 2.4 2.2 2.2 2.2 16 17 2.7 2.7 2.5 2.4 2.4 4.2 4.3 4.1 3.7 3.9 3.9 3.8 3.5 3.4 5.9 6.0 6.4 6.6 7.2 5.7 5.7 5.9 6.2 3.7 3.7 3.4 3.3 3.2 5.4 5.4 5.4 6.0 6.2 5.0 5.0 4.9 5.4 5.7 5.2 5.1 5.1 5.7 5.9 5.5 5.4 5.4 6.1 6.1 18 19 20 6.8 2.6 2.8 3.0 3.0 2.8 2.2 2.2 2.4 2.3 2.2 2.4 2.4 2.6 2.5 2.4 5.7 5.5 5.5 5.5 5.4 5.8 5.7 5.6 5.6 5.5 21 22 23 24 25 3.7 8.9 7.0 7.9 4.1 3.3 6.0 3.7 3.9 3.6 3.3 4.1 4.3 4.3 4.0 3.9 4.1 4.0 3.6 6.0 5.8 5.8 5.8 8.8 8.4 7.9 7.7 8.4 7.9 7.6 7.4 8.7 8.2 7.8 7.5 2.2 2.3 3.2 3.2 3.2 3.1 2.4 2.8 3.5 3.4 3.5 3.3 26 27 28 3.7 3.3 3.5 3.9 3.2 3.1 3.0 3.3 3.7 5.4 5.5 5.5 5.4 5.4 5.5 5.7 5.6 5.6 5.6 7.7 7.7 7.6 7.2 6.9 5.7 6.0 5.7 5.9 5.8 3.4 3.2 3.2 8.0 7.8 8.0 7.9 7.6 7.3 7.2 4.3 7.8 7.8 7.4 7.1 7.0 29 30 31 3.5 3.8 3.9 3.5 4.3 6.0 6.8

MONTH

4.3

2.0

2.8

4.6

2.1

3.4

3.5

6.2

4.9

8.9

5.4

6.5

O1466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued
OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	O	KYGEN, D	ISSOLVED (D	00), MG/L,	WATER	YEAR OCTOBER	1987 TO	SEPTEMBI	R 1988		
MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
7.4 8.0 8.4 8.5 8.5	6.9 7.2 8.0 7.9 8.2	7.1 7.5 8.2 8.2 8.4	7.9 7.8 7.7 8.4 8.7	7.6 7.4 7.3 7.3 8.4	7.7 7.6 7.5 7.6 8.5	4.5 4.3 4.0 3.8 3.7	3.8 3.6 3.3 3.1 2.9	4.1 3.9 3.6 3.3 3.2	4.3 4.0 4.1 4.2 3.7	3.2 3.1 3.1 3.0	3.6 3.5 3.5 3.4 3.3
8.3 8.1 7.7 7.6 7.5	8.0 7.6 7.3 7.2 7.1	8.2 7.9 7.5 7.4 7.2	8.7 8.6 8.4 8.1 7.4	8.4 8.2 7.9 7.3 6.9	8.5 8.4 8.2 7.8 7.1	3.4 3.4 3.9 4.3 4.1	2.9 3.0 3.4 3.4 3.4	3.1 3.2 3.6 3.7 3.6	4.3 4.6 4.6 4.7 4.1	3.1 3.5 3.5 3.4 3.0	3.7 3.9 4.0 3.9 3.5
7.5 9.2 9.0 9.0 8.7	7.0 7.1 8.6 8.6 8.5		7.2 7.1 6.6 6.4 6.3		6.9 6.7 6.3 6.0	4.0 4.3 4.5 4.4 4.3	3.3 3.4 3.6 3.6 3.6	3.6 3.7 3.9 3.9 3.8	3.7 3.8 3.7 3.4 3.5	2.7 2.6 2.4 2.3 2.4	3.1 3.0 2.9 2.6 2.8
8.8 8.7 8.4 8.6	8.6 8.5 8.4 8.2 8.3		6.6 6.5 6.7 6.6 6.5	5.9 6.0 6.1 6.1 6.0			3.7 3.8 3.6 3.6 3.7	4.1 4.1 3.8 3.9 4.0		2.3 2.3 2.3 2.6 2.9	2.7 2.5 2.7 3.1 3.4
8.6 8.4 8.3 8.2 8.1	8.3 8.1 8.0 7.8 7.8	8.4 8.3 8.1 8.0 7.9	6.6 6.8 7.0 6.8 6.3	6.1 6.3 6.4 6.0 5.4	6.3 6.5 6.6 6.4 5.9		3.7 3.6 3.7 4.1 3.9	4.0 3.9 3.9 4.4 4.2		2.9 2.6 2.3 2.1 2.1	3.3 3.0 2.8 2.5 2.4
8.0 7.8 7.9 8.0	7.7 7.6 7.6 7.6	7.8 7.7 7.7 7.7	6.1 6.2 6.1 5.9 5.1 4.8	5.1 5.4 5.3 4.8 4.3 4.1	5.6 5.6 5.4 4.7 4.4	4.8 4.5 4.7 4.3 4.4	3.6 3.3 3.5 3.4 3.4	4.1 3.8 4.0 3.7 3.7		2.4 2.4 2.3 2.2 2.0	2.7 2.8 2.8 2.7 2.6 2.4
9.2	6.9	8.1	8.7	4.1	6.6	4.8	2.9	3.8	4.7	2.0	3.1
MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	JUNE			JULY			AUGUST			SEPTEMBE	
3.0 3.2 3.4 3.2 3.4	2.0 2.3 2.4 2.3 2.2	2.3 2.7 2.7 2.7 2.7	3.0 3.1 3.4 3.3 3.3	1.9 2.0 2.0 1.9 1.9	2.3 2.4 2.4 2.4 2.4	3.2 3.1 3.1 2.8 2.7	1.6 1.5 1.5 1.5	2.2 2.0 2.0 1.9	3.4 3.6 3.5 3.4 3.6	1.8 1.8 1.7 2.4	2.3 2.4 2.3 2.6 3.0
3.2 3.2 2.9 2.9 3.4	2.1 2.0 2.0 2.1 2.3	2.5 2.4 2.3 2.4 2.7	3.5 3.3 3.2 2.8 3.5	1.8 1.7 1.6 1.7 1.8	2.4 2.3 2.2 2.1 2.4	2.9 3.0 3.1 3.1 3.0	1.4 1.4 1.4 1.4	2.0 2.0 2.0 2.0 1.9	3.6 3.7 3.5 3.6 3.9	2.4 2.1 2.1 1.9 2.0	2.8 2.8 2.5 2.5 2.8
3.4											
3.5 3.4 3.5	2.2 2.1 1.9 1.8	2.6 2.6 2.5 2.4	3.5 2.9 3.6 3.4 3.3	1.6 1.9 1.7 1.6	2.3 2.2 2.6 2.4 2.2	3.0 3.2 3.1 3.1 2.8	1.4 1.4 1.3 1.2	1.9 2.0 2.0 1.9 1.8	3.6 3.7 4.1 3.7 3.4	1.9 1.9 1.9 2.2 2.1	2.5 3.0 2.9 2.5
3.4 3.5 3.5 3.4 3.5 3.2 3.3 3.3	2.3 2.2 2.1 1.9 1.8 1.8 2.1 2.1	2.7 2.6 2.5 2.4 2.3 2.5 2.5 2.4	3.3 2.9 3.6 3.4 3.3 3.7 3.7 3.7 2.7 2.8	1.6 1.9 1.7 1.6 1.5 1.5	2.3 2.6 2.4 2.2 2.3 2.1 1.9 2.2	3.0 3.2 3.1 3.1 2.8 2.7 3.1 3.3 2.9	1.4 1.4 1.3 1.2 1.3 1.6 1.6	1.9 2.0 2.0 1.9 1.8 1.7 2.0 2.4 2.1 2.5	3.6 3.7 4.1 3.4 3.7 3.5 3.5 3.7	1.9 1.9 1.9 2.2 2.1 2.0 2.2 2.4 2.2 2.0	2.5 3.0 2.9 2.5 2.7 3.0 2.7 2.7
3.4 3.2 3.3 3.3 3.4	1.8 1.8 2.1 2.1	2.3 2.5 2.5 2.4	3.7 3.7 3.4 2.7 2.8	1.5 1.5 1.5 1.5	2.3 2.2 2.1 1.9 2.2	2.7 3.1 3.3 2.9 3.1	1.3 1.3 1.6 1.6	1.7 2.0 2.4 2.1 2.5	3.7 3.2 3.5 3.8 3.7	2.0 2.2 2.4 2.2 2.0	2.5 2.7 3.0 2.7 2.6
	78888 887777 79998 888888 88888 8778 9 MA 333333 33223	MAX MIN FEBRUAR' 7.4 6.9 8.0 7.2 8.4 8.0 8.5 8.2 8.3 8.0 8.1 7.6 7.3 7.6 7.1 7.5 7.0 9.2 7.1 9.0 8.6 8.7 8.5 8.8 8.6 8.7 8.6 8.7 8.6 8.8 8.6 8.7 8.6 8.1 8.2 8.1 8.2 8.2 8.3 8.4 8.3 8.2 8.3 8.4 8.3 8.5 8.4 8.3 8.5 8.5 8.6 8.3 8.6 8	## MIN MEAN FEBRUARY	MAX MIN MEAN MAX FEBRUARY 7.4 6.9 7.1 7.9 8.0 7.2 7.5 7.8 8.4 8.0 8.2 7.7 8.5 7.9 8.2 8.4 8.5 8.2 8.4 8.7 8.5 8.2 8.4 8.7 8.5 7.9 8.6 8.7 8.7 7.5 7.5 7.4 8.1 7.5 7.1 7.2 7.4 8.1 7.5 7.1 7.2 7.4 8.1 7.5 7.0 7.2 7.2 7.2 9.2 7.1 8.7 7.1 9.2 7.2 9.2 7.1 8.7 7.1 9.2 7.2 7.2 9.2 7.1 8.7 6.6 6.3 8.8 8.6 6.3 8.8 6.6 6.3 8.8 8.7 6.6 6.5 8.7 <t< td=""><td>MAX MIN MEAN MAX MIN FEBRUARY MARCH 7.4 6.9 7.1 7.9 7.6 8.0 7.2 7.5 7.8 7.4 8.4 8.0 8.2 7.7 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.6 8.2 8.7 8.4 8.1 7.3 7.5 7.4 8.1 7.3 7.5 7.1 7.2 7.4 8.1 7.3 7.5 7.1 8.7 7.1 6.4 6.9 7.5 7.0 7.2 7.2 6.7 7.1 6.4 5.8 8.7</td><td>MAX MIN MEAN MAX MIN MEAN FEBRUARY MARCH MARCH 7.7 7.8 7.4 7.6 7.7 7.8 7.4 7.6 8.7 7.6 7.7 7.3 7.5 8.4 8.0 8.2 7.7 7.3 7.5 8.4 8.5 8.5 8.2 8.4 7.3 7.6 8.5 7.9 8.6 8.2 8.4 7.3 7.6 8.5 7.9 8.6 8.2 8.4 8.5 8.6 8.2 8.4 7.3 7.6 8.5 8.7 8.6 8.2 8.4 8.5 8.4 7.9 8.2 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 7.9 8.2 8.4 7.9 8.2 8.4 7.9 8.2 7.1 7.2 7.2 6.7 6.9 7.1 7.5 7.1 8.2 8.7 <t< td=""><td>FEBRUARY FEBRUARY MARCH 7.4 6.9 7.1 7.9 7.6 7.7 4.5 8.0 7.2 7.5 7.8 7.4 7.6 4.3 8.5 7.9 8.2 8.4 7.3 7.6 3.8 8.5 8.2 8.4 8.7 8.4 8.5 3.7 8.3 8.0 8.2 8.7 8.4 8.5 3.7 8.3 8.0 8.2 8.7 8.4 8.5 3.4 8.1 7.6 7.9 8.6 8.2 8.4 7.3 7.8 4.3 7.7 7.3 7.5 8.4 7.9 8.2 3.9 7.6 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 6.9 7.1 4.1 7.5 7.0 7.2 7.2 6.7 6.9 4.0 9.2 7.1 8.7 7.1 6.4 6.7 4.3 9.0 8.6 8.8 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.4 8.5 6.7 6.6 5.9 6.2 4.6 8.8 8.5 8.7 6.6 6.9 6.2 4.6 8.8 8.8 8.6 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.9 8.1 8.7 6.6 6.1 6.3 4.1 8.4 8.2 8.3 8.4 6.8 6.3 6.5 4.6 8.4 8.1 8.3 8.4 6.8 6.3 6.5 4.6 8.5 8.7 8.6 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.4 6.4 6.8 8.7 8.4 8.5 6.7 6.1 6.3 4.1 8.6 8.3 8.5 6.5 6.7 6.1 6.3 4.1 8.6 8.3 8.5 6.5 6.7 6.1 6.3 4.1 8.6 8.3 8.4 6.8 6.3 6.5 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.3 6.5 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.8 6.3 6.5 6.9 6.2 8.6 8.3 8.4 6.8 6.9 6.4 6.6 6.1 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.9 8.1 7.0 6.4 6.6 6.4 6.2 8.2 7.8 8.0 6.8 6.9 6.9 6.2 4.6 8.1 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9</td><td>MAX MIN MEAN MAX MIN MEAN MAX MIN 7.4 6.9 7.1 7.9 7.6 7.7 4.5 3.8 8.0 7.2 7.5 7.8 7.4 7.6 4.3 3.6 8.4 8.0 8.2 7.7 7.3 7.5 4.0 3.3 8.5 8.2 8.4 8.7 7.6 7.6 3.8 3.1 8.1 7.6 7.9 8.6 8.2 8.4 3.4 3.0 7.7 7.3 7.5 8.6 8.2 8.4 3.4 3.0 7.7 7.3 7.5 8.4 7.9 8.2 3.9 3.4 7.6 7.2 7.4 8.1 7.3 7.8 4.3 3.4 7.5 7.1 7.2 7.4 6.9 7.1 4.1 3.4 7.5 7.1 7.2 7.2 6.7 6.9 4.0 3.3<</td><td> MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN </td><td> FEBRUARY</td><td> MAX</td></t<></td></t<>	MAX MIN MEAN MAX MIN FEBRUARY MARCH 7.4 6.9 7.1 7.9 7.6 8.0 7.2 7.5 7.8 7.4 8.4 8.0 8.2 7.7 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.5 8.2 8.4 7.3 8.6 8.2 8.7 8.4 8.1 7.3 7.5 7.4 8.1 7.3 7.5 7.1 7.2 7.4 8.1 7.3 7.5 7.1 8.7 7.1 6.4 6.9 7.5 7.0 7.2 7.2 6.7 7.1 6.4 5.8 8.7	MAX MIN MEAN MAX MIN MEAN FEBRUARY MARCH MARCH 7.7 7.8 7.4 7.6 7.7 7.8 7.4 7.6 8.7 7.6 7.7 7.3 7.5 8.4 8.0 8.2 7.7 7.3 7.5 8.4 8.5 8.5 8.2 8.4 7.3 7.6 8.5 7.9 8.6 8.2 8.4 7.3 7.6 8.5 7.9 8.6 8.2 8.4 8.5 8.6 8.2 8.4 7.3 7.6 8.5 8.7 8.6 8.2 8.4 8.5 8.4 7.9 8.2 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 8.5 8.4 7.9 8.2 8.4 7.9 8.2 8.4 7.9 8.2 7.1 7.2 7.2 6.7 6.9 7.1 7.5 7.1 8.2 8.7 <t< td=""><td>FEBRUARY FEBRUARY MARCH 7.4 6.9 7.1 7.9 7.6 7.7 4.5 8.0 7.2 7.5 7.8 7.4 7.6 4.3 8.5 7.9 8.2 8.4 7.3 7.6 3.8 8.5 8.2 8.4 8.7 8.4 8.5 3.7 8.3 8.0 8.2 8.7 8.4 8.5 3.7 8.3 8.0 8.2 8.7 8.4 8.5 3.4 8.1 7.6 7.9 8.6 8.2 8.4 7.3 7.8 4.3 7.7 7.3 7.5 8.4 7.9 8.2 3.9 7.6 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 6.9 7.1 4.1 7.5 7.0 7.2 7.2 6.7 6.9 4.0 9.2 7.1 8.7 7.1 6.4 6.7 4.3 9.0 8.6 8.8 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.4 8.5 6.7 6.6 5.9 6.2 4.6 8.8 8.5 8.7 6.6 6.9 6.2 4.6 8.8 8.8 8.6 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.9 8.1 8.7 6.6 6.1 6.3 4.1 8.4 8.2 8.3 8.4 6.8 6.3 6.5 4.6 8.4 8.1 8.3 8.4 6.8 6.3 6.5 4.6 8.5 8.7 8.6 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.4 6.4 6.8 8.7 8.4 8.5 6.7 6.1 6.3 4.1 8.6 8.3 8.5 6.5 6.7 6.1 6.3 4.1 8.6 8.3 8.5 6.5 6.7 6.1 6.3 4.1 8.6 8.3 8.4 6.8 6.3 6.5 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.3 6.5 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.8 6.3 6.5 6.9 6.2 8.6 8.3 8.4 6.8 6.9 6.4 6.6 6.1 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.9 8.1 7.0 6.4 6.6 6.4 6.2 8.2 7.8 8.0 6.8 6.9 6.9 6.2 4.6 8.1 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9</td><td>MAX MIN MEAN MAX MIN MEAN MAX MIN 7.4 6.9 7.1 7.9 7.6 7.7 4.5 3.8 8.0 7.2 7.5 7.8 7.4 7.6 4.3 3.6 8.4 8.0 8.2 7.7 7.3 7.5 4.0 3.3 8.5 8.2 8.4 8.7 7.6 7.6 3.8 3.1 8.1 7.6 7.9 8.6 8.2 8.4 3.4 3.0 7.7 7.3 7.5 8.6 8.2 8.4 3.4 3.0 7.7 7.3 7.5 8.4 7.9 8.2 3.9 3.4 7.6 7.2 7.4 8.1 7.3 7.8 4.3 3.4 7.5 7.1 7.2 7.4 6.9 7.1 4.1 3.4 7.5 7.1 7.2 7.2 6.7 6.9 4.0 3.3<</td><td> MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN </td><td> FEBRUARY</td><td> MAX</td></t<>	FEBRUARY FEBRUARY MARCH 7.4 6.9 7.1 7.9 7.6 7.7 4.5 8.0 7.2 7.5 7.8 7.4 7.6 4.3 8.5 7.9 8.2 8.4 7.3 7.6 3.8 8.5 8.2 8.4 8.7 8.4 8.5 3.7 8.3 8.0 8.2 8.7 8.4 8.5 3.7 8.3 8.0 8.2 8.7 8.4 8.5 3.4 8.1 7.6 7.9 8.6 8.2 8.4 7.3 7.8 4.3 7.7 7.3 7.5 8.4 7.9 8.2 3.9 7.6 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 8.1 7.3 7.8 4.3 7.5 7.1 7.2 7.4 6.9 7.1 4.1 7.5 7.0 7.2 7.2 6.7 6.9 4.0 9.2 7.1 8.7 7.1 6.4 6.7 4.3 9.0 8.6 8.8 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.5 8.6 6.3 5.8 6.0 4.4 8.7 8.4 8.5 6.7 6.6 5.9 6.2 4.6 8.8 8.5 8.7 6.6 6.9 6.2 4.6 8.8 8.8 8.6 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.5 8.7 6.6 6.1 6.3 4.1 8.8 8.9 8.1 8.7 6.6 6.1 6.3 4.1 8.4 8.2 8.3 8.4 6.8 6.3 6.5 4.6 8.4 8.1 8.3 8.4 6.8 6.3 6.5 4.6 8.5 8.7 8.6 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.4 6.4 6.8 8.7 8.4 8.5 6.7 6.1 6.3 4.1 8.6 8.3 8.5 6.5 6.7 6.1 6.3 4.1 8.6 8.3 8.5 6.5 6.7 6.1 6.3 4.1 8.6 8.3 8.4 6.8 6.3 6.5 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.3 6.5 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.8 6.3 6.5 6.9 6.2 8.6 8.3 8.4 6.8 6.9 6.4 6.6 6.1 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.4 6.8 6.9 6.9 6.2 4.6 8.6 8.3 8.9 8.1 7.0 6.4 6.6 6.4 6.2 8.2 7.8 8.0 6.8 6.9 6.9 6.2 4.6 8.1 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	MAX MIN MEAN MAX MIN MEAN MAX MIN 7.4 6.9 7.1 7.9 7.6 7.7 4.5 3.8 8.0 7.2 7.5 7.8 7.4 7.6 4.3 3.6 8.4 8.0 8.2 7.7 7.3 7.5 4.0 3.3 8.5 8.2 8.4 8.7 7.6 7.6 3.8 3.1 8.1 7.6 7.9 8.6 8.2 8.4 3.4 3.0 7.7 7.3 7.5 8.6 8.2 8.4 3.4 3.0 7.7 7.3 7.5 8.4 7.9 8.2 3.9 3.4 7.6 7.2 7.4 8.1 7.3 7.8 4.3 3.4 7.5 7.1 7.2 7.4 6.9 7.1 4.1 3.4 7.5 7.1 7.2 7.2 6.7 6.9 4.0 3.3<	MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN	FEBRUARY	MAX

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION.--Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of bridge on Hanover Street in Pemberton, 12 mi upstream from confluence with South Branch Rancocas Creek.

DRAINAGE AREA. -- 118 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1921 to current year.

REVISED RECORDS.--WSP 1302: 1922-23. WSP 1382: 1933. WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft above National Geodetic Vertical Datum of 1929. Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft downstream at datum 6.54 ft lower.

REMARKS.--Records good except for periods of estimated daily discharges, which are fair. Flow regulated occasionally by cranberry bogs and ponds above station. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

	DISCHARGE	, CUBIC F	EET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988, N	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	101 95 96 150 172	177 162 150 132 120	206 199 191 168 159	127 127 127 130 133	e192 e208 e254 e300 e334	e172 e165 e162 e176 e240	178 163 168 194 194	119 115 114 114 119	124 188 219 233 191	60 59 58 61 60	54 48 43 41 39	47 47 49 58 68
6 7 8 9	173 167 151 150 144	135 132 115 107 125	140 124 116 114 110	126 121 118 118 118	e300 e238 e215 e191 e178	e263 e243 e224 229 225	180 179 176 163 149	142 170 179 166 156	162 148 128 119 114	59 58 57 70 86	39 39 37 36 34	58 54 52 51 52
11 12 13 14 15	133 120 113 110 107	189 221 261 248 211	124 131 127 118 133	110 110 110 110 102	e169 e282 e412 e449 e385	207 172 164 157 150	138 129 131 129 144	177 167 157 145 136	104 98 97 88 79	70 66 66 60 57	36 34 34 32 32	51 50 57 58 53
16 17 18 19 20	105 105 102 104 105	211 205 185 168 147	216 217 186 162 160	103 101 113 149 220	e461 e457 e385 e321 e369	142 137 134 131 127	138 129 121 130 124	121 112 123 167 269	76 85 93 88 86	54 44 41 39 39	29 31 36 35 37	51 52 52 51 51
21 22 23 24 25	107 107 97 94 94	126 115 110 116 118	167 147 149 140 132	315 373 340 286 254	e336 e288 e259 e241 e218	124 123 121 119 120	117 111 109 141 140	314 299 257 228 228	88 87 87 84 78	43 52 42 52 50	43 37 35 70 86	49 49 52 64 58
26 27 28 29 30 31	94 97 220 209 210 201	118 116 111 115 184	138 145 144 136 133 127	268 245 235 214 193 177	e200 e189 e184 e179	146 231 257 248 223 203	134 127 142 132 125	241 232 204 176 147 131	75 71 69 67 66	46 79 73 68 61 53	66 53 46 47 63 51	60 83 79 76 73
MEAN MAX MIN IN.		154 261 107 1.46	150 217 110 1.47	173 373 101 1.69	283 461 169 2.58	179 263 119 1.74	144 194 109 1.37	175 314 112 1.71	110 233 66 1.04	57.5 86 39 .56	43.3 86 29 .42	56.8 83 47 .54
STATIST	ICS OF MONT	HLY FLOW	DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	118 365 1928 38.7 1923	153 430 1973 45.7 1923	173 434 1973 54.4 1966	198 480 1979 62.1 1981	218 445 1939 92.2 1931	246 469 1958 105 1985	238 475 1984 85.4 1985	195. 397 1958 89.8 1985	144 297 1968 54.8 1942	122 401 1938 44.1 1957	129 426 1958 41.4 1957	116 341 1971 40.1 1957
SUMMARY	STATISTICS	;		FO	R 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC	ANNUAL MEA ANNUAL MEAN DAILY MEAN ANEOUS PEAK ANEOUS PEAK ANEOUS LOW RUNOFF (INC EENTILE	FLOW STAGE			138 461 29 377 2.13 27 15.8 237 126 40	Feb 16 Aug 16 Jan 22 Jan 22 Aug 17			2 92 16 9 17 10. 9 19 3	On Aug	1978 1985 21 1939 29 1932 21 1939 21 1939 29 1932	

e Estimated

a From high-water mark, site and datum then in use.

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ.-Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1958, 1962-69, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	CH I	DIS- IARGE, SPE INST. CIF CUBIC CON FEET DUC PER ANC SECOND (US)	IC I- PH CT- (STA CE AR	ND- ATUR	RE DI ER SOL	SEN, (P S- C VED SA	GEN, OXYGIS- IS- DEMA LVED BIC ER- CHE ENT ICA TUR- 5 D ION) (MG	ND, COL FOR M- FEC	M, AL, STREP- TOCOCCI TH FECAL
T 1987	1000	110 4	6 4.6	12.5	8.1	7	6 1.1	79	540
B 1988 04	0930	E300 5	55 4.2	4.0	11.8	3 9	0 0.6	5 13	49
29	1030		53 4.5		9.8		8 0.3		
Y 19	1030	150	48 5.3	3 16.5	7.8	3 8	30 1.6	460	>2400
L 20	0930	39	45 5.1				0 1.2		130
G 10	0930	34	45 5.2				64 0.9		110
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT_1987									
22 FEB 1988		8 1.7	0.81	3.3	1.0	2.0	14	5.2	0.1
04 MAR		B 1.9	0.80	3.0	0.7	<1.0	23	5.9	0.1
29		8 1.8	0.81	3.3	1.6	<1.0	20	5.3	0.1
19	1	0 2.3	0.96	3.5	0.9	1.0	15	6.1	0.2
JUL 20		8 1.7	0.85	3.0	0.9	2.0	10	6.1	0.1
AUG 10		8 1.8	0.94	3.6	1.1	2.0	10	6.2	0.1
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1987	4.7	32	<0.003	0.09	0.02	0.74	0.83	<0.020	7.1
FEB 1988	4.7		<0.003	0.09	0.02			0.031	9.5
MAR 29	3.4		0.007	0.04	0.03	0.30	0.35	0.023	8.3
MAY 19	3.6		0.013	0.10	0.12	0.66	0.76	0.068	10
JUL									
20	4.7		0.011	0.15	0.10	0.65	0.80	0.067	10
10	4.3	29	0.009	0.14	0.06	0.60	0.74	0.066	8.8

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	ATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM INUM DIS SOLV (UG/ AS A	ARSEN	L ERA	M, BORG AL TOT/ OV- RECG BLE ERAI /L (UG/	AL TOTA DV- RECO BLE ERAS /L (UG)	AL TOTA DV- RECO BLE ERAI /L (UG)	A, COPPE AL TOTA DV- RECO BLE ERAE /L (UG)	AL OV- BLE /L
MAY 1 19.		1030	<0.5	150	1	· <1	0 <10) <	1	1 3	3
									•		
	DATE	ERA (UG	COV- I	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
	MAY 1988 19	180	00	5	30	<0.10	4	<1	20	6	
DATE	TIMI	GEN, + OF TOT BOT	NH4 RG. (IN TO MAT BO S/KG	INOR- GANIC, OT IN	CARBON, INORG + ORGANIC TOT. IN BOT MAT (MG/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)
OCT 1987 22	1000	0 40	00	0.1	11	3	<1	10	<50	30	3600
DATE	LEAD RECOV FM BO' TOM MA TERIA (UG/O AS PI	V. NES T- REC A- FM E AL TOM G TES	SE, COV. FI BOT- TO MA- RIAL	ERCURY RECOV. M BOT- OM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987 22	130	3	37	<0.10	<10	<1	90	16	<1.0	<0.1	61
DATE	DDD TOTAI IN BO TOM M/ TERI/ (UG/K	L TOT T- IN E A- TOM AL TER	BOT - II MA - TI RIAL	DDT, TOTAL N BOT- OM MA- TERIAL UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 1987 22	<15	7.	.6	15	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DATE	LINDAI TOTAI IN BO' TOM M TERI/ (UG/K	TOTAL TOTAL TER	ION, TAL BOT- T MA- RIAL	METH- OXY- CHLOR, OT. IN BOTTOM MATL. UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987 22	<0	.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1

01467060 DELAWARE RIVER AT PALMYRA, NJ

LOCATION.--Lat 40°01'05", long 75°02'16", Philadelphia County, PA, Hydrologic Unit 02040202, on right bank opposite Palmyra, 0.5 mi upstream from Tacony-Palmyra Bridge, 3.5 mi downstream from Rancocas Creek, and at mile 107.55.

DRAINAGE AREA. -- 7,850 mi 2.

PERIOD OF RECORD. -- December 1962 to current year. Tidal volumes published from December 1962 to September 1970.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft below National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--No gage-height or doubtful record: Oct. 1 to Nov 2, Feb. 13, 21, 22, and May 7-31. Some periods of low tide are affected by sluggish or plugged intake and the record is estimated with negligible loss in accuracy. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 8.23 ft, Oct. 25, 1980; minimum, -8.6 ft, Dec. 31, 1962.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known since 1899, 8.9 ft, Aug. 24, 1933, from profile furnished by Corps of Engineers, U.S. Army.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 6.45 ft, June 3; minimum recorded, -4.03 ft; Feb. 14 (bottom of stilling well at 4.0 ft).

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	e5.5	5.71	5.71	6.18	5.87	5.11	6.13	e5.8	6.45	5.83	5.74	5.60
high tide	Date	7	29	20	20	20	20	8	31	3	28	26	4
Minimum	Elevation	e-3.7	-3.89	-3.71	-3.73	-4.03	-3.42	-3.05	e-2.5	-3.15	-3.18	-2.97	-2.89
low tide	Date	4	21	17	7	14	21	25	1	6	1	16	28
Mean high ti	ide	••	4.16	4.30	3.76	4.08	4.11	4.70		4.63	4.58	4.62	4.47
Mean water	evel	••	1.16	1.33	0.91	1.11	1.04	1.60		1.38	1.34	1.38	1.28
Mean low tic	de		-2.19	-1.81	-2.25	-2.19	-2.27	-1.87		-2.26	-2.31	-2.27	-2.31

e Estimated

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION.--Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft downstream from outlet of Strawbridge Lake, 0.6 mi northwest of Moorestown Mall, 0.8 mi southeast of Lenola, and 1.8 mi southwest of Moorestown.

DRAINAGE AREA. -- 12.8 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients wre performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	CT- (ST	H TEMF AND- ATU RD WAT TS) (DEC	JRE D	D SO GEN, (P IS- C LVED SA	IS- DEM DLVED BI ER- CH ENT IC TUR- 5	O- FO EM- FE AL, E DAY BR	LI- RM, CAL, STR C TOCO OTH FEC PN) (MP	CCI
OCT 1987	0900	E3.2 2	41 6.	5 14.0	7.	9 7	7	2.5 9	200 54	00
FEB 1988	0900	E17 4	25 6.	2 5.5	5 11.	1 8	37	4.2 9	200 92	200
MAR 28	0900	E8.5 2	30 6.	6 9.5	8.	9 7	7	3.3	490 >24	00
MAY 16	0900	E2.4 2	.89 6.	6 19.	7.	0 7	7	5.7	90 <	20
JUL 25	1115	E5.6 2	10 6.	7 23.	5 5.	0 5	9	1.2 9	200 54	00
AUG 09	0900	E1.0 2	90 6.	8 26.0	6.	5 8	30	6.3	500 2	200
DATE	HARD - NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1987	58	16	4.3	11	5.3	14	49	17	0.2	
FEB 1988	69	19	5.3	48	4.3	12	45	86	0.2	
MAR 28	56	15	4.4	16	4.3	13	42	27	0.2	
MAY 16 Jul	85	23	6.7	16	4.9	14	61	30	0.4	
25 AUG	55	15	4.2	11	4.8	13	39	18	0.2	
09	92	25	7.1	14	5.8	22	61	28	0.2	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1987 06 FEB 1988	9.3	120	0.036	0.73	0.73	1.6	2.3	0.253	8.4	
03 MAR	8.5	223	0.023	0.71	••		• •	0.084	5.6	
28 MAY	8.0	125	0.031	0.63	0.52	••		0.347	12	
16 JUL	12	162	0.029	0.69	0.20	1.2	1.9	0.245	6.2	
25	8.1	108	0.034	0.70	0.40	1.7	2.4	0.240	11	
09	8.9	163	0.017	0.22	0.12	1.1	1.3	0.225	8.4	

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 ING RG. GAI IN TOT MAT BOT G/KG (G	OR- INON NIC, ORGA IN TOT MAT BOT /KG (MG)	ANIC IN . IN D MAT SO /KG (U	LVED TO	IN ENIC TON TAL TE G/L (U	BOT- I MA- IRIAL IG/G	TOTAL TO RECOV- RE ERABLE ER (UG/L (L	TAL TO COV- RE RABLE ER IG/L (U	CADMIUM RECOV. TAL FM BOT- COV- TOM MA- ABLE TERIAL G/L (UG/G CD) AS CD)
OCT 1987	0900	1	40 0	.9 7	.4			2			<1
MAY 1988						0.21					
16	0900 <0	.5	••	••	•• <	10	2	••	<10	40	1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV ERABL (UG/L AS PB	E TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1987		***			_				400		
06 MAY 1988	A 10 A **	110	<50	••	8	••	4600	••	<100	••	49
16	2	••	••	6	••	5300	••	7		280	
		MERCURY		NICKEL,		SELE-		ZINC,			
	MERCURY	RECOV.	NICKEL, TOTAL	RECOV.	SELE-	NIUM, TOTAL	ZINC, TOTAL	RECOV	•	PCB, TOTAL	PCN, TOTAL
	TOTAL RECOV-	TOM MA-	RECOV-	TOM MA-	NIUM,	IN BOT-	RECOV-	FM BOT	•	IN BOT-	IN BOT-
DATE	ERABLE	TERIAL	ERABLE	TERIAL	TOTAL	TOM MA-	ERABLE	TERIA	L PHENOLS	TOM MA-	TOM MA- TERIAL
DATE	(UG/L AS HG)	(UG/G AS HG)	(UG/L AS NI)	(UG/G AS NI)	(UG/L AS SE)	TERIAL (UG/G)	(UG/L AS ZN)	(UG/G AS ZN	TOTAL (UG/L)	TERIAL (UG/KG)	(UG/KG)
4007					,,,,	(00,0,	,,,	,,,,	, (00, 1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
OCT 1987		<0.10		<10		<1		40		58	<1.0
06 MAY 1988				1,0						-	100
16	<0.10	•••	12	••	<1	••	20	••	<1	••	
	ALDRIN,	CHLOR- DANE,	DDD,	DDE	DOT	DI- AZINON,	DI- ELDRIN,	ENDO- SULFAN		ETHION,	HEPTA- CHLOR
	TOTAL	TOTAL	TOTAL	DDE, TOTAL	DDT, TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT-	IN BOT	- IN BOT-	IN BOT-	IN BOT-
DATE	TOM MA- TERIAL	TOM MA- TERIAL	TOM MA- TERIAL	TOM MA- TERIAL	TOM MA- TERIAL	TOM MA- TERIAL	TOM MA- TERIAL	TOM MA	- TOM MA-	TOM MA- TERIAL	TOM MA- TERIAL
J 2	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG	(UG/KG)	(UG/KG)	(UG/KG)
OCT 1987											
06	<0.1	100	22	<14	<6.8	0.9	1.4	<0.1	<0.1	<0.1	<0.1
MAY 1988											
16						••	••	••			
	HEPTA-		MALA	METH	METHAL	METHY		0404		TOXA-	TRI-
	CHLOR	LINDANE	MALA- THION,	METH- OXY-	METHYL PARA-	METHYL TRI-	MIREX,	PARA- THION		PHENE,	THION,
	EPOXIDE	TOTAL	TOTAL	CHLOR,	THION.	THION,	TOTAL	TOTAL	THANE	TOTAL	TOTAL
	TOT. IN BOTTOM	IN BOT-	IN BOT- TOM MA-	TOT. IN	TOT. IN	TOT. IN	IN BOT- TOM MA-	IN BOT	- IN BOT-	IN BOT-	IN BOT- TOM MA-
DATE	MATL.	TERIAL	TERIAL	MATL.	MATL.	MATL.	TERIAL	TERIA	L TERIAL	TERIAL	TERIAL
	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)				(UG/KG)
OCT 1987											
06	0.2	<0.1	<0.1	<1.0	<0.1	<0.1	<0.1	<0.	1 <1.00	<10	<0.1
MAY 1988 16											AND THE
					-	100	1940 Annual FAT	12 400 00	AND THE PROPERTY.		

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi south of Maple Shade and 3.8 mi upstream from confluence with the North Branch Pennsauken Creek.

DRAINAGE AREA. -- 8.98 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1967 to September 1976, October 1977 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 8.12 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Diurnal fluctuations from unknown source. Several measurements of water temperature, other than those published, were made during the year.

ciraii	those pub											
	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e9.0 e7.0 e44 e53 e13	8.4 8.1 7.9 7.8 8.7	17 13 10 11 9.6	14 12 10 13	14 41 40 74 24	11 10 11 58 49	9.9 9.7 9.2 12 9.6	e10 e7.0 e7.1 e11 e23	10 33 8.2 7.4 6.9	5.8 5.9 8.6 7.2	7.8 7.5 7.2 6.9 6.7	6.2 6.0 5.9 48 49
6 7 8 9	e8.0 e22 e10 9.0 7.7	12 13 13 14 58	7.8 7.2 7.5 9.5	13 9.4 9.3 8.9 8.3	15 13 12 11	16 14 13 12 12	9.1 44 21 11 9.4	e53 e20 e13 e7.9 e8.4	6.2 6.2 6.2 13 7.2	5.8 5.6 5.8 8.8 7.1	6.5 6.4 6.4 6.3 6.1	9.0 7.1 6.4 6.2 6.1
11 12 13 14 15	7.2 6.8 6.4 6.3 6.4	68 27 16 12 11	35 14 11 8.6 51	8.6 10 9.5 9.5 9.8	11 252 31 17 22	11 11 12 11 10	8.8 8.5 8.2 8.1 9.1	e25 e16 e10 e7.1 e7.8	6.3 6.1 6.0 6.0 5.7	6.3 7.6 6.3 5.6 5.4	6.0 6.0 6.0 5.9	5.9 5.9 31 7.8 6.2
16 17 18 19 20	6.4 6.5 6.4 6.7 6.7	9.7 12 15 12 9.9	48 16 13 12 35	8.1 7.9 56 32 114	72 20 17 22 62	9.5 9.3 9.6 10 9.6	13 8.6 e13 e16 e10	e7.5 e7.8 e22 e95 e25	5.9 5.9 5.7 5.7	5.6 6.4 8.7 6.3 6.8	5.7 33 37 8.2 18	5.9 6.1 6.7 6.1 6.0
21 22 23 24 25	7.5 6.7 6.4 6.3	9.0 9.8 11 13	18 13 13 13 11 17	31 18 14 12 38	21 15 15 14 12	9.4 9.4 9.6 10 9.8	e8.0 e7.7 e8.0 e24 e10	e18 e13 e10 e30 e54	5.7 5.9 6.7 5.5 5.5	93 290 32 126 15	9.6 6.3 6.1 123 33	5.9 5.8 21 30 9.9
26 27 28 29 30 31	6.7 51 185 18 12 10	12 11 10 28 64	24 13 12 18 13	60 17 13 12 12 13	12 12 12 11	80 65 15 12 11	e8.5 e7.0 e47 e11 e13	e14 e10 8.4 7.8 8.2 8.0	5.4 5.5 5.4 5.4	e60 e150 e70 12 10 8.6	8.9 7.1 6.6 12 9.6 6.6	7.4 6.3 6.1 5.9 5.9
MEAN MAX MIN IN.	18.2 185 6.3 2.34	17.4 68 7.8 2.16	16.4 51 7.2 2.11	19.8 114 7.9 2.54	31.2 252 11 3.75	17.7 80 9.3 2.28	13.1 47 7.0 1.63	18.2 95 7.0 2.34	7.33 33 5.4 .91	32.2 290 5.4 4.13	13.8 123 5.7 1.77	11.4 49 5.8 1.42
STATIS	TICS OF MC	ONTHLY FLO	DW DATA F	OR PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	13.0 23.2 1973 6.08 1969	17.8 48.8 1973 6.99 1977	22.9 40.8 1978 7.05 1981	21.8 50.5 1979 6.55 1981	20.8 44.7 1979 9.19 1968	22.1 41.0 1984 9.29 1985	22.7 49.8 1983 8.08 1985	19.5 33.7 1982 8.57 1969	15.1 29.0 1984 6.65 1971	16.0 45.7 1987 6.92 1982	15.8 58.2 1978 6.22 1968	13.2 38.8 1975 4.71 1968
SUMMAR	Y STATISTI	CS		FOI	R 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHES' LOWEST INSTAN' INSTAN' ANNUAL 10 PERO 50 PERO	E FLOW T ANNUAL ME ANNUAL ME T DAILY ME TANEOUS PE TANEOUS PE TANEOUS LC RUNOFF (I CENTILE CENTILE	EAN EAN AN EAK FLOW EAK STAGE DW FLOW			290 5.4 708 9.38 27.4 38 10 5.4	Jul 22 Jun 26 Jul 21 Jul 21			12 2 8 11. 2 28	3.5 7.3 2.2 94 Aug 8.9 Sep 868 Aug 34 Aug 1.6 Oct	19 1982 28 1978	

e Estimated

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-73, 1975 to current year.

Ŏ9...

13

203

0.339

1.02

5.10

5.0

6.0

0.623

9.7

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 OXYGEN, OXYGEN DIS-CHARGE DEMAND. COLI-SPE-DIS-FORM, FECAL, INST. CIFIC SOLVED B10-OXYGEN, CUBIC PH TEMPER-(PER-CHEM-STREP-CON-ATURE ICAL, 5 DAY TOCOCCI FECAL EC FEET DUCT-(STAND DIS-CENT BROTH PER DATE TIME ANCE ARD SOLVED SATUR SECOND UNITS) ATION) (MPN) (US/CM) (DEG C) (MG/L) (MG/L) (MPN) **OCT 1987** 06... FEB 1988 1115 312 74 800 1700 E8.0 7.0 14.0 7.6 4.2 0945 380 1100 1700 35 6.8 6.0 10.5 83 5.7 MAR 28... 0930 15 - -7.0 9.0 9.3 80 6.9 200 700 MAY 16... 700 0930 7.6 368 7.1 16.0 4.3 3.9 1300 JUL 25... 1245 1300 15 280 2.9 2700 6.8 23.0 5.2 61 09... 0930 9400 2600 6.2 418 7.1 22.5 3.8 8.6 HARD-MAGNE -POTAS-CHLO-FLUO-ALKA-SOD IUM, RIDE, RIDE, DIS-NESS CALCIUM SIUM, SIUM SULFATE LINITY TOTAL DIS-DIS-DIS-DIS-LAB DIS-SOLVED (MG/L SOLVED (MG/L SOLVED (MG/L SOLVED (MG/L (MG/L SOLVED SOLVED SOLVED (MG/L (MG/L AS CA) AS CACO3) DATE (MG/L (MG/L CACO3) AS MG) AS NA) AS K) AS SO4) AS CL) AS F) **OCT 1987** 06... FEB 1988 7.4 85 23 18 50 48 21 0.2 6.6 03... 74 21 73 0.2 5.2 41 6.1 26 38 MAR 28... 79 21 6.5 18 5.4 35 50 25 0.2 MAY 16... 94 25 33 7.6 25 9.0 40 55 0.3 JUL 25... 80 22 6.2 15 6.2 23 58 21 0.1 AUG 09... 95 26 7.4 31 9.9 49 50 36 0.2 SOLIDS NITRO-SILICA, GEN, AM-MONIA + ORGANIC SUM OF NITRO-NITRO-NITRO-GEN, NITRITE GEN, NO2+NO3 CARBON, ORGANIC DIS-NITRO-CONSTI-GEN PHOS-SOLVED (MG/L AMMONTA TUENTS, GEN, TOTAL **PHOROUS** TOTAL (MG/L AS N) TOTAL TOTAL TOTAL DIS-TOTAL TOTAL DATE SOLVED (MG/L) AS (MG/L AS C) (MG/L AS N) (MG/L AS N) (MG/L AS P) (MG/L (MG/L \$102) AS N) AS N) OCT 1987 06... FEB 1988 03... 12 166 0.214 2.34 1.50 2.0 0.559 6.7 4.3 7.7 208 0.035 0.60 0.257 9.9 MAR 28... 8.5 157 0.090 0.99 0.392 8.9 MAY 16 ... 13 192 0.171 E0.92 4.00 4.2 0.490 7.3 JUL 25... 12 154 0.075 0.72 2.1 2.9 0.408 7.6 1.60 AUG

DELAWARE RIVER BASIN

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFID TOTAL (MG/L AS S)	ALUM- INUM, E DIS- SOLVE (UG/L AS AL	ARSENIO D TOTAL (UG/L	ERABLE (UG/L	(UG/L	TOTAL RECOV-	TOTAL RECOV- ERABLE (UG/L
OCT 1987 06	1115	<0.5	<10	2	<10	90	<1	<10
DATE	REC ER/	TAL T COV- R ABLE E G/L (EAD, A OTAL 1 ECOV- F RABLE E UG/L (TOTAL TO RECOV- RI RABLE EI (UG/L (I	DTAL TO ECOV- RE RABLE ER JG/L (U	COV- NI ABLE TO G/L (U	IG/L TO	NOLS Tal /L)
OCT 1987 06		6	<5 ′	100 <	0.10	7	:1	2

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ

LOCATION.--Lat 39°49'43", long 74°58'55", Camden County, Hydrologic Unit 02040202, at bridge on Norcross Road in Lindenwold, 50 ft downstream from outflow of Linden Lake, 1.1 mi southwest of Gibbstown, and 1.7 mi south of Glendale.

DRAINAGE AREA. -- 1.13 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	CH II	NST. CI UBIC CO FEET DU PER AN	CT- (SI	AND- AT	URE D	GEN, (P	IS- DEN	IO- FO HEM- FE CAL, E DAY BR	OTH FECAL	
	S	ECOND (US	/CM) UN	TS) (DE	G C) (M	G/L) AT	ION) (I	MG/L) (M	PN) (MPN)	
T 1987 05	1100	E1.0	78	6.3 1	2.5	9.6	90	2.4 160	0 540	
B 1988 01	0930	E1.0	100	6.3	2.0 1	3.4	96	0.6 <	2 7	
R 23		E0.60	89			2.2	98		2 8	
Y										
17	0930	E0.60	82	7.0 2	1.0	8.3	94	1.8 1	3 <20	
21 IG	0930	E3.0	71	6.8 2	6.5	4.7	59	5.7 4	9 49	
08	0930	E0.40	78	6.4 2	6.5	6.2	77	4.8 13	0 50	
DATE	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT_1987										
05 FEB 1988	23	6.8	1.4	4.5	1.6	13	12	7.8	0.1	
01	21	6.4	1.2	7.0	1.4	10	13	12	0.1	
MAR 23	22	6.5	, 1.3	6.7	1.4	11	11	10	0.1	
MAY 17	23	7.3	1.2	5.9	1.2	15	14	10	0.2	
JUL 21	23	7.2	1.1	4.0	0.8	13	9.5	8.0	0.1	
AUG										
08	24	7.6	1.1	4.3	1.1	14	13	7.9	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1987										
05 FEB 1988	3.5	46	0.003	0.05	<0.05	0.45	0.50	0.052	8.3	
01	5.3	52	0.007	0.06				<0.020	4.2	
MAR 23	1.5	45	0.008	<0.05	0.01	0.20		0.022	5.3	
MAY 17	1.1	50	0.007	<0.05	<0.05	0.52		0.028	7.1	
JUL 21	0.80	39	0.005		0.25	0.90		0.039	8.9	
AUG	4.00		0.003		0.23	0.70	THE RESERVE OF THE PARTY OF	0.037	0.7	

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

											- 100 to 1
DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (MG/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 1987 05	1100	<0.5	140	0.5	3.1	50	1	<1	<10	10	1
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 1987 05	<1	10	40	<50	4	3	880	1300	<5	<100	10
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987 05	10	<0.10	1	<10	<1	<1	<10	10	<1	1	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987 05	<0.2	5.0	1.5	<0.8	<1.7	<0.1	2.6	<0.1	<0.1	<0.1	<0.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987 05	<0.1	<0.1	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1

01467140 COOPER RIVER AT LAWNSIDE, NJ

LOCATION.--Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, at bridge on Woodcrest Road in Lawnside, 0.2 mi upstream from the New Jersey Turnpike, and 1.7 mi upstream from Tindale Run.

DRAINAGE AREA. -- 12.7 mi 2.

PERIOD OF RECORD. -- Water years 1964-65, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	CHA IN CU F TIME F	IST. CI JBIC CO FEET DU PER AN	CT- (ST	AND - AT	URE D	GEN, (P IS- C DLVED SA	IS- DEM LVED BI ER- CH ENT IC TUR- 5	O- FO IEM- FE CAL, E DAY BR	LI- RM, CAL, STRE C TOCOC OTH FECA PN) (MPN	CI
OCT_1987	4470									
13 FEB 1988						9.1	81		900 70	10
10 MAR	0915 E1	13 2	22 6	.9	3.0 1	2.0	88	1.5	80 2	0
30	1015 E1	15 1	89 6	5.9 1	2.0 1	0.2	94	3.3	490 13	0
23 JUL	1030 E	14 1	75 6	3.8 1	8.0	7.7	82	1.8 3	500 79	0
21	1015	E6.1 1	81 7	7.0 2	1.5	6.4	73	9.9 11	000 3500	10
AUG 08	1000	E5.7 1	55 6	5.9 2	1.5	8.3	94	7.2 2	400 130	10
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1987	52	15	3.5	7.9	3.7	27	25	15	0.3	
FEB 1988 10	55	16	3.7	15	3.2	24	34	25	0.2	
MAR		100								
30	49	14	3.3	9.2	3.0	23	29	15	0.2	
23 JUL	51	15	3.4	10	2.7	27	26	16	0.3	
21 AUG	57	17	3.6	9.5	4.1	28	28	15	0.2	
08	56	16	3.8	8.6	3.9	29	27	15	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT_1987	12	•	0.010	0.70	0.00	0.04		0.747		
13 FEB 1988	12	99	0.019	0.39	0.28	0.91	1.3	0.367	6.3	
10 MAR	11	122	0.009	0.41	••			0.157	3.9	
30	9.5	97	0.014	0.34	0.11	0.50	0.85	0.202	6.6	
23 JUL	11	101	••	0.32	0.27	0.78	1.1	0.275	7.7	
21 AUG	12	106	0.051	0.37	0.24	0.80	1.2	0.689	12	
08	13	105	0.023	0.31	<0.05	0.72	1.0	0.385	5.1	

01467140 COOPER RIVER AT LAWNSIDE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME (M	GEN + OI FIDE TOT TAL BOT G/L (MI	,NH4 ING RG. GAI IN TOT MAT BOT G/KG (G	OR- INON NIC, ORGA IN TOT MAT BOT /KG (MG)	. IN D MAT SO /KG (U	LVED T G/L (TO IN SENIC TO OTAL TUG/L (OTAL L BOT- TO M MA- R ERIAL E UG/G (OTAĹ TO ECOV- RE RABLE ER UG/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM RETAL FM COV- TOPABLE TE	DMIUM ECOV. BOT- M MA- ERIAL UG/G S CD)
OCT 1987 13	1130	1	40	0.3	7.9		••	11				<1
13 MAY 1988 23	1030	<0.5		••	••	<10	4		<10	50	2	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	TERIAL	TOTAL RECOV- ERABLE (UG/L	TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1987 13		170	<50		20		11000		20		21	
MAY 1988 23	2			7		4800)	16		90		
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	RECOV- ERABLE (UG/L	TERIAL (UG/G	. PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1987		<0.10		<10		<1		90		<1	<1.0	ı
MAY 1988 23	<0.10	40.10	8	•••	<1					``		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- , ELDRIN, TOTAL · IN BOT- · TOM MA- TERIAL	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1987		47	1		4.5							
13 MAY 1988 23	<0.1	14	2.2	1.4	1.5	0.5				<0.1	<0.1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYI TRI- THION TOT. II BOTTOM MATL (UG/KG	, TOTAL N IN BOT- M TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	PER- THANE IN BOT- TOM MA- TERIAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1987	<0.1	<0.1	<0.1	<0.1	<0.1	<0.		<0.1	. 4 00	-10	<0.1	
MAY 1988 23		~0.1	<0.1	<0.1	<0.1	<0.				<10	<0.1	
						-	• • •		•••	••	•••	

01467150 COOPER RIVER AT HADDONFIELD, NJ

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi upstream from North Branch Cooper River, and 7.7 mi upstream from mouth.

DRAINAGE AREA. -- 17.0 mi 2.

PERIOD OF RECORD. -- October 1963 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1967(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 9.29 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for estimated daily discharges, which are fair. Bypass gates were installed on both ends of the dam in August 1987. Gates were open Dec. 21 to Mar. 2, Apr. 8, July 29 to Aug. 1, Aug. 30, 31.

Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 12 82 89 24	13 13 12 12 12	28 19 15 16 14	e20 e18 e16 e20 e17	e23 e45 e48 e70 e36	e20 e18 16 89 72	17 17 17 20 18	18 15 14 18 37	15 56 17 12 11	7.2 7.0 7.2 8.6 8.9	e28 12 9.6 8.7 8.1	10 9.8 9.6 42 66
6 7 8 9	16 37 16 13 13	11 11 11 11 83	13 13 12 12 14	e19 e19 e17 e16 e15	e23 e20 e19 e18 e18	29 23 21 23 21	16 66 e38 24 18	98 44 24 17 16	10 9.3 9.4 16 11	7.5 7.1 6.3 7.8 7.7	7.8 9.1 7.8 7.4 7.2	18 12 11 11
11 12 13 14 15	13 13 12 12 12	86 40 26 19 15	42 23 16 13 75	e15 e16 e17 e17 e17	e18 e303 e56 e30 e32	19 18 20 18 17	16 16 16 15 17	40 35 18 14 13	9.3 8.7 8.4 8.0 7.8	6.7 7.8 7.5 7.0 6.4	7.6 7.5 7.1 7.1 6.8	9.6 9.5 35 14 11
16 17 18 19 20	12 12 12 13	14 14 20 15 14	81 25 18 15 37	e15 e14 e56 e42 e135	e87 e32 e28 e32 e75	15 14 14 16 14	22 15 21 26 17	13 14 33 163 e49	7.9 8.4 9.2 8.8 8.7	6.1 10 16 7.0 7.0	6.3 26 36 12 24	9.9 9.8 12 10 9.9
21 22 23 24 25	13 13 13 13	13 11 12 12 13	e26 e19 e20 e17 e22	e51 e31 e22 e17 e43	e34 e25 e26 e25 e21	13 13 13 13 13	14 13 14 32 17	e33 23 19 53 122	8.0 8.1 8.4 7.4 7.3	82 303 34 176 23	17 11 10 122 44	9.5 9.3 50 52 18
26 27 28 29 30 31	12 61 267 33 21	13 13 13 32 77	e31 e20 e19 e25 e19 e17	e65 e28 e21 e20 e20 e21	e21 e21 e21 e20	94 121 30 22 20 18	14 14 66 23 28	e34 21 16 14 14	7.3 7.4 7.1 7.2 7.1	71 302 41 e18 e19 e18	16 12 11 32 e17 e11	13 11 10 9.9 9.6
MEAN MAX MIN IN.	29.5 267 12 2.00	22.0 86 11 1.45	23.7 81 12 1.61	27.7 135 14 1.88	42.3 303 18 2.68	28.0 121 13 1.90	22.2 66 13 1.46	34.0 163 12 2.31	10.9 56 7.1 .72	40.1 303 6.1 2.72	17.7 122 6.3 1.20	17.4 66 9.3 1.15
		NTHLY FLO			OF RECORD,							
MEAN MAX (WY) MIN (WY)	28.5 46.8 1976 9.26 1966	34.4 79.6 1973 11.8 1966	40.4 74.6 1973 14.3 1966	40.1 97.8 1978 16.1 1966	39.9 76.1 1979 22.5 1968	42.4 78.9 1984 23.2 1981	43.5 99.4 1983 20.2 1965	38.3 66.7 1983 14.2 1965	30.5 54.9 1972 10.9 1988	31.5 66.8 1975 14.6 1966	31.2 97.6 1971 7.79 1966	27.2 65.8 1975 13.0 1965
SUMMARY	Y STATISTI	CS		FC	OR 1988 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTAN' INSTAN' ANNUAL 10 PERI 50 PERI	T ANNUAL ME ANNUAL ME T DAILY MEA DAILY MEA TANEOUS PE TANEOUS LO	AN AN N AK FLOW AK STAGE			303 6.1 797 3.15 6.1 21.0 51 17 6.9	Feb 12 Jul 16 Jul 22 Jul 22 Jul 16			5(2) 1: 3: 5	5.7 0.6 0.3 510 Aug 1.2 Jur 300 Aug .46 Aug .8a Nov 8.5 59 25	27 1964 28 1971 28 1971	

a Regulation from unknown source

e Estimated

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood Terrace, 1,000 ft upstream from Bull Run, and 2.0 mi northeast of Fairview.

DRAINAGE AREA. -- 19.1 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	CH, II CI	DIS- ARGE, SPE NST. CIF UBIC CON FEET DUC PER ANC ECOND (US)	FIC I- PH CT- (STA CE AR	ND- AT	URE D	GEN, (F OIS- (DUVED S/	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	O- FO IEM- FE IAL, E DAY BR	OLI- ORM, CCAL, STREP- CC TOCOCCI OTH FECAL IPN) (MPN)
OCT 1987 05 FEB 1988 01			20 6. 66 6.			9.9 3.0		3.0 11	700 50 140
23 MAY			6.						90 80
17 AUG 08			i8 6. i0 6.			7.4 5.3			530 110 530 330
DATE OCT 1987	HARD-NESS TOTAL (MG/L AS CACO3) 35 42 43 42	CALCIUM DIS- SOLVED (MG/L AS CA) 9.9 12 12 12	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 2.6 2.9 3.1 3.0 3.0	SODIUM, DIS- SOLVED (MG/L AS NA) 7.8 11 10 9.7 8.6	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 2.6 2.7 2.6 2.7	ALKA- LINITY LAB (MG/L AS CACO3) 19 23 26 27	SULFATE DIS- SOLVED (MG/L AS SO4) 18 18 17 15	CHLO-RIDE, DIS-SOLVED (MG/L AS CL) 12 17 15 14	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.2 0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1987 05 FEB 1988	5.4	70	0.021	0.79	0.19	0.78	1.6	0.101	7.3
01 MAR	6.7	84	0.011	1.41		• •		0.059	3.2
23	4.9	65	0.023	1.54	0.42	••	••	0.061	3.4
17	4.3	76	0.054	1.01	0.28	0.89	1.9	0.110	4.6
08	4.6	75	0.042	0.74	0.10	0.59	1.3	0.139	4.9

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (MG/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 1987 05	0900	<0.5	200	1.0	8.0	40	1	3	<10	80	1
MAY 1988 17	0900	<0.5				10	2		<10	70	1
17	0900	٧٠.5				10	-		110	,,,	•
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 1987	<1	<10	30	<50	3	1	1500	240	<5	<100	20
05 MAY 1988 17		<1			14	. <u>.</u> .	1600		<5		50
17		` '			14		1000				
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1987											
05 MAY 1988	<10	••	<0.10	<1	<10	<1	<1	<10	<10	<1	68
17	••	<0.10	••	16	••	<1	••	10		<1	•
DATE	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987											
05 MAY 1988 17	<1.0	<2.0	13	1.7	<5.0	<0.1	0.4	0.6	<0.1	<0.1	<0.1
17		••	•		•••			••	••	••	••
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1987	-0.0	-0.4	-0.4		\ <1 n					-40	
05 MAY 1988 17	<0.2	<0.1	<0.1	<0.1	` <1.0	<0.1	<0.1	<1.2	<0.1	<10	<0.1
17	• •					••					••

143

01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA

(National stream-quality accounting network station)

LOCATION.--Lat 39°58'00", long 75°11'20", Philadelphia County, PA, Hydrologic Unit 02040203, on right bank 150 ft upstream from Fairmount Dam, 1,500 ft upstream from Spring Garden Street Bridge, in Philadelphia, and 8.7 mi upstream from mouth. Water-quality sampling site 1.6 mi upstream. Water-quality monitor intake at gage.

DRAINAGE AREA .-- 1,893 mi 2.

PERIOD OF RECORD. -- September 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 214, 261, 301, 381 have been found to be unreliable and should not be used.

REVISED RECORDS.--WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 5.74 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. Nov. 26, 1956, to Oct. 6, 1966, water-stage recorder at site on left bank 40 ft upstream from Fairmount Dam at same datum.

REMARKS.--Records good. Flow regulated by Still Creek Reservoir (station 01469200) since February 1933, Blue March Reservoir (stration 01470870) since April 1979, Green Lane Reservoir (station 01472200) since December 1956, and to some extent by Lake Ontelaunee, capacity 518,600,000. Records of discharge do not include diversion above station by City of Philadelphia for municipal water supply.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 4, 1869, reached a stage of 17.0 ft, discharge, 135,000 ft³/s, from rating extended above 46,000 ft³/s. Flood of Mar. 1, 1902, reached a stage of 14.8 ft, discharge, 98,000 ft³/s.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 T	O SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1490 1390 1590 2670 2020	1400 1320 1250 1200 1200	9680 6150 4670 3760 3200	1480 1540 1400 1400 1360	2130 5100 9090 7660 8350	2370 2360 2220 2710 7360	2250 2030 1920 1950 1890	1840 1660 1570 1460 1560	2440 2680 2610 2310 2090	725 728 744 727 717	1730 1530 1260 1040 928	1280 885 799 1490 4350
6 7 8 9	1560 1520 1600 1420 1330	1140 1090 1070 1050 1300	2770 2480 2270 2100 1980	1050 991 956 e930 e900	5260 3730 3170 2930 2640	4910 4000 3840 3380 3070	1650 2200 3520 2610 2040	3120 3600 2770 2320 2170	1900 1760 1690 1660 1740	698 646 611 619 669	875 894 918 845 806	3460 2420 1950 1440 1250
11 12 13 14 15	1280 1310 1340 1230 1180	4770 3340 2660 2460 2100	1910 1830 1740 1660 1840	e880 e830 e810 e790 e770	2410 4080 4540 2980 2760	3050 2800 2640 2650 2550	1850 1710 1610 1590 1490	4380 3580 2570 2500 2320	1760 1450 1330 1330 1210	658 687 709 746 672	786 731 832 813 763	1100 1040 1220 1510 1420
16 17 18 19 20	1160 1110 992 955 918	1940 1880 2060 2540 2430	3200 2870 2210 1900 1940	e720 e710 e700 2010 5890	7260 5980 4380 3920 9460	2340 2090 1910 1930 1850	1530 1500 1530 1630 1650	1990 1810 2640 12400 27300	1120 1130 950 1120 1020	571 656 1950 1490 1740	667 724 1050 969 1080	1040 988 989 1000 921
21 22 23 24 25	982 1050 983 941 916	2170 2000 1800 1700 1610	2410 2260 2110 1880 1780	7610 4640 3220 2560 2350	7180 4940 4040 3690 3140	1750 1670 1700 1710 1520	1450 1320 1230 1410 1380	17200 12000 10900 8490 5930	1010 1100 967 821 789	3920 5960 2740 4570 3940	984 847 702 1430 2300	1030 962 954 1060 867
26 27 28 29 30 31	889 955 2810 3300 2390 1600	1590 1560 1480 1680 13300	1840 1950 1780 1750 1630 1480	2450 2140 1780 1330 1550	2870 2570 2510 2410	1960 3700 3530 2900 2500 2310	1290 1320 2790 2570 2020	5400 4290 3660 3240 2940 2700	856 958 813 778 756	2840	1410 1030 920 1750 2400 1790	947 718 677 666 642
MEAN MAX MIN IN. †	1448 3300 889 .88 244	2236 13300 1050 1.32 232	2614 9680 1480 1.59 239	1853 7610 700 1.13 280	4523 9460 2130 2.58 271	2751 7360 1520 1.68 269	1831 3520 1230 1.08 239	5171 27300 1460 3.15 231	1405 2680 756 .83 288	1.22	1123 2400 667 .68 297	1302 4350 642 .77 268
					OF RECORD,			(WY)				
MEAN MAX (WY) MIN (WY)	1275 4771 1956 89.4 1942	2267 6272 1973 223 1932	3093 9569 1984 444 1981	3255 11400 1979 340 1981	3707 8136 1939 647 1934	4761 13320 1936 1552 1981	4264 11620 1983 1237 1985	3040 7345 1984 693 1965	2069 11640 1972 261 1965	6435 1984 116	1379 7980 1933 140 1966	1404 4863 1960 117 1932

01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA--Continued

(National stream-quality accounting network station)

SUMMARY STATISTICS	FOR 1988 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	27300 May 20 571 Jul 16 29600 May 20 9.78 May 20 571 Jul 16 16.87 4060 1730 718	2671 4791 1014 93400 Jun 23 1972 .6 Sep 2 1966 103000 Jun 23 1972 14.65 Jun 23 1972 0 At times 19.16 5950 1640 254

[†] Diversion, equivalent in cubic feet per second, for municipal supply, provided by City of Philadelphia e Estimated

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft downstream from County Bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi west of Mullica Hill, and 2.8 mi east of Swedesboro.

DRAINAGE AREA. -- 26.9 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 28, 1969, at datum 7.96 ft higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft higher.

REMARKS.--Records fair. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1987 TO	SEPTEMBER	1988,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 17 32 70 28	20 20 20 20 20	30 25 23 24 23	26 25 22 25 24	36 38 49 55 50	36 35 35 52 91	39 40 34 34 33	34 30 26 26 29	17 17 17 17 18	9.8 9.8 9.6 9.6 9.4	15 14 13 13	13 13 12 20 27
6 7 8 9 10	20 21 20 18 18	19 19 20 20 35	22 21 21 22 22	e25 e24 e26 e26 e24	37 32 31 31 31	50 42 39 38 37	31 65 88 52 41	50 54 37 32 30	17 16 16 17 17	9.4 9.5 10 10	12 13 12 12 11	17 14 13 13 13
11 12 13 14 15	18 18 18 17 17	62 43 34 28 25	33 29 24 22 36	e24 e24 e24 e24 e23	30 360 115 56 49	35 34 34 34 33	37 35 33 32 33	31 31 28 27 26	16 15 15 14 13	10 10 12 10 9.5	11 11 11 10 9.9	13 12 19 15 13
16 17 18 19 20	17 17 18 18 18	24 23 25 23 22	65 37 29 26 31	e23 e23 e40 42 132	92 59 47 46 96	32 32 32 33 33	34 33 33 36 33	25 26 28 68 46	13 13 14 13 13	8.4 9.5 14 11	9.6 11 15 12 14	12 12 13 13 13
21 22 23 24 25	18 18 18 18 18	22 21 21 22 22	31 27 26 25 27	89 51 40 36 43	63 46 44 43 40	31 30 30 30 30	32 30 30 36 33	31 35 42 38 59	13 12 11 11	19 54 18 46 19	15 12 11 21 30	13 12 12 12 15
26 27 28 29 30 31	17 22 75 35 24 21	22 21 21 25 38	32 29 26 28 25 24	79 46 36 34 32 34	38 38 38 37	62 98 50 39 37 40	31 30 56 40 38	40 28 24 21 19 18	11 11 11 10 9.9	41 175 32 20 17	17 13 13 15 17	16 15 13 13
MEAN MAX MIN IN.	23.3 75 17 1.00	25.2 62 19 1.05	27.9 65 21 1.20	37.0 132 22 1.58	59.6 360 30 2.39	40.7 98 30 1.75	38.4 88 30 1.59	33.5 68 18 1.44	14.0 18 9.9 .58	175 8.4	13.6 30 9.6 .58	14.1 27 12 .59
STATIST					OF RECORD,	BY WATE						
MEAN MAX (WY) MIN (WY)	28.5 62.6 1972 15.9 1969	36.1 93.9 1973 18.0 1975	46.4 107 1973 18.8 1981	51.2 123 1978 20.7 1981	51.7 115 1979 25.9 1981	52.4 88.5 1984 22.7 1981	52.9 134 1983 21.3 1985	42.5 71.4 1983 15.9 1977	35.3 77.7 1975 10.7 1966	31.4 112 1975 6.01 1966	30.4 121 1967 5.89 1966	25.1 71.9 1971 11.7 1968
SUMMARY	STATISTIC	S		FC	OR 1988 WATE	R YEAR			FOR	PERIOD OF F	ECORD	
LOWEST A HIGHEST LOWEST I INSTANTA	FLOW ANNUAL MEA ANNUAL MEA DAILY MEAN DAILY MEAN ANEOUS PEA ANEOUS LOW ANEOUS LOW ENTILE ENTILE ENTILE	N N K FLOW K STAGE			360 8.4 532 11.80 8.3 14.6 47 24	Feb 12 Jul 16 Feb 12 Feb 12 Jul 17			6 2 1 3 17	0.6 4.7 2.5 260 Aug 2.9 Jul 530 Aug .44a Aug 0.5 68 30	1973 1981 28 1971 14 1966 10 1967 10 1967	

a Present datum e Estimated

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: May 1966 to September 1973.
SUSPENDED-SEDIMENT DISCHARGE: June 1966 to September 1969.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	WA	TER QUALIT	Y DATA,	WATER YEAR	R OCTOBER	1987 TO	SEPTEMBER	1988	
DATE	CHA IN CU F TIME P	IS- RGE, SPE ST. CIF BIC CON EET DUC ER AND	FIC - P - (ST, E A	AND - AT	URE D	GEN, (POLVED SA	IS- DEM LVED BI ER- CH ENT IC TUR- 5	DAY BR	RM, CAL, STREP- C TOCOCCI DTH FECAL
	SE	COND (US/	CM) UNI	TS) (DE	G C) (M	IG/L) AT	ION) (M	IG/L) (MI	PN) (MPN)
OCT 1987	1030 1	9	7.	3 1	6.5	7.4	76 <	0.4 49	0 540
JAN 1988 28	1330 4	0	7.	1	0.5 1	2.5	86 <	0.7 <2	0 94
MAR 29		9				0.8		0.7 2	
JUN									
23 JUL		2 208	6.	8 2	4.0	6.2	74	6.8 11	
06 AUG	1100	9.4	7.	6 2	1.5	8.1	91 E	1.3 22	0 240
02	1100 1		7.	5 2	4.5	5.8	69 <	1.2 13	0 >2400
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT_1987									
08 JAN 1988	62	18	4.1	5.9	4.0	31	28	14	0.2
28 MAR	60	16	4.8	7.4	3.8	16	30	16	0.2
29	56	15	4.6	6.2	4.0	18	31	14	0.2
JUN 23	69	20	4.7	8.4	4.0	39	24	16	0.3
JUL 06 AUG	70	18	6.0	5.7	4.3	30	22	16	0.3
02	69	20	4.6	6.0	4.4	33	25	14	0.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1987 08	10	103	0.012	1.85	0.08	0.58	2.4	0.101	3.6
JAN 1988 28	9.3	97	0.012	3.04				0.070	2.7
MAR 29	8.3	94	0.018		0.06	0.30			3.5
JUN 23	11	112	0.068	1.83	0.11	0.83	2.7	•	3.4
JUL 06	9.7	100	E0.025	2.95	0.14	0.40	3.3	0.110	2.7
AUG 02	11	105	0.027	1.71	0.08	0.64	2.3	0.170	4.5

DELAWARE RIVER BASIN

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1988 23	1230	10	2	<10	30	2	1	7
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
JUN 1988 23	1300	<5	60	<0.10	8	<1	30	3

01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft downstream of tributary from outflow of lake at Porches Mill, 1.0 mi north of Seven Stars, and 2.1 mi southeast of Auburn.

DRAINAGE AREA. -- 21.0 mi 2.

02...

12

112

0.018

1.20

<0.05

0.79

2.0

0.120

5.3

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 DIS-OXYGEN, OXYGEN COLI-CHARGE, DEMAND, SPE-DIS-FORM, FECAL CIFIC CON-SOLVED (PER-BIO-INST. OXYGEN, STREP-TOCOCCI FECAL CUBIC CHEM-PH TEMPER-ICAL, 5 DAY DUCT-(STAND ATURE CENT EC FEET DIS-DATE TIME PER ANCE ARD WATER SOLVED BROTH SECOND (US/CM) UNITS) (DEG C) (MG/L) ATION) (MG/L) (MPN) (MPN) **OCT 1987** 08... JAN 1988 1300 E14 178 7.1 490 240 17.0 7.8 81 <1.0 28... 1200 540 E30 150 7.2 0.5 12.2 84 <1.2 20 MAR 29... 1030 E33 162 7.3 9.0 10.5 90 <0.8 20 240 JUN 29... 1115 7.8 9.8 5.9 110 1600 E6.1 166 21.0 110 JUL 06... 9.5 1300 E5.7 210 7.4 170 350 24.5 113 E2.0 AUG 02... E9.3 920 1345 245 7.3 27.0 8.4 105 2.4 490 HARD -MAGNE CHLO-POTAS-ALKA NESS CALCIUM RIDE, DIS-SIUM, SOD IUM, SIUM, LINITY SULFATE RIDE, DIS-SOLVED (MG/L AS CA) DIS-DIS-DIS-LAB DIS-DIS-SOLVED SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L AS K) SOLVED (MG/L (MG/L AS F) DATE (MG/L AS MG) (MG/L AS NA) (MG/L AS SO4) (MG/L AS CL) AS AS CACO3) CACO3) **OCT 1987** 08... JAN 1988 28... 34 9.8 2.4 10 0.1 6.3 2.6 26 21 67 19 4.8 5.6 3.4 17 36 14 0.2 MAR 29... 67 19 21 4.8 5.2 2.8 34 14 0.2 JUN 29... 59 17 4.1 5.5 3.6 31 18 15 0.4 JUL 06... 78 23 5.0 5.0 3.7 35 28 17 0.2 AUG 02... 74 22 4.7 4.7 4.9 31 31 14 0.3 SOLIDS, NITRO-SILICA, NITRO-GEN, AM-MONIA + SUM OF NITRO-NITRO-GEN, AMMONÍA CONSTI-GEN, NITRITE GEN, NO2+NO3 NITRO-PHOS-DIS-CARBON ORGANIC SOLVED TUENTS, **PHOROUS** ORGANIC GEN, TOTAL TOTAL (MG/L (MG/L DIS-TOTAL TOTAL TOTAL TOTAL TOTAL DATE SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L \$102) (MG/L) AS N) AS N) AS N) AS N) AS N) AS P) AS C) **OCT 1987** 08... JAN 1988 74 6.1 0.012 1.54 0.06 1.1 2.6 0.165 8.8 28... 10 103 0.012 4.53 . . 0.070 4.3 MAR 29... 8.8 101 0.019 0.06 0.40 6.0 JUN 29... 6.6 89 0.023 1.12 0.17 1.3 2.4 6.8 JUL 06... 7.1 110 E0.016 1.49 0.07 0.47 2.0 0.055 4.0 AUG

01477510 OLDMANS CREEK AT PORCHES MILL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIM	SULFII TOTAI E (MG/I AS S	L SOLVE L (UG/L	ARSE D TOT	LI TC NIC RE AL ER	TAL COV- ABLE IG/L	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTA RECO ERAB (UG/	, COPPER, L TOTAL V- RECOV- LE ERABLE L (UG/L
JUN 1988 29	111	5 <0.5	<10		2 •	10	<10	2	2	5
D	ATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTA RECO ERAB (UG/	L SE IV- NI ILE TO IL (U	LE- TOUM, ROTAL E	UG/L	PHENOLS Total (UG/L)
JUN 1	988	950	~ 5	80	~ 0 10	17		-1	20	7

01481602 DELAWARE RIVER BELOW CHRISTINA RIVER AT WILMINGTON, DE

LOCATION.--Lat 39°43'00", long 75°31'03", New Castle County, DE, Hydrologic Unit 02040206, on right bank, 1,000 ft from mouth of Christina River at the Wilmington Marine Terminal at Wilmington, 2.0 mi upstream of Delaware Memorial Bridge, and at mile 69.70.

DRAINAGE AREA. -- 11,030 mi 2.

PERIOD OF RECORD.--December 1982 to current year. July 1967 to May 1983 published as "Delaware River at Delaware Memorial Bridge, at Wilmington, DE" (station 01482100). Tidal volumes published from July 1967 to September 1973.

GAGE.--Water-stage recorder. Datum of gage is -18.05 ft below National Geodetic Vertical Datum of 1929. Prior to Dec. 1982, water-stage recorder at Delaware River at Delaware Memorial Bridge 2.0 mi downstream at datum 8.05 ft higher. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.

REMARKS.--No gage-height or doubtful record: Nov. 22 to Dec. 2, Jan. 6 to Feb. 1, and July 6 to Aug. 1. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 7.88 ft, Oct. 25, 1980; minimum, -5.86 ft, Apr. 4, 1975.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum elevation known, 8.4 ft, Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft, Dec. 31, 1962.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation recorded, 5.68 ft, Apr. 7; minimum recorded, -4.68 ft, Nov. 21.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	4.79	e5.0	4.99	e5.4	5.10	4.29	5.68	5.12	5.64	e5.3	5.19	4.70
high tide	Date	7	29	20	20	20	20	7	19	3	28	26	4
Minimum	Elevation	-3.40	-4.68	-3.91	e-4.0	-4.38	-3.16	-2.60	-2.27	-2.75	-2.60	-2.37	-2.30
low tide	Date	4	21	17	7	14	20	16	13	6	1	16	24
Mean high ti	ide	3.55		3.31		3.25	3.21	3.90	4.00	3.86		3.86	3.74
Mean water	level	0.98	••	0.91		0.89	0.66	1.35	1.34	1.17		1.15	
Mean low tic	de	-1.79		-1.71	••	-1.82	-2.01	-1.43	-1.51	-1.77		-1.76	-1.72

e Estimated

01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi upstream from small brook, and 0.3 mi downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA. -- 14.6 mi 2.

PERIOD OF RECORD. -- Water years 1973 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	ICT - (S	TAND- AT ARD WA	URE D	GEN, (F IS- C	IS- DEI DLVED B DER- C CENT I	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, STREP- EC TOCOCCI ROTH FECAL MPN) (MPN)
NOV 1987 04	1330	E16 2	25 6	.6 13.	5 9.	4 9	0 1	E2.1 2	30 >2400
FEB 1988 02	1330	E624	210 6	.4 8.	0 8.	5 7	2	E2.1 1	10 110
MAR 17	1045	E16 2	250 7	.0 6.	0 11.	7 9	94	2.7 <	20 21
MAY 25	1045	E16 2	243 7	.4 22.	5 7.	7 9	90	3.2 11	00 350
JUL 19 AUG	1330	E5.0	229 8	.0 29.	0 7.	2 9	94	4.7 2	30 >2400
15	1030	E5.0	245 8	.7 30.	5 5.	0 6	57	8.1 3	30 350
DATE	HARD - NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG/L
NOV 1987	77	16	8.9	7.8	7.9	29	35	20	0.2
FEB 1988 02 MAR	68	15	7.5	7.4	4.1	19	37	19	0.2
17 MAY	82	18	9.1	7.7	4.0	21	39	21	0.2
25 JUL	80	17	9.0	7.6	5.0	32	34	18	0.2
19 AUG	94	22	9.4	18	5.0	68	24	25	0.3
15	. 85	20	8.6	8.0	6.8	61	23	19	0.2
DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	TOTAL (MG/L
NOV 1987 04 FEB 1988	6.3	119	0.053	1.89	0.25	1.5	3.4	0.575	10
02 MAR	5.9	107	0.017	3.52	••			0.103	5.4
17 MAY	7.6	119	0.041		0.06	0.70			5.5
25 JUL	6.9	117	E0.078	1.42	0.48	1.2	2.6	0.207	9.1
19 AUG_	2.3	147	0.007	0.28	0.13	1.6	1.9	0.273	20
15	11	133	<0.003	0.43	0.05	3.8	4.3	0.500	21

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		SULFIDE TOTAL	ALUM- INUM, DIS- SOLVED	ARSENIC TOTAL	BERYL- LIUM, TOTAL RECOV- ERABLE	BORON, TOTAL RECOV- ERABLE	CADMIUM TOTAL RECOV- ERABLE	CHRO- MIUM, TOTAL RECOV- ERABLE	COPPER, TOTAL RECOV- ERABLE
DATE	TIME	(MG/L AS S)	(UG/L AS AL)	(UG/L AS AS)	(UG/L AS BE)	(UG/L AS B)	(UG/L AS CD)	(UG/L AS CR)	(UG/L AS CU)
MAY 1988 25	1045	<0.5	150	2	<10	<10	1	<1	4
DATE	IRON, TOTAL RECOV- ERABLE	LEAD, TOTAL RECOV- ERABLE	MANGA- NESE, TOTAL RECOV- ERABLE	MERCURY TOTAL RECOV- ERABLE	NICKEL, TOTAL RECOV- ERABLE	SELE- NIUM, TOTAL	ZINC, TOTAL RECOV- ERABLE	PHENOLS	
DATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(UG/L)	
MAY 1988 25	1800	8	160	<0.10	6	<1	<10	10	

RESERVOIRS IN DELAWARE RIVER BASIN

01416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi east of Downsville, NY. DRAINAGE AREA, 371 mi². PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam. Storage began Sept. 15, 1954. Usable capacity 140,190 mil gal between minimum operating level, elevation, 1,152.0 ft, and crest of spillway, elevation, 1,280.0 ft. Capacity, at crest of spillway 149,700 mil gal; at minimum operating level, 9,609 mil gal; at still of diversion tunnel, elevation, 1,143.0 ft, 6,098 mil gal; in dead storage below release outlet, elevation, 1,126.50 ft, 1,898 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see Delaware River Basin, diversions), for water supply to City of New York; for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Jan. 6, 1955.

COOPERATION.--Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 154,027 mil gal, Apr. 5, 1960, elevation, 1,261; minimum observed (after first filling), 9,575 mil gal, Dec. 26, 1964, elevation, 1,151.92 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 150,206 mil gal, June 1, elevation, 1,280.22 ft; minimum, 105,193 mil gal, Sept. 30, elevation, 1,253.39 ft. elevation, 1,282.27

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi southeast of Stilesville, NY. DRAINAGE AREA, 454 mi². PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal between minimum operating level, elevation, 1,040.0 ft and crest of spillway, elevation, 1,150.0 ft. Capacity, at crest of spillway, 98,618 mil gal; at minimum operating level, 2,912 mil gal; at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft, 1,892 mil gal; in dead storage below release outlet elevation, 1,020.5 ft, 328 mil gal. Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released in Delaware River for downstream low flow augmentation as directed by Delaware River Master; and is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964.

COOPERATION.--Records provided by Bureau of Water Resources Development, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 108,116 mil gal, Mar. 15, 1977, elevation, 1,155.85 ft; minimum observed (after first filling), 11,901 mil gal, Nov. 7, 1968, elevation, 1,066.24 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 103,430 mil gal, Mar. 28, elevation, 1,152.99 ft; minimum, 40,610 mil gal, Sept. 30, elevation, 1,104.47 ft.

01428900 PROMPTON RESERVOIR.--Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi north of Prompton, PA, 0.4 mi upstream from highway bridge and 0.5 mi upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi². PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earth and rockfill dam with ungaged bedrock spillway at elevation 1,205.00 ft; storage began July 1960. Capacity at elevation 1,205.00 ft is 51,700 acre-ft. Ordinary minimum (conservation) pool elevation, 1,125.00 ft capacity, 3,420 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,170 acre-ft, June 29, 1973, elevation, 1,138.40 ft; minimum (after first filling), 2,920 acre-ft, Sept. 27, 1964, elevation, 1,123.20 ft.

EXTREMES FOR CURRENT YEAR.--Maximum content, 4,610 acre-ft, May 21, elevation, 1,128.95 ft; minimum, 2,930 acre-ft. Aug. 23. elevation, 1,122.97 ft.

acre-ft, Aug. 23, elevation, 1,122.97 ft.

01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit 02040103, at dam on Dyberry Creek, 0.45 mi upstream from unnamed tributary, 2.4 mi north of Honesdale, PA, and 2.9 mi upstream from mouth. DRAINAGE AREA, 64.5 mi². PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). REMARKS.--Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft; storage began in October 1959. Capacity at elevation 1,053.00 ft is 24,500 acre-ft. Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tuppel.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 6,520 acre-ft, June 19, 1973, elevation 1,017.40 ft; no

storage many times.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 312 acre-ft, May 20, elevation, 986.20 ft; no storage many days.

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, PA, 1.2 mi south of and 1.5 mi upstream from mouth. DRAINAGE AREA, 228 mi². PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Power and Light Co.).

REMARKS.--Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft in two sections. Spillway equipped with roller gate, 14 ft high on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft, top of gates, is 209,300 acre-ft of which 157,800 acre-ft is controlled storage above elevation 1,160.00 ft, minimum pool. Reservoir is used for generation of hydrolelectric power. Figures given herein represent usable contents.

T, 100.00 Tt, minimum poot. Reservoir is used for generation of hydrocastal part of the preparation of hydrocastal part of the preparation. --Records provided by Pennsylvania Power and Light Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 178,200 acre-ft, Aug. 19-21, 1955, elevation, 1,193.45 ft; minimum (after first filling), 12,280 acre-ft, Mar. 28, 1958, elevation, 1,162.60 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 90,460 acre-ft, May 30, elevation, 1,186.8 ft; minimum, 17,580 acre-ft, Oct. 16, 26, Nov. 13, elevation, 1,173.4 ft.

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

01433000 SWINGING BRIDGE RESERVOIR.--Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi² excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. WDR NJ-86-2: 1985. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,010 ft.

REMARKS.--Reservoir is formed by an earthfill dam. Storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ between elevations 1,010.0 ft, minimum operating pool, and 1,071.2 ft, top of flashboards. Capacity below elevation 1,010.0 ft, minimum operating pool, about 212.7 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft. Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir.

COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,461.6 mil ft³, Mar. 14, 1977, elevation, 1,071.8 ft; minimum (after first filling), -141.4 mil ft³, Dec. 2, 1938, elevation, 987.5 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,283.6 mil ft³, Oct. 30, elevation, 1,067.4 ft; minimum, 779.1 mil ft³, Feb. 22, elevation, 1,052.9 ft.

01433100 TORONTO RESERVOIR.--Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi². PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). WDR NJ-85-2: 1984. WDR NJ-86-2: 1985. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,165.0 ft.

REMARKS.--Reservoir is formed by an earthfill dam completed July 24, 1926. Storage began Jan. 13, 1926.
Usable capacity, 1,098.2 mil ft³ between elevations 1,165.0 ft, minimum operating pool, and operating pool, about 26.8 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above 1,165.0 ft.

COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 1,171.2 mil ft³, July 20, 1945, elevation, 1,222.0 ft. minimum observed (after first filling), -26.8 mil ft³, Nov. 15, 1928, elevation, 1,144.5 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 775.2 mil ft³, June 1, 3, 6, 8, elevation, 1,209.8 ft; minimum observed, 27.0 mil ft³, Sept. 30, elevation, 1,170.4 ft.

01433200 CLIFF LAKE.--Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD NY-75-1: 1974(m). WDR NJ-86-2: 1985. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft.

REMARKS.--Reservoir is formed by a concrete gravity-type dam. Storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft³ between elevations 1,043.3 ft, minimum operating pool, and 1,072.0 ft, top of permanent flashboards. Capacity below elevation 1,043.3 ft, minimum operating pool, about 6.54 mil ft³. Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft.

COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 145.44 mil ft³, July 30, 31, 1945, elevation, 1,073.1 ft; minimum observed (after first filling), about -6.54 mil ft³, Sept. 16, elevation, 1,038.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 126.95 mil ft³, Sept. 16, elevation, 1,070.9 ft; minimum observed, 25.61 mil ft³, Feb. 29, elevation, 1,053.3 ft.

01435900 NEVERSINK RESERVOIR.--Lat 41°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi². PERIOD OF RECORD, June 1953 to current year. Nonrecording gage read daily at 0900. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam. Storage began June 2, 1953. Usable capacity 34,941 mil gal between minimum operating level, elevation, 1,319.0 ft and crest of spillway, elevation, 1,440.0 ft. Capacity at crest of spillway, 37,146 mil gal; at minimum operating level, 2,205 mil gal; dead storage belowand outlet sill at elevation 1,314.0 ft, 1,680 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin, for water supply of City of New York (see Delaware River basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953.

COOPERATION.--Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 37,978 mil gal, Apr. 25, 1961, elevation, 1,441.67 ft; minimum observed (after first filling), 1,985 mil gal, Nov. 25, 1964, elevation, 1,316.98 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 36,889 mil gal, May 30, elevation, 1,439.48 ft; minimum observed, 23,102 mil gal, SEPT. 30, elevation, 1,407.58 ft.

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft downstream from Bear Creek and 5 mi northwest of White Haven, PA. DRAINAGE AREA, 289 mi². PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers)

Creek and 5 mi northwest of white havel, Fa. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft; storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft is 110,700 acre-ft of which 108,700 acre-ft is controlled storage above elevation 1,300.0 ft or (conservation pool). Dead storage is 2,000 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and

low flow by-pass system.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 62,100 acre-ft, Sept. 28, 1985, elevation, 1,417.08 ft; minimum (after establishment of conservation pool), 981 acre-ft, July 6, 1982, elevation, 1,287.70 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 10,150, May 22, elevation, 1,344.89 ft; minimum, 1,650 acre-ft, Feb. 17, elevation, 1,296.64 ft.

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

01449400 PENN FOREST RESERVOIR.--Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi upstream from Hatchery, 2.6 mi upstream from Wild Creek Dam, 4.4 mi upstream from mouth, and 10 mi northeast of Palmerton, PA. DRAINAGE AREA, 16.5 mi². PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

REMARKS.--Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft; storage began in October 1958. Capacity at elevation 1,000.00 ft is 19,980 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into Wild Creek basin.

COOPERATION.--Records provided by city of Bethlehem.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 20,560 acre-ft, Apr. 6, 1984, elevation, 1,001.19 ft;
minimum, 176 acre-ft, Oct. 6, 1965, elevation, 902.40 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 20,390 acre-ft, May 20, elevation, 1,000.71 ft; minimum, 17,470 acre-ft, Sept. 30, elevation, 994.38 ft.

01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1,6 mi upstream from mouth, 2.4 mi south of Hatchery, and 7.5 mi northeast of Palmerton, PA. DRAINAGE AREA, 22.2 mi². PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

REMARKS.--Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 820.00 ft; storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft is 12,500 acre-ft of which 12,000 acre-ft is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

COOPERATION.--Records provided by City of Bethlehem.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,880 acre-ft, May 23, 1942, elevation, 822.93 ft; minimum (after first filling), 2,680 acre-ft, Nov. 15, 1966, elevation, 774.10 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 12,250 acre-ft, May 21, elevation, 820.83 ft; minimum, 11,170 acre-ft, Sept. 3, elevation, 816.71 ft.

acre-ft, Sept. 3, elevation, 816.71 ft.

01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi upstream from gaging station on Pohopoco Creek, 0.55 mi upstream from Sawmill Run and 2.3 mi northeast of Parryville, PA. DRAINAGE AREA, 96.3 mi². PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft; storage began Feb. 8, 1971. Capacity at elevation 651.00 ft is 68,300 acre-ft. Ordinary minimum (conservation) pool elevation, 628.00 ft, capacity, 41,250 acre-ft. Dead storage is 1,390 acre-ft. Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates. COOPERATION.--Records provided by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents 49,730 acre-ft, Jan. 29, 1976, elevation, 636.30 ft; minimum, 15,110 acre-ft, March 31, 1983 elevation, 588.79

EXTREMES FOR CURRENT YEAR.--Maximum contents 42,390 acre-ft, Sept. 6, elevation, 629.19 ft; minimum, 35,800 acre-ft. Oct. 1, elevation, 621.94 ft.

acre-ft, Oct. 1, elevation, 621.94 ft.

01455221 MERRILL CREEK RESERVOIR.--Lat 40°43'42", long 75°06'11", Warren County, Hydrologic Unit 02040105, at dam on Merrill Creek in Harmony Township, 4.5 mi northeast of Phillipsburg, and 2.8 mi upstream from mouth. DRAINAGE AREA, 3,13 mi. PERIOD OF RECORD, March to September 1988. GAGE, measurement from reference point. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir formed by zoned, compacted, earth-rockfill dam constructed in November 1987. Total capacity at spillway elevation, 16,617,000,000 gal, elevation 929.0 ft. Useable capacity, 15,6654,000,000 gal. Reservoir used for storage of water pumped from the Delaware River through a 57-inch diameter pipe 17,000 ft long. Releases are made into the Delaware River through the same pipe. Reservoir is used to augment low flow in the Delaware River. Delaware River.

COOPERATION.--Records provided by the Merrill Creek Project.
EXTREMES FOR PERIOD MARCH TO SEPTEMBER, 1988.--Maximum contents, 16,056,000,000 gal, Sept. 30, elevation, 917.4 ft; minimum, 3,222,000,000 gal, March 31, (first filling) elevation 829.5 ft.

01455400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 02040105, in gatehouse of Lake Hopatcong Dam on Musconetcong River at Landing. DRAINAGE AREA, 25.3 mi². PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in WSP 1302. REVISED RECORDS, WDR NJ-82-2: Drainage area; WDR NJ-83-2: Corrections 1981 (m/m). GAGE, max-mim recorder and staff gage. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Lake is formed by concrete spillway and earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft in 1925. Usable capacity, 7,459,000,000 gal between (gage height -2.6 ft, sills of gates and 9.00 ft, crest of spillway). Flow regulated by four gates (3 by 5 ft, also by one 24-inch pipe with gate valve to recreation fountain 250 ft downstream from dam. Dead storage, about 8,117,000,000 gal. Figures given herein represent usable capacity. Lake used for recreation. CORRECTIONS.--Once-daily staff readings furnished by New Jersey Department of Environmental Protection.

COOPERATION.--Records provided by New Jersey Department of Environmental Protection.

COOPERATION.--Records provided by New Jersey Department of Environmental Protection.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,777,000,000 gal, August 19, 1955 correction, gage height,
10.55 ft; minimum, 1,525,000,000 gal, Dec. 29, 1960, gage height, 0.65 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 6,393,000,000 gal, Jan. 8, gage height, 7.70 ft; minimum,
3,575,000,000 gal, Sept. 14, gage height, 3.96 ft.

01459350 NOCKAMIXON RESERVOIR.--Lat 40°28'13", long 75°11'10", Bucks County, PA, Hydrologic Unit 02040105, at dam on Tohickon Creek, 6.2 mi upstream from gaging station on Tohickon Creek, 2.9 mi upstream from Mink Run and 1.3 mi east of Ottsville. DRAINAGE AREA, 73.3 mi². PERIOD OF RECORD, December 1973 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Department of Environmental Resources).

Department of Environmental Resources).

REMARKS.--Reservoir formed by earthfill dam with concrete spillway at elevation 395.0 ft. Storage began Decmeber 1973. Total capacity 66,500 acre-ft at elevation 410 ft. Reservoir is used primarily for recreation, but can be used for water supply and flood control.

COOPERATION.--Records provided by Pennsylvania Department of Environmental Resources.

EXTRMES FOR PERIOD OF RECORD.--Maximum contents, 44,380 acre-ft, Jan. 20, 1979, elevation 397.85 ft; minimum (after first filling) 15,900 acre-ft, around Dec. 31, 1975, elevation 372.78 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 41,750 acre-ft, Nov. 30, elevation 396.10 ft; minimum, 39,080 acre-ft, Nov. 8, elevation 394.20 ft.

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi upstream from mouth and 2.3 mi north of Hometown, PA. DRAINAGE AREA, 8.5 mi². PERIOD OF RECORD, January 1933 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Panther Valley Water Co.).

REMARKS.--Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft; storage began in February 1933. Capacity at elevation, 1,182.00 ft is 8,290 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through

COOPERATION.--Records provided by Panther Valley Water Co.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,570 acre-ft, Oct. 15, 1955, elevation, 1,182.92 ft, but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft, Dec. 8, 1944, elevation, 1,136.70 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,410 acre-ft, May 20, elevation, 1,182.4 ft; minimum, 6,100 acre-ft, Sept. 30, elevation, 1,147.2 ft.

01470870 BLUE MARSH LAKE.--Lat 40°22'45", long 76°01'59", Berks County, PA, Hydrologic Unit 02040203, at dam on Tulpehocken Creek, 0.8 mi upstream from gaging station on Tulpehocken Creek, 1.0 mi northeast of Blue Marsh, PA, 1.9 mi upstream from Reber's Bridge, and 5.1 mi southeast of Bernville, PA. DRAINAGE AREA, 175 mi². PERIOD OF RECORD, April 1979 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 307.00 ft. \$torage began April 23, 1979. Capacity at elevation, 307.00 ft is 50,000 acre-ft. Dead storage is 3,000 acre-ft. Reservoir is used for flood control, water supply, and recreation. Figures herein represent total contents.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 39,480 acre-ft, Apr. 17, 1983, elevation, 301.65 ft; minimum, 17,440 acre-ft, Nov. 28, 1983 elevation, 284.49 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 32,750 acre-ft, May 20, elevation, 297.51 ft; minimum, 16,630 acre-ft, Mar. 23, elevation, 283.95 ft.

01472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi west of Green Lane and 2.1 mi upstream from Unami Creek. DRAINAGE AREA, 70.9 mi². PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia Suburban Water Co.). REMARKS.--Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft; storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft, 13,430 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on

pipe through dam.

COOPERATION.--Records provided by Philadelphia Suburban Water Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft, June 23, 1972, elevation, 290.05 ft; minimum (after first filling), 1,270 acre-ft, Aug. 25, 1957, elevation, 251.60 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 14,240 acre-ft, Nov. 30, elevation, 286.91 ft; minimum, 12,090 acre-ft, July 17, elevation, 284.44 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

Date	Elevation (feet):	Contents (million gallons)	Change in contents (equivalent in ft /s)	Elevation (feet):	Contents (million gallons)	Change in contents (equivalent in ft 3/s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01416900 P	EPACTON RES	SERVOIR	01424997 CA	NNONSVILLI	RESERVOIR	01428900 P	ROMPTON R	ESERVOIR
Sept. 30. Oct. 31. Nov. 30. Dec. 31.	1,263.08	115,278 120,420 119,882 116,765	+257 -27.7 -156	1,129.60 1,140.26 1,149.90 1,150.17	69,746 84,162 98,466 98,892	+720 +738 +21.3	1,125.21 1,125.68 1,127.76 1,125.28	3,560 3,690 4,270 3,580	+2.1 +9.7 -11.2
CAL YR	1987		-43.1			3.8	ter Calabi		•.2
Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30.	1,258.69 1,266.25 1,271.74 1,280.22 1,274.90 1,269.02	108,177 113,376 125,652 135,010 150,206 140,563 130,327 117,859 104,785	-429 +277 +613 +483 +758 -497 -511 -622 -674	1,147.41 1,150.58 1,151.63 1,149.99 1,150.64 1,142.41 1,127.08 1,112.75 1,103.68	94,678 99,551 101,241 98,603 99,648 87,269 66,537 49,447 39,827	-210 +260 +84.4 -136 +52.2 -638 -1,035 -853 -496	1,124.98 1,124.88 1,126.24 1,125.90 1,125.44 1,123.47 1,123.95 1,124.06 1,123.21	3,490 3,470 3,850 3,750 3,620 3,070 3,210 3,240 3,000	-1.5 -5.3 +6.2 -1.7 -2.1 -9.2 +2.3 +2.3 -4.0
WTR YE	1988		-44.4			-126			*.8

RESERVOIRS IN DELAWARE RIVER BASIN--Continued MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Change in Change in Change in contents contents Contents Contents Contents contents (acre- (equivalent feet) in ft³/s) Elevation (million (equivalent (feet)† ft³) in ft³/s) (acre- (equivalent feet) in ft /s) Elevation Elevation Date (feet)+ (feet) † 01433000 SWINGING BRIDGE RESERVOIR 01429400 GENERAL EDGAR JADWIN RESERVOIR 01431700 LAKE WALLENPAUPACK 1,184 1,276 1,218 1,158 47,300 21,740 27,490 40,820 1,064.8 1,067.2 1,065.7 1,064.1 977.40 977.82 982.18 1,179.0 1,174.2 1,175.3 1,177.8 0 Sept. 30... Oct. 31... Nov. 30... 0 -416 127 -22.3 -22.5 +2.1 +96.6 Dec. 31... 972.00 0 +217 **CAL YR 1987** 0 -34.5 +0.2 35,440 39,740 47,300 58,650 89,320 73,580 69,100 53,780 47,840 946 804 1,169 1,184 1,252 1,154 1,114 1,150 1,180 1,176.8 1,177.6 1,179.0 1,181.1 1,186.6 1,183.8 1,183.0 1,058.1 1,053.7 1,064.4 1,064.8 1,066.6 -79.2 -56.6 +136 -87.5 Jan. 31... 975.89 0 0 Feb. 29... Mar. 31... 976.73 978.81 +74.8 +123 +191 +499 0 Ó 0 0 +5.8 +25.6 -38.0 -15.1 979.70 977.12 976.13 975.73 Apr. 30... 0 0 31... n May 30... 31... -264 -72.9 1,064.0 ŏ Ŏ June July Ŏ 973.83 962.36 ,180.2 -249 063.9 +13.7 Aug. Sept. 30... -99.8 WTR YR 1988 0 -.1 Change in Change in Change in Contents contents contents Contents contents Contents (million (equivalent gallons) in ft³/s) (million (equivalent ft³) in ft³/s) Elevation (million (equivalent (feet)† ft³) in ft³/s) Elevation Elevation Date (feet)+ (feet)+ 01433100 TORONTO RESERVOIR 01435900 NEVERSINK RESERVOIR 01433200 CLIFF LAKE Sept. 30... 1,196.1 Oct. 31... 1,197.7 Nov. 30... 1,195.8 Dec. 31... 1,196.8 92.3 99.3 95.8 84.3 1,418.40 1,423.05 1,423.20 1,419.29 27,377 29,334 29,398 27,747 1,066.3 1,067.3 1,066.8 1,065.1 424 +2.6 -1.4 -4.3 461 +13.7 +97.7 +3.3 -16.7 +8.4 418 **CAL YR 1987** -3.5 +12.2 -.1 1,410.96 1,413.65 1,424.25 1,430.83 1,439.27 1,432.71 1,431.39 1,426.12 1,406.68 31... 29... 1,197.7 1,200.7 1,204.4 1,206.8 1,209.7 1,205.8 1,199.9 1,188.5 1,170.4 +7.7 +29.0 +35.5 +24.7 24,395 25,451 29,850 32,784 36,787 33,648 33,036 30,665 22,764 1,057.7 -167 461 534 629 -15.5 Jan. 42.8 +19.3 +56.3 +220 +151 Feb. 25.6 77.3 31... 1,064.0 1,064.9 1,066.9 1,065.4 1,064.8 Mar. 693 772 666 514 83.0 96.5 86.3 82.4 83.7 80.5 +2.2 +5.0 -3.9 -1.5 +.5 -1.2 30... Apr. 31... 30... +29.8 -41.1 -56.7 +200 May June -162 -30.5 31... 31... July -90.6 -94.3 Aug. 1,065.0 -118 Sept. 30... 064.5 -407 **WTR YR 1988** -12.6 - .4 -19.5 Change in Change in Change in Contents Contents Contents contents contents contents (equivalent in ft³/s) Elevation (acre- (equivalent feet) in ft³/s) Elevation (equivalent in ft³/s) Elevation (acre-feet) (acre-Date (feet) ± feet) (feet)+ (feet)† 01447780 FRANCIS E. WALTER LAKE 01449400 PENN FOREST RESERVOIR 01449700 WILD CREEK RESERVOIR Sept. 30... 1,308.13 Oct. 31... 1,309.53 Nov. 30... 1,315.92 Dec. 31... 1,299.53 2,860 3,020 3,890 1,950 11,940 11,710 11,520 12,000 20,110 20,080 20,280 1,000.22 819.71 +2.6 1,000.17 -0.5 818.67 817.96 -3.7 1,000.52 +3.4 +14.6 -3.2 -31.6 +7.8 1,000.08 20,020 820.00 **CAL YR 1987** -.3 +.7 - .6 2,400 2,340 2,180 2,810 3,140 2,070 2,740 2,500 2,500 20,070 20,080 20,120 20,100 20,180 20,000 19,690 18,470 17,470 11,490 11,350 12,090 11,900 12,100 11,580 11,360 11,240 11,280 1,303.95 1,303.37 1,301.83 31... 1,000.15 +0.8 +0.2 +0.7 817.86 817.36 820.31 Jan. +7.3 -8.3 29... 31... -1.0 -2.6 -2.4 +12.0 Feb. 1,000.25 1,000.21 Mar. 1,301.83 1,307.71 1,310.49 1,300.69 1,307.13 1,304.89 1,304.89 30... -0.3 +1.3 -3.2 +3.3 -8.7 Apr. +10.6 819.50 31... +5.4 May June 30... May 1,000.35 820.35 1,000.04 999.37 996.65 994.38 -3.0 -5.0 818.17 817.39 +10.9 -3.6

-19.8

-16.8

-3.6

816.96 817.09

-2.0

+.7

-.9

-3.9

-.5

n

Aug. Sept. 30...

WTR YR 1988

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

MONTHEND ELEVATION	AND	CONTENTS	UATED	VEAD	OCTOBED	1087	TO	SEDTEMBED	1088	2
MUNITERU ELEVALIUN	ANU	CUNIENIS.	WAIEK	TEAK	ULIUBER	1701	10	SEPTEMBER	1700	

Date		Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft 3/s)	Elevation (feet):	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
		01449790	BELTZVIL	LE LAKE	01455221 ME	RRILL CREE	RESERVOIR	014554	00 LAKE H	OPATCONG
Sept. Oct. Nov. Dec.	30 31 30 31	625.04 628.88	35,800 38,490 42,090 41,100	+43.8 +60.5 -16.1				6.80 4.10 4.16 4.00	5,677 3,672 3,714 3,603	-100 +2.2 -5.5
CAI	YR 1	987		6						-7.9
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31 29 31 30 31 31 31	627.92 627.96 627.94 627.66 628.07 628.30 628.05	41,380 41,170 41,210 41,190 40,930 41,320 41,540 41,300 41,300	+4.6 -3.7 +.7 3 -4.2 +6.6 +3.6 -3.9	829.5 857.8 869.4 887.0 896.6 907.0 917.4	3,222 6,011 7,728 10,240 11,780 13,840 16,056	+144 +85.7 +130 +76.9 +103 +114	4.12 4.10 4.96 5.54 7.50 7.16 7.66 7.54 7.64	3,686 3,672 4,284 4,711 6,232 5,961 6,361 6,264 6,344	+4.1 8 +30.5 +22.0 +75.9 -14.0 +20.0 -4.8 +4.1
WT	R YR 1	988		+7.6			•			+2.8

Date		Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
		01459350	NOCHAMIXON	RESERVOIR	01469200 S	TILL CREEK	RESERVOIR	01470870	BLUE MAR	SH LAKE
Nov.	30 31 30 31	395.10	40,340 40,340 41,750 40,270	0 +23.7 -24.1	1,182.00 1,181.75 1,182.20 1,182.00	8,290 8,210 8,350 8,290	-1.3 +2.4 -1.0	290.04 285.67 286.89 285.01	22,950 18,280 19,510 17,630	-76.0 +20.7 -30.6
CAL	YR 19	987		•.1			+2.9			0
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31 29 31 30 31 31 31	395.15 395.20 395.10 395.00 395.15	40,340 40,410 40,410 40,480 40,340 40,200 40,410 40,410 39,920	+1.1 +1.2 0 +1.2 -2.3 -2.4 +3.4 0 -8.2	1,182.00 1,182.00 1,182.10 1,181.10 1,182.00 1,180.10 1,178.50 1,175.60 1,174.20	8,290 8,290 8,320 8,020 8,290 7,730 7,290 6,490 6,100	0 +.5 -5.0 +4.4 -9.4 -7.2 -13.0	285.40 285.38 285.00 289.95 290.09 290.09 290.04 289.92	18,020 18,000 17,620 22,840 23,310 23,000 23,000 22,940 22,810	+6.3 -6.2 +87.7 +7.6 -5.2 0 -1.0 -2.2
WTF	R YR 1	988		6			-3.0			2

Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft /s)
	01472200	GREEN LANE	RESERVOIR
Oct. 31 Nov. 30	285.88 285.90 286.91 285.88	13,330 13,340 14,240 13,330	0.2 +15.1 -14.8
CAL Y	R 1987		•.1
Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31	285.96 285.99 285.94	13,350 13,420 13,400 13,420 13,380 12,860 13,310 13,050 12,840	+.3 +1.2 3 +.3 8.7 +7.3 -4.2
WTR Y	R 1988		7

Elevation at 0900 hours on first day of following month. Elevation or gage height at 2400 hours. Elevation at 0900 hours.

DIVERSIONS AND WITHDRAWALS

WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of City of New York. No diversion prior to Jan. 6, 1955. Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York. REVISED RECORDS.--WRD NY-71: 1970. WRD NJ-72: 1970. WRD NJ-82-2: 1980. WRD NY-81-1: 1980.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964.

 Records provided by Board of Water Supply, City of New York.

 REVISED RECORDS.--WDR NJ-82-2: 1980. WDR NY-81-1: 1980.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York.

 REVISED RECORDS.--WDR NJ-82-2: 1976, 1977. WDR NY-82-1: 1976, 1977.
- 01436520 Village of Woodridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Village of Woodridge has estimated that this year virtually all the withdrawal from East Pond Reservoir was returned to the Neversink River.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River, by the New York State Training School, Otisville, NY, for water supply outside of basin. Records provided by Delaware River Basin Commission.
- 01446572 Diversion from Delaware River at Brainards to Merrill Creek Reservoir for storage to augment low flow in the Delaware River. Records provided by Merrill Creek Project.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records provided by Delaware River Basin Commission. Data for this year is not available but, from past records, monthly withdrawal is approximately 0.5 ft³/s.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply.
 Waste effluent from the municipal water system is released to the Susquehanna River. Records provided by Delaware River Basin Commission.
- 01460500 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Kingston, (see station 01460500).

 REVISED RECORDS.--WDR NJ-82-2: 1981.

WITHDRAWALS BY CITY OF NEW YORK

DIVERSION, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

Month	01415200 PEPACTON RESERVOIR	01423900 CANNONSVILLE RESERVOIR	01435800 NEVERSINK RESERVOIR	
October November December	694 696 697	159 0 313	163 196 234	
CAL YR 1987	662	264	169	
January. February. March. April May. June July. August. September.	647 552 515 242 185 635 689 681 675	550 145 391 757 717 264 510 254	240 115 108 74.0 54.4 207 125 154 449	
WTR YR 1988	580	340	176	

DIVERSIONS AND WITHDRAWALS -- Continued

MISCELLANEOUS WITHDRAWALS FROM BASIN, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

MONTH	01446572 MERRILL CREEK RESERVOIR	01447750 BEAR CREEK	01448830 HAZLE CREEK	01460500 DELAWARE & RARITAN CANAL
October		0	3.1 3.1 3.1	98.7 108 129
CAL YR 1987		0	2.9	110
January. February. Jarch April Jay June June July August. September.	144 85.7 130 76.9 103	0 0 0 0 0	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	114 119 117 118 119 131 147 147
WTR YR 1988		0	3.1	124

DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant for municipal supply, by the Borough of Morrisville, PA. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records provided by the Borough of Morrisville, PA.
- 01463490 Diversion from the Delaware River just above the Trenton gaging station for municipal supply by the city of Trenton, NJ. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records provided by the City of Trenton.

 REVISED RECORDS.--WDR NJ-82-2: Station number.
- 01467030 Diversion from the Delaware River at the Torresdale Intake for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records provided by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and losses in transmission. Records provided by the Delaware River Basin Commission.

WITHDRAWALS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

			CITY OF		
Month	01463480 BOROUGH OF MORRISVILLE	01463490 CITY OF TRENTON	01467030 DELAWARE RIVER TORRESDALE		474500 KILL RIVER QUEEN LANE
October	2.82 2.88 2.91	46.0 40.2 43.2	332 342 330	94.0 106 105	150 126 134
CAL YR 1987	4.39	45.8	296	106	157
January	3.35 3.19 3.13 2.94 3.30 3.43 3.27 3.84 3.86	49.2 44.7 43.8 43.2 44.6 52.2 54.9 56.4 50.4	328 303 299 306 322 352 386 383 328	116 107 97.2 89.7 77.5 117 123 121	164 164 172 150 154 171 168 176
WTR YR 1988	3.24	47.8	334	106	157

DIVERSIONS AND WITHDRAWALS -- Continued

DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records provided by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Coatesville Water Authority (formerly Octoraro Water Co.) for municipal use. After use the water is released into the Delaware River basin. Records provided by the Delaware River Basin Commission.
- 01578450 Water divered from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use.
 After use the water is released into the Delaware River basin. Records provided by the Delaware River Basin
 Commission.

DIVERSIONS IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

		OCTORARO	CREEK
MONTH	01367630 MORRIS LAKE	01578420 COATSVILLE WATER AUTHORITY	01578450 CHESTER WATER AUTHORITY
October	1.33 1.36 1.46	1.58 1.04 1.23	44.5 43.5 44.2
CAL YR 1987	1.34	1.89	45.9
January. February March April May June July August September	1.58 1.53 1.47 1.56 1.41 1.74 1.46 1.46 1.40	1.04 1.10 1.48 1.44 1.62 1.76 1.35 1.35	46.9 48.4 47.3 44.8 45.1 50.3 52.3 52.9 47.4
WTR YR 1988	1.48	1.36	47.3

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial record stations.

Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

Annual maximum discharge at crest-stage partial-record stations during water year 1988 Annual Maximum Drainage Period Gage Station Station name Location height (ft) Discharge (ft 3/s) area (mi²) of Date No. record Maurice River basin Lat 39°25'12", long 74°58'00", Cumberland county, Hydrologic Unit 02040206, on left bank at upstream side of Mays Landing Road (State Route 552), 0.9 mi downstream of Menantico Lake, 01412000 Menantico Creek near Millville, NJ 23.2 1931-57‡, 10-29-87 1978-84‡, 2.40 115 4.0 mi northeast of Millville, and 7.0 mi upstream from mouth. Datum of gage is 36.63 ft above National Geodetic Vertical Datum of 1929. Cohansey River basin Lat 39°29'06, long 75°15'33", Cumberland County, Hydrologic Unit 02040206, on right bank 15 ft upstream from county bridge, Highway 31, at Seeley, 450 ft upstream from mouth and 4.1 mi northwest of 01412500 West Branch 2.58 1952-67#, 2-12-88 2.60 820 Cohansey River 1968-88 at Seeley, NJ Bridgeton. Datum of gage is 42.23 ft above National Geodetic Vertical Datum of 1929. Delaware River basin Lat 40°58'52", long 74°46'36", Sussex County, Hydrologic Unit 02040'105, on right bank, 20 ft upstream from highway bridge in Huntsville, and 0.4 mi downstream from East Branch. Datum of gage is 553.81 ft above National *01445000 Pequest River 31.0 1940-624, 5-20-88 3.30 160 at Huntsville, NJ Geodetic Vertical Datum of 1929. Lat 40°51'06", long 74°56'02", Warren County, Hydrologic Unit 02040105, upstream of highway bridge in Townsbury, 2.8 mi northeast of Pequest and 8.7 mi 01445430 1977-80‡, Pequest River 92.5 5-20-88 3.59 1,050 at Townsbury, NJ west of Hackettstown. Altitude of gage is 480 ft, from topographic map. Lat 40°50'40", long 75°02'48, Warren County, Hydrologic Unit 02040105, on right bank, 2,000 ft upstream from mouth, and 2 mi east Belvidere. Datum of gage is 303.36 ft National Geodetic Vertical Datum of 1929. *01446000 Beaver Brook 1922-61#, 36.7 3-03-88 3.31 314 near 1963-88 Belvidere, NJ

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Annual maximum discharge at crest-stage partial-record stations during water year 1988

		*			Annua	Maximum	
Station No.	Station name	Location	Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Delaware River basin	Continued		, .		
*01455200	Pohatcong Creek at New Village, NJ	Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek. Datum of gage is 308.32 ft above National Geodetic Vertical Datum of 1929.		1960-69‡, 1970-88	11-29-87	3.85	565
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, on left bank just upstream of highway bridge 300 ft downstream from Lake Hopatcong Dam in Landing. Datum of gage is 904.99 ft above National Geodetic Vertical Datum of 1929.	25.3	1929-75‡, 1976-88	11-30-87	3.35	210
01456000	Musconetcong River near Hackettstown, NJ	Lat 40°53'17", long 74°47'53", Warren County, Hydrologic Unit 02040105, on right bank 75 ft upstream from Saxton Falls Dam, 0.5 mi upstream from Erie- Lackawanna Railway bridge, and 3.0 mi northeast of Hackettstowr Datum of gage is 630.93 ft above National Geodetic Vertical Datum of 1929.	68.9	1921-73‡, 1974-88	5-24-88	2.65	900
01457500	Delaware River at Riegelsville, NJ	Lat 40°35'36", long 75°11'17", Warren County, Hydrologic Unit 02040105, just upstream of suspension bridge at Riegels ville, 600 ft upstream from Musconetcong River (flow of which is included in the records for this station since Oct. 1, 1931). Datum of gage is 125.12 ft National Geodetic Vertical Datum of 1929		1906-71‡, 1972-88	3-27-88	11.50	39,600
01464400	Crosswicks Creek at New Egypt, NJ	Lat 40°04'03", long 74°31'57", Ocean County, Hydrologic Unit 020401201, at upstream side of bridge on State Route 528 in New Egypt, and 300 ft downstrea from Oakford Lake Dam. Datum or gage is 43.46 ft above National Geodetic Vertical Datum of 1929	f	1968-88	2-05-88	19.64	800
01464515	Doctors Creek at Allentown, NJ	Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam. Datum of gage is 50.98 ft above National Geodetic Vertical Datum of 1929	17.4	1968-88	1-21-88	b4.13	698
01464530	Blacks Creek at Mansfield Square, NJ	Lat 40°07'02", long 74°41'58", Burlington County, Hydrologic Unit 02040202, at bridge on Mansfield Square-Crosswicks Roa 0.4 mi east of Mansfield Square and 3.4 mi upstream from mouth. Datum of gage is 12.44 ft above National Geodetic Vertical Datu of 1929.	·	1978-88	1-21-88	b6.97	500
01464538	Crafts Creek at Columbus, NJ	Lat 40°04'44", long 74°43'07", Burlington County, Hydrologic Unit 02040202, at bridge on Columbus-Mansfield road, 0.4 mi north of Columbus, and 6.0 mi northeast of Mount Holly. Datum of gage is 33.71 ft above National Geodetic Vertical Datum of 1929.	5.38	1978-87	10-28-87	b6.62	191

Annual maximum discharge at crest-stage partial-record stations during water year 1988

		Location			Annual Maximum		
Station No.	Station name		Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Delaware River basin-	Continued				
01464582	Assiscunk Creek near Columbus, NJ	Lat 40°03'13", long 74°44'34", Burlington County, Hydrologic Unit 02040202, at bridge on Petticoat Bridge Road, 1.7 mi southwest of Columbus, 4.0 mi northeast of Mount Holly, and 0.1 mi downstream from Assiscunk Branch.	10.9	1978-88	10-28-88	b6.60	371
01465850	South Branch Rancocas Creek at Vincentown, NJ	Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, on left bank 150 ft downstream from highway bridge on Lumberton-Vincentown road, 0.8 mi west of Vincentown 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch. Datum of gage is 13.17 ft above National Geodetic Vertical Datum of 1929		1962-75‡, 1976-88	11-12-87	6.06	615
*01465880	Southwest Branch Rancocas Creek at Medford, NJ	Lat 39°53'43", long 74°49'26", Burlington County, Hydrologic Unit 02040202, at bridge on Argonne Highway (State Route 54' 0.6 mi south of intersection of Argonne Highway and State Highw 70 at Medford, and 5.3 mi upstro	ау	1983-88	11-12-88	9.93	800
01467057	Pompeston Creek at Cinnaminson, NJ	Lat 40°00'11", long 74°59'00", Burlington County, Hydrologic Unit 02040202, at U.S. Route 130 bridge, 0.7 mi northwest of Cinnaminson, 1.7 mi upstream from mouth, and 2.1 mi east of Palmyra. Datum of gage is 11.36 ft above National Geodetic Vertical Datum of 1929		1975-88	7-21-88	e4.3	490
01467069	North Branch Pennsauken Creek near Moorestown, NJ	Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on State Route 41 (Kings Highway), and 1.7 mi southwest of Moorestown. Datum of gage is 5.9 ft above National Geodetic Vertical Datum of 1929.	12.8	1975-87	7-27-88	6.83	1,280
*01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08", Camden County, Hydrologic Unit 02040202, at bridge on blacktop road to Springdale, 2.5 mi west of Marlton. Datum of gage is 36.36 ft above National Geodetic Vertical Datum of 1929.	5.34	1964-88	11-13-87	3.38	410
*01467305	Newton Creek at Collingswood, NJ	Lat 39°54'30", long 75°03'13", Camden County, Hydrologic Unit 02040202, at bridge on Park Avenue in Collingswood, 0.3 mi east of Cuthbert Avenue. Datum of gage is 18.74 ft above National Geodetic Vertical Datum of 1929.	1.33	1964-88	7-22-88	4.60	220
01467317	South Branch Newton Creek at Haddon Heights, NJ	Lat 39°52'45", long 75°04'26", Camden County, Hydrologic Unit 02040202, at bridge on Haddon Heights Park in Haddon Heights, and 2.6 mi south of Collingswood. Datum of gage is 23.34 ft above National Geometic Vertical Datum of 1929.	.63	1964-88	7-22-88	3.59	113

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Annual maximum discharge at crest-stage partial-record stations during water year 1988

					Annual Maximum		
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
The state of the s		Delaware River basin	Continued				
01467351	North Branch Big Timber Creek at Laurel Road at Laurel Springs, NJ	Lat 39°49'07", long 75°00'56", Camden County, Hydrologic Unit 02040202, at bridge on Laurel Road in Laurel Springs, and 2.5 mi upstream from confluence with the South Branch. Datum of gage is 26.89 ft above National Geodetic Vertical Datum of 1929.	7.17	1975-88 (disconti	11-13-87 nued)	1.86	322
01475000	Mantua Creek at Pitman, NJ	Lat 39°44'14", long 75°06'53", Gloucester County, Hydrologic Unit 02040202, on left abutment of Wadsworth Dam, 0.9 mi east of Pitman, and 2.0 mi upstream from Porch Branch. Datum of gage is 68.51 ft above National Geodetic Vertical Datum of 1929.	1	1940-76‡, 1977-88	2-16-88	1.59	87
01475019	Mantua Creek at Salina, NJ	Lat 39°46'13", long 75°07'59", Gloucester County, Hydrologic	14.1	1975-88 (disconti	7-27-88 nued)	6.07	422
		Unit 02040202, at bridge on Salina-Sewell Road, 0.2 mi downstream of Bees Branch, and 0.5 mi west of Salina. Datum of gage is 11.67 ft above National Geodetic Vertical Datum of 1929.					
01477110	Raccoon Creek at Mullica Hill, NJ	Lat 39°44'10", long 75°13'30", Gloucester County, Hydrologic Unit 02040202, at bridge on State Routes 45 and 77 in Mullica Hill, 1,200 ft down- stream of Mullica Hill Pond, and 5.5 mi west of Pitman. Datum of gage is 21.91 ft above National Geodetic Vertical Datum of 1929.	15.6	1978-88	2-12-88	2.69	284
01477480	Oldmans Creek near Harrisonville, NJ	Lat 39°41'20", long 75°18'38", Salem County, Hydrologic Unit 02040206, at bridge on Harrison ville Station Road, 2.4 mi west of Harrisonville, and 2.8 mi north of Woodstown. Datum of gage is 16.58 ft above National Geodetic Vertical Datum of 1929		1975-88	2-12-88	5.05	278
01482500	Salem River at Woodstown, NJ	Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right side of Memorial Lake Dam at Woodstown, 0.2 mi upstream from small brook and 0.3 mi downstream from Pennsylvania-Reading Seashore Lines bridge. Datum of gage is 29.49 ft above National Geodetic Vertical Datum of 1929.		1940‡ 1942-84‡ 1985-88	2-12-88	12.02	540

Also a low-flow partial-record station.
Operated as a continuous-record gaging station.
Downstream side of bridge.
Peak gage height below recordable level.
Estimated.
Revised.

[#]bcef

Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1988 Measurements Drainage Period Discharge (ft³/s) Date Station Station Name Location area (mi²) of No. record Maurice River basin Lat 39°40'23", long 75°07'50", Gloucester County, Hydrologic Unit 02040206, at bridge on Aura-Glassboro Road, 0.4 mi east of Aura, 1.0 mi upstream of Silver Lake and 2.6 mi southeast of Glassboro. 01411450 1966, 1976-84, 1987-88 0.87 Still Run at 3.21 6-30-88 9-08-88 1.2 Aura, NJ Lat 39°37'05", long 75°03'36", Gloucester County, Hydrologic Unit 02040206, at bridge on State Route 538, 0.9 mi east of Franklinville, 2.7 mi upstream of Malaga Lake and 2.8 mi southeast of Clayton. Scotland Run at Franklinville, 01411462 1976-84, 6-30-88 6.2 14.8 Lat 39°24'01", long 75°05'15", 2 Cumberland County, Hydrologic Unit 02040206, at bridge on Sharp Street, 200 ft downstream from Union Lake, Maurice River at Sharp Street, at Millville, NJ 01411880 1973-76, 6-30-88 174 1988 and 0.9 mi northwest of Millville. Delaware River basin 01443475 Trout Brook near Lat 41°03'03", long 74°51'23", 24.0 1979-88 6-30-88 17 Sussex County, Hydrologic Unit 02040105, at bridge on County Highway 612, 0.4 mi upstream from mouth, 0.5 mi southeast of Middleville, and Middleville, 5.1 mi west of Newton. Lat 40°56'35", long 74°52'31", Warren County, Hydrologic Unit 02040105, at bridge on Bear Creek Road, 1.8 mi upstream of Trout Brook and 1.5 mi south of 01445200 1940-42 Bear Creek near 12.9 6-30-88 Johnsonburg, NJ Johnsonburg. Lat 40°53'44", long 75°01'04", Warren County, Hydrologic Unit 02040105, at bridge on Hope-Delaware Road, 2.3 mi northeast of Ramseyburg, 2.8 mi southwest of Hope, and 3.1 mi upstream from 01445800 6-30-88 Honey Run near 2.21 1981-88 Ramseyburg, NJ mouth. Lat 40°42'57, long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Pohatcong Creek at New Village, NJ *01455200 1960-69a, 33.3 9-28-88 8.9 Lat 40°42'25", long 75°06'54", Warren County, Hydrologic Unit 02040105, at bridge on Lows Hollow Road at Coopers-ville, 0.9 mi north of Stewarts-ville, 2.1 mi upstream from mouth, and 3.3 mi east of Phillipsburg. 01455230 Merrill Creek at 3.85 1981-88 6-30-88 4.6 Coopersville, NJ 6.8 Lat 40°55'36", long 74°43'09", Sussex County, Hydrologic Unit 02040'105, at bridge on U.S. Route 206 at Lockwood, 1.0 mi upstream from mouth, and 1.5 mi northwest of Stanhope. 01455780 Lubbers Run at 16.3 1982-88 6-30-88 9-09-88 3.1 Lockwood, NJ

Discharge measurements made at low-flow partial-record stations during water year 1988--Continued

		De	rainass	Period	Measurements		
Station No.	Station Name	Location	rainage area (mi ²)	of record	Date	Discharge (ft ³ /s)	
		Delaware River basinCon	tinued				
01461300	Wickecheoke Creek at Stockton, NJ	Lat 40°24'41", long 74°59'13" Hunterdon County, Hydrologic Unit 02040105, at bridge on State Highway 29, at Prallsville, 0.2 mi upstream of mouth and 0.6 mi north- west of Stockton.	26.6	1958-62, 1964, 1977-83, 1987-88	9-28-88	1.6	
01462800	Jacobs Creek at Somerset, NJ	Lat 40°16'42", long 74°51'14", Mercer County, Hydrologic Unit 02040105, at bridge on State Route 29, 400 ft upstream from mouth, 0.3 mi north of Somerset and 1.4 mi south of Washington Crossing Road.	13.3	1958-62, 1964, 1985-87	11-20-87 2-05-88	*12 39	
01463620	Assunpink Creek near Clarksville, NJ	Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft upstream from bridge on Quaker Bridge Road (State Route 533), 1.9 mi south of Clarksville, 2.0 mi upstream from Shipetaukin Creek and 7.6 mi upstream of mouth.	34.2	1963-67, 1972-81a, 1985, 1987-88	9-27-88	7.5	
*01464515	Doctors Creek at Allentown, NJ	Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road, 0.75 mi west of Allentown and 0.80 mi downstream from Conines Millpond dam.	17.2	1965-72, 1975-76, 1979, 1983-88	9-29-88	4.6	
01465884	Sharps Run at Route 541, at Medford, NJ	Lat 39°54'18", long 74°49'30", Burlington County, Hydrologic Unit 02040202, at bridge on State Route 541 (Argonne Highway) in Medford, 0.7 mi upstream from mouth, 1.2 mi northeast of Oliphants Mills, and 2.6 mi northwest of Medford Lakes.	4.41	1982-88	6-30-88 9-09-88	1:4	
01465898	Little Creek near Lumberton, NJ	Lat 39°56'16", long 74°47'38", Burlington County, Hydrologic Unit 02040202, at bridge on Eayrestown Road, 0.6 mi upstream from mouth, 1.9 mi southeast of Lumberton, and 3.0 mi northeast of Medford.	19.2	1982-88	6-30-88 9-08-88	.22 3.8	
01467130	Cooper River at Kirkwood, NJ	Lat 39°50'11", long 75°00'06", Camden County, Hydrologic Unit 02040202, at outlet of Kirkwood Lake in Kirkwood, 100 ft east of tracks of Pennsylvania-Reading Seashore Lines, and 1.0 mi north of Laurel Springs.	5.18	1964-72, 1988	6-29-88 9-08-88	.65 2.8	
01467140	Cooper River at Lawnside, NJ	Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, on right bank at Lawnside 300 ft downstream of Lawnside sewag treatment plant and 0.2 mi upstream of New Jersey Turnpike.	je	1964-72, 1988	6-29-88 9-08-88 9-22-88	4.2 8.3 8.6	
01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08", Burlington County, Hydrologic Unit 02040202, at bridge on Springdale Road, 2.5 mi west of Marlton, and 5.7 mi southwest of Moorestown.	5.34	1965-69, 1971, 1988	6-29-88 9-08-88	4.5 4.9	
01467180	North Branch Cooper River at Ellisburg, NJ	Lat 39°54'27", long 75°00'42", Camden County, Hydrologic Unit 02040202, on Brace Road, 0.4 mi south of Ellisburg, and 0.9 mi upstream from confluence with Coope River.	10.5 er	1964-69, 1971-72, 1977, 1988	6-29-88 9-08-88	6.8 10	

 ^{*} Also a crest-stage partial-record station.
 a Operated as continous-record gaging station.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*).

	Tributary to			Measured	Measu	urements
Stream		Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		Delaware River basi	n a la l			
01443440 Paulins Kill	Delaware River	Lat 40°06'20", long 74°45'19", Sussex County, Hydrologic unit 02040105, at bridge in Balesville 2.3 mi upstream from Paulins Kill Lake, and 3.0 mi north of Newton.	67.1	1979-82, 1985, 1987	9-27-88	*21
01446400 Pequest River	Delaware River	Lat 40°49'45", long 75°04'44", Warren County, Hydrologic Unit 02040105, at bridge on State Route 519, in Belvidere, 1,400 ft upstream of mouth.	157	1950,53, 1977-82, 1984-87	11-17-87 2-17-88 4-27-88 9-07-88	*295 286 *134 93
01455801 Musconetcong River	Delaware River	Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Lockwood, 0.2 mi downstre from Lubbers Run, and 1.5 mi nort west of Stanhope.		1979-83, 1985-87	9-27-88	*14
01456200 Musconetcong River	Delaware River	Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge on Kings Highway at Beattystown, 1.6 mi upstream from Hances Brook and 1.8 mi west of Schooleys Mountain	90.3	1973, 1979-81, 1983, 1985-87	9-28-88	*36
01457400 Musconetcong River	Delaware River	Lat 40°35'32", long 75°11'11", Warren County, Hydrologic Unit 02040105, at bridge on County Route 627, 0.2 mi north of Mount Joy, and 0.2 mi upstream from mou	156 uth.	1940-55, 1973, 1977, 1987	9-28-88	*73
01460440 Delaware and Raritan Canal	Raritan River	Lat 40°18'17", long 74°41'06", Mercer County, Hydrologic Unit 02040105, at bridge on State Rout 533 at Port Mercer, 3.0 mi south of Princeton	te and	1923, 1936-38, 1942-43, 1945, 1981	10-16-87 12-17-87 1-14-88 2-24-88 8-11-88	112 146 116 108 158
01462730 Jacobs Creek	Delaware River	Lat 40°20'27", long 74°50'19", Mercer County, Hydrologic Unit 02040105, at bridge on Woosamonse Road, 0.7 mi upstream of bridge on Pleasant Valley Road, 1.1 mi south of Harbourton and 2.6 mi northwest of Pennington.	13.1	1987	11-19-87	*1.1
01462733 Jacobs Creek	Delaware River	Lat 40°19'53", long 74°50'11", Mercer County, Hydrologic Unit 02040105, at bridge on Pennington-Harbourton Road, 500 ft upstream of unnamed tributary, 0.8 mi east of State Route 579 at Ackors Corner and 2.2 mi upstream of Woolsey Brook.	2.04	1985-87	11-19-87	*1.8
01462737 Jacobs Creek	Delaware River	Lat 40°19'07", long 74°50'18", Mercer County, Hydrologic Unit 02040105, at bridge on Pennington-Titusville Road, 0.8 mi east of Bear Tavern Road (State Route 579) 1.3 mi upstream of Woolsey Brook and 2.6 mi	4.30	1985-87	11-19-87	*2.8

Discharge measurements made at miscellaneous sites during water year 1988--Continued

				Measured	Measu	urements
 Stream	Tributary to		Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		Delaware River basinCont	inued			
01462740 Jacobs Creek	Delaware River	Lat 40°18'07", long 74°50'00", Mercer County, Hydrologic Unit 02040105, just upstream of Woolsey Brook, 0.4 mi downstream of Pennington Road (State Route 546) and on right side of Jacobs Creek Road, 0.5 mi south of Pennington Road and 1.0 mi southeast of Bear Tavern.	5.53	1985 - 87	11-20-87	*4.2
01462742 Woolsey Brook	Jacobs Creek	Lat 40°19'11", long 74°48'09", Mercer County, Hydrologic Unit 02040105, at bridge on Dublin Road, 0.5 mi upstream of confluence with unnamed tributary and 0.8 mi southwest of Pennington.	.16	1985-87	11-20-87	*.13
01462744 Woolsey Brook tributary No. 1	Woolsey Brook	Lat 40°18'47", long 74°48'08", Mercer County, Hydrologic Unit 02040105, at bridge on Dublin Road, 0.3 mi north of Pennington Road (State Route 546) 0.45 mi upstream from Woolsey Brook and 1.2 mi south of Pennington.	.32	1985-87	11-20-87	*.35
01462745 Woolsey Brook tributary No. 2	Woolsey Brook	Lat 40°18'55", long 74°48'49", Mercer County, Hydrologic Unit 02040105, at mouth, 200 ft upstream from bridge on Scotch Road over Woolsey Brook and 1.5 mi southwest of Pennington.	.46	1985-87	11-19-87	*.14
01462747 Woolsey Brook	Jacobs Creek	Lat 40°18'51", long 74°48'53", Mercer County, Hydrologic Unit 02040105, at bridge on Scotch Road, 0.5 mi north of State Route 546 at Harts Corner and 1.3 mi from mouth.	1.47	1985 - 87	11-19-87	*.86
01462750 Woolsey Brook	Jacobs Creek	Lat 40°18'27", long 74°49'36", Mercer County, Hydrologic Unit 02040105, at bridge on Pennington Road (State Route 546), downstream of unnamed pond, 0.5 mi upstream of mouth, 1.2 mi east of Bear Tavern Road (State Route 579) at Bear Tavern.	2.13	1985 - 87	11-19-87	*1.8
01462755 Woolsey Brook tributary No. 3	Woolsey Brook	Lat 40°18'08", long 74°49'54", Mercer County, Hydrologic Unit 02040105, at bridge on Jacobs Creek Road, 250 ft upstream of mouth, 300 ft upstream of confluence of Jacobs Creek and Woolsey Brook, and 1.0 mi southeast of Bear Tavern.	.89	1985-87	11-19-87	*.78
01462760 Jacobs Creek	Delaware River	Lat 40°17'31", long 74°50'28", Mercer County, Hydrologic Unit 02030105, at bridge on Bear Tavern Road, 1.3 mi upstream from mouth and 1.4 mi southeast of Washington Crossing.	10.0	1957, 1971, 1985-87	11-20-87	*8.4
01462765 Ewing Creek	Jacobs Creek	Lat 40°17'13", long 74°48'45", Mercer County, Hydrologic Unit 02040105, at bridge on Scotch Road, 300 ft south of Interstate 95 exit, 3,800 ft downstream of small unnamed pond and 1.5 mi north of West Trenton.	1.24	1985-87	11-20-87	*.94

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements made at miscellaneous sites during water year 1988--Continued

					Measured	Meas	urements
Stream	Tributary to	48.3	Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
			Delaware River basinCo	ontinued			
01462770 Ewing Creek	Jacobs Creek	Merce Unit Nurse Bear 579), mouth	17'19", long 74°49'42", or County, Hydrologic 02040105, at bridge on ory Road, 0.6 mi from Tavern Road (State Route 0.8 mi upstream from and 1.6 mi north of Trenton.	2.29	1985-87	11-20-87	*2.2
01462775 Ewing Creek	Jacobs Creek	Merce Unit Jacob north of Ja Taver of mo	17'24", long 74°50'30", or County, Hydrologic 02040105, at bridge on os Creek Road, 200 ft of southern intersection cobs Creek Road and Bear on Road, 300 ft upstream outh and 1.2 mi northeast	2.65	1985-87	11-20-87	*2.3
01465970 North Branch Rancocas Creek	Rancocas Creek	Burli Unit Lakeh at ou	58'04", long 74°34'48", ngton County, Hydrologic 02040202, at bridge on wurst Road in Browns Mills, utflow of Mirror Lake and in east of Pemberton.	27.4	1979-81, 1985-87	9-20-88	*13
01467120 Cooper River	Delaware River	Norce end o wold	49'43", long 74°58'55", en County, Hydrologic 02040202, at bridge on coss Road, at downstream of Linden Lake at Linden- and 0.4 mi upstream Nicholson Branch.	1.13	1971, 1979-81, 1985-87	4-18-88	1.0
01467329 South Branch Big Timber Creek	Big Timber Creek	Gloud Unit from stres	48'05", long 75°04'27", tester County, Hydrologic 02040202, just upstream Bull Run, 1,000 ft down- am of Blackwood Avenue and in southeast of Blackwood ace.	19.1	1979-81, 1985-87	9-26-88	33
01477510 Oldmans Creek	Delaware River	High	41'57", long 75°20'01", n County, Hydrologic Unit 0206, at bridge on Kings way in Porches Mill, 1.0 mi n of Seven Stars and 3.1 mi n of Woodstown.	21.0	1979-83, 1987	9-30-88	*8.9

ELEVATIONS AT TIDAL CREST-STAGE STATIONS

The following table contains annual maximum elevations for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are converted to elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum elevation is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum elevation at tidal crest-stage partial-record stations during water year 1988

				Annual	Maximum
Station No.	Station name	Location	Period of record	Date	Elevation NGVD* (ft)
01413038	Cohansey River at Greenwich, NJ	Lat 39°23"02", long 75°20'58", Cumberland County, at Green- wich Pier, 0.7 mi southwest of Greenwich, and 5.8 mi southwest of Shiloh.	1979-88	4-08-88	5.40
01464040	Delaware River at Marine Terminal, Trenton, NJ	Lat 40°11'21", long 74°45'22", Mercer County, on left bank at downstream end of wharf at Marine Terminal, Trenton, 1.6 mi downstream from toll bridge on U.S. Route 1, 2.0 mi downstream from Assunpink Creek, and at mile 131.80.	1921-46‡, 1951-54‡, 1957-88‡a	6-03-88	7.47

National Geodetic Vertical Datum of 1929. Operated as a continuous-record gaging station. Operated by National Ocean Service since March 1975.

172

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY MISCELLANEOUS SITES

Water-quality partial-record stations and miscellaneous sites are locations where chemical-quality, biological and/or sediment data are collected once only, intermittently, or systematically but on limited frequency over a period of years for use in hydrologic analyses.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

DATE	TIME	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	RADIUM 228, DIS- SOLVED, (PCI/L AS RA-228)	(PCI/G	RADIUM 226, SEDIMENT, BOTTOM MATERIAL, TOTAL (PCI/G AS RA-226)	RADIUM 228, SEDIMENT, BOTTOM MATERIAL, TOTAL (PCI/G AS RA-228)
01411460	SCOTLAND RN	NR WILL	IAMSTOWN	NJ (LAT 39	41 34N LONG	075 02 28W)
APR 198	1510	0.64	<1.0	<.3	<.3	<.6

01411461 SCOTLAND RUN AT FRIES MILL NJ (LAT 39 39 21N LONG 075 03 05W)

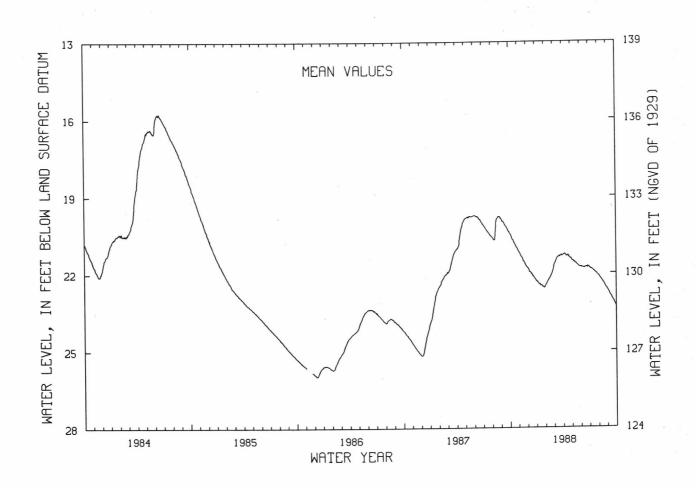
APR 1988 1000 0.20 <1.0 <.3 <.3 <.6

395150074284201. Local I.D., Lebanon State Forest 23-D Obs. NJ-WRD Well Number, 05-0689. LOCATION.--Lat 39°51'52", long 74°28'48", Hydrologic Unit 02040202, in Lebanon State Forest, Woodland Township. Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 33 ft, open-end cement casing. INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 152.02 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top of 8 inch casing, 0.70 ft above land-surface datum.

PERIOD OF RECORD.--September 1955 to April 1975, January 1979 to current year. Records for 1955 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.37 ft below land-surface datum, Sept. 11, 1958; lowest, 25.97 ft below land-surface datum, Dec. 8-10, 1985.

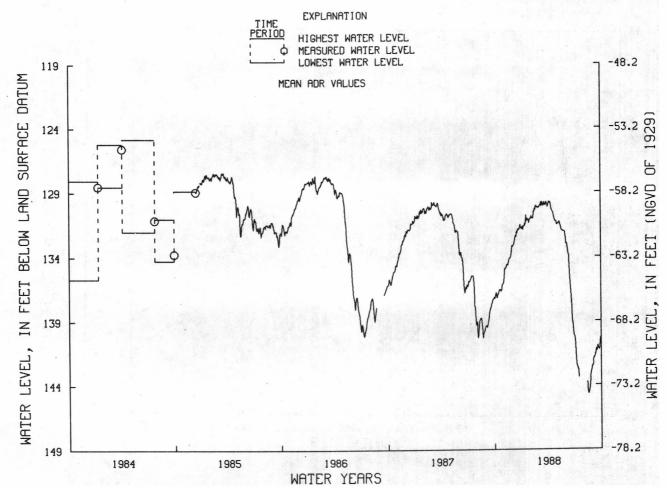
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

						1	MEAN VALUE	S					
DA	AY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
E	5 10 15 20 25 0M	20.54 20.67 20.77 20.88 21.00 21.14	21.35 21.48 21.54 21.69	21.86 21.94 22.00 22.09 22.18 22.29	22.36 22.42 22.47 22.47 22.51 22.51	22.39 22.29 22.17 22.06 21.90 21.74	21.60 21.44 21.36 21.33 21.30 21.30	21.27 21.29 21.31 21.35 21.40 21.46	21.52 21.55 21.62 21.68 21.71 21.76	21.76 21.79 21.78 21.76 21.78 21.77	21.84 21.85 21.90 21.96 22.01 22.08	22.16 22.25 22.33 22.42 22.52 22.63	22.72 22.84 22.95 23.06 23.17 23.28
M	EAN	20.79	21.47	22.04	22.45	22.16	21.42	21.33	21.63	21.77	21.92	22.36	22.96
W	TR YR	1988	MEAN 21.86	HIGH	20.42	OCT 1	LOW 23.	29 SEP 3	80				

395524074502501. Local I.D., Medford 1 Obs. NJ-WRD Well Number, 05-0258. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Township.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 410 ft, screened 400 to 410 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977
to December 1984.

DATUM.--Land-surface datum is 70.77 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of coupling, 2.70 ft above land-surface datum.


REMARKS.--Missing record from July 17 to August 12 was due to recorder malfunction.
PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 85.22 ft below land-surface datum, Feb. 16-19, 1964; lowest, 144.81 ft below land-surface datum, Aug. 17,18, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

						MEAN VALU	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	136.95 137.21 136.79 136.59 136.60 136.11	134.21	133.09 132.68 132.26 131.93 131.80 131.76	131.80 131.65 131.45 131.17 131.16 131.06	130.95 131.05 130.35 130.08 130.22 130.20	130.11 129.81 129.99 129.81 130.05 130.09	129.81 129.88 130.39 130.71 131.15 131.32	131.49 131.30 131.61 131.92 132.00 132.40	132.97 133.77 135.24 137.16 139.04 140.11	140.83 142.52 142.88	144.20 144.46 143.31 142.50	141.88 141.63 141.15 141.10 141.20 140.27
MEAN	136.74	134.55	132.33	131.41	130.55	129.99	130.45	131.74	135.85	141.87	143.74	141.37
WTR YR	1988	MEAN 134.4	6 HI	GH 129.70	APR 7	LOW	144.81 A	UG 17,18				

395525074502601. Local I.D., Medford 4 Obs. NJ-WRD Well Number, 05-0262. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

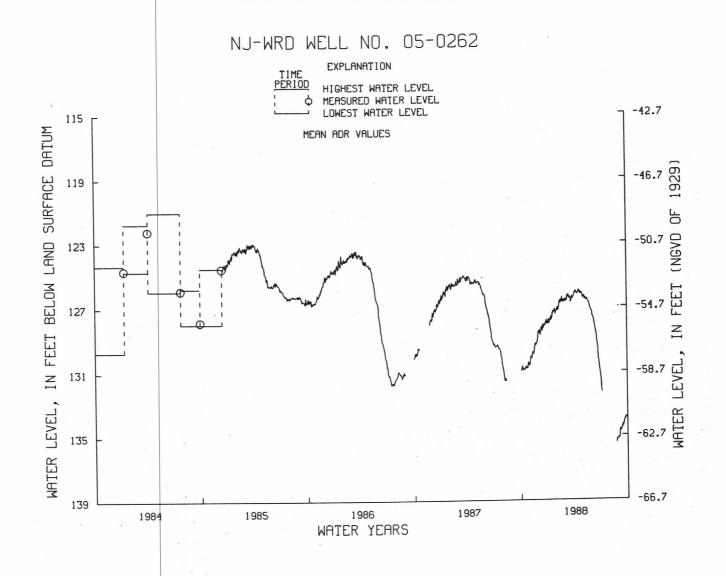
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 1,145 ft, screened 1,125 to 1,145 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977 to December 1984.

December 1984.

DATUM.--Land-surface datum is 72.32 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.


REMARKS.--Missing record from July 7 to August 22 was due to recorder malfunction.

PERIOD OF RECORD.--January 1968 to July 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.24 ft below land-surface datum, Mar. 13, 1968; lowest, 135.51 ft below land-surface datum, Aug. 23, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

MEAN VALUES NOV AUG SEP DAY OCT DEC JAN FEB MAR APR MAY JUN JUL 130.05 129.99 129.90 129.24 129.22 128.56 127.57 128.06 128.50 129.30 130.33 127.87 127.83 127.74 127.28 127.20 130.83 128.51 128.43 128.27 127.12 127.07 126.62 132.19 130.87 130.83 130.70 130.73 130.57 126.44 126.57 134.52 10 126.30 126.30 126.14 126.15 15 ---134.06 133.89 20 25 128.12 127.96 127.97 126.41 126.70 126.44 126.57 126.10 126.18 126.68 126.79 127.27 135.20 135.16 EOM 126.28 131.12 133.84 130.74 MEAN 129.67 128.27 127.59 126.83 126.49 126.16 126.67 128.86 - - -134.34 WTR YR 1988 MEAN 128.79 HIGH 125.95 APR 18 LOW 135.51 AUG 23

395525074502505. Local I.D., Medford 5 Obs. NJ-WRD Well Number, 05-0261. LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

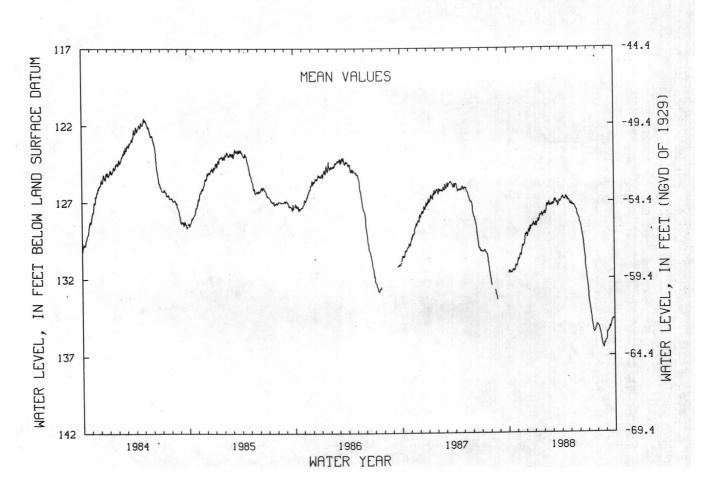
Owner: U.S. Geological Survey.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 750 ft, screened 740 to 750 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

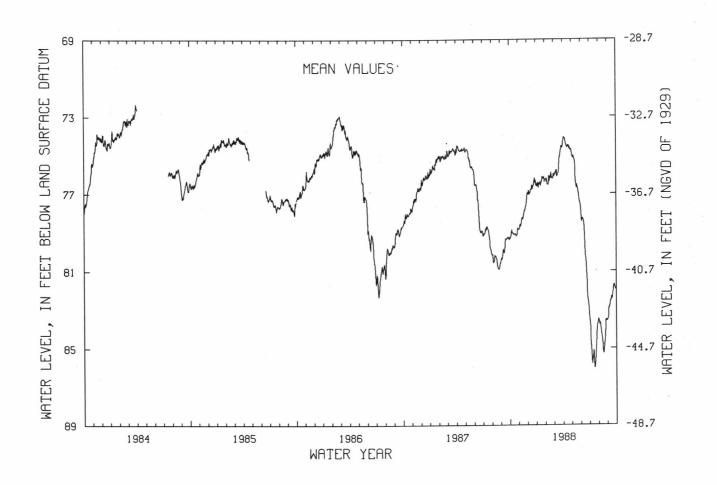
DATUM.--Land-surface datum is 72.60 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 3.60 ft above land-surface datum.

PERIOD OF RECORD.--January 1968 to March 1975, March 1977 to current year. Records for 1968 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.46 ft below land-surface datum, Mar. 1, 1968; lowest, 136.57 ft below land-surface datum, Aug. 23, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988


MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	131.52 131.63 131.54 131.42 131.42 131.21	130.69 130.62 130.50 129.82 129.79 129.13	129.09 128.99 128.77 128.59 128.46 128.52	128.46 128.37 128.26 127.83 127.76 127.81	127.69 127.63 127.14 126.99 127.26 127.19	127.20 126.83 126.89 127.05 127.13 126.97	126.76 126.79 126.79 126.75 126.86 127.01	127.15 127.26 127.42	128.40 128.89 129.38 130.38 131.50 132.31	133.39 134.09 134.79 135.45 135.41 134.98	135.08 135.41 135.85 136.36 136.22 136.06	135.45 135.34 135.15 134.81 134.67 134.60
MEAN	131.45	130.27	128.80	128.14	127.38	127.06	126.81	127.39	129.83	134.54	135.79	135.13
WTR YR	1988	MEAN 130.	22 HI	GH 126.59	APR 18	LOW	136.57	AUG 23				

400010074521601. Local I.D., Willingboro 2 Obs. NJ-WRD Well Number, 05-0645.
LOCATION.--Lat 40°00'10", long 74°52'16", Hydrologic Unit 02040202, near intersection of Bridge Street and Tiffany Lane, Willingboro.
Owner: Willingboro Municipal Utilities Authority.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 441 ft, screened 431 to 441 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 40.30 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.00 ft below land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping.
PERIOD OF RECORD.--March 1966 to September 1975, March 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 49.79 ft below land-surface datum, June 21, 1967; lowest, 86.22 ft below land-surface datum, July 18, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					M	EAN VALUE	S					
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	79.13 79.04 79.11 79.09 79.13 78.86	78.58 78.50 78.32 77.86 77.63 76.96	76.90 76.96 76.61 76.60 76.20 76.48	76.57 76.53 76.51 76.19 76.17 76.26	76.38 76.53 76.14 75.90 76.22 75.97	76.00 75.79 75.94 75.07 74.75 74.46	74.10 74.33 74.55 74.56 74.68 74.85	75.13 75.22 76.41 76.66 77.05 77.74	78.28 78.47 79.65 80.97 82.46 83.44	84.77 85.60 85.27 85.66 84.19 83.48	83.66 84.21 85.00 84.82 83.58 83.53	82.88 82.55 82.36 81.92 81.81 81.94
MEAN	79.06	78.14	76.70	76.40	76.24	75.47	74.47	76.22	80.15	84.82	84.16	82.38
WTR Y	r 1988	MEAN 78.70) HIGH	73.91	APR 7	LOW 86	.22 JUL	18				

400242074422301. Local I.D., Rhodia Corp. 1 Obs. NJ-WRD Well Number, 05-0440.
LOCATION.--Lat 40°02'42", long 74°42'23", Hydrologic Unit 02040201, on the lands of Rhodia Corporation near Jobstown.
Owner: Rhodia Corporation.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 615 ft, screened 603 to 613 ft.
INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1968 to

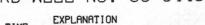
March 1975.

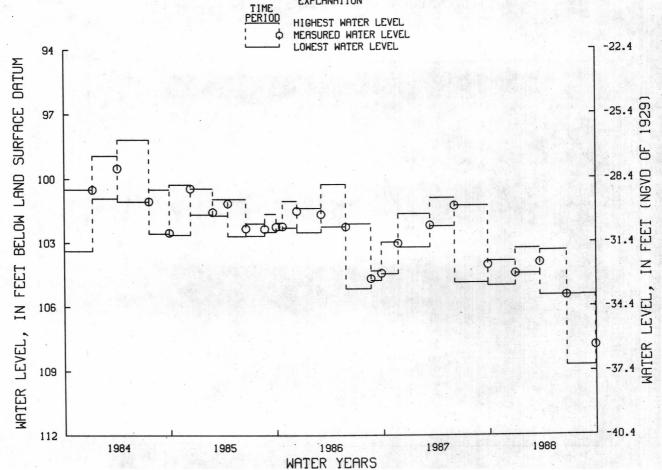
March 1975.

DATUM.--Land-surface datum is 71.65 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.22 ft above land-surface datum.

PERIOD OF RECORD.--December 1968 to March 1975, April 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 86.55 ft below land-surface datum, Dec. 31, 1969; lowest, 108.74 ft below land-surface datum, between Jun. 21 and Sep. 28, 1988.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIOD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	WATER LEVEL
SEPT.	25,	1987 TO	DEC.	28,	1987	103.85	105.01	DEC.	28, 1987	104.45
DEC.	28,	1987 TO	MAR.	21,	1988	103.27	104.46	MAR.	21, 1988	103.94
MAR.	21,	1988 TO	JUNE	21,	1988	103.37	105.48	JUNE	21, 1988	105.48
JUNE	21,	1988 TO	SEPT.	28,	1988	105.46	108.74	SEPT.	28, 1988	107.81

231.25

230.22

230.03

CAMDEN COUNTY

394922074563301. Local I.D., Elm Tree Farm 2 Obs. NJ-WRD Well Number, 07-0412.
LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 mi northwest of Berlin.
Owner: New Jersey - American Water Company.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 1,092 ft, screened 1,082 to 1,092 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977 to
December 1984

INSTRUMENTATION.--Digital water-level recorder--ou-minute punch. water-level extremes .co. co., December 1984.

DATUM.--Land-surface datum is 148.68 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.80 ft above land-surface datum.

REMARKS.--Well was originally screened 1,217 to 1,227 ft; rehabilitated August 1969.

PERIOD OF RECORD.--January 1963 to June 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 166.06 ft below land-surface datum, July 21, 1965; lowest, 232.01 ft below land-surface datum, Aug. 22, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

MEAN VALUES SEP JUL AUG DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN 221.95 221.74 221.62 221.90 223.47 223.38 223.25 223.00 222.92 222.83 222.63 222.54 222.57 222.22 222.12 221.90 221.94 221.54 221.33 221.55 221.44 221.27 220.91 221.13 221.12 221.13 221.06 221.87 223.04 223.92 225.21 226.65 228.97 229.75 230.45 231.19 231.25 221.45 221.08 221.21 221.22 221.42 221.45 221.16 221.10 221.33 220.92 220.54 223.68 223.36 223.20 223.02 230.43 230.16 230.12 229.76 229.62 231.04 231.45 231.86 231.42 231.04 10 15 20 25 .85 EOM .60 .68 230 40

221.31

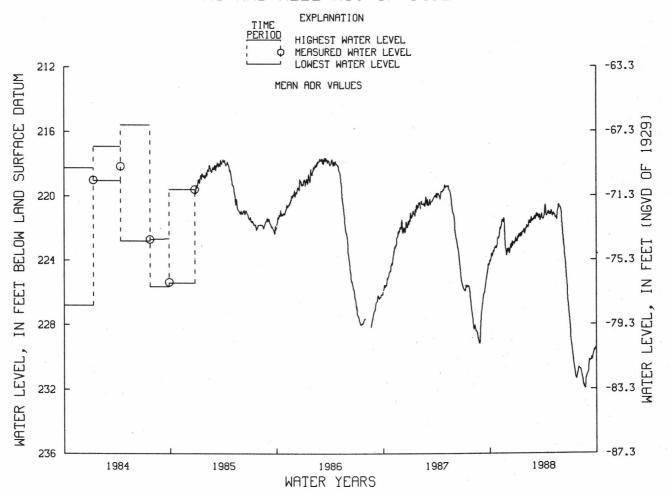
221.08

221.03

224.23

222.41 WTR YR 1988 HIGH 220.52 MAY 25 MEAN 224.35 LOW 232.01 AUG 22

221.69

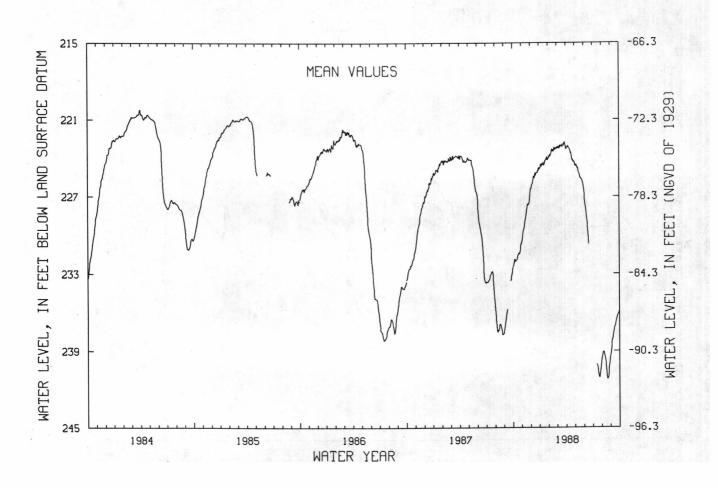

223.09

222.32

223.34

MEAN

NJ-WRD WELL NO. 07-0412


CAMDEN COUNTY

394922074563302. Local I.D., Elm Tree Farm 3 Obs. NJ-WRD Well Number, 07-0413.
LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 miles northwest of Berlin.
Owner: New Jersey - American Water Company.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 717 ft, screened 706 to 717 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 148.73 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 0.60 ft above land-surface datum.
PERIOD OF RECORD.--December 1963 to April 1975, March 1977 to current year. Records for 1963 to 1977 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 174.21 ft below land-surface datum, Feb. 6, 1964; lowest, 241.24 ft below land-surface datum, Aug. 20, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					M	EAN VALU	ES					
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	232.07 232.01 231.86 231.45 231.20 230.51	227.60	226.09 225.66 225.33 225.15 224.96 224.81	224.57 224.50 224.55 224.18 223.98 224.02	223.79 223.67 223.36 223.18 223.28 223.21	223.22 223.03 223.01 222.93 222.94 223.18	223.16 223.20 223.38 223.89 224.24 224.38	224.59 224.70 225.16 225.58 225.57 226.38	227.57 228.66 229.85	240.04 240.80 240.92 239.65	239.11 239.34 240.10 241.21 240.41 239.27	238.15 237.50 237.03 236.52 236.18 235.89
MEAN	231.60	228.46	225.45	224.36	223.49	223.07	223.62	225.23		240.50	239.94	237.13
WTR Y	1988	MEAN 228.	89 HI	SH 222.69	MAR 26	LOW	241.24	AUG 20				

NJ-WRD WELL NO.07-0413

CAMDEN COUNTY

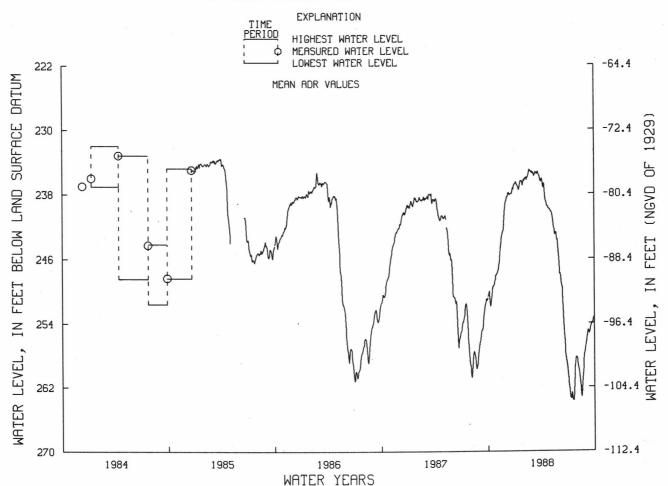
395229074571201. Local I.D., Hutton Hill 1 Obs. NJ-WRD Well Number, 07-0117.
LOCATION.--Lat 39°52'29", long 74'57'12", Hydrologic Unit 02040202, about 800 ft northeast of intersection of Kresson and Cropwell Roads, Cherry Hill Township.
Owner: New Jersey - American Water Company.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICs.--Drilled artesian observation well, diameter 6 in, depth 562 ft, screened 552 to 562 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977 to December 1984.

December 1984.

DATUM.--Land-surface datum is 157.61 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 1.60 ft above land-surface datum.

PERIOD OF RECORD.--August 1967 to April 1975, February 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 200.77 ft below land-surface datum, Mar. 23, 1968; lowest, 263.74 ft below land-surface datum, July 20, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5 10 15 20 25 EOM	250.00 251.83 250.13 249.34 248.59 247.89	247.43 246.00 243.84 242.76 240.98 239.16	238.34 237.94 238.01 237.95 237.29 236.83	236.60 237.02 237.52 236.56 236.40 236.38	236.12 236.12 235.79 235.00 235.31 235.25	235.46 235.54 235.45 235.23 235.75 236.47	236.31 236.76 238.55 239.30 239.72 239.90	240.24 241.13 242.23 242.76 243.71 246.02	247.83 249.29 252.05 255.77 258.33 259.79	261.76 263.37 262.74 263.72 259.70 258.23	259.19 260.49 262.35 261.60 258.64 256.87	255.72 254.91 254.95 254.13 253.93 253.26	
MEAN	249.77	243.97	237.92	236.81	235.70	235.62	238.21	242.31	252.98	261.67	259.97	254.70	
WTR YR	1988	MEAN 245.8	84 HTC	H 234.95	FFR 20	LOW	263.74 .11	11 20					

NJ-WRD WELL NO. 07-0117

385607074555201. Local I.D., West Cape May 1 Obs. NJ-WRD Well Number, 09-0150. LOCATION.--Lat 38°56'07", long 74°55'56", Hydrologic Unit 02040206, on the north side of Sunset Boulevard, West Cape

Owner: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 293 ft, screened 283 to 293 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, July 1957 to

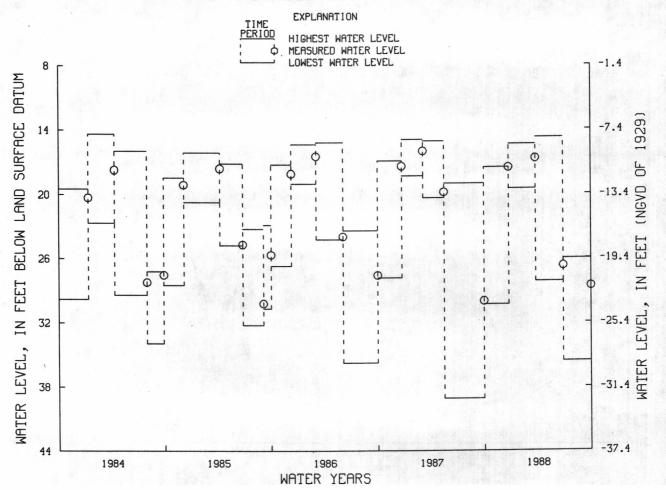
December 1972.

DATUM.--Land-surface datum is 6.60 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.88 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--July 1957 to December 1972, May 1977 to current year. Periodic manual measurements, February 1973 to September 1976. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District


Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.38 ft below land-surface datum, between Jan. 10 and Apr. 10, 1984; lowest, 41.30 ft below land-surface datum, Sept. 3, 1963.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER LEVEL WATER PERIOD DATE LEVEL SEPT. 29, 1987 TO DEC. 23, 1987 17.52 30.31 17.52 DEC. 23, 1987 DEC. 23, 1987 TO MAR. 24, 1988 15.37 19.49 MAR. 24, 1988 16.69 MAR. 24, 1988 TO JUNE 27, 1988 14.76 28.15 JUNE 27, 1988 26.71 JUNE 27, 1988 TO SEPT. 30, 1988 26.04 35.60 SEPT. 30, 1988 28.61

NJ-WRD WELL NO. 09-0150

385804074574201. Local I.D., Higbee Beach 3 Obs. NJ-WRD Well Number, 09-0049. LOCATION.--Lat 38°58'04", long 74°57'42", Hydrologic Unit 02040206, on the north bank of the west end of the Cape May LOCATION.--Lat 38°58'04", long 74°57'42", Hydrologic Unit 02040206, on the north bank of the west end of the Cape may Canal, Lower Township.

OWNER: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 250 ft, screened 241 to 250 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, June 1965 to September 1975.

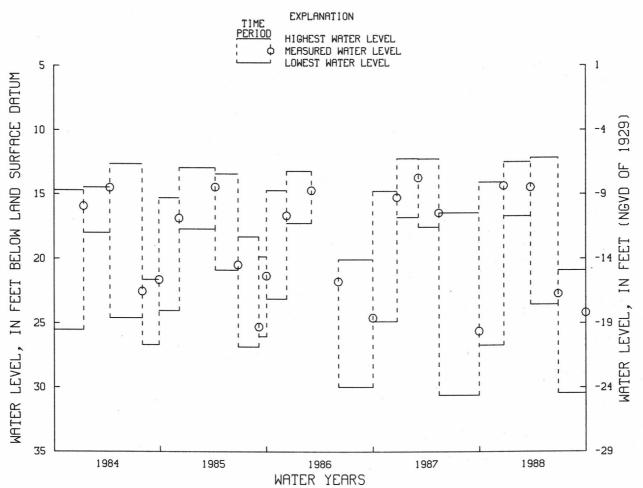
DATUM.--Land-surface datum is 6.00 ft above National Geodetic Vertical Datum of 1929.

Measuring Point: Front edge of cutout in recorder housing, 2.93 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--June 1965 to September 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.17 ft below land-surface datum, between Mar. 24 and Jun. 27, 1988; lowest, 34.22 ft below land-surface datum, July 31, 1974.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

	PERIOD	HIGHEST WATER LEVEL	LOWEST Water Level	DATE	WATER LEVEL
SEPT. 29,	1987 TO DEC. 23,	1987 14.07	26.69 DEC.	23, 1987	14.35
DEC. 23,	1987 TO MAR. 24,	1988 12.49	16.70 MAR.	24, 1988	14.47
MAR. 24,	1988 TO JUNE 27,	1988 12.17	23.53 JUNE	27, 1988	22.71
JUNE 27,	1988 TO SEPT. 30,	1988 20.90	30.44 SEPT.	30, 1988	24.19

NJ-WRD WELL NO. 09-0049

390425074544601. Local I.D., Oyster Lab 4 Obs. NJ-WRD Well Number, 09-0089.
LOCATION.--Lat 39°04'25", long 74°54'46", Hydrologic Unit 02040206, at the Rutgers Oyster Laboratory near Green Creek, Middle Township.
Owner: U.S. Geological Survey.
AQUIFER.--Cohansey Sand of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 210 ft, screened 195 to 210 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, August 1957 to August 1975. August 1975.

August 1975.

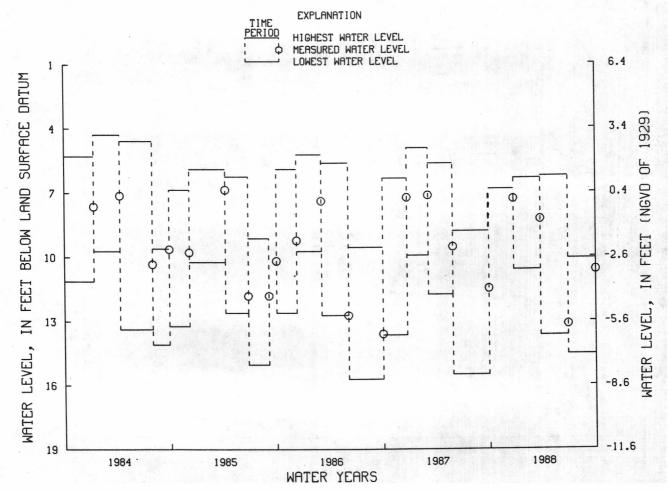
DATUM.--Land-surface datum is 7.37 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.90 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Water-quality data for 1987 is published elsewhere in this report.

PERIOD OF RECORD.--August 1957 to August 1975, May 1977 to current year. Periodic manual measurements, September 1975 to April 1977. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.07 ft below land-surface datum, Apr. 3, 1958; lowest, 15.71 ft below land-surface datum, between June 4 and Sept. 30, 1986.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIOD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	WATER LEVEL
SEPT.	29,	1987 TO	DEC.	23,	1987	6.84		DEC.	23, 1987	7.29
DEC.	23,	1987 TO	MAR.	24,	1988	6.33	10.58	MAR.	24, 1988	8.24
MAR.	24,	1988 TO	JUNE	27,	1988	6.24	13.66	JUNE	27, 1988	13.14
JUNE	27,	1988 TO	SEPT.	30,	1988	10.07	14.54	SEPT.	30, 1988	10.60

NJ-WRD WELL NO. 09-0089

390608074483801. Local I.D., Cape May County Park T8 Obs. NJ-WRD Well Number, 09-0099. LOCATION.--Lat 39°06'11", long 74°48'38", Hydrologic Unit 02040206, at the Cape May County Park on Rt. 9,

LOCATION.--Lat 39°06'11", long 74'48'38", Hydrologic Unit 02040206, at the Lape May County Fair County Middle Township.

Owner: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 230 ft, screened 215 to 230 ft.

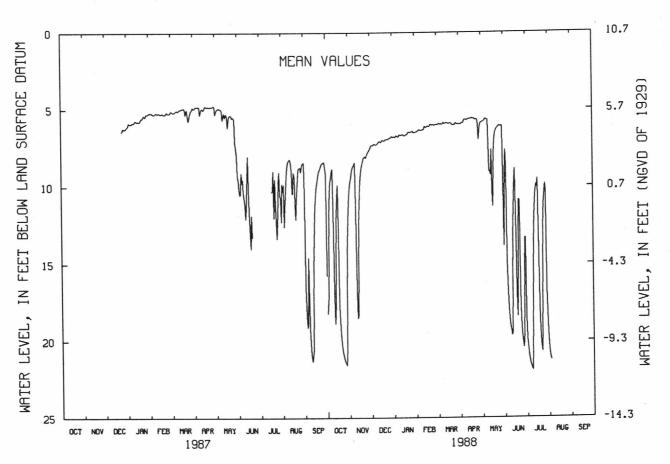
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 10.73 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.20 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Missing record from August 3 to September 30 was due to recorder malfunction.

PERIOD OF RECORD.--October 1957 to current year. Records from 1957 to 1987 are unpublished and are available in files of the New Jersey District Office.

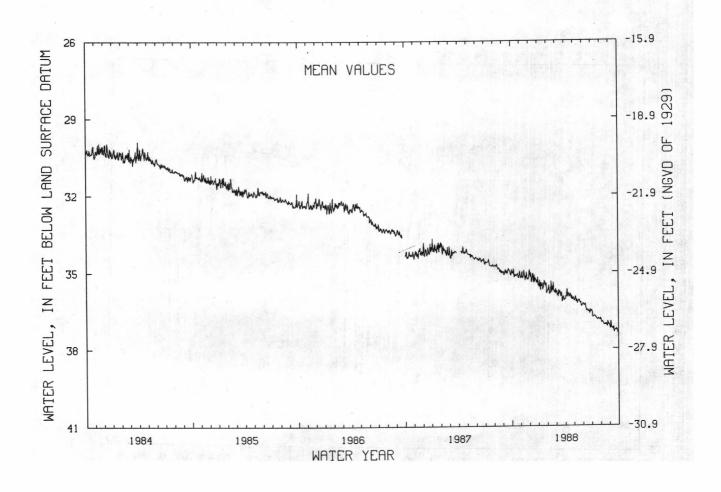

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.73 ft below land-surface datum, April 5, 1958; lowest, 22.01 ft below land-surface datum, July 9, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

MEAN VALUES

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	9.71	8.74	7.26	6.74	6.34	5.97	5.89	5.75	16.84	21.49		
10	17.05	16.88	7.18	6.69	6.33	5.88	5.70	7.22	19.65	13.57	• • •	
15	9.87	9.66	7.03	6.71	6.15	5.89	5.61	10.33	8.88	10.05		
20	20.32	9.66 8.15	6.96	6.52	5.97	5.91	5.63	6.45	10.87	20.14		
10 15 20 25	21.44	7.89	6.89	6.45	6.04	6.02	5.71	6.09	20.08	10.33	• • •	
EOM	10.34	7.37	6.79	6.47	5.99	5.96	5.89	13.84	18.43	20.49		•••
MEAN	15.38	9.69	7.06	6.62	6.18	5.95	5.81	7.17	15.24	16.22	•••	
WTR YR	1988	HTGH 5 56	ADD 18	LOU	22 01 1111	0						

NJ-WRD WELL NO.09-0099

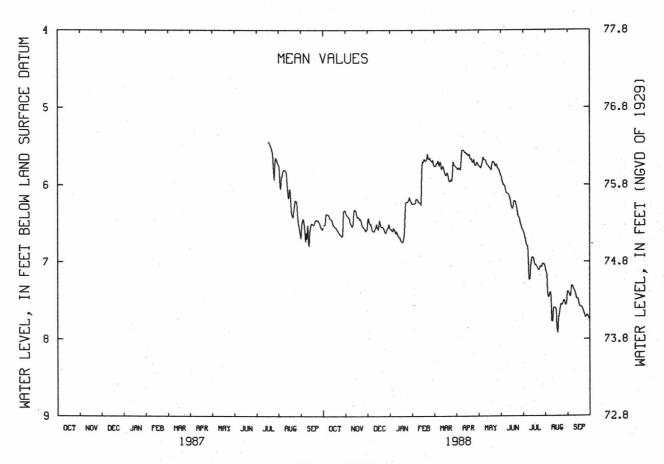


CUMBERLAND COUNTY

391828075120902. Local I.D., Jones Island 2 Obs. NJ-WRD Well Number, 11-0096.
LOCATION.--Lat 39°18'29", long 75°12'08", Hydrologic Unit 02040206, about 1.7 mi south of Cedarville at Jones Island, Lawrence Township.
Owner: Cumberland County.
AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 375 ft, screened 365 to 375 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 10.10 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.90 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation. Well was pumped on Sept. 22, 1986. After pumping, the water level did not recover to its previous level. The screen may have been partially clogged.
PERIOD OF RECORD.--March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 19.99 ft below land-surface datum, Mar. 22, 1977; lowest, 37.49 ft below land-surface datum, Sept. 29, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

						EAN VALUE	S					
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUĹ	AUG	SEP
5 10 15 20 25 EOM	35.05 35.19 35.14 35.07 35.20 35.21	35.13 35.28 35.00 35.27	35.13 35.20 35.16 35.23 35.32 35.46	35.52 35.55 35.64 35.34 35.45 35.75	35.70 35.79 35.64 35.41 35.80 35.75	35.90 35.70 35.77 35.85 36.09 36.08	35.97 35.97 35.89 35.97 36.08 36.08	36.12 36.08 36.19 36.15 36.19 36.27	36.29 36.37 36.51 36.54 36.59 36.50	36.77 36.71 36.76 36.86 36.85 36.81	36.98 37.01 37.04 37.01 36.94 37.11	36.94 37.16 37.29 37.25 37.24 37.41
MEAN	35.09	35.16	35.26	35.55	35.70	35.92	35.96	36.17	36.43	36.77	37.02	37.23
WTR Y	R 1988	MEAN 36.02	HIGH	34.73	NOV 11	LOW 37	7.49 SEP	29				

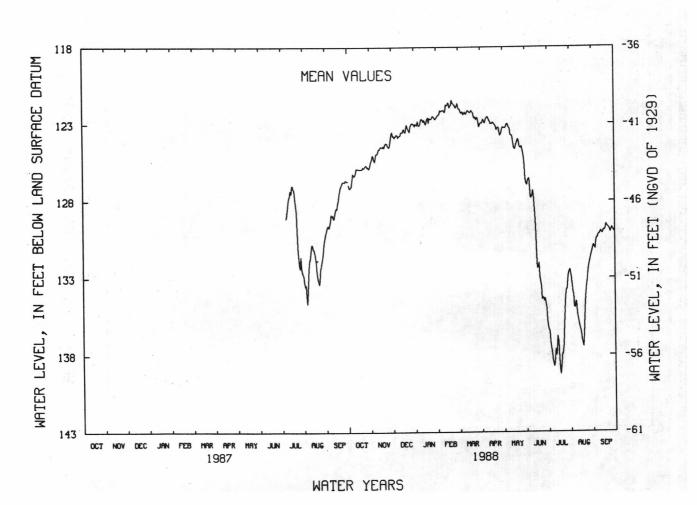


CUMBERLAND COUNTY

392731075092401. Local I.D., Vocational School 2 Obs. NJ-WRD Well Number, 11-0042.
LOCATION.--Lat 39°27'32", long 75°09'29", Hydrologic Unit 02040206, next to the Cumberland County Vocational and Technical School on Bridgeton Avenue, Deerfield Township.
Owner: Cumberland County.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in, depth 47 ft, screened 42 to 47 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 81.77 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.92 ft above land-surface datum.
PERIOD OF RECORD.--March 1972 to current year. Records from 1972 to 1987 are unpublished and are available in files of the New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.40 ft below land-surface datum, April 21, 1972; lowest, 8.12 ft below land-surface datum, Aug. 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

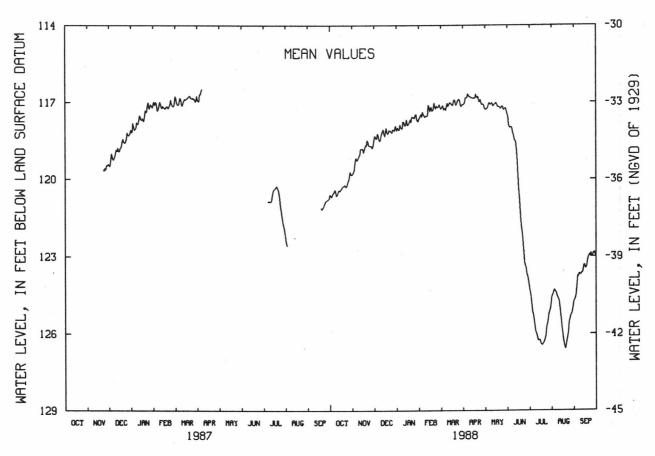
	MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
5 10 15 20 25 EOM	6.38 6.44 6.52 6.59 6.66 6.36	6.43 6.51 6.39 6.44 6.56 6.45	6.54 6.60 6.53 6.54 6.62 6.57	6.57 6.65 6.73 6.37 6.20 6.24	6.18 6.24 5.67 5.60 5.69 5.73	5.72 5.72 5.82 5.89 5.95 5.77	5.80 5.55 5.59 5.67 5.72 5.73	5.78 5.67 5.77 5.70 5.73 5.87	6.00 6.11 6.27 6.21 6.42 6.58	6.76 7.22 6.96 7.07 7.06 7.08	7.46 7.77 7.62 7.63 7.50 7.38	7.31 7.39 7.52 7.60 7.71 7.75		
MEAN	6.50	6.46	6.55	6.48	5.89	5.80	5.67	5.75	6.22	6.97	7.54	7.53		
WTR YR	1988 MI	EAN 6.45	HIGH	5.54 APR	8-10	LOW 8.12	AUG 17							



WATER YEARS

394652075100401. Local I.D., Mantua Shallow Obs. NJ-WRD Well Number, 15-0741.
LOCATION.--Lat 39°46'52", long 75°10'04", Hydrologic Unit 02040202, at the Township of Mantua Road Dept. off Main Street (County Rd 555), Mantua Township.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
MELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 313 ft, screened 293 to 313 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 82 ft above National Geodetic Vertical Datum of 1929, from topographic map Measuring point: Top edge of recorder shelf, 4.00 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--July 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 121.20 ft below land-surface datum, Feb. 20, 1988; lowest, 139.61 ft below land-surface datum, July 17, 1988.

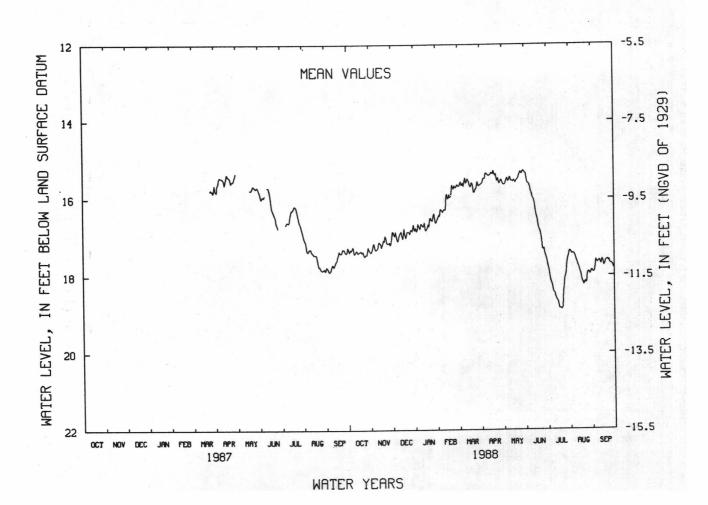
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988


					M	EAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	127.04 126.28 125.87 125.90 125.66 125.61	125.27 124.89 124.46 124.38 124.51 123.52	123.80 123.74 123.42 123.05 123.17 123.14	123.06 122.66 123.03 122.61 122.48 122.48	122.16 122.22 121.60 121.44 121.94 121.64	122.30 122.21 122.14 122.20 122.71 122.95	122.86 122.52 122.97 123.08 123.30 123.26	124.34 124.16	126.52 127.32 131.58 133.14 134.47 136.08	137.76 137.61 138.30 137.94 133.73 132.70	134.88 135.64 136.95 134.53 132.15 130.98	130.44 130.02 129.89 129.68 129.85 129.76
MEAN	126.12	124.60	123.45	122.77	121.91	122.38	123.02	124.07	130.91	136.48	134.24	130.08
WTR YR	1988	MEAN 126.	69 HIG	H 121.20	FEB 20	LOW	139.61	JUL 17				

394652075100402. Local I.D., Mantua Deep Obs. NJ-WRD Well Number, 15-0742.
LOCATION.--Lat 39°46'52", long 75°10'04", Hydrologic Unit 02040202, at the Township of Mantua Road Dept. off Main Street (County Rd 555), Mantua Township.
Owner: U.S. Geological Survey.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 777 ft, screened 757 to 777 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 84 ft above National Geodetic Vertical Datum of 1929, from topographic map Measuring point: Top edge of recorder shelf, 4.20 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--November 1986 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 116.47 ft below land-surface datum, April 7, 1987; lowest, 126.62 ft below land-surface datum, Aug. 19, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

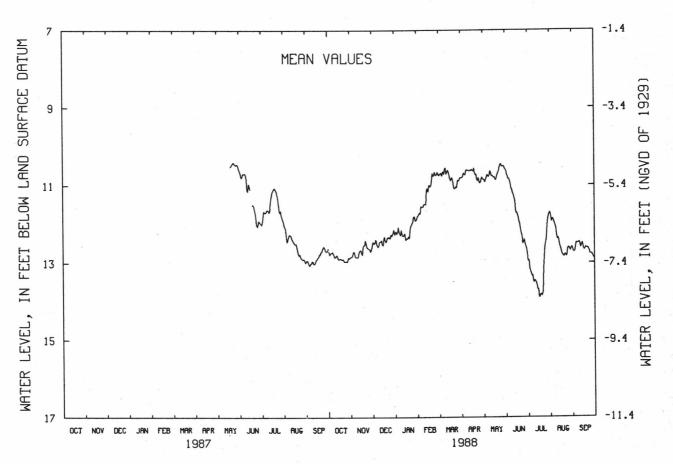
	MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
5 10 15 20 25 EOM	120.54 120.60 120.40 120.25 120.07 119.82	119.17 119.02 118.96 118.49 118.71 118.33	118.28 118.22 118.12 118.09 118.06 118.04	117.97 117.88 117.87 117.59 117.50 117.60	117.45 117.52 117.21 117.02 117.20 117.17	117.29 117.04 117.04 116.91 116.93 117.10	116.82 116.77 116.82 116.81 117.00 117.22	117.16 117.03 117.05 117.17 117.16 117.42	117.95 118.47 119.86 121.90 123.37 124.08	125.16 126.00 126.26 126.36 125.60 124.59	124.36 124.72 125.98 126.44 125.40 124.70	123.75 123.63 123.41 122.99 122.97 122.94		
MEAN	120.31	118.92	118.19	117.77	117.31	117.09	116.89	117.16	120.48	125.65	125.29	123.41		
WTR YR	1988	MEAN 119.	B9 HI	GH 116.62	2 APR 7	LOW	126.62 AI	JG 19						


WATER YEARS

394808075172401. Local I.D., Stefka 1 Obs. NJ-WRD Well Number, 15-0712.
LOCATION.--Lat 39°48'08", long 75°17'24", Hydrologic Unit 02040202, near the intersection of Swedesboro and Tomlin Station roads, next to Pargey Creek, on land owned by Mr. William Stefka, Greenwich Township.
Owner: U.S. Geological Survey.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 290 ft, screened 275 to 290 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 6.50 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.20 ft above land-surface datum.
PERIOD OF RECORD.--March 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.26 ft below land-surface datum, April 29, 1987; lowest, 18.88 ft below land-surface datum, July 20,21, 1988.

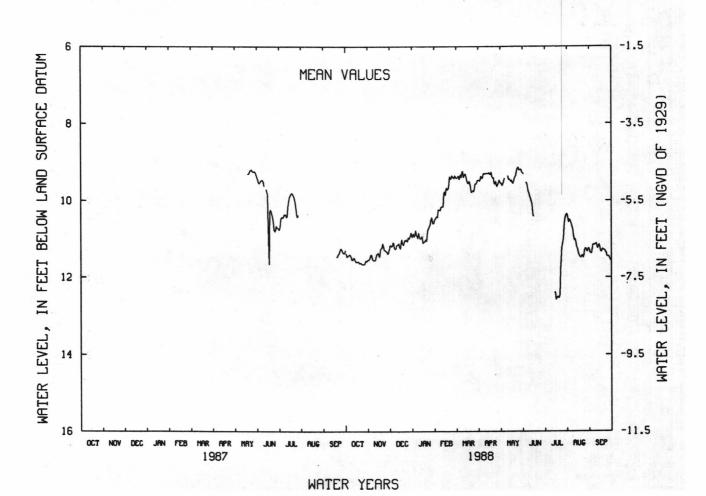
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988


					ME	AN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	17.33 17.40 17.38 17.38 17.43	17.15 17.27 17.26 16.95 17.14 16.84	16.92 16.92 16.88 16.85 16.80 16.79	16.70 16.70 16.81 16.57 16.47 16.51	16.28 16.28 15.98 15.65 15.72 15.65	15.66 15.47 15.55 15.62 15.75 15.64	15.48 15.39 15.33 15.40 15.56 15.57	15.56 15.44 15.56 15.52 15.31 15.33	15.61 15.96 16.37 16.79 17.32 17.62	18.12 18.44 18.68 18.87 17.99 17.35	17.42 17.66 17.95 18.18 17.90 17.87	17.59 17.61 17.67 17.59 17.69 17.78
MEAN	17.36	17.16	16.89	16.65	16.00	15.64	15.45	15.48	16.45	18.24	17.82	17.68
WTR YR	1988	MEAN 16.74	HIGH	15.27	MAY 28,29	LOW	18.88	JUL 20,21				

394808075172402. Local I.D., Stefka 2 Obs. NJ-WRD Well Number, 15-0713.
LOCATION.--Lat 39°48'08", long 75°17'24", Hydrologic Unit 02040202, near the intersection of Swedesboro and Tomlin Station roads, next to Pargey Creek, on land owned by Mr. William Stefka, Greenwich Township.
Owner: U.S. Geological Survey.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 155 ft, screened 125 to 155 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 5.64 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.
PERIOD OF RECORD.--May 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 10.37 ft below land-surface datum, May 24, 1987; lowest, 13.96 ft below land-surface datum, July 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
5 10 15 20 25 EOM	12.73 12.84 12.89 12.90 12.95 12.86	12.71 12.84 12.75 12.42 12.63 12.46	12.46 12.46 12.37 12.33 12.26 12.20	12.20 12.30 12.37 12.17 11.82 11.79	11.56 11.50 11.02 10.69 10.74 10.70	10.76 10.55 10.72 10.90 11.07 10.81	10.72 10.61 10.59 10.73 10.90 10.83	10.82 10.63 10.80 10.73 10.45 10.59	10.83 11.21 11.72 12.02 12.43 12.76	13.20 13.45 13.68 13.85 12.45 11.70	11.92 12.38 12.61 12.79 12.60 12.64	12.48 12.51 12.63 12.62 12.77 12.86		
MEAN	12.85	12.68	12.39	12.13	11.13	10.80	10.72	10.70	11.68	13.09	12.46	12.64		
WTR YR	1988	MEAN 11.94	HIGH	10.41	MAY 25	LOW 13	.96 JUL	17						

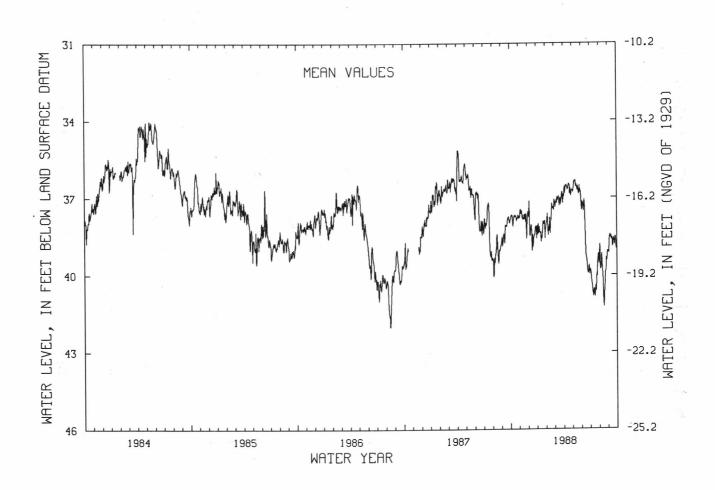

WATER YEARS

394808075172404. Local I.D., Stefka 4 Obs. NJ-WRD Well Number, 15-0728.
LOCATION.--Lat 39°48'08", long 75'17'24", Hydrologic Unit 02040202, near the intersection of Swedesboro and Tomlin Station roads, next to Pargey Creek, on land owned by Mr. William Stefka, Greenwich Township.
Owner: U.S. Geological Survey.

AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 56 ft, screened 46 to 56 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 4.46 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.42 ft above land-surface datum.
REMARKS.--Missing record from June 17 to July 13 was due to recorder malfunction.
PERIOD OF RECORD.--May 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.09 ft below land-surface datum, May 25, 1988; lowest, 12.64 ft below land-surface datum, July 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

						MEAN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	11.42 11.54 11.59 11.63 11.66	11.42 11.55 11.44 11.12 11.33	11.10 11.17 11.09 11.03 10.97	10.89 10.99 11.08 10.88 10.52 10.48	10.25 10.16 9.70 9.37 9.38 9.38	9.44 9.23 9.40 9.58 9.76 9.47	9.40 9.29 9.27 9.41 9.58 9.51	9.51 9.49 9.42 9.13 9.27	9.52 9.89 10.41	12.39 12.55 11.09 10.35	10.56 11.03 11.26 11.44 11.25 11.30	11.15 11.17 11.30 11.29 11.46 11.55
MEAN	11.55	11.38	11.09	10.83	9.81	9.48	9.40	9.38	9.89	11.61	11.11	11.31
WTR YR	1988	MEAN 10.58	нати	9.00 N	IAY 25	ION 12.6	4 .00 17					

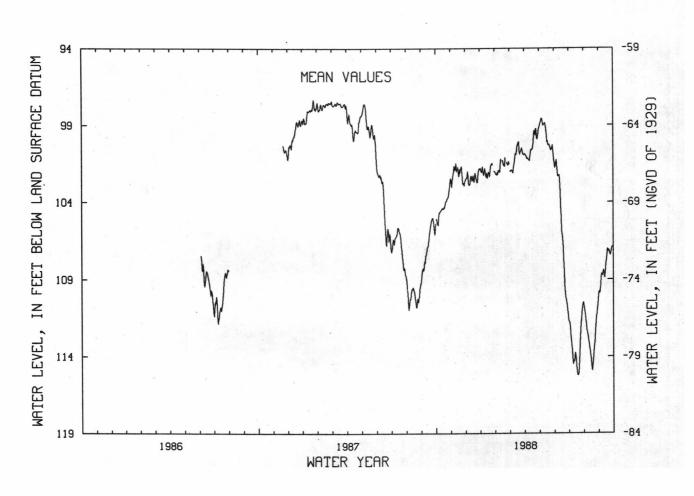

394942075131701. Local I.D., Shell Chemical 5 Obs. NJ-WRD Well Number, 15-0296.
LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and Route 295, West Deptford Township.
Owner: Shell Chemical Company.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 327 ft, screened 321 to 326 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 20.76 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.90 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping.
PERIOD OF RECORD.-June 1962 to current year. Records for 1962 to 1977 are unpublished and are available in files of New Jersey District Office.

New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 27.75 ft below land-surface datum, Dec. 6, 1962; lowest, 42.50 ft below land-surface datum, Aug. 15, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					М	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	37.70 38.10 37.73 37.73 37.81 37.80	37.77 37.85 37.64 38.57	37.89 38.25 38.84 38.52 38.16 38.34	38.39 38.33 38.51 38.12 37.90 38.04	37.91 38.14 38.05 37.22 37.43 37.11	37.28 36.98 36.94 37.00 37.07 36.88	36.83 36.51 36.68 36.47 36.88 36.72	36.73 36.32 36.50 36.55 36.52 37.27	37.19 37.08 38.61 39.58 39.92 39.79	40.16 40.62 40.60 40.40 39.90 39.48	39.77 39.54 40.78 40.32 39.32 39.08	38.51 38.48 38.84 38.67 38.55 38.93
MEAN	37.77	37.76	38.29	38.25	37.77	37.10	36.66	36.65	38.56	40.16	39.77	38.71
WTR YR	1988	MEAN 38.13	HIGH	35.98	MAY 25	LOW 41	.51 AUG	17				



394957075053001. Local I.D., Deptford Deep Obs. NJ-WRD Well Number, 15-0671.
LOCATION.--Lat 39°49'57", Long 75°05'30", Hydrologic Unit 02040202, at N.J. Dept. of Transportation facility off N.J. Route 41 south, Deptford Township.
Owner: U.S. Geological Survey.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 670 ft, screened 650 to 670 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 35 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 3.55 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--June 1986 to current year. Records for 1986 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level 97.10 ft below land surface datum, Jan. 22, 1987; lowest 115.36 ft below land surface datum, July 19, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

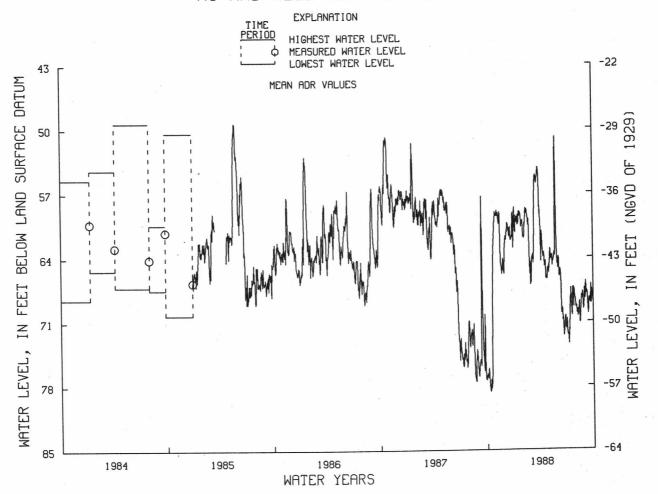
MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5 10 15 20 25 EOM	105.48 104.57 104.43 104.08 103.72 102.44	102.17 101.72 101.70 101.88 102.78	101.97 102.81 102.43 102.08 102.69 101.79	101.92 102.00 102.34 101.99 101.57 102.08	102.16 101.59 101.30 101.11 101.57	101.92 101.49 100.86 100.09 100.65 100.96	101.05 101.22 100.60 99.61 99.28 99.26	98.68 98.97 99.27 100.30 100.63 101.24	101.26 102.25 105.00 107.68 110.28 111.66	112.91 114.29 114.19 115.06 111.83 110.60	111.88 112.93 114.22 113.95 111.77 109.86	108.83 108.40 107.96 107.18 107.27 106.87	
MEAN	104.23	102.18	102.37	101.98	101.68	101.05	100.40	99.69	105.72	113.13	112.53	108.03	
WTR Y	R 1988	MEAN 104.4	19 HI	GH 98.28	MAY 6	LOW 1	15.36 JUL	. 19					

NJ-WRD WELL NO.15-0671

395232075094201. Local I.D., Eagle Point 3 Obs. NJ-WRD Well Number, 15-0323.
LOCATION.--Lat 39°52'35", long 75°09'50", Hydrologic Unit 02040202, at the Coastal Eagle Point Oil Company, West Deptford Township.
Owner: Coastal Eagle Point Oil Company.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 276 ft, screened 255 to 275 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, April 1981 to December 1984.

DATUM.--Land-surface datum is 20.96 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of casing, 3.00 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--November 1949 to July 1975, April 1981 to current year. Periodic manual measurements, October 1976 to March 1981. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 37.70 ft below land-surface datum, Nov. 25, 1950; lowest, 87.30 ft below land-surface datum, June 28, 1963.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

	MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5 10 15 20 25 EOM	76.21 77.74 77.75 69.11 61.54 59.49	58.90 59.70 59.33 64.78 64.10 65.74	61.80 61.23 60.83 60.66 61.72 62.96	61.15 59.90 60.46 59.12 59.50 60.11	61.89 60.63 58.75 59.44 64.46 66.94	64.17 63.98 56.19 56.00 54.89 59.34	64.43 63.22 63.44 64.34 66.33 65.42	63.99 63.80 64.17 63.39 50.98 64.32	64.39 65.66 70.04 71.09 71.40 71.76	72.27 71.82 69.05 70.33 67.87 68.50	69.24 70.06 69.61 68.88 67.96 67.33	66.58 68.14 69.24 68.30 67.43 68.69	
MEAN	71.51	62.01	61.43	59.95	61.20	59.35	63.82	62.93	68.63	69.78	69.27	68.30	
WTR YR	1988	MEAN 64.86	HIGH	47.35	MAY 25	LOW 79	.65 OCT	11					

GROUND-WATER LEVELS GLOUCESTER COUNTY

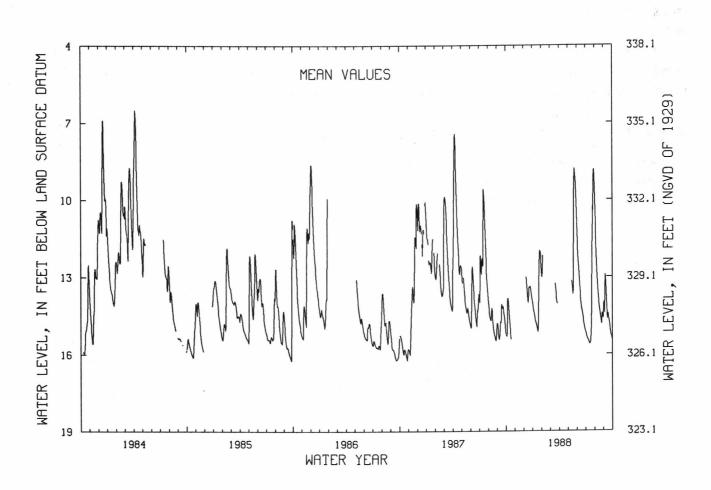
NJ-WRD WELL NUMBER	SITE Owner	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	DEPTH OF WELL (FT.)	ELEV.** OF LAND SURFACE DATUM (FT.NGVD)	DATE OF MEASURMENT	WATER LEVEL (FT.)*
15-039	CIFALOGLIO,S	1	393148	745822	123	110	10/28/1987	8.45
15-198	LESHAY BROS	1965 WELL	393944	745934	141	130	3/ 2/1988 10/28/1987	7.27
15-568	RALPH SMITH FARM	1	394305	750307	97	140	3/ 2/1988 10/26/1987	8.46 18.79
15-726	SMITH, JOHN	AURA ORCHARDS	394130	750921	62	140	3/ 1/1988 10/28/1987	17.82 13.23
15-734	DASE , DENNIS	DASE 1	393523	745912	110	138	3/ 3/1988 10/28/1987	10.08 19.18
15-745	FRANKLIN TWP SANITARY LANDFILL	DUMP NORTH	393608	750257	35	124	3/ 2/1988 10/29/1987	19.26 28.24
15-754	DEAN, GEORGE	DEAN 1	393934	751033	58	143	10/29/1987 3/ 2/1988 10/28/1987	26.70 14.31
	•						3/ 3/1988	10.35
15-759	MESIANO , JIM	MESIANO 1	394232	750126	135	159	10/28/1987 3/ 2/1988	37.57 37.60
15-760	WILLIAMS , RONALD	RW 1	394020	745611	30	115	10/29/1987	16.82
15-761	LUCAS , HARRY	LUCAS IRR 1	394142	745818	38	130	3/ 2/1988 10/28/1987 3/ 2/1988	14.26 12.88 12.53
15-763	MOORE , EAYRE	MOORE 2	393525	750521	60	109	10/29/1987	20.65
15-764	SCAFONIS , FELIX	SCAFONIS D	393708	750143	49	130	3/ 2/1988 10/29/1987	19.08 20.42
15-792	THE PLANT PLACE INC	PP 1	393928	750434	75	110	3/ 2/1988 10/28/1987	19.48 12.40
15-793	FERRUCCI, MARY	FERRUCCI 10	393448	745606	150	110	3/ 3/1988 10/28/1987	10.46
	The state of the s						3/ 2/1988	11.02
15-795	SMITH, FRED	FRED SMITH-1965	394140	750312	100	150	10/29/1987 3/ 2/1988	14.41
15-796	SMITH , FRED	SMITH 5	394238	750308	90	160	10/29/1987	18.60
15-801	CHILLARI , JOE	CHILLARI 1	394227	750522	85	144	3/ 2/1988 10/28/1987	17.49 15.04
15-804	FRANKLIN TWP BOARD OF EDUCATION		393428	750244	100	110	3/ 2/1988 10/29/1987	12.92 31.13
							3/ 2/1988	30.26
15-808	GLASSBORO WATER DEPT	GLASS OBS 1	394319	750725	60	122	10/29/1987 3/ 2/1988	27.80 28.05
15-810	ELK TWP MUA	ELK 1	394021	750827	63	144	10/28/1987	15.57
15-811	SHOEMAKER , G	SHOEMAKER 1	394055	751412	32	140	3/ 3/1988 10/28/1987	13.02 19.64
15-812	CORONA PUMPS	CORONA 1	393805	745554	100	123	3/ 3/1988 10/28/1987	18.91 29.12
15-840	DEVAULT, HARRY	DEVAULT 1	393744	750735	34	110	3/ 2/1988 10/28/1987	27.13 4.70
							3/ 3/1988	4.07
15-846	U S GEOL SURVEY	CARPENTER 126	394053	750453	10	126	10/28/1987 3/ 2/1988	7.24 3.35
15-1016	DUFFIELD, CLAUDE	DUFFIELD 2	393633	750630	60	129	10/29/1987 3/ 2/1988	24.75 23.93

^{* -} Water level in feet below land surface datum

Aquifer unit: 121CKKD - Kirkwood-Cohansey aquifer system

 $[\]ensuremath{^{**}}$ - Elevations are from USGS topographic maps

HUNTERDON COUNTY


402644074563601. Local I.D., Bird Obs. NJ-WRD Well Number, 19-0002.

LOCATION.--Lat 40°26'44", long 74°56'36", Hydrologic Unit 02040105, near U.S. Post Office, Sergeantsville,
Delaware Township
Owner: Phillip Fleming.

AQUIFER.--Stockton Formation of Triassic age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 3 ft, depth 21 ft, lined with stone.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 342.08 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.50 ft above land-surface datum.
REMARKS.--Missing record from October 19 to December 8, 1987, February 4 to March 17, and March 27 to May 13, 1988
was due to recorder malfunction.
PERIOD OF RECORD.--June 1965 to July 1970, May 1977 to current year. Periodic manual measurements, September 1970 to
September 1976. Records for 1965 to 1976 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.37 ft below land-surface datum, Apr. 18, 1983; lowest, 17.04
ft below land-surface datum, Jan. 26-28, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					ME	EAN VALUES	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	14.46 14.19 15.07	•••	13.21 14.00 13.43 13.61 14.03	14.42 14.73 14.98 14.56 12.00 12.96		13.51 14.04		13.26 9.98 9.06 10.94	12.36 13.30 14.04 14.45 14.84 15.13	15.33 15.48 15.61 14.92 10.26 9.54	11.74 13.23 14.00 14.50 14.67	13.47 13.88 14.42 14.77 15.24 15.45
MEAN WTR YR	14.72 1988 HI	 GH 8.75	13.61 JUL 29	13.90 LOW	•••	 L 16,17	•••	10.85	13.76	13.62	13.50	14.47

393348075275701. Local I.D., Salem 1 Obs. NJ-WRD Well Number, 33-0251.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.
Owner: U.S. Geological Survey.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 709 ft, screened 699 to 709 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, December 1965 to

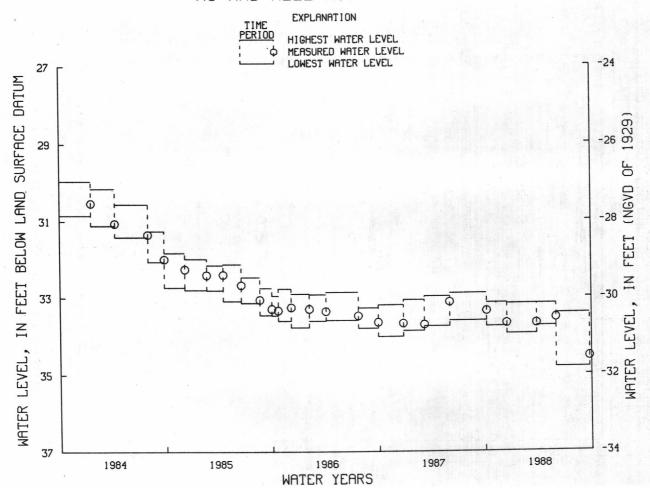
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. water-level recorder, December 1905 to August 1975.

DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to August 1975, May 1977 to current year. Records for 1965 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.97 ft below land-surface datum, Dec. 13, 1965; lowest, 34.82 ft below land-surface datum, between May 31 and Sept. 23, 1988.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

WATER-LEVEL EXTREMES

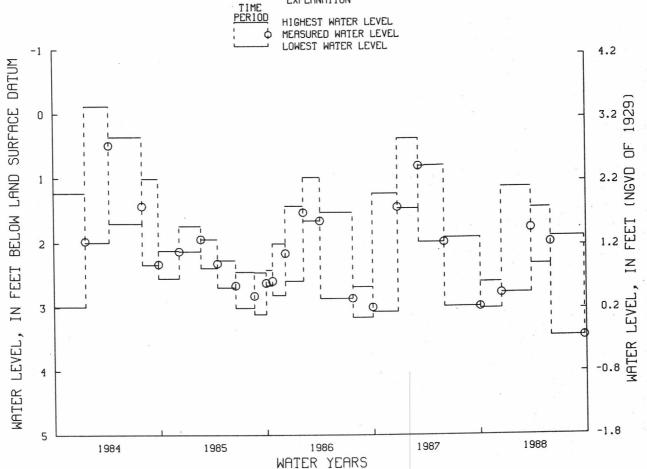
MEASURED WATER LEVEL

		PERIOD		HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	WATER LEVEL
OCT.	6,	1987 TO DEC.	14, 1987	33.14	33.75	DEC.	14, 1987	33.67
DEC.	14,	1987 TO MAR.	25, 1988	33.17	33.94	MAR.	25, 1988	33.67
MAR.	25,	1988 TO MAY	31, 1988	33.17	33.74	MAY	31, 1988	33.53
MAY	31,	1988 TO SEPT.	23, 1988	33.42	34.82	SEPT.	23, 1988	34.54

NJ-WRD WELL NO. 33-0251

393348075275702. Local I.D., Salem 2 Obs. NJ-WRD Well Number, 33-0252.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.
Owner: U.S. Geological Survey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 96 ft, screened 91 to 96 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to July 1975.
DATUM.--Land-surface datum is 3.25 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 2.77 ft above land-surface datum.
PERIOD OF RECORD.--November 1965 to July 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.51 ft above land-surface datum, between Jan. 12 and Apr. 27, 1983; lowest, 6.45 ft below land-surface datum, Sept. 9, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988


WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

	PERIOD		HIGHEST WATER LEVEL	LOWEST WATER LEVEL	DA	rE	WATER LEVEL
OCT.	2, 1987 TO DEC.	14, 1987	2.61	3.02	DEC. 14,	1987	2.78
DEC.	14, 1987 TO MAR.	25, 1988	1.15	2.78	MAR. 25,	1988	1.78
MAR.	25, 1988 TO MAY	31, 1988	1.47	2.34	MAY 31,	1988	2.00
MAY	31. 1988 TO SEPT.	23. 1988	1.91	3.46	SEPT. 23.	1988	3.46

NJ-WRD WELL NO. 33-0252

EXPLANATION

393348075275703. Local I.D., Salem 3 Obs. NJ-WRD Well Number, 33-0253.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 340 ft, screened 335 to 340 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to August 1975. August 1975.

August 1975.

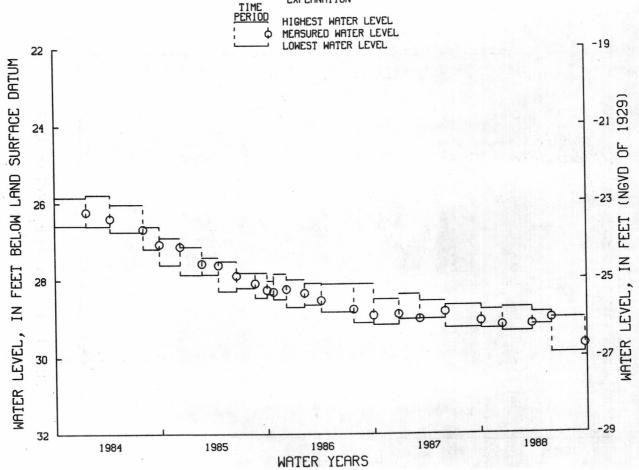
DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.30 ft above land-surface datum.

PERIOD OF RECORD.--November 1965 to August 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.28 ft below land-surface datum, Feb. 13, 1966; lowest, 29.90 ft below land-surface datum, between May 31 and Sept. 23, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

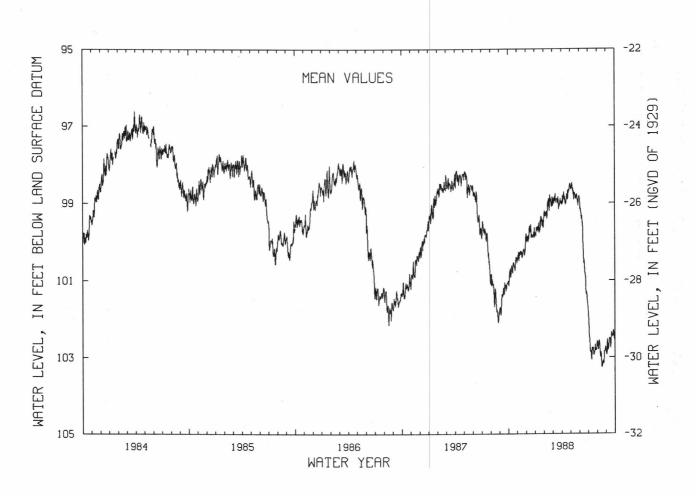

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIOD		HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	WATER LEVEL
OCT.	2,	1987 TO DEC.	14, 1987	28.77	29.26	DEC.	14, 1987	29.17
DEC. 1	14,	1987 TO MAR.	25, 1988	28.72	29.34	MAR.	25, 1988	29.15
MAR. 2	25,	1988 TO MAY	31, 1988	28.85	29.17	MAY	31, 1988	29.00
MAY 3	31,	1988 TO SEPT.	23, 1988	29.00	29.90	SEPT.	23, 1988	29.68

N.J-WRD WELL NO. 33-0253

EXPLANATION


394037075191501. Local I.D., Point Airy Obs. NJ-WRD Well Number, 33-0187.
LOCATION.--Lat 39°40'37", long 75°19'14", Hydrologic Unit 02040206, at intersection of Point Airy and Woodstown-Swedesboro Roads, 1 mi. north of Woodstown Borough boundary, Pilesgrove Township.
Owner: U.S. Geological Survey.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 672 ft, screened 664 to 672 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 72.97 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 6 inch casing, 1.80 ft above land-surface datum.
PERIOD OF RECORD.--February 1959 to August 1975, March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 78.55 ft below land-surface datum, Mar. 6, 1959; lowest, 103.37 ft below land-surface datum, Aug. 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					М	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	100.76 100.80 100.81 100.56 100.53 100.45	100.34 100.35 100.27 100.35	99.86 99.93 99.64 99.85 99.85 99.77	99.72 99.74 99.67 99.37 99.48 99.34	99.34 99.40 98.91 98.79 99.03 98.86	99.01 98.76 98.88 98.95 99.03 98.96	98.99 98.85 98.96 98.89 98.67 98.56	98.54 98.77 98.73 98.89 98.95 98.82	99.19 99.52 100.32 100.84 101.37 101.74	102.45 102.83 102.81 102.92 102.69 102.58	102.77 102.88 102.97 103.09 102.84 102.84	102.53 102.58 102.67 102.40 102.33 102.49
MEAN	100.68	100.28	99.83	99.60	99.09	98.96	98.82	98.76	100.29	102.70	102.89	102.56
WTR YR	1988	MEAN 100.38	HIGH	98.45	MAY 7	LOW 10	3.37 AUG	17				

NJ-WRD WELL NO.33-0187

GROUND-WATER LEVELS - SECONDARY OBSERVATION WELLS OTHER SITES FOR WHICH DATA ARE AVAILABLE

05-690 US GEOL SURVEY LEBANON SF 2 395211 743103 121CKKD W 196 07-030 SO JRSY PORT CM NY SHIP 5A 395447 750711 211MRPAU W 195 07-118 NJ WATER CO HUTTON HILL 2 395229 745712 211MLRW A 196 07-283 NJ WATER CO EGBERT 395246 750434 211MRPAL A 196 07-322 NJ WATER CO OAKLYN TEST 395359 750445 211MRPAL W 195 07-322 NJ WATER CO OAKLYN TEST 395359 750445 211MRPAL W 195 09-060 US GEOL SURVEY TRAFFIC CIRCLE 385616 745800 112CPMY W 196 09-060 US GEOL SURVEY AIRPORT T7 390056 745426 121CNSY A 196 09-090 US GEOL SURVEY BDWLL DCH 31HS 390527 745024 112ESRNS A 196 09-098 US GEOL SURVEY BDWLL DCH 31HS 390527 745024 112ESRNS A 196 09-098 US GEOL SURVEY BDWLL DCH 31HS 390527 745024 112ESRNS A 196 09-096 US GEOL SURVEY BDWLL DCH 31HS 390527 745024 112HLBC W 196 11-043 CUMBERLAND CO VOCAT SCH 1 392732 750929 121CKKD W 197 11-044 CUMBERLAND CO VOCAT SCH 3 392732 750929 124PNPN A 197 11-073 CUMBERLAND CO JONES ISLAND 1 391829 751208 121CKKD W 197 11-118 CUMBERLAND CO HEISLERVILLE 1 391350 750018 121CKKD W 197 11-118 CUMBERLAND CO HEISLERVILLE 2 391350 750018 121CKKD W 197 11-141 MILLVILLE MD ORANGE ST 392219 750113 121CKKD W 197 11-161 CUMBERLAND CO FAIR GROUNDS 1 392526 750643 121CKKD W 197 11-162 CUMBERLAND CO FAIR GROUNDS 3 392526 750643 121CKKD W 197 11-163 CUMBERLAND CO FAIR GROUNDS 3 392526 750643 121CKKD W 197 11-163 CUMBERLAND CO FAIR GROUNDS 3 392526 750643 121CKKD W 197 11-163 CUMBERLAND CO FAIR GROUNDS 3 392526 750643 121CKKD W 197 11-163 CUMBERLAND CO SHELL OBS 7 394857 751250 211MRPAU A 197 15-297 SHELL CHEM CO SHELL OBS 6 394942 751317 211MRPAU A 197 15-297 SHELL CHEM CO SHELL OBS 6 394942 751317 211MRPAU A 197 33-324 NJ WATER POLICY PENNS GROVE 24 394336 75274 211MLRW A 195 33-3240 NJ WATER POLICY PENNS GROVE 24 394336 75274 211MLRW A 195 33-342 NJ WATER POLICY PENNS GROVE 24 394336 75269 1112CPMY W 195	2-P 6-1986 4-1986 0-1986 7-P 3-P 3-1986 0-P 7-P 3-P 8-1984 8-1984 2-P

See figure 13 for well locations.
P - present
Aquifer unit: see definition of terms
WC - (Water Condition): A-Artesian, W-Water table, U-Undetermined
Data available in the files of the New Jersey District Office.

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 CAPE MAY COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LATITUDE	LONGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREE INTER (FT	AQUI FER UNIT		
09-027	CAPE MAY CITY WD	CMCWD 3	385643	745533	7	277 -	306	121CNSY
09-036	CAPE MAY CITY WD	CMCWD 2	385701	745528	10	174 -	282	121CNSY
09-043	CAPE MAY CITY WD	CMCWD 5	385724	745521	15		276*	121CNSY
09-052	LOWER TWP MUA	LTMUA 1	385851	745715	18	241 -	262	121CNSY
09-054	LOWER TWP MUA	LTMUA 2	385905	745625	14	212 -	247	121CNSY
09-057	LOWER TWP MUA	LTMUA 3	385919	745518	20	263 -	303	121CNSY
09-067	WILDWOOD WD	RIO GRANDE 38	390135	745352	10	461 -	590	122KRKDU
09-072	WILDWOOD WD	RIO GRANDE 31	390138	745350	10	108 -	135	112ESRNS
09-078	WILDWOOD WD	RIO GRANDE 30	390149	745354	9	229 -	250	121CNSY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (US/CM)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)
09-027 09-036 09-043 09-052 09-054 09-057 09-067 09-072 09-078	CAPE MAY CITY WD CAPE MAY CITY WD CAPE MAY CITY WD LOWER TWP MUA LOWER TWP MUA LOWER TWP MUA WILDWOOD WD WILDWOOD WD WILDWOOD WD	CMCWD 3 CMCWD 2 CMCWD 2 CMCWD 5 LTMUA 1 LTMUA 2 LTMUA 3 RIO GRANDE 38 RIO GRANDE 31 RIO GRANDE 30	8/23/1988 8/23/1988 8/23/1988 8/23/1988 8/23/1988 8/23/1988 8/23/1988 8/23/1988	16.0 15.5 15.5 15.5 17.0 14.0 15.0	806 663 293 250 244 226 512 190	7.7 7.6 7.7 7.9 7.9 7.7 8.0 7.7	150 130 16 11 13 12 76 12

^{*} Total depth of well.

Aquifer Unit:

112ESRNS - Cape May Formation, estuarine sand facies
121CNSY - Cohansey Sand
122KRKDU - Rio Grande water-bearing zone of the Kirkwood Formation

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 CUMBERLAND COUNTY

NJ-WRD WELL NUMBER	SITE Owner	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCRI INT		AL	AQUIFER UNIT
11-324	EAST PT W ASSOC	1	391138	750117	5	242	•	262	121CKKD
11-118	CUMBERLAND COUNTY	HEISLERVILLE 1	391350	750018	6	36	16	41	121CKKD
11-119	CUMBERLAND COUNTY	HEISLERVILLE 2	391350	750018	0	125		135	121CKKD
11-052	FORTESCUE REALTY	FORTESCUE 4	391420	751023	8	283	•	303	121CKKD
11-326	STANGER, GEORGE	1	391617	751355	5	112		440*	124PNPN
11-327	MYERS, H	1.	391619	751357	5	399	•	409	124PNPN
11-343	NEIL, A	1	391619	751405	5			459*	124PNPN
11-337	COVE RD WATER ASSOC	1	391622	751414	5	373		393	124PNPN
11-056	MONEY IS MARINA	POLLINO 1	391704	751415	4	350		370	124PNPN
11-092	BAY PT ROD GUN	BAY POINT 2	391746	751510	5	397		417	124PNPN
11-370	SOBUSIAK, WALTER	SOBUSIAK 1	391938	751923	5			350*	124PNPN

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (US/CM)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)
11-324 11-118 11-119 11-052 11-326 11-327 11-343 11-337 11-056 11-092	EAST PT W ASSOC CUMBERLAND COUNTY CUMBERLAND COUNTY FORTESCUE REALTY STANGER, GEORGE MYERS, H NEIL, A COVE RD WATER ASSOC MONEY IS MARINA BAY PT ROD GUN SOBUSIAK, WALTER	1 HEISLERVILLE HEISLERVILLE FORTESCUE 4 1 1 1 1 POLLINO 1 BAY POINT 2	8/31/1988 2/ 2/1988 2/ 2/1988 8/31/1988 8/31/1988 8/31/1988 8/31/1988 8/31/1988 8/31/1988 9/ 1/1988 9/ 1/1988	14.0	162 258 154 207 1,080 940 965 565 560 630 680 820	6.7 7.3	2.0 49 2.8 5.5 310 240 55 56 81 82 140

^{*} Total depth of well.

Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 124PNPN - Piney Point aquifer

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

NJ-WRD WELL NUMBER	S1 Own	ITE IER	I	LOCAL DENTIFIER		LATITUD	E LO	NGITUDE	LA	RF.	OPEN OR SCREENED INTERVAL (FT.)	AQUIFER UNIT
15-0375 15-0566 15-0619 15-0726 15-0733	MONROE TWP CECIL FIRE HOSPITALITY SMITH, JOHN WROBEL, ANT	CO CK CAMPO THONY	CE INC HO AU WR	RA ORCHARI OBEL.H1	CMPG 1	394010 393842 393724 394130 393457		745845 745655 745542 750921 745839	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 10 05 10 55	118 - 147 108 - 128 38 - 98 52 - 62 100 - 110	121CKKD 121CKKD 121CKKD 121CKKD 121CKKD
15-0734 15-0735 15-0743 15-0752 15-0754	DASE, DENNI DEMATTO, LO FRANKLIN TV DECORA INC DEAN, GEORG	IS DU WP BD OF E GE	DA DE ED LA DE DE	SE #1 MATTO #1 KE SCHOOL CORA 1 AN 1	1	393523 393940 393411 394054 393934	0	745912 745746 750022 745700 751033	10	58 40 11 28 43	100 - 110 75 - 80 83 - 98 105 - 120 48 - 58	121CKKD 121CKKD 121CKKD 121CKKD 121CKKD
15-0759 15-0764 15-0785 15-0791 15-0793	MESIANO, JI SCAFONIS, I D & M BUILD FRANKLIN TO FERRUCCI, I)FRS	ME SC BE ED CL FE	SIANO 1 AFONIS D HL RD WEL! R 1 RRUCCI #1	L O	394232 393708 393917 393634 393448		750126 750143 750149 750415 745606	1; 14 1	59 50 43 11	130 - 135 44 - 49 52 - 56 70 - 90 100 - 150	121CKKD 121CKKD 121CKKD 121CKKD 121CKKD
15-0801 15-0802 15-0804 15-0805 15-0810	CHILLARI, C WAWA INC FRANKLIN TO FRANKLIN TO ELK TWP MU/	MP BD OF E	CH WA ED MA ED MA EL	ILLARI 1 WA #1 LAGA #1 IN RD SCH K #1		394227 394246 393428 393322 394021	5 0 3 0 2 0	750522 750151 750244 745950 750827	1	44 50 10 19 44	80 - 85 60 - 65 1004 1004 58 - 63	
15-0812 15-0829 15-0831 15-1016 15-1017	CORONA PUMI ZEE, DOUGL/ FRANKLIN TO DUFFIELD, (HAYNICZ, H	PS AS WP MUA CLAUDE	CO ZE FR DU SH	RONA #1 E WORKER ANKLIN AD FFIELD 2 OREWAY HO		393805 394258 393539 393633 394025	3 0 9 0 3 0	745554 750836 1750348 1750630 1750548	11	23 41 04 29 36	100a 25 - 29 80 - 85 50 - 60 80a	121CKKD 121CKKD 121CKKD
15-1019	WILLIAMS, I	RON	WI	LLIAMS GA	RDEN	394020	j o	745611	1	15	45	# 121CKKD
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	
15-0375 15-0566 15-0619 15-0726 15-0733	09-15-88 09-20-88	13.0 14.0 14.0 13.5 13.5	101 135 36 246 145	4.5 4.3 4.2 4.7 4.7	17 31 6 83 46	3.1 4.3 1.1 22 2.9	2.2 4.9 0.86 6.9 9.2	8.6 7.7 2.2 3.9 5.1	1.8 2.7 1.3 7.6 1.7	<1.0 <1.0 3.0 <1.0	<1.0 1.0 2.0 <1.0	
15-0734 15-0735 15-0743 15-0752	02-16-89	15.5 17.5 16.0 13.5 14.0	51 125 37 33 52	4.7 4.4 4.6 4.4 4.8	14 21 7 6 12	0.81 3.5 0.47 0.44 1.6	2.8 3.0 1.3 1.2	2.1 12 2.2 2.1 3.0	1.0 4.3 0.8 0.8 1.2	1.3 <1.0 1.8 <1.0	1.1 <1.0 1.5 <1.0	
15-0754 15-0759 15-0764 15-0785 15-0791	09-07-88	14.0 13.5 12.5 15.0 15.0	190 30 21 73 28	4.4 5.0 5.3 4.6 4.4	71 6 3 9	18 1.2 0.31 1.0 2.1	6.2 0.81 0.48 1.6 0.99	2.2 3.4 1.6 7.9 2.9	5.4 0.6 0.7 10 1.0	<1.0 3.0 7.0 <1.0	<1.0 2.0 6.0 <1.0 <1.0	
15-0793 15-0801 15-0802 15-0804 15-0805	08-25-88 09-30-88 09-09-88	14.0 15.5 14.0 14.0	79 57 203 45 58	4.6 4.9 4.8 4.8 5.2	22 14 32 9 17	4.6 3.3 5.3 2.1 2.6	2.5 1.4 4.5 1.0 2.6	2.1 3.3 3.9 4.0 2.0	1.4 1.0 29 0.9 1.6	<1.0 2.1 2.0 <1.0 4.0	<1.0 1.7 2.0 <1.0 3.0	
15-0810 15-0812 15-0829 15-0831 15-1016	08-24-88 09-22-88 09-14-88	19.0 17.5 15.5 15.0 14.0	140 38 256 74 47	5.2 5.2 5.2 5.2 4.8	46 8 120 17 12	8.1 1.2 28 3.0 2.5	6.2 1.3 11 2.2 1.5	2.5 3.1 2.4 2.5 2.8	2.7 0.7 1.3 3.5 0.9	4.0 4.3 10 2.0 4.0	4.0 3.5 8.0 2.0 3.0	
15-1017 15-1019		15.0 12.5	146 74	4.7 4.8	39 12	8.1 1.8	4.5 1.9	7.7 4.8	4.2	1.0 1.0	1.0 1.0	

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

						LOCULOTER	0001111				
NJ-WRD WELL NUMBER	DATE	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
15-0375 15-0566 15-0619 15-0726 15-0733	09-28-88 09-26-88 09-15-88 09-20-88 09-29-88	<1 1* <1 2 <1	11 <0.2 3.9 51 <0.2	11 12 4.3 12 14	<0.1 <0.1 <0.1 0.1 <0.1	11 7.5 12 7.70 6.2	61 62 31 142 84	<0.01 <0.01 <0.01 <0.01 <0.01	2.5 5.0 1.1 6.4 9.7	<0.01 <0.01 <0.01 <0.01 0.01	0.2 0.7 0.2 0.3
15-0734 15-0735 15-0743 15-0752	08-26-88 09-23-88 09-26-88 02-16-89 09-29-88	<1 <1 2* <1	0.5 <0.2 <0.2 <0.2 0.3	7.7 20 3.9 3.9 4.6	0.1 0.1 <0.1 <0.1	6.4 6.2 6.2 6.1 21	32 77 24 50	<0.01 <0.01 <0.01 0.02 <0.01	2.2 6.0 1.6 1.6 3.4	<0.01 <0.01 <0.01 <0.01 0.02	0.3 0.3 0.2 <0.2 0.5
15-0754 15-0759 15-0764 15-0785 15-0791	09-19-88 09-07-88 09-27-88 09-19-88 09-15-88	<1 2 6 <1 <1	26 <0.2 0.3 0.8 6.6	10 3.8 2.7 9.9 4.2	0.1 <0.1 0.1 <0.1 <0.1	7.9 6.5 5.1 6.9	120 26 18 67 38	<0.01 <0.01 <0.01 <0.01 <0.01	9.9 1.6 0.31 5.9 1.7	<0.01 <0.01 <0.01 0.44 <0.01	0.4 <0.2 <0.2 0.9 <0.2
15-0793 15-0801 15-0802 15-0804 15-0805	09-09-88 08-25-88 09-30-88 09-09-88 09-20-88	<1 2 3 1 5	11 <0.2 24 <0.2 4.8	5.7 4.1 12 3.8 5.3	0.1 0.1 <0.1 <0.1 <0.1	8.1 7.9 7.5 7.1 8.2	49 43 127 36 40	<0.01 <0.01 <0.01 <0.01 <0.01	2.8 4.4 8.8 3.5 2.3	0.02 <0.01 0.01 0.02 <0.01	<0.2 0.4 <0.2 <0.2 0.3
15-0810 15-0812 15-0829 15-0831 15-1016	09-08-88 08-24-88 09-22-88 09-14-88 09-20-88	4 4 8 4 2	25 0.9 60 <0.2 0.5	11 4.4 17 6.0 4.2	<0.1 <0.1 <0.1 <0.1 <0.1	9.8 6.2 10 6.5 7.7	81 30 158 46 35	<0.01 0.01 <0.01 <0.01 <0.01	3.0 2.1 5.0 4.5 2.8	<0.01 0.06 <0.01 <0.01 <0.01	<0.2 0.3 <0.2 <0.2 <0.2
15-1017 15-1019	09-22-88 09-28-88	1 2	8.7 <0.2	9.7 6.3	0.1 <0.1	7.3 5.2	90 46	<0.01 <0.01	8.7 4.8	<0.01 <0.01	0.5
NJ-WRD WELL NUMBER	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO MIUM DIS- SOLVD (UG/ AS C)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)
15-0375 15-0566 15-0619 15-0726 15-0733	09-28-88 09-26-88 09-15-88 09-20-88 09-29-88	0.01 <0.01 0.01 <0.01 0.01	<0.01 <0.01 <0.01 <0.01 0.01	210 120 100 440 140	2 <1 <1 <1 <1	70 180 37 94 420	<0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1 <1	5 5 5 5 5	₹ ₹ ₹ ₹ 5	<10 210 20 <10 20
15-0734 15-0735 15-0743 15-0752	08-26-88 09-23-88 09-26-88 02-16-89 09-29-88	0.02 0.02 <0.01 <0.01 0.01	<0.01 <0.01 <0.01 <0.01 0.01	40 190 20 20 40	<1 <1 <1 <1 <1	130 150 60 59 66	<0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1	5 5 5 5 5	3 3 3 3	160 70 10 <10
15-0754 15-0759 15-0764 15-0785 15-0791	09-19-88 09-07-88 09-27-88 09-19-88	<0.01 <0.01 0.01 <0.01	<0.01 0.02 0.01 <0.01	530 <10 <10 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120 19 20 100	<0.5 0.5 <0.5 <0.5	<1 <1 1 <1	5 5 5 5	4 5 5 5 5	20 40 <10
	09-15-88	<0.01	<0.01	350	<1 <1	27	<0.5	₹1	5	3	270 60
15-0793 15-0801 15-0802 15-0804 15-0805	09-15-88 09-09-88 08-25-88 09-30-88 09-09-88 09-20-88	<0.01 0.01 0.01 0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01				<0.5 <0.5 <0.5 <0.5 <0.5 <0.5		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00 00 00 00 00	270 60 10 80 <10 20 290
15-0801 15-0802 15-0804	09-15-88 09-09-88 08-25-88 09-30-88 09-09-88	<0.01 0.01 0.01 0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	350 340 <10 110 <10	<1 <1 <1 <1 <1	57 49 130	<0.5 <0.5 <0.5	<1 <1 <1 <1			10 80 <10 20

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

					-	LOOCESTER	COORT				
NJ-WRD WELL NUMBER	DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)
15-0375 15-0566 15-0619 15-0726 15-0733	09-28-88 09-26-88 09-15-88 09-20-88 09-29-88	160 16 120 30 4	10 <10 <10 <10	<4 <4 <4 <4	19 24 9 77 27	<0.1 <0.1 <0.1 <0.1 <0.1	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	<1 <1 <1 <1	27 46 11 68 81	<6 <6 <6 <6
15-0734 15-0735 15-0743 15-0752	08-26-88 09-23-88 09-26-88 02-16-89 09-29-88	10 19 10 5 95	<10 20 <10 <10	<4 <4 <4 10	11 35 6 5 92	<0.1 <0.1 <0.1 <0.1	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	<1 <1 <1 <1	21 22 12 11 130	<6 <6 <6
15-0754 15-0759 15-0764 15-0785 15-0791	09-19-88 09-07-88 09-27-88 09-19-88 09-15-88	52 42 280 8 450	60 <10 40 <10 <10	<4 <4 <4 <4	79 8 8 19 14	<0.1 <0.1 <0.1 0.2 <0.1	<10 <10 <10 <10 <10	<10 20 <10 <10 <10	<1 <1 <1 <1	110 15 4 13 11	<6 <6 <6
15-0793 15-0801 15-0802 15-0804 15-0805	09-09-88 08-25-88 09-30-88 09-09-88 09-20-88	72 13 250 12 250	<10 <10 <10 30 <10	<4 <4 <4 <4	17 9 39 3 22	<0.1 <0.1 <0.1 <0.1 <0.1	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	<1 <1 <1 <1	29 17 35 14 26	<6 <6 <6
15-0810 15-0812 15-0829 15-0831 15-1016	09-08-88 08-24-88 09-22-88 09-14-88 09-20-88	33 620 450 120 190	<10 <10 20 <10 20	<4 <4 <4 <4	21 45 52 15 17	<0.1 0.1 <0.1 0.3 <0.1	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	61 11 45 26 15	<6 <6 <6
15-1017 15-1019	09-22-88 09-28-88	40 15	<10 20	<4 <4	40 20	<0.1 0.2	<10 <10	<10 <10	<1 <1	34 14	<6 <6
NJ-WRD WELL NUMBER	DATE	ZINC, DIS- SOLVED (UG/L AS ZN)	RADON 222 TOTAL (PC/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)
WELL	DATE 09-28-88 09-26-88 09-15-88 09-20-88 09-29-88	DIS- SOLVED (UG/L	222 TOTAL	CHLORO- BROMO- METHANE TOTAL	TETRA- CHLO- RIDE TOTAL	CHLORO- ETHANE TOTAL	FORM TOTAL	DI- BROMO- METHANE TOTAL	FORM TOTAL	TOTAL	TOTAL
WELL NUMBER 15-0375 15-0566 15-0619 15-0726	09-28-88 09-26-88 09-15-88 09-20-88	DIS- SOLVED (UG/L AS ZN) 11 16 98 16	222 TOTAL (PC/L) 84 170 330 640	CHLORO- BROMO- METHANE TOTAL (UG/L) <0.2 <0.2	TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L) <0.2 <0.2	FORM TOTAL (UG/L) 	DI- BROMO- METHANE TOTAL (UG/L) <0.2 <0.2	FORM TOTAL (UG/L) <0.2 0.6	TOTAL (UG/L) 	TOTAL (UG/L)
WELL NUMBER 15-0375 15-0566 15-0619 15-0726 15-0733 15-0734 15-0735 15-0743	09-28-88 09-26-88 09-15-88 09-20-88 09-29-88 08-26-88 09-23-88 09-26-88	DIS- SOLVED (UG/L AS ZN) 11 16 98 16 5 10 32 14	222 TOTAL (PC/L) 84 170 330 640 340 200 150 210	CHLORO- BROMO- METHANE TOTAL (UG/L) <0.2 <0.2	TETRA- CHLO- RIDE TOTAL (UG/L) <0.2 <0.2	CHLORO- ETHANE TOTAL (UG/L) <0.2 <0.2	FORM TOTAL (UG/L) 	DI- BROMO- METHANE TOTAL (UG/L) <0.2 <0.2 <0.2	FORM TOTAL (UG/L) 	TOTAL (UG/L)	TOTAL (UG/L) <0.2 <0.2 <0.2
WELL NUMBER 15-0375 15-0569 15-0726 15-0733 15-0735 15-0743 15-0752 15-0754 15-0754 15-0754 15-0758	09-28-88 09-26-88 09-15-88 09-20-88 09-29-88 08-26-88 09-23-88 09-26-88 09-29-88 09-19-88 09-19-88	DIS- SOLVED (UG/L AS ZN) 11 16 98 16 5 10 32 14 11 7	222 TOTAL (PC/L) 84 170 330 640 340 200 150 210 <80 500	CHLORO- BROMO- METHANE TOTAL (UG/L) <0.2 <0.2 	TETRA- CHLO- RIDE TOTAL (UG/L) 	CHLORO- ETHANE TOTAL (UG/L) <0.2 <0.2 	FORM TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L) <0.2 <0.2 <0.2	FORM TOTAL (UG/L) <0.2 0.6 <0.2 <0.2 <0.2	TOTAL (UG/L)	TOTAL (UG/L)
WELL NUMBER 15-0375 15-0566 15-0726 15-0733 15-0735 15-0735 15-0752 15-0754 15-0759 15-0764 15-0785 15-0791 15-0802 15-0804	09-28-88 09-26-88 09-20-88 09-20-88 09-29-88 08-26-88 09-26-88 09-26-88 09-26-89 09-29-88 09-19-88 09-19-88 09-15-88 09-15-88 09-09-88	DIS- SOLVED (UG/L AS ZN) 11 16 98 16 5 10 32 14 11 7 85 14 19 38 22 12 58	222 TOTAL (PC/L) 84 170 330 640 340 200 150 210 <80 500 250 260 510 250 410	CHLORO-BROMO-METHANE TOTAL (UG/L) <0.2 <0.2 <0.2 < <0.2	TETRA- CHLO- RIDE TOTAL (UG/L) <0.2 <0.2 <0.2 <0.2	CHLORO- ETHANE TOTAL (UG/L) 	FORM TOTAL (UG/L) <0.2 <0.2 <0.2	DI- BROMO- METHANE TOTAL (UG/L) <0.2 <0.2 <0.2	FORM TOTAL (UG/L) <0.2 0.6 <0.2	**************************************	TOTAL (UG/L)

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

NJ-WRD WELL NUMBER	DATE	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)
15-0375 15-0566 15-0619 15-0726 15-0733	09-28-88 09-26-88 09-15-88 09-20-88 09-29-88	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
15-0734 15-0735 15-0743 15-0752	08-26-88 09-23-88 09-26-88 02-16-89 09-29-88	:	::	::	::	::	::			:	::
15-0754 15-0759 15-0764 15-0785 15-0791	09-19-88 09-07-88 09-27-88 09-19-88 09-15-88	<0.2 	<0.2	<0.2	<0.2 	<0.2 	<0.2	<0.2 	<0.2	<0.2 	<0.2
15-0793 15-0801 15-0802 15-0804 15-0805	09-09-88 08-25-88 09-30-88 09-09-88 09-20-88	::		::	::	::	::	::	::	::	::
15-0810 15-0812 15-0829 15-0831 15-1016	09-08-88 08-24-88 09-22-88 09-14-88 09-20-88	::	::	::	::	::	::	::	::	::	:
15 - 1017 15 - 1019	09-22-88 09-28-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2
NJ-WRD WELL NUMBER	DATE	1,1,1- TRI- CHLORO ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI-	CHLORO-	CHLORO-		CHLORO-	CHLORO-	
15-0375 15-0566 15-0619 15-0726 15-0733	09-28-88 09-26-88 09-15-88 09-20-88 09-29-88	<0.2 1.6	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	
15-0734 15-0735 15-0743 15-0752	08-26-88 09-23-88 09-26-88 02-16-89 09-29-88	::	::	::	::	::	::	::	:	::	
15-0754 15-0759 15-0764 15-0785 15-0791	09-19-88 09-07-88 09-27-88 09-19-88 09-15-88	::	<0.2	<0.2	<0.2 	<0.2 	<0.2 	<0.2 	<0.2 	<0.2 	
15-0793 15-0801 15-0802 15-0804 15-0805	09-09-88 08-25-88 09-30-88 09-09-88 09-20-88		::	::	::	# ::	::	:	:	::	
15-0810 15-0812 15-0829 15-0831 15-1016	09-08-88 08-24-88 09-22-88 09-14-88 09-20-88	:	::	:	::	::	::	::		::	
15-1017 15-1019	09-22-88 09-28-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 GLOUCESTER COUNTY

NJ-WRD WELL NUMBER	DATE	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	1,2- DIBROMO ETHANE WATER WHOLE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
15-0375	09-28-88								• • •	
15-0566	09-26-88			• •						
15-0619	09-15-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2
15-0726	09-20-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
15-0733	09-29-88	••	••	••	••	••	••	••		••
15-0734	08-26-88	••	••	••	••	• •	••	••	••	••
15-0735	09-23-88							••	• •	
15-0743	09-26-88					••	• •			• •
15-0752	02-16-89 09-29-88		••	••	••	••	••	••	••	••
15-0752	09-29-00	••	••	••	••	•••	••	••	••	
15-0754	09-19-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2
15-0759	09-07-88		••	••	• •	••	••	••		
15-0764	09-27-88	••		••	••	••	••	••	••	••
15-0785 15-0791	09-19-88 09-15-88	••	••	• •	••	••	••	••	••	•••
12-0/91	09-12-88	••	••	••	••	••	••	••	••	
15-0793	09-09-88	••	••	••	••	••	••	••	••	••
15-0801	08-25-88		••	••				••	••	
15-0802	09-30-88	••	• •	••	••		••	••	• •	••
15-0804 15-0805	09-09-88 09-20-88	••	••	••	••	• •	••			••
13-0603	09-20-88	••	••	••	••	••	••	••	••	••
15-0810	09-08-88	••	••					••		
15-0812	08-24-88		• • •		• •	• •		••		••
15-0829	09-22-88	••	••	••	• •	••	••	••		
15-0831	09-14-88				• •					
15-1016	09-20-88	••	••	••	••	••	••	••	••	••
15-1017	09-22-88	••			••	••		••		
15-1019	09-28-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

[#] Total depth of well

Laboratory determination

Aquifer Unit: 121CKKD - Kirkwood-Cohansey aquifer system

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 GLOUCESTER COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREEN INTERV	/AL	AQUIFER UNIT
15-001 15-361 15-385 15-130 15-236 15-137 15-191 15-191 15-192 15-194 15-348 15-283	CLAYTON WD GLASSBORO WD PITMAN WD SOUTH JERSEY WC SWEDESBORO WD PURELAND WC PURELAND WC MANTUA TWP MUA MANTUA TWP MUA MANTUA TWP MUA GREENWICH TWP WD SHELL CHEM CO	CWD 3 GWD 5 PWD P4 SJWC 3 SBWD 3 PURE 2(3-1973) 1-1973 MTMUA 2 MTMUA 5 MTMUA 4 GTWD 6 SHELL 3	393913 394141 394345 394408 394434 394535 394613 394629 394641 394732 394910	750517 750710 750804 751843 751843 752054 752129 750859 751109 751037 751541 751256	133 140 125 35 75 37 8 60 88 10 20	746 - 610 - 234 - 241 - 158 - 81 - 336 - 315 - 233 - 105 - 358	800 657 520* 265 312 208 136 368 337 265 135 383	211MRPAU 211MRPAU 211MRPAU 211MRPAM 211MRPAM 211MRPAM 211MRPAU 211MRPAU 211MRPAU 211MRPAU 211MRPAU 211MRPAL

NJ-WRD Well Number	SITE Owner	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (US/CM)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)
15-001 15-361 15-385 15-130 15-236 15-137 15-144 15-191 15-192 15-194 15-348 15-283	CLAYTON WD GLASSBORO WD PITMAN WD SOUTH JERSEY WC SWEDESBORO WD PURELAND WC PURELAND WC MANTUA TWP MUA MANTUA TWP MUA MANTUA TWP MUA GREENWICH TWP WD SHELL CHEM CO	CWD 3 GWD 5 PWD P4 SJWC 3 SBWD 3 PURE 2(3-1973) 1-1973 MTMUA 2 MTMUA 2 MTMUA 4 GTWD 6 SHELL 3	8/12/1988 8/12/1988 8/12/1988 8/12/1988 8/15/1988 8/19/1988 8/12/1988 8/12/1988 8/12/1988 8/12/1988 8/12/1988 8/12/1988	20.0 22.0 17.0 15.0 15.0 14.0 15.0 15.0 15.0	1,010 700 580 860 350 340 135 600 480 500	8.4 8.3 8.1 7.2 6.4 8.2 7.9 4.0 7.8	140 64 46 170 39 15 28 26 47 38 13

^{*} Total depth of well.

Aquifer unit:

211MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

HUNTERDON COUNTY

NJ-WRD WELL NUMBER		ITE NER	10	LOCAL	LAT	ritude i	ONGITUDE	!	ELEV. LAND SURF. . NGVD)	OPEN OR SCREENED INTERVAL (FT.)		JIFER NIT
19-0055 19-0074 19-0017	WEST A	R, THOMAS MWELL TWP OTEN, TERM	MUN :	ESER 1 ICIPAL BLD SCOTEN 1	G 1 40	02055 02341 02909	0745526 0745436 0750032		390 290 480	52 - 430 30.33 - 107 50 - 450	231	1BRCK 1BRCK 1BRCK
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONATE IT-FLD		
19-0055 19-0074 19-0017	06-09-88 03-09-88 03-08-88	13.0 13.5 12.0	395 610 689	8.0 6.5 9.4	170 270 8	50 80 1.8	11 18 0.91	13 11 160	3.5 1.9 1.8	187 205 328		
NJ-WRD WELL NUMBER	DATE	CAR- BONATE IT-FLD (MG/L AS CO3)		SOLVED	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L	SILICA, DIS- SOLVED (MG/L AS S102)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L	GEN, NO2+NO3 DIS-		
19-0055 19-0074 19-0017	06-09-88 03-09-88 03-08-88	<1.0 <1.0 37	157 167 330	42 52 0.6	3.9 39 18	0.7 0.1 1.4	24 26 10	240 342 393	<0.01 <0.01 <0.01	<0.1 3.1 <0.1		
NJ-WRD WELL NUMBER	DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)			
19-0055 19-0074 19-0017	06-09-88 03-09-88 03-08-88	0.07 <0.01 <0.01	0.3 <0.2 <0.2	<0.01 0.02 0.04	<0.01 <0.01 0.01	10 <10 <10	2 9 <1	<1 2 3	5 1 <1			
NJ-WRD WELL NUMBER	DATE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)			
19-0055 19-0074 19-0017	06-09-88 03-09-88 03-08-88	3 3 <1	37 <3 3	<5 <5 <5	68 2 1	<0.1 <0.1 <0.1	220 23 <3	0.7 0.7 0.4	3 2 2			

Aquifer Unit: 231BRCK - Brunswick Group (undifferentiated)

WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988

CER	

NJ-WRD WELL NUMBER	SITE OWNER	1		DCAL TIFIER	u	ATITUDE	LONGI	TUDE	ELEV. LAND SURF. (FT. NGV	S	PEN OR CREENED NTERVAL (FT.)	AQUIFER UNIT
21-0244	HOPEWELL T	WP MUA	WASH CROS	SSING EST	ATES 4	401846	0745	046	210	10	5 - 235	231BRCK
NJ-WRD WELL NUMBER	DATE	TEMPER ATURE WATER (DEG C	DUCT-	PH (STAND ARD) UNITS)	AS	CALCIU DIS- SOLVE (MG/L	DIS- D SOLVE (MG/L	DIS- D SOLVED (MG/L	DIS- SOLVE (MG/L	, WAT WH TOT FE D FIELD MG/L A	SULFATE T DIS- SOLVED S (MG/L	
21-0244	08-15-8	8 13.	0 44	9 7.6	20	0 50	18	13	0.9	15	2 33	
NJ-WRD Well Number	DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMONIA I	NITRO- GEN, AM- MONIA + DRGANIC DIS. (MG/L AS N)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	
21-0244	08-15-88	13	0.1	20	250	<0.01	2.2	<0.01	0.2	0.03	10	
NJ-WRD Well Number	DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	
21-0244	08-15-88	4	220	<0.5	1	<5	<3	<10	3	<10	15	
NJ-WRD WELL NUMBER 21-0244	DATE 08-15-88	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)	
NJ-WRD WELL NUMBER 21-0244	DATE 08-15-88	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)		
NJ-WRD Well Number	DATE	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)		
21-0244	08-15-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
NJ-WRD Well Number	DATE	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- †Ri- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TÉTRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	CHLORO-	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)		
21-0244	08-15-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		

213

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MERCER COUNTY

NJ-WRD WELL NUMBER	DATE	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,2- DIBROMO ETHYL- ENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)
21-0244	08-15-88	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

Aquifer Unit: 231BRCK - Brunswick Formation (undifferentiated)

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 SALEM COUNTY

NJ-WRD Well Number	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	ELEV. LAND SURF. (FT. NGVD	SCREENED INTERVAL (FT.)	AQUIFER UNIT
33-032 33-364 33-457 33-108 33-112 33-354 33-362 33-459 33-118 33-119 33-122 33-137 33-460 33-346 33-085 33-085	PUBLIC SERV E-G PUBLIC SERV E-G PUBLIC SEV E-G US ARMY PENNSVILLE TWP WD WOODSTOWN WD WOODSTOWN WD RICHMAN ICE CRM PENNSVILLE TWP WD PENNSVILLE TWP WD ATL CITY ELEC E I DUPONT PENNS GROVE WSC PENNS GROVE WSC PENNS GROVE WSC B F GOODRICH CO B F GOODRICH CO B F GOODRICH CO	PW 3 PW5 PSEG 6 FINNS POINT PTWD 4 WWD 2 WWD 3 1A PTWD 1 PTWD 2 DEEPWATER 8 PGWSC 1A LAYNE 1 #6 (PW-2) #4 (PW-3)	392740 392743 392751 393641 393754 393904 393928 393928 394009 394045 394112 394247 394256 394556 394557	753201 753158 753207 753322 753147 751946 751927 752147 753045 753043 753028 752714 752718 752535 752530 752530	20 17 20 7 10 45 60 25 8 7 10 14 19 10 11 10	242 - 293 765 - 840 1115 - 1135 290 - 319 117 - 137 670 - 705 692 - 712 414 - 457 213 - 238 210 - 230 165 - 235 317 - 347 41 - 61 317 - 357 93 109 - 129 169 - 189	211MLRW 211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAL 211MRPAL 211MRPAL 211MRPAL 211MRPAM 211MRPAL 211MRPAM 211MRPAM

NJ-WRD Well Number	SITE	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (US/CM)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)
33-032 33-364 33-457 33-108 33-112 33-354 33-459 33-118 33-119 33-122 33-137 33-460 33-346 33-085 33-085	PUBLIC SERV E-G PUBLIC SERV E-G PUBLIC SEV E-G US ARMY PENNSVILLE TWP WD WOODSTOWN WD RICHMAN ICE CRM PENNSVILLE TWP WD PENNSVILLE TWP WD ATL CITY ELEC E I DUPONT PENNS GROVE WSC PENNS GROVE WSC B F GOODRICH CO B F GOODRICH CO	PW 3 PW5 PSEG 6 FINNS POINT PTWD 4 WMD 2 WMD 3 1A PTWD 1 PTWD 2 DEEPWATER 3R DRINKWATER 8 PGWSC 1A LAYNE 1 #9 (PW-1) #6 (PW-2) #4 (PW-3)	8/16/1988 8/16/1988 8/16/1988 8/16/1988 8/16/1988 8/16/1988 8/17/1988 8/16/1988 8/17/1988 8/17/1988 8/17/1988 8/17/1988 8/17/1988 8/17/1988 8/17/1988	17.0 20.0 20.0 14.5 16.0 17.0 15.0 14.5 14.5 14.0 15.0 14.0	790 400 840 520 790 440 550 400 520 175 950 205 21,200	8.0 7.9 7.1 8.1 8.1 7.5 7.1 7.6 7.1 6.0 7.1	150 31 190 100 11 210 150 16 62 120 49 76 12 220 31 33 280

Aquifer unit:

211MLRW - Wenonah-Mount Laurel aquifer 211MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

215

	PAGE		PAGE
Accuracy of records	.15	Crosswicks Creek at Extonville	106 163
AcknowledgmentsAcre-foot, definition of	20	at New Egypt	103
Adenosine triphosphate, definition of	20	definition of	22
Algae, definition of	20	Cubic foot per second, definition of	22 186
Allentown, Doctors Creek at	20 3 167	Cumberland County, ground-water levels	204
Aquifer code list and geologic names	20	ground nator quarry	
Aquifer, definition of	20	Definition of terms Delaware and Raritan Canal at Kingston	20 86
Artesian, definition of	21 21	Delaware and Raritan Canal, diversions	159
Assiscunk Creek near Columbus	164	Delaware River at Belvidere	70
Assunpink Creek at Trenton	105	at Burlingtonat Lumberville	111 87
Aura, Still Run at	166	at Marine Terminal, Trenton	171
		at Montague	57 71
Bacteria, definition ofBalesville, Paulins Kill at	21 63	at Northampton Street at Easton, PAat Palmyra	130
Bear Creek near Johnsonburg	166	at Port Jervis, NY	49
Bear Creek, PA, diversions	159	at Portland, PA	61
Bear Swamp Reservoir, NY, diversions Beattystown, Musconetcong River at	159 81	at Riegelsvilleat Trenton	163 93
Beaver Brook near Belvidere	162	at Washington Crossing	91
Bedload, definition ofBed material, definition of	21 21	below Christina River at Wilmington, DE below Tocks Island Damsite, near Delaware	150
Beltzville Lake15	5,158	Water Gap	60
Belvidere, Beaver Brook near	162	Delaware River basin:	162
Delaware River at	70 21	crest-stage partial-record stations in discharge measurements at low-flow partial-	102
Bethlehem, PA, Lehigh River at	73	record stations in	166
Big Timber Creek miscellaneous measurements North Branch at Laurel Road at Laurel Spring	170 165	discharge measurements at miscellaneous sites in	168
South Branch, at Blackwood Terrace	141	diversions and withdrawals in	159
Biochemical oxygen demand, definition of	21	reservoirs in,	3-156
Biomass, definition of	21 197	Delaware Water Gap, PA, Delaware River below Tocks Island Damsite, near	60
Blacks Creek at Mansfield Square	163	Deptford Deep observation well	194
Blackwood Terrace, South Branch Big Timber Creek at	141	Diatoms, definition of	24 22
Blairstown, Paulins Kill at	65	Discharge measurements at miscellaneous sites	168
Yards Creek near	68 83	Discontinued continuous Water-Quality stations Discontinued continuous gaging stations	33 32
Blue green algae, definition of	24	Dissolved, definition of	22
Blue Marsh Lake, PA15	6,158 21	Dissolved solids concentration, definition of Doctors Creek at Allentown109,16	22
Browns Mills, North Branch Rancocas Creek at	114	Downstream order and system	12
Burlington County, ground-water levels	173	Drainage area, definition of	22
Burlington, Delaware River at	111	Drainage basin, definition of	22 21
Camden County, ground-water levels	179		
Cannonsville Reservoir	3,156 182	Eagle Point 3 observation Well	195
ground-water quality. Cells/volume, definition of	203	Easton, PA, Delaware River at Northampton St., at	71
Cells/volume, definition of	21	East Pond Reservoir, NY, diversions	159 179
cfs-day, definition of	21 21	Elm Tree Farm 2 observation well	180
Cherry Hill, South Branch Pennsauken Creek at	133	Ewing Creek, miscellaneous measurements	169
Chlorophyll, definition of	22 164	Explanation of the RecordsExtonville, Crosswicks Creek at	12 106
Clarksville, Assunpink Creek near10	3,167	Extensivitie, Glosswicks cleek attitions	
Clayton, Little Ease Run near	42	Fecal coliform bacteria, definition of	21 21
Cliff Lake, NY	171	Fecal streptococcal bacteria, definition of Flat Brook near Flatbrookville	59
at Seeley	46	Franklinville, Scotland Run at	166
miscellaneous measurements	171 162	Gage height, definition of	22
Collingswood, Newton Creek at	164	Gaging station, definition of	22
Columbus Assissumk Creek man	22	Records	42
Columbus, Assiscunk Creek near Crafts Creek at	164 163	Gloucester County, ground-water levelsground-water quality	188 205
Contents, definition of	22	Gloucester County Water-table Network	196
Continuing record station, definition of	22 22 22	Godeffroy, NY, Neversink River at	55 24
Control structure, definition of	22	Green Lane Reservoir, PA	56,158
Cooper River at Haddonfield	1 140	Greenwich, Cohansey River at	171
at Lawnside	138	Ground-water levels, explanation of records	17
at Norcross Road at Lindenwold	136 170	Data collection and computation	17 18
Miscellaneous measurements	164	Data presentationGround-water Quality, explanation of records	- 18
Coopersville, Merrill Creek at	166	Data collection and computation	18
County Park 18 observation well	185 163	Data presentationGround-water quality records	18 203
Crest-stage partial-record stations	2-165	_	
Hackettstown, Musconetcong River near	16	3 Weddonfield Cooper River at	140

	PAGE	P	AGE
Haddon Heights, South Branch Newton Creek at	164	Medford, Sharps Run at Route 541 at	167
Hardness, definition of	22	Medford 1 observation well	174
Harrisonville, Oldmans Creek near	165		175
Hazel Creek, PA, diversions	159 183		176 162
High tide, definition of	22	Mercer County, ground-water quality	212
Honey Run near Ramseyburg	166	Merrill Creek at Coopersville	166
Hopatcong Lake	3,163	Merrill Creek Reservoir	158
Hunterdon County, ground-water levels	197	Metamorphic stage, definition of	23 23 23 166 23 162
ground-water quality	211 162	Methylene blue active substance, definition of. Micrograms per gram, definition of	23
Hutton Hill 1 observation well	181	Micrograms per liter, definition of	23
Hydrologic Bench-Mark Network	12	Middleville, Trout Brook near	166
Hydrologic bench-mark station, definition of	22	Milligrams per liter, definition of Millville, Menantico Creek near	23
Hydrologic conditions	42	Montague, Delaware River at	57
Hydrologic unit, definition of	22	Moorestown North Branch Pennsauken Creek near 131.	164
		Morrisville, PA, Borough of, diversions	160
Identifying estimated daily discharge	15	Mullica Hill, Raccoon Creek at	165
Index	197	Musconetcong River at Beattystownat Lockwood	81
Introduction	-1	at outlet of Lake Hopatcong	163
	years.	at Riegelsville	84
Jacobs Creek at Somerset	167	miscellaneous measurements	168
miscellaneous measurements	7,170		83 163
Johnsonburg, Bear Creek near	166	near Hackettstown	103
Jones Island 2 observation well	186	(NGVD of 1929)	23
		National stream-quality accounting network	-
Kingston, Delaware and Raritan Canal at	86	(NASQAN), definition of	,25
Lake Hopatcong, Musconetcong River at outlet of 73	8 163	National Trends Network	25
Lakes and reservoirs:	, 105	Neversink Reservoir, NY	157
Beltzville Lake15	5,158	Neversink River at Godeffroy, NY	55
Blue Marsh Lake, PA	6,158		163
Cannonsville reservoir, NY	4 157		164
Green Lane Reservoir, PA	6.158	New Village, Pohatcong Creek at	
Hopatcong, Lake15	5,158	N.I-WRD well number	23
Jadwin, General Edgar, Reservoir, PA15 Merrill Creek Reservoir15	3,157	Nockamixon Reservoir, PA155,	158
Merrink Peservoir MV 15	6,158 4,157	Norma, Maurice River at	43
Neversink Reservoir, NY	5, 158	sites	11
Penn Forest Reservoir, PA	5,157		
Pepacton Reservoir, NY	3,156		148
Prompton Reservoir, PA	5,156 6 158		170 165
Swinging Bridge Reservoir, NY	4.157	Open or screened interval	
Toronto Reservoir NY	4 157	Organic mass, definition of	21
Wallenpaupack, Lake, PA	3,157	Organism count/area, definition of	23
Wallenpaupack, Lake, PA	5 157	Organism count/volume, definition of	23 21 23 24 23
Land-Surface datum	22	Other records available	15
Latitude-longitude system	12	Oyster Lab. 4 observation well	184
Laurel Springs, North Branch Big Timber Creek at	165		470
Lawnside, Cooper River at	138 116	Palmyra, Delaware River at	130
Lebanon State Forest, McDonalds Branch in Lebanon State Forest 23D observation well	173	Partial-record stations, crest-stage	162
Lehigh River at Bethlehem, PA	73	definition of	23
Lindenwold, Cooper River at Norcross Road at	130	low-flow	166
Little Creek near LumbertonLittle Ease Run near Clayton	167	tidal crest-stageParticle size classification	171 23 23 63 65 168
Lockwood, Lubbers Run at	166	Particle-size, definition of	23
Musconetcong River at	79	Paulins Kill at Balesville	63
Low-flow partial-record stations	166	at Blairstown	65
Low tide, definition ofLubbers Run at Lockwood	22 166	miscellaneous measurements Pemberton, North Branch Rancocas Creek at	127
Lumberton, Little Creek near	167	Penn Forest Reservoir, PA	157
Lumberville, Delaware River at	87	Pennsauken Creek, North Branch, near	
Manafield Course Blacks Court at	4/7	Moorestown	164
Mansfield Square, Blacks Creek at	163 165	Pepacton Reservoir, NY	156
at Salina	165	Pequest River at Huntsville	162
Mantua Deep observation well	189	at Pequest	69
Mantua Shallow observation well	188		162
Mariton, North Branch Cooper River near Maurice River at Norma	164	miscellaneous measurements	168
Maurice River basin:	43	Periphyton, definition of	24 24 24
crest-stage partial-record stations	162	Pesticides definition of	24
McDonalds Branch in Lebanon State Forest	116	Pesticides, definition of	143
Mean concentration, definition of	25	Phytoplankton, definition of	143 24 24
Mean high or low tide, definition of	25 22 22	Picocurie, definition ofPitman, Mantua Creek at	165
Measuring point, definition of	22		
Medford, SW Branch Rancocas Creek at	164	Plankton, definition of	163
		Point Airy observation well	201

PA	GE	P	AGE
Polychlorinated biphenyls, definition of	24	Surface-Water Quality, Data Presentation	16
Pompeston Creek at Cinnaminson	64	Laboratory measurements	16
Porches Mill, Oldmans Creek at	48	On-site measurements	15
Port Jervis, NY, Delaware River at	49	Sediment	16
Portland PA Delaware River at	61	Water temperature	16
Prompton Reservoir, PA153,1	156	Surface-Water Quality records	42
Publications, current NJ projects	18	Surficial bed material, definition of	25
Techniques of water-resources investigations.	31	Suspended recoverable, definition of	25
	165	Suspended-sediment concentration, definition of	25
	145	Suspended-sediment concentration, definition of Suspended sediment, definition of	22
Radiochemical program, definition of 12,	24	Suspended-sediment discharge, definition of	16 42 25 25 25 25 25 25 25 25 25
	166	Suspended-sediment load, definition of	24
	114	Suspended, total, definition of	145
	127 170	Swedesboro, Raccoon Creek near	157
South Branch at Vincentown		Taxonomy, definition of	26
	164	Terms, definition of	26 20
Records collected by other agencies	1	Thermograph, definition of	26
Records of stage and water discharge	13	Tidal crest-stage stations	171
Recoverable from bottom material, definition of.	24	Time-weighted average, definition of	26
References, selected	26	Tocks Island damsite, Delaware River Delow,	
References, selectedReferences, selected	17	near Delaware Water Gap, PA	60
Reservoirs: See Lakes and reservoirs		Tons per acre-foot, definition of	26
Return period, definition of	24	Tons per day, definition of	26
Rhodia Corp. 1 observation well	178	Toronto Reservoir, NY	21
	163 84	Total, definition of	26
Musconetcong River at	24	Total discharge, definition of	26
River mile, definition of	24	Total organism count, definition of	23
, , , , , , , , , , , , , , , , , , , ,		Total, recoverable, definition of	26
Salem County, ground-water levels	198	Townsbury, Pequest River at	162
	214	Trenton, Assunpink Creek at	105
Salem River at Woodstown		City of, diversions	160
	198	Delaware River at	93 171
	199	Delaware River at Marine Terminal at	2,26
	200 165	Tritium Network, definition of	166
Schuylkill River at Philadelphia	143	HOUL BLOOK Hear MIGGLEVILLE	100
	166	Vincentown, South Branch Rancocas Creek at112	.164
Screened interval, definition of	24	Vocational School 2 observation well	187
Secondary Wells	202	The second discussion of the second s	1
Sediment	16	Wallenpaupack, Lake, PA	, 157
Sediment, definition of	24	Walter, Francis E., Reservoir, PA	, 157
Seeley, Cohansey River at	46	Washington Crossing, Delaware River at	91
West Branch Cohansey River at	162	Water Quality Records, explanation of	15
Sharps Run at Route 541 at Medford	167	Water Quality, summary of	-
	193 190	water-ketated Reports for New Jersey Completed	19
	191	by the Geological Survey during 1987-88 Water table, definition of	26
Skefka 4 observation well	192	Water Year, definition of	26
Sodium-adsorption-ratio, definition	25	WATSTORE Data, access to	26
Solute, definition of	25	WDR. definition of	26
Somerset, Jacobs Creek at	167	Weighted average, definition of	26 182
Special networks and programs	12	West Cape May 1 observation well	
Specific conductance, definition of	25	Wet mass, definition of	21
Stage and water discharge records, explanation		Wickecheoke Creek at Stockton89	, 167
Of	13	Wild Creek Reservoir, PA155	, 15/
Stage-discharge relation, definition of	25	Willingboro 2 observation well	177
Station Identification Numbers	12	Wilmington, DE, Delaware River below	150
Still Run at Aura	166	Christina River at	159
Still Run at Aura	167	Woodstown, Salem River at151	165
Streamflow, definition of	25	Woolsey Brook, miscellaneous measurements	169
summary of	1	WSP, definition of	26
Substrate, definition of	25		
Surface area, definition of	25 25 15	Yards Creek near Blairstown	68
Surface-Water Quality	15		
Arrangement	15	Zooplankton, definition of	24
	15		

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
feet (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
mics (iii)	1.0007110	Knometers (km)
	Area	
acres	4.047×10^{3}	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
garrons (gar)	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
B	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm ³)
,	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
•	2.447×10^{-3}	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
cubic feet per second (it /s)	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
Serve to Learning (Sm/ 11171)	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, N.J. 08628

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE

